

SWING
HACKSTM

Other Java™ resources from O’Reilly

Related titles Java™ in a Nutshell

Head First Java™

Head First EJB™

Programming Jakarta
Struts

Tomcat: The Definitive
Guide

Learning Java™

Java™ Extreme Program-
ming Cookbook

Java™ Servlet and JSP™

Cookbook™

Hardcore Java™

JavaServer™ Pages

Hacks Series Home hacks.oreilly.com is a community site for developers
and power users of all stripes. Readers learn from each
other as they share their favorite tips and tools for Mac
OS X, Linux, Google, Windows XP, and more.

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s
books on Java and related technologies, including
sample chapters and code examples.

OnJava.com is a one-stop resource for enterprise Java
developers, featuring news, code recipes, interviews,
weblogs, and more.

Conferences O’Reilly brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We spe-
cialize in documenting the latest tools and systems,
translating the innovator’s knowledge into useful skills
for those in the trenches. Visit conferences.oreilly.com
for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier on-
line reference library for programmers and IT
professionals. Conduct searches across more than
1,000 books. Subscribers can zero in on answers to
time-critical questions in a matter of seconds. Read the
books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today.

SWING
HACKS

Joshua Marinacci and Chris Adamson

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

TM

Swing Hacks™

by Joshua Marinacci and Chris Adamson

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brett McLaughlin

Series Editor: Rael Dornfest

Executive Editor: Dale Dougherty

Production Editor: Marlowe Shaeffer

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:
June 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. The Hacks series designations, Swing Hacks, the image of a reflex mallet,
and related trade dress are trademarks of O’Reilly Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is independent
of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies
that technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may
not work, may cause unintended harm to systems on which they are used, or may not be consistent
with applicable user agreements. Your use of these hacks is at your own risk, and O’Reilly Media,
Inc. disclaims responsibility for any damage or expense resulting from their use. In any event, you
should take care that your use of these hacks does not violate any applicable laws, including
copyright laws.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00907-0
ISBN-13: 978-0-596-00907-6 [4/07]
[M]

v

Contents

Credits . ix

Preface . xiii

Chapter 1. Basic JComponents . 1
1. Create Image-Themed Components 1

2. Don’t Settle for Boring Text Labels 8

3. Fill Your Borders with Pretty Pictures 14

4. Display Dates in a Custom Calendar 19

5. Add a Watermark to a Text Component 23

6. Watermark Your Scroll Panes 26

7. Put a NASA Photo into the Background of a Text Area 29

8. Animate Transitions Between Tabs 32

9. Blur Disabled Components 39

10. Building a Drop-Down Menu Button 43

11. Create Menus with Drop Shadows 49

12. Add Translucence to Menus 52

Chapter 2. Lists and Combos . 58
13. Filter JLists 58

14. Add a Filter History 63

15. Make JLists Checkable 66

16. Make Different List Items Look Different 70

17. Reorder a JList with Drag-and-Drop 80

18. Animate Your JList Selections 87

vi | Contents

19. Turn Methods into List Renderers 92

20. Create a Collections-Aware JComboBox 95

Chapter 3. Tables and Trees . 102
21. Size Your Columns to Suit Your JTable’s Contents 102

22. Add Column Selection to JTables 107

23. Let Your JTables Do the Sorting 110

24. Create a JDBC Table Model 122

25. Export Table Data to an Excel Spreadsheet 130

26. Search Through JTables Easily 133

27. Animate JTree Drops 139

Chapter 4. File Choosers . 149
28. Add a Right-Click Context Menu to the JFileChooser 149

29. Display Shortcuts in the JFileChooser 154

30. Real Windows Shortcut Support 158

31. Add Image Preview to File Choosers 164

32. Preview ZIP and JAR Files 167

Chapter 5. Windows, Dialogs, and Frames . 175
33. Window Snapping 175

34. Make a Draggable Window 178

35. Add Windows Resize Icons 181

36. Add Status Bars to Windows 187

37. Save Window Settings 193

38. Earthquake Dialog 197

39. Spin Open a Detail Pane 202

40. Minimize to a Mini-Frame 207

Chapter 6. Transparent and Animated Windows . 213
41. Transparent Windows 213

42. Make Your Frame Dissolve 219

43. Create Custom Tool Tips 225

44. Turn Dialogs into Frame-Anchored Sheets 228

45. Animating a Sheet Dialog 233

46. Slide Notes Out from the Taskbar 240

47. Indefinite Progress Indicator 247

Contents | vii

Chapter 7. Text . 257
48. Make Text Components Searchable 257

49. Force Text Input into Specific Formats 261

50. Auto-Completing Text Fields 265

51. Write Backward Text 272

52. Use HTML and CSS in Text Components 275

53. Use Global Anti-Aliased Fonts 278

54. Anti-Aliased Text Without Code 283

55. Anti-Aliased Text with a Custom Look and Feel 285

Chapter 8. Rendering . 287
56. Create a Magnifying Glass Component 287

57. Create a Global Right-Click 293

58. Block a Window Without a Modal Dialog 296

59. Create a Color Eyedropper 300

60. Changing Fonts Throughout Your Application 304

61. Load New Fonts at Runtime 307

62. Build a Colorful Vector-Based Button 309

63. Add a Third Dimension to Swing 316

64. Turn the Spotlight on Swing 321

Chapter 9. Drag-and-Drop . 330
65. Drag-and-Drop with Files 330

66. Handle Dropped URLs 336

67. Handle Dropped Images 340

68. Handling Dropped Picts on Mac OS X 345

69. Translucent Drag-and-Drop 350

Chapter 10. Audio . 358
70. Play a Sound in an Applet 359

71. Play a Sound with JavaSound 364

72. Play a Sound with Java Media Framework 368

73. Play a Sound with QuickTime for Java 371

74. Add MP3 Support to JMF 376

75. Build an Audio Waveform Display 378

76. Play Non-Trivial Audio 386

viii | Contents

77. Show Audio Information While Playing Sound 392

78. Provide Audio Controls During Playback 401

Chapter 11. Native Integration and Packaging . 408
79. Launch External Programs on Windows 408

80. Open Files, Directories, and URLs on Mac OS X 411

81. Make Mac Applications Behave Normally 413

82. Control iTunes on Mac OS X 418

83. Control iTunes Under Windows 421

84. Construct Single-Launch Applications 424

85. Stuff Stuff in JARs 428

86. Make Quick Look and Feel Changes 434

87. Create an Inverse Black-and-White Theme 439

Chapter 12. Miscellany . 443
88. Display a Busy Cursor 443

89. Fun with Keyboard Lights 446

90. Create Demonstrations with the Robot Class 450

91. Check Your Mail with Swing 454

92. Don’t Block the GUI 459

93. Code Models That Don’t Block 465

94. Fire Events and Stay Bug Free 472

95. Debug Your GUI 478

96. Debug Components with a Custom Glass Pane 481

97. Mirror an Application 486

98. Add Velocity for Dynamic HTML 492

99. Get Large File Icons 499

100. Make Frames Resize Dynamically 500

Index . 503

ix

0

Credits

About the Authors
Joshua Marinacci started playing with Java in the summer of ’95 at the
request of his favorite TA and has never looked back. Since then he has built
all manner of Java software for clients ranging from large Fortune 500 com-
panies to small Internet startups. He quickly discovered his passion for user
interfaces and client software, building a reputation in the desktop Java
world and finally joining the Swing Team at Sun in the spring of 2005. In his
spare time, Joshua writes articles and weblogs for Java.net while contribut-
ing to the JDIC, JDNC, and WinLAF open source projects. He also heads
up Flying Saucer, an open source, all-Java XHTML renderer. This is his first
book, but hopefully not his last. He lives in historic East Atlanta with his
girlfriend Kim and their yellow labrador Eliza.

Chris Adamson is the Editor of O’Reilly’s ONJava site and the Associate
Online Editor for Java.net, a collaboration of O’Reilly, Sun Microsystems,
and CollabNet. He also writes about Java and Mac topics online and speaks
at conferences such as ADHOC/MacHack and the O’Reilly Mac OS X
Conference. He develops media applications under the guise of his consult-
ing company, Subsequently & Furthermore, Inc. He has an M.A. in Tele-
communications from Michigan State University and a B.A. in English and
B.S. in Symbolic Systems from Stanford University. He lives in Atlanta with
his wife, Kelly, and their children, Keagan and Quinn, and he has thus far
managed to own seven and a half Macs.

x | Credits

Contributors
Swing is big enough that surely everyone who works with it takes away
some new ideas for how to hack it. Our contributors helped flesh this book
out with hacks that blew us away and that we’re sure you’ll like, too.

• Romain Guy is a French student currently working as an intern with the
Swing Team at Sun Microsystems in California. He discovered Java in
1998 and contributed to the Open Source/Free Software community
with Jext, a Java source code editor he developed over five years. He is
also a freelance journalist for Login:, a French computing magazine.
Never short for ideas, he also wrote for Javalobby, the Java developer’s
journal, and a couple of French magazines. Romain seeks for other
experiences whenever he can: he works as a translator for O’Reilly
France, he taught Java in a French university, he fulfilled several mis-
sions as a freelance Java developer, and he even worked as a video game
programmer. Today, Romain focuses on UI design and humane interac-
tion. He shares his work on his weblog: www.jroller.com/page/gfx.

• Jonathan Simon is a comprehensive client-side expert, designing and
developing mission-critical financial trading clients for Wall Street
investment banks. This requires a fluid combination of business and
task analysis and interaction design with the intricacies of Java rich-
client development to create content rich, ergonomic trading applica-
tions. He has written extensively about his experiences for Java.net,
IBM DeveloperWorks, JavaWorld, and Addison Wesley. An avid per-
cussionist, composer, and electronic musician, Jonathan also develops
music software in Java. He is especially interested in interaction design
and data visualization.

Acknowledgments

Joshua
This book has gone faster that I ever imagined, from original concept to final
draft in less than a year. Writing Swing Hacks was harder than I ever
thought, giving me great respect for those who write complete novels. I have
had the utmost fun, however, and wouldn’t trade the experience for the
world.

I would first like to thank Kimi, my loving partner who convinced me to
pursue writing as a serious endeavor. She has always believed that I could be
more than just a contract coder. I couldn’t have done it without you,
Sweetie.

Credits | xi

Many thanks to my family and friends who always said that I was never liv-
ing up to my potential. Thank you for raising, loving, and teaching me. I
promise to live up to my potential now, starting next week.

Thanks to the great team at O’Reilly, especially Brett, who tirelessly read
through my drafts, dotted the ts, crossed the is, and made my prose readable.

Thanks go out to the readers of Java.net and Daniel Steinberg, my Java.net
editor, who have always provided encouragement, feedback, and construc-
tive criticism. Without the Java community’s ecology of code and fresh
ideas, this book wouldn’t have been possible.

Special thanks to Jonathan and Romain who gave us the boost we needed to
get the book finished. They’ve put in some great stuff. I’ve even learned a
few things.

Extra special thanks to Chris who believed from the start that this was a
great idea for a book. He guided me through the proposal process, shaped
our draft, and always kept the book on track. Maybe we can finally get that
Okama GameSphere.

And, finally, my unending thanks to all of the Swing Team developers who
put in 10 years of blood and sweat, making Swing the powerful toolkit it is
today. I hope we can keep pushing it forward.

Chris
Credit for this book needs to begin with Joshua—I’m still tempted to type
“Joshy” because that’s his username everywhere—who started this book as
an informal series on his popular Java.net weblog and had the wherewithal
to push through a book proposal.

Also, all the really cool hacks are his. But I think that’s what everyone
involved with this book has been saying when they read what the others
have contributed.

And speaking of them, thanks also to our contributors, Romain and
Jonathan, who came in at just the right time to get this book over the hump
and make it real. Their inventiveness and responsiveness helped us pull
through.

Thanks to Brett McLaughlin, who was on the receiving end of a pretty wild
brain-dump, with two authors and two contributors going on wildly differ-
ent tangents. He helped shape this book into something readable and fun.

Lots of other people in O’Reilly production will handle this book after I fin-
ish writing this acknowledgment, and I thank them in advance for every-
thing they do.

xii | Credits

And, of course, thanks to Kelly and Keagan for holding down the fort at
home while daddy was in the office working on this book. Quinn also con-
tributed, sleeping on my lap while I banged out parts of Chapters 10 and 11.

Obligatory O’Reilly tune check: this time it was Delgados, The Tubes,
Green Day, L’Arc~en~Ciel, David Bowie, Frank Zappa, Puffy AmiYumi,
Little Feat, the Gundam Wing Endless Waltz soundtrack and the Armitage’s
Dimension stream.

xiii

0

Preface

Hi, welcome to Swing Hacks! This book is a reference, but not a complete
reference of the Swing API. We already have that. It’s called Java Swing, is
published by O’Reilly, and weighs in at over 1,200 pages. It’s available for
purchase at fine bookstores and Russian black market web sites every-
where. We’re not saying that it isn’t a great book. It’s fantastic! We’ve
owned many weathered copies over the years. The problem is…it’s huge!
This isn’t really the book’s fault: Swing itself is huge. I once saw an API dia-
gram that took an entire 30-inch poster. Swing is powerful, but it takes a
long time to explore fully, simply because it is so big. That’s not what this
book is about.

This book is a reference to the cool stuff. It’s about the interesting things
you learn over the years. The weird hacks that make you say, “I didn’t know
you could even do that!” After years of working with Swing, you start to
learn what the API is good at and what it lacks. Some days you learn some-
thing that makes your life as a developer easier, a way to do something
quicker than the standard route. That’s what we put into this book. Some
days you learn a workaround for a long-standing bug or a missing feature
that you’ve been dying to have. We put that stuff in the book, too. Some-
times it’s something fun—an interesting API that makes us think, “Well, if
we were evil what could we do with it?” This is usually followed by the pin-
kie up to the mouth and cackling that can be heard outside our under-
ground lair. After much consultation with lawyers and gods, we slipped
some of these into the book, too.

xiv | Preface

Why Swing Hacks?
The term hacking has a bad reputation in the press. They use it to refer to
people who break into systems or wreak havoc with computers as their
weapon. Among people who write code, though, the term hack refers to a
quick-and-dirty solution to a problem, or a clever way to get something
done. And the term hacker is taken very much as a compliment, referring to
someone as being creative, having the technical chops to get things done.
The Hacks series is an attempt to reclaim the word, document the good
ways people are hacking, and pass the hacker ethic of creative participation
on to the uninitiated. Seeing how others approach systems and problems is
often the quickest way to learn about a new technology.

In the short term, we hope this book will show you how to do fun things
that will enhance your own applications directly. Some are visual enhance-
ments to make your software look better. Some are functional improve-
ments to make your software do something it couldn’t do before. Some are
even just plain silly, in print only to prove it could be done. Whatever your
interest, we hope you will find both better ways of doing old things and
learn something new about techniques you never even thought of.

In the long term, we hope this book will give you a small glimpse of the
applications coming in the future. This year (2005) we hope will be a water-
shed year for Java on the desktop. Users are demanding more advanced user
interfaces than the Web can provide, and Java is poised to provide them.
New technology is streaming into the Java community at a blistering rate,
and it gives application developers a whole new set of blocks to play with.
This is important because we are going to need these new technologies.

New desktop software promises greater integration between the Web, exter-
nal devices, and software sitting right on your desktop. RSS readers and
iPods. iTunes and photo collaboration. Gaming on desktops, servers, and
cell phones; all at the same time. This is the future of desktop software.
Swing is just a small part of desktop Java, but we feel it is the focal point—
the place where desktop technology (AWT, Java2D, JavaSound), network
technology (web services, XML, JXTA), and device technology (iPods, cell
phones, TVs) all converge upon Java. Many of the hacks in this book are not
strictly about Swing, but about using Swing to do cool things with the rest of
the world. And it’s more than just “cool”—animation is a powerful way to
show a change in content or context, and sound can get the user’s attention
when he or she is away from the keyboard. These features are important
parts of delivering user-centric, quality desktop applications.

Preface | xv

How to Use This Book
You can read this book from cover to cover if you like, but each hack stands
on its own, so feel free to browse and jump to the different sections that
interest you most. If there’s a prerequisite you need to know about, a cross-
reference will guide you to the right hack. The code all works (we tried it)
but in case you can’t get a hack to work, let us know at the book’s web site:
http://www.oreilly.com/catalog/swinghks. You can also download the book’s
code online, or contribute your own tips and tricks. If we collect enough
new material, and this book sells more than 10 copies, then the publishers
might let us make Swing Hacks 2: The Endless Repaint.

With few exceptions, the hacks in this book were written for Java 2 Stan-
dard Edition (J2SE), version 1.4, which you can get from http://java.sun.com/
j2se/. A few hacks depend on open source packages, which are freely down-
loadable from their home pages, as described in the hack itself. The only
exceptions are two hacks that use QuickTime for Java—this is freely avail-
able from Apple (and installed by default on Mac OS X), but it is propri-
etary and available for Mac and Windows only.

Because this is a book about Swing, the program listings will be using the
classes from the Swing and AWT packages, so we’ve skipped import javax.
swing.* and import java.awt.* statements for space. You can also assume
that any listing involving event handling will import java.awt.event.* and
probably import javax.swing.event.* as well. Java2D hacks implicitly
import java.awt.image.*. In short, we’ll include import statements only
when a hack involves non-core, and/or non-obvious imports, like the hacks
that use JDBC, Lucene, Velocity, QuickTime for Java, etc.

How This Book Is Organized
The book is divided into several chapters, organized by subject:

Chapter 1, Basic JComponents
Here you’ll find simple hacks for the basic components like labels, but-
tons, and text fields. This chapter contains a lot of bang for the buck,
and it illustrates some of the techniques that we will explore more fully
later on. From fancy JLabels to translucent menus, this is a great place
to start.

Chapter 2, Lists and Combos
This chapter features complicated Swing components that are used
everywhere. Bend them to your will! Make them look good with poly-
morphic renderers and animated selections. Make them perform well
with filtering and Collections support.

xvi | Preface

Chapter 3, Tables and Trees
This chapter revelas the secrets of these mystic components—from
Excel exporting to proper JTree drop targets. Make the JTree and
JTable dance.

Chapter 4, File Choosers
One of Swing’s most maligned components, the JFileChooser, actually
has a lot of power hiding inside some murky APIs. This chapter will let
you use custom icons, detect Windows shortcuts, and even navigate ZIP
files.

Chapter 5, Windows, Dialogs, and Frames
This is where the fun begins. Every application needs a container, so
why not make it pretty and powerful? Make your windows drag and
snap. Build custom windows like the earthquake login and spin open
dialog. You can even save your window settings automatically with
almost no code changes.

Chapter 6, Transparent and Animated Windows
If you went through the previous chapter and still want more, then this
chapter is for you. We push windows to the limit with transparency,
animations, slide-in OS X stylesheets, and some of the coolest special
effects you’ve ever seen.

Chapter 7, Text
Text components seem boring, but there’s a lot of power hiding in
there. This chapter will show you how to do regular expression search-
ing, dot completion, backward text, and even three different ways to
give your application the bright sheen of anti-aliasing.

Chapter 8, Rendering
This chapter has the meat of the graphics hacks. Custom fonts, a magni-
fying glass, vector buttons, and even some work with Java3D. We’ve got
some great things to make your application pop.

Chapter 9, Drag-and-Drop
When your users want two pieces of software to work together the first
thing they want to do is drag-and-drop data from their other programs
to yours. This chapter covers how to do robust and attractive drag-and-
drop entirely within Java.

Chapter 10, Audio
What would be a cool modern application without some media sup-
port? This chapter covers four different ways to play sound, how to dis-
play waveforms, and how to embed MP3 support in your own
programs.

Preface | xvii

Chapter 11, Native Integration and Packaging
The best software works well with the native operating system. Here
you’ll learn how to launch web browsers, hack the Windows registry,
customize your program for specific platforms, and even control iTunes.

Chapter 12, Miscellany
This chapter offers a grab bag of things that didn’t fit anywhere else, but
were too cool not to include. Animated cursors, better threading, flash-
ing the keyboard lights, and a bunch of quick one-liners to let you make
the most of your busy day.

Conventions Used in This Book
The following is a list of the typographical conventions used in this book:

Italics
Used to indicate URLs, filenames, filename extensions, and directory/
folder names. A path in the filesystem will appear as /Developer/Applica-
tions, for example.

Constant width
Used to show code examples, the contents of files, and console output,
as well as the names of variables, commands, and other code excerpts.

Constant width bold
Used to highlight portions of code, typically new additions to old code.

Constant width italic
Used in code examples and tables to show sample text to be replaced
with your own values.

Color
The second color is used to indicate a cross-reference within the text.

You should pay special attention to notes set apart from the text with the
following icons:

This is a tip, suggestion, or general note. It contains useful
supplementary information about the topic at hand.

This is a warning or note of caution, often indicating that
your money or your privacy might be at risk.

xviii | Preface

The thermometer icons, found next to each hack, indicate the relative
complexity of the hack:

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Swing Hacks
by Joshua Marinacci and Chris Adamson. Copyright 2005 O’Reilly Media,
Inc., 0-596-00907-0.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
We have tested and verified the information in this book to the best of our
ability, but you may find that features have changed (or even that we have
made mistakes!). As a reader of this book, you can help us to improve future
editions by sending us your feedback. Please let us know about any errors,
inaccuracies, bugs, misleading or confusing statements, and typos that you
find anywhere in this book.

Please also let us know what we can do to make this book more useful to
you. We take your comments seriously and will try to incorporate reason-
able suggestions into future editions. You can write to us at:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

beginner moderate expert

Preface | xix

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

The web site for Swing Hacks lists examples, errata, and plans for future edi-
tions. You can find this page at:

http://www.oreilly.com/catalog/swinghks

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Got a Hack?
To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

Safari Enabled
When you see a Safari® Enabled icon on the cover of your
favorite technology book, that means the book is available
online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that
lets you easily search thousands of top tech books, cut and paste code sam-
ples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

1

Chapter 1 C H A P T E R O N E

Basic JComponents
Hacks 1–12

Swing is a powerful toolkit, filled to the brim with complicated compo-
nents, extension APIs, and large Model-View-Controller (MVC) systems. It
can be quite daunting. The current edition of O’Reilly’s Java Swing book
now stretches over 1,200 pages! Swing now extends from the simplest
JButton to the full Look and Feel API. I am still amazed at the power and
flexibility of Swing, and quite aware of its complexity. Some of the more
esoteric parts can take years to master. However, you don’t need to go
straight into the JTree or Look and Feel APIs just to do something cool.
There are still a lot of fun things waiting in the standard components we
don’t always think about.

This chapter covers some of the basic components that every Swing devel-
oper uses: buttons, labels, menus, and the occasional scroll pane. From this
base you will learn how to create image buttons, put watermarks into your
text areas, and even build a new component or two. These are the compo-
nents that seem boring, but with a little imagination, they can do a whole
lot, and the techniques here lay the foundation for even more exciting hacks
later in the book.

H A C K

#1
Create Image-Themed Components Hack #1

This hack shows how to use Swing’s built-in image support to create a
completely custom image-based user interface.

Most Swing applications get their look from a Look and Feel (L&F)—either
a standard one provided by the VM or a custom one. L&Fs are a whole lot
of work to build and still aren’t completely custom. You can redefine a but-
ton to look like red stoplights, but then all buttons throughout your applica-
tion will look like red stoplights. Sometimes all you really want is a look
built entirely out of images, much like image-based web navigation.

2 | Chapter 1, Basic JComponents

#1 Create Image-Themed Components
HACK

To give you an idea of where this hack is going, Figure 1-1 shows our target:
a frame with a panel containing a label, a button, and a checkbox. The
panel, label, and button will be completely drawn with images, using none
of the standard L&F. The checkbox will be a standard checkbox, but it
should be transparent to fit in with the image background.

The first step toward image nirvana is the background. Because this type of
component is quite reusable, I built a subclass of JPanel called ImagePanel,
shown in Example 1-1.

The constructor takes the image to draw and saves it for later use in the img
variable. Then it calls setSize() and setPreferredSize() with the size of the
image. This ensures that the panel will be the size of the image exactly. I had

Figure 1-1. A component rendered with images

Example 1-1. A Custom subclass of JPanel

public class ImagePanel extends JPanel {

 private Image img;

 public ImagePanel(Image img) {
 this.img = img;
 Dimension size = new Dimension(img.getWidth(null),
 img.getHeight(null));
 setSize(size);
 setPreferredSize(size);
 setMinimumSize(size);
 setMaximumSize(size);
 setLayout(null);
 }

}

Create Image-Themed Components #1

Chapter 1, Basic JComponents | 3

HACK

to set the preferred, maximum, and minimum sizes as well—this is because
the panel’s parent and children may not be using absolute layouts.

Absolute layout means that there is no layout manager to
position the components appropriately (which can be set by
calling setLayout(null)).

In this case, the explicit size and position will be used (via setSize() and
setLocation()). When a layout manager is set, the preferred, minimum, and
maximum sizes may be used. To cover all of the bases, simply set all four
values to the image size.

Now that the panel is sized appropriately, you can paint the image by over-
riding paintComponent():

public void paintComponent(Graphics g) {
 g.drawImage(img,0,0,null);
}

It’s important to override paintComponent() instead of
paint(), or else the child components won’t get drawn.

To test it, Example 1-2 uses an ImagePanel and the usual JFrame.

When run, the ImageTest program looks like Figure 1-2.

Now that the background is done, it’s time to focus on the label, Activate
Reactor. This is just a static image that sits at a certain position on the back-
ground. You could use another ImagePanel, but since the Activate Reactor
text is logically a JLabel, you can just create an ImageLabel subclass, as
shown in Example 1-3.

Example 1-2. Testing out image-based panels

public class ImageTest {

 public static void main(String[] args) {
 ImagePanel panel = new ImagePanel(new
 ImageIcon("images/background.png").getImage());

 JFrame frame = new JFrame("Hack #1: Create Image-Themed Components");
 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

4 | Chapter 1, Basic JComponents

#1 Create Image-Themed Components
HACK

As with the ImagePanel, set the size of the label to match the size of the
image. The rest of the sizing isn’t needed because the JLabel will take care of
that itself. Next, set the icon to your image, which lets the JLabel take care
of the image drawing. Setting the icon text gap to zero and the border and
text to null will remove any extra space around my image, resulting in a per-
fect mesh with the background. The final setOpaque(false) tells the label
not to draw its own background. If your image fills the label then this won’t
matter, but if the image has transparent areas (as PNG files often do), then
this will let the background shine through the transparent parts.

Add this code to ImageTest’s main() method:

ImageLabel label = new ImageLabel(new ImageIcon("images/reactor.png"));
label.setLocation(29,37);
panel.add(label);

Figure 1-2. Background only

Example 1-3. An image-based label

public class ImageLabel extends JLabel {

 public ImageLabel(ImageIcon icon) {
 setSize(icon.getImage().getWidth(null),
 icon.getImage().getHeight(null));
 setIcon(icon);
 setIconTextGap(0);
 setBorder(null);
 setText(null);
 setOpaque(false);
 }

}

Create Image-Themed Components #1

Chapter 1, Basic JComponents | 5

HACK

The result is shown in Figure 1-3.

Next comes the button. Because buttons have rollovers and states, they are a
bit trickier. Again, start with a JButton subclass, as in Example 1-4.

The code is almost the same as ImageLabel. The only difference is the addi-
tion of the setMargin() and setBorder() calls. Most Look and Feels use a
border and margin to indicate when the button has been selected. Labels
aren’t selectable so they don’t have those methods. In any case, these are
two more properties you can simply turn off.

Add this code to ImageTest’s main() method:

final ImageButton button = new ImageButton("images/button.png");
button.setLocation(60,74);
panel.add(button);

The result is shown in Figure 1-4.

Figure 1-3. A custom JLabel

Example 1-4. Creating an image-based button

public class ImageButton extends JButton {

 public ImageButton(ImageIcon icon) {
 setSize(icon.getImage().getWidth(null),
 icon.getImage().getHeight(null));
 setIcon(icon);
 setMargin(new Insets(0,0,0,0));
 setIconTextGap(0);
 setBorderPainted(false);
 setBorder(null);
 setText(null);
 }

}

6 | Chapter 1, Basic JComponents

#1 Create Image-Themed Components
HACK

Now that the button is visible, you only have to add the rollovers and other
states. Fortunately, this doesn’t require any new coding in the subclass—
JButton already provides support for images representing the rollover,
pressed, selected, disabled, and disabled selected states. You can add vari-
ous states by using normal set methods:

button.setPressedIcon(new ImageIcon("images/button-down.png"));
button.setRolloverIcon(new ImageIcon("images/button-over.png"));
button.setSelectedIcon(new ImageIcon("images/button-sel.png"));
button.setRolloverSelectedIcon(new ImageIcon("images/button-sel-over.png"));
button.setDisabledIcon(new ImageIcon("images/button-disabled.png"));
button.setDisabledSelectedIcon(
 new ImageIcon("images/button-disabled-selected.png"));

Figures 1-5 and 1-6 are the images I used to represent each state. The roll-
over effect is done with an outer glow, and I used a blur for the disabled state.
The red rectangle in the middle represents the selected state, and it includes
its own color change and red glow mimicking a real glowing lightbulb.

Figure 1-4. Image button

Figure 1-5. Unselected button with rollover

Create Image-Themed Components #1

Chapter 1, Basic JComponents | 7

HACK

To fully demonstrate all of the states, I have added a standard JCheckBox.
Normally, it would draw a gray background (or striped on the Mac) but a
simple setOpaque(false) fixes that. The call to checkbox.setSize(checkbox.
getPreferredSize()) is needed to make the checkbox size itself properly
when there is no layout manager in the parent, which is the case for this
panel:

final JCheckBox checkbox = new JCheckBox("Disable");
checkbox.setLocation(70,150);
checkbox.setOpaque(false);
checkbox.setSize(checkbox.getPreferredSize());
panel.add(checkbox);
checkbox.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 button.setEnabled(!checkbox.isSelected());
 }
});

Figure 1-6. Selected button

On Image Creation
I created these images by drawing everything in a separate layer in Photoshop.
Keeping it all separate means I could save any section of the image as its own
file, with or without effects and backgrounds. Photoshop has a great feature
called slices that lets you divide the image up into malleable sections. Photo-
shop’s companion program, ImageReady, takes slices a step further by man-
aging slice states for you. This lets you create rollovers, in and out images, and
disabled states. When you Save Optimized, ImageReady automatically saves
each slice state to a different file with the appropriate name (e.g., button-
disabled-selected.png). Slices were originally created for web design, but they
can be put to great use in Swing applications as well.

8 | Chapter 1, Basic JComponents

#2 Don’t Settle for Boring Text Labels
HACK

With the addition of this code to ImageTest’s main() method, the image-
based showcase program is complete. Figure 1-7 shows what the running
program looks like in the selected but disabled state.

H A C K

#2
Don’t Settle for Boring Text Labels Hack #2

JLabel is a Swing staple; but it’s easy to spruce up boring labels with drop
shadows, outlines, and even 3D text.

When you want to draw non-editable text, Swing provides only the JLabel.
You can change the font, size, color, and even add an icon. By using HTML
in your components [Hack #52], you can even add things like underline and
bullets. This is fine for most jobs, but sometimes you need more. What if
you want a drop shadow or an embossed effect? The JLabel is simply inade-
quate for richer interfaces. Fortunately, the Swing Team made it very easy to
extend the JLabel and add these features yourself.

A great many text effects can be achieved with two simple features. First,
you can draw text multiple times, with each iteration slightly offset or in a
different color, to create effects like drop shadows and embossing. Second,
you can adjust the spacing between letters in a word (a feature known as
tracking in text-processing circles). Tracking is always specified in addition
to the default tracking specified by a font. Thus, a tracking of +1 would be
drawn as one extra pixel between each letter. A tracking of 0 would have the
same spacing as no extra tracking at all.

To implement all of this, you must override both the sizing and the painting
code in JLabel, which of course calls for a subclass; see Example 1-5 for
details.

Figure 1-7. Selected and disabled

Don’t Settle for Boring Text Labels #2

Chapter 1, Basic JComponents | 9

HACK

RichJLabel extends the standard javax.swing.JLabel and adds a tracking
argument to the constructor. Next, it adds two methods for the right and
left shadow. These are called shadows because they will be drawn below the
main text, but whether they actually look like shadows depends on the
color, as well as the x- and y-offsets passed into each method.

With the boilerplate out of the way, you need to handle sizing issues. The
JLabel automatically tells layout managers its preferred size based on the
font size. When you add custom tracking, this sizing would be incorrect,
resulting in labels too small for the text they contain. For small font sizes it
won’t be noticeable, but with large fancy text and cool effects—and we all
want cool effects—it could chop off half of a letter or more.

Every Swing component returns its desired size using the getPreferredSize()
method. By adjusting the returned size to be a bit bigger, layout controls
using this component will give the label the extra room it needs:

public Dimension getPreferredSize() {
 String text = getText();
 FontMetrics fm = this.getFontMetrics(getFont());

 int w = fm.stringWidth(text);
 w += (text.length()-1)*tracking;
 w += left_x + right_x;

Example 1-5. Defining a richer JLabel

public class RichJLabel extends JLabel {

 private int tracking;
 public RichJLabel(String text, int tracking) {
 super(text);
 this.tracking = tracking;
 }

 private int left_x, left_y, right_x, right_y;
 private Color left_color, right_color;
 public void setLeftShadow(int x, int y, Color color) {
 left_x = x;
 left_y = y;
 left_color = color;
 }

 public void setRightShadow(int x, int y, Color color) {
 right_x = x;
 right_y = y;
 right_color = color;
 }

10 | Chapter 1, Basic JComponents

#2 Don’t Settle for Boring Text Labels
HACK

 int h = fm.getHeight();
 h += left_y + right_y;

 return new Dimension(w,h);
}

This implementation of getPreferredSize() calculates the size based on the
font metrics of the currently set text. The FontMetrics object contains meth-
ods to get the width and height of the font for the current text. Because the
tracking variable adds to the existing tracking of the font, you can expand
the width by adding a tracking width between each letter—one per letter,
except the last letter. The line w += (text.length()-1)*tracking does just
that. The shadows will be drawn the same size as the base text, but they will
be offset by the left_x and right_x values, so you need to add those in as
well. Tracking only affects the horizontal space between letters, so height
can be calculated normally via the fontmetrics.getHeight() method.

Don’t forget to account for those shadow offsets!

With the sizing handled, the only thing left is actually drawing the text on
screen. As with all Swing components, override the paintComponent()
method (and not paint()) so that the child components will be handled
properly.

Here’s the first bit of the paintComponent() method:

public void paintComponent(Graphics g) {
 ((Graphics2D)g).setRenderingHint(
 RenderingHints.KEY_TEXT_ANTIALIASING,
 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

 char[] chars = getText().toCharArray();

 FontMetrics fm = this.getFontMetrics(getFont());

 int h = fm.getAscent();
 int x = 0;

First, paintComponent() turns on the graphics object’s anti-aliasing hint.
Because the RichJLabel class will typically be used for large font sizes that
need to be attractive, it’s probably a safe bet that the developer wants
smooth text.

Next, the method grabs the font and line metrics for the current text in the
current font. The graphics object always draws text from the bottom of the
letter, rather than from the top, as you would expect with a rectangle or line.

Don’t Settle for Boring Text Labels #2

Chapter 1, Basic JComponents | 11

HACK

To account for this, you need to know how far down a letter goes (its
ascent), which is retrieved from fm.getAscent().

A font’s ascent is not the same as the height of the font. The
height includes the part of letters that extend below the base-
line. Most letters stop at the baseline but some, like lower-
case ys and gs extend further down. The ascent only includes
the part of the letters above the baseline, which is what you
want.

After setting up the variables, you can start drawing each letter (this code is
still in the paintComponent() method):

 for(int i=0; i<chars.length; i++) {
 char ch = chars[i];
 int w = fm.charWidth(ch) + tracking;

 g.setColor(left_color);
 g.drawString(""+chars[i],x-left_x,h-left_y);

 g.setColor(right_color);
 g.drawString(""+chars[i],x+right_x,h+right_y);

 g.setColor(getForeground());
 g.drawString(""+chars[i],x,h);

 x+=w;
 }

 ((Graphics2D)g).setRenderingHint(
 RenderingHints.KEY_TEXT_ANTIALIASING,
 RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT);

} // end paintComponent()

This is a simple loop that calculates the width of each character, plus the
tracking, then draws it three times: first with the left offsets, next with the
right offsets, and finally in the normal position. At the end of the loop, you
just increase x to move on to the next letter. The rendering hint line at the
bottom returns the graphics object to its original anti-aliasing state.

With the class completed, it’s time to try some effects. This code will draw
large (140 pt) text in gray with a black drop shadow and a slight, white
highlight:

public static void main(String[] args) {
 RichJLabel label = new RichJLabel("76", -40);
 // drop shadow w/ highlight
 label.setLeftShadow(1,1,Color.white);
 label.setRightShadow(2,3,Color.black);

12 | Chapter 1, Basic JComponents

#2 Don’t Settle for Boring Text Labels
HACK

 label.setForeground(Color.gray);
 label.setFont(label.getFont().deriveFont(140f));

 JFrame frame = new JFrame("RichJLabel hack");
 frame.getContentPane().add(label);
 frame.pack();
 frame.setVisible(true);
}

Figure 1-8 shows what the code looks like running.

If you change the shadows to be only one pixel offset from their normal
position and to share the same color, then you can create a subtle outline
effect. Setting the tracking to -30 pulls the letters close enough to overlap for
a nice logo effect (as seen in Figure 1-9):

RichJLabel label = new RichJLabel("76", -30);

// subtle outline
label.setLeftShadow(1,1,Color.white);
label.setRightShadow(1,1,Color.white);
label.setForeground(Color.blue);
label.setFont(label.getFont().deriveFont(140f));

Figure 1-8. Drop shadow text

Figure 1-9. Outlined text

Don’t Settle for Boring Text Labels #2

Chapter 1, Basic JComponents | 13

HACK

The shadow offsets let you effectively rearrange the letters to create a faded
3D effect (shown in Figure 1-10):

// 3d letters
label.setLeftShadow(5,5,Color.white);
label.setRightShadow(-3,-3, new Color(0xccccff));
label.setForeground(new Color(0x8888ff));
label.setFont(label.getFont().deriveFont(140f));

You could expand on this hack by combining it with images and nice gradi-
ents like the Christmas Countdown counter in Figure 1-11. Simple graphi-
cal effects like the ones shown in the RichJLabel are easy to create with
Swing thanks to the power of Java2D, and they can really make your inter-
faces pop.

Figure 1-10. 3D faded letters

Figure 1-11. Mild emboss effect

14 | Chapter 1, Basic JComponents

#3 Fill Your Borders with Pretty Pictures
HACK

H A C K

#3
Fill Your Borders with Pretty Pictures Hack #3

Swing comes with a set of customizable borders, but sometimes you want
more than they provide. This hack shows how to create a completely image-
based border that can be resized.

Swing has a prefabricated border, called the MatteBorder, which can accept
an image in its constructor. For simple tiled backgrounds, such as a checker-
board pattern, this works fine. However, if you want to have particular
images in each corner, creating a fully resizable image border, then you’ll
need something more powerful. Fortunately, Swing makes it very easy to
create custom border classes. The image border in this hack will produce a
border that looks like Figure 1-12.

The first step to any custom border is to subclass AbstractBorder and imple-
ment the paintBorder() method. The class will take eight images in the con-
structor, one for each corner and each side; all the code is shown in
Example 1-6.

Figure 1-12. An image-based border

Example 1-6. Building an image-based border

public class ImageBorder extends AbstractBorder {

 Image top_center, top_left, top_right;
 Image left_center, right_center;
 Image bottom_center, bottom_left, bottom_right;
 Insets insets;

 public ImageBorder(Image top_left, Image top_center, Image top_right,
 Image left_center, Image right_center,
 Image bottom_left, Image bottom_center, Image bottom_right) {

 this.top_left = top_left;
 this.top_center = top_center;
 this.top_right = top_right;
 this.left_center = left_center;
 this.right_center = right_center;
 this.bottom_left = bottom_left;
 this.bottom_center = bottom_center;
 this.bottom_right = bottom_right;
 }

Fill Your Borders with Pretty Pictures #3

Chapter 1, Basic JComponents | 15

HACK

The two methods after the constructor control the border insets. These are
the gaps between the panel’s outer edge (and its parent) and the inner edge
of the panel where the panel’s children are drawn. setInsets() lets you set
any size insets, but most of the time you want the insets to be based on the
actual images that make up the border. The implementation of
getBorderInsets() returns the insets variable if it’s not null. However, if the
developer didn’t set the insets, then they will be derived from the widths and
heights of the images that make up each side of the border (top, bottom,
left, and right).

To actually draw the border, align the corner images to the appropriate cor-
ners and then tile the side images along each border side. Doing this will
require using the TexturePaint class, which is an implementation of the
Paint interface. Unfortunately, TexturePaint takes only BufferedImages, not
regular ones, so you’ve got to convert your images before use.

BufferedImages are a special form of image that the Java2D framework can
read and write at a pixel level. The standard Image is controlled by the oper-
ating system and is very difficult to access at the pixel level. Java doesn’t let
you do a straight conversion between the two kinds of images, but you can
just draw one image on top of another, which is what this method in the
ImageBorder class does:

public BufferedImage createBufferedImage(Image img) {
 BufferedImage buff = new BufferedImage(img.getWidth(null),
 img.getHeight(null), BufferedImage.TYPE_INT_ARGB);
 Graphics gfx = buff.createGraphics();
 gfx.drawImage(img, 0, 0, null);
 gfx.dispose();
 return buff;
}

 public void setInsets(Insets insets) {
 this.insets = insets;
 }

 public Insets getBorderInsets(Component c) {
 if(insets != null) {
 return insets;
 } else {
 return new Insets(top_center.getHeight(null),
 left_center.getWidth(null),
 bottom_center.getHeight(null), right_center.getWidth(null));
 }
 }

Example 1-6. Building an image-based border (continued)

16 | Chapter 1, Basic JComponents

#3 Fill Your Borders with Pretty Pictures
HACK

createBufferedImage() first creates an empty buffered image with the same
size as the original image. The image type is TYPE_INT_ARGB, which makes the
image have full 24-bit color with an alpha channel (transparency). Next, it
draws the original image on top of the buffered image. The dispose() call
releases any extra resources so that the code won’t waste any memory, and
then it returns the newly minted BufferedImage.

With buffered images in hand, the stage is set for actually filling areas of the
border with images. The next ImageBorder method, fillTexture(), creates a
TexturePaint using the appropriate image and then fills in the requested
area:

public void fillTexture(Graphics2D g2, Image img, int x, int y, int w, int
h) {
 BufferedImage buff = createBufferedImage(img);
 Rectangle anchor = new Rectangle(x,y,img.getWidth(null),img.
getHeight(null));
 TexturePaint paint = new TexturePaint(buff,anchor);
 g2.setPaint(paint);
 g2.fillRect(x,y,w,h);
}

The second line of this code creates an anchor rectangle. The image will be
tiled to fill the entire border area, but the anchor rectangle is needed to spec-
ify where the image will be anchored. We normally think of images being
anchored to (0,0), which works fine for the upper-left corner of the border
but wouldn’t work for the other sides. The right corners would need to be
right aligned instead of left aligned, as would happen with (0,0). By setting
the anchor to be the location and dimensions of the image itself, you take
care of anchoring altogether. The tiling will start wherever the single image
would have been drawn.

Now that you can fill an area with a properly aligned texture, you are ready
for the paintBorder() method, shown in Example 1-7.

Example 1-7. Painting the border

public void paintBorder(Component c, Graphics g, int x, int y,
 int width, int height) {
 g.setColor(Color.white);
 g.fillRect(x,y,width,height);

 Graphics2D g2 = (Graphics2D)g;

 int tlw = top_left.getWidth(null);
 int tlh = top_left.getHeight(null);
 int tcw = top_center.getWidth(null);
 int tch = top_center.getHeight(null);
 int trw = top_right.getWidth(null);
 int trh = top_right.getHeight(null);

Fill Your Borders with Pretty Pictures #3

Chapter 1, Basic JComponents | 17

HACK

The first two lines fill the entire border area with white. Then you have to
cast the Graphics to a Graphics2D object because you will be doing some
advanced painting later on. Next, save a reference to the width and height of
each image (the top left, top center, top right, etc.). Finally, call fillTexture()
on each section of the border to fill it in.

The test program shown in Example 1-8 creates a panel that uses the
ImageBorder. It creates a nested frame, panel, and button, and then it creates
an ImageBorder for the panel using eight images.

 int lcw = left_center.getWidth(null);
 int lch = left_center.getHeight(null);
 int rcw = right_center.getWidth(null);
 int rch = right_center.getHeight(null);
 int blw = bottom_left.getWidth(null);
 int blh = bottom_left.getHeight(null);
 int bcw = bottom_center.getWidth(null);
 int bch = bottom_center.getHeight(null);
 int brw = bottom_right.getWidth(null);
 int brh = bottom_right.getHeight(null);

 fillTexture(g2,top_left,x,y,tlw,tlh);
 fillTexture(g2,top_center,x+tlw,y,width-tlw-trw,tch);
 fillTexture(g2,top_right,x+width-trw,y,trw,trh);
 fillTexture(g2,left_center,x,y+tlh,lcw,height-tlh-blh);
 fillTexture(g2,right_center,x+width-rcw,y+trh,rcw,height-trh-brh);
 fillTexture(g2,bottom_left,x,y+height-blh,blw,blh);
 fillTexture(g2,bottom_center,x+blw,y+height-bch,width-blw-brw,bch);
 fillTexture(g2,bottom_right,x+width-brw,y+height-brh,brw,brh);
}

Example 1-8. Testing out an image-based border

public class ImageBorderHack {

 public static void main(String[] args) {
 JFrame frame = new JFrame("Hack #3: Fill Your Borders with Pretty
 Pictures");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JPanel panel = new JPanel();
 JButton button = new JButton("Image Border Test");
 panel.add(button);

 ImageBorder image_border = new ImageBorder(
 new ImageIcon("images/upper_left.png").getImage(),
 new ImageIcon("images/upper.png").getImage(),
 new ImageIcon("images/upper_right.png").getImage(),

 new ImageIcon("images/left_center.png").getImage(),
 new ImageIcon("images/right_center.png").getImage(),

Example 1-7. Painting the border (continued)

18 | Chapter 1, Basic JComponents

#3 Fill Your Borders with Pretty Pictures
HACK

The sample border is made out of a single image sliced into eight pieces
using Photoshop (the center image is discarded). You can see these slices in
Figure 1-13.

The completed ImageBorder class will take the Photoshop slices and tile
them to create the finished border, as seen in Figure 1-14.

 new ImageIcon("images/bottom_left.png").getImage(),
 new ImageIcon("images/bottom_center.png").getImage(),
 new ImageIcon("images/bottom_right.png").getImage()
);
 panel.setBorder(image_border);

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }

}

Figure 1-13. Source image in Photoshop with slices

Figure 1-14. Completed image border

Example 1-8. Testing out an image-based border (continued)

Display Dates in a Custom Calendar #4

Chapter 1, Basic JComponents | 19

HACK

The best thing about these image-based borders is that you can completely
change their look by just dropping in new images, which is easy to do with
the slice tool in Photoshop. When you create your own image borders, I rec-
ommend starting with a rectangular shape layer and then using filters and
effects to create drop shadows, bevels, and stroked borders.

H A C K

#4
Display Dates in a Custom Calendar Hack #4

You can download calendar components from third parties, but real hackers
can use Swing to build a custom calendar widget on their own.

When you design an application, you’ll often want to use standard widgets
to display information. Swing doesn’t always give you what you need,
though. Consider the calendar component: Swing doesn’t come with one, so
most users have to download widgets to integrate into their application.
However, why not go with a cool and hip teen-friendly application with an
attractive, image-based component, as shown in Figure 1-15?

That would be a bit more fun, wouldn’t it? This hack will show you how to
build a completely custom calendar component using java.util.Calendar
and a few images.

First, consider what you’ll need. You’ve got to have pretty images, a compo-
nent to paint them on, and then some logic to handle the different parts of
the date, including what day of the week starts off the current month. You
should also provide a setDate() method, so that MVC frameworks can play
well with your calendar. Let’s get started.

Figure 1-15. Custom calendar component

20 | Chapter 1, Basic JComponents

#4 Display Dates in a Custom Calendar
HACK

Create the Images
I created three images in Photoshop: one for the background, one for each day,
and one for the current day. These are shown in Figures 1-16, 1-17, and 1-18.

I could have separated the day names and the title, but since
they don’t change, it was simpler to make them part of the
image.

A Component to Paint
The easiest way to create a custom component with fancy drawing is to start
off with a JPanel and override the paintComponent() method, as shown in
Example 1-9.

Figure 1-16. calendar.png for the general background

Figure 1-17. day.png for the day backgrounds

Figure 1-18. highlight.png for the current day

Example 1-9. A Calendar base component

public class CalendarHack extends JPanel {
 protected Image background, highlight, day_img;
 protected SimpleDateFormat month = new SimpleDateFormat("MMMM");

Display Dates in a Custom Calendar #4

Chapter 1, Basic JComponents | 21

HACK

This loads the images in the constructor and sets up date formatters for the
month, year, and day. Override the paintComponent() method to turn on
anti-aliasing, draw the background, and then draw the month and year for
the current date.

You’ll notice that there is a default date in case the devel-
oper doesn’t set one (always a good practice).

Draw the Days of the Month
The java.util.Calendar object handles all date calculations, so let’s start
there. You’ll need two calendars: one to represent the current date (today)
and one that you update as you loop through the grid of dates (cal). Here’s
what that looks like in code:

Calendar today = Calendar.getInstance();
today.setTime(date);
Calendar cal = Calendar.getInstance();
cal.setTime(date);

 protected SimpleDateFormat year = new SimpleDateFormat("yyyy");
 protected SimpleDateFormat day = new SimpleDateFormat("d");
 protected Date date = new Date();

 public void setDate(Date date) {
 this.date = date;
 }

 public CalendarHack() {
 background = new ImageIcon("calendar.png").getImage();
 highlight = new ImageIcon("highlight.png").getImage();
 day_img = new ImageIcon("day.png").getImage();
 this.setPreferredSize(new Dimension(300,280));
 }

 public void paintComponent(Graphics g) {

 ((Graphics2D)g).setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g.drawImage(background,0,0,null);
 g.setColor(Color.black);
 g.setFont(new Font("SansSerif",Font.PLAIN,18));
 g.drawString(month.format(date),34,36);
 g.setColor(Color.white);
 g.drawString(year.format(date),235,36);
 }
}

Example 1-9. A Calendar base component (continued)

22 | Chapter 1, Basic JComponents

#4 Display Dates in a Custom Calendar
HACK

cal.set(Calendar.DATE,1);
cal.add(Calendar.DATE,-cal.get(Calendar.DAY_OF_WEEK)+1);
for(int week = 0; week < 6; week++) {
 for(int d = 0; d < 7; d++) {
 Image img = day_img;
 Color col = Color.black;
 // only draw if it's actually in this month
 if(cal.get(Calendar.MONTH) == today.get(Calendar.MONTH)) {
 if(cal.equals(today)) {
 img = highlight;
 col = Color.white;
 }
 g.drawImage(img,d*30+46,week*29+81,null);
 g.drawString(day.format(cal.getTime()),
 d*30+46+4,week*29+81+20);
 }
 cal.add(Calendar.DATE,+1);
 }
}

You’ll notice that both calendars are initialized to date, but then the code
resets cal’s date to the first of the month and subtracts the current day of the
week. This has the effect of setting cal to the last Sunday before (or equal to)
the real current date. You have to perform this calculation because you need
to start drawing in the upper-lefthand corner of the calendar grid, which will
almost always include a few days from the previous month. Once all of that
is done, the code loops through each week and draws each day.

Now, here’s the tricky part: cal goes back seven days, which is almost cer-
tainly going to run back into the previous month. Because the calendar is
month-based, those days in the previous month shouldn’t be drawn. That’s
why there is a check to see if cal’s month is equal to today’s month. If they
are equal, then you can draw the day safely; if not, skip drawing and just
increment the date.

The last thing to check is if the current day in cal is equal to the real current
date. If it is, you want to use a different color and background image
(highlight). Finally, the image and day numbers are drawn, with the posi-
tion determined by the current day of the week and week number. You can
adjust the multipliers and offsets (30, 46, 29, 81) to suit your taste. The
drawString() method has a few extra pixels of padding to make the day
number appear more centered in the day image.

And now you have a completely custom calendar, suitable for placement
within the zaniest of interfaces.

Add a Watermark to a Text Component #5

Chapter 1, Basic JComponents | 23

HACK

H A C K

#5
Add a Watermark to a Text Component Hack #5

This hack will show how to create a custom image background for the
JTextField, a complex Swing component that does not already support
backgrounds or icons by default.

One of Swing’s most underused features is the ability to partially override
drawing code. Most programs enhance widgets by using renderers or com-
pletely overriding the paint code. By only partially overriding the drawing,
however, you can create some very interesting effects that blend both new
and existing drawing commands.

Some components, like JList and JTable, use renderers to customize their
look. To put a background in a JTextField, however, requires more. The
plan is to subclass JTextField, prepare the resources for drawing a back-
ground (loading the image, etc.), and then draw a new background while
preserving the normal JTextField drawing code for the text and cursor.

The actual drawing will be done with a TexturePaint. Java2D allows you to
fill any area with instances of the Paint interface. Typically you use a color,
which is an implementation of Paint, but it is possible to use something else,
such as a texture or gradient. This class will use a TexturePaint to tile an
image across the component’s background.

The first step is to create a JTextField subclass (shown in Example 1-10).

Example 1-10 creates a class called WatermarkTextField. It is a subclass of
JTextField with a custom constructor that accepts a File object containing
an image. It also defines two member variables: img and texture. After the
usual call to super(), the constructor reads the file into the BufferedImage
variable, img. If the file isn’t a valid image—or can’t be read for some other
reason—the method will throw an exception (hence the throws IOException
clause on the constructor definition).

Example 1-10. Preparing a field for watermarking

public class WatermarkTextField extends JTextField {
 BufferedImage img;
 TexturePaint texture;

 public WatermarkTextField(File file) throws IOException {
 super();
 img = ImageIO.read(file);
 Rectangle rect = new Rectangle(0,0,
 img.getWidth(null),img.getHeight(null));
 texture = new TexturePaint(img, rect);
 setOpaque(false);
 }
}

24 | Chapter 1, Basic JComponents

#5 Add a Watermark to a Text Component
HACK

After the image is loaded successfully, the constructor creates a TexturePaint.
TexturePaints must be created with a source image and a rectangle. The
rectangle defines the portion of the source to be tiled. In this case, you want
the entire image to be used, so the rectangle is the same size as the image.

If you wanted to use just a portion of the image, you could
make the rectangle smaller. This would also give you the
ability to store all of your textures in a single large image,
which could save loading time and memory.

The last thing the WatermarkTextField constructor does before returning is
call setOpaque(false). As you have seen earlier in this chapter (and will see
again), the setOpaque() method is one of the core tools for hacking Swing.
In this case, it is used to turn off the default background of the TextField,
allowing you to substitute your own.

With the subclass created, you can add a method to do the actual drawing:

public void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setPaint(texture);
 g.fillRect(0,0,getWidth(),getHeight());
 super.paintComponent(g);
}

WatermarkTextField overrides the parent class’s paintComponent() method with
its own version. The actual drawing is pretty simple: cast to a Graphics2D
object (which understands how to work with Paint classes), then fill in the
background with the texture paint and call super().

Earlier, I said that you will override the parent class partially rather than
completely. This is because the code still calls the parent class’s
paintComponent() method, but it does it after painting the new background.
Because the opaque property is set to false, the parent class will not draw its
own background, allowing your custom one to show through. The compo-
nent will draw the text, selections, and cursors as normal on top of the cus-
tom background.

With the class ready, it’s time to pull together an example—Example 1-11.

Example 1-11. Trying out the watermarked text field

public static void main(String[] args) throws Exception {
 JFrame frame = new JFrame("Watermark JTextField Hack");

 JTextField textfield = new WatermarkTextField(new File("red.png"));
 textfield.setText("A Text Field");

Add a Watermark to a Text Component #5

Chapter 1, Basic JComponents | 25

HACK

The main() method creates a JFrame with one child: the custom text field. It
creates a new WatermarkTextField with an image file in the constructor, then
it packs and shows the frame. The text field is every bit a normal JTextField
except for the constructor, so you can use a variable of type JTextField with
no problem.

The image, red.png, looks like Figure 1-19.

Once tiled across the background of the component, it looks like
Figure 1-20.

 frame.getContentPane().add(textfield);
 frame.pack();
 frame.show();
}

Figure 1-19. red.png, the background image

Figure 1-20. The running program

Going Further
Overriding a component’s background with custom drawing code is a simple
technique that can be used in some surprising ways. The next hack will reuse
the watermark code to create a JTextPane with light clouds in the background
and a small image badge in the upper-righthand corner. With custom back-
grounds you could also add animation, status reports, or even rotating space
images (see “Put a NASA Photo into the Background of a Text Area” [Hack #7]).

Example 1-11. Trying out the watermarked text field (continued)

26 | Chapter 1, Basic JComponents

#6 Watermark Your Scroll Panes
HACK

H A C K

#6
Watermark Your Scroll Panes Hack #6

This hack creates a text area with a tiled background image that is fixed,
even when the text area scrolls, and also a fixed foreground image that
appears above the text, much like the station badges now affixed to the
lower-righthand corner of most TV broadcasts.

The Swing framework was designed to let developers override portions of
every component, both the visual appearance (the view) and the behavior
(the model and controller). This design gives developers great flexibility.
One of my favorites is the JScrollPane. Its nested composite design allows
developers to create some stunning effects.

Once again, the idea is to override the drawing code of a standard compo-
nent to create the visual effects [Hack #5]. The difference here is that you must
deal with a composite object, the JScrollPane. A JScrollPane is not a single
Swing component—it’s actually a wrapper around two scrollbars and the
component that does the real scrolling is a JViewport. This viewport is the
actual target component; you will subclass it to draw both above and below
the View component (as seen in Example 1-12). The View is the Swing wid-
get being scrolled; in this case, it is a JTextArea.

The ScrollPaneWatermark class inherits from JViewport, adding two meth-
ods: setBackgroundTexture() and setForegroundBadge(). Each takes a URL
instead of a File to allow for images loaded from places other than the local
disk, such as a web server or JAR file.

setBackgroundTexture() does the same thing that the WatermarkTextField
did in the previous hack. It loads the image, creates a same-size rectangle,
then initializes a TexturePaint for later use. setForegroundBadge() is even
simpler, only loading the image and storing it in the fgimage variable.

Example 1-12. Modifying the viewport for watermarking

public class ScrollPaneWatermark extends JViewport {
 BufferedImage fgimage, bgimage;
 TexturePaint texture;

 public void setBackgroundTexture(URL url) throws IOException {
 bgimage = ImageIO.read(url);
 Rectangle rect = new Rectangle(0,0,
 bgimage.getWidth(null),bgimage.getHeight(null));
 texture = new TexturePaint(bgimage, rect);
 }

 public void setForegroundBadge(URL url) throws IOException {
 fgimage = ImageIO.read(url);
 }

Watermark Your Scroll Panes #6

Chapter 1, Basic JComponents | 27

HACK

With the class set up, it’s time to draw. The code below calls super.
paintComponent() first, and then draws the texture on top of the component.
This is because the existing background might need to show through in case
the texture has translucent sections. This would be especially important if the
standard view background isn’t just a solid color. Under Mac OS X, for
example, the background is often a striped, light blue pattern. Here’s the
code to handle texturing:

public void paintComponent(Graphics g) {
 // do the superclass behavior first
 super.paintComponent(g);

 // paint the texture
 if(texture != null) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setPaint(texture);
 g.fillRect(0,0,getWidth(),getHeight());
 }
}

ScrollPaneWatermark draws the foreground image badge by overriding the
paintChildren() method, calling the superclass, and then drawing the
image. This ensures that the badge is always on top of the children or view:

public void paintChildren(Graphics g) {
 super.paintChildren(g);
 if(fgimage != null) {
 g.drawImage(fgimage,
 getWidth()-fgimage.getWidth(null), 0,
 null);
 }
}

The view (a text area in this example) will usually draw its own back-
ground. Because, by definition, the view is as big as the viewport (if not big-
ger), its background will cover up the viewport’s nice texture completely. To
stop that, you need to call setOpaque() on the view:

public void setView(JComponent view) {
 view.setOpaque(false);
 super.setView(view);
}

The setView() method overrides the existing version (from JViewport) to
call setOpaque(false) on the view before calling the super() method. By
putting this call here, instead of calling setOpaque() from the normal setup
routines, it frees the developer using the ScrollPaneWatermark class from
having to call setOpaque() manually, making the class more reusable.

28 | Chapter 1, Basic JComponents

#6 Watermark Your Scroll Panes
HACK

With all of the pieces in place, you can now create a text area inside the cus-
tom scroll pane. The main() method in Example 1-13 tests it out.

The main() method in Example 1-13 creates a frame containing a scroll pane
that contains a text area. fileToString() is a utility function that loads a
text file into the text area.

For brevity, the code for fileToString() is not printed here,
but you can see it in the full source on the book’s web site:
http://www.oreilly.com/catalog/swinghks.

After setting up a standard JTextArea, the code creates a new
ScrollPaneWatermark viewport and loads up the images (clouds.jpg is a
tileable image of pale, fluffy clouds, and flyingsaucer.jpg is a small image of a
flying saucer with a translucent drop shadow that will blend nicely over the
text). Finally, the main() method sets the text area as the viewport’s view,
creates a new scroll pane, and then sets the watermark as the scroll pane’s
viewport.

Figure 1-21 shows what it looks like when it’s all put together.

Example 1-13. Testing the scroll pane watermark

public static void main(String[] args) throws Exception {
 JFrame frame = new JFrame("Scroll Pane Watermark Hack");

 JTextArea ta = new JTextArea();
 ta.setText(fileToString(new File("alice.txt")));
 ta.setLineWrap(true);
 ta.setWrapStyleWord(true);

 ScrollPaneWatermark watermark = new ScrollPaneWatermark();
 watermark.setBackgroundTexture(new File("clouds.jpg").toURL());
 watermark.setForegroundBadge(new File("flyingsaucer.png").toURL());
 watermark.setView(ta);

 JScrollPane scroll = new JScrollPane();
 scroll.setViewport(watermark);

 frame.getContentPane().add(scroll);
 frame.pack();
 frame.setSize(600,600);
 frame.show();
}

Put a NASA Photo into the Background of a Text Area #7

Chapter 1, Basic JComponents | 29

HACK

H A C K

#7
Put a NASA Photo into the Background
of a Text Area Hack #7

This hack will repurpose an existing web page, one of NASA’s photo sites, by
pulling their “Astronomy Picture of the Day” into the background of a text
area.

You’ve already learned how to draw a watermark image in the background
of a text area [Hack #6] using a ScrollPaneWatermark. This hack will pull a
photo down from the Web and reuse that class to put the photo in the back-
ground. The photo itself comes from NASA’s “Astronomy Picture of the
Day” page: http://antwrp.gsfc.nasa.gov/apod/. The URL to the image changes
each day, but the page itself does not. To pull the image down you will load
the page, find the image URL, then load the image itself and put it into the
ScrollPaneWatermark. Depending on the day, it may look something like
Figure 1-22.

Figure 1-21. Finished ScrollPane hack

Figure 1-22. Text area with a background image

30 | Chapter 1, Basic JComponents

#7 Put a NASA Photo into the Background of a Text Area
HACK

The code in Example 1-14 defines a class called BackgroundLoader, which
implements Runnable so it can be placed on its own thread. The constructor
takes as an argument the ScrollPaneWatermark, which the loader will put the
image into. The run() method contains a loop that will run every two hours,
loading the page, finding the SRC URL, then loading the image into the
watermark.

First, you open the web page and load it into a page_buffer by looping
through an InputStreamReader, copying the page data into a string buffer.

The Reader will take care of encoding issues so you don’t
need to worry about reading HTTP headers or converting to
Unicode.

Example 1-14. A thread to load a background image

public class BackgroundLoader implements Runnable {

 private ScrollPaneWatermark watermark;
 public BackgroundLoader(ScrollPaneWatermark watermark) {
 this.watermark = watermark;
 }

 public void run() {

 while(true) {
 try {
 String base_url = "http://antwrp.gsfc.nasa.gov/apod/";
 URL url = new URL(base_url);

 Reader input = new InputStreamReader(url.openStream());
 char buf[] = new char[1024];
 StringBuffer page_buffer = new StringBuffer();
 while(true) {
 int n = input.read(buf);
 if(n < 0) { break; }
 page_buffer.append(buf,0,n);
 }

 // Locate the Image URL (see next section)

 } catch (Exception ex) {
 System.out.println("exception: " + ex);
 ex.printStackTrace();
 }
 }
 }
}

Put a NASA Photo into the Background of a Text Area #7

Chapter 1, Basic JComponents | 31

HACK

Page in hand, now you need to find the URL for the image itself. If you load
the page into a web browser and view the page source, you will see that
there is only a single IMG tag in the entire page. This makes the image very
easy to find:

Pattern pattern = Pattern.compile("<IMG SRC=\"(.*)\"");
Matcher matcher = pattern.matcher(page_buffer);
matcher.find();
String img_url = base_url + matcher.group(1);

watermark.setBackgroundTexture(new URL(img_url));
watermark.repaint();

Thread.currentThread().sleep(1000*60*60*2);

First, you must create a Pattern object with a regex (regular expression) that
matches the URL. You will notice in the previous code that there are paren-
theses around the .*. This is called a grouping. The matcher will store any-
thing that matches the parentheses in a series of groups that you can query
later. This lets you define exactly which part of the pattern you want to pull
out. After creating a Matcher and calling find(), you can pull out the image
URL with the line matcher.group(1), prepending it with the base URL for
the page.

With the final image URL ready, just set the background texture for the
watermark, refresh the screen, and then sleep for two hours. The calcula-
tion in the code (1000*60*60*2) evaluates to the number of milliseconds in a
two-hour block of time. The page only changes once a day, but this way the
change will be picked up sooner if the program is running overnight.

With all of the parts assembled, you can now create a main method,
shown in Example 1-15, that builds a simple text editor with the
ScrollPaneWatermark to show the space image in the background.

Example 1-15. Testing the space image background

public static void main(String[] args) throws IOException {
 JFrame frame = new JFrame("Blocking Window");
 JTextArea jta = new JTextArea(10,40);
 jta.setForeground(Color.white);

 ScrollPaneWatermark viewport = new ScrollPaneWatermark();
 viewport.setView(jta);
 viewport.setOpaque(false);

 JScrollPane scroll = new JScrollPane();
 scroll.setViewport(viewport);

 Container comp = frame.getContentPane();
 comp.add("Center",scroll);

32 | Chapter 1, Basic JComponents

#8 Animate Transitions Between Tabs
HACK

The last line of the main() method starts a new thread to manage the back-
ground image.

Because the code is completely encapsulated in the
BackgroundLoader class, you could add space images to a
component that uses a scroll pane, not just a JTextArea.

H A C K

#8
Animate Transitions Between Tabs Hack #8

This hack shows how to create animated transitions that play whenever the
user switches tabs on a JTabbedPane.

One of Swing’s great strengths is that you can hack into virtually anything.
In particular, I love making changes to a component’s painting code. The
ability to do this is one of the reasons I prefer Swing over SWT. Swing gives
me the freedom to create completely new UI concepts, such as transitions.

With the standard paint methods, Swing provides most of what you will
need to build the transitions. You will have to put together three additional
things, however. First, you need to find out when the user actually clicked
on a tab to start a transition. Next, you need a thread to control the anima-
tion. Finally, since some animations might fade between the old and new
tabs, you need a way to provide images of both tabs at the same time. With
those three things, you can build any animation you desire.

Building a Basic Tabbed Pane
To keep things tidy, I have implemented this hack as a subclass of
JTabbedPane, except for the actual animation drawing, which will be dele-
gated to a further subclass. By putting all of the heavy lifting into the parent
class, you will be able to create new animations easily.

Example 1-16 is the basic skeleton of the parent class.

 frame.pack();
 frame.show();

 new Thread(new BackgroundLoader(viewport)).start();
}

Example 1-16. A skeleton for the transition manager

public class TransitionTabbedPane extends JTabbedPane
 implements ChangeListener, Runnable {

 protected int animation_length = 20;

Example 1-15. Testing the space image background (continued)

Animate Transitions Between Tabs #8

Chapter 1, Basic JComponents | 33

HACK

TransitionTabbedPane extends the standard JTabbedPane and also imple-
ments ChangeListener and Runnable. ChangeListener allows you to learn
when the user has switched between tabs. Since the event is propagated
before the new tab is painted, inserting the animation is very easy. Runnable
is used for the animation thread itself.

You could have split the thread into a separate class, but I
think that keeping all of the code together makes the system
more encapsulated and easier to maintain.

TransitionTabbedPane adds one new property, the animation length. This
defines the number of steps used for the transition, and it can be set by the
subclass or external code.

Scheduling the Animation
Since the pane was added as a ChangeListener to itself, the stateChanged()
method will be called whenever the user switches tabs. This is the best place
to start the animation thread. Once started, the thread will capture the pre-
vious tab into a buffer, loop through the animation, and control the repaint
speed:

// threading code
public void stateChanged(ChangeEvent evt) {
 new Thread(this).start();
}

protected int step;
protected BufferedImage buf = null;
protected int previous_tab = -1;

public void run() {
 step = 0;

 public TransitionTabbedPane() {
 super();
 this.addChangeListener(this);
 }

 public int getAnimationLength() {
 return this.animation_length;
 }

 public void setAnimationLength(int length) {
 this.animation_length = length;
 }

Example 1-16. A skeleton for the transition manager (continued)

34 | Chapter 1, Basic JComponents

#8 Animate Transitions Between Tabs
HACK

 // save the previous tab
 if(previous_tab != -1) {
 Component comp = this.getComponentAt(previous_tab);
 buf = new BufferedImage(comp.getWidth(),
 comp.getHeight(),
 BufferedImage.TYPE_4BYTE_ABGR);
 comp.paint(buf.getGraphics());
 }

Notice that the run() method grabs the previous tab component only when
the previous_tab index isn’t -1. The component will always have a valid
value, except for the first time the pane is shown on screen, but that’s OK
because the user won’t have really switched from anything anyway. If there
is a previous tab, then the code grabs the component and paints it into a
buffer image.

It’s important to note that this is not thread-safe because the
code is being executed on a custom thread, not the Swing
thread. However, since the tab is about to be hidden
anyway—and, in fact, the next real paint() call will only
draw the new tab—you shouldn’t have any problems. Any
changes introduced by this extra paint() call won’t show up
on screen.

With the previous component safely saved away, you can now loop through
the animation:

for(int i=0; i<animation_length; i++) {
 step = i;
 repaint();
 try {
 Thread.currentThread().sleep(100);
 } catch (Exception ex) {
 p("ex: " + ex);
 }
}

step = -1;
previous_tab = this.getSelectedIndex();
repaint();

This code shows a basic animation loop from 1 to N, with a 100-millisecond
duration for each frame.

A more sophisticated version of the code could have
dynamic frame rates to adjust for system speed.

Animate Transitions Between Tabs #8

Chapter 1, Basic JComponents | 35

HACK

Once the transition finishes, the animation step is set back to -1, the previ-
ous tab is stored, and the screen is repainted one last time, without the tran-
sition effects.

Drawing the Animation
The TransitionTabbedPane is now set up with the proper resources and
repaints, but it still isn’t drawing the animation. Because the animation is
going to partially or completely obscure the tabs underneath, the best place
to draw is right after the children are painted:

public void paintChildren(Graphics g) {
 super.paintChildren(g);

 if(step != -1) {
 Rectangle size = this.getComponentAt(0).getBounds();
 Graphics2D g2 = (Graphics2D)g;
 paintTransition(g2, step, size, buf);
 }
}

public void paintTransition(Graphics2D g2, int step,
 Rectangle size, Image prev) {
}

This code puts all of the custom drawing into the paintTransition()
method, currently empty. It will only be called if step isn’t -1, meaning dur-
ing a transition animation. The paintTransition() method provides the
drawing canvas, the current animation step, the size and position of the con-
tent area (excluding the tabs themselves), and the image buffer that stores
the previous tab’s content. By putting all of this in a single method, sub-
classes can build their own animations very easily. Example 1-17 is a simple
transition with a white rectangle that grows out of the center, filling the
screen, then shrinking again to reveal the new tab content.

Example 1-17. Setting up an animated transition

public class InOutPane extends TransitionTabbedPane {

 public void paintTransition(Graphics2D g2, int state,
 Rectangle size, Image prev) {

 int length = getAnimationLength();
 int half = length/2;

 double scale = size.getHeight()/length;
 int offset = 0;
 // calculate the fade out part
 if(state >= 0 && state < half) {

36 | Chapter 1, Basic JComponents

#8 Animate Transitions Between Tabs
HACK

InOutPane implements only the paintTransition() method, leaving all of the
harder tasks to the parent class. First, it determines how long the animation
will be, and then it calculates an offset to grow and shrink the white rectan-
gle. If the drawing process is currently in the first half of the animation (step
< half), then it draws the previous tab below the rectangle, creating the illu-
sion that old tab content is still really on screen with the rectangle growing
above it. For the second half of the animation, it just draws the rectangle,
letting the real tab (the new one) shine through as the rectangle shrinks.

Putting It All Together
Because TransitionTabbedPane is just a JTabbedPane subclass, it can be used
wherever the original would be. Example 1-18 creates a frame with two tabs,
each containing a button. The running program looks like Figure 1-23. As
you switch between the tabs, you will see an animation like that shown in
Figure 1-24.

 // draw the saved version of the old tab component
 if(prev != null) {
 g2.drawImage(prev,(int)size.getX(),(int)size.getY(),null);
 }
 offset = (int)((10-state)*scale);
 }

 // calculate the fade in part
 if(state >= half && state < length) {
 g2.setColor(Color.white);
 offset = (int)((state-10)*scale);
 }

 // do the drawing
 g2.setColor(Color.white);
 Rectangle area = new Rectangle((int)(size.getX()+offset),
 (int)(size.getY()+offset),
 (int)(size.getWidth()-offset*2),
 (int)(size.getHeight()-offset*2));
 g2.fill(area);
 }
}

Example 1-18. Testing out tabbed animation transitions

public class TabFadeTest {

 public static void main(String[] args) {

 JFrame frame = new JFrame("Fade Tabs");

Example 1-17. Setting up an animated transition (continued)

Animate Transitions Between Tabs #8

Chapter 1, Basic JComponents | 37

HACK

Another Example
Because TransitionTabbedPane makes it so easy to build new animations, I
thought I’d add another one. This is the old venetian blinds effect, where
vertical bars cover the old screen and uncover the new one; Example 1-19
puts it together.

 JTabbedPane tab = new InOutPane();
 tab.addTab("t1",new JButton("Test Button 1"));
 tab.addTab("t2",new JButton("Test Button 2"));

 frame.getContentPane().add(tab);
 frame.pack();
 frame.show();
 }

}

Figure 1-23. Two tabs, before transition effect begins

Figure 1-24. Tab transition at mid-point

Example 1-18. Testing out tabbed animation transitions (continued)

38 | Chapter 1, Basic JComponents

#8 Animate Transitions Between Tabs
HACK

Just like InOutPane, VenetianPane selectively draws the old tab and then cal-
culates the placement of animated rectangles. In this case, there is a blind
rectangle that spans the entire screen from top to bottom, but has the width
of the current step. As a result of the step growing, this rectangle gets bigger

Example 1-19. Creating a venetian blinds effect

public class VenetianPane extends TransitionTabbedPane {
 public void paintTransition(Graphics2D g2, int step,
 Rectangle size, Image prev) {

 int length = getAnimationLength();
 int half = length/2;

 // create a blind
 Rectangle blind = new Rectangle();

 // calculate the fade out part
 if(step >= 0 && step < half) {
 // draw the saved version of the old tab component
 if(prev != null) {
 g2.drawImage(prev,(int)size.getX(),(int)size.getY(),null);
 }
 // calculate the growing blind
 blind = new Rectangle(
 (int)size.getX(),
 (int)size.getY(),
 step,
 (int)size.getHeight());
 }

 // calculate the fade in part
 if(step >= half && step < length) {
 // calculate the shrinking blind
 blind = new Rectangle(
 (int)size.getX(),
 (int)size.getY(),
 length-step,
 (int)size.getHeight());
 blind.translate(step-half,0);
 }

 // draw the blinds
 for(int i=0; i<size.getWidth()/half; i++) {
 g2.setColor(Color.white);
 g2.fill(blind);
 blind.translate(half,0);
 }

 }
}

Blur Disabled Components #9

Chapter 1, Basic JComponents | 39

HACK

with each frame. For the second half of the animation, it shrinks and moves
to the right, making it appear to fade into nothing. Once the blind is calcu-
lated, VenetianPane draws the blind multiple times to cover the entire tab
content area, creating the effect seen in Figure 1-25.

This hack is quite extensible. With the power of Java2D you could add
translucency, blurs, OS X-like genie effects, or anything else you can dream
up. As a future enhancement, you could include more animation settings to
control the frame rate and transition time. If you do create more, please post
them on the Web for others to share.

H A C K

#9
Blur Disabled Components Hack #9

This hack explores creating how to perform a blur transformation on a Swing
component.

Every Swing component draws to the screen via the paintComponent()
method. This is true even for components that offload the actual drawing to
Look and Feel UI objects. Because all drawing goes through the
paintComponent() method at some point, this point is where you can do
some interesting things by manipulating the graphics object during the paint
process.

Swing components draw to the Graphics object passed in through the
paintComponent() method. This means that if you replace the Graphics
object with a custom version, you can capture a component’s drawing into a
bitmap instead of going straight to the screen.

Blurring is a pixel-level operation, meaning the actual blurring is done pixel-
by-pixel in a bitmap. By drawing the component to a bitmap, blurring that
bitmap, and then drawing the bitmap in the place of the component, you can

Figure 1-25. Tab transition with a venetian blinds effect

40 | Chapter 1, Basic JComponents

#9 Blur Disabled Components
HACK

effectively have a blurred component without disturbing the rest of the Swing
painting routines. The particular implementation in this hack uses a blurred
effect to replace the normal graying of a component when it is disabled.

The first step is to capture the button into a bitmap, as shown in
Example 1-20.

The BlurJButton class extends a normal JButton and overrides the
paintComponent() method. If the button is enabled (neither disabled nor
grayed out), then it calls the superclass’s normal version of paintComponent()
and returns. If the button is disabled, however, then BlurJButton creates a
new BufferedImage with the same dimensions as the component.

A BufferedImage is simply an image backed by a bunch of
bytes in memory. It is a generic kind of image that gives you
a lot of flexibility. I set the type of the image to TYPE_INT_RGB,
rather than TYPE_INT_ARGB, because the latter adds an alpha
channel. An alpha channel lets you create transparency
effects, but since the blur doesn’t need transparency, that
feature would cost you unneeded memory.

Finally, the BlurJButton calls the paintComponent() on its superclass, the
standard JButton, passing in the graphics obtained from the buffer. This is
the key to the hack. By passing in buf.getGraphics() instead of the g vari-
able, the button will be drawn entirely to the image buffer, thus enabling the
blurring:

Example 1-20. Creating a blurrable button

public class BlurJButton extends JButton {

 public BlurJButton(String text) {
 super(text);
 }

 public void paintComponent(Graphics g) {
 if(isEnabled()) {
 super.paintComponent(g);
 return;
 }

 BufferedImage buf = new BufferedImage(getWidth(),getHeight(),
 BufferedImage.TYPE_INT_RGB);
 super.paintComponent(buf.getGraphics());

 // Blur the buffered image (see next section)

 }
}

Blur Disabled Components #9

Chapter 1, Basic JComponents | 41

HACK

float[] my_kernel = {
 0.10f, 0.10f, 0.10f,
 0.10f, 0.20f, 0.10f,
 0.10f, 0.10f, 0.10f };
ConvolveOp op = new ConvolveOp(new Kernel(3,3, my_kernel));
Image img = op.filter(buf,null);
g.drawImage(img,0,0,null);

Blurring is a complex operation where each pixel is averaged with the pixels
next to it to create a new pixel. The actual math is not tricky, but it’s very
tedious, and you need to take special care around the edges of the buffer.
Fortunately, Java2D provides a class that handles all of the messy details. All
you have to provide is a series of float values, called a kernel.

The kernel is a bunch of numbers between 0 and 1 that will be multiplied
against the value of each pixel and its neighboring pixels. In the previous
case, there is a 3 × 3 matrix of values where the target pixel (the one being
blurred) is in the center. Multiplying 1 times the pixel value will produce the
same pixel value, and therefore the same color. 0 times the pixel value will
produce 0, or black. Something in between will produce a darker version of
the pixel. Once the kernel is multiplied by the pixels, the values are added
together. The kernel in this example has values of 0.10 for every slot except
for the center one, which is 0.20. If you add those up, you will find that it
comes to exactly 1. This means that the final pixel color will have the same
brightness as it did originally (averaged over the entire image), but its color
will be a mixture of all of the pixels around it. If the sum of the pixels came
out to be less than 1, then the resulting image would be darker than the orig-
inal. If the sum was greater than 1, then the image would be lighter. This
system gives you a lot of flexibility. In fact, many paint programs implement
a great number of their filters simply by using different convolution kernels.

Try changing the values in the kernel to get effects other than
blurring.

Once the kernel is created, it is passed into a new ConvolveOp, which does
all of the actual calculations. op.filter(buff,null) tells the operation to
begin. The null value in the second argument tells the operation to create a
new buffer of the same size as the input buffer, buf. Once the blur opera-
tion is complete, the final bitmap is drawn to the real screen with the line
g.drawImage(img,0,0,null).

42 | Chapter 1, Basic JComponents

#9 Blur Disabled Components
HACK

With the class in place, you can test it out in code with something like this
main() method:

public static void main(String[] args) {
 JFrame frame = new JFrame("Blurred Button Hack");
 final JButton button = new BlurJButton("A Blurred Button");
 JButton control = new JButton("Switch");
 control.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 button.setEnabled(!button.isEnabled());
 }
 });

 frame.getContentPane().add(button);
 frame.getContentPane().add("South",control);
 frame.pack();
 frame.show();
}

This is a standard JFrame containing a BlurJButton as well as a normal but-
ton for control. The control button has an ActionListener that toggles the
blurred button’s enabled state. The initial state—with the button
unblurred—is shown in Figure 1-26. When you blur the button, it looks like
Figure 1-27.

This technique of rendering to an intermediate buffer can be very powerful.
You could extend this hack by doing other pixel-level operations, such as
watercolor effects, edge detection, contrast adjustments, or even animated
waves and rotations. Anything you can do to a bitmap you can apply to a
Swing component.

Figure 1-26. Enabled button with no blur effect

Figure 1-27. Disabled button with blur effect

Building a Drop-Down Menu Button #10

Chapter 1, Basic JComponents | 43

HACK

H A C K

#10
Building a Drop-Down Menu Button Hack #10

This hack shows how to build a color chooser as a proper drop-down
component. It will behave like JComboBox but without the extension
headaches of Sun’s version of the class.

Most custom Swing components are created with simple subclasses of the
standard base classes in javax.swing. This works fine most of the time, but
every now and then you need to build something where there is no easy
standard component to start with. Even worse, sometimes the obvious
choice for your starting point is a component so convoluted that you can’t
figure out where to start. Still, you’d rather not reimplement the wheel. No,
I’m not talking about JTree or JTable—I’m referring to the JComboBox. It
seems like such a simple component, but the implementation is fiendishly
complex.

Most large applications use components that feel like the JComboBox, but do
something entirely different, like select a color or show a history list. A quick
search through the JComboBox API doesn’t turn up any obvious extension
points. You could customize it with some cell renderers, but if you need a
component that doesn’t show a list of data, you are pretty much out of luck.
The source to JComboBox is not very helpful either. The work is spread out
over several UI classes in the various Look and Feel (L&F) packages. If you
did customize one of those, your component would look out of place when
used in a different L&F. The only real option is to write your own combo
box, which is pretty easy except for the actual drop-down part. You need to
show a component on top of the others, poking out of the frame occasion-
ally, but without any decorations of its own. It should be just a borderless
floating box. Digging through Swing’s source code reveals the secret ingredi-
ent: a JWindow.

JWindow is a subclass of Window but not of Frame. This means it has no decora-
tions on the side, and it is hidden from the Dock and Taskbar. This is
exactly what you want from a pop up. Care must be taken when creating it,
however, as you must ensure the window appears only on top of the exist-
ing components, and that it disappears when something else gains focus or
the window moves. Fortunately, you can do all of this with one composite
component and a few event listeners.

DropDownComponent will be a composite of the visible component, a down
arrow trigger button, and the hidden component that will appear in the pop
up. By thinking of your custom component as a composite of existing com-
ponents, you can make it very flexible. Additionally, subclasses must be able
to add different components to make something new out of the same pieces.

44 | Chapter 1, Basic JComponents

#10 Building a Drop-Down Menu Button
HACK

Example 1-21 is the start of a DropDownComponent class. It extends JComponent
directly and implements both the action and ancestor listener interfaces. It
assembles the visible and drop-down components passed into its construc-
tor with an arrow trigger and the listeners.

The arrow is just a JButton with a MetalComboBoxIcon. Reusing this arrow lets
the code pick up any Metal Look and Feel customizations. The last line of
the constructor calls another method in the class, setupLayout(), to posi-
tion the arrow next to the visible component while letting the component
still grow:

protected void setupLayout() {
 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints c = new GridBagConstraints();
 setLayout(gbl);

 c.weightx = 1.0; c.weighty = 1.0;
 c.gridx = 0; c.gridy = 0;
 c.fill = c.BOTH;
 gbl.setConstraints(visible_comp,c);
 add(visible_comp);

 c.weightx = 0;
 c.gridx++;
 gbl.setConstraints(arrow,c);
 add(arrow);
}

Example 1-21. Skeleton for a drop-down combo box

public class DropDownComponent extends JComponent
 implements ActionListener, AncestorListener {

 protected JComponent drop_down_comp;
 protected JComponent visible_comp;
 protected JButton arrow;
 protected JWindow popup;

 public DropDownComponent(JComponent vcomp, JComponent ddcomp) {
 drop_down_comp = ddcomp;
 visible_comp = vcomp;

 arrow = new JButton(new MetalComboBoxIcon());
 Insets insets = arrow.getMargin();
 arrow.setMargin(new Insets(insets.top, 1, insets.bottom, 1));
 arrow.addActionListener(this);
 addAncestorListener(this);

 setupLayout();
 }
}

Building a Drop-Down Menu Button #10

Chapter 1, Basic JComponents | 45

HACK

So far, this is all standard Swing code. The tricky part is dealing with the
JWindow pop up. The pop up must be positioned right below the visible com-
ponent and be on top of the screen. You also need to look for lost focus
events to know when to hide the pop up again. To handle the pop up, use
the actionPerformed() method:

public void actionPerformed(ActionEvent evt) {
 // build pop-up window
 popup = new JWindow(getFrame(null));
 popup.getContentPane().add(drop_down_comp);
 popup.addWindowFocusListener(new WindowAdapter() {
 public void windowLostFocus(WindowEvent evt) {
 popup.setVisible(false);
 }
 });
 popup.pack();

 // show the pop-up window
 Point pt = visible_comp.getLocationOnScreen();
 pt.translate(0,visible_comp.getHeight());
 popup.setLocation(pt);
 popup.toFront();
 popup.setVisible(true);
 popup.requestFocusInWindow();
}

The actionPerformed() method will be called whenever the arrow button
triggers it. It creates a new JWindow, adds the drop-down child component,
positions the window, and then shows it on top of any other components.
The JWindow has an anonymous listener that will close the window if it loses
focus. Notice that the JWindow constructor takes the result of getFrame().
getFrame() finds the parent frame of the composite drop-down component.
The JWindow accepts this frame as its owner, meaning it will be positioned
relative to the parent frame and be moved along with it. More importantly,
it can receive focus events. Windows without owners can’t get focus events
because they are effectively out of the focus system. These events are impor-
tant as they let you know when to hide the window again. Without the
frame returned from getFrame(), the pop up would stay visible and station-
ary, even if the parent frame gets focus or moves. Here’s the code for
getFrame():

protected Frame getFrame(Component comp) {
 if(comp == null) {
 comp = this;
 }
 if(comp.getParent() instanceof Frame) {
 return (Frame)comp.getParent();
 }
 return getFrame(comp.getParent());
}

46 | Chapter 1, Basic JComponents

#10 Building a Drop-Down Menu Button
HACK

With the code so far, you can show the pop-up window. To close it, you
must listen for ancestor events to find out when something above the drop-
down in the component tree has changed. They all just call hidePopup() to
safely turn it off:

public void ancestorAdded(AncestorEvent event){
 hidePopup();
}

public void ancestorRemoved(AncestorEvent event){
 hidePopup();
}

public void ancestorMoved(AncestorEvent event){
 if (event.getSource() != popup) {
 hidePopup();
 }
}

public void hidePopup() {
 if(popup != null && popup.isVisible()) {
 popup.setVisible(false);
 }
}

Adding a Color Selection Panel
With the DropDownComponent finished, you can finally build something with
it. For this hack, I’ve chosen a color selector. This is a small widget that lets
the user pick one of 12 standard colors without having to open up a full
color chooser. Most word processors and spreadsheets have a component
like this, so there’s no reason for Swing not to have one, too.

ColorSelectionPanel, shown in Example 1-22, is just a JPanel with a 4 × 3
grid of buttons. Each button represents one of the most common 10 colors,
plus black and white. When a color button is clicked, it will call
selectColor() to fire off a color selection event.

Example 1-22. A color selection panel to be used in the drop-down component

public class ColorSelectionPanel extends JPanel {
 public ColorSelectionPanel() {
 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints c = new GridBagConstraints();
 setLayout(gbl);

 // reusable listener for each button
 ActionListener color_listener = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 selectColor(((JButton)evt.getSource()).getBackground());
 }
 };

Building a Drop-Down Menu Button #10

Chapter 1, Basic JComponents | 47

HACK

ColorSelectionPanel uses a custom JButton called ColorButton (shown in
Example 1-23). It has no text and a small size so that you can fit 12 of them
inside the drop-down window. The button’s background comes from the
color it represents, and the button draws its own border, so there is no need
to draw a grid.

 // set up the standard 12 colors
 Color[] colors = new Color[12];
 colors[0] = Color.white;
 colors[1] = Color.black;

 colors[2] = Color.blue;
 colors[3] = Color.cyan;
 colors[4] = Color.gray;
 colors[5] = Color.green;
 colors[6] = Color.lightGray;
 colors[7] = Color.magenta;
 colors[8] = Color.orange;
 colors[9] = Color.pink;
 colors[10] = Color.red;
 colors[11] = Color.yellow;

 // lay out the grid
 c.gridheight = 1;
 c.gridwidth = 1;
 c.fill = c.NONE;
 c.weightx = 1.0;
 c.weighty = 1.0;

 for(int i=0; i<3; i++) {
 for(int j=0; j<4; j++) {
 c.gridx=j;
 c.gridy=i;
 JButton button = new ColorButton(colors[j+i*4]);
 gbl.setConstraints(button,c);
 add(button);
 button.addActionListener(color_listener);
 }
 }

 }

 // fire off a selectedColor property event
 protected Color selectedColor = Color.black;
 public void selectColor(Color newColor) {
 Color oldColor = selectedColor;
 selectedColor = newColor;
 firePropertyChange("selectedColor",oldColor, newColor);
 }

}

Example 1-22. A color selection panel to be used in the drop-down component (continued)

48 | Chapter 1, Basic JComponents

#10 Building a Drop-Down Menu Button
HACK

To put the color selector together, you just need to pack the
ColorSelectionPanel and a status button into a DropDownComponent. You also
need to add a property change listener to detect when the user has selected a
new color and then hide the pop up. This is all handled by Example 1-24.

After building the DropDownComponent and putting it in a standard JFrame,
your color selector will look like Figure 1-28.

Example 1-23. Custom JButton for color selection

public class ColorButton extends JButton {
 public ColorButton(Color col) {
 super();
 this.setText("");
 Dimension dim = new Dimension(15,15);
 this.setSize(dim);
 this.setPreferredSize(dim);
 this.setMinimumSize(dim);
 this.setBorderPainted(true);
 this.setBackground(col);
 }
}

Example 1-24. Assembling a working color selection widget

public class DropDownTest extends JPanel {

 public static void main(String[] args) {

 final JButton status = new JButton("Color");
 final JPanel panel = new ColorSelectionPanel();
 final DropDownComponent dropdown = new DropDownComponent(status,panel);
 panel.addPropertyChangeListener("selectedColor",
 new PropertyChangeListener() {
 public void propertyChange(PropertyChangeEvent evt) {
 dropdown.hidePopup();
 status.setBackground((Color)evt.getNewValue());
 }
 });

 JFrame frame = new JFrame("Drop Down Test");
 frame.setDefaultCloseOperation(frame.EXIT_ON_CLOSE);
 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add("North",dropdown);
 frame.getContentPane().add("Center",new JLabel("Drop Down Test"));
 frame.pack();
 frame.setSize(300,300);
 frame.show();

 }

}

Create Menus with Drop Shadows #11

Chapter 1, Basic JComponents | 49

HACK

One nice thing about assembling the drop-down from standard compo-
nents is that it will still look good when used with a different Look and Feel.
Everything the user sees on the screen is some subclass of the standard
JButton, but it is just presented in a non-traditional manner. If you switch to
another theme where standard buttons are shaped differently, the custom
component adapts automatically.

H A C K

#11
Create Menus with Drop Shadows Hack #11

This hack explores a simple way to create drop shadows on menus
throughout an entire application with minimal code changes.

Many modern operating systems provide menus with interesting effects to
make them jump off the screen. One of the most common is the drop
shadow. Some programs even provide shadows themselves when the host
operating system does not. For years, a lack of low-level graphics support
has denied Swing programs access to these kinds of cool effects. But not any
more! Most of the effects can be duplicated with Swing’s robust theming
ability.

Most custom effects require either subclassing a component or messing with
graphics overlays. I tried a variety of techniques to create this hack, but I
kept coming across the same problem over and over. If I wanted to draw a
shadow, I had to change the sizing of each menu item, plus its background,
plus the pop-up frame itself. That is a lot of components to manage. It
would be a lot simpler if I could tell the components to make themselves a
little bit bigger and give me the extra slice of screen real estate to draw in.
The solution was right under my nose: the border. Every Swing component
can use a custom border, without subclassing, and the border will automati-
cally resize the component to fit. If the border is lopsided, then it will create
a kind of shadow effect. Perfect!

Figure 1-28. A drop-down color chooser in a test JFrame

50 | Chapter 1, Basic JComponents

#11 Create Menus with Drop Shadows
HACK

Every standard Swing component is actually drawn by a UI helper class, and
pop-up menus are no exception. I took the BasicPopupMenuUI in the javax.
swing.plaf.basic package and created a subclass called CustomPopupMenuUI
(shown in Example 1-25). It only does two things special: adds a custom
border to the pop up’s parent panel and sets the panel to be transparent.

The getPopup() method generates the actual menu object in the superclass.
This version grabs the pop up’s parent—a JPanel—and adds the custom
ShadowBorder with offsets of 3 pixels, both horizontally and vertically. It also
calls setOpaque(false). This tells the component that it does not have to
completely fill its boundaries and that the parent component may show
through. For most components, this turns off its background, which is the
desired effect here.

With the custom pop-up class done, it’s time to create the border.
ShadowBorder, shown in Example 1-26, is a subclass of AbstractBorder,
which handles all of the messy details of border management and lets the
developer get down to the actual drawing code pretty quickly.

Example 1-25. Extending the pop-up menu’s UI

public class CustomPopupMenuUI extends BasicPopupMenuUI {
 public static ComponentUI createUI(JComponent c) {
 return new CustomPopupMenuUI();
 }

 public Popup getPopup(JPopupMenu popup, int x, int y) {
 Popup pp = super.getPopup(popup,x,y);
 JPanel panel = (JPanel)popup.getParent();
 panel.setBorder(new ShadowBorder(3,3));
 panel.setOpaque(false);
 return pp;
 }
}

Example 1-26. Adding a shadowed border

class ShadowBorder extends AbstractBorder {
 int xoff, yoff;
 Insets insets;
 public ShadowBorder(int x, int y) {
 this.xoff = x;
 this.yoff = y;
 insets = new Insets(0,0,xoff,yoff);
 }

 public Insets getBorderInsets(Component c) {
 return insets;
 }

Create Menus with Drop Shadows #11

Chapter 1, Basic JComponents | 51

HACK

The ShadowBorder constructor takes x- and y-offsets and creates an Insets
object. These insets have to be returned by the getBorderInsets() method
in order for other components to size themselves appropriately. Because the
insets class uses a 0 for the first two arguments, the extra space will be on
the right and bottom only, not the top and left. This will create an offset
shadow in the lower-right direction, similar to most native operating system
drop shadows.

The actual painting code is very simple: set the color to black, translate the
graphics origin to be relative to the x and y passed in, draw the shadow, and
translate back. The shadow is composed of two filled-in rectangles, one on
the bottom of the component and one on its right side. Note that the draw-
ing begins offset slightly. The right side starts at yoff instead of 0, and the
bottom side starts at xoff. These adjustments will create a tiny square of
empty space in the lower left and upper right. Those squares will allow the
background to show through. Because the background panel was already
turned off in the CustomPopupMenuUI’s getPopup() method, this will let the
other components underneath the menu shine through. The drop shadow
effect is complete.

The code in Example 1-27 installs the CustomPopupMenuUI into the UIManager.
This will ensure that all menus throughout the program use the custom
menu. Finally, the test program creates a sample set of menus and some
dummy components in the main frame. The finished program looks like
Figure 1-29.

 public void paintBorder(Component comp, Graphics g,
 int x, int y, int width, int height) {
 g.setColor(Color.black);
 g.translate(x,y);
 // draw right side
 g.fillRect(width-xoff, yoff, xoff, height-yoff);
 // draw bottom side
 g.fillRect(xoff, height-yoff, width-xoff, yoff);
 g.translate(-x,-y);
 }
}

Example 1-27. Putting the custom combo box into action

public class MenuTest {
 public static void main(String[] args) throws Exception {
 UIManager.put("PopupMenuUI","CustomPopupMenuUI");

 JFrame frame = new JFrame();
 JMenuBar mb = new JMenuBar();
 frame.setJMenuBar(mb);

Example 1-26. Adding a shadowed border (continued)

52 | Chapter 1, Basic JComponents

#12 Add Translucence to Menus
HACK

H A C K

#12
Add Translucence to Menus Hack #12

In this hack I will show you how to add true translucency to your menus with
only a slight modification to your program.

Computer interfaces are pretty sophisticated these days. Years ago, we con-
sidered ourselves lucky to simply have menu bars at all; now, we need
menus with sophisticated effects like animation, shadows, and translucency.

You’ve already seen how to achieve visual effects by overriding the paint()
method of a parent component and then rendering the children into a buffer
[Hack #9]. It would be nice to do the same thing here, but there’s just one small
problem. Overriding the paint() method of the JMenu wouldn’t do any good

 JMenu menu = new JMenu("File");
 mb.add(menu);
 menu.add(new JMenuItem("Open"));
 menu.add(new JMenuItem("Save"));
 menu.add(new JMenuItem("Close"));
 menu.add(new JMenuItem("Exit"));
 menu = new JMenu("Edit");
 mb.add(menu);
 menu.add(new JMenuItem("Cut"));
 menu.add(new JMenuItem("Copy"));
 menu.add(new JMenuItem("Paste"));
 menu.add(new JMenuItem("Paste Special.."));
 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add("North",new JButton("Button"));
 frame.getContentPane().add("Center",new JLabel("a label"));
 frame.getContentPane().add("South",new JCheckBox("checkbox"));
 frame.pack();
 frame.setSize(200,150);
 frame.show();
 }
}

Figure 1-29. Menu with a drop shadow

Example 1-27. Putting the custom combo box into action (continued)

Add Translucence to Menus #12

Chapter 1, Basic JComponents | 53

HACK

because the JMenu doesn’t draw what we think of as a menu—a list of menu
items that pop up when you click on the menu’s title. The JMenu actually
only draws the title at the top of a menu. The rest of the menu is drawn by a
JPopupMenu created as a member of the JMenu. Unfortunately this member is
marked private, which means you can’t substitute your own JPopupMenu
subclass for the standard version.

Fortunately there is a way out. Like all Swing components, the menu com-
ponents delegate their actual drawing to a separate set of Look and Feel
classes in the javax.swing.plaf package. If you override the right plaf
classes for the menu items and pop-up menu, then you should be able to
create the desired translucent effect. It just takes a little subclassing.

Make the Custom Menu Item
All MenuItems are implemented by some form of the javax.swing.plaf.
MenuItemUI class. When creating custom UI classes, it is always best to start
by subclassing something in the javax.swing.plaf.basic package (in this
case, BasicMenuItemUI) because it handles most of the heavy lifting for you,
as shown in Example 1-28.

Example 1-28. Extending the basic UI

public class CustomMenuItemUI extends BasicMenuItemUI {

 public static ComponentUI createUI(JComponent c) {
 return new CustomMenuItemUI();
 }

 public void paint(Graphics g, JComponent comp) {
 // paint to the buffered image
 BufferedImage bufimg = new BufferedImage(
 comp.getWidth(),
 comp.getHeight(),
 BufferedImage.TYPE_INT_ARGB);
 Graphics2D g2 = bufimg.createGraphics();
 // restore the foreground color in case the superclass needs it
 g2.setColor(g.getColor());
 super.paint(g2,comp);
 // do an alpha composite
 Graphics2D gx = (Graphics2D) g;
 gx.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.8f));
 gx.drawImage(bufimg,0,0,null);
 }

}

54 | Chapter 1, Basic JComponents

#12 Add Translucence to Menus
HACK

No constructor is required because all UI classes have a no-arg constructor
automatically. All UI classes also need a static createUI() method to create a
new instance of the class, as you can see in the example. In the paint()
method, instead of drawing on the graphics object passed in, the code cre-
ates a buffered image with the same dimensions as the component, and then
calls super.paint(). This will draw the component onto the buffered image
instead of the screen. Once the painting is done, it can apply a transform and
then draw the image buffer onto the real Graphics. In this case, the trans-
form is an alpha composite of 0.8. This means that instead of drawing the
buffer as is, it will draw the buffer partially transparent (80% solid, in this
case). This will draw the bufferedimage into the real graphics with a translu-
cent effect. You can vary the strength of the translucency by modifying the
second parameter to the AlphaComposite.getInstance() method (1 results in
a solid, 0 is totally transparent).

Add a Custom JMenu
If you stopped with just the custom menu items, the menus would seem a
bit translucent, but the rest of the window wouldn’t shine through. This is
because the menu items are inside of another component; in fact, they’re
inside of three! The JMenu puts all of the menu items inside of a JPopupMenu,
which is placed inside of a JPanel, and then the whole deal is put in a lay-
ered pane at the top of the frame. The layered pane is already transparent, so
you don’t need to worry about it, but the JPanel and JPopupMenu are going to
be a problem. Example 1-29 handles the custom UI for these.

Example 1-29. Handling translucence for JPanels and JPopupMenus

public class CustomPopupMenuUI extends BasicPopupMenuUI {

 public static ComponentUI createUI(JComponent c) {
 return new CustomPopupMenuUI();
 }

 public void installUI(JComponent c) {
 super.installUI(c);
 popupMenu.setOpaque(false);
 }

 public Popup getPopup(JPopupMenu popup, int x, int y) {
 Popup pp = super.getPopup(popup,x,y);
 JPanel panel = (JPanel)popup.getParent();
 panel.setOpaque(false);
 return pp;
 }

}

Add Translucence to Menus #12

Chapter 1, Basic JComponents | 55

HACK

The custom pop-up menu UI used here is similar to the CustomMenuItemUI
(from Example 1-28). It has a static create UI menu and no constructor. The
pop-up menu is already stored as a protected member of the
BasicPopupMenuUI parent class, so I can access it easily. The installUI()
method is called right after the JPopupMenu is created, so this is the best place
to put a call to setOpaque(false). For most L&Fs, this will make the compo-
nent transparent.

That takes care of the pop-up menu, but what about the parent JPanel? The
JPanel is created and initialized deep within the javax.swing.PopupFactory
class, so it’s pretty well out of reach. This is one place where having access
to the JRE source code is invaluable. Without that, this entire hack would
have been impossible to figure out. Fortunately, we have access to the fin-
ished JPopupMenu from within the getPopup method. I overrode that to call
the superclass and then grab the newly minted parent of the pop-up menu
and cast it to a JPanel. Now, I can finally set it to be transparent, too.

Test It Out
With your two custom UI classes in place, test them out with Example 1-30,
which shows a frame containing two sets of menus and a few components.
Before creating any components, the program installed the custom UI
classes with two calls to UIManager.put().

Any time you want to override part of a L&F, you can use
UIManager.put().

Example 1-30. Testing out the translucent menus

public class MenuTest {
 public static void main(String[] args) throws Exception {
 UIManager.put("PopupMenuUI","CustomPopupMenuUI");
 UIManager.put("MenuItemUI","CustomMenuItemUI");

 JFrame frame = new JFrame();
 JMenuBar mb = new JMenuBar();
 frame.setJMenuBar(mb);
 JMenu menu = new JMenu("File");
 mb.add(menu);
 menu.add(new JMenuItem("Open"));
 menu.add(new JMenuItem("Save"));
 menu.add(new JMenuItem("Close"));
 menu.add(new JMenuItem("Exit"));
 menu = new JMenu("Edit");
 mb.add(menu);

56 | Chapter 1, Basic JComponents

#12 Add Translucence to Menus
HACK

With all of the code in place, you can compile it and get something that
looks like Figure 1-30.

One bug you will notice is that after you open the menu and start moving the
cursor between menu items, the background won’t shine through anymore.
This is because Swing, in an effort to speed up the UI, only repaints the parts
it knows have changed. It repaints the menu item, but not the frame con-
tents below (the button and label, in this case) because it thinks they are
obscured by the menu item. Of course, the menu item is translucent, so the
components should shine through, but Swing doesn’t know that. To fix the

 menu.add(new JMenuItem("Cut"));
 menu.add(new JMenuItem("Copy"));
 menu.add(new JMenuItem("Paste"));
 menu.add(new JMenuItem("Paste Special.."));
 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add("North",new JButton("Button"));
 frame.getContentPane().add("Center",new JLabel("a label"));
 frame.getContentPane().add("South",new JCheckBox("checkbox"));
 frame.pack();
 frame.setSize(200,150);
 frame.show();
 }

}

Figure 1-30. Translucent menu

Example 1-30. Testing out the translucent menus (continued)

Add Translucence to Menus #12

Chapter 1, Basic JComponents | 57

HACK

problem, you’ll need to develop a full repaint manager [Hack #53] that will force
Swing to always repaint the entire component tree, instead of just the menu
items. It’s a bit slower, but worth it if you really want this effect:

UIManager.put("MenuItemUI","CustomMenuItemUI");
RepaintManager.setCurrentManager(new FullRepaintManager());

One more bug is that the menu must fit within the frame. There are two
kinds of menus in Swing: heavyweight and lightweight. Lightweight menus
are normal Swing components. Heavyweight menus, on the other hand, are
drawn in their own top-level window. This means that there are two win-
dows being drawn: one for the real frame and one for the menu. If you use
heavyweight menus, the effect will stop completely because the windows
themselves can’t be transparent. Normally, Swing will use lightweight
menus, but if the menu has to be drawn outside of the frame—which can
happen if you have a small window or a really large menu—then it will
switch to heavyweight menus automatically and nothing can switch it back
until the application restarts. This means you should always make sure your
menus fit inside of your windows.

Future Ideas
This hack shows just one example of how you can completely change a
component’s behavior by customizing its Look and Feel class. Java2D gives
you the power to create a wide variety of graphical hacks. As an extension of
this technique, you could try blurring the components underneath the menu
or create a properly smoothed drop shadow.

