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Foreword 

We have written this training book on digital communications in the spirit of 
presenting – in an integrated form – the basic knowledge on which modern digital 
communication systems are based and, above all, the way in which they are 
technically implemented, both in principle, and in practice. This book is the product 
of a long experience of training in this field in engineering school (Polytech Nantes, 
France). 

The training is comprehensive: courses, tutorials presenting many standard 
problems targeted with detailed solutions, practical work concretely illustrating 
various aspects of the techniques of implementation. 

As we have mentioned, although our experience is primarily that of training 
engineers, we have, through adaptations of the content, wished to address broader 
audiences: first in initial training, engineers, Master 2, specialized telecommunications 
licenses or other related specialties. But also to the trainers by providing them, 
through tutorials and practices (Lab Works), content that can be very useful in  
the construction of the training they provide. In continuing education, this book is  
also addressed to telecommunication technicians or for an additional year of 
specialization (specific years complementary to training in IUT). 

This book, which is composed of two associated volumes, is presented in its first 
aspect, as a very concise and complete synthesis of the foundations and techniques 
of digital communications (Volume 1). It is broken down into two parts. The first 
part concerns the theory of information itself, which deals with both sources of 
information and communication channels, in terms of the errors they introduce in 
the transmission of information, as well as ways to protect the latter by using 
appropriate coding methods. The second part deals with the technical aspects of 
transmission, we first present the baseband transmission with the important concept 
of equalization and its implementations. The performance evaluation, in terms of 
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probability of errors, is systematically developed and detailed as well as the on-line 
codes used. We then present the transmissions with digital modulation of carriers 
used in transmission (radio transmissions but also on electric cables). 

A second important aspect, teaching knowledge and skills, composes this book 
(first part of Volume 2). It concerns the tutorial aspect of a course. This is an ordered 
set of about 30 standard problems with detailed solutions covering the different parts 
of the course. The set should allow a learner to gradually and deeply understand the 
essentials of this field and acquire the necessary skills to practice them in the 
industrial world. 

Finally, the last aspect concerns practices in the proper sense of the term, an 
indispensable complement to training progressing to know-how (second part of 
Volume 2). We propose here a set of five lab works. The interest of these is that they 
go from the basic measurements on the transmission cables, to the design in software 
simulation of modems and cyclic coders, through the use of blocks of electronic 
modules carrying out basic functions useful in digital communications. 

For every book sold, we will provide the buyer with two practical pieces of 
software from MATLAB-Simulink: “Modem QPSK” and “Cyclic encoder-
decoder”, free of charge. We will provide necessary explanations and endeavor to 
help with the set-up of the two  pieces of practical material. 



PART 1 

Tutorials 

Digital Communications 2: Directed and Practical Work, 
First Edition. Safwan El Assad and Dominique Barba. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.



1 

Theory of Information: Problems 1 to 15 

1.1. Problem 1 – Entropy  

We consider the information transmission channel of memoryless binary 
symmetrical type of Figure 1.1.  

 

Figure 1.1. Basic diagram of a digital communication  

It is assumed that the signal-to-noise ratio leads to the following values of 
conditional probabilities of errors:  ൫ݕ = 1 ⁄ݔ = 0൯ = ݕ൫ = 0 ⁄ݔ = 1൯ = ݕ)  ⁄ݔ ) = 1 −  

The source of binary information is considered to emit independent information 
with the following probabilities:  (ݔଵ) = (ଶݔ)   ଵ   and = ଶ = 1 −  ଵ

1) Calculate the source entropy ܪ(ܺ). 

2) Calculate the entropy ܪ(ܻ) at the receiver end.  

Information source
Channel

Destinationp yj xi⁄( )

Disturbances

X[ ] Y[ ]
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3) Calculate the conditional entropy ܪ(ܻ ܺ⁄ ) (entropy of transmission error).  

4) Calculate the loss of information in the transmission channel ܪ(ܺ ܻ⁄ ).  

5) Deduce the average amount of information received by the recipient for each 
binary symbol sent ܫ(ܺ, ܻ) (mutual information). 

6) Determine the channel capacity ܥ and show that it is obtained when ଵ = 0.5. 

Solution of problem 1 

1) By definition, we have: 

(ܺ)ܪ = −  ଶ(ݔ)
ୀଵ logଶ  (ݔ)

then: ܪ(ܺ) = ଵ}− logଶ ଵ + (1 − (ଵ logଶ(1 − ଵ)ሽ =  (ଵ)ܪ

2) By definition, we have: 

(ܻ)ܪ = −  ൯ଶݕ൫
ୀଵ logଶ  ൯ݕ൫

and: 

൯ݕ൫ =  (ݔ) × ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  

hence: ܪ(ܻ) = ଵ(1]}− − ( + (1 − [(ଵ × logଶ[ଵ(1 − ( + (1 −  [(ଵ
ଵ]+ + (1 − ଵ)(1 − × [( logଶ[ଵ + (1 − ଵ)(1 −  {[(

3) In the same way, we have:  

ܻ)ܪ ܺ =⁄ (ݔ = −  ݕ൫ ⁄ݔ ൯ × logଶ ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  
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and:  

ܻ)ܪ ܺ⁄ ) =  ଶ(ݔ)
ୀଵ ܻ)ܪ ܺ =⁄  (ݔ

Since we are dealing with a binary symmetric communication channel, it turns 
out that:  ܪ(ܻ ܺ⁄ ) = ܻ)ܪ ܺ =⁄ (ݔ = −{(1 − ( logଶ(1 − ( +  logଶ ሽ =  ()ܪ

4) We have: 

ܺ)ܪ ܻ⁄ ) = −   (ݔ) × ݕ൫ ⁄ݔ ൯ଶ
ୀଵ

ଶ
ୀଵ logଶ ቈ(ݔ) × ݕ൫ ⁄ݔ ൯൫ݕ൯  

That is: 

ܺ)ܪ ܻ⁄ ) = − ቊଵ(1 − ( logଶ ቈ ଵ(1 − ଵ(1( − ( + (1 −  (ଵ

logଶ ଵ +  ଵଵ + (1 − ଵ)(1 −  ൨(

+(1 − logଶ (ଵ ቈ (1 − ଵ(1(ଵ − ( + (1 −  (ଵ

+(1 − ଵ)(1 − ( logଶ ቈ (1 − ଵ)(1 − ଵ( + (1 − ଵ)(1 −  ቋ(

5) By definition, we have:  ܫ(ܺ, ܻ) = (ܻ)ܪ − ܻ)ܪ ܺ⁄ ) 

6) By definition, we have:   ܥ = ,ܺ)ܫ ݔܽܯ ሽ(ݔ)}(ܻ = (ܻ)ܪ ݔܽܯ − ܻ)ܪ ܺ⁄                      ሽ(ݔ)}(

ଵሽ}(ܻ)ܪ ݔܽܯ  is got for ଵ such that  ߲߲(ܻ)ܪଵ = 0 

ଵ߲(ܻ)ܪ߲ = − ቊ(1 − (2 logଶ ቈ(1 − ଵ( + 1) − ଵ(ଵ + (1 − 1)( − ଵ)ቋ = 0 
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You need to have the numerator of the log function equal to the denominator, 
hence:  2ଵ(1 − (2 = 1 − ଵ  hence ; 2 = 1 2⁄  

Thus, the maximum defines the capacity ܥ of the communication channel and is 
obtained for:   ଵ = 1 2⁄ , hence ܪ ݔܽܯ(ܻ) = 1  and therefore: ܥ = 1 −  ()ܪ

1.2. Problem 2 – K-order extension of a transmission channel 

A memoryless binary symmetric transmission channel is considered: whatever 
the binary information to be transmitted, the probability of the transmission error is 
constant, equal to .    

 

Figure 1.2. Basic block diagram of a digital  
communication of a memoryless information source  

A. K-order extension of a memoryless binary symmetric channel of 
error probability p  

The k-order extension channel has an input alphabet of 2 binary words of 
length ݇ and an output alphabet identical to that of the input alphabet. This channel 
is thus represented by a square matrix ܲ of dimension [2, 2] whose element  
corresponds to the probability of receiving ݕ conditionally to have ݔ transmitted  ൫ݕ ⁄ݔ ൯.  

1) If ݀ is the Hamming distance between the two binary words of length ݇ 
corresponding for one to the symbol ݔ, and for the other to the symbol ݕ, express 
the probability  according to the three parameters: , ݇, ݀.   

 

 

Information source
Channel

Destinationp yj xi⁄( )

Disturbances

X[ ] Y[ ]
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B. Second-order extension of a memoryless binary symmetric channel   

2) Write completely in literal form as a function of  the matrix ଶܲ  
representative of the second order extension of the binary symmetric channel.  

3) The information source is considered to be transmitting equiprobable quaternary 
symbols ݔ in the channel. Calculate the probability ൫ݕ൯ to receive a symbol ݕ.    

4) Deduce the relationship which exists between the elements  of the matrix ଶܲ  
representative of the second order extension of the binary symmetric channel and the 
probability ൫ݔ ⁄ݕ ൯ that the symbol ݔ was emitted conditionally having received ݕ.   

5) Calculate the average amount of information ܪ(ܺ ܻ)⁄  lost in the channel due 
to transmission errors. You will express ܪ(ܺ ܻ)⁄  as a function of:   ()ܪ = −{(1 − ( logଶ(1 − ( +  logଶ  ሽ

C. Fourth-order extension of a memoryless binary symmetric channel  

The size of the input alphabet of the source is then 16. The output alphabet is the 
same as that of the input alphabet.    

The source is considered to emit equiprobable symbols ݔ. 
6) We extrapolate the result obtained in B-5 by considering that we have: ܪ(ܺ ܻ)⁄ =  ()ܪ݇

In the case   = 0.03, calculate the statistical mean of the information amount ܪ(ܺ ܻ)⁄  lost per symbol sent.   

7) What is the entropy ܪ(ܺ) of the source?   

8) What is the maximum number of possible errors on a symbol received?  

Solution of problem 2  

A. K-order extension  

1) The symbol ݔ is made up of ݇ bits. It is the same for the symbol ݕ, so:  = ݕ൫ ⁄ݔ ൯ = ,,ଵݕ൫ ,,ଶݕ ⋯ , ,ݕ ,,ଵݔ ,,ଶݔ ⋯ , ⁄,ݔ ൯ 

The communication channel is memoryless, so the probability of obtaining a 
given bit at the output depends only on the bit transmitted at the input (in addition to 
the intrinsic properties of the transmission channel itself), hence: 
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ݕ൫ ⁄ݔ ൯ = ,ଵݕ൫ ⁄,ଵݔ ൯ × ,ଶݕ൫ ⁄,ଶݔ ൯ × ⋯ × ,ݕ൫ ⁄,ݔ ൯ 

= ෑ ,ݕ൫ ⁄,ݔ ൯
ୀଵ  

because of the independence between the source of information and the 
communication channel.  

The Hamming distance ݀ = ݀ு൫ݕ,  ൯ is the number of bits of the same rankݔ
that are different between the symbol ݕ and symbol ݔ.  

Then:  ൫ݕ ⁄ݔ ൯ = ௗ(1 −  ିௗ(

This law is close to the Binomial law because if  is the probability of a wrong 
decision on bit ܾ, then (1 −    .ܾ is the probability of a right decision on bit (

B. Second-order extension of the channel  

2) We have:  ݇ = 2 → ݕ൫ ⁄ݔ ൯ = ௗ(1 − ଶିௗ( → the matrix ଶܲ (see Table 1.1) 

 ݕ൫ ⁄ݔ ൯ = 1 =ସ
ୀଵ  ݕ൫ ⁄ݔ ൯ସ

ୀଵ  

because of the symmetry.  

         4         3          2          1                    

     ݔ       0  0 0  1 1  0 1  1ݕ      

1 0  0 (1 − 1) ଶ( − 1) ( −  ଶ (

1) 1  0 2 − 1) ( − 1) ଶ ଶ( −  (

1) 0  1 3 − ଶ (1 ( − 1) ଶ( −  (

1) ଶ 1  1 4 − 1) ( − 1) ( −  ଶ(

Table 1.1. Matrix ଶܲ representative of second-order  
extension of a binary symmetric channel  
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3) We have:  ൫ݔ, ൯ݕ = (ݔ) × ݕ൫ ⁄ݔ ൯ = ൯ݕ൫ × ݔ൫ ⁄ݕ ൯ 

൯ݕ൫ =  ,ݔ൫ ൯ସݕ
ୀଵ =  (ݔ) × ݕ൫ ⁄ݔ ൯ସ

ୀଵ  

Yet, the symbols are equiprobable: 

(ݔ) = 14 ∀ ݅ = 1, ⋯ , 4 

Then, the symbols ݕ are also equiprobable:  

൯ݕ൫ = 14 [(1 − ଶ( + 1)2 − ( + [ଶ = 14 ∀ ݆ = 1, ⋯ , 4 

4) We have:  

ݔ൫ ⁄ݕ ൯ = (ݔ) × ݕ൫ ⁄ݔ ൯൫ݕ൯ =  

because:   (ݔ) = ൯ݕ൫ = 1 4⁄  

5) Average amount of bit of information ܪ(ܺ ܻ⁄ ) lost in the transmission 
channel.   

We have:   

൫ܺܪ ܻ = ⁄ݕ ൯ = −  ݔ൫ ⁄ݕ ൯ logଶ ݔ൫ ⁄ݕ ൯ସ
ୀଵ  

ܺ)ܪ ܻ⁄ ) = ൫ܺܪ൛ܧ ܻ = ⁄ݕ ൯ൟ =  ൫ܺܪ൯ݕ൫ ܻ = ⁄ݕ ൯ସ
ୀଵ  

ܺ)ܪ ܻ⁄ ) = − 14   ݕ൫ ⁄ݔ ൯ logଶ ݕ൫ ⁄ݔ ൯ସ
ୀଵ

ସ
ୀଵ    
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because here we have: ൫ݔ ⁄ݕ ൯ = ݕ൫ ⁄ݔ ൯ 

ܺ)ܪ ܻ⁄ ) = − 14 [(1 − ଶlogଶ(1( − 1)ଶ +2( − ( logଶ 1) − ( + ଶ logଶ [ଶ × ܺ)ܪ 4 ܻ⁄ ) = −2{(1 − ଶ( logଶ(1 − ( 1)+ − logଶ](  + logଶ(1 − ଶ+ [( logଶ ܺ)ܪ ሽ ܻ⁄ ) = −2{(1 − 1)]( − ( logଶ(1 − ( +  logଶ 1)]+ [ − ( logଶ(1 − ( +  logଶ ܺ)ܪ ሽ[ ܻ⁄ ) = 2[(1 − ()ܪ( + [()ܪ = ()ܪ2 =  ()ܪ݇

C. Fourth-order extension of the transmission channel  

 (6 = 0.03 and ܪ(ܺ ܻ⁄ ) =  .()ܪ4

Average amount of information (in bit of information) lost per binary symbol sent? 

We have:  ܪ(ܺ ܻ⁄ ) = −4[0.97 × logଶ(0.97) + 0.03 × logଶ(0.03)] = 0.7777 bit of information/symbol 

7) Entropy of the source?   ܪ(ܺ) = (ସܵ)ܪ =  (ܵ)ܪ4

and: 

(ܵ)ܪ = −  ଶ(ܾ)
ୀଵ logଶ (ܾ) = 1   because   (ܾଵ) = (ଶܾ) = 12 

hence: ܪ(ܺ) = 4 bits of information/symbol 

8) Maximum number of possible errors?   ݀௫ = 4 
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1.3. Problem 3 – Compressed speech digital transmission and Huffman 
coding 

In the context of the transmission of the highly compressed speech signal over 
the telephone channel entirely in digital form, let us look at the problem of statistical 
source coding.    

An information source ܵ delivering elementary symbols ݏ belonging to a symbol 
dictionary of size 6 is considered. The probabilities of transmission of this simple 
source of information are given in Table 1.2.   ݏ ࢙ଵ ݏଶ ݏଷ ݏସ ݏହ ݏ ࢙}࢘ࡼሽ 0.05 0.20 0.22 0.33 0.15 0.05 

Table 1.2. Probabilities of emitting symbols ݏ by the information source 

The symbols are delivered by the source ܵ every ܶ = 10ିଷ ݏ.  

1) Determine the entropy ܪ(ܵ) of the source. Deduce the entropy bitrate ܦ௦.  

2) Construct the statistical Huffman coding, called code ܥଵ, which generates a 
binary code associated with each symbol ݏ. 

3) Deduce the average length ݈ଵഥ of code ܥଵ and the bitrate ܦଵ per second.   

4) What are the efficiency ߟଵ and redundancy ߩଵ of code ܥଵ?  

5) If we chose a fixed-length code (code ܥଶ), what would be its efficiency ߟଶ? 
What do you conclude?  

6) Would it be possible to transmit this source of information over a transmission 
channel having a bitrate capacity of 2,400 bit/second?   