58

Chapter 2C H A P T E R T W O

Lists and Combos
Hacks 13–20

Lists are underrated and underappreciated, and developers who don’t
appreciate JLists often use JTables when they don’t need to. But lists seem
to be making a comeback in desktop applications, and with good reason. A
lot of the data we deal with are single-dimension collections—search results,
recent URLs, downloaded files, etc.—and by making the onscreen version of
them more appealing and more usable, a list is the right way to present this
data to the user.

H A C K

#13
Filter JLists Hack #13

Make your 1,000-item list a lot more manageable.

One of the nicest things you can do with a large list is to make it manage-
able with a filter box. This is a text area that, as you type into it, removes list
elements so that only those that contain the typed text are visible.

The hack to do this basically involves having a list model with two represen-
tations of its contents: everything that is in the list, and a subset with just the
items to be displayed (i.e., those from the first list that match the filter). The
model’s get methods are then rewired to use only the second list.

The implementation in this hack, FilteredJList, is a single class with two
inner subclasses: FilterModel and FilterField. The list owns the field, so a
caller can create the JList fairly typically and then just ask for the field and
add it wherever it makes sense in the layout.

Start by declaring FilteredJList as a subclass of JList, and provide a con-
structor and some convenience methods, as seen in Example 2-1.

Filter JLists #13

Chapter 2, Lists and Combos | 59

HACK

Notice that along with holding onto the FilterField, the JList also creates
its own FilterModel in the constructor, and overrides setModel() to ensure
that you can’t push in an incompatible model. It also contains an addItem()
method, which really just delegates to the FilterModel.

FilterModel, shown in Example 2-2, is where the magic happens.

Example 2-1. FilterList constructor and convenience methods

public class FilteredJList extends JList {

 private FilterField filterField;
 private int DEFAULT_FIELD_WIDTH = 20;

 public FilteredJList() {
 super();
 setModel (new FilterModel());
 filterField = new FilterField (DEFAULT_FIELD_WIDTH);
 }

 public void setModel (ListModel m) {
 if (! (m instanceof FilterModel))
 throw new IllegalArgumentException();
 super.setModel (m);
 }

 public void addItem (Object o) {
 ((FilterModel)getModel()).addElement (o);
 }

 public JTextField getFilterField() {
 return filterField;
 }

Example 2-2. Inner class to provide a filtered model

 class FilterModel extends AbstractListModel {
 ArrayList items;
 ArrayList filterItems;
 public FilterModel() {
 super();
 items = new ArrayList();
 filterItems = new ArrayList();
 }
 public Object getElementAt (int index) {
 if (index < filterItems.size())
 return filterItems.get (index);
 else
 return null;
 }
 public int getSize() {
 return filterItems.size();
 }

60 | Chapter 2, Lists and Combos

#13 Filter JLists
HACK

This model has two ArrayLists for its contents: items contains all the items
that have been added to the model; filterItems contains only the items that
match the filter. The getSize() and getElementAt() methods, required by
ListModel, draw not from the real items list, but from the filterItems list.
The filterItems list is reconstituted via calls to the refilter() method,
which fires off a ListDataEvent to inform the JList that the contents have
changed and require a repaint.

The refilter() method works on the String representation
of the list contents—if your objects are more sophisticated,
you might need to adapt the matching logic; e.g., searching
the content of email messages represented as objects.

There’s also an addItem() method, patterned after the equivalent method in
DefaultListModel that, unlike AbstractListModel, assumes mutability (i.e., the
ability to add and remove list contents). A more complete implementation of
this model would probably need to provide equivalents for all of
DefaultListModel’s add and remove methods. Notice that addItem() calls
refilter() on each add, so that an added item is immediately added to the
visible list, assuming that it matches the search term.

The FilterField, shown in Example 2-3, is fairly trivial, and it is responsi-
ble for forcing a refilter when its contents change.

 public void addElement (Object o) {
 items.add (o);
 refilter();
 }
 private void refilter() {
 filterItems.clear();
 String term = getFilterField().getText();
 for (int i=0; i<items.size(); i++)
 if (items.get(i).toString().indexOf(term, 0) != -1)
 filterItems.add (items.get(i));
 fireContentsChanged (this, 0, getSize());
 }
 }
 // FilterField inner class listed below
}

Example 2-3. Text field that refilters the model on each keystroke

// inner class provides filter-by-keystroke field
class FilterField extends JTextField implements DocumentListener {
 public FilterField (int width) {
 super(width);

Example 2-2. Inner class to provide a filtered model (continued)

Filter JLists #13

Chapter 2, Lists and Combos | 61

HACK

The FilterField’s DocumentListener calls for a refilter on each of the possi-
ble DocumentEvents. For efficiency, it might be faster for the model to pro-
vide a refilter method that starts with the filtered list and narrows it down
further. This could be called by insertUpdate() because adding characters
to the filter term can only make it more restrictive, meaning there is no point
considering any items that aren’t already matches.

To test the FilterJList, Example 2-4 shows a simple main() method that
populates the list with some names and puts the list and its filter field in a
JFrame.

 getDocument().addDocumentListener (this);
 }
 public void changedUpdate (DocumentEvent e) {
 ((FilterModel)getModel()).refilter();
 }
 public void insertUpdate (DocumentEvent e) {
 ((FilterModel)getModel()).refilter();
 }
 public void removeUpdate (DocumentEvent e) {
 ((FilterModel)getModel()).refilter();
 }
}

Example 2-4. Simple test GUI for FilteredJList

public static void main (String[] args) {
 String[] listItems = {
 "Chris", "Joshua", "Daniel", "Michael",
 "Don", "Kimi", "Kelly", "Keagan"
 };
 JFrame frame = new JFrame ("FilteredJList");
 frame.getContentPane().setLayout (new BorderLayout());
 // populate list
 FilteredJList list = new FilteredJList();
 for (int i=0; i<listItems.length; i++)
 list.addItem (listItems[i]);
 // add to gui
 JScrollPane pane =
 new JScrollPane (list,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 frame.getContentPane().add (pane, BorderLayout.CENTER);
 frame.getContentPane().add (list.getFilterField(),
 BorderLayout.NORTH);
 frame.pack();
 frame.setVisible(true);
}

Example 2-3. Text field that refilters the model on each keystroke (continued)

62 | Chapter 2, Lists and Combos

#13 Filter JLists
HACK

When run, all the list items are displayed initially, as in Figure 2-1.

But when you type an uppercase K (the indexof search in refilter() is case-
sensitive), the list immediately shrinks to three items, shown in Figure 2-2.

The only matches for K are “Kimi,” “Kelly,” and “Keagan.” Now type an e,
and “Kimi” will be filtered out, as in Figure 2-3.

Figure 2-1. Unfiltered contents of a list

Figure 2-2. Filtering on a keystroke

Figure 2-3. Refiltering on successive keystrokes

Add a Filter History #14

Chapter 2, Lists and Combos | 63

HACK

H A C K

#14
Add a Filter History Hack #14

Remember previous searches and research with one click.

Chances are good that if you’ve searched for something once, it’s important
enough that you might well search for it again. In Apple’s Safari browser, a
search widget at the upper right has a little magnifying glass that remembers
your last 10 searches. Click the magnifying glass and a pop up appears with
the previous searches. Select one and it populates the field and does the
search immediately.

Here’s an implementation of the same idea, grafted onto the previous hack.
In other words, this remembers previous filters. It doesn’t remember every
keystroke—why bother remembering the searches “J” and “Jo” when you’re
really just interested in “Joe”—and only adds a search term to the filter
when the user presses return.

In the previous hack, you just needed to have a text field and a JList. Now a
JButton needs to be attached to the text field, so the two are bundled
together in the inner class FilterField. This class is responsible for:

• Telling the model to refilter on each keystroke in the JTextField, as
before.

• Remembering the JTextField’s contents as a saved search anytime the
Return or Enter key is pressed.

• Catching clicks on the JButton and popping up a menu with previous
searches.

• Populating the JTextField with a previous search when one is selected
from the list. It doesn’t need to explicitly tell the model to refilter
because changing the text area will fire a DocumentEvent that is already
accounted for by the JTextField’s DocumentListener.

Example 2-5 shows the new FilterField class.

Example 2-5. List filtering component with text field and history button

class FilterField extends JComponent
 implements DocumentListener, ActionListener {
 LinkedList prevSearches;
 JTextField textField;
 JButton prevSearchButton;
 JPopupMenu prevSearchMenu;
 public FilterField (int width) {
 super();
 setLayout(new BorderLayout());
 textField = new JTextField (width);
 textField.getDocument().addDocumentListener (this);
 textField.addActionListener (this);

64 | Chapter 2, Lists and Combos

#14 Add a Filter History
HACK

Notice how this version of the class uses a MouseListener on the JButton
instead of an ActionListener. Either will work, but the MouseEvent provides
the location of the mouse click as a Point in the JButton’s coordinate space,
which is useful for showing the pop-up menu at the exact point of the
mouse click. There is an ActionListener implementation, but it’s for the
JTextField so that when the user presses the Return key, the filter text is
saved to the JPopupMenu (and, if there are more than 10 items, the oldest
saved search is removed).

 prevSearchButton =
 new JButton (new ImageIcon ("mag-glass.png"));
 prevSearchButton.setBorder(null);
 prevSearchButton.addMouseListener (new MouseAdapter() {
 public void mousePressed (MouseEvent me) {
 popMenu (me.getX(), me.getY());
 }
 });
 add (prevSearchButton, BorderLayout.WEST);
 add (textField, BorderLayout.CENTER);
 prevSearches = new LinkedList ();
 }
 public void popMenu (int x, int y) {
 prevSearchMenu = new JPopupMenu();
 Iterator it = prevSearches.iterator();
 while (it.hasNext())
 prevSearchMenu.add (
 new PrevSearchAction(it.next().toString()));
 prevSearchMenu.show (prevSearchButton, x, y);
 }
 public void actionPerformed (ActionEvent e) {
 // called on return/enter, adds term to prevSearches
 if (e.getSource() == textField) {
 prevSearches.addFirst (textField.getText());
 if (prevSearches.size() > 10)
 prevSearches.removeLast();
 }
 }
 public void changedUpdate (DocumentEvent e) {
 ((FilterModel)getModel()).refilter();
 }
 public void insertUpdate (DocumentEvent e) {
 ((FilterModel)getModel()).refilter();
 }
 public void removeUpdate (DocumentEvent e) {
 ((FilterModel)getModel()).refilter();
 }

}

Example 2-5. List filtering component with text field and history button (continued)

Add a Filter History #14

Chapter 2, Lists and Combos | 65

HACK

The items in the JPopupMenu are instances of PrevSearchAction, which sub-
classes Swing’s Action. This is convenient because they provide a String rep-
resentation to be shown in the pop-up menu, yet get an actionPerformed()
when their menu item is selected, which gives them a chance to reset the fil-
ter text. Here’s what the PrevSearchAction inner class looks like:

class PrevSearchAction extends AbstractAction {
 String term;
 public PrevSearchAction (String s) {
 term = s;
 putValue (Action.NAME, term);
 }
 public String toString() { return term; }
 public void actionPerformed (ActionEvent e) {
 getFilterField().textField.setText (term);
 }
}

When a previous search is recalled, it looks like Figure 2-4.

And when the mouse clicks on one of the menu items, the field is populated
and the list is filtered. Figure 2-5 shows the result.

Figure 2-4. Pop-up menu with previous searches

Figure 2-5. List filtered by pop-up selection

66 | Chapter 2, Lists and Combos

#15 Make JLists Checkable
HACK

The general idea of this pop up can be modified to work in similar ways for
different kinds of searches, such as popping up a list of which field the
search is to be applied to if the list items are complex. An example of this is
a mail program in which the pop up might show the options Subject, To,
From, etc., meaning that the search is limited to finding the specified term in
only the selected field.

H A C K

#15
Make JLists Checkable Hack #15

Avoid losing 50 selections to an unshifted click.

One horrible UI problem is dealing with vast collections of things that need
to be presented to the user and made selectable. If, like me, you’ve ever had
1,000 emails in your inbox, you know what I mean. Worse, what if you pick
a bunch of items to delete, but your finger slips off the key used for multi-
selection (Alt on Windows, Command on the Mac, etc.) and you lose all of
your previous selections? Overriding the native selection behavior can make
this situation somewhat more palatable.

Because a list like this behaves differently than a normal list, it should look
different, too, so I’ve opted for a checkbox metaphor. Each item is shown
with a checkbox, and as you click more items, they get checked, and if you
select an already-checked item, it gets unchecked.

This turns out to be a little harder than expected. I once did
it without JList, creating my own scrolling layout of JPanels
and faking the list behavior. It turned up a funny Swing bug
because I was using GridBagLayout for the fake list, and it
started totally bombing out after about 500 items were
added to the list. This was because GridBagLayout has a bug
where it can’t have more than 512 rows. Considering the bug
(number 4254022 on the Java Bug Parade) was filed in 1999
and is still open, I’m figuring it won’t get fixed by the time
you read this.

The basis of the checkable list is a JList. The tricky part here is that there
isn’t a way (that I’ve found) to steal the mouse clicks from the JList and
consume them before the normal calls to the ListSelectionModel are made.
Instead, the strategy is to set up a ListSelectionListener and just fix every-
thing after JList has done its thing.

To implement the checkbox functionality, subclass JList and give it a cus-
tom ListSelectionListener and a ListCellRenderer. A complete listing is
shown in Example 2-6.

Make JLists Checkable #15

Chapter 2, Lists and Combos | 67

HACK

There are two important sections to consider. The first is the valueChanged()
method that implements ListSelectionListener. The following list describes
what happens in that method.

Example 2-6. A checkbox-metaphor JList

public class CheckBoxJList extends JList
 implements ListSelectionListener {

 static Color listForeground, listBackground;
 static {
 UIDefaults uid = UIManager.getLookAndFeel().getDefaults();
 listForeground = uid.getColor ("List.foreground");
 listBackground = uid.getColor ("List.background");
 }

 HashSet selectionCache = new HashSet();
 int toggleIndex = -1;
 boolean toggleWasSelected;

 public CheckBoxJList() {
 super();
 setCellRenderer (new CheckBoxListCellRenderer());
 addListSelectionListener (this);
 }

// valueChanged() listing below

 public static void main (String[] args) {
 JList list = new CheckBoxJList ();
 DefaultListModel defModel = new DefaultListModel();
 list.setModel (defModel);
 String[] listItems = {
 "Chris", "Joshua", "Daniel", "Michael",
 "Don", "Kimi", "Kelly", "Keagan"
 };
 Iterator it = Arrays.asList(listItems).iterator();
 while (it.hasNext())
 defModel.addElement (it.next());
 // show list
 JScrollPane scroller =
 new JScrollPane (list,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 JFrame frame = new JFrame ("Checkbox JList");
 frame.getContentPane().add (scroller);
 frame.pack();
 frame.setVisible(true);
 }

}

68 | Chapter 2, Lists and Combos

#15 Make JLists Checkable
HACK

1. Only react if ListSelectionEvent.isValueAdjusting() returns false. If
it’s true, then the event is part of a series—perhaps the user is shift-
dragging over several items to multiselect them—and you don’t want to
do anything until the series of events has completed.

2. Remove the ListSelectionListener so that changes to the list made by
your code don’t fire off events, which would lead to a recursive, stack-
blowing fiasco.

3. Cache all the selections that resulted from JList’s handling of the event.
These will be added or removed from the final selections later.

4. Reselect all the items that were selected before the valueChanged() call.

5. Go through the new selections and add them to the selection if they
weren’t selected before. On the other hand, if they were selected previ-
ously, deselect them.

6. Cache all these selections for the next call to valueChanged().

7. Add the ListSelectionListener again.

The listing for valueChanged is shown in Example 2-7.

Example 2-7. A ListSelectionListener for the checkable JList

public void valueChanged (ListSelectionEvent lse) {
 if (! lse.getValueIsAdjusting()) {
 removeListSelectionListener (this);

 // determine if this selection has added or removed items
 HashSet newSelections = new HashSet();
 int size = getModel().getSize();
 for (int i=0; i<size; i++) {
 if (getSelectionModel().isSelectedIndex(i)) {
 newSelections.add (new Integer(i));
 }
 }

 // turn on everything that was selected previously
 Iterator it = selectionCache.iterator();
 while (it.hasNext()) {
 int index = ((Integer) it.next()).intValue();
 getSelectionModel().addSelectionInterval(index, index);
 }

 // add or remove the delta
 it = newSelections.iterator();
 while (it.hasNext()) {
 Integer nextInt = (Integer) it.next();
 int index = nextInt.intValue();
 if (selectionCache.contains (nextInt))
 getSelectionModel().removeSelectionInterval (index, index);

Make JLists Checkable #15

Chapter 2, Lists and Combos | 69

HACK

The other important part of this class is a ListCellRenderer that shows the
list items with checkboxes, and which is used as a visual cue that the list has
checkbox-like behavior. Aside from adding a checkbox to the renderer com-
ponent and setting its state appropriately, you should hack the coloring of
the cell to avoid highlighting (because you are already using checkboxes).
The key here is to grab the platform’s colors for unselected list cell fore-
grounds and backgrounds, which you can get via the UIDefaults class and
the property names List.foreground and List.background. This cell renderer
always resets the list cells to these unselected colors, leaving just the check-
boxes as an indication of what’s selected—and does it in the correct colors.
The renderer is implemented as an inner class and is listed in Example 2-8.

 else
 getSelectionModel().addSelectionInterval (index, index);
 }

 // save selections for next time
 selectionCache.clear();
 for (int i=0; i<size; i++) {
 if (getSelectionModel().isSelectedIndex(i)) {
 selectionCache.add (new Integer(i));
 }
 }

 addListSelectionListener (this);
 }
}

Example 2-8. ListCellRenderer for checkbox-based JList

class CheckBoxListCellRenderer extends JComponent
 implements ListCellRenderer {
 DefaultListCellRenderer defaultComp;
 JCheckBox checkbox;
 public CheckBoxListCellRenderer() {
 setLayout (new BorderLayout());
 defaultComp = new DefaultListCellRenderer();
 checkbox = new JCheckBox();
 add (checkbox, BorderLayout.WEST);
 add (defaultComp, BorderLayout.CENTER);
 }

 public Component getListCellRendererComponent(JList list,
 Object value,
 int index,
 boolean isSelected,
 boolean cellHasFocus){

Example 2-7. A ListSelectionListener for the checkable JList (continued)

70 | Chapter 2, Lists and Combos

#16 Make Different List Items Look Different
HACK

When you click on items in the list, their selection state is shown with
checkboxes, as seen in Figure 2-6.

Notice how the checkboxes are all you need to see what’s selected. In an
early version of this hack, I went out of my way to maintain the usual selec-
tion colors and it looked lousy, probably because there were two competing
metaphors to show the selection: the highlight and the checkbox. Since this
hack totally changes how the JList works, it’s appropriate to radically
change its appearance, too.

H A C K

#16
Make Different List Items Look Different Hack #16

An in-progress download shouldn’t look like a completed one.

What made me love lists again were the OmniWeb browser and (later)
Safari—particularly, their download managers. By way of negative example,
take the download manager for Internet Explorer 5 for Mac...please. This
GUI was a table of filenames, URLs, sizes, etc., with columns not even intel-
ligently resized for their widths. OmniWeb, on the other hand, showed a
running download with a progress bar, and a finished download with the

 defaultComp.getListCellRendererComponent (list, value, index,
 isSelected, cellHasFocus);
 checkbox.setSelected (isSelected);
 Component[] comps = getComponents();
 for (int i=0; i<comps.length; i++) {
 comps[i].setForeground (listForeground);
 comps[i].setBackground (listBackground);
 }
 return this;
 }
}

Figure 2-6. Using the checkbox-metaphor JList

Example 2-8. ListCellRenderer for checkbox-based JList (continued)

Make Different List Items Look Different #16

Chapter 2, Lists and Combos | 71

HACK

file location and file size. Safari goes a step further with context-appropriate
buttons: an X to cancel an in-progress download, a magnifying glass to
locate an already-downloaded file, etc. But it’s the same idea: different things
shouldn’t look the same.

To do this in Swing, you need a hack that goes against everything in all the
other Swing books: you need to stop subclassing JComponent when you write
a ListCellRenderer. Instead, delegate the getListCellRendererComponent()
call to one of several components, choosing whichever best represents the
item to be rendered.

In fact, the whole tradition of subclassing JComponent for ListCellRenderers
is a pretty hateful practice because they’re not really used as Components any-
way! They’re certainly not added to the JList. Instead, a list cell is rendered
off screen and those pixels are blitted to the JList. So, provided that what
you return in getListCellRendererComponent is what you want the cell to
look like, it really doesn’t matter how you get there.

By way of demonstration, this hack shows the items in a given directory
with different layouts, depending on the file type. All of the cells use an icon
on the left, with a name in bold at the top of a two-line layout. However, if
the item is a folder, the bottom line contains a count of the children in that
folder. If the item is a text file—it ends with one of the various extensions
associated with text files (e.g., .txt, .html, .java)—then there’s a different lay-
out that uses two cells on the second line to show file size and word count.
And if the item is determined to be an image file, then a layout with room
for a little two-row image icon on the right is used.

So, there are four different prototypes, and getListCellRendererComponent()
needs to choose one, set its fields and highlight colors, and return it.
Example 2-9 is quite long, in part because of the icky GridBagLayout work
required to make the four prototypes look interesting. This is one time when
I really wish I had a visual Swing GUI builder.

Example 2-9. A JList with multiple cell-rendering layouts

public class PolymorphicJList extends JList {

 static Color listForeground, listBackground,
 listSelectionForeground, listSelectionBackground;
 static {
 UIDefaults uid = UIManager.getLookAndFeel().getDefaults();
 listForeground = uid.getColor ("List.foreground");
 listBackground = uid.getColor ("List.background");
 listSelectionForeground = uid.getColor ("List.selectionForeground");
 listSelectionBackground = uid.getColor ("List.selectionBackground");
 }

72 | Chapter 2, Lists and Combos

#16 Make Different List Items Look Different
HACK

 ImageIcon fileIcon, textFileIcon, directoryIcon,
 imageFileIcon, pngFileIcon, gifFileIcon,
 jpegFileIcon;
 JComponent fileCellPrototype, textCellPrototype,
 imageCellPrototype, directoryCellPrototype;
 JLabel fileNameLabel, textNameLabel,
 directoryNameLabel, imageNameLabel,
 fileSizeLabel,
 textSizeLabel, textWordCountLabel,
 directoryCountLabel,
 imageSizeLabel, imageIconLabel;

 public PolymorphicJList (File dir) {
 super();
 buildPrototypeCells();
 setCellRenderer (new PolyRenderer());
 setModel (new DefaultListModel());
 if (! dir.isDirectory())
 dir = new File (dir.getParent());
 buildModelFromDir (dir);
 }

 public static void main (String[] args) {
 File dir = new File (".");
 if (args.length > 0)
 dir = new File (args[0]);
 JList list = new PolymorphicJList (dir);
 JScrollPane pain =
 new JScrollPane (list,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 JFrame frame = new JFrame ("PolymorphicJList");
 frame.getContentPane().add (pain);
 frame.pack();
 frame.setVisible(true);
 }

 protected void buildModelFromDir (File dir) {
 File[] files = dir.listFiles();
 DefaultListModel mod = (DefaultListModel) getModel();
 for (int i=0; i<files.length; i++) {
 if (isTextFile (files[i]))
 mod.addElement (new TextFileItem (files[i]));
 else if (isImageFile (files [i]))
 mod.addElement (new ImageFileItem (files[i]));
 else if (files[i].isDirectory())
 mod.addElement (new DirectoryItem (files[i]));
 else
 mod.addElement (new FileItem (files[i]));
 }
 }

Example 2-9. A JList with multiple cell-rendering layouts (continued)

Make Different List Items Look Different #16

Chapter 2, Lists and Combos | 73

HACK

 protected boolean isImageFile(File f) {
 if (f.isDirectory())
 return false;
 String name = f.getName();
 return name.endsWith (".gif") || name.endsWith (".GIF") ||
 name.endsWith (".jpg") || name.endsWith (".JPG") ||
 name.endsWith (".jpeg") || name.endsWith (".JPEG") ||
 name.endsWith (".bmp") || name.endsWith (".BMP") ||
 name.endsWith (".png") || name.endsWith (".PNG");
 }

 protected boolean isTextFile(File f) {
 if (f.isDirectory())
 return false;
 String name = f.getName();
 return name.endsWith (".txt") || name.endsWith (".html") ||
 name.endsWith (".xml") || name.endsWith (".xhtml") ||
 name.endsWith (".java") || name.endsWith (".c") ||
 name.endsWith (".cpp") || name.endsWith (".c++") ||
 name.endsWith (".m") || name.endsWith (".h");
 }

 protected void buildIcons() {
 String SEP = System.getProperty ("file.separator");
 fileIcon = new ImageIcon ("images" + SEP + "generic.gif");
 textFileIcon = new ImageIcon ("images" + SEP + "text.gif");
 directoryIcon = new ImageIcon ("images" + SEP + "folder.gif");
 imageFileIcon = new ImageIcon ("images" + SEP + "image.gif");
 pngFileIcon = new ImageIcon ("images" + SEP + "png.gif");
 gifFileIcon = new ImageIcon ("images" + SEP + "gif.gif");
 jpegFileIcon = new ImageIcon ("images" + SEP + "jpeg.gif");
 }

 protected void buildPrototypeCells() {
 buildIcons();
 fileCellPrototype = new JPanel();
 fileCellPrototype.setLayout (new GridBagLayout());
 addWithGridBag (new JLabel(fileIcon), fileCellPrototype,
 0, 0, 1, 2,
 GridBagConstraints.WEST,
 GridBagConstraints.BOTH, 0, 0);
 fileNameLabel = new JLabel();
 Font defaultLabelFont = fileNameLabel.getFont();
 Font nameFont =
 defaultLabelFont.deriveFont (Font.BOLD,
 defaultLabelFont.getSize()+2);
 fileNameLabel.setFont (nameFont);
 addWithGridBag (fileNameLabel, fileCellPrototype,
 1, 0, 1, 1,
 GridBagConstraints.NORTH,
 GridBagConstraints.HORIZONTAL, 1, 0);

Example 2-9. A JList with multiple cell-rendering layouts (continued)

74 | Chapter 2, Lists and Combos

#16 Make Different List Items Look Different
HACK

 fileSizeLabel = new JLabel();
 addWithGridBag (fileSizeLabel, fileCellPrototype,
 1, 1, 1, 1,
 GridBagConstraints.SOUTH,
 GridBagConstraints.HORIZONTAL, 1, 0);
 opacify (fileCellPrototype);
 // text file
 textCellPrototype = new JPanel();
 textCellPrototype.setLayout (new GridBagLayout());
 addWithGridBag (new JLabel(textFileIcon), textCellPrototype,
 0, 0, 1, 2,
 GridBagConstraints.WEST,
 GridBagConstraints.BOTH, 0, 0);
 textNameLabel = new JLabel();
 textNameLabel.setFont (nameFont);
 addWithGridBag (textNameLabel, textCellPrototype,
 1, 0, 2, 1,
 GridBagConstraints.NORTH,
 GridBagConstraints.HORIZONTAL, 1, 0);
 textSizeLabel = new JLabel();
 textWordCountLabel = new JLabel();
 addWithGridBag (textSizeLabel, textCellPrototype,
 1, 1, 1, 1,
 GridBagConstraints.NORTH,
 GridBagConstraints.HORIZONTAL, 0, 0);
 addWithGridBag (textWordCountLabel, textCellPrototype,
 2, 1, 1, 1,
 GridBagConstraints.SOUTH,
 GridBagConstraints.HORIZONTAL, 1, 0);

 opacify (textCellPrototype);
 // directory
 directoryCellPrototype = new JPanel();
 directoryCellPrototype.setLayout (new GridBagLayout());
 addWithGridBag (new JLabel(directoryIcon), directoryCellPrototype,
 0, 0, 1, 2,
 GridBagConstraints.WEST,
 GridBagConstraints.BOTH, 0, 0);
 directoryNameLabel = new JLabel();
 directoryNameLabel.setFont (nameFont);
 addWithGridBag (directoryNameLabel, directoryCellPrototype,
 1, 0, 1, 1,
 GridBagConstraints.NORTH,
 GridBagConstraints.HORIZONTAL, 1, 0);
 directoryCountLabel = new JLabel();
 addWithGridBag (directoryCountLabel, directoryCellPrototype,
 1, 1, 1, 1,
 GridBagConstraints.SOUTH,
 GridBagConstraints.HORIZONTAL, 1, 0);
 opacify (directoryCellPrototype);

Example 2-9. A JList with multiple cell-rendering layouts (continued)

Make Different List Items Look Different #16

Chapter 2, Lists and Combos | 75

HACK

 // image
 imageCellPrototype = new JPanel();
 imageCellPrototype.setLayout (new GridBagLayout());
 addWithGridBag (new JLabel(imageFileIcon), imageCellPrototype,
 0, 0, 1, 2,
 GridBagConstraints.WEST,
 GridBagConstraints.BOTH, 0, 0);
 imageNameLabel = new JLabel();
 imageNameLabel.setFont (nameFont);
 addWithGridBag (imageNameLabel, imageCellPrototype,
 1, 0, 1, 1,
 GridBagConstraints.NORTH,
 GridBagConstraints.HORIZONTAL, 1, 0);
 imageSizeLabel = new JLabel();
 addWithGridBag (imageSizeLabel, imageCellPrototype,
 1, 1, 1, 1,
 GridBagConstraints.SOUTH, GridBagConstraints.HORIZONTAL,
 1, 0);
 imageIconLabel = new JLabel();
 addWithGridBag (imageIconLabel, imageCellPrototype,
 2, 0, 1, 2,
 GridBagConstraints.EAST,
 GridBagConstraints.VERTICAL, 0, 0);
 opacify (imageCellPrototype);
 }

 private void addWithGridBag (Component comp, Container cont,
 int x, int y,
 int width, int height,
 int anchor, int fill,
 int weightx, int weighty) {
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.gridx = x;
 gbc.gridy = y;
 gbc.gridwidth = width;
 gbc.gridheight = height;
 gbc.anchor = anchor;
 gbc.fill = fill;
 gbc.weightx = weightx;
 gbc.weighty = weighty;
 cont.add (comp, gbc);
 }

 private void opacify (Container prototype) {
 Component[] comps = prototype.getComponents();
 for (int i=0; i<comps.length; i++) {
 if (comps[i] instanceof JComponent)
 ((JComponent)comps[i]).setOpaque(true);
 }
 }

Example 2-9. A JList with multiple cell-rendering layouts (continued)

76 | Chapter 2, Lists and Combos

#16 Make Different List Items Look Different
HACK

Whew! That’s a mighty big hack. The main PolymorphicListCellRenderer
class builds the prototype cells with help from an addWithGridBag() method
to make the layout take only a hundred lines instead of a thousand. It also
calls setOpaque() on every child of the prototype containers, which ensures
that setting the background color will work for highlighting a cell. It then
builds the list model from the directory passed to the list constructor, iterat-
ing over the items in the directory and creating appropriate FileItems,
ImageItems, etc., for each one. It also holds onto some file-type icons (a
folder icon, a text file icon) that the renderer will need.

In Example 2-10, FileItem, ImageFileItem, DirectoryItem, and TextFileItem
are inner classes that are used as the contents of the list model. The con-
structor for each one initializes the values that will be shown by the ren-
derer, such as word count or the little icon image. The renderer can do
instanceof on the value it’s asked to render, in order to determine which
prototype to use for which kind of item.

 // FileItem, ImageFileItem, TextFileItem, and
 // DirectoryItem classes listed below

 // PolyRenderer class listed below

}

Example 2-10. Objects to represent contents of list model

class FileItem extends Object {
 File file;
 public FileItem (File f) {
 file = f;
 }
}

class ImageFileItem extends FileItem {
 ImageIcon icon;
 public ImageFileItem (File f) {
 super(f);
 initIcon();
 }
 void initIcon() {
 icon = new ImageIcon (file.getPath());
 // scale to 32 pix in largest dimension
 Image img = icon.getImage();
 float factor = 1.0f;
 if (img.getWidth(null) > img.getHeight(null))
 factor = Math.min (32f / img.getWidth(null), 1.0f);

Example 2-9. A JList with multiple cell-rendering layouts (continued)

Make Different List Items Look Different #16

Chapter 2, Lists and Combos | 77

HACK

 else
 factor = Math.min (32f / img.getHeight(null), 1.0f);
 Image scaledImage =
 img.getScaledInstance ((int) (img.getWidth(null) * factor),
 (int) (img.getHeight(null) * factor),
 Image.SCALE_FAST);
 icon.setImage(scaledImage);
 }
}

class DirectoryItem extends FileItem {
 int childCount;
 public DirectoryItem (File f) {
 super(f);
 initChildCount();
 }
 public int getChildCount() { return childCount; }
 void initChildCount () {
 if (! file.isDirectory())
 childCount = -1;
 else
 childCount = file.listFiles().length;
 System.out.println (file.getPath() + ": " + childCount + " items");
 }
}

class TextFileItem extends FileItem {
 int wordCount = -1;
 public TextFileItem (File f) {
 super(f);
 initWordCount();
 }
 public int getWordCount() { return wordCount; }
 protected void initWordCount() {
 try {
 StreamTokenizer izer =
 new StreamTokenizer (new BufferedReader
 (new FileReader(file)));
 while (izer.nextToken() != StreamTokenizer.TT_EOF)
 wordCount++;
 } catch (Exception e) {
 e.printStackTrace();
 wordCount = -1;
 }
 System.out.println (file.getPath() + ": " + wordCount + " words");
 }
}

Example 2-10. Objects to represent contents of list model (continued)

78 | Chapter 2, Lists and Combos

#16 Make Different List Items Look Different
HACK

The PolyRenderer inner class is, of course, responsible for the cell rendering.
When it’s passed a list item to render, it determines the class of the item and
picks an appropriate prototype to modify. It sets the text or images of the
children of that prototype, and it sets foreground and background colors on
all the children depending on the selection state. PolyRenderer is listed in
Example 2-11.

Example 2-11. Inner class to render list items based on different prototypes

class PolyRenderer extends Object
 implements ListCellRenderer {

 public Component getListCellRendererComponent(JList list,
 Object value,
 int index,
 boolean isSelected,
 boolean cellHasFocus) {
 if (value instanceof DirectoryItem) {
 DirectoryItem item = (DirectoryItem) value;
 directoryNameLabel.setText (item.file.getName());
 directoryCountLabel.setText (item.getChildCount() + " items");
 setColorsForSelectionState (directoryCellPrototype, isSelected);
 return directoryCellPrototype;
 } else if (value instanceof TextFileItem) {
 TextFileItem item = (TextFileItem) value;
 // populate values
 textNameLabel.setText (item.file.getName());
 textSizeLabel.setText (item.file.length() + " bytes ");
 textWordCountLabel.setText (item.getWordCount() + " words");
 setColorsForSelectionState (textCellPrototype, isSelected);
 return textCellPrototype;
 } else if (value instanceof ImageFileItem) {
 ImageFileItem item = (ImageFileItem) value;
 // pouplate values
 imageNameLabel.setText (item.file.getName());
 imageSizeLabel.setText (item.file.length() + " bytes");
 imageIconLabel.setIcon (item.icon);
 setColorsForSelectionState (imageCellPrototype, isSelected);
 return imageCellPrototype;
 } else {
 FileItem item = (FileItem) value;
 // pouplate values
 fileNameLabel.setText (item.file.getName());
 fileSizeLabel.setText (item.file.length() + " bytes");
 setColorsForSelectionState (fileCellPrototype, isSelected);
 return fileCellPrototype;
 }
 }
 private void setColorsForSelectionState (Container prototype,
 boolean isSelected) {

Make Different List Items Look Different #16

Chapter 2, Lists and Combos | 79

HACK

If you supply an argument, the main() method will assume it to be the path
to a directory and will show that directory’s contents in the list. If you don’t
supply an argument, the current directory is assumed. Figure 2-7 displays
what it looks like when I show my home directory in the PolymorphicJList.

As you can see, there’s an obvious difference between the layout and con-
tents for the folders, text files, and generic files. Because I didn’t have any
pictures in my home folder at the time, I reran the demo and pointed into
one of my iPhoto folders, which created the list shown in Figure 2-8.

As you can see, image files get a little icon of their contents, while folders
just show their item count. They look different because they are different.

 Component[] comps = prototype.getComponents();
 for (int i=0; i<comps.length; i++) {
 if (isSelected) {
 comps[i].setForeground (listSelectionForeground);
 comps[i].setBackground (listSelectionBackground);
 } else {
 comps[i].setForeground (listForeground);
 comps[i].setBackground (listBackground);
 }
 }
 }
}

Figure 2-7. Showing my home directory as a JList with multiple cell layouts

Example 2-11. Inner class to render list items based on different prototypes (continued)

80 | Chapter 2, Lists and Combos

#17 Reorder a JList with Drag-and-Drop
HACK

H A C K

#17
Reorder a JList with Drag-and-Drop Hack #17

Let users put things where they want.

You may be so used to immutable lists that the idea of reordering a list with
drag-and-drop seems unnatural. The first time I saw it—rearranging the
order of network devices in Mac OS X to establish a priority (e.g., try Ether-
net, then wireless, then modem)—I thought it was kind of odd. In fact,
Apple felt it necessary to put a label on the list to tell users they could drag-
and-drop the list items to rearrange them. Now that I’m used to it, it’s
totally cool, and I’d like to see it done in more places.

To implement this functionality in a JList, you basically just have to imple-
ment the full set of AWT drag-and-drop interfaces because the list will be
both the source of the drag and the target of the drop. The other thing you
need to do is to use some cell rendering tricks to provide a visual cue as to
where the drop will occur.

The ReorderableJList, shown in Example 2-12, is a JList that uses a
DefaultListModel, which is mutable for the obvious reason that it will
need to change in response to drag-and-drops. The bulk of it is concerned
with implementing the drag-and-drop interfaces DragSourceListener,
DropTargetListener, and DragGestureListener. It has an inner class imple-
menting Tranferable to hold the item being dropped, although this isn’t
absolutely necessary. I could have just held the dragged item in an instance
variable and nulled the Transferable in the drag-and-drop calls, but it
doesn’t hurt to do it the nice way.

Figure 2-8. Showing a directory of images with special cell layout

Reorder a JList with Drag-and-Drop #17

Chapter 2, Lists and Combos | 81

HACK

Example 2-12. A JList that can be reordered with drag-and-drop

public class ReorderableJList extends JList
 implements DragSourceListener, DropTargetListener, DragGestureListener {

 static DataFlavor localObjectFlavor;
 static {
 try {
 localObjectFlavor =
 new DataFlavor (DataFlavor.javaJVMLocalObjectMimeType);
 } catch (ClassNotFoundException cnfe) { cnfe.printStackTrace(); }
 }
 static DataFlavor[] supportedFlavors = { localObjectFlavor };
 DragSource dragSource;
 DropTarget dropTarget;
 Object dropTargetCell;
 int draggedIndex = -1;

 public ReorderableJList () {
 super();
 setCellRenderer (new ReorderableListCellRenderer());
 setModel (new DefaultListModel());
 dragSource = new DragSource();
 DragGestureRecognizer dgr =
 dragSource.createDefaultDragGestureRecognizer (this,
 DnDConstants.ACTION_MOVE,
 this);
 dropTarget = new DropTarget (this, this);
 }

 // DragGestureListener
 public void dragGestureRecognized (DragGestureEvent dge) {
 System.out.println ("dragGestureRecognized");
 // find object at this x,y
 Point clickPoint = dge.getDragOrigin();
 int index = locationToIndex(clickPoint);
 if (index == -1)
 return;
 Object target = getModel().getElementAt(index);
 Transferable trans = new RJLTransferable (target);
 draggedIndex = index;
 dragSource.startDrag (dge,Cursor.getDefaultCursor(),
 trans, this);
 }
 // DragSourceListener events
 public void dragDropEnd (DragSourceDropEvent dsde) {
 System.out.println ("dragDropEnd()");
 dropTargetCell = null;
 draggedIndex = -1;
 repaint();
 }

82 | Chapter 2, Lists and Combos

#17 Reorder a JList with Drag-and-Drop
HACK

The constructor creates the list model and sets the cell renderer (an inner
class that will be described soon) and creates a DragGestureRecognizer to
react to whatever input is judged by the host platform to be a drag (usually
clicking and holding down the mouse button while then moving the mouse).
It also creates a DragSource and a DropTarget.

When a drag begins, dragGestureRecognized() gets called. Your responsibil-
ity at this point is to start the drag by creating a Transferable and handing it
to the DragSource object via startDrag(). In this case, you can use the
DragGestureEvent to get a Point, from which you can figure out which list
item was clicked on. You can get the Object from the model, but the
DragSource wants it to be wrapped by a Transferable. Normally,
Transferable is used in drag-and-drop to negotiate with the DropTarget on a
DataFlavor, and it can express the transferred data. Of course, much of that
is irrelevant in this case because the list is already perfectly capable of han-
dling the object, considering the list already had it before the drag began.
For this demo, I’ve created a fairly trivial Transferable, called
RJLTransferable, which only knows how to represent plain old Java objects
(usually called POJOs). RJLTransferable is shown in Example 2-13.

 public void dragEnter (DragSourceDragEvent dsde) {}
 public void dragExit (DragSourceEvent dse) {}
 public void dragOver (DragSourceDragEvent dsde) {}
 public void dropActionChanged (DragSourceDragEvent dsde) {}
 // DropTargetListener events
 public void dragEnter (DropTargetDragEvent dtde) {
 System.out.println ("dragEnter");
 if (dtde.getSource() != dropTarget)
 dtde.rejectDrag();
 else {
 dtde.acceptDrag(DnDConstants.ACTION_COPY_OR_MOVE);
 System.out.println ("accepted dragEnter");
 }

 }
 public void dragExit (DropTargetEvent dte) {}
 // dragOver() listed below
 // drop() listed below
 public void dropActionChanged (DropTargetDragEvent dtde) {}

 // main() method to test - listed below

 // RJLTransferable listing below

 // ReorderableListCellRendering listing below
}

Example 2-12. A JList that can be reordered with drag-and-drop (continued)

Reorder a JList with Drag-and-Drop #17

Chapter 2, Lists and Combos | 83

HACK

With the drag underway, most of the DragSourceListener methods are irrele-
vant. What you’re interested in is the DropTargetListener methods. First,
there’s dragOver()—listed in Example 2-14—which indicates a drag-in-
progress over your component. In this case, you want to do two things.
First, if the source of the drag isn’t this object itself, reject the drag—this
code is only for drag-and-drop within the JList, not for accepting drops
from other components in your GUI. Second, you need to figure out which
list item the drag is hovering over by getting a Point from
DropTargetDragEvent.getLocation(), translating it to an index with JList.
locationToIndex(), and then getting that item from the model. Save that tar-
get cell to the instance variable dropTargetCell and then call repaint(),
which will give the cell renderer a chance to animate the drop.

Example 2-13. Simple Transferable object for a reorderable JList

class RJLTransferable implements Transferable {
 Object object;
 public RJLTransferable (Object o) {
 object = o;
 }
 public Object getTransferData(DataFlavor df)
 throws UnsupportedFlavorException, IOException {
 if (isDataFlavorSupported (df))
 return object;
 else
 throw new UnsupportedFlavorException(df);
 }
 public boolean isDataFlavorSupported (DataFlavor df) {
 return (df.equals (localObjectFlavor));
 }
 public DataFlavor[] getTransferDataFlavors () {
 return supportedFlavors;
 }
}

Example 2-14. Handling drag-over events in a reorderable JList

public void dragOver (DropTargetDragEvent dtde) {
 // figure out which cell it's over, no drag to self
 if (dtde.getSource() != dropTarget)
 dtde.rejectDrag();
 Point dragPoint = dtde.getLocation();
 int index = locationToIndex (dragPoint);
 if (index == -1)
 dropTargetCell = null;
 else
 dropTargetCell = getModel().getElementAt(index);
 repaint();
}

84 | Chapter 2, Lists and Combos

#17 Reorder a JList with Drag-and-Drop
HACK

The ReorderableListCellRenderer, shown in Example 2-15, checks this
instance variable to see if the value it is passed is the dropTargetCell. If it is,
it sets a boolean called isTargetCell. You can use this in an overridden
paintComponent() method to paint a line in the component’s top inset.
When the list is repainted, which will happen every time the mouse moves
over the JList during a drag, the cell that you’re dragging over will draw a
line at the top of itself to indicate that the drop will put the dragged item
before this one.

The other major thing to handle is the drop itself. In some ways, this is like
the drag-over case: you need to reject the drop if the source is anything other
than this JList, and you need to figure out which list item the drop has
occurred over. Given this, you can pull the object out of the Transferable
(which is handed to you in the DropTargetDropEvent), delete it from its previ-
ous location in the list, and insert it in its new location. The only catch is
that if the dragged item was located before its dropped destination, then the

Example 2-15. Custom cell renderer to animate potential drops on a reorderable JList

class ReorderableListCellRenderer
 extends DefaultListCellRenderer {
 boolean isTargetCell;
 boolean isLastItem;
 public ReorderableListCellRenderer() {
 super();
 }
 public Component getListCellRendererComponent (JList list,
 Object value,
 int index,
 boolean isSelected,
 boolean hasFocus) {
 isTargetCell = (value == dropTargetCell);
 isLastItem = (index == list.getModel().getSize()-1);
 boolean showSelected = isSelected &
 (dropTargetCell == null);
 return super.getListCellRendererComponent (list, value,
 index, showSelected,
 hasFocus);
 }
 public void paintComponent (Graphics g) {
 super.paintComponent(g);
 if (isTargetCell) {
 g.setColor(Color.black);
 g.drawLine (0, 0, getSize().width, 0);
 }
 }
}

Reorder a JList with Drag-and-Drop #17

Chapter 2, Lists and Combos | 85

HACK

correct drop index will be one less than you’d expect. After all, by deleting it
from the list, everything after its old location has now moved up one index.
All of this is handled by the drop() method, shown in Example 2-16.

Finally, you need to call dropComplete() to tell the DropTargetDropEvent
whether the drag-and-drop succeeded.

Example 2-16. Handling the drop on the reorderable JList

public void drop (DropTargetDropEvent dtde) {
 System.out.println ("drop()!");
 if (dtde.getSource() != dropTarget) {
 System.out.println ("rejecting for bad source (" +
 dtde.getSource().getClass().getName() + ")");
 dtde.rejectDrop();
 return;
 }
 Point dropPoint = dtde.getLocation();
 int index = locationToIndex (dropPoint);
 System.out.println ("drop index is " + index);
 boolean dropped = false;
 try {
 if ((index == -1) || (index == draggedIndex)) {
 System.out.println ("dropped onto self");
 dtde.rejectDrop();
 return;
 }
 dtde.acceptDrop (DnDConstants.ACTION_MOVE);
 System.out.println ("accepted");
 Object dragged =
 dtde.getTransferable().getTransferData(localObjectFlavor);
 // move items - note that indicies for insert will
 // change if [removed] source was before target
 System.out.println ("drop " + draggedIndex + " to " + index);
 boolean sourceBeforeTarget = (draggedIndex < index);
 System.out.println ("source is" +
 (sourceBeforeTarget ? "" : " not") +
 " before target");
 System.out.println ("insert at " +
 (sourceBeforeTarget ? index-1 : index));
 DefaultListModel mod = (DefaultListModel) getModel();
 mod.remove (draggedIndex);
 mod.add ((sourceBeforeTarget ? index-1 : index), dragged);
 dropped = true;
 } catch (Exception e) {
 e.printStackTrace();
 }
 dtde.dropComplete (dropped);
}

86 | Chapter 2, Lists and Combos

#17 Reorder a JList with Drag-and-Drop
HACK

The main() method shown in Example 2-17 provides the same list of people
shown in the other hacks. By way of example, click and hold the mouse on
Chris, and then drag the mouse toward the bottom of the list. As you drag,
potential drops will be indicated by the horizontal line, as seen in Figure 2-9.

Once dropped between the last two items, the item moves to its new loca-
tion, as seen in Figure 2-10.

One limitation of this approach is that I haven’t found a sim-
ple way to provide for dropping after the last list element
(the moved item goes before the item you drop it on).

Example 2-17. Testing the reorderable JList

public static void main (String[] args) {
 JList list = new ReorderableJList ();
 DefaultListModel defModel = new DefaultListModel();
 list.setModel (defModel);
 String[] listItems = {
 "Chris", "Joshua", "Daniel", "Michael",
 "Don", "Kimi", "Kelly", "Keagan"
 };
 Iterator it = Arrays.asList(listItems).iterator();
 while (it.hasNext())
 defModel.addElement (it.next());
 // show list
 JScrollPane scroller =
 new JScrollPane (list,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 JFrame frame = new JFrame ("Checkbox JList");
 frame.getContentPane().add (scroller);
 frame.pack();
 frame.setVisible(true);
}

Figure 2-9. Dragging to reorder a JList

Animate Your JList Selections #18

Chapter 2, Lists and Combos | 87

HACK

H A C K

#18
Animate Your JList Selections Hack #18

Fading in and catching the eye.

Not every GUI involves windows and mouse pointers, and the visual lan-
guage of a GUI can be very different depending on what is provided by the
environment. Typically, GUIs for things like console video games and set-
top boxes don’t use a mouse metaphor, so there’s no onscreen pointer that
the user is tracking. As a result, these systems often give the user more pro-
found feedback when they move around a list—highlights slide from one
item to another, selected items fade in while deselected items fade out, etc.—
so there’s something the eye can track. You can do the same thing in Swing,
with more cell-rendering hackery. You might not need it now, but it’ll be
handy if you ever design a kiosk with Swing.

One way to show a changed selection is to show a brief animation of the cell
selection. Instead of just being highlighted instantly, you fade the selected
cell from its unselected background and foreground colors to its selected
colors over the course of a short time (really short, like a half-second, so it
isn’t annoying).

To do this, you’ll need to create an animator thread that kicks off every time
the selection changes. This short-lived thread repeatedly updates a high-
light color and calls repaint(). The cell renderer can then use the updated
highlight color as it redraws the cells in the list. Example 2-18 shows this
technique.

Figure 2-10. Item dropped into new position in a JList

Example 2-18. Animating the JList cell selection

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.util.*;

88 | Chapter 2, Lists and Combos

#18 Animate Your JList Selections
HACK

public class AnimatedJList extends JList
 implements ListSelectionListener {

 static java.util.Random rand = new java.util.Random();

 static Color listForeground, listBackground,
 listSelectionForeground, listSelectionBackground;
 static float[] foregroundComps, backgroundComps,
 foregroundSelectionComps, backgroundSelectionComps;

 static {
 UIDefaults uid = UIManager.getLookAndFeel().getDefaults();
 listForeground = uid.getColor ("List.foreground");
 listBackground = uid.getColor ("List.background");
 listSelectionForeground = uid.getColor ("List.selectionForeground");
 listSelectionBackground = uid.getColor ("List.selectionBackground");
 foregroundComps =
 listForeground.getRGBColorComponents(null);
 foregroundSelectionComps =
 listSelectionForeground.getRGBColorComponents(null);
 backgroundComps =
 listBackground.getRGBColorComponents(null);
 backgroundSelectionComps =
 listSelectionBackground.getRGBColorComponents(null);
 }
 public Color colorizedSelectionForeground,
 colorizedSelectionBackground;

 public static final int ANIMATION_DURATION = 1000;
 public static final int ANIMATION_REFRESH = 50;

 public AnimatedJList() {
 super();
 addListSelectionListener (this);
 setCellRenderer (new AnimatedCellRenderer());
 }

 public void valueChanged (ListSelectionEvent lse) {
 if (! lse.getValueIsAdjusting()) {
 HashSet selections = new HashSet();
 for (int i=0; i < getModel().getSize(); i++) {
 if (getSelectionModel().isSelectedIndex(i))
 selections.add (new Integer(i));
 }
 CellAnimator animator = new CellAnimator (selections.toArray());
 animator.start();
 }
 }

Example 2-18. Animating the JList cell selection (continued)

Animate Your JList Selections #18

Chapter 2, Lists and Combos | 89

HACK

 public static void main (String[] args) {
 JList list = new AnimatedJList ();
 DefaultListModel defModel = new DefaultListModel();
 list.setModel (defModel);
 String[] listItems = {
 "Chris", "Joshua", "Daniel", "Michael",
 "Don", "Kimi", "Kelly", "Keagan"
 };
 Iterator it = Arrays.asList(listItems).iterator();
 while (it.hasNext())
 defModel.addElement (it.next());
 // show list
 JScrollPane scroller =
 new JScrollPane (list,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 JFrame frame = new JFrame ("Checkbox JList");
 frame.getContentPane().add (scroller);
 frame.pack();
 frame.setVisible(true);
 }

 class CellAnimator extends Thread {
 Object[] selections;
 long startTime;
 long stopTime;
 public CellAnimator (Object[] s) {
 selections = s;
 }
 public void run() {
 startTime = System.currentTimeMillis();
 stopTime = startTime + ANIMATION_DURATION;
 while (System.currentTimeMillis() < stopTime) {
 colorizeSelections();
 repaint();
 try { Thread.sleep (ANIMATION_REFRESH); }
 catch (InterruptedException ie) {}
 }
 // one more, at 100% selected color
 colorizeSelections();
 repaint();
 }

// colorizeSelections() listing below

 // AnimatedCellRenderer listing below
}

Example 2-18. Animating the JList cell selection (continued)

90 | Chapter 2, Lists and Combos

#18 Animate Your JList Selections
HACK

Like several previous hacks, this hack starts with some static code to get the
platform colors for selected and unselected foreground and background col-
ors. But this time, it also saves them off into arrays of their red, green, and
blue components.

The component sets up a ListSelectionListener, which fires off a
CellAnimator every time it gets the last of a series of ListSelectionEvents.
The CellAnimator is a thread that runs for a short time only (defined by the
class variable ANIMATION_DURATION), repeatedly calling colorizeSelections()
and then sleeping briefly.

colorizeSelections(), shown in Example 2-19, calculates a float to
express how much of the animation duration has elapsed. It then applies
this as a proportion to the distance between the start and end values for
each of the red, green, and blue components. For example, if the unse-
lected background color is white (255, 255, 255), and the selected color is
pure blue (0, 0, 255), then halfway through the animation the color should
be (127, 127, 255), where 127 is halfway between the start and end values
of the red and green components, and blue doesn’t change.

Example 2-19. Determining animation color for selected cells

public void colorizeSelections() {
 // calculate % completion relative to start/stop times
 float elapsed = (float) (System.currentTimeMillis() - startTime);
 float completeness = Math.min ((elapsed/ANIMATION_DURATION), 1.0f);
 // calculate scaled color
 float colorizedForeComps[] = new float[3];
 float colorizedBackComps[] = new float[3];
 for (int i=0; i<3; i++) {
 colorizedForeComps[i] =
 foregroundComps[i] +
 (completeness *
 (foregroundSelectionComps[i] - foregroundComps[i]));
 colorizedBackComps[i] =
 backgroundComps[i] +
 (completeness *
 (backgroundSelectionComps[i] - backgroundComps[i]));
 }
 colorizedSelectionForeground =
 new Color (colorizedForeComps[0],
 colorizedForeComps[1],
 colorizedForeComps[2]);
 colorizedSelectionBackground =
 new Color (colorizedBackComps[0],
 colorizedBackComps[1],
 colorizedBackComps[2]);
}

Animate Your JList Selections #18

Chapter 2, Lists and Combos | 91

HACK

The cell renderer in Example 2-20 is very simple: it just looks to see if the
cell it’s rendering is selected; if so, it sets its foreground and background to
the colorized values. It also sets the cell to be opaque, meaning that the ren-
derer wants the responsibility of drawing all the pixels, which is necessary to
make the background color fill the cell. In a more complex cell layout, you
might need to apply the foreground and background colors to all the cell’s
children and make them opaque, too.

When you run the code, clicking on a cell makes it briefly fade into the
selection color, as seen in Figure 2-11.

One potential improvement: if your list allows multiple selections, then all
the selected cells will animate, and it would make more sense to animate just
the one that the user has clicked on. You could do this by figuring out (by
caching previous selections [Hack #15]) which item is the new selection, and

Example 2-20. Rendering the animated list cells

class AnimatedCellRenderer extends DefaultListCellRenderer {
 public Component getListCellRendererComponent(JList list,
 Object value,
 int index,
 boolean isSelected,
 boolean hasFocus) {
 Component returnMe =
 super.getListCellRendererComponent (list, value, index,
 isSelected, hasFocus);
 if (isSelected) {
 returnMe.setForeground (colorizedSelectionForeground);
 returnMe.setBackground (colorizedSelectionBackground);
 /* this might be necessary if you have more
 elaborate cells
 if (returnMe instanceof Container) {
 Component[] children =
 ((Container)returnMe).getComponents ();
 System.out.println (children.length + " children");
 for (int i=0;
 (children != null) && (i<children.length);
 i++) {
 children[i].setForeground (colorizedSelectionForeground);
 children[i].setBackground (colorizedSelectionBackground);
 }
 }
 */
 if (returnMe instanceof JComponent)
 ((JComponent) returnMe).setOpaque(true);
 }
 return returnMe;
 }
}

92 | Chapter 2, Lists and Combos

#19 Turn Methods into List Renderers
HACK

setting a flag so that the cell renderer applies only the colorized foreground
and background colors to that cell.

H A C K

#19
Turn Methods into List Renderers Hack #19

By using a little bit of reflection, you can make a generic ListCellRenderer
that can render data using any method at runtime.

JLists, like JTable and JTree, use a decorator pattern to customize how they
look. This system of cell renderers works well, but it can require you to
build a unique renderer class for each type of object you want to put into
your lists. Often, all you really want to do is call a particular method on the
objects in your list, but writing a complete class to just call one method is a
lot of work for such a small task. This hack shows you how to use reflection
to create a generic cell renderer that can be reused on any object without
subclassing.

Building a Generic Renderer
The default JList cell renderer will just call toString() on the objects in the
list and draw the resulting string to the screen. This is fine for simple uses
where you really are just looking at a list of strings or objects with appropri-
ate toString() methods. More complicated applications—and they all
become more complicated eventually—require more complicated objects,
and those objects might not have a convenient or useful toString() method.
Eventually, you have to write a custom renderer for the particular object you
wish to store. But there is another way: reflection.

Reflection lets you programmatically discover and access methods and fields
in a java class at runtime. For this hack, you will use reflection to call an
arbitrary method. This will allow the programmer using your generic ren-
derer to specify a method using a string. This method will be used to render
the component. Because you will be using reflection, you don’t need to

Figure 2-11. Fading in a cell selection

Turn Methods into List Renderers #19

Chapter 2, Lists and Combos | 93

HACK

know the kind of objects in the list. As long as a method with the requested
name exists, you can call it and get a value out. This will work even if some
of the objects in the JList have different types. But let’s not get ahead of
ourselves. First, you need a basic cell renderer, as seen in Example 2-21.

Example 2-21 declares a subclass of the DefaultListCellRenderer—the stan-
dard implementation of a ListCellRenderer. The GenericListCellRenderer
class takes a method string in its constructor. This string is the name of the
method to call on the list value objects.

All ListCellRenderers have a getListCellRendererComponent() method,
which returns a component to do the actual drawing. Most implementa-
tions (DefaultListCellRenderer included) use JLabels as the drawing com-
ponents because they are relatively lightweight and can have both text and
icons. The previous code gets the JLabel component from the superclass and
sets the text to my text. Once added to a JList, this code will be called for
each item in the list, meaning they will all be drawn as my text. This works,
but it isn’t very useful. Now it’s time to add some reflection:

try {
 Method meth = value.getClass().getMethod(method,null);
 if(meth != null) {
 Object retval = meth.invoke(value,null);
 label.setText(""+retval);
 }
} catch (Exception ex) {
 System.out.println("got an execption: " + ex);
 ex.printStackTrace();
 label.setText(""+value);
}
return label;

Example 2-21. A basic cell renderer

public class GenericListCellRenderer extends DefaultListCellRenderer {
 protected String method;
 public GenericListCellRenderer(String method) {
 super();
 this.method = method;
 }

 public Component getListCellRendererComponent(JList list, Object value,
 int index, boolean isSelected, boolean cellHasFocus) {

 JLabel label = (JLabel)super.getListCellRendererComponent(
 list,value,index, isSelected, cellHasFocus);
 label.setText("my text");
 return label;
 }

94 | Chapter 2, Lists and Combos

#19 Turn Methods into List Renderers
HACK

The previous code replaces the label.setText() method in the original ren-
derer. It retrieves the specified method from the current list value and stores
it in a Method object. This object represents the abstract method itself. If you
did new String("text").getClass().getMethod("toString",null), then you
would get an object that represents the toString() method on any string.
Once you have this method, you can call it on the actual object at hand.
meth.invoke() will invoke the method on the real list item, returning a value
into retval. Both getMethod() and invoke() take an additional argument,
which is null in the previous code. This argument is actually an array repre-
senting the arguments to the method being called. For this hack to work,
you must assume that the method has no arguments, so null is used.

Once you have the return value of the method in hand, you can call
setText(). I set it to ""+retval because that will automatically handle nulls
and call toString() on the value itself. The reflection code can throw an
exception, so it’s all wrapped up on a try-catch block. If the reflection fails,
then it will set the text using toString() on the list item as a backup, which
is what the standard renderer would do.

Putting It All Together
To use this new renderer, you need to create a JList and set its CellRenderer
property. The following code creates a frame with one JList in it, creates a
custom renderer for the toString() method, then packs and shows the
frame on screen. The list contains an array of strings, representing common
subatomic particles:

public static void main(String[] args) {
 String[] data = { "Proton", "Neutron", "Electron" };
 JList list = new JList(data);

 GenericListCellRenderer renderer =
 new GenericListCellRenderer("toString");
 list.setCellRenderer(renderer);

 JFrame frame = new JFrame("Cell Renderer Hack");
 frame.getContentPane().add(list);
 frame.pack();
 frame.setVisible(true);
}

The generic renderer can call any method on the list item objects as long as
the method has no arguments and doesn’t return void. It will even work
with primitives. You could call hashCode(), which returns an int, like this:

GenericListCellRenderer renderer =
 new GenericListCellRenderer("hashCode");

Create a Collections-Aware JComboBox #20

Chapter 2, Lists and Combos | 95

HACK

Using toString() on the strings will be the same as the default renderer,
simply drawing Proton, Neutron, and Electron in the list (see Figure 2-12).

The resulting change would look like Figure 2-13.

Using reflection for cell renderers is a very powerful concept because you
can reuse potentially complicated code with very little additional effort.
Using it to display strings is just a trivial example. Imagine you had a bunch
of objects representing entries from an RSS feed. Instead of creating a cus-
tom renderer or wrapping the entries in objects with a custom toString()
method, you could use the GenericListCellRenderer with getTitle() to
automatically call the getTitle() method on the entry objects—no new
subclasses or extra code. Just a single string and the renderer takes care of
the rest. That is the power of reflection.

H A C K

#20
Create a Collections-Aware JComboBox Hack #20

You’ve moved on from Vector; your combo boxes should, too.

JComboBox is one of Swing’s oldest components. Unfortunately, it accepts
arrays of objects and Vectors only. Now that Collections objects like List
have been part of the JDK for years, it would be nice to use them directly in
a combo box without shuffling objects in and out of arrays. Fortunately, the
JComboBox uses an MVC (Model-View-Controller) architecture, so you can
solve this problem with a simple implementation of a ComboBoxModel.

Figure 2-12. Renderer using the toString() method

Figure 2-13. Renderer using the hashCode() method

96 | Chapter 2, Lists and Combos

#20 Create a Collections-Aware JComboBox
HACK

To start, you need to figure out what the custom model should do. For our
purposes, it needs to accept a List in the constructor and preserve any
ordering supplied. Another nifty feature would be automatic updates. If you
add or delete values to the List, the combo box should update itself auto-
matically. Example 2-22 is a good start.

This implementation is pretty much what you’d expect. Each method in
ComboBoxModel is implemented (along with its parent interface,
ListDataModel). The constructor saves a reference to the List and selects the
first element if there is one. The selectedItem accessor works as expected,
using the selected variable. getElementAt() and getSize() both pass the
work on to the underlying List, and the ListDataListener methods work

Example 2-22. A basic combo box to accept lists

public class ListComboBoxModel implements ComboBoxModel {
 protected List data;

 public ListComboBoxModel(List list) {
 this.listeners = new ArrayList();
 this.data = list;
 if(list.size() > 0) {
 selected = list.get(0);
 }
 }

 protected Object selected;
 public void setSelectedItem(Object item) {
 this.selected = item;
 }
 public Object getSelectedItem() {
 return this.selected;
 }

 public Object getElementAt(int index) {
 return data.get(index);
 }
 public int getSize() {
 return data.size();
 }

 protected List listeners;
 public void addListDataListener(ListDataListener l) {
 listeners.add(l);
 }
 public void removeListDataListener(ListDataListener l) {
 this.listeners.remove(l);
 }
}

Create a Collections-Aware JComboBox #20

Chapter 2, Lists and Combos | 97

HACK

with a second List for managing the listeners. The important thing to notice
here is that the code saves the reference to the List that was passed in,
rather than creating a copy. This means that the model will always be in
sync with the underlying list implementation. If you call list.add("new
item"), it will show up in the combo box automatically.

To test this, use the simple class in Example 2-23.

The program creates a JComboBox that uses the new ListComboBoxModel. First,
it creates a list, populates it with data, passes it to the ListComboBoxModel
constructor, and then sends that to the new JComboBox(). There is also a
button that adds a new item to the list when clicked.

When you compile and run this program, it...doesn’t work! The addition to
the List doesn’t show up in the combo box. A look over the API might
remind you of the ListDataListener class. When setModel() is called, the

Example 2-23. Testing the List-based JComboBox

public class CBTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hack #4: Create a Collections-Aware
 JComboBox");
 Container root = frame.getContentPane();
 root.setLayout(new BoxLayout(root,BoxLayout.X_AXIS));

 // List combo box
 final List list = new ArrayList();
 list.add("Blinky");
 list.add("Pinky");
 list.add("Inky");

 final ListComboBoxModel mod2 = new ListComboBoxModel(list);
 JComboBox cb2 = new JComboBox();
 cb2.setModel(mod2);
 root.add(cb2);

 final JButton bt2 = new JButton("Add Item");
 bt2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 list.add("Clyde");
 }
 });
 root.add(bt2);
 // show the frame
 frame.pack();
 frame.setVisible(true);
 }
}

98 | Chapter 2, Lists and Combos

#20 Create a Collections-Aware JComboBox
HACK

JComboBox registers itself as a listener so that it can update itself when the
model changes. This means the ListComboBoxModel needs to fire off an event
when the underlying List changes.

The problem here is that Java doesn’t provide a standard event mechanism
for collections. No problem—we can write our own. Because ActionEvents
are the most common ones in Swing, just reuse those with a command
string of "update". Here’s the new event handling code added to the bottom
of ListComboBoxModel:

public class ListComboBoxModel implements ComboBoxModel, ActionListener {
//..... the rest of the code

// event code
 public void actionPerformed(ActionEvent evt) {
 if(evt.getActionCommand().equals("update")) {
 this.fireUpdate();
 }
 }

 public void fireUpdate() {
 ListDataEvent le = new ListDataEvent(this,
 ListDataEvent.CONTENTS_CHANGED,
 0,
 data.size());
 for(int i=0; i<listeners.size(); i++) {
 ListDataListener l = (ListDataListener)listeners.get(i);
 l.contentsChanged(le);
 }
 }

The actionPerformed() method implements ActionListener. It just looks for
events with the "update" command and calls fireUpdate(). That sends a
ListDataEvent to all of the model’s listeners, which includes the JComboBox
itself.

Here is the modified JButton from the sample program:

bt2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 list.add("Clyde");
 mod2.actionPerformed(new ActionEvent(bt2,0,"update"));

 }
 });

Running the program again, everything works as expected, as seen in
Figure 2-14. When you press the button, Clyde is added to the list and the
combo box updates itself.

Create a Collections-Aware JComboBox #20

Chapter 2, Lists and Combos | 99

HACK

Because the List is backing the new model, you have to con-
sider it to be live. This means you have to address any
changes that need to be done on the event-dispatch thread in
order to avoid threading issues (like race conditions). In this
program, the code modifies the List from another action lis-
tener, which means the code is already on the event thread;
however, if this was not the case, you would have to use
another mechanism, such as SwingUtilities.invokeLater().

Now that you have a combo box that’s aware of Lists, it makes sense to add
another that understands Maps. Many times when you create a UI, you will
want the user to select from a set of values. These values are very meaning-
ful to your program, but because they often come from a database, they are
short strings like "Calc_Rng", which won’t mean anything to your users.
They expect to see something like Calculate Range. What we need is a sim-
ple structure to map between the user-friendly descriptions and the real val-
ues. Sounds like a job for Map (Dora fans unite)!

Because Map is a collection, the implementation will be similar to what
you’ve already seen; in fact, you can build it with a subclass of
ListComboBoxModel. There are a few issues to tackle first, though. A Map
defines a set of mappings between keys and values; it does not define the
order of the keys themselves. This will make getElementAt(index) hard to
implement because there is no notion of order in Maps. Further, the combo
box only knows about the keys it uses for display, and not the underlying
values, so you will need another way of pulling the real values out of the
model. With these issues in mind, take a look at Example 2-24.

Figure 2-14. The collections-aware combo box

Example 2-24. Map-based combo box model

public class MapComboBoxModel extends ListComboBoxModel {

 protected Map map_data;
 protected List index;

 public MapComboBoxModel(Map map) {
 this.map_data = map;

100 | Chapter 2, Lists and Combos

#20 Create a Collections-Aware JComboBox
HACK

The MapComboBoxModel accepts a collection in its constructor—this time a
Map—saving it for later reference. To maintain the order of the keys, the class
uses a List called index. The constructor calls buildIndex() to populate the
List with the Map’s set of keys, and then sets the selected item—just like in
the List version. getElementAt() uses the index to get the display values and
getSize() uses the size of the Map itself.

actionPerformed() is different from the List version and calls buildIndex()
before fireUpdate(). This ensures that the index is always in sync with the
underlying map and that the JComboBox reflects that. There is no implemen-
tation of fireUpdate() or managing the listeners because the parent class,
ListComboBoxModel, takes care of those.

 index = new ArrayList();
 buildIndex();
 if(index.size() > 0) {
 selected = index.get(0);
 }
 }

 protected void buildIndex() {
 index = new ArrayList(map_data.keySet());
 }

 public Object getElementAt(int i) {
 return index.get(i);
 }

 public int getSize() {
 return map_data.size();
 }

 public void actionPerformed(ActionEvent evt) {
 if(evt.getActionCommand().equals("update")) {
 buildIndex();
 fireUpdate();
 }
 }

 public Object getValue(Object selectedItem) {
 return map_data.get(selectedItem);
 }
 public Object getValue(int selectedItem) {
 return getValue(index.get(selectedItem));
 }
}

Example 2-24. Map-based combo box model (continued)

Create a Collections-Aware JComboBox #20

Chapter 2, Lists and Combos | 101

HACK

The final additions are the two getValue() methods, which allow you to
retrieve the actual values out of the Map, based on an index or key. One uses
the actual selected item and the other uses the index returned by JComboBox.
getSelectedIndex().

Here’s a slight modification to the test program to try this out:

// Map Combo Box
final Map map = new HashMap();
map.put("Red", "#ff0000");
map.put("Green", "#00ff00");
map.put("Blue", "#0000ff");

final MapComboBoxModel mod3 = new MapComboBoxModel(map);
final JComboBox cb3 = new JComboBox();
cb3.setModel(mod3);
root.add(cb3);
final JButton bt3 = new JButton("Test Selection");
bt3.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 System.out.println("Human color: " + cb3.getSelectedItem());
 System.out.println("Computer color: " +
 mod3.getValue(cb3.getSelectedIndex()));
 }
});
root.add(bt3);

This HashMap maps human-readable color names into the hex values that my
program wants. The associated button will test the currently selected color,
printing both the description the user sees and the underlying hex value.

Again, you would have to send an ActionEvent to the model
to keep it in sync if you added new elements.

The one downside to this approach is that you have no control over the
order of the items displayed to the user. It depends on how the Map decides
to store them. To impose order on them, you could sort the index in the
buildIndex method (e.g., alphabetically), but I think I’ll leave that as a future
enhancement.

102

Chapter 3C H A P T E R T H R E E

Tables and Trees
Hacks 21–27

A table component was one of the most obvious missing features in AWT,
and among the most welcome additions when Swing came out. However,
the JTable may be used too much—it’s easy to throw an Object[][] at the
constructor and get a full-blown GUI table, and some developers don’t
question the wisdom of this sort of coding.

But despite the generosity of the Swing JTable API, there are a few things
still missing. Wouldn’t it be nice if the table model keep itself sorted, or if
the column widths had a non-ugly default that takes their contents into
account? Well, you didn’t buy this book to argue API theory—the point
here is to hack things into shape. So, let’s get started.

H A C K

#21
Size Your Columns to Suit Your JTable’s
Contents Hack #21

A one-digit column does not need 100 pixels of dead space. You know this;
your JTables should, too.

Does Figure 3-1 look like your typical JTable?

Figure 3-1. JTable with default column sizing

Size Your Columns to Suit Your JTable’s Contents #21

Chapter 3, Tables and Trees | 103

HACK

If it does, then we have a usability problem to discuss. By default, the col-
umns of a JTable are all the same size. For this data, that’s obviously a terri-
ble decision—there’s far too much space reserved for the numbers in the
count column, and not nearly enough in the URL column. So, how are you
going to fix this?

If you said “turn on the horizontal scrollbar,” please close this book, grasp it
with both hands, and firmly smack yourself in the head with it. No, you are
not turning on the horizontal scrollbar! Use the pixels available to you
before you resort to the user-annoying desperation of horizontal scrolling. In
this case, the count column has lots of pixels to spare; you just need to real-
locate this extra space to the URL column.

Resetting Column Widths
What makes programmatic column resizing difficult for many Swing pro-
grammers is that they can’t even find the right methods to use. If all you ever
work with is JTable (and maybe a few custom cell renderers), you’ll notice
that the JavaDoc for those classes says nothing about column widths. The
problem may be that the JTable is so generous with helpful methods that
you’d never even notice that it’s made up of TableColumn objects. Take a
look at that TableColumn’s JavaDoc, and you’ll find getters and setters for
minimum, maximum, and preferred widths for columns.

As with components that defer to layout managers, the right property to
reset is the preferred width—let the column tell the JTable how wide it
would like to be, but let the JTable make the final decision based on the
information available to it (after all, there could be other columns contend-
ing for space, there might not be enough space for all the columns’ pre-
ferred size, etc.).

Given that the key to this hack will be calling setPreferredWidth() on the
TableColumns, the obvious question is: what value should you use for the
preferred width? Here’s a strategy: assuming you already have the table data,
use the width of the widest item in the column. And how do you get that?
By using the table’s cell renderers to actually figure out how big each cell
should be.

ColumnResizer, shown in Example 3-1, has a single static method,
adjustColumnPreferredWidths(), which takes a JTable as its only argument.

Yes, the name is a mouthful, but it’s helpful to express
exactly what the method does.

104 | Chapter 3, Tables and Trees

#21 Size Your Columns to Suit Your JTable’s Contents
HACK

For each column in the table, the method goes through all the rows and
renders each cell. It keeps a running tally of the widest component in the
column, and after considering all the rows, it sends this maximum width to
setPreferredWidth().

Example 3-2 demonstrates a unit test class to exercise ColumnResizer.
TestColumnResizer simply puts the JTable into a JFrame, pack()s it, and shows
it. After a five-second delay, it calls adjustColumnPreferredWidths() to reset
the preferred column widths, and it revalidate()s the table to get a repaint.

Example 3-1. Adjusting column sizes to suit their contents

public class ColumnResizer {

 public static void adjustColumnPreferredWidths(JTable table) {
 // strategy - get max width for cells in column and
 // make that the preferred width
 TableColumnModel columnModel = table.getColumnModel();
 for (int col=0; col<table.getColumnCount(); col++) {
 int maxwidth = 0;
 for (int row=0; row<table.getRowCount(); row++) {
 TableCellRenderer rend =
 table.getCellRenderer(row, col);
 Object value = table.getValueAt (row, col);
 Component comp =
 rend.getTableCellRendererComponent (table,
 value,
 false,
 false,
 row,
 col);
 maxwidth = Math.max (comp.getPreferredSize().width,
 maxwidth);
 } // for row

 TableColumn column = columnModel.getColumn (col);
 column.setPreferredWidth (maxwidth);

 } // for col
 }
}

Example 3-2. Testing automatic column sizing

public class TestColumnResizer {

 final static Object[][] TABLE_DATA = {
 {new Integer(1), "ONJava", "http://www.onjava.com/"},
 {new Integer(2), "Joshy's Site", "http://www.joshy.org/"},
 {new Integer(3), "Anime Weekend Atlanta", "http://www.awa-con.com/"},
 {new Integer(4), "QTJ book",
 "http://www.oreilly.com/catalog/quicktimejvaadn/"}
 };

Size Your Columns to Suit Your JTable’s Contents #21

Chapter 3, Tables and Trees | 105

HACK

Notice that the column width adjustment and revalidate() have to be done
with a Swing worker thread because the table shouldn’t be updated from
anything other than the AWT event-dispatch thread.

When run, this initially produces the ugly table seen back in Figure 3-1; after
five seconds, it resets automatically to the much more pleasing column
widths of Figure 3-2.

If you resize the JFrame, the columns will gain and lose space proportion-
ally, so the URL column will always have much more space than the count
column, making it more likely the table will be well-suited to further con-
tents you might add.

 final static String[] COLUMN_NAMES = {
 "Count", "Name", "URL"
 };

 public static void main (String[] args) {
 // 142 mac l&f has a header bug - force metal for today
 try {
 UIManager.setLookAndFeel (
 UIManager.getCrossPlatformLookAndFeelClassName());
 } catch (Exception e) { e.printStackTrace();}

 DefaultTableModel mod =
 new DefaultTableModel (TABLE_DATA, COLUMN_NAMES);
 JTable table = new JTable (mod);
 JScrollPane pane =
 new JScrollPane (table,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 JFrame frame = new JFrame ("JTable Column Widths");
 frame.getContentPane().add (pane);
 frame.pack();
 frame.setVisible (true);

 try {
 Thread.sleep (5000);
 } catch (Exception e) { e.printStackTrace(); }

 // now get smart about col widths
 final JTable fTable = table;
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ColumnResizer.adjustColumnPreferredWidths (fTable);
 fTable.revalidate();
 }
 });
 }
}

Example 3-2. Testing automatic column sizing (continued)

106 | Chapter 3, Tables and Trees

#21 Size Your Columns to Suit Your JTable’s Contents
HACK

Accounting for Header Cells
There’s a problem with the new weighting of the column widths: since the
one-digit contents of the count column are so narrow, the count column
header has been crushed to the point where Swing needs to show it with
ellipses. Not so good.

The problem, of course, is that the width of the header was never consid-
ered in the preferred width calculation. You can do that yourself by chang-
ing the logic to prefer the wider of the widest content cell and the header
cell. This means you need to get the header cell renderer (either from the
TableColumn or the JTableHeader), then render a cell and get its width.

To do this, replace these two lines:

TableColumn column = columnModel.getColumn (col);
column.setPreferredWidth (maxwidth);

with these:

TableColumn column = columnModel.getColumn (col);
TableCellRenderer headerRenderer = column.getHeaderRenderer();
if (headerRenderer == null)
 headerRenderer = table.getTableHeader().getDefaultRenderer();
Object headerValue = column.getHeaderValue();
Component headerComp =
 headerRenderer.getTableCellRendererComponent (table,
 headerValue,
 false,
 false,
 0,
 col);
maxwidth = Math.max (maxwidth,
 headerComp.getPreferredSize().width);
column.setPreferredWidth (maxwidth);

Figure 3-2. JTable columns resized to suit their contents

Add Column Selection to JTables #22

Chapter 3, Tables and Trees | 107

HACK

When you run this version of ColumnResizer, the table should look like
Figure 3-3.

Having done this, it’s still possible to crush either table cells or headers if
you resize (programatically or by dragging the frame’s corner) to a point
where there’s just not enough room for all the content. If you really wanted
to keep header cells intact, you could alter the previous code to set the
TableColumn’s minimum width to the preferred width of the header cell,
assuming the header isn’t much wider than the content. Ultimately, it’s
really a question of what data you’re putting in the table and what looks
right to you.

Hacking the Hack
“But,” you might be saying, “what if I don’t have my table data in advance?”
If you have some idea of what the data is probably going to be like, you
could create your table, add this “prototype” data as a row, size the col-
umns, and then remove the prototype…all before ever making the table visi-
ble. That would give your users reasonable default sizing, and then they
could resize columns by dragging header borders as desired. Of course, you
could always hook up a TableModelListener and resize the columns every
time data is inserted, deleted, or updated, but having the column widths
jump around magically can be very annoying.

H A C K

#22
Add Column Selection to JTables Hack #22

So, why can’t I select a column by clicking on its header?

Here’s something that seems strange about JTables: you can click on the col-
umn headers, but only for the purpose of reordering columns—not for
selecting the contents of that column. I don’t know about you, but consider-
ing that I almost never reorder columns, it seems like the default behavior is

Figure 3-3. Accounting for header width in JTable column resizing

108 | Chapter 3, Tables and Trees

#22 Add Column Selection to JTables
HACK

backward. And if your users have had their expectations set by working with
Excel or other spreadsheets, they’ll surely expect the ability to select an
entire column.

The to-do list for adding column selectability to a JTable consists of two
items:

• Change which kinds of multiselection are allowed.

• Wire up a MouseListener.

Example 3-3 shows a very simple implementation.

The constructor is deliberately simple, taking only a two-dimensional array
of contents and a one-dimensional array of headers. Of course, JTable has
many more constructor signatures than this, but this is the one that will be
easiest to expose to a test class (do I have to mention that building out the
other constructors is left to the reader as an exercise?).

The next step is changing the defaults for multi-cell selection. The default is
to allow row selection—exactly what you don’t want. So, enable column
selection and disable row selection. Next, you want to catch clicks on the
headers so you can select columns in response to them. Unfortunately, the
JTableHeader component doesn’t have an addActionListener() method, so
the best you can do is add a MouseListener instead. Of its various methods,
you only need to override mouseReleased(), which signals the end of a click-
and-release.

Example 3-3. A JTable that allows column selection by clicking on column headers

public class ColumnSelectableJTable extends JTable {

 public ColumnSelectableJTable (Object[][] items, Object[] headers) {
 super (items, headers);
 setColumnSelectionAllowed (true);
 setRowSelectionAllowed (false);
 // set up action listener on table header
 final JTableHeader header = getTableHeader();
 header.addMouseListener (new MouseAdapter() {
 public void mouseReleased (MouseEvent e) {
 if (! e.isShiftDown())
 clearSelection();
 int pick = header.columnAtPoint(e.getPoint());
 addColumnSelectionInterval (pick, pick);
 }
 });

 }

}

Add Column Selection to JTables #22

Chapter 3, Tables and Trees | 109

HACK

To implement the column selection, check the event to see if the Shift key is
down. If it is, then the user wants to do a multiple selection, meaning that
he intends to add the clicked column to any that are already selected. If not,
then you can clear out any existing selection. Next, you need to figure out
just which column was clicked. You can do this by asking the event for the
Point at which the click occurred. This will be in the coordinate space of the
JTableHeader, making it suited for calling JTableHeader.columnAtPoint().
That returns an index, which you can select by calling JTable.
addColumnSelectionInterval(), specifying a one-column range that begins
and ends at the selected column.

To run this code, I’ve put together a class that sends some trivial table data
to a ColumnSelectableJTable and shows the whole thing in a JFrame. This
test is shown in Example 3-4.

When run, this table’s columns are selectable either by clicking on a cell in
the column or on a header of any of the columns, as seen in Figure 3-4.

Example 3-4. Testing the column-selectable JTable

public class TestColumnSelectableJTable extends Object {

 private static final Object[][] items= {
 {"Monday", "Cheeseburgers", "French Fries", "Peaches"},
 {"Tuesday", "Catfish", "Rice", "Starfruit"},
 {"Wednesday", "Tortellini", "Garlic Bread", "Pears"},
 {"Thursday", "Chicken", "Potatoes", "Strawberries"},
 {"Friday", "Pizza", null, "Fruit Cocktail"}
 };

 private static final Object[] headers = {
 "Day", "Main course", "Side dish", "Fruit"
 };

 public static void main (String[] args) {
 JFrame f = new JFrame ("Selectable columns");
 ColumnSelectableJTable table =
 new ColumnSelectableJTable(items, headers);
 JScrollPane scroller =
 new JScrollPane (table,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);
 f.getContentPane().add (scroller);
 f.pack();
 f.setVisible(true);
 }
}

110 | Chapter 3, Tables and Trees

#23 Let Your JTables Do the Sorting
HACK

H A C K

#23
Let Your JTables Do the Sorting Hack #23

Why doesn’t Swing already offer this? Oh well, here’s how to do it yourself.

It’s hard to imagine you’ll do much serious work with JTables without need-
ing to sort the contents by one of the columns, or support changing between
columns to use as the sort criteria. In fact, given how generous the Swing
API usually is, it’s kind of surprising that it doesn’t already offer it. Oh well,
it’s not that hard to do for yourself.

There are a couple of approaches you could take to solve this problem. You
could create a subclass of TableModel, one that keeps an internal Comparator
to do the sorting and resorts every time an add() or remove() type method is
called. The drawback to this approach is choosing which of the model
classes to subclass. If you go too high up the hierarchy by implementing
TableModel or subclassing DefaultTableModel, you would miss some typical
Swing functionality that developers expect, like the ability to add and
remove rows provided by DefaultMutableTableModel. On the other hand, if
you subclass DefaultMutableTableModel, other developers will be unhappy
because subclassing your class requires them to pick up public add() and
delete() type methods that expose their data in ways they don’t want.

So, consider an alternative: two table models, one that the JTable sees and
another that the developer sees. Specifically, the developer will pass her
TableModel to the constructor of the sorting model, which will wire up for
events on the model. Then, the developer will set the sorting model as the
JTable’s model. Changes in the base model will force the sorting model to
resort its contents and then fire off events to JTable to drive updates to the
onscreen representation.

There are more details in the actual implementation of course, particularly
when it comes to doing the sorting. Example 3-5 shows the code for the
SortableTableModel.

Figure 3-4. Selecting JTable columns by clicking on headers

Let Your JTables Do the Sorting #23

Chapter 3, Tables and Trees | 111

HACK

Example 3-5. Self-sorting TableModel

public class SortableTableModel implements TableModel,
 TableModelListener {

 EventListenerList listenerList = new EventListenerList();
 TableModel delegatedModel;
 int[] sortedIndicies;
 int sortColumn;
 Comparator comparator;
 Comparator[] comparators;

 public SortableTableModel (TableModel tm) {
 delegatedModel = tm;
 delegatedModel.addTableModelListener (this);
 comparators = new Comparator [tm.getColumnCount()];
 sortedIndicies = new int [0];
 setSortColumn (0);
 }

 // listener stuff
 public void addTableModelListener (TableModelListener l) {
 listenerList.add (TableModelListener.class, l);
 }

 public void removeTableModelListener (TableModelListener l) {
 listenerList.remove (TableModelListener.class, l);
 }

 public void fireTableModelEvent (TableModelEvent e) {
 Object[] listeners = listenerList.getListenerList();
 for (int i = listeners.length-2; i>=0; i-=2) {
 if (listeners[i] == TableModelListener.class) {
 ((TableModelListener) listeners[i+1]).tableChanged(e);
 }
 }
 }

 // contents stuff

 public Class getColumnClass(int columnIndex)
 if (delegatedModel.getRowCount() > 0)
 return delegatedModel.getValueAt(0, columnIndex).getClass();
 else
 return Object.class;
 }

 // getColumnCount(), getColumnName(), getRowCount(),
 // getValueAt(), isCellEditable(), setValueAt() listings below

 // internal helpers
 public void setComparatorForColumn (Comparator c, int i) {

112 | Chapter 3, Tables and Trees

#23 Let Your JTables Do the Sorting
HACK

 // range check
 if (i > comparators.length) {
 Comparator[] newComparators = new Comparator[i+1];
 System.arraycopy (comparators, 0,
 newComparators, 0,
 comparators.length);
 comparators = newComparators;
 }
 // add the comparator
 comparators[i] = c;
 }

 public void setSortColumn (int i) {
 sortColumn = i;

 // reset current comparator, possibly to null, which
 // will make us use "natural ordering" for those values
 comparator = null;
 if ((comparators != null) &&
 (comparators.length > 0))
 // is there one in the list of comparators?
 comparator = comparators[sortColumn];

 // now do the sort
 resort();
 }

 public int getSortColumn () {
 return sortColumn;
 }

 // resort() method listed below
 // SortingDelegate inner class listed below
 // SortingDelegateComparator inner class listed below

 public void tableChanged (TableModelEvent e) {
 switch (e.getType()) {
 case TableModelEvent.DELETE: {
 resort();
 fireAllChanged();
 break;
 }
 case TableModelEvent.INSERT: {
 resort();
 fireAllChanged();
 break;
 }
 case TableModelEvent.UPDATE: {
 resort();
 fireAllChanged();
 break;

Example 3-5. Self-sorting TableModel (continued)

Let Your JTables Do the Sorting #23

Chapter 3, Tables and Trees | 113

HACK

The instance variables in this class include a list of event listeners to support
the TableModelListener methods specified by the TableModel interface, the
model passed in by the caller, a map of sorted indices, the index of the
column to sort by, the current Comparator to sort with, and an array of
Comparators arranged by the column each one sorts (the value may be null if
the column is a primitive or another type that doesn’t need a custom
Comparator).

The sortedIndicies array is crucial to maintaining the relationship between
the two tables. The values in this array indicate a mapped row in the
delegatedModel. Thus, if a caller asks for a value in row 2, this model will get
the value of sortedIndicies[2] and get that row from the delegatedModel.
All the methods of TableModel that work with rows—getValueAt(),
isCellEditable(), and setValueAt()—use this look up, so the real key to
keeping the model working is to keep this map accurate, which in turn
means to redo the sort:

• Whenever the contents of the underlying model change

• Whenever a caller changes the sorting criteria of this model

The constructor is largely trivial, setting the delegatedModel instance, add-
ing a TableModelListener to it so the sorting model can resort on updates to
the delegatedModel’s contents, and initializing the structures for the compar-
ators and the row mapping. Supporting the listeners is also essentially
boilerplate; here, I’ve used the EventListenerList and backward-counting
event firing [Hack #94], as is done commonly throughout Swing.

The implementation of getColumnClass() is important; it ensures that
TableCellRenderers will get used when appropriate. Swing’s implementa-
tion of AbstractTableModel literally just returns Object.class in all cases,
which causes everything to render as JLabels of the Object’s toString().
Yuck. This version actually looks at the delegatedModel and, if it has any
data, returns the class of the object in the first row of the designated column.

 }

 }
 }

 protected void fireAllChanged() {
 TableModelEvent e = new TableModelEvent (this);
 fireTableModelEvent (e);
 }
}

Example 3-5. Self-sorting TableModel (continued)

114 | Chapter 3, Tables and Trees

#23 Let Your JTables Do the Sorting
HACK

Next in the source, you’ll find a series of methods that involve the contents
of the model:

• getColumnCount()

• getColumnName()

• getRowCount()

• getValueAt()

• isCellEditable()

• setValueAt()

All of these methods delegate to the wrapped model, with the caveat that
any that work with rows look up the mapped row from the sortedIndicies
array, as seen in Example 3-6.

But how do the contents get sorted? Any class that implements Comparable
can be sorted by Collections.sort() or one of the Arrays.sort() methods,
and thus doesn’t require any special handling. However, you probably want
to handle sorting any arbitrary class, which requires working with custom
Comparators—what the comparators array is for. In setComparatorForColumn(),
you range-check the size of the array, and then cache the passed Comparator
into the array index that corresponds to the column. For example,
setComparatorForColumn (myComparator, 2) should set comparators[2] to
myComparator.

Example 3-6. Table model methods that delegate calls to the wrapped model

public int getColumnCount() {
 return delegatedModel.getColumnCount();
}
public String getColumnName (int index) {
 return delegatedModel.getColumnName (index);
}
public int getRowCount() {
 return delegatedModel.getRowCount();
}
private int getDelegatedRow (int row) {
 return sortedIndicies [row];
}
public Object getValueAt (int rowIndex, int columnIndex) {
 return delegatedModel.getValueAt (getDelegatedRow(rowIndex),
 columnIndex);
}
public boolean isCellEditable (int rowIndex, int columnIndex) {
 return delegatedModel.isCellEditable (rowIndex, columnIndex);
}
public void setValueAt (Object aValue, int rowIndex, int columnIndex) {
 delegatedModel.setValueAt (aValue, getDelegatedRow(rowIndex), columnIndex);
}

Let Your JTables Do the Sorting #23

Chapter 3, Tables and Trees | 115

HACK

This caches the comparators, but only one is used for sorting at any given
time. In setSortColumn(), you cache the index of the sort column, but then
you need to pull up the corresponding Comparator. Set the comparator—the
one that will be used to perform the sort—to null, and then check the com-
parators list to see if there is a Comparator at the given index. If so, it will
become the new comparator.

Now, you’re ready to handle the sorting. When you need to sort, either
because the sort index has changed or because the underlying model has
changed, you call the resort() method, shown in Example 3-7.

This starts by resetting the size of the sortedIndicies array, which will be
wrong if the number of rows in the delegatedModel has changed. Next, build
up an array list of SortingDelegates, an inner class containing a value from
the delegatedModel (in the column to be sorted) and a mapped row number.
This class is shown in Example 3-8.

Example 3-7. Resorting based on the current comparator

protected void resort() {
 // does sortedIndicies need to grow or shrink?
 if (sortedIndicies.length != delegatedModel.getRowCount()) {
 sortedIndicies = new int [delegatedModel.getRowCount()];
 }
 // build up a list of SortingDelegates
 ArrayList sortMe = new ArrayList();
 for (int i=0; i<delegatedModel.getRowCount(); i++) {
 SortingDelegate sd =
 new SortingDelegate (delegatedModel.getValueAt(i, getSortColumn()),
 i);
 sortMe.add (sd);
 }
 // now sort him with the SortingDelegateComparator
 SortingDelegateComparator sdc =
 new SortingDelegateComparator (comparator);
 Collections.sort (sortMe, sdc);

 // fill sortedIndicies array
 // index -> value represents mapping from original
 // row to sorted row
 for (int i=0; i<sortMe.size(); i++) {
 sortedIndicies[i] =
 ((SortingDelegate) sortMe.get(i)).row;
 }

 // fire change event
 fireAllChanged();
}

116 | Chapter 3, Tables and Trees

#23 Let Your JTables Do the Sorting
HACK

This can be sorted by the SortingDelegateComparator, another inner class
that maps the compare() call that is the heart of Java Collections-based
sorting (shown in Example 3-9). It takes a Comparator (namely the sorting
column’s Comparator, if any) and on each compare(), it looks to see if that
Comparator is null; if not, it uses Comparator.compare() to do the sorting
comparison. In this case, objects should be Comparable, which means the
sorter can use Comparable.compareTo() to apply “natural ordering” (intui-
tive numeric ordering for all number types, ASCII ordering for strings, etc.).
It throws an exception if there’s neither a Comparator to use nor Comparable
values.

With the list of SortingDelegates now sorted, you can walk the list and pull
out the row field of each object, putting it in the sortedIndicies array. The
array is again ready to map all the method calls that refer to rows. You need
to fire an event to tell the sorting model’s listeners—presumably just the
JTable—that contents have updated. Since the resort could affect none,
some, or all of the rows, fire off an event saying the whole table has updated.

Example 3-8. Inner class to map sortable objects to their position in the current sort

public class SortingDelegate extends Object {
 public Object value;
 public int row;
 public SortingDelegate (Object v, int r) {
 value = v;
 row = r;
 }
}

Example 3-9. Comparator for delegated sorting

class SortingDelegateComparator extends Object implements Comparator {
 Comparator comp;
 public SortingDelegateComparator (Comparator c) {
 comp = c;
 }
 public int compare (Object o1, Object o2) {
 Object v1 = ((SortingDelegate)o1).value;
 Object v2 = ((SortingDelegate)o2).value;
 if (comp != null)
 return comp.compare (v1, v2);
 else if (v1 instanceof Comparable)
 return ((Comparable)v1).compareTo (v2);
 else
 throw new IllegalArgumentException ("Can't compare objects "+
 "for sorting");

 }
}

Let Your JTables Do the Sorting #23

Chapter 3, Tables and Trees | 117

HACK

The final thing to deal with is the events you get from the wrapped model.
These can be deletes, inserts, or updates—in all cases, this implementation
calls for a total resort and fires off the “everything changed” event.

A test class for this model needs to exercise the sorting and updating caused
both by changing the sort criteria and by changing the underlying model.
Also, to test the custom Comparator stuff, it needs to have at least one col-
umn whose contents aren’t Comparable and thus need a Comparator.

TestSortableTableModel provides these with a simple three-column table with
canned content and buttons to resort by each of those columns. A fourth but-
ton adds another row of data. The third column is a java.awt.Color, which
gets its own simple Comparator. The code for the test class is shown in
Example 3-10.

Example 3-10. Testing the self-sorting TableModel

public class TestSortableTableModel extends JPanel
 implements ActionListener {

 DefaultTableModel myModel;
 SortableTableModel mySortableModel;
 JButton sort1, sort2, sort3, bonus;

 static Object[] headers = {
 "Letter", "Number", "Color"
 };
 static Object[][] data = {
 {"A", new Integer(2), Color.gray.darker().darker()},
 {"B", new Integer(3), Color.gray},
 {"C", new Integer(1), Color.gray.darker()}
 };

 static Object[] bonusData = {
 "D", new Integer(0), Color.red
 };

 public TestSortableTableModel (DefaultTableModel m) {
 super (new BorderLayout());
 myModel = m;
 mySortableModel = new SortableTableModel (myModel);
 mySortableModel.setComparatorForColumn (new MyColorComparator(), 2);
 JTable table = new JTable (mySortableModel);
 table.setDefaultRenderer (java.awt.Color.class, new ColorRenderer());
 JScrollPane scroller =
 new JScrollPane (table,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);
 table.setPreferredScrollableViewportSize (new Dimension (400, 200));
 setLayout(new BorderLayout());
 add (scroller, BorderLayout.CENTER);

118 | Chapter 3, Tables and Trees

#23 Let Your JTables Do the Sorting
HACK

The test class declares its models: a SortableTableModel to pass to the JTable
and a DefaultMutableTableModel for the developer to play with. It then
declares the default table headers and data as Object arrays. The constructor
takes a TableModel (as called by main(), it will be a DefaultMutableTableModel
built from the canned data), from that builds a SortableTableModel, and
then creates a JTable. It also sets a custom Comparator for the color column
on the sortable model, and a custom renderer for the colors on the table. It

 // add sort buttons
 JPanel buttonPanel = new JPanel();
 sort1 = new JButton ("Sort 1");
 buttonPanel.add(sort1);
 sort1.addActionListener(this);
 sort2 = new JButton ("Sort 2");
 buttonPanel.add(sort2);
 sort2.addActionListener(this);
 sort3 = new JButton ("Sort 3");
 buttonPanel.add(sort3);
 sort3.addActionListener(this);
 bonus = new JButton ("More data");
 buttonPanel.add(bonus);
 bonus.addActionListener(this);
 add (buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed (ActionEvent e) {
 if (e.getSource() == sort1) {
 mySortableModel.setSortColumn (0);
 } else if (e.getSource() == sort2) {
 mySortableModel.setSortColumn (1);
 } else if (e.getSource() == sort3) {
 mySortableModel.setSortColumn (2);
 } else if (e.getSource() == bonus) {
 myModel.addRow (bonusData);
 }

 }

 public static void main (String[] args) {
 DefaultTableModel aModel =
 new DefaultTableModel(data, headers) ;
 JFrame frame = new JFrame ("Sortable Table");
 frame.getContentPane().add (new TestSortableTableModel(aModel),
 BorderLayout.CENTER);
 frame.pack();
 frame.setVisible(true);
 }

}

Example 3-10. Testing the self-sorting TableModel (continued)

Let Your JTables Do the Sorting #23

Chapter 3, Tables and Trees | 119

HACK

then adds and wires up some buttons for sorting and adding extra rows, and
puts it all in a JFrame.

The color Comparator is an idea that doesn’t entirely make sense—how can
you say that green is greater than or less than blue? What this comparator
does is look only at brightness, by converting from the RGB color space to
HSB and grabbing the brightness value. To make this work for the test, the
canned data simply uses shades of gray. Given this scheme, the sort will
arrange colors in order from darkest to lightest (least bright to most bright).
The comparator and a simple “fill the cell” renderer for colors are shown in
Example 3-11.

Example 3-11. The Comparator and TableCellRenderer handle color values in sorting a
table test

class MyColorComparator implements Comparator {
 float[] hsb = new float[3];
 public int compare (Object o1, Object o2) {
 if ((! (o1 instanceof Color)) ||
 (! (o2 instanceof Color)))
 return 0;
 else {
 Color c1 = (Color) o1;
 Color c2 = (Color) o2;
 Color.RGBtoHSB (c1.getRed(),
 c1.getGreen(),
 c1.getBlue(),
 hsb);
 float bright1 = hsb[2];
 Color.RGBtoHSB (c2.getRed(),
 c2.getGreen(),
 c2.getBlue(),
 hsb);
 float bright2 = hsb[2];
 if (bright1 == bright2)
 return 0;
 else
 return ((bright1-bright2) < 0) ? -1 : 1;
 }
 }
 public boolean equals (Object obj) {
 return super.equals (obj);
 }
}

class ColorRenderer extends DefaultTableCellRenderer {
 public Component getTableCellRendererComponent (JTable table,
 Object value,
 boolean isSelected,
 boolean hasFocus,
 int row,
 int col) {

120 | Chapter 3, Tables and Trees

#23 Let Your JTables Do the Sorting
HACK

When run, the table will be sorted by column 0, which contains Strings, as
seen in Figure 3-5.

If you click the Sort 2 button (yes, the numbering is human-readable, and
thus it’s one greater than actual column indices), the table will immediately
sort by the Integers in the middle column, as seen in Figure 3-6.

The color column is next. Click Sort 3 to see the table sort by the colors, as
seen in Figure 3-7.

 Component returnMe =
 super.getTableCellRendererComponent (table, value,
 isSelected,
 hasFocus, row, col);

 if (value instanceof Color) {
 Color color = (Color) value;
 returnMe.setBackground (color);
 if (returnMe instanceof JLabel) {
 JLabel jl = (JLabel) returnMe;
 jl.setOpaque(true);
 jl.setText ("");
 }
 }
 return returnMe;
 }
}

Figure 3-5. JTable sorted automatically by its first column

Example 3-11. The Comparator and TableCellRenderer handle color values in sorting a
table test (continued)

Let Your JTables Do the Sorting #23

Chapter 3, Tables and Trees | 121

HACK

Finally, add in another row with the “More data” button. Because its color
is solid red (maximum brightness), it will appear last when sorting by color.
This is seen in Figure 3-8.

Figure 3-6. Sorting JTable by its second column

Figure 3-7. Sorting JTable by its third column

Figure 3-8. Adding data to a self-sorting table model

122 | Chapter 3, Tables and Trees

#24 Create a JDBC Table Model
HACK

H A C K

#24
Create a JDBC Table Model Hack #24

Bring your database tables into Swing with a minimum of hassle.

If you’ve worked with databases, you’ve probably also worked with the
tools they provide for quick table maintenance and queries: command-line
tools that are well suited to brief hack-and-slash work, but hard to work
with once you start dealing with any serious amount of data. It’s hard
enough to write the SQL command to return 10 or 20 columns in a query—
it’s even worse when the results word-wrap over the course of a dozen lines,
and you can’t tell where one result ends and another begins.

Wouldn’t it be nice to be able to throw the contents of any database table
into a Swing JTable? Give it a few JDBC strings, toss it in a JFrame, and
pow!—instant GUI.

Building Connectivity
If you’ve worked with both JDBC and Swing, you’ll grasp the concept in one
sentence: use table metadata to build a Swing TableModel from the database
table. If you haven’t, here’s the background you’ll need: JDBC provides an
abstract means of accessing databases. Java code to work with one database
should work with another, the only difference is in the way that JDBC
achieves a Connection to the database, which is usually a matter of provid-
ing Strings for:

• A driver class, which provides implementations of the various java.sql
interfaces.

• A URL with which to connect to the database. This implies the use of
sockets, though that’s not necessarily the case. Some small embeddable
databases can live in the same JVM as your application.

• An optional username.

• An optional password.

Once you have the Connection, you can begin to send commands (creation,
deletion, and altering of tables) or queries to the database by creating
Statements from the Connection. You can also use the Connection to get
metadata about the database, like what kinds of features it supports, how
long certain strings can be, etc. More importantly for this hack, it allows you
to discover what tables are in the database, what columns they have, and
what types of data are in those columns.

So, given just a Connection and the name of a table in the database, you can
build a Java representation of its contents with two queries. The first query
gets column metadata for the table and builds up arrays of the column

Create a JDBC Table Model #24

Chapter 3, Tables and Trees | 123

HACK

names and their types. These can be mapped reasonably well to Java classes,
at least for whatever types you intend to support. The second query gets all
the data from the table. For each row, it gets each column’s value. This is
put into a two-dimensional array, which represents the entire contents of the
table.

With these two queries done, you have everything you need to support the
abstract methods of AbstractTableModel:

• getRowCount() is the length of the contents array that you create.

• getColumnCount() is 0 if you have no contents, or the length of the first
item in the contents array (which is itself an array because contents is a
two-dimensional array).

• getValueAt() is the value at contents[row][col].

AbstractTableModel has utterly trivial implementations of getColumnClass()
and getColumnName(), so the first always returns Object.class, the second
returns “A”, “B”, “C”, etc.; holding onto column metadata from the first
query allows you to provide more useful implementations of these methods,
too.

Example 3-12 shows how the JDBCTableModel is implemented.