Solution of problem 3 

1) The entropy of the source is:  

(ܵ)ܪ = −  (ݏ)
ୀଵ logଶ  (ݏ)

Recall:  

logଶ(ܼ) = log(ܼ)log(2)    and   1logୣ(2) ≅ 1.44 
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4) Efficiency and redundancy of the Huffman code:  

ଵߟ = ଵഥ݈(ܵ)ܪ = 2.312.35 ≅ 98.3 % 

ଵߩ  = 1 − ଵߟ = 0.017 

5) Fixed-length code ܥଶ.  

Since we have 6 messages, we need 3 bits as: 2ଶ < 6 < 2ଷ, then: 

ଶߟ = 3(ܵ)ܪ = 2.313 = 77 % 

The fixed-length code ܥଶ is less efficient than the Huffman code ܥଵ.
 

The bitrate per second with code ܥଶ is: 3 × 1,000 = 3 Kbit/s. 

6) The capacity of the channel is 2.4 Kbit/s, so we can transmit the code ܥଵ but 
not the code ܥଶ because the bitrate of ܥଶ is more important than the capacity of the 
channel.   

1.4. Problem 4 – Coding without and with information compression 

We consider a digital communication system, designed for the transmission of a 
signal (ݐ)ݏ in digital form on a 34 Mbit/s transmission channel. Subsequently, we 
are only interested in a part of the transmitter, composed of a device for digitization 
and serialization (sampling, linear quantization on 8 bits, parallel to serial bytes 
transformation) represented in Figure 1.3. The sampling frequency is 10 MHz.  

 

Figure 1.3. Block diagram of a digital transmission system for analog signal  

1) With the system in Figure 1.3, is it possible to transmit this signal on the 
channel? 

The bitrate ܦଵ is important, so we try to reduce it. For this purpose, a coding 
system with information compression of DPCM type (Differential Pulse Code  
 

Digitizer Serializer Channel
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Modulation) is interposed between the digitization and serialization blocks. The 
DPCM coding system transforms the 256-level representation ݏᇱ(ݐ) into a 9-level 
representation ݏ(ݐ). The symbol ݏ (corresponding to the encoded amplitude of the 
sample ݏ(ݐ)), is represented according to a natural binary code.  

2) What is the bitrate ܦଶ at the output of the serialization unit?  

To further reduce the bitrate, a block coding ܥ which groups two consecutive 
symbols to form bijectively a single code symbol ܵ(ݐ) is inserted after the encoding 
system DPCM (thus it has a frequency half that of ݏ) : {ݏ(ݐଶ), ሽ(ଶାଵݐ)ݏ ↔    .(ݐ)ܵ

3) The coding ܥ does not using any statistical properties of ݏ, what is its bitrate  ܦଷ?    

To further reduce the bitrate, a Huffman code ܥସ is used as the code ܥ but 
without grouping by two the symbols ݏ. The probabilities of realization of ݏ are the 
following:    ܲݏ)ݎ = (ଵݏ = ݏ)ݎܲ = (ଷݏ = ݏ)ݎܲ = (ସݏ = ݏ)ݎܲ 0.0625 = (ଶݏ = ݏ)ݎܲ = (ହݏ = ݏ)ݎܲ 0.125 = (ݏ = ݏ)ݎܲ = (ଽݏ = ݏ)ݎܲ 0.03125 = (ݏ = ݏ)ݎܲ = (଼ݏ = 0.25 

4) Construct the Huffman code ܥସ. You will explicitly determine the codewords 
associated with each of the possible realizations of ݏ.  

5) Determine the average length ݈ସഥ  of the codewords of ܥସ and the entropy (ݏ)ܪ.  

6) What is the bitrate ܦସ of the code ܥସ? What is its efficiency ߟସ? Can the signal 
be transmitted on the transmission channel?   

7) We want to protect the binary information transmitted against transmission 
errors. The block encoding technique is used. This technique adds 15 bits of 
protection (packet error detection code) to a packet of 240 useful bits. What is the 
new average bitrate ܦହ and is it compatible with the transmission channel capacity?   

Solution of problem 4 

1) We have:   ܦଵ = 8 × 10 = 80 Mbit/s 
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5) By definition, we have for the average length: 

݈ସഥ =  (ݏ) × ݈ଽ
ୀଵ  

݈ସഥ = 2 × ൬14 × 2൰ + 2 × ൬18 × 3൰ + 3 × ൬ 116 × 4൰ + 2 × ൬ 132 × 5൰ = 2.8125 bit codeword⁄  

and for the entropy :  

(ݏ)ܪ = −  ଽ(ݏ)
ୀଵ logଶ  (ݏ)

Thus, by replacing: (ݏ)ܪ = −{2 × 2ିଶ logଶ 2ିଶ + 2 × 2ିଷ logଶ 2ିଷ + 3 × 2ିସ logଶ 2ିସ + 2 × 2ିହ logଶ 2ିହሽ 

(ݏ)ܪ = 4 × 14 + 6 × 18 + 12 × 116 + 10 × 132 = 2.8125 bits of information/codeword 

6) Bitrate ܦସ of the code ܥସ and its efficiency ߟସ for this source:    ܦସ = ݈ସഥ × 10 = 28.125 Mbit/s 

ସߟ = ସഥ݈(ݏ)ܪ = 1 

The code ܥସ is optimal absolute, because the probabilities are of the form:  = 2ି. 
Since the bitrate ܦସ is smaller than the capacity of the channel, it turns out that 

the signal can be transmitted on the channel.   

7) Block coding for protection against transmission errors:  

ହܦ = ସܦ × 255240 = 29.883 Mbit/s 
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In the same way, since the bitrate ܦହ is smaller than the capacity of the channel, 
it turns out this signal can also be transmitted in a protected manner on the 
communication channel.   

1.5. Problem 5 – Digital transmission of a TV signal (luminance 
component only) with information compression and Huffman coding  

An information encoding and transmitting system for transmitting a 
monochrome television signal (ݐ)ݏ in digital form is considered. The general 
scheme of the preliminary part of this system is given in Figure 1.4.   

 

Figure 1.4. General scheme of a digital transmission  
of a TV signal with information compression  

The analog signal (luminance component) is sampled with a sampling period ܶ = 100 ns. In an analog/digital converter, each sample is then quantized linearly 
and converted to an integer ݏᇱof 8 bits (natural binary code). A coding block ܥ 
converts this number of 8 bits into another binary codeword ܵ of fixed or variable 
length ݀ depending on the cases that we will examine. The codeword ܵ of format ݀ 
is then serialized and thus generates a bit stream with a fixed or variable bitrate ܦᇱ, 
depending on the case selected. A buffer is used to output a fixed bitrate ܦ sequence 
such that ܦ can be considered equal to ܧ[ܦᇱ ] (ܧ is the expected value). The 
transmission channel has a capacity of 34 Mbit/s of which only 32 Mbit/s can be 
used for the transmission of the video signal itself. 

1) We first consider a very simplified version where the coding block ܥ does not 
exist: the word ܵ(݇) is strictly identical to the binary representation ݏᇱ(ݐ) of the 
sampled signal ݏ(ݐ).  

What is the bitrate ܦᇱ (in bit/s) at the output of the serialization block and the 
fixed bitrate ܦ at the output of the buffer? 

The bitrate ܦ being considered too significant one seeks to reduce it. A Huffman 
encoding ܥଶ is used, constructed from the knowledge (by estimation) of the 
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amplitude probability law represented by the discrete random variable associated 
with ݏᇱ is used. The entropy ܪ(ݏᇱ) is equal to 6.65 bit of information per amplitude 
and the efficiency ߟଶ of the code ܥଶ is 0.95.   

2) What is the average length ݈ଶഥ =  of the codewords ܵ? Deduce the fixed (݀)ܧ
bitrate ܦଶ.   

Since the bitrate is still too big, a differential pulse code modulation (DPCM) 
coding system with information compression type, shown in Figure 1.5, is used.  

 

Figure 1.5. Information compression using a DPCM system and a Huffman code ܥସ 

From a 256-level representation, the DPCM system generates a representation 
of ݏ(ݐ) with 11 levels. The number ݏ is represented according to a natural binary 
code.    

3) We first consider in Figure 1.5 that the coding ܥ does not exist. What are the 
bitrate ܦଷᇱ  at the output of the serialization block and the fixed bitrate ܦଷ? Is it too 
large? 

An alternative is now considered to further reduce the bitrate ܦଷ. The coding ܥ 
(called coding ܥଷ) groups two consecutive symbols ݏ to form bijectively a single 
codeword ܵ (thus this one has a frequency half of that of ݏ) : {ݏ(ݐଶ), ሽ(ଶାଵݐ)ݏ  .(ݐ)ܵ↔

4) Since the code ܥଷ does not use any statistical properties of ݏ, show that the 
minimum length ݈ଷ of the codeword ݏ is 7 bits. What is the fixed bitrate ܦଷଵ? Are we 
able to transmit the image on the transmission channel?         

To further reduce the bitrate, a Huffman code ܥସ is used as code ܥ but without 
grouping  the ݏ symbols by two. The probabilities of realization of ݏ are as follows:      ܲݏ)ݎ = (ଵݏ = ݏ)ݎܲ = (ଶݏ = ݏ)ݎܲ = (ଵݏ = ݏ)ݎܲ = (ଵଵݏ = ݏ)ݎܲ 0.03125 = (ଷݏ = ݏ)ݎܲ = (ସݏ = ݏ)ݎܲ = (଼ݏ = ݏ)ݎܲ = (ଽݏ = 0.0625 
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ݏ)ݎܲ = (ହݏ = ݏ)ݎܲ = (ݏ = ݏ)ݎܲ 0.125 = (ݏ = 0.375 

5) Design the Huffman code ܥସ. You will determine explicitly the codewords 
associated with each of the possible realizations of ݏ.   

6) What is the average length ݈ସഥ  of the codewords ܵ. What is the efficiency ߟସ of 
code ܥସ since the entropy (ݏ)ܪ is 2.905 bit/amplitude?  

7) What is the fixed bitrate ܦସ? Are we able to transmit the image on the 
channel?    

We want to protect the binary information transmitted against transmission 
errors. A coding block is used which adds a 16-bit protection to a useful 256-bit 
packet (packet error detector code).   

8) What is the new average bitrate ܦସଵ and is it compatible with the capacity of 
the transmission channel?  

Solution of problem 5 

1) Bitrate at the output? 

ܶ = 100 ns → ݂ = 10 MHz ܦᇱ is fixed → ܦ = ᇱܦ = 8 × 10 = 80 Mbit/s 

2) Average length of codewords and fixed bitrate? 

(ᇱݏ)ܪ = −  ଶହ(ᇱݏ)
ୀଵ logଶ (ᇱݏ) = 6.65  bits of information/amplitude 

→            ݏଶܥ ݁݀ܥ             ܵ 
ଶߟ = ଶഥ݈(ᇱݏ)ܪ   →   ݈ଶഥ = ଶߟ(ᇱݏ)ܪ = 6.650.95 = 7 bit/amplitude ܦଶ = ݈ଶഥ × ݂ = 7 × 10 = 70 Mbit/s 

3) 11-level DPCM coding, thus 4 bits per sample are needed because 2ଷ < 11 <2ସ. 
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The bitrate ܦଷᇱ  is fixed, hence:   ܦଷᇱ = ଷܦ = 4 × 10 = 40 Mbit/s 

Yes, the bitrate ܦଷ is too large because it is greater than the capacity of the 
channel.  

4) Coding  ܥଷ:                    ܥ ݁݀ܥଷ{ݏଶ, ଶାଵሽݏ           ↔           ܵ 

The pair {ݏଶ, ଶାଵሽ has 11ݏ × 11 = 121 different configurations possible and 
since: 2 < 121 < 2, 7 bits are necessary to encode a pair of samples, so:   ݈ଷ = 7 bit/pair of samples.  ܦଷଵᇱ  is fixed, hence:   ܦଷଵ = ଷଵᇱܦ = 7 × ݂2 = 7 × 12 × 10 = 35 Mbit/s 

It is not possible to transmit the image on the channel because the bitrate ܦଷଵ is 
greater than the capacity of the channel. 

5) Huffman coding ܥସ. 

6) Average length ݈ସഥ   and efficiency ସ:  

݈ସഥ =  (ݏ) × ݈ଵଵ
ୀଵ  

݈ସഥ = 0.375 × 1 + 0.125 × 3 + 0.125 × 4 + 4 × 0.0625 × 4 + 4 × 0.03125 × 6 = 3 bit codeword⁄  

ସ = ସഥ݈(ݏ)ܪ = 96.83 % 

7) Fixed bitrate: ܦସ = ݈ସഥ × ݂ = 3 × 10 = 30 Mbit/s.   

The bitrate ܦସ is lower than the capacity of the channel, therefore we can 
transmit it on this communication channel.   
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The statistics on this bank of images show that out of the 16 colors:  

– 4 are used 60% of the time, with equal frequency; 

– 4 others are used 30% of the time, with equal frequency;  

– the others are used 10% of the time, also with equal frequency.  

1) What is the amount ܳଵ of binary information required to store an image with a 
fixed format binary code (code ܥଵ)?  

We want to reduce this amount by using a variable length code like a Huffman 
code.  

2) Construct the code associated with this type of information (code ܥଶ). For 
that, you can use a simple technique of grouping words to encode a class of words 
(important gain of time).   

Deduce the average length ݈ଶഥ , the amount ܳଶ of binary information needed to 
store an image and the compression rate ߬ given by this code.  

3) What is the entropy ܪ of this source of information (per pixel)?    

Deduce the efficiency ߟଶ of code ܥଶ. 

One wants to transmit the coded images with code ܥଶ to a recipient through a 
memoryless binary symmetric channel (BSC) having a fixed bitrate ܦ. Let ܵ2 be the 
binary information source that is at the serial output of the Huffman coding.  

4) What are for ܵ2 the probability  to issue ݔ = 0 and the probability ଵ to 
issue ݔ = 1?     

The transmission channel is a memoryless binary symmetric channel (BSC). It 
introduces transmission errors with an error probability  (the numerical application 
will be   = 10ିସ).  

5) Determine the entropies ܪ ,(ܺ)ܪ(ܻ) and ܪ(ܻ ܺ⁄ ).  

6) Determine the amount of information received by the recipient for each binary 
symbol sent ܫ(ܺ, ܻ), as well as the entropy ܪ(ܺ ܻ⁄ ) (called ambiguity).  

7) What is the average loss of information per image transmitted?   

8) Determine the average number of received pixels per image, whose value is 
wrong.  

9) Would it be possible to add a protection code after the coding ܥଶ? 
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What do you suggest and justify your proposal?  

Does it work at a codeword level or a block-code level? 

Solution of problem 6  

1) VGA image: 640 × 480 = 307 200 pixels, 16 colors per pixel.  

4 bit/pixel (because 16 = 2ସ) are necessary. Thus it needs: ܳଵ = 307,200 × 4 = 1,228,800 bits = 153,600 bytes 

2) The 16 colors are divided into 3 groups:  

ଵ݃   ↔   (ܿ, ⋯ , ܿଷ) ݃ଶ   ↔   (ܿସ, ⋯ , ܿ) ݃ଷ   ↔   (଼ܿ, ⋯ , ܿଵହ) 

Construction of Huffman’s code on groups: code ܥଶ. 

 

Table 1.6. Construction of Huffman code ܥଶ. For a color  
version of this table, see www.iste.co.uk/assad/digital2.zip 

Group Code 

0  0 0 

0  0 1 

0  1 0 

0 1 1 

g 1 

c0

c1

c2

c3

Group Code

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

g2

c4

c5

c6

c7

Group Code

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

g3

c8

c9

c10

c11

c12

c13

c14

c15

Group Code

0.6 0.6       0 0

0.3       0 0.4       1 1 0

0.1       1 1 1
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g 1 
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So, the average length of this coding is:  

݈ଶഥ =   × ݈ଵହ
ୀ = 4 × ൬0.64 × 3൰ + 4 × ൬0.34 × 4൰ + 8 × ൬0.18 × 5൰ 

= 3.5 bit/color = 3.5 bit pixel⁄  

NOTE.– This average length would actually be equal to 3.45 bit/color (or pixel) for 
direct Huffman coding on colors ܿ  to ܿଵହ. 

Thus, with this code, one needs:    ܳଶ = 307,200 × ݈ଶഥ = 307,200 × 3.5 = 1,075,200 bits = 134,400 bytes 

The compression rate ߬ is given by: 

߬ = ܳଵܳଶ = 43.5 = 1.142857 

3) The entropy of this code is:   

(ܿ)ܪ = −  ଵହ(ܿ)
ୀଵ logଶ  (ܿ)

(ܿ)ܪ = − ൜4 × 0.64 logଶ ൬0.64 ൰ + 4 × 0.34 logଶ ൬0.34 ൰ + 8 × 0.18 logଶ ൬0.18 ൰ൠ = 3.395462 bits of information/color = 3.395462 bits of information pixel⁄  

Its efficiency is: 

ଶߟ = ଶഥ݈(ܿ)ܪ = 3.3954623.5 ≅ 97 % 

4) In the group ݃ଵ, there are 8 bits at 0 out of 12 bits.  

In the group ݃ଶ, there are 8 bits at 0 out of 16 bits.  