Example 3-12. Populating a Swing TableModel from a database connection

import javax.swing.*;
import javax.swing.table.*;
import java.sql.*;
import java.util.*;

/** an immutable table model built from getting
 metadata about a table in a jdbc database
 */
public class JDBCTableModel extends AbstractTableModel {

 Object[][] contents;
 String[] columnNames;
 Class[] columnClasses;

 public JDBCTableModel (Connection conn,
 String tableName)
 throws SQLException {
 super();
 getTableContents (conn, tableName);
 }

 protected void getTableContents (Connection conn,
 String tableName)
 throws SQLException {

124 | Chapter 3, Tables and Trees

#24 Create a JDBC Table Model
HACK

 // get metadata: what columns exist and what
 // types (classes) are they?
 DatabaseMetaData meta = conn.getMetaData();
 System.out.println ("got meta = " + meta);
 ResultSet results =
 meta.getColumns (null, null, tableName, null) ;
 System.out.println ("got column results");
 ArrayList colNamesList = new ArrayList();
 ArrayList colClassesList = new ArrayList();
 while (results.next()) {
 colNamesList.add (results.getString ("COLUMN_NAME"));
 System.out.println ("name: " +
 results.getString ("COLUMN_NAME"));

 int dbType = results.getInt ("DATA_TYPE");
 switch (dbType) {
 case Types.INTEGER:
 colClassesList.add (Integer.class); break;
 case Types.FLOAT:
 colClassesList.add (Float.class); break;
 case Types.DOUBLE:
 case Types.REAL:
 colClassesList.add (Double.class); break;
 case Types.DATE:
 case Types.TIME:
 case Types.TIMESTAMP:
 colClassesList.add (java.sql.Date.class); break;
 default:
 colClassesList.add (String.class); break;
 };
 System.out.println ("type: " +
 results.getInt ("DATA_TYPE"));
 }
 columnNames = new String [colNamesList.size()];
 colNamesList.toArray (columnNames);
 columnClasses = new Class [colClassesList.size()];
 colClassesList.toArray (columnClasses);

 // get all data from table and put into
 // contents array

 Statement statement =
 conn.createStatement ();
 results = statement.executeQuery ("SELECT * FROM " +
 tableName);
 ArrayList rowList = new ArrayList();
 while (results.next()) {
 ArrayList cellList = new ArrayList();
 for (int i = 0; i<columnClasses.length; i++) {
 Object cellValue = null;

Example 3-12. Populating a Swing TableModel from a database connection (continued)

Create a JDBC Table Model #24

Chapter 3, Tables and Trees | 125

HACK

 if (columnClasses[i] == String.class)
 cellValue = results.getString (columnNames[i]);
 else if (columnClasses[i] == Integer.class)
 cellValue = new Integer (
 results.getInt (columnNames[i]));
 else if (columnClasses[i] == Float.class)
 cellValue = new Float (
 results.getInt (columnNames[i]));
 else if (columnClasses[i] == Double.class)
 cellValue = new Double (
 results.getDouble (columnNames[i]));
 else if (columnClasses[i] == java.sql.Date.class)
 cellValue = results.getDate (columnNames[i]);
 else
 System.out.println ("Can't assign " +
 columnNames[i]);
 cellList.add (cellValue);
 }// for
 Object[] cells = cellList.toArray();
 rowList.add (cells);
 } // while
 // finally create contents two-dim array
 contents = new Object[rowList.size()] [];
 for (int i=0; i<contents.length; i++)
 contents[i] = (Object []) rowList.get (i);
 System.out.println ("Created model with " +
 contents.length + " rows");

 // close stuff
 results.close();
 statement.close();
 }

 // AbstractTableModel methods

 public int getRowCount() {
 return contents.length;
 }

 public int getColumnCount() {
 if (contents.length == 0)
 return 0;
 else
 return contents[0].length;
 }

 public Object getValueAt (int row, int column) {
 return contents [row][column];
 }

 // overrides methods for which AbstractTableModel
 // has trivial implementations

Example 3-12. Populating a Swing TableModel from a database connection (continued)

126 | Chapter 3, Tables and Trees

#24 Create a JDBC Table Model
HACK

The constructor dumps off its real work to getTableContents(), which is
responsible for the two queries just described. It gets a DatabaseMetaData
object from the Connection, from which you can then get the column data
with a getColumns() call. The arguments to this method are the catalog,
schema pattern, table name pattern, and column name pattern; this imple-
mentation ignores catalogs and schema, although you might need to have
callers specify them if you have a complex database. getColumns() returns a
ResultSet, which you iterate over just like you would with the results of a
regular JDBC query.

Getting the column name is easy: just call getString("COLUMN_NAME"). The
type is a little more interesting, as the getInt("DATA_TYPE") call will return an
int, which represents one of the constants of the java.sql.Types class. In this
example, I’ve simply mapped Strings and the basic number types to appro-
priate Java classes. TIMESTAMP is SQL’s concept of a point in time (a DATE and
a TIME), so it gets to be a Java Date. Knowing these types will make it easier to
call the right getXXX() method when retrieving the actual table data.

The second query is a simple SELECT * FROM tableName. With no WHERE restric-
tion on the query, this will create a ResultSet with every row in the table. I
shouldn’t have to mention that if tableName is a table with millions of
records, your resulting TableModel is not going to fit into memory. You knew
that, right?

Again, you need to iterate over a ResultSet. Each time that results.next()
returns true, meaning there’s another result, you pull out every column you
know about from the earlier metadata query. This means calling a getXXX()
method and passing in the column name, where you know which getXXX()
to use from your earlier investigation of the type of each column. You can go
ahead and put numeric data into its proper wrapper class (Integer, Double,
etc.) because that works well with the class-based rendering system of
JTables. A caller might decide to use a TableCellRenderer that applies a
Format class to all Doubles in the table to display them only to a certain num-
ber of decimal points, or to render Dates with relative terms like “Today” and
“25 hours ago.” Strongly typing the data in your model will help with that.

 public Class getColumnClass (int col) {
 return columnClasses [col];
 }

 public String getColumnName (int col) {
 return columnNames [col];
 }
}

Example 3-12. Populating a Swing TableModel from a database connection (continued)

Create a JDBC Table Model #24

Chapter 3, Tables and Trees | 127

HACK

With the queries done, you just convert the ArrayLists to real arrays (which
offer quick lookups for the get methods). The implementations of the
AbstractTableModel methods mentioned previously, as well as the improved
implementations of getColumnClass() and getColumnName(), are trivial uses
of the columnNames, columnClasses, and contents arrays built up by this
method.

Testing Things Out
Before you say “I can’t run this hack, I don’t have a database,” relax! The
open source world has you covered. And no, it’s not some big thing like
JBoss. HSQLDB, more commonly known by its old name, Hypersonic, is a
JDBC relational database engine written in Java. It is really small and can be
run as a standalone server or within your JVM. If you are database-less, grab
HSQLDB from http://hsqldb.sourceforge.net/.

Whatever your database, you’ll need a driver classname, URL, username,
and password to make a connection to the database. If you have your own
database, I trust you already know this. If you just downloaded HSQLDB
one paragraph ago, then you’ll be using the following information:

• Driver: org.hsqldb.jdbcDriver

• URL: jdbc:hsqldb:file:testdb

• User: sa

• Password: (none)

This assumes you’ll be running Hypersonic as part of your application,
meaning you’ll need to extend your classpath to pick up the hsqldb.jar file.
Also note that this will create some testdb files in your current directory that
you can clean up when done. You can also provide a full path to some other
directory; see HSQLDB’s docs for more info.

The test runner expects to pick up the connection strings as properties
named jdbctable.driver, jdbctable.url, jdbctable.user, and jdbctable.pass.
To make things easier, there are two ways to pass these in: either as system
properties (usually specified with -D arguments to the java command), or in
a file called jdbctable.properties. The book code has a sample of the latter
with HSQLDB values as defaults.

To test the JDBCTableModel, the TestJDBCTable creates an entirely new table
in the database. The model gets the Connection and the name of this table
and loads the data from the database. Then the test class simply creates a
new JTable from the model and puts it in a JFrame. Example 3-13 shows the
source for this demo.

128 | Chapter 3, Tables and Trees

#24 Create a JDBC Table Model
HACK

Example 3-13. Testing the JDBC-based table

import javax.swing.*;
import javax.swing.table.*;
import java.sql.*;
import java.util.*;
import java.io.*;

public class TestJDBCTable {

 public static void main (String[] args) {
 try {
 /*
 driver, url, user, and pass can be passed in as
 system properties "jdbctable.driver",
 "jdbctable.url", "jdbctable.user", and
 "jdbctable.pass", or specified in a file
 called "jdbctable.properties" in current
 directory
 */
 Properties testProps = new Properties();
 String ddriver = System.getProperty ("jdbctable.driver");
 String durl = System.getProperty ("jdbctable.url");
 String duser = System.getProperty ("jdbctable.user");
 String dpass = System.getProperty ("jdbctable.pass");

 if (ddriver != null)
 testProps.setProperty ("jdbctable.driver", ddriver);
 if (durl != null)
 testProps.setProperty ("jdbctable.url", durl);
 if (duser != null)
 testProps.setProperty ("jdbctable.user", duser);
 if (dpass != null)
 testProps.setProperty ("jdbctable.pass", dpass);
 try {
 testProps.load (new FileInputStream (
 new File ("jdbctable.properties")));
 } catch (Exception e) {} // ignore FNF, etc.
 System.out.println ("Test Properties:");
 testProps.list (System.out);

 // now get a connection
 // note care to replace nulls with empty strings
 Class.forName(testProps.getProperty
 ("jdbctable.driver")).newInstance();
 String url = testProps.getProperty ("jdbctable.url");
 url = ((url == null) ? "" : url);
 String user = testProps.getProperty ("jdbctable.user");
 user = ((user == null) ? "" : user);
 String pass = testProps.getProperty ("jdbctable.pass");
 pass = ((pass == null) ? "" : pass);

Create a JDBC Table Model #24

Chapter 3, Tables and Trees | 129

HACK

 Connection conn =
 DriverManager.getConnection (url, user, pass);

 // create db table to use
 String tableName = createSampleTable(conn);

 // get a model for this db table and add to a JTable
 TableModel mod =
 new JDBCTableModel (conn, tableName);
 JTable jtable = new JTable (mod);
 JScrollPane scroller =
 new JScrollPane (jtable,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 JFrame frame = new JFrame ("JDBCTableModel demo");
 frame.getContentPane().add (scroller);
 frame.pack();
 frame.setVisible (true);

 conn.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static String createSampleTable (Connection conn)
 throws SQLException {

 Statement statement = conn.createStatement();
 // drop table if it exists
 try {
 statement.execute ("DROP TABLE EMPLOYEES");
 } catch (SQLException sqle) {
 sqle.printStackTrace(); // if table !exists
 }

 statement.execute ("CREATE TABLE EMPLOYEES " +
 "(Name CHAR(20), Title CHAR(30), Salary INT)");
 statement.execute ("INSERT INTO EMPLOYEES VALUES " +
 "('Jill', 'CEO', 200000)");
 statement.execute ("INSERT INTO EMPLOYEES VALUES " +
 "('Bob', 'VP', 195000)");
 statement.execute ("INSERT INTO EMPLOYEES VALUES " +
 "('Omar', 'VP', 190000)");
 statement.execute ("INSERT INTO EMPLOYEES VALUES " +
 "('Amy', 'Software Engineer', 50000)");
 statement.execute ("INSERT INTO EMPLOYEES VALUES " +
 "('Greg', 'Software Engineer', 45000)");

Example 3-13. Testing the JDBC-based table (continued)

130 | Chapter 3, Tables and Trees

#25 Export Table Data to an Excel Spreadsheet
HACK

The createSampleTable() method is something you could rewrite to insert
your own types and values easily. In fact, because it returns the name of the
table you’ve created, you could create many different tables in your data-
base and test out how the model handles them. Or, use a loop to create lots
of rows and see how long it takes to load them.

At any rate, when run, the TestJDBCTable produces a JFrame with the data-
base table’s contents, as seen in Figure 3-9.

H A C K

#25
Export Table Data to an Excel Spreadsheet Hack #25

I don’t want an entire spreadsheet API, I just want to get a table of values into
Excel.

Most corporate intranet applications require interfacing with standard office
software, which usually means Microsoft Word and Excel. Interfacing with
Microsoft products can be tricky business. Whole suites of products have
been created just to address this issue. One of the most commonly requested
features is generating a report from the data in a JTable. You could use a
library like Poi (http://jakarta.apache.org/poi/) to read and write Excel files
natively, but most of the time that’s overkill—you probably don’t need to
support Excel formulas or complicated formatting. All most users really
want to do is dump tabular data into a file that will open in Excel with a
double-click. And with a little bit of cleverness, you can do just that.

 statement.close();

 return "EMPLOYEES";
 }
}

Figure 3-9. JTable populated from a database

Example 3-13. Testing the JDBC-based table (continued)

Export Table Data to an Excel Spreadsheet #25

Chapter 3, Tables and Trees | 131

HACK

Dealing with Formatting
Excel uses a complicated database-oriented format for its native .xls files.
This format defines the formulas, colors, charts and every other advanced
feature Excel has supported over the years. Writing to the native .xls format
is complicated but, fortunately, Excel supports other formats. The one I’m
going to target is known as a tab-delimited text file, so called because tabs
separate each field. This format is just plain text, so it will be super easy to
write from Java, and open up in Excel with just a double-click.

Tab-delimited files separate each field with a tab character and each row
with a standard Unix line break, \n. Since Swing defines a convenient
getValueAt() method in the TableModel interface, it’s very easy to just loop
through the table cells and write it out to a file, as seen in Example 3-14.

This code defines an ExcelExporter class with a single method exportTable(),
taking a JTable and a file. All JTables contain an implementation of the
TableModel interface that holds the actual data. The code first retrieves the
table model and opens a new FileWriter to the file. I used a FileWriter
instead of a FileOutputStream because Writers automatically handle text
encoding issues. This means you don’t have to worry about the language the
program is running on. Using a Writer ensures that the code will work with
any encoding from simple ASCII to triple-byte Korean Unicode.

Example 3-14. Exporting tab-delimited data from a TableModel

public class ExcelExporter {
 public ExcelExporter() { }
 public void exportTable(JTable table, File file) throws IOException {
 TableModel model = table.getModel();
 FileWriter out = new FileWriter(file);

 for(int i=0; i < model.getColumnCount(); i++) {
 out.write(model.getColumnName(i) + "\t");
 }
 out.write("\n");

 for(int i=0; i< model.getRowCount(); i++) {
 for(int j=0; j < model.getColumnCount(); j++) {
 out.write(model.getValueAt(i,j).toString()+"\t");
 }
 out.write("\n");
 }
 out.close();
 System.out.println("write out to: " + file);
 }

132 | Chapter 3, Tables and Trees

#25 Export Table Data to an Excel Spreadsheet
HACK

The TableModel also defines the names of the columns, which are typically
printed at the top of each column in the final spreadsheet. The code loops
through the column names and prints them to the writer, following each
column name with a \t, which represents the tab character, and finally an \n
(the Unix newline character, which will work fine on both Mac OS X and
Windows) at the end of the line. After that, it loops through each data row
in turn, again separating fields with tabs and rows with the newline. After
writing the fields, it closes the file and prints a status message. And with
that, the core of the table export is done.

The main method in Example 3-15 creates a JTable with sample data and a
button to generate an Excel file. First, it creates sample data as string arrays,
and then it builds a new DefaultTableModel (the standard TableModel imple-
mentation that comes with Swing), nesting it inside of a JTable and then a
JScrollPane.

Example 3-15. Testing JTable data export

public static void main(String[] args) {
 String[][] data = {
 { "Housewares", "$1275.00" },
 { "Pets", "$125.00" },
 { "Electronics", "$2533.00" },
 { "Menswear", "$497.00" }
 };
 String[] headers = { "Department", "Daily Revenue" };

 JFrame frame = new JFrame("JTable to Excel Hack");
 DefaultTableModel model = new DefaultTableModel(data,headers);
 final JTable table = new JTable(model);
 JScrollPane scroll = new JScrollPane(table);

 JButton export = new JButton("Export");
 export.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 try {
 ExcelExporter exp = new ExcelExporter();
 exp.exportTable(table, new File("results.xls"));
 } catch (IOException ex) {
 System.out.println(ex.getMessage());
 ex.printStackTrace();
 }
 }
 });

 frame.getContentPane().add("Center",scroll);
 frame.getContentPane().add("South",export);
 frame.pack();
 frame.setVisible(true);
}

Search Through JTables Easily #26

Chapter 3, Tables and Trees | 133

HACK

The export button has a simple action listener that calls exportTable() on a
new ExcelExporter. The trick to getting Excel to open the file with a double-
click on the desktop is to name the file with an .xls extension. It won’t be a
real Excel file, but the operating system will think that it is and pass it to
Excel anyway. Then Excel will look at the file, realize it’s actually a tab-
delimited text file, and load it with the right import filter.

Figure 3-10 shows what the program looks like.

H A C K

#26
Search Through JTables Easily Hack #26

Use this nifty TableModel decorator to search your JTables with minimal
fuss.

Tables have a tendency to get very big; thousands of rows are not uncom-
mon. But this causes some severe navigational issues for your users, like
extremely small scrollbar handles, which make it difficult for them to find
the information they need. One way to get around these navigational issues
is to allow your users to search the table data rather than displaying it all.
This hack shows you how to simply search your tables using the Apache
open source Lucene search engine.

JTable Search Strategy
Rather than a custom TableModel with integrated Lucene functionality, you
can build a TableModel decorator instead. This will allow you to search pre-
existing TableModels without modifying them directly.

This works by keeping a set of links to an internal table model based on
search criteria. For example, say you have 10 rows in your original table
model, and you have a search that limits the results to 5 of those rows. Your
inner TableModel will remain unchanged, but your TableModel decorator will
have links to only five of the inner TableModel rows—making it look like it
only has five rows of data.

Figure 3-10. An Excel-exporting JTable

134 | Chapter 3, Tables and Trees

#26 Search Through JTables Easily
HACK

Decorating the TableModel
Start by creating a class called TableSearcher that implements TableModel.

Next, create a simple decorator (or wrapper) that implements all of the
TableModel methods and forwards the calls to the inner model. Depending
on your IDE, you may be able to automate the process (IntelliJ IDEA does it
for me). You’ll have to modify a few of the methods, but most are going to
remain unchanged. You don’t have to touch the getColumnName() and
getColumnClass() methods, for example. Just forward them to the inner
TableModel:

public String getColumnName(int column) {
 return tableModel.getColumnName(column);
}

public Class getColumnClass(int column) {
 return tableModel.getColumnClass(column);
}

The getColumnCount() method is slightly different in that you have to check
if the TableModel is null. This is because the table calls getColumnCount()
first and calls other column methods only if there are valid columns. Here is
the code with the null check:

public int getColumnCount() {
 return (tableModel == null) ? 0 : tableModel.getColumnCount();
}

Creating Logical Links to the Inner Table Model
Now, you need to introduce the idea of links between the inner table model
and this table model. Create a Collection called rowToModelIndex. In it,
you’ll store Integers corresponding to the inner table model row number, at
the index that corresponds to this table model’s row. So, if the fifth row in
the inner model is the first row in this model, you would store an Integer
value of 5 as the first in the rowtoModelIndex.

This method clears the searching state by making a one-to-one mapping of
the inner table model to this table model:

private void clearSearchingState(){
 searchString = null;
 rowToModelIndex.clear();
 for (int t=0; t<tableModel.getRowCount(); t++){
 rowToModelIndex.add(new Integer(t));
 }
}

Now, you need to change the row reference methods to indirect through the
row to model index before hitting the inner table model:

Search Through JTables Easily #26

Chapter 3, Tables and Trees | 135

HACK

public int getRowCount() {
 return (tableModel == null) ? 0 : rowToModelIndex.size();
}
public boolean isCellEditable(int row, int column) {
 return tableModel.isCellEditable(getModelRow(row), column);
}

public Object getValueAt(int row, int column) {
 return tableModel.getValueAt(getModelRow(row), column);
}

public void setValueAt(Object aValue, int row, int column) {
 tableModel.setValueAt(aValue, getModelRow(row), column);
}

Indexing
Lucene is a document indexing and searching tool, available from http://
lucene.apache.org/. To incorporate it into a Java application, you simply need
to put its JAR file, typically named something like lucene-version.jar, into
your classpath. For this hack, you’ll need the following import statements:

import org.apache.lucene.store.*;
import org.apache.lucene.document.*;
import org.apache.lucene.analysis.*;
import org.apache.lucene.index.*;
import org.apache.lucene.search.*;
import org.apache.lucene.queryParser.*;

Most developers use Lucene with documents, but you can fake it to index a
table model instead. First, you need to create a Lucene index, where all of
the internal Lucene links are stored. You should use a RAMDirectory rather
than a file-based directory in order to keep everything portable. You’ll also
need an Analyzer that helps communicate between data and the index, as
well as an IndexWriter that actually writes to the index:

directory = new RAMDirectory();
analyzer = new WhitespaceAnalyzer();
IndexWriter writer = new IndexWriter(directory, analyzer, true);

For the purposes of indexing, think of every row as a document and every
column as a word or a set of words (called a Field in Lucene-speak) for that
document. Now, loop through the table model’s rows, creating a new
Document for each row and add Fields per column:

for (int row=0; row < tableModel.getRowCount(); row++){
 Document document = new Document();
 //add fields
 writer.addDocument(document);
}

136 | Chapter 3, Tables and Trees

#26 Search Through JTables Easily
HACK

First, add a field with the row index in the inner table model. You’ll use this
to link back to that row later in the row-to-model index. Each field needs a
name and a value, so create a constant called ROW_NUMBER that you’ll refer to
later when retrieving the links:

Document document = new Document();
document.add(new Field(ROW_NUMBER, "" + row, true, true, true));
//more indexing to come
writer.addDocument(document);

Then, iterate through all of the columns and add a Field for each column
name/value pair:

for (int column=0; column < tableModel.getColumnCount(); column++){
 String columnName = tableModel.getColumnName(column);
 String columnValue = String.valueOf(
 tableModel.getValueAt(row, column)
).toLowerCase();
 document.add(new Field(columnName, columnValue, true, true, true));
}

Searching
There are two parts to the searching. First, you have to hit the Lucene index
with a search string. This will give you a list of rows in the inner table model
that match the search. Then you need to reset the row-to-model index,
pointing to those rows.

Getting results from the index. To actually get the search results, you need an
IndexSearcher that speaks to the index and returns your search results:

IndexSearcher is = new IndexSearcher(directory);

You want to make sure all of the fields get searched, so iterate through the
table model and put all of the column names in an array that you’ll pass into
the Lucene search call:

String[] fields = new String[tableModel.getColumnCount()];
for (int t=0; t<tableModel.getColumnCount(); t++){
 fields[t]=tableModel.getColumnName(t);
}

Next, create a Query object to pass to the IndexSearcher; there is a helper
method on MultiFieldQueryParser to do just that. Pass it the fields you want
to search, your search String, and the analyzer:

Query query = MultiFieldQueryParser.parse(searchString, fields, analyzer);

Then run the search. Hits is the object type returned by the search call.
You’ll process the hits in the next section when you map the results back to
the inner table model:

Hits hits = is.search(query);

Search Through JTables Easily #26

Chapter 3, Tables and Trees | 137

HACK

Recreating the inner table model links. Start by clearing the row-to-model
index to get rid of the previous results:

rowToModelIndex.clear();

The Hits object contains a number of Documents, just like the ones you put
into the index. Remember, you put a field in each Document with the name
ROW_NUMBER. So, now you can iterate through the Documents and get the row
number from the field value:

for (int t=0; t<hits.length(); t++){
 Document document = hits.doc(t);
 Field field = document.getField(ROW_NUMBER);
 Integer rowNumber = new Integer(field.stringValue());
 }

The last step is to add an Integer to the row-to-model index with the row
number retrieved from the document. Then, tie up all the loose ends by fir-
ing a table model update.

Try It Out
Because you’re creating this table model as a decorator, it’s extremely easy
to use. The normal code to set up a JTable and a custom table model
MyTableModel looks like this:

JTable table = new JTable();
MyTableModel myTableModel = new MyTableModel();
table.setTableModel(myTableModel);

All you need to do is wrap the MyTableModel with a TableSearcher and set the
table model for the JTable as the TableSearcher:

JTable table = new JTable();
MyTableModel myTableModel = new MyTableModel();
TableSearcher tableSearcher = new TableSearcher(myTableModel);
table.setTableModel(tableSearcher);

Then, you just need to call the search method at the appropriate time. Usu-
ally, you’ll have a search field to enter the search and a search button to start
the search, so just attach an action listener to them both to fire off a search:

final JTextField searchField = new JTextField();
JButton searchButton = new JButton("Go");

ActionListener searchListener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 searchTableModel.search(searchField.getText().trim().toLowerCase());
 searchField.requestFocus();
 }
};

138 | Chapter 3, Tables and Trees

#26 Search Through JTables Easily
HACK

searchButton.addActionListener(searchListener);
searchField.addActionListener(searchListener);

Finishing Touches
You’ve got the bare bones down, but there are a few things you’ll want to
add to make everything a little more functional. Here are a couple of ideas.

Listen to inner table updates. If the inner table model changes, you need to
know about it. Otherwise, your search results will not jive with the inner
table model. The simple solution is to add a TableModelListener to the inner
table to rebuild the index, and then rerun the search against the new index.
Here’s the code:

private class TableModelHandler implements TableModelListener {
 public void tableChanged(TableModelEvent e) {
 // If we're not searching, just pass the event along.
 if (!isSearching()) {
 clearSearchingState();
 reindex();
 fireTableChanged(e);
 return;
 }
 // Something has happened to the data that may
 // have invalidated the search.
 reindex();
 search(searchString);
 fireTableDataChanged();
 }
}

You should consider extending this hack if you have serious performance
considerations. You could narrow down the area of the table that changed
to fire more accurate events to the table.

Clear search results for blank search. When users search with an empty
string, they typically expect that to clear the search. The easiest way to do
this is to check for an empty string in the search method. If they search with
an empty string, clear the search and rerun the method that indexes all of
the inner table model without a search:

public void search(String searchString){
 if (searchString == null || searchString.equals("")){
 clearSearchingState();
 fireTableDataChanged();
 return;
 }

 //rest of search method
}

Animate JTree Drops #27

Chapter 3, Tables and Trees | 139

HACK

If you wanted to hack further, you could make this and other small func-
tions like it each separate decorators. Then you could combine them at will,
depending on the needs of your application.

Wrapping Up
This table model decorator is now part of the main Lucene distribution. It’s
part of a new lucene-contrib project for Swing. In addition to this table
model decorator, there is also a list decorator. I imagine the search logic is
going to beef up, so definitely check out the Lucene site for more informa-
tion. You can get read-only web access to the Lucene repository at http://svn.
apache.org/repos/asf/lucene/java/trunk/contrib/swing/. Also note that because
these models are officially part of lucene-contrib, they are going to be distrib-
uted with all new Lucene builds. So, they are going to come free with
Lucene in the future.

—Jonathan Simon

H A C K

#27
Animate JTree Drops Hack #27

Who said working with tree paths was hard? Now you can reorganize tree
hierarchies with drag-and-drop.

JTrees are great for representing hierarchy, but they’re not so hot as control
widgets. You might want to drag items inside a tree, or accept a drop from
some other part of your application, and it turns out not to be well suited to
that. The problem is that the JTree isn’t really a container, so from the
Swing programmer’s point of view, you see the tree’s visual representation,
but not the nodes within it.

The goal of this hack is to take a JTree, like the one shown in Figure 3-11,
and allow you to reorganize it through drag-and-drop. The bulk of the work
will be in animating and handling the drop. The payoff is that making a sin-
gle tree reorderable will also get you most of the way to making it a good
drag-and-drop participant with the rest of your application, since support-
ing drag-and-drop within the JTree requires you to make the tree a drag
source and a drop target.

The Code
If any of the forgoing sounds familiar, it should. Bringing drag-and-drop to
the JTree is very similar to supporting it for the JList. In fact, the JTree and
the JList have a lot in common—both use cell renderers, both are typically
put in JScrollPanes, etc.

140 | Chapter 3, Tables and Trees

#27 Animate JTree Drops
HACK

In fact, the code for this hack started as a straight port of the reorderable
JList hack [Hack #17], with obvious changes for the different helper classes
(TreeCellRenderer instead of ListCellRenderer) and different handling of the
model, since tree models are hierarchical.

To recap what needs to be done:

• The tree needs to implement the DragGestureListener (to start a drag),
the DropTargetListener (to handle the drop), and the DragSourceListener
(only to get the end-of-drop callback).

• The drag-and-drop implementations need to use the coordinates pro-
vided by drag-and-drop events to map to nodes of the tree as either the
node to drag or as potential drop targets.

• The renderer needs to use information about whether a to-be-rendered
cell is the drop target and to offer suitable visual feedback.

• The drop handling needs to remove the dragged node from its old loca-
tion and insert it at its new location.

Example 3-16 shows the main class (minus two inner classes that will be
introduced shortly).

Figure 3-11. JTree with drag-and-drop reordering

Example 3-16. JTree with drag-and-drop support

public class DnDJTree extends JTree
 implements DragSourceListener, DropTargetListener, DragGestureListener {

 static DataFlavor localObjectFlavor;
 static {
 try {

Animate JTree Drops #27

Chapter 3, Tables and Trees | 141

HACK

 localObjectFlavor =
 new DataFlavor (DataFlavor.javaJVMLocalObjectMimeType);
 } catch (ClassNotFoundException cnfe) { cnfe.printStackTrace(); }
 }
 static DataFlavor[] supportedFlavors = { localObjectFlavor };
 DragSource dragSource;
 DropTarget dropTarget;
 TreeNode dropTargetNode = null;
 TreeNode draggedNode = null;

 public DnDJTree () {
 super();
 setCellRenderer (new DnDTreeCellRenderer());
 setModel (new DefaultTreeModel(new DefaultMutableTreeNode("default")));
 dragSource = new DragSource();
 DragGestureRecognizer dgr =
 dragSource.createDefaultDragGestureRecognizer (this,
 DnDConstants.ACTION_MOVE,
 this);
 dropTarget = new DropTarget (this, this);
 }

 // DragGestureListener
 public void dragGestureRecognized (DragGestureEvent dge) {
 System.out.println ("dragGestureRecognized");
 // find object at this x,y
 Point clickPoint = dge.getDragOrigin();
 TreePath path = getPathForLocation (clickPoint.x, clickPoint.y);
 if (path == null) {
 System.out.println ("not on a node");
 return;
 }
 draggedNode = (TreeNode) path.getLastPathComponent();
 Transferable trans = new RJLTransferable (draggedNode);
 dragSource.startDrag (dge,Cursor.getDefaultCursor(),
 trans, this);
 }
 // DragSourceListener events
 public void dragDropEnd (DragSourceDropEvent dsde) {
 System.out.println ("dragDropEnd()");
 dropTargetNode = null;
 draggedNode = null;
 repaint();
 }
 public void dragEnter (DragSourceDragEvent dsde) {}
 public void dragExit (DragSourceEvent dse) {}
 public void dragOver (DragSourceDragEvent dsde) {}
 public void dropActionChanged (DragSourceDragEvent dsde) {}
 // DropTargetListener events
 public void dragEnter (DropTargetDragEvent dtde) {
 System.out.println ("dragEnter");

Example 3-16. JTree with drag-and-drop support (continued)

142 | Chapter 3, Tables and Trees

#27 Animate JTree Drops
HACK

 dtde.acceptDrag(DnDConstants.ACTION_COPY_OR_MOVE);
 System.out.println ("accepted dragEnter");
 }
 public void dragExit (DropTargetEvent dte) {}
 public void dragOver (DropTargetDragEvent dtde) {
 // figure out which cell it's over, no drag to self
 Point dragPoint = dtde.getLocation();
 TreePath path = getPathForLocation (dragPoint.x, dragPoint.y);
 if (path == null)
 dropTargetNode = null;
 else
 dropTargetNode = (TreeNode) path.getLastPathComponent();
 repaint();
 }
 public void drop (DropTargetDropEvent dtde) {
 System.out.println ("drop()!");
 Point dropPoint = dtde.getLocation();
 // int index = locationToIndex (dropPoint);
 TreePath path = getPathForLocation (dropPoint.x, dropPoint.y);
 System.out.println ("drop path is " + path);
 boolean dropped = false;
 try {
 dtde.acceptDrop (DnDConstants.ACTION_MOVE);
 System.out.println ("accepted");
 Object droppedObject =
 dtde.getTransferable().getTransferData(localObjectFlavor);
 MutableTreeNode droppedNode = null;
 if (droppedObject instanceof MutableTreeNode) {
 // remove from old location
 droppedNode = (MutableTreeNode) droppedObject;
 ((DefaultTreeModel)getModel()).
 removeNodeFromParent(droppedNode);
 } else {
 droppedNode = new DefaultMutableTreeNode (droppedObject);
 }
 // insert into spec'd path. if dropped into a parent
 // make it last child of that parent
 DefaultMutableTreeNode dropNode =
 (DefaultMutableTreeNode) path.getLastPathComponent();
 if (dropNode.isLeaf()) {
 DefaultMutableTreeNode parent =
 (DefaultMutableTreeNode) dropNode.getParent();
 int index = parent.getIndex (dropNode);
 ((DefaultTreeModel)getModel()).insertNodeInto (droppedNode,
 parent, index);
 } else {
 ((DefaultTreeModel)getModel()).insertNodeInto (droppedNode,
 dropNode,
 dropNode.getChildCount());
 }
 dropped = true;
 } catch (Exception e) {

Example 3-16. JTree with drag-and-drop support (continued)

Animate JTree Drops #27

Chapter 3, Tables and Trees | 143

HACK

In several places in this code—dragGestureRecognized(), dragOver(), and
drop()—you can see the use of JTree’s getPathForLocation(), which uses an
x,y pair from the event to get a TreePath. The last node of this path is the
item under the cursor, or null if the cursor is over some non-node part of
the JTree. In dragGestureRecognized(), this is used to start the drag. In
dragOver() and drop(), it’s used to determine which node will potentially
be the drop target. The difference between these two is that dragOver()
remembers the drop target node for use in repainting, while drop() actually
handles the drop. Specifically, drop() gets the Transferable from the
DropTargetDropEvent and, if it is a MutableTreeNode, moves it within the
TreeModel. If it isn’t a node, it’s assumed that this is from some other part of
your GUI, and wraps it with a new MutableTreeNode. That block of code isn’t
used in this demo, but it might be useful when you extend this code.

One other thing to note about drop() is that it has different handling based
on whether the drop is occurring on a leaf or a branch. On a leaf, the
dropped item is inserted before the target. On a branch—i.e., a parent to
other nodes—the dropped item is inserted as the last child of the branch.

The RJLTransferable class shown here is used as a fairly straightforward
Transferable wrapper around local Java objects:

class RJLTransferable implements Transferable {
 Object object;
 public RJLTransferable (Object o) {
 object = o;
 }
 public Object getTransferData(DataFlavor df)
 throws UnsupportedFlavorException, IOException {
 if (isDataFlavorSupported (df))
 return object;
 else
 throw new UnsupportedFlavorException(df);
 }
 public boolean isDataFlavorSupported (DataFlavor df) {
 return (df.equals (localObjectFlavor));
 }

 e.printStackTrace();
 }
 dtde.dropComplete (dropped);
 }
 public void dropActionChanged (DropTargetDragEvent dtde) {}

 // main() method (unit test) goes here

 // inner classes go here
}

Example 3-16. JTree with drag-and-drop support (continued)

144 | Chapter 3, Tables and Trees

#27 Animate JTree Drops
HACK

 public DataFlavor[] getTransferDataFlavors () {
 return supportedFlavors;
 }
}

The other helper inner class is where a lot of the “good stuff” happens.
DnDJTreeCellRenderer, listed in the following code, has to be aware of what
node is the potential drop target—this is an instance variable set by
dragOver() in the main class—and if the node to be rendered is the drop tar-
get, it draws it differently:

class DnDTreeCellRenderer
 extends DefaultTreeCellRenderer {
 boolean isTargetNode;
 boolean isTargetNodeLeaf;
 boolean isLastItem;
 int BOTTOM_PAD = 30;
 public DnDTreeCellRenderer() {
 super();
 }
 public Component getTreeCellRendererComponent (JTree tree,
 Object value,
 boolean isSelected,
 boolean isExpanded,
 boolean isLeaf,
 int row,
 boolean hasFocus) {
 isTargetNode = (value == dropTargetNode);
 isTargetNodeLeaf = (isTargetNode &&
 ((TreeNode)value).isLeaf());
 // isLastItem = (index == list.getModel().getSize()-1);
 boolean showSelected = isSelected &
 (dropTargetNode == null);
 return super.getTreeCellRendererComponent (tree, value,
 isSelected, isExpanded,
 isLeaf, row, hasFocus);

 }

 public void paintComponent (Graphics g) {
 super.paintComponent(g);
 if (isTargetNode) {
 g.setColor(Color.black);
 if (isTargetNodeLeaf) {
 g.drawLine (0, 0, getSize().width, 0);
 } else {
 g.drawRect (0, 0, getSize().width-1, getSize().height-1);
 }
 }
 }
}

Animate JTree Drops #27

Chapter 3, Tables and Trees | 145

HACK

The special rendering is a two-step process. First, getTreeCellRendererComponent()
figures out if the cell to be rendered is the drop target, and if so, it sets a
local boolean. It sets another boolean to indicate that the drop target cell is a
leaf. Having set these booleans, it returns the superclass’s implementation.
In short order, the renderer’s paint() method is called. In the paint(), you
can use the booleans to apply special rendering. In this version, a drop tar-
get that is a leaf gets a line drawn in its top inset, suggesting that the
dropped item will be inserted before this node. If rendering a drop target
that is a branch—i.e., it’s not a leaf—then the special rendering puts a box
around the component.

Running the Code
The main method, shown in Example 3-17, builds a reorderable tree and
puts it in a JFrame.

Example 3-17. Testing the drag-and-drop JTree

public static void main (String[] args) {
 JTree tree = new DnDJTree();
 DefaultMutableTreeNode root = new DefaultMutableTreeNode("People");
 DefaultMutableTreeNode set1 = new DefaultMutableTreeNode("Set 1");
 DefaultMutableTreeNode set2 = new DefaultMutableTreeNode("Set 2");
 DefaultMutableTreeNode set3 = new DefaultMutableTreeNode("Set 3");
 set1.add (new DefaultMutableTreeNode ("Chris"));
 set1.add (new DefaultMutableTreeNode ("Kelly"));
 set1.add (new DefaultMutableTreeNode ("Keagan"));
 set2.add (new DefaultMutableTreeNode ("Joshua"));
 set2.add (new DefaultMutableTreeNode ("Kimi"));
 set3.add (new DefaultMutableTreeNode ("Michael"));
 set3.add (new DefaultMutableTreeNode ("Don"));
 set3.add (new DefaultMutableTreeNode ("Daniel"));
 root.add (set1);
 root.add (set2);
 set2.add (set3);
 DefaultTreeModel mod = new DefaultTreeModel (root);
 tree.setModel (mod);
 // expand all
 for (int i=0; i<tree.getRowCount(); i++)
 tree.expandRow (i);
 // show tree
 JScrollPane scroller =
 new JScrollPane (tree,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 JFrame frame = new JFrame ("DnD JTree");
 frame.getContentPane().add (scroller);
 frame.pack();
 frame.setVisible(true);
}

146 | Chapter 3, Tables and Trees

#27 Animate JTree Drops
HACK

Figure 3-12 shows the animation of a drag. In this case, the “Chris” node is
about to be dropped on top of the “Michael” node.

Because the drop is occurring over a leaf, the custom rendering shows a line
on top of the “Michael” node, meaning that “Chris” will be inserted before
“Michael”. The result of the drop is shown in Figure 3-13.

Figure 3-12. Dragging a node within a JTree

Figure 3-13. Dropping a node within a JTree

Animate JTree Drops #27

Chapter 3, Tables and Trees | 147

HACK

In case that wasn’t such a good idea, Figure 3-14 shows the “Chris” node
being dragged back to where it was. In this case, the drag is over the “Set 1”
branch, which causes it to be drawn with a box around it, suggesting that
the drop will be “into” the branch.

The drop makes the dragged node the last child of the “Set 1” branch, as
shown in Figure 3-15.

Figure 3-14. Dragging a node to a branch

Figure 3-15. Dropping a node onto a branch

148 | Chapter 3, Tables and Trees

#27 Animate JTree Drops
HACK

This code is primarily focused on making a single JTree reorderable. If you
want to make drag-and-drop work between widgets in your GUI, the big-
gest change you’ll need to make is to have the drop() method not remove
the dragged node from the tree’s model, since you can’t assume that the
dragged item is even a node in this tree. A little bit of checking the event
source makes it easy enough to find what scenario you’re dealing with.

149

Chapter 4 C H A P T E R F O U R

File Choosers
Hacks 28–32

Ah, the poor JFileChooser. It’s probably not anybody’s favorite class in
Swing, and it’s quite likely the anti-favorite of many developers. Prior to Java
1.4, the Metal version had an “icon view” button that actually didn’t do any-
thing—not that it was worth writing home about once it was implemented.
Little glitches like this make JFileChooser the whipping boy of many Swing
developers. Apple’s Java guidelines for Mac OS X actually advocate giving
up on the JFileChooser altogether and going back to the AWT FileDialog!

This chapter is here to…well, if not to praise the JFileChooser, then cer-
tainly not to bury it either. This is Swing after all, and that means there are
all sorts of places that you can hack in and embellish functionality to give
the user more power, or to make a component smarter about the contents it
displays.

H A C K

#28
Add a Right-Click Context Menu
to the JFileChooser Hack #28

Improve the native platform fidelity of the JFileChooser by adding a
contextual menu that lets the user create new folders and delete files.

The standard JFileChooser that comes with Swing is quite limited. It doesn’t
follow shortcuts or any other linked files. It doesn’t have image previews or
even a right-click menu. These are all features that users expect to see.
Worse, these are the kinds of details that continue to reinforce the belief that
Swing apps are inferior to native ones.

This hack will tackle the first limitation, the lack of a context menu. Some
platform file choosers—Windows Explorer in particular—provide users
with a context menu, also known as a right-click menu. This provides fast
access to commonly used functions like Delete and New Folder. Java 5.0
finally added a context menu to the file chooser, but if you want to target

150 | Chapter 4, File Choosers

#28 Add a Right-Click Context Menu to the JFileChooser
HACK

the millions of users out there with older versions of Java, then you need
your own implementation. This hack creates a right-click menu on the
JFileChooser to give the user those missing features.

The goal of this task is to create a contextual menu. This means it’s a menu
that pops up when you hit the right mouse button (or Control-click on one-
button mice). It also is contextual, or context sensitive. This means the menu
changes—or does something different—depending on what you currently
have selected. In this case, there will be two actions: Delete will delete the
currently selected file or directory, if one is selected; New Folder will create
a new folder (called, not surprisingly, New Folder) in the current directory.
Both of these actions depend on the current state of the file selection, so
they are considered context sensitive.

The Problem
For the most part, Swing is quite extensible, but often only in ways that the
Swing team thought of beforehand. The JFileChooser has ways to change
the rendering of file icons, filtering the file list, adding components, and
changing the text. It does not have any way to add pop-up menus, though.
In short, we’ll have to hack it, and there’s no better way to start than by
reusing another hack.

Chapter 8 has a hack for adding pop-up menu support to any frame; see
“Create a Global Right-Click” [Hack #57]. By reusing its RightClickGlassPane,
you can start off with a pop-up menu in place. That just leaves making a
connection between the pop up and the file chooser component. Sounds
easy, right? Well, if it were easy, it wouldn’t be in this book!

First, create a JFileChooser subclass and attach the right-click glass pane:

public class ContextMenuFileChooser extends JFileChooser {

 protected Component right_click_pane;

 public ContextMenuFileChooser() {
 super();
 JPopupMenu popup = new JPopupMenu();
 popup.add(new DeleteAction(this));
 popup.add(new NewFolderAction(this));
 right_click_pane = new RightClickGlassPane(this,popup);
 }
}

This code defines a new subclass of JFileChooser—ContextMenuFileChooser.
The constructor builds a custom subclass of the RightClickGlassPane and a
new JPopupMenu pre-filled with two custom actions: one for deleting files and
one for creating new folders.

Add a Right-Click Context Menu to the JFileChooser #28

Chapter 4, File Choosers | 151

HACK

With the RightClickGlassPane initialized, you need to install it in the actual
window that contains the JFileChooser. While you can create your own
window, the most common usage of JFileChooser is to show it with the
showDialog() method; this method creates a new window and installs the
chooser in it automatically. However, this means that you have no access to
the real window until it’s already on screen. Fortunately, the Swing team
thought of this (let’s give them some credit) and provided the createDialog()
function. This protected method can be overridden to modify the dialog
before it shows up on screen. A new implementation of createDialog() to
add to ContextMenuFileChooser is shown here:

protected JDialog createDialog(Component parent) {
 JDialog dialog = super.createDialog(parent);

 // create the right-click glass pane.
 dialog.setGlassPane(right_click_pane);
 right_click_pane.setVisible(true);

 return dialog;
}

With this code in place, you can right-click anywhere on the file chooser to
see the context menu. It’s pretty useless, however, since the menu items
don’t actually do anything. You still have to create the Delete and New
Folder actions. The JFileChooser API makes this pretty easy, though:

class DeleteAction extends AbstractAction {
 protected JFileChooser chooser;
 public DeleteAction(JFileChooser chooser) {
 super("Delete");
 this.chooser = chooser;
 }
 public void actionPerformed(ActionEvent evt) {
 File file = chooser.getSelectedFile();
 if(file != null) {
 file.delete();
 chooser.rescanCurrentDirectory();
 }
 }
}

The new DeleteAction above is a standard AbstractAction subclass, with a
small change: it requires a JFileChooser in its constructor. The action needs
the chooser to tell it which file has been selected. In the actionPerformed()
implementation, you can see that the action gets the selected file, deletes it,
and then tells the chooser to refresh itself. That’s it! Pretty simple.

152 | Chapter 4, File Choosers

#28 Add a Right-Click Context Menu to the JFileChooser
HACK

The NewFolderAction is similar and just as simple:

class NewFolderAction extends AbstractAction {
 protected JFileChooser chooser;
 public NewFolderAction(JFileChooser chooser) {
 super("New Folder");
 this.chooser = chooser;
 }
 public void actionPerformed(ActionEvent evt) {
 File cwd = chooser.getCurrentDirectory();
 if(cwd != null) {
 File new_dir = new File(cwd,"New Folder");
 new_dir.mkdir();
 chooser.rescanCurrentDirectory();
 }
 }
}

With these two actions in place, the custom file chooser will do exactly what
we want it to do: pop up a right-click menu and perform the two actions
when selected.

There’s one glaring problem with this solution, though. The menu pops up
no matter where the user clicks in the dialog. This means the menu can
appear even when it’s not over the file selection area. The only way to fix
this glitch is to trigger the pop-up menu only when it’s over the correct
component. To do this, create an anonymous inline subclass of
RightClickGlassPane that overrides the redispatchMouseEvent() method. In
this new method, check to see if a right mouse click is over the correct com-
ponents before showing the menu:

right_click_pane = new RightClickGlassPane(this,popup) {
 protected void redispatchMouseEvent(MouseEvent e, boolean repaint) {
 Component component = getRealComponent(e.getPoint());
 if(component == null) { return; }
 String chooser_class =
 "javax.swing.plaf.metal.MetalFileChooserUI$5";
 if(component.getClass().getName().equals(chooser_class)) {
 super.redispatchMouseEvent(e,repaint);
 } else {
 doDispatch(e);
 }
 }
};

There’s one caveat here. In order to detect the file selection component, you
have to know which class actually draws the file selection on screen. The
JFileChooser doesn’t expose this component, and digging through the
source code only reveals that it’s an anonymous inner class. With a runtime
debugger, I found out that the name of the class we want is javax.swing.
plaf.metal.MetalFileChooserUI$5—at least when you are using the Metal

Add a Right-Click Context Menu to the JFileChooser #28

Chapter 4, File Choosers | 153

HACK

L&F. By testing for that classname, you can detect the file selection widget;
however, this will only work under the Metal L&F. For other L&Fs (or ver-
sions of Metal other than JDK 1.4), you’ll need to look for a different class-
name. A better implementation of this hack would test for class strings from
all of the most common Look and Feels on the major Java platforms.

I’ll leave that task to you as an exercise. Have a ball!

With all the code in place, you can create a main() method that tests out the
new ContextMenuFileChooser:

public static void main(String[] args) {
 final JFileChooser jfc = new ContextMenuFileChooser();
 jfc.showOpenDialog(null);
 System.exit(0);
}

Figure 4-1 shows what the finished JFileChooser looks like.

This hack won’t work with JDK 1.5 because that
JFileChooser already provides its own context menu.

Figure 4-1. Context-sensitive menu

154 | Chapter 4, File Choosers

#29 Display Shortcuts in the JFileChooser
HACK

H A C K

#29
Display Shortcuts in the JFileChooser Hack #29

This hack will customize the JFileChooser to recognize shortcut (linked)
folders and overlay them with a link graphic, mimicking the native Windows
File Explorer.

Another of JFileChooser’s glaring bugs is the lack of any support for linked
directories. This is hardly surprising, as Java itself has no understanding of
linked directories. Most operating systems support linked files, however,
and often indicate to the user that a file is linked—for example, by drawing
an arrow overlaid on top of the folder or directory icon. Compare the typi-
cal JFileChooser in Figure 4-2 to the standard Windows file chooser in
Figure 4-3. There’s more than a small difference! No wonder it’s hard to get
folks to move to Swing.

Like every Swing component, the look of the JFileChooser is controlled by
the installed Look and Feel (L&F). However, the JFileChooser also uses a
custom class similar to a table cell renderer for drawing the actual files and
folders. That class, FileView, is the best place to start hacking the
JFileChooser’s display.

The FileView contains five methods that determine the names, icons, and
other attributes that are actually displayed in a JFileChooser. By overriding
these methods, you can change the look or text of any file. To draw shortcuts
as linked folders, you just need to override the getIcon() and isTraversable()
methods. getIcon() returns the icon to use when drawing the file.

Figure 4-2. Normal JFileChooser

Display Shortcuts in the JFileChooser #29

Chapter 4, File Choosers | 155

HACK

isTraversable() tells the file chooser if a given file is a directory type of
object, meaning the user can click and open it to list new files. These two
methods will transform a shortcut.lnk file into a shortcut directory with the
right icon.

For the sake of brevity, this is a Windows-specific hack. You
should be able to modify this hack easily to work with sym-
links on Unix and Linux, as well as Mac OS X. Consider it
homework!

To get started, create the ShortcutFileView class. This extends FileView,
overriding the isTraversable() method to return true if the isDirLink()
method indicates that the file is indeed a link (determined by looking for the
.lnk extension). If the file is not a link, isDirLink() will return null.

Notice that isTraversable() returns a Boolean instead of a
boolean. This allows a null to be returned in addition to the
true/false values that boolean would allow.

Any method of FileView subclasses that return null will cause the file
chooser to defer to its default file view, instead of using the custom view:

class ShortcutFileView extends FileView {

 public boolean isDirLink(File f) {

Figure 4-3. Standard Windows file chooser

156 | Chapter 4, File Choosers

#29 Display Shortcuts in the JFileChooser
HACK

 if(f.getName().toLowerCase().endsWith(".lnk")) {
 return true;
 }
 return false;
 }

 public Boolean isTraversable(File f) {
 if(isDirLink(f)) {
 return new Boolean(true);
 }
 return null;
 }
}

Below is a sample program to test the ShortcutFileView. It creates a new file
chooser, sets the file view to a new ShortcutFileView, and then opens the
dialog. It is important to set the view before the showOpenDialog() because
file choosers cannot be changed after they have been shown on screen:

public class DisplayShortcutTest {
 public static void main(String[] args) throws Exception {
 JFileChooser chooser = new JFileChooser();
 chooser.setFileView(new ShortcutFileView());
 chooser.showOpenDialog(null);
 }
}

This program changes the look of shortcuts to look like folders and be click-
able, but they still don’t have the link icon. This will require a bit more
work. The second method to override in the file view is the getIcon()
method. The plan is to get a standard folder icon then draw it onto a new
icon with the overlaid link graphic. This part will create a new JFileChooser
and get a reference to its normal file view. The following FileChooserUI code
forces the file chooser to initialize its Look and Feel subsystem, ensuring
that the FileView will be valid:

public Icon getIcon(File f) {
 if(isDirLink(f)) {

 JFileChooser chooser = new JFileChooser();
 FileChooserUI fcui = (FileChooserUI) UIManager.getUI(chooser);
 fcui.installUI(chooser);
 FileView def = fcui.getFileView(chooser);

Once you have the file view, you need to pull out a folder icon. You can do
this by asking for the icon of a known folder, in this case C:\windows:

 // get the standard icon for a folder
 File tmp = new File("C:\\windows");
 Icon folder = def.getIcon(tmp);

Display Shortcuts in the JFileChooser #29

Chapter 4, File Choosers | 157

HACK

 int w = folder.getIconWidth();
 int h = folder.getIconHeight();

Once you have the icon, you can build a new image to draw it on, and then
overlay the link graphic:

 // create a buffered image the same size as the icon
 Image img = new BufferedImage(w,h,
 BufferedImage.TYPE_4BYTE_ABGR);
 Graphics g = img.getGraphics();

 // draw the normal icon
 folder.paintIcon(chooser,g,0,0);

 // draw the shortcut image on top of the icon
 Image shortcut = new ImageIcon("shortcut.png").getImage();
 g.drawImage(shortcut,0,0,null);

 // clean up and return
 g.dispose();
 return new ImageIcon(img);
 }
 return super.getIcon(f);
}

That’s it. With the new icon created, your file chooser should look like
Figure 4-4.

Figure 4-4. JFileChooser showing a shortcut

158 | Chapter 4, File Choosers

#30 Real Windows Shortcut Support
HACK

H A C K

#30
Real Windows Shortcut Support Hack #30

Support Windows shortcuts by actually opening and parsing files with the
under-documented LNK format.

It’s one thing to properly display Windows shortcuts [Hack #29] by looking for
the .lnk extension and changing the default icon to look like a link. But
there’s a glaring flaw: when you click on the shortcut it doesn’t actually link
anywhere! This hack will make the shortcuts really work by hacking into the
undocumented shortcut files themselves.

Since links are not supported natively by the filesystem, Windows fakes it by
storing the shortcut metadata (path, icon, and other information) in a .lnk file.
When you click on the shortcut, the windows file manager reads the LNK file,
extracts the target file/directory path, and then opens a new window at the
real location. Your Java program can do the exact same thing using a custom
FileSystemView. The only tricky part is actually parsing the LNK files.

Microsoft has never documented the LNK file format, preferring native
Windows developers to use system APIs for all manipulation. Creative hack-
ers on the Web have reverse engineered most of the format, which fortu-
nately includes the parts you need to extract target filepaths.

Jesse Hager has compiled a great PDF describing the format
in detail. I used that document to write the code in this hack.
You can read the full document at http://www.i2s-lab.com/
Papers/The_Windows_Shortcut_File_Format.pdf.

The LNK files are binary data broken up into a header followed by a few
optional blocks of data. The format provides offsets that make parsing it
easy. The following code is the beginning of a LNK parser:

public class LnkParser {

 public LnkParser(File f) throws Exception {
 parse(f);
 }

 public void parse(File f) throws Exception {
 // read the entire file into a byte buffer
 FileInputStream fin = new FileInputStream(f);
 ByteArrayOutputStream bout = new ByteArrayOutputStream();
 byte[] buff = new byte[256];
 while(true) {
 int n = fin.read(buff);
 if(n == -1) { break; }
 bout.write(buff,0,n);

Real Windows Shortcut Support #30

Chapter 4, File Choosers | 159

HACK

 }
 fin.close();
 byte[] link = bout.toByteArray();

The class defines one important method, parse(), which accepts a File
object representing the LNK file. The first step is to load the entire file into a
byte buffer.

I have seen some versions of this code use a more stream-
oriented approach with loops that read byte by byte. Since
LNK files are always pretty small (usually under 5k), I felt
the extra memory was worth it to allow cleaner code using
index offsets.

Next comes the header parsing:

// get the flags byte
byte flags = link[0x14];

// get the file attributes byte
final int file_atts_offset = 0x18;
byte fileatts = link[file_atts_offset];
byte is_dir_mask = (byte)0x10;
if((fileatts & is_dir_mask) > 0) {
 is_dir = true;
} else {
 is_dir = false;
}

The header has a lot of values in it, but we are only interested in the values
at byte 0x14 (the flags) and at 0x18 (the file attributes). Each of these values is
8 bits (a byte), where each bit represents something, such as whether the
LNK points to a file or a directory. Because they are always at the same
place, you can just jump directly to them in the array and store the values.
To access a bit you need a mask, which is a number that lets you hide all of
the bits in a value that you don’t want, leaving only the bit you do want. To
use it, you AND (a bitwise operation specified by the & character) the value
and the mask together. Then you can just test if the final value is greater
than zero to see if that bit was set. If the 4th bit of the file attributes byte is
set (i.e., is equal to 1), then the target of this shortcut is a directory. The
fileatts and is_dir_mask are ANDed together. If the final value is greater
than zero, then the bit must have been set and the program sets the is_dir
variable to true; otherwise, it sets is_dir to false.

// if the shell settings are present, skip them
final int shell_offset = 0x4c;
int shell_len = 0;
if((flags & 0x1) > 0) {

160 | Chapter 4, File Choosers

#30 Real Windows Shortcut Support
HACK

 // the plus 2 accounts for the length marker itself
 shell_len = bytes2short(link,shell_offset) + 2;
}

LNK files have an optional block for shell settings, which are irrelevant for
the purposes of getting the target path. If the shell settings are present (indi-
cated by the 0th bit of the flags), then jump to the shell block, get its length
from the next 2 bytes, and then skip to the end. The if((flags & 0x1) >0)
section ANDs the flags value and a mask to get the 0th bit and see if there is
a shell block. If the shell block is not present, then you can just set the offset
to 0 and continue. bytes2short() is a simple routine that converts two bytes
into a short.

// get to the file block
int file_start = 0x4c + shell_len;

// get the local volume and local system values
int local_sys_off = link[file_start+0x10] + file_start;
real_file = getNullDelimitedString(link,local_sys_off);
p("real filename = " + real_file);

The file block starts 0x4c (76 in hexadecimal) bytes after the previous block
(or the headers if there was no previous block). Once you are at the file
block, you can pull out the 0x10th byte to find the offset to the local system
target filename.

If the directory was on a network drive, you would have to
look for a different offset, but I’ve assumed the file was local
to keep the code simple. A more robust implementation
would support both local and remote files.

Once you have the offset to the filename, pull it out as a null-delimited
string and save it in the real_file variable.

I referenced these two utility functions earlier. getNullDelimitedString looks
through the byte array starting at the requested offset. When it finds a null
value (0), it will return a substring from the starting offset to the last valid
character; that substring contains the filepath. bytes2short uses bit-shifting
to turn two bytes into a short integer:

static String getNullDelimitedString(byte[] bytes, int off) {
 int len = 0;
 // count bytes until the null character (0)
 while(true) {
 if(bytes[off+len] == 0) {
 break;
 }
 len++;
 }

Real Windows Shortcut Support #30

Chapter 4, File Choosers | 161

HACK

 return new String(bytes,off,len);
}

// convert two bytes into a short
// note, this is little-endian because it's for an
// Intel-only OS.
static int bytes2short(byte[] bytes, int off) {
 return bytes[off] | (bytes[off+1]<<8);
 }

If you learned low-level programming on RISC machines like
I did, you might be surprised that the second byte is being
shifted instead of the first. You must remember that short-
cut files are designed for Windows, which only runs on little-
endian processors. After writing this hack, I remembered
how much I hate bit flipping and byte manipulation. I proba-
bly switched to Java so early so that I would never have to
deal with data at the byte level again!

Now, the class just needs some getters to let the outside world use the
parser. These two methods expose the is_dir and real_file variables that
the parse() method sets:

private boolean is_dir;
public boolean isDirectory() {
 return is_dir;
}

private String real_file;
public String getRealFilename() {
 return real_file;
}

LNK Parser written, it’s now time to hand the shortcut information over to
the file chooser. JFileChoosers divide the file manipulation duties into two
helper classes. The FileView class controls the look of files [Hack #29], such as
names, icons, etc. The FileSystemView provides the JFileChooser with infor-
mation about the filesystem itself, including which files are directories. For
controlling directories, the two methods implemented here are particularly
relevant:

public class ShortcutFileSystemView extends FileSystemView {

public Boolean isTraversable(File f) {
 if(isDirLink(f)) {
 return new Boolean(true);
 }
 return super.isTraversable(f);
}

162 | Chapter 4, File Choosers

#30 Real Windows Shortcut Support
HACK

public File[] getFiles(File dir, boolean useFileHiding) {
 if(isDirLink(dir)) {
 dir = getRealFile(dir);
 }

 return super.getFiles(dir,useFileHiding);
}

The JFileChooser will call isTraversable() on each file to see if it is really a
folder. This does not control whether it uses a folder icon, but whether the
user can open up and follow the file as a directory. This implementation
simply calls the isDirLink() method (detailed shortly) to test the current
file. If it’s not a shortcut then it defers to the parent class.

getFiles() returns the directory listing of the given file. JFileChooser pro-
vides this to let developers mess with the file listing. You could use this to
prevent hidden files from showing or to restrict the user from areas of the
filesystem they shouldn’t be allowed to access. For this hack, the getFiles()
method will look for shortcuts and replace them with the real files they
point to by calling the getRealFile() method:

private boolean isDirLink(File f) {
 try {
 if(f.getName().toLowerCase().endsWith(".lnk")) {
 if(new LnkParser(f).isDirectory()) {
 return true;
 }
 }
 } catch (Exception ex) {
 System.out.println("ex: " + ex);
 ex.printStackTrace();
 }
 return false;
}

private File getRealFile(File file) {
 try {
 return new File(new LnkParser(file).getRealFilename());
 } catch (Exception ex) {
 System.out.println("ex: " + ex);
 ex.printStackTrace();
 return null;
 }
}

isDirLink() and getRealFile() are very simple. They just call the appropri-
ate function on the LnkParser and catch exceptions. By moving all of the
actual LNK handling code into the LnkParser, you could add support easily
to other kinds of links here just by adding a few more if statements.

To support drawing the icons, just modify the ShortcutFileView from the
previous hack to call the LnkParser as well:

Real Windows Shortcut Support #30

Chapter 4, File Choosers | 163

HACK

public boolean isDirLink(File f) {
 try {
 if(f.getName().toLowerCase().endsWith(".lnk")) {
 LnkParser parser = new LnkParser(f);
 if(parser.isDirectory()) {
 return true;
 }
 }
 } catch (Exception ex) {
 System.out.println("exception: " + ex.getMessage());
 ex.printStackTrace();
 }
 return false;
}

And finally, here’s a test class that will build a new shortcut enabled file
chooser. It creates a normal file chooser, and then sets the FileSystemView to
the new shortcut subclass. It also sets the modified version of the
ShortcutFileView:

public class ShortcutTest {
 public static void main(String[] args) throws Exception {
 FileSystemView fsv = new ShortcutFileSystemView();
 JFileChooser chooser = new JFileChooser();
 chooser.setFileSystemView(fsv);
 chooser.setFileView(new ShortcutFileView());
 chooser.showOpenDialog(null);
 }
}

Figure 4-5 shows the JFileChooser displaying a shortcut that will behave like
a real Windows shortcut when clicked.

Figure 4-5. A JFileChooser with a live shortcut

164 | Chapter 4, File Choosers

#31 Add Image Preview to File Choosers
HACK

H A C K

#31
Add Image Preview to File Choosers Hack #31

This hack will show you how to add an image previewer to a JFileChooser,
and it will set you on the way toward building your own customizations.

We’ve already talked about JFileChooser’s numerous limitations. Not sur-
prisingly, many applications have their own custom choosers and exten-
sions to support things like image previews. The standard JFileChooser was
designed to mimic only the most common features, but it does provide a
way to add your own enhancements.

The standard JFileChooser looks like most native file choosers. It has a
directory selector, a list of files, and select and close buttons. There may also
be a toolbar of sorts. If you want to build your own customized file chooser,
you could do it the same way platform-specific file choosers are imple-
mented—through L&F code. This would entail subclassing javax.swing.
plaf.basic.BasicFileChooserUI, working around the private methods, and
possibly reimplementing the whole thing, none of which is easy or fun. For-
tunately, the JFileChooser API provides a simple extension hook in the form
of the setAccesory() method. This method lets you add any JComponent to
an existing JFileChooser, thereby adding your own features without muck-
ing around in file chooser code.

In this hack, you’ll learn how to create an image previewer. This is a compo-
nent that shows a thumbnail view of the currently selected file—if that file is
an image. It will also show the dimensions of the image. Because Java 1.4
provides robust image support with the javax.imageio API, this should be
pretty easy. The first step is a custom ImagePreview component:

public class ImagePreview extends JPanel implements PropertyChangeListener {
 private JFileChooser jfc;
 private Image img;

 public ImagePreview(JFileChooser jfc) {
 this.jfc = jfc;
 Dimension sz = new Dimension(200,200);
 setPreferredSize(sz);
 }

The code defines the ImagePreview class, a subclass of JPanel. I’ve hard-
coded the size of the component to 200 × 200—large enough to tell what the
image is, but small enough not to impact the file chooser very much.

ImagePreview also implements PropertyChangeListener so it can detect when
the user selects a file:

public void propertyChange(PropertyChangeEvent evt) {
 try {
 System.out.println("updating");

Add Image Preview to File Choosers #31

Chapter 4, File Choosers | 165

HACK

 File file = jfc.getSelectedFile();
 updateImage(file);
 } catch (IOException ex) {
 System.out.println(ex.getMessage());
 ex.printStackTrace();
 }
}

PropertyChange is the single method of the PropertyChangeListener inter-
face. This will be called by the JFileChooser each time the user selects (or
deselects) a file. When that happens, ImagePreview will call its updateImage()
method on that file:

public void updateImage(File file) throws IOException {
 if(file == null) {
 return;
 }

 img = ImageIO.read(file);
 repaint();
}

In this method, file will be null if jfc.getSelectedFile() in
propertyChange() returned null. This indicates the user deselected a file or
pressed the Cancel button. In either case, there is no image to display. If the
file is not null, then updateImage() will try to read it with ImageIO.read().
The javax.imageio interface is quite robust and complex, but the most com-
mon operations—reading and writing files—can be performed with the
static methods in ImageIO. If the file is not an image file, then read() will
return null, which means updateImage() doesn’t have to handle that case.
After reading the image, the method calls repaint() to tell Swing that the
ImagePreview may need to be redrawn.

The paintComponent() method contains the guts of ImagePreview. First, it
fills in the background with gray. Without this call, the background would
be just the contents of the current buffer, which could be anything, like
other components on the screen or the previous state of the ImagePreview:

public void paintComponent(Graphics g) {
 // fill the background
 g.setColor(Color.gray);
 g.fillRect(0,0,getWidth(),getHeight());

Next comes the actual image-drawing code:

if(img != null) {
 // calculate the scaling factor
 int w = img.getWidth(null);
 int h = img.getHeight(null);
 int side = Math.max(w,h);
 double scale = 200.0/(double)side;

166 | Chapter 4, File Choosers

#31 Add Image Preview to File Choosers
HACK

 w = (int)(scale * (double)w);
 h = (int)(scale * (double)h);

 // draw the image
 g.drawImage(img,0,0,w,h,null);

Notice the if(img != null) line. If ImageIO.read() returned null, then the
img variable will be null as well. With this if statement, you don’t need to
check for file extensions or do image format detection. The ImageIO class
will take care of it all. Before it paints the image, the code will calculate
which side of the image is longer (length or height). By scaling the image
down relative to the longer side, your code doesn’t have to worry about the
image being clipped; it will always be small enough to fit inside the 200 × 200
square component.

With the image in place, you just need to draw the text for the width and
height near the bottom. Since the image could be in any color scheme, there
is no way to guarantee that the color picked for the text would show up
against the image. To handle this, I draw the text in black first, and then
draw it a second time shifted up and to the left by one pixel. This creates a
subtle shadow effect and ensures that the white text is always visible, even if
it’s on a white background:

 // draw the image dimensions
 String dim = w + " x " + h;
 g.setColor(Color.black);
 g.drawString(dim,31,196);
 g.setColor(Color.white);
 g.drawString(dim,30,195);
} else {

Finally, if the image is null, an error message is printed:

} else {

 // print a message
 g.setColor(Color.black);
 g.drawString("Not an image",30,100);
}

With the ImagePreview class set up, you’re ready to test things out. This code
creates a standard JFileChooser and adds a new ImagePreview to it with the
setAccessory() method. It also adds the preview as a property change lis-
tener so it can detect user file selections:

public static void main(String[] args) {
 JFileChooser jfc = new JFileChooser();
 ImagePreview preview = new ImagePreview(jfc);
 jfc.addPropertyChangeListener(preview);
 jfc.setAccessory(preview);
 jfc.showOpenDialog(null);
}

Preview ZIP and JAR Files #32

Chapter 4, File Choosers | 167

HACK

With the code all in place, the running program will look like Figure 4-6.

As a nice enhancement, you could modify ImagePreview to show previews of
other kinds of files (e.g., PDF or SVG). You could even preview text files by
showing the first few lines of the document. Because setAccessory() lets
you set any JComponent, you could create a panel that does something com-
pletely different, like connecting to a network drive, à la iDisk, or setting
import preferences like encoding and line endings.

H A C K

#32
Preview ZIP and JAR Files Hack #32

This hack will show you how to customize the file chooser to let users
navigate and load files from inside a ZIP or JAR file archive.

Most modern operating systems now have built-in support for compressed
files, usually in the form of ZIP files. You can open up a ZIP file and navi-
gate the contents from within the standard file browser or dialog box, all
without actually uncompressing anything. Surprisingly, JFileChooser
doesn’t support ZIP files, even though Java has built-in ZIP support in the
java.util.zip package. And, since JAR files are in the same format, you get
two-for-one today!

Figure 4-6. A file chooser that previews images

168 | Chapter 4, File Choosers

#32 Preview ZIP and JAR Files
HACK

Before you read any further, I want to warn you that this is
one of the longest and most complicated hacks in the book. I
don’t want to scare you away, but the code is pretty dense.
Of course, you wouldn’t expect any less from a hacks book,
right? What you will learn from this hack, however, will let
you build custom filesystem views for any type of data-
source, including FTP, WebDAV, or even SQL databases. I
think the complexity is worth it. Plus, you’ll learn more about
how the File object really works and how to hack it to pieces.

Build File Proxies
The JFileChooser uses a FileSystemView to access the real filesystem. This
view, unfortunately, assumes the existence of actual java.io.File objects.
There is no way to represent a filesystem without Files, which wouldn’t be a
problem except that File is a real class with many methods, not a simple
interface. Fortunately, File is not declared final. You can override each
method with your own version to redirect the calls to another object, and
that’s exactly how this hack works. By creating proxies around the real ZIP
file objects, you can fool the FileSystemView into working with items that
aren’t real files.

ZIP files are represented in the java.util.zip package by a ZipFile object
that contains one ZipEntry for each compressed file it contains. To show the
compressed files in the chooser, each ZipEntry is wrapped inside of a
ZipEntryFileProxy, which extends the real File class. It contains a reference
to the ZipEntry, the enclosing ZipFile, a path string, and the File object of
the actual ZIP file, as shown in Example 4-1.

Example 4-1. A ZIP file proxy

import java.util.zip.*;

public class ZipEntryFileProxy extends File {
 ZipFileProxy zip;
 ZipFile zipfile;
 String name, path;
 File parent;
 ZipEntry entry;

 public ZipEntryFileProxy(ZipFileProxy zip, ZipFile zipfile,
 String path, File parent) {
 super("");
 this.zip = zip;
 this.zipfile = zipfile;
 this.path = path;
 this.parent = parent;
 this.entry = zipfile.getEntry(path);

Preview ZIP and JAR Files #32

Chapter 4, File Choosers | 169

HACK

The constructor is pretty straightforward. It saves references to the passed-in
object and then does some calculations on the path. If the entry is a direc-
tory, then the path will end with a slash. The code chops off this trailing
slash, if present, and then looks for the name of the entry. Files inside of a
ZIP are stored as a list of complete pathnames with slashes, not as a tree of
objects like a real filesystem. Thus, the name of a file—what you would nor-
mally think of as its filename—is actually just the last part of a complete
path, including the parent directories. To parse this and get the real file-
name, the code looks for the last slash in the filename and pulls out the trail-
ing string.

The rest of the ZipEntryFileProxy class overrides a portion of the standard
File methods. Each call returns a value based on the saved data from the
ZIP file, rather than the actual File parent class:

public boolean exists() { return true; }

public int hashCode() {
 return name.hashCode() ^ 1234321;
}

public String getName() { return name; }
public String getPath() { return path; }
public boolean isDirectory() { return entry.isDirectory(); }
public boolean isAbsolute() { return true; }
public String getAbsolutePath() { return path; }
public File getAbsoluteFile() { return this; }
public File getCanonicalFile() { return this; }
public File getParentFile() { return parent; }

public boolean equals(Object obj) {
 if(obj instanceof ZipEntryFileProxy) {
 ZipEntryFileProxy zo = (ZipEntryFileProxy)obj;

 // determine if the entry is a directory
 String tmp = path;

 if(entry.isDirectory()) {
 tmp = path.substring(0,path.length()-1);
 }

 // then calculate the name
 int brk = tmp.lastIndexOf("/");
 name = path;
 if(brk != -1) {
 name = tmp.substring(brk+1);
 }
 }

Example 4-1. A ZIP file proxy (continued)

170 | Chapter 4, File Choosers

#32 Preview ZIP and JAR Files
HACK

 if(zo.getAbsolutePath().equals(getAbsolutePath())) {
 return true;
 }
 }
 return false;
}

public InputStream getInputStream() throws IOException {
 return zipfile.getInputStream(entry);
}

public File[] listFiles() {
 Map children = (Map)zip.hash.get(path);
 File[] files = new File[children.size()];
 Iterator it = children.keySet().iterator();
 int count = 0;
 while(it.hasNext()) {
 String name = (String)it.next();
 files[count] = new ZipEntryFileProxy(zip, zipfile, name,this);
 count++;
 }
 return files;
}

There are two special things to note in this code. First, the code adds one
method that wasn’t in the original File class: getInputStream(). There is no
way to get an InputStream out of a normal File. Instead, you must create a
FileInputStream, which of course doesn’t know anything about ZIP files, so
that won’t work. As a workaround, ZipEntryFileProxy adds the method
getInputStream() to get a proper input stream. The disadvantage of this
solution is that any code that uses the file chooser will need to be aware of
ZIP files; it cannot simply assume that the file chooser only returns real files.
This means you would have to modify any existing code that uses the
JFileChooser to check if the file is really a ZipEntryFileProxy; if it is, you
need to do a cast, and then grab the input stream appropriately. Otherwise,
your program will throw lots of exceptions as the FileInputStream tries to
open a file that doesn’t exist in a form it can understand.

The other thing to note is that listFiles() creates new ZipEntryFileProxy
objects for each child file (if the file is a directory) by pulling the names out
of a HashTable stored in the ZipFileProxy (which represents the ZIP file).
The ZipFileProxy (Example 4-2) wraps the entire ZIP file, whereas the
ZipEntryFileProxy maps to files stored within the ZIP file, though they are
both custom subclasses of java.io.File. The ZipFileProxy constructor
accepts a File object pointing to the real ZIP file on disk. After saving a few
references, the constructor calls parse() to set up a HashMap of the file entries
within the ZIP.

Preview ZIP and JAR Files #32

Chapter 4, File Choosers | 171

HACK

Example 4-2. ZipFileProxy class

public class ZipFileProxy extends File {
 protected Map hash;
 private ZipFile zipfile;
 private File real_file;

 public ZipFileProxy(File file) {
 super(file.getAbsolutePath());
 try {
 this.hash = new HashMap();
 this.real_file = file;
 zipfile = new ZipFile(file,ZipFile.OPEN_READ);
 hash.put("",new HashMap());
 Enumeration en = zipfile.entries();
 parse(en);
 } catch (IOException ex) {
 System.out.println(ex.getMessage());
 ex.printStackTrace();
 }
 }
 public String getPath() { return real_file.getPath(); }
 public boolean exists() { return real_file.exists(); }
 public String getName() { return real_file.getName(); }

 public File[] getFiles(String dir) {
 Map children = (Map)hash.get(dir);
 File[] files = new File[children.size()];
 Iterator it = children.keySet().iterator();
 int count = 0;
 while(it.hasNext()) {
 String name = (String)it.next();
 files[count] = new ZipEntryFileProxy(this, zipfile, name, this);
 count++;
 }
 return files;
 }

 /* create a hashtable of the entries and their paths */
 private void parse(Enumeration en) {
 while(en.hasMoreElements()) {
 ZipEntry ze = (ZipEntry)en.nextElement();
 String full_name = ze.getName();
 String name = full_name;
 if(ze.isDirectory()) {
 name = full_name.substring(0,full_name.length()-1);
 }

 int brk = name.lastIndexOf("/");

 String parent = "";
 if(brk != -1) {
 parent = name.substring(0,brk+1);
 }

172 | Chapter 4, File Choosers

#32 Preview ZIP and JAR Files
HACK

Just like ZipEntryFileProxy, ZipFileProxy wraps a real file object and passes
most method invocations to the superclass. The special code here is in
parse(), which loops through each entry in the ZIP file, breaks each path-
name into its constituent parts, and builds up a set of nested HashTables.
Each directory entry is represented by a HashMap of child filenames. A master
map holds the directory entries. This nested structure is what lets the
ZipEntryFileProxy find its place in the virtual tree of files.

Build a Custom Filesystem View
Now that you have a tree of virtual File objects, you can implement the real
FileSystemView. As shown in Example 4-3, ZipFileSystemView overrides each
of its parent class’s methods, redirecting them to ZIP-specific code if the file
is an instance of a ZipEntryFileProxy.

 String node_name = name;
 if(brk != -1) {
 node_name = full_name.substring(brk+1);
 }

 if(ze.isDirectory()) {
 HashMap children = new HashMap();
 hash.put(full_name,children);
 }
 Map parent_children = (Map)hash.get(parent);
 parent_children.put(full_name,"");
 }
 }

}

Example 4-3. ZipFileSystemView class

public class ZipFileSystemView extends FileSystemView {

 public ZipFileSystemView() throws IOException { }

 public File createNewFolder(File file) { return null; }

 public File createFileObject(File dir, String filename) {
 if(dir instanceof ZipEntryFileProxy) {
 ZipEntryFileProxy zdir = (ZipEntryFileProxy) dir;
 return new ZipEntryFileProxy(zdir.zip, zdir.zipfile, filename, dir);
 }
 return super.createFileObject(dir,filename);
 }

Example 4-2. ZipFileProxy class (continued)

Preview ZIP and JAR Files #32

Chapter 4, File Choosers | 173

HACK

 public File getChild(File dir, String filename) {
 if(dir instanceof ZipEntryFileProxy) {
 ZipEntryFileProxy zdir = (ZipEntryFileProxy) dir;
 return new ZipEntryFileProxy(zdir.zip,zdir.zipfile,
 dir.getPath()+filename,dir);
 }
 return super.getChild(dir,filename);
 }

 public String getSystemDisplayName(File f) {
 if(f instanceof ZipEntryFileProxy) {
 return f.getName();
 }
 return super.getSystemDisplayName(f);
 }

 public File getParentDirectory(File dir) {
 if(dir instanceof ZipEntryFileProxy) {
 return dir.getParentFile();
 }
 return super.getParentDirectory(dir);
 }

 public File[] getFiles(File dir, boolean useFileHiding) {
 if(dir.getName().endsWith(".zip")) {
 ZipFileProxy proxy = new ZipFileProxy(dir);
 File[] fs = proxy.getFiles("");
 return fs;
 }

 if(dir instanceof ZipEntryFileProxy) {
 return dir.listFiles();
 }

 return super.getFiles(dir,useFileHiding);
 }

 public Boolean isTraversable(File f) {
 if(f.getName().endsWith(".zip")) {
 return new Boolean(true);
 }
 if(f instanceof ZipEntryFileProxy) {
 boolean b = ((ZipEntryFileProxy)f).isDirectory();
 return new Boolean(b);
 }
 return super.isTraversable(f);
 }

}

Example 4-3. ZipFileSystemView class (continued)

174 | Chapter 4, File Choosers

#32 Preview ZIP and JAR Files
HACK

Note the isTraversable() method, which returns true if the file ends with
.zip or is an instance of ZipEntryFileProxy. Without this, the JFileChooser
would never let the user navigate inside of ZIP files.

Put It All Together
The class in Example 4-4 creates a JFileChooser with a ZipFileSystemView.
The only custom code beyond the view itself is a check to see if the selected
file is a ZipEntryFileProxy. If so, the program will cast the file to a
ZipEntryFileProxy and call getInputStream(). If not, it will just create a
FileInputStream as normal.

As you can see, this method of extending the JFileChooser to support an
alternative filesystem is quite hackish. Sadly, it’s the only way to do such a
thing without writing a completely custom file chooser. This is probably
why so many IDE authors have just chucked the entire JFileChooser and
FileSystemView API in favor of a custom dialog. However, if you wish to
remain within the standard API, you can certainly do it, as this hack proves.
As a future enhancement, you might make this class more generic, handling
the nasty details of file wrapping while delegating the actual alternative file-
system to a subclass. This would create an API more like TreeModel, from
which other developers can create their own implementations easily.

Example 4-4. A sample program

public class ZipTest {

 public static void main(String[] args) throws Exception {
 FileSystemView fsv = new ZipFileSystemView();
 JFileChooser chooser = new JFileChooser(".");
 chooser.setFileSystemView(fsv);
 chooser.showOpenDialog(null);
 File file = chooser.getSelectedFile();
 System.out.println("Got the file: " + file + " " + file.getClass());

 InputStream in = null;
 if(file instanceof ZipEntryFileProxy) {
 in = ((ZipEntryFileProxy)file).getInputStream();
 } else {
 in = new FileInputStream(file);
 }
 // ... code that does something with the InputStream 'in'
 }
}

175

Chapter 5 C H A P T E R F I V E

Windows, Dialogs,
and Frames

Hacks 33–40

For four chapters, we’ve hacked away at Swing widgets, from JLabels to
JTables, without worrying too much about the context in which they’re
shown to the user. And yet, every Swing widget must ultimately be con-
tained in some kind of window to be on the screen at all. It’s not an exagger-
ation to say that many competent Swing programmers don’t even know or
care about the hierarchy of AWT Windows, Dialogs, and Frames or their
Swing equivalents, JWindow, JDialog, and JFrame. Yet, it’s these same pro-
grammers who don’t know that commercial components like splash screens
are all possible in Swing; they see dialogs and frames and assume everything
has a titlebar. This is hardly true, though—you can easily remove the deco-
rations of a dialog, or just work with the window superclass.

Suffice it to say there’s much you can do with windows and their sub-
classes. So much so, in fact, that it fills two chapters. This chapter will deal
with hacks that deal with placing, moving, and resizing windows in ways
that are fairly consistent with the design of the window classes. The next
chapter will be a lot more aggressive in breaking the rules.

H A C K

#33
Window Snapping Hack #33

Make your windows snap to the edges of the screen by using a special event
listener.

Back in the prehistoric days of desktop software, as graphics programs were
being invented, they solved the problem of managing the drawing tools by
creating mini-windows called palettes (and their later variation, toolbars).
Eventually, the programs had so many palettes that the users grew frus-
trated trying to organize them. Lining them up on the edge of the screen was
particularly nasty, so fledgling young programmers took it upon themselves
to create snappable windows. These were windows that were magnetic

176 | Chapter 5, Windows, Dialogs, and Frames

#33 Window Snapping
HACK

(metaphorically speaking) and could align themselves to the screen’s edges.
This hack demonstrates how to recreate this technique with Java.

The idea is simple: you check whenever the user moves the window. If the
window is off the screen, then move it back to the edge. Moving the win-
dow is pretty easy. The trickier part is knowing when the window has
moved. Fortunately, AWT has an answer: the ComponentListener interface.

In Java, every UI component (in both AWT and Swing) fires events when-
ever it moves, resizes, is shown, or is hidden. Any class can receive these
events by implementing the ComponentListener interface. For the purposes of
this hack, you only need the componentMoved event, so start by subclassing
ComponentAdapter, which provides default no-operation implementations of
all of ComponentListener’s declared methods. Then just override the
componentMoved() method, as seen in Example 5-1.

Example 5-1. A ComponentListener to snap a window into place

public class WindowSnapper extends ComponentAdapter {

 public WindowSnapper() { }

 private boolean locked = false;
 private int snap_distance = 50;

 public void componentMoved(ComponentEvent evt) {
 if(locked) return;
 Dimension size = Toolkit.getDefaultToolkit().getScreenSize();
 int nx = evt.getComponent().getX();
 int ny = evt.getComponent().getY();
 // top
 if(ny < 0+snap_distance) {
 ny = 0;
 }
 // left
 if(nx < 0+snap_distance) {
 nx = 0;
 }
 // right
 if(nx > size.getWidth() - evt.getComponent().getWidth() -
 snap_distance) {
 nx = (int)size.getWidth()-evt.getComponent().getWidth();
 }
 // bottom
 if(ny > size.getHeight() - evt.getComponent().getHeight() -
 snap_distance) {
 ny = (int)size.getHeight()-evt.getComponent().getHeight();
 }

 // make sure we don't get into a recursive loop when the
 // set location generates more events

Window Snapping #33

Chapter 5, Windows, Dialogs, and Frames | 177

HACK

Every time componentMoved() is called, it gets the screen size and current
coordinates of the window. Because window coordinates are already rela-
tive to the screen’s origin, there is no need to translate them. Next comes
four if statements to determine whether the window is at least partially off
screen. The first two handle the top and lefthand sides of the screen. If the
user moves the component off screen, or even moves within snap_distance
of the screen’s edges, this method moves the window directly to 0. The sec-
ond two ifs handle the bottom and righthand sides of the screen, which is
essentially the same as the first two except they have to account for the size
of the window as well. Finally, the window is moved to the correct location.

You should also take note of the locked variable. This is used to avoid a
potential infinite loop. Essentially, the componentMoved() method will be
called every time the window moves. The componentMoved() method will
also call setLocation() on the window, which will then trigger another
move event. Left unchecked, these methods will be called over and over,
locking the paint thread, and crashing your program with an out-of-memory
error. It would be nice to look at the event and tell if the user moved the
window or if the code did, but the API doesn’t provide such a function. The
solution: detect recursive calls by using a lock variable. If locked is false,
then this is a real move event done by the user, and it’s OK to do the snap-
ping. Then, just before setLocation() is called, the code sets locked to true.
If componentMoved() is called again, the code knows that further movement
should be ignored. After setLocation() returns, locked is set back to false.

To test out the WindowSnapper, you have to add it as a ComponentListener to a
window:

public static void main(String[] args) {
 JFrame frame = new JFrame("Hack #33: Window Snapping");
 JLabel label = new JLabel(
 "Move this window's titlebar to demonstrate screen edge snapping.");
 frame.getContentPane().add(label);
 frame.pack();

 frame.addComponentListener(new WindowSnapper());
 frame.setVisible(true);
}

 locked = true;
 evt.getComponent().setLocation(nx,ny);
 locked = false;
 }

}

Example 5-1. A ComponentListener to snap a window into place (continued)

178 | Chapter 5, Windows, Dialogs, and Frames

#34 Make a Draggable Window
HACK

However, this hack has one major flaw. Because the component events are
read-only, it is impossible to intercept the move and position the window
before it has been drawn on screen. Thus the window will flash as the user
moves it. Creating a custom event queue would seem to be the answer
because you could then modify the events before they are sent to the compo-
nents, but this won’t work for move events on windows (or any subclass like
JFrame). Windows are real structures provided by the operating system,
rather than purely Java objects. The window events are created by the OS
itself and passed into the JVM from the C level, meaning there is no way to
capture these before they take effect. Still, in many of your applications, the
flashing may be an acceptable trade-off for snapping.

H A C K

#34
Make a Draggable Window Hack #34

Drag a window by clicking on its background using a special event listener.

Most windows let you move them by dragging the titlebar. Some program
windows, however, don’t have titlebars. In the age of eye-candy interfaces
(see iTunes and WinAmp for prime examples) it is very common to have a
window—possibly non-rectangular—without any titlebar or window con-
trols at all. This makes for a pretty window, but how do you move it? Sim-
ply by dragging any available space on the window. Though not terribly
intuitive, such programs are commonplace, and this book wouldn’t be
called Swing Hacks without providing a Java implementation of draggable
windows, even when no titlebar is used.

The simplest approach to this problem is to create a listener that simply
catches all drags and moves the window:

public class MoveMouseListener implements MouseListener, MouseMotionListener
{
 JComponent target;
 JFrame frame;
 public MoveMouseListener(JComponent target, JFrame frame) {
 this.target = target;
 this.frame = frame;
 }

 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseMoved(MouseEvent e) {}
 public void mouseDragged(MouseEvent e) {
 frame.setLocation(new Point(e.getX(),e.getY());
 }
}

Make a Draggable Window #34

Chapter 5, Windows, Dialogs, and Frames | 179

HACK

This class implements MouseListener and MouseMotionListener with no-ops
for all methods except mouseDragged(), which moves the frame to the cur-
rent mouse location. However, this approach has two problems. First, the
mouse coordinates are going to be relative to the component, rather than the
screen. Thus, a click on a 50 × 50 button in the bottom right of the screen
might return (25, 25) when it should really be more like (1000, 700). The
other problem is that the code moves the origin of the frame to the mouse
cursor. This would look strange because the window would immediately
jump so that its upper-left corner is right under the cursor. The proper
behavior is for the window to stay in the same position relative to the cursor
as the cursor moves around.

The solution to the first problem (getting screen coordinates rather than
component coordinates) is to convert mouse coordinates to absolute screen
coordinates. The following method does just that (we’ll use this shortly in
mouseDragged()):

Point getScreenLocation(MouseEvent e) {
 Point cursor = e.getPoint();
 Point target_location = this.target.getLocationOnScreen();
 return new Point(
 (int)(target_location.getX()+cursor.getX()),
 (int)(target_location.getY()+cursor.getY()));
}

Solving the second issue (keeping the window static relative to the mouse)
requires saving an initial offset between window and cursor, and then main-
taining that offset throughout the drag. You should add a new mousePressed()
implementation that saves the current screen location of the mouse cursor
(start_drag) and the current location of the window (start_loc). The dis-
tance between the two points can be used to form an offset:

Point start_drag;
Point start_loc;
public void mousePressed(MouseEvent e) {
 this.start_drag = this.getScreenLocation(e);
 this.start_loc = this.getFrame(this.target).getLocation();
}

Next, the listener should maintain the offset difference throughout the drag
operation by calculating a new offset each time the mouse moves. Here is
the new mouseDragged() method:

public void mouseDragged(MouseEvent e) {
 Point current = this.getScreenLocation(e);
 Point offset = new Point(
 (int)current.getX()-(int)start_drag.getX(),
 (int)current.getY()-(int)start_drag.getY());
 JFrame frame = this.getFrame(target);

180 | Chapter 5, Windows, Dialogs, and Frames

#34 Make a Draggable Window
HACK

 Point new_location = new Point(
 (int)(this.start_loc.getX()+offset.getX()),
 (int)(this.start_loc.getY()+offset.getY()));
 frame.setLocation(new_location);
}

Using the utility method, it gets the current mouse position in screen coordi-
nates, and then calculates the distance between that position and where the
mouse started. Finally, it adds this offset to the starting location for the win-
dow to set the window’s final location.

Every now and then, the event queue will drop a mouse event. If the code
was adding the deltas (change in position) from each drag event, then even-
tually the user would start to see errors as a result of these dropped events.
Because this code always recalculates the window position relative to the
start of the drag, these errors don’t have an effect. Plus, since Swing sends all
mouse events to a dragged component—even if the cursor moves outside
the bounds of the component—you don’t have to worry about the user
dragging off the edge of the window and shutting down the whole process.

This method of window dragging has two strengths. First, since the work is
done in a listener, you can add this listener to any existing Swing compo-
nent without subclassing. Any old program can become draggable! Second,
only drags on the attached component affect the window—you can make
the background of the window draggable without affecting any of the fore-
ground components (like the Play button on an MP3 player).

To test out the mouse listener, try adding it to the Calendar hack [Hack #4].
Change the main() function like this:

public static void main(String[] args) {
 JFrame frame = new JFrame();
 CalendarHack ch = new CalendarHack();
 ch.setDate(new Date());
 frame.getContentPane().add(ch);

 frame.setUndecorated(true);
 MoveMouseListener mml = new MoveMouseListener(ch, frame);
 ch.addMouseListener(mml);
 ch.addMouseMotionListener(mml);

 frame.pack();
 frame.setVisible(true);
}

The only additions are the four bold lines in the middle of the method. The
first line turns off the standard window decorations, and the second creates
the MoveMouseListener with references to the CalendarHack component and
its frame. The last two lines add the listener so that it receives all of the
mouse events before the frame is shown on screen.

Add Windows Resize Icons #35

Chapter 5, Windows, Dialogs, and Frames | 181

HACK

The final hack looks like Figure 5-1, with the titlebar and window controls
hidden and the entire component draggable.

H A C K

#35
Add Windows Resize Icons Hack #35

The Windows resize icons aren’t built into Java. Here’s how to make your own.

Windows has two standard icons to let users know that they can resize a
window. I can’t tell you why there are two or how to decide between them,
but I can tell you how to reproduce both of them in Java. Note that this
hack is concerned with painting the icons accurately—it will be up to your
code to handle events on components that use these icons and handle them
appropriately.

A Tale of Two Icons
First take a look at the two icons. Figure 5-2 shows the icon used by Win-
dows Explorer, MS Paint, and other applications; Figure 5-3 shows the icon
used by Word and other Office applications.

The Icon Interface
The easiest and most flexible way to implement these icons is through the
Icon interface. Using Icon allows you to change an icon’s appearance easily
if you need to match new system defaults. It’s also a lot easier to implement
transparency with an Icon than by making an image from the corner icon
using a screen capture and editing it in a professional graphics application
like Photoshop.

Figure 5-1. A draggable calendar

182 | Chapter 5, Windows, Dialogs, and Frames

#35 Add Windows Resize Icons
HACK

Icon is pretty simple, and it has only three methods:

void paintIcon(Component c, Graphics g, int x, int y);

int getIconWidth();

int getIconHeight();

The getIconWidth() and getIconHeight() methods should be pretty easy to
implement—you just need the pixel size of your custom icons. The
paintIcon() method is where all the interesting stuff happens.

The Explorer Icon
Figure 5-4 shows a huge blowup of what we’ll call the Explorer icon.

At a glance, you can see the six squares in a triangular pattern with a subtle
white 3D effect on the squares. The easiest thing to handle is the size, so
start with that. This icon is 12 × 12 pixels (one square in Figure 5-4 equals
one pixel).

Figure 5-2. The Windows Explorer resize icon

Figure 5-3. The Windows MS Office resize icon

Add Windows Resize Icons #35

Chapter 5, Windows, Dialogs, and Frames | 183

HACK

Here are the width and height methods. Start by creating constants for
height and width, and write the getters:

private static final int WIDTH = 12;
private static final int HEIGHT = 12;

public int getIconHeight() {
 return WIDTH;
}

public int getIconWidth() {
 return HEIGHT;
}

To implement paintIcon(), you’ll need to recreate this icon using the
graphic primitives provided by AWT. So, you need to carefully analyze how
the original was created. After close inspection, you’ll find that each square
actually has three separate colors: the top-right color, the bottom-right
color, and the left color. Here are the color constants you need:

private static final Color SQUARE_COLOR_LEFT = new Color(184, 180, 163);
private static final Color SQUARE_COLOR_TOP_RIGHT = new Color(184, 180, 161);
private static final Color SQUARE_COLOR_BOTTOM_RIGHT = new Color(184, 181, 161);

To recreate the icon, it will help to have a method to paint the gray squares.
Notice that the method also caches Graphics’ previous color and resets the
graphics color at the end of the method, which is generally a good practice:

private void drawSquare(Graphics g, int x, int y){
 Color oldColor = g.getColor();
 g.setColor(SQUARE_COLOR_LEFT);
 g.drawLine(x,y, x,y+1);
 g.setColor(SQUARE_COLOR_TOP_RIGHT);
 g.drawLine(x+1,y, x+1,y);
 g.setColor(SQUARE_COLOR_BOTTOM_RIGHT);
 g.drawLine(x+1,y+1, x+1,y+1);
 g.setColor(oldColor);
}

Figure 5-4. The Windows Explorer icon zoomed in

184 | Chapter 5, Windows, Dialogs, and Frames

#35 Add Windows Resize Icons
HACK

The code looks strange because of all of the drawLine() calls
that really should be drawPoint() calls. Because there is no
drawPoint() method, you can accomplish the same thing by
drawing a line to and from the same point.

You could paint each square and then add the 3D effect with more lines, but
this is a good time to take advantage of the non-transparent nature of com-
puters. It’s easier just to paint the white 3D effect as white squares and paint
over the corners when you draw the gray squares.

Continuing as before, create a constant for the 3D effect color (white):

private static final Color THREE_D_EFFECT_COLOR = new Color(255, 255, 255);

The constant is used by a helper method to paint the white squares. It
caches the old paint color, sets the graphics to paint white, draws the
square, and resets the graphics color:

private void draw3dSquare(Graphics g, int x, int y){
 Color oldColor = g.getColor();
 g.setColor(THREE_D_EFFECT_COLOR);
 g.fillRect(x,y,2,2);
 g.setColor(oldColor);
}

Now, think of the icon as a grid with rows and columns representing the
locations for the squares. It’s really a 3 × 3 grid that’s partially filled in like
this:

		X
	X	X
X	X	X

Keep track of the rows and columns with variables to make painting easier.
Also, keep track of the space between the rows and columns in pixels:

int firstRow = 0;
int firstColumn = 0;
int rowDiff = 4;
int columnDiff = 4;

The row difference works out to be four because the square is two pixels
wide, plus one pixel for the white effect, plus one pixel for spacing. The
same deal applies for the column difference. From there, it’s easy to calcu-
late the other rows and columns based on the starting row and column and
their distances from each other:

int secondRow = firstRow + rowDiff;
int secondColumn = firstColumn + columnDiff;
int thirdRow = secondRow + rowDiff;
int thirdColumn = secondColumn + columnDiff;

Add Windows Resize Icons #35

Chapter 5, Windows, Dialogs, and Frames | 185

HACK

Next, paint the white squares: one in the first row, two in the second, and
three in the third. Notice that the white squares are offset by one pixel
because the column and row variables (firstRow, secondRow, etc.) reference
the gray squares. These squares provide the 3D effect.

//first row
draw3dSquare(g, firstColumn+1, thirdRow+1);

//second row
draw3dSquare(g, secondColumn+1, secondRow+1);
draw3dSquare(g, secondColumn+1, thirdRow+1);

//third row
draw3dSquare(g, thirdColumn+1, firstRow+1);
draw3dSquare(g, thirdColumn+1, secondRow+1);
draw3dSquare(g, thirdColumn+1, thirdRow+1);

Finally, paint the gray squares on top of the white squares:

//first row
drawSquare(g, firstColumn, thirdRow);

//second row
drawSquare(g, secondColumn, secondRow);
drawSquare(g, secondColumn, thirdRow);

//third row
drawSquare(g, thirdColumn, firstRow);
drawSquare(g, thirdColumn, secondRow);
drawSquare(g, thirdColumn, thirdRow);

The Office Icon
Figure 5-5 shows the MS Office corner icon in detail.

Figure 5-5. The Windows MS Office icon zoomed in

186 | Chapter 5, Windows, Dialogs, and Frames

#35 Add Windows Resize Icons
HACK

This icon is easier—it’s just a couple of straight lines. Also, it’s 13 × 13 pix-
els, which is bigger than the last icon. So, start with the trivial size methods:

private static final int WIDTH = 13;
private static final int HEIGHT = 13;

public int getIconHeight() {
 return WIDTH;
}

public int getIconWidth() {
 return HEIGHT;
}

The paintIcon() method is also pretty straightforward. Start by painting the
three white lines, and follow up with the dark gray lines. Here’s the code:

public void paintIcon(Component c, Graphics g, int x, int y) {

 g.setColor(WHITE_LINE_COLOR);
 g.drawLine(0,12, 12,0);
 g.drawLine(5,12, 12,5);
 g.drawLine(10,12, 12,10);

 g.setColor(GRAY_LINE_COLOR);
 g.drawLine(1,12, 12,1);
 g.drawLine(2,12, 12,2);
 g.drawLine(3,12, 12,3);

 g.drawLine(6,12, 12,6);
 g.drawLine(7,12, 12,7);
 g.drawLine(8,12, 12,8);

 g.drawLine(11,12, 12,11);
 g.drawLine(12,12, 12,12);

}

Notice you don’t have to paint the light gray color because it’s actually the
panel background color. Any area you don’t explicitly paint over picks up
the background color, which is exactly what you want here.

These icons are approximations; some things will be different
between applications and systems. They were taken directly,
pixel by pixel, from Windows Explorer and Microsoft Office
2000 running on Windows XP Professional. Different applica-
tions are slightly different, even on the same version of Win-
dows. Double check platforms you are deploying to and make
sure the colors are correct. Meanwhile, it’s still a really good
working icon, even if a couple of pixels are off by a few shades.

—Jonathan Simon

Add Status Bars to Windows #36

Chapter 5, Windows, Dialogs, and Frames | 187

HACK

H A C K

#36
Add Status Bars to Windows Hack #36

Lots of applications use a bottom-of-window panel to communicate status.
But Swing doesn’t provide a consistent way to do this. So, you need to
provide it yourself.

Many applications in Microsoft Windows use a status bar—an area at the
bottom of each window (to the left of the resize box if there is one) that can
be used to communicate summary information to the user in a compact
form. Typical contents of a status bar might include what a web browser is
doing (e.g., “Connecting to www.oreilly.com”), or, as in Figure 5-6, a sum-
mary of the contents of a folder, showing the number of contained items,
their size, etc.

Standard Status Bars
This is the standard MS Windows setup for a status bar:

• An icon on the far right letting users know they can resize the application

• A label on the left for free form text

• Several labels on the right for details (e.g., 42.3 MB in Figure 5-6)

There is also a bit of custom painting involved to get the top and bottom
shading right. First, you’ll do the panel shading, and then loop back to the
previous list and add all of the necessary components to the status bar.

This hack copies the Windows Explorer status bar in Win-
dows XP. Different applications are slightly different. The
purpose of this hack isn’t to start a religious war about
which application to copy. You can just make minor changes
if you want to copy a different application’s status bar (such
as Word or Outlook, which are different than Windows
Explorer and also from each other).

Start by creating a class called JStatusBar extending JPanel:

public class JStatusBar extends JPanel {
 //more to come
}

Then add a constructor and set the preferred height to be 23 pixels (the
height of the Windows Explorer status bar—count ’em up if you don’t trust
me). You can ignore the preferred width of the status bar since you’ll be

Figure 5-6. Windows Explorer’s status bar

188 | Chapter 5, Windows, Dialogs, and Frames

#36 Add Status Bars to Windows
HACK

adding the status bar to your frame with a BorderLayout or similar layout
that will stretch this component to the width of the window:

public JStatusBar(){
 setPreferredSize(new Dimension(getWidth(), 23));
}

Painting Panel Details
Figure 5-7 shows the Windows Explorer status bar zoomed in around the
42.3 MB label. There are a couple of gray lines at the top and bottom, as
well as a blue line at the bottom, used to achieve a subtle gradation effect.

You can achieve this effect easily by overriding paintComponent() and draw-
ing the lines yourself. Here is the overridden paintComponent() code:

public void paintComponent(Graphics g) {
 super.paintComponent(g);

 int y = 0;
 g.setColor(new Color(156, 154, 140));
 g.drawLine(0, y, getWidth(), y);
 y++;
 g.setColor(new Color(196, 194, 183));
 g.drawLine(0, y, getWidth(), y);
 y++;
 g.setColor(new Color(218, 215, 201));
 g.drawLine(0, y, getWidth(), y);
 y++;
 g.setColor(new Color(233, 231, 217));
 g.drawLine(0, y, getWidth(), y);

 y = getHeight() - 3;
 g.setColor(new Color(233, 232, 218));
 g.drawLine(0, y, getWidth(), y);
 y++;
 g.setColor(new Color(233, 231, 216));
 g.drawLine(0, y, getWidth(), y);
 y = getHeight() - 1;
 g.setColor(new Color(221, 221, 220));
 g.drawLine(0, y, getWidth(), y);
}

Figure 5-7. Explorer’s status bar zoomed in

Add Status Bars to Windows #36

Chapter 5, Windows, Dialogs, and Frames | 189

HACK

The first section draws the gray lines at the top. Midway through, y is reset
based on the panel height, and then the bottom lines are drawn.

Add the Corner Icon
Next, you need to add the resize icon—preferably made to resemble real
Windows resize icons [Hack #36]. Make a JLabel for the corner icon and add
the icon to it. Since this hack is mimicking the Explorer status bar, use the
TriangleSquareWindowsCornerIcon. Also, remember to set the label opacity to
false. This makes the status panel background show through the icon:

JLabel resizeIconLabel = new JLabel(new TriangleSquareWindowsCornerIcon());
resizeIconLabel.setOpaque(false);

Now, you need to add the label to the panel. You need the resize icon to be
at the right, on the bottom of the bar. For this to work, set the JStatusBar
layout to a BorderLayout. Then create another panel called rightPanel and
set its layout to BorderLayout as well. Add the rightPanel to the status bar,
to the east; add the resize icon to the rightPanel, to the south. Don’t forget
to set the rightPanel’s opacity to false as well. This will place the icon on
the bottom right of the status bar:

JPanel rightPanel = new JPanel(new BorderLayout());
rightPanel.setOpaque(false);
rightPanel.add(resizeIconLabel, BorderLayout.SOUTH);
add(rightPanel, BorderLayout.EAST);

While you’re at it, create another panel and name it contentPanel. Add this
to the center of the status bar. You’ll use this in the next few sections to add
the rest of the components:

contentPanel = new JPanel();
contentPanel.setOpaque(false);
add(contentPanel, BorderLayout.CENTER);

Add the Left Component
Now that the contentPanel is in place, you need to configure it to hold all of
the components you’re going to add to the status bar. Remember that the
status bar has several components on the righthand side (just to the left of
the resize icon) that don’t resize.

It’s actually possible for these components to resize, but
standard Windows behavior is to have the size stay the same
and center text.

190 | Chapter 5, Windows, Dialogs, and Frames

#36 Add Status Bars to Windows
HACK

There are also a bunch of separators between each of the righthand compo-
nents. And on the left, the status bar has a main component that takes up all
of the space left over after the righthand components (yes, it’s rather confus-
ing; read this section again and you’ll get it).

You could get most of this behavior with a bunch of nested panels and lay-
outs. But it’s easier to use a single layout manager that can handle all of
these, such as FormLayout from JGoodies. I don’t want to get too detailed
about FormLayout, so feel free to check out http://www.jgoodies.com for more
info. You’ll need to download JGoodies Forms from the JGoodies site and
put its JAR file (forms-1.0.5.jar as of this writing) in your classpath. Here is
the code to create a new FormLayout and set it on the contentPanel:

layout = new com.jgoodies.forms.layout.FormLayout(
 "2dlu, pref:grow",
 "3dlu, fill:10dlu, 2dlu");

contentPanel.setLayout(layout);

FormLayout is essentially an advanced grid, typically configured by passing in
strings that describe the row and column contents in a heavily condensed
syntax. So, you need to configure the grid columns and rows and then add
the components to the appropriate locations. It’s a simplistic approach that
is really powerful.

The first line—2dlu, pref:grow—creates two columns: one column is two
dialog units (dlu in the code) wide and another column that grows. This is
for the left component (which needs to grow), and is it going to be added to
the second column (the first column is there simply to create a space). The
dialog unit system used for this space is based on the pixel size of the dialog
font, meaning it can grow and shrink as fonts and resolutions change. Over-
all, this creates better and more consistently sized components and win-
dows than using absolute pixel measurements.

The second line—3dlu, fill:10dlu, 2dlu—creates the rows for the layout. In
this case, it adds a three dialog unit space at the top, a two dialog unit space
at the bottom, and fills the rest of the space with the component you add.

Now, add the left component. When you add components to a FormLayout-
enabled panel, you need to use a JGoodies CellConstraints object. You can
use the simple CellConstraints that takes an x- and y-coordinate. In this
case, the coordinate is (2,2) because FormLayout starts counting at 1 and
you’re skipping the first column and row to create space. Here is the code:

public void setMainLeftComponent(JComponent component){
 contentPanel.add(component, new CellConstraints(2, 2));
}

Add Status Bars to Windows #36

Chapter 5, Windows, Dialogs, and Frames | 191

HACK

Add a Separator Panel
Before you can add the components to the right side, you need to make a
separator panel. This is actually a really simple component that draws a gray
line and a white line in the middle of the panel. Look on the right and left of
the 42.3 MB text in Figure 5-7 to see what the separators should look like.

Example 5-2 shows the SeparatorPanel code.

And the Rest...
Now that the right panel has been added and you’ve got the code for the
SeparatorPanel, you can add the rest of the components to the status bar.
You’ll be adding two columns to the layout—one for the SeparatorPanel
and one for the actual component. In order to add the components at the
correct location, you’ll need to cache the x- and y-coordinates and incre-
ment the coordinates as you add components. So, create two fields—
layoutCoordinateX and layoutCoordinateY—to keep track of the current
coordinates:

public void addRightComponent(JComponent component, int dialogUnits){
 layout.appendColumn(new ColumnSpec("2dlu"));
 layout.appendColumn(new ColumnSpec(dialogUnits + "dlu"));

 layoutCoordinateX++;
 contentPanel.add(
 new SeparatorPanel(Color.GRAY, Color.WHITE),
 new CellConstraints(layoutCoordinateX, layoutCoordinateY)
);

Example 5-2. A panel to separate sections of the status bar

public class SeparatorPanel extends JPanel {
 private Color leftColor;
 private Color rightColor;

 public SeparatorPanel(Color left, Color right) {
 this.leftColor = left;
 this.rightColor = right;
 setOpaque(false);
 }

 protected void paintComponent(Graphics g) {
 g.setColor(leftColor);
 g.drawLine(0,0, 0,getHeight());
 g.setColor(rightColor);
 g.drawLine(1,0, 1,getHeight());
 }

}

192 | Chapter 5, Windows, Dialogs, and Frames

#36 Add Status Bars to Windows
HACK

 layoutCoordinateX++;
 contentPanel.add(
 component,
 new CellConstraints(layoutCoordinateX, layoutCoordinateY)
);
}

Notice that the size is passed into this method in dialog units
rather than pixels. You could easily change this to pixels if
you want, but I find dialog units to be a much easier way to
layout this kind of component.

Running the Hack
Example 5-3 is the code for a complete simulation frame. You just need to
create the JStatusBar and add the left, main, and right components. All of
the layout and painting logic is encapsulated completely in JStatusBar. The
bold lines in the middle of the StatusBarSimulator are where the status bar is
created and the three components are added. Also, notice that all of the
labels are center aligned—this mimics the standard Windows practice. You
can see the finished product in Figure 5-8.

Figure 5-8. The status bar from StatusBarSimulator

Example 5-3. Using the JStatusBar in a JFrame

public class StatusBarSimulator {

 public static void main(String[] args) {
 try {
 UIManager.setLookAndFeel(new WindowsLookAndFeel());
 } catch (Exception e){

 }

 JFrame frame = new JFrame();
 frame.setBounds(200,200, 600, 200);
 frame.setTitle("Status bar simulator");

 Container contentPane = frame.getContentPane();
 contentPane.setLayout(new BorderLayout());

 JStatusBar statusBar = new JStatusBar();
 JLabel leftLabel =
 new JLabel("Your application is about to self destruct.");
 statusBar.setMainLeftComponent(leftLabel);

Save Window Settings #37

Chapter 5, Windows, Dialogs, and Frames | 193

HACK

—Jonathan Simon

H A C K

#37
Save Window Settings Hack #37

Make sure your windows always show up right where you left them, even
after a program restarts, by saving the window position and size
automatically.

Swing is a rich toolkit that can be used to create many kinds of programs,
but there are certain features that virtually all applications need, like win-
dow settings and preferences. This hack shows how to automatically store
and retrieve window locations and dimensions in an existing program with-
out using custom Frame subclasses, or even making many changes to your
existing code.

Saving the size and location of a window is actually pretty easy. You can just
store them in a file and retrieve them later. The difficulty is identifying each
window, and doing it in a way that’s as noninvasive as possible.

The Window Saver Class
The first step is to create a class that handles all of the work. Because man-
aging windows will be a global function of the entire program, start with a
simple singleton with a factory interface, as shown in Example 5-4.

 JLabel dateLabel = new JLabel("12/31/99");
 dateLabel.setHorizontalAlignment(SwingConstants.CENTER);
 statusBar.addRightComponent(dateLabel, 30);

 JLabel timeLabel = new JLabel("11:59 PM");
 timeLabel.setHorizontalAlignment(SwingConstants.CENTER);
 statusBar.addRightComponent(timeLabel, 30);

 contentPane.add(statusBar, BorderLayout.SOUTH);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.show();

 }

}

Example 5-4. Singleton for saving window settings

public class WindowSaver implements AWTEventListener {

 private static WindowSaver saver;
 private Map framemap;

Example 5-3. Using the JStatusBar in a JFrame (continued)

194 | Chapter 5, Windows, Dialogs, and Frames

#37 Save Window Settings
HACK

The WindowSaver constructor creates a private map to store all of an applica-
tion’s frames. When each frame is loaded, the saver will store a reference to it
in this map. Later, when the application needs to save or reload each window,
it will use the map to find each frame again. The constructor is private so that
only one instance (and one map) of the program ever exists in the JVM.

The WindowSaver also implements AWTEventListener. This is how it can find
each frame. Swing has a global event queue that allows you to get every
event throughout the JVM. You can access this queue by registering an
AWTEventListener to the global toolkit like this:

Toolkit tk = Toolkit.getDefaultToolkit();
tk.addAWTEventListener(WindowSaver.getInstance(),
 AWTEvent.WINDOW_EVENT_MASK);

AWTEventListener defines a single method, eventDispatched(AWTEvent).
Through this method, you can look for each window as it is opened.

Each window produces several events for actions such as closing, opening,
resizing, hiding, etc. Some events, such as activation, happen each time a
window is shown on the screen. The WINDOW_OPEN event will be called only
once per window, right when the window is first shown. This is perfect for
our purposes because that particular event will happen after an application
has created and initialized each window, but before the window is shown on
screen, making it the ideal place to set window size and location:

public void eventDispatched(AWTEvent evt) {
 try {
 if(evt.getID() == WindowEvent.WINDOW_OPENED) {
 ComponentEvent cev = (ComponentEvent)evt;
 if(cev.getComponent() instanceof JFrame) {
 JFrame frame = (JFrame)cev.getComponent();
 loadSettings(frame);
 }
 }
 }catch(Exception ex) {
 p(ex.toString());
 }
}

 private WindowSaver() {
 framemap = new HashMap();
 }

 public static WindowSaver getInstance() {
 if(saver == null) {
 saver = new WindowSaver();
 }
 return saver;
 }

Example 5-4. Singleton for saving window settings (continued)

Save Window Settings #37

Chapter 5, Windows, Dialogs, and Frames | 195

HACK

This code listens for WINDOW_OPEN events and then retrieves the reference to
the JFrame that was created. Finally, it calls loadSettings() on the frame:

public static void loadSettings(JFrame frame) throws IOException {
 Properties settings = new Properties();
 try {
 settings.load(new FileInputStream("configuration.props"));
 } catch (FileNotFoundException fnfe) {
 settings.store(new FileOutputStream("configuration.props"),
 "Window settings");
 }
 String name = frame.getName();
 int x = getInt(settings,name+".x",100);
 int y = getInt(settings,name+".y",100);
 int w = getInt(settings,name+".w",500);
 int h = getInt(settings,name+".h",500);
 frame.setLocation(x,y);
 frame.setSize(new Dimension(w,h));
 saver.framemap.put(name,frame);
 frame.validate();
}

loadSettings() demonstrates the real trickery of this hack. Every object in
Java has a unique hash code, but hash codes are poor identifiers because
they will be different each time the program is run. That makes them use-
less for saving preferences or referring to windows. Fortunately, Swing
defines a little-known property for each component: name. You can name
any component in your program with a unique string, and name will be the
same every time the program runs. This makes it ideal for saving properties.

loadSettings() creates a new properties object, populates it with the con-
tents of a configuration.props file, and then retrieves the name of the given
frame. For each property you want to retrieve (the frame coordinates and
size), just prepend the property with the name of the component. If the
application developer named a frame control-panel, then the x-coordinate
would be stored in control-panel.x.

After getting each property, loadSettings() sets the location and size of the
frame, and then adds the frame to the global frame map so that it can be
retrieved later. As a final step, it calls validate() on the frame to make sure
Swing updates the frame’s location and size properly. Here is getInt(),
which is a utility method to retrieve integers from property strings and
which substitutes a default value if the string is missing:

public static int getInt(Properties props, String name, int value) {
 String v = props.getProperty(name);
 if(v == null) {
 return value;
 }
 return Integer.parseInt(v);
}

196 | Chapter 5, Windows, Dialogs, and Frames

#37 Save Window Settings
HACK

So, that takes care of loading frame properties.

Once registered to the global event queue, the WindowSaver class will automatically
adjust each frame when it is first opened, ensuring that windows are always posi-
tionedproperlyeverytimetheprogramisrun.Savingthewindowsettings,however,
is a different matter. This should really happen only when the program closes—
assumingtheapplicationdeveloperwantswindowsettingssavedatall.Theremight
beastandardlocationforsay,dialogboxes, thatshouldalwaysbeobserved,regard-
less of how the user moved the windows around last time the program was run. It’s
probably best to allow applications to explicitly request settings be saved:

file.add(new AbstractAction("Quit") {
 public void actionPerformed(ActionEvent evt) {
 try {
 WindowSaver.saveSettings();
 System.exit(0);
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }
});

This code adds a Quit menu item that quits the application, but that also
calls a saveSettings() method, which again creates a properties object and
populates it with the contents of configuration.props. However, instead of
looking for window events, it loops through the frame map containing each
of the frame references and retrieves the window settings:

public static void saveSettings() throws IOException {
 Properties settings = new Properties();
 try {
 settings.load(new FileInputStream("configuration.props"));
 } catch (FileNotFoundException fnfe) {
 // quietly ignore and overwrite later
 }
 Iterator it = saver.framemap.keySet().iterator();
 while(it.hasNext()) {
 String name = (String)it.next();
 JFrame frame = (JFrame)saver.framemap.get(name);
 settings.setProperty(name+".x",""+frame.getX());
 settings.setProperty(name+".y",""+frame.getY());
 settings.setProperty(name+".w",""+frame.getWidth());
 settings.setProperty(name+".h",""+frame.getHeight());
 }
 settings.store(new FileOutputStream("configuration.props"),null);
}

After looping through all of the frames, saveSettings() saves the properties
back out to the configuration.props file, ready to be loaded the next time
the user launches the application.

To demonstrate WindowSaver, you can create a main() method that registers
the WindowSaver, builds a simple frame with a button and a Quit menu, and

Earthquake Dialog #38

Chapter 5, Windows, Dialogs, and Frames | 197

HACK

then shows the frame on screen. When the window is opened, the settings
will be pulled from the properties file. When the user quits the program, the
settings will be saved back to the properties file:

public static void main(String[] args) throws Exception {
 Toolkit tk = Toolkit.getDefaultToolkit();
 tk.addAWTEventListener(WindowSaver.getInstance(),
 AWTEvent.WINDOW_EVENT_MASK);

 final JFrame frame = new JFrame("Hack X");
 frame.setName("WSTes.main");
 frame.getContentPane().add(new JButton("a button"));
 JMenuBar mb = new JMenuBar();
 JMenu menu = new JMenu("File");
 menu.add(new AbstractAction("Quit") {
 public void actionPerformed(ActionEvent evt) {
 try {
 WindowSaver.saveSettings();
 System.exit(0);
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }
 });
 mb.add(menu);
 frame.setJMenuBar(mb);
 frame.pack();
 frame.show();
}

H A C K

#38
Earthquake Dialog Hack #38

Make sure your users really know they got their password wrong.

One of the funny ways that Mac OS X uses animation in its UI is when the
user logs in. If she enters an incorrect login and/or password, the whole
login dialog shakes violently for a second, like a road sign thwacked with a
bat, or a cartoon character who has just run full-speed into a solid object
(say, a picture of a tunnel painted over a wall).

We like this effect a lot, so we thought we’d bring it to Swing. It’s a pretty
straightforward bit of animation, so we jazzed it up…with trigonometry!

Exterior Animation
Here’s an initial queston: do you want to subclass JDialog and add the ani-
mation effect to that class, or create a class that animates the shaking on
another JDialog? I thought that subclassing would be a bad choice because
JOptionPane generates some very convenient JDialogs, and you wouldn’t
want to lose those. So, you’ll have to have another class animate your dialogs.

198 | Chapter 5, Windows, Dialogs, and Frames

#38 Earthquake Dialog
HACK

I’ve called it DialogEarthquakeCenter because it’ll be a class that monitors
the shaking, just like seismologists do in their earthquake centers.

Obviously, the DialogEarthquakeCenter needs a reference to the dialog that it
will be shaking. It also needs a few other values, which I’ve set as constants:

SHAKE_DISTANCE
The maximum distance in each direction the dialog should move.

SHAKE_CYCLE
The time in milliseconds for a complete cycle: center, right, center, left,
back to center.

SHAKE_DURATION
Total time in milliseconds to shake the dialog.

SHAKE_UPDATE
How often (in milliseconds) to update the dialog’s position and repaint.
You might increase this if the CPU use is excessive, but animation
smoothness decreases with less-frequent updates.

Beyond that, all you’ll need to keep track of is where the dialog started (so
you can put it back at the end of the animation), a running clock of how far
you are into the animation, and where the dialog is located. Example 5-5
shows the code to put all this into action.

Example 5-5. A class to shake a JDialog back and forth

public class DialogEarthquakeCenter extends Object {

 public static final int SHAKE_DISTANCE = 10;
 public static final double SHAKE_CYCLE = 50;
 public static final int SHAKE_DURATION = 1000;
 public static final int SHAKE_UPDATE = 5;

 private JDialog dialog;
 private Point naturalLocation;
 private long startTime;
 private Timer shakeTimer;
 private final double HALF_PI = Math.PI / 2.0;
 private final double TWO_PI = Math.PI * 2.0;

 public DialogEarthquakeCenter (JDialog d) {
 dialog = d;
 }

 public void startShake() {
 naturalLocation = dialog.getLocation();
 startTime = System.currentTimeMillis();
 shakeTimer =
 new Timer(SHAKE_UPDATE,
 new ActionListener() {

Earthquake Dialog #38

Chapter 5, Windows, Dialogs, and Frames | 199

HACK

 public void actionPerformed (ActionEvent e) {
 // calculate elapsed time
 long elapsed = System.currentTimeMillis() -
 startTime;
 // use sin to calculate an x-offset
 double waveOffset = (elapsed % SHAKE_CYCLE) /
 SHAKE_CYCLE;
 double angle = waveOffset * TWO_PI;

 // offset the x-location by an amount
 // proportional to the sine, up to
 // shake_distance
 int shakenX = (int) ((Math.sin (angle) *
 SHAKE_DISTANCE) +
 naturalLocation.x);
 dialog.setLocation (shakenX, naturalLocation.y);
 dialog.repaint();

 // should we stop timer?
 if (elapsed >= SHAKE_DURATION)
 stopShake();
 }
 }
);
 shakeTimer.start();
 }

 public void stopShake() {
 shakeTimer.stop();
 dialog.setLocation (naturalLocation);
 dialog.repaint();
 }

 public static void main (String[] args) {
 JOptionPane pane =
 new JOptionPane ("You've totally screwed up your login\n" +
 "Go back and do it again... and do you think\n" +
 "you could remember your password this time?",
 JOptionPane.ERROR_MESSAGE,
 JOptionPane.OK_OPTION);
 JDialog d = pane.createDialog (null, "Shakin'!");
 DialogEarthquakeCenter dec = new DialogEarthquakeCenter (d);
 d.pack();
 d.setModal (false);
 d.setVisible(true);
 dec.startShake();

 // wait (forever) for a non-null click and then quit
 while (pane.getValue() == JOptionPane.UNINITIALIZED_VALUE) {
 try { Thread.sleep(100); }
 catch (InterruptedException ie) {}

Example 5-5. A class to shake a JDialog back and forth (continued)

200 | Chapter 5, Windows, Dialogs, and Frames

#38 Earthquake Dialog
HACK

The class includes the constants described earlier, along with:

• A reference to the JDialog to be animated

• The dialog’s natural location (i.e., its location before the animation begins)

• The time that the animation began (for calculating offsets)

• A javax.swing.Timer to run the animation

• Some trigonometry constants

The advantage of the Swing Timer is, of course, that it keeps the repainting
on the event-dispatch thread and thus keeps it thread-safe. There’s a little
bit of non-Swing code executed by the timer to calculate the position, but
it’s not so bad that you have to worry about blocking the GUI [Hack #92].

The constructor is trivial—it just remembers the dialog as an instance vari-
able. The real fun begins in the startShake() method. It starts by storing the
current time and location; the time is for use in the animation, and the loca-
tion is for cleaning up later. Next, it creates the javax.swing.Timer and sets it
to fire every SHAKE_UPDATE milliseconds.

Now for some math and the methodology behind moving the dialog. Ignor-
ing friction, air resistance, and other real-world factors—this is a dialog box
in the fantasy world of the desktop after all—I opted for simple harmonic
motion, which is motion that can be expressed by a sine function and is not
driven or dampened externally. Values of the sine function range from -1 to
1, so the dialog’s horizontal offset can be expressed at the sine of some value
from 0 to 2π, multiplied by the maximum offset (namely SHAKE_DISTANCE).

 }
 System.exit(0);
 }
}

Trig? Really?
Let me take a moment to explain why I’m forcing you to think about trigo-
nometry in a Swing book. When you knock something back and forth, like a
tuning fork or a pendulum, it doesn’t move at a constant speed to one
extreme, then stop and immediately move at a constant speed in the other
direction. It slows down as it reaches the extreme, stops momentarily, and
then accelerates in the other direction, moving faster until it crosses the cen-
ter, at which point it starts decelerating. You need more than simple addition
to model this—and trig is the ticket.

Example 5-5. A class to shake a JDialog back and forth (continued)

Earthquake Dialog #38

Chapter 5, Windows, Dialogs, and Frames | 201

HACK

So, that’s what happens in the actionPerformed() callback. The method
takes the elapsed time and figures out how far into a cycle it is (given a cycle
time of SHAKE_CYCLE), expressed as a double between 0 and 1. Multiply this
by 2π, and you’ve got an angle you can pass to Math.sin(). Multiply that by
SHAKE_DISTANCE, and you’ll have an x-offset in the range -SHAKE_DISTANCE ≤ n ≤
SHAKE_DISTANCE. Add that to the naturalLocation’s x-value, keep the natural
y-value, and you have the new location for the dialog. Call setLocation()
with this point and repaint().

actionPerformed()’s only other responsibility is to check to see if the anima-
tion time has expired and, if so, to call the stopShake() method, which is
public and could thus be called by an outsider to end the animation prema-
turely. stopShake() stops the Timer, returns the dialog to its natural loca-
tion, and repaint()s.

Shake, Rattle, and Roll
I’ve provided a main() method to demonstrate the DialogEarthquakeCenter.
To show its flexibility, I made it shake a JOptionPane dialog, to prove you
can still use option dialogs as well as normal dialogs, although you do need
to work with option dialogs slightly differently:

public static void main (String[] args) {
 JOptionPane pane =
 new JOptionPane ("You've totally screwed up your login\n" +
 "Go back and do it again... and do you think\n" +
 "you could remember your password this time?",
 JOptionPane.ERROR_MESSAGE,
 JOptionPane.OK_OPTION);
 JDialog d = pane.createDialog (null, "Shakin'!");
 DialogEarthquakeCenter dec = new DialogEarthquakeCenter (d);
 d.pack();
 d.setModal (false);
 d.setVisible(true);
 dec.startShake();

 // wait (forever) for a non-null click and then quit
 while (pane.getValue() == JOptionPane.UNINITIALIZED_VALUE) {
 try { Thread.sleep(100); }
 catch (InterruptedException ie) {}
 }
 System.exit(0);
}

The main() method builds a JOptionPane dialog through what can only be
called “the other way.” Most developers will call JOptionPane.show...
Dialog() because it’s convenient to get the dialog on screen immediately and
provide the user’s selection as a return value, and because it’s not necessary

202 | Chapter 5, Windows, Dialogs, and Frames

#39 Spin Open a Detail Pane
HACK

to ever have a reference to the dialog. With DialogEarthquakeCenter, how-
ever, you need that reference. So, instead, you provide the usual JOptionPane
values (message, message type, user options, etc.) to the JOptionPane con-
structor, and then derive a dialog with createDialog(). Don’t worry—you
still end up with the same option dialog.

Next, you create a DialogEarthquakeCenter from that dialog. Then you can
return to the dialog, pack() it, and make it visible. One hazard of working
with the JOptionPane dialog is that it is modal, meaning it will block the
AWT event-dispatch thread when shown; thus, it won’t shake because
DialogEarthquakeCenter won’t get any animation callbacks from Timer. To
get around this, I just made the dialog non-modal—after all, the user proba-
bly isn’t going to be able to click it when it’s moving. Another option might
be for the DialogEarthquakeCenter constructor to remember if its dialog is
modal, and to reset this state in stopShake().

Unfortunately, there’s not a great way to show the effect of this animation in
book form. The best I can suggest is that you compile and run the hack for
yourself. While you’re at it, change some of the constant values to see the
effect of longer or shorter shake cycles, distances, and durations.

H A C K

#39
Spin Open a Detail Pane Hack #39

You don’t want to bombard the user with details, but you don’t want to hide
them either. Here’s a way to let the user pop open a More Info widget.

You have to be careful not to weigh down your GUIs with so much informa-
tion that the user can’t see what really matters. On the other hand, there are
times that the user may want more information than is obvious on one
screen or panel. A simple way of dealing with this is to put a More Info but-
ton that pops up a new window. That leads to the annoyance of having too
many windows on the screen, none associated in any way with their source.

Mac OS X has a nice idea: the spin open disclosure widget. It works like
this: you have a component of some sort—perhaps a simple label or a com-
plex panel—with a triangle-shaped spinner below it. When the user clicks
the spinner, a whole new widget opens up below the spinner, offering more
information. In fact, the new widget can have significant functionality: to set
file permissions from the Finder, you open a Get Info window and spin open
an Ownership and Permissions section to set your own access (if you own
the file), and a second Details spinner lets you set access levels for the
owner, group, and others.

Spin Open a Detail Pane #39

Chapter 5, Windows, Dialogs, and Frames | 203

HACK

The Invisible Man
This hack is fairly simple and relies on one fact: you can add a component to
a layout and alternately make it visible and invisible. Its position relative to
other components is preserved when it’s invisible, but it takes up no
onscreen space. So, a spin-open container consists of three components:

• The top component, which is always visible

• The spinner

• The bottom component, whose visibility can be set by clicking on the
spinner

The layout of these three is pretty straightforward, as seen in Example 5-6,
which lists the MoreInfoPanel class but omits an inner class (for now).

Example 5-6. Laying out the three panel components

public class MoreInfoPanel extends JPanel {

 public Component topComponent;
 protected SpinWidget spinWidget;
 public Component bottomComponent;

 public static final int SPIN_WIDGET_HEIGHT = 14;

 public MoreInfoPanel (Component tc, Component mic) {
 topComponent = tc;
 spinWidget = new SpinWidget();
 bottomComponent = mic;
 doMyLayout();
 }

 protected void doMyLayout() {
 setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));
 add (topComponent);
 add (spinWidget);
 add (bottomComponent);
 resetBottomVisibility();
 }

 protected void resetBottomVisibility() {
 if ((bottomComponent == null) ||
 (spinWidget == null))
 return;
 bottomComponent.setVisible (spinWidget.isOpen());
 revalidate();
 if (isShowing()) {
 Container ancestor = getTopLevelAncestor();
 if ((ancestor != null) && (ancestor instanceof Window))
 ((Window) ancestor).pack();

204 | Chapter 5, Windows, Dialogs, and Frames

#39 Spin Open a Detail Pane
HACK

The constructor simply assigns the top and bottom Components to local vari-
ables, creates a SpinWidget (see Example 5-7), and calls doMyLayout(). The
latter method puts the components into a vertical BoxLayout and calls the
convenience method resetBottomVisibility().

resetBottomVisibility() is responsible for setting the visibility of the bot-
tom component based on whether the SpinWidget is currently open or
closed. It then finds and re-pack()s its parent Window, so that if the bottom
component is wider than the top, the enclosing window will resize to fit the
now-visible contents. Of course, this behavior might not be appropriate in
some cases: you might put a MoreInfoPanel in a complex GUI and not want
to re-pack() the parent Window. Imagine an IDE in which you browse items
in a list or tree on the left, and show varying levels of detail on the right with
nested MoreInfoPanels. The right pane might want to get sizing-related
events when its child MoreInfoPanels change sizes, but it wouldn’t be appro-
priate for them to try to resize the entire JFrame. This might call for hacking
the hack to set up an event-listener system, so that you could deliver sizing-
related events to a specific parent.

Now for the SpinWidget, shown in Example 5-7. I wrote this as a custom
JPanel that draws the triangles with graphics primitives. This has the advan-
tage of being self-contained, but if you’d rather just use a JButton with hand-
drawn triangle GIFs, go for it.

 repaint();
 }
 }

 public void showBottom (boolean b) {
 spinWidget.setOpen (b);
 }

 public boolean isBottomShowing () {
 return spinWidget.isOpen();
 }
 // See below for SpinWidget inner class
}

Example 5-7. Inner class spin triangle

public class SpinWidget extends JPanel {
 boolean open;
 Dimension mySize = new Dimension (SPIN_WIDGET_HEIGHT,
 SPIN_WIDGET_HEIGHT);
 final int HALF_HEIGHT = SPIN_WIDGET_HEIGHT / 2;
 int[] openXPoints =
 { 1, HALF_HEIGHT, SPIN_WIDGET_HEIGHT-1};

Example 5-6. Laying out the three panel components (continued)

Spin Open a Detail Pane #39

Chapter 5, Windows, Dialogs, and Frames | 205

HACK

As you can see, the code does some work to create the points for the two tri-
angle polygons, which are used in the paint() method. Other than that, it’s
a simple state machine with two boolean states: when it gets a click, it
switches states. The call to setOpen() calls the enclosing class’s
resetButtonVisibility(), which will make the bottom component visible.

 int[] openYPoints =
 { HALF_HEIGHT, SPIN_WIDGET_HEIGHT-1, HALF_HEIGHT};
 int[] closedXPoints =
 { 1, 1, HALF_HEIGHT};
 int[] closedYPoints =
 { 1, SPIN_WIDGET_HEIGHT-1, HALF_HEIGHT };
 Polygon openTriangle =
 new Polygon (openXPoints, openYPoints, 3);
 Polygon closedTriangle =
 new Polygon (closedXPoints, closedYPoints, 3);

 public SpinWidget() {
 setOpen (false);
 addMouseListener (new MouseAdapter() {
 public void mouseClicked (MouseEvent e) {
 handleClick();
 }
 });
 }

 public void handleClick() {
 setOpen (! isOpen());
 }

 public boolean isOpen() {
 return open;
 }

 public void setOpen (boolean o) {
 open = o;
 resetBottomVisibility();
 }

 public Dimension getMinimumSize() { return mySize; }
 public Dimension getPreferredSize() { return mySize; }

 // don't override update(), get the default clear
 public void paint (Graphics g) {
 if (isOpen())
 g.fillPolygon (openTriangle);
 else
 g.fillPolygon (closedTriangle);
 }
}

Example 5-7. Inner class spin triangle (continued)

206 | Chapter 5, Windows, Dialogs, and Frames

#39 Spin Open a Detail Pane
HACK

Now You See Me
To show a non-trivial use of the MoreInfoPanel, the TestMoreInfoPanel class
shown in Example 5-8 creates a JOptionPane dialog, hijacks its content pane,
and puts that into a MoreInfoPanel as the top component. The bottom com-
ponent is a JTextArea with a more detailed (or obnoxious, in this case)
description of the warning in the dialog. This MoreInfoPanel is then reset as
the dialog’s content pane. The initial result looks like Figure 5-9.

Figure 5-9. A Warning dialog with a closed MoreInfoPanel

Example 5-8. A spin-open dialog using a MoreInfoPanel

import java.awt.*;
import javax.swing.*;

public class TestMoreInfoPanel {

 public static void main (String[] args) {
 JOptionPane pane =
 new JOptionPane ("The action you have chosen to perform\n is " +
 "not recommended.",
 JOptionPane.WARNING_MESSAGE);
 JDialog dialog = pane.createDialog (null, "Warning");
 Container grabbedContent = dialog.getContentPane();
 JTextArea area =
 new JTextArea ("No, seriously dude, you are about to totally "+
 "bake your computer, if not your entire " +
 "network, if you don't bail right now. Think " +
 "I'm kidding? Would I go to such lengths to " +
 "provide such an elaborate warning message if " +
 "I were kidding? No, no, wait... you know " +
 "what? Go ahead. Click OK and blow everything " +
 "to kingdom come. See if I care.",
 5, 40);
 area.setLineWrap (true);
 area.setWrapStyleWord (true);

Minimize to a Mini-Frame #40

Chapter 5, Windows, Dialogs, and Frames | 207

HACK

When the user clicks the triangle at the bottom left, the More Info text area
appears, as seen in Figure 5-10.

H A C K

#40
Minimize to a Mini-Frame Hack #40

When you want your program to have a smaller window but still be on the
screen, try building a mini-mode.

Since the advent of iTunes, it seems that all consumer-oriented applications
must have meticulous interfaces that can dynamically adjust themselves.
Gone are the days of simply minimizing an application. Now your program
must have a small version rather than (or in addition to) hiding when mini-
mized. The smaller version contains limited controls but can fit nicely at the
bottom of the screen. This hack shows how to create a dynamic frame that
can switch properly between sizes for a more modern-looking interface.

 JScrollPane scroller =
 new JScrollPane (area,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 MoreInfoPanel mip = new MoreInfoPanel (grabbedContent, scroller);
 dialog.setContentPane (mip);
 dialog.pack();
 dialog.setVisible(true);
 // dialog blocks on setVisible (JOptionPane makes it modal)
 System.exit(0);
 }
}

Figure 5-10. The Warning dialog after opening the MoreInfoPanel

Example 5-8. A spin-open dialog using a MoreInfoPanel (continued)

208 | Chapter 5, Windows, Dialogs, and Frames

#40 Minimize to a Mini-Frame
HACK

I Shall Call Him...Mini-Me
Switching a frame between two sizes is quite easy: just call setSize() and
you’re done. Doing it well is a bit more difficult, however. When you mini-
mize the window, you also need to remove the window decorations, hide
the menu bar, and remove the components that shouldn’t be visible in the
mini-view. This is a bit trickier, not the least of which because you can’t turn
off the window decorations of a frame once it has been created. But I’m get-
ting ahead of myself. First, you need a sample application.

Let’s take a simple clock program. The normal window looks like
Figure 5-11. The goal is to provide a mini version that looks like Figure 5-12.

This program has a clock, a panel with more configuration options (repre-
sented here with just the label More configuration), a menu bar, and a pop-
up menu for later use. Example 5-9 creates the interface and puts the com-
ponents in the right places, but it doesn’t do anything with them yet.

Figure 5-11. A normal application window

Figure 5-12. A mini application window

Example 5-9. The beginning of a clock with a mini version

public class MiniMizeHack implements MouseListener, ActionListener {

 public JFrame frame;
 public JPanel panel;
 public JPopupMenu popup;

Minimize to a Mini-Frame #40

Chapter 5, Windows, Dialogs, and Frames | 209

HACK

 public JMenuBar menubar;
 public JLabel top;
 public JLabel bottom;

 public MiniMizeHack() {
 top = new JLabel(new ImageIcon("image.png"));
 bottom = new JLabel("More configuration here");

 frame = new JFrame("Mini Mize Hack");
 panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.add("Center",bottom);
 panel.add("North",top);
 frame.getContentPane().add(panel);

 menubar = new JMenuBar();
 JMenu menu = new JMenu("File");
 menu.add(new JMenuItem("Open"));
 menu.add(new JMenuItem("Quit"));
 menubar.add(menu);

 JMenu window = new JMenu("Window");
 JMenuItem mini = new JMenuItem("Minimize");
 mini.addActionListener(this);
 window.add(mini);
 menubar.add(window);
 frame.setJMenuBar(menubar);

 popup = new JPopupMenu();
 JMenuItem restore = new JMenuItem("Restore");
 restore.addActionListener(this);
 popup.add(restore);
 }

 public void mousePressed(MouseEvent e) {
 maybeShowPopup(e);
 }

 public void mouseReleased(MouseEvent e) {
 maybeShowPopup(e);
 }
 public void mouseExited(MouseEvent e) { }
 public void mouseEntered(MouseEvent e) { }
 public void mouseClicked(MouseEvent e) { }
 private void maybeShowPopup(MouseEvent e) {
 if (e.isPopupTrigger()) {
 popup.show(e.getComponent(),
 e.getX(), e.getY());
 }
 }

Example 5-9. The beginning of a clock with a mini version (continued)

210 | Chapter 5, Windows, Dialogs, and Frames

#40 Minimize to a Mini-Frame
HACK

The code declares a MiniMizeHack class, which creates the UI and adds itself
as an ActionListener to the Minimize and Restore menu items. The mouse
listener implementation is there to control the pop-up menu, but because
the MiniMizeHack class hasn’t been added as a listener to any components,
the pop up won’t do anything yet.

Minimize the Frame
The actionPerformed() method does the actual switching. This is the meat
of the hack. It tests if the bottom component is visible. If the component is
visible, then this method calls switchToMini() and reshapes the frame to be
smaller. If the bottom component is not visible, then actionPerformed()
calls switchToNormal() to reverse the changes:

public void actionPerformed(ActionEvent evt) {
 if(bottom.isVisible()) {
 switchToMini();
 } else {
 switchToNormal();
 }
}

The magic happens in the switchToMini() method. A big part of a mini win-
dow is that it doesn’t have any borders, or at the least it uses custom ones.
Swing does not let you turn off a frame’s borders and window decorations
after the frame has been shown on screen because it might have already allo-
cated immutable system resources. The only way around this limitation is to
seamlessly replace the old frame with a new one:

private Dimension normal_size;
public void switchToMini() {
 // nuke the old frame and build a new one
 Point location = frame.getLocation();
 normal_size = frame.getSize();
 frame.setVisible(false);
 frame = new JFrame();
 frame.setUndecorated(true);
 frame.getContentPane().add(panel);

The switchToMini() method starts by saving the current frame location and
size, and then hides the frame and replaces it with a new one. Now, it can
safely call setUndecorated(true) on the frame. The frame.getContentPane().
add(panel) line will add the main panel to the new frame. It is not necessary
to remove the panel from the old frame because Swing will take care of it
automatically. There is also no need to remove the menu bar because it had
never been added to the new frame.

Now, the code can hide the bottom component (the label representing the
extra clock configuration) and add the mouse listener to activate the pop up

Minimize to a Mini-Frame #40

Chapter 5, Windows, Dialogs, and Frames | 211

HACK

on right-clicks. If you are using Java 5.0, you can add another line to make
the frame always be on top. This can be annoying to some users, however,
so a real program would have a preference to control that feature:

// hide the extra components
bottom.hide();

// add the pop up
panel.addMouseListener(this);

// stay on top
frame.setAlwaysOnTop(true);

// show the frame again
frame.pack();
frame.setLocation(location);
frame.setVisible(true);

With the frame prepared, the code packs it, gives it the location of the origi-
nal frame, and makes it visible again.

Restore the Frame
When the user triggers the pop-up menu and selects Normal, the
switchToNormal() method will be called. This method reverses what the
switchToMini() method did:

public void switchToNormal() {
 // nuke the old frame and build a new one
 Point location = frame.getLocation();
 frame.setVisible(false);
 frame = new JFrame();
 frame.setUndecorated(false);
 frame.getContentPane().add(panel);

 // show the extra components
 bottom.show();
 frame.setJMenuBar(menubar);

 // hide the pop up
 panel.removeMouseListener(this);

 // turn off stay on top
 frame.setAlwaysOnTop(false);

 // show the frame again
 frame.pack();
 frame.setSize(normal_size);
 frame.setLocation(location);
 frame.setVisible(true);
}

212 | Chapter 5, Windows, Dialogs, and Frames

#40 Minimize to a Mini-Frame
HACK

switchToNormal() will first save the location of the frame, hide the frame,
and replace it with a new, fully decorated one. It then turns the menu bar
and bottom component back on, removes the pop-up listener, turns off
Always on Top (only for Java 5.0), and restores the frame.

To launch the application, you need to add only a main() method to create a
mini and show it on screen:

public static void main(String[] args) {
 MiniMizeHack mini = new MiniMizeHack();
 mini.frame.pack();
 mini.frame.setSize(300,300);
 mini.frame.setVisible(true);
}

Swing doesn’t do everything by default, but it makes a lot of things possi-
ble. This hack showed how to create the sort of dynamic frame actions that
users expect today. One enhancement you would probably want to add is
the draggable background [Hack #34] because a window without a titlebar may
be difficult to move by itself. You might also want to use small buttons
instead of a pop-up menu to control the toggling since most users will be
familiar with the min, max, and close buttons.

213

Chapter 6 C H A P T E R S I X

Transparent and Animated
Windows
Hacks 41–47

In the previous chapter, our window hacks generally played by the rules—
we simulated the earthquake dialog [Hack #38] by animating calls to
setLocation(), and switched to a mini-size window [Hack #40] by calling
setSize() and removing some window decorations.

This chapter’s hacks approach from outside the Window API per se, by
hacking the windows with Java 2D, stuffing things into the glass pane of a
JDialog or JFrame, and more. Some of them are practical, some are just
pretty, but all of these hacks offer something unexpected.

H A C K

#41
Transparent Windows Hack #41

Create translucent and shaped windows, while avoiding native code, with
clever use of a screenshot.

One of the most commonly requested Swing features is transparent win-
dows. Also called shaped windows, these are windows that have transparent
portions, allowing the desktop background and other programs to shine
through. Java doesn’t provide any way of creating transparent windows
without using the Java Native Interface (JNI) (and even then the native plat-
form must support transparency as well), but that’s not going to stop us. We
can cheat using one of my favorite techniques, the screenshot.

The process of faking a transparent window is basically:

1. Take a screenshot before the window is shown.

2. Use that screenshot as the background of the window.

3. Adjust the position so that the screenshot and the real screen line up,
creating the illusion of transparency.

This is the easy part. The hard part is updating the screenshot when the win-
dow moves or changes.

214 | Chapter 6, Transparent and Animated Windows

#41 Transparent Windows
HACK

To start off, create a JPanel subclass that can capture the screen and paint it
as the background, as shown in Example 6-1.

First, the constructor saves a reference to the parent JFrame; then it calls
updateBackground(), which captures the entire screen using java.awt.Robot.
createScreenCapture(), and saves the capture in the background variable.
paintComponent() gets the panel’s absolute position on screen and then fills
the panel with the background image, shifted to account for the panel’s
location. This makes the fake background image line up with the real back-
ground, giving the appearance of transparency.

You can run this with a simple main() method, dropping a few components
onto the panel and putting it into a frame:

public static void main(String[] args) {
 JFrame frame = new JFrame("Transparent Window");
 TransparentBackground bg = new TransparentBackground(frame);
 bg.setLayout(new BorderLayout());
 JButton button = new JButton("This is a button");
 bg.add("North",button);

Example 6-1. A transparent background component

public class TransparentBackground extends Jcomponent {
 private JFrame frame;
 private Image background;

 public TransparentBackground(JFrame frame) {
 this.frame = frame;
 updateBackground();
 }

 public void updateBackground() {
 try {
 Robot rbt = new Robot();
 Toolkit tk = Toolkit.getDefaultToolkit();
 Dimension dim = tk.getScreenSize();
 background = rbt.createScreenCapture(
 new Rectangle(0,0,(int)dim.getWidth(),
 (int)dim.getHeight()));
 } catch (Exception ex) {
 p(ex.toString());
 ex.printStackTrace();
 }
 }

 public void paintComponent(Graphics g) {
 Point pos = this.getLocationOnScreen();
 Point offset = new Point(-pos.x,-pos.y);
 g.drawImage(background,offset.x,offset.y,null);
 }
}

Transparent Windows #41

Chapter 6, Transparent and Animated Windows | 215

HACK

 JLabel label = new JLabel("This is a label");
 bg.add("South",label);
 frame.getContentPane().add("Center",bg);
 frame.pack();
 frame.setSize(150,100);
 frame.show();
}

The code produces a window that looks like Figure 6-1.

The code is pretty simple, but it has two big flaws. First, if the window is
moved, the background won’t be refreshed automatically. paintComponent()
only gets called when the user resizes the window. Second, if the screen ever
changes, it won’t match up with the background anymore.

You really don’t want to update the screenshot often, though, because that
involves hiding the window, taking a new screenshot, and then reshowing
the window—all of which is disconcerting to the user. Actually detecting
when the rest of the desktop changes is almost impossible, but most changes
happen when the foreground window changes focus or moves. If you accept
this idea (and I do), then you can watch for those events and only update the
screenshot when that happens:

public class TransparentBackground extends JComponent
 implements ComponentListener, WindowFocusListener,
 Runnable {
 private JFrame frame;
 private Image background;
 private long lastupdate = 0;
 public boolean refreshRequested = true;

Figure 6-1. Transparent windows in action

216 | Chapter 6, Transparent and Animated Windows

#41 Transparent Windows
HACK

 public TransparentBackground(JFrame frame) {
 this.frame = frame;
 updateBackground();
 frame.addComponentListener(this);
 frame.addWindowFocusListener(this);
 new Thread(this).start();
 }

 public void componentShown(ComponentEvent evt) { repaint(); }
 public void componentResized(ComponentEvent evt) { repaint(); }
 public void componentMoved(ComponentEvent evt) { repaint(); }
 public void componentHidden(ComponentEvent evt) { }

 public void windowGainedFocus(WindowEvent evt) { refresh(); }
 public void windowLostFocus(WindowEvent evt) { refresh(); }

First, make the panel, TransparentWindow, implement ComponentListener,
WindowFocusListener, and Runnable. The listener interfaces will let the panel
catch events indicating that the window has moved, been resized, or the
focus changes. Implementing Runnable will let the panel create a thread to
handle custom repaint()s.

The implementation of ComponentListener involves the four methods begin-
ning with component. They each simply call repaint() so that the back-
ground will be updated whenever the user moves or resizes the window.
Next are the two window focus handlers, which just call refresh(), as
shown here:

public void refresh() {
 if(frame.isVisible()) {
 repaint();
 refreshRequested = true;
 lastupdate = new Date().getTime();
 }
}

public void run() {
 try {
 while(true) {
 Thread.sleep(250);
 long now = new Date().getTime();
 if(refreshRequested &&
 ((now - lastupdate) > 1000)) {
 if(frame.isVisible()) {
 Point location = frame.getLocation();
 frame.hide();
 updateBackground();
 frame.show();
 frame.setLocation(location);
 refresh();
 }

Transparent Windows #41

Chapter 6, Transparent and Animated Windows | 217

HACK

 lastupdate = now;
 refreshRequested = false;
 }
 }
 } catch (Exception ex) {
 p(ex.toString());
 ex.printStackTrace();
 }
}

refresh() ensures that the frame is visible and schedules a repaint. It also
sets the refreshRequested boolean to true and saves the current time, which
will become very important shortly.

The run() method sleeps constantly, waking up every quarter-second to see
if a refresh has been requested, and whether it has been more than a second
since the last refresh. If more than a second has passed and the frame is
actually visible, then run() will save the frame location, hide it, update the
background, then put the frame back in place and call refresh(). This
ensures that the background is never updated more than needed.

So, why all of this rigmarole about using a thread to control refreshing? One
word: recursion. The event handlers could simply call updateBackground()
and repaint() directly, but hiding and showing the window to generate the
screenshot would cause more focus-changed events. These would then trig-
ger another background update, causing the window to hide again, and so
on, creating an infinite loop. The new focus events are generated a few milli-
seconds after refresh() is processed, so simply checking for an isRecursing
flag wouldn’t stop a loop.

Additionally, any user action that would change the screen will probably
create lots of events, not just one. It’s just the last event that should trigger
updateBackground(), not the first. To handle all these issues, the code cre-
ates a thread that watches for repaint requests and only processes a new
screenshot if it hasn’t already been done in the last 1,000 milliseconds. If the
user generates events continuously for five seconds (searching for that lost
browser window, for example), then only when everything else has settled
down for a second will the refresh actually happen. This ensures that users
won’t have a window disappear out from under them while they are moving
things around.

Another annoyance is that the window still has its border, which sort of
ruins the effect of having a transparent background. Unfortunately, remov-
ing the borders with setUndecorated(true) would also remove the titlebar
and window controls. This probably isn’t too much of a problem, though,
because the types of applications that typically use shaped windows usually
have draggable backgrounds [Hack #34].

218 | Chapter 6, Transparent and Animated Windows

#41 Transparent Windows
HACK

Here’s a simple test program to put this into action:

public static void main(String[] args) {
 JFrame frame = new JFrame("Transparent Window");
 frame.setUndecorated(true);

 TransparentBackground bg = new TransparentBackground(frame);
 bg.snapBackground();
 bg.setLayout(new BorderLayout());

 JPanel panel = new JPanel() {
 public void paintComponent(Graphics g) {
 g.setColor(Color.blue);
 Image img = new ImageIcon("mp3.png").getImage();
 g.drawImage(img,0,0,null);
 }
 };
 panel.setOpaque(false);

 bg.add("Center",panel);

 frame.getContentPane().add("Center",bg);
 frame.pack();
 frame.setSize(200,200);
 frame.setLocation(500,500);
 frame.show();
}

The code creates a faux MP3 player interface using a JPanel subclass and a
PNG image with transparency. Note the call to frame.setUndecorated(true),
which turns off the border and titlebar. The call to panel.setOpaque(false)
turns off the default background (usually plain gray), allowing the screen-
shot background to shine through the transparent parts of the image
(Figure 6-2). This produces a window that looks like Figure 6-3—a vision of
Java programs to come?

Figure 6-2. Template for an MP3 player

Make Your Frame Dissolve #42

Chapter 6, Transparent and Animated Windows | 219

HACK

H A C K

#42
Make Your Frame Dissolve Hack #42

Create animated frame dissolves using two screenshots and some clever
graphics code.

Dissolve is a term from old motion pictures where the director would switch
scenes by fading, or dissolving, from one image to another. Eventually direc-
tors came up with more interesting dissolves like the vertical wipe, the vene-
tian effect (little thin strips that look like venetian blinds), and the classic
fade to black. With a little bit of screenshot hackery, you can create similar
effects in Swing, allowing your program to fade away or do some other inter-
esting animation when the user quits.

AWT doesn’t support real transparent or shaped windows (though you can
fake it with a screenshot pasted into a window that fills the screen [Hack #41].

Most dissolves involve applying some graphic effect to both the starting and
ending images, which in this case means the application window itself and
the rest of the user’s desktop under the window. With this in mind, the
basic plan is four steps:

1. Capture an image of the window.

2. Capture an image of the entire screen without the window.

3. Cover up the entire screen with a new window.

4. Show the dissolve animation.

Figure 6-3. Running the MP3 player

220 | Chapter 6, Transparent and Animated Windows

#42 Make Your Frame Dissolve
HACK

To keep this simple, I have created a special class that does a simple fade-to-
transparent animation. Once the class is built, you can create more compli-
cated animations by overriding the paint method, leaving the messy details
to the parent class. Here’s the basic skeleton:

class Dissolver extends JComponent implements Runnable {
 Frame frame;
 Window fullscreen;
 int count;
 BufferedImage frame_buffer;
 BufferedImage screen_buffer;

 public Dissolver() { }

Dissolver is a JComponent that implements Runnable so that it can have an
animation loop. It has member variables for the application frame to dis-
solve (frame), the window that covers up the screen (fullscreen), an anima-
tion counter (count), and the two buffers for storing the frame and the
desktop background image (frame_buffer and screen_buffer).

Prepare the Dissolve
Dissolver has one method to start the dissolve process called dissolveExit(),
which takes the JFrame you want to dissolve and generates everything else it
needs internally:

public void dissolveExit(JFrame frame) {
 try {
 this.frame = frame;
 Robot robot = new Robot();

 // cap screen w/ frame to frame buffer
 Rectangle frame_rect = frame.getBounds();
 frame_buffer = robot.createScreenCapture(frame_rect);

 // hide frame
 frame.setVisible(false);

 // cap screen w/o frame
 Dimension screensize = Toolkit.getDefaultToolkit()
 .getScreenSize();
 Rectangle screen_rect = new Rectangle(0,0,
 screensize.width, screensize.height);
 screen_buffer = robot.createScreenCapture(screen_rect);

 // create big window w/o decorations
 fullscreen = new Window(new JFrame());
 fullscreen.setSize(screensize);
 fullscreen.add(this);
 this.setSize(screensize);
 fullscreen.setVisible(true);

Make Your Frame Dissolve #42

Chapter 6, Transparent and Animated Windows | 221

HACK

 // start animation
 new Thread(this).start();
 } catch (Exception ex) {
 System.out.println(ex);
 ex.printStackTrace();
 }
}

dissolveExit() saves a reference to the frame and creates a new java.awt.
Robot to handle the screen captures. Then it captures just the area of the
screen containing the frame by calling robot.createScreenCatpure(), using
the rectangle returned by frame.getBounds(). After making this screen cap-
ture, it hides the frame and then captures the entire screen into the second
buffer. Finally, it creates a new Window that covers the entire screen, adds the
Dissolver as the window’s only child, and starts the animation on a new
thread.

There are two tricky things to look out for here. First, the code uses a Window
instead of a JFrame so that the window won’t show up in a task list or the
dock. This also means it won’t have any window decorations that would
ruin the illusion of transparency. Second, the Window constructor requires
you to pass in another window or frame. This is because every window is
attached to a parent window and will only be visible when the parent is (on
certain platforms). Using the existing application frame won’t work because
it’s just been hidden, but if you create a new, empty JFrame, the window will
show up fine.

Run the Animation
dissolveExit() creates a new thread around the run() method (see the fol-
lowing code). This method will request a repaint on the component every
100 milliseconds, looping 20 times and then quitting. This will create a two-
second dissolve animation, but you can certainly tweak these values to your
own tastes:

public void run() {
 try {
 count = 0;
 Thread.currentThread().sleep(100);
 for(int i=0; i<20; i++) {
 count = i;
 fullscreen.repaint();
 Thread.currentThread().sleep(100);
 }
 } catch (InterruptedException ex) { }
 System.exit(0);
}

222 | Chapter 6, Transparent and Animated Windows

#42 Make Your Frame Dissolve
HACK

Do the Drawing
Now that the component will be repainted for each frame of the animation,
you can finally do some drawing. Fading to nothing is really easy with
Swing. You just need to draw the background image first, and then draw the
frame on top using a Composite. A Composite is a class that knows to adjust
the standard mechanism in some way. An AlphaComposite will draw par-
tially transparent images depending on the alpha value you pass in. An alpha
value of 1 will draw the image fully opaque, while a value of 0 will be com-
pletely transparent. Values between 1 and 0 will draw the image partially
transparent. Always be sure to save the old composite so you can return the
Graphics object to its original state when you are done:

public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 // draw the screen, offset in case the window isn't at 0,0
 g.drawImage(screen_buffer,-fullscreen.getX(),
 -fullscreen.getY(),null);

 // draw the frame
 Composite old_comp = g2.getComposite();
 Composite fade = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f-((float)count)/20f);
 g2.setComposite(fade);
 g2.drawImage(frame_buffer,frame.getX(),frame.getY(),null);
 g2.setComposite(old_comp);
}

The class in Example 6-2 creates a frame with one button called quit. When
you press the Quit button, the dissolve will be activated, fading the window
into nothing and then calling System.exit(). If you compile and run the
code, it will look something like Figure 6-4.

Figure 6-4. A fade dissolve

Make Your Frame Dissolve #42

Chapter 6, Transparent and Animated Windows | 223

HACK

Create a Genie Effect
One of my favorite bits of eye candy from Mac OS X is the minimize dis-
solve. When you click on the minimize button in any application, the win-
dow will shrink and slide into the dock. This is called the genie effect, and it
not only looks cool, but it also gives you feedback about where a window
has gone. Example 6-3 is a subclass of Dissolver that overrides the paint()
method to create a spinning, shrinking window that somewhat mimics the
genie effect.

Example 6-2. A simple test class

public class DissolveHack {

 public static void main(String[] args) {

 final JFrame frame = new JFrame("Dissolve Hack");
 JButton quit = new JButton("Quit");
 quit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 new Dissolver().dissolveExit(frame);
 }
 });

 frame.getContentPane().add(quit);
 frame.pack();
 frame.setLocation(300,300);
 frame.setSize(400,400);
 frame.setVisible(true);
 }
}

Example 6-3. Adding a genie effect to your toolbox

class SpinDissolver extends Dissolver {

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 // draw the screen, offset in case the window isn't at 0,0
 g.drawImage(screen_buffer,-fullscreen.getX(),
 -fullscreen.getY(),null);

 // save the current transform
 AffineTransform old_trans = g2.getTransform();

 // move to the upper-lefthand corner of the frame
 g2.translate(frame.getX(), frame.getY());

 // move the frame off toward the left
 g2.translate(-((count+1) * (frame.getX()+frame.getWidth())/20),0);

224 | Chapter 6, Transparent and Animated Windows

#42 Make Your Frame Dissolve
HACK

This dissolver will shrink the window and spin it, while moving it toward
the left at the same time. This make the window look like it is spinning off
into oblivion, as in Figure 6-5.

This hack shows off just a few of the really cool effects you can accomplish
with just a bit of Java2D code in your Swing application. Because the parent
Dissolve class takes care of most of the tricky parts, you can easily create
your own subclasses that focus on just the animation itself. You might want
to try some other animations, such as the circle and linear wipes common to
old movies, or a better genie effect that works when you quit your applica-
tion. Java2D gives you the power to do virtually any linear transform (shear,
scale, rotate, etc.), plus composites and convolutions. For even more effects,
you could use Java3D or JOGL to create three-dimensional effects like spin-
ning cubes and perspective transforms.

 // shrink the frame
 float scale = 1f / ((float)count+1);
 g2.scale(scale,scale);

 // rotate around the center
 g2.rotate(((float)count)/3.14/1.3,
 frame.getWidth()/2, frame.getHeight()/2);

 // finally draw the frame
 g2.drawImage(frame_buffer,0,0,null);

 // restore the current transform
 g2.setTransform(old_trans);
 }
}

Figure 6-5. A spin dissolve

Example 6-3. Adding a genie effect to your toolbox (continued)

Create Custom Tool Tips #43

Chapter 6, Transparent and Animated Windows | 225

HACK

H A C K

#43
Create Custom Tool Tips Hack #43

Replace the standard rollover tool tip with an attractive custom version,
including a border and rounded corners.

Every Swing component can have a tool tip, a little snippet of explanatory
text that pops up when you let your mouse cursor linger over the compo-
nent. These tool tips are often useful, but they usually look quite boring.
This hack shows how to create visually interesting tool tips with a custom
subclass.

In Swing, all tool tips are instances of the JToolTip class. To create your own
version, you need only subclass JToolTip and override the paintComponent()
method. In this hack, we’ll create a tool tip with a rectangle that has a bev-
eled border and a white background. The actual drawing can be taken care
of with a few Java2D drawing commands. Example 6-4 is the code to draw
the tool tip’s background and border.

Example 6-4. A nice-looking tool tip

class CustomToolTip extends JToolTip {

 public void paintComponent(Graphics g) {

 // create a round rectangle
 Shape round = new RoundRectangle2D.Float(4,4,
 this.getWidth()-1-8,
 this.getHeight()-1-8,
 15,15);

 // draw the white background
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g2.setColor(Color.white);
 g2.fill(round);

 // draw the gray border
 g2.setColor(Color.gray);
 g2.setStroke(new BasicStroke(5));
 g2.draw(round);
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_DEFAULT);

 // draw the text
 String text = this.getComponent().getToolTipText();
 if(text != null) {
 FontMetrics fm = g2.getFontMetrics();
 int h = fm.getAscent();

226 | Chapter 6, Transparent and Animated Windows

#43 Create Custom Tool Tips
HACK

This code creates a round rectangle shape that is then reused to draw the
background and border. Notice that anti-aliasing is turned on for drawing
the shape, but it’s turned back to the default (which could be on or off)
before drawing the text. It would look strange to have anti-aliased text if the
rest of the interface was still using standard aliased text—using the default is
a safer idea.

Because this tool tip needs extra space around the text to draw the border,
you will need to modify the tool tip’s preferred size. The getPreferredSize()
method here adds an extra 20 pixels in each direction:

public Dimension getPreferredSize() {
 Dimension dim = super.getPreferredSize();
 return new Dimension((int)dim.getWidth()+20,
 (int)dim.getHeight()+20);
}

The tool tip has rounded corners, but with the code as it stands, you would
still see the slivers of gray that fill out the component’s real corners. In order
to hide the gray and let the components below shine through, you need to
make the tool tip transparent. You can do this by setting opaque to false in
the tool tip’s constructor. The tool tip component is not a direct child of the
frame that contains the tool tip. There is another component between the
tool tip and the frame that will be visible even if the tool tip is transparent.
You can make this extra component transparent with an additional
setOpaque(false) call on the tool tip’s parent at the start of the
paintComponent() method:

public CustomToolTip() {
 super();
 // make the tool tip not fill in its background
 this.setOpaque(false);
}

public void paintComponent(Graphics g) {

// set the parent to not be opaque
Component parent = this.getParent();
if(parent != null) {
 if(parent instanceof JComponent) {
 JComponent jparent = (JComponent)parent;
 if(jparent.isOpaque()) {

 g2.setColor(Color.black);
 g2.drawString(text,10,(this.getHeight()+h)/2);
 }
 }

Example 6-4. A nice-looking tool tip (continued)

Create Custom Tool Tips #43

Chapter 6, Transparent and Animated Windows | 227

HACK

 jparent.setOpaque(false);
 }
 }
}

// ... the rest of the drawing code

Install the Tool Tip
To install the custom tool tip, you need to override the createToolTip()
method of the component you wish to modify. An example using a custom
JButton is shown in Example 6-5.

Because the tool tip is specified by the custom JButton class, all you need to
do is create some components and set their tool tip text. The code in
Example 6-6 creates two buttons and three labels in a frame. The buttons
have custom tool tips that will display—complete with the now transparent
corners—on top of the rest of the screen, as shown in Figure 6-6.

Example 6-5. Installing a custom tool tip

class CustomJButton extends JButton {
 JToolTip _tooltip;

 public CustomJButton() {
 _tooltip = new CustomToolTip();
 _tooltip.setComponent(this);
 }

 public JToolTip createToolTip() {
 return _tooltip;
 }

}

Figure 6-6. A tool tip with a custom border

228 | Chapter 6, Transparent and Animated Windows

#44 Turn Dialogs into Frame-Anchored Sheets
HACK

H A C K

#44
Turn Dialogs into Frame-Anchored Sheets Hack #44

One of Mac OS X’s best ideas is binding the dialog to the window it blocks.
This hack shows you how to mimic this in Swing.

One of my favorite features in Mac OS X is the sheet. This is a dialog box
replacement that slides down from a window’s titlebar. Figure 6-7 shows an
example of a sheet in Apple’s Safari web browser.

Why Sheets Rock
Looking at it, you might think, “what’s the big deal” or “how is this any dif-
ferent than a regular dialog?” Oh, it’s far better:

A sheet is visually anchored to the window that it blocks
On platforms where dialogs have titlebars and close boxes, the relation-
ship between a dialog and the window it blocks is not necessarily intui-
tive. On a related point….

Example 6-6. Testing out custom tool tips

public class ToolTipsHack {

 public static void main(String[] args) {
 JButton button;

 JFrame frame = new JFrame("Tool Tips Hack");
 BoxLayout layout = new BoxLayout(
 frame.getContentPane(),
 BoxLayout.Y_AXIS);
 frame.getContentPane().setLayout(layout);

 button = new CustomJButton();
 button.setText("Open");
 button.setToolTipText("Open an existing file");
 frame.getContentPane().add(button);

 button = new CustomJButton();
 button.setText("Save");
 button.setToolTipText("Save the currently open file");
 frame.getContentPane().add(button);

 frame.getContentPane().add(new JLabel("a label"));
 frame.getContentPane().add(new JLabel("a label"));
 frame.getContentPane().add(new JLabel("a label"));

 frame.pack();
 frame.show();
 }
}

Turn Dialogs into Frame-Anchored Sheets #44

Chapter 6, Transparent and Animated Windows | 229

HACK

A sheet doesn’t have a close box
Dialog close boxes are one of the most hateful and stupid concepts in
Windows and its many Linux imitators. What does the close box mean?
Cancel? The default option? What does it mean when the dialog has
multiple options of equal plausibility and thus no default? Perhaps the
worst thing about the close box was back in the AWT era when Java
developers—too lazy to add and wire-up an OK button to their dia-
logs—just figured users could dismiss the dialog with the close box.
Mac OS 8 and 9 dialogs didn’t have close boxes, so when a Java applica-
tion brought up such a dialog, the application blocked itself forever. Duh.
Sheets mean having to click one of the provided buttons, so the user’s
choices are unambiguous.

A sheet is used to block one window
This is an obvious side effect of being visually tied to a single window,
but that’s probably the most common case. As a side effect, this gives
greater prominence to dialogs that block all windows for a single appli-
cation (“Are you sure you want to Quit and lose all unsaved changes in
all documents?”) and dialogs that block all applications (“Are you sure
you want to Shut Down?”).

So, if you agree that it’s an excellent GUI concept, the next question is “how
do I mimic sheets in Swing?”

Use the Glass Pane
One way to imitate the Mac OS X sheet is to use the glass pane—a layer in
the LayeredPane used by all RootPaneContainers, including JApplets, JFrames,
JInternalFrames, JWindows, and JDialogs. In terms of z-order—the ordering
of layers on “top” of one another from the user’s perspective—the glass
pane is “above” the content pane and the menu bar in the LayeredPane. It is

Figure 6-7. Sheet in Mac OS X Safari browser

230 | Chapter 6, Transparent and Animated Windows

#44 Turn Dialogs into Frame-Anchored Sheets
HACK

usually empty and unfilled. One of the more typical uses for the glass pane is
to add a MouseListener and MouseMotionListener to deny events to the con-
tent pane and thereby block it.

To imitate the sheet with the glass pane, the idea is to take the contents
you’d usually put into a JDialog and place them instead into the glass pane.
This will put them in the frame, above and in front of the frame’s contents.
To position your contents at the top center of the glass pane, you can use a
GridBagLayout that gives the sheet a NORTH anchor, and then add a “glue”
component in the next row that takes up as much vertical space as possible,
pushing the sheet to the top of the pane.

Example 6-7 shows a subclass of JFrame that exposes a showJDialogAsSheet()
method, which grabs the JDialog’s content pane JComponent and inserts it
into the glass pane as the sheet.

Example 6-7. Adding a sheet in a JFrame’s glass pane

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;

public class SheetableJFrame extends JFrame {

 JComponent sheet;
 JPanel glass;

 public SheetableJFrame (String name) {
 super(name);
 glass = (JPanel) getGlassPane();
 }

 public JComponent showJDialogAsSheet (JDialog dialog) {
 sheet = (JComponent) dialog.getContentPane();
 sheet.setBackground (Color.red);
 glass.setLayout (new GridBagLayout());
 sheet.setBorder (new LineBorder(Color.black, 1));
 glass.removeAll();
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.anchor = GridBagConstraints.NORTH;
 glass.add (sheet, gbc);
 gbc.gridy=1;
 gbc.weighty = Integer.MAX_VALUE;
 glass.add (Box.createGlue(), gbc);
 glass.setVisible(true);
 return sheet;
 }

Turn Dialogs into Frame-Anchored Sheets #44

Chapter 6, Transparent and Animated Windows | 231

HACK

Simple enough, isn’t it? To test this component, just create a JFrame and a
JDialog to insert into the frame. The SheetTest class in Example 6-8, which
exercises the SheetableJFrame, fills the frame with interesting content by
making a JLabel from an image file. It then creates a JDialog the easy way—
by making JOptionPane do it.

If you’re used to calling JOptionPane’s various
showXXXDialog() methods, you might be unfamiliar with the
idea of constructing and holding on to a JOptionPane and
creating dialogs from it. This approach isn’t common, but
it’s useful if you want to hold on to the JDialog, maybe for
reuse (e.g., you have memory or performance concerns with
repeatedly creating and disposing of dialogs) or because you
don’t want to block as soon as you show it. In the case of
this demo, the advantage is to get a dialog to play with, with-
out having to layout and wire up everything yourself.

 public void hideSheet() {
 glass.setVisible(false);
 }
}

Example 6-8. Testing the SheetableJFrame

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class SheetTest extends Object
 implements PropertyChangeListener {

 JOptionPane optionPane;
 SheetableJFrame frame;

 public static void main (String[] args) {
 new SheetTest();
 }

 public SheetTest () {
 frame = new SheetableJFrame ("Sheet test");
 // put an image in the frame's content pane
 ImageIcon icon = new ImageIcon ("keagy-lunch.png");
 JLabel label = new JLabel (icon);
 frame.getContentPane().add(label);
 // build JOptionPane dialog and hold onto it
 optionPane = new JOptionPane ("Do you want to save?",
 JOptionPane.QUESTION_MESSAGE,
 JOptionPane.YES_NO_OPTION);

Example 6-7. Adding a sheet in a JFrame’s glass pane (continued)

232 | Chapter 6, Transparent and Animated Windows

#44 Turn Dialogs into Frame-Anchored Sheets
HACK

The other thing that’s interesting about holding onto a JOptionPane is that
it—not the dialog—is what fires events when the user clicks one of the but-
tons. These are fired as PropertyChangeEvents with the property name value,
which you should refer to as JOptionPane.VALUE_PROPERTY. In this case, what
you want to listen for is any change in the value, which indicates that some-
thing has been clicked and means it’s time to hide the sheet.

When you run SheetTest, the image comes up in a SheetableJFrame and,
after a one-second pause for effect, the sheet appears at top center, as seen in
Figure 6-8.

 frame.pack();
 frame.setVisible(true);
 optionPane.addPropertyChangeListener (this);
 // pause for effect, then show the sheet
 try {Thread.sleep(1000);}
 catch (InterruptedException ie) {}
 JDialog dialog =
 optionPane.createDialog (frame, "irrelevant");
 frame.showJDialogAsSheet (dialog);
 }

 public void propertyChange (PropertyChangeEvent pce) {
 if (pce.getPropertyName().equals (JOptionPane.VALUE_PROPERTY)) {
 System.out.println ("Selected option " +
 pce.getNewValue());
 frame.hideSheet();
 }
 }
}

Figure 6-8. JDialog shown as a “sheet” in the glass pane

Example 6-8. Testing the SheetableJFrame (continued)

Animating a Sheet Dialog #45

Chapter 6, Transparent and Animated Windows | 233

HACK

When you click either of the options, the event listener hides the glass pane,
which makes the sheet disappear.

This is a pretty simple case of using the glass pane—in fact, the test is a few
lines longer than the implementation of the sheet. The only thing that’s
missing is the charming animation of the sheet sliding in [Hack #45]….

H A C K

#45
Animating a Sheet Dialog Hack #45

By animating the sheet’s appearance and disappearance, you give the user a
better clue that his attention is required. Plus, it looks cool.

Another really great thing about the sheet functionality in Mac OS X is that
it doesn’t just suddenly appear—it slides out from the titlebar, as if unroll-
ing from under the bar. This animation further reinforces the relationship
between the sheet and the window because the short animation catches your
eye and alerts you to the fact that something about the window has changed
dramatically—namely, that it is now blocked by the sheet dialog.

Animate the Sheet
You already know how to get components into the glass pane [Hack #44], so
you should expect that the key to sheet animation is to perform the anima-
tion in the glass pane, on top of the other components. Of course, you might
have also guessed that the tricky part of this is going to be showing succes-
sively larger parts of the dialog as the animation progresses.

To make this work, you first need to create a custom component for the ani-
mating version of the sheet, separate from the sheet itself. Then, on each
pass of the animation cycle, change the size of the custom component. It
will always have the same width—the width of the real sheet—but its height
will be some percentage of the height of the original, based on how much of
the animation time has elapsed. This approach can work for both directions
of the animation: when the sheet is incoming, the height will get progres-
sively greater; when the sheet is going out, the height will decrease.

To actually draw the animating sheet during the animation, you can use
BufferedImage.getSubimage() to grab a portion of the real sheet, and then
draw that into its own Graphics via paint() callbacks. When the animation
completes, the animating sheet is removed from the glass pane and the real
sheet is added.

234 | Chapter 6, Transparent and Animated Windows

#45 Animating a Sheet Dialog
HACK

An interesting side effect of this is that the user can’t click
the buttons as the sheet appears or retracts because it’s just
an image of the sheet, not the sheet itself. Of course, the ani-
mation is so short (one second in Example 6-9, and Mac OS
X’s actually comes out faster than that), that it’s unlikely a
user could track the moving sheet with her mouse and suc-
cessfully click a button anyway.

One advantage of using a custom component like this is that the kinds of
things that worked for basic sheets [Hack #44] all work here as well. For exam-
ple, you could use a simple GridBagLayout (wow, there’s a phrase you don’t
hear often) to get the sheet centered atop the glass pane. As the sheet is a
real component, it should also handle resizing appropriately.

Setting aside the details of the custom component needed to create the ani-
mated version of the sheet, Example 6-9 shows the reworked version of the
sheet frame, which I’ve called AniSheetableJFrame.

Example 6-9. JFrame for animating sheet appearance and disappearance

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;

public class AniSheetableJFrame extends JFrame
 implements ActionListener {

 public static final int INCOMING = 1;
 public static final int OUTGOING = -1;
 public static final float ANIMATION_DURATION = 1000f;
 public static final int ANIMATION_SLEEP = 50;

 JComponent sheet;
 JPanel glass;
 AnimatingSheet animatingSheet;
 boolean animating;
 int animationDirection;
 Timer animationTimer;
 long animationStart;
 BufferedImage offscreenImage;

 public AniSheetableJFrame (String name) {
 super(name);
 glass = (JPanel) getGlassPane();
 glass.setLayout (new GridBagLayout());
 animatingSheet = new AnimatingSheet();
 animatingSheet.setBorder (new LineBorder(Color.black, 1));
 }

Animating a Sheet Dialog #45

Chapter 6, Transparent and Animated Windows | 235

HACK

 public JComponent showJDialogAsSheet (JDialog dialog) {
 sheet = (JComponent) dialog.getContentPane();
 sheet.setBorder (new LineBorder(Color.black, 1));
 glass.removeAll();
 animationDirection = INCOMING;
 startAnimation();
 return sheet;
 }

 public void hideSheet() {
 animationDirection = OUTGOING;
 startAnimation();
 }

 private void startAnimation() {
 glass.repaint();
 // clear glasspane and set up animatingSheet
 animatingSheet.setSource (sheet);
 glass.removeAll();
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.anchor = GridBagConstraints.NORTH;
 glass.add (animatingSheet, gbc);
 gbc.gridy=1;
 gbc.weighty = Integer.MAX_VALUE;
 glass.add (Box.createGlue(), gbc);
 glass.setVisible(true);

 // start animation timer
 animationStart = System.currentTimeMillis();
 if (animationTimer == null)
 animationTimer = new Timer (ANIMATION_SLEEP, this);
 animating = true;
 animationTimer.start();
 }

 private void stopAnimation() {
 animationTimer.stop();
 animating = false;
 }

 // used by the Timer
 public void actionPerformed (ActionEvent e) {
 if (animating) {
 // calculate height to show
 float animationPercent =
 (System.currentTimeMillis() - animationStart) /
 ANIMATION_DURATION;
 animationPercent = Math.min (1.0f, animationPercent);
 int animatingHeight = 0;

Example 6-9. JFrame for animating sheet appearance and disappearance (continued)

236 | Chapter 6, Transparent and Animated Windows

#45 Animating a Sheet Dialog
HACK

Looking at this code method by method, the constructor’s only new task is
to create an instance of the AnimatingSheet inner class that will be used by
the animation.

showJDialogAsSheet() again hijacks the content pane from the JDialog and
sets it aside as the sheet instance variable. But instead of putting sheet in the
glass pane immediately, it sets the animationDirection to INCOMING and calls
startAnimation(). The hideSheet() method makes similar changes: instead
of messing with the glass pane directly, it simply sets the direction to
OUTGOING and calls startAnimation().

 if (animationDirection == INCOMING) {
 animatingHeight =
 (int) (animationPercent * sheet.getHeight());
 } else {
 animatingHeight =
 (int) ((1.0f - animationPercent) * sheet.getHeight());
 }
 // clip off that much from sheet and blit it
 // into animatingSheet
 animatingSheet.setAnimatingHeight (animatingHeight);
 animatingSheet.repaint();

 if (animationPercent >= 1.0f) {
 stopAnimation();
 if (animationDirection == INCOMING) {
 finishShowingSheet();
 } else {
 glass.removeAll();
 glass.setVisible(false);
 }
 }
 }
 }

 private void finishShowingSheet() {
 glass.removeAll();
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.anchor = GridBagConstraints.NORTH;
 glass.add (sheet, gbc);
 gbc.gridy=1;
 gbc.weighty = Integer.MAX_VALUE;
 glass.add (Box.createGlue(), gbc);
 glass.revalidate();
 glass.repaint();
 }

 // inner class AnimatedSheet goes here
}

Example 6-9. JFrame for animating sheet appearance and disappearance (continued)

Animating a Sheet Dialog #45

Chapter 6, Transparent and Animated Windows | 237

HACK

startAnimation() begins by refreshing the glass pane with a repaint(). It
then informs the AnimatingSheet of its new source (i.e., the sheet) and adds
the AnimatingSheet to the layout. It then sets up a javax.swing.Timer to get
callbacks to an actionPerformed() method that performs each step of the
animation. The ANIMATION_SLEEP parameter affects how smooth the anima-
tion will look—shorter sleeps will result in a higher frame rate, but higher
CPU use.

I’ve set this value as low as 2 ms and haven’t had a problem,
but I’m on a pretty fast box (a dual 1.8 GHz G5 Power Mac).
You might want to play with this value to get an ideal
performance-to-smoothness ratio.

stopAnimation() just stops the Timer, as you might expect.

The actionPerformed() method is used by the Timer callbacks. It has two
tasks: calculating the height of the sheet to show, and wrapping up the ani-
mation if it has run its course. Notice that the progress calculation doesn’t
assume that it has been called back in accordance with the ANIMATION_SLEEP.
It calculates the current time offset from when the animation began, and cal-
culates a progress from that, which in turn allows it to figure out how much
of the sheet to show. This is a really good practice because if your computer
can’t keep up with your desired rate, the Timer will combine multiple call-
backs into one. By just using the current time (instead of a possibly incor-
rect assumption about frame rate), you’ll keep up with the specified rate and
duration. On screen, combined callbacks will look like dropped frames, but
a choppier animation is preferable to one that takes longer than it should.

If actionPerformed() decides that the animation has finished, it calls
stopAnimation() and then cleans up the glass pane by either removing its
contents (if the direction is OUTGOING) or by calling finishShowingSheet() (if
direction is INCOMING). The finishShowingSheet() method clears the glass
pane and puts the real sheet in place, just like showJDialogAsSheet() did in
the last lab.

Self-Painting
So, the frame is responsible for adding, removing, and animating the
AnimatedSheet, and for adding the real sheet when the incoming animation
completes. What that leaves for the AnimatedSheet is the ability to paint itself
(from a region of the original dialog) and report an accurate size for the ben-
efit of the glass pane’s LayoutManager.

238 | Chapter 6, Transparent and Animated Windows

#45 Animating a Sheet Dialog
HACK

Example 6-10 shows the code for the AnimatingSheet inner class.

Example 6-10. Inner class to paint sheet during animation

class AnimatingSheet extends JPanel {
 Dimension animatingSize = new Dimension (0, 1);
 JComponent source;
 BufferedImage offscreenImage;
 public AnimatingSheet () {
 super();
 setOpaque(true);
 }
 public void setSource (JComponent source) {
 this.source = source;
 animatingSize.width = source.getWidth();
 makeOffscreenImage(source);
 }
 public void setAnimatingHeight (int height) {
 animatingSize.height = height;
 setSize (animatingSize);
 }
 private void makeOffscreenImage(JComponent source) {
 GraphicsConfiguration gfxConfig =
 GraphicsEnvironment.getLocalGraphicsEnvironment()
 .getDefaultScreenDevice()
 .getDefaultConfiguration();
 offscreenImage =
 gfxConfig.createCompatibleImage(source.getWidth(),
 source.getHeight());
 Graphics2D offscreenGraphics =
 (Graphics2D) offscreenImage.getGraphics();
 source.paint (offscreenGraphics);
 }
 public Dimension getPreferredSize() { return animatingSize; }
 public Dimension getMinimumSize() { return animatingSize; }
 public Dimension getMaximumSize() { return animatingSize; }
 public void paint (Graphics g) {
 // get the bottom-most n pixels of source and
 // paint them into g, where n is height

 BufferedImage fragment =
 offscreenImage.getSubimage (0,
 offscreenImage.getHeight() -
 animatingSize.height,
 source.getWidth(),
 animatingSize.height);
 // g.drawImage (fragment, 0, 0, this);
 g.drawImage (fragment, 0, 0, this);
 }
}

Animating a Sheet Dialog #45

Chapter 6, Transparent and Animated Windows | 239

HACK

The constructor is more or less trivial, so take a look at the setSource()
method. This method stores the source JComponent (the sheet that the frame
created from a dialog) as an instance variable, and calculates a width for the
AnimatingSheet. This width will be constant through the animation, so it’s
assigned at this step.

The makeOffscreenImage() that setSource() calls takes the source
JComponent and draws an offscreen BufferedImage. It does this by calling
GraphicsConfiguration.createCompatibleImage() with the size of the source.
Using createCompatibleImage() is highly recommended for creating off-
screen images because it will keep you from getting surprised by greater or
lesser color depths on platforms other than your own. makeOffscreenImage()
then gets the Graphics2D for this image and tells source to paint itself onto
the Graphics2D. The offscreen image now contains an image of the source
component.

setAnimatingHeight(), called by the frame’s Timer just before it repaint()s
the AnimatingSheet, stores away two values that will be needed by the paint()
callback: the height in pixels to be painted and the new size of the animat-
ing sheet. This new size is returned by getPreferredSize(), getMinimumSize(),
and getMaximumSize(), so the layout manager will know how much space to
provide for it.

And now for the big payoff: paint() is called as a result of the frame’s Timer
callback making a repaint() call. It uses BufferedImage.getSubimage() to
get the pixels for the bottom-most animatingHeight pixels of the offscreen
image. It then draws this sub-image into the Graphics at 0,0. The image’s
size matches the newly reported preferred size of the AnimatingSheet compo-
nent, so the sub-image fills it completely.

And that’s it. The frame is responsible for managing what’s in the glass
pane—animating sheet, real sheet, or nothing—and for running the anima-
tion. The AnimatingSheet is just responsible for adjusting its size when called
by the animation, and for painting an appropriate representation suitable to
that size, which it does by grabbing sub-images from an offscreen image of
the real component.

The SheetTest class has only one meaningful change from the version in the
last hack: the SheetableJFrame becomes an AniSheetableJFrame. Run it once
to see the effect, and then play with the ANIMATION_DURATION and ANIMATION_
SLEEP values to see what it looks like when you change the duration or the
smoothness of the animation. For the screenshot sequence in Figure 6-9, I
used a duration of 10,000 ms (10 seconds) so I could get multiple shots and
show the progress of the animation.

240 | Chapter 6, Transparent and Animated Windows

#46 Slide Notes Out from the Taskbar
HACK

H A C K

#46
Slide Notes Out from the Taskbar Hack #46

Pop up a note above the taskbar when your application wants attention.

On Windows, long-running applications sometimes will slide in a window
above the taskbar to call attention to themselves when an interesting event
occurs, such as a finished download or an IM buddy’s appearance.

If you want to do this in Java, you need to deal with a pretty significant
problem: neither AWT nor Swing has any concept of the taskbar (where it
is, how big it is, whether it’s auto-hiding, or anything else). As a result, you
don’t know where to draw the window, and just taking a guess or hardcod-
ing something is hazardous—too high and the window floats inexplicably
on the desktop, too low and it gets buried under the taskbar.

Furthermore, how is this going to work on other operating systems? On the
Mac, the proper way to get attention is to bounce your application’s dock
icon. Since there’s no API exposing that functionality, can you at least use a
Windows-like slide-in window above the dock? Sure…if you can figure out
how tall the dock is (it’s user configurable), or whether the dock is even on
the bottom of the screen (it might be on the right or left, too).

Fortunately, it is possible to figure out what unobstructed space is available
to you on the main display. After that, it’s just a matter of offscreen imaging
and animation.

Figure Out Where You Are
The key to figuring out your available space is to get the local
GraphicsEnvironment, which describes the display, and then call
getMaximumWindowBounds(). This method, introduced in Java 1.4, returns a
Rectangle representing the largest centered Window that could fit on the dis-
play, accounting for objects that intrude on the display’s usable space, like
the Windows taskbar or the Mac’s monolithic menu bar.

Figure 6-9. Successive screenshots of an animated glass pane sheet

Slide Notes Out from the Taskbar #46

Chapter 6, Transparent and Animated Windows | 241

HACK

This means that on Windows, the Rectangle will have an upper-left corner
at 0,0; on the Mac, it will be at 0,22, which leaves space for the Mac’s menu
bar. Meanwhile, the height of the Rectangle won’t be the height of your dis-
play unless you have your taskbar set to auto-hide, or you have moved it to
the right or left.

So, now you have the beginnings of the slide-in above-taskbar window. By
subtracting the height of the window from the y-coordinate of the last
usable row, you can place the window directly above the taskbar or dock.
To do the slide-in, you’ll need to do an animation loop in which progres-
sively larger portions of the complete window are blitted into a smaller
onscreen version. This is very similar to the animated sheet [Hack #45] you’ve
already seen. It’s so similar, in fact, that you can reuse the inner class from
that hack to do the progressive redrawing.

A simple implementation, SlideInNotification, is shown in Example 6-11.

Example 6-11. Sliding in a window immediately above the taskbar or dock

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;

public class SlideInNotification extends Object {

 protected static final int ANIMATION_TIME = 500;
 protected static final float ANIMATION_TIME_F =
 (float) ANIMATION_TIME;
 protected static final int ANIMATION_DELAY = 50;

 JWindow window;
 JComponent contents;
 AnimatingSheet animatingSheet;
 Rectangle desktopBounds;
 Dimension tempWindowSize;
 Timer animationTimer;
 int showX, startY;
 long animationStart;

 public SlideInNotification () {
 initDesktopBounds();
 }

 public SlideInNotification (JComponent contents) {
 this();
 setContents (contents);
 }

242 | Chapter 6, Transparent and Animated Windows

#46 Slide Notes Out from the Taskbar
HACK

 protected void initDesktopBounds() {
 GraphicsEnvironment env =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 desktopBounds = env.getMaximumWindowBounds();
 System.out.println ("max window bounds = " + desktopBounds);
 }

 public void setContents (JComponent contents) {
 this.contents = contents;
 JWindow tempWindow = new JWindow();
 tempWindow.getContentPane().add (contents);
 tempWindow.pack();
 tempWindowSize = tempWindow.getSize();
 tempWindow.getContentPane().removeAll();
 window = new JWindow();
 animatingSheet = new AnimatingSheet ();
 animatingSheet.setSource (contents);
 window.getContentPane().add (animatingSheet);
 }

 public void showAt (int x) {
 // create a window with an animating sheet
 // copy over its contents from the temp window
 // animate it
 // when done, remove animating sheet and add real contents

 showX = x;
 startY = desktopBounds.y + desktopBounds.height;

 ActionListener animationLogic = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 long elapsed =
 System.currentTimeMillis() - animationStart;
 if (elapsed > ANIMATION_TIME) {
 // put real contents in window and show
 window.getContentPane().removeAll();
 window.getContentPane().add (contents);
 window.pack();
 window.setLocation (showX,
 startY - window.getSize().height);
 window.setVisible(true);
 window.repaint();
 animationTimer.stop();
 animationTimer = null;
 } else {
 // calculate % done
 float progress =
 (float) elapsed / ANIMATION_TIME_F;
 // get height to show
 int animatingHeight =
 (int) (progress * tempWindowSize.getHeight());

Example 6-11. Sliding in a window immediately above the taskbar or dock (continued)

Slide Notes Out from the Taskbar #46

Chapter 6, Transparent and Animated Windows | 243

HACK

After setting the constants for the speed of the animation and the frame rate
(i.e., how frequently to call for repaints), the constructors are used to deter-
mine the usable screen space (given the GraphicsEnvironment strategy just
detailed) and optionally to set the contents of the slide-in window.

setContents() is a little tricky because you need to figure out the size of the
contents (a JComponent) before you can start the animation loop that draws
fragments of them. You can do this by putting them into a temporary win-
dow and packing it, which forces all of its contents to be validated and made
displayable. Next, you create the real Window to show on screen, but instead
of adding the contents, you add an AnimatingSheet—the inner class that
shows progressively larger parts of the contents as the animation runs.
When the animation is finished, the AnimatingSheet will be removed and the
real contents added.

To slide in the window, a caller invokes the showAt() method, passing in an
arbitrary x-coordinate. Nothing in Java tells you what is showing on the
taskbar or dock, so there’s no way, short of going native to get your slide-in
window to appear above a specific taskbar/dock icon. The showAt() method
is where you need to figure out the y-coordinate where the animation will
begin, namely the last usable row. Given the Rectangle that represented the
largest possible onscreen window, you add its y-coordinate to its height. The
y-coordinate accounts for top-of-screen obstructions like the Mac menu bar,
and the height counts all the space from there to the taskbar or dock, if any.

showAt() contains a large, anonymous inner class ActionListener that per-
forms the animation logic that will be called back by a javax.swing.Timer.

 animatingHeight = Math.max (animatingHeight, 1);
 animatingSheet.setAnimatingHeight (animatingHeight);
 window.pack();
 window.setLocation (showX,
 startY - window.getHeight());
 window.setVisible(true);
 window.repaint();
 }
 }
 };
 animationTimer =
 new Timer (ANIMATION_DELAY, animationLogic);
 animationStart = System.currentTimeMillis();
 animationTimer.start();
 }

 // AnimatingSheet inner class listed below

}

Example 6-11. Sliding in a window immediately above the taskbar or dock (continued)

244 | Chapter 6, Transparent and Animated Windows

#46 Slide Notes Out from the Taskbar
HACK

As with most animations, the first thing you do is to figure out how much
time has elapsed in the animation. If the animation is finished, you take out
the AnimatingSheet, insert the real contents, pack the Window and reset its
location to its final visible location, show it, and shut down the Timer.

If the animation time has not fully elapsed, you calculate how far into the
animation you are, as a percentage (a float between 0.0 and 1.0), and from
that you get how many vertical pixels you want to show on this pass. Send
this value to AnimatingSheet’s setAnimatingHeight() method, pack() the
window (which picks up the preferred height you just set), set the location
to the starting y-coordinate minus the window’s new height, and repaint.

The AnimatingSheet inner class was already described in the previous hack,
but to recap, it represents some vertically cropped fragment of a source com-
ponent. When you set the source, it creates an offscreen Image of the compo-
nent’s pixels. Then, when you call setAnimatingHeight() from the animation
loop, it resets its preferred, minimum, and maximum size to use that height
(this is why it can be packed by the Window during the animation). Then,
when paint() is called, it uses BufferedImage.getSubimage() to get a por-
tion of the offscreen image that it can blit into the Graphics with a typical
double-buffer-like drawImage() call.

This version, shown in Example 6-12, has two differences from the earlier
version of AnimatingSheet:

• Because this window scrolls in the opposite direction of the drop-down
sheets, the getSubimage() call gets the top-most n pixels instead of the
bottom-most pixels.

• On Windows, I found the offscreen buffer was black unless explicitly
cleared out first. This wasn’t a problem on Mac OS X.

Example 6-12. The AnimatingSheet inner class is used in creating notifications that slide in
and out

class AnimatingSheet extends JPanel {
 Dimension animatingSize = new Dimension (0, 1);
 JComponent source;
 BufferedImage offscreenImage;
 public AnimatingSheet () {
 super();
 setOpaque(true);
 }
 public void setSource (JComponent source) {
 this.source = source;
 animatingSize.width = source.getWidth();
 makeOffscreenImage(source);
 }

Slide Notes Out from the Taskbar #46

Chapter 6, Transparent and Animated Windows | 245

HACK

Running the Hack
The SlideInNotification will take any JComponent as its contents. To make
things a little interesting, the TestSlideInNotification class, shown in
Example 6-13, grabs an icon from the JOptionPane class and makes a JLabel
of that and a little nonsense text.

 public void setAnimatingHeight (int height) {
 animatingSize.height = height;
 setSize (animatingSize);
 }
 private void makeOffscreenImage(JComponent source) {
 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 GraphicsConfiguration gfxConfig =
 ge.getDefaultScreenDevice().getDefaultConfiguration();
 offscreenImage =
 gfxConfig.createCompatibleImage(source.getWidth(),
 source.getHeight());
 Graphics2D offscreenGraphics =
 (Graphics2D) offscreenImage.getGraphics();
 // windows workaround
 offscreenGraphics.setColor (source.getBackground());
 offscreenGraphics.fillRect (0, 0,
 source.getWidth(), source.getHeight());
 // paint from source to offscreen buffer
 source.paint (offscreenGraphics);
 }
 public Dimension getPreferredSize() { return animatingSize; }
 public Dimension getMinimumSize() { return animatingSize; }
 public Dimension getMaximumSize() { return animatingSize; }
 public void update (Graphics g) {
 // override to eliminate flicker from
 // unnecessary clear
 paint (g);
 }
 public void paint (Graphics g) {
 // get the top-most n pixels of source and
 // paint them into g, where n is height
 // (different from sheet example, which used bottom-most)
 BufferedImage fragment =
 offscreenImage.getSubimage (0,
 0,
 source.getWidth(),
 animatingSize.height);
 g.drawImage (fragment, 0, 0, this);
 }
}

Example 6-12. The AnimatingSheet inner class is used in creating notifications that slide in
and out (continued)

246 | Chapter 6, Transparent and Animated Windows

#46 Slide Notes Out from the Taskbar
HACK

When you run this application, one thing to make note of is the standard
output because the SlideInNotification class has one System.out.println()
left in to show the discovered dimensions. Here’s what Windows reports
with a taskbar showing:

max window bounds = java.awt.Rectangle[x=0,y=0,width=800,height=570]

and what it reports with the taskbar set to auto-hide:

max window bounds = java.awt.Rectangle[x=0,y=0,width=800,height=600]

Meanwhile, on the Mac, the bounds with a dock on the bottom of the
screen look like this:

max window bounds = java.awt.Rectangle[x=0,y=22,width=1280,height=707]

and with the dock over on the right, they look like this:

max window bounds = java.awt.Rectangle[x=0,y=22,width=1244,height=746]

Notice that in each case, the first usable y-coordinate is 22, accounting for
the unusable space under the Mac’s monolithic menu bar. Notice also in the
second case that I’ve lost usable horizontal space because the dock is on the
right. By the way, if you’re doing the math and can’t figure out why nothing
adds up to 1024 × 768, it’s because I have a wide-screen monitor and my
screen size is 1280 × 768.

Of course, don’t stare too long at the console output, or you’ll miss the
appearance of the slide-in window. Figure 6-10 shows the window in mid-
animation on Windows, with and without a visible taskbar.

Example 6-13. Testing the slide-in notification

import javax.swing.*;

public class TestSlideInNotification {

 public static void main (String[] args) {
 Icon errorIcon = UIManager.getIcon ("OptionPane.errorIcon");
 JLabel label = new JLabel ("Your application asplode",
 errorIcon,
 SwingConstants.LEFT);
 SlideInNotification slider = new SlideInNotification (label);
 slider.showAt (450);
 }
}

Figure 6-10. Slide-in window on Windows with taskbar showing (left) and set to auto-
hide (right)

Indefinite Progress Indicator #47

Chapter 6, Transparent and Animated Windows | 247

HACK

Figure 6-11 shows the slide-in window on Mac OS X. It’s less appropriate
on the Mac, and it will be obscured if the user has dock magnification
turned on, but it’s not really bad either.

Hacking the Hack
To expand this hack, the first thing you’d probably want to do is add some
kind of MouseListener so that if the user clicks to acknowledge the appear-
ance of the slide-in window, you could react to it by removing the slide-in
window, bringing your application’s main window to the front, etc. Then
again, you can put live components in here, so there’s no reason you
couldn’t just generate a JOptionPane, make a JDialog from it, grab the con-
tent pane of that JDialog, and show it in the slide-in window. That would
give you real, active Swing buttons and handy JOptionPane return values.
After all, that’s what the sheet example did.

H A C K

#47
Indefinite Progress Indicator Hack #47

Despite its numerous advanced widgets, Swing offers no efficient way to
show that a task of unknown length is in progress. This hack presents two
solutions to address this issue.

Have you ever watched an application do something, but not tell you what
that something is? Other applications let you know what’s going on but
don’t really tell you how long they will need to complete the task. For
instance, the Microsoft Windows copy dialog is famous for its silly (and
lengthy) nonprogress indicators. As a user, I find this very annoying; as a pro-
grammer, I know how difficult it can be to determine the duration of a task.

The Swing Solution
To address this issue, developers created particular widgets meant to show a
task of unknown length is in progress. You can see such a widget in
Mozilla’s installer. It displays an indefinite progress bar—also called a
Cylon—in which a small rectangle bounces back and forth between the two
horizontal edges. I have also seen indefinite progress bars filling like regular
progress bars, going backward once filled and starting all over again. The

Figure 6-11. Slide-in window on Mac OS X with dock on bottom of screen (left) and not
on bottom (right)

248 | Chapter 6, Transparent and Animated Windows

#47 Indefinite Progress Indicator
HACK

idea of an indefinite progress bar is great, but most existing implementa-
tions are just wrong. Users know what a progress bar looks like, and they
also know how it is supposed to behave. It is a bad idea to present a familiar
widget acting in a very surprising way. Unfortunately, the Swing designers
followed this trend and added the setIndeterminate(boolean) method to
JProgressBar. Check out Example 6-14.

This short example creates a new window containing an indefinite progress
bar. When you launch the program, you can see a small rectangle bouncing
back and forth within the progress bar’s bounds, as in Figure 6-12. The
result is much better on Mac OS X because it uses the native Look and Feel
automatically, as shown in Figure 6-13. Despite this visual improvement,
though, the result is still far from perfect.

There are several better ways to show that a task of unknown length is in
progress.

Example 6-14. An indefinite progress bar

import javax.swing.*;
public class CylonBar {
 public static void main(String[] args) {
 JFrame f = new JFrame("Progress");
 JProgressBar p = new JProgressBar();
 p.setIndeterminate(true);
 f.getContentPane().add(p);
 f.pack();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setVisible(true);
 }
}

Figure 6-12. The indefinite progress bar offered by Swing

Figure 6-13. Swing’s indefinite progress bar with Mac OS X Look and Feel

Indefinite Progress Indicator #47

Chapter 6, Transparent and Animated Windows | 249

HACK

Picture as Indicator
The first solution relies on cycling the brightness of a picture in a panel.
Instead of moving a rectangle back and forth, you can increase and decrease
the brightness of a picture. The result is much more appealing and lets you
choose an adequate picture regarding the current running task. Figure 6-14
shows the AnimatedPanel in action.

When you click the Start button, the contents of the Animated tab are
replaced by a panel containing a picture and a message. With the picture’s
brightness cycles, as shown in Figure 6-15, you can see the most bright state
on the left and the less bright state on the right.

Figure 6-14. The first tab demonstrates the use of a picture as an indefinite progress
indicator

Figure 6-15. AnimatedPanel displays a picture and cycles its brightness

250 | Chapter 6, Transparent and Animated Windows

#47 Indefinite Progress Indicator
HACK

To change the brightness of the picture dynamically, AnimatedPanel starts an
animation thread responsible for computing the brightness over the time:

public void start() {
 this.animator = new Thread(new HighlightCycler(), "Highlighter");
 this.animator.start();
}

class HighlightCycler implements Runnable {
 private int way = 1;
 private final int LOWER_BOUND = 10;
 private final int UPPER_BOUND = 35;
 private int value = LOWER_BOUND;

 public void run() {
 while (true) {
 try {
 Thread.sleep(1000 / (UPPER_BOUND - LOWER_BOUND));
 } catch (InterruptedException e) {
 return;
 }

 value += this.way;
 if (value > UPPER_BOUND) {
 value = UPPER_BOUND;
 this.way = -1;
 } else if (value < LOWER_BOUND) {
 value = LOWER_BOUND;
 this.way = 1;
 }

 synchronized (convolvedImage) {
 setBrightness((float) value / 10);
 setGradientFactor((float) value / UPPER_BOUND);
 }
 }
 }
}

When the start() method of the panel is called, a new thread is spawned to
run HighlightCycler. The animation loop is very simple, and it increases or
decreases the variable value until its value reaches LOWER_BOUND or UPPER_
BOUND. Then, setBrightness() is invoked to change the brightness of the pic-
ture. Given the values of the bounds, the brightness swings between 1.0
(unchanged) and 3.5 (the picture is 3.5 times brighter). You can notice this
call is synchronized with the object convolvedImage, which is one of the two
BufferedImages contained in AnimatedPanel. This image is the result of a fil-
ter applied on originalImage, the picture that contains the unchanged origi-
nal picture. As applying the filter can take some time, the code synchronizes
on convolvedImage to ensure the previous filtering is done before running a
new one. This code shows how to change the brightness of the picture:

Indefinite Progress Indicator #47

Chapter 6, Transparent and Animated Windows | 251

HACK

private void setBrightness(float multiple) {
 float[] brightKernel = { multiple };
 RenderingHints hints = new RenderingHints(RenderingHints.KEY_RENDERING,
 RenderingHints.VALUE_RENDER_QUALITY);
 BufferedImageOp bright = new ConvolveOp(new Kernel(1, 1, brightKernel),
 ConvolveOp.EDGE_NO_OP, hints);
 bright.filter(originalImage, convolvedImage);
 repaint();
}

The parameter multiple tells the method how many times brighter than the
original the resulting image must be. To achieve this effect, you can simply
perform a convolve operation on the original image. The kernel contains a
single value, multiple. When the filter() method is invoked, every pixel
value of the original image is multiplied by the value of the kernel, making it
brighter. The result is stored in convolveImage. It is now easy to use the
AnimatedPanel in an application:

Icon icon = UIHelper.readImageIcon("network.png");
AnimatedPanel animated = new AnimatedPanel("Waiting in vain...", icon);
getContentPane().add(animated);
animated.start();

Besides the start() method, you can call stop() to interrupt the animation
thread when the task is done. This panel can be very efficient when used
with a CardLayout. As this layout lets you stack components, you can put a
form on top of the animated panel. When the user performs an action, you
can display the animated panel and start the animation. At the end of the
task, you just need to stop the animation and hide the animated panel.

The example file Demo.java contains a complete example
using CardLayout.

The Glass Pane as an Indicator
Using the AnimatedPanel proves to be efficient in form-oriented applica-
tions. Unfortunately, it does not help much when the running task must not
be interrupted by any action performed by the user. In this case, you need a
way to disable the entire GUI while displaying an indefinite progress indica-
tor. This can be done with a glass pane, as shown in Figure 6-16.

InfiniteProgressPanel is an animated glass pane you can set up on any
Swing frame:

InfiniteProgressPanel glassPane = new InfiniteProgressPanel();
setGlassPane(glassPane);
glassPane.start();

252 | Chapter 6, Transparent and Animated Windows

#47 Indefinite Progress Indicator
HACK

When you start() the panel, a fade-in animation is played during the ramp-
up phase. When stop() is called, a fade-out animation is played. Between
the two, a circular shape is rotated at the center of the glass pane. All the
while, a white translucent veil is drawn over the underlying UI to disable it
visually.

The implementation of InfiniteProgressPanel relies on many parameters,
which you can specify with the various constructors:

text
The optional message to be displayed below the circular shape

barsCount
The number of bars composing the circular shape

shield
The opacity of the white veil, also known as the shield

fps
The requested amount of frames per second during the animation

rampDelay
The time, in milliseconds, that fade-in and fade-out animations should
last

Figure 6-16. InfiniteProgressPanel draws a white veil to disable the UI visually

Indefinite Progress Indicator #47

Chapter 6, Transparent and Animated Windows | 253

HACK

Build the Circular Shape
Everything begins when the start() method is invoked:

public void start()
{
 addMouseListener(this);
 setVisible(true);
 ticker = buildTicker();
 animation = new Thread(new Animator(true));
 animation.start();
}

Before running the animation, this method takes care of adding a mouse lis-
tener that is responsible for catching all the mouse events and preventing
them from being forwarded to the underlying user interface. Thus, the user
will not be able to perform any action. The second step is to set the glass
pane to be visible. Finally, the ticker, the circular shape, is built and the ani-
mation is started. Building the shape is done with two methods:

private Area buildPrimitive()
{
 Rectangle2D.Double body = new Rectangle2D.Double(6, 0, 30, 12);
 Ellipse2D.Double head = new Ellipse2D.Double(0, 0, 12, 12);
 Ellipse2D.Double tail = new Ellipse2D.Double(30, 0, 12, 12);

 Area tick = new Area(body);
 tick.add(new Area(head));
 tick.add(new Area(tail));

 return tick;
}

private Area[] buildTicker()
{
 Area[] ticker = new Area[barsCount];
 Point2D.Double center = new Point2D.Double((double) getWidth() / 2,
 (double) getHeight() / 2);
 double fixedAngle = 2.0 * Math.PI / ((double) barsCount);

 for (double i = 0.0; i < (double) barsCount; i++)
 {
 Area primitive = buildPrimitive();

 AffineTransform toCenter = AffineTransform.getTranslateInstance(
 center.getX(), center.getY());
 AffineTransform toBorder =
 AffineTransform.getTranslateInstance(45.0, -6.0);
 AffineTransform toCircle =
 AffineTransform.getRotateInstance(-i * fixedAngle,
 center.getX(), center.getY());

254 | Chapter 6, Transparent and Animated Windows

#47 Indefinite Progress Indicator
HACK

 AffineTransform toWheel = new AffineTransform();
 toWheel.concatenate(toCenter);
 toWheel.concatenate(toBorder);

 primitive.transform(toWheel);
 primitive.transform(toCircle);

 ticker[(int) i] = primitive;
 }

 return ticker;
}

The buildTicker() method returns an array of Areas, where each Area is one
of the bars composing the resulting shape. A bar is built in buildPrimitive()
by merging two circles and a rectangle. The role of buildTicker() is simply
to create the requested amount of bars and to move them to their final
location. To do that, the code applies several AffineTransform operations:
toCenter first translates the bar to the center of the glass pane, toBorder then
moves the bar to the perimeter of the circle you want to create, and toCircle
finally rotates the bar around the glass pane’s center.

Paint the Indicator
Once ticker has been built, paintComponent() only needs to get each bar
and fill it on the graphics surface of the glass pane:

public void paintComponent(Graphics g)
{
 if (started)
 {
 int width = getWidth();
 int height = getHeight();

 Graphics2D g2 = (Graphics2D) g;
 g2.setRenderingHints(hints);

 g2.setColor(new Color(255, 255, 255, (int) (alphaLevel * shield)));
 g2.fillRect(0, 0, getWidth(), getHeight());

 for (int i = 0; i < ticker.length; i++)
 {
 int channel = 224 - 128 / (i + 1);
 g2.setColor(new Color(channel, channel, channel, alphaLevel));
 g2.fill(ticker[i]);
 }
 }
}

Indefinite Progress Indicator #47

Chapter 6, Transparent and Animated Windows | 255

HACK

To make things clearer, this code does not contain the painting of the text.
To allow the glass pane to be visible even when the animation is not started,
the application first checks the value of started. When false, start() has
not been called yet and nothing must be drawn. In the other case, the white
veil is first painted all over the glass pane. The fourth parameter of the Color
object used by fillRect() defines the opacity. Opacity depends on two
parameters here: shield and alphaLevel. The latter is computed by the ani-
mation thread to fade in and fade out the glass pane. As alphaLevel is
between 0 and 255, and you multiply it by shield, which is in the range 0.0
to 1.0, to obtain the opacity of the veil. Finally, the for loop computes a new
color for each bar and paints it. The colors are computed so as to create a
circular gradient and give an impression of movement when the circular
shape is rotated.

Run the Animation Thread
The most complicated part of InfiniteProgressPanel is the Animator thread
since its run() method handles the fade-in and -out animations, as well as
the main animation. The only constructor of Animator requires a boolean
parameter called rampUp. When true, the thread will play both main and
fade-in animations. Otherwise, the fade-out animation is played. This is
what happens when you call InfiniteProgressPanel.stop(). Here is the
code of Animator.run() to handle the main animation:

public void run()
{
 Point2D.Double center;
 center = new Point2D.Double((double) getWidth() / 2,
 (double) getHeight() / 2);
 double fixedIncrement = 2.0 * Math.PI / ((double) barsCount);
 AffineTransform toCircle;
 toCircle = AffineTransform.getRotateInstance(fixedIncrement,
 center.getX(),
 center.getY());

 long start = System.currentTimeMillis();
 if (rampDelay == 0)
 alphaLevel = rampUp ? 255 : 0;

 started = true;
 boolean inRamp = rampUp;

 while (!Thread.interrupted())
 {
 if (!inRamp)
 {

256 | Chapter 6, Transparent and Animated Windows

#47 Indefinite Progress Indicator
HACK

 for (int i = 0; i < ticker.length; i++)
 ticker[i].transform(toCircle);
 }

 repaint();

 // fade-in/out animation

 try
 {
 Thread.sleep(inRamp ? 10 : (int) (1000 / fps));
 } catch (InterruptedException ie) {
 break;
 }
 Thread.yield();
 }
}

The first step of this method is to create an instance of AffineTransform that
will be used to rotate the bar by a fixed increment. By applying this transfor-
mation to the bars, each bar will move clockwise to the location of the next
bar. The rotation cannot happen during the fade-in animation, when rampUp,
and therefore inRamp, are true. After having rotated the ticker and repainted
the glass pane, the thread goes to sleep. The length of the sleep is defined by
the request amount of frames per second. The more frames you specify, the
more CPU resources the animation will need. Finally, the fade-in and fade-
out animations, not shown here, are performed by computing alphaLevel
according to the elapsed time since the beginning of the animation, stored in
the variable start. The alpha level is computed so that it goes, during the
fade in, from 0 to 255 in rampDelay milliseconds. The same rule applies to
the fade-out animation.

Displaying nice-looking, indefinite progress indicators is not very difficult in
Swing, even though it requires some work. Using a circular shape is defi-
nitely the best way to show an infinite progress indicator because you can
walk around it indefinitely, even if you always go in the same direction.

—Romain Guy

257

Chapter 7 C H A P T E R S E V E N

Text
Hacks 48–55

Text handling pervades the Swing API, from the labeling of a JButton to
handling styled text in a JTextArea. When we talk about hacking Swing’s
text handling, we often mean two different things: hacking into the repre-
sentation of the text (say, by making it searchable), or hacking into how that
text is displayed. This chapter will help you see that Swing text isn’t just
about little JTextFields for entering your username.

H A C K

#48
Make Text Components Searchable Hack #48

This hack will show you how to add incremental search to a text area as a
simple document listener, making it very easy to integrate with your existing
software.

Many years ago, text editors had either no searching capabilities or a straight
word search only. You would type a word into a dialog box and the pro-
gram would search for that word, moving to its first location in the docu-
ment. If you were lucky, there was a command to search again, instead of
starting the process over. Then one day Emacs introduced a new kind of
searching. The program would search as you typed in each character, updat-
ing the cursor with each keystroke. To search again, you only had to hit the
Return key. If you wanted a less specific search, you could just hit the Back-
space key and remove letters. Everything updated in real time. Incremental
searching was born.

Most GUI toolkits—Java Swing included—do not provide incremental
search. Java does, however, give you the tools to build your own incremen-
tal search. The 1.4 release of Java finally added a long requested feature:
regular expressions. These are complex but concise patterns that are inter-
nally compiled into searching and matching code. With a single regular
expression (known more commonly as a regex) you could match email
addresses, split a complex data field, parse SQL expressions, or recognize

258 | Chapter 7, Text

#48 Make Text Components Searchable
HACK

different date formats. This hack has much more humble needs, but Java 1.4’s
built-in regex support will make the search implementation very easy.

The plan for this hack is to create a searching utility object that targets a
JTextComponent (the common subclass for all Swing text components such as
JTextArea and JTextField). It will also listen for action and document
change events from a search component (usually a JTextField) to do the
actual searching. By constructing it with class agnostic listeners, you can
add it easily to existing programs without changing much code.

A Basic Search Class
The code in Example 7-1 defines the IncrementalSearch class, which imple-
ments the DocumentListener and ActionListener interfaces. Programs with
search usually have a search field above the search target. The
IncrementalSearch constructor accepts a JTextComponent as the target, and
the document listener events will provide access to the search field itself. In
addition to the usual suspects, you’ll need to import the Swing event, Swing
text, and regex classes.