In the group ݃ଷ, there are 12 bits at 0 out of 40 bits. 
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So the probability of having a bit at 0 is: 

 = ݔ}ݎܲ = 0ሽ = (ଵݔ) = 0.6 × 812 + 0.3 × 816 + 0.1 × 1240 = 0.58 

and a bit at 1 is: ଵ = ݔ}ݎܲ = 1ሽ = (ଶݔ) = 1 −  = 0.42 

5) Recall that the source of information considered here is the binary source ܵ2.   
The three entropies are given successively by:  

(ܺ)ܪ = −  ଶ(ݔ)
ୀଵ logଶ (ݔ) = }− logଶ  + ଵ logଶ  ଵሽ

(ܺ)ܪ ≅ −1.44{0.58 × log 0.58 + 0.42 × log 0.42ሽ = 0.981454 bits of information binary symbol⁄  

(ܻ)ܪ = −  ൯ଶݕ൫
ୀଵ logଶ  ൯ݕ൫

with: 

൯ݕ൫ =  (ݔ) × ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  

(ଵݕ) = ݕ൛ݎܲ = 0ൟ = 0.58 × (1 − ( + 0.42 ×  = 0.58 − = 0.16 (ଶݕ) 0.579984 = ݕ൛ݎܲ = 1ൟ = 1 − (ଵݕ) = (ܻ)ܪ 0.420016 ≅ (ଵݕ)}1.44− × log (ଵݕ) + (ଶݕ) × log = ሽ(ଶݕ) 0.981461 bits of information binary symbol⁄  

ܻ)ܪ ܺ =⁄ (ݔ = −  ݕ൫ ⁄ݔ ൯ × logଶ ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  
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and:  

ܻ)ܪ ܺ⁄ ) =  ଶ(ݔ)
ୀଵ ܻ)ܪ ܺ =⁄  (ݔ

Since we are dealing with a binary symmetric communication channel, we get:  ܪ(ܻ ܺ⁄ ) ≅ −1.44{(1 − ( log(1 − ( +  log ሽ = ܻ)ܪ ()ܪ ܺ⁄ ) ≅ 1.4730335 × 10ିଷ  bits of information binary symbol⁄  

6) The amount of information transmitted is: ܫ(ܺ, ܻ) = (ܻ)ܪ − ܻ)ܪ ܺ⁄ ) = 0.9799879 bits of information binary symbol⁄ ܺ)ܪ  ܻ⁄ ) = (ܺ)ܪ − ,ܺ)ܫ ܻ) = 1.46661 × 10ିଷ bits of information binary symbol⁄  

7) The average loss of information per image is: ܪ(ܺ ܻ⁄ ) × ܳଶ = 1,576.35 bits of information/image 

8) Average number of wrong pixels received:   

– if transmission of group ଵ݃: coding on 3 bits, (݃ଵ) = 0.6, then the 
probability of error-free transmission of the group’s codewords ଵ݃ is: (1 −  ;ଷ(

– if transmission of group ݃ଶ: coding on 4 bits, (݃ଶ) = 0.3, then the 
probability of error-free transmission of the group’s codewords ݃ଶ is: (1 −   ;ସ(

– if transmission of group  ݃ଷ: coding on 5 bits, (݃ଷ) = 0.1, then the 
probability of error-free transmission of the group’s codewords ݃ଷ is: (1 −  .ହ(

Then the probability of an error-free transmission of a pixel is:   ܲݎݎݎ݁}ݎ − =ሽ݈݁ݔ݅ ݁݁ݎ݂ 0.6 × (1 − ଷ( + 0.3 × (1 − ସ( + 0.1 × (1 −  ହ(

And if   ≪ 1 →  (1 − ( ≅ 1 − ݎݎݎ݁}ݎܲ  :hence ,݊ − ≅ሽ݈݁ݔ݅ ݁݁ݎ݂ 0.6 × (1 − (3 + 0.3 × (1 − (4 + 0.1 × (1 − ≅ (5 1 −  3.5
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The probability of a transmission error of a pixel is then: ܲݎ{error of a pixelሽ ≅   3.5

This result is quite logical since the average length of a codeword is: ݈ଶഥ = 3.5 bit/pixel 

The average number of erroneous pixels received per image is then:   307,200 ×  3.5 ≅ 108 pixels 

9) The codewords ∈ to the code ܥଶ are of variable lengths (3 or 4 or 5 bits), but 
the protection codes studied in this course are dependent on the length of the 
codewords, so the error correction will be difficult at the level of each codeword. 
This is why the protection (error correction) will be built at the level of blocks of 
bits instead of at the level of codewords.  

1.7. Problem 7 – Information, entropy, codes (2) 

Let us take a facsimile-type digitized image coding system, images with black 
parts on a white background (handwritten or printed text, diagram, graphic, etc.), for 
storage and efficient transmission on a communication channel. The scanned images 
are in 1,600 x 2,400 pixels format with 2 grey levels per pixel. Pixels here are 
considered to be independent in terms of random variables (it is a great 
simplification).   

The statistics made on the facsimile images show that the 0 label pixels 
associated with white color are observed with a frequency equal to 0.9 and that  
1 label pixels associated with black color are therefore observed with a frequency 
equal to 0.1. 

1) What is the quantity ܳଵ of binary information needed to store an image with a 
fixed format binary code (code ܥଵ)? Can a Huffman coding of this 2-symbol 
information source reduce this quantity ܳଵ and why?   

NOTE.– In the Huffman codes that will be constructed later, the suffix 1 will always 
be used for the lowest probability element and the suffix 0 for the highest 
probability. 

2) What is the entropy ܪ( ଵܵ) of the source of information per pixel? Deduce the 
efficiency ଵ of the code ܥଵ.   
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We want to increase efficiency by using a code associated not with each pixel 
but associated with each group of 2 pixels (second-order extension code).   

3) Construct the Huffman code associated with this new source ܵଶ of information 
(code ܥଶ). Deduce the average length ݈ଶഥ , the quantity ܳଶ of coding bits necessary for 
the storage of an image, the compression ratio ߬ଶ obtained by this code ܥଶ (with 
respect to the code ܥଵ) and its efficiency ଶ.   

It is still necessary to increase the efficiency of the coding by using a code 
associated with each group of 3 pixels (code with an extension of order 3).  

4) Construct the Huffman code associated with this new source ܵଷ of information 
(code ܥଷ). Deduce the average length ݈ଷഥ , the quantity ܳଷ of binary information 
necessary for storing an image, the compression ratio ߬ଷ obtained by this code ܥଷ 
(still with respect to the code ܥଵ) and its efficiency ଷ.   

One could thus go on increasing the number of grouped pixels to increase the 
efficiency of the coding.  

5) What would be the compression ratio ߬ obtained by an almost infinite order 
extension code (very large in practice) with respect to the code ܥଵ and its efficiency  
 ? 

We want to transmit the coded images with the code ܥଷ to a recipient on a 
transmission line having a fixed bitrate ܦ. Let ܵଷ be the source of binary information 
that we have at the serial output of the Huffman code ܥଷ.  

6) What is for code ܥଷ, the probability  to issue ݔ = 0 and the probability ଵ 
to issue ݔ = 1?    

The transmission channel is a memoryless binary symmetric channel. It 
introduces transmission errors with a probability  (the numerical application will 
be:  = 10ି).  

7) Determine the entropies ܪ ,(ܺ)ܪ(ܻ) and ܪ(ܻ ܺ⁄ ).  

8) Determine the amount of information received by the recipient for each binary 
symbol sent ܫ(ܺ, ܻ), as well as the entropy ܪ(ܺ ܻ⁄ ).  

9) What is the average loss of information per image transmitted?  

10) Determine the average number of pixels received per image, whose value is 
wrong.   
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The average length of the codewords is:  

݈ଶഥ =   × ݈ସ
ୀଵ =  0.81 × 1 + 0.09 × 2 + 0.09 × 3 + 0.01 ×  3  

=  1.29 bits/symbol 

The amount of coding bits needed to store an image is:   

ܳଶ = 2ܰ × ݈ଶഥ = 3,840,0002 ×  1.29 =  2,476,800 bits  
The compression rate ߬ଶ relative to code ܥଵ and its efficiency ଶ are 

respectively:  

߬ଶ = ܳଵܳଶ = ݈ଵഥ݈ଶഥ 2⁄ ≅ 1.550387579 

ଶ = ଶഥ݈(ଶܵ)ܪ  

and: ܪ(ܵଶ) = )ܪ ଵܵଶ) = )ܪ2 ଵܵ) =  0.93624 bit of information/symbol 

hence: 

ଶ = ଶഥ݈(ଶܵ)ܪ = 0.936241.29 ≅  72.57 % 
4) Third-order extension code ܥଷ: grouping of 3 pixels together (symbol ݏ =   .), so there are eight possible eventsݏݏݏ

The average length of the codewords is: 

݈ଷഥ =   × ݈ = 0.729 × 1 + 3 × 0.081 × 3 + 3 × 0.009 × 5 +଼
ୀଵ 0.001 × 5 

= 1.598 bits/symbol 
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6) Probability  to issue 0 and ଵ to issue 1 for the code ܥଷ:  = ݔ}ݎܲ = 0ሽ = = (ଵݔ) 1 × 0.729 × + 23 × 0.081 + 2 × 13 × 0.081 + 25 × 0.009 + 2 × 15 × 0.009 = ଵ 0.8442 = ݔ}ݎܲ = 1ሽ = (ଶݔ) = 1 −  = 0.1558 

7) The three entropies are successively the following:   

(ܺ)ܪ = −  ଶ(ݔ)
ୀଵ logଶ (ݔ) = }− logଶ  + ଵ logଶ  ଵሽ

≅ −1.44{0.8442 × logୣ 0.8442 + 0.1558 × logୣ 0.1558ሽ ≅ 0.6230004 bits of information binary symbol⁄  

(ܻ)ܪ = −  ൯ଶݕ൫
ୀଵ logଶ  ൯ݕ൫

with: 

൯ݕ൫ =  (ݔ) × ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  

(ଵݕ) = ݕ൛ݎܲ = 0ൟ = 0.8442 × (1 − ( + 0.1558 = 0.8442 − = 0.6884 (ଶݕ) 0.8441993 = ݕ൛ݎܲ = 1ൟ = 1 − (ଵݕ) = (ܻ)ܪ 0.1558006 ≅ (ଵݕ)}1.44− × log (ଵݕ) + (ଶݕ) × log = ሽ(ଶݕ) 0.623002 bits of information binary symbol⁄  

ܻ)ܪ ܺ =⁄ (ݔ = −  ݕ൫ ⁄ݔ ൯ × logଶ ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  

and:  

ܻ)ܪ ܺ⁄ ) =  ଶ(ݔ)
ୀଵ ܻ)ܪ ܺ =⁄  (ݔ
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Since we are dealing with a binary symmetric communication channel, we get: ܪ(ܻ ܺ⁄ ) ≅ −1.44{(1 − ( log(1 − ( +  log ሽ = ܻ)ܪ ()ܪ ܺ⁄ ) ≅ 2.1334334 × 10ିହ  bits of information binary symbol⁄  

8) Amount of information received by the recipient and entropy (ambiguity): ܫ(ܺ, ܻ) = (ܻ)ܪ − ܻ)ܪ ܺ⁄ ) = 0.6229806 bits of information binary symbol⁄ ܺ)ܪ  ܻ⁄ ) = (ܺ)ܪ − ,ܺ)ܫ ܻ) = 1.98 × 10ିହ  bits of information binary symbol⁄  

9) The average loss of information per image is:  ܪ(ܺ ܻ⁄ ) × ܳଷ = 1.98 × 10ିହ × 2,045,440= 40.499712 bits of information/image 

10) Group ݃ଵ: transmission of symbol ܵ1; coding on 1 bit, (݃ଵ) = 0.729. 

Then, the probability of error-free transmission of the codeword ܵ1 of group ଵ݃ 
is: (1 −   .(

Group ݃ଶ: transmission of symbols ܵ2  or  ܵ3  or  ܵ4; coding on 3 bits, (݃ଶ) =3 × 0.081 = 0.243. 

Then, the probability of error-free transmission of the codewords of group ݃ଶ is: (1 −  .ଷ(

Group ݃ଷ: transmission of symbols ܵ5  or  ܵ6  or ܵ7 or ܵ8; coding on 5 bits,  (݃ଷ) = 3 × 0.009 + 1 × 0.001 = 0.028. 

Then, the probability of error-free transmission of the codewords of group ݃ଷ is: (1 −  .ହ(

So the probability of error-free transmission of a 3-pixel packet is:  ܲ3}ݎ error − free pixelsሽ = 0.729 × (1 − ( + 0.243 × (1 − ଷ( + 0.028 × (1 −  ହ(

And, if   ≪ 1 →  (1 − ( ≅ 1 − 3}ݎܲ :hence ,݊ error − free pixelsሽ ≅ 0.729 × (1 − ( + 0.243 × (1 − 3 ( + 0.028 × (1 − (5 ≅ 1 − 1.598 
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1) What is the amount ܳ of binary symbols needed to store a second of 
monochrome TV frames with the initial fixed format binary code (code ܥ)? We 
assume that the entropy ܪ(ܷ) = 6 bits of information/pixel. Deduce the efficiency ߟ of the code ܥ.  

2) Can a Huffman coding (called code ܥଵ) of this source ܵ of information 
reduce this amount and why?  

If we consider that the Huffman coding ܥଵ performs the absolute optimal coding, 
deduce the quantity ܳଵ of binary symbols necessary to store a second of digital 
monochrome TV frames.    

We are looking at increasing the efficiency by using an information compression 
of the source ܵ. For this, an adaptive (and thus non-linear) re-quantization of the 
256 grey levels ܷ of each pixel is carried out on 8 levels, now denoted “Z”. The 
probability law ܲݎ(ܼ) resulting from this new source of information (denoted ܵଶ) 
and its binary code ܥଶ are shown in Table 1.9.  

3) What is the amount ܳଶ of binary symbols needed to store one second of 
digital monochrome TV frames (code ܥଶ)?  

Grey levels 
 of ࢆ 

0 1 2 3 4 5 6 7 

 0.0625 0.25 0.0625 0.14 0.21 0.15 0.0625 0.0625 (ࢆ)࢘ࡼ

Code  000 001 010 011 100 101 110 111 

Table 1.9. Probability law ܲݎ(ܼ) of ܵଶ and binary code ܥଶ  

4) Can a Huffman coding (called code ܥଷ) of this source of information reduce 
this amount? What is the entropy per pixel and the total entropy of one second of 
digital TV frames?  

5) Design the Huffman code associated with this new source ܵଶ (code ܥଷ).  

NOTE.– In the Huffman code that will be designed, the suffix 1 will always be used 
for the element with the lowest probability and therefore the suffix 0 for the element 
with the highest probability.  

6) From the Huffman code ܥଷ, deduce:  

– the average number of coding bits per pixel;  
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– the amount ܳଷ of binary symbols needed to store one second of digital 
monochrome TV frames;   

– the compression rate ߬ଷ obtained by this code ܥଷ (with respect to the code ܥଶ); 

– its efficiency ଷ and redundancy ଷ. 

It is desired to transmit the coded frames with the code ܥଷ to a recipient over a 
digital transmission line, having a given capacity, denoted “Cap”. Let ܵଷ be the 
source of binary information ܺ that we have at the serial output of the Huffman 
coding.   

7) What is the probability   to issue ݔ = 0 and the probability ଵ to issue  ݔ = 1 for ܵଷ? Deduce its entropy ܪ(ܺ).  

The transmission channel is a memoryless binary symmetric channel. It 
introduces transmission errors with a probability  (the numerical application will be  = 10ିଶ). The output of the binary transmission channel is called ܻ when its input 
is ܺ (the binary output of the source ܵଷ).  

8) What is the entropy of  ܻ. Deduce the amount of information ܫ(ܺ, ܻ) received 
by the recipient for each binary symbol sent by ܵଷ.  

9) What is the average loss of information in the channel per binary symbol sent ܪ(ܺ ܻ⁄ ) and the average loss of information per second of transmitted TV frames? 

10) Determine the average number of received pixels per second of TV frames 
whose value is wrong.   

11) What is the capacity ܽܥ of the binary transmission channel and the capacity ܽܥ௦ per second of TV frames? 

We model ܲݎ(ܷ) by a weighted sum (factors ߣ and ߣ respectively, with ߣ = 0.6225 and so ߣ = 1 − (ܷ)ܩ : , withܩ  andܩ ) of two discrete Gaussian probability lawsߣ = Gauss(64, 8) and ܩ(ܷ) = Gauss(160, 4) where, in Gauss(݉,  is the standard deviation of the Gaussian ߪ is the mean value and ݉ ,(ߪ
probability law. 

12) What is (with justification) among the eight following values: 8; 7; 6; 5; 4; 3; 
2 and 1 bit/pixel the order of magnitude of the entropy ܪ of the source information ܵ per pixel?   
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Solution of problem 8  

1) The image size is: ܰ = 576 × 720 = 414,720 pixels.  

One second of digital TV frames has:  ܰݏ = ܰ × 25 = 10,368,000 pixel/s 

Monochrome TV: ݈ഥ = 8 bits/pixel   
Code ܥ: ܳ = ݏܰ × ݈ഥ = 82,944,000 bits/s  

Efficiency: ߟ = ு()బഥ = ଼ = 75 % 

2) The source of information generating ܷ is non-uniform on [0, 255], so:   ܪ(ܷ) < 8 bits of information/pixel 

Therefore, the entropy coding is quite interesting.   