You can see that all three document listener methods just call runNewSearch(),
passing in the document. This forces the search to start over if the user types
new text, hits the Backspace key, or replaces a selection. So far, there is

Example 7-1. Starting the basic incremental search class

import javax.swing.event.*;
import javax.swing.text.*;
import java.util.regex.*;

public class IncrementalSearch
 implements DocumentListener, ActionListener {

 protected JTextComponent content;
 public IncrementalSearch(JTextComponent comp) {
 this.content = comp;
 }

 /* DocumentListener implementation */
 public void insertUpdate(DocumentEvent evt) {
 runNewSearch(evt.getDocument());
 }
 public void removeUpdate(DocumentEvent evt) {
 runNewSearch(evt.getDocument());
 }
 public void changedUpdate(DocumentEvent evt) {
 runNewSearch(evt.getDocument());
 }

Make Text Components Searchable #48

Chapter 7, Text | 259

HACK

nothing tricky here. The complexity lies in the runNewSearch() function,
which handles the actual searching.

Running the Search
The runNewSearch() method pulls out the query string from the document.
Notice that it passes 0 and the length of the document into the getText()
method. All of the Document methods operate in terms of a starting and end-
ing index. You deal with chunks of text only with these indices rather than
getting and setting Strings, which would entail lots of byte copying. Copy-
ing isn’t a big deal for this hack, but it could be a problem for large docu-
ments (think several hundred kilobytes). Here is the runNewSearch()
method:

protected Matcher matcher;

private void runNewSearch(Document query_doc) {
 try {
 String query = query_doc.getText(0,query_doc.getLength());

 Pattern pattern = Pattern.compile(query);
 Document content_doc = content.getDocument();
 String body = content_doc.getText(0,content_doc.getLength());

 matcher = pattern.matcher(body);
 continueSearch();

 } catch (Exception ex) {
 p("exception: " + ex);
 ex.printStackTrace();
 }
}

After getting the text, runNewSearch() creates a new pattern from the query
(which requires no modification since it is a simple search), and then
retrieves the target document and text. With the search text, target body
text, and pattern in hand, it creates a Matcher and calls continueSearch().
The Matcher is the class that will do the actual searching with an internally
compiled regex:

private void continueSearch() {
 if(matcher != null) {
 if(matcher.find()) {
 content.getCaret().setDot(matcher.start());
 content.getCaret().moveDot(matcher.end());
 content.getCaret().setSelectionVisible(true);
 }
 }
}

260 | Chapter 7, Text

#48 Make Text Components Searchable
HACK

The continueSearch() method just calls find() on the matcher, if it exists. If
find() returns true, meaning it found a match somewhere, it sets the selec-
tion. Selections are defined by a caret with a dot. The dot represents the
selection point. By setting the dot at the start of the match and then moving
it with the moveDot() function, it will create a selection between the start
and ending points. Finally, setSelectionVisible(true) scrolls the target
component, if needed, to make the selection visible on screen.

The action listener implementation will call continueSearch() whenever an
action is performed. Both JButtons and JTextFields produce actions—the
former when they are clicked, and the latter when the user hits the Return
key. Listening for action events is an easy way of providing a hook to repeat
the search:

/* ActionListener implementation */
public void actionPerformed(ActionEvent evt) {
 continueSearch();
}

Since the matcher object remembers its place, each time find is called it will
continue searching from the current location. This means the user can just
hit Enter over and over to loop through the results in the document, high-
lighting each one as it goes along.

Adding Search to Swing Components
The following code creates a typical search interface. There is a large
JTextArea below a text field. The IncrementalSearch is attached to the text
area through its constructor. The search field is connected via the document
and action listeners. Once the class is put all together, it will look like
Figure 7-1.

Figure 7-1. Incremental repeatable search of a JTextArea

Force Text Input into Specific Formats #49

Chapter 7, Text | 261

HACK

public static void main(String[] args) {
 JTextArea text_area = new JTextArea(10,20);
 JScrollPane scroll = new JScrollPane(text_area);
 IncrementalSearch isearch = new IncrementalSearch(text_area);

 JTextField search_field = new JTextField();
 search_field.getDocument().addDocumentListener(isearch);
 search_field.addActionListener(isearch);

 JFrame frame = new JFrame("Incremental Search Hack");
 frame.getContentPane().add("North",search_field);
 frame.getContentPane().add("Center",scroll);
 frame.pack();
 frame.show();
}

As the user types, the search selection will update on every keystroke.
Return (or Enter) will jump to the next result, and Backspace will make the
search less specific.

Hacking the Hack
You could expand this hack with support for case-insensitive searching, or
allow users to type in more complicated regular expressions instead of
straight text-matching. Because the component is built as an event listener,
it’s very easy to drop your search routines into existing applications. Event
listeners are probably the best way to add new features, such as incremental
searching.

H A C K

#49
Force Text Input into Specific Formats Hack #49

Use Java’s powerful pattern matching to enforce rules on typed input

Validating input is an important GUI task, and some applications will vali-
date your input when you tab off a field or even validate it on every key-
stroke. After all, it’s a lot easier to deal with bogus data by not letting it into
your system in the first place.

One technique for validating user input is to use a regular expression and
then evaluate the input against it. For example, a field that can be uppercase
letters only must always match the expression [A-Z]*, and one that can be
any combination of uppercase, lowercase, numbers, and spaces must match
[A-Za-z0-9]* (notice the space after 9).

Java’s regex feature lets you create TextComponents that enforce matching
against an expression. The basic idea is to watch for changes in the under-
lying Document and do your pattern match then.

262 | Chapter 7, Text

#49 Force Text Input into Specific Formats
HACK

Constraining a Document
Hopefully, you won’t be surprised to know that you don’t need to touch the
view classes—JTextField, JTextArea, etc.—to add text constraint function-
ality. Text entry is happening in the model—in other words the Document—
so that’s where you tie in your regex code. This hack, listed in Example 7-2,
subclasses PlainDocument to run the regex check on every call to
insertString().

Example 7-2. A document allowing input that matches only a regex

import javax.swing.text.*;
import java.util.regex.*;

public class RegexConstrainedDocument extends PlainDocument {

 Pattern pattern;
 Matcher matcher;

 public RegexConstrainedDocument () { super(); }
 public RegexConstrainedDocument (AbstractDocument.Content c) { super(c); }
 public RegexConstrainedDocument (AbstractDocument.Content c, String p) {
 super (c);
 setPatternByString (p);
 }
 public RegexConstrainedDocument (String p) {
 super();
 setPatternByString (p);
 }

 public void setPatternByString (String p) {
 Pattern pattern = Pattern.compile (p);
 // checks the document against the new pattern
 // and removes the content if it no longer matches
 try {
 matcher = pattern.matcher (getText(0, getLength()));
 System.out.println ("matcher reset to " +
 getText (0, getLength()));
 if (! matcher.matches()) {
 System.out.println ("does not match");
 remove (0, getLength());
 }
 } catch (BadLocationException ble) {
 ble.printStackTrace(); // impossible?
 }
 }

 public Pattern getPattern() { return pattern; }

 public void insertString (int offs, String s, AttributeSet a)
 throws BadLocationException {

Force Text Input into Specific Formats #49

Chapter 7, Text | 263

HACK

This class holds onto a Pattern and a Matcher to perform the regex match-
ing. The pattern can be set in the constructor, or later with a call to
setPatternByString(). In either case, the method compiles the pattern and
creates a Matcher with the Document’s text. Changing the pattern could, of
course, create a mismatch with any existing text in the Document, so the
Matcher immediately calls matches() and if the text does not match, it
deletes all the text from the Document.

Perhaps the more typical case is when the Document.insertString() method is
called. This will happen on every keystroke in a JTextComponent. Assuming the
Matcher is not null, meaning that the Pattern has been set at some point, you
simply need to call Matcher.matches() against the Document’s new contents to
see if they comply with the regex constraints. If not, return early, never call-
ing the superclass’s insert() method, and thus disallowing the input.

Adding Constrained Text Fields
Since the Document isn’t actually visible, you need to put it in something in
order to test it. The TestRegexConstrainedDocument class creates a JTextField
for you to type in a regular expression to enforce, and a longer JTextField
for text to test. You create this latter JTextField with the seldom-seen con-
structor that takes a Document, an initial-value String, and a width (specified
in columns). Obviously, you use a RegexConstrainedDocument for the first
argument. There’s also a Set JButton that takes the String value of the regex
field and sets that as the new pattern to match the document against, with
RegexConstrainedDocument’s setPatternByString() method. The rest is mostly
layout code. The test class is shown in Example 7-3.

 // consider whether this insert will match
 String proposedInsert =
 getText (0, offs) +
 s +
 getText (offs, getLength() - offs);
 System.out.println ("proposing to change to: " +
 proposedInsert);
 if (matcher != null) {
 matcher.reset (proposedInsert);
 System.out.println ("matcher reset");
 if (! matcher.matches()) {
 System.out.println ("insert doesn't match");
 return;
 }
 }
 super.insertString (offs, s, a);
 }
}

Example 7-2. A document allowing input that matches only a regex (continued)

264 | Chapter 7, Text

#49 Force Text Input into Specific Formats
HACK

When run, the displayed GUI looks like Figure 7-2. Notice that by using the
regex [A-Z]*, you can enter uppercase letters and spaces, but nothing else.

Example 7-3. GUI to test the RegexConstrainedDocument in a JTextField

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TestRegexConstrainedDocument extends JPanel
 implements ActionListener {

 JTextField regexField, filterField;
 JButton regexButton;
 RegexConstrainedDocument regexDoc;

 public TestRegexConstrainedDocument() {
 setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));
 // top - regex stuff
 JPanel topPanel = new JPanel();
 JLabel rLabel = new JLabel ("regex:");
 topPanel.add (rLabel);
 regexField = new JTextField (20);
 topPanel.add(regexField);
 regexButton = new JButton ("Set");
 regexButton.addActionListener (this);
 topPanel.add (regexButton);
 add (topPanel);
 // bottom - filterfield
 regexDoc =
 new RegexConstrainedDocument ();
 filterField = new JTextField (regexDoc, "", 50);
 add (filterField);
 }

 public void actionPerformed (ActionEvent e) {
 System.out.println ("actionperformed");
 if (e.getSource() == regexButton) {
 System.out.println ("regexbutton");
 regexDoc.setPatternByString (regexField.getText());
 }
 }

 public static void main (String[] args) {
 JComponent c = new TestRegexConstrainedDocument();
 JFrame f = new JFrame ("Regex filtering");
 f.getContentPane().add (c);
 f.pack();
 f.setVisible(true);
 }
}

Auto-Completing Text Fields #50

Chapter 7, Text | 265

HACK

When you type a comma, a question mark, or lowercase letters, they are
ignored.

You can do smart things with this tool, but also really stupid things. Let’s
say you want to restrict input to the characters that will be in a North Amer-
ican phone number of the form 123-456-7890. You can set the pattern to
[0-9\-]*, which will allow the user to type in only numbers and the hyphen.

Now you’re feeling clever, but you don’t like the fact that this still allows
users to type patterns that aren’t phone numbers, like 1111111 or -1-1-1-1.
So, you set the pattern to an exact description of the phone number pattern:

[0-9]{3}-[0-9]{3}-[0-9]{4}

But now your users can’t enter anything! Why? Because although that regu-
lar expression does specify the phone number pattern, no substring of it will
ever match. This expression specifies exactly 12 characters, so when you
type the first one, there’s only one character—it doesn’t match the pattern,
so it’s rejected.

The moral of the story here is to be thoughtful. You might decide to wire up
a FocusListener so you impose the regex pattern only when the user moves
off the field, and change the “delete everything” behavior to something a lit-
tle less forceful; for example, you could pop up a dialog telling the user that
her input isn’t in the right format. Just don’t be surprised when regular
expressions give you results that are logical, but sometimes unexpected.

H A C K

#50
Auto-Completing Text Fields Hack #50

Typing in a whole URL is a pain. When the user starts to type, complete his
text with previously entered options, and let the user select one instead of
typing the whole URL.

The auto-completing text field is instantly familiar from its use in browsers,
where it is probably most needed. Nobody wants to have to try to type—or
for that matter even remember—a huge URL to some page they’ve visited
before, particularly not something like those Amazon.com URLs with inex-
plicable 20-digit numbers and bunches of seemingly arbitrary characters. On
the other hand, not everything needs to be saved as a bookmark.

Figure 7-2. Filtering JTextField input with a regular expression

266 | Chapter 7, Text

#50 Auto-Completing Text Fields
HACK

The text field that pops up a window of recently viewed sites is a happy
compromise. It jogs your memory by showing you completion options, and
it saves lots of typing by letting you simply click one of the options and hav-
ing that text inserted immediately into the text field.

A Self-Completing Text Field
This hack takes a JTextField and has it manage a JWindow, which contains a
JList of possible completion values. The real work is done by an inner class
that manages the list of completions and has a javax.util.regex.Pattern
object to match each potential completion against the field’s current text.
Example 7-4 is what you need to get going.

Example 7-4. A JTextField that manages a pop-up list of completions

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.text.*;
import java.util.*;
import java.util.regex.*;

public class CompletableJTextField extends JTextField
 implements ListSelectionListener {

 Completer completer;
 JList completionList;
 DefaultListModel completionListModel;
 JScrollPane listScroller;
 JWindow listWindow;

 public CompletableJTextField (int col) {
 super (col);
 completer = new Completer();
 completionListModel = new DefaultListModel();
 completionList = new JList(completionListModel);
 completionList.setSelectionMode (ListSelectionModel.SINGLE_SELECTION);
 completionList.addListSelectionListener (this);
 listScroller =
 new JScrollPane (completionList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 listWindow = new JWindow();
 listWindow.getContentPane().add (listScroller);
 }

 public void addCompletion (String s) {
 completer.addCompletion (s); }

Auto-Completing Text Fields #50

Chapter 7, Text | 267

HACK

 public void removeCompletion (String s) {
 completer.removeCompletion (s); }

 public void clearCompletions (String s) {
 completer.clearCompletions (); }

 public void valueChanged (ListSelectionEvent e) {
 if (e.getValueIsAdjusting()) { return; }
 if (completionList.getModel().getSize() == 0) {return;}
 listWindow.setVisible (false);
 final String completionString =
 (String) completionList.getSelectedValue();
 Thread worker = new Thread() {
 public void run() {
 setText (completionString);
 }
 };
 SwingUtilities.invokeLater (worker);
 }

 /** inner class does the matching of the JTextField's
 document to completion strings kept in an ArrayList
 */
 class Completer implements DocumentListener {
 private Pattern pattern;
 private ArrayList completions;
 public Completer() {
 completions = new ArrayList();
 getDocument().addDocumentListener (this);
 }

 public void addCompletion (String s) {
 completions.add (s);
 buildAndShowPopup();
 }

 public void removeCompletion (String s) {
 completions.remove (s);
 buildAndShowPopup();
 }

 public void clearCompletions () {
 completions.clear();
 buildPopup();
 listWindow.setVisible(false);
 }

 private void buildPopup() {
 completionListModel.clear();
 System.out.println ("buildPopup for " + completions.size() +
 " completions");

Example 7-4. A JTextField that manages a pop-up list of completions (continued)

268 | Chapter 7, Text

#50 Auto-Completing Text Fields
HACK

 Iterator it = completions.iterator();
 pattern = Pattern.compile (getText() + ".+");
 while (it.hasNext()) {
 // check if match
 String completion = (String) it.next();
 Matcher matcher = pattern.matcher (completion);
 if (matcher.matches()) {
 // add if match
 System.out.println ("matched "+ completion);
 completionListModel.add (completionListModel.getSize(),
 completion);
 } else {
 System.out.println ("pattern " +
 pattern.pattern() +
 " does not match " +
 completion);
 }
 }
 }

 private void showPopup() {
 if (completionListModel.getSize() == 0) {
 listWindow.setVisible(false);
 return;
 }
 // figure out where the text field is,
 // and where its bottom left is
 java.awt.Point los = getLocationOnScreen();
 int popX = los.x;
 int popY = los.y + getHeight();
 listWindow.setLocation (popX, popY);
 listWindow.pack();
 listWindow.setVisible(true);
 }

 private void buildAndShowPopup() {
 if (getText().length() < 1)
 return;
 buildPopup();
 showPopup();
 }

 // DocumentListener implementation
 public void insertUpdate (DocumentEvent e) { buildAndShowPopup(); }
 public void removeUpdate (DocumentEvent e) { buildAndShowPopup(); }
 public void changedUpdate (DocumentEvent e) { buildAndShowPopup(); }

 }
}

Example 7-4. A JTextField that manages a pop-up list of completions (continued)

Auto-Completing Text Fields #50

Chapter 7, Text | 269

HACK

The CompletableJTextField constructor is responsible for setting up the
JList and its model; for wiring up the field as a ListSelectionListener; and
for packing the list into a JScrollPane, which sits in an initially invisible
JWindow. It also creates an instance of the inner class Completer, which is
responsible for managing the list of completions. Note that this version of
the hack supplies only one of the typical JTextField constructor signatures;
you’d probably want to provide others to make the component more conve-
nient for callers.

There are three methods for adding, removing, and clearing completions,
but these just decorate calls to the Completer inner class.

Skip ahead to the Completer at this point because it’s the guts of the imple-
mentation. This class has an ArrayList of all the Strings to be considered as
completions of the field text, and a regex Pattern to do matching. When you
want to add and delete possible completions, you need to add or delete
them from the ArrayList and then manage the ListModel in the outer class
and show the JWindow. Clearing is similar, but you clear the ListModel and
hide the window.

buildModel() is a convenience class to do the list model management. It
starts by clearing the list model, then creates a regex Pattern with the field
text, concatenated with ".* ", which means the pattern is “what’s in the
field, plus zero or more other characters.” To match against possible com-
pletions, you get an Iterator of them and then go through them, each time
creating a Matcher of the field text and looking for a match. If it matches,
add it to the list model.

With the list model rebuilt, you show the updated list to the user by re-
checking the field’s onscreen location, putting the window directly below
that, and calling setVisible(true).

The inner class also provides a DocumentListener implementation that sim-
ply rebuilds and shows the completion list window on any kind of change to
the field’s underlying Document.

Mouse clicks on the list in this window is handled by a valueChanged()
method in the outer class. Unfortunately, this has to deal with the fact that
the choice of an item fires off a chain of ListSelectionEvents, only one of
which you’re interested in. The chain of events always begins with one for
which valueIsAdjusting is true. This is meant to indicate that the user is
dragging through the list to make multiple selections, and it is sent even
though this list is single-select. At any rate, it’s not the last event, so ignore it.
Another selection event is sent when the list is cleared out and has no items;
this isn’t worth acting on, so ignore it, too. Having screened those cases out,
you should have a nonadjusting ListSelectionEvent and a non-zero list size.

270 | Chapter 7, Text

#50 Auto-Completing Text Fields
HACK

You can hide the window at this point and look at the selection value. Since
the Completer just puts Strings in the list model, you can pull out the
selected value and set that as the text of the field. And you’re done.

Well, not quite. If you call setText() directly in valueChanged(), you’ll be
thrown an IllegalStateException. The problem is that you’re attempting to
change the value of the Document while it’s already being changed. In other
words, firing off the DocumentEvent is part of the document edit that began
with the user’s keystroke that led to the completion menu appearing; this
edit needs to complete before another is attempted. As you can see in this
hack, the workaround is to create a worker thread to set the field with the
clicked text, and to invoke that worker on a later cycle through the event
loop. This arrangement returns immediately and lets the first edit finish,
then sets the field later.

Test Out Auto-Complete
To test this class, you need to put the CompletableJTextField in a GUI and
provide a way to give it some completions. The TestCompletableJTextField
class in Example 7-5 does just that, offering a second JTextField where you
can enter strings that will be offered as completions to text typed into the
CompletableJTextField. When run, the test GUI originally looks like
Figure 7-3.

Example 7-5. A GUI to exercise the CompletableJTextField

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TestCompletableJTextField extends JPanel
 implements ActionListener {

 CompletableJTextField completableField;
 JTextField completionField;

 public TestCompletableJTextField () {
 super();
 setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));
 completableField = new CompletableJTextField (75);
 add (completableField);
 JPanel bottom = new JPanel ();
 bottom.add (new JLabel ("Completion:"));
 completionField = new JTextField (40);
 completionField.addActionListener (this);
 bottom.add (completionField);
 JButton addButton = new JButton ("Add");
 addButton.addActionListener (this);

Auto-Completing Text Fields #50

Chapter 7, Text | 271

HACK

To test things out, I added the addresses of some of O’Reilly’s web sites:
www.onjava.com, www.onlamp.com, www.java.net, and webservices.xml.com.
Figure 7-4 shows that after I type w, all four sites match.

In Figure 7-5, I type a second w; webservices.xml.com no longer matches, so
it disappears from the list.

As I continue my typing (www.on), only two matches remain, as seen in
Figure 7-6.

At this point, I clicked www.onjava.com. This text is placed into the field
and the list window disappears, as seen in Figure 7-7.

 bottom.add (addButton);
 add (bottom);
 }

 public void actionPerformed (ActionEvent e) {
 completableField.addCompletion (completionField.getText());
 completionField.setText ("");
 }

 public static void main (String[] main) {
 JFrame f = new JFrame ("Completions...");
 f.getContentPane().add (new TestCompletableJTextField());
 f.pack();
 f.setVisible (true);
 }
}

Figure 7-3. Empty CompletableJTextField

Figure 7-4. All completions showing after typing one character

Example 7-5. A GUI to exercise the CompletableJTextField (continued)

272 | Chapter 7, Text

#51 Write Backward Text
HACK

One question you might ask about this implementation is
“why stuff a JList in a JWindow you have to manage, when
you could just use a JPopupMenu?” Good question, but one
with a pretty straightforward answer: the JPopupMenu is
modal, so once it appears, clicking on it is the only option.
That’s not the desired behavior here, where clicking in the
menu is optional, and the more likely circumstance at any
time is that the user will continue typing. So, the better
approach is to let her keep typing and just keep track of the
possible completions.

H A C K

#51
Write Backward Text Hack #51

Baffle your friends by turning their text into its mirror image.

The fact that everything in Swing goes through the Java2D rendering pipe-
line makes it really easy to apply all sorts of effects to Swing components.
Text offers some fun possibilities. For one, you can challenge the user by
turning his text into a mirror image of itself.

Figure 7-5. One completion removed after typing two characters

Figure 7-6. Another completion removed after typing six characters

Figure 7-7. Text field filled in by clicking on completion from list

Write Backward Text #51

Chapter 7, Text | 273

HACK

Messing with JLabel
The easiest text component to distort is the simple JLabel. The
BackwardsJLabel class in Example 7-6 subclasses JLabel and uses an
AffineTransform in the paint() method to do the flip.

The constructors make trivial calls to their parent classes, so the key is the
overridden paint() method. It first checks that you have a Graphics2D and
does the cast. Any Graphics2D has an AffineTransformation that defines
transforms that are to be applied as the Graphics2D is rendered. The
AffineTransform of a Component will usually have some important transforms
already defined in it, so it’s best not to replace its transform, but rather to use
the Graphics2D.transform() method to modify the existing AffineTransform
with one of your own making.

But what kind of transform do you want to do? A mirror image consists of
two separate transformations: scaling the x-coordinates by a factor of -1

Example 7-6. Rendering a JLabel as a mirror image

import java.awt.*;
import javax.swing.*;
import java.awt.geom.*;
import javax.swing.text.Document;

public class BackwardsJLabel extends JLabel {

 public BackwardsJLabel () { super(); }
 public BackwardsJLabel (Icon image) {super (image);}
 public BackwardsJLabel (Icon image, int align) {super (image, align);}
 public BackwardsJLabel (String text) { super (text);}
 public BackwardsJLabel (String text, Icon icon, int align) {
 super (text, icon, align);
 }
 public BackwardsJLabel (String text, int align) { super (text, align);}

 public void paint (Graphics g) {
 if (g instanceof Graphics2D) {
 Graphics2D g2 = (Graphics2D) g;
 AffineTransform flipTrans = new AffineTransform();
 double widthD = (double) getWidth();
 flipTrans.setToTranslation (widthD, 0);
 flipTrans.scale (-1.0, 1);
 g2.transform (flipTrans);
 super.paint(g);
 } else {
 super.paint(g);
 }
 }
}

274 | Chapter 7, Text

#51 Write Backward Text
HACK

(flipping them around the axis, so that the pixels furthest to the right are
now furthest to the left), and translating by the width of the component (so
the pixels move from negative coordinates, where they wouldn’t be seen,
back into positive space). This transformation is illustrated in Figure 7-8.

Mirror, Mirror on the Wall
The following main() method provides a trivial setup of a frame in which
you can view the backward JLabel. The result is shown in Figure 7-9.

public static void main (String[] args) {
 BackwardsJLabel field =
 new BackwardsJLabel ("Through the looking glass");
 JFrame frame = new JFrame("Backwards Text");
 frame.getContentPane().add (field);
 frame.pack();
 frame.setVisible(true);
}

Because the transformation is simple and limited to the paint() method, it
seems like something you could do anywhere. You can easily create a
BackwardsJTextField that uses exactly the same paint() method in a trivi-
ally overridden JTextField—honestly, it’s so trivial that it’s not worth list-
ing here; just set up the trivial “call super” constructors, copy over this
paint() method, and tweak the main() method to show the text field
instead of the label. The result will look like Figure 7-10.

Figure 7-8. Mirror image as scale-and-translate AffineTransform

Figure 7-9. JLabel rendered as mirror image

Figure 7-10. JTextField rendered as mirror image

Use HTML and CSS in Text Components #52

Chapter 7, Text | 275

HACK

This looks amusing and, when you type, the new text is indeed backward.
But the novelty wears off quickly; messing with the display screws up the
drawing of the caret and text highlighting, along with the handling of mouse
clicks to set the insert point. In playing around with JTextArea, we found
that we hosed word wrap, too, so we were stuck on the top line.

So, it’s a cute trick, but let’s reserve it for labels, OK?

H A C K

#52
Use HTML and CSS in Text Components Hack #52

Spruce up your plain JLabels and buttons using HTML and CSS effects, such
as underlines, color, and even embedded tables.

You may know that you can display HTML using a subclass of JTextPane,
but did you also know that Swing supports simple HTML and CSS in virtu-
ally every text component? As long as you can trick it into showing it as
HTML instead of the markup, you can do some pretty nifty things.

Here’s the Trick
Every text component in Swing can display HTML, but the component
needs to know that the text is HTML, rather than a string that just happens
to contain a bunch of angle brackets. Since there is no setHTMLText(true)
method on JTextComponent, you have to resort to being a little trickier. If the
string passed to the component’s constructor (or setText()) method starts
with <html>, then the component will switch to HTML mode. Here is a
quick example:

JButton b1a = new JButton("<html><i>my button</i>");

This code will produce a button that looks like Figure 7-11.

You don’t need to match the <html> with an </html> tag at the end. Swing’s
HTML parser is pretty tolerant of malformed HTML, so for simple things
you can just type whatever is shortest. The mode can only be set once, so if
you put plain text into the component first and then HTML later, it will still
be in plain text mode. You should note that slower computers will exhibit a
noticeable delay the first time a component is shown with HTML. This is
because Swing has to load up all of the javax.swing.text.html classes; how-
ever, they are cached for any further instances.

Figure 7-11. Italic text

276 | Chapter 7, Text

#52 Use HTML and CSS in Text Components
HACK

To avoid this initial delay, you could load a hidden compo-
nent in a separate thread during program startup.

HTML can be used as a shortcut for text effects that would be cumbersome
or impossible with standard Font objects. For example, Font doesn’t provide
a way to draw underlined text, but with HTML you can do this:

JLabel l1 = new JLabel("<html><u>underlined</u></html>");

This produces the text seen in Figure 7-12.

HTML also lets you get multi-lined text and mixed fonts:

JButton b2 = new JButton("<html><i>my</i> button</html>");

This produces the button seen in Figure 7-13.

You can even add line break tags:

JLabel l2 = new JLabel("<html>my multi-
line text</html>");

Using this, you get the button seen in Figure 7-14.

You can use HTML in more than just labels and buttons. JCheckBox,
JRadioButton, and even JComboBox support it. Here is an example of each:

JCheckBox cb1 = new JCheckBox("<html>The <i>real</i> thing");
JRadioButton rb1 = new JRadioButton(
 "<html>Even better");

Figure 7-12. Underlined text

Figure 7-13. Mixed styles

Figure 7-14. Multi-lined text

Use HTML and CSS in Text Components #52

Chapter 7, Text | 277

HACK

String[] vals = { "<html><i>better</i>",
 "<html><u>yet again</u>" };
JComboBox combo1 = new JComboBox(vals);

This creates the collection of HTML-styled components seen in Figure 7-15.

Swing supports most features of basic HTML: paragraphs, lists, simple
tables, and colors. It also supports basic CSS, which can give you greater
control over borders, padding, and other visual attributes. This next exam-
ple creates a header followed by list items of large colored text surrounded
by a border. Since there is so much markup, I put it into a StringBuffer first:

StringBuffer sb = new StringBuffer();
sb.append("<html><head><style type='text/css'>");
sb.append("li { font-style: italic; font-size: 30pt; }");
sb.append("li { font-family: serif; color: #ff5555; }");
sb.append("ul { border-width: 4px; border-style: solid;
 border-color: #ff0000; } ");
sb.append("ul { background-color: #ffeeee; }");
sb.append("</style></head>");
sb.append("<h3>H3 Header</h3>");
sb.append("large serifed textas list items");
sb.append("</html>");

JLabel l3 = new JLabel(sb.toString());

This produces the label seen in Figure 7-16.

Figure 7-15. Some other HTML components

Figure 7-16. Borders and lists

278 | Chapter 7, Text

#53 Use Global Anti-Aliased Fonts
HACK

There is no definitive list of every CSS layout feature the HTMLEditorKit sup-
ports, but you can get a good overview in the JavaDoc for the javax.swing.
text.html.CSS class.

CSS also gives you the ability to define a style and reuse it with multiple
components, putting you one step closer to the kind of separation of con-
tent and style that we take for granted on the Web. In this example, both
labels share the same CSS declaration. If you change the declaration, it
would change both labels. This declaration could even be stored in a proper-
ties file, letting non-programmers affect the look of your application:

StringBuffer css = new StringBuffer();
css.append("<html><head><style type='text/css'>");
css.append("body { color: #4444ff; font-weight: normal;}");
css.append("</head><body>");

JLabel l4 = new JLabel(css+"Cartman");
JLabel l5 = new JLabel(css+"Stan");

This produces the labels seen in Figure 7-17.

Putting HTML in Swing components is a little-known feature that packs a
big punch. You can use it to quickly create layout effects that are cumber-
some or impossible to do with traditional text.

H A C K

#53
Use Global Anti-Aliased Fonts Hack #53

Think Swing apps always look ugly because of the chunky fonts? Finally, you
can do something about it!

Java 1.2 introduced Java2D, complete with the ability to draw anti-aliased
text. Unfortunately, anti-aliasing is off by default and turning it on requires a
programmatic change on each UI component. This hack shows how to turn
on anti-aliasing for an entire frame without customizing each component. It
also introduces a special repaint manager that is the key to several other
hacks in this book, such as the partial translucent menus [Hack #12].

The Problem
To turn on anti-aliasing, you simply need to set a rendering hint:

Figure 7-17. Shared CSS styles

Use Global Anti-Aliased Fonts #53

Chapter 7, Text | 279

HACK

Graphics2D g2 = (Graphics2D)g;
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

Unfortunately, the Graphics object is not very long-lived. There is no global
place to set a hint because there’s a new Graphics object for every repaint().
Any property you set would be gone by the next paint call. The usual
workaround is to subclass the component you want to anti-alias and over-
ride the paint() method:

class AAButton extends JButton {
 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 super.paint(g2);
 }
}

This will work, but it means you have to create a custom subclass for every
component in your application. Not a very appealing solution.

Mac OS X provides anti-aliased rendering through a system property, but
this only works because Apple thoughtfully added it to their JVM. Develop-
ers on other platforms are left out. Java 5.0 provides a standard system prop-
erty for anti-aliasing, but that doesn’t help the millions of 1.3 and 1.4 JVMs
out there. Another option would be to use some form of code injection to
modify each paint method at the bytecode level, but this requires an AOP
tool, custom build scripts, and other things that are probably overkill for
such a simple feature. There has to be a better way—and there actually is.

A long, long time ago (in a research lab far, far away) I worked on a scalable
UI toolkit for Java called SubArctic. One of its key features was that a com-
ponent would paint onto a canvas object called a Drawable—what we would
call a Graphics object in Swing. This Drawable would be passed from parent
to child in a recursive tree traversal. Drawables could be hacked to do all
sorts of complicated things, and since a child always drew on the Drawable
from its parent, the parent could make a change without the child knowing
about it. Thus, you could create a parent panel that rotated all graphics by
45 degrees and a standard child component (like a button or scrollbar)
would work without modification. This scheme was incredibly flexible. We
had hacks for drop shadows, bit-level operations (blur, sharpen, b/w), affine
transformations (rotate, shear), or just about any other crazy idea you could
come up with. I have long wanted to do this in Swing, but there has always
been one obstacle: in Swing, a child’s paint() method is not always called
by its parent’s paintChildren() method.

280 | Chapter 7, Text

#53 Use Global Anti-Aliased Fonts
HACK

Swing provides three sub-paint methods: paint() calls paintBackground(),
paintComponent(), and paintChildren(), passing a Graphics object to each.
Ideally, if you overrode paintChildren() in a custom panel class to add the
rendering hint, then all of the children would draw anti-aliased text. Then
you could just make this custom panel be the root of your frame and the
rendering hint would magically apply to all of the children in the window.
This would be one change per frame, instead of one per component (a defi-
nite improvement).

That sounds all nice and good, except that it doesn’t work. The assumption
that a child’s paint() method is always called by its parent’s paintChildren()
method is wrong. Swing lies! In an effort to speed up rendering, Swing
tracks which components have changed and need redrawing. They are, in
Swing parlance, marked as dirty. The system repaints all of the dirty compo-
nents and leave the others untouched. If Swing detects that a child compo-
nent is dirty, but that its parent is not, then it will jump directly to the
child’s paint() method, bypassing the parent’s paintChildren() method
completely. Crummy, huh?

You could work around this by marking each component with
setOpaque(false). Then, Swing would have no guarantee that the compo-
nent covers its parent completely, and the parent would have to be repainted
as well. Unfortunately, setOpaque() was really meant for custom compo-
nents, and standard widgets like JButton may draw erratically if opacity
changes. To make matters worse, this varies by L&F, something you don’t
want to account for. In addition, you would have to call setOpaque(false)
on every component in the application. This is less intrusive than subclass-
ing, but still a huge amount of work. Next option, please!

What you really want to do is just have the entire component hierarchy be
marked dirty when any component changes. Then the whole frame will be
repainted, and each child’s paint() method will be called from its parent’s
paintChildren() method, making the anti-aliased panel idea work. The key
to this strategy is a little-known class called the RepaintManager.

RepaintManager is a Swing utility class used to track the dirty components in
a window and to tell Swing what to repaint. The guys at Sun Microsystems
made this a public class to facilitate debugging, not for the strange hack we
are about to attempt, but strange hacks are the point of this book, so let’s
get started.

RepaintManager has a lot of methods, but we’re only interested in one of them:
addDirtyRegion(), which is called each time a component wants to make a
portion of itself dirty. The version seen in Example 7-7 will still mark it dirty,
but then it will mark the entire frame dirty as well, triggering a full repaint().

Use Global Anti-Aliased Fonts #53

Chapter 7, Text | 281

HACK

The addDirtyRegion() implementation first calls the super version and then
looks for the highest ancestor that is still an instance of JComponent (because
you don’t really want the frame itself marked dirty). Then, it calls
addDirtyRegion() a second time on the root component, marking the entire
window dirty. Once this is done, the repaint thread will take over and
repaint the entire window, ensuring that any custom JPanel hacks (in this
case, setting the anti-aliased rendering hint) will be handled normally. By
creating a custom repaint manager like this, you now have a reusable tool to
use in other hacks.

Now that we have our full screen repainting, let’s use it. Example 7-8 is the
code to an AntiAliasedPanel along with a simple main() method for testing.

Example 7-7. Tricking RepaintManager

import javax.swing.RepaintManager;
import javax.swing.JComponent;
import java.awt.Container;

public class FullRepaintManager extends RepaintManager {
 public void addDirtyRegion(JComponent comp, int x, int y, int w,
 int h) {
 super.addDirtyRegion(comp,x,y,w,h);
 JComponent root = getRootJComponent(comp);
 // to avoid a recursive infinite loop
 if(comp != root) {
 super.addDirtyRegion(root,0,0,root.getWidth(),
 root.getHeight());
 }
 }
 public JComponent getRootJComponent(JComponent comp) {
 Container parent = comp.getParent();
 if(parent instanceof JComponent) {
 return getRootJComponent((JComponent)parent);
 }
 return comp;
 }

}

Example 7-8. Testing out anti-aliasing on a global scale

public class AntiAliasedPanel extends JPanel {

 public void paintChildren(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 super.paintChildren(g2);
 }

282 | Chapter 7, Text

#53 Use Global Anti-Aliased Fonts
HACK

AntiAliasedPanel is just a standard JPanel subclass with the paintChildren()
method overridden to turn on anti-aliasing. The main() method first sets the
current RepaintManager to the custom version. Then it creates a JFrame with
the AntiAliasedPanel as its root, adding a JLabel with large type. Figure 7-18
shows what the anti-aliased label looks like. I’ve also shown a standard label
in Figure 7-19 for comparison.

The disadvantage of this scheme is that we have defeated all of Swing’s
speed optimizations, but I think it’s worth it for the possibilities we’ve
opened up. This hack just sets the anti-aliasing rendering hint, but we could
also use custom JPanels to do other things with the Graphics object, such as
blurring, rotation, or animation. For more examples of this approach, take a
look at the partially translucent menus [Hack #48] and custom tool tip [Hack #43]

hacks.

 public static void main(String[] args) {
 RepaintManager.setCurrentManager(new FullRepaintManager());
 JPanel panel = new AntiAliasedPanel();
 JFrame frame = new JFrame("Hack 100: Anti-Aliased text");
 frame.getContentPane().add(panel);

 JLabel label = new JLabel("This is anti-aliased text");
 label.setFont(label.getFont().deriveFont(40f));
 panel.add(label);

 frame.pack();
 frame.setVisible(true);
 }
}

Figure 7-18. With anti-aliasing

Figure 7-19. Without anti-aliasing

Example 7-8. Testing out anti-aliasing on a global scale (continued)

Anti-Aliased Text Without Code #54

Chapter 7, Text | 283

HACK

H A C K

#54
Anti-Aliased Text Without Code Hack #54

Draw anti-aliased text without any code changes at all using two clever tricks
introduced in Java 5.0.

Since Java 1.2, UI programmers can draw anti-aliased text. Unfortunately,
anti-aliasing must be enabled for every Swing component by writing a few
lines of code for each of them [Hack #53]. This hack describes a clever way to
turn on anti-aliasing for an entire frame by adding a customized repaint
manager. As every programmer seeks for effortless solutions, we will dis-
cover how to do the same without writing any lines of code.

The Java 5.0 Trick
Sun Microsystems released Java 5.0, a.k.a. Tiger, in September 2004.
Among many improvements, like a new theme for the Metal L&F, this
release of J2SE paves the way for application-wide text anti-aliasing support
in Mustang, the upcoming release of Java. To this end, the Swing team
added a special field in the hidden class com.sun.java.swing.SwingUtilities2.
Meant for internal purposes only, this class is left undocumented by Sun’s
engineering teams.

If you look closely at its source code, provided in src.zip with Sun’s JVM,
you’ll discover a very interesting method: drawTextAntialiased(JComponent c).
This method returns a boolean value used by Swing’s painting framework to
know whether the specified component must be drawn with anti-aliased
text. Here is its complete source code:

private static boolean drawTextAntialiased(JComponent c) {
 if (!AA_TEXT_DEFINED) {
 if (c != null) {
 return ((Boolean)c.getClientProperty(
 AA_TEXT_PROPERTY_KEY)).booleanValue();
 }
 return false;
 }
 return AA_TEXT;
}

As you can see, there are two ways to enable anti-aliased text. In the first
case, the static variable AA_TEXT_DEFINED is set to false, and a check is per-
formed against the component’s properties. Hence, a component in which
the property AA_TEXT_PROPERTY_KEY is set to true will be anti-aliased. You can
set this property to a given component with the following line of code:

myComponent.putClientProperty(SwingUtilities2.AA_TEXT_PROPERTY_KEY,
 new Boolean(true));

284 | Chapter 7, Text

#54 Anti-Aliased Text Without Code
HACK

Add this line of code in any of your applications, compile it, and launch it
with J2SE 5.0 and you’ll see the magic happen. While extremely useful, this
trick is not enough since we sure don’t want to do that for every component
instance in our UI. The source code of drawTextAntialiased() gives us a
clue to understand how to globally enable anti-aliased text. When AA_TEXT_
DEFINED is set to true, the value AA_TEXT is returned. Both are defined at the
beginning of SwingUtilities2.java:

static {
 fontCache = new LSBCacheEntry[CACHE_SIZE];
 Object aa = java.security.AccessController.doPrivileged(
 new GetPropertyAction("swing.aatext"));
 AA_TEXT_DEFINED = (aa != null);
 AA_TEXT = "true".equals(aa);
 AA_FRC = new FontRenderContext(null, true, false);
}

The variables we are interested in are computed according to the value of the
object aa. This object is the value of a JVM property called swing.aatext,
and it is supposed to be a String object. AA_TEXT_PROPERTY_KEY is true only
when this property has been set, and AA_TEXT is true when the value of the
property is the String value "true". Given this information, we just need to
set the swing.aatext property of the JVM to enable anti-aliasing. This can be
done on the command line with the help of the –D switch, as in this example:

java –Dswing.aatext=true WebHunter

Figure 7-20 is what an application looks like with swing.aatext properly set.
I have also shown a screenshot of the same application without this prop-
erty for comparison (in Figure 7-21).

This trick is very useful and extremely simple to set up. Best of all, it
requires no change in the source code of the application, allowing use of it
even with applications you did not write. Unfortunately, this hack has two
major drawbacks. First, it works only with Sun’s J2SE 5.0 and is not guaran-
teed to be available with other vendors’ implementations. Also, remember

Figure 7-20. Anti-aliased text with J2SE 5.0 swing.aatext property

Anti-Aliased Text with a Custom Look and Feel #55

Chapter 7, Text | 285

HACK

that SwingUtilities2 is an undocumented and hidden class for which no
support will ever be provided. This means that it can be changed without
notice. Using it might break your applications in a future release of Java.

—Romain Guy

H A C K

#55
Anti-Aliased Text with a Custom
Look and Feel Hack #55

Another way to get smooth text is to use a custom Look and Feel to avoid the
fragile Java 5.0 APIs.

When the Java 5.0 anti-aliasing trick [Hack #54] was first discovered, some dis-
cussions arose on the Web. Many people strongly disagree with using it
because it can be broken at any time by Sun Microsystems. Should we be
deprived of anti-aliased text because of such a silly problem? Frédéric Lav-
igne, author of the famous Skin L&F and webmaster of www.javootoo.com,
a great repository of Look and Feels for Swing, didn’t think so and found an
elegant and clever way to get the same result.

The Wrap Look and Feel
His idea is to use a custom Look and Feel whose sole purpose is to enable
anti-aliasing hints on the Graphics instances used to draw the UI. He imple-
mented his idea in the Wrap Look and Feel, which can be downloaded at
wraplf.l2fprod.com. Another Look and Feel, SmoothMetal, enables anti-
aliasing in your application. Yet, you are stuck with Metal Look and Feel
when using it. Wrap Look and Feel acts as a decorator for the current Look
and Feel. Thus, you can choose any Look and Feel you want and wrap it
with Wrap Look and Feel to enable anti-aliasing. Doing so requires a single
line of code:

import com.l2fprod.common.swing.plaf.wrap.Wrapper;
Wrapper.wrap();

Figure 7-21. Anti-aliased text without J2SE 5.0 swing.aatext property

286 | Chapter 7, Text

#55 Anti-Aliased Text with a Custom Look and Feel
HACK

No matter which Swing Look and Feel you set, the wrap() method will han-
dle it properly. One line of code is good, but not good enough. We’d be bet-
ter off with no line of code at all. Frédéric feels the same way and provides
the excellent Wrapit class you can use to install the Wrap Look and Feel at
runtime:

java -classpath wraplf.jar;. Wrapit WebHunter

The Wrapit class contains a main() entry point that will install the Wrap
Look and Feel and then call the main() entry point of the class passed as the
first argument on the command line. This Look and Feel is a powerful tool
you can use to enhance the appearance of any Java application, whether you
have the source code or not.

—Romain Guy

287

Chapter 8 C H A P T E R E I G H T

Rendering
Hacks 56–64

Sometimes it’s not what you put into your GUI, but how you draw it. The
hacks in this chapter are based in some way on using (or abusing) how
AWT and Swing render the graphic contents of a GUI. In several cases, we
use Java2D to bring graphic transformations and color-handling to Swing
components. In others, we use AWT’s font handling to change compo-
nents; not just JTextComponents, but any components that need to draw text
to render themselves. And in still other cases, we mess with the process by
which Swing renders its contents.

H A C K

#56
Create a Magnifying Glass Component Hack #56

Zoom in on those pixels with a little creative abuse of the AWT’s debugging-
oriented Robot class.

Some graphics programs use a component that shows a magnified view of
what the cursor is currently hovering over. This can be very helpful for doing
pixel-accurate editing of a picture.

It should be simple enough to do in Swing—get pixels from one component
and put them in another—but there are some missing pieces. Specifically,
how do you get the pixels out of the source component as an Image so you
can drawImage() them into the magnified component? You could do this if
you owned the source component and set it up with a double-buffer because
creating the offscreen buffer would require creating an Image, which is
exactly what you needed anyway. But for an arbitrary JComponent, you can’t
assume that level of access to the source’s pixels.

But there’s another option back in AWT: the Robot class, introduced in J2SE
1.3. It has a createScreenCapture() method that can grab the screen, or just
part of it, and return it as a Java2D BufferedImage. This is what we need to
get things going.

288 | Chapter 8, Rendering

#56 Create a Magnifying Glass Component
HACK

Build the Magnifying Glass
The DetachedMagnifyingGlass will need to keep track of the Component it’s
viewing, the current mouse location in that component, a zoom factor, and
its own size. It will also need an instance of the AWT Robot for taking screen
grabs. The other thing it needs to do is to have a MouseMotionListener, so
that it will get updates on the cursor’s position and, when it changes, do a
new grab and repaint().

The DetachedMagnifyingGlass code is shown in Example 8-1.

Example 8-1. JComponent to provide a magnified view of another JComponent

public class DetachedMagnifyingGlass extends JComponent
 implements MouseMotionListener {

 double zoom;
 JComponent comp;
 Point point;
 Dimension mySize;
 Robot robot;

 public DetachedMagnifyingGlass (JComponent comp,
 Dimension size,
 double zoom) {
 this.comp = comp;
 // flag to say don't draw until we get a MouseMotionEvent
 point = new Point (-1, -1);
 comp.addMouseMotionListener(this);
 this.mySize = size;
 this.zoom = zoom;
 // if we can't get a robot, then we just never
 // paint anything
 try {
 robot = new Robot();
 } catch (AWTException awte) {
 System.err.println ("Can't get a Robot");
 awte.printStackTrace();
 }
 }

 public void paint (Graphics g) {
 if ((robot == null) || (point.x == -1))
 {
 g.setColor (Color.blue);
 g.fillRect (0, 0, mySize.width, mySize.height);
 return;
 }
 Rectangle grabRect = computeGrabRect();
 BufferedImage grabImg = robot.createScreenCapture (grabRect);
 Image scaleImg =
 grabImg.getScaledInstance (mySize.width, mySize.height,
 Image.SCALE_FAST);

Create a Magnifying Glass Component #56

Chapter 8, Rendering | 289

HACK

Looking at the code, the constructor takes the source component, a size for
the magnified component, and a zoom level. It assigns these to its instance
variables, and sets up a MouseMotionListener to get updates regarding the
cursor position, which is initialized to a “don’t paint me” dummy value of
(-1, -1). It also builds the AWT Robot. Since this can fail on some OSes or
under certain security situations, the robot == null case will have to be han-
dled gracefully in the painting routine.

The paint() method begins by checking for the two conditions that indi-
cate the mangnified component can’t be painted: if there’s no Robot or if the
cursor has never entered the source component. In either of these cases, the
magnified component simply fills itself with blue and returns.

On the other hand, if valid data is available, the magnifier needs to figure out
what portion of the source component to grab. For simplicity, you can com-
pute a rectangle whose upper left is the current cursor location. The width
and height of the rectangle are computed by multiplying the zoom factor by
the magnifying component’s height and width. So, for a zoom of 1.0, the
grab is exactly the size of the magnifier. For a zoom of 0.5, it grabs half the
width and half the height, and for 2.0, it grabs twice the width and height.

 g.drawImage (scaleImg, 0, 0, null);
 }

 private Rectangle computeGrabRect() {
 // width, height are size of this comp / zoom
 int grabWidth = (int) ((double) mySize.width / zoom);
 int grabHeight = (int) ((double) mySize.height / zoom);
 // upper-left corner is current point
 return new Rectangle (point.x, point.y, grabWidth, grabHeight);
 }

 public Dimension getPreferredSize() { return mySize; }
 public Dimension getMinimumSize() { return mySize; }
 public Dimension getMaximumSize() { return mySize; }

 // MouseMotionListener implementations
 public void mouseMoved (MouseEvent e) {
 Point offsetPoint = comp.getLocationOnScreen();
 e.translatePoint (offsetPoint.x, offsetPoint.y);
 point = e.getPoint();
 repaint();
 }
 public void mouseDragged (MouseEvent e) {
 mouseMoved (e);
 }
}

Example 8-1. JComponent to provide a magnified view of another JComponent

290 | Chapter 8, Rendering

#56 Create a Magnifying Glass Component
HACK

With a grab rectangle calculated, call Robot.createScreenCapture() to grab
those pixels and return them as a BufferedImage. Unless your zoom factor is
1.0, this image will be larger or smaller than the DetachedMagnifyingGlass
component, so you need to use getScaledInstance() to scale it to your com-
ponent size. In terms of a scaling behavior, the code uses the SCALE_FAST
constant because the moving mouse will be calling for many repaints, and
thus many grabs and scales, every second. Finally, with your properly sized
image in memory, you paint to the Graphics to get the grabbed data into
your component.

One TODO item I haven’t shown here, but that might pro-
vide a performance boost, would be to flush() the various
temporary images after you’ve called drawImage().

To ensure the AWT LayoutManagers respect the size that’s set for the compo-
nent, have getPreferredSize(), getMinimumSize(), and getMaximumSize() all
return the size that was originally sent to the constructor, since the size of
the magnifier component is critical in computing what to grab from the
source component.

The last bit of code in this class is a MouseMotionListner, which is used to
track the mouse’s location. You need to do this so you’ll always have an up-
to-date point when the paint() method is called. You’ll only get events
when the cursor is over the source component, and it’s easy enough to cache
the point in the MouseEvent, but there’s a catch: that point is relevant to the
coordinate system of the source component, not the screen, so unless the
component is at the upper-left corner of the screen, you will be grabbing the
wrong pixels in paint(). The fix is to translate the point from the source
component’s coordinate system to the screen’s coordinate system. Do this
by getting the component’s onscreen location with getLocationOnScreen(),
and then translate the Point with MouseEvent.translate().

Testing the Magnifier Out
To take DetachedMagnifyingGlass out for a spin, Example 8-2 shows a
TestDetachedMagnifyingGlass class, which opens an image in a JFrame and
sets a DetachedMagnifyingGlass next to it.

Example 8-2. Testing the MagnifyingGlassComponent

public class TestDetachedMagnifyingGlass extends Object {

 public TestDetachedMagnifyingGlass(File f) {
 // image frame
 ImageIcon i = new ImageIcon (f.getPath());
 JLabel l = new JLabel (i);

Create a Magnifying Glass Component #56

Chapter 8, Rendering | 291

HACK

This class simply brings up a JFileChooser to pick an image file, which it
loads into an ImageIcon and then into a JLabel. It then creates a
DetachedMagnifyingGlass from the JLabel, with a size of 150 × 150 and a
magnification factor of 2.0, and moves it to the immediate right of the
source component.

Figure 8-1 shows what the test looks like when run.

 JFrame imgFrame = new JFrame ("Image");
 imgFrame.getContentPane().add(l);
 imgFrame.pack();
 imgFrame.setVisible(true);
 // magnifying glass frame
 JFrame magFrame = new JFrame ("Mag");
 DetachedMagnifyingGlass mag =
 new DetachedMagnifyingGlass (l, new Dimension (150, 150), 2.0);
 magFrame.getContentPane().add (mag);
 magFrame.pack();
 magFrame.setLocation (new Point (
 imgFrame.getLocation().x + imgFrame.getWidth(),
 imgFrame.getLocation().y));
 magFrame.setVisible(true);
 }

 public static void main (String[] args) {
 JFileChooser chooser = new JFileChooser();
 chooser.showOpenDialog(null);
 File f = chooser.getSelectedFile();
 new TestDetachedMagnifyingGlass (f);
 }
}

Figure 8-1. Use of the DetachedMagnifyingGlass

Example 8-2. Testing the MagnifyingGlassComponent (continued)

292 | Chapter 8, Rendering

#56 Create a Magnifying Glass Component
HACK

Hacking the Hack
The only problem with the Robot approach is that it doesn’t limit itself to
capturing from the source component—it’ll take any onscreen pixels from
any application. That means that when you approach the edges of the
source component, you can pick up pixels from the desktop or other apps,
as seen in Figure 8-2.

Is this a problem? Some users will mind it, some won’t. To get rid of it,
you’ll need to smarten up computeGrabRect() to bounds-check its right and
bottom edges (the top left is the cursor position, so it can never overshoot
the top or left of the component) by adding the untranslated point to the
proposed grab width and seeing if that is greater than the width of the
source component, and then doing the same for the height. This will take
some refactoring, since computeGrabRect() doesn’t have access to the
untranslated point. Also, if you’re not necessarily going to be painting the
entire magnified component every time, you’ll have to erase it at the top of
paint(), so you don’t have “crud” from the previous repaint left over after
this repaint.

Figure 8-2. Capturing pixels outside of the target component

Create a Global Right-Click #57

Chapter 8, Rendering | 293

HACK

H A C K

#57
Create a Global Right-Click Hack #57

Give your application a right-click context menu without having to add a
listener to every component.

Oftentimes, an application needs to have a pop-up menu that is accessible
from more than one component. Sometimes the entire window should be
right-clickable. Unfortunately, doing this the normal way in Swing would
require adding a mouse listener to every component in the window, which
isn’t a very appealing solution, especially if your UI code is spread across
many classes. It would be much nicer if there were a single place to add the
context menu. This hack shows how to use a single glass pane to provide a
right-clickable menu to the entire application.

A glass pane is an invisible JComponent that covers an entire JFrame. The glass
pane can be used to catch events or draw on top of the rest of the applica-
tion. For this hack, we will use a glass pane to capture right-click events and
trigger a pop up, alleviating the need to register a mouse listener with every
component in the frame. The basic idea is for the glass pane to intercept all
mouse events and forward them on to the application, except for the right-
click. Right-clicks will trigger the pop-up menu instead. This way there is
only one listener per frame, instead of potentially hundreds.

To start off, you need a component that has a reference to the content pane
of the frame and a pre-built pop-up menu. This is the beginning of just such
a class:

public class RightClickGlassPane extends JComponent
 implements MouseListener, MouseMotionListener {

 private JPopupMenu popup;
 private Container contentPane;

 public RightClickGlassPane(Container contentPane, JPopupMenu menu) {
 addMouseListener(this);
 addMouseMotionListener(this);
 this.contentPane = contentPane;
 popup = menu;
 }

 public void paint(Graphics g) {
 }

 // catch all mouse events and redispatch them
 public void mouseMoved(MouseEvent e) {
 redispatchMouseEvent(e, false);
 }

294 | Chapter 8, Rendering

#57 Create a Global Right-Click
HACK

 public void mouseDragged(MouseEvent e) {
 redispatchMouseEvent(e, false);
 }
 public void mouseClicked(MouseEvent e) {
 redispatchMouseEvent(e, false);
 }
 public void mouseEntered(MouseEvent e) {
 redispatchMouseEvent(e, false);
 }
 public void mouseExited(MouseEvent e) {
 redispatchMouseEvent(e, false);
 }
 public void mousePressed(MouseEvent e) {
 redispatchMouseEvent(e, false);
 }
 public void mouseReleased(MouseEvent e) {
 redispatchMouseEvent(e, false);
 }

In the RightClickGlassPane constructor, the code saves a reference to the
content pane and pop-up menu that were passed into it. Then it registers
itself as both a MouseListener and MouseMotionListener so that it can cap-
ture all mouse events and send them to the redispatchMouseEvent() method.
The RightClickGlassPane also overrides the paint() method to do nothing,
ensuring that the glass pane is invisible.

The redispatchMouseEvent() method is the key to the right-click glass pane.
It must first check for a right-click (actually the pop-up trigger, which will
also handle Control-click on the Mac), and then either show the pop up at
the mouse location or forward the event to the correct component. Event
forwarding is the hard part.

Each mouse event contains the current mouse coordinates, along with the
state of the mouse buttons and any modifier keys (such as Control or Shift).
Mouse coordinates are always relative to the component being clicked. This
means that a 10,10 position relative to a JButton in the middle of the screen
wouldn’t be the same location as 10,10 relative to another JButton lower
down on the screen. In order to account for coordinate differences,
redispatchMouseEvent() needs to convert between coordinate systems using
the SwingUtilities.convertPoint() method:

private void redispatchMouseEvent(MouseEvent e, boolean repaint) {

 // if it's a pop up
 if(e.isPopupTrigger()) {
 // show the pop up and return
 popup.show(e.getComponent(), e.getX(), e.getY());
 } else {
 // since it's not a pop up we need to redispatch it.

Create a Global Right-Click #57

Chapter 8, Rendering | 295

HACK

 // get the mouse click point relative to the content pane
 Point containerPoint = SwingUtilities.convertPoint(this,
 e.getPoint(),contentPane);

 // find the component that is under this point
 Component component = SwingUtilities.getDeepestComponentAt(
 contentPane, containerPoint.x, containerPoint.y);

 // return if nothing was found
 if (component == null) {
 return;
 }

 // convert point relative to the target component
 Point componentPoint = SwingUtilities.convertPoint(
 this, e.getPoint(), component);

 // redispatch the event
 component.dispatchEvent(new
 MouseEvent(component, e.getID(),
 e.getWhen(), e.getModifiers(),
 componentPoint.x, componentPoint.y,
 e.getClickCount(), e.isPopupTrigger()));
 }
}

In the else statement, the current mouse position is converted to be relative
to the contentPane, which is at the root of the window. Next, the method
determines which component was clicked using the SwingUtilities.
getDeepestComponentAt() method, and then it converts the point to be rela-
tive to the target component. Finally, it uses a special method on Component
called dispatchEvent(), which will rebroadcast a new mouse event to the
target component as if it were the original event. The target component will
never know the difference; it just won’t ever receive right-clicks. The follow-
ing main() method creates a sample screen with a few widgets and the cus-
tom RightClickGlassPane:

public static void main(String[] args) {
 // create a frame with some components in it
 JFrame frame = new JFrame("Right Click Test");
 JButton button = new JButton("this is a button");
 JTextField tf = new JTextField("this is a textfield");
 JPanel panel = new JPanel();
 panel.add(button);
 panel.add(tf);
 frame.getContentPane().add(panel);

 JPopupMenu popup = new JPopupMenu();
 popup.add(new JMenuItem("Dogs"));
 popup.add(new JMenuItem("Cats"));
 popup.add(new JMenuItem("Mass Hysteria"));

296 | Chapter 8, Rendering

#58 Block a Window Without a Modal Dialog
HACK

 // create the right-click glass pane.
 Component rc = new RightClickGlassPane(frame.getContentPane(),popup);
 // set as glasspane and make it visible
 frame.setGlassPane(rc);
 rc.setVisible(true);

 // pack and show the frame
 frame.pack();
 frame.setSize(400,200);
 frame.show();
}

While most of this is boilerplate, be sure to notice the call to rc.setVisible().
This is where the glass pane is turned on. If the glass pane is not visible, then
your code won’t ever receive events and work its magic.

This hack only demonstrates intercepting a mouse click, but it could be used
for any other type of event capturing, such as remapping one key to another,
recording mouse events, blocking mouse events [Hack #58], or creating com-
pletely synthetic events to fool the program.

H A C K

#58
Block a Window Without a Modal Dialog Hack #58

Block the input in a single window during long operations without stopping
your entire application.

Since the dawn of GUIs, most toolkits have had the concept of a modal dia-
log box. This is a small window that restricts input to itself, blocking access
to the rest of the program (or entire operating system in some cases). Modal
windows often produce the desired effect, but sometimes you need a win-
dow that can block itself without blocking access to the whole application.
The most common use for such a window is a long running process, like ren-
dering frames of a movie or waiting for the network to respond. In this case,
you would like to let the user still interact with the rest of the application but
block the one window that represents the work in progress. Swing doesn’t
provide a modal window like this, but since when has that stopped us?

Blocking Basics
To block a window, you could disable the components within it, but then
you would need to recursively find each component and disable it manu-
ally. This is a big headache, and would make for a very ugly window (all
those grayed-out components). All you really want to do is capture all input
to the window and block that. Swing provides a great way to do this: the
glass pane. The glass pane sits on top of all other components in a window,
making it the perfect place to implement blocking behavior.

Block a Window Without a Modal Dialog #58

Chapter 8, Rendering | 297

HACK

Since you want your glass pane to be transparent, it’s best to start with a
plain JComponent that doesn’t draw anything. Example 8-3 defines a
WindowBlocker class that extends JComponent and implements the
MouseInputListener (a compound interface that combines the MouseListener
and MouseMotionListener).

So far, the code is pretty simple. The WindowBlocker catches all mouse events
and does nothing, sending the events to that great bit bucket in the sky.
When the user presses the mouse, the computer will beep, indicating that
the window is busy. The component still won’t actually receive events
because it is invisible by default. When you are ready to start blocking
events, you should make the component visible. That’s where the block()
method comes in:

private Cursor old_cursor;
public void block() {
 old_cursor = getCursor();
 setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 setVisible(true);
}

public void unBlock() {
 setCursor(old_cursor);
 setVisible(false);
}

Example 8-3. Listening for mouse events

public class WindowBlocker extends JComponent
 implements MouseInputListener {

 public WindowBlocker() {
 addMouseListener(this);
 addMouseMotionListener(this);
 }

 public void mouseMoved(MouseEvent e) {
 }
 public void mouseDragged(MouseEvent e) {
 }
 public void mouseClicked(MouseEvent e) {
 }
 public void mouseEntered(MouseEvent e) {
 }
 public void mouseExited(MouseEvent e) {
 }
 public void mousePressed(MouseEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
 public void mouseReleased(MouseEvent e) {
 }

298 | Chapter 8, Rendering

#58 Block a Window Without a Modal Dialog
HACK

Before setting the component to visible, you should save the current mouse
image and then change it to a busy cursor. The cursor will only be in effect
over the component you call setCursor() on, so only the blocked window
will get the busy signal. All other windows will still use their normal cur-
sors. When unblock() is called, you can restore the cursor and hide the
WindowBlocker component again.

Build a Test Process
To test the window blocker, you will need some sort of long-running pro-
cess. The class in Example 8-4, LongProcess, will start a 10-second count-
down when its actionPerformed() method is called. It will also print the
current time left in a status label. Note that the call to setText() on the sta-
tus label is inside of a SwingUtilities.invokeLater() method. This makes
sure that setText() is called from the Swing event thread, avoiding any
threading issues or deadlock.

Example 8-4. Filling up clock cycles

class LongProcess implements ActionListener, Runnable {
 JLabel status;
 WindowBlocker blocker;
 public LongProcess(JLabel status, WindowBlocker blocker) {
 this.blocker = blocker;
 this.status = status;
 }

 public void actionPerformed(ActionEvent evt) {
 blocker.block();
 new Thread(this).start();
 }

 public void setText(final String text) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 status.setText(text);
 }
 });
 }

 public void run() {
 for(int i=10; i>0; i--) {
 // set the label
 final String text = "("+i+") seconds left";
 setText(text);

Block a Window Without a Modal Dialog #58

Chapter 8, Rendering | 299

HACK

Putting It All Together
With your window blocking and long-process classes ready, you can put
them together in a simple program. The main() method in Example 8-5 cre-
ates a text area, a button, and a status label. Then it makes a WindowBlocker
and installs it with frame.setGlassPane(). The LongProcess is added as an
action listener to the Start button, so when the user presses Start Processing,
the process will launch and call WindowBlocker.block(). Once the process
ends, it will call WindowBlocker.unBlock(), releasing the window.

 // sleep for 1 second
 try {
 Thread.currentThread().sleep(1000);
 } catch (Exception ex) {
 }
 }
 // set the final status string
 setText("Process Complete");
 blocker.unBlock();
 }
}

Example 8-5. Testing the blocking window

public static void main(String[] args) {
 JFrame frame = new JFrame("Blocking Window");
 JTextArea jta = new JTextArea(10,40);
 JScrollPane scroll = new JScrollPane(jta);
 JButton start = new JButton("Start Processing");
 JLabel status = new JLabel("status");

 WindowBlocker blocker = new WindowBlocker();
 frame.setGlassPane(blocker);
 start.addActionListener(new LongProcess(status,blocker));

 Container comp = frame.getContentPane();
 comp.add("North", start);
 comp.add("Center", scroll);
 comp.add("South", status);

 frame.pack();
 frame.show();
}

Example 8-4. Filling up clock cycles (continued)

300 | Chapter 8, Rendering

#59 Create a Color Eyedropper
HACK

H A C K

#59
Create a Color Eyedropper Hack #59

Enhance your color pickers with an eyedropper tool that grabs a color from
anywhere on the screen.

Most paint tools give you an eyedropper, but I’ve never seen a Java program
do it. Getting a screen pixel requires native access, which is usually blocked
off from Java programs. Java 1.3 introduced a new method to the Robot
class, getPixelColor(), which can retrieve the color anywhere on the screen.
The problem is that you don’t get mouse events once the cursor leaves your
JFrame. This is fine if you only want to select colors from your own applica-
tion, but a color chooser needs to select from anywhere on the screen. Java
5.0 introduces new APIs for getting complete mouse events, but that doesn’t
help us today.

The answer to this tricky problem, of course, is to cheat! This hack makes a
screenshot and then paints it into a JFrame called ColorChooserDemo, which
fills the entire screen. The screenshot is indistinguishable from the real desk-
top except that nothing in the background updates. However, since the
screenshot is only needed while the user selects a color, this should be OK.
ColorChooserDemo also has a JLabel in the center of the screen, which dis-
plays the currently selected color. Once the user has finished selecting a
color by releasing the mouse, the entire frame will disappear and the compo-
nent that launched the chooser—usually a JButton—will get the color
through setBackground(). While it’s running, ColorChooserDemo looks like
Figure 8-3.

Figure 8-3. Running the ColorChooserDemo

Create a Color Eyedropper #59

Chapter 8, Rendering | 301

HACK

The first step is to set up the required components. The ColorChooserDemo is
a subclass of JFrame with member variables to hold the screenshot
(background_image), the panel to draw the image (image_panel), the JLabel to
display the current color under the cursor (label), and a few support vari-
ables. The beginnings of this class are shown in Example 8-6.

Example 8-6. Skeleton of the ColorChooserDemo class

public class ColorChooserDemo extends JFrame
 implements MouseListener, MouseMotionListener {

 JPanel image_panel;
 Dimension screen_size;
 JComponent comp = null;
 Image background_image = null;
 Robot robot;
 JLabel label;

 public ColorChooserDemo(JComponent comp) {
 // get the screen dimensions
 screen_size = Toolkit.getDefaultToolkit().getScreenSize();

 // set up the frame (this)
 this.addMouseListener(this);
 this.addMouseMotionListener(this);
 this.comp = comp;
 this.setUndecorated(true);
 this.setSize(screen_size.width, screen_size.height);

 // set up the panel that holds the screenshot
 image_panel = new JPanel() {
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(background_image,0,0,null);
 }
 };
 image_panel.setPreferredSize(screen_size);
 this.getContentPane().add(image_panel);

 // set up the display label
 label = new JLabel("Selected Color");
 label.setOpaque(true);
 label.setSize(100,100);
 image_panel.setLayout(null);
 image_panel.add(label);
 label.setLocation((int)screen_size.getWidth()/2 - 50,
 (int)screen_size.getHeight()/2 - 50);
 }

302 | Chapter 8, Rendering

#59 Create a Color Eyedropper
HACK

In its constructor, the ColorChooserDemo accepts a JComponent to store the
selected color in. Next, the code gets the current screen size from the AWT
Toolkit, and then follows the usual litany of listeners and setters. Note the
call to setUndecorated(true), which turns off the window controls. This
adds to the illusion that the user is clicking on the real system desktop and
not a screenshot.

The image_panel is a standard JPanel with the paintComponent() method
overridden to draw the screenshot image over its background. It is also set
to fill the screen with setPreferredSize(screen_size), and then is added to
the frame.

Before returning, the ColorChooserDemo constructor creates a 100 × 100 pixel
JLabel to display the current selected color. By default, the label would let its
parent component (the screenshot) show through instead of filling its back-
ground with the selected color, so the code calls setOpaque(true) to make
sure the background is visible. Finally, the label is moved to the middle of
the screen, calculated by dividing the screen dimensions in half and sub-
tracting half of the label size. Of course a LayoutManager would mess with
the explicit coordinates set here, so image_panel’s layout is set to null. This
gets rid of the default layout manager, BorderLayout, and allows the abso-
lute positioning to work.

Now that the chooser frame and its components are set up, the frame needs
to make the actual screenshot. ColorChooserDemo overrides the show()
method to make the screenshot before the frame pops up on screen. The
show() method uses the robot.createScreenCapture() to capture and save
the screen to the background_image variable before passing control to the
superclass, as shown in the following code:

public void show() {
 try {
 // make the screenshot before showing the frame
 Rectangle rect = new Rectangle(0,0,
 (int)screen_size.getWidth(),
 (int)screen_size.getHeight());
 this.robot = new Robot();
 background_image = robot.createScreenCapture(rect);
 super.show();
 } catch (AWTException ex) {
 System.out.println("exception creating screenshot:");
 ex.printStackTrace();
 }
}

Once the ColorChooserDemo frame is visible, the user can begin selecting colors
by clicking and dragging anywhere on the (now fake) screen. The
mousePressed(), mouseDragged(), and mouseReleased() methods of the mouse/

Create a Color Eyedropper #59

Chapter 8, Rendering | 303

HACK

mouse-motion listener implementation update the selected color on each
mouse event. setSelectColor() does the actual update by setting the back-
ground color on both the label (which the user can see) and the component
that was passed into the constructor (currently hidden behind the frame):

// update the selected color on mouse press, dragged, and release
public void mousePressed(MouseEvent evt) {
 setSelectedColor(robot.getPixelColor(evt.getX(), evt.getY()));
}
public void mouseDragged(MouseEvent evt) {
 setSelectedColor(robot.getPixelColor(evt.getX(), evt.getY()));
}
// for released we want to hide the frame as well
public void mouseReleased(MouseEvent evt) {
 setSelectedColor(robot.getPixelColor(evt.getX(),evt.getY()));
 this.setVisible(false);
}

// update both the display label and the component that was passed in
public void setSelectedColor(Color color) {
 comp.setBackground(color);
 label.setBackground(color);
}

// no-ops for the rest of the mouse-event listener
public void mouseClicked(MouseEvent evt) { }
public void mouseEntered(MouseEvent evt) { }
public void mouseExited(MouseEvent evt) { }
public void mouseMoved(MouseEvent evt) { }

When the user releases the mouse, the mouseReleased() method will do one
last color update and then hide the frame. This way, when the user is done
selecting a color, the final color will be visible as the background of the
launching component, as seen in Figure 8-4.

Launching the demo just requires a component to call show() on the
ColorChooserDemo:

public static void main(String[] args) {
 JFrame frame = new JFrame("Color Chooser Hack");
 final JButton button = new JButton("Click to choose a color");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 JFrame frame = new ColorChooserDemo(button);
 frame.show();

Figure 8-4. After a color is chosen

304 | Chapter 8, Rendering

#60 Changing Fonts Throughout Your Application
HACK

 }
 });

 frame.getContentPane().add(button);
 frame.pack();
 frame.setVisible(true);
}

And that’s it! Now you can add full-screen color choosing to any compo-
nent without requiring native access at all. As an improvement, you could
make the preview actually show a magnified view of where the cursor is
instead of just the selected color.

H A C K

#60
Changing Fonts Throughout Your Application Hack #60

Get a quick font face-lift, without having to write a whole Look and Feel.

With no standards documents to obey and more flexible user expectations,
web designers get much more freedom with their fonts than Swing develop-
ers expect. They get to set font styles with CSS, while we’re expected to just
leave well enough alone. Sure, you can change fonts on a component-by-
component basis with setFont(), but it’s not like you can just say “from
now on, I want all JLabels to use the Cheese Deluxe Demi-Bold font.” Well,
OK, you could create a subclass of JLabel to set that font in its constructor,
but your change wouldn’t be picked up by any of JLabel’s subclasses, like
the default renderers for list, table, and tree cells. Fortunately, there is a
much easier way than fighting with single inheritance.

Swing components get many of their defaults (e.g., fonts, icons, borders),
from a Hashtable owned by the UIManager class. Actually, it is a subclass of
Hashtable, called UIDefaults, which offers strongly typed methods like
getFont(), getBorder(), getColor(), etc., each of which takes a key object.

Now, since this is just a Hashtable, you can put stuff in just as easily as you
can get it out. All you have to do is know what the key is. As it turns out, for
fonts, the keys are Strings that end with a .font suffix. So, for demonstra-
tion purposes, you can iterate through the keys of the UIDefaults, and every
time you find one that ends in .font, put the Font of your choice back into
the UIDefaults.

Changing the Default Fonts
The goal of the ChangeAllFonts example is to change the default font of all
Swing components, by changing all the appropriate keys it can find in
UIDefaults. It starts by getting a font name from the command line and cre-
ating a 12-point plain Font instance.

Changing Fonts Throughout Your Application #60

Chapter 8, Rendering | 305

HACK

Next, it gets the UIDefaults object as a Hashtable and gets an Enumeration of
its keys. It walks the enumeration and, for every key ending in .font, it uses
put() to replace the previous font with the user-selected font.

Finally, it creates a simple GUI with several typical JComponents and shows
them in a JFrame. This short example is shown in Example 8-7.

Example 8-7. Changing default fonts via UIDefaults

public class ChangeAllFonts {

 final static String[] LIST_ITEMS =
 { "JList", "with", "new Font" };

 public static void main (String[] args) {
 try {
 // get user's font
 if (args.length < 1) {
 System.out.println (
 "Usage: ChangeAllFonts font-name");
 return;
 }
 String fontName = args[0];
 Font font = new Font (fontName, Font.PLAIN, 12);

 // put this font in the defaults table for every
 // ui font resource key
 Hashtable defaults = UIManager.getDefaults();
 Enumeration keys = defaults.keys();
 while (keys.hasMoreElements()) {
 Object key = keys.nextElement();
 if ((key instanceof String) &&
 (((String) key).endsWith(".font"))) {
 System.out.println (key);
 defaults.put (key, font);
 }
 }

 // now bring up a GUI to show this off
 JPanel panel = new JPanel();
 panel.setLayout (new BoxLayout (panel, BoxLayout.Y_AXIS));
 panel.add (new JLabel ("JLabel with font " + fontName));
 panel.add (new JTextField ("JTextField with font " +
 fontName));
 panel.add (new JButton ("JButton with font " +
 fontName));
 JList list = new JList (LIST_ITEMS);
 JScrollPane pane =
 new JScrollPane (list,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 panel.add (pane);

306 | Chapter 8, Rendering

#60 Changing Fonts Throughout Your Application
HACK

Fonts ’R’ Us
To run the code, you specify the name of your desired font on the com-
mand line as the only argument to the class. If the font you want to use has
one or more spaces in its name, you’ll need to enclose the font name in
quotes, as in the example:

cadamson% java ChangeAllFonts "Comic Sans MS"

This produces a GUI whose components all use the 12-point plain Comic
Sans MS font, as seen in Figure 8-5.

You should also note the standard output when running this example, since
the code prints out every .font key it finds. The output is too long to list
here, but the first few items look like this:

 JFrame frame = new JFrame ("Changing default fonts");
 frame.setDefaultCloseOperation (WindowConstants.EXIT_ON_CLOSE);
 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Figure 8-5. Changing default fonts for Swing widgets

CheckBox.font ToolBar.font

Tree.font ColorChooser.font

Viewport.font ToggleButton.font

ProgressBar.font Panel.font

RadioButtonMenuItem.font TextArea.font

FormattedTextField.font

Example 8-7. Changing default fonts via UIDefaults (continued)

Load New Fonts at Runtime #61

Chapter 8, Rendering | 307

HACK

These are all JComponents, but they’re notably lacking the “J”
that starts the name of typical Swing components (Tree.font
for JTree, TextArea.font for JTextArea, etc.).

Now that you know the keys for the UIDefaults table, instead of blindly
changing all of them to the same font, you can customize a look by applying
different fonts—or different sizes and styles of one or two base fonts—to
different widgets.

H A C K

#61
Load New Fonts at Runtime Hack #61

Who cares what fonts your users have? Bundle the fonts you want your
application to use and load those fonts dynamically!

Using fonts with any predictability used to be a nightmare in Java. For a
while, you could only depend on having access to one serif, one sans-serif,
and one monospaced font, and the constants you’d use to get those fonts
changed between Java 1.0 and 1.1. Fortunately, you’re now free to use any
font installed on the user’s machine and load it by name.

Of course, not everyone has the same fonts. Even different installations of
the same operating system will have different fonts available. I still use some
TrueType fonts I’ve been toting from machine to machine for 15 years, and
it’s a safe bet that very few other people will have those same fonts.

This would seem to limit your Swing application to using only the fonts you
know are installed with an operating system—maybe Arial and Times New
Roman on Windows, Lucida Grande and Palatino on Mac OS X, etc. But it’s
not so. You can load font files at runtime and make them available to your
Java application, even if the font isn’t installed on the user’s machine.

The Wonders of createFont()
Using dynamically loaded fonts comes down to a single, critical, often over-
looked AWT method in the Font class: createFont(). This method, intro-
duced in Java 1.3, takes two parameters: a font format (as an int), which to
date has no legal value other than Font.TRUETYPE_FONT, and an InputStream.

This stream is typically a FileInputStream from a .ttf TrueType file, or some
equivalent. By equivalent, I meant that you could presumably put the font
on the network and get a stream from a URL or put the font file inside a .jar,
find it along the classpath with ClassLoader.getResourceAsStream(), and
load from that.

308 | Chapter 8, Rendering

#61 Load New Fonts at Runtime
HACK

Mac OS X’s font suitcases—a holdover from the Classic Mac
OS—aren’t supported. Your fonts need to be in .ttf files.

FontLoadingDemo, shown in Example 8-8, offers a straightforward applica-
tion of this font-loading technique. It takes the path to a .ttf file as its
command-line argument, creates an InputStream, and creates a Font. It then
derives a plain, 32-point instance of the font, and uses that to put a sample
JLabel in a JFrame.

Testing Font Loading
All you need to run this demo is a .ttf file of a TrueType font, preferably one
not already installed on your system so you’ll know that the demo works.
There are many free and shareware fonts on the Web; I found the Marriage

Example 8-8. Loading fonts at runtime

public class FontLoadingDemo {

 public static void main (String[] args) {
 try {
 // get font from path in args[0]
 if (args.length < 1) {
 System.out.println (
 "usage: FontLoadingDemo path-to-ttf");
 return;
 }
 File f = new File (args[0]);
 FileInputStream in = new FileInputStream (f);
 Font dynamicFont =
 Font.createFont (Font.TRUETYPE_FONT, in);
 Font dynamicFont32Pt =
 dynamicFont.deriveFont (32f);

 // draw something with it
 JLabel testLabel =
 new JLabel ("Dynamically loaded font \"" +
 dynamicFont.getName() + "\"");
 testLabel.setFont (dynamicFont32Pt);
 JFrame frame = new JFrame ("Font Loading Demo");
 frame.getContentPane().add (testLabel);
 frame.pack();
 frame.setVisible(true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Build a Colorful Vector-Based Button #62

Chapter 8, Rendering | 309

HACK

Script font at http://www.free-fonts.com/. Once you have a .ttf file, run the
demo like this:

cadamson% java FontLoadingDemo marriage_script.ttf

Running the demo pops up a window like the one seen in Figure 8-6.

With this technique, and a consistent scheme for bundling your application
resources (i.e., stuffing all your fonts in a JAR file, perhaps with other
resources like images, sounds, and localizations), you have the freedom to
use whatever fonts you like in your GUI, without worrying about what end
users do or don’t have installed.

H A C K

#62
Build a Colorful Vector-Based Button Hack #62

Build a resolution-independent OS X-style button using scalable graphics
code.

The button in this hack is resolution independent, meaning that it can resize
and rescale automatically as the user’s windows and display change, stretch-
ing and tiling the graphics to fill the new space. The button doesn’t depend
on being any particular size to look good. As higher-quality and higher-
resolution monitors become more common, users will start to expect attrac-
tive interfaces that scale and reflow with their increasingly expansive dis-
plays. This hack shows how to create an attractive JButton that will scale
with both size and resolution, opening the door for a completely vector-
drawn Swing Look and Feel.

Use Scaling to Your Advantage
Since this button must scale with the size of the screen, you can use a vari-
able called scale. Every piece of drawing code for this button is done rela-
tive to scale’s value. If the scale value changes, the entire button will change
accordingly. The scale value itself is based on the current font size of the
component. If the component’s font is resized (due to a DPI change, for
example), then the scale value will change accordingly, resizing the entire
button. With a scale value in place, this hack is simply a matter of recreat-
ing the Aqua button look with Java2D calls. The goal is a button that looks
like Figure 8-7.

Figure 8-6. Marriage font loaded on the fly

310 | Chapter 8, Rendering

#62 Build a Colorful Vector-Based Button
HACK

Not a simple task, but it’s not impossible either. All the work is done in
Example 8-9.

The previous code is the essence of VectorButton. It is just a subclass of
JButton, overriding getPreferredSize() and paintComponent() and adding a
mouse listener implementation.

Figure 8-7. A green vector JButton

Example 8-9. Creating liquid buttons

public class VectorButton extends JButton implements MouseListener {
 public VectorButton() {
 this.addMouseListener(this);
 }

 public Dimension getPreferredSize() {
 String text = getText();
 FontMetrics fm = this.getFontMetrics(getFont());
 float scale = (50f/30f)*this.getFont().getSize2D();
 int w = fm.stringWidth(text);
 w += (int)(scale*1.4f);
 int h = fm.getHeight();
 h += (int)(scale*.3f);
 return new Dimension(w,h);
 }

 public void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g2.setColor(this.getBackground());
 g2.fillRect(0,0,this.getWidth(),this.getHeight());

 float scale = (50f/30f)*this.getFont().getSize2D();

 drawLiquidButton(this.getForeground(),
 this.getWidth(), this.getHeight(),
 getText(), scale,
 g2);
 }

Build a Colorful Vector-Based Button #62

Chapter 8, Rendering | 311

HACK

A custom version of getPreferredSize() is required because, by default, a
JButton will size itself based on the current Look and Feel. For this hack, we
want the button sized based on the scale value. You can see that scale is cal-
culated by multiplying the current font size against a scaling factor. I chose
the factor 50/30 by testing different values and simply seeing what looked
right. The actual factor doesn’t matter as long as you’re consistent, which is
why scale is calculated the same way for both getPreferredSize() and
paintComponent(). The paintComponent() method just turns on anti-aliasing,
fills the background, calculates scale, and then calls drawLiquidButton()
where the real work is done.

drawLiquidButton() is a wrapper for a series of custom drawing functions
that create each part of the liquid button. In order to emulate the Aqua look,
you’ll need to use a series of rounded rectangles and gradient fills.

To make the code more understandable, I broke it up into
functions for the shadow, body, text, highlight, and border.

As you go through the code, you will notice that scale is multiplied by a
small adjustment value like 0.1f or 0.04f. These numbers were chosen
largely through trial and error, just by trying different values to see what
looked good. Finding those values took a long time but really added to the
quality of the finished button. If you decide to build your own vector wid-
get, it will really pay to spend the time tweaking your drawing, too. Here’s
the method implementation:

protected void drawLiquidButton(Color base,
 int width, int height,
 String text, float scale,
 Graphics2D g2) {

 // calculate inset
 int inset = (int)(scale*0.04f);
 int w = width - inset*2 - 1;
 int h = height - (int)(scale*0.1f) - 1;

 g2.translate(inset,0);
 drawDropShadow(w,h,scale,g2);

 if(pressed) {
 g2.translate(0, 0.04f*scale);
 }

312 | Chapter 8, Rendering

#62 Build a Colorful Vector-Based Button
HACK

 drawButtonBody(w,h,scale,base,g2);
 drawText(w,h,scale,text,g2);
 drawHighlight(w,h,scale,base,g2);
 drawBorder(w,h,scale,g2);

 if(pressed) {
 g2.translate(0, 0.04f*scale);
 }
 g2.translate(-inset,0);
}

The inset value used represents the space between the start of the button
and the upper left of the real JButton boundaries. Without an inset, the
drawn button would be too close to the component borders, and the
shadow would get cut off. The test for if(pressed) translates everything but
the shadow just a tiny bit down. This will create the pressed-in effect com-
mon to buttons in most Look and Feels.

Next comes the different drawing functions. The shadow is created by over-
lapping two rounded rectangles with different shades of gray and alpha.
Using an alpha value allows the shadows to blend well:

protected void drawDropShadow(int w, int h,
 float scale, Graphics2D g2) {
 g2.setColor(new Color(0,0,0,50));
 fillRoundRect(g2,
 (-.04f)*scale,
 (.02f)*scale,
 w+.08f*scale, h+0.08f*scale,
 scale*1.04f, scale*1.04f);
 g2.setColor(new Color(0,0,0,100));
 fillRoundRect(g2,0,0.06f*scale,w,h,scale,scale);
}

The body of the button is a gradient that goes from top to bottom. Since the
developer could change the color of the button, the gradient is calculated
from darker and lighter versions of the base color. The body has two parts.
The outer round rectangle forms the bulk of the button, while the inner
round rectangle is smaller and lighter, creating a subtle glowing effect:

protected void drawButtonBody(int w, int h, float scale,
 Color base, Graphics2D g2) {

 Color grad_top = base.brighter();
 Color grad_bot = base.darker();
 GradientPaint bg = new GradientPaint(
 new Point(0,0), grad_top,
 new Point(0,h), grad_bot);
 g2.setPaint(bg);

Build a Colorful Vector-Based Button #62

Chapter 8, Rendering | 313

HACK

 this.fillRoundRect(g2,
 (0)*scale,
 (0)*scale,
 w,h,1*scale,1*scale);

 // draw the inner color
 Color inner = base.brighter();
 inner = alphaColor(inner,75);
 g2.setColor(inner);
 this.fillRoundRect(g2,
 scale*(.4f),
 scale*(.4f),
 w-scale*.8f, h-scale*.5f,
 scale*.6f,scale*.4f);
}

// generate the alpha version of the specified color
protected static Color alphaColor(Color color, int alpha) {
 return new Color(color.getRed(), color.getGreen(),
 color.getBlue(), alpha);
}

Finally, you get to handle the actual drawing of the text. The text position is
calculated by centering the width and height of the text based on the cur-
rent font metrics. The text is actually drawn twice: first with a translucent
gray offset by a few pixels, and then again in black. This creates a very slight
drop shadow on the text itself, making it appear raised above the button
surface:

protected void drawText(int w, int h, float scale,
 String text, Graphics2D g2) {

 // calculate the width and height
 int fw = g2.getFontMetrics().stringWidth(text);
 int fh = g2.getFontMetrics().getAscent() -
 g2.getFontMetrics().getDescent();
 int textx = (w-fw)/2;
 int texty = h/2 + fh/2;

 // draw the text
 g2.setColor(new Color(0,0,0,70));
 g2.drawString(text,(int)((float)textx+scale*(0.04f)),
 (int)((float)texty + scale*(0.04f)));
 g2.setColor(Color.black);
 g2.drawString(text, textx, texty);
}

The highlight is another set of round rectangles, this time going from mostly
opaque to completely transparent. Since they are drawn after the text, the
highlight will appear to float above the button, giving it a glossy sheen.
Finally, a black border is drawn around the entire button in drawBorder().

314 | Chapter 8, Rendering

#62 Build a Colorful Vector-Based Button
HACK

protected void drawHighlight(int w, int h, float scale,
 Color base, Graphics2D g2) {

 // create the highlight
 GradientPaint highlight = new GradientPaint(
 new Point2D.Float(scale*0.2f,scale*0.2f),
 new Color(255,255,255,175),
 new Point2D.Float(scale*0.2f,scale*0.55f),
 new Color(255,255,255,0)
);
 g2.setPaint(highlight);
 this.fillRoundRect(g2, scale*0.2f, scale*0.1f,
 w-scale*0.4f, scale*0.4f, scale*0.8f, scale*0.4f);
 this.drawRoundRect(g2, scale*0.2f, scale*0.1f,
 w-scale*0.4f, scale*0.4f, scale*0.8f, scale*0.4f);
}

protected void drawBorder(int w, int h,
 float scale, Graphics2D g2) {

 // draw the border
 g2.setColor(new Color(0,0,0,150));
 this.drawRoundRect(g2,
 scale*(0f),
 scale*(0f),
 w,h,scale,scale);
}

You may have noticed in the code some calls to fillRoundRect() instead of
Graphics2D.fillRoundRect(). All of this code deals with floats, and the
Graphics2D version of the round rectangle methods only take ints. Rather
than fill the code with a million (int) casts, it’s just easier to perform a few
casts in the fillRoundRect() and drawRoundRect() utility methods:

// float version of fill round rect
protected static void fillRoundRect(Graphics2D g2,
 float x, float y,
 float w, float h,
 float ax, float ay) {

 g2.fillRoundRect(
 (int)x, (int)y,
 (int)w, (int)h,
 (int)ax, (int)ay
);
}

// float version of draw round rect
protected static void drawRoundRect(Graphics2D g2,
 float x, float y,
 float w, float h,
 float ax, float ay) {

Build a Colorful Vector-Based Button #62

Chapter 8, Rendering | 315

HACK

 g2.drawRoundRect(
 (int)x, (int)y,
 (int)w, (int)h,
 (int)ax, (int)ay
);
}

Finally, you may have noticed the pressed boolean in drawLiquidButton().
JButton provides a way of knowing when the button has been selected, but
there is no way to know when it is pressed or released during the clicking
process. Most applications have no need for this information, but because
this hack involves rendering changes, you’ll need to know the pressed state
in order to draw the button properly. Since JButton doesn’t tell you the cur-
rent state, you have to detect it with a mouse listener that looks for press
and release events:

/* mouse listener implementation */
protected boolean pressed = false;
public void mouseExited(MouseEvent evt) { }
public void mouseEntered(MouseEvent evt) { }
public void mouseClicked(MouseEvent evt) { }
public void mouseReleased(MouseEvent evt) {
 pressed = false;
}
public void mousePressed(MouseEvent evt) {
 pressed = true;
}

Hacking the Hack
The VectorButton takes an awful lot of drawing code. This isn’t so much
because it scales, but simply because recreating the work of Apple’s talented
graphic designers with Swing code is difficult. One possible improvement
would be to use SVG files instead of direct Java2D code. This would let you
develop the actual look of the button in a graphics program instead of the
slow code/compile/run cycle we are all used to as programmers. It would
also let you pass the work on to a real graphic designer while you focus on
speed and functionality.

VectorButton shows the potential of vector-based interfaces, but it’s just the
tip of the iceberg. Imagine if you had an entire Look and Feel based on vec-
tors, where all the buttons scaled according to the font size. Then you could
change the font size to scale the entire application—while it’s running! You
could even do proper DPI calculations based on the physical size and shape
of the user’s screen to make your application look identical on any device,
scaling from PDAs all the way up to high resolution HDTVs.

316 | Chapter 8, Rendering

#63 Add a Third Dimension to Swing
HACK

H A C K

#63
Add a Third Dimension to Swing Hack #63

User interfaces have stuck to 2D drawing for many years. Today, Swing and
Java3D give you a chance to go one step further and add 3D widgets to your UI.

Have you ever wondered how to add nice 3D components into your Swing
applications? Java3D is a free API provided by Sun Microsystems for Linux
and Windows, and by Apple for Mac OS X, that lets you create 3D scenes.
Although well documented, Java3D seems impossible to use with Swing—at
least at first glance.

The Problems with Java3D
Imagine you decided to create a new, astonishing application called
AmazonPick that would let the user search for books on the Amazon.com
store. Your eye-candy user interface would even display the currently
selected book as a 3D object; whenever the user selects another book, the
3D object would flip to show the new cover on its opposite side. Figure 8-8
shows how the application should look.

Figure 8-8. AmazonPick shows books as full 3D objects

Add a Third Dimension to Swing #63

Chapter 8, Rendering | 317

HACK

Unfortunately, you won’t be able to obtain these results without a little
imagination. For instance, take a close look at Figure 8-8 and notice the gra-
dient background of the window. Displaying such a background is very easy
with Swing and the opaque properties of Swing components, as seen in the
rather simple class in Example 8-10.

This code creates three buttons, each containing a picture of a book loaded
by the utility class UIHelper, and then puts them in a JPanel. This panel is
itself added to the content pane of the window, at the south side. With the
help of the setContentPane() method, the default content pane is replaced
by a new panel—an instance of GradientPanel—that is capable of drawing a
nice gradient. To make sure the gradient remains visible in the buttons
panel, you need to make the panel transparent. This can be achieved easily
by calling setOpaque(false), which will prevent the component—in our
case, the panel—from drawing its background, letting underlying compo-
nents shine through.

Now, we have to take a slight diversion into AWT and Swing vagaries. With
J2SE, you can use two different graphical toolkits to create an application:
AWT and Swing. The main difference between those two is that AWT wid-
gets are heavyweight whereas Swing widgets are lightweight. These names

Example 8-10. A demo program for 3D components

public BooksDemo()
{
 super("AmazonPick");

 JButton cover1 = UIHelper.createButton("", "cover1_small_button", true);
 JButton cover2 = UIHelper.createButton("", "cover2_small_button", true);
 JButton cover3 = UIHelper.createButton("", "cover3_small_button", true);

 JPanel buttons = new JPanel();
 buttons.add(cover1);
 buttons.add(cover2);
 buttons.add(cover3);
 buttons.setOpaque(false);

 setContentPane(new GradientPanel());
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(buttons, BorderLayout.SOUTH);

 pack();
 setResizable(false);
 setDefaultCloseOperation(EXIT_ON_CLOSE);

 UIHelper.centerOnScreen(this);
}

318 | Chapter 8, Rendering

#63 Add a Third Dimension to Swing
HACK

come from the very nature of these components. Whatever platform you are
running your application on, AWT widgets are drawn using the underlying
OS native toolkit. Swing, on the contrary, is completely decoupled from the
OS and all the painting is done by Java itself. As a result, AWT widgets are
the least common denominator between the various operating systems sup-
ported by Java. This also means that advanced features like transparency are
pure fantasy with AWT: Swing lets you create transparent components very
easily, but AWT does not.

The bad news is that Java3D offers an AWT component only, Canvas3D, to
display a 3D scene. So you’ll have to mix some Swing and AWT code. Here
is how you can add such a component in the Swing UI:

Canvas3D c3d = new Canvas3D(SimpleUniverse.getPreferredConfiguration());
c3d.setSize(CANVAS3D_WIDTH, CANVAS3D_HEIGHT);
getContentPane().add(centerPanel, BorderLayout.CENTER);
createScene();

createScene() is responsible for building the 3D scene the Canvas3D will dis-
play. Running this code will produce a rather ugly result, as shown in
Figure 8-9.

Figure 8-9. A Canvas3D cannot be made transparent

Add a Third Dimension to Swing #63

Chapter 8, Rendering | 319

HACK

As you can see, you end up with a black background in the Canva3D. Because
the only way to get rid of a component’s background is to call
setOpaque(false)—which is defined by JComponent and thus isn’t available
to AWT components—you are stuck with this ugly background. Indeed, as
a lightweight component, the canvas cannot be made transparent. Things
get even worse when you try to add a menu bar to the application because of
the order in which components are painted: lightweight first, heavyweight
next. Figure 8-10 shows an example of what happens when a pop-up menu
is drawn by Swing. Because it is a lightweight component, it is drawn before
Canvas3D, when it should be drawn after the canvas.

Thankfully, this new problem (it’s all AWT’s fault!) was so annoying that
the Swing team decided to add a workaround for it. You can simply force all
pop-up menus of your applications to be created as heavyweight compo-
nents instead of lightweight components. A single line of code is enough to
fix the problem:

JPopupMenu.setDefaultLightWeightPopupEnabled(false);

If you invoke this method before you create the first JMenu or JPopupMenu,
you ensure your menus will be drawn on top of heavyweight components.
So, this takes care of one issue, but you still need to deal with the black
background problem.

Faking Transparency
Because you cannot change the opacity of the Canvas3D, you are left with
only two possible solutions. The first is to get rid of Swing, go back to AWT,
and offer a crappy interface to the users. Because this doesn’t seem like too
great an option, we’ll just have to fake transparency.

Figure 8-10. Lightweight components are drawn behind heavyweight components

320 | Chapter 8, Rendering

#63 Add a Third Dimension to Swing
HACK

A Java3D scene is represented as a graph in which every node is an object or
a group of objects. A close look at the package com.sun.j3d.utils.geometry
reveals the existence of the Background class, which you can use to change
the background of the 3D scene. For instance, you can create an Alpine
scene just by adding a background with a photo of the Alps as its texture.
Therefore, to fake transparency, you just have to use the window’s content
panel as texture for a new Background object that you then add to the scene
graph. This is how AmazonPick creates the Java3D scene and adds a special
background:

public void createScene()
{
 BranchGroup objRoot = new BranchGroup();
 objRoot.addChild(createBackground());
 // creates the whole scene
}

In Java3D, the scene is an instance of BranchGroup. By adding the Background
created by the method createBackground() as a child of the scene node, you
can set the background of the scene. The background itself is created like
this:

protected Background createBackground()
{
 BufferedImage image;
 image = new BufferedImage(c3d.getParent().getWidth(),
 c3d.getParent().getHeight(),
 BufferedImage.TYPE_INT_RGB);
 getContentPane().paint(image.getGraphics());

 BufferedImage subImage;
 subImage = new BufferedImage(CANVAS3D_WIDTH,
 CANVAS3D_HEIGHT,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D subGraphics = (Graphics2D) subImage.getGraphics();
 subGraphics.drawImage(image, null, -c3d.getX(), -c3d.getY());

 ImageComponent2D backImage;
 backImage = new ImageComponent2D(ImageComponent2D.FORMAT_RGB,
 subImage)
 Background bg = new Background(backImage);
 BoundingSphere bounds = new BoundingSphere();
 bounds.setRadius(100.0);
 bg.setApplicationBounds(bounds);

 return bg;
}

The texture is created in two steps. The first is to create a BufferedImage
called image on which you paint the content panel of the window. Notice
that the picture has the same dimensions as the content panel. Calling the

Turn the Spotlight on Swing #64

Chapter 8, Rendering | 321

HACK

paint() method of the component you want to see through the Java3D
scene is less efficient than taking a screen capture with the help of java.awt.
Robot; however, it is a lot easier because it works even when the Canvas3D
has already been added to the window. This allows, for instance, changing
the texture when the window is resized and the gradient changes due to the
new dimensions.

Once the content panel has been fully drawn in image, you must clip it to
retrieve the exact part covered by the Canvas3D. This is done with another
BufferedImage called subImage. This new picture has the same dimensions as
the 3D scene. The second step is to draw image on subImage (without forget-
ting to change the origin of the drawing when you call drawImage()). When
the two last parameters of this method are both 0, the image is drawn on the
target surface with its top-left corner at the target’s top-left corner. With the
coordinates –c3d.getX() and –c3d.getY(), the pixel of image drawn at the
top-left corner of subImage is the pixel where the Canvas3D is located on
screen. This ensures the code paints the exact part of the content panel that
lies behind the 3D scene.

Then, a Background object is created with subImage as a texture. To achieve
this, you need to create an ImageComponent2D from the BufferedImage—and
don’t forget to make the pixel formats compatible! Since subImage has its
pixels stored as RGB integers, you must do the same for ImageComponent2D. A
bounding sphere is finally attached to the background. Java3D uses this
sphere to know where the background object needs to be rendered and
where it should not be rendered. In this case, the background will appear
within a sphere of a radius of 100 units. This value is large enough to pre-
vent any rendering problem. Figure 8-11 shows the final result, with a
“transparent” 3D scene and no bugginess with pop-up menus.

—Romain Guy

H A C K

#64
Turn the Spotlight on Swing Hack #64

Users often get lost when using applications, as if they were in total
darkness. Why don’t you turn on a spotlight to show them the way?

Most applications involve a fair amount of data manipulation. The user cre-
ates, edits, deletes, and moves around data items. When the amount of data
becomes important, it is vital for the user to be able to search for items eas-
ily. Yet, search result displays are often irritatingly complicated, and the
results are a pain to browse through. This hack describes how to draw a
user’s attention to only the parts of the UI you want him to look at.

322 | Chapter 8, Rendering

#64 Turn the Spotlight on Swing
HACK

The Metaphor
If you have ever been to a comic show, to the theatre, or to the circus,
you’ve probably noticed how spotlights are used to move your focus to a
particular location on the stage. A search operation can be compared to a
theatre stage, where actors have been replaced by search results. You just
need to get the user to focus on the right location.

Take a look at an example application, shown in Figure 8-12, which dis-
plays a predefined set of books and lets you search for one or more of them
by entering a search query in the text field at the bottom of the window.

Since the application is just a demo, you can only enter one of the following
queries: books, sci-fi, adams, and pratchett. Each query, when validated by
the Enter key, will find the related books and spotlight them, as shown in
Figure 8-13.

Figure 8-11. All the problems provoked by mixing Java3D and Swing have been solved

Turn the Spotlight on Swing #64

Chapter 8, Rendering | 323

HACK

Figure 8-12. The bookshelf application must let the user search for books

Figure 8-13. Searching for “sci-fi” highlights Science Fiction books

324 | Chapter 8, Rendering

#64 Turn the Spotlight on Swing
HACK

You can even go one step further: the more light you shed, the less darkness
there is. For instance, when several books are found, it is likely that the
search query was not very precise. This means the user will be more inter-
ested in lots of items. When the query yields only a few results, it is likely
that the user wants to see only a few specific items.

As you create several spotlights—one per result—the interface is less dark-
ened than with only one spotlight. If you take a close look at Figure 8-13,
you’ll be able to perceive the other books. Nevertheless, a single search
result will prevent the user from seeing the other books, as shown in
Figure 8-14.

Add the Spotlight
The implementation of spotlights for Swing is divided into two classes,
SpotlightPanel and Spotlight. The first class is a glass pane that needs to be
set up on a frame, and the second defines the location and the shape of a
spotlight. Here is an example of how to use spotlights:

SpotlightPanel glassPane = new SpotlightPanel();
setGlassPane(glassPane);
Spotlight s1 = glassPane.addSpotlight(0, 0, 25, 50);
Spotlight s2 = glassPane.addSpotlight(100, 100, 30);

Figure 8-14. With only one spotlight, it is almost impossible to see the other books

Turn the Spotlight on Swing #64

Chapter 8, Rendering | 325

HACK

Here, you create two spotlights: s1 and s2. The first is an ellipse 25-pixels
wide, 50-pixels high, and located at the top-left corner of the frame; the sec-
ond is a circle with a radius of 30 pixels and located 100 pixels away from
the top and the left of the frame’s border. Each spotlight is implemented as
an ellipse with the class Ellipse2D.Double, as shown in Example 8-11.

As you can see in the code, the Spotlight class is fairly simple and contains
only two public methods. The first one, getSpot(), returns the Ellipse2D
instance used to draw the spotlight. It can also be used to dynamically
change the location and the size of the spotlight. Once you’ve installed a few
spotlights, you will be able to get Ellipse2D to animate them. By moving
them around, shrinking them, or growing them, you can create stunning
effects. The second method of this class, getArea(), is used by
SpotlightPanel to define the amount of darkness according to the total area
occupied by the spotlights on the window. Thus, if you have enough spot-
lights to cover 80% of the window with light, SpotlightPanel will use a
darkness of 20%. In short, getArea() computes the geometrical area of the
spotlight’s ellipse.

The SpotlightPanel panel class (shown in Example 8-12) only needs a few
methods as well. You must be able to create spotlights, to remove a particu-
lar spotlight, to remove all spotlights, and to paint spotlights on the screen.
You also need two constructors. If you look at the previous figures, you
should see that the spotlights’ borders are blurred to get a nicer rendering.

Example 8-11. Representing a spotlight with an Ellipse2D

public class Spotlight
{
 protected Ellipse2D.Double spot;
 protected Rectangle2D.Double bounds;

 public Spotlight(int x, int y, int w, int h)
 {
 this.spot = new Ellipse2D.Double(x, y, w, h);
 }

 public Ellipse2D getSpot()
 {
 return spot;
 }

 public double getArea()
 {
 return Math.PI * spot.getWidth() * spot.getHeight() / 4.0;
 }
}

326 | Chapter 8, Rendering

#64 Turn the Spotlight on Swing
HACK

Unfortunately, the blurring method used in the painting algorithm is very
slow and prevents smooth animation of the spotlights. To account for this,
you need a special constructor to instruct the panel to draw blurred borders,
along with a constructor that leaves blurring at its default (on in this class,
although you may want to leave it off normally). When you need still spot-
lights, activate the blur to get a nicer result. On the contrary, when you want
to animate the spotlights, deactivate the blur to get full-speed animations.

The default constructor enables the blur. You can use the second construc-
tor and pass it false to deactivate this option. The rendering of the blur
effect is done with the help of a ConvolveOp. You learned about the inner
workings of a blur operation when you blurred disabled components [Hack #9].
The constructor also creates an instance of ArrayList in which all the spot-
lights are stored:

public Spotlight addSpotlight(int x, int y, int w, int h)
{
 if (spotlights.size() == 0)
 {

Example 8-12. Constructors of the SpotlightPanel class

public class SpotlightPanel extends JComponent implements MouseListener
{
 protected boolean blur;
 protected List spotlights;
 protected ConvolveOp blurOp;
 protected RenderingHints hints;

 public SpotlightPanel()
 {
 this(true);
 }

 public SpotlightPanel(boolean blur)
 {
 this.blur = blur;
 spotlights = new ArrayList();
 blurOp = new ConvolveOp(getBlurKernel(3), ConvolveOp.EDGE_NO_OP, null);
 hints = new RenderingHints(RenderingHints.KEY_RENDERING,
 RenderingHints.VALUE_RENDER_QUALITY);
 hints.put(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 hints.put(RenderingHints.KEY_FRACTIONALMETRICS,
 RenderingHints.VALUE_FRACTIONALMETRICS_ON);
 }

 // other methods omitted
}

Turn the Spotlight on Swing #64

Chapter 8, Rendering | 327

HACK

 setVisible(true);
 addMouseListener(this);
 }

 Spotlight spot = new Spotlight(x, y, w, h);
 spotlights.add(spot);
 return spot;
}

When a new spotlight is added, the panel is made visible immediately, and a
new mouse listener is registered on the glass pane. This mouse listener sim-
ply waits for a mouseClicked() event to clear the spotlights and hide the
glass pane. This feature is necessary to let the user decide when she wants to
get back to the application and hide the search results. The other methods
related to spotlight management are removeSpotlight(Spotlight s) and
clearSpotlights(). Both remove the mouse listener and hide the glass pane
when all the spotlights have been removed.