If the Huffman code ܥଵ performs an absolute optimal coding, then ݈ଵഥ =  ,(ܷ)ܪ
hence: ܳଵ = ݏܰ × ݈ଵഥ = 62,208,000 bits/s 

3) The amount of bits per second for the code ܥଶ is:   ܳଶ = ݏܰ × ݈ଶഥ = ݏܰ × 3 = 31,104,000 bit/s 

4) Since ܼ has a non-uniform probability law, then the Huffman coding is 
efficient.    

The entropy per pixel is: 

(ܼ)ܪ = −  
ୀ logଶ  

(ܼ)ܪ ≅ −1.44 ൜ 4 × 0.0625 × logଶ(0.0625) + 0.15 × logଶ(0.15)+0.21 × logଶ(0.21) + 0.14 × logଶ(0.14) + 0.25 × logଶ(0.25)ൠ ≅ 2.7804781 bits of information/pixel 
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7) Probability  to issue ݔ = 0 and probability ଵ to issue ݔ = 1 for ܵଷ?  

The probability of sending a bit at zero is given by: 

 = ݔ}ݎܲ = 0ሽ = (ଵݔ) = 0.25 × 12 + 0.21 × 02 + 0.15 × 33 + 0.14 × 23 + 0.0625 

× 24 + 0.0625 × 14 + 0.0625 × 34 + 0.0625 × 24 = 0.4933 

and that of sending a bit at 1 is therefore:  ଵ = ݔ}ݎܲ = 1ሽ = (ଶݔ) = 1 −  = 0.5067 

The entropy is given by:  

(ܺ)ܪ = −  ଶ(ݔ)
ୀଵ logଶ (ݔ) = }− logଶ  + ଵ logଶ ≅ ଵሽ −1.44{0.4933 × log 0.4933 + 0.5067 × log 0.5067ሽ = 0.99987 bits of information binary symbol⁄  

8) The entropy of ܻ at the output of the communication channel is:  

(ܻ)ܪ = −  ൯ଶݕ൫
ୀଵ logଶ  ൯ݕ൫

with: 

൯ݕ൫ =  (ݔ) × ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  

(ଵݕ) = ݕ൛ݎܲ = 0ൟ = 0.4933 × (1 − ( + 0.5067 ×  = (ଶݕ) 0.493434 = ݕ൛ݎܲ = 1ൟ = 1 − (ଵݕ) = (ܻ)ܪ 0.506566 ≅ (ଵݕ)}1.44− × log (ଵݕ) + (ଶݕ) × log = ሽ(ଶݕ) 0.99800773 bits of information binary symbol⁄  
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The amount of information transmitted through the channel is: ܫ(ܺ, ܻ) = (ܻ)ܪ − ܻ)ܪ ܺ⁄ ) = (ܺ)ܪ − ܺ)ܪ ܻ⁄ ) 

since we are dealing with a binary symmetric communication channel, we have:  

ܻ)ܪ ܺ⁄ ) = ܻ)ܪ ܺ =⁄ (ݔ = −  ݕ൫ ⁄ݔ ൯ × logଶ ݕ൫ ⁄ݔ ൯ଶ
ୀଵ  

ܻ)ܪ ܺ⁄ ) ≅ −1.44{(1 − ( log(1 − ( +  log ሽ = ܻ)ܪ ()ܪ ܺ⁄ ) ≅ 0.080642209 bits of information binary symbol⁄  

hence: ܫ(ܺ, ܻ) = (ܻ)ܪ − ܻ)ܪ ܺ⁄ ) = 0.917365521 bits of information binary symbol⁄  

9) The average loss of information in the channel per binary symbol sent is given 
by: ܪ(ܺ ܻ⁄ ) = (ܺ)ܪ − ,ܺ)ܫ ܻ) = 0.082504479 bits of information binary symbol⁄  

The average loss of information per second of transmitted TV frames is: ܰݏ × ݈ଷഥ × ܺ)ܪ ܻ⁄ ) = 2,386,583.963 bits of information/s 

10) We have to consider each of the codeword lengths:  

– the group ݃ଵ corresponds to the set of levels {0, 1, 5, 7ሽ each of which is coded 
on 4 bits and of probability equal to 0.0625, hence: (݃ଵ) = (0) + (1) + (5) + (7) = 0.25 

– the group ݃ଶ corresponds to the set of levels {2, 4ሽ each of which is coded on 3 
bits and of probability equal to 0.15 and 0.14 respectively, hence: (݃ଶ) = (2) + (4) = 0.15 + 0.14 = 0.29 

– the group ݃ଷ corresponds to the set of levels {3, 6ሽ each of which is coded on 2 
bits and of probability equal to 0.21 and 0.25 respectively, hence: (݃ଷ) = (3) + (6) = 0.21 + 0.25 = 0,46 
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The probability of error-free transmission of:  

ଵ݃ is (1 − ସ ; ݃ଶ is (1( − ଷ ; ݃ଷ is (1( −  ଶ(

Thus, the probability of having no error with the code ܥଷ is:  ܲݎ{no errorሽ = 0.25 × (1 − ସ( + 0.29 × (1 − ଷ( + 0.46 × (1 −  ଶ(

But if  ≪ 1 →  (1 − ( ≅ 1 − no}ݎܲ :then ,݊ errorሽ ≅ 0.25 × (1 − 4 ( + 0.29 × (1 − 3 ( + 0.46 × (1 − ( 2 ≅ 1 − 2.79  

The probability of having at least one error with the code ܥଷ is then: ܲݎ{errorሽ = 1 − no errorሽ}ݎܲ =  2.79 = 0.0279 

The average number of wrong pixels received per second of frames is:   ܰݏ × 0.0279 = 289,267 pixels 

11) Since the transmission channel is binary symmetric:  ܽܥ = ,ܺ)ܫ ݔܽܯ ܻ) = 1 − = ()ܪ 0.91935779 bits of information binary symbol⁄  

and: ܽܥ௦ = ܽܥ × (ݏܸܶ)ܪ = 26,503,243 bits of information s⁄  

12) We have: ܲݎ(ܷ) = (ܷ)ܩߣ + (1 −  (ܷ)ܩ(ߣ

If we consider that a Gaussian law has a practical range of ±3 ߪ around its mean 
value ݉, then:  ܪ(ܷ) = )ܪߣ ଵܷ) + (1 − (ଶܷ)ܪ(ߣ +  (ߣ)ܪ

with ଵܷ, the random variable associated with the Gaussian law is (64, 8) and ଶܷ, the 
random variable associated with the Gaussian law is (160, 4). In addition, we have:  
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)ܪ ଵܷ) < )ܪ ଵܷᇱ): entropy of a uniform law on [64 − (3 × 8), 64 +(3 × 8)] = [40, (ଶܷ)ܪ [88 < ଶᇱܷ)ܪ ): entropy of a uniform law on [160 − (3 × 4), 160 +(3 × 4)] = [148, )ܪ [172 ଵܷᇱ) = logଶ(88 − 40) = logଶ(48) = ଶᇱܷ)ܪ 5.585 ) = logଶ(172 − 148) = logଶ(24) = 4.585 

Consequently, we have: ܪ(ܷ) < ߣ × 5.585 + (1 − (ߣ × 4.585 +  (ߣ)ܪ

with:  ܪ(ߣ) = 0.9544 

hence: ܪ(ܷ) < 6.1619 bits of information pixel⁄ → (ܷ)ܪ ≤ 6 bits of information pixel⁄  

So, the order of magnitude of the entropy is:  ܪ(ܷ) ≅ 6 bits of information pixel⁄ .  

1.9. Problem 9 – Entropy and motion information encoding of 
multimedia source 

The context is that of the transmission of coded video. Several categories of 
information are represented and coded in a compressed form. One of these 
categories is motion information. Each frame ܫ௧ of a sequence ܵܫ of frames:  ܵܫ{⋯ , ,௧ିଵܫ ,௧ܫ ,௧ାଵܫ ⋯ ሽ 

is divided into ܭ macro-blocks ܤܯ of size 16 x 16 pixels (we have: ݇ = 1, ⋯ ,  .(ܭ

The sequence ܵܫ consists of ܮ frames per second (typically in Europe 25 = ܮ). 
Each macro-block ܤܯ is associated with a displacement vector ܦሬሬԦ which makes it 
possible to predict its content from previous frame(s). ܦሬሬԦ is a vector with two 
components: ݀ݔ and ݀ݕ, taking their values on integers and half integers. For 
simplicity, it is assumed that in practice only seven values for ݀ݔ and ݀ݕ, 
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respectively, are of significant probabilities. Each value of ݀ݔ and ݀ݕ is associated 
with a symbol ݏ. These values are given in Table 1.11 with their probabilities (for 
the sake of simplicity, it has been assumed that the components ݀ݔ and ݀ݕ of the 
displacement vector ܦሬሬԦ have the same statistics. This is not really the case).  

Value -1.5 -1 -0.5 0 0.5 1 1.5 

Symbol ݏଵ ݏଶ ݏଷ ݏସ ݏହ ݏ ݏ 

Probability 0.014 0.024 0.117 0.701 0.101 0.027 0.016 

Table 1.11. Probabilities of a component ݀ of motion vector ܦሬሬԦ     
1) Determine the entropy ܪ(݀) of a component ݀ݔ or ݀ݕ of the displacement 

vector ܦሬሬԦ. Deduce the entropy ܪ൫ܦሬሬԦ൯ of the displacement vector ܦሬሬԦ for a separate 
coding of ݀ݔ and of ݀ݕ. What would be the efficiency ߟଵ of a fixed length code ܥଵ 
(length  ܮଵ) coding ܦሬሬԦ and the bitrate ܤܦଵ per second for a number ܭ = 396 macro-
blocks per frame and ܮ = 25  frame/second for coding the vectors ܦሬሬԦ?   

2) Taking code ܥଵ the natural binary coding in the ascending order of the 
symbols ݏ, determine the probability  of having a bit at zero in the bitstream 
encoding the displacement vector ܦሬሬԦ. Deduce the probability ଵ of having a bit at 
one. 

3) Construct the Huffman code ܥଶ giving the codeword ܵ associated with each 
of the symbols ݏ of a vector component ܦሬሬԦ. 

NOTE.– In the construction of the code ܥଶ, the coding suffix associated with the 
element of lowest probability will be systematically set to 0.   

Deduce from this: the average length ݈ଶഥ  of the codewords of ܥଶ, the average 
length ܮଶതതത  of the codewords encoding the vector ܦሬሬԦ (again with a separate coding of ݀ݔ and ݀ݕ), its efficiency ଶ  and the average bitrate per second ܤܦଶ for coding the 

vectors ܦሬሬԦ.  

4) It is considered that the source ܵ delivers the following ܵܵ time sequence of 
symbols ݏ: ⋯ ⋯ ݏ     ସݏ     ݏ     ସݏ     ହݏ     ଷݏ     ସݏ     ସݏ     ଶݏ     ସݏ ⋯ ⋯ → time 
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Deduce the corresponding sequence ܵܤ of bits obtained at the output of the 
Huffman coding ܥଶ. Sequence ܵܤ is of the form {⋯ , ܾିଵ, ܾ, ܾାଵ, ⋯ ሽ. 

What do you observe?  

Taking code ܥଶ, determine the probability  to have a bit at zero in the bit 
stream encoding the displacement vector ܦሬሬԦ. Deduce the probability ଵ of having a 
bit at one.   

Solution of problem 9 

1) The entropy of a component of the motion vector ܦሬሬԦ is given by:  

(݀)ܪ = −  (ݏ)
ୀଵ × logଶ  (ݏ)

(݀)ܪ ≅ −1.44 × {0.014 × log(0.014) + 0.024 × logୣ(0.024) + 0.117 × logୣ(0.117) + 0.701 × logୣ(0.701) + 0.101 × logୣ(0.101) + 0.027 × logୣ(0.027) + 0.016 × logୣ(0.016)ሽ ≅ 1.499 bits of information component⁄  

The components ݀ݔ and ݀ݕ have the same statistics and are coded separately, 
hence:  (ܦ)ܪ = 2 × (݀)ܪ = 2.998 bits of information vector ܦሬሬԦ⁄  

There are seven values possible per ݀ݔ or ݀ݕ component, so for fixed length 
coding, it takes 3 bits to encode ݀ݔ and 3 bits to encode ݀ݕ. So, a total of:  ܮଵ = 6 bits 

to encode each displacement vector ܦሬሬԦ.  

The efficiency of this simple encoding technique is then: 

ଵߟ = ଵܮ(ܦ)ܪ = 2.998 6 ≅ 50 % 

and the bitrate for coding one second of ܦሬሬԦ is:  ܤܦଵ = ଵܮ × ܭ × ܮ = 6 × 396 × 25 = 59,400 bits 
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The average length of the codeword (one component ݀ of the motion vector 
only) is:   

݈ଶഥ =  (ݏ) × ݈ଶ(݅)
ୀଵ  

݈ଶഥ = {0.014 × 5 + 0.024 × 5 + 0.117 × 2 + 0.701 × 1 + 0.101 × 3 +0.027 × 5 + 0.016 × 5ሽ = 1.643 bits codeword⁄  

So, per a full motion vector: ܮଶതതത = 2 × ݈ଶഥ = 3.286 bits vector ܦሬሬԦ⁄  

Its efficiency is:  

ଶߟ = ଶതതതܮ(ܦ)ܪ = 2.9983.286 = 91.23 % 

And per second of TV frames, an average rate of: ܤܦଶ = ଶതതതܮ × ܭ × ܮ = 3.286 × 396 × 25 = 32,531.2 bits/s≅32,531 bits/s 

4) From the coded sequence (Table 1.14), there are rapid changes in the length of 
the codewords from one motion vector to the next.  

 01001 1 01011 1 011 00 1 1 01010 1 ࡿ ݏ ସݏ ݏ ସݏ ହݏ ଷݏ ସݏ ସݏ ଶݏ ସݏ ࡿࡿ

Table 1.14. Coding of a sequence of a motion vector component 

The probability of having a bit at 0 is: 

 =  (ݏ) × Numbre of zeros in ݏ ݈


ୀଵ  

 = ൜0.014 × 45 + 0.024 × 35 + 0.117 × 22 + 0.701 × 01 + 0.101 × 13 
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+0.027 × 25 + 0.016 × 35ൠ = 0.1966 

The probability of having a bit at 1 is then: ଵ = 1 −  = 0.8034 

1.10. Problem 10 – Hamming coding 

The problem of coding binary words for protection against transmission errors is 
tackled. The code ܥ considered here is a single error correcting Hamming code. We 
successively call:   − ݅௧: binary word of information to be transmitted, of length ݉: ݅௧ = [݅ଵ, ݅ଶ, ⋯ , ݅] − ݑ௧: binary codeword resulting from the coding of ݅௧, of length ݊: ݑ௧ = ,ଵݑ] ,ଶݑ ⋯ ,  [ݑ

 ௧: binary word obtained at the output of the transmission channel associatedݒ –
with ݑ௧ transmitted in the channel, also of length ݊:    ݒ௧ = ,ଵݒ] ,ଶݒ ⋯ ,  [ݒ

The construction of the codeword ݑ௧ from the information word ݅௧ is done by 
using the generator matrix [ܩ] of the code ݑ :ܥ௧ = ݅௧ ×  [ܩ]

The decoding of the word ݒ௧ received is carried out in two phases:   

a) the detection of a possible transmission error and correction of the error; 

b) the decoding by itself.  

In the first phase, we calculate the syndrome ݏᇱ
on the word received: ݏᇱ = ௧ݒ  ×  ௧[ᇱܪ]

Where [ܪᇱ] is the parity matrix of the code ܥ associated with the matrix [ܩ] via 
the matrix [ܪ]. The latter is obtained from [ܪᇱ] by permutation of columns to satisfy 
the form of [ܪ].   
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The syndrome makes it possible to detect the presence of a transmission error 
and to locate its position in the word received.  

The characteristics imposed on the code ܥ are as follows:   

– correction of single errors; 

– it is a systematic code; 

– it is a Hamming code, with ݉ = 4.  

1) What is the minimum distance of this code? 

2) Show that the length ݊ of the codewords is 7. 

3) Deduce that the generator matrix of the code is of the form:   [ܩ] =  ସ,ସ | ସܲ,ଷ൧ܫൣ
where ܫସ,ସ is the identity matrix.   

4) Show that the parity matrix of the code is of the form:  [ܪ] = ൣ ସܲ,ଷ௧  ଷ,ଷ൧ܫ | 
5) Show that the presence of a transmission error on the ݆௧ bit of ݑ௧ generates a 

syndrome ݏᇱ
equal to the ݆௧ line ℎᇱ of [ܪᇱ]௧ (ℎᇱ is the natural binary representation 

of the number j).   

6) Determine the matrices [ܪᇱ]௧ and [ܪ].  
7) Determine the generator matrix [ܩ] of the code.  