The most important work is done in the paintSpotlights() method, called
by the paintComponent() method:

protected void paintSpotlights(Graphics g)
{
 if (spotlights.size() > 0)
 {
 int width = getWidth();
 int height = getHeight();

 double screenArea = width * height;
 double spotsArea = 0.0;

 Rectangle2D screen = new Rectangle2D.Double(0, 0, width, height);
 Area mask = new Area(screen);

 for (int i = 0; i < spotlights.size(); i++)
 {
 Spotlight spot = (Spotlight) spotlights.get(i);
 spotsArea += spot.getArea();
 mask.subtract(new Area(spot.getSpot()));
 }

 Graphics2D g2 = (Graphics2D) g;
 Color shieldColor = new Color(0.0f, 0.0f, 0.0f, 1.0f - (float)
(spotsArea / screenArea));

 if (blur)
 {
 BufferedImage buffer = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_ARGB);
 Graphics2D g2buffer = (Graphics2D) buffer.createGraphics();

328 | Chapter 8, Rendering

#64 Turn the Spotlight on Swing
HACK

 g2buffer.setRenderingHints(hints);
 g2buffer.setColor(shieldColor);
 g2buffer.fill(mask);

 g2.drawImage(buffer, blurOp, 0, 0);
 } else {
 g2.setRenderingHints(hints);
 g2.setColor(shieldColor);
 g2.fill(mask);
 }
 }
}

The very first step is to compute the area of the glass pane and the total area
occupied by the spotlights. When the spotlights list is browsed to compute
the area, a particular shape is created. An Area is a Java2D shape that
encloses another shape, and on which you can then perform geometrical
boolean operations like subtracting or merging shapes. In this example,
spotlights can be seen as ellipsoidal holes in a black rectangle. Therefore,
you first create an Area, called mask, with a Rectangle2D the size of the glass
pane and subtract each spotlight to this shape. Using an Area has many
advantages, the more interesting being the possibility to overlap the spot-
lights, as shown in Figure 8-15.

Figure 8-15. By subtracting ellipses to a rectangle, you can easily overlap the spotlights

Turn the Spotlight on Swing #64

Chapter 8, Rendering | 329

HACK

The next step is to draw the shape containing the spotlights. Before doing
that, though, you need to compute the opacity of mask. When you create a
new Color instance, you can define the opacity as a number between 0.0
(fully transparent), and 1.0 (fully opaque). To compute the required opac-
ity, the program first divides the area of the spotlights by the total area.
Thereby, if spotlights occupy 20% of the total area, you obtain the value 0.2.
Subtract this from 1.0 to compute the final opacity. In this example, the
opacity would be 0.8, or 80%.

The final step of the rendering depends on whether blurring is activated.
When blurring is off, the mask is simply filled with shieldColor. Note that
the rendering hints defined in the constructor are used at this moment to
draw anti-aliased shapes. If blurring is activated, an extra step is required.
Instead of drawing the spotlights directly onto the glass pane’s graphics sur-
face, an offscreen buffer is created, with the same size as the panel itself.
After having drawn mask on this offscreen buffer, the resulting picture is
drawn onto the panel’s graphics surface. All the magic happens when you
call the drawImage() method with a ConvolveOp as the second parameter. The
method applies our blur filter on the picture while drawing it.

—Romain Guy

330

Chapter 9C H A P T E R N I N E

Drag-and-Drop
Hacks 65–69

Several years ago, the Swing team introduced a pair of APIs for data trans-
fer: java.awt.datatransfer and java.awt.dnd (Drag and Drop). The former
abstracts the concept of data exchange to and from your application (partici-
pating with either Java or native applications) and provides clipboard-based
copy-and-paste functionality. The latter particularizes these abstractions to
the specifics of drag-and-drop behavior. While many developers use these
APIs for working with unstyled clipboard text only, you can do much more.
Both Drag and Drop events and the clipboard support images, URLs, Files,
and even custom Java objects.

H A C K

#65
Drag-and-Drop with Files Hack #65

Drag files from your application directly to the desktop, complete with
translucent icons.

This hack shows you how to go much further than mere clipboard access by
digging into the lower levels of the Drag and Drop APIs and building a pro-
gram that can save files directly to the desktop via dragging, complete with
proper file icons and drag feedback.

When you use an editor to write a large document, you often save it to a
particular location on your filesystem—in a Projects folder perhaps. This is
because you will keep the file around for a long time, so you want to store it
for later use. Small documents, however, are often created for transient rea-
sons. I often write a few paragraphs and then immediately post it to a
weblog or attach it to an email. Some applications (particularly those on
Mac OS X) let you save something quickly by dragging a small marker into
another application or the desktop. The marker represents the file and lets
you quickly move the entire file into another context (a blog editor, for
example) without thinking about where to save the file (and trying to
remember where you stashed it 10 minutes later).

Drag-and-Drop with Files #65

Chapter 9, Drag-and-Drop | 331

HACK

Since drag-to-save behavior is not a standard part of the Java platform, you
will have to build it from scratch using the Drag and Drop APIs. First, you
will need a class that can trigger the drop action. The plan is to detect the
gesture, create a temp file to be saved, and then start the real drag with the
appropriate cursor and user feedback. Here’s a starting point:

class FileDragGestureListener extends DragSourceAdapter
 implements DragGestureListener {
 JTextArea text;
 Cursor cursor;
 public FileDragGestureListener(JTextArea text) {
 this.text = text;
 }

The FileDragGestureListener implements DragGestureListener and extends
the DragSourceAdapter. Swing sends all drag events to a DragSource listener.

Extending the DragSourceAdapter, instead of implementing
DragSource directly, lets your class avoid implementing all of
the required methods. DragSourceAdapter gives you empty,
no-op implementations of all the methods in DragSource.

FileDragGestureListener accepts a component to grab the text from. Any
provider of text would work, but I chose a JTextArea because it’s the most
likely to be used in a text editor.

All operating systems define a drag gesture, which usually means something
like “click and drag for more than 10 pixels,” though it varies from platform
to platform. Swing will detect the drag gesture and send an event to a
DragGestureListener, which is why FileDragGestureListener also imple-
ments that interface. DragGestureListener defines one method:
dragGestureRecognized(). This is where the real work of this hack is done:

public void dragGestureRecognized(DragGestureEvent evt) {
 try {

 // generate the temp file
 File proxy_temp = File.createTempFile("tempdir",".dir",null);
 File temp = new File(proxy_temp.getParent(),"myfile.txt");
 FileOutputStream out = new FileOutputStream(temp);
 out.write(text.getText().getBytes());
 out.close();

The implementation of dragGestureRecognized() starts by creating a temp
file to store the text. Actually, first it creates a fake temp file, proxy_temp,
using the File.createTempFile() method. Then it creates the real temp file
in the same directory and writes the text data to the file. You could skip the
proxy_temp part, but then if the user drags to the desktop, he will end up

332 | Chapter 9, Drag-and-Drop

#65 Drag-and-Drop with Files
HACK

with a filename like myfile158392.txt instead of myfile.txt. Using the proxy
file lets you create a file with a useful name, while still keeping the file in the
default temp directory.

Now that the file is done, it’s time to create an icon:

// get the right icon
FileSystemView fsv = FileSystemView.getFileSystemView();
Icon icn = fsv.getSystemIcon(temp);

Toolkit tk = Toolkit.getDefaultToolkit();
Dimension dim = tk.getBestCursorSize(
 icn.getIconWidth(),icn.getIconHeight());
BufferedImage buff = new BufferedImage(dim.width,dim.height,
 BufferedImage.TYPE_INT_ARGB);
icn.paintIcon(text,buff.getGraphics(),0,0);

In most operating systems, each type of file has a different icon, such as a lit-
tle piece of paper for a text file or musical notes for MP3 files. You could
bundle such icons with your program, but then they wouldn’t look right on
all operating systems. FileSystemView provides a platform-independent way
to get the appropriate icon for any file type with the getSystemIcon()
method.

Once you have the icon, you just need the underlying image. You could cast
the icon to an ImageIcon because most platforms use those—but the odd
platform here or there might not. It’s much safer to draw the icon into a new
buffered image. Drawing into a new image also lets you convert the icon to
the right cursor size without resizing it. Without this step, the operating sys-
tem might resize the image on its own, resulting in a messy drag icon that
looks horrible. Note the BufferedImage is created with TYPE_INT_ARGB. This
preserves any transparency that may be in the native system icons (e.g., on
Mac OS X).

With the file and image in place, it’s time to start the drag:

// set up drag image
if(DragSource.isDragImageSupported()) {
 evt.startDrag(DragSource.DefaultCopyDrop, buff,
 new Point(0,0),
 new TextFileTransferable(temp),
 this);
} else {
 cursor = tk.createCustomCursor(buff,new Point(0,0),"billybob");
 evt.startDrag(cursor, null, new Point(0,0),
 new TextFileTransferable(temp),
 this);
}

// end the try/catch block and handle exceptions

Drag-and-Drop with Files #65

Chapter 9, Drag-and-Drop | 333

HACK

Some operating systems support the idea of a drag image. This is a small
image underneath the cursor representing what is being dragged. For OS X,
this is usually a translucent version of the file icon. Windows doesn’t sup-
port drag images, so you can just make the cursor itself be the file icon.
That’s not quite as nice, but it gives the user the same effect. In the previous
code, DragSource.isDragImageSupported() lets you know which way to go. If
drag images are supported, then it starts a new drag with evt.startDrag(),
passing in the default copy cursor, the drag image, the cursor hotspot on the
drag image, a Transferable for the temp file (more on this later), and a
DragSource. FileDragGestureListener just passes in this because it also
extends the DragSourceAdapter. If drag images are not supported, then the
code creates a custom cursor using the icon and starts the drag using the
new cursor.

Once the drag is started, Swing will provide you with callbacks each time
the user moves the cursor and enters or exits an area where the file could be
dropped. To provide feedback about whether a file can be dropped over the
current location, you should override the dragEnter() and dragExit() meth-
ods in DragSourceAdapter to switch the cursor and reflect the current drop
target:

public void dragEnter(DragSourceDragEvent evt) {
 DragSourceContext ctx = evt.getDragSourceContext();
 ctx.setCursor(cursor);
}

public void dragExit(DragSourceEvent evt) {
 DragSourceContext ctx = evt.getDragSourceContext();
 ctx.setCursor(DragSource.DefaultCopyNoDrop);
}

Earlier, I mentioned the TextFileTransferable class. The Drag and Drop
APIs, along with the clipboard, define something known as a Transferable.
This is a wrapper around some data that describes the flavor of the data and
provides access to the data itself. You can think of a flavor as a MIME type.
Thus, a transferable for images would support the DataFlavor.imageFlavor
flavor, and a text transferable would support the stringFlavor. You can cre-
ate your own flavors, too, but it’s always better to use the standard ones if
you can.

The TextFileTransferable (in Example 9-1) holds a single text file and can
transfer it using the javaFileListFlavor, which represents a java.util.List
containing File objects.

334 | Chapter 9, Drag-and-Drop

#65 Drag-and-Drop with Files
HACK

TextFileTransferable implements Transferable and only recognizes the
javaFileListFlavor. getTransferData() returns the single file wrapped in an
ArrayList. getTransferDataFlavors() returns an array with only one ele-
ment: javaFileListFlavor. And isDataFlavorSupported returns true if the
specified flavor is a javaFileListFlavor.

With all of the components in place, it’s time to make a simple application
to pull it all together (see Example 9-2).

Example 9-1. Building a temporary file holder

class TextFileTransferable implements Transferable {
 File temp;

 public TextFileTransferable(File temp) throws IOException {
 this.temp = temp;
 }

 public Object getTransferData(DataFlavor flavor) {
 List list = new ArrayList();
 list.add(temp);
 return list;
 }

 public DataFlavor[] getTransferDataFlavors() {
 DataFlavor[] df = new DataFlavor[1];
 df[0] = DataFlavor.javaFileListFlavor;
 return df;
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 if(flavor == DataFlavor.javaFileListFlavor) {
 return true;
 }
 return false;
 }
}

Example 9-2. Testing out drag-and-drop

public class FileDropper {
 public static void main(String[] args) throws IOException {
 JFrame frame = new JFrame("Hack #65: Drag-and-Drop with Files");
 frame.setDefaultCloseOperation(frame.EXIT_ON_CLOSE);

 FileSystemView fsv = FileSystemView.getFileSystemView();
 Icon icon = fsv.getSystemIcon(File.createTempFile("myfile.",".txt"));
 ImageIcon iicn = (ImageIcon)icon;

Drag-and-Drop with Files #65

Chapter 9, Drag-and-Drop | 335

HACK

FileDropper creates a new frame with a label and a text area. The label gets a
text file icon, the same as the drag operation from earlier. The crucial part of
the code is the ds.createDefaultDragGestureRecognizer() call. This ties the
system-wide drag class to your custom recognizer. Without this call, the sys-
tem would know nothing about your customizations, and nothing would
happen when the user tries to drag the label to another application or the
desktop. With the call, though, the cursor will switch to show a small text
icon and the user can successfully drag the file to any place that accepts it
(see Figure 9-1). Now you can save files or transfer them without ever going
to a Save File dialog or having to navigate hierarchies of folders.

 frame.getContentPane().setLayout(new BorderLayout());
 JTextArea text = new JTextArea();

 JLabel label = new JLabel("myfile.txt",icon,SwingConstants.CENTER);
 DragSource ds = DragSource.getDefaultDragSource();
 DragGestureRecognizer dgr = ds.createDefaultDragGestureRecognizer(
 label,
 DnDConstants.ACTION_MOVE,
 new FileDragGestureListener(text));

 frame.getContentPane().add("North",label);
 frame.getContentPane().add("Center",text);

 frame.pack();
 frame.setSize(400,300);
 frame.setVisible(true);
 }
}

Figure 9-1. Drag-and-drop a file

Example 9-2. Testing out drag-and-drop (continued)

336 | Chapter 9, Drag-and-Drop

#66 Handle Dropped URLs
HACK

H A C K

#66
Handle Dropped URLs Hack #66

Drag-and-drop is like a box of chocolates; you never know what you’re going
to get....

Bookmark menus are so 1995. Today, you should expect to be able to drag
URLs to other applications and have those applications open web pages,
store the address in a bookmark database, start an email in response to a
mailto: URL, etc. Java’s networking chops are well-established and aren’t
the problem here. The issue is actually getting the URL itself from the drop.

To accept drops of native objects, your GUI needs to designate some
Component as the onscreen drop target. Your code then implements the
DropTarget interface, which means your implementation will get callbacks
when the user drags the mouse into your component, over it, out of it, etc.
Most of DropTarget’s methods can be left as no-ops; for now, only the drop()
method matters.

What’s interesting about native drag-and-drop (and copy-and-paste, for that
matter) is that there’s not necessarily one way to represent the data being
transferred. Instead, you do a sort of negotiation with the Transferable
passed to you by the DropTargetDropEvent: it specifies, in order of robust-
ness, which DataFlavors it can deliver, or you ask whether specific
DataFlavors are supported.

In the demo code in Example 9-3, I have a method called dumpDataFlavors(),
which shows the DataFlavors offered to you by the drop. You can use
System.out.println() on a particular flavor to get its MIME type, which
describes the contents of the drop, and a representation class, which indi-
cates how those contents will be provided to you by Transferable.
getTransferData(). For example, some browsers will give you a java.net.
URL, whose DataFlavor looks like this:

java.awt.datatransfer.DataFlavor[mimetype=application/x-java-url;
 representationclass=java.net.URL]

One thing that’s surprising is the number of DataFlavors offered by popular
web browsers. Table 9-1 is a short listing of some of the browsers I tested.

Table 9-1. Browsers and their supported DataFlavors

Browser Supported DataFlavors

Firefox 1.0 / Windows XP 78

MSIE 6.0 / Windows XP 53

Safari 1.3 / Mac OS X 53

Firefox 1.0 / Mac OS X 30

MSIE 5.2.3 / Mac OS X 53

Handle Dropped URLs #66

Chapter 9, Drag-and-Drop | 337

HACK

Fortunately, a few DataFlavors appear on the lists for each browser, so your
drop can just handle these common cases.

The URLDropTargetDemo class in Example 9-3 presents a large Drop Here
label and a JTextField to show the dropped URL. I could have opened a
stream from that URL and rendered its contents in Swing’s HTMLEditorKit,
but the result looks so bad with real-world web pages that it wasn’t worth it.
Besides, your app might be doing something other than opening web pages,
such as storing bookmarks or starting emails.

Example 9-3. A drop target for URLs

public class URLDropTargetDemo extends JPanel
 implements DropTargetListener {

 DropTarget dropTarget;
 JLabel dropHereLabel;
 JTextField statusField;
 static DataFlavor urlFlavor;
 static {
 try {
 urlFlavor =
 new DataFlavor ("application/x-java-url; class=java.net.URL");
 } catch (ClassNotFoundException cnfe) {
 cnfe.printStackTrace();
 }
 }

 public URLDropTargetDemo() {
 super(new BorderLayout());
 dropHereLabel = new JLabel ("Drop here",
 SwingConstants.CENTER);
 dropHereLabel.setFont (getFont().deriveFont (Font.BOLD, 24.0f));
 add (dropHereLabel, BorderLayout.CENTER);
 // set up drop target stuff
 dropTarget = new DropTarget (dropHereLabel, this);
 statusField = new JTextField (30);
 statusField.setEditable(false);
 add (statusField, BorderLayout.SOUTH);
 }

 public static void main (String[] args) {
 JFrame frame = new JFrame ("URL DropTarget Demo");
 URLDropTargetDemo demoPanel = new URLDropTargetDemo();
 frame.getContentPane().add (demoPanel);
 frame.pack();
 frame.setVisible(true);
 }

338 | Chapter 9, Drag-and-Drop

#66 Handle Dropped URLs
HACK

A static initializer sets up a flavor for getting real java.net.URLs (MIME type
application/x-java-url) from applications that provide them. The only
other DataFlavor you’ll need is a string flavor that exists as a constant in the
DataFlavor class itself.

 // drop target listener events
 public void dragEnter (DropTargetDragEvent dtde) {}

 public void dragExit (DropTargetEvent dte) {}

 public void dragOver (DropTargetDragEvent dtde) {}

 public void drop (DropTargetDropEvent dtde) {
 System.out.println ("drop");
 dtde.acceptDrop (DnDConstants.ACTION_COPY_OR_MOVE);
 Transferable trans = dtde.getTransferable();
 dumpDataFlavors (trans);
 boolean gotData = false;
 try {
 // try for application/x-java-url flavor
 if (trans.isDataFlavorSupported (urlFlavor)) {
 URL url = (URL) trans.getTransferData (urlFlavor);
 statusField.setText (url.toString());
 statusField.setCaretPosition (0);
 gotData = true;
 } else if (trans.isDataFlavorSupported (DataFlavor.stringFlavor)) {
 // try for string flavor
 String s =
 (String) trans.getTransferData (DataFlavor.stringFlavor);
 statusField.setText (s);
 gotData = true;
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 System.out.println ("gotData is " + gotData);
 dtde.dropComplete (gotData);
 }
 }

 public void dropActionChanged (DropTargetDragEvent dtde) {}

 private void dumpDataFlavors (Transferable trans) {
 System.out.println ("Flavors:");
 DataFlavor[] flavors = trans.getTransferDataFlavors();
 for (int i=0; i<flavors.length; i++) {
 System.out.println ("*** " + i + ": " + flavors[i]);
 }
 }
}

Example 9-3. A drop target for URLs (continued)

Handle Dropped URLs #66

Chapter 9, Drag-and-Drop | 339

HACK

The constructor does all the work needed to accept drops. Really, this just
consists of creating a DropTarget, which requires a Component (the “Drop
here” label), and a class implementing the DropTargetListener interface.

In the drop() method, you need to acceptDrop() to begin the process of
handling the drop. Pull out the Transferable from the DropTargetDropEvent,
and look to see if it supports any DataFlavors that your application can sup-
port. In this demo, I implemented this with simple if/else statements to try
the urlFlavor and the constant stringFlavor. Each block knows what the
drop can be cast to, so one block casts to a URL, while the other casts to a
String.

When your code is finished handling the drop—successfully or not—you
need to call dropComplete() on the DropTargetDropEvent, and pass a boolean
to indicate whether the drop was successful. The host OS can use this infor-
mation to finish animating the drop; for example, by flying the drag image
back to its source if the drop failed.

Drag Away
When you run the application, the big drop target is obvious, as seen in
Figure 9-2. In this case, a URL is being dragged from the Shiira web browser
on Mac OS X.

Once you drop a URL on the target, the dropped URL replaces the text in
the JTextField (as seen in Figure 9-3).

Figure 9-2. Dragging a URL to a Swing component

Figure 9-3. Swing component after handling a dropped URL

340 | Chapter 9, Drag-and-Drop

#67 Handle Dropped Images
HACK

H A C K

#67
Handle Dropped Images Hack #67

I spy, with my little drop() method, something that doesn’t support
DataFlavor.imageFlavor . . .arrrgh!

Handling drag-and-drop from native applications [Hack #66] can be tricky
because they’re not particularly consistent about how they represent the
data being transferred to your application. Now, let’s say you want to accept
dropped images—not image files, but actual images inside of browser win-
dows, digital photo viewers, word processing and page-layout applications,
etc. There’s a constant in DataFlavor for images, so surely you can count on
that being a flavor offered to you by the Transferable, right?

No, of course not. That would be too easy.

Using the dumpDataFlavors() strategy of the earlier URL hack, I checked out
the DataFlavors offered by images dropped from some popular Windows
and Mac applications. The results are pretty interesting—check out
Table 9-2.

Table 9-2. DataFlavor offerings for images on various platforms

Application/platform DataFlavors

Preview 2.1 / Mac OS X 1

GraphicConverter 4.6 / Mac OS X 1

Finder / Mac OS X 1

Safari 1.3 / Mac OS X 55

Firefox 1.0 / Mac OS X 57

QuickTime Player 6.5 / Mac OS X 1

AppleWorks 6.2.9 / Mac OS X 1

MarinerWrite 3.6.4 / Mac OS X 1

iPhoto 4.0.3 / Mac OS X 1

Explorer / Windows XP 1

MSIE 6.0 / Windows XP 27

Firefox 1.0 / Windows XP 80

Paint / Windows XP N/A

Windows Picture and Fax Viewer / Windows XP N/A

Windows Media Player / Windows XP N/A

QuickTime Player 6.5.1 / Windows XP N/A

QuickTime Picture Viewer 6.5.1 / Windows XP N/A

Handle Dropped Images #67

Chapter 9, Drag-and-Drop | 341

HACK

The first thing you should notice is the poor support for dragging and drop-
ping images in Windows: Paint, Picture and Fax Viewer, and the Quick-
Time applications are not drag sources, and dragging an image from the
playlist of Windows Media Player to the Swing application in this hack actu-
ally crashes Java.

Furthermore, the supported DataFlavors are all over the map. A lot of these
provide references to image files in the form of either a javaFileListFlavor
(as do the Windows and Mac desktops), a list of URIs (the MIME type text/
uri-list defined by RFC 2483 and supported by many of the browsers), or a
single URL. To top it off, some of the older Mac applications send a single,
hard-to-handle DataFlavor that will require special QuickTime-based
handling [Hack #68].

Thanks to Swing’s support for common image types like GIF, JPEG, and
PNG, a file reference is good enough because you can easily make an
ImageIcon from a URL or filepath to any of these types.

Grabbing the Drop
Example 9-4 shows a basic application that accepts a drop and tries to
obtain from the drop (in order of preference):

1. A java.awt.Image

2. A java.util.List of java.io.Files

3. A String, formatted per the uri-list spec

4. A java.net.URL

Example 9-4. Handling dropped images from other applications

public class ImageDropTargetDemo extends JPanel
 implements DropTargetListener {

 DropTarget dropTarget;
 JLabel dropHereLabel;
 static DataFlavor urlFlavor, uriListFlavor, macPictStreamFlavor;
 static {
 try {
 urlFlavor =
 new DataFlavor ("application/x-java-url; class=java.net.URL");
 uriListFlavor =
 new DataFlavor ("text/uri-list; class=java.lang.String");
 } catch (ClassNotFoundException cnfe) {
 cnfe.printStackTrace();
 }
 }

342 | Chapter 9, Drag-and-Drop

#67 Handle Dropped Images
HACK

 public ImageDropTargetDemo() {
 super(new BorderLayout());
 dropHereLabel = new JLabel (" Drop here ",
 SwingConstants.CENTER);
 dropHereLabel.setFont (getFont().deriveFont (Font.BOLD, 24.0f));
 add (dropHereLabel, BorderLayout.CENTER);
 // set up drop target stuff
 dropTarget = new DropTarget (dropHereLabel, this);
 }

 public static void main (String[] args) {
 JFrame frame = new JFrame ("Image DropTarget Demo");
 ImageDropTargetDemo demoPanel = new ImageDropTargetDemo();
 frame.getContentPane().add (demoPanel);
 frame.pack();
 frame.setVisible(true);
 }

 // drop target listener events

 public void dragEnter (DropTargetDragEvent dtde) {}

 public void dragExit (DropTargetEvent dte) {}

 public void dragOver (DropTargetDragEvent dtde) {}

 // drop() method listed below

 public void dropActionChanged (DropTargetDragEvent dtde) {}

 public void showImageInNewFrame (ImageIcon icon) {
 JFrame frame = new JFrame();
 frame.getContentPane().add (new JLabel (icon));
 frame.pack();
 frame.setVisible(true);
 }

 public void showImageInNewFrame (Image image) {
 showImageInNewFrame (new ImageIcon (image));
 }

 private void dumpDataFlavors (Transferable trans) {
 System.out.println ("Flavors:");
 DataFlavor[] flavors = trans.getTransferDataFlavors();
 for (int i=0; i<flavors.length; i++) {
 System.out.println ("*** " + i + ": " + flavors[i]);
 }
 }
}

Example 9-4. Handling dropped images from other applications (continued)

Handle Dropped Images #67

Chapter 9, Drag-and-Drop | 343

HACK

As in “Handle Dropped URLs” [Hack #66], this program uses static initializers
to set up two custom DataFlavors: one for URLs and another for lists of URIs
provided as Strings. Constants for images (specifically, java.awt.Images)
and lists of files (java.util.Lists of java.io.Files) are provided for you by
the DataFlavor class.

You register for drag-and-drop by creating a DropTarget with an onscreen
component and an implementation of the DropTargetListener class. The key
to the DropTargetListener is to meaningfully implement the drop() method,
taking a DropTargetDropEvent and accepting the drop, trying to get the data
from the event’s Transferable, and reporting back to the event on whether
the data was handled successfully. To prove that it worked, this application
shows the dropped image in a new JFrame.

Of course, the devil is in the details, meaning the drop() method, which is
listed in Example 9-5.

Example 9-5. Handling the image drop

public void drop (DropTargetDropEvent dtde) {
 System.out.println ("drop");
 dtde.acceptDrop (DnDConstants.ACTION_COPY_OR_MOVE);
 Transferable trans = dtde.getTransferable();
 System.out.println ("Flavors:");
 dumpDataFlavors (trans);
 boolean gotData = false;
 try {
 // try to get an image
 if (trans.isDataFlavorSupported (DataFlavor.imageFlavor)) {
 System.out.println ("image flavor is supported");
 Image img = (Image) trans.getTransferData (DataFlavor.imageFlavor);
 showImageInNewFrame (img);
 gotData = true;
 } else if (trans.isDataFlavorSupported (
 DataFlavor.javaFileListFlavor)) {
 System.out.println ("javaFileList is supported");
 java.util.List list = (java.util.List)
 trans.getTransferData (DataFlavor.javaFileListFlavor);
 ListIterator it = list.listIterator();
 while (it.hasNext()) {
 File f = (File) it.next();
 ImageIcon icon = new ImageIcon (f.getAbsolutePath());
 showImageInNewFrame (icon);
 }
 gotData = true;
 } else if (trans.isDataFlavorSupported (uriListFlavor)) {
 System.out.println ("uri-list flavor is supported");
 String uris = (String)
 trans.getTransferData (uriListFlavor);

344 | Chapter 9, Drag-and-Drop

#67 Handle Dropped Images
HACK

drop() asks the Transferable for supported DataFlavors in the order you’d
prefer to deal with them. First, obviously, is DataFlavor.imageFlavor. If this
is supported, you can trivially cast the data object returned by Transferable.
getTransferData() to an Image.

The next easiest thing to deal with is the Java file list, denoted by the MIME
type application/x-java-file-list, and handled by the DataFlavor constant
javaFileListFlavor. Given Swing’s support for various image file formats,
you can cast the transfer data to a java.util.List, iterate over its members,
cast each one to a File, and make an ImageIcon from each file’s path. URLs
work pretty much the same way: cast the transfer data to a java.net.URL and
make an ImageIcon from it.

URI lists take just a little work on your part. RFC 2483 defines these as
being some number of URIs, separated by CRLF pairs. It’s trivial to take the
URI list as a string and send it to a StringTokenizer to pick out each URI,
which can then be passed to the ImageIcon constructor.

Shut Up and Drag
Start up the demo and drag over an image from your favorite application, as
shown in Figure 9-4.

 // url-lists are defined by rfc 2483 as crlf-delimited
 StringTokenizer izer = new StringTokenizer (uris, "\r\n");
 while (izer.hasMoreTokens ()) {
 String uri = izer.nextToken();
 System.out.println (uri);
 ImageIcon icon = new ImageIcon (uri);
 showImageInNewFrame (icon);
 }
 gotData = true;
 } else if (trans.isDataFlavorSupported (urlFlavor)) {
 System.out.println ("url flavor is supported");
 URL url = (URL) trans.getTransferData (urlFlavor);
 System.out.println (url.toString());
 ImageIcon icon = new ImageIcon (url);
 showImageInNewFrame (icon);
 gotData = true;
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 System.out.println ("gotData is " + gotData);
 dtde.dropComplete (gotData);
 }
}

Example 9-5. Handling the image drop (continued)

Handling Dropped Picts on Mac OS X #68

Chapter 9, Drag-and-Drop | 345

HACK

When dropped, you’ll see the image appear in its own JFrame. In Figure 9-5,
I’ve dragged small images from several different applications, resulting in
each being opened in its own frame.

This won’t work if you’re dragging an image from one of the Mac OS X
applications that only supplies one DataFlavor. You’ll have to deal with Picts
[Hack #68] in that situation.

H A C K

#68
Handling Dropped Picts on Mac OS X Hack #68

For Mac applications that provide only the legacy Pict flavor of drops,
QuickTime for Java offers a Mac-specific solution.

You should already recognize the existence of hard-to-handle DataFlavors
[Hack #67] passed by certain Mac applications. Of the Mac apps I tested, sev-
eral old apps (many using the Carbon APIs, which were developed to migrate
classic Mac apps to OS X) support only one DataFlavor. When I drop from
GraphicConverter, QuickTime Player, AppleWorks, and MarinerWrite, the
only supported DataFlavor was reported as:

java.awt.datatransfer.DataFlavor[mimetype=image/x-pict;
 representationclass=java.io.InputStream]

Figure 9-4. Dragging an image from a native application to a Swing component

Figure 9-5. Image dropped from a native application and opened in Swing

346 | Chapter 9, Drag-and-Drop

#68 Handling Dropped Picts on Mac OS X
HACK

For those of you who don’t use Macs, Pict is part of QuickDraw, the origi-
nal Mac graphics API. The term is wildly overloaded—Pict can refer to a file
format, a resource hidden in an application file, a wrapper around vector
drawing commands, and as a wrapper around optionally compressed pixel
data. It’s in this latter form that Pict is a preferred format for passing image
data on the Mac clipboard because Picts are easy for Mac applications to
render and convert (through the QuickDraw library, of course).

Unfortunately, Java doesn’t know the first thing about Picts, so it’s frustrat-
ing to see that Pict is the only supported DataFlavor. Worse, the data is sup-
plied as an InputStream, instead of a file or a URL, meaning you have to
handle it in Java, instead of handing off to non-Java code that might be able
to convert the Pict to something that can handle the format more gracefully.

Fortunately, there is a Java solution to the problem, and it’s called Quick-
Time for Java (QTJ). This API is a Java wrapper around the native Quick-
Time multimedia API. It’s available for Mac OS X and Windows, but since a
Windows application isn’t going to pass you a Pict, you only need to worry
about the Mac OS X case. One advantage of all this API-wrangling: QTJ is
installed by default on Mac OS X, so you can count on it being there.

Everything in this hack is Mac-specific. Since Picts are only
going to be an issue on Mac OS X, don’t bother with this on
programs that you’re sure won’t need to deal with Mac OS X
drops.

First, you’ll need to define a DataFlavor for Pict data in Java input streams:

macPictStreamFlavor =
 new DataFlavor ("image/x-pict; class=java.io.InputStream");

Next, take the code from the hack on handling standard dropped images
[Hack #67] and give drop() a new else if() {...} block to deal with this fla-
vor. This block will use a QTJPictHelper class, so you need to make that
available (I’ll show you this helper class soon). Since you don’t want to need
to have this class at compile time—that would make life harder for Win-
dows and Linux users, who might not have the QTJava.zip file to compile
against—this code uses reflection to load the QTJPictHelper class and invoke
its pictStreamToJavaImage():

} else if (trans.isDataFlavorSupported (macPictStreamFlavor)) {
 System.out.println ("mac pict stream flavor is supported");
 InputStream in =
 (InputStream) trans.getTransferData (macPictStreamFlavor);
 // for the benefit of the non-mac crowd, this is
 // done with reflection. directly, it would be:
 // Image img = QTJPictHelper.pictStreamToJavaImage (in);

Handling Dropped Picts on Mac OS X #68

Chapter 9, Drag-and-Drop | 347

HACK

 Class qtjphClass = Class.forName ("QTJPictHelper");
 Class[] methodParamTypes = { java.io.InputStream.class };
 Method method =
 qtjphClass.getDeclaredMethod ("pictStreamToJavaImage",
 methodParamTypes);
 InputStream[] methodParams = { in };
 Image img = (Image) method.invoke (null, methodParams);
 showImageInNewFrame (img);
 gotData = true;
}

OK, now for the fun part: converting the input stream from Pict data to a
Java image. This code is drawn from techniques in the book QuickTime for
Java: A Developer’s Notebook (O’Reilly), which has a whole chapter on
QuickDraw and how to call it from Java. The gist of the technique is to use a
GraphicsImporter, which handles various types of image data, to read the
Pict. From this you can get a GraphicsImporterDrawer that allows you to get
a QTImageProducer, which is an AWT ImageProducer and, of course, can pro-
duce a normal java.awt.Image.

Example 9-6 shows the QTJPictHelper helper class I mentioned earlier.
Unlike most examples in the book, this listing includes the import state-
ments because the QTJ stuff will be new to most readers.

Example 9-6. Using QTJ to handle Mac Pict data in a Transferable

import java.awt.*;
import java.io.*;

import quicktime.*;
import quicktime.qd.*;
import quicktime.std.*;
import quicktime.std.image.*;
import quicktime.std.movies.media.*;
import quicktime.app.view.*;

public class QTJPictHelper extends Object {

 static Image pictStreamToJavaImage (InputStream in)
 throws IOException {
 Image image = null;
 // create a buffer for bytes read from stream
 byte[] buffy = new byte [2048];
 // must have empty 512-byte header so GraphicsImporter
 // will think it's a file
 int off = 512;
 int totalRead = 0;
 // loop, attempting to read as many bytes as will fit
 // in the array, growing array as necessary
 int bytesRead = 0;
 while ((bytesRead = in.read (buffy, off, buffy.length-off)) > -1) {

348 | Chapter 9, Drag-and-Drop

#68 Handling Dropped Picts on Mac OS X
HACK

To compile this code, you need the QTJava.zip file (yes, QTJ is old enough
to pre-date JAR files) in your classpath. On Mac OS X, you’d compile with
something like this:

javac -classpath /System/Library/Java/Extensions/QTJava.zip
 QTJPictHelper.java

The implicit QTJ hack in this code is that the GraphicsImporter has to be
fooled into believing that a block of memory is actually a Pict file as it would
appear on disk, and Pict files have a 512-byte header that the importer skips
over. So, the first thing this code does is to build a byte array from the input
stream, starting with 512 empty bytes.

 totalRead += bytesRead;
 off += bytesRead;
 if (off == buffy.length) {
 // reallocate new array
 byte[] buffy2 = new byte [buffy.length * 2];
 System.arraycopy (buffy, 0, buffy2, 0, buffy.length);
 buffy = buffy2;
 }
 }
 try {
 // hand it to QTJ GraphicsImporter
 QTSession.open();
 Pict pict = new Pict (buffy);
 DataRef ref = new DataRef (pict,
 StdQTConstants.kDataRefQTFileTypeTag,
 "PICT");
 GraphicsImporter gi =
 new GraphicsImporter (StdQTConstants.kQTFileTypePicture);
 gi.setDataReference (ref);
 QDRect rect = gi.getSourceRect ();
 Dimension dim = new Dimension (rect.getWidth(),
 rect.getHeight());
 GraphicsImporterDrawer gid =
 new GraphicsImporterDrawer (gi);
 QTImageProducer ip = new QTImageProducer (gid, dim);

 // create AWT image
 image = Toolkit.getDefaultToolkit().createImage (ip);

 } catch (QTException qte) {
 qte.printStackTrace();
 } finally {
 QTSession.close();
 }
 return image;
 }
}

Example 9-6. Using QTJ to handle Mac Pict data in a Transferable (continued)

Handling Dropped Picts on Mac OS X #68

Chapter 9, Drag-and-Drop | 349

HACK

Next is the QTJ stuff. It’s OK if you don’t totally understand it—QTJ code
is pretty twisted. That’s why there’s a whole book on it. First, you open a
QTSession, which initializes QuickTime and allocates resources. You have to
do this before any QTJ call. It can throw a QTException, as can most other
QTJ calls, so the whole thing is wrapped in a try-catch block.

Next, you create a Pict object from the byte array and pass that to DataRef,
which is a sort of generic media reference. In this case, you pass in flags to tell
the DataRef exactly what it’s pointing to. The second and third arguments
indicate that we’re using the old-style Mac OS file type and that its value is
PICT. You might be wondering why being a Pict object isn’t self-descriptive
enough. It’s because many QTJ objects are just pointers to blocks of memory
and the functions that work with them. The DataRef signature used here
takes a QTHandleRef as an argument. QTHandleRef is subclassed by Pict, but it
is little more than a pointer; the only level on which the DataRef understands
the Pict, in fact, is as a block of memory. My point here: QTJ code is weird
and often C-like.

Create a GraphicsImporter for the Pict format, and point it to the DataRef.
You have now read the Pict “file” from memory. Now, you can get the size
of the imported image and create a QTImageProducer, with help from a
GraphicsImporterDrawer (a sort of QT-to-Java bridge for still images, also
used by QTJ’s Swing JComponents). Since this is a normal, everyday
ImageProducer, you can create an image with Component.createImage() or
Toolkit.createImage().

Finally, you need to call QTSession.close() to deallocate QuickTime
resources. It’s OK to do it many times in a program, although it’s probably
more efficient to open() it once and close() it once; e.g., in your quit han-
dler or a shut-down hook.

Take a Breath and Run
The code works exactly as in the previous hack—all you’ve done is support
one more DataFlavor. In Figure 9-6, I’ve dropped two images from Quick-
Time Player onto the Java app, and both are shown in their own windows.

Actually, this is a little more interesting than it looks because the larger
image isn’t a still image; it’s the current frame of an MPEG-4 movie that I
dragged and dropped into the Java app. The single frame is transported as a
Pict, and using QTJ lets you get it into the Java world. This hack only
scratches the surface of QTJ’s potential—if you want to do Java Media on
the Mac, you should check out QuickTime for Java: A Developer’s Note-
book, by Chris Adamson (yours truly), published by O’Reilly.

350 | Chapter 9, Drag-and-Drop

#69 Translucent Drag-and-Drop
HACK

H A C K

#69
Translucent Drag-and-Drop Hack #69

The Java implementation of drag-and-drop offers poor visual feedback. This
hack shows how to provide more information and a better-looking response
to the user.

A good way to create user-friendly interfaces is to provide the ability to drag-
and-drop almost anything from, within, and onto those interfaces. Mac OS X
is a perfect example of a good drag-and-drop use. Every time I try to drag
something to drop it onto something else, it just works. AWT, and there-
fore Swing, let applications implement drag-and-drop but lack something
Mac OS X already offers: really cool visual feedback to let the user know
what’s going on.

A Rather Boring Cursor
J2SE has offered drag-and-drop facilities since version 1.2. All the necessary
classes and interfaces can be found in the package java.awt.dnd. Although
not very easy to use at first, this package provides powerful features you can
use to greatly improve the usability of your applications. Unfortunately, the
Java drag-and-drop framework offers little visual feedback. In fact, the only
feedback the user can get is a simple mouse cursor. For instance, you can
show that a drag-and-drop operation is in progress with the following line of
code:

dropTarget.setCursor(DragSource.DefaultMoveDrop);

Figure 9-6. Handling dropped images by supporting Pict format

Translucent Drag-and-Drop #69

Chapter 9, Drag-and-Drop | 351

HACK

Figure 9-7 shows what the visual feedback looks like on Windows.

Not only does this look bad, it also conveys very little information. Mac OS X
users are used to a much richer environment, and why should Windows or
Linux users expect less? As an example of what can be done, Safari—Mac
OS X’s default web browser—shows a translucent thumbnail of the picture
you are dragging. Figure 9-8 shows what this looks like in action.

Figure 9-7. Default drag-and-drop visual feedback on Windows

Figure 9-8. Mac OS X provides great looking visual feedback for drag-and-drop

352 | Chapter 9, Drag-and-Drop

#69 Translucent Drag-and-Drop
HACK

The quality of the interaction is greatly enhanced by the quantity of informa-
tion provided by the visual feedback. Another example is dragging a link
from the web browser to the desktop, where a translucent text box contain-
ing the link title and the URL is shown. Wouldn’t it be great to be able to do
the same in your application? Thankfully, Swing is perfectly suited for that
kind of job.

Translucence Rocks
Implementing a stylish drag-and-drop requires being able to draw a translu-
cent picture over any component. Every Swing frame contains several layers
on which components are painted. These layers serve many purposes,
among which is the drawing of pop-up menus over the regular components.
The higher-level layer is called the glass pane. A glass pane is a transparent
container you can use to draw over the entire UI, as seen in the hack that
turned dialogs into frame-anchored “sheets” [Hack #44]. You will use it to
display translucent pictures during a drag-and-drop operation, as seen in
Figure 9-9.

Yet, translucent pictures do not cover all the needs of effective drag-and-
drop visual feedback. When the user drops a file on your application, you
can use a picture to indicate what the type of the file is. However, what pic-
ture will you use when the user wants to drag a text box into another box,
and expect the contents of the first box to be copied to the second? The best

Figure 9-9. A translucent picture as visual feedback for drag-and-drop

Translucent Drag-and-Drop #69

Chapter 9, Drag-and-Drop | 353

HACK

solution is simply to display a translucent copy of the component itself,
referred to as a ghost in the code. Figure 9-10 shows a ghost in mid-drag.

This time, you will not use the package java.awt.dnd; you’ll need your own
framework for this level of sophistication. By breaking out of the pre-built
box, you gain full control of drag-and-drop.

Drawing a Ghost
The very first thing you need is a glass pane able to draw a translucent pic-
ture over the UI. A glass pane is nothing more than a transparent JPanel.
The code of GhostGlassPane is very simple, as shown in Example 9-7.

Figure 9-10. A ghost is a translucent copy of a Swing component

Example 9-7. Creating a glass pane for ghosting

import java.awt.*;
import java.awt.image.*;
import javax.swing.*;

public class GhostGlassPane extends JPanel
{
 private AlphaComposite composite;
 private BufferedImage dragged = null;
 private Point location = new Point(0, 0);

354 | Chapter 9, Drag-and-Drop

#69 Translucent Drag-and-Drop
HACK

This glass pane has two properties: the picture to be displayed and its loca-
tion. To make the picture translucent, use an AlphaComposite instance.
Besides colors, strokes, and painters, Java2D drawings can be affected by
composites that define how the newly drawn pixels are mixed with the
underlying pixels. In this case, you want the new pixels—i.e., the picture—
to be drawn at 50% of their initial opacity. You can change the second
parameter of getInstance() to choose the opacity. The valid value range is
from a totally opaque 0.0 to a totally transparent 1.0. An AlphaComposite can
be used to define how the alpha channels of the source (the pixels being
drawn), and the target (the existing pixels) are mixed together. You can
select the mixing mode with the first parameter of getInstance() and refer
to the documentation of AlphaComposite to get a comprehensive list of possi-
ble modes. It turns out that the AlphaComposite.SRC_OVER composite gives
the best result for our job.

 public GhostGlassPane()
 {
 setOpaque(false);
 composite = AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5f);
 }

 public void setImage(BufferedImage dragged)
 {
 this.dragged = dragged;
 }

 public void setPoint(Point location)
 {
 this.location = location;
 }

 public void paintComponent(Graphics g)
 {
 if (dragged == null)
 return;

 Graphics2D g2 = (Graphics2D) g;
 g2.setComposite(composite);
 g2.drawImage(dragged,
 (int) (location.getX() - (dragged.getWidth(this) / 2)),
 (int) (location.getY() - (dragged.getHeight(this) / 2)),
 null);
 }
}

Example 9-7. Creating a glass pane for ghosting (continued)

Translucent Drag-and-Drop #69

Chapter 9, Drag-and-Drop | 355

HACK

The only job of the paintComponent() will be to draw the dragged picture.
Therefore, there is no need to call super.paintComponent(), as it will per-
form unnecessary operations.

Do not forget to set the composite in this method, or you
might draw the picture fully opaque.

The center of the picture is painted at the location specified in setLocation().
This means assuming the location given is the location of the mouse cursor.
Now, you’ve got a fully functional glass pane, and you just need to add it to
a Swing frame:

glassPane = new GhostGlassPane();
setGlassPane(glassPane);

Also, do not forget that a glass pane is not visible by default: you will have to
call setVisible(true) when a drag-and-drop operation is initiated. The final
step is the activation of drag-and-drop on components requiring it. You can
use a picture as drag-and-drop feedback:

JLabel label = new JLabel("New Sale");
GhostDropAdapter pictureAdapter;
pictureAdapter = new GhostPictureAdapter(glassPane,
 "new_sale",
 "images/new_sale.png")
label.addMouseListener(pictureAdapter);
label.addMouseMotionListener(new GhostMotionAdapter(glassPane));

You can also use a ghost feedback:

JButton button = new JButton("Ghost Feedback"));
GhostDropAdapter componentAdapter;
componentAdapter = new GhostComponentAdapter(glassPane, "button_pushed");
button.addMouseListener(componentAdapter);
button.addMouseMotionListener(new GhostMotionAdapter(glassPane));

Whatever choice you make, you need two adapters to perform drag-and-
drop. The first one is an adapter for the MouseListener interface. It can be
either a GhostPictureAdapter, to handle pictures, or a GhostComponentAdapter,
to handle a component ghost. The role of this adapter is to handle the begin-
ning and the end of a drag-and-drop gesture. When a drop action is per-
formed, an event is fired to every GhostDropListener registered by the
adapter. The code in Example 9-8 shows how GhostComponentAdapter works.
The code of GhostPictureAdapter is almost the same, and it’s left to you to
check out (all the code for this book is online; visit http://www.oreilly.com/
catalog/swinghks).

356 | Chapter 9, Drag-and-Drop

#69 Translucent Drag-and-Drop
HACK

Example 9-8. Handling component ghosts

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;

public class GhostComponentAdapter extends GhostDropAdapter
{
 public GhostComponentAdapter(GhostGlassPane glassPane, String action) {
 super(glassPane, action);
 }

 public void mousePressed(MouseEvent e)
 {
 Component c = e.getComponent();

 BufferedImage image = new BufferedImage(c.getWidth(),
 c.getHeight(),
 BufferedImage.TYPE_INT_ARGB);
 Graphics g = image.getGraphics();
 c.paint(g);

 glassPane.setVisible(true);

 Point p = (Point) e.getPoint().clone();
 SwingUtilities.convertPointToScreen(p, c);
 SwingUtilities.convertPointFromScreen(p, glassPane);

 glassPane.setPoint(p);
 glassPane.setImage(image);
 glassPane.repaint();
 }

 public void mouseReleased(MouseEvent e)
 {
 Component c = e.getComponent();

 Point p = (Point) e.getPoint().clone();
 SwingUtilities.convertPointToScreen(p, c);

 Point eventPoint = (Point) p.clone();
 SwingUtilities.convertPointFromScreen(p, glassPane);

 glassPane.setPoint(p);
 glassPane.setVisible(false);
 glassPane.setImage(null);

 fireGhostDropEvent(new GhostDropEvent(action, eventPoint));
 }
}

Translucent Drag-and-Drop #69

Chapter 9, Drag-and-Drop | 357

HACK

When a mouse-press event is fired by the drag-and-drop source, a new off-
screen picture is created. This picture has the exact same dimensions as the
source component itself. Then the component is asked to paint itself on the
Graphics surface of the picture. The code obtains a ghost—a copy of the
component—which is passed to the glass pane.

You might wonder why the SwingUtilities class is used. Since the code lis-
tens to the events fired by a component, the mouse location it receives is
bound to the component’s coordinate system. For instance, when the mouse
is pressed with the cursor at the top-left corner of the component, the loca-
tion is 0,0. Unfortunately, you cannot use this location with the glass pane.
As the pane covers the whole frame, you need to translate the location from
the component’s coordinate system to the glass pane’s coordinate system.
There is no way to achieve this in one step, which is why the code first trans-
lates the location to the screen coordinates and then to the glass pane coor-
dinates. The glass pane can then safely paint the picture at the given
location.

The second adapter required for performing a full drag-and-drop operation
is an adapter for the MouseMotionListener interface. The framework needs it
to change the location of the picture, or the ghost, when the mouse moves
over the window. The code is pretty simple:

public void mouseDragged(MouseEvent e)
{
 Component c = e.getComponent();
 Point p = (Point) e.getPoint().clone();
 SwingUtilities.convertPointToScreen(p, c);
 SwingUtilities.convertPointFromScreen(p, glassPane);
 glassPane.setPoint(p);
 glassPane.repaint();
}

As before, you need to convert the location of the mouse event into the right
coordinate system. Once you get a valid location, the pane is repainted. The
full source code of this hack is available in this book’s downloadable source
code. The only part of the drag-and-drop framework you have not seen is
the GhostDropListener and its GhostDropEvent. Both are very easy to under-
stand when you remember that the drop location given by the event is
expressed in screen coordinates. Therefore, you must translate it into the
target component’s coordinates if you need to perform some checks. The
complete example provides an AbstractGhostDropManager that implements
GhostDropListener to provide two methods to handle drag-and-drop targets
more easily.

—Romain Guy

358

Chapter 10C H A P T E R T E N

Audio
Hacks 70–78

Sound is underrated as a useful tool for building good user interfaces. A lot
of developers balk at the thought of sound support, imagining an office full
of noisy machines, emitting a beeping cacophony more like a 1980s video-
game arcade than a place of business. But on the other hand, don’t you
appreciate it when you get a nice little audible cue? For example:

• When your IM buddy logs in

• When your CD has finished burning

• When your gigantic upload has finished

• When someone is trying to hack into your network and you’re not even
looking at the screen

And beyond these kinds of uses, don’t forget the whole realm of applica-
tions that are, by their nature, all about sound: music players, sound editors,
voice chat, and VoIP, etc. Clearly, java.awt.Toolkit.beep() is not going to
cut it.

Java has two built-in options for playing simple sounds in memory: applet
AudioClips and JavaSound. Because of their limitations, this chapter will also
look at two extensions: Java Media Framework (JMF) and QuickTime for
Java (QTJ). Later in the chapter, you’ll find more sophisticated JavaSound
coverage, including how to visualize an in-memory sound clip, and how to
play sounds too big to fit in memory.

Play a Sound in an Applet #70

Chapter 10, Audio | 359

HACK

H A C K

#70
Play a Sound in an Applet Hack #70

If you’re forced to write to the old Applet API for sound, here’s how you do it.
Good luck.

Let me be very clear up front: applet-based sound sucks. If you are in a
hurry to get sound into your application and can count on your users hav-
ing Java 1.3 or better, go ahead and use JavaSound instead [Hack #71]. Applet-
based sound is going to be most useful to those who must deliver applets
(and only applets) to very old browsers and JVMs. And it’s not going to be
pretty.

Java 1.0 and 1.1 shipped with no support for application-based sound.
None. The only sound support was for applets, presumably so they could
punt the responsibilities for audio to the enclosing browser. The idea in the
early JDKs is built around an AudioClip, a class found in the java.awt.
applet package—as David Flanagan says in Java Foundation Classes in a
Nutshell (O’Reilly), “only because there is no better place for it.”

The Code
To demonstrate AudioClips, Example 10-1 shows a hacked up little applet.

Example 10-1. Playing an AudioClip in an applet

public class AppletSound extends Applet
 implements ActionListener {

 JButton fileButton, loadButton, playButton, loopButton, stopButton;
 JLabel urlLabel;
 JTextField urlField;
 AudioClip clip;

 public AppletSound() {
 setLayout (new GridLayout (2,1));
 // first row layout
 JPanel topPanel = new JPanel();
 urlLabel = new JLabel ("URL:");
 topPanel.add (urlLabel);
 urlField = new JTextField (25);
 urlField.addActionListener (this);
 topPanel.add (urlField);
 loadButton = new JButton ("Load");
 loadButton.addActionListener (this);
 topPanel.add (loadButton);
 fileButton = new JButton ("File");
 fileButton.addActionListener (this);
 topPanel.add (fileButton);
 add (topPanel);

360 | Chapter 10, Audio

#70 Play a Sound in an Applet
HACK

 // second row layout
 JPanel bottomPanel = new JPanel();
 playButton = new JButton ("Play");
 playButton.addActionListener (this);
 bottomPanel.add (playButton);
 stopButton = new JButton ("Stop");
 stopButton.addActionListener (this);
 bottomPanel.add (stopButton);
 loopButton = new JButton ("Loop");
 loopButton.addActionListener (this);
 bottomPanel.add (loopButton);
 add (bottomPanel);
 }

 public void stop() {
 clip.stop();
 }

 public void actionPerformed (ActionEvent e) {
 Object source = e.getSource();
 if (source == fileButton) {
 JFileChooser chooser = new JFileChooser();
 int pick = chooser.showOpenDialog(this);
 if (pick == JFileChooser.APPROVE_OPTION) {
 try {
 File file = chooser.getSelectedFile();
 urlField.setText (file.toURL().toString());
 } catch (MalformedURLException murle) {
 murle.printStackTrace();
 }
 }
 } else if (source == loadButton) {
 try {
 System.out.println ("field: " + urlField.getText());
 URL clipURL = new URL (urlField.getText());
 System.out.println ("loading " + clipURL);
 clip = getAudioClip (clipURL);
 System.out.println ("got clip");
 } catch (MalformedURLException murle) {
 murle.printStackTrace();
 }
 } else if (source == playButton) {
 clip.play();
 } else if (source == stopButton) {
 clip.stop();
 } else if (source == loopButton) {
 clip.loop();
 }
 }

Example 10-1. Playing an AudioClip in an applet (continued)

Play a Sound in an Applet #70

Chapter 10, Audio | 361

HACK

If you’ve never worked with an applet, you need to be aware that they can’t
simply be launched from the command line with the java command. They
need to live in some sort of applet-aware container, typically a browser, with
their size and parameters specified by HTML tags. Example 10-2 shows a
simple index.html file to show the AppletAudio applet in a web page.

Notice how the applet doesn’t have a setVisible(true) line anywhere. The
applet is an AWT panel that does its own layout; its constructor will be
called from the browser plug-in (or equivalent) to get its pixels into the
browser window.

The constructor of this applet is concerned exclusively with layout. It pro-
vides a JTextField for a URL, a Load JButton to load an AudioClip from that
URL; a File JButton that can be used instead of typing in a file:/// URL by
hand; and Play, Stop, and Loop JButtons to control the AudioClip.

actionPerformed() is the guts of this applet. If you click the File button, it
simply shows a JFileChooser, converts the chosen file to a URL, and puts
that in the TextField.

The handler for the Load button is also critical. When this button is clicked,
the applet gets the text from the JTextField, makes a URL out of the text,
and passes that URL to getAudioClip(). getAudioClip() is an Applet method
that’s a shortcut for getting an AppletContext object, which describes the
environment the applet runs in and calls its getAudioClip().

 public static void main (String args[]) {
 JFrame f = new JFrame ("Applet Sound");
 f.getContentPane().add (new AppletSound());
 f.pack();
 f.setVisible(true);
 }
}

Example 10-2. HTML to display AppletSound applet

<html>
<head><title>Applet Sound</title></head>
<body>
<p>Playing sound with <code>java.applet</code></p>
<APPLET
 CODE="AppletSound.class"
 WIDTH="600"
 HEIGHT="75">
</APPLET>
</body>
</html>

Example 10-1. Playing an AudioClip in an applet (continued)

362 | Chapter 10, Audio

#70 Play a Sound in an Applet
HACK

The last three buttons—Play, Stop, and Loop—are handled trivially in
actionPerformed() with calls to the Applet methods play(), stop(), and
loop(), respectively.

I’ve also provided a main() method here. Applets don’t need them, but since
an applet is just a JPanel, why not just put it in a JFrame and run it, right?
What’s the worst that could happen?

No Browser, No Sound
Since there’s a main() method, just type java AppletAudio on the command
line and the applet will come up in its own frame, as seen in Figure 10-1.

Click the File button and choose a file to have its URL placed in the field.
Now, click Play.

Nothing happens. If you have an output console, you should see something
like:

java.lang.NullPointerException
 at java.applet.Applet.getAppletContext(Applet.java:171)
 at java.applet.Applet.getAudioClip(Applet.java:279)
 at AppletSound.actionPerformed(AppletSound.java:71)
 at javax.swing.AbstractButton.fireActionPerformed(
 AbstractButton.java:1819)
...

I’ll save you the time of typing a URL by hand and hitting Load; the same
thing happens.

What’s happening is that the implicit call to getAppletContext() is failing
because there is no applet context; i.e., the environment in which the applet
is executed. An applet expects to run in a browser or something similar that
provides access to cached images and sounds and the ability to get docu-
ments via URLs. Obviously, the four-line main() method doesn’t attempt to
provide such facilities.

So, to provide a suitable environment, use a browser to open the index.html
file. It also works to use the JDK’s appletviewer from the command line.
Either way, this should open a web page that looks like Figure 10-2.

Figure 10-1. AudioClip player launched as an application

Play a Sound in an Applet #70

Chapter 10, Audio | 363

HACK

Click File and…nothing happens. If you have an output window open, you’ll
see the reason:

[aeris:HacksBook/Media/52] cadamson% appletviewer index.html
apple.awt.EventQueueExceptionHandler Caught Throwable : java.security.
AccessControlException: access denied (java.util.PropertyPermission user.
home read)
java.security.AccessControlException: access denied (java.util.
PropertyPermission user.home read)
 at java.security.AccessControlContext.checkPermission(
 AccessControlContext.java:269)
 at java.security.AccessController.checkPermission(
 AccessController.java:401)
 at java.lang.SecurityManager.checkPermission(
 SecurityManager.java:524)
 at java.lang.SecurityManager.checkPropertyAccess(
 SecurityManager.java:1276)
 at java.lang.System.getProperty(System.java:573)
 at sun.awt.shell.ShellFolderManager.get(ShellFolderManager.java:51)
 at sun.awt.shell.ShellFolder.get(ShellFolder.java:245)
 at javax.swing.filechooser.FileSystemView.getDefaultDirectory(
 FileSystemView.java:362)
 at javax.swing.JFileChooser.setCurrentDirectory(
 JFileChooser.java:525)
 at javax.swing.JFileChooser.<init>(JFileChooser.java:321)
 at javax.swing.JFileChooser.<init>(JFileChooser.java:273)
 at AppletSound.actionPerformed(AppletSound.java:56)

Thanks to restrictive applet security, you can’t open a JFileChooser in an
applet without going and rewriting your permissions file or pointing to a
new, more permissive set of policies. Typing a URL by hand and trying to
load it fails in the same way and for the same reason. It probably makes
sense to assume the worst of an applet, but it makes it hard for an applet to
do anything useful, doesn’t it?

Figure 10-2. Applet to play AudioClips

364 | Chapter 10, Audio

#71 Play a Sound with JavaSound
HACK

Realistically, you actually need to host the applet (HTML and code) on a
web server and access it via a URL. If you have access to a web server, put
index.html and AppletAudio.class in their own web directory, along with
some known-to-work audio files, then access it remotely with a browser.
Type in a URL to one of those audio files by hand and try to load it. This
time, it should work (finally).

But what formats are supported? Back in Java 1.0 and 1.1, AudioClips had to
be encoded in mono at 8,000 Hz with µ-law encoding…which was pretty
awful. In Java 1.4.2, a few simple container formats are supported. AIFF and
WAV both work, but Mac OS X doesn’t support the .au format, which used
to be the only option (Windows can play .au, by the way). Also, AudioClip
can’t play WAVs and AIFFs whose contents are compressed in any way.
And neither Mac nor Windows supports MP3 as AudioClips.

You can also load audio from sites other than the one hosting your applet,
which seems contrary to the stringent applet security seen earlier.

So, using java.awt.applet’s AudioClip means your application has to be an
applet, it can only run a handful of audio formats, and your media can’t be
local unless you go through the hassle of overriding the SecurityManager for
the applet.

As you might imagine, early Java developers demanded a replacement.

H A C K

#71
Play a Sound with JavaSound Hack #71

Get a small clip to play from memory with a lot less hassle.

The JavaSound API was developed to answer complaints about the inade-
quacies of the AudioClip class in the applet package…not the least of which
was the fact that it couldn’t be used in applications. JavaSound consists of
two packages—javax.sound.sampled and javax.sound.midi—plus two ser-
vice provider interface (spi) sub-packages for adding support for new
devices, formats, converters, etc.

JavaSound was introduced as an extension to Java 1.2 (I know, I know,
“Java 2 Standard Edition, version 1.2”), and it became part of Core Java in
1.3. In other words, you’re pretty safe assuming that it’s present on your
user’s machine. That’s one big point in its favor.

Putting JavaSound to Work
To show off JavaSound, the code in Example 10-3 exhibits a short applica-
tion that allows the user to pick a file from the local filesystem and play it. A

Play a Sound with JavaSound #71

Chapter 10, Audio | 365

HACK

dialog shows the selected filename; OK it when the audio completes to exit
the program.

Example 10-3. Playing audio with JavaSound

public class CoreJavaSound extends Object
 implements LineListener {

 File soundFile;
 JDialog playingDialog;
 Clip clip;

 public static void main (String[] args) {
 JFileChooser chooser = new JFileChooser();
 chooser.showOpenDialog(null);
 File f = chooser.getSelectedFile();
 try {
 CoreJavaSound s = new CoreJavaSound (f);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public CoreJavaSound (File f)
 throws LineUnavailableException, IOException,
 UnsupportedAudioFileException {
 soundFile = f;
 // prepare a dialog to display while playing
 JOptionPane pane = new JOptionPane ("Playing " + f.getName(),
 JOptionPane.PLAIN_MESSAGE);
 playingDialog = pane.createDialog (null, "Application Sound");
 playingDialog.pack();

 // get and play sound
 Line.Info linfo = new Line.Info (Clip.class);
 Line line = AudioSystem.getLine (linfo);
 clip = (Clip) line;
 clip.addLineListener (this);
 AudioInputStream ais = AudioSystem.getAudioInputStream(soundFile);
 clip.open (ais);
 clip.start();
 }

 // LineListener
 public void update (LineEvent le) {
 LineEvent.Type type = le.getType();
 if (type == LineEvent.Type.OPEN) {
 System.out.println ("OPEN");
 } else if (type == LineEvent.Type.CLOSE) {
 System.out.println ("CLOSE");
 System.exit (0);

366 | Chapter 10, Audio

#71 Play a Sound with JavaSound
HACK

The JavaSound API for working with sampled sounds is an elaborate—
perhaps even baroque—set of abstractions about the various parts of a
sound system. The point of entry is an AudioSystem, whose various static
methods let you get at the different sound resources. These include Lines,
which are audio feeds (input or output); Mixers, which combine lines;
AudioInputStreams, which represent incoming audio data; and format con-
versions. Line has a sub-interface called DataLine, which has a sub-interface
called Clip, which represents a line that can be loaded into memory and
played immediately, instead of streaming out from its source. If your data is
small enough to fit in memory while being played, this is a particularly con-
venient class to work with.

If your audio is not small enough to fit in memory, check out
how to play JavaSound files of any length [Hack #76] later in
this chapter.

To play audio in JavaSound, you need to set up a DataLine and call its
start() method. Easier said than done, though—this is the baroque part.

There are a couple of ways to get a Line. In the most basic case, you just
indicate that you want a line that can work with a given class. Because this
example works with Clips, it asks for a Line.Info object suitable for use
with Clips. Then you pass that info object to the AudioSystem to get a Line,
which can be cast to a Clip since that’s what you asked for in the first place.

Before setting up the media data, this example sets up a LineListener, which
will provide events when the media is opened, starts playing, stops playing,
and is closed.

OK, you’ve got a Clip, so here’s how to get some audio data into it. You cre-
ate an AudioInputStream from the static getAudioInputStream() method,
then pass it to Clip’s open() method. This makes the clip operational: it pre-
fetches any needed system resources and enters a “ready to play” state.
Now, you can just play the audio with the start() method, inherited from
DataLine.

 } else if (type == LineEvent.Type.START) {
 System.out.println ("START");
 playingDialog.setVisible(true);
 } else if (type == LineEvent.Type.STOP) {
 System.out.println ("STOP");
 }
 }
}

Example 10-3. Playing audio with JavaSound (continued)

Play a Sound with JavaSound #71

Chapter 10, Audio | 367

HACK

The example sets up a LineListener on the Clip and looks at the type of
received events for four values defined in the LineEvent.Type class: OPEN,
CLOSE, START, and STOP. All of these are logged to standard out, and then an
appropriate action is taken: START makes the dialog visible, STOP hides the
dialog and closes the clip (this is called when you OK the dialog), and CLOSE
exits the application (and is called as a side effect of clip.close() in the
handling of STOP).

There are a lot more classes in the package, and you can write really confus-
ing code with them—and I haven’t even mentioned MIDI. But for the stated
goal of playing a small audio file with a minimum of fuss, that’s how you do
it with JavaSound.

Listen Up
When you run the demo program, it brings up a regular JFileChooser. You
need to pick a sound file from one of JavaSound’s supported file formats…
of which there are only three: WAV, AIFF, and AU (not MP3, WMA, or
Ogg). You knew there had to be a catch, right? Moreover, by default, Java-
Sound only plays uncompressed sound files, so if the data in the file is in
ALAW, ULAW, MACE, etc., it won’t play.

If JavaSound can read it, it will start playing the chosen file immediately.
The demo also shows a dialog like Figure 10-3, showing the name of the
chosen audio file.

Clicking the OK button clears the dialog and unblocks the AWT so that
when the clip finishes playing, the STOP event can remove the dialog from the
screen and close the clip, which exits the demo.

Working with the AudioSystem and having to pass around description
objects is a little strange, especially with JavaSound’s habit of using public
inner classes as descriptor objects, but thanks to the Clip class, it does offer
a pretty reasonable way to play small audio clips from your program.

Figure 10-3. Dialog showing current sound file

368 | Chapter 10, Audio

#72 Play a Sound with Java Media Framework
HACK

The downside to JavaSound is the small number of supported formats. Java-
Sound, at least out of the box, isn’t well suited to handle having random
sound formats thrown at it. That’s not a problem if you’re supplying your
own sounds for your application—just stick with AIFF or WAV. But it does
make JavaSound less than useful in a media browser or some other applica-
tion that is going to have to deal with random formats encountered on the
Net or the user’s local storage. Of course, that’s part of the idea of the spi
sub-package: Sun provides the framework, and third parties make their for-
mats available to Java by implementing spi interfaces.

H A C K

#72
Play a Sound with Java Media Framework Hack #72

Use the Java Media Framework for better performance and support for more
audio formats.

Java Media Framework (JMF) is Sun’s attempt to bring a broadly focused
multimedia framework to Java, supporting audio, video, and other time-
based media types. The idea is to provide Java desktop applications with
these features across operating systems. Like JavaSound, it’s meant to be
extended so that Sun or third parties could add support for new file formats
or codecs (the compression/decompression encoding schemes used inside
those files).

JMF offers another way to provide sound from an application. The advan-
tages of doing so are that JMF may provide access to many more sound files
than JavaSound will alone, and that JMF is somewhat easier to code than
JavaSound, particularly for simple tasks. The disadvantages are that JMF
capabilities vary wildly by platform, and that the end user will have to install
JMF separately, which will be difficult or simply not allowed for some users.

Installing JMF
Download and install JMF from its home page at http://java.sun.com/
products/java-media/jmf/index.jsp and you should be ready to go—no reboot
required. The installers should have put everything into the correct path and
set up your environment. If you have trouble getting JMF programs to run,
or if you used the all-Java version that doesn’t have a special installer, you
can try adding the following environment variable:

JMFHOME="C:\Program Files\JMF2.1.1"

Next, add the two JMF Java libraries to your classpath:

CLASSPATH="$JMFHOME\lib\jmf.jar;$JMFHOME\lib\sound.jar;.;$CLASSPATH"
PATH="$JMFHOME\lib;$PATH"

Play a Sound with Java Media Framework #72

Chapter 10, Audio | 369

HACK

The Code
The demo in Example 10-4 is basically a port of the CoreJavaSound demo
used in playing audio with JavaSound [Hack #71], except that the event-
handling has been simplified to a “quit when done” implementation. JMF’s
playback metaphor involves Players, which simply play media, and
Processors, which may take action on the media, such as adding effects or
transcoding to other formats. This allows the simple stuff to stay simple: to
play a file, you wire it up to a Player, tell everything to get initialized (“real-
ized” in JMF parlance), and call start(). Notice that while the other imports
are omitted as usual, this listing shows the import javax.media.* that will
bring in the JMF classes used here.

Example 10-4. Playing audio with Java Media Framework

import javax.media.*;

public class JMFSound extends Object
 implements ControllerListener {

 File soundFile;
 JDialog playingDialog;

 public static void main (String[] args) {
 JFileChooser chooser = new JFileChooser();
 chooser.showOpenDialog(null);
 File f = chooser.getSelectedFile();
 try {
 JMFSound s = new JMFSound (f);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public JMFSound (File f)
 throws NoPlayerException, CannotRealizeException,
 MalformedURLException, IOException {
 soundFile = f;
 // prepare a dialog to display while playing
 JOptionPane pane = new JOptionPane ("Playing " + f.getName(),
 JOptionPane.PLAIN_MESSAGE);
 playingDialog = pane.createDialog (null, "JMF Sound");
 playingDialog.pack();

 // get a player
 MediaLocator mediaLocator =
 new MediaLocator(soundFile.toURL());
 Player player =
 Manager.createRealizedPlayer (mediaLocator);

370 | Chapter 10, Audio

#72 Play a Sound with Java Media Framework
HACK

The major change from the CoreJavaSound demo is in the constructor, after
the dialog is readied. You create a MediaLocator, a sort of generic means of
referring to the source location of media, from a URL of the selected file.

The MediaLocator allows you to create a Player with a one-line call to
Manager.createRealizedPlayer(MediaLocator). A lot occurs in this call: the
Manager, a sort of central point of access to JMF resources, creates a Player,
wires it up to the MediaLocator, calls prefetch() to process some of the
media data (to reduce startup delay), and calls realize() to allocate system-
dependent media resources. The result is a ready-to-play Player.

To add event-awareness, add a listener with addControllerListener(),
Controller being a superclass of Player. Finally, you can play the media with
start().

The ControllerListener interface defines a single method, controllerUpdate(),
which receives a ControllerEvent. In JMF, the class of the event is used for
determining behavior; there are more than a dozen you might choose to deal
with. To get the “end of the media” event, you just check to see if the event
is an EndOfMediaEvent object, which in this case is handled by hiding the dia-
log and quitting the application.

Take JMF for a Spin
Functionally, the application is largely identical to the CoreJavaSound demo:
a JFileChooser asks you to pick a file. When you do, it starts playing and a
dialog box shows you the filename. When the audio completes, the applica-
tion quits.

 player.addControllerListener (this);
 player.prefetch();
 player.start();
 playingDialog.setVisible(true);
 }

 // ControllerListener implementation
 public void controllerUpdate (ControllerEvent e) {
 System.out.println (e.getClass().getName());
 if (e instanceof EndOfMediaEvent) {
 playingDialog.setVisible(false);
 System.exit (0);
 }
 }
}

Example 10-4. Playing audio with Java Media Framework (continued)

Play a Sound with QuickTime for Java #73

Chapter 10, Audio | 371

HACK

The one thing that’s really different is that you can play many more file for-
mats than you can with just JavaSound. Or maybe you can’t. It all depends
on what operating system you’re running on. The JMF install offers an all-
Java version and “performance packs” for some operating systems, which
use native code. The latter offer not only better performance for the media
formats supported by the all-Java version, they also integrate with the native
media library on the host operating system to play other media files, ones
that couldn’t be opened with the all-Java version alone.

This might make you deceive yourself: if you develop a JMF application on
Windows and it works with your media, it won’t necessarily work on
another operating system, either because Sun never made a performance
pack for that system (Mac OS X), or because even with the performance
pack, the native libraries don’t support that format. If you go the JMF route,
you need to rigorously test cross-platform, or you may very well have an
application that really only works on one OS.

H A C K

#73
Play a Sound with QuickTime for Java Hack #73

Using QuickTime, you can play even more kinds of sounds, but only on two
operating systems.

QuickTime for Java offers another way to significantly improve the media
capabilities of your application. Its list of supported formats is huge (see
http://www.apple.com/quicktime/products/qt/specifications.html for the current
list) and always growing as Apple continues to improve it. That’s a big
advantage over JMF, which was dropped into maintenance mode in 1999
and largely ignored since then.

The huge disadvantage with QuickTime for Java is that it works on Win-
dows and Mac only. That’s because QTJ, as it’s typically called, is really just
an object-oriented (OO) wrapper to call C functions in the native Quick-
Time library. That gives you native-speed performance, but it also means the
wrappers don’t do anything without an underlying native implementation.

QuickTime Beating Up on JavaSound
For the purposes of this hack, let’s say you only need to support Mac and
Windows, or that you need to open files from the iTunes Music Store (QTJ
can do it, which is apparently the only way to do it in Java), or for whatever
reason QTJ looks like the right solution. Example 10-5 shows a port of the
JavaSound audio player to a QTJ-based implementation.

372 | Chapter 10, Audio

#73 Play a Sound with QuickTime for Java
HACK

Example 10-5. Playing audio with QuickTime for Java

import quicktime.std.*;
import quicktime.std.clocks.*;
import quicktime.std.movies.*;
import quicktime.*;
import quicktime.io.*;
import quicktime.app.time.*;

public class QTJSound extends Object {

 File soundFile;
 JDialog playingDialog;
 Movie movie;

 public static void main (String[] args) {
 JFileChooser chooser = new JFileChooser();
 chooser.showOpenDialog(null);
 File f = chooser.getSelectedFile();
 try {
 QTJSound s = new QTJSound (f);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public QTJSound (File f)
 throws QTException {
 soundFile = f;
 // prepare a dialog to display while playing
 JOptionPane pane = new JOptionPane ("Playing " + f.getName(),
 JOptionPane.PLAIN_MESSAGE);
 playingDialog = pane.createDialog (null, "QTJ Sound");
 playingDialog.pack();

 // get and play sound
 QTSession.open();
 QTFile qtf = new QTFile (f);
 OpenMovieFile omf = OpenMovieFile.asRead (qtf);
 movie = Movie.fromFile (omf);
 MyDemoCloser closer = new MyDemoCloser (movie);
 TaskAllMovies.addMovieAndStart ();
 movie.start();
 playingDialog.setVisible(true);
 }

 class MyDemoCloser extends ExtremesCallBack {

 public MyDemoCloser (Movie m) throws QTException {
 super (m.getTimeBase(),
 StdQTConstants.triggerAtStop);
 callMeWhen();
 }

Play a Sound with QuickTime for Java #73

Chapter 10, Audio | 373

HACK

Some of this code looks very un-Java-like and there’s a reason: QTJ is an
object-oriented wrapper around a straight-C API. Whenever I see the C ver-
sions of things I do in QTJ, I’m grateful they got it as OO as they did. Nev-
ertheless, there are differences: where a Java developer would expect to deal
with listeners, QTJ makes you wrangle CallBack objects, which have to re-
register themselves every time they’re called or else they’re forgotten. And
the number of imports for a small class is quite atypical—QTJ is highly gran-
ular in its class organization.

Take a look at the constructor. After doing the file-selection dialog, it calls
QTSession.open(). This is a call that initializes QuickTime resources and
must be made before any other QTJ call, or an exception will be thrown.
You’ll be responsible for shutting down QuickTime later, of course.

The basic thing you want to do is to use the file to create a Movie. Don’t
worry, this isn’t turning into a video hack; QuickTime uses the term movie
for any playable or displayable thing it works with: audio, video, audio and
video, Flash, static images, etc. To create the Movie, you need an
OpenMovieFile, which you get by making a QTFile from java.io.File and
then using the static asRead() to get an OpenMovieFile.

The demo sets up a callback by creating an instance of the inner class
MyDemoCloser, calls the cryptic TaskAllMovies.addMovieAndStart() (more on
that later), and finally starts the audio with Movie.start(). If the source is a
URL, or a file on really slow media, it might help to call Movie.prePreroll()
and Movie.preroll() before starting, to let QuickTime pre-allocate needed
system resources and read in some data.

Setting up a callback to close everything down requires use of an
ExtremesCallBack, which is an object that gets called when either the begin-
ning or end of the movie is reached. Its constructor takes the movie’s time-
base (which is an object representing the movie’s time-keeping system) and
a flag to indicate what conditions the callback should be called in. The flag
is an int, but it really contains bit values that can be ORed together. For

 public void execute() {
 playingDialog.setVisible (false);
 System.out.println ("dialog closed");
 // note: this can hang on Windows - consider
 // using QTSession.exitMovies() instead
 QTSession.close();
 System.out.println ("closed QTSession");
 System.exit(0);
 }
 }
}

Example 10-5. Playing audio with QuickTime for Java (continued)

374 | Chapter 10, Audio

#73 Play a Sound with QuickTime for Java
HACK

example, if the media could play in both directions and you wanted to be
notified when it reached the beginning of the movie too, you’d pass
StdQTConstants.triggerAtStop | StdQTConstants.triggerAtStart.

Next, you have to use callMeWhen() to register the callback. This signs you
up for one callback—if you’re called and are still interested in future events,
you have to reregister with another callMeWhen().

When the sound finishes, the callback calls execute(). This is when you shut
everything down, as in the other hacks. Notice that you close down Quick-
Time with QTSession.close(), the obvious counterpart to QTSession.open().
There are some issues about how well it works on Windows: it sometimes
hangs for me, and you may want to use the safer QTSession.exitMovies(),
which only closes down some of QTJ, but the rest seems to get taken care of
by QTJ itself, as I’ve never had a problem.

And one more bit of arcane QTJ lore: the code makes a call to
TaskAllMovies.addMovieAndStart(). This helps deal with the fact that mov-
ies have to explicitly be given CPU time, with calls to a task() method, in
order to work. TaskAllMovies is a convenience Thread that can periodically
make this tasking call for all your movies. If you’ve read Chris’ book on
QTJ, you would think that this isn’t necessary, as having the AWT event-
dispatch thread usually provides tasking calls. The problem is that the dia-
log box that’s showing while the audio plays is modal; thus, it blocks the
event loop, which in turn blocks the tasking you usually get for free with
AWT. So, you have to set it up yourself.

QTJ is full of weird gotchas like this. What do you expect
when it’s largely a port from C?

Compiling QuickTime Code
Yep, this hack has special compile instructions. First, you have to be sure
that your machine even has QuickTime for Java on it. It’s installed by
default with Mac OS X, so this is only an issue for Windows-based develop-
ers. On Windows, if you don’t have QuickTime at all, get it from http://
www.apple.com/quicktime/ and do a custom install: QuickTime for Java will
be one of the non-default optional pieces, and you just need to checkmark it
to include it in your install. If you do have QuickTime, run the QuickTime
Updater from your Start menu or your tray to do a “custom” update, which
will show the same list of optional pieces as the main installer.

Play a Sound with QuickTime for Java #73

Chapter 10, Audio | 375

HACK

The install or update will put QTJava.zip into the lib/ext of any Java home
folders it finds. It should also put a copy in C:\windows\system32 and add a
system-wide environment variable QTJAVA pointing to one of these files, with
the path in quotes (which may or may not be good for you, depending on
what else you do with environment variables).

Here’s the fun part about compiling: you must explicitly point your compile-
time classpath to one of these QTJava.zip files for javac (or jikes, or what-
ever) to find the QTJ classes. If you don’t, you’ll get a bunch of compile-
time errors like:

QTJSound.java:4: package quicktime.std does not exist
import quicktime.std.*;
^
QTJSound.java:5: package quicktime.std.clocks does not exist
import quicktime.std.clocks.*;
^
QTJSound.java:6: package quicktime.std.movies does not exist
import quicktime.std.movies.*;

So, assuming you want to work with a copy of Java installed in Program
Files\Java\j2re1.4.2_06 (which is my current path…yours may vary), you
compile this demo with the following command:

C:\>javac
 -classpath "c:\Program Files\Java\j2re1.4.2_06\lib\ext\QTJava.zip"
 QTJSound.java

This should be typed as one line—I’ve word-wrapped to
accommodate the book’s margins.

You can substitute any other path to a QTJava.zip file for the classpath if
you find it more convenient, or just write an Ant build file to automate
everything for you.

On Mac OS X, the location of QTJava.zip is never a mystery because the sys-
tem installer puts it in /System/Library/Java/Extensions.QTJava.zip. So, you
compile with:

[aeris:HacksBook/Media/52] cadamson% javac -classpath
 /System/Library/Java/Extensions/QTJava.zip
 QTJSound.java

In either case, you’ll probably be relieved to know that you don’t have to
specify the classpath when running a QTJ application.

376 | Chapter 10, Audio

#74 Add MP3 Support to JMF
HACK

Running the Code
Like the JMF port [Hack #72], QTJSound looks and feels more or less the same as
the original CoreJavaSound [Hack #71]. The big difference is in the supported
sound file formats. QuickTime will open not just uncompressed WAVs and
AIFFs, but compressed data in those formats, along with MP3s, AACs,
3GPP mobile audio files, iTunes Music Store files, audio tracks of various
audio/video formats like QuickTime movies (.mov), MPEG-4, even audio
CD tracks (but only on the Mac).

That’s obviously the big win with QuickTime for Java: you get support for a
lot more formats. The price you pay is that your code only runs on two
operating systems and that it can be difficult to write. The ideal would be if
the obvious points of extensibility in JavaSound and JMF had been
exploited, so that more formats would be available when using those APIs.
With a notable exception [Hack #74], that hasn’t happened yet.

By the way, to learn more about QuickTime for Java, check
out QuickTime for Java: A Developer’s Notebook (O’Reilly).

H A C K

#74
Add MP3 Support to JMF Hack #74

MP3s are everywhere, and by installing a plug-in you can use them with Java
Media Framework, too.

It used to be said that every program will continue to grow until it includes
an email reader. Today we could say the same for MP3 players. They are
everywhere, and any program that has plug-ins will eventually be given a
music player. Playing MP3s in Java used to be quite an ordeal, involving a
suite of toolkits and codecs from different sources. Fortunately, it’s a lot eas-
ier to play an MP3 file these days, and this hack shows how.

JMF came out in 1998, supporting playback of a number of audio and video
formats, but not MP3. Support for this popular format arrived with JMF 2.0
in 1999. Unfortunately, in 2002, Sun removed MP3 support from JMF
because of licensing problems. Finally, in November of 2004, Sun released a
fully licensed MP3 plug-in for public download on their web site. With this
plug-in, you can play any MP3 file with only four lines of code.

Add a Plug-In to JMF
First, install Java Media Framework [Hack #72]. To add MP3 support, down-
load the plug-in from http://java.sun.com/products/java-media/jmf/mp3/
download.html. The download page offers an .exe installer for Windows and

Add MP3 Support to JMF #74

Chapter 10, Audio | 377

HACK

a ZIP for other platforms. In both cases, there is an mp3plugin.jar file that
the install docs say you need to place in the ext/lib directory of any JRE you
want to provide the plug-in to. With the JAR in your classpath, you install
the plug-in with the following command:

java com.sun.media.codec.audio.mp3.JavaDecoder

On Mac OS X, the proper way to add JAR files to the class-
path is to put them in /Library/Java/Extensions, instead of
using the actual ext/lib directory, which is hard to find and
will be wiped out by system installers and updates anyways.

Simplicity Is Nice
Example 10-6 is the code for pretty much the simplest MP3 playing pro-
gram you can create. You will need to import javax.media.* in addition to
the usual java.io classes.

Those four lines in main() do it all. The MediaLocator takes care of loading
and buffering the file as long as you can give it a URL. The player controls
the actual music output. It has the basic functions you would expect, like
start() and stop(). If you compile and run this program with a test MP3
file, audio should start playing immediately.

Distribute Your Program
If you need to distribute your program, it’s best to include platform install-
ers and instruct users to install them first.

Licensing restrictions from Sun may apply here!

Example 10-6. A very basic MP3 player

import javax.media.*;

public class MP3Player {

 public static void main(String[] args) throws Exception {
 File file = new File("test.mp3");
 MediaLocator mrl = new MediaLocator(file.toURL());
 Player player = Manager.createPlayer(mrl);
 player.start();
 }
}

378 | Chapter 10, Audio

#75 Build an Audio Waveform Display
HACK

Even better, if you have a custom install program, make it run the JMF and
MP3 installers first. If you don’t have an installer or don’t know which plat-
form the program will be installed on, use the cross-platform versions (also
available from the URLs mentioned in this hack). They are slower but are
completely written in Java so they can run on anything.

H A C K

#75
Build an Audio Waveform Display Hack #75

With a little understanding of audio data formats, you can easily build a basic
graphical audio display.

Representing audio visually is extremely useful. You can use waveform dis-
plays to quickly tell audio files apart, like a file thumbnail, or for non-linear
editing, such as deleting parts of the file and processing.

Figure 10-4 shows a waveform displayed in Audacity, a free, open source
audio editing application. This hack shows you how to build a basic wave-
form display from raw audio data.

The end result of this hack is displayed in Figure 10-5. You’ll start by read-
ing in the entire audio file using an AudioInputStream. Then you’ll convert
the raw data from the stream into useful audio samples, organized by chan-
nel. With the converted channel audio data, you’ll create a single waveform

Figure 10-4. Audacity with an audio waveform displayed

Build an Audio Waveform Display #75

Chapter 10, Audio | 379

HACK

panel. Then you’ll wrap up the complete audio display by combining sev-
eral waveform panels to display multi-channel audio.

Some Basic Definitions
You’ll need to know a few basic terms and concepts about audio before you
get started.

Sample
One measurement of audio data. For Pulse Code Modulated (PCM)
encoding, a sample is an instantaneous representation of the voltage of
the analog audio. There are other types of encoding, like µ-law and a-law,
that are rarely used.

Sampling Rate
The number of samples in one second. Measured in Hertz (Hz) or kilo-
Hertz (kHz). The most common sampling rate is 44.1 kHz (CD quality
audio). Often, you’ll find 22.05 kHz or 11.025 kHz on the Web, since
the files are smaller and the conversion is easier.

Sample Size
The number of bits in one sample. It is typically a multiple of eight
because data is stored in 8-bit bytes. The most common sample size is 16
bits, which is CD quality audio. Often you’ll find 8-bit audio because the
files are smaller. You’ll rarely find anything less then 8-bit audio because
the quality is pretty poor. Sample size is sometimes called bit depth.

Channel
A channel is an independent stream of audio. Stereo is the most com-
mon form of multi-channel audio—one independent left and right
channel. Higher-end audio formats include 5.1 surround sound (actu-
ally six channels) and up.

Figure 10-5. The waveform display you’ll build in this hack

380 | Chapter 10, Audio

#75 Build an Audio Waveform Display
HACK

Frame
A frame is a cross section of samples across all channels in the audio file.
So, a 16-bit stereo (two channel) audio file will have 32-bit frames (16
bits per sample * 2 channels per frame = 32 bits per frame).

Load the Raw Data
Java reads raw audio data in 8-bit bytes, but most audio has a higher sam-
ple size. So, in order to represent the audio, you’ll have to combine multiple
bytes to create samples in the audio format. But first, you’ll need to load all
of the audio into a buffer before you combine the bytes into samples.

Start by getting an audio stream from a file:

File file = new File(filename);
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(new
 BufferedInputStream (new FileInputStream (file)));

Now that you have the AudioInputStream, you can read in the audio data.
AudioInputStream has a read() method that takes an unpopulated byte[]
and reads in data the length of the byte[]. To read in the entire audio file in
one shot, create a byte[] the length of the entire audio file. The complete
length of the file in bytes is:

total number of bytes = bytes per frame * total number of frames

You can get the number of frames for the whole file (frameLength) and the
size of the frame (frameSize) from the AudioInputStream:

int frameLength = (int) audioInputStream.getFrameLength();
int frameSize = (int) audioInputStream.getFormat().getFrameSize();

You can create the byte[] with the length set to frameLength * frameSize:

byte[] bytes = new byte[frameLength * frameSize];

Finally, you can read in the audio, passing the AudioInputStream the empty
byte[] and catching the appropriate exceptions:

int result = 0;
try {
 result = audioInputStream.read(bytes);
} catch (Exception e) {
 e.printStackTrace();
}

Convert to Samples and Channels
The raw audio data isn’t very useful. It needs to be broken up into channels
and samples. From there, it’s easy to paint the samples.

Build an Audio Waveform Display #75

Chapter 10, Audio | 381

HACK

The bytes will be converted to samples and represented as ints. You’ll need
a container to store the samples across all channels. So, create a two dimen-
sional int[][] referencing the channel and samples per channel. You’ve
already seen how to get the frame length from the AuduioInputStream, and
you can get the number of channels the same way. Here is the code to ini-
tialize the int[][]:

int numChannels = audioInputStream.getFormat().getChannels();
int frameLength = (int) audioInputStream.getFrameLength();
int[][] toReturn = new int[numChannels][frameLength];

Now, you need to iterate through the byte[], convert the bytes to samples,
and place the sample in the appropriate channel in the int[][]. The byte[]
is organized by frames, meaning that you’ll read in a sample for every chan-
nel rather than all of the samples for a specific channel in a row. So, the flow
is to loop through the channels and add samples until the byte[] has been
iterated completely:

int sampleIndex = 0;

for (int t = 0; t < eightBitByteArray.length;) {
 for (int channel = 0; channel < numChannels; channel++) {
 int low = (int) eightBitByteArray[t];
 t++;
 int high = (int) eightBitByteArray[t];
 t++;
 int sample = getSixteenBitSample(high, low);
 toReturn[channel][sampleIndex] = sample;
 }

 sampleIndex++;
}

This hack is going to deal exclusively with 16-bit samples.
They are by far the most common. Plus, you can get an idea
for how sample conversion works while still keeping things
pretty straightforward. This code gets much trickier with
multiple dynamic sample sizes.

Now for the getSixteenBitSample() method. You can’t simply add the bytes
together using regular addition because the bits are displaced—in a 16-bit
sample the high byte represents bits 0 through 7, and the low byte repre-
sents bits 8 through 15. It’s more like concatenation, so the type of math
shown here won’t work:

 1010 1101 (high byte)
+ 0011 0010 (low byte)

 1101 1111

382 | Chapter 10, Audio

#75 Build an Audio Waveform Display
HACK

What you want is more like this:

 1010 1101 (high byte)
+ 0011 0010 (low byte)

 1010 1101 0011 0010

And in order to get this to work with standard addition, you need to add
two 16-bit bytes with bits shifted and placeholder 0s added where neces-
sary. Then you get something like this:

 1010 1101 0000 0000 (high byte)
+ 0000 0000 0011 0010 (low byte)

 1010 1101 0011 0010

The high byte needs to be bit shifted. Bit shifting, the process of sliding bits
around, is typically a big no-no in Java—as a result, you’ve probably never
seen the bit-shifting operator before (it’s << or >> depending on the direction
followed by the number of bits to shift in either direction). However, here it
is necessary to use bit shifting, so you will bit shift the high byte 8 bits to the
left:

high << 8

Now, you need to prepend the leading 0s onto the low byte. You can do this
using the bit AND operator and using a 16-bit byte consisting of all 0s. It
works like this:

 0000 0000 0000 0000 (all 0's bytes)
+ 0011 0010 (low byte)

 0000 0000 0011 0010

Here is the code for the sample conversion:

private int getSixteenBitSample(int high, int low) {
 return (high << 8) + (low & 0x00ff);
}

Creating a Single Waveform Display
Now that you have the audio sample data organized by channels, it’s time to
get to painting. To keep everything modular, create a class called
SingleWaveformPanel to paint one channel of audio data. In the next section,
you’ll write a WaveformPanelContainer to use multiple SingleWaveformPanels
to handle multi-channel audio.

The waveform painting is going to be drawn by plotting points scaled to the
sample data and drawing lines between them. This is simplistic, but it yields
good results. Figures 10-4 and 10-5 show the same waveform in Audacity
and the simulator for this hack; they’re pretty close.

Build an Audio Waveform Display #75

Chapter 10, Audio | 383

HACK

I’m going to gloss over the scaling code because I really want to concentrate
on the conversion from audio information to visualization. But to under-
stand why scaling is necessary, remember that CD quality audio has 44,100
samples per second. So, without scaling, you would need 44,100 horizontal
pixels for every second of your audio file. Obviously, this is impractical. So,
if you dig into the source code for this hack, you can see the scaling and how
the scales are determined. Meanwhile, just assume that the waveform is
always scaled to fit in the panel.

Start by drawing the center line at 0:

g.setColor(REFERENCE_LINE_COLOR);
g.drawLine(0, lineHeight, (int)getWidth(), lineHeight);

Next, mark the origin to start drawing at 0,0:

int oldX = 0;
int oldY = (int) (getHeight() / 2);
int xIndex = 0;

Now, you need to figure out the incremental jump between samples to
adjust for the scale factor. This works out to be:

number of samples / (number of samples * horizontal scale factor)

The following code grabs the increment and paints a line from the origin to
the first sample:

int increment = getIncrement()
g.setColor(WAVEFORM_COLOR);

int t = 0;

for (t = 0; t < increment; t += increment) {
 g.drawLine(oldX, oldY, xIndex, oldY);
 xIndex++;
 oldX = xIndex;
}

Finish up by iterating through the audio and drawing lines to the scaled
samples:

for (; t < samples.length; t += increment) {
 double scaleFactor = getYScaleFactor();
 double scaledSample = samples[t] * scaleFactor;
 int y = (int) ((getHeight() / 2) - (scaledSample));
 g.drawLine(oldX, oldY, xIndex, y);

 xIndex++;
 oldX = xIndex;
 oldY = y;
 }
}

384 | Chapter 10, Audio

#75 Build an Audio Waveform Display
HACK

Create a Container
Now that you have the waveform painting under control, you need to cre-
ate a container called WaveformPanelContainer for SingleWaveformPanels in
order to show multi-channel audio. Figure 10-6 shows the waveform in the
simulator.

Example 10-7 is the complete code for the WaveformPanelContainer.
AudioInfo is a helper class that contains references to the loaded audio sam-
ples and the current channel.

Figure 10-6. Multi-channel (stereo) audio in the simulator for this hack

Example 10-7. Testing out the waveform display

public class WaveformPanelContainer extends JPanel {
 private ArrayList singleChannelWaveformPanels = new ArrayList();
 private AudioInfo audioInfo = null;

 public WaveformPanelContainer() {
 setLayout(new GridLayout(0,1));
 }

 public void setAudioToDisplay(AudioInputStream audioInputStream){
 singleChannelWaveformPanels = new ArrayList();
 audioInfo = new AudioInfo(audioInputStream);
 for (int t=0; t<audioInfo.getNumberOfChannels(); t++){
 SingleWaveformPanel waveformPanel
 = new SingleWaveformPanel(audioInfo, t);
 singleChannelWaveformPanels.add(waveformPanel);
 add(createChannelDisplay(waveformPanel, t));
 }
 }

Build an Audio Waveform Display #75

Chapter 10, Audio | 385

HACK

Seeing Is Believing
Now, you’re ready to run the hack. The main() method shown here is the
simulator code. Notice the creation of the AudioInputStream and the cre-
ation of the container with the stream. All painting and management of
SingleWaveformPanels is encapsulated within the separate panel classes:

public static void main(String[] args) {
 try {

 JFrame frame = new JFrame("Waveform Display Simulator");
 frame.setBounds(200,200, 500, 350);

 File file = new File(args[0]);
 AudioInputStream audioInputStream
 = AudioSystem.getAudioInputStream(file);

 WaveformPanelContainer container = new WaveformPanelContainer();
 container.setAudioToDisplay(audioInputStream);

 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add(container, BorderLayout.CENTER);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.show();
 frame.validate();
 frame.repaint();

 } catch (Exception e){
 e.printStackTrace();
 }
}

Then, just make sure to pass the audio filename in at the command line. Use
something like this:

java WaveformDisplaySimulator chord.wav

 private JComponent createChannelDisplay(
 SingleWaveformPanel waveformPanel,
 int index) {
 JPanel panel = new JPanel(new BorderLayout());
 panel.add(waveformPanel, BorderLayout.CENTER);

 JLabel label = new JLabel("Channel " + ++index);
 panel.add(label, BorderLayout.NORTH);

 return panel;
 }
}

Example 10-7. Testing out the waveform display (continued)

386 | Chapter 10, Audio

#76 Play Non-Trivial Audio
HACK

This hack shows you how to do all of the sample conversion
and painting you need to display a waveform very simplisti-
cally. However, you should address a few key issues before
using this in an audio application; for example, this only
deals with 16-bit audio. You probably would want to build
something a little more generic to deal with other sample
sizes. You may also want to deal with compression, so you
can display waveforms for MP3 files. That said, this hack
still gives you a good idea of how to dig into raw audio data
and get your audio visualization on.

—Jonathan Simon

H A C K

#76
Play Non-Trivial Audio Hack #76

When loading an entire audio clip into memory is a bad idea (or just
impossible), you have to take JavaSound responsibilities into your own
hands.

Playing JavaSound audio with a Clip [Hack #71] is a pretty convenient way to
play a short sound, like a sound effect for a desktop application. The only
problem is that the Clip loads all the audio into memory, which could have
a couple of bad side effects:

• It makes your application use more memory, which could cause problems.

• The audio you need might not fit into memory at all.

You might have run into this second point if you tried to load a really big
audio file into a Clip. For example, I took a 3 minute, 45 second track from
a CD and converted it to 8-bit mono PCM in an AIFF file, which ended up
being 9.4 MB. You can guess what happened:

[aeris:HacksBook/Media/52] cadamson% java CoreJavaSound
javax.sound.sampled.LineUnavailableException: Failed to allocate clip data:
Requested buffer too large.
 at com.sun.media.sound.MixerClip.implOpen(MixerClip.java:536)
 at com.sun.media.sound.MixerClip.open(MixerClip.java:161)
 at com.sun.media.sound.MixerClip.open(MixerClip.java:249)
 at CoreJavaSound.<init>(CoreJavaSound.java:39)
 at CoreJavaSound.main(CoreJavaSound.java:17)

Unfortunately, most of the JavaSound code you’ll find on the Web deals
with Clips only and not with getting a Line for larger files, or potentially
endless streams for that matter. Why? Perhaps because JavaSound doesn’t
do it for you—you are responsible for reading bytes and feeding them to
JavaSound!

Play Non-Trivial Audio #76

Chapter 10, Audio | 387

HACK

Grabbing a DataLine
This hack is going to play an uncompressed (i.e., PCM) AIFF or WAV file of
arbitrary length by getting a DataLine for the data and then repeatedly read-
ing the data from disk and writing it to the DataLine.

PCM stands for Pulse Code Modulation, which means that
analog audio has been sampled at regular intervals and quan-
tized (i.e., each sample is expressed as a numeric value). It’s
the lowest-level, most common denominator data that Java-
Sound understands, since it can be delivered directly to a
sound system for playback.

The class to do this will be called PCMFilePlayer. Given a file, its responsibil-
ities are to:

1. Verify that the file contains PCM data (signed or unsigned).

2. Get a Line for this format.

3. Kick off a thread to read bytes from the file and write them to the Line,
which plays them.

Reading and writing bytes doesn’t sound too bad, but JavaSound imposes
another requirement on you: you have to send complete frames, not just a
bunch of bytes, to the Line. A frame is one complete sample of audio in
whatever format you’re dealing with. For the PCM formats supported by
this hack, a frame can be one of three sizes:

• 1 byte for 8-bit mono sound

• 2 bytes for either 8-bit stereo sound or 16-bit mono sound

• 4 bytes for 16-bit stereo sound

The implication for the read-write loop is that if you read some number of
bytes that leave you off an even frame boundary, then you have to save the
partial frame you’ve read, not send it to the Line, and instead append it to
the beginning of the next read.

Finally, when you reach the end of the file, you need to call Line.drain() to
make sure it plays out all the data you’ve sent it, and then close the Line.

The code for the PCMLinePlayer is shown in Example 10-8.

Example 10-8. Playing uncompressed audio files in JavaSound

import javax.sound.sampled.*;

public class PCMFilePlayer implements Runnable {
 File file;

388 | Chapter 10, Audio

#76 Play Non-Trivial Audio
HACK

 AudioInputStream in;
 SourceDataLine line;
 int frameSize;
 byte[] buffer = new byte [32 * 1024]; // 32k is arbitrary
 Thread playThread;
 boolean playing;
 boolean notYetEOF;

 public PCMFilePlayer (File f)
 throws IOException,
 UnsupportedAudioFileException,
 LineUnavailableException {
 file = f;
 in = AudioSystem.getAudioInputStream (f);
 AudioFormat format = in.getFormat();
 AudioFormat.Encoding formatEncoding = format.getEncoding();
 if (! (formatEncoding.equals (AudioFormat.Encoding.PCM_SIGNED) ||
 formatEncoding.equals (AudioFormat.Encoding.PCM_UNSIGNED)))
 throw new UnsupportedAudioFileException (
 file.getName() + " is not PCM audio");
 System.out.println ("got PCM format");
 frameSize = format.getFrameSize();
 DataLine.Info info =
 new DataLine.Info (SourceDataLine.class, format);
 System.out.println ("got info");
 line = (SourceDataLine) AudioSystem.getLine (info);
 System.out.println ("got line");
 line.open();
 System.out.println ("opened line");
 playThread = new Thread (this);
 playing = false;
 notYetEOF = true;
 playThread.start();
 }

 public void run() {
 int readPoint = 0;
 int bytesRead = 0;

 try {
 while (notYetEOF) {
 if (playing) {
 bytesRead = in.read (buffer,
 readPoint,
 buffer.length - readPoint);
 if (bytesRead == -1) {
 notYetEOF = false;
 break;
 }

Example 10-8. Playing uncompressed audio files in JavaSound (continued)

Play Non-Trivial Audio #76

Chapter 10, Audio | 389

HACK

 // how many frames did we get,
 // and how many are left over?
 int frames = bytesRead / frameSize;
 int leftover = bytesRead % frameSize;
 // send to line
 line.write (buffer, readPoint, bytesRead-leftover);
 // save the leftover bytes
 System.arraycopy (buffer, bytesRead,
 buffer, 0,
 leftover);
 readPoint = leftover;

 } else {
 // if not playing
 // Thread.yield();
 try { Thread.sleep (10);}
 catch (InterruptedException ie) {}
 }
 } // while notYetEOF
 System.out.println ("reached eof");
 line.drain();
 line.stop();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 } finally {
 // line.close();
 }
 } // run

 public void start() {
 playing = true;
 if (! playThread.isAlive())
 playThread.start();
 line.start();
 }

 public void stop() {
 playing = false;
 line.stop();
 }

 public SourceDataLine getLine() {
 return line;
 }

 public File getFile() {
 return file;
 }
}

Example 10-8. Playing uncompressed audio files in JavaSound (continued)

390 | Chapter 10, Audio

#76 Play Non-Trivial Audio
HACK

Notice in the constructor that, as with the Clip, the way to get an actual
Line object is to construct a DataLine.Info object and then pass that to
AudioSystem. This time, you construct a DataLine.Info class with both the
SourceDataLine class—you need this subclass of Line because it provides the
write() method with which you supply bytes to the Line—and an
AudioFormat object describing the data you’ll be supplying. Assuming that
doesn’t throw a LineUnavailableException (and it shouldn’t, because the
format is already known to be PCM, which JavaSound always supports),
you’ll have a line that you can open and start writing bytes to.

As mentioned previously, the key issue for the thread that reads bytes from
the file and writes them to the Line is that it has to be aware of frame bound-
aries. In this code, readPoint indicates the index of the buffer to start read-
ing bytes into. When you have an incomplete frame after reading from the
input stream, you copy the bytes from the incomplete frame to the front of
the buffer in preparation for the next read. For example, if you have a frame
size of 4, and bytesRead % 4 equals 3, then you copy those 3 bytes to the front
of the buffer and set readPoint to 3. The next read() will start at 3, and the
first byte read into the buffer will complete the frame from the previous
read().

Big Files, Big Sound
Since this is still in the realm of JavaSound, much of what was shown in the
Clip-based hack still works. A demo application simply has to provide
PCMFilePlayer with a file and then start it. Since PCMFilePlayer exposes its
Line through a get method, you can even wire up as a LineListener and get
notified of STOP, START, OPEN, and CLOSE LineEvents. Example 10-9 shows the
simple GUI, using PCMFilePlayer.

Example 10-9. Playing arbitrarily long uncompressed WAV or AIFF audio

import javax.sound.sampled.*;

public class StreamingLineSound extends Object
 implements LineListener {

 File soundFile;
 JDialog playingDialog;
 PCMFilePlayer player;

 public static void main (String[] args) {
 JFileChooser chooser = new JFileChooser();
 chooser.showOpenDialog(null);
 File f = chooser.getSelectedFile();

Play Non-Trivial Audio #76

Chapter 10, Audio | 391

HACK

When run, this class shows a dialog box (seen in Figure 10-7), identical to
the one produced in “Play a Sound with JavaSound” [Hack #71]. The only dif-
ference is that this one can stay up potentially indefinitely, since the player
can keep reading and writing bytes forever.

 try {
 StreamingLineSound s = new StreamingLineSound (f);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public StreamingLineSound (File f)
 throws LineUnavailableException, IOException,
 UnsupportedAudioFileException {
 soundFile = f;
 // prepare a dialog to display while playing
 JOptionPane pane = new JOptionPane ("Playing " + f.getName(),
 JOptionPane.PLAIN_MESSAGE);
 playingDialog = pane.createDialog (null, "Streaming Sound");
 playingDialog.pack();

 player = new PCMFilePlayer (soundFile);
 player.getLine().addLineListener (this);
 player.start();

 }

 // LineListener
 public void update (LineEvent le) {
 LineEvent.Type type = le.getType();
 if (type == LineEvent.Type.OPEN) {
 System.out.println ("OPEN");
 } else if (type == LineEvent.Type.CLOSE) {
 System.out.println ("CLOSE");
 System.exit (0);
 } else if (type == LineEvent.Type.START) {
 System.out.println ("START");
 playingDialog.setVisible(true);
 } else if (type == LineEvent.Type.STOP) {
 System.out.println ("STOP");
 playingDialog.setVisible(false);
 player.line.close();
 }
 }
}

Example 10-9. Playing arbitrarily long uncompressed WAV or AIFF audio (continued)

392 | Chapter 10, Audio

#77 Show Audio Information While Playing Sound
HACK

H A C K

#77
Show Audio Information While Playing SoundHack #77

Providing visual feedback for JavaSound audio, or at least trying to….

You might want to play a clip without any corresponding visuals; for exam-
ple, if you were using it to signal the end of a long-running process such as
uploading a file. On the other hand, if the sound is the focus of the applica-
tion, as in a music-player application, you might need to show the user some
information about the audio he’s playing.

The Code
You already know how to play audio from a file or stream [Hack #76]; building
on that, you can create a simple GUI that shows some of the basic traits of
the audio, by pulling fields out of the AudioFormat object, which can be
retrieved from the Line once it has been created. These fields include the
audio format, bits/sample, frame size and rate, and endianness (which indi-
cates how two-byte values are to be interpreted: big-endian means the first
byte is more significant, and little-endian means the second is).

More impressively, DataLine provides a getLevel() method that returns the
current level of the audio being played, as a float from 0.0 (silence) to 1.0
(maximum volume). You can use this to create a graphical level meter by
getting the level and coloring in that percentage of a component. For exam-
ple, if the level is 0.5, you’d fill in half of the component.

Drawing this level meter is pretty straightforward: create a JPanel whose
paint() method clears the Graphics, gets the line level, and fills a rectangle
starting at (0,0) with a height equal to the component’s height and a width
equal to the level times the component’s width. Then you need to set up an
animation loop—a javax.swing.Timer is convenient because it avoids any
thread-safety issues while doing the painting—to repeatedly call repaint()
on the meter.

Figure 10-7. Playing a large AIFF file in JavaSound

Show Audio Information While Playing Sound #77

Chapter 10, Audio | 393

HACK

Combine this together and you have the DataLineInfoGUI, seen in
Example 10-10. Note that to play the audio, it uses the PCMFilePlayer class
from the previous hack, so you can use an arbitrarily long AIFF or WAV, as
long as its contents are uncompressed PCM data.

Example 10-10. Displaying audio format information

import javax.sound.sampled.*;

public class DataLineInfoGUI extends JPanel {

 PCMFilePlayer player;
 JButton startButton;

 public DataLineInfoGUI (File f) {
 super();
 try {
 player = new PCMFilePlayer (f);
 } catch (Exception ioe) {
 add (new JLabel ("Error: " +
 ioe.getMessage()));
 return;
 }
 DataLine line = player.getLine();
 // layout
 // line 1: name
 setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));
 add (new JLabel ("File: " +
 player.getFile().getName()));
 // line 2: levels
 add (new DataLineLevelMeter (line));
 // line 3: format info as textarea
 AudioFormat format = line.getFormat();
 JTextArea ta = new JTextArea();
 ta.setBorder (new TitledBorder ("Format"));
 ta.append ("Encoding: " +
 format.getEncoding().toString() + "\n");
 ta.append ("Bits/sample: " +
 format.getSampleSizeInBits() + "\n");
 ta.append ("Endianness: " +
 (format.isBigEndian() ? " big " : "little") + "\n");
 ta.append ("Frame size: " +
 format.getFrameSize() + "\n");
 ta.append ("Frame rate: " +
 format.getFrameRate() + "\n");
 add (ta);

 // now start playing
 player.start();
 }

394 | Chapter 10, Audio

#77 Show Audio Information While Playing Sound
HACK

This is a pretty straightforward implementation of the strategy sketched out
previously: the class is a JPanel with a BoxLayout to which you can add an
arbitrary number of rows. The first is the name of the file, the second is the
level meter, and the third is a JTextArea to which you can append various
fields pulled from the AudioFormat.

The level meter’s constructor takes care of setting up its own repaint call-
backs, so there’s no babysitting required on the part of the caller. All that’s
left for the constructor is to start the player to begin feeding bytes to the
Line.

 public static void main (String[] args) {
 JFileChooser chooser = new JFileChooser();
 chooser.showOpenDialog(null);
 File file = chooser.getSelectedFile();
 DataLineInfoGUI demo =
 new DataLineInfoGUI (file);

 JFrame f = new JFrame ("JavaSound info");
 f.getContentPane().add (demo);
 f.pack();
 f.setVisible(true);
 }

 class DataLineLevelMeter extends JPanel {
 DataLine line;
 float level = 0.0f;
 public DataLineLevelMeter (DataLine l) {
 line = l;
 Timer timer =
 new Timer (50,
 new ActionListener (){
 public void actionPerformed (ActionEvent e) {
 level = line.getLevel();
 repaint();
 }
 });
 timer.start();
 }
 public void paint (Graphics g) {
 Dimension d = getSize();
 g.setColor (Color.green);
 int meterWidth = (int) (level * (float) d.width);
 g.fillRect (0, 0, meterWidth, d.height);
 }
 }
}

Example 10-10. Displaying audio format information (continued)

Show Audio Information While Playing Sound #77

Chapter 10, Audio | 395

HACK

Testing It Out
Launch the DataLineGUI application and you’ll get a file-selection dialog.
Choose a suitable AIFF or WAV, and you’ll see the GUI shown in
Figure 10-8.

This is all well and good for a simple GUI, but there’s one problem: where
the heck is our level meter?! It should be between the filename and the text
area, but it’s totally not there!

Initially, I suspected my repaint code was hosed, but it all seemed correct.
So, right after figuring out the meter width, I added a sanity-check debug
line:

System.out.println ("level = " + level);

And when I ran it, I got a result that I really didn’t want to see:

[aeris:HacksBook/Media/x11] cadamson% java DataLineInfoGUI
got PCM format
got info
got line
opened line
level = 0.0
level = 0.0
level = 0.0
level = 0.0
level = 0.0

And that was on a really loud song, so it wasn’t just a slow fade in. I looked
around to see if there was something special you have to do for getLevel()
to work, but there wasn’t.

Figure 10-8. Audio player display with format information

396 | Chapter 10, Audio

#77 Show Audio Information While Playing Sound
HACK

Then I Googled, and found this post to the javasound-interest mailing list
from February 2003:

Date: Mon, 17 Feb 2003 22:31:21 -0800
Reply-To: Discussion list for JavaSound API
 <JAVASOUND-INTEREST@JAVA.SUN.COM>
Sender: Discussion list for JavaSound API
 <JAVASOUND-INTEREST@JAVA.SUN.COM>
From: Florian Bomers <Florian.Bomers@SUN.COM>
Organization: Sun Microsystems Inc.
Subject: Re: DataLine.getLevel()?
Comments: To: knute@frazmtn.com
Content-Type: text/plain; charset=us-ascii

Unfortunately, it is not implemented. (actually, in my private opinion, it
is a questionable method anyway: usually soundcard drivers do not provide
such a primitive, so the Java Sound implementation has to calculate this
"level" on its own. But there are many different algorithms to do so, suited
depending for what the "level" is needed for, and it would possibly eat
unnecessarily processor resources. So I guess it's best if everybody does
the calculation of the "level" on his own on the buffers received by the TDL
or written to the SDL, respectively. Easy and fast algorithms are maximum,
moving average,block average, power).

sorry...
Florian

Knute Johnson wrote:
>
> Anybody know if DataLine.getLevel() is implemented? All I get is 0.0
> on SourceDataLines and -1.0 on TargetDataLines.
>
> Thanks,
>
> Knute Johnson

In fact, a little further research shows that the fact that DataLine.getLevel()
always returns UNKNOWN_LEVEL was filed as bug 4297101 in the Java Bug
Parade on December 6, 1999. Five years later, it’s still not fixed, though it
looks like there was at least an attempt to fix it for Tiger (J2SE 5.0)—a fix
that was abandoned in August 2003.

By the way, wouldn’t it have saved a lot of people a lot of
time if they disclosed in the Javadoc that this method is a no-
op? But I digress….

So, the level meter is not going to work—not because of the graphics, but
because there’s no way to get an accurate level. Or is there?

Show Audio Information While Playing Sound #77

Chapter 10, Audio | 397

HACK

Hacking the Hack
Florian’s message to javasound-interest says it is best if “everybody does
the calculation of the ‘level’ on his own[, based] on the buffers received by
the TDL [(TargetDataLine, usually used by capture devices)] or written to
the SDL [(SourceDataLine)], respectively.”

Setting aside the argument of duplication of effort, note that the buffers he
speaks of are available in the hack code; it’s what the PCMFilePlayer reads
from the file and writes to the Line (specifically, a SourceDataLine, as
Florian’s message notes). So, in theory at least, this can be done. But it’s not
going to be pretty.

First, create a new DataLineInfoGUI2 class that is identical to the one from
earlier in this hack, except that instead of using a PCMFilePlayer, it uses a
PCMFilePlayerLeveler, a class that will be defined next.

This new class is pretty much the same as the old PCMFilePlayer, except that
on each time through the while loop, as it reads the buffer and writes it to
the line, it will call a method to scan through the buffer and determine a
level for this group of samples. So, after reading the bytes from the input
stream but before writing them to the line, add:

// calculate level
calculateLevel (buffer, readPoint, leftover);

As Florian argues in his message, the idea of a level is up for interpretation,
but there is a general sense that it should represent the loudness or quiet-
ness of the audio at a certain time. Making the problem worse is the fact that
the sample values will always be going up and down because the samples
represent how much a speaker should be excited or relaxed, and it’s the
sample’s periodic change that creates sound waves we hear. Put another
way, even the loudest sounds can have some 0 samples at the bottom of
their waves.

As a crude attempt at approximating a level, this hack’s implementation gets
the maximum amplitude (on either speaker, if the source is stereo) in the
entire buffer. To make this a little more fine-tuned, this version of the player
figures out a buffer size suitable to provide 1/20 of a second of audio, rather
than the flat 32 KB used earlier. To do that, add this after getting the Line in
the constructor:

// figure out a small buffer size
int bytesPerSec = format.getSampleSizeInBits() *
 (int) format.getSampleRate();
System.out.println ("bytesPerSec = " + bytesPerSec);
int bufferSize = bytesPerSec / 20;
buffer = new byte[bufferSize];

398 | Chapter 10, Audio

#77 Show Audio Information While Playing Sound
HACK

This needs to sync with the line as well—if the line’s buffer is nearly full, it
won’t accept this entire buffer on the write() without blocking. So, you can
tune the while loop to do a read-and-write only if the Line will accept a buff-
erful of data. Do this by adding the following block after the if (playing)
statement:

// only write if the line will take at
// least a buffer-ful of data
if (line.available() < buffer.length) {
 Thread.yield();
 continue;
}

Now, the only problem is implementing calculateLevel()—i.e., doing the
actual iteration through the buffer to calculate a maximum value. This,
frankly, is a huge pain in the butt, because to determine each sample value,
you have to deal with four issues you hadn’t cared about before:

• Channels (i.e., mono versus stereo)

• Sample size

• Endianness

• Signing

This is handled in the calculateLevel() method of PCMFilePlayerLeveler,
listed in Example 10-11.

Example 10-11. Method to calculate a crude “level” of sample bytes in a buffer

private void calculateLevel (byte[] buffer,
 int readPoint,
 int leftOver) {
 int max = 0;
 boolean use16Bit = (format.getSampleSizeInBits() == 16);
 boolean signed = (format.getEncoding() ==
 AudioFormat.Encoding.PCM_SIGNED);
 boolean bigEndian = (format.isBigEndian());
 if (use16Bit) {
 for (int i=readPoint; i<buffer.length-leftOver; i+=2) {
 int value = 0;
 // deal with endianness
 int hiByte = (bigEndian ? buffer[i] : buffer[i+1]);
 int loByte = (bigEndian ? buffer[i+1] : buffer [i]);
 if (signed) {
 short shortVal = (short) hiByte;
 shortVal = (short) ((shortVal << 8) | (byte) loByte);
 value = shortVal;
 } else {
 value = (hiByte << 8) | loByte;
 }

Show Audio Information While Playing Sound #77

Chapter 10, Audio | 399

HACK

This crude implementation just reads all the samples in order, meaning the
stereo case—samples alternating between left and right—is ignored. Thus,
the maximum value wins, regardless of what channel it’s on.

Figuring out the value is still a bit-munging pain because of the three out-
standing issues that must be dealt with. For 16-bit audio, the samples
should be read two at a time. You arrange the “high” (most significant) and
“low” (least significant) bytes based on the endianness of the format, and
then cast to a Java int or short based on whether you need to maintain the
sign bit (in a 32-bit int, the 16 bits won’t be signed; in Java’s 16-bit short,
the sign will be maintained). Eight-bit audio spares you the endianness has-
sle, though you still have to be aware of signage, and cast to a byte or short
based on whether you need to preserve a sign.

All of this, just to figure out the value of a sample. As you might expect, the
only thing left to do on each loop is to compare the sample’s value to the
maximum for this buffer, and to reset the maximum if this value is higher.
At the end, you divide the maximum value against the maximum possible
value for that combination of bits and signage to get the level as a value
between 0.0 and 1.0.

 max = Math.max (max, value);
 } // for
 } else {
 // 8 bit - no endianness issues, just sign
 for (int i=readPoint; i<buffer.length-leftOver; i++) {
 int value = 0;
 if (signed) {
 value = buffer [i];
 } else {
 short shortVal = 0;
 shortVal = (short) (shortVal | buffer [i]);
 value = shortVal;
 }
 max = Math.max (max, value);
 } // for
 } // 8 bit
 // express max as float of 0.0 to 1.0 of max value
 // of 8 or 16 bits (signed or unsigned)
 if (signed) {
 if (use16Bit) { level = (float) max / MAX_16_BITS_SIGNED; }
 else { level = (float) max / MAX_8_BITS_SIGNED; }
 } else {
 if (use16Bit) { level = (float) max / MAX_16_BITS_UNSIGNED; }
 else { level = (float) max / MAX_8_BITS_UNSIGNED; }
 }
} // calculateLevel

Example 10-11. Method to calculate a crude “level” of sample bytes in a buffer (continued)

400 | Chapter 10, Audio

#77 Show Audio Information While Playing Sound
HACK

Running the Hacked Hack
When you run this hack, you finally get a player with a level meter, as seen
in Figure 10-9.

While this looks OK in a book, it really isn’t very satisfactory when you’re
watching the audio as it plays. It doesn’t seem to relate to the music that
closely; that is, it seems to follow softer music OK, but it really falls apart on
rock music.

Part of the reason is that this “maximum” algorithm is quite crude; an
approach such as averaging the samples in the buffer might be more realistic.

But the real problem is that the access JavaSound gives you is doomed to be
hopelessly behind what’s being played. Think about the available()
method, which reports how much you can write to the SourceDataLine’s
buffer without blocking. What’s happening is that you’re refilling one end of
its buffer, while it drains out the other end to the speakers—or more accu-
rately, to the native sound system (which may have its own buffers, and thus
more latency). This arrangement is illustrated in Figure 10-10.

So, you can calculate the level for the samples in the buffer, but it will be
some time until those samples are played, so you have a mismatch of what’s
being measured and what’s actually being played. What you need is access
to the SourceDataLine’s buffer, so you could run the level check on the bytes
that are just about to be played. Until and unless that’s available, the sug-
gested workaround isn’t really going to work.

Figure 10-9. Audio player display with format information and level meter

Figure 10-10. Flow of samples through buffers in JavaSound

read()

Your buffer

write()

Available To native soundPreviously written data

SourceDataLine’s buffer

Provide Audio Controls During Playback #78

Chapter 10, Audio | 401

HACK

Of course, Sun could just go and actually implement getLevel()…wouldn’t
that be nice?

H A C K

#78
Provide Audio Controls During Playback Hack #78

Let your users take control of JavaSound playback.

To complete this set of JavaSound-related hacks, why not give the user the
opportunity to control the sound as it plays? JavaSound provides a very
dynamic means of getting at controls like gain and pan (more commonly
thought of as volume and balance) through a discovery mechanism that you
can use to support any kind of control that might exist, even a control you
know nothing about.

On the other hand, JavaSound presents a control not as a GUI widget, but
just as an object that can affect the behavior of a Line. This hack will help
you provide the GUI side.

The Control class simply defines a getType() and toString() method.
What’s more interesting is its subclasses, each of which defines a different
kind of control:

BooleanControl
Controls a value that can be either true or false

EnumControl
Controls a value that can be one of n known values

FloatControl
Controls a value that is expressed as a floating-point number

CompoundControl
Controls multiple properties, and itself contains multiple controls

You can get the Controls supported by your Line simply by calling Line.
getControls(), which returns an array of Controls. You can also ask for a
specific control by using a constant of the Control.Type subclass, such as
BooleanControl.Type.MUTE or FloatControl.Type.MASTER_GAIN. Pass this con-
stant to Line.isControlSupported() to see if the control is available for the
given line, and then get the control object with Line.getControl().

If you look at the subclasses of Control, you’ll see that each provides getter
and setter methods appropriate to its data type. BooleanControl, for exam-
ple, has a getValue() that returns a boolean and a setValue() that takes a
boolean. FloatControl has similar methods that work with floats. Each also
provides a number of what might be called “verbiage methods” that provide
text for building a GUI. For example, FloatControl offers label names for its
minimum, maximum, and middle values, and another that describes the

402 | Chapter 10, Audio

#78 Provide Audio Controls During Playback
HACK

units represented by the control (like “dB” for a gain-related control, or
“frames per second” for one that is timing-related).

Anyways, you’ve probably figured out that you can build a GUI by using
Swing to provide a view to these Controls. In fact, it’s fairly straightforward
to take a factory approach to handing out JComponents based on Controls, as
shown in Table 10-1.

The CompoundControl can’t be handled as easily because you can’t know how
far you’ll have to recursively dig into its hierarchy of controls, nor how to
represent them in relation to one another. For what it’s worth, JavaSound
does not define any CompoundControl.Type constants, and it’s not clear that
any CompoundControls exist in J2SE; the Javadoc only speaks in theory of
supporting something like a graphic equalizer, which would need to be a
CompoundControl.

Theory to Practice
To handle the different types of controls that can be encountered, one nice
approach would be to build a factory: you hand it a Control, and it gives you
back a JComponent that you can add to your GUI. Example 10-12 shows a
simple implementation of this.

Table 10-1. Controls and their Swing representation

Control type Swing representation

BooleanControl JCheckBox

EnumControl JComboBox

FloatControl JSlider

Example 10-12. Factory to generate Swing widgets for JavaSound controls

import javax.sound.sampled.*;

public class ControlComponentFactory {

 private ControlComponentFactory() {super();}

 public static JComponent getComponentFor (Control control) {
 System.out.println (control.getType().getClass());
 if (control instanceof BooleanControl)
 return new BooleanControlComponent ((BooleanControl) control);
 else if (control instanceof FloatControl)
 return new FloatControlComponent ((FloatControl) control);
 return new JLabel ("unsupported");
 }
}

Provide Audio Controls During Playback #78

Chapter 10, Audio | 403

HACK

You might notice that I haven’t written a GUI class for EnumControl. That’s
because in my testing, the array of Controls returned by getControl() has
never contained an EnumControl, so I don’t have a good way to test it. After
looking at the implementation of the boolean and float cases, I’ll discuss
how an EnumControlComponent would work.

The easier case is the BooleanControl, used for controls like Mute, which
turns off the sound (but remembers the previous volume, so when un-
muted, the sound is as loud as it was before). Example 10-13 shows the
implementation of the BooleanControlComponent.

As you can see, this is practically trivial. The GUI contains a single
JCheckBox, whose value you set to the value of the control so that it is in a
proper state when first shown. Then, when the user clicks it, you just call
the BooleanControl’s setValue() method.

Supporting a FloatControl is a lot harder. As you might expect, the way to
represent a range of floating-point values is with a JSlider; the user can slide
left to reduce the value and right to increase it. To ensure the GUI’s useful-
ness, you can put JLabels on the left and right of the slider to show what the
minimum and maximum values mean. For example, on a Pan control,
which adjusts placement of stereo sound, the minimum value of -1.0 is Left
and the maximum value of 1.0 is Right.

What makes it hard is handling a mapping of arbitrary floating-point values to
a JSlider’s int-based range. Complicating things is the fact that FloatControls
can and do use very different ranges for their values, often spanning nega-
tive and positive values, and operating in both small and vast ranges of

Example 10-13. Swing widget for a JavaSound BooleanControl

import javax.sound.sampled.*;

public class BooleanControlComponent extends JPanel
 implements ActionListener {
 BooleanControl control;
 JCheckBox box;
 public BooleanControlComponent (BooleanControl c) {
 control = c;
 box = new JCheckBox ();
 box.setSelected (control.getValue());
 add (box);
 box.addActionListener (this);
 }

 public void actionPerformed (ActionEvent ae) {
 control.setValue (box.isSelected());
 }
}

404 | Chapter 10, Audio

#78 Provide Audio Controls During Playback
HACK

possible values. For example, if you decide to have your JSlider values
range from 0 to 1000, it may have to accommodate ranges as disparate as:

• -1.0 to 1.0

• 0.0 to 48000.0

• -80.0 to 13.9794

In fact, those are the ranges of default controls for pan, sampling rate, and
master gain, respectively.

And to make things more fun, you have to be able to translate both ways:
from control value to slider value (when first creating the widget so its ini-
tial onscreen representation is accurate), and from slider value to control
value (when the user moves the slider).

But, in the end, it’s just math. You can create a setSliderFromControl()
method to calculate what percent of the control’s maximum value is repre-
sented by the current value, apply that percent to the range of the JSlider’s
possible values, and set the JSlider to that. A setControlFromSlider() would
use the exact same approach, except that it figures out the percentage-of-
maximum of the JSlider, and applies that to the control’s range. The result-
ing FloatControlComponent class is shown in Example 10-14.

Example 10-14. Swing widget for a JavaSound FloatControl

import javax.sound.sampled.*;

public class FloatControlComponent extends JPanel
 implements ChangeListener {

 FloatControl control;
 JSlider slider;
 float min, max, range;
 final static int SLIDER_MIN = 0;
 final static int SLIDER_MAX = 1000;
 final static float SLIDER_RANGE = SLIDER_MAX - SLIDER_MIN;

 public FloatControlComponent (FloatControl c) {
 control = c;
 min = c.getMinimum();
 max = c.getMaximum();
 range = max - min;
 add (new JLabel (control.getMinLabel()));
 slider = new JSlider (SLIDER_MIN, SLIDER_MAX);
 slider.addChangeListener (this);
 setSliderFromControl();
 add (slider);
 add (new JLabel (control.getMaxLabel()));
 }

Provide Audio Controls During Playback #78

Chapter 10, Audio | 405

HACK

Having provided these two implementations, it should be clear how you
would create an EnumControlComponent. The EnumControl.getValues() method
returns a String array that you would use as the model of an uneditable
JComboBox. You’d use getValue() to set one of these as the initial value, and
then on user events, you could pull out the JComboBox’s selection and set the
EnumControl with setValue().

Check It Out!
The DataLineControlGUI shown in Example 10-15 is a simple JPanel that
contains a JLabel with the name of the file to be played on the first line of a
GridBagLayout, and then control-name JLabels and factory-generated con-
trol widgets on each successive line. The sound is played by the
PCMFilePlayer, which was introduced as part of playing uncompressed
AIFFs and WAVs of arbitrary lengths [Hack #76].

 private void setSliderFromControl() {
 // figure out value as percent of range
 float offsetValue = control.getValue() - min;
 float percent = 0.0f;
 if (range != 0.0)
 percent = offsetValue / range;
 // apply that to SLIDER_RANGE
 int sliderValue = (int) (percent * SLIDER_RANGE);
 slider.setValue (sliderValue);
 }

 private void setControlFromSlider() {
 // figure out slider percentage
 float sliderPercentage =
 (float) slider.getValue() / SLIDER_RANGE;
 // figure out value for that percentage of range
 float rangeOffset = sliderPercentage * range;
 float newValue = rangeOffset + min;
 control.setValue (newValue);
 }

 // ChangeListener implementation
 public void stateChanged (ChangeEvent e) {
 setControlFromSlider();
 }
}

Example 10-14. Swing widget for a JavaSound FloatControl (continued)

406 | Chapter 10, Audio

#78 Provide Audio Controls During Playback
HACK

Example 10-15. Creating an audio player with GUI controls

import javax.sound.sampled.*;

public class DataLineControlGUI extends JPanel {

 PCMFilePlayer player;
 JButton startButton;

 public DataLineControlGUI (File f) {
 super();
 try {
 player = new PCMFilePlayer (f);
 } catch (Exception ioe) {
 add (new JLabel ("Error: " +
 ioe.getMessage()));
 return;
 }
 DataLine line = player.getLine();
 // layout
 // line 0: name
 setLayout (new GridBagLayout());
 GridBagConstraints gbc = new GridBagConstraints();
 gbc.gridy = 0;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.gridwidth = 2;
 gbc.anchor = GridBagConstraints.SOUTH;
 add (new JLabel ("File: " +
 player.getFile().getName()), gbc);
 // subsequent lines: controls
 gbc.gridwidth = 1;
 Control[] controls = line.getControls();
 for (int i=0; i<controls.length; i++) {
 gbc.gridx = 0;
 gbc.gridy++;
 gbc.anchor = GridBagConstraints.EAST;
 add (new JLabel(controls[i].getType().toString()), gbc);
 JComponent controlComp =
 ControlComponentFactory.getComponentFor (controls[i]);
 gbc.gridx = 1;
 gbc.anchor = GridBagConstraints.WEST;
 add (controlComp, gbc);
 }

 // now start playing
 player.start();
 }

Provide Audio Controls During Playback #78

Chapter 10, Audio | 407

HACK

When run with a suitable audio file, the resulting GUI looks like
Figure 10-11. Note that it’s possible you might have other control widgets
(or an unsupported label for EnumControls and CompoundControls) if Java-
Sound gives you different controls than it did when I wrote and ran this on
Java 1.4.2.

 public static void main (String[] args) {
 JFileChooser chooser = new JFileChooser();
 chooser.showOpenDialog(null);
 File file = chooser.getSelectedFile();
 DataLineControlGUI demo =
 new DataLineControlGUI (file);

 JFrame f = new JFrame ("JavaSound control");
 f.getContentPane().add (demo);
 f.pack();
 f.setVisible(true);
 }
}

Figure 10-11. JavaSound audio player with GUI controls

Example 10-15. Creating an audio player with GUI controls (continued)

408

Chapter 11C H A P T E R E L E V E N

Native Integration
and Packaging
Hacks 79–87

You can try really hard to develop a desktop application that looks good,
feels right, and meets the user’s needs, but if a Windows or Mac user has to
drop down to a command line and type java -jar MyCoolApp.jar to run it,
it’s not going to win you any points in the user experience department.
There are points of integration with the native platform that you’ll often
want and need to access from a Swing application, or specific functionality
you’ll want to provide on a platform-by-platform basis, and that’s what this
chapter is about.

Actually, this chapter was almost rendered irrelevant by the
JDesktop Integration Components (JDIC) project on Java.net
(https://jdic.dev.java.net/), which is addressing the most seri-
ous needs for desktop Java applications: creating platform-
appropriate double-clickables, providing access to the native
web browser component, associating Java applications with
certain kinds of documents, etc. JDIC may solve some of the
biggest issues facing Java on the desktop…which leaves us all
the more room for creative hackery.

H A C K

#79
Launch External Programs on Windows Hack #79

With one simple command you can tell Windows to open files, directories,
and URLs on your behalf.

Swing programmers have always had difficulty dealing with native operat-
ing systems because of Java’s cross-platform nature. Even simple things like
opening a web browser require building native hooks with JNI or building
on top of custom libraries. This hack will show you how to open files,
URLs, and start an email app without using any native libraries or custom C
coding.

Launch External Programs on Windows #79

Chapter 11, Native Integration and Packaging | 409

HACK

The Power of Runtime.exec()
Native integration in Java has always depended on the Java Native Inter-
face, or JNI. Whether you code to JNI directly or use a third-party library,
you are still dealing with native C code through a Java layer. This has always
been problematic because in order to write a JNI library, you need to know
a lot about the internals of the underlying operating system. Most Java
developers went to Java to get away from that sort of thing, so it’s often not
worth it for something simple like opening a URL. There is another way of
talking to the native OS, though. You can use Runtime.exec().

Since 1.0, Java has had the Runtime.exec() static function to start another
program directly and pass command-line parameters. It’s easy to forget
about command-line utilities, but for simple things they can be far, far eas-
ier than trying to deal with JNI. The disadvantages of calling a native pro-
gram over a Java API are of course speed, since you are starting a new
process, and the fact that the program is not cross-platform. This may be an
acceptable tradeoff, however, since you could disable the feature that needs
the exec() call or provide a different command for other platforms.

Open a Text File
Windows 2000 introduced a small program called start. Originally a sepa-
rate install, the start program is now just a command built into the cmd.exe
that comes with Windows XP. It is a simple command but it can do some
powerful things, such as opening a file with the default viewer, showing a
directory in the file explorer, or even launching a web browser.

For example, the sample program in Example 11-1 will open a text file with
the default viewer (usually Windows Notepad).

That’s it! cmd.exe is the command processor built into Windows (a hold-
over from the DOS days). Whenever you open a DOS box, you are running
cmd.exe. You can manually replicate the previous code by typing "start c:/
version.txt" into a command-line window.

Example 11-1. Launching a text file with start

import java.io.IOException;
public class ExecTest {
 public static void main(String[] args) throws IOException {
 String cmd = "cmd.exe /c start ";
 String file = "c:\\version.txt";
 Runtime.getRuntime().exec(cmd + file);
 }
}

410 | Chapter 11, Native Integration and Packaging

#79 Launch External Programs on Windows
HACK

Open a URL
You can open a web browser the same way as a text file because Windows
associates all URLs, specifically ones that begin with http, with a default web
browser. If you call start on a URL then the browser will open, as seen in
Example 11-2.

You can also use the browser support to open up a new email message.
Since mailto: is a URL protocol, usually mapped to the user’s default email
program, if you open up a mailto: URL, Windows will open a new message
ready to send (see Example 11-3).

The previous code will open up a new email message addressed to
author@mybook.com. The return address will be filled in automatically with
the user’s own address. You can remove the address (author@mybook.com)
to open a new blank email.

By default, cmd.exe will open a requested file using the standard viewer for
that file’s type. For example, cmd.exe /c start music.mp3 will open the song
file using the default program, possibly the Windows Media Player or
iTunes. If you would rather open the file with a particular program that you
specify, then you can simply add the program name before the file.

Example 11-2. Opening a URL in the default web browser on Windows

import java.io.IOException;
public class ExecTest {
 public static void main(String[] args) throws IOException {
 String cmd = "cmd.exe /c start ";
 String file = "http://www.google.com";
 Runtime.getRuntime().exec(cmd + file);
 }

}

Example 11-3. Using start to open an email application

import java.io.IOException;
public class ExecTest {
 public static void main(String[] args) throws IOException {

 String cmd = "cmd.exe /c start ";
 String file = "mailto:author@mybook.com";
 Runtime.getRuntime().exec(cmd + file);
 }

}

Open Files, Directories, and URLs on Mac OS X #80

Chapter 11, Native Integration and Packaging | 411

HACK

As another example, cmd.exe /c start version.txt opens a text file in Win-
dows Notepad (assuming that’s the default text file viewer). cmd.exe /c start
winword.exe version.txt would open the file in MS Word. This requires
having Word installed, of course, so I would only recommend hardcoding
the program name if you are sure it’s really there.

Open a Directory
The start command can also open a directory as well as a file, meaning it
will open a file manager window showing the contents of that directory.
Program installers often do this after the install is complete to show where
the program was placed. The code in Example 11-4 will open a new
Explorer window showing the contents of the C: drive.

H A C K

#80
Open Files, Directories, and URLs
on Mac OS X Hack #80

Open files, directories, and URLs in external programs right from your Swing
app.

We can’t let Windows have all of the fun. Mac OS X has a similar and even
easier to use program called open, which lets you open any file, directory, or
web page directly from the command line. This hack shows you how to
embed open in your own program.

Using Open
Back in the late 80s, NeXT, Inc. created the first true integration between a
graphical user interface and a Unix-like operating system when they released
NeXTSTEP. Part of this OS was a command-line program called open, which
could open a file, directory, and (once the Web was invented) a URL. Apple
purchased NeXT in the late 90s and NeXTSTEP became the core of Mac OS
X. Along with this purchase came the open command, still as useful as ever.

Example 11-4. Opening a directory on Windows

import java.io.IOException;
public class ExecTest {
 public static void main(String[] args) throws IOException {
 String cmd = "cmd.exe /c start ";
 String file = "c:\\";
 Runtime.getRuntime().exec(cmd + file);
 }
}

412 | Chapter 11, Native Integration and Packaging

#80 Open Files, Directories, and URLs on Mac OS X
HACK

open has a simple syntax: open filename. By calling it from within your pro-
gram, you can open any file with its default application. open will start
launching the viewer automatically and return control to your program
immediately. As in Microsoft Windows, you can call the program using
Runtime.exec():

public static void main(String[] args) throws Exception {
 Runtime rt = Runtime.getRuntime();
 rt.exec("open notes.txt");
}

This program will open a file in the current directory (notes.txt), in the
default viewer for text files, usually TextEdit. You can also specify an abso-
lute path for the file:

rt.exec("open /Users/josh/Desktop/notes.txt");

If you pass a directory instead of a file, then OS X will open that directory in
a new Finder window. This can be useful for showing the location of a
recently downloaded file or demonstrating where to install new software:

// open the current working directory
rt.exec("open .");
// open the applications directory
rt.exec("open /Applications");

Finally, you can open any web page using the user’s default web browser
(probably Safari) by calling open with a URL:

// open Yahoo! in the user's web browser
rt.exec("open http://www.yahoo.com/");

Handle Spaces
Some filepaths may contain spaces. When you run open from the command
line you can escape these spaces using quotes like this:

open 'Current Notes.txt'

Unfortunately, quotes won’t work when you call open from a program
because the quotes are actually interpreted by the user’s command-line
shell, not open itself. When you call open directly from a program, you are
bypassing the shell and lose quote interpolation. The solution is to break the
command line into an array of arguments manually. That way open knows
what is a space and what is the gap between arguments:

Runtime rt = Runtime.getRuntime();
String[] cmd = {"open", "Current Notes.txt"};
rt.exec(cmd);

Now, you might wonder why open needs to distinguish between argument
gaps and real spaces when it takes only one argument to begin with. open

Make Mac Applications Behave Normally #81

Chapter 11, Native Integration and Packaging | 413

HACK

actually does have some other arguments. For example, -t will force the file
to be opened in TextEdit, and -f will make open read from standard input
rather than a file.

The most useful extra argument is probably -a, which lets you force the file
to be opened in a particular program rather than just using the default. For
example, if you wanted to open a text file in Microsoft Word instead of the
default text editor, you could do something like this:

public static void main(String[] args) throws Exception {
 Runtime rt = Runtime.getRuntime();
 String[] cmd = {
 "open",
 "-a",
 "Microsoft Word",
 "mynotes.txt"
 };
 rt.exec(cmd);
}

Notice you have to use an array instead of a single string
because Microsoft Word has a space in it. If you don’t do
that, the program will fail with a bus error.

open is a simple but very powerful program because it gives you easy access
to launching programs and files without knowing the user’s settings. The
default applications will be used for each file type, including URLs. You
don’t have to hardcode this information into your program, thus creating a
better experience for your user.

To learn more about the open command, you can type man
open into a terminal window.

H A C K

#81
Make Mac Applications Behave Normally Hack #81

Setting a few system properties will make your application seem more like
other Mac apps.

Of the desktop platforms your application is likely to run on, the Mac is the
least like the others. Maybe it’s because the various Linux desktops hemmed
closely to Windows’ ways of thinking, or maybe the GNOME guys had
never used a Mac and didn’t “think different.” But the result is that certain
assumptions you might reasonably make on Windows or Linux—like
assuming that windows have menu bars and that any corner or edge of a
window can be dragged to resize the window—aren’t correct on the Mac.

414 | Chapter 11, Native Integration and Packaging

#81 Make Mac Applications Behave Normally
HACK

To smooth over the cross-platform differences somewhat, Apple does cer-
tain things differently in its Java implementation. For one thing, it will auto-
matically put a Swing application into its native Look and Feel, Aqua, rather
than defaulting into cross-platform Metal or Ocean as would happen on
other platforms. In other words, you don’t have to do anything special to
pick up the Mac Look and Feel, although redundantly asking for and set-
ting the native Look and Feel classname doesn’t hurt either.

Moreover, Apple provides some key/value pairs that you can set in the Java
system properties to get even more Mac-like behavior. Because these proper-
ties all start with apple or com.apple, you can set them and not worry that
they’ll affect the behavior of your application on any other platform.

Using the Apple System Properties
Apple has been changing the names and behaviors of these system proper-
ties for a while, and some of them are deprecated or no-op’ed, so I’ll just
show four of the most useful ones here. To see the whole list, check out the
Runtime System Properties of Apple’s Java 1.4.1 release notes on http://
developer.apple.com/releasenotes/Java/index.html.

You can set the properties several ways. The obvious way is to use the -D
command-line argument:

java -Dapple.awt.showGrowBox=true MyClass

However, this becomes tedious to type after you decide to use multiple
properties. Another option is to simply call System.setProperty() in your
code, though you’ll need to do so as soon as possible so the desired prop-
erty gets picked up by the JVM before it’s needed. A third option exists as
well: if you’re bundling the Java application as a double-clickable Mac appli-
cation, your tool of choice will give you an opportunity to set these values.
For example, the JarBundler that Apple provides with its developer tools has
a properties pane in which you can enter name/value pairs; these are saved
with the application bundle and provided to the JVM as if they’d been set on
the command line.

The downloadable book code contains demo applications
for all the tricks shown in this chapter, but since the point in
this hack is the one-line System.setProperty() call and not
20 lines of code that demonstrate the effect, the demo code
is not shown here, just screenshots of the results.

Make Mac Applications Behave Normally #81

Chapter 11, Native Integration and Packaging | 415

HACK

Using the Mac’s Menu Bar
One of the most striking differences between the Mac and Windows/Linux
GUIs is that the Mac has a single menu bar at the top of the screen, rather
than menu bars in each application window. This will break a lot of assump-
tions if you’re coming over from the Windows world (for one thing, an
application can still be running without any windows open, since the user
can usually spawn a new window from the File menu), but for now, just
focus on the fact that menus inside of windows are going to feel very alien to
a Mac user. Figure 11-1 shows what a typical Swing window looks like on a
Mac with the menu bar in the window.

Change that by setting the system property apple.laf.useScreenMenuBar to
true. This takes all Swing menu bars out of their JFrames and puts them up
in the Mac menu bar. Figure 11-2 shows the effect of setting this property on
a Swing window.

Figure 11-1. Swing application with menu bar in a Mac window

Figure 11-2. Swing application with menus in a Mac menu bar

416 | Chapter 11, Native Integration and Packaging

#81 Make Mac Applications Behave Normally
HACK

AWT windows will always use the Mac menu bar.

One thing worth mentioning is that if your application uses different menus
in its various windows, this will still seem strange to Mac users, as the menu
bar will change based on which of your application’s windows has focus.
But to be truly Mac-like, you’d have to have the same menu bar all the time,
which on Windows/Linux might mean having completely inappropriate
menus in some windows. Then again, with good design—and probably
some ResourceBundles—you should be able to provide an appropriate menu
bar experience to all your users.

Presenting an Appropriate Application Name
On Mac OS X, the first two items (reading left to right) on the menu bar are
the Apple menu, which controls the whole system (Software Update,
Restart, Log Out, etc.), and the Application menu. The Application menu is
meant to contain items relevant to the entire application: an about box, pref-
erences, the ability to hide itself or other applications, and Quit. But the
menu isn’t named Application; instead, it shows the current application’s
name. That’s great for something short and memorable like Mail or Firefox.
But for a Java application, it picks up the name of the application’s main()
class. And when you package your code (like you’re supposed to, with the
inverted Internet address style), you get a monstrosity like Figure 11-3.

Fortunately, you can rein in the insanity with the com.apple.mrj.application.
apple.menu.about.name property. Just set this to the name you want to show
in the application menu. For example, setting it to MyDemo produces the
much more reasonable application menu seen in Figure 11-4.

Figure 11-3. A long Java classname as a Mac application name

Make Mac Applications Behave Normally #81

Chapter 11, Native Integration and Packaging | 417

HACK

Showing the Mac Grow Box
Traditionally, Mac applications have reserved the bottom-right corner as the
only space that you can drag to resize a window. It is shown as a diagonally
dimpled grow box, often reserving the space above it for a scrollbar. There’s
also sometimes either a scrollbar or a status bar to the box’s left. At any rate,
this approach to resizing is very different from having a few pixels for a bor-
der on the right, left, and bottom edges—all of which are draggable—as
users expect from Microsoft Windows.

By default, the grow box is not shown in Mac Java windows. You can make
the grow box appear by setting the property apple.awt.showGrowBox to true.
This does, however, have a significant downside, as seen in Figure 11-5.

The grow box intrudes into the Java display space. In this case, it clobbers
the right-most part of a JTextField.

The proper way to handle this is to reserve some space for the grow box.
The simple thing to do—in fact, it’s what Apple’s Java 1.3.1 did by
default—is to reserve 15 pixels of vertical space for the grow box. You could
probably just have a subclass of JFrame for your Mac users that puts the
usual frame contents in the CENTER of a BorderLayout, and creates a spacer
with Box.createVerticalStrut(15) to reserve space for the grow box in the
SOUTH. Figure 11-6 shows the corrected window after this approach is
applied.

Figure 11-4. A custom application name for a Java application

Figure 11-5. Mac grow box intruding on Swing display space

418 | Chapter 11, Native Integration and Packaging

#82 Control iTunes on Mac OS X
HACK

Jump on the Brushed Metal Bandwagon
Apparently, Mac applications are no longer cool unless they use the brushed
metal L&F of Apple’s various iApps, such as iTunes, iChat, etc. Fortu-
nately, it’s easy to pick up that appearance for your Java application. Just set
the property apple.awt.brushMetalLook to true. This produces windows like
the one seen in Figure 11-7.

Apple’s documentation of this feature says that this should be applied to
your primary application window only, not supporting dialogs or prefer-
ence windows, but it’s hard to see how that rule can be enforced when this
property causes all your windows to pick up the brushed metal look
automatically.

H A C K

#82
Control iTunes on Mac OS X Hack #82

With a few bits of AppleScript, you can monitor and control Macintosh iTunes
from your own application.

You can make some really great applications using plain Java, but the soft-
ware world isn’t what it used to be. The buzzword for new applications is
integration. Modern programs are defined not only by what they do, but
what they can talk to. The poster child for integration these days is iTunes,

Figure 11-6. Mac grow box with space reserved for it at the bottom of JFrame

Figure 11-7. Swing window with brushed metal appearance

Control iTunes on Mac OS X #82

Chapter 11, Native Integration and Packaging | 419

HACK

so what better way to show off the power of Java than by taking control of
iTunes directly from your own Java app!

The task of dealing with native applications is, by nature, platform specific.
For example, though Apple ships identical looking copies of iTunes for both
Windows and Mac, the integration APIs couldn’t be more different.

Apple Events
Most well-written Mac OS X applications support an API called Apple
Events. Apple Events let a programmer send commands and requests to a
running application from another program, through a process often called
scripting. The application must be written to support Apple Events and
every scriptable feature must be defined explicitly when the program is writ-
ten. Since it was Apple that wrote iTunes, they did a very good job of expos-
ing virtually every feature through Apple Events. All you need to do is tap
into these events.

Apple Events is an API, and you need a programming language to support it.
There are a variety of languages to choose from, but the easiest one to start
with is AppleScript, as the syntax is simple and OS X ships with a command-
line interpreter. There are also direct Java bindings available, but for the
kinds of simple things you are likely to want to do with iTunes, exec()ing
the interpreter will be much easier. All you have to do is call osascript with
the AppleScript commands you want to run, and OS X will do the rest.

AppleScript is a simple language with a somewhat natural language feel to it.
If you want to tell iTunes to toggle the Play/Pause button, you can call this
script from the command line:

osascript -e 'tell app "iTunes" to playpause'

Now that’s the kind of simple integration I like! Because you can directly
execute command-line programs from inside your code, the Java equivalent
would look like this:

String[] args = { "osascript", "-e",
 "tell app \"iTunes\" to playpause" };
Process proc = rt.exec(args);

That’s it. You can make iTunes do virtually anything you want with simple
commands like this. One caveat to remember is that iTunes must be run-
ning as the same user for this to work. This usually isn’t a program for desk-
top applications, but if you made a web application with this technique, you
might need a workaround like a chown script or a daemon that runs next to
iTunes. Example 11-5 is the code for a simple program with one button that
will toggle the iTunes Play/Pause button.

420 | Chapter 11, Native Integration and Packaging

#82 Control iTunes on Mac OS X
HACK

This code creates a JFrame with one button. The button’s action listener cre-
ates a new java.lang.Runtime object, sets up the command-line arguments,
and finally calls osascript to control iTunes. When you click on the button
in the Swing application, iTunes will start playing. If you press the button a
second time, iTunes will pause. Virtually any feature in iTunes can be
scripted this way.

Sometimes you don’t want to tell iTunes to do something, but instead want
to get information from it. osascript can handle this, too. When you call a
function that returns a value, osascript will write the value to standard out,
which you can pick up from the process’s input stream. For example, if you
wanted to get the name of the currently playing track, you could change the
action listener code to look like this:

public void actionPerformed(ActionEvent evt) {
 try {
 Runtime rt = Runtime.getRuntime();
 String[] args = { "osascript", "-e",
 "tell app \"iTunes\" to artist of current track as string"};
 Process proc = rt.exec(args);
 InputStream in = proc.getInputStream();
 String str = new DataInputStream(in).readLine();
 System.out.println("got: " + str);

Example 11-5. Controlling iTunes on the Mac

public class MacITunes implements ActionListener {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Mac iTunes Hack");
 JButton button = new JButton("Play/Pause");
 button.addActionListener(new MacITunes());
 frame.getContentPane().add(button);
 frame.pack();
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent evt) {
 try {
 Runtime rt = Runtime.getRuntime();
 String[] args = { "osascript",
 "-e","tell app \"iTunes\" to playpause"};
 Process proc = rt.exec(args);
 } catch (IOException ex) {
 System.out.println("exception : " + ex.getMessage());
 ex.printStackTrace();
 }
 }
}

Control iTunes Under Windows #83

Chapter 11, Native Integration and Packaging | 421

HACK

 } catch (IOException ex) {
 System.out.println("exception : " + ex.getMessage());
 ex.printStackTrace();
 }
}

The line:

tell app "iTunes" to artist of current track as string

will call the artist method on the current track. It will return the artist as a
string and print it to standard out. You can get the standard output by
reading from proc.getInputStream(). The code then prints the string as a
single line, so you can easily read it with the readLine() method on a
DataInputStream. Once you have the string back, you can print it, put it in a
JLabel, or do whatever else is appropriate for your program.

Apple has more information available on the iTunes AppleScript API at http://
www.apple.com/applescript/itunes/. With this API, you can do almost any-
thing. For example, you can get the name of a playing song:

tell app "iTunes" to name of current track as string

You can also get the album name:

tell app "iTunes" to album of current track as string

Muting the volume is also a piece of cake:

tell application "iTunes" to set mute to true

In the same vein, you can obtain the current volume:

tell application "iTunes" to sound volume as integer

Take a look at the API and see what other interesting things you can do.
Many of the other programs that come with Mac OS X can be controlled
with Apple Events as well, so there is a lot to play with. You can query the
network status, open files and programs, or even tie Mail and iPhoto
together to capture, edit, and send photo albums. The possibilities are huge
and are all accessible right from your own Swing application.

H A C K

#83
Control iTunes Under Windows Hack #83

Use a simple open source library to monitor and control Windows iTunes
from your Swing application.

Windows doesn’t have a standard scripting API like Apple Events, but it
does have another object model that iTunes supports. Using an open source
library, this hack will show you how to script iTunes just as easily on Win-
dows as you can on the Mac.

422 | Chapter 11, Native Integration and Packaging

#83 Control iTunes Under Windows
HACK

Working with COM
The Component Object Model (COM) is a standard way for Windows com-
ponents to expose functionality that other programs can call at runtime.
com4j (https://com4j.dev.java.net/) is an open source library that creates
connections from Java programs to COM objects. com4j has two parts: a
command-line program to create the Java interfaces that your program will
call, and a native library that binds your program to the COM object at run-
time.

com4j uses class annotations to do its magic, so you can only
use it with Java 5.0 or greater.

To get started, download the com4j package at https://com4j.dev.java.net/
servlets/ProjectDocumentList. With the com4j stubber and the iTunes exe-
cutable in your current directory, you can generate the interfaces like this:

java -jar tlbimp.jar -o jtunes -p test.jtunes iTunes.exe

This command will load the iTunes executable and look for COM defini-
tions. Once they are located, tlbimp will generate a bunch of Java interfaces
in the test.jtunes package and put the .java files into the jtunes directory. If
you look at the generated Java interfaces, you will see a whole slew of meth-
ods and objects for playing, querying tracks, and dealing with virtually every
other feature of iTunes. com4j will also pull out any embedded documenta-
tion and insert the documentation as JavaDoc comments in the generated
interfaces.

This process is pretty quick, so you may find it useful to call
it from Ant as part of your compile process.

Once you have the interface stubs, you can create a program to control
iTunes quite easily. You can use the same program that you did when con-
trolling iTunes on the Mac [Hack #82]. Just replace the action listener with the
class in Example 11-6.

Example 11-6. A listener to control iTunes on Windows

import test.jtunes.*;

public class WinItunes {

 public void actionPerformed(ActionEvent evt) {
 try {

Control iTunes Under Windows #83

Chapter 11, Native Integration and Packaging | 423

HACK

Compile this class along with the interfaces in the test.jtunes package. You
will also need the com4j.jar in your CLASSPATH and com4j.dll files in your
PATH. When you run the program, the com4j library will connect to
iTunes—launching it if necessary—and execute the playPause() method.

com4j only allows you to call methods from the same thread
that you used to create the COM proxy. Typically, you want
to update your Swing components with iTunes information,
which you can do safely from the Swing event thread only.
This means that you should create the COM proxy from the
event thread as well (using the ClassFactory method). Unfor-
tunately, this may cause your application to block for a few
seconds while iTunes loads (if it’s not already running). To
avoid this delay, you probably want to do all of your iTunes
communication through a custom queue, or use the new
concurrency utilities available in Java 5.0. The com4j devel-
opers are working on a solution to this problem, so it may be
solved by the time you read this.

Get Track Information
As with Apple Events on the Mac [Hack #82], the COM interface gives you a
way to query the currently playing track. You can call iTunes.currentTrack()
to get an IITTrack object. This object has methods to query just about any-
thing you could possible want to know about a track, including the artist,
album, playing time, encoding method, and even the import date. Each
method on the IITTrack object returns information as Strings or Java primi-
tives, so it’s pretty easy to access anything you want and then stuff it into
your Swing interface. The following code shows how to get the track num-
ber, count, name, album, and artist:

IITTrack track;
track = itunes.currentTrack();
int track_number = track.trackNumber();
int track_count = track.trackCount();

 IiTunes itunes;
 itunes = ClassFactory.createiTunesApp();
 itunes.playPause();
 } catch (Exception ex) {
 System.out.println("exception : " + ex.getMessage());
 ex.printStackTrace();
 }
 }
}

Example 11-6. A listener to control iTunes on Windows (continued)

424 | Chapter 11, Native Integration and Packaging

#84 Construct Single-Launch Applications
HACK

String track_name = track.name();
String album_name = track.album();
String artist_name = track.artist();

com4j is a great open source project that unleashes the power of Java code
integrated with native applications. The iTunes COM interface provides
hooks for virtually everything that iTunes can do. These two things mean
you could write a program to sort songs, create new playlists, or even export
track listings to your own application that prints CD labels. You can find
fscom/sdk/itunescomsdk.html, so see what other cool things you can come up
with.

H A C K

#84
Construct Single-Launch Applications Hack #84

Only allow one instance of a program, notifying the existing instance when
the user tries to launch a new one.

Most graphical desktop applications are designed for multitasking. You start
your program to work on something, then switch to another program and
come back later. Oftentimes you’ll leave a large program, like a word pro-
cessor, running in the background to be used again when you need to open
another document, say an email attachment you received. When you click
on the attachment, your operating system won’t start a new instance of the
word processor; instead, it will send a message to the currently running
instance to open the new file—saving lots of system resources.

Java programs aren’t designed with single-launch behavior in mind. They
still use the old Unix style of single use, command-line launching. You start
the program to do something and it finishes quickly. If you use the program
again it will start a new instance, do the work, and finish. There is never any
instance reuse, but modern desktop programs demand it. Because Java
doesn’t support single-launch applications, this hack shows you how to
build it into your programs with a simple use of sockets.

Local Sockets
Building a single-launch application requires two parts. When the program
starts, it needs to detect if another copy is already running. If there is, then
the program can quit instead of continuing to launch. The new program also
needs to tell the first copy about any command-line arguments—the file-
name to open, for example. You could create a temp file in a known loca-
tion and look to see if it already exists. This would take care of multiple
program instances, but not passing arguments around. Plus, you would
need to worry about race conditions and cleaning up the temp file when the
last program exits. Thankfully, there’s a much better solution: local sockets.

Construct Single-Launch Applications #84

Chapter 11, Native Integration and Packaging | 425

HACK

A socket is a network connection defined by a hostname and a port. A local
socket is a network connection only on the local machine. When you open a
socket to listen for connections you are binding to that port. Only one pro-
gram can bind to any given port at one time, so the port itself can serve as
your lock. If your program cannot connect to the port, then another pro-
gram must already be using it. It doesn’t matter what the port number is, as
long as your program always uses the same one. Here is the beginning of the
code to put this into action:

public class SingleLauncherApplication implements Runnable {
 public static final int PORT = 38629;
 public JLabel label;
 public ServerSocket server;

 public void launch(String[] args) {
 try {
 server = new ServerSocket(PORT);
 new Thread(this).start();
 firstMain(args);
 } catch (IOException ioex) {
 System.out.println("already running!");
 relaunch(args);
 }
 }

SingleLauncherApplication is a class with one core method: launch().
launch() takes the same arguments as the standard main() method, which is
important since you are essentially creating fake versions of main. When
launch is called, it will first try to bind to the port by creating a server
socket. Notice the PORT constant set to the number 38629. It is important
that the port isn’t reserved for use by any system services. Some operating
systems also restrict user programs to only use ports over 1,000, so I picked
this number at random from the 20,000 to 60,000 range. This makes it very
unlikely that the port will already be in use by any other program.

If launch() can create a ServerSocket, then it will start a new thread, engage
run(), and then call firstMain():

public void firstMain(String[] args) {
 JFrame frame = new JFrame("Single Launch Application");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 String word = "";
 if(args.length >= 1) {
 word = args[0];
 }
 label = new JLabel("The word of the day is: " + word);
 frame.getContentPane().add(label);
 frame.pack();
 frame.show();
}

426 | Chapter 11, Native Integration and Packaging

#84 Construct Single-Launch Applications
HACK

firstMain() contains the normal startup code that would have gone in
main() previously. Here, it creates a new JFrame with a single label in it, con-
taining the text “The word of the day is:” followed by the first command-
line argument.

Next comes the run() method, which is launched in the new thread by
launch(). Its entire purpose in life is to sit on that port and wait for connec-
tions. If another instance connects, then it reads in the arguments and calls
otherMain() to relaunch the application:

public void run() {
 System.out.println("waiting for a connection");
 while(true) {
 try {
 // wait for a socket connection
 Socket sock = server.accept();

 // read the contents into a string buffer
 InputStreamReader in = new InputStreamReader(
 sock.getInputStream());
 StringBuffer sb = new StringBuffer();
 char[] buf = new char[256];
 while(true) {
 int n = in.read(buf);
 if(n < 0) { break; }
 sb.append(buf,0,n);
 }
 // split the string buffer into strings
 String[] results = sb.toString().split("\\n");
 // call other main
 otherMain(results);
 } catch (IOException ex) {
 System.out.println("ex: " + ex);
 ex.printStackTrace();
 }
 }
}

server.accept() will block until another program connects. When one
does, the code will open an input stream for the socket and begin to read
out characters and save it in a string buffer. If in.read(buf) returns -1 (n<0),
then it knows the other end disconnected and that’s all there is. Command-
line arguments are just strings, but they may have spaces in them, so the
code above will split the string buffer by new lines ("\\n") into an array of
strings. Finally, it calls otherMain() with the string array:

public void otherMain(final String[] args) {
 if(args.length >= 1) {
 SwingUtilities.invokeLater(new Runnable() {

Construct Single-Launch Applications #84

Chapter 11, Native Integration and Packaging | 427

HACK

 public void run() {
 label.setText("The word of the day is: " + args[0]);
 }
 });
 }
}

otherMain() doesn’t repeat the startup steps of firstMain(). Instead it just
changes the text of the label to match the new command-line arguments.
Because Swing isn’t thread-safe, you can’t set the label text in the launching
thread. Instead, you need to call it from the Swing event thread. The easiest
way to do this is with the utility method: SwingUtilities.invokeLater().
You can pass it an anonymous Runnable() that does the actual setText()
call. Note that the input variable args has to be made final for this to work.

If this is the second instance of the program, then the new ServerSocket()
will fail, and relaunch() is called to send the command-line arguments to the
first instance:

public void relaunch(String[] args) {
 try {
 // open a socket to the original instance
 Socket sock = new Socket("localhost",PORT);

 // write the args to the output stream
 OutputStreamWriter out = new OutputStreamWriter(
 sock.getOutputStream());
 for(int i=0; i<args.length; i++) {
 out.write(args[i]+"\n");
 p("wrote: " + args[i]);
 }

 // cleanup
 out.flush();
 out.close();
 } catch (Exception ex) {
 System.out.println("ex: " + ex);
 ex.printStackTrace();
 }
}

relaunch() opens a socket to the port on localhost. Since new ServerSocket()
failed, it knows that the first instance of the program is already waiting on
the other side of that port. Once it connects, it writes the command-line
arguments to the socket’s output stream, separating each argument with a
newline (\n). Finally, it flushes the output stream to make sure everything
was written, and then closes it. After that, the relaunch() and launch()
methods will return, quitting the second instance of the program. The argu-
ments have now been sent to the first instance.

428 | Chapter 11, Native Integration and Packaging

#85 Stuff Stuff in JARs
HACK

To actually start this whole class, you simply call the launch method like
this:

public static void main(String[] args) {
 new SingleLauncherApplication().launch(args);
}

The first time the program is launched it will create the window with the
label. For example, running the following command would result in
Figure 11-8.

java -cp . SingleLauncherApplication 'anonymous'

Now, start the program again, with the first running:

java -cp . SingleLauncherApplication 'perspicacity'

Instead of creating a new window, the program will contact the original (and
still running) instance and change the text to Figure 11-9.

H A C K

#85
Stuff Stuff in JARs Hack #85

Hide images, sounds, and more inside JAR files.

Does your application need a special installer? Do you have to put images,
sounds, icons, and properties all in their own folders or other special loca-
tions relative to your application? Does your application launch with a .sh
script on Unix or a .bat on Windows?

You do? Really? I was just speaking rhetorically. I kind of figured everyone
was using JARs by now.

Figure 11-8. Initial launch

Figure 11-9. After relaunching

Stuff Stuff in JARs #85

Chapter 11, Native Integration and Packaging | 429

HACK

An Obvious Secret
JAR files—the acronym is short for Java ARchive—must be the best-known,
least-used feature in Java. Many developers throw a JAR in their classpath to
pick up some standard extension API or third-party library, but how many
actually distribute their software that way?

And JARs aren’t just about code. It’s really easy to put the files your pro-
gram needs into a JAR. This has the added advantage of hiding your images,
sounds, default settings, and so forth from end users.

But to load these items, you need to make a change in how you load stuff in
your code. Instead of specifying a known path or URL, you ask a
ClassLoader to find these resources along the classpath. By doing this, you
can get your resources from flat files while you’re developing, and then eas-
ily switch to getting them from inside a JAR when the code is deployed in
the field.

The key is the ClassLoader’s getResource() and getResources() methods,
which take a path relative to the loaded class and return a URL and an array
of URLs respectively. A getResourceAsStream() method converts the URL to an
InputStream as a convenience.

To clarify the relative path: say you have a directory that includes your com-
piled classes in a path like com/mycompany/mypackage/…, an images direc-
tory, and a sounds directory. A relative path would be one of the form
images/something.png, sounds/something.aiff, etc. By using a resource on the
classpath, there is no difference (to the user) between files in a JAR and files
in sub-directories on a filesystem. Either way, you get a URL that you can use
by passing it to methods that take URL arguments, by opening an
InputStream from it, etc.

Showing Off
Example 11-7 shows an example of this technique. It uses the getResource()
method to load an image and put it in an ImageIcon, which in turn is used to
create a JButton. It also loads in a sound, which is played via JavaSound
when you click the button.

Example 11-7. Loading image and sound as resources along the classpath

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.sound.sampled.*;
import java.net.*;

430 | Chapter 11, Native Integration and Packaging

#85 Stuff Stuff in JARs
HACK

public class JarResourceLoading extends JFrame
 implements ActionListener {

 JButton button;
 ImageIcon buttonIcon;
 Clip buhClip;

 public final static String SOUND_PATH = "sounds/buhbuhbuh.aiff";
 public final static String IMAGE_PATH = "images/keagan-buh.jpeg";

 public JarResourceLoading () {
 super ("Resources from .jar");
 // get image and make button
 URL imageURL = getClass().getClassLoader().getResource (IMAGE_PATH);
 System.out.println ("found image at " + imageURL);
 buttonIcon = new ImageIcon (imageURL);
 button = new JButton ("Click to Buh!", buttonIcon);
 button.setHorizontalTextPosition (SwingConstants.CENTER);
 button.setVerticalTextPosition (SwingConstants.BOTTOM);
 button.addActionListener (this);
 getContentPane().add (button);
 // load sound into Clip
 try {
 URL soundURL = getClass().getClassLoader().getResource (SOUND_PATH);
 System.out.println ("found sound at " + soundURL);
 Line.Info linfo = new Line.Info (Clip.class);
 Line line = AudioSystem.getLine (linfo);
 buhClip = (Clip) line;
 AudioInputStream ais = AudioSystem.getAudioInputStream(soundURL);
 buhClip.open(ais);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void actionPerformed (ActionEvent e) {
 System.out.println ("click!");
 if (buhClip != null) {
 buhClip.setFramePosition (0);
 buhClip.start();
 }
 else
 JOptionPane.showMessageDialog (this,
 "Couldn't load sound",
 "Error",
 JOptionPane.ERROR_MESSAGE);
 }

 public static final void main (String[] args) {
 JFrame frame = new JarResourceLoading();

Example 11-7. Loading image and sound as resources along the classpath (continued)

Stuff Stuff in JARs #85

Chapter 11, Native Integration and Packaging | 431

HACK

Notice how the paths to the sound and the image are relative:

public final static String SOUND_PATH = "sounds/buhbuhbuh.aiff";

These paths specify the path from a given starting point. As getResource()
checks each entry in its classpath—whether they’re directories or JAR files
(ZIP files are also allowed)—the class loader looks for a directory called
sounds and, if that’s found, for an entry inside it called buhbuhbuh.aiff. It’s
also worth noting that you use the Unix-style forward slashes, regardless of
what operating system this is run on.

When you compile and run this code from the source directory, the result
looks like Figure 11-10.

Along with showing this simple GUI, it also prints to standard out the URLs
returned by getResource(). Running from the source directory, the output
looks like this:

[tonberry:] cadamson% java JarResourceLoading
found image at file:/Users/cadamson/Documents/O'Reilly/books/swing%20hacks/
 HacksBook/PackagingInstalling/97/images/keagan-buh.jpeg
found sound at file:/Users/cadamson/Documents/O'Reilly/books/swing%20hacks/
 HacksBook/PackagingInstalling/97/sounds/buhbuhbuh.aiff

 frame.pack();
 frame.setVisible(true);
 }
}

Figure 11-10. Application using image and sound loaded with getResource()

Example 11-7. Loading image and sound as resources along the classpath (continued)

432 | Chapter 11, Native Integration and Packaging

#85 Stuff Stuff in JARs
HACK

Packing Up
So far, this only proves that resource loading is a nice alternative to fully
specified paths. The next step is to put the application and its resources in a
JAR. You can do this with a single command:

jar cf buh.jar JarResourceLoading.class images sounds

Now, you run the application from the JAR by pointing the classpath into it.
Here’s what the output from that looks like:

[tonberry:] cadamson% java -classpath buh.jar JarResourceLoading
found image at jar:file:/Users/cadamson/Documents/O'Reilly/books/
 swing%20hacks/HacksBook/PackagingInstalling/97/buh.jar!/images/
 keagan-buh.jpeg
found sound at jar:file:/Users/cadamson/Documents/O'Reilly/books/
 swing%20hacks/HacksBook/PackagingInstalling/97/buh.jar!/sounds/
 buhbuhbuh.aiff

Note the different URLs: the image and sound are now found inside buh.jar.
The format of the jar: URL is also interesting, in that it combines a regular
file:-type URL for the JAR file with a path inside that JAR, using a ! char-
acter to separate the two parts.

Double-Clicking JARs
There are a few more useful things you can do with JAR files. The first is
that you can eliminate the need to specify a main class on the command line
by specifying it in the JAR file instead. This has the advantage of making the
JAR a double-clickable application on graphical operating systems. To do
this, create a Manifest file with a line like the following in it:

Main-Class: JarResourceLoading

You put this into the JAR with the jar command’s m option. Because this
option requires an argument (as does c, which creates the JAR file), you
specify the JAR file to be created and the Manifest file to be inserted in the
order that you use the m and c options. So, you can create the JAR like this:

jar cfm buh.jar manifest.txt JarResourceLoading.class images sounds

or like this:

jar mcf manifest.txt buh.jar JarResourceLoading.class images sounds

You could also create the JAR with one command and add the Manifest
with another. In any case, you can run the application inside the JAR by
double-clicking its icon, or with the command:

java -jar buh.jar

Stuff Stuff in JARs #85

Chapter 11, Native Integration and Packaging | 433

HACK

Granted, this is all pretty burdensome if you have to do it over and over.
Presumably, you’ll want to automate creating and populating your JAR, and
the most popular way to do that is with Apache Ant (http://ant.apache.org/).
Ant lets you split up and customize the compiling and JAR-building tasks,
and its XML syntax is far easier to read than command-line options.
Example 11-8 shows a simple Ant build.xml file that builds this example and
packs it into a JAR, along with a Manifest file that specifies the main class.

Because the default target (all) runs the compile and package targets as
needed, to compile the application and stuff it and its resources into a JAR,
use the command:

ant

And the Kitchen Sink
Because you can get a URL and thus an InputStream—via URL.openStream()—
from any resource found in a JAR, you can put pretty much any kind of file
into the JAR and read it back at runtime. This example used images and
sounds for simplicity, since ImageIcon’s constructor and AudioSystem.
getAudioInputStream() both take URL objects directly, but if you’re willing to
deal with reading the stream yourself, there’s no reason you couldn’t put
other kinds of files in the JAR. You could put a properties file with default
settings in the JAR, open a stream, and then read it into a Properties object
via the load() method. You could put an executable in the JAR and extract
it to the local filesystem. You could even put a ZIP file in the JAR, add code
to open the ZIP and decompress it to disk, and thus have a self-extracting
archive.

Example 11-8. Ant file to compile an application and build a JAR file

<project name="jar-resource-loading" default="all" basedir=".">

 <target name="compile">
 <javac srcdir="." destdir="."/>
 </target>

 <target name="package">
 <jar destfile="buh.jar"
 basedir="."
 includes="*.class, images/*, sounds/*"
 manifest="manifest.txt" />
 </target>

 <target name="all" depends="compile, package" />

</project>

434 | Chapter 11, Native Integration and Packaging

#86 Make Quick Look and Feel Changes
HACK

H A C K

#86
Make Quick Look and Feel Changes Hack #86

Customize Metal with custom fonts, colors, and even system-bound
properties using just a few API calls.

Swing is a very customizable UI toolkit. The most advanced way of chang-
ing the look of your application is with a custom Look and Feel (L&F), but
they can be tricky to build. Swing’s L&F API is very complicated, often
requiring thousands of lines of code for a complete custom theme. Fortu-
nately, if you want to change just a few colors or fonts, the L&F API pro-
vides a much easier way. This hack shows how to create simple visual
changes using UI properties.

Look and Feel Properties
Every Look and Feel that extends the javax.swing.plaf.basic.* classes can
accept special properties that define the behavior of each Swing component.
For example, there is property to control the background color of every
JButton. If you change this property at the start of your program, then every
JButton you create will have that background color.

The UI properties are stored in a static class called the UIManager. To set a
property, just put in the name of the property and a value object like a
Color. To set the background color of a button to green, you would do
something like this:

UIManager.put("Button.background", Color.green);

It is important to set these properties before any compo-
nents are created or they won’t pick up the new settings.

Below is the code for a simple program that shows a few components in a
frame. It has a button, label, and text field along the top and a text area in a
scroll pane in the middle. There is also a simple file menu at the top. Before
creating any components, it sets the foreground and background colors for
the button, label, text field, and panel to light and dark green:

public static void main(String[] args) throws Exception {

 Color bg = Color.green.brighter();
 Color fg = Color.green.darker();
 UIManager.put("Button.background",bg);
 UIManager.put("Button.foreground",fg);

Make Quick Look and Feel Changes #86

Chapter 11, Native Integration and Packaging | 435

HACK

 UIManager.put("Label.background",bg);
 UIManager.put("Label.foreground",fg);
 UIManager.put("TextField.background",bg);
 UIManager.put("TextField.foreground",fg);
 UIManager.put("Panel.background",bg);
 UIManager.put("Panel.foreground",fg);

 JTextArea jta = new JTextArea();
 jta.setText("text\ntext\ntext\ntext\ntext\ntext"+
 "\ntext\ntext\ntext\ntext\ntext");
 JScrollPane scroll = new JScrollPane(jta);

 JButton button = new JButton("A Button");
 JLabel label = new JLabel("A Label");
 JTextField text = new JTextField("A TextField");

 JMenuBar mb = new JMenuBar();
 JMenu file = new JMenu("File");
 file.add(new JMenuItem("Open"));
 file.add(new JMenuItem("Close"));
 mb.add(file);

 JFrame frame = new JFrame("Custom LaF Defaults");

 JPanel top = new JPanel();
 top.setLayout(new BoxLayout(top,BoxLayout.X_AXIS));
 top.add(button);
 top.add(label);
 top.add(text);

 JPanel panel = new JPanel();
 panel.setLayout(new BorderLayout());
 panel.add("North",top);
 panel.add("Center",scroll);

 frame.getContentPane().add(panel);
 frame.setJMenuBar(mb);

 frame.pack();
 frame.setSize(300,200);
 frame.setVisible(true);
}

When compiled, this will look like Figure 11-11.

Swing provides over 300 properties that define the colors and fonts of each
standard component. This lets you customize almost anything in your pro-
gram. You can even set a color to be transparent, which may look interest-
ing if you have a pattern background.

436 | Chapter 11, Native Integration and Packaging

#86 Make Quick Look and Feel Changes
HACK

Text Components
Text components have font settings in addition to their colors. This lets you
set a component to use a different font style or size. You can even load a cus-
tom font from a file:

Font font = Font.createFont(Font.TRUETYPE_FONT,
 new FileInputStream("dungeon.ttf"));
font = font.deriveFont(Font.BOLD,16f);
UIManager.put("Label.font",font);

This would look like Figure 11-12.

Most components also have margins that are defined by an Insets object. A
text field with large insets:

UIManager.put("TextField.margin", new Insets(25,25,25,25));

would look like Figure 11-13.

Figure 11-11. A sample program with green components

Figure 11-12. A custom font

Make Quick Look and Feel Changes #86

Chapter 11, Native Integration and Packaging | 437

HACK

Some components even have borders. Menu items have borders but they are
turned off by default. You need to set an extra boolean to make a new bor-
der show up, as in Figure 11-14.

Border border = BorderFactory.createEtchedBorder(
 EtchedBorder.LOWERED);
UIManager.put("MenuItem.border", border);
UIManager.put("MenuItem.borderPainted", new Boolean(true));

Use System Colors
The UIManager lets you change any color in your application to whatever you
want. Now, what if you wanted to create a theme that matched the native
operating system closer? You could hardcode some color values for each OS,
but most windowing systems also let their users customize their colors.
Hardcoded values wouldn’t take those dynamic colors into account. Fortu-
nately, AWT provides a way out: the SystemColor class.

Figure 11-13. A JTextField with large insets

Figure 11-14. Menu items with etched borders

438 | Chapter 11, Native Integration and Packaging

#86 Make Quick Look and Feel Changes
HACK

SystemColor is a special subclass of Color that provides access to most of the
standard color settings of any operating system. It also has the special abil-
ity to update itself whenever the underlying system color changes. This
means if the user switches her native colors from a control panel, your appli-
cation will automatically update itself to reflect the new settings.

Instead of methods, SystemColor has a bunch of constants that define each
type of color from activeCaptionText to windowBorder. The documentation is
minor, so you will need to play around with different settings to get the
effect you are looking for:

Color sysbg = SystemColor.control;
Color sysfg = SystemColor.controlText;
UIManager.put("Button.background",sysbg);
UIManager.put("Button.foreground",sysfg);

This code sets the background and foreground of every button to use the
control and controlText fields of SystemColor. With my computer set to use
the Desert theme, it looks like Figure 11-15.

If I change my window theme to high-contrast black, it looks like
Figure 11-16.

UIManager properties give developers a simple way to customize the colors,
fonts, and borders of almost any Swing component. As an enhancement,
you could allow users to customize the colors themselves and store the val-
ues in a properties file.

Figure 11-15. Window with the Desert theme

Create an Inverse Black-and-White Theme #87

Chapter 11, Native Integration and Packaging | 439

HACK

H A C K

#87
Create an Inverse Black-and-White Theme Hack #87

Create a custom black-and-white theme for monochrome LCD displays using
a few simple UIManager calls.

The UIManager lets you set simple resources for color, fonts, and padding,
but you may have noticed that if you want to theme all of the components,
you need to set properties on each one. Since Swing has over 300 Look and
Feel properties, this could become a problem. Fortunately, there is another
way to make global changes without creating an entire custom L&F. Metal,
the standard cross-platform L&F that comes with Swing, can use themes.
This hack demonstrates how to create a Metal theme that forces the compo-
nents to use only black and white.

Swing lets you switch between different Look and Feels. You can use a
native Look and Feel (such as the one that comes with Mac OS X) or a third-
party Look and Feel if you have them installed. Swing also comes with a
standard L&F called Metal. Metal is built into the JRE and is always avail-
able, making it the ideal L&F to customize.

Like all L&Fs, Metal has many, many classes that you can subclass to make
changes. However, it also comes with an interface called MetalTheme. If you
implement MetalTheme, then you can customize most of Metal without dig-
ging into the details. Most of the colors in Metal can be set, in fact, with just
six values. Metal makes it even easier by providing a default implementa-
tion called, unsurprisingly, DefaultMetalTheme that you can use as a starting
point.

Figure 11-16. Window with the high-contrast black theme

440 | Chapter 11, Native Integration and Packaging

#87 Create an Inverse Black-and-White Theme
HACK

A Black-and-White Theme
A Metal theme is defined by a series of colors and fonts. The most impor-
tant ones are the three primary and three secondary colors. These define the
standard set of colors used for every widget on screen. Certain components
have additional colors, like the text selection, but almost everything is based
on these six. Example 11-9 is a theme that uses only white and black. It is
useful for embedded devices that can’t afford the hardware or memory
requirements of a color display.

Two of the primary colors are all white, and the third is black. The three sec-
ondary colors are just the reverse: two black and one white. This introduces
extra contrast. Each color controls a different part of the component. The
MetalTheme documentation is very sparse, so the only way to know what a
particular color will do is to try it. Without the theme, the screen will look
like Figure 11-17.

With the InverseTheme installed, the window will look like Figure 11-18.

Example 11-9. A black-and-white Metal theme

import javax.swing.plaf.metal.*;
import javax.swing.plaf.ColorUIResource;

public class InverseTheme extends DefaultMetalTheme {

 protected ColorUIResource getPrimary1() {
 return new ColorUIResource(255,255,255);
 }
 protected ColorUIResource getPrimary2() {
 return new ColorUIResource(0,0,0);
 }
 protected ColorUIResource getPrimary3() {
 return new ColorUIResource(255,255,255);
 }

 // component borders
 protected ColorUIResource getSecondary1() {
 return new ColorUIResource(0,0,0);
 }
 // selected components (button down state)
 protected ColorUIResource getSecondary2() {
 return new ColorUIResource(0,0,0);
 }
 // component backgrounds
 protected ColorUIResource getSecondary3() {
 return new ColorUIResource(255,255,255);
 }

Create an Inverse Black-and-White Theme #87

Chapter 11, Native Integration and Packaging | 441

HACK

Setting the six colors gets us most of the way, but there are still some prob-
lems. In particular, the label is hidden and the text field looks wrong when
you select it. To correct these, you’ll need to set three more colors:

//for label text
public ColorUIResource getSystemTextColor() {
 return new ColorUIResource(0,0,0);
}

// background of selected text
public ColorUIResource getTextHighlightColor() {
 return new ColorUIResource(0,0,0);
}

// foreground of selected text
public ColorUIResource getHighlightedTextColor() {
 return new ColorUIResource(255,255,255);
}

Figure 11-17. Window with no changes

Figure 11-18. Window with an inverse theme

442 | Chapter 11, Native Integration and Packaging

#87 Create an Inverse Black-and-White Theme
HACK

The SystemTextColor is used for labels and titled borders, so you have to set
this to black as well. The highlighted text, as well as the background of the
highlight, are controlled by the HighlightedTextColor and TextHighlightColor,
respectively (confusing, I know).

The only remaining problem is the menus. They have their own set of prop-
erties, which you can also set:

public ColorUIResource getMenuBackground() {
 return new ColorUIResource(255,255,255);
}
public ColorUIResource getMenuForeground() {
 return new ColorUIResource(0,0,0);
}

public ColorUIResource getMenuSelectedBackground() {
 return new ColorUIResource(0,0,0);
}
public ColorUIResource getMenuSelectedForeground() {
 return new ColorUIResource(255,255,255);
}

With all of the colors set, you are ready to load up the theme. All you have
to do is call MetalLookAndFeel.setCurrentTheme() before you create any
Swing components.

public static void main(String[] args) {
 MetalLookAndFeel.setCurrentTheme(new InverseTheme());
 //.. set up Swing components now
}

If you set it as the first line of the main() method in the demonstration pro-
gram from the previous hack, you will see your themed window as in
Figure 11-19.

Figure 11-19. A better inverse theme

443

Chapter 12 C H A P T E R T W E L V E

Miscellany
Hacks 88–100

Not everything about Swing fits into nice little groupings of functionality.
Some of the cool stuff you can do involves cursors, event-dispatching, net-
working, and even the lights on the keyboard. So, here we present some
hacks that were just unique (or weird) enough to defy easy categorization.

H A C K

#88
Display a Busy Cursor Hack #88

Use the setCursor() method and an animation thread to show a frame’s
busy status.

One of Swing’s lesser-known features is the ability to change the mouse cur-
sor on a per-component basis. Because the cursor change happens very
quickly, you could combine this ability with some simple threading to cre-
ate an animated cursor. This hack will show you how to create an animated
cursor useful for showing a busy status.

Any Swing component—even a frame—can have a custom cursor. The
application as a whole will retain the normal mouse cursor, but when the
user moves over the appropriately configured component, the cursor will
change to whatever is set for that component. This behavior lends itself
nicely to restricting user access during long running processes because the
rest of the application can look and feel responsive while the portion that
represents the process is visually unusable by the custom cursor.

Pre-Generating Images
The best way to manage a short animation is by pre-generating your images
in an array. This lets you loop through the array rather than creating a
bunch of nasty conditionals. If you later expand the animation, you can just
add more images to the array, leaving the rest of the code untouched.

444 | Chapter 12, Miscellany

#88 Display a Busy Cursor
HACK

First, you need to build an AnimatedCursor class and generate the images in
the constructor. In this case, the images are instances of the java.awt.Cursor
object. I used standard, predefined cursors to keep the code easy, but you
could also use cursors derived from custom images. A JFrame is passed into
the constructor and stored for later use, as you can see in Example 12-1.

AnimatedCursor implements Runnable because it will be threaded, and it
accepts action events to turn on and off the animation. You can reuse the
standard directional cursors, one for each compass direction, stored in a
Cursor array, which is eight items long.

Running the Animation
Next, you need to build the actual animation thread:

public void run() {
 int count = 0;
 while(animate) {
 try {
 Thread.currentThread().sleep(200);
 } catch (Exception ex) { }

 frame.setCursor(cursors[count % cursors.length]);
 count++;
 }
 frame.setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
}

Example 12-1. A simple animated cursor

public class AnimatedCursor implements Runnable, ActionListener {
 private boolean animate;
 private Cursor[] cursors;
 private JFrame frame;

 public AnimatedCursor(JFrame frame) {
 animate = false;
 cursors = new Cursor[8];
 this.frame = frame;
 cursors[0] = Cursor.getPredefinedCursor(Cursor.N_RESIZE_CURSOR);
 cursors[1] = Cursor.getPredefinedCursor(Cursor.NE_RESIZE_CURSOR);
 cursors[2] = Cursor.getPredefinedCursor(Cursor.E_RESIZE_CURSOR);
 cursors[3] = Cursor.getPredefinedCursor(Cursor.SE_RESIZE_CURSOR);
 cursors[4] = Cursor.getPredefinedCursor(Cursor.S_RESIZE_CURSOR);
 cursors[5] = Cursor.getPredefinedCursor(Cursor.SW_RESIZE_CURSOR);
 cursors[6] = Cursor.getPredefinedCursor(Cursor.W_RESIZE_CURSOR);
 cursors[7] = Cursor.getPredefinedCursor(Cursor.NW_RESIZE_CURSOR);
 }
}

Display a Busy Cursor #88

Chapter 12, Miscellany | 445

HACK

Like most run() methods, the previous code does something repeatedly in a
loop with a sleep() on each pass. In this case, you call setCursor() on the
frame and increment the count variable. Notice the code line:

cursors[count % cursors.length]

which will loop over each cursor in the array, wrapping when it reaches the
end. The mod operator (%) is indispensable for these types of calculations.
The loop also sleeps on every pass. I chose 200 ms because that lets the
cursor make a complete revolution every second and a half, which seemed
about right; you can adjust it to your taste:

public void actionPerformed(ActionEvent evt) {
 JButton button = (JButton)evt.getSource();
 if(animate) {
 button.setText("Start Animation");
 animate = false;
 } else {
 animate = true;
 button.setText("Stop Animation");
 new Thread(this).start();
 }
}

The actionPerformed() method starts and stops the animation thread. It
also updates the text on the JButton as further user feedback.

Put It All Together
public static void main(String[] args) {
 JFrame frame = new JFrame("Animated Cursor Hack");

 JButton button = new JButton("Start Animation");
 button.addActionListener(new AnimatedCursor(frame));

 frame.getContentPane().add(button);
 frame.pack();
 frame.show();
}

The main() method in the preceding code creates a frame with a control but-
ton. The AnimatedCursor applies directly to the frame so that the cursor will
animate whenever it’s over the window. A screen capture cannot really cap-
ture the effect, but when you put it together, it will look something like
Figure 12-1.

446 | Chapter 12, Miscellany

#89 Fun with Keyboard Lights
HACK

And More...
The most obvious enhancement is to use real images for the cursor, as the
many cursor packs available on the Web can attest (type “free cursors” into
Google and see what you get). Animated cursors could also be used to indi-
cate other elements of program state, such as network traffic or the current
tool in use. With a few images and the help of the setCursor() function, you
can do almost anything.

H A C K

#89
Fun with Keyboard Lights Hack #89

Flash the Caps Lock, Num Lock, and Scroll Lock keys for extra user
feedback.

The AWT and Swing APIs are huge and full of robust components and
frameworks for building big applications. They also have some dark corners
where the lesser-known functions live. While cruising through the JavaDoc
for java.awt.Toolkit, I ran across a function I had never noticed before,
despite it being in the API for over four years. This hack explores building a
keyboard busy indicator using the Toolkit.setLockingKeyState() function.

The root class of AWT, Toolkit, has a very interesting little function:
setLockingKeyState(). You pass it the KeyEvent for the key you want to lock
down and turn it on or off with the boolean. For most keyboards, this means
the Caps Lock, Num Lock, and Scroll Lock keys (some keyboards may also
have a Kana lock for Kanji support). Now that you have this nifty little func-
tion, what should you do with it?

My first thought was a busy cursor. If you’ve got three lights in a row, why
not blink them off and on in sequence? The code in Example 12-2 will flip
each light on and off in order, creating a moving bar effect (depending on
the order of your keyboard LEDs).

Figure 12-1. An animated cursor

Fun with Keyboard Lights #89

Chapter 12, Miscellany | 447

HACK

SpinnerThread is a Runnable implementation, meaning you can launch it with
new Thread(new SpinnerThread()).start(). The run() method starts an infi-
nite loop, ending only when the quit() method is called. The first thing to
notice is that the code saves the existing state of the buttons so that it can
restore them later. If you had Caps Lock on you’d probably still want it on
once the busy cursor leaves. Next, it sets all of the key states to false. This
puts them into a known position so that the animation looks right:

int key = -1;
boolean state = false;
// loop through 100 times
int counter = 0;
while(go) {
 // select each key every 3rd time
 if(counter%3 == 0) { key = KeyEvent.VK_NUM_LOCK; }
 if(counter%3 == 1) { key = KeyEvent.VK_CAPS_LOCK; }
 if(counter%3 == 2) { key = KeyEvent.VK_SCROLL_LOCK; }
 // flip the state
 state = tk.getLockingKeyState(key);
 tk.setLockingKeyState(key,!state);
 // sleep for 500 msec
 try { Thread.currentThread().sleep(500);
 } catch (InterruptedException ex) {}

 // increment counter
 counter++;
}

Example 12-2. Lights, camera, action

class SpinnerThread extends Thread {
 private boolean go;
 public void quit() {
 go = false;
 }
 public void run() {
 go = true;
 // get a toolkit
 Toolkit tk = Toolkit.getDefaultToolkit();

 // save the old key states
 boolean old_num, old_caps, old_scroll;
 old_num = tk.getLockingKeyState(KeyEvent.VK_NUM_LOCK);
 old_caps = tk.getLockingKeyState(KeyEvent.VK_CAPS_LOCK);
 old_scroll = tk.getLockingKeyState(KeyEvent.VK_SCROLL_LOCK);

 // set all keys to off
 tk.setLockingKeyState(KeyEvent.VK_NUM_LOCK,false);
 tk.setLockingKeyState(KeyEvent.VK_CAPS_LOCK,false);
 tk.setLockingKeyState(KeyEvent.VK_SCROLL_LOCK,false);

448 | Chapter 12, Miscellany

#89 Fun with Keyboard Lights
HACK

// restore the key settings
tk.setLockingKeyState(KeyEvent.VK_NUM_LOCK,old_num);
tk.setLockingKeyState(KeyEvent.VK_CAPS_LOCK,old_caps);
tk.setLockingKeyState(KeyEvent.VK_SCROLL_LOCK,old_scroll);

Next comes the loop, which flips one key each time through the loop,
cycling between the three keys. This is what produces the actual animation.
Once the loop is finished, the keyboard states are restored.

Revisiting this hack (I first wrote it for a blog on http://www.java.net), I have
been looking for other interesting ideas. One popped out at me as being
truly annoying, so I chose to include it here. The class in Example 12-3
flashes the Scroll Lock key on every keystroke. Thus, your computer will
keep in time with your typing. Is this the future of human-computer evolu-
tion, or just plain annoying?

The key, so to speak, of this hack is once again the Toolkit object. It con-
tains a very interesting method, addAWTEventListener(), that lets you add a
listener for every event dispatched throughout the JVM. This is equivalent to
putting a listener on each component in your entire program. This method
is mainly intended for debuggers and testing tools, but I’ve used it to listen
for application-wide keystroke events.

KeyboardFlasher implements the AWTEventListener interface and the main
method adds a new flasher to the toolkit as a listener. tk.addAWTEventListener’s
second argument, AWTEvent.KEY_EVENT_MASK, indicates that the listener should
receive key events only. If I wanted the program to also look for mouse clicks,
then I would do a bitwise OR (|) of KEY_EVENT_MASK with MOUSE_EVENT_MASK.
Finally, the main() method creates a text field in a frame to test out generating
keyboard events:

Example 12-3. Scroll Lock keeping up with typing

public class KeyboardFlasher implements AWTEventListener {

 public static void main(String[] args) {
 Toolkit tk = Toolkit.getDefaultToolkit();
 KeyboardFlasher flasher = new KeyboardFlasher();
 tk.addAWTEventListener(flasher, AWTEvent.KEY_EVENT_MASK);

 JFrame frame = new JFrame("Hack #89: Fun with Keyboard Lights");

 JTextField tf = new JTextField("this is some text");
 frame.getContentPane().add(tf);
 frame.pack();
 frame.setVisible(true);
 }

Fun with Keyboard Lights #89

Chapter 12, Miscellany | 449

HACK

public void eventDispatched(AWTEvent evt) {
 if(evt instanceof KeyEvent) {
 KeyEvent kevt = (KeyEvent)evt;
 if(kevt.getID() == KeyEvent.KEY_PRESSED) {
 System.out.println("key event: " + evt);
 if(kevt.getKeyCode() != KeyEvent.VK_SCROLL_LOCK) {
 flipScrollLock();
 }
 }
 }
}

public void flipScrollLock() {
 Toolkit tk = Toolkit.getDefaultToolkit();
 boolean state = tk.getLockingKeyState(KeyEvent.VK_SCROLL_LOCK);
 tk.setLockingKeyState(KeyEvent.VK_SCROLL_LOCK,!state);
}

As an implementation of AWTEventListener, KeyboardFlasher has one
required method only, eventDispatched(). This receives all events gener-
ated in the system. This implementation first checks that the event is indeed
a keyboard event, and then checks if it is a KEY_PRESSED event. This will dis-
tinguish between the key going down and the key going up. Then, the
method checks to make sure that the key pressed isn’t the Scroll Lock key.

If I didn’t add this check, the code would go into an infinite
loop, as each flip of the Scroll Lock key would generate a
new event and trigger a new flip.

Finally comes flipScrollLock(), which does exactly what it suggests: flips
the state of the Scroll Lock key each time it is called. In other words, it takes
two strokes to complete a cycle. For a faster effect, you could make the light
turn on with the downward stroke and then off again with the upward
stroke. You would just need to call flipScrollLock() twice, once for each
event.

setLockingKeyState() is one of those nut-ball little functions that seems to
have no purpose, but it sure lets us have some fun. What other uses can you
think up? A new email alert? A three-bar sound meter? A Wi-Fi strength
indicator?

450 | Chapter 12, Miscellany

#90 Create Demonstrations with the Robot Class
HACK

H A C K

#90
Create Demonstrations with the Robot Class Hack #90

Use the Robot class to control the mouse cursor and create interactive
software features.

One of the coolest things about Swing is that you can often use a class for
something completely different than what it was originally intended. The
java.awt.Robot class, for example, can move the mouse cursor programmat-
ically. This feature was originally intended for use by automated testing
tools (hence the name Robot), but I’ve found it very useful to demonstrate
software features by moving the mouse cursor through the same actions as
the user. Instead of just describing something in a help file, you can actually
show the user what to do—and this hack explains how.

I, Robot
To create a mouse animation, you need three things:

1. The ability to move the cursor

2. The start and end points of the animation

3. A way to smoothly interpolate the cursor position

The java.awt.Robot class has a variety of methods for capturing program
state and controlling the user interface, including Robot.mouseMove(), which
allows you to move the mouse cursor programmatically.

The following code is the implementation of a method moveMouse(), which
takes three arguments: a starting component, an ending component, and a
duration for the animation (in milliseconds). Because most demonstrations
involve showing the user a particular component, the easiest points to use
are the centers of start and end components. The mouse will smoothly move
from the center of the starting component to the center of the ending one.
We normally think of components as being positioned relative to their par-
ents, but since the Robot class uses absolute mouse positions, you’ll need to
convert the components to their screen locations:

public void moveMouse(JComponent start, JComponent end,
 final int duration) throws Exception {
 final Robot robot = new Robot();

 // get middle of start
 final Point start_coords = start.getLocationOnScreen();
 start_coords.translate(start.getWidth()/2,
 start.getHeight()/2);

Create Demonstrations with the Robot Class #90

Chapter 12, Miscellany | 451

HACK

 // get middle of end
 final Point end_coords = end.getLocationOnScreen();
 end_coords.translate(end.getWidth()/2,
 end.getHeight()/2);

 // create interpolation point and offsets
 int steps = duration/50;
 //Point current = new Point(start_coords);
 int distx = (end_coords.x - start_coords.x);
 int disty = (end_coords.y - start_coords.y);

 // move the mouse over 10 steps
 for(int i=1; i<=steps; i++) {
 int x = start_coords.x + i*distx/steps;
 int y = start_coords.y + i*disty/steps;
 robot.mouseMove(x,y);
 try { Thread.currentThread().sleep(50);
 } catch (Exception ex) {}
 }
}

This code creates a new Robot and calculates the center positions of the start
and end components using screen coordinates. steps is the number of
frames required to fill the specified duration. Since each frame will be 1/20
of a second long, the number of frames is the total duration divided by 50
ms. distx and disty are the distances between the two components in the
horizontal and vertical directions. With these values in hand, it is a simple
matter to interpolate a new position for each frame and then move the
mouse cursor there.

To test the system, you’ll need some sort of a demonstration program. The
code in Example 12-4 creates a fake file browser with a list of directories, a
list of files, and a toolbar with three buttons: Info, New Dir, and Delete. You
can see this in Figure 12-2.

Figure 12-2. Sample program to demonstrate mouse automation

452 | Chapter 12, Miscellany

#90 Create Demonstrations with the Robot Class
HACK

The demonstration program also contains a Help screen (shown in
Figure 12-3).

Example 12-4. A simple demonstration for the power of Robot

public class AutoMouseHack implements ActionListener {
 public JButton info, new_dir, delete;

 public void createDemo() {
 JFrame frame = new JFrame("File Flipper");

 String[] dirs = {".","..","build","docs","lib","src","www"};
 String[] files = {"build.xml","readme.txt"};
 JList dir_list = new JList(dirs);
 JList files_list = new JList(files);

 JSplitPane split = new JSplitPane(
 JSplitPane.HORIZONTAL_SPLIT,
 dir_list,files_list);

 info = new JButton("Info");
 new_dir = new JButton("New Dir");
 delete = new JButton("Delete");

 JPanel toolbar = new JPanel();
 toolbar.setLayout(new FlowLayout());
 toolbar.add(info);
 toolbar.add(new_dir);
 toolbar.add(delete);

 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add("North",toolbar);
 frame.getContentPane().add("Center",split);

 frame.pack();
 frame.show();
 }

Figure 12-3. Help text

Create Demonstrations with the Robot Class #90

Chapter 12, Miscellany | 453

HACK

This is an HTML pane with the help text in it, plus Close and Show Me but-
tons. Clicking Show Me will take control of the mouse cursor and show the
animation. Note that the JEditorPane switches to HTML mode automati-
cally if you put in a content type of text/html and start the body text with
<html>:

JButton showme;
public void createHelp() throws IOException {
 JFrame frame = new JFrame("Help");
 JButton close = new JButton("Close");
 showme = new JButton("Show Me");
 showme.addActionListener(this);

 JEditorPane html = new JEditorPane("text/html",
 "<html><body>" +

 "<p>Use the toolbar buttons to interact with the current window</p>."+
 "<p>Info display properties of the current file.</p>" +
 "<p>New Dir create a new directory</p>"+
 "<p>Delete delete the currently selected file</p>" +
 "<p>click <i>Show Me</i> below to see how it works</p>"
);

 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add("North",close);
 frame.getContentPane().add("Center",html);
 frame.getContentPane().add("South",showme);

 frame.pack();
 frame.setLocation(400,50);
 frame.setVisible(true);
}

public static void main(String[] args) throws Exception {
 AutoMouseHack hack = new AutoMouseHack();
 hack.createDemo();
 hack.createHelp();
}

With a demonstration program and some help text, now you can create the
actual animation. The moveMouse() function moves the mouse cursor from
one location to another over a certain amount of time. If you make the cur-
sor start and end on the same component, then it will act as a time delay,
making the cursor appear to pause over that component:

public void actionPerformed(ActionEvent evt) {
 try {
 moveMouse(showme, info, 2000);
 moveMouse(info, info, 1000);
 moveMouse(info, new_dir, 1000);
 moveMouse(new_dir, new_dir, 1000);
 moveMouse(new_dir, delete, 1000);

454 | Chapter 12, Miscellany

#91 Check Your Mail with Swing
HACK

 moveMouse(delete, delete, 1000);
 moveMouse(delete, showme, 500);
 } catch (Exception ex) {
 System.out.println(""+ex);
 }
}

The event handler moves the cursor from the showme button, which is where
the cursor will already be anyway, to the info toolbar button over a period
of two seconds. After that, the cursor will hop from button to button taking
one second to move with a one second pause over each button. Finally, the
cursor rushes back to the showme button in a half-second. It is important to
return the cursor to its starting position so that the user won’t have to hunt
for it after the animation is complete. It’s best to always return things to the
state you found them.

H A C K

#91
Check Your Mail with Swing Hack #91

Add email checking to your application with just a few method calls.

As email becomes a bigger part of our daily lives, I have seen it creep into
more and more places. My email program alerts me when there is new mail.
I can check my email via the phone. I log in to my web mail from an Inter-
net cafe. Email is everywhere, so why shouldn’t it be in your Swing applica-
tion? This hack shows how to embed in your application an email checker
that shows the current number of unread messages and can launch the
user’s email application.

Dealing with email servers can be a complicated and tricky business. To
help address these issues, Sun created the JavaMail API, which is a set of
classes defining a vendor-neutral interface for accessing email servers.

Sun’s sample implementation provides IMAP support, which
is what I will demonstrate here. If you have another kind of
email server, such as Exchange, you could install your own
service provider and use it the same way.

The code in this hack needs to do two things. First, it must open a connec-
tion to the email server periodically and check for new mail. Second, it must
launch the user’s email program on a double-click. I have encapsulated the
email checking and launching code into separate classes, making it very easy
to add to an existing program.

Check Your Mail with Swing #91

Chapter 12, Miscellany | 455

HACK

The EmailChecker class, shown in Example 12-5, is a simple Runnable imple-
mentation that receives a JLabel to its constructor. The run loop will sleep
for a certain amount of time (one minute in this case) then call checkEmail().
Every time there is new mail, it will set the text of the label to something like
“You have N new messages.”

Next comes the checkEmail() implementation:

public synchronized void checkEmail() throws Exception {
 String username = "joshy@code.joshy.org";
 String password = "satans";
 String hostname = "code.joshy.org";
 int port = 143;

 Properties props = System.getProperties();
 Session sess = Session.getDefaultInstance(props);
 sess.setDebug(true);

To actually check the email, you need to first collect the relevant parame-
ters: the username, password, hostname of the email server, and the port
(usually 143 for IMAP servers). In addition to this information, you also
need a copy of the system properties to allocate an email Session.

Example 12-5. Checking for new messages

import java.util.Properties;
import javax.swing.JLabel;
import javax.swing.SwingUtilities;
import javax.mail.*;

public class EmailChecker implements Runnable {
 private JLabel label;
 public EmailChecker(JLabel label) {
 this.label = label;
 }

 public void run() {
 while(true) {
 try {
 checkEmail();
 Thread.currentThread().sleep(1000*60); // sleep 1 min
 } catch (Exception ex) {
 System.out.println("exception: " + ex);
 ex.printStackTrace();
 }
 }

 }

456 | Chapter 12, Miscellany

#91 Check Your Mail with Swing
HACK

In a more advanced version of this hack, you could override
some of the system properties to change the installed email
provider or modify other settings.

Once you have the session, you can open an IMAP email store and connect
to it:

 Store store = sess.getStore("imap");
 store.connect(hostname, port, username, password);

 Folder inbox = store.getFolder("INBOX");
 final int new_count = inbox.getUnreadMessageCount();

 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 label.setText("You have " + new_count + " unread messages.");
 System.out.println("unread messages = " + new_count);
 }
 });
} // end checkEmail()

This code connects to the email store and then opens the INBOX folder.
Some email servers may use a different name for the inbox folder, but
INBOX should suffice for most IMAP servers. Finally, you can get the
unread message count. Once you have obtained the new message count, you
can set the text of the label. It’s important to do this on the Swing thread,
however, which is why the code uses SwingUtilities.invokeLater() to per-
form the operation.

The second task for this hack is to actually launch the user’s email program.
Detecting the default email program is difficult and error prone. If you don’t
want to use a native library like JDIC, then your only option is to ask the
user where his program is and launch it with Runtime.exec(). Example 12-6
takes care of this, which turns out to be mercifully simple.

Example 12-6. Asking the user for an email program

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;

public class EmailLauncher extends MouseAdapter {
 public void mousePressed(MouseEvent evt) {
 if(evt.getClickCount() >= 2) {
 launchEmailReader();
 evt.consume();
 }
 }

Check Your Mail with Swing #91

Chapter 12, Miscellany | 457

HACK

I implemented EmailLauncher as a mouse listener that looks for a double-
click, which makes it very easy to add to any component with a simple
addMouseListener() call. I have hardcoded the path to my email program,
but a more advanced version of this hack would use a preferences screen to
ask the user.

Example 12-7 is a simple program that creates a frame with one JLabel to
show the mail status. It attaches an EmailLauncher to the status label as a
mouse listener and then launches the EmailChecker in its own thread just
before making the frame visible.

Once you compile the program and run it, you should see something like
Figure 12-4.

This is a pretty simple hack, but it should give you inspiration to try other
embedded features, such as checking RSS feeds or playing MP3s.

 public void launchEmailReader() {
 try {
 Runtime rt = Runtime.getRuntime();
 rt.exec("C:\\Program Files\\Mozilla Thunderbird\\thunderbird.exe");
 } catch (Exception ex) {
 System.out.println(ex.getMessage());
 ex.printStackTrace();
 }
 }
}

Example 12-7. Testing out the email utilities

public class EmailTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hack #91: Check Your Mail with Swing");
 JLabel status = new JLabel("You have XXX unread messages.");
 frame.getContentPane().add(status);
 frame.pack();
 status.addMouseListener(new EmailLauncher());

 EmailChecker email = new EmailChecker(status);
 new Thread(email).start();

 frame.setVisible(true);
 }
}

Example 12-6. Asking the user for an email program (continued)

458 | Chapter 12, Miscellany

#91 Check Your Mail with Swing
HACK

For a more graphical effect, you could use the email icons from the win-
dows system fonts. WebDings and WingDings contain the email icons
shown in Figures 12-5 and 12-6.

However, Windows does strange codepage mapping, so these fonts aren’t
simple translations of letters to symbols. Instead, you will have to use the
true Unicode values for the glyphs you want:

Figure 12-4. Email checker running

Figure 12-5. “Have Mail” icon

Figure 12-6. “No Mail” icon

Don’t Block the GUI #92

Chapter 12, Miscellany | 459

HACK

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 //label.setText("You have " + new_count + " unread messages.");
 if(new_count > 0) {
 label.setFont(new Font("WebDings",
 Font.PLAIN,40));//label.getFont().getSize()));
 label.setText(""+(char)0xf099);
 } else {
 label.setFont(new Font("WingDings",
 Font.PLAIN,40));//label.getFont().getSize()));
 label.setText(""+(char)0x2709);
 }
 System.out.println("unread messages = " + new_count);
 }
});

This code will set the label to character 0xf099 in the WebDings font (the
envelope with a lightning bolt) if there is at least one unread email. If there
are no unread emails, it will use character 0x2709 in the WingDings font (a
plain envelope).

Java doesn’t support all of the glyphs in certain custom
fonts, so be sure to test your applications before going into
production whenever you use non-ASCII fonts.

H A C K

#92
Don’t Block the GUI Hack #92

Thread your heavy lifting so the event-dispatch thread stays responsive.

Practically every AWT and Swing book you’ll ever see keeps things simple
by responding to button clicks, menu selections, and other actions by doing
something in the event listener. That’s probably good for helping you learn
the various GUI widgets, but it sets you up for a really bad habit: putting
increasingly long-lasting calls in your event callbacks.

This is bad because the thread that calls actionPerformed(), valueChanged(),
and other event-based methods is the same thread that services GUI events
throughout AWT and Swing. The AWT Event Dispatch Thread is responsi-
ble for polling for events, dispatching them to listeners, and for repainting
everything. If you block it on some long-lasting call—such as database or
network access, intense calculation, etc.—then mouse clicks and key-presses
won’t be processed, menus won’t be available, portions of your GUI may
not get repainted if they become obscured by other windows, etc. Oh, and
the user will hate you. Just so you know.

460 | Chapter 12, Miscellany

#92 Don’t Block the GUI
HACK

The trick, then, is to keep heavy lifting out of the event-dispatch thread.
There’s a very straightforward way to do this in Java: move complicated pro-
cessing to its own thread, and let event dispatching continue immediately
after starting this new thread. Then you just have to deal with cleanup when
the launched thread finishes up.

AWTBlockDemo, shown in Example 12-8, offers a test bed for exhibiting and
fixing the problem. It offers a JTextField along with two JButtons: Load
(blocking) and Load (non-blocking). A menu also offers the blocking and
non-blocking load as JMenuItems, along with a Quit menu item.

The text field takes a URL. When you click one of the load buttons or menu
items, it loads the file at that address into the text area. The text area is pre-
populated with the address for java.awt.Component in Sun’s JavaDoc, a nice
300 KB file that will take a little while to load, even with a fast network
connection.

If your network is really fast, you can put some Thread.
sleep() calls in the code to simulate a slower network.

The code for the demo is shown in Example 12-8.