8) Construct the codewords ݑ௧ corresponding to the three information words:    

݅௧ = 0 0 1 00 1 1 01 1 0 1൩ 

We receive the three following words: 

௧ݒ = 0 1 1 0 1 1 00 1 1 1 0 1 11 1 0 1 0 0 1൩ 

9) Check each of the words for a membership or non-membership to the code.  

10) Make a block diagram of the encoder and the decoder.  



Theory of Information: Problems 1 to 15     49 

Solution of problem 10 

1) The minimum distance of the code is given by: ݀ = ݎ2 + ݎ)   ;1 = 1): single errors, 1 wrong bit → ݀ = 3 

2) Length of Hamming code (corrector of one erroneous bit):   2 ≥ 1 + ݊ ;  with  ݊ = ݉ + ݇ → 2 ≥ 1 + ݉ + ݇ → 2 ≥ 5 + ݇ →  ݇ = 3  and  ݊ = 4 + 3 = 7 

with:  

– ݊: number of bits of a codeword; 

– ݉: number of bits of an information word; 

– ݇: number of bits of a control word.  

3) It is a systematic code:  ݑ௧ = ݅௧ × [ܩ] = [݅௧, ݅௧ × [ܲ] ] → ସ,[ܩ] =  ସ,ସ | ସܲ,ଷ൧ܫൣ
4) We should have:  [ܩ]ସ, × ଷ,௧[ܪ] = [0]ସ,ଷ ; and also : [ܩ]ସ, × ଷ,௧[ᇱܪ] = [0]ସ,ଷ → ସ,ସ | ସܲ,ଷ൧ܫൣ × ଷ,௧[ܪ] = [0]ସ,ଷ 

Note that:  [ܯ]ଷ,௧  means ൣ[ܯ]ଷ,൧௧
. 

If: 

ଷ,௧[ܪ] =  ସܲ,ଷ− ଷ,ଷܫ− ൩ 

then: 

ସ,ସ | ସܲ,ଷ൧ܫൣ ×  ସܲ,ଷ− ଷ,ଷܫ− ൩ = [ܲ]ସ,ଷ⨁[ܲ]ସ,ଷ = [0]ସ,ଷ 

→ [ܪ] = ൣ ସܲ,ଷ௧  ଷ,ଷ൧ܫ | 
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5) If we receive:  ݒ௧ = ௧ߝ  ௧  withߝ⨁௧ݑ = [0, 0, ⋯ , 1, 0, ⋯ , 0]                                                           ݆௧ position 

then: ݒ,ଵ௧ × ଷ,௧[ᇱܪ] = ଷ,ଵᇱݏ = [௧ߝ⨁௧ݑ] × ௧[ᇱܪ] = ௧ݑ × ௧ߝ⨁௧[ᇱܪ] × = ௧[ᇱܪ] ,ଵ௧ߝ × ଷ,௧[ᇱܪ]  → ᇱݏ = ௧ߝ × ௧[ᇱܪ] = ݆௧ row of [ܪᇱ]௧  
6) If ݏᇱ

 gives the position of the error coded in a natural binary code, the form of 
the matrix [ܪᇱ]௧ is then:  

ଷ,௧[ᇱܪ] =
ێێۏ
ێێێ
0ۍ 0 10 1 00 1 11 0 01 0 11 1 01 1 ۑۑے1

ۑۑۑ
ې
 

Hence: 

ଷ,[ᇱܪ] = 0 0 0 1 1 1 10 1 1 0 0 1 11 0 1 0 1 0 1൩ → ଷ,[ܪ] = 0 1 1 1 1 0 01 0 1 1 0 1 01 1 0 1 0 0 1൩ 

We get [ܪ] verifying the systematic code from [ܪᇱ].  
7) The generator matrix [ܩ] of the code is such that:  

ଷ,௧[ܪ] =
ێێۏ
ێێێ
0ۍێ 1 11 0 11 1 01 1 1− − −1 0 00 1 00 0 ۑۑے1

ۑۑۑ
ېۑ =  ସܲ,ଷ− ଷ,ଷܫ− ൩ → ସ,[ܩ] =  ସ,ସ | ସܲ,ଷ൧ܫൣ



Theory of Information: Problems 1 to 15     51 

= ൦1 0 0 0 | 0 1 10 1 0 0 | 1 0 10 0 1 0 | 1 1 00 0 0 1 | 1 1 1൪ 

8) Construction of the codeword ݑ௧ corresponding to the information word:  ݅ସ,ଵ௧ × ସ,[ܩ] = ,ଵ௧ݑ ଵݑ]  ଶݑ ଷݑ [ସݑ × [ܩ] = ଵݑ] ଶݑ ଷݑ ସݑ ହݑ ݑ  [ݑ
0 0 1 00 1 1 01 1 0 1൩ × ൦1 0 0 0 0 1 10 1 0 0 1 0 10 0 1 0 1 1 00 0 0 1 1 1 1൪ = 0 0 1 0 1 1 00 1 1 0 0 1 11 1 0 1 0 0 1൩ 

Here: 

ଵݑ] – ଶݑ ଷݑ [ସݑ = [݅ଵ ݅ଶ ݅ଷ ݅ସ] is the information word; 

ହݑ] – ݑ  .] is the control word concatenated to the information wordݑ

9) Checking of code membership or code non-membership:  [ݒଵ ଶݒ ଷݒ ସݒ ହݒ ݒ [ݒ × ௧[ᇱܪ] = ଷᇱݏ] ଶᇱݏ ଵᇱݏ ] 
0 1 1 0 1 1 00 1 1 1 0 1 11 1 0 1 0 0 1൩ ×

ێێۏ
ێێێ
0ۍ 0 10 1 00 1 11 0 01 0 11 1 01 1 ۑۑے1

ۑۑۑ
ې = 0 1 01 0 00 0 0൩ 

The first word received is not a member of the code: error on the 2nd bit. 

The second word received is not a member of the code: error on the 4th bit. 

The 3rd word received is a member of the code: no error detected.  

10) The relationship:  ݅௧ × [ܩ] =  ௧ݑ
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makes it possible to determine the control bits as a function of the information bits:  [ݑହ ݑ [ݑ = ଵݑ]݂ ଶݑ ଷݑ  [ସݑ
and, from 8), we get: ݑହ = ݑ ସݑ⨁ଷݑ⨁ଶݑ = ݑ ସݑ⨁ଷݑ⨁ଵݑ =  ସݑ⨁ଶݑ⨁ଵݑ

These same equations can be obtained from the following relationships:  ݑ,ଵ௧ × ଷ,௧[ᇱܪ] = [0]ଵ,ଷ   or again :   ݑ,ଵ௧ × ଷ,௧[ܪ] = [0]ଵ,ଷ 

Hamming coder 

 

Figure 1.7. Block diagram of Hamming coder 7)ܥ, 4)  

Hamming decoder 

The decoder is based on:  

1) The calculation of the syndrome given by the relation: ݏଷ,ଵᇱ = ,ଵ௧ݒ × ଷ,௧[ᇱܪ] : 

u1
u2
u3
u4

u1
u2
u3
u4

= 1 u5

= 1

= 1

u6

u7
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ଷᇱݏ] ଶᇱݏ ଵᇱݏ ] = ଵݒ] ଶݒ ଷݒ ସݒ ହݒ ݒ [ݒ ×
ێێۏ
ێێێ
0ۍ 0 10 1 00 1 11 0 01 0 11 1 01 1 ۑۑے1

ۑۑۑ
ې
 

hence:  ݏଷᇱ = ଶᇱݏ ݒ⨁ݒ⨁ହݒ⨁ସݒ = ଵᇱݏ ݒ⨁ݒ⨁ଷݒ⨁ଶݒ =  ݒ⨁ହݒ⨁ଷݒ⨁ଵݒ

2) The identification of the position of the error and its possible correction:  

 

Figure 1.8. Block diagram of Hamming decoder 7)ܥ, 4) 

1.11. Problem 11 – Cyclic coding (1)  

The problem of coding the information to be transmitted in order to protect it 
against transmission errors is tackled. For that, we propose to use a cyclic code ܥ 
defined by its generator polynomial ݃(ݔ) of degree ݇ = (ݔ)݃  :3 = ଷݔ + ଶݔ + 1 

with ݊ = 7, the length of the codes generated by ݃(ݔ). 
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1) What is the necessary and sufficient condition for the code generated by ݃(ݔ) 
to be a cyclic code?  

2) Give explicitly the generator matrix [ܩ] of the code ܥ. 

3) Determine the polynomial ℎ(ݔ), then the corresponding matrix [ܪ].  
4) Determine the expressions of the control bits according to the information 

bits, based on:  

a) the matrix [ܪ]; 
b) the generator polynomial ݃(ݔ).  

Let ݅(ݔ) = ଷݔ + 1 be the polynomial information (information word) to encode.  

5) Determine the polynomials ܿ(ݔ) and (ݔ)ݑ corresponding to the control word 
and to the codeword, respectively.  

6) Give the implementation scheme of the encoder (based on ܦ flip-flops) 
providing a systematic code after ݊ clock cycles.  

7) Give the implementation scheme of the decoder associated with the coder 
from question 6.  

8) Give the implementation scheme of the encoder based on LFSR register 
(linear feedback shift register) providing a systematic code after ݊ clock cycles.    

9) Give the implementation scheme of the decoder associated with the coder 
from question 8.  

10) Does the generated cyclic code detect single, double or triple errors? Justify 
your answers.  

11) Determine the length-percentage pairs of detectable error packets by this 
code.  

12) Give the implementation scheme of the pseudo-random number generator 
based on the generator polynomial ݃(ݔ). Starting from the initial state [ܳ]௧ =[ܳ = 0 ܳଵ = 0 ܳଶ = 1], give the state of the register at each clock cycle and 
until the register returns to its initial state. 

What is the length of the cycle produced at the output of this pseudo-random 
number generator? 
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Solution of problem 11 

1) The necessary and sufficient condition for ݃(ݔ) to generate a cyclic code is 
that ݃(ݔ) divides (ݔ + 1) but does not divide (ݔభ + 1), with ݊ଵ < ݊ = ݔ) divides (ݔ)݃ :7 + 1)  

because: (ݔ + 1) = ଷݔ) + ଶݔ + 1) × ସݔ) + ଷݔ + ଶݔ + 1) 

but does not divide (ݔభ + 1), with ݊ଵ < ݊ = 7.  

2) We have: ݊ = ݉ + ݇, with ݊ = 7 and ݇ = 3 → ݉ = 4.     

Generator matrix of the cyclic code:   

,[ܩ] = ସ,[ܩ] = ൦1 1 0 1 0 0 00 1 1 0 1 0 00 0 1 1 0 1 00 0 0 1 1 0 1൪
                                                               ← (ݔ)݃  

3) Polynomial ℎ(ݔ) and matrix [ܪ]: 
ℎ(ݔ) = ݔ + (ݔ)1݃ = ݔ + ଷݔ1 + ଶݔ + 1 = ସݔ + ଷݔ + ଶݔ + 1;    ݀°ℎ(ݔ) = ݉ = 4       ℎ(ݔ) ,[ܪ]→ = ଷ,[ܪ] = 1 0 1 1 1 0 00 1 0 1 1 1 00 0 1 0 1 1 1൩ 

4) a) Expression of the control bits from the matrix [ܪ].  
We have:   [ܪ], × ,ଵ[ݑ] = [0],ଵ → ଷ,[ܪ] × ,ଵ[ݑ] = [0]ଷ,ଵ 

1 0 1 1 1 0 00 1 0 1 1 1 00 0 1 0 1 1 1൩ ×
ێێۏ
ێێێ
ۑۑےݑଵݑଶݑଷݑସݑହݑݑۍ

ۑۑۑ
ې = 000൩ 
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→ ൝ݑ⨁ݑସ⨁ݑଷ⨁ݑଶ = ଵݑ⨁ଶݑ⨁ଷݑ⨁ହݑ0 = ݑ⨁ଵݑ⨁ଶݑ⨁ସݑ0 = 0    → ൝ݑଶ = ଵݑ                                            ݑ⨁ସݑ⨁ଷݑ = ݑ⨁ସݑ⨁ଷݑ⨁ଷݑ⨁ହݑ = ݑݑ⨁ହݑ⨁ସݑ = ଵݑ⨁ଶݑ⨁ସݑ =                   ହݑ⨁ସݑ⨁ଷݑ
4) b) Expression of the control bits from the generator polynomial ݃(ݔ): 

(ݔ)ܿ = Remainder ቊݔ݅(ݔ)݃(ݔ) ቋ = Remainder ቊݔଷ[ݑݔଷ + ଶݔହݑ + ݔସݑ + ଷݔ[ଷݑ + ଶݔ + 1 ቋ 

⨁ ݔݑ  + ହݔହݑ + ସݔସݑ + ݔݑ ଷݔଷݑ + ହݔݑ + −ଷݔݑ − − − − − − − − − −
|||

ଷݔ + ଶݔ + 1− − − − − − − − − − − − − − − − ଷݔݑ− + ହݑ) + ଶݔ(ݑ + ସݑ) + ହݑ + ଷݑ)+ݔ(ݑ + ସݑ + (ହݑ  

ହݑ) + ହݔ(ݑ + ସݔସݑ + ଷݑ) + ହݑ)ଷݔ(ݑ + ହݔ(ݑ + ହݑ) + ସݔ(ݑ + ହݑ) + −ଶݔ(ݑ − − − − − − − − − − − − − − − − ସݑ)− + ହݑ + ସݔ(ݑ + ଷݑ) + ଷݔ(ݑ + ହݑ) + ସݑ)ଶݔ(ݑ + ହݑ + ସݔ(ݑ + ସݑ) + ହݑ + ଷݔ(ݑ + ସݑ) + ହݑ + −ݔ(ݑ − − − − − − − − − − − − − − − − − − − − − − − ଷݑ)− + ସݑ + ଷݔ(ହݑ + ହݑ) + ଶݔ(ݑ + ସݑ) + ହݑ + ଷݑ)ݔ(ݑ + ସݑ + ଷݔ(ହݑ + ଷݑ) + ସݑ + ଶݔ(ହݑ + ଷݑ) + ସݑ + −(ହݑ − − − − − − − − − − − − − − − − − − − − − − − ଷݑ)− + ସݑ + )ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥݑ ଶݔ + ସݑ) + ହݑ + )ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥݑ ݔ + ଷݑ) + ସݑ + →ݑ                                          ଵݑ                                   ଶݑହ)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥݑ (ݔ)ܿ = ଶݔଶݑ + ݔଵݑ + ݑ

 

5) Control word and codeword generation: ݅(ݔ) = ଷݔ + 1 → (ݔ)݅ݔ = ଷݔ)ଷݔ + 1) = ݔ + → ଷݔ ൜ݑ = ଷݑ = ସݑ1 = ହݑ = 0 → ൜ݑଶ = ଵݑ          0 = ݑ = 1 → (ݔ)ܿ = ݔ + 1 and (ݔ)ݑ = (ݔ)݅ݔ + (ݔ)ܿ = ݔ + ଷݔ + ݔ + 1 

6) Design of the encoder implementation scheme: 

The multiplexers (Muxs) ܿ1 and ܿ2 are in position 1 during ݉ = 4 clock cycles. 
At the clock cycles ݉ + 1, ݉ + 2, ⋯ , ݊ that is from 5 to 7, the multiplexers are in 
position 2.  
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7) Design of the decoder implementation scheme:  

 

Figure 1.9. Implementation scheme of the encoder 

 

Figure 1.10. Implementation scheme of the decoder 

After ݊ = 7 clock cycles, we look at the value of the syndrome ݏሺݔሻ: 

→ if ൜ݏሺݔሻ = 0 → no transmission error detected ݏሺݔሻ = 1 →  detection of transmission error 

8) Coder based on a linear feedback shift register (LFSR). 

The multiplexer (Mux) ܿ is in position 1 during ݉ = 4 clock cycles, then in 
position 2 for the next clock cycles  ݉ + 1, ݉ + 2, ⋯ , ݊ , that is from 5 to 7. 

9) Decoder based on a linear feedback shift register (LFSR). 
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Figure 1.11. Implementation scheme of the coder  
based on a linear feedback shift register  

 

Figure 1.12. Implementation scheme of the decoder  
based on a linear feedback shift register 
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10) The received word is: (ݔ)ݒ = (ݔ)ݑ +   (ݔ)ߝ

The syndrome is given by: 

(ݔ)ݏ = Remainder (ݔ)݃(ݔ)ݒ൨ = Remainder (ݔ)݃(ݔ)ߝ൨ 

Error detection is possible if (ݔ)ݒ does not belong to the code and if ݃(ݔ) does 
not divide (ݔ)ߝ.   

– Single errors: in this case, (ݔ)ߝ is of the form (ݔ)ߝ =   which is not divisibleݔ
by ݃(ݔ) of the form ݃(ݔ) = 1 + ⋯,  consequently, detection of all the single errors. 

– Triple errors: if ݃(ݔ) ≠ (1 +  then no detection of all the triple errors ,(ݔ)(ݔ
(see question 11).  

– Double errors: in this case, (ݔ)ߝ is of the form (ݔ)ߝ = ݔ + ݔ = ିݔ)ݔ +1). Since ݃(ݔ) does not divide ݔ, it then suffices that ݃(ݔ) does not divide (ݔି +1) either. The generator polynomial ݃(ݔ) divides ݔ + 1 but does not divide ݔభ + 1, with ݊ଵ < ݊, then ݃(ݔ) is said to be of order ݊. If ݊ = 2 − 1, then ݃(ݔ) is 
a primitive polynomial. Here, ݊ = 7,  ݇ = 3, and 7 = 2ଷ − 1, thus, this code is able 
to detect all the double errors because (݆ − ݅) < ݊.  

11) A packet of errors that starts in position ݆ and is of length ݈ is written:  (ݔ)ߝ = ݔ + ାଵݔାଵߝ + ⋯ +  ାିଵݔ

where the first and the last coefficients are at 1 and the others can be 0 or 1: (ݔ)ߝ = ݔ × ൣ1 + ݔାଵߝ + ⋯ + ିଵ൧ݔ = ݔ ×  (ݔ)1ߝ

Several cases are to be considered:  

– ݈ − 1 < ݇ : ݇ = 3 → ݈ = 3, then detection of 100% of the error packets with ݈ ≤ ݇; 

– ݈ − 1 = ݇ → ݈ = 4, and the proportion of detectable error packets is then: 1 − 2ି(ିଵ) = 1 − 2ିଶ = 0.75,  i.e. 75% of the error packets;  

– ݈ − 1 > ݇ → ݈ > 4, and the proportion of detectable error packets is then: 1 − 2ି = 1 − 2ିଷ = 0.875,  i.e. 87.5% of the error packets. 

12) Pseudo-random number generator.  
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Figure 1.13. Pseudo-random number generator and register states  

The cycle length is: ݈ = 2 − 1 = 2ଷ − 1 = 7 → ቄ4 bits at 13 bits at 0 : a quasi-balanced 

sequence. 

1.12. Problem 12 – Cyclic coding (2)  

The problem of coding the information to be transmitted in order to protect it 
against transmission errors is considered. For that, we use a cyclic code ܥ defined by 
its generator polynomial ݃(ݔ) of degree ݇ and the polynomial ℎ(ݔ) of degree ݉, 
orthogonal to ݃(ݔ) modulo (ݔ + 1). 
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We set ݊ = 15 and the associated generator polynomial is: ݃(ݔ) = ହݔ + ସݔ + ଶݔ + 1 

1) Does the cyclic code ܥ detect double errors? Justify your answer.  

We impose that the cyclic code be a systematic code, that will be denoted code ܥଵ. In this case, a word to be encoded is represented by the polynomial ݅(ݔ), and 
from this the coded word represented by the polynomial (ݔ)ݑ is obtained.  

2) What is the structure of the polynomial (ݔ)ݑ: format of each of the two parts 
of (ݔ)ݑ?   

3) From the construction mechanism of the codewords ݑ by the code ܥଵ, 
determine the implementation scheme of the coder associated with the code ܥଵ 
(using only the operators: D flip-flop; multiplexer 2 to 1; XOR).  

Taking as an example the word to be coded ݅ represented by the polynomial   ݅(ݔ) = ଼ݔ + ݔ + ଷݔ + ݔ + 1, describe the operation of the pre-multiplied encoder: 
internal state and values of the input and output at each clock cycle.    

Deduce the polynomial code ݑଵ(ݔ) associated with ݅(ݔ).  

4) Determine the implementation scheme of the decoder associated with the code ܥଵ making it possible for the detection of errors and explain how it operates.  

We no longer impose the cyclic code ܥ to be systematic. Let ܥଶ be the code ܥ 
such that (ݔ)ݑ is obtained by multiplication of ݅(ݔ) by ݃(ݔ).   

5) Determine the implementation scheme of the coder associated with the code ܥଶ (using only the operators: D flip-flop; XOR).   

Taking as an example the word to be coded ݅ from question 3, describe the 
operation of the coder. Deduce the polynomial code ݑଶ(ݔ) associated with ݅(ݔ).   

Solution of problem 12 

1) We have ݊ = 15; ݇ = 5 and:   ݃(ݔ) = ହݔ + ସݔ + ଶݔ + 1 = ݔ) + ସݔ)(1 + ݔ + 1) = ݔ) + 1) × ݊ :which is of degree 4, is primitive because (ݔ) is not primitive, but (ݔ)݃ (ݔ) = 15 = 2ସ − 1. 
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Two errors occurring in position ݅ and ݆ of a codeword are characterized by a 
polynomial error of type:  (ݔ)ߝ = ݔ + ݔ = ିݔ)ݔ + 1)   with   ݊ > ݆ > ݅ 

The polynomial (ݔ) being primitive, thus (ݔ) does not divide any of the 
polynomials of the form (ݔభ + 1) with  ݊ଵ < ݊. Then (݆ − ݅) is at most equal to  (݊ − 1). In addition, (ݔ) does not divide ݔ, hence this cyclic code detects all the 
double errors. 

It should also be noted that the polynomial (ݔ + 1) detects all the single and 
triple errors.    

2) Structure of the polynomial:   ݔ݅(ݔ) = (ݔ)݃ × (ݔ)ݍ + (ݔ)ܿ → (ݔ)݅ݔ + (ݔ)ܿ = (ݔ)݃ × (ݔ)ݍ =  (ݔ)ݑ

with: 

 ;polynomial information cyclically shifted from ݇ positions to the left :(ݔ)݅ݔ –

  .polynomial control :(ݔ)ܿ –

3) We have:   ݔ݅(ݔ) = (ݔ)݃ × (ݔ)ݍ +  (ݔ)ܿ

hence: ݔହ × ଼ݔ) + ݔ + ଷݔ + ݔ + 1) = ହݔ) + ସݔ + ଶݔ + 1) × (ݔ)ݍ + ଵଷݔ  (ݔ)ܿ + ଵଵݔ + ଼ݔ + ݔ + ହݔ = ହݔ) + ସݔ + ଶݔ + 1) × ଼ݔ) + ݔ + ହݔ + ݔ + 1) + ସݔ + ଷݔ + ଶݔ + ݔ + 1 

So finally: ݑଵ(ݔ) = (ݔ)݅ݔ + (ݔ)ଵݑ (ݔ)ܿ = ଵଷݔ + ଵଵݔ + ଼ݔ + ݔ + ହݔ + ସݔ + ଷݔ + ଶݔ + ݔ + 1 

Diagram of implementation of the coder associated with code ܥଵ (block diagram 
of Table 1.15) and description of its operation. 
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Table 1.15. Description of the operations of the premultiplied coder. For a  
color version of this table, see www.iste.co.uk/assad/digital2.zip  

4) The structure of the decoder for error detection is given in Figure 1.14. 
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Figure 1.14. Structure of the decoder for the detection of errors. For a  
color version of this figure, see www.iste.co.uk/assad/digital2.zip 

The detection process is as follows: 

– initialization: reset the register by performing the action Clear; 

– during ݊ clock cycles, the received word (ݔ)ݒ enters the divisor. The 
remainder of the division ݔ(ݔ)ݏ is stored in the register at the ݊௧ clock cycle, the 
output of the OR gate will then indicate whether there is an error or not.  

5) We have:  ݑଶ(ݔ) = (ݔ)݅ × ݔ) mod  (ݔ)݃ + 1) 

(ݔ)ଶݑ =  ݅௦ݔ௦  ݃
ୀ

ିଵ
௦ୀ ݔ =   ݅௦ × ݃ ×

ୀ
ିଵ
௦ୀ  ௦ାݔ

Let’s set: ݈ = ݏ + ݆ : 

(ݔ)ଶݑ =    ݅௦ × ݃ି௦ିଵ
௦ୀ ൩ ݈)    withݔ − (ݏ ∈ [0, ⋯ , ݇]ାିଵ

ୀ  

again:  ݑଶ(ݔ) = ݅݃ + (݅ ଵ݃ + ݅ଵ݃)ݔ + (݅݃ଶ + ݅ଵ ଵ݃ + ݅ଶ݃)ݔଶ + ⋯ +(݅ିଶ݃ + ݅ିଵ݃ିଵ)ݔାିଶ + ݅ିଵ݃ݔାିଵ 

A hardware implementation of this relation defines the coder associated with the 
code ܥଶ (see the block diagram of Table 1.16). The information word is entered in a 
shift register, least significant bit first, and the bits corresponding to the terms 
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Indeed:  ݑଶ(ݔ) = (ݔ)݅ × (ݔ)݃ = ଼ݔ) + ݔ + ଷݔ + ݔ + 1) × ହݔ) + ସݔ + ଶݔ + 1) = ଵଷݔ + ଵଶݔ + ଵଵݔ + ଼ݔ + ݔ + ହݔ + ସݔ + ଶݔ + ݔ + 1 

1.13. Problem 13 – Cyclic coding and Hamming coding (1)  

We consider a linear block code ܥ of parameter ݊ = 7 and of primitive generator 
polynomial: ݃(ݔ) = ଷݔ + ଶݔ + 1. 

1) Show that this code is cyclic. Deduce the second primitive generator 
polynomial ݃ଵ(ݔ).  

2) Determine a matrix [ܩ] generating this code. Deduce the generator matrix [ܩ௦] from the systematic version of the code in question.  

3) Determine the codeword (ݔ)ݑ in systematic form which is associated with the 
information word: ݅(ݔ) = ଷݔ + 1.    

4) Design the premultiplied coder making it possible to generate the codeword (ݔ)ݑ from the information word: ݅(ݔ) = ଷݔ + 1.   

5) Give the control matrix [ܪ] of the dual code to the code ܥ.    

6) Find, from the relation linking the control matrix [ܪ] and the codeword ݑ, the 
control bits as a function of the information bits of question 3.  

7) Make your comments about the code ܥ and its dual.   

Solution of problem 13 

1) The code is cyclic if ݃(ݔ) divides (ݔ + 1) but does not divide (ݔభ + 1) 
with ݊ଵ < ݊.  

Here ݊ = 7 and: (ݔ + 1) = ଷݔ) + ଶݔ + 1) × ସݔ) + ଷݔ + ଶݔ + ݔ) (1 + 1) = ଷݔ) + ଶݔ + 1) × ଷݔ) + ݔ + 1) × ݔ) + 1)  

So, ݃(ݔ) divides (ݔ + 1), and the code ܥ is a cyclic code.   

The second primitive generator polynomial ଵ݃(ݔ) is:  

ଵ݃(ݔ) = ଷݔ) + ݔ + 1) 
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2) The generator matrix [ܩ] of the code 7)ܥ, 4) is given from the generator 
polynomial ݃(ݔ) as follows:  

ସ,[ܩ] = ൦1 1 0 1 0 0 00 1 1 0 1 0 00 0 1 1 0 1 00 0 0 1 1 0 1൪ (ݔ)݃(ݔ)݃ݔ(ݔ)ଶ݃ݔ(ݔ)ଷ݃ݔ  

To get a systematic code, the generating matrix [ܩ௦] must have the form [ܩ௦] =    :we find that [ܩ] ସ,. Indeed, from the form of the matrix[ܩ] ସ,ସ | ସܲ,ଷ൧ obtained from the arithmetic operations on the rows of the matrixܫൣ

– the row 1 of the matrix [ܩ௦] is obtained by the sum of the rows: 1 + 2 + 3 of the 
matrix [ܩ];  

– the row 2 of the matrix [ܩ௦] is obtained by the sum of the rows: 2 + 3 + 4 of the 
matrix [ܩ]; 

– the row 3 of the matrix [ܩ௦] is obtained by the sum of the rows: 3 + 4 of the 
matrix [ܩ]; 

– the row 4 of the matrix [ܩ௦] is identical to the row 4 of the matrix [ܩ], hence:   

[௦ܩ] = ൦1 0 0 0 | 1 1 00 1 0 0 | 0 1 10 0 1 0 | 1 1 10 0 0 1 | 1 0 1൪ 

3) We have:  ݔ݅(ݔ) = (ݔ)݃ × (ݔ)ݍ + (ݔ)ܿ → (ݔ)݅ݔ + (ݔ)ܿ = (ݔ)݃ × (ݔ)ݍ =  (ݔ)ݑ

with: ݅(ݔ) = ଷݔ + 1 ; ݇ = 3 → (ݔ)݅ݔ = ଷݔ × ଷݔ) + 1 ) = ݔ +  ଷݔ

hence: 

ݔ  + ⨁ଷݔ ݔ                             + ହݔ + −ଷݔ − − − − − −
|||

ଷݔ + ଶݔ + 1 ← −(ݔ)݃ − − − − − − − − ଷݔ− + ଶݔ + ݔ + 1 ←  (ݔ)ݍ
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ହݔହݔ + ସݔ + −ଶݔ − − − − − ସݔ− + ସݔଶݔ + ଷݔ + −ݔ − − − − − ଷݔ− + ଶݔ + ଷݔݔ + ଶݔ + 1− − − − − − ݔ− + 1 ← →(ݔ)ܿ (ݔ)ݑ = ݔ  + ଷݔ + ݔ + ݑ1 = [1 0 0 1 0 1 1]

 

4) Construction of the pre-multiplied coder. 

 

Figure 1.15. Implementation scheme of the pre-multiplied coder 

5) Control matrix [ܪ] of the dual code to the code ܥ.  

It is such that we have: [ܩ௦] × ௧[ܪ] = [௦ܩ]   ; [0] = ସ,ସ | ସܲ,ଷ൧ܫൣ  → [ܪ] = ൣ ସܲ,ଷ௧  ଷ,ଷ൧ܫ | 
→ ଷ,[ܪ] = 1 0 1 1 | 1 0 01 1 1 0 | 0 1 00 1 1 1 | 0 0 1൩ 
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6) Control bits according to the information bits of question 3: [ܪ]ଷ, × ,ଵݑ = [0]ଷ,ଵ 

1 0 1 1 1 0 01 1 1 0 0 1 00 1 1 1 0 0 1൩ ×
ێێۏ
ێێێ
ۑۑےݑଵݑଶݑଷݑସݑହݑݑۍ

ۑۑۑ
ې = 000൩ 

→ ൝ݑ + ସݑ + ଷݑ + ଶݑ = ݑ0 + ହݑ + ସݑ + ଵݑ = ହݑ0 + ସݑ + ଷݑ + ݑ = 0   → ൝ݑଶ = ଷݑ + ସݑ + ଵݑݑ = ସݑ + ହݑ + ݑݑ = ଷݑ + ସݑ +  ହݑ

Thus, we have: ݑ௧ = ቂݑ ݑହ ݑସ ݑଷᇣᇧᇧᇤᇧᇧᇥ    ݑଶ ݑଵ ݑᇣᇧᇤᇧᇥቃ = [1 0 0 1 0 1 1]information bits   control bits                           

7) The dual code of a maximum length cyclic code is the Hamming code.   

1.14. Problem 14 – Cyclic coding and Hamming coding (2)  

We consider a linear block code defined by its following generator matrix: 

,[ܩ] = 1 1 1 0 1 0 00 1 1 1 0 1 00 0 1 1 1 0 1൩ 

1) Give the expression of the generator polynomial ݃(ݔ) associated with [ܩ],.  

2) Is the code generated by ݃(ݔ) cyclic? Justify your answer.  

It is required that the cyclic code generated by ݃(ݔ) is systematic.    

3) Determine the polynomial (codeword) (ݔ)ݑ from the polynomial (information 
word): ݅(ݔ) = ଶݔ + 1.  

4) Give the implementation scheme of the pre-multiplied encoder making it 
possible to generate the codeword (ݔ)ݑ from the information word ݅(ݔ) = ଶݔ + 1  
and describe its operation: internal state and input and output values for three clock 
cycles.     



70     Digital Communications 2 

5) Does the generated code detect odd numbers of errors and double errors? 
Justify your answer.   

6) Determine the proportion of error packets of length ݈ > 5, detectable by the 
generated code.  

7) Give explicitly the generating matrix [ܩ௦], from the matrix [ܩ] given above, 
which allows the generation of a systematic code ܥ.  

8) Determine explicitly the form of the control matrix [ܪ] which enables the 
generation of a code ܦ dual to the code ܥ.   

9) Find, from the relation between the control matrix [ܪ] and the codeword ݑ, 
the control bits as a function of the information bits.  

10) Give the implementation scheme of the pseudo-random number generator 
(PRNG) based on ݃(ݔ). 

Solution of problem 14 

1) The last row of [ܩ], =  ଷ, is the lower-level codeword that represents[ܩ]
the generator polynomial ݃(ݔ):   → (ݔ)݃ = ସݔ + ଷݔ + ଶݔ + 1  → ݇ = 4 

2) From [ܩ]ଷ,  → ݉ = 3 and ݊ = ݉ + ݇ = 3 + 4 = 7. The generated code is 
cyclic if ݃(ݔ) divides (ݔ + 1) but does not divide (ݔభ + 1), with ݊ଵ < ݊ = 7:  

ݔ  + 1⨁ ݔ                                      + ݔ + ହݔ + −ଷݔ − − − − − −
|||

ସݔ + ଷݔ + ଶݔ + 1 ← −(ݔ)݃ − − − − − − − − ଷݔ− + ଶݔ + 1 ← (ݔ)ݍ  

ݔ + ହݔ + ଷݔ + ݔ 1 + ହݔ + ସݔ + − ଶݔ − − − − − ସݔ − + ଷݔ + ଶݔ + ସݔ 1 + ଷݔ + ଶݔ + 1 − − − − − − − − 

 



Theory of Information: Problems 1 to 15     71 

0       0       0       0 → ݔ)  + 1) = ସݔ) + ଷݔ + ଶݔ + 1 )ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ × ଷݔ) + ଶݔ + 1 )ᇣᇧᇧᇧᇤᇧᇧᇧᇥ                               ݃(ݔ)                             (ݔ)ݍ  

Therefore, since  ݃(ݔ) divides (ݔ + 1), but does not divide (ݔ + ହݔ) ,(1 + 1), 
or (ݔସ + 1), then the code generated by ݃(ݔ) is a cyclic one.  