Example 12-8. Demonstration of both blocking and not blocking the AWT event-dispatch
thread during lengthy actions

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.net.*;

public class AWTBlockDemo extends JFrame {

 JButton blockButton, dontBlockButton;
 JMenuItem blockMenuItem, dontBlockMenuItem, quitMenuItem;
 JTextField urlField;
 JTextArea contentArea;
 final static String DEFAULT_URL =
 "http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Component.html";
 Thread loaderThread;

 public AWTBlockDemo () {
 super ("AWT Thread Blocking");
 initMainLayout();
 initMenus();
 initActions();
 }

Don’t Block the GUI #92

Chapter 12, Miscellany | 461

HACK

 private void initMainLayout() {
 urlField = new JTextField (DEFAULT_URL, 60);
 JPanel topPanel = new JPanel ();
 topPanel.setLayout (new BoxLayout (topPanel, BoxLayout.Y_AXIS));
 topPanel.add (urlField);
 JPanel buttonPanel = new JPanel();
 blockButton = new JButton ("Load (blocking)");
 dontBlockButton = new JButton ("Load (non-blocking)");
 buttonPanel.add (blockButton);
 buttonPanel.add (dontBlockButton);
 topPanel.add (buttonPanel);
 contentArea = new JTextArea (25, 60);
 JScrollPane scroller =
 new JScrollPane (contentArea,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add (topPanel, BorderLayout.NORTH);
 getContentPane().add (scroller, BorderLayout.CENTER);
 }

 private void initMenus() {
 JMenuBar bar = new JMenuBar();
 JMenu fileMenu = new JMenu ("File");
 blockMenuItem = new JMenuItem ("Load (blocking)");
 dontBlockMenuItem = new JMenuItem ("Load (non-blocking)");
 fileMenu.add (blockMenuItem);
 fileMenu.add (dontBlockMenuItem);
 fileMenu.addSeparator();
 quitMenuItem = new JMenuItem ("Quit");
 fileMenu.add (quitMenuItem);
 bar.add (fileMenu);
 setJMenuBar (bar);
 }

 private void initActions() {
 quitMenuItem.addActionListener (new QuitAction());
 BlockingLoadAction blocker = new BlockingLoadAction();
 blockButton.addActionListener (blocker);
 blockMenuItem.addActionListener (blocker);
 NonBlockingLoadAction nonBlocker = new NonBlockingLoadAction();
 dontBlockButton.addActionListener (nonBlocker);
 dontBlockMenuItem.addActionListener (nonBlocker);
 }

 public static void main (String[] args) {
 AWTBlockDemo awtbd = new AWTBlockDemo();
 awtbd.pack();
 awtbd.setVisible (true);
 }

Example 12-8. Demonstration of both blocking and not blocking the AWT event-dispatch
thread during lengthy actions (continued)

462 | Chapter 12, Miscellany

#92 Don’t Block the GUI
HACK

 public void loadURL(boolean useWorker) {
 try {
 URL url = new URL (urlField.getText());
 BufferedReader in =
 new BufferedReader (
 new InputStreamReader (url.openStream()));
 StringBuffer sbuf = new StringBuffer();
 char[] buffy = new char [16 * 1024];
 int bytesRead = 0;
 while ((bytesRead = in.read (buffy, 0, buffy.length)) > -1) {
 sbuf.append (buffy, 0, bytesRead);
 // if your net connection is too fast to see blocking
 // add the following here:
 // Thread.sleep (50);
 }
 if (! useWorker) {
 contentArea.setText (sbuf.toString());
 contentArea.setCaretPosition(0);
 } else {
 final StringBuffer finalSBuf = sbuf;
 Thread worker = new Thread() {
 public void run () {
 contentArea.setText (finalSBuf.toString());
 contentArea.setCaretPosition(0);
 }
 };
 SwingUtilities.invokeLater (worker);
 }
 } catch (Exception e) {
 CharArrayWriter writer = new CharArrayWriter();
 e.printStackTrace (new PrintWriter (writer));
 contentArea.setText(writer.toString());
 contentArea.setCaretPosition(0);
 }
 }

 class QuitAction extends AbstractAction {
 public void actionPerformed (ActionEvent e) {
 System.exit(0);
 }
 }

 class BlockingLoadAction extends AbstractAction {
 public void actionPerformed (ActionEvent e) {
 // note that threaded version doesn't offer a means of
 // being interrupted so it refuses second launch instead
 if (loaderThread != null)
 return;
 loadURL(false);
 }
 }

Example 12-8. Demonstration of both blocking and not blocking the AWT event-dispatch
thread during lengthy actions (continued)

Don’t Block the GUI #92

Chapter 12, Miscellany | 463

HACK

To Block or Not to Block
The demo application is shown in Figure 12-7.

 class NonBlockingLoadAction extends AbstractAction implements Runnable {
 // note that this doesn't offer a means of being interrupted
 // so it refuses second launch instead
 public void actionPerformed (ActionEvent e) {
 if (loaderThread != null)
 return;
 loaderThread = new Thread ((Runnable) this);
 loaderThread.start();
 }
 public void run() {
 loadURL(true);
 loaderThread = null;
 }
 }

}

Figure 12-7. Blocking and not blocking AWT event dispatch by loading a URL into a
JTextArea

Example 12-8. Demonstration of both blocking and not blocking the AWT event-dispatch
thread during lengthy actions (continued)

464 | Chapter 12, Miscellany

#92 Don’t Block the GUI
HACK

After launching the application, try loading the same address with the block-
ing and non-blocking Load buttons. In the blocking version, you should see
that you can’t open the JMenu or reposition the caret in the JTextField. If
you’ve already filled the JTextArea, you’ll find that the scrollbar is unrespon-
sive while you’re blocking. Drag a window over the demo and then bring the
demo to the foreground—on some operating systems, the area previously
obscured by the window won’t repaint.

Of course, none of this happens when you use the non-blocking version.

Take a look back at Example 12-8. There are separate Actions for the
blocking and non-blocking buttons and menu items; but in the end, both of
them call loadURL(). The difference is how they call it: the
BlockingLoadAction calls loadURL() directly in actionPerformed(), while the
NonBlockingLoadAction creates a Thread and runs it. As an aside, both of
these methods check to see if there’s already a thread running from the
NonBlockingLoadAction, as you wouldn’t want two of these threads running
at once, since the first one would populate the text area only to have it clob-
bered when the second finished.

But back to the point: because the non-blocking load is only responsible for
creating and starting a thread, it returns almost immediately. When you use
this loading option, you should find that the GUI remains extremely respon-
sive—menus are viewable, the text field is responsive, you can drag the
scrollbar, etc.

The only thing that’s a little tricky in the threaded case is what to do when
the thread finishes. Swing is not thread-safe, so you’re not supposed to make
Swing calls from any thread other than the event-dispatch thread. If you do,
you’ll eventually create crazy bugs that look like NullPointerExceptions or
ArrayIndexOutOfBoundsExceptions, but which are really coming from two
threads trying to work with one widget at the same time, thus setting and
resetting its variables in hard-to-debug race conditions.

Now, you might be thinking, “wasn’t getting code off of the event-dispatch
thread the whole point of this exercise?” Only to a certain extent—the strat-
egy is to put as little on event dispatch as possible, but you still need to put
any Swing calls on it. So, you put the network loading in its own thread, but
put the update to the JTextArea back on event dispatch. In other words:
“render unto event dispatch what is Swing’s…”.

You can do your Swing work with a worker thread, which is actually just
any Runnable, typically one whose run() method does some Swing work. By
calling SwingUtilities’ invokeAndWait() or invokeLater()—the difference is

Code Models That Don’t Block #93

Chapter 12, Miscellany | 465

HACK

in whether you want the Runnable executed immediately or in a few milli-
seconds, and whether you’re willing to handle an InterruptedException—
you can put the code in the worker back on the event-dispatch thread. This
scheme is effectively a callback method, but instead of being concerned
about being called from some event, you’re interested in ensuring you’re
called by a given thread, namely the event-dispatch thread.

In the doRun() implementation, you’ll notice that there’s a flag for whether
or not to use a worker. The blocking version doesn’t, and doesn’t need to,
since it’s already being called from the event-dispatch thread. The non-
blocking version does, but it uses a worker only to reset the contents of the
text area after downloading the contents of the URL:

final StringBuffer finalSBuf = sbuf;
Thread worker = new Thread() {
 public void run () {
 contentArea.setText (finalSBuf.toString());
 contentArea.setCaretPosition(0);
 }
};
SwingUtilities.invokeLater (worker);

Notice how a final variable is used for the StringBuffer.
The anonymous inner thread can see class and instance vari-
ables but not local variables like sbuf. It can, however, see a
final local variable, so that’s what you pass in.

H A C K

#93
Code Models That Don’t Block Hack #93

Models should know that they’re doing work on another thread.

You already know how to keep Swing responsive by moving expensive oper-
ations off the event-dispatch thread [Hack #92]. However, one downside to that
approach is that it uses a separate inner class to coordinate the interaction
between the work being done on the other thread and the Swing compo-
nents. If you reused the same widgets in several places, you wouldn’t want
to have to write the “start a thread and populate when done” code over and
over again. So don’t. Why couldn’t the model be responsible for this sort of
behavior?

Well, the model can—you just have to do a little thinking. Models in Swing
are generally in two states: null (no data) or populated with data. What if
you had a third state, one that indicated that the model was still loading its
data?

466 | Chapter 12, Miscellany

#93 Code Models That Don’t Block
HACK

Models Aren’t Always Dumb
Adapt Example 12-8 to create AWTBlockModels.java. To illustrate the load-
ing, this hack has a JProgressBar that you need to declare before the con-
structor, and which you add at the bottom of initMainLayout():

progressBar = new JProgressBar (0, 100);
getContentPane().add (progressBar, BorderLayout.SOUTH);

The strategy in this hack is to make the JTextArea’s model responsible for its
own threaded loading, so get rid of the loadURL() method. That code will
move to the models, which subclass javax.swing.text.PlainDocument. First,
change the actions to use these documents:

class BlockingLoadAction extends AbstractAction {
 public void actionPerformed (ActionEvent e) {
 BlockingURLDocument bud =
 new BlockingURLDocument (urlField.getText());
 progressBar.setEnabled (true);
 progressBar.setValue (0);
 contentArea.setDocument (bud);
 progressBar.setValue (100);
 }
}

class NonBlockingLoadAction extends AbstractAction {
 public void actionPerformed (ActionEvent e) {
 NonBlockingURLDocument nbud =
 new NonBlockingURLDocument (urlField.getText());
 contentArea.setDocument (nbud);
 // makeProgressBarUpdaterFor (nbud);
 }
}

The actions are pretty much the same, except for the fact that the blocking
version sets the JProgressBar before and after setting the JTextArea’s docu-
ment. Why doesn’t the non-blocking action touch the progress bar? We’ll
get back to that.

Example 12-9 is the blocking document, so named because it loads all the
data from the URL in its constructor, which will cause the Action’s construc-
tor to block until everything is loaded.

Example 12-9. A document that will block while loading a URL

class BlockingURLDocument extends PlainDocument {
 public BlockingURLDocument (String urlString) {
 super();
 try {
 URL url = new URL (urlField.getText());
 BufferedReader in =
 new BufferedReader (
 new InputStreamReader (url.openStream()));

Code Models That Don’t Block #93

Chapter 12, Miscellany | 467

HACK

The implementation here is pretty simple: read bytes and stuff them into a
StringBuffer until the stream is exhausted, then stuff them into the Document
with insertString(). This makes for clean code because the Document loads
its own data. The downside is that the caller, which is on the event-dispatch
thread, blocks until all the data is read and inserted into the Document. And,
of course, a blocked event-dispatch thread means nothing in your GUI gets
repainted, mouse events aren’t processed…basically, nobody’s happy.

A more enlightened approach requires a Document to load its own data and
yet not block the caller. In other words, it will need to return almost imme-
diately, thread whatever work doesn’t need to be on event dispatch, and use
a worker thread to do the Swing work in a thread-safe manner.
Example 12-10 is what a non-blocking document looks like.

 StringBuffer sbuf = new StringBuffer();
 char[] buffy = new char [16 * 1024];
 int bytesRead = 0;
 while ((bytesRead = in.read (buffy, 0, buffy.length)) > -1) {
 sbuf.append (buffy, 0, bytesRead);
 // if your net connection is too fast to see blocking
 // add the following here
 // Thread.sleep (1000);
 }
 remove (0, getLength());
 insertString (0, sbuf.toString(), null);
 } catch (Exception e) {
 CharArrayWriter writer = new CharArrayWriter();
 e.printStackTrace (new PrintWriter (writer));
 try {
 remove (0, getLength());
 insertString (0, writer.toString(), null);
 } catch (Exception e2) {e2.printStackTrace();}
 }
 }
}

Example 12-10. Document that will not block on URL loading

class NonBlockingURLDocument extends PlainDocument
 implements Runnable {
 protected int length = -1;
 protected int totalBytesRead = 0;
 protected String urlString;
 protected Thread readThread;
 public NonBlockingURLDocument (String urlString) {
 super();
 this.urlString = urlString;

Example 12-9. A document that will block while loading a URL (continued)

468 | Chapter 12, Miscellany

#93 Code Models That Don’t Block
HACK

 // start thread here
 readThread = new Thread (this);
 readThread.start();
 }
 public void run() {
 try {
 remove (0, getLength());
 URL url = new URL (urlField.getText());
 URLConnection conn = url.openConnection();
 length = conn.getContentLength();
 System.out.println ("length is " + length);
 BufferedReader in =
 new BufferedReader (
 new InputStreamReader (conn.getInputStream()));
 char[] buffy = new char [16 * 1024];
 totalBytesRead = 0;
 int bytesRead = -1;
 while ((bytesRead = in.read (buffy, 0, buffy.length)) > -1) {
 final String str = new String (buffy, 0, bytesRead);
 final int finalTBR = totalBytesRead;
 Runnable worker = new Runnable () {
 public void run() {
 try {
 insertString (finalTBR, str, null);
 } catch (BadLocationException ble) {
 ble.printStackTrace();
 }
 }
 };
 SwingUtilities.invokeLater (worker);
 totalBytesRead += bytesRead;
 System.out.println ("read " + totalBytesRead +
 " of " + length +
 ", progress == " + getProgress());
 // if your net connection is too fast to see updating,
 // make buffy smaller above (maybe 512 bytes) and
 // add the following here:
 // Thread.sleep (500);
 }

 } catch (Exception e) {
 CharArrayWriter writer = new CharArrayWriter();
 e.printStackTrace (new PrintWriter (writer));
 try {
 remove (0, getLength());
 insertString (0, writer.toString(), null);
 } catch (Exception e2) {e2.printStackTrace();}
 } finally {
 readThread = null;
 }
 }

Example 12-10. Document that will not block on URL loading (continued)

Code Models That Don’t Block #93

Chapter 12, Miscellany | 469

HACK

In this case, all the loading is done in a run() method, so the constructor
simply creates a Thread called readThread to wrap the run(), starts the thread,
and then returns, freeing up the event-dispatch thread almost immediately.

So, now it’s up to readThread to read the stream and load its contents into
the Document. As in the blocking version (Example 12-9), it reads bytes into a
buffer, but instead of building a big StringBuffer with which to do a mass-
insert, it uses Document’s insertString() method to put each bufferful into
the document. Since insertString() will cause the model to fire off events,
this will provide for a constant updating of the view; that’s why this version
calls insertString() each time through the loop instead of once at the bot-
tom, as the blocking version did. However, insertString() is a Swing
method, meaning it’s thread-unsafe, so you can’t call it directly from the
readThread. Instead, you set up a worker and use SwingUtilities.
invokeLater() to put the insertString() call, and only that call, back onto
the event-dispatch thread.

Running the Code
If you have a fast Internet connection, it is possible that you’ll load the data
so fast that you don’t mind the blocking or you can’t see the incremental
updating of the non-blocking version. To make this more dramatic, increase
the time that each model sleep()s, and reduce the size of the buffer used to
read bytes from the InputStream. To show the incremental, non-blocking
update in Figure 12-8, I set the sleep() time to 500 milliseconds and the
buffer size to a mere 80 bytes.

Now you have a URL-loading document and a model for JTextComponents
that will handle its own threaded loading and can thus be dropped into any
JTextComponent without needing to add any other code to manage its
threaded operation.

 public boolean isAlive() {
 return (readThread != null) && (readThread.isAlive());
 }
 public float getProgress() {
 return (float) totalBytesRead/length;
 }
}

Example 12-10. Document that will not block on URL loading (continued)

470 | Chapter 12, Miscellany

#93 Code Models That Don’t Block
HACK

Exposing the Threading
But what if a caller wants to manage threading? You might want to at least
expose the fact that a thread is still updating and have the rest of your code
be aware of that state.

Notice that the NonBlockingURLDocument exposes a pair of extra methods—
isAlive() and getProgress()—that aren’t required by Document or anything
else in javax.swing.text. These are extra methods I tossed into the demo to
support the progress bar mentioned earlier in this hack.

The strategy here is to have an outside caller periodically check in on the
NonBlockingURLDocument, get its progress, and update a progress bar. Notice I
said periodically: this is a job for javax.swing.Timer! Using the Swing timer,
you get regular callbacks, and your code is guaranteed to be on the event-
dispatch thread.

So, uncomment the makeProgressBarUpdaterFor() call shown earlier, and
add this implementation of that method, along with a helper method:

Figure 12-8. Progressive self-update of a JTextArea’s document

Code Models That Don’t Block #93

Chapter 12, Miscellany | 471

HACK

private void makeProgressBarUpdaterFor (NonBlockingURLDocument nbud) {
 final NonBlockingURLDocument updatingDoc = nbud;
 updateProgressBar (0);
 ActionListener callback = new ActionListener() {
 public void actionPerformed (ActionEvent ev) {
 progressBar.setEnabled (true);
 int progress = (int) (updatingDoc.getProgress() * 100);
 updateProgressBar (progress);
 if (! updatingDoc.isAlive())
 progressBarUpdater.stop();
 }
 };
 progressBarUpdater = new javax.swing.Timer (2000, callback);
 progressBarUpdater.start();
}

private void updateProgressBar (int progress) {
 // System.out.println ("update progress bar: " + progress);
 if (progress > 0) {
 progressBar.setValue (progress);
 }
 else
 progressBar.setEnabled (false);
}

The makeProgressBarUpdaterFor() method creates a Timer that calls back to
the given ActionListener every two seconds. The ActionListener gets the
progress from the NonBlockingURLDocument and calls updateProgressBar(),
which updates the progress bar if the value is positive, and disables the bar if
it’s negative. Also, if the document is no longer loading, the callback stops
the Timer.

You might be thinking “why would I have to check for negative progress?”
As it turns out, it’s an unfortunate implementation detail: a lot of web serv-
ers send -1, meaning unknown, as the HTTP content-length header. If you
look around, you’ll find sites that do send a valid content length.
Figure 12-9 shows an incremental load of http://www.oreilly.com/.

This approach used URLs and Documents, but the approach is widely appli-
cable to other kinds of models—list models, tables models, etc.—and would
be well suited to other kinds of slow-to-load data. It should be straight-
forward to see how you could take this approach to create, say, a TableModel
that’s passed a java.sql.Connection and populates its rows progressively
with database queries, without blocking the AWT and without making the
user wait to see the first few rows of data.

472 | Chapter 12, Miscellany

#94 Fire Events and Stay Bug Free
HACK

H A C K

#94
Fire Events and Stay Bug Free Hack #94

Most developers think that writing an event-firing method is trivial. Most
developers are wrong.

As you develop your own Swing components, it’s likely that you’ll eventu-
ally need to have them fire off events; this comes up as soon as you have a
model that needs to update a view. If you’ve strongly typed everything by
writing new classes for the model, view, event, and listener, then you’ll have
to write your own fire method.

Most developers assume this to be trivial. For example, to manage a list of
FooListeners, they’ll typically maintain a Vector or ArrayList and fire off the
event with a block like this:

Iterator it = listeners.iterator();
while (it.hasNext())
 ((FooListener).it.next()).handleEvent (fooEvent);

And there you have it. It’s simple. It’s clean. It’s elegant. It’s wrong.

Figure 12-9. Incremental self-loading with a progress bar

Fire Events and Stay Bug Free #94

Chapter 12, Miscellany | 473

HACK

The Problem
To illustrate the problem and its various solutions, consider the listener class
in Example 12-11.

This listener hangs on to a String and prints that string to standard out
when handleEvent() is called. Also, if the string is a specific value—C in this
case—it removes itself from the event source. If you can see why that’s going
to be a big deal, congratulations. If not, read on.

Next, define an abstract class to exercise various means of firing the event.
This is shown in Example 12-12.

This abstract class requires subclasses to include addListener(),
removeListener(), and fireEvent() methods. It also implements a test
method that creates five listeners, identified as the letters A through E, and
fires an event to each one.

Example 12-11. A simple event listener

import java.util.*;

public class TestEventListener extends Object
 implements EventListener {
 String id;
 public TestEventListener (String id) {
 this.id = id;
 }
 public void handleEvent (EventObject o) {
 System.out.println (id + " called");
 if (id.equals ("C")) {
 ((TestEventSource) o.getSource()).removeListener (this);
 }
 }
}

Example 12-12. Abstract class for testing event-firing techniques

public abstract class TestEventSource {
 public abstract void addListener (TestEventListener l);
 public abstract void removeListener (TestEventListener l);
 public abstract void fireEvent (java.util.EventObject o);
 public void test() {
 addListener (new TestEventListener ("A"));
 addListener (new TestEventListener ("B"));
 addListener (new TestEventListener ("C"));
 addListener (new TestEventListener ("D"));
 addListener (new TestEventListener ("E"));
 fireEvent(new java.util.EventObject(this));
 }
}

474 | Chapter 12, Miscellany

#94 Fire Events and Stay Bug Free
HACK

Now, to show why the obvious way of firing the event is wrong, consider
the PathologicalIteratingEventSource in Example 12-13. This does exactly
what the introduction to this hack advocated—it has an ArrayList to hold
the listeners, and it uses an Iterator to fire off the event to the listeners.

So, what happens when you run it? Here’s the output:

 [tonberry] cadamson% java PathologicalIteratingEventSource
A called
B called
C called
Exception in thread "main" java.util.ConcurrentModificationException
 at java.util.AbstractList$Itr.checkForComodification(
 AbstractList.java:448)
 at java.util.AbstractList$Itr.next(AbstractList.java:419)
 at PathologicalIteratingEventSource.fireEvent(
 PathologicalIteratingEventSource.java:19)
 at TestEventSource.test(TestEventSource.java:11)
 at PathologicalIteratingEventSource.main(
 PathologicalIteratingEventSource.java:27)

Example 12-13. Iterating over listeners to fire events

import java.util.*;

public class PathologicalIteratingEventSource
 extends TestEventSource {

 ArrayList listeners = new ArrayList();

 public void addListener (TestEventListener l) {
 listeners.add (l);
 }

 public void removeListener (TestEventListener l) {
 listeners.remove (l);
 }

 public void fireEvent (EventObject o) {
 Iterator it = listeners.iterator();
 while (it.hasNext()) {
 TestEventListener l = (TestEventListener) it.next();
 l.handleEvent (o);
 }
 }

 public static void main (String[] args) {
 PathologicalIteratingEventSource pies =
 new PathologicalIteratingEventSource();
 pies.test();
 }
}

Fire Events and Stay Bug Free #94

Chapter 12, Miscellany | 475

HACK

So, what happened? The problem is obviously with the C listener, the one
that removes itself after being called. In fact, this removal is what causes the
disaster—the ConcurrentModificationException indicates that you’re trying
to change the Collection that underlies the Iterator, while iterating over it.

And It Gets Worse
At least Java 1.2 has a fail-fast exception for this. Back in Java 1.1, without
Collections, you might have used a for loop instead of an Iterator to count
over the listeners. Example 12-14 shows what that might look like.

Good news: this doesn’t throw an exception. Bad news: this doesn’t throw
an exception, as seen in the console output:

 [tonberry] cadamson% java PathologicalForLoopEventSource
A called
B called
C called
E called

Example 12-14. Using a for-loop to fire events

import java.util.*;

public class PathologicalForLoopEventSource
 extends TestEventSource {

 ArrayList listeners = new ArrayList();

 public void addListener (TestEventListener l) {
 listeners.add (l);
 }

 public void removeListener (TestEventListener l) {
 listeners.remove (l);
 }

 public void fireEvent (EventObject o) {
 for (int i=0; i<listeners.size(); i++) {
 TestEventListener l = (TestEventListener) listeners.get(i);
 l.handleEvent (o);
 }
 }

 public static void main (String[] args) {
 PathologicalForLoopEventSource pfles =
 new PathologicalForLoopEventSource();
 pfles.test();
 }
}

476 | Chapter 12, Miscellany

#94 Fire Events and Stay Bug Free
HACK

The obvious question here is: why didn’t D get called? Well, think about it:
you iterate over the listeners by index, from 0 to 4. On index 2, the code
calls C’s handleEvent(), which removes itself from the ArrayList. As a result,
D, which was at index 3, is now at index 2. But having serviced index 2
(which was C), the for loop moves on to index 3, which is now listener E.
Thus, D never gets called.

That was a lot of fun the first time I got to debug it.

Hacking a Solution
Consider an alternative approach. Counting up gets you in trouble because a
listener that removes itself shifts the indices of all subsequent listeners. But if
you counted down—from the last listener to the first—then a listener could
remove itself safely.

In these examples, this would mean counting from index 4 down to 0. On
index 2, listener C removes itself, but that doesn’t change the indices of the
listeners that haven’t been called yet, which are at indices 0 and 1.

All you have to do is change the fireEvent() method in the
BackwardsForLoopEventSource class:

public void fireEvent (EventObject o) {
 for (int i=listeners.size()-1; i>=0; i--) {
 TestEventListener l = (TestEventListener) listeners.get(i);
 l.handleEvent (o);
 }
}

Run this modified code and you get the output shown here:

 [tonberry] cadamson% java BackwardsForLoopEventSource
E called
D called
C called
B called
A called

Woo hoo! It works! All five listeners get called.

Does the event order matter? Do you need to require that listeners are called
in the order they were added? If so, you might do something else, like going
back to the Iterator approach and making a clone that you iterate over. But
that’s not really necessary.

Fire Events and Stay Bug Free #94

Chapter 12, Miscellany | 477

HACK

Surprisingly, the “count backward” approach is how Swing’s classes handle
this problem. If you look in the source of Swing objects that have fireXXX()
methods, you’ll see they generally use javax.swing.event.EventListenerList.
This class maintains a list in which each pair of elements defines a listener:
each even-numbered entry is the Class of a listener, and each odd-num-
bered entry is the listener itself. This means you have to go through the list
two entries at a time, checking the class and then firing the event to the lis-
tener. It’s kind of weird, but the JavaDoc says this provides more thread-
safety and serialization support…yeah, great, I’m sure I’ll appreciate that the
next time I buy some JavaBeans off the shelf at Fry’s.

Anyways, take a look at the JavaDoc and you’ll see that Sun provides a
prototype event-firing method to use with the EventListenerList, and like
the previous example, it uses a backward for loop. Example 12-15 shows a
simple implementation as a TestEventSource.

Example 12-15. Using an EventListenerList to fire events

import java.util.*;
import javax.swing.event.*;

public class EventListenerListEventSource
 extends TestEventSource {

 EventListenerList listenerList = new EventListenerList();

 public void addListener (TestEventListener l) {
 listenerList.add (TestEventListener.class, l);
 }

 public void removeListener (TestEventListener l) {
 listenerList.remove (TestEventListener.class, l);
 }

 public void fireEvent (EventObject o) {
 Object[] listeners = listenerList.getListenerList();
 for (int i = listeners.length-2; i>=0; i-=2) {
 if (listeners[i] == TestEventListener.class) {
 ((TestEventListener) listeners[i+1]).handleEvent(o);
 }
 }
 }

 public static void main (String[] args) {
 EventListenerListEventSource bfles =
 new EventListenerListEventSource();
 bfles.test();
 }
}

478 | Chapter 12, Miscellany

#95 Debug Your GUI
HACK

Notice the odd for loop—you start at the second-to-last element and decre-
ment by two each time. On each pass, you take the first object of the pair; if
it’s the right class to fire the event to, you get the second object of the pair
and call its event-handling method. Presumably, you could use this to mix
up different kinds of listeners in the same list, calling different methods for
different classes.

When run, this test produces the following output. Since the event firing
counts down through the listeners, it’s functionally the same as the simpler
backward for loop shown earlier:

 [tonberry] cadamson% java EventListenerListEventSource
E called
D called
C called
B called
A called

H A C K

#95
Debug Your GUI Hack #95

Standard out and err aren’t just for log files anymore.

Debugging GUIs often means keeping one or two console windows open, so
you can see the debugging messages you print to standard out (via System.
out.println() and the like), as well as stack traces printed to standard err
when exceptions are caught. In the field, you might want to log these to a
file with something like java.util.logging, but at design time, or when
investigating a bug, you want to see exactly when the exceptions happen,
and running tail -f mylog.txt in multiple terminal windows may not be
practical, especially if you’re trying to get a customer on the phone to do it.

An alternative is for your own application to have debugging windows that
collect everything printed to standard out and err, something that you or a
user can bring up with a keypress or menu item.

Hijacking Output Streams
Fortunately, taking control of the standard output and error streams is
pretty easy. The trick is to repoint it into your own JTextAreas, as shown in
Example 12-16.

Example 12-16. Redirecting System.out and System.err to Swing windows

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;

Debug Your GUI #95

Chapter 12, Miscellany | 479

HACK

public class StdErrOutWindows extends Object {

 JTextArea outArea, errArea;

 public StdErrOutWindows () {
 // out
 outArea = new JTextArea (20, 50);
 JScrollPane pain =
 new JScrollPane (outArea,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);
 JFrame outFrame = new JFrame ("out");
 outFrame.getContentPane().add (pain);
 outFrame.pack();
 outFrame.setVisible(true);
 // err
 errArea = new JTextArea (20, 50);
 pain =
 new JScrollPane (errArea,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);
 JFrame errFrame = new JFrame ("err");
 errFrame.getContentPane().add (pain);
 errFrame.pack();
 errFrame.setLocation (errFrame.getLocation().x + 20,
 errFrame.getLocation().y + 20);
 errFrame.setVisible (true);
 // set up streams
 System.setOut (new PrintStream (new JTextAreaOutputStream (outArea)));
 System.setErr (new PrintStream (new JTextAreaOutputStream (errArea)));
 }

 public static void main (String[] args) {
 new StdErrOutWindows();
 // test
 System.out.println ("test to out");
 System.out.println ("another test to out");
 try {
 throw new Exception ("Test exception");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public class JTextAreaOutputStream extends OutputStream {
 JTextArea ta;
 public JTextAreaOutputStream (JTextArea t) {
 super();
 ta = t;
 }

Example 12-16. Redirecting System.out and System.err to Swing windows (continued)

480 | Chapter 12, Miscellany

#95 Debug Your GUI
HACK

The best place to start with this example is actually at the bottom, in the
inner class. JTextAreaOutputStream is exactly what it sounds like: an
OutputStream that takes the data sent to write() and appends it to a
JTextArea. You only need to override two methods, the write() that takes a
single character (as a Unicode int) and the write() that takes a character
array, as these are called by subclasses, including PrintStream’s various
print() methods. To get the text to the JTextArea, all you have to do is con-
vert it to a String and call JTextArea.append() to put it at the end of the log
window.

The constructor of this demo class creates JTextAreas and puts them in visi-
ble JFrames—your application may want to hide the JFrames until they’re
needed. Next, it creates JTextAreaOutputStreams to write to the JTextAreas,
and it replaces the default System.out and System.err streams with them.

If you wanted to log output to the default out and err as well
as your JTextArea, the JTextAreaOutputStream could hold
onto a reference to the default PrintStream and write to that,
as well as appending to the JTextArea.

The main() method exercises the streams by printing lines to System.out,
then throwing an exception, catching it, and printing the stack trace (which
goes to System.err). Figure 12-10 shows what it looks like when run.

In this example, I turned on horizontal scrollbars for the JTextAreas with
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS. I did this to maintain
the formatting of stack traces, so you can read what called what, line-by-line.
In my opinion, horizontal scrollbars are often overused, especially with
JTables, in a hateful practice of making the user do extra scrolling work to
just see the contents of a row, which usually represent a single thing (the to/

 public void write (int i) {
 char[] chars = new char[1];
 chars[0] = (char) i;
 String s = new String (chars);
 ta.append(s);
 }
 public void write (char[] buf, int off, int len) {
 String s = new String (buf, off, len);
 ta.append(s);
 }

 }

}

Example 12-16. Redirecting System.out and System.err to Swing windows (continued)

Debug Components with a Custom Glass Pane #96

Chapter 12, Miscellany | 481

HACK

from/subject of one email message, the details of a downloaded file, etc.). In
cases like these, I’ll try to see if a JList with a multi-line cell renderer [Hack #16]

can keep all the data together in a visually pleasing form. So, when is hori-
zontal scrolling OK? I think it’s appropriate when the data you’re displaying
is not row-oriented, and instead you’re scrolling up, down, and across a
single cohesive thing, like a large image or, in this case, a stack trace.

H A C K

#96
Debug Components with a Custom Glass PaneHack #96

Show component boundaries at runtime using a glass pane.

Sometimes when I’m building a really complicated Swing layout, I start to
lose track of what I’m looking at. Which component is this? Does that panel
extend all the way to the end of the frame? A way to visualize the layout
would be a useful addition to the usual development tools. This hack
explores using a custom glass pane to highlight each component and its
classname.

A glass pane is a normally transparent Swing component that is drawn on
top of all of the other components in a frame, as you saw when you put
dialog-like “sheets” into the glass pane [Hack #44]. It is this ability that forms
the center of the hack. The custom glass pane will traverse the entire tree of
components in the frame, filling a translucent rectangle over each compo-
nent. Deeper components will get painted multiple times resulting in a
darker color. The glass pane will also watch the mouse cursor to determine
which component the user is pointing at. That component’s classname will
then be drawn in the glass pane as well.

Figure 12-10. Capturing standard out and err to Swing windows

482 | Chapter 12, Miscellany

#96 Debug Components with a Custom Glass Pane
HACK

Screens and Glass
The first step is to create a sample screen for the glass pane to draw on top
of, as seen in Example 12-17.

This main() method creates a frame with a few components and one nested
panel (called panel). The ComponentGlassPane is declared as a subclass of
JComponent so it can be passed to the setGlassPane() method on the frame.
The glass pane is not visible initially, which produces the same behavior as if
it wasn’t even there. The activate button is used to make the glass pane
visible.

The next step is to create the ComponentGlassPane constructor:

Example 12-17. A screen for the glass pane

public class ComponentGlassPane extends JComponent {

 public static void main(String[] args) {

 JFrame frame = new JFrame("Component Boundary Glasspane");

 Container root = frame.getContentPane();
 root.setLayout(new BoxLayout(root,BoxLayout.Y_AXIS));
 final JButton activate =
 new JButton("Show component boundaries");
 root.add(activate);
 root.add(new JLabel("Juice Settings"));

 JPanel panel = new JPanel();
 panel.setLayout(new BoxLayout(panel,BoxLayout.X_AXIS));
 panel.add(new JLabel("Flavor"));
 panel.add(new JTextField(" "));
 root.add(panel);

 frame.pack();
 frame.show();

 final ComponentGlassPane glass =
 new ComponentGlassPane(frame);
 frame.setGlassPane(glass);

 activate.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 glass.setVisible(true);
 }
 });

 }

Debug Components with a Custom Glass Pane #96

Chapter 12, Miscellany | 483

HACK

private JFrame frame;
private Point cursor;
public ComponentGlassPane(JFrame frame) {
 this.frame = frame;
 cursor = new Point();
 this.addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent evt) {
 cursor = new Point(evt.getPoint());
 ComponentGlassPane.this.repaint();
 }
 });
 this.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent evt) {
 ComponentGlassPane.this.setVisible(false);
 }
 });
}

This method saves the parent frame that was passed in, and it creates a new
point to store the cursor coordinates. Then it adds two mouse listeners to
itself. The first listener copies the current mouse coordinates into the cursor
object every time the mouse moves. It also requests a repaint, since the user
may have moved from one component to another, which would change the
currently visible label.

The second mouse listener simply waits for mouse clicks. If the user clicks
the mouse, then this listener turns off the visualization effect by hiding the
glass pane, and the screen goes back to normal.

So far this has all been pretty straightforward: create a custom JComponent
and set it as the glass pane on a JFrame. Now comes the tricky part: painting
the translucent rectangles and labels. First, you need to override the paint()
method to retrieve the root component of the frame and pass it to the
rPaint() method:

public void paint(Graphics g) {
 Container root = frame.getContentPane();
 rPaint(root,g);
}

rPaint() stands for recursive paint. It needs to recurse over the entire com-
ponent tree, painting a rectangle at each step and possibly drawing the label.
Because this is so complicated, I’ll take it in stages. Here is the initial por-
tion of the method:

private void rPaint(Component comp, Graphics g) {
 int x = comp.getX();
 int y = comp.getY();
 g.translate(x,y);
 cursor.translate(-x,-y);

484 | Chapter 12, Miscellany

#96 Debug Components with a Custom Glass Pane
HACK

 int w = comp.getWidth();
 int h = comp.getHeight();

 // draw background
 g.setColor(new Color(1.0f, 0.5f, 0.5f, 0.3f));
 g.fillRect(0,0,w,h);
 g.setColor(Color.red);
 g.drawRect(0,0,w,h);

First, the rPaint() method gets the x- and y-coordinates of the component
and translates the Graphics object and the cursor. The graphics must be
translated so that all drawing will happen relative to the origin of the cur-
rent component. If this weren’t called, then all of the rectangles would be
shoved into the upper-lefthand corner of the frame. The cursor is also trans-
lated, but in the opposite direction. This is because each component’s ori-
gin must be subtracted from the cursor position to make it relative to the
component.

This translation of coordinates is the key to any recursive tree traversal.
With this technique, you can start at the top of the tree and do any sort of
operation you want to each component, safe in the knowledge that any
drawing operations will line up properly.

After coordinate conversion, rPaint() grabs the width and height of the cur-
rent component and then sets the drawing color. Note that this drawing
color is composed of four numbers. The first three represent the values of
each color component (red, green, and blue) from 0 to 1, where 1 represents
100% of that component and 0 represents 0%. The values 1.0f, 0.5f, and
0.5f produce a medium pink.

The f after each number tells the compiler that this is a float-
ing point number. You could write (float)1.0 to get the
same effect.

The last number represents the alpha channel, or transparency, going from 1
for opaque to 0 for completely transparent:

// if the mouse is over this component
if(comp.contains(cursor)) {
 // draw the text
 String cls_name = comp.getClass().getName();
 Graphics2D g2 = (Graphics2D)g;
 Font fnt = g.getFont();
 FontMetrics fm = g.getFontMetrics();
 int text_width = fm.stringWidth(cls_name);
 int text_height = fm.getHeight();
 int text_ascent = fm.getAscent();

Debug Components with a Custom Glass Pane #96

Chapter 12, Miscellany | 485

HACK

 // draw text background
 g.setColor(new Color(1f,1f,1f,0.7f));
 g.fillRect(0,0,text_width,text_height);
 g.setColor(Color.white);
 g.drawRect(0,0,text_width,text_height);

 // draw text
 g.setColor(Color.black);
 g.drawString(cls_name, 0, 0+text_ascent);
}

Now that the pink rectangle is filled in, the glass pane needs to draw the
name of the current component—but only if the mouse is over that compo-
nent. That is what the comp.contains(cursor) line does. If contains() is
true, then rPaint() calculates the dimensions of the classname as a string,
draws a translucent white background (with 70% opacity), draws a solid
white border rectangle, and then finally draws the actual text in solid black:

if(comp instanceof Container) {
 Container cont = (Container)comp;
 for(int i=0; i<cont.getComponentCount(); i++) {
 Component child = cont.getComponent(i);
 rPaint(child,g);
 }
}

Next comes the recursion. Without this step, rPaint() would just work on
the root component and stop. Here it checks if the current component is a
java.awt.Container (which would always be true for any Swing component
since javax.swing.JComponent subclasses Container). If the component has
children, it calls rPaint() recursively on each child, thus traversing the
entire tree of components:

 cursor.translate(x,y);
 g.translate(-x,-y);
 } // end rPaint() method

This last step simply reverses the graphics translation from the beginning of
rPaint(). Had the coordinates been passed in as ints, which are passed-by-
value, it would not be necessary to undo the translations. Any changes to a
passed-by-value variable are lost when the enclosing method ends. How-
ever, since cursor and g are both referenced by name, the changes have to be
reversed manually.

If you compile and run this code, you will get a screen that looks like
Figure 12-11. When you press the activate button, you will see Figure 12-12.
As you move the mouse around, the classname label will update.

486 | Chapter 12, Miscellany

#97 Mirror an Application
HACK

This hack performs a simple visualization: it creates translucent rectangles
with solid labels. The same technique could be used to create a much more
dynamic interface displaying more detailed information, such as button state,
component IDs, color settings, or any other artifact of Swing components.

One thing to notice here is that there are two or more labels visible at any
given time. This is because of the nesting of components—if the cursor is
over a text field and that text field is inside of a panel, then technically the
cursor is over both components, producing two labels. You could enhance
the ComponentGlassPane to only draw one label by creative use of the
SwingUtilities.getDeepestComponentAt() method.

H A C K

#97
Mirror an Application Hack #97

With creative use of the AWT event log, you can bind two instances of an
application together over a socket, creating a mirroring effect.

One of the coolest—and severely underrated—features of Java is serializa-
tion. Because Java code runs entirely in a virtual machine, it’s possible to
send objects over the network to another program and have the objects still
functional when they get there. One day while perusing the AWT documen-
tation, I came across the AWTEventListener. I wondered what interesting
thing you could do by capturing all of the events in a program. I could write

Figure 12-11. The normal window

Figure 12-12. The window with the glass pane showing

Mirror an Application #97

Chapter 12, Miscellany | 487

HACK

them to disk, of course, but it would be even cooler to send them over the
network to another copy of the program. That way the two programs could
reuse each other’s events and become mirrors! With a global event queue
and a bit of serialization, this turns out to be quite easy.

To replicate events over the network, you need to do three things:

1. Capture all AWT events. This can be done with an AWTEventListener.

2. Send the event objects over the network.

3. Pick the objects up on the other end of the network and repost them in
the second program.

It sounds pretty simple, but there are always a few dragons hiding in the
mist.

Set Up a Window
Every test program begins with a frame and a few components. This pro-
gram is no different, with ApplicationMirrorTest (shown in Example 12-18)
creating a frame, button, and text field in its constructor.

Become a Server or Client
There is only one program, but it must run in two modes: one for sending
AWT events and one for receiving. If the program starts and it’s the first
instance running, then it should wait to receive events. If it’s the second
instance running, then it should send events instead. But how does the pro-
gram know if it is the first or second instance? The only real way is to look
for a shared resource. If the resource is already taken, then this must be the

Example 12-18. Simple test program for mirroring

public class ApplicationMirrorTest {

 public ApplicationMirrorTest() {
 JFrame frame = new JFrame();
 frame.getContentPane().setLayout(new FlowLayout());

 final JButton button = new JButton("action generator");
 frame.getContentPane().add(button);

 JTextField tf = new JTextField("text field");
 frame.getContentPane().add(tf);

 frame.pack();
 frame.show();
 }

488 | Chapter 12, Miscellany

#97 Mirror an Application
HACK

second instance. As with creating single-launch applications on Windows
[Hack #84], a network socket is the best choice for a shared resource because
you need it anyway to send the events:

public void start() {
 try {
 // send events
 final Socket sock = new Socket("localhost",6754);
 openSender(sock);
 } catch (Exception ex) {
 try {
 openReceiver();
 } catch (Exception ex2) {
 System.out.println("exception: " + ex);
 }
 }
}

The start() method here tries to open a socket on a known port number
(6754 in this case). If the socket can be opened, then that means there is a
program on the other end waiting for a connection, in which case the code
can call openSender() to start sending events. If the socket cannot be
opened, then there is no other program and this is the first running instance.
In that case, you can call openReceiver() and start waiting for another pro-
gram to connect.

Send Mouse Events
To send events, you first need an output stream to send them. The java.io
package helpfully provides the ObjectOutputStream. It will take any Java
object, serialize it, and write it to the stream the class represents. Next, you
need to capture all relevant events and prepare them to go out. The AWT
Toolkit object lets you add listeners for any set of AWT events you wish.
You just need to OR together masks for the event types you want:

public void openSender(Socket sock) throws Exception {
 final ObjectOutputStream out = new
 ObjectOutputStream(sock.getOutputStream());

 Toolkit.getDefaultToolkit().addAWTEventListener(
 new AWTEventListener() {
 public void eventDispatched(AWTEvent evt) {
 try {
 if(evt instanceof MouseEvent) {
 MouseEvent me = (MouseEvent)evt;
 out.writeObject(evt);
 }
 } catch (Exception ex) { }
 }
 },

Mirror an Application #97

Chapter 12, Miscellany | 489

HACK

 AWTEvent.ACTION_EVENT_MASK |
 AWTEvent.MOUSE_EVENT_MASK
);
}

First, openSender() creates a new ObjectOutputStream around the socket’s
output stream. Next, it creates a new AWTEventListener that takes each event
and tests if it is a mouse event; if so, this method writes it to the output
stream. Notice that the second argument of addAWTEventListener() is two
event masks ORed together (using the | operator).

Receive Mouse Events
Receiving events is the reverse of sending them. You must open a server
socket for the (sending) instance to connect to, and then pull the events off
of the network one by one and repost them to the system event queue:

public void openReceiver() throws Exception {
 // receive events
 ServerSocket server = new ServerSocket(6754);
 Socket sock = server.accept();

 EventQueue eq = Toolkit.getDefaultToolkit().getSystemEventQueue();

 ObjectInputStream in = new ObjectInputStream(sock.getInputStream());
 while(true) {
 AWTEvent evt = (AWTEvent) in.readObject();
 if(evt instanceof MouseEvent) {
 MouseEvent me = (MouseEvent)evt;
 MouseEvent me2 = new MouseEvent(
 me.getComponent(),
 me.getID(),
 me.getWhen(),
 me.getModifiers(),
 me.getX(),
 me.getY(),
 me.getClickCount(),
 me.isPopupTrigger(),
 me.getButton()
);
 eq.postEvent(me2);
 }
 }
}

Notice that the events are not posted directly to the event queue. Since the
objects really belong to the other instance, they won’t work in this instance
properly—all of the internal object references will be wrong. However, you
can make an exact copy of the event just by creating a new one with the
arguments from the old one. Then the new event will work fine in this sec-
ond instance.

490 | Chapter 12, Miscellany

#97 Mirror an Application
HACK

Put all of this together, with the following main() method, and then fire up
two copies of your program. The first one will wait for a connection. When
the second one starts, it will send every mouse event over the network to the
first copy, which will then reuse it. If you click on the button in the second
window, you will see the button depress in the first.

public static void main(String[] args) throws Exception {
 ApplicationMirrorTest mirror = new ApplicationMirrorTest();
 mirror.start();
}

Component Problems
Wait...did this work? No, it didn’t. The events still don’t work after being
sent over the network. A little debugging will show that every part of the
reconstituted event works properly except for the getComponent() method,
which returns null. Why?

The reference to the component doesn’t get sent over the wire because that
would require sending the component itself. That component, of course, is
part of your entire Swing tree, which would also have to be sent over. Pretty
soon you’d be sending a few megabytes through the network for every event.
To avoid this, the developers of Java made the component reference tran-
sient, which means the object will be skipped during serialization. That
makes the component fast, but it presents a problem: how do you know
which component the event goes with?

When you think about it, you wouldn’t really want the actual component in
the other program anyway. You already have a component on the receiving
instance that’s showing on screen. You just need to associate the event with
the correct component from the sending instance, and match that with the
correct component in the receiving instance. Fortunately, every Swing com-
ponent can have a name attached to it. If both programs use the same names
(which they will since they are just different instances of the same code),
then you can build a HashMap to keep track of them all. Example 12-19 takes
care of these details.

Example 12-19. Associating events with components via the component name

public class ComponentMap extends HashMap implements AWTEventListener {

 public ComponentMap() {
 Toolkit tk = Toolkit.getDefaultToolkit();
 tk.addAWTEventListener(this,
 AWTEvent.COMPONENT_EVENT_MASK);
 }

Mirror an Application #97

Chapter 12, Miscellany | 491

HACK

ComponentMap is a subclass of HashMap, and it adds one key feature. It listens
for component events system-wide and stores the components in its
HashTable with the component name as the key. Now, instances can look up
components using ComponentMap. Of course, this means you need to name all
of your components. By default, subclasses of JComponent will have a null
value for getName(), so you need to set these names explicitly:

Map component_map;
public ApplicationMirrorTest() {
 component_map = new ComponentMap();

 JFrame frame = new JFrame();
 frame.getContentPane().setLayout(new FlowLayout());

 final JButton button = new JButton("action generator");
 button.setName("button");
 frame.getContentPane().add(button);

 JTextField tf = new JTextField("text field");
 tf.setName("textfield");
 frame.getContentPane().add(tf);

 frame.pack();
 frame.show();
}

The new version of the ApplicationMirrorTest, which uses all of this new
code, creates a ComponentMap to track names, and then sets a name for each
component as it’s created. Once you have the lookup map, you can modify
the sending loop in openSender() to send the component’s name before it
sends the event:

if(evt instanceof MouseEvent) {
 MouseEvent me = (MouseEvent)evt;

 public void eventDispatched(AWTEvent evt) {
 try {
 // p("evt = " + evt);
 ComponentEvent ce = (ComponentEvent)evt;
 // p("storing component: " + ce.getComponent().getName());
 this.put(
 ce.getComponent().getName(),
 ce.getComponent()
);
 } catch (Exception ex) {
 // p("ex: " + ex);
 }
 }

}

Example 12-19. Associating events with components via the component name (continued)

492 | Chapter 12, Miscellany

#98 Add Velocity for Dynamic HTML
HACK

 out.writeObject(me.getComponent().getName());
 out.writeObject(evt);
}

You also need to modify the openReceiver() method’s loop to read a name
in before reading in an event. Once you have the name on the receiving side,
you can look up the proper component and associate that with the received
event.

With these changes in place, the program will work. Each event on the send-
ing instance side will be captured and sent over the network. On the receiv-
ing side, each event will be recreated and reposted. The two programs will
stay completely in sync; even rollover effects will happen simultaneously:

while(true) {
 String name = (String) in.readObject();
 AWTEvent evt = (AWTEvent) in.readObject();
 if(evt instanceof MouseEvent) {
 MouseEvent me = (MouseEvent)evt;
 MouseEvent me2 = new MouseEvent(
 //me.getComponent(),
 (Component)component_map.get(name),
 me.getID(),
 me.getWhen(),
 me.getModifiers(),
 me.getX(),
 me.getY(),
 me.getClickCount(),
 me.isPopupTrigger(),
 me.getButton()
);
 eq.postEvent(me2);
 }
}

H A C K

#98
Add Velocity for Dynamic HTML Hack #98

Use the Velocity template engine to mimic server-side web technologies in
your Swing application.

Servlets, JSPs, and other server-side technologies help separate an applica-
tion’s model from its view and allow you to build flexible and dynamic web
applications. Of course, Swing applications have their own benefits, like fast
user interaction without the need for web server communication. It would
be cool to have the power of those server-side technologies right in your
Swing application, but without the overhead of a local web server. You can
actually mimic a lot of that functionality using a combination of Apache’s
Velocity template engine and a Swing HTML panel.

Add Velocity for Dynamic HTML #98

Chapter 12, Miscellany | 493

HACK

As an example, suppose you want to display the weather for the next three
days as part of your application. You need a nice graphic weather display
showing your users the current weather, as in Figure 12-13.

Velocity and Templates
Velocity is an open source template engine, released under the Apache
Jakarta umbrella. At its simplest, Velocity allows you to add intelligent
replacement from a text file. At its most extreme, Velocity allows you to call
Java methods and use the entire VTL (Velocity Template Language) to cre-
ate intelligent templates using loops, conditionals, and variables. In other
words, you get the power of an MVC infrastructure like JSP, but in a very
lightweight local-client technology.

When using Velocity, you have two basic elements to deal with: the
VelocityContext and the template. The VelocityContext holds objects that
can be referenced from the template. The template is text with imbedded
VTL that controls the Velocity output.

In this simple example, ${name} and ${what} indicate replaceable values:

${name} is a total ${what}

Here is a simple context:

VelocityContext context = new VelocityContext();
context.put("name", Jonathan);
context.put("what", Rockstar);

Figure 12-13. A graphical weather page

494 | Chapter 12, Miscellany

#98 Add Velocity for Dynamic HTML
HACK

When you run Velocity with this context and this template, it will print out:

Jonathan is a total Rockstar

Create the HTML
You’ll probably want to create your pages in an HTML editor like Dream-
weaver. Better yet, have your graphics designers handle design, and then you
can add VTL tags to the HTML they create.

For each of the three days in the display, you need temperature, humidity,
pressure, and the name of the day. For each measurement, you need a vari-
able in VTL—call these TEMP, HUMIDITY, and PRESSURE—and preface them
with DAY and the day number (like DAY1). Figure 12-14 is a screenshot from
Dreamweaver, where I built the page with all of the VTL. The dynamic data
for the day, temperature, humidity, and pressure are provided by VTL tags:
the first day’s name is ${DAY1}, its temperature is ${DAY1_TEMP}, etc.

Create a Data Object
Now, it’s time to leave template land and get into some Java code. You need
to write a data object to represent the weather for a particular day. You’ll
find this useful when you build up your context. To keep things simple,
Example 12-20 uses an immutable object.

Figure 12-14. Weather web page in Dreamweaver

Example 12-20. A simple weather data object

public class Weather {

 private BigDecimal temperature;
 private BigDecimal humidity;
 private BigDecimal pressure;
 private String day;

Add Velocity for Dynamic HTML #98

Chapter 12, Miscellany | 495

HACK

Of course, you need to display all of this visual wizardry, so create a class
that contains a JEditorPane for displaying the HTML. You can use which-
ever HTML renderer you choose, but JEditorPane is a good choice because
it’s built into Swing. Example 12-21 is a basic container that contains a
JEditorPane and configures it to render HTML.

 public Weather(BigDecimal temperature, BigDecimal humidity, BigDecimal
 pressure, String day) {
 this.temperature = temperature;
 this.humidity = humidity;
 this.pressure = pressure;
 this.day = day;
 }

 public BigDecimal getTemperature() {
 return temperature;
 }

 public BigDecimal getHumidity() {
 return humidity;
 }

 public BigDecimal getPressure() {
 return pressure;
 }

 public String getDay() {
 return day;
 }

}

Example 12-21. Panel to contain the HTML display pane

public class WeatherPanel {
 private JEditorPane htmlPane;

 public WeatherPanel() {
 htmlPane = createHtmlPanel();
 }

 private JEditorPane createHtmlPanel() {
 JEditorPane editorPane = new JEditorPane();
 HTMLEditorKit editorKit = new HTMLEditorKit();
 editorKit.install(editorPane);
 editorPane.setEditorKit(editorKit);
 editorPane.setEditable(false);
 return editorPane;
 }

Example 12-20. A simple weather data object (continued)

496 | Chapter 12, Miscellany

#98 Add Velocity for Dynamic HTML
HACK

Next, you need to add a method to reconfigure the htmlPane with a collec-
tion of Weather objects:

public void displayWeather(String html, Collection weather){
 String result = html;
 try {
 VelocityContext context = createContext(weather);
 result = processString(context, html);
 } catch (Exception e){
 e.printStackTrace();
 }
 htmlPane.setText(result);
}

You need to read in the HTML file you created, and that’s where
displayWeatherByFile() comes in. You supply it the filename, and it reads
the HTML in that file:

public void displayWeatherByFile(String fileName, Collection weather){
 displayWeather(readFile(fileName), weather);
}

private String readFile(String fileName) {
 StringBuffer htmlBuffer = new StringBuffer();

 try {
 InputStream inputStream = WeatherPanel.class.
getResourceAsStream(fileName);
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(inputStream));

 while (true){
 String line = reader.readLine();
 if (line != null){
 htmlBuffer.append(line);
 } else {
 break;
 }
 }
 } catch (IOException iox){
 iox.printStackTrace();
 }
 return htmlBuffer.toString();
}

 public Component getComponent() {
 return new JScrollPane(htmlPane);
 }

}

Example 12-21. Panel to contain the HTML display pane (continued)

Add Velocity for Dynamic HTML #98

Chapter 12, Miscellany | 497

HACK

Create a Velocity Context
Now, you need to make a VelocityContext to supply dynamic values to your
template. Create a method called createContext and loop through the
weather collection, which contains three Weather objects:

private VelocityContext createContext(Collection weatherCollection) {
 VelocityContext context = new VelocityContext();
 int index = 1;

 for (Iterator iterator = weatherCollection.iterator();
 iterator.hasNext();) {
 Weather weather = (Weather) iterator.next();
 //add info to context
 index++;
 }

 return context;
}

Next, create a variable for each day, since all of the VTL is keyed on a mea-
surement, as well as the day (DAY1, DAY2, or DAY3):

String day = "DAY" + index;

Now, add the day itself, as well as entries for temperature, humidity, and
pressure:

context.put(day, weather.getDay());
context.put(day + "_TEMP", weather.getTemperature());
context.put(day + "_HUMIDITY", weather.getHumidity());
context.put(day + "_PRESSURE", weather.getPressure());

Fill the Template with Values
This is the easiest part. The code below is boilerplate code to initialize the
Velocity engine and run a template (htmlText) through Velocity with a con-
text. It then returns the completed HTML as a String:

private String processString(VelocityContext context, String htmlText)
 throws Exception {

 StringWriter writer = new StringWriter();
 Properties properties = new Properties();
 Velocity.init(properties);
 Velocity.evaluate(context,
 writer,
 null,
 htmlText);
 return writer.getBuffer().toString();
}

498 | Chapter 12, Miscellany

#98 Add Velocity for Dynamic HTML
HACK

Sunny Outside?
Finally, take WeatherPanel for a spin. It’s a pretty straightforward simulator,
creating a display frame and a collection of Weather objects, and connect-
ing the two. Notice that the WeatherPanel is created and configured with the
Weather objects:

public WeatherPanelSimulator() {
 JFrame frame = new JFrame("Weather Panel Simulator");
 frame.setBounds(200,200, 500, 350);

 Weather weather1 = new Weather(
 new BigDecimal("82"),
 new BigDecimal("40.0"),
 new BigDecimal(1),
 "Monday");
 Weather weather2 = new Weather(
 new BigDecimal("75"),
 new BigDecimal("65.0"),
 new BigDecimal(1),
 "Tuesday");
 Weather weather3 = new Weather(
 new BigDecimal("85"),
 new BigDecimal("43.0"),
 new BigDecimal(1),
 "Wednesday");

 ArrayList list = new ArrayList();
 list.add(weather1);
 list.add(weather2);
 list.add(weather3);

 WeatherPanel weatherPanel = new WeatherPanel();
 weatherPanel.displayWeatherByFile("html/today.html", list);

 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add(
 weatherPanel.getComponent(),
 BorderLayout.CENTER);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.show();

}

This technique is really useful for simple dynamic variable replacement. It
lets you change the interface at runtime without code changes by changing
the HTML, and you can have your graphics designers implement parts of
your application directly in HTML.

—Jonathan Simon

Get Large File Icons #99

Chapter 12, Miscellany | 499

HACK

H A C K

#99
Get Large File Icons Hack #99

Using an undocumented Windows-only class, you can retrieve large, full-
color file icons from the operating system.

The FileSystemView provides access only to file icons of a default size, which
usually means 16 × 16 pixels. If you look at your desktop, however, you may
see icons that are much bigger and with more detail and color. There is no
standard way to get the larger icons, but on Windows you can use an
undocumented (and unsupported) class to get access to them. Sun’s JRE for
Windows includes a hidden class called sun.awt.shell.ShellFolder that will
let you retrieve larger (32 × 32) desktop file icons.

This class is only available in Sun’s JRE for Windows, so it
won’t work with other vendors or on other platforms.

The class in Example 12-22 will take a filename and show its large icon in a
window.

Example 12-22. Grabbing a large icon

public class LargeIconTest {

 public static void main(String[] args) throws Exception {
 // Create a File instance of an existing file
 File file = new File(args[0]);

 // Get metadata and create an icon
 sun.awt.shell.ShellFolder sf =
 sun.awt.shell.ShellFolder.getShellFolder(file);
 Icon icon = new ImageIcon(sf.getIcon(true));
 System.out.println("type = " + sf.getFolderType());

 // show the icon
 JLabel label = new JLabel(icon);
 JFrame frame = new JFrame();
 frame.getContentPane().add(label);
 frame.pack();
 frame.show();

 }
}

500 | Chapter 12, Miscellany

#100 Make Frames Resize Dynamically
HACK

ShellFolder is a wrapper for metadata of the selected file. With this object,
you can retrieve both the icon and a text description of the file’s type. A nor-
mal MP3 icon would be only 16 × 16 pixels (Figure 12-15), but if you ran the
MP3 file through LargeIconText, it would print the string type = MPEG
Layer 3 Audio and show a much nicer 32 × 32 pixel media icon
(Figure 12-16).

H A C K

#100
Make Frames Resize Dynamically Hack #100

Make your application feel more responsive by turning on dynamic layout.

By default, JFrames don’t resize dynamically. This means that the frame will
not redraw itself as the user is resizing it. A repaint will only occur after the
user lets go of the mouse and the window is refreshed. This behavior often
results in extra gray areas and an unresponsive-feeling application. How-
ever, you can fix this with just one method call!

Just call one method on the default Toolkit:

Toolkit.getDefaultToolkit().setDynamicLayout(true);

You can query the dynamic layout property like this:

if(Toolkit.getDefaultToolkit().isDynamicLayoutActive()) {
 // do something
}

or like this:

if(Toolkit.getDefaultToolkit().isDynamicLayoutSet()) {
 // do something
}

isDynamicLayoutSet() will tell you if dynamic layout was set programmati-
cally, while isDynamicLayoutActive() will tell you if dynamic layout is sup-
ported. You need to use both methods because some platforms don’t
support dynamic layout, and others don’t let you turn it off.

Figure 12-15. Normal MP3 icon

Figure 12-16. Large MP3 icon

Make Frames Resize Dynamically #100

Chapter 12, Miscellany | 501

HACK

A Word About Speed
When you have dynamic layout turned on, the window will repaint each
time the user moves the mouse. This will make the application feel respon-
sive because there is always information on the screen being updated. If your
frame contains an animated component, it will continue to play while the
user resizes the window.

The disadvantage of dynamic layout is that a resize will generate a whole lot
of repaint requests in a very short time. Even if the user moves the window
just one pixel, it will trigger a repaint on the entire frame (unlike scrolling,
which usually requires just repainting a strip at the bottom). If your paint-
ing code is slow (or you have a lot of components on screen), then the
dynamic layout could actually make your program feel slower. Be sure you
make your painting as fast as possible, perhaps skipping some of the more
complicated effects during the resize. You may also want to use dynamic lay-
out only in a program with a small streamlined window, such as a media
player or utility app.

503

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (AND) operator, 159
% (mod) operator, 445

Numbers
3D components, 316–321

changing background, 320
faking transparency, 319

A
absolute layouts, 3
AbstractBorder class, 14, 50
AbstractListModel class, 60
AbstractTableModel class, 113

getColumnCount(), 123
getRowCount(), 123
getValueAt(), 123

acceptDrop(), 339
Action class, 65
ActionListener interface, 64, 243, 258

updateProgressBar(), 471
actionPerformed(), 45, 65, 98, 100, 151

animated sheet dialog, 237
cursor animation, 445
earthquake dialog component, 201
mini application frame, 210

addAWTEventListener()
(Toolkit), 448, 489

addDirtyRegion()
(RepaintManager), 280

addItem(), 60
addMovieAndStart(), 374

AffineTransform class, 254, 256
mirror image text, 273

AIFF audio files, playing, 390
alpha levels

fade-in and fade-out
animations, 255, 256

shadow for vector-based button, 312
AlphaComposite class, 222

getInstance(), 54
AND (&) operator, 159
animations

busy cursor, displaying, 443–446
earthquake dialog, 197–202
frame dissolves, 219–224
glass pane as indefinite progress

indicator, 251–256
JList selections, 87–92
JTree drops, 139–147
mouse animation, 450–454
picture as indefinite progress bar

indicator, 249–251
sheet dialog, 233–239
slide-in window, 241–245
spotlights, 325
transitions between tabs, 32–39

drawing the animation, 35
scheduling animation, 33
venetian blinds effect, 37

Ant, 433
anti-aliased text

global anti-aliased fonts, 278–282
with custom Look and Feel, 285
without code, 283–285

504 | Index

Apple Events, 419
Apple System Properties, 414
AppleScript, 419
applets, playing sound, 359–364

restrictive applet security, 363
applications

Mac OS X, names of, 416
mirroring, 486–492

Aqua Look and Feel, 414
Area, 328
ArrayList class, 60
Arrays class, sort(), 114
arrow for drop-down menu button, 43
ascent (fonts), 11
audio

controls for JavaSound
playback, 401–407

factory to generate, 402–407
MP3 support, adding to

JMF, 376–378
playing a sound with

JavaSound, 364–368
playing non-trivial with

JavaSound, 386–391
uncompressed PCM files of

arbitrary length, 387–390
uncompressed WAV or AIFF files

of arbitrary length, 390–391
playing sound in an applet, 359–364
playing sound with QTJ, 371–376
playing sounds with JMF, 368–371
showing information while

playing, 392–401
audio format information, 393
level information

calculations, 397–401
waveform displays, 378–386

basic audio term definitions, 379
container, creating, 384
converting raw data to samples

and channels, 380–382
creating single display, 382
loading raw data, 380
running the simulator, 385

AudioClip class, 359–364
playing in an applet, 359–361
supported audio formats, 364

AudioFormat class, 392
AudioInputStream class, 366, 380
AudioSystem class, 366

getAudioInputStream(), 433

auto-completing text fields, 265–272
AWT, 317
AWTEventListener interface, 448, 486,

489

B
Background class, 320
background property (List), 69
BackgroundLoader class (example), 30
backgrounds

default, turning off for TextField, 24
drawing for custom tool tip, 225
image-themed component, 2
label, 4
text area, putting NASA photo

in, 29–32
backward text, writing, 272–275
BasicMenuItemUI class, 53
BasicPopupMenuUI class, 50, 55
big-endian, 392
binding to a port, 425
bit shifting, 160, 382
bitmaps, blurring pixel-by-pixel, 39
blocking a window, 296–299
blocking Load buttons, 464
blurring

disabled components, 39–42
spotlight borders, 325

BooleanControl class, 401
BorderLayout class, 189
borders

drawing for custom tool tip, 225
image-based, creating, 14–19

insets, 15
removing from transparent

window, 217
setting for button, 5
shadow border, creating, 50
text components and menu

items, 437
vector-based button, 313

BoxLayout class, 204
brightness of a picture as indefinite

progress indicator, 249–251
brushed metal Look and Feel, 418
BufferedImage class, 15, 40

3D scenes, using in, 320
file icons, 332
getSubimage(), 233, 239, 244

Index | 505

buffers, rendering to
intermediate, 40–42

buildIndex(), 100
build.xml file (Ant), 433
buttons

building colorful
vector-based, 309–315

creating image-based, 5
custom tool tip, 227
HTML, using, 275

bytes, endianness, 392
bytes2short(), 160

C
calendar, custom, 19–22
Canvas3D class, 318

faking transparency, 319
Caps Lock, Num Lock, and Scroll Lock

keys, flashing light
on, 446–449

cell renderers
animated list cells, 91
animating potential drops on

reorderable list, 84
for checkbox list, 69
header cells, table columns, 106
JFileChooser, 154
JList with multiple layouts, 71–76
PolyRenderer class (example), 78–79
table cells, 113

figuring cell size, 103
renderer for colors, 119

tree cell, 144
turning methods into list

renderers, 92–95
ChangeListener interface, 33
channel (audio), 379
checkboxes, 7

making JLists checkable, 66–70
circular shape for indefinite progress

indicator, 253
ClassLoader class, 429
classpaths

loading image and sound as
resources, 429–431

resources on, 429
running application from JAR

file, 432
client, mirrored application, 487
Clip interface, 366, 386

close boxes, dialog, 229
code models, non-blocking, 465–471
collections

creating List-based
JComboBox, 95–99

creating Map-based
JComboBox, 99–101

Collections class, sort(), 114
colorizeSelections(), 90
colors

eyedropper tool, 300–304
list cell foreground and

background, 69
selection panel for drop-down

component, 46–49
system, using, 437
vector-based button, 312

columnAtPoint() (JTableHeader), 109
columns, table

adding column selection, 107–109
sizing to suit content, 102–107

com4j package, downloading, 422
combo boxes

collections-aware
JComboBox, 95–101

drop-down menu button, 43–49
color selection panel, 46–49

menus with drop shadows, 49–52
Comparable interface, 114
Comparator class, 113

delegated sorting, 116
resorting based on current

comparator, 114
sorting color values, 119

compare(), 116
Component class

createImage(), 349
dispatchEvent(), 295

Component Object Model (COM), 422
iTunes track information, 423

component references, 490
ComponentAdapter class, 176
ComponentListener interface, 176, 216
componentMoved(), 177
components

associating events via component
name, 490

debugging with custom glass
pane, 481–486

disabled, blurring, 39–42

506 | Index

components (continued)
image-themed, creating, 1–8
spin-open container, 203

Composite class, 222
CompoundControl class, 401

Swing representation, 402
computeGrabRect(), 292
ConcurrentModificationException, 475
connections, database (see database

connections)
content-length header (HTTP), 471
context menus

adding to JFileChooser, 149–153
global right-click, 293–296
(see also menus)

continueSearch(), 259
Control class, 401

Type subclass, 401
ControllerListener interface, 370
controls, JavaSound playback, 401–407

factory to generate, 402–407
convertPoint() (SwingUtilities), 294
ConvolveOp class, 41
coordinates

mouse, converting to screen
coordinates, 179, 294

status bar components, 191
createCompatibleImage()

(GraphicsConfiguration), 239
createDialog(), 151
createFont() (Font), 307
createImage(), 349
createScene(), 318
createScreenCapture() (Robot), 214,

287
createTempFile() (File), 331
createToolTip(), 227
createUI(), 54
CSS, enhancing text components, 277
cursors, displaying busy, 443–446
Cylon, 247

D
data flavors, 333

image, 344
java.net.URLs, 338
native drag-and-drop, 336

data object, 494
data types, Control subclasses, 401

database connections, 122
populating Swing TableModel

from, 123–126
testing JDBC-based table, 127

DatabaseMetaData objects, 126
DataLine interface, 366

getLevel(), 392
bug in, 396

dates, displaying in custom
calendar, 19–22

debugging
components with custom glass

pane, 481–486
GUIs, 478–481

redirecting output streams to
Swing windows, 478–481

decorator (wrapper),
TableModel, 133–139

DefaultListCellRenderer class, 93
DefaultListModel class, 60
DefaultMetalTheme class, 439
DefaultMutableTableModel class, 110
DefaultTableModel class, 110, 132
DeleteAction class, 151
deltas from drag events, 180
desktop Java applications, 408

constructing single-launch
applications, 424–428

launching external programs on Mac
OS X, 411–413

controlling iTunes, 418–421
making them behave

normally, 413–418
launching external programs on

Windows, 408–411
controlling iTunes, 421–424
opening a directory, 411
opening a text file, 409
opening a URL, 410
Runtime.exec(), 409

detail pane, spin-open, 202–207
dialog using (example), 206
inner class spin triangle, 204
invisible component, 203
layout of components, 203

dialogs
earthquake, 197–202
modal, blocking window

without, 296–299
sheet, animating, 233–239

Index | 507

spin-open detail pane, 202–207
turning into frame-anchored

sheets, 228–233
directories

linked
displaying Windows

shortcuts, 154–157
Windows shortcut

support, 158–163
opening on Mac OS X, 412
opening on Windows, 411

DirectoryItem class, 76
dirty region, components, 280
disabled components, blurring, 39–42
dispatchEvent() (Component), 295
dispose(), 16
dissolving frames, 219–224

basic steps, 219
doing the drawing, 222
genie effect, 223
preparing the dissolve, 220
running the animation, 221

Document class
blocking, while loading a URL, 466
insertString(), 262, 263, 467
non-blocking, on URL loading, 467

DocumentEvent class, 270
DocumentListener interface, 258, 269
documents

constraining, 262–263
regex-constrained, testing in text

field, 263–265
drag gesture, 331
drag images, 333
drag-and-drop

draggable window, 178–181
droped Picts on Mac OS X, 345–349
files, 330–335
handling dropped images, 340–345
handling dropped URLs, 336–339
reordering JTrees, 139–147
reordering lists, 80–86
translucent, 350–357

DragGestureListener class, 140, 331
dragGestureRecognized(), 143
DragGestureRecognizer class, 82
dragOver(), 83, 143
DragSource class, 333
DragSourceAdapter class, 331

dragEnter() and dragExit(), 333

DragSourceListener class, 140
drawing

animation, 35
paintComponent() method, 39
tool tip background and border, 225

drawing code, overriding in standard
component, 25

watermark, adding to text
component, 23

watermarking scroll panes, 26
drawRoundRect(), 314
drawTextAntialiased(), 283
drop(), 143, 339
drop, handling on reorderable list, 85
drop shadows

and embossing effects, 8–13
on menus, 49–52
text on vector-based button, 313

dropComplete(), 339
drop-down menu button, 43–49

color selection panel, adding, 46–49
DropTargetDragEvent class, 83
DropTargetDropEvent class, 339
DropTargetListener interface, 83, 339
dynamic HTML, 492–498

E
Ellipse2D, representing a spotlight, 325
email

checking with Swing, 454–459
opening application on Windows

with start, 410
embossing effect, text labels, 8–13
endianness, 392
EndOfMediaEvent object, 370
EnumControl class, 401, 405
event-dispatch thread, moving

complicated processing out
of, 459–465

eventDispatched(), 449
EventListenerList class, 477
events

Apple, 419
capturing all and mirroring

application, 486–492
collection, 97
Java Media Framework, 370
keystroke, application-wide, 448
list selection, 67

508 | Index

events (continued)
ListDataEvent class, 60
mouse (see mouse events)
order of firing, 472–478
property change, 232
UI components, 176
window (operating system), 178

Excel spreadsheet, exporting table data
to, 130–133

exec() (Runtime), 409
calling open program, 412
launching email program, 456

Explorer (Windows)
icon, 182–185
status bar, 188–193

extension hook (JFileChooser), 164

F
fading to nothing, 222
file choosers

adding right-click context
menu, 149–153

displaying shortcuts, 154–157
image previewer, 164–167
previewing ZIP and JAR

files, 167–174
Windows shortcut support, 158–163

File class
createTempFile(), 331
proxies, 168–172

FileItem class, 76
files

drag-and-drop, 330–335
linked, 154
opening on Mac OS X, 412

FileSystemView class, 161, 168
custom (ZipFileSystemView), 172
file icons, 499
getSystemIcon(), 332

fileToString(), 28
FileView class, 154, 161
fillRoundRect(), 314
filter box, 58
FilterField class, 59
FilterModel class, 59
filters, adding history, 63–66
find(), 260
fireUpdate(), 98, 100
firing events in proper order, 472–478

flavor of data (see data flavors)
FloatControl class, 401

Swing widget for, 403–405
focus events, pop-up windows and, 45
Font class, createFont(), 307
font metrics, 10
fonts

changing style or size in text
components, 436

changing throughout an
application, 304–307

email icons, 458
global anti-aliased, 278–282
HTML effects, 276
loading new at runtime, 307–309

foreground property (List), 69
FormLayout class, 190
frame-anchored sheets, turning dialogs

into, 228–233
frames

dissolving, 219–224
basic steps, 219
doing the drawing, 222
genie effect, 223
preparing the dissolve, 220
running the animation, 221

finding parent frame of drop-down
component, 45

minimizing to mini frame, 207–212
resizing dynamically, 500
sheet dialog, animated, 233–237

frames (audio), 380

G
genie effect, 223
getAudioInputStream(), 433
getColumnClass(), 113, 123, 134
getColumnCount(), 123, 134
getColumnName(), 123, 134
getComponent(), 490
getControls() (Line), 401
getDeepestComponentAt(), 295
getElementAt(), 60
getFiles(), 162
getFrame(), 45
getIcon() (FileView), 154, 156
getIconHeight(), 182
getIconWidth(), 182
getInstance() (AlphaComposite), 54

Index | 509

getLevel() (DataLine), 392
bug in, 396

getListCellRendererComponent(), 71,
93

getLocation()
(DropTargetDragEvent), 83

getLocationOnScreen(), 290
getMaximumWindowBounds(), 240
getNullDelimitedString(), 160
getPathForLocation() (JTree), 143
getPixelColor() (Robot), 300
getPreferredSize(), 9

tool tip, custom, 226
vector-based button, 311

getResource(), 429
loading image and sound as resources

on classpath, 429–431
getResources(), 429
getRowCount(), 123
getScaledInstance(), 290
getSize(), 60
getSubimage() (BufferedImage), 233,

239, 244
getSystemIcon(), 332
getTreeCellRendererComponent(), 145
getType(), 401
getValueAt()

AbstractTableModel class, 123
TableModel class, 131

ghosting, glass pane for, 353–355
GhostPictureAdapter class, 355
ghosts, 353

handling component ghosts, 355
glass pane, 229–233

blocking a window, 296
capturing right-click events and

triggering pop up, 293–296
debugging components with

custom, 481–486
ghosting, 353–355, 357
indicator for indefinite progress

bar, 251–256
sheet dialog, animating, 233–239
spotlights, 324, 328

grab rectangle for magnifier
component, 289, 292

Graphics object, 39
Graphics2D class

round rectangle methods, 314
transform(), 273

GraphicsConfiguration class, 239
GraphicsEnvironment class, 240
GraphicsImporterDrawer class, 347,

349
GridBagLayout class, 405
grouping in regular expression pattern

matching, 31
grow box (Mac), 417
GUI (graphical user interface)

debugging, 478–481
threading complicated processing to

free event-dispatch
thread, 459–465

H
Hashtable class, 304
header cells (table columns), 106
headers

content-length (HTTP), 471
LNK files, parsing, 159

heavyweight components, 317
heavyweight menus, 57
hidePopup(), 46
highlight, vector-based button, 313
HighlightedTextColor class, 442
history, filter, 63–66
HSQLDB, 127
HTML

customizing labels, 8
displaying AppletSound applet, 361
dynamic, 492–498
enhancing text

components, 275–277
HTTP content-length header, 471
Hypersonic, 127

I
Icon interface, 181
icons

Explorer, 182–185
file, 332
large file icons, getting, 499
linked directory, 154, 156, 162
MS Office, 185
window resize (Windows), 181–186
windows resize icons, 189

IITTrack object, 423
ImageFileItem class, 76
ImageIO interface, 165

510 | Index

ImageProducer class, 347
images

3D scene, 321
creating image-based borders, 14–19
creation of, 7
drag image, 333
dropped, handling, 340–345
dropped Picts on Mac OS

X, 345–349
loading as resource along the

classpath, 429–431
previewer, JFileChooser, 164–167
using for cursor, 446

image-themed components,
creating, 1–8

buttons, 5
checkboxes, 7
custom calendar, 19–22
labels, 3
painting and testing the image, 3
panel, 2

incremental searching, 257–261
indefinite progress bar, 247–256

glass pane as indicator, 251–256
picture as indicator, 249–251

index (table model), getting results
from, 136

indexing, table model, 135
InputStream class, 433
InputStreamReader class, 30
insertString() (Document), 262, 263,

467
insertUpdate(), 61
insets

border, 15
shadow border, 51
text components, 436

installUI(), 55
instanceof operator, 76
invisible component, 203
invokeAndWait() (SwingUtilities), 464
invokeLater() (SwingUtilities), 298,

456, 464
isControlSupported() (Line), 401
isDirLink(), 155
isDragImageSupported(), 333
isDynamicLayoutActive(), 500
isDynamicLayoutSet(), 500
isTraversable()

FileView class, 154
JFileChooser class, 162

isValueAdjusting()
(ListSelectionEvent), 68

iTunes
controlling on Mac OS X, 418–421

AppleScript API, 421
controlling on Windows, 421–424

J
JAR (Java ARchive) files, 428–433

double-clicking, 432
packaging application and resources

in, 432
previewing with file

chooser, 167–174
Java Media Framework (JMF), 368–371

MP3 suppport, adding, 376–378
playing audio with, 369

Java Native Interface (JNI), 213, 409
Java2D

Paint interface, 23
special effects, tab transitions, 39

Java3D, 316
AWT component, Canvas3D, 318
BranchGroup, 320

JavaMail API, 454
JavaSound, 364–368

controls for playback, 401–407
factory to generate, 402–407

playing audio with, 364–366
playing non-trivial audio, 386–391
showing audio information while

playing, 392–401
JButton component, 40
JCheckBox component

audio control value, 403
HTML, using, 276

JComboBox component, 43
collections-aware, 95–101
HTML, using, 276

JComponent class, 44
subclassing for ListCellRenderer, 71

JDBC table model, creating, 122–130
JDesktop Integration Components

(JDIC), 408
JFileChooser component

adding right-click context
menu, 149–153

displaying shortcuts, 154–157
image previewer, 164–167
opening in an applet, 363

Index | 511

previewing ZIP and JAR
files, 167–174

Windows shortcut support, 158–163
JFrame component (see frames)
JGoodies, FormLayout, 190
JLabel component (see labels)
JList

animating selections, 87–92
checkable, 66–70
filtering, 58–62
with multiple cell-rendering

layouts, 71–76
reordering with

drag-and-drop, 80–86
turning methods into list

renderers, 92–95
JMenu component, 53

adding custom, 54
(see also menus; pop ups)

JMF (see Java Media Framework)
JNI (Java Native Interface), 213
JNI (see Java Native Interface)
JOptionPane component, 197

creating dialogs, 231
earthquake dialog, 201

JPanel component (see panels)
JPopupMenu class, 53

filter text saved to, 64
translucence, handling, 54

JProgressBar component, 248, 466
JRadioButton component, using

HTML, 276
JScrollPane component, 26
JSlider component, 403
JTabbedPane component, 32
JTable component

column selection, adding, 107–109
searching easily, 133–139
sizing columns to suit

content, 102–107
sorting column contents, 110–121

JTableHeader component, 108
JTextArea component, 26

search, adding, 260
(see also text; text areas)

JTextComponent class, 258
JTextField component, 23

constrained text fields, 263–265
rendered as mirror image, 274

JToolTip class, 225

JTree component, reorganizing with
drag-and-drop, 139–147

JViewport component, 26
JVM property, swing.aatext, 284
JWindow class, 43

pop-up window, 45
(see also pop ups; windows)

K
kernel, 41
keyboard lights, flashing on and

off, 446–449

L
labels, 3

HTML, using, 276
mirror image text, 273–275
sprucing up, 8–13

LayeredPane class, 229
LayoutManager class, 290
layouts

absolute, 3
applet, 361
BorderLayout, 189
dynamic, 500
FormLayout, 190
spin-open detail pane

components, 203
letters in a word, spacing of, 8
level of audio being played, 392

calculating yourself, 397–401
DataLine.getLevel(), problems

with, 395
lightweight components, 317
lightweight menus, 57
Line interface, 366

getControls(), 401
isControlSupported(), 401

line-break tags (HTML), 276
.link file extension, 155
linked directories

displaying Windows
shortcuts, 154–157

real support for Windows
shortcuts, 158–163

ListCellRenderer class, 66, 69
as subclass of JComponent, 71

ListComboBoxModel class, 97
ListDataEvent class, 60

512 | Index

ListDataListener class, 97
ListModel class, 60
lists

checkable, 66–70
creating List-based

JComboBox, 95–99
filter history, adding, 63–66
filtering, 58–62
making different items look

different, 70–80
reordering with

drag-and-drop, 80–86
turning methods into

renderers, 92–95
ListSelectionEvent class, 68

self-completing text field, 269
ListSelectionListener class, 66, 67
little-endian, 392
.lnk file extension, 158
LNK files, 158–163

header parsing, 159
parser, 158
shell settings, 160

loading a URL into Text Area, blocking
and non-blocking event
dispatch, 464–465

local sockets, 424–428
locationToIndex() (JList), 83
locked variable, 177
Look and Feel (L&F), 1

Aqua, native on Mac, 414
brushed metal, 418
creating inverse black-and-white

theme, 439–442
custom, enabling anti-aliasing, 285
JComboBox components,

customization, 43
making quick changes, 434–438

L&F properties, 434–435
system colors, using, 437
text components, 436

Metal L&F, 152
Lucene (document indexing and search

tool), 135
table model and list decorators, 139

M
Mac OS X

controlling iTunes, 418–421
dropped Picts, handling, 345–349
launching external

programs, 411–413
making external programs behave

normally, 413–418
sheets, 228
slide-in window above the

dock, 240–247
magnifying glass component, 287–292
mailto: URL protocol, 410
makeOffscreenImage(), 239
Manager class, 370
Map-based combo box, 99–101
margins, setting for a button, 5
master gain, 404
Matcher class, 31, 259, 263

self-completing text field, 269
MediaLocator class, 370, 377
menu bar (Mac), 415
MenuItemUI class, 53
menus

borders for items, 437
drop shadows on, 49–52
drop-down button, building, 43–49

color selection panel, 46–49
heavyweight and lightweight, 57
Mac and, 416
translucence, adding, 52–57
(see also context menus)

metadata
DatabaseMetaData objects, 126
shortcut, stored in .lnk file, 158

Metal Look and Feel, 152, 439
black-and-white theme, 440–442

MetalFileChooserUI$5, 152
MetalTheme interface, 439
MIME type

getting for data flavors, 336
Java file list, 344

mini-mode for frames, 207–212
mirror image text, 272–275
mirroring an application, 486–492
mixed fonts with HTML, 276
mod operator (%), 445

Index | 513

modal dialogs, 202, 296
models

filtered list, 58, 59
ListModel class, 60
non-blocking, 465–471

Model-View-Controller (MVC)
architecture, 1

use by JComboBox, 95
MoreInfo component, 202–207
motion, simple harmonic, 200
mouse coordinates, converting to screen

coordinates, 179, 294
mouse cursor

animation using Robot
class, 450–454

displaying busy, 443–446
mouse events

blocking, 296
global right-click component, 294
press and release, 315
receiving, 489
sending, 488
updating selected color, 302

mouseDragged(), 179
MouseEvent class, translate(), 290
MouseInputListener interface, 297
MouseListener class, 64, 108, 179
MouseMotionListener class, 179

magnifying glass component, 288,
289, 290

mouseMove() (Robot), 450
movies, QTJ, 373
MP3 player interface, 218
MP3 support, adding to JMF, 376–378
MS Office icon, 185
multi-lined text with HTML, 276
mutability of lists, 60, 80
MVC (Model-View-Controller)

architecture, 1
use by JComboBox, 95

N
names

component, associating events
with, 490

Mac OS X applications, 416
native integration

constructing single-launch
applications, 424–428

iTunes on Mac OS X ,
controlling, 418–421

iTunes on Windows,
controlling, 421–424

launching external programs on
Windows, 408–411

opening a text file, 409
opening a URL, 410
Runtime.exec(), 409

Look and Feel changes, 434–438
inverse black-and-white

theme, 439–442
L&F properties, using, 434–435
system colors, using, 437
text components, 436

making Mac OS X applications
behave normally, 413–418

opening a directory on
Windows, 411

opening files, directories, and URLs
on Mac OS X, 411–413

packaging in JAR files, 428–433
NeXTSTEP operating system, 411
non-blocking code models, 465–471
non-blocking Load buttons, 464
notes, sliding out from

taskbar, 240–247
null returns, methods of FileView and

subclasses, 155
Num Lock key, flashing light

on, 446–449

O
ObjectOutputStream class, 488
Office icon, 185
offscreen BufferedImage, drawing, 239
open program (Mac OS X), 411–413

spaces in filepaths, 412
openReceiver(), 488, 492
openSender(), 488, 491
openStream() (URL), 433
operating systems

difficulties of using Swing with, 408
drawing AWT widgets, 318
linked files support, 154
NeXTSTEP, 411
system color, 438
window events, 178

osascript, 419
outline effect (text), 12

514 | Index

P
packaging (JAR files), 428–433

double-clicking JARs, 432
putting application and resources

in, 432
paint(), called by its parent’s

paintChildren(), 279–281
Paint interface, 23
paintBackground(), 280
paintBorder(), 16
paintChildren(), 27, 280
paintComponent(), 3, 165, 280

drawing in Swing components, 39
indefinite progress indicator, 254
overriding for status bar

component, 188
paintIcon(), 182, 186
painting, self, 237
paintTransition(), 35
pan, 404
panels

handling translucence, 54
image-themed component, 2
separator panel for status bar, 191

panes (see glass pane)
paths

relative paths, resources in JAR
files, 429

spaces in, handling with open, 412
Pattern class, 263

self-completing text field, 266, 269
Pattern objects, 31
PCM (Pulse Code Modulation) files,

playing with
JavaSound, 387–390

performance, dynamic layout and, 501
photos, putting in background of text

area, 29–32
Photoshop slices, 7

using in image-based borders, 18
Picts, 345–349
pixels, blurring disabled

components, 39–42
pop ups

drop-down menu button, 43–46
file chooser context menu, 149–153
forcing creation as heavyweight

components, 319
global right-click, 293–296
menu with drop shadows, 50

menu with previous searches, 64
mini application window, 210
translucent menu, 55

PopupFactory class, 55
ports, binding to, 425
pressed state, button, 315
previewer (image),

JFileChooser, 164–167
PrevSearchAction class, 65
progress bars

loading URL, 466
task of unknown length, 247–256

glass pane as indicator, 251–256
picture as indicator, 249–251

properties
Apple system properties, 414
JDBC connection strings, 127
L&F, visual changes with, 434–435

propertyChange(), 165
PropertyChangeEvent class, 232
PropertyChangeListener class, 164
proxies

File class, 168–172
file proxy, creating, 331

Q
QTImageProducer class, 347
QuickDraw, 346
QuickTime for Java (QTJ), 346–349

handling Picts with, 345–349
playing sounds with, 371–376

compiling QuickTime code, 374
running the code, 376

R
read() (ImageIO), 165
recursion, window refreshing and, 217
references to components, 490
refilter(), 60
reflection, using for list cell

renderers, 92–95
refresh(), 216
regular expressions, 257

creating Pattern object, 31
enforcing rules on typed

input, 261–265
constrained document, 262–263
constrained text fields, 263–265

Matcher class, 259
self-completing text field, 266–269

Index | 515

renderers (see cell renderers)
rendering

3D components for Swing
applications, 316–321

blocking window without modal
dialog, 296–299

changing fonts throughout an
application, 304–307

color eyedropper, 300–304
colorful vector-based

button, 309–315
creating magnifying glass

component, 287–292
global right-click context

menu, 293–296
to intermediate buffer, 40–42
loading new fonts at

runtime, 307–309
turning spotlight on Swing, 321–329

repaint(), 165
repaint manager, 56
RepaintManager class, 280
resetBottomVisibility(), 204
resizing frames dynamically, 500
resolution independent, 309
resort(), 115
revalidate(), 104
RightClickGlassPane class, 150
Robot class, 214, 289, 450–454

createScreenCapture(), 287
getPixelColor(), 300
mouse animation, creating, 450–454
problems with using for

magnifier, 292
RootPaneContainer classes, 229
rounded rectangles

highlight for vector-based
button, 313

shadow for vector-based button, 312
rows, TableModel methods for, 113
run(), 30, 34
Runnable interface, 33, 216

worker threads, 464
runNewSearch(), 258, 259
Runtime class

exec(), 409
calling open program, 412
launching email program, 456

Runtime System Properties, Apple’s Java
1.4.1 release, 414

S
Safari web browser, sheet in, 228
sample, 379
sample size, 379
sampling rate, 379, 404
scaling

vector-based button, 309–315
waveform display of audio, 383

screen coordinates, 179, 294
screenshots

color chooser component, 300, 302
using for transparent

windows, 213–216
using in frame dissolves, 219

Scroll Lock key, flashing light
on, 446–449

scroll panes, watermarking, 26–28
searches

clearing search results for blank
search, 138

history, 63–66
incremental searches, text

components, 257–261
JTables, 133–139
table model, using Lucene, 136

searching tool (Lucene), 135
security, applet, 363
selectable lists, 66–70
selections

animating for JList, 87–92
column selection, adding to

JTables, 107–109
separator panel (status bar), 191
serialization, 486
server, mirrored application, 487
server-side web technologies, mimicking

in Swing application, 492–498
setAccessory(), 164, 166
setAnimatingHeight(), 239, 244
setBackground(), 300
setBorder(), 5
setCursor(), 445, 446
setFont(), 304
setIndeterminate() (JProgressBar), 248
setLocation(), 177
setLockingKeyState(), 446, 449
setMargin(), 5
setModel(), 97
setOpaque(), 24, 218

watermarked scroll pane, 27

516 | Index

setPatternByString(), 263
setPreferredSize(), 2
setPreferredWidth(), 103, 104
setSelectColor(), 303
setSize(), 2, 208
setSource(), 239
setText(), 298
setUndecorated(), 217, 302
setView(), 27
shadowing

text labels, 8–13
text on vector-based button, 313
vector-based button, 312

shaped windows, 213
sheets, 228–233

animating sheet dialog, 233–239
differences from regular dialogs, 228
mimicking in Swing with glass

pane, 229–233
shell settings (LNK files), 160
ShellFolder class, 499
shortcut.lnk file, 155
shortcuts

displaying in JFileChooser, 154–157
Windows system, support

for, 158–163
shorts, converting bytes to, 160
show(), 302
showAt(), 243
showDialog(), 151
simple harmonic motion, 200
sine function for simple harmonic

motion, 200
size and position of components, 3

size, getPreferredSize(), 9
Skin L&F, 285
slices, Photoshop (see Photoshop slices)
slide-in windows, 240–247
SmoothMetal Look and Feel, 285
snapping, window, 175–178
sockets, 424–428

sharing resources over, 488
sort()

Arrays class, 114
Collections class, 114

sorting JTable columns, 110–121
sounds

loading as resource along the
classpath, 429–431

playing in an applet, 359–364

playing with Java Media
Framework, 368–371

playing with JavaSound, 364–368
playing with QTJ, 371–376
(see also audio)

spaces in filepaths, handling with
open, 412

spacing between letters (tracking), 8
spinning, shrinking window, 223
spin-open detail pane, 202–207

dialog using (example), 206
inner class spin triangle, 204
invisible component, 203
layout of components, 203

spotlight, turning on Swing, 321–329
spreadsheet (Excel), exporting table data

to, 130–133
standard output and error streams,

redirecting to Swing
windows, 478–481

start program (Windows), 409
opening a directory, 411
opening an email application, 410

startAnimation(), 236
stateChanged(), 33
states, button, 6
status bars

adding to windows, 187–193
corner (resize) icon, 189
left component, 189
painting panel details, 188
separator panel, 191
standard MS Windows

setup, 187
stopAnimation(), 237
StringBuffer class, 467
strings, null-delimited, 160
Swing, 317
swing.aatext property, 284
SwingUtilities class

convertPoint(), 294
getDeepestComponentAt(), 295
invokeAndWait(), 464
invokeLater(), 298, 456, 464

SwingUtilities2 class, 283
anti-aliased text variables, 284
perils of using, 285

System Properties (Apple), 414
SystemTextColor class, 442

Index | 517

T
tab-delimited text file, 131
TableCellRenderer class, 113
TableModel interface, 110, 131

decorator (wrapper) for JTable
searches, 133–139

exporting tab-delimited data, 131
methods working with rows, 113
populating from database

connection, 123–126
TableModelListener class, 113

listening to inner table updates, 138
tables

column selection, adding, 107–109
exporting data to Excel

spreadsheet, 130–133
JDBC table model,

creating, 122–130
searching JTables easily, 133–139
sizing JTable columns to suit

content, 102–107
sorting column contents, 110–121

tabs, animating transitions
between, 32–39

venetian blinds effect, 37
TaskAllMovies class,

addMovieAndStart(), 374
taskbar, sliding out notes

from, 240–247
templates, Velocity, 493

filling with values, 497
text

anti-aliased, with custom Look and
Feel, 285

anti-aliased, without code, 283–285
auto-completing text fields, 265–272
enhancing text components with

HTML and CSS, 275–278
global anti-aliased fonts, 278–282
searchable text

components, 257–261
validating user input, 261–265

constrained text fields, 263–265
vector-based button, 313
writing backward text, 272–275

text areas
drawing watermark image in

background, 26–28
filter box, 58
NASA photo in background, 29–32

text components
adding watermark to, 23–25
Look and Feel changes, 436
(see also text)

text fields
list filtering component with history

button, 63
with mirror image text, 274
refiltering model on each

keystroke, 60
text file, opening on Windows, 409
text labels (see labels)
TextFileItem class, 76
TextFileTransferable class, 333
TextHighlightColor class, 442
texture

3D scene background, 320
watermark scroll pane, 27

TexturePaint class, 15
creating object for text

watermark, 24
threads

animation thread for indefinite
progress indicator, 255

animation, using Runnable, 33
loader for background image, 30
moving complicated processing out

of event dispatch, 459–465
non-blocking, 465–469
worker thread, 464

Timer class, 200
animated sheet dialog, use in, 237
periodically checking on

non-blocking load, 470
slide-window animation, use in, 243

tool tips, custom, 225–228
installing, 227

Toolkit class
addAWTEventListener(), 448
createImage(), 349
querying dynamic layout

property, 500
setLockingKeyState(), 446

toString(), 92
cell renderer using, 94
Control class, 401

track information, iTunes on
Windows, 423

tracking, 8
Transferable class, 143, 333

supported image data flavors, 344

518 | Index

transform() (Graphics2D), 273
transformations, mirror-image, 273
transient component references, 490
transitions between tabs,

animating, 32–39
venetian blinds effect, 37

translate() (MouseEvent), 290
translucence, adding to menus, 52–57
translucent drag-and-drop, 350–357
transparency

custom tool tip, 226
drawing frame dissolves, 222
faking in 3D components, 319
implementing in icons, 181
windows, 213–218

transparent background
component, 214

trees, drag-and-drop for
JTrees, 139–147

TriangleSquareWindowsCorner-
Icon, 189

trigonometry, use in earthquake
dialog, 200

.ttf file (TrueType font), 308
Type class, 401
Types class, 126

U
UI classes, 50, 53

events, 176
translucence, handling for JPanels

and JPopupMenus, 54
UIDefaults class, 304

changing default fonts, 304
UIManager class, 51

color changs in applications, 437
put(), 55

underlined text, using HTML, 276
updateBackground(), 214
updateImage(), 165
updateProgressBar()

(ActionListener), 471
URI lists, 344
URLs

AudioClip, 361
dropped, handling, 336–339
getting from resources in JAR, 433
opening on Mac OS X, 412
opening on Windows, 410

V
validating input, 261–265
valueChanged(), 67, 68
vector-based button, 309–315
Velocity template engine, 492–498
VelocityContext, creating, 497
venetian blinds effect, 37
View component, 26
viewports, 26
volume level of audio (see level of audio

being played)
VTL (Velocity Template Language), 493

W
watermarking

scroll panes, 26–28
text component, 23–25

WAV audio files, playing, 390
waveform displays (audio), 378–386

basic audio term definitions, 379
container, creating, 384
converting raw data to samples and

channels, 380–382
creating single display, 382
loading raw data, 380
running the simulator, 385

web browsers, opening URL on
Windows, 410

web pages, opening on Mac OS X, 412
WebDings and WingDings fonts, 458
widths, resetting for table

columns, 103–105
Window class, 43
WindowFocusListener class, 216
windows

blocking with sheets, 229
blocking without modal

dialog, 296–299
draggable, 178–181
mini application window, 207–212

clock with mini version, 208
minimizing, 210
restoring to normal, 211

resize icons (Windows), 181–186
resizing on Mac, 417
saving settings, 193–197
sliding in above taskbar, 240–247
snapping, 175–178
status bar, adding, 187–193

Index | 519

transparent, 213–218
transparent background

component, 214
Windows operating systems

controlling iTunes, 421–424
file chooser, displaying

shortcuts, 154–157
getting large file icons, 499
launching external

programs, 408–411
opening a directory, 411
opening a text file, 409
opening a URL, 410
Runtime.exec(), 409

real shortcut support, 158–163
resize window icons, 181–186
status bars, adding to

windows, 187–193
worker threads, 464
Wrap Look and Feel, 285
Wrapit class, 286

Z
ZIP files

packaged in JARs, 433
previewing with file

chooser, 168–174
zoom level, 289

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The tool on the cover of Swing Hacks is a reflex mallet. Doctors most
commonly use reflex mallets to test a patient’s “knee-jerk” reaction, which
indicates the integrity of the spinal cord in the lower back region. A reflex is
a simple nerve circuit, and when tapped by a reflex mallet, sensory neurons
send signals to the spinal cord. Reflex tests are part of a neurological exam,
and they can be helpful in testing the presence and location of spinal cord
injuries or neuromuscular disease.

Marlowe Shaeffer was the production editor and proofreader for Swing
Hacks. Derek Di Matteo was the copyeditor. Sarah Sherman and Claire
Cloutier provided quality control. Ellen Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design
by Edie Freedman. The cover image is a photograph from photos.com.
Karen Montgomery produced the cover layout with Adobe InDesign CS
using Adobe’s Helvetica Neue and ITC Garamond fonts.

David Futato designed the interior layout. This book was converted by Keith
Fahlgren to FrameMaker 5.5.6 with a format conversion tool created by Erik
Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe
Helvetica Neue Condensed; and the code font is LucasFont’s TheSans
Mono Condensed. The illustrations that appear in the book were produced
by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia
FreeHand MX and Adobe Photoshop CS. This colophon was written by
Marlowe Shaeffer.

	Contents
	Credits
	About the Authors
	Contributors
	Acknowledgments
	Joshua
	Chris

	Preface
	Why Swing Hacks?
	How to Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Got a Hack?
	Safari Enabled

	Basic JComponents
	Create Image-Themed Components
	Don’t Settle for Boring Text Labels
	Fill Your Borders with Pretty Pictures
	Display Dates in a Custom Calendar
	Create the Images
	A Component to Paint
	Draw the Days of the Month

	Add a Watermark to a Text Component
	Watermark Your Scroll Panes
	Put a NASA Photo into the Background of a Text Area
	Animate Transitions Between Tabs
	Building a Basic Tabbed Pane
	Scheduling the Animation
	Drawing the Animation
	Putting It All Together
	Another Example

	Blur Disabled Components
	Building a Drop-Down Menu Button
	Adding a Color Selection Panel

	Create Menus with Drop Shadows
	Add Translucence to Menus
	Make the Custom Menu Item
	Add a Custom JMenu
	Test It Out
	Future Ideas

	Lists and Combos
	Filter JLists
	Add a Filter History
	Make JLists Checkable
	Make Different List Items Look Different
	Reorder a JList with Drag-and-Drop
	Animate Your JList Selections
	Turn Methods into List Renderers
	Building a Generic Renderer
	Putting It All Together

	Create a Collections-Aware JComboBox

	Tables and Trees
	Size Your Columns to Suit Your JTable’s Contents
	Resetting Column Widths
	Accounting for Header Cells
	Hacking the Hack

	Add Column Selection to JTables
	Let Your JTables Do the Sorting
	Create a JDBC Table Model
	Building Connectivity
	Testing Things Out

	Export Table Data to an Excel Spreadsheet
	Dealing with Formatting

	Search Through JTables Easily
	JTable Search Strategy
	Decorating the TableModel
	Creating Logical Links to the Inner Table Model
	Indexing
	Searching
	Getting results from the index
	Recreating the inner table model links

	Try It Out
	Finishing Touches
	Listen to inner table updates
	Clear search results for blank search

	Wrapping Up

	Animate JTree Drops
	The Code
	Running the Code

	File Choosers
	Add a Right-Click Context Menu to the JFileChooser
	The Problem

	Display Shortcuts in the JFileChooser
	Real Windows Shortcut Support
	Add Image Preview to File Choosers
	Preview ZIP and JAR Files
	Build File Proxies
	Build a Custom Filesystem View
	Put It All Together

	Windows, Dialogs, and Frames
	Window Snapping
	Make a Draggable Window
	Add Windows Resize Icons
	A Tale of Two Icons
	The Icon Interface
	The Explorer Icon
	The Office Icon

	Add Status Bars to Windows
	Standard Status Bars
	Painting Panel Details
	Add the Corner Icon
	Add the Left Component
	Add a Separator Panel
	And the Rest...
	Running the Hack

	Save Window Settings
	The Window Saver Class

	Earthquake Dialog
	Exterior Animation
	Shake, Rattle, and Roll

	Spin Open a Detail Pane
	The Invisible Man
	Now You See Me

	Minimize to a Mini-Frame
	I Shall Call Him...Mini-Me
	Minimize the Frame
	Restore the Frame

	Transparent and Animated Windows
	Transparent Windows
	Make Your Frame Dissolve
	Prepare the Dissolve
	Run the Animation
	Do the Drawing
	Create a Genie Effect

	Create Custom Tool Tips
	Install the Tool Tip

	Turn Dialogs into Frame-Anchored Sheets
	Why Sheets Rock
	Use the Glass Pane

	Animating a Sheet Dialog
	Animate the Sheet
	Self-Painting

	Slide Notes Out from the Taskbar
	Figure Out Where You Are
	Running the Hack
	Hacking the Hack

	Indefinite Progress Indicator
	The Swing Solution
	Picture as Indicator
	The Glass Pane as an Indicator
	Build the Circular Shape
	Paint the Indicator
	Run the Animation Thread

	Text
	Make Text Components Searchable
	A Basic Search Class
	Running the Search
	Adding Search to Swing Components
	Hacking the Hack

	Force Text Input into Specific Formats
	Constraining a Document
	Adding Constrained Text Fields

	Auto-Completing Text Fields
	A Self-Completing Text Field
	Test Out Auto-Complete

	Write Backward Text
	Messing with JLabel
	Mirror, Mirror on the Wall

	Use HTML and CSS in Text Components
	Here’s the Trick

	Use Global Anti-Aliased Fonts
	The Problem

	Anti-Aliased Text Without Code
	The Java 5.0 Trick

	Anti-Aliased Text with a Custom Look and Feel
	The Wrap Look and Feel

	Rendering
	Create a Magnifying Glass Component
	Build the Magnifying Glass
	Testing the Magnifier Out
	Hacking the Hack

	Create a Global Right-Click
	Block a Window Without a Modal Dialog
	Blocking Basics
	Build a Test Process
	Putting It All Together

	Create a Color Eyedropper
	Changing Fonts Throughout Your Application
	Changing the Default Fonts
	Fonts ’R’ Us

	Load New Fonts at Runtime
	The Wonders of createFont(��)
	Testing Font Loading

	Build a Colorful Vector-Based Button
	Use Scaling to Your Advantage
	Hacking the Hack

	Add a Third Dimension to Swing
	The Problems with Java3D
	Faking Transparency

	Turn the Spotlight on Swing
	The Metaphor
	Add the Spotlight

	Drag-and-Drop
	Drag-and-Drop with Files
	Handle Dropped URLs
	Drag Away

	Handle Dropped Images
	Grabbing the Drop
	Shut Up and Drag

	Handling Dropped Picts on Mac OS X
	Take a Breath and Run

	Translucent Drag-and-Drop
	A Rather Boring Cursor
	Translucence Rocks
	Drawing a Ghost

	Audio
	Play a Sound in an Applet
	The Code
	No Browser, No Sound

	Play a Sound with JavaSound
	Putting JavaSound to Work
	Listen Up

	Play a Sound with Java Media Framework
	Installing JMF
	The Code
	Take JMF for a Spin

	Play a Sound with QuickTime for Java
	QuickTime Beating Up on JavaSound
	Compiling QuickTime Code
	Running the Code

	Add MP3 Support to JMF
	Add a Plug-In to JMF
	Simplicity Is Nice
	Distribute Your Program

	Build an Audio Waveform Display
	Some Basic Definitions
	Load the Raw Data
	Convert to Samples and Channels
	Creating a Single Waveform Display
	Create a Container
	Seeing Is Believing

	Play Non-Trivial Audio
	Grabbing a DataLine
	Big Files, Big Sound

	Show Audio Information While Playing Sound
	The Code
	Testing It Out
	Hacking the Hack
	Running the Hacked Hack

	Provide Audio Controls During Playback
	Theory to Practice
	Check It Out!

	Native Integration and Packaging
	Launch External Programs on Windows
	The Power of Runtime.exec(��)
	Open a Text File
	Open a URL
	Open a Directory

	Open Files, Directories, and URLs on Mac OS X
	Using Open
	Handle Spaces

	Make Mac Applications Behave Normally
	Using the Apple System Properties
	Using the Mac’s Menu Bar
	Presenting an Appropriate Application Name
	Showing the Mac Grow Box
	Jump on the Brushed Metal Bandwagon

	Control iTunes on Mac OS X
	Apple Events

	Control iTunes Under Windows
	Working with COM
	Get Track Information

	Construct Single-Launch Applications
	Local Sockets

	Stuff Stuff in JARs
	An Obvious Secret
	Showing Off
	Packing Up
	Double-Clicking JARs
	And the Kitchen Sink

	Make Quick Look and Feel Changes
	Look and Feel Properties
	Text Components
	Use System Colors

	Create an Inverse Black-and-White Theme
	A Black-and-White Theme

	Miscellany
	Display a Busy Cursor
	Pre-Generating Images
	Running the Animation
	Put It All Together
	And More...

	Fun with Keyboard Lights
	Create Demonstrations with the Robot Class
	I, Robot

	Check Your Mail with Swing
	Don’t Block the GUI
	To Block or Not to Block

	Code Models That Don’t Block
	Models Aren’t Always Dumb
	Running the Code
	Exposing the Threading

	Fire Events and Stay Bug Free
	The Problem
	And It Gets Worse
	Hacking a Solution

	Debug Your GUI
	Hijacking Output Streams

	Debug Components with a Custom Glass Pane
	Screens and Glass

	Mirror an Application
	Set Up a Window
	Become a Server or Client
	Send Mouse Events
	Receive Mouse Events
	Component Problems

	Add Velocity for Dynamic HTML
	Velocity and Templates
	Create the HTML
	Create a Data Object
	Create a Velocity Context
	Fill the Template with Values
	Sunny Outside?

	Get Large File Icons
	Make Frames Resize Dynamically
	A Word About Speed

	Index