3) Determination of the polynomial (ݔ)ݑ associated to the polynomial: ݅(ݔ) ଶݔ= + 1. 

We have: ݔ݅(ݔ) = (ݔ)݃ × (ݔ)ݍ + (ݔ)ܿ → (ݔ)݅ݔ + (ݔ)ܿ = (ݔ)݃ × (ݔ)ݍ = (ݔ)݅ݔ (ݔ)ݑ = ସݔ × ଶݔ) + 1 ) = ݔ +  ସݔ

ݔ  + ⨁ସݔ ݔ                                      + ହݔ + ସݔ + −ଶݔ − − − − − −
|||

ସݔ + ଷݔ + ଶݔ + 1 ← −(ݔ)݃ − − − − − − − − ଶݔ− + ݔ + 1 ← (ݔ)ݍ  

ହݔ + ହݔ ଶݔ + ସݔ + ଷݔ + − ݔ − − − − − ସݔ − + ଷݔ + ଶݔ + ସݔ ݔ + ଷݔ + ଶݔ + 1 − − − − − − − (ݔ)ܿ − = ݔ + 1  → (ݔ)ݑ = (ݔ)݅ݔ + (ݔ)ܿ = ݔ + ସݔ + ݔ + 1 

4) Block diagram of the pre-multiplied encoder generating the codeword (ݔ)ݑ 
from the information word ݅(ݔ) = ଶݔ + 1  and description of its operation (see the 
block diagram in Table 1.17). 
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Table 1.17. Block diagram of the premultiplied encoder and encoder operation: 
internal state and input and output values for three clock cycles   

5) a) Detection of an odd number of errors. 

If ݃(ݔ) can be set in the form ݃(ݔ) = ݔ) +  detects odd (ݔ)݃ then ,(ݔ)(1
number of errors with (ݔ + 1) (see Volume 1, Chapter 4).    ݔସ + ଷݔ + ଶݔ + 1⨁ ସݔ                                      + −ଷݔ − − − ଶݔ− + ଶݔ1 + −ݔ − − ݔ− + ݔ1 + 1− − − −0    0

|||
ݔ + 1 − − − − − − − − − ଷݔ− + ݔ + 1 ← (ݔ)ݍ  

→ (ݔ)݃  = ݔ) + 1 ) × ଷݔ) + ݔ + 1) = ݔ) + 1 ) ×  (ݔ)
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So, detection of an odd number of errors.  

5) b) Detection of double errors.  

The generator polynomial ݃(ݔ) contains the polynomial (ݔ) = ଷݔ + ݔ + 1 that 
is primitive, because 2ଷ − 1 = 7 = ݊, so it makes it possible (ݔ) to detect all the 
double errors.   

6) Proportion of detectable error packets of length ݈ > 5.  

We have  ݇ = 4, so the proportion of detectable error packets of length  ݈ > ݇ +1 → ݈ > 5 is:  1 − 2ି = 1 − 2ିସ = 93.75 % 

7) The matrix [ܩ௦] is taken from the matrix [ܩ]ଷ, by shifting the positions of 
some columns verifying the expected form of [ܩ௦], = ଷ,[௦ܩ] =   :ଷ,ଷ | ସܲ,ଷ൧ܫൣ

ଷ,[ܩ] = 1 1 1 0 1 0 00 1 1 1 0 1 00 0 1 1 1 0 1൩ →  ଷ,[௦ܩ]

= 1 0 0 | 1 1 0 10 1 0 | 1 1 1 00 0 1 | 0 1 1 1൩ 

8) Form of the control matrix [ܪ]:  [ܩ௦], × ,௧[ܪ] = [0], [ܩ௦], = , | ܲ,൧ܫൣ → ,[ܪ] = ൣ ܲ,௧ ଷ,[௦ܩ] ,൧ܫ |  = ଷ,ଷ | ଷܲ,ସ൧ܫൣ  → ସ,[ܪ]  = ൣ ଷܲ,ସ௧  ସ,ସ൧ܫ | 
→ ସ,[ܪ] = ൦1 1 0 | 1 0 0 01 1 1 | 0 1 0 00 1 1 | 0 0 1 01 0 1 | 0 0 0 1൪ 

9) Control bits as a function of information bits?  

We have:   [ܪ]ସ, × ,ଵ[ݑ] = [0]ସ,ଵ 
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1.15. Problem 15 – Cyclic code, M-sequences, and Gold sequences  

We consider the problem of coding the information to be transmitted so as to 
protect it against transmission errors. For this purpose, a cyclic code ܥ defined by its 
following generator polynomial: ݃(ݔ) = ହݔ + ଶݔ + 1, and ݊ = 31 is used.    

1) What is the necessary and sufficient condition for the proposed polynomial ݃(ݔ) to be primitive and generate a cyclic code? 

It is desired to produce a systematic code ܥ.  

2) Give the expression of the codeword represented by the polynomial (ݔ)ݑ 
corresponding to the information word represented by the polynomial: ݅(ݔ) = ݔ ସݔ+ + ݔ + 1. 

3) Give the implementation scheme of the encoder based on a division circuit 
pre-multiplied by ݔ, where ݇ is the degree of the generator ݃(ݔ). Describe how it 
works.  

4) Give the implementation scheme of the decoder associated with the code ܥ 
allowing the detection of errors and explain how it works.   

5) Does the generated cyclic code detect single, double or triple errors? Justify 
your answer in each case.   

6) Determine the length-percentage pairs of error packets detectable by this code.  

7) Give the wiring diagram of the pseudo-random number generator of maximum 
length (M-sequences), based on the primitive polynomial ݃(ݔ) defined above.   

8) Give the expression of the generator polynomial ݃(ݔ) reciprocal of the 
generator polynomial ݃(ݔ). What is the essential characteristic of the M-sequence 
generated by ݃(ݔ) compared to that generated by ݃(ݔ)?   

9) Give the number of M-sequences generated by ݃(ݔ) and the ratio between the 
maximum of cross-correlation and that of the autocorrelation.   

10) Show that the generator ݃ଵ(ݔ) = ହݔ + ସݔ + ଶݔ + ݔ + 1 associated with  ݃(ݔ) forms a preferred pair.  

11) Give the wiring diagram of the Gold generator based on ݃(ݔ) and ݃ଵ(ݔ), to 
generate all the Gold sequences. 

12) Give the number of Gold sequences generated and the ratio between the 
maximum of cross-correlation and that of the autocorrelation.    
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Solution of problem 15 

1) The necessary and sufficient condition that ݃(ݔ) is primitive is that:  2 − 1 = ݊ = 2ହ − 1 

so ݃(ݔ) is primitive.  

The polynomial ݃(ݔ) is generating a cyclic code, if it divides ݔଷଵ + 1 but does 
not divide (ݔభ + 1), with ݊ଵ < 31.  

The generator ݃(ݔ) divides ݔଷଵ − 1, because, after division we get a null 
remainder:   ݔଷଵ + 1 = ହݔ) + ଶݔ + 1) × ଶݔ) + ଶଷݔ + ଶଵݔ + ଶݔ + ଵݔ + ଵݔ + ଵହݔ + ଵସݔ + ଽݔ+ ଵଷݔ + ଼ݔ + ݔ + ହݔ + ସݔ + ଶݔ + 1) 

2) Expression of the codeword represented by the polynomial (ݔ)ݑ 
corresponding to the information word represented by the polynomial ݅(ݔ): 

We have:   ݔ݅(ݔ) = (ݔ)݃ × (ݔ)ݍ + (ݔ)ܿ → (ݔ)݅ݔ + (ݔ)ܿ = (ݔ)݃ × (ݔ)ݍ =  (ݔ)ݑ

or again: ݔ݅(ݔ) = ହݔ × ݔ) + ସݔ + ݔ + 1) = ଵଶݔ + ଽݔ + ݔ +  ହݔ

ଵଶݔ  + ଽݔ + ݔ + ⨁ହݔ ଵଶݔ                                      + ଽݔ + −ݔ − − − − − −
|||

ହݔ + ଶݔ + 1 ← −(ݔ)݃ − − − − − − − − ݔ− + ଶݔ + ݔ + 1 ←  (ݔ)ݍ

ݔ + ݔ + ݔ ହݔ + ସݔ + − ଶݔ − − − − − ݔ − + ହݔ + ସݔ + ݔ ଶݔ + ଷݔ +  ݔ



Theory of Information: Problems 1 to 15     77 

− − − − − − − ହݔ − + ସݔ + ଷݔ + ଶݔ + ହݔ ݔ + ଶݔ + 1 − − − − − − − − − (ݔ)ܿ − = ସݔ + ଷݔ + ݔ + 1 → (ݔ)ݑ = ଵଶݔ + ଽݔ + ݔ + ହᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥݔ + ସݔ + ଷݔ + ݔ + 1ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ                         ݔ݅(ݔ)                           ܿ(ݔ)  

3) Implementation scheme of the coder based on a division circuit premultiplied 
by ݔ.  

 

Figure 1.17. Implementation scheme of the coder. For a color  
version of this figure, see www.iste.co.uk/assad/digital2.zip 

The operation of the encoder is as follows:  

– resetting the D flip-flops; 

– during ݉ = 8 clock cycles, the multiplexers (Muxs) 1 and 2 are in position 1.  
The information bits are applied simultaneously to the divider and to the output. The ݇ control bits (݇ = 5) are in the ݇ flip-flops of the register;   

– during ݇ clock cycles, multiplexers (Muxs) 1 and 2 are in position 2; zeros 
enter the register and the control bits go out. The encoder uses (݉ + ݇) =(8 + 5 = 13) clock cycles and the transmission channel is used throughout the 
operation. At the 13th clock cycle, the register flip-flops are zero and the encoder is 
ready to receive another information word to code. The encoder has a good 
efficiency. 
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4) Implementation scheme of the decoder associated with the code ܥ.  

The received word (ݔ)ݒ is written:   (ݔ)ݒ = (ݔ)ݑ +  (ݔ)ߝ

with (ݔ)ߝ as a possible error word.   

The syndrome is defined by: 

(ݔ)ݏ = Remainder (ݔ)݃(ݔ)ݒ൨ = Remainder (ݔ)݃(ݔ)ݑ൨ + Remainder (ݔ)݃(ݔ)ߝ൨= Remainder (ݔ)݃(ݔ)ߝ൨ 

So: if (ݔ)ߝ is non null, and if (ݔ)ݒ ∉ ,݊)ܥ ݉), then (ݔ)ݏ ≠ 0, hence the decoder 
implementation scheme. 

 

Figure 1.18. Implementation scheme of the decoder. For a color  
version of this figure, see www.iste.co.uk/assad/digital2.zip 

The received word (ݔ)ݒ is divided by ݃(ݔ) during ݊ = ݉ + ݇ = 8 + 5 = 13  
clock cycles. Then, the contents of the register are verified by a simple OR logic 
gate. If the content of the register is zero, then the received word is decided to be 
correct. Otherwise (the content of the register is not zero), the received word is 
decided to be erroneous.  

5) Cyclic code capability to detect single, double or triple errors? 
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We know that:  

(ݔ)ݏ = Remainder (ݔ)݃(ݔ)ߝ൨ 

Thus, error detection is possible if ݃(ݔ) does not divide (ݔ)ߝ.  

– Single errors: in this case an error in position ݅, represented by (ݔ)ߝ =   is notݔ
divisible by ݃(ݔ) = 1 + ⋯, thus detection of all the single errors.   

– Triple errors: in this case, (ݔ)ߝ = ݔ + ݔ + (ݔ)݃ , and asݔ ≠ (1 +  (ݔ)(ݔ
then in principle, no detection of triple errors (see Volume 1, Chapter 4).  

– Double errors: in this case, (ݔ)ߝ is of the form (ݔ)ߝ = ݔ + ݔ = ିݔ)ݔ + 1) 
with ݅ < ݆ < ݊. Since ݃(ݔ) does not divide ݔ, it suffices then that ݃(ݔ) does not 
divide either (ݔି + 1). The generator ݃(ݔ) divides ݔ + 1 but does not divide ݔభ + 1, with ݊ଵ < ݊, so ݃(ݔ) is said to be of order ݊. The primitive polynomials 
are irreducible. They detect all double errors because  (݆ − ݅) < ݊.      

6) Determination of the length-percentage pairs of detectable error packets.  

An error packet that starts in position ݆ and has a length ݈ is written:   (ݔ)ߝ = ݔ + ାଵݔାଵߝ + ⋯ +  ାିଵݔ

where the first and the last coefficients of (ݔ)ߝ are at 1, the other coefficients can be 
at 1 or 0: (ݔ)ߝ = ݔ × ൣ1 + ݔାଵߝ + ⋯ + ିଵ൧ݔ = ݔ ×  (ݔ)1ߝ

Three cases are encountered:  

– ݈ − 1 < ݇  (݇ = 5)  → ݈ = 5, hence detection at 100% of all the error packets 
of length ݈ ≤ ݇; 

–  ݈ − 1 = ݇ → ݈ = ݇ + 1 = 6, the proportion of error packets detectable is then: 1 − 2ି(ିଵ) = 1 − 2ିସ = 0.9375,  i.e. 93.75% of the packets;  

– ݈ − 1 > ݇ → ݈ > 6 , the proportion of error packets detectable is then: 1 − 2ି = 1 − 2ିହ = 0.9687,  i.e. 96.87%.  

7) The implementation scheme of the pseudo-random number generator (PRNG) 
based on ݃(ݔ) is given in Figure 1.19.  
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Figure 1.19. Implementation scheme of the pseudo-random  
number generator based on ݃(ݔ) 

NOTE.– At the start, the initial state of the D flip-flops [ܳସ, ܳଷ, ܳଶ, ܳଵ, ܳ] of the 
register should be different of zero.  

8) Expression of the generator polynomial ݃(ݔ) reciprocal of the generator ݃(ݔ).  

We have:  ݃(ݔ) = ݔ × ݃(1 ⁄ݔ ) = ହݔ × ହିݔ) + ଶିݔ + 1) = ହݔ + ଷݔ + 1 

The M-sequence generated by ݃(ݔ) corresponds to the one generated by ݃(ݔ) 
but in a reverse sense.    

9) Number of M-sequences generated by ݃(ݔ).  ݇ = 5, so the number of M-sequences generated by ݃(ݔ) is 6 (see volume 1, 
chapter 4). The ratio  ܴ௦ಾೌೣ ܴ௦௦(0)⁄ = 0.35 (see Volume 1, Chapter 4).    

10) Does the generator polynomial ݃ଵ(ݔ) = ହݔ + ସݔ + ଶݔ + ݔ + 1, form with 
the polynomial ݃(ݔ) as a preferred pair?  

Let ߙ be a root of: ݃(ݔ) = ହݔ + ଶݔ + 1.   

The polynomial ଵ݃(ݔ) = ହݔ + ସݔ + ଶݔ + ݔ + 1, forms a preferred pair with ݃(ݔ) because: 

if ቊ1) ݇ is odd, since ݇ = 5, conditions in 1) are satisϐied    2)  ଵ݃(ݔ) is such that ߙଶቂିଵଶ ቃାଵ = (ݔ)ହ is a root of ଵ݃ߙ  
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It means that ݃(ߙ) divides ଵ݃(ߙହ). This condition is also satisfied, because: ݃ଵ(ߙହ) = ଶହߙ  + ଶߙ + ଵߙ + ହߙ + 1 

ଵ݃(ߙହ) = ݃(α) × ଶߙ) + ଵߙ + ଵସߙ + ଵଶߙ + ଵଵߙ + ଼ߙ + ߙ + ߙ + +ସߙ ଶߙ + 1)with: (ߙ)݃ = ହߙ) + ଶߙ + 1) 

11) Implementation scheme of the Gold generator based on ݃(ݔ) and ݃ଵ(ݔ). 

 

Figure 1.20. Implementation scheme of the Gold generator 

12) The number of Gold sequences is ݑ)ܩ, (ݒ = ,ݑ} ,ݒ ݊ ሽ, a set ofݒܦ⨁ݑ + 2 
sequences. The ratio is ܫ(݇) ܴ௦௦(0)⁄ = 0.29 (see Volume 1, Chapter 4). 
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Baseband Digital Transmission:  
Problems 16 to 26 

2.1. Problem 16 – Entropy and information to signal source coding 

We consider the problem of long-distance transmission over low cost electric 
cable of a compressed information source ܵ from a video signal compression 
system. The compression system used makes sure that the source ܵ delivers words ݏ 
taken in a dictionary with only five words: ሾݏଵ, ,ଶݏ ,ଷݏ ,ସݏ  ହሿ. The probabilities ofݏ
issuing symbols are given in Table 2.1.   ݏ ࢙ଵ ݏଶ ݏଷ ݏସ ݏହ 0.09 0.21 0.40 0.19 0.11 (࢙)࢘ࡼ 

Table 2.1. Probability of emission of source ܵ 

The symbols are delivered by the source with a rate of 13.5 × 10 symbols per 
second. 

1) Determine the entropy ܪ(ܵ) of the source ܵ. Deduce the entropy rate per 
second. What would be the efficiency ߟଵ of a fixed-length code ܥଵ, its length ܮଵ, and 
the bitrate per second, denoted ܦଵ?   

2) Construct the Huffman code ܥଶ generating the codeword ܵ associated with 
each of the symbols ݏ.   
NOTE.– In the design of the code ܥଶ, the coding suffix associated with the element of 
lower probability will be systematically set to 1.    

Digital Communications 2: Directed and Practical Work, 
First Edition. Safwan El Assad and Dominique Barba. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Deduce the average length ܮଶ of the codeword ܥଶ, its efficiency ߟଶ and the 
bitrate per second ܦଶ.   

3) It is considered here that the source ܵ delivers the following time sequence ܵܵ 
of symbols ݏ:  ⋯ ⋯ ସݏ    ହݏ    ଷݏ    ଶݏ    ଷݏ    ଷݏ    ସݏ    ଷݏ    ହݏ    ଶݏ ⋯ ⋯ ⟶ time 

Deduce the corresponding sequence ܵܤ of bits obtained at the output of the 
Huffman coding ܥଶ. ܵܤ is of the form  ሼ⋯ ⋯ ܾିଵ, ܾ, ܾାଵ ⋯ ⋯  ሽ. What do you 
observe?  

4) The transmitter constructs a baseband signal supporting the transmitted 
information bits.   

a) It first uses a bipolar encoder (called CODBip) of RZ type, with amplitude ܸ and duration ܶ. Draw a graph of the signal portion associated with ܵܤ 
transmitted by this CODBip encoder. What are the problems encountered in 
reception?   

NOTE.– Both here and also in question b), we will consider, at the start of the 
sequence, that the parity flip-flop of the number of “1” is equal to 1.  

b) It then uses an encoder (called CODHDB) of HDB-2 type. Draw a graph of 
the signal portion associated with ܵܤ transmitted by this CODHDB encoder. Are 
some problems solved now and why? 

c) What is the approximate bandwidth of the signal emitted by the bipolar or 
HDB-2 code to encode the ܵ source? (We can rely on the properties of the power 
spectral density ߁(݂) of the signal transmitted). To transmit this source of 
information on this type of cable, is there a good fit?  

5) We want to reduce the bandwidth of the transmitted signal. Thus, it is desired 
to use an information-to-signal coder of partial response linear encoder type. This 
encoder will be very simple, of the form 1 −  ,is the delay operator of ܶ ܦ ଶ (hereܦ
time slice allocated to the transmission of a binary symbol). The signal (ݐ)ݔ which 
carries the symbols ܿ is of NRZ type, amplitude ܸ 2⁄  and duration ܶ.   

The following ܵܤܤ binary sequence will be used for the rest of this problem: 

0  0  1  0  0  0  1  1  0  1  1  1  0  0  1  1   0  0  0  1  0  1  

a) This type of encoder needs to be preceded by an appropriate precoder. Why? 

b) Describe the relationship between the pre-encoder output (giving the 
symbols ܾᇱ ) and its input ܾ.  
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c) Describe the relationship between the encoder output (producing the 
symbols ܿ) and its input ܽ. 

d) Represent graphically, the signal portion associated with ܵܤܤ transmitted 
by this whole partial response coder (for a pulse amplitude modulation of duration ܶ). It will be necessary to first determine the sequence obtained at the output of the 
precoder (it will be assumed that the two symbols ܾᇱ  not known at the beginning of 
the sequence are zero).    

e) What is the approximate bandwidth of the signal emitted by this partial 
response linear code to encode the source ܵ? Have we gained any bandwidth 
reduction? 

6) For this partial response linear code, how does decoding produce the symbols ܾ from ܿ? Justify your answer. What happens to the reconstructed binary 
information ܾ if a transmission error occurs for one of the symbols ܿ̂ reconstructed 
on reception?   

Solution of problem 16 

1) Entropy ܪ(ܵ):  

(ܵ)ܪ = −  (ݏ) × logଶ ହ(ݏ)
ୀଵ  

(ܵ)ܪ = − ൜ 0.11 × logଶ(0.11) + 0.19 × logଶ(0.19)+0.4 × logଶ(0.4) + 0.21 × logଶ(0.21) + 0.09 × logଶ(0.09)ൠ ≅ 2.12 bits of information/symbol 

Entropy bitrate:  ܦ(ܵ) = (ܵ)ܪ × 13.5 × 10 = 28.26 Mbits of information/s 

Fixed-length code ܥଵ (length ܮଵ): we have five symbols to encode, hence: ܮଵ = 3 bits.  

Efficiency:  

ଵߟ = ଵܮ(ܵ)ܪ = 2.123 = 70.67 % 

Bitrate of code ܥଵ: ܦଵ = 3 × 13.5 × 10 = 40.5 Mbits/s 



86     Digi

2) Hu

Aver

=ଶܮ
Effic

ߟ
Bitraܦ
3) Se

tal Communicat

uffman code ܥ

T

rage length of 

ଶ =  ହ(ݏ)
ୀଵ= 2.19 bits/sym

ciency of code

ଶ = ଶܮ(ܵ)ܪ = 22
ate of code ܥଶ:ܦଶ = 2.19 × 1
equence ܵܤ ofݏ ࡿࡿଶ 0 001 ࡿ

Ta

tions 2 

  .ଶܥ

Table 2.2. Con

f the codeword

× ݈ = 0.11 ×
mbol 

e ܥଶ: 2.122.19 = 96.8 %
: 3.5 × 10 =
f bits obtainedݏହ ݏଷ ݏସ
0001 1 01

ble 2.3. Cons

nstruction of H

ds: 

× 4 + 0.19 ×

% 

29.565 Mbit/

d at the output

ସ ݏଷ ݏଷ
1 1 1

struction of bin

Huffman code ܥ

3 + 0.4 × 1 +

/s 

t of the Huffm

ଷݏ ଶݏ 
001 1 

nary sequence

  ଶܥ

+ 0.21 × 2 +

man coding.  ݏହ ݏସ
0001 01

e ܵܤ 

 

0.09 × 4 

ସ 

1 



Baseband Digital Transmission: Problems 16 to 26     87 

More bits are observed at zero than at one and, in addition, we have sequences of 
three consecutive zeros from time to time.   

4) Information for baseband signal encoding.  

a) Bipolar CODBip encoder of RZ type (see the graph in Table 2.4). The 
problems encountered in reception are related to the difficulties of getting a correct 
clock recovery in some cases, here three consecutive zeros, because the encoder 
produces no pulse for duration 3ܶ. 

b) CODHDB coder of HDB-2 type: look at the graph in Table 2.4. 

Sequences of three consecutive zeros are replaced by sequences of type “0 0 V” 
or “B 0 V” and thus, we can have a maximum duration of 2ܶ without impulse. 

c) The power spectral density of the RZ bipolar code is given by: 

(݂)ோ߁ = ܸଶ ܶ4 ቈsin(݂ߨ ܶ 2⁄ ݂ߨ( ܶ 2⁄ ଶ × ሾsin(݂ߨ ܶ)ሿଶ 

The zeros of ߁ோ(݂) occur every 1 ܶ⁄ , so its bandwidth is 1 ܶ⁄ . It is 
substantially the same for the HDB-n code (here HDB-2).   

Furthermore, in the vicinity of the frequency ݂ = 0, the power is zero, this code 
can therefore be used for long-distance cable transmission. However, the presence of 
long sequences of zeros is detrimental to the clock recovery, therefore we use the 
code HDB-n.  

5) Partial response code (PRC). 

a) Yes, it is necessary to use a pre-encoder so that on reception, the decoding is 
instantaneous (without recursion) and therefore, if a decoding error occurs, it does 
not propagate recursively.  

b) Pre-encoder output (symbol ܾᇱ ) as a function of its input ܾ.  

 

Figure 2.1. Partial response linear coding scheme  
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(ܦ)ܪ = 1 − ଶܦ ⟺ (ݖ)ܪ = 1 − ଶିݖ ⇒ ᇱܤ (ݖ)ܤ(ݖ) = (ݖ)ܪ1 = 11 −  ଶିݖ

⟺ ᇱܤ (ݖ) = (ݖ)ܤ + ᇱܤ (ݖ) × ଶିݖ ⟹ ܾᇱ = ܾ⨁ܾିଶᇱ  

c) Relationship between the encoder output (symbol ܿ) and its input ܽ: 

(ݖ)ܪ = 1 − ଶିݖ = (ݖ)ܣ(ݖ)ܥ ⇔ (ݖ)ܥ = (ݖ)ܣ − (ݖ)ܣ × ଶିݖ ⇒ ܿ = ܽ − ܽିଶ 

d) Graphical representation of the signal portion associated with ܵܤܤ 
transmitted by this whole partial response coder: look at the graph in Table 2.4.  

e) The power spectral density of the partial response code concerned is given 
by (see Volume 1, Chapter 5): 

(݂)௦߁ = ܸଶ ܶ ቈsin(݂ߨ ܶ)݂ߨ ܶ ଶ × ሾsin(2݂ߨ ܶ)ሿଶ 

The zeros of ߁௦(݂) take place every 1 2 ܶ⁄ , its bandwidth is then approximately 1 2 ܶ⁄ .  

Thus, there is a reduction of the bandwidth of the transmitted signal by a factor  
of 2, compared to question 4, because of the introduction of the correlation. In 
addition, one has no continuous component.   

6) We have:  ܿ = ܽ − ܽିଶ = ሾ(2ܾᇱ − 1) − (2ܾିଶᇱ − 1)ሿ = 2(ܾᇱ − ܾିଶᇱ ) = 2(ܾᇱ ⨁ܾିଶᇱ ) = 2ܾ ⟹ ܾ = 12 ܿ̂  mod 2 

hence, an instantaneous decoding (no recursion). Thus:  

– if no decision error on ܿ̂, then, no decision error on ܾ;  

– if decision error on ܿ̂, then decision error on ܾ only (not on subsequent ones).   
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The symbols ܽ are independent random variables which can take only the 
values 0 and 1 with a probability equal to 1/2 and ݐ is random, of uniform law on 
the time interval ሾ0, ܶሾ.  
NOTE.– In this problem, we consider that the instant ݐ belongs to the time interval ሾݐ, ݐ + ܶሾ. Without any loss of generalities, we will assign the index n to this 
interval where the time t is a priori. 

Calculate the autocorrelation function ܴ௦(߬) and the power spectral density ߁௦(݂) 
of (ݐ)ݏ and carry out the two particular cases: ߠ = ܶ 2⁄   (binary RZ)          and         ߠ = ܶ  (binary NRZ)   

 

Figure 2.2. Examples of binary RZ and NRZ codes. For a color  
version of this figure, see www.iste.co.uk/assad/digital2.zip 

Solution of problem 17 

Let us make the following form of the signal (ݐ)ݏ (with ߠ < ܶ 2⁄  on Figure 2.3).  

 

Figure 2.3. Example of signal (ݐ)ݏ waveform with ߠ < ܶ 2⁄  
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Such a signal can be represented by: 

(ݐ)ݏ =  ܽݐ)ݔ − ݊ܶ − )ஶݐ
ୀିஶ  

With the deterministic function (pulse):  (ݐ)ݔ = ቄܸ     for    ݐ ∈ ሾ0,          ሾ0      elsewhereߠ
and: ܽ = ቄ10ቅ      with    ܲݎ(ܽ = 1) = ܽ)ݎܲ = 0) = 1 2⁄  

Since ݐ is uniform on time interval ሾ0, ܶሾ, then (ݐ)ݏ is a second-order stationary 
random signal.  

Moreover, the autocorrelation function ܴ௦(߬) is an even function: ܴ௦(−߬) =ܴ௦(߬) and thus the calculation can be done with suitability with ߬ ≥ 0 or ߬ ≤ 0.  

The autocorrelation function ܴ௦(߬) is written:  ܴ௦(߬) = (ݐ)ݏሾܧ × ݐ)ݏ − ߬)ሿ =   (ݐ)ݏ൛ݎܲݏݏ = ݐ)ݏ    andݏ − ߬) = ൟݏ  

ܴ௦(߬) = ൞ܸ × ܸ × ݐ  and   ܸ  at   ݐ  ሼܸ  atݎܲ − ߬ሽ +0 × ܸ × ݐ  and   ܸ  at  ݐ  ሼ0  atݎܲ − ߬ሽ +ܸ × 0 × ݐ  and   0  at  ݐ  ሼܸ  atݎܲ − ߬ሽ +0 × 0 × ݐ  and   0  at  ݐ  ሼ0  atݎܲ − ߬ሽ      

hence: ܴ௦(߬) = ܸଶ × ݐ  and   ܸ  at   ݐ  ሼܸ  atݎܲ − ߬ሽ 

Moreover, using the theorem of compound probability, ܴ௦(߬) is also written:  ܴ௦(߬) = ܸଶ × ሽݐ  ሼܸ  atݎܲ × ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 

To calculate ܴ௦(߬), it is sufficient to calculate ܲݎሼܸ  at  ݐሽ and ܲݎሼܸ  at  ݐ − ߬ ܸ  at  ݐ⁄ ሽ. 

Two cases can be encountered: ൜case : 0 < ߠ  ≤ ܶ 2⁄  
case : ܶ 2⁄ < ߠ ≤ ܶ  
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A. First case, where 0 < ߠ ≤ ܶ 2⁄   

There are three situations to consider.  

0 :݊݅ݐܽݑݐ݅ݏ ݐݏݎ݅ܨ – ≤ τ ≤ θ. 

The only possibility is that ݐ and ݐ − ߬ belong to the same first part of time slice 
(hatched region). 

 

Figure 2.4. First situation: 0 ≤ ߬ ≤ ߠ with)  ߠ ≤ ܶ 2⁄ ) 

Let: 

 = ሽݐ  ሼܸ  atݎܲ = ݐሼݎܲ ∈ ሾݐ, ݐ + ሾሽߠ × ሼܽݎܲ = 1ሽ = ߠܶ × 12 

and: ݍ = ݐ  ሼܸ  atݎܲ − ߬ ܸ at ⁄ݐ ሽ = ݐሼݎܲ − ߬ ∈ ሾݐ, ݐ + ,ሾߠ ܽ = 1 ⁄ݐ ∈ ሾݐ, ݐ + ,ሾߠ ܽ = 1 ሽ 

or, since ܽ = ݍ  :1 = ݐሼݎܲ − ߬ ∈ ሾݐ, ݐ + ሾߠ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ 
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that is to say:    ݍ = ݐሼݎܲ ∈ ሾݐ + ߬, ݐ + ߠ + ߬ሾ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ 

Or: ݍ = ݐሼݎܲ ∈ ሾݐ + ߬, ݐ +  ሾሽߠ

with random ݐ, of a posteriori law uniform over a measurement interval ߠ, 
therefore with probability density ൫݀݀(ݐ)൯ equal to 1 ⁄ߠ . 

Hence:  

ݍ = න ݐ݀ (ݐ)݀݀ =௧బାఏ
௧బାఛ

ߠ − ߠ߬  

So finally:        

ܴ௦(߬) = ܸଶ × 12 × ߠܶ × ൬ߠ − ߠ߬ ൰ 

NOTE.– In general, if a priori ݐ belongs to a time interval, of measurement ܶ (ݐ is 
random, of uniform law on time interval ሾ0, ܶሾ), we know a posteriori that ݐ belongs 
to a first part of the time interval, of measure ߠ. It is therefore this posterior uniform 
law that is used in time conditional probabilities.  

θ :݊݅ݐܽݑݐ݅ݏ ݀݊ܿ݁ܵ – < ߬ ≤ ܶ. 

The only possibility is that (ݐ)ݏ and ݐ)ݏ − ߬) come from two first parts of 
adjacent time slots, hence independence between the variables ܽ considered.  

In general, we will always have:  ܲݎ൛ܽି = ߙ ܽ = ⁄ߙ ൟஷ = ሼܽିݎܲ =  ሽߙ

 = ሽݐ  ሼܸ  atݎܲ = ݐሼݎܲ ∈ ሾݐ, ݐ + ሾሽߠ × ሼܽݎܲ = 1ሽ = ߠܶ × ݍ 12 = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ ݍ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ,ሾߠ ܽିଵ = 1 ݐ ∈ ሾݐ, ݐ + ,ሾߠ ܽ = 1⁄ ሽ ݍ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ሾߠ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ × ሼܽିଵݎܲ = 1ሽ 
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and:  ܲݎሼݐ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ሾߠ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ 

turns into:  ܲݎሼݐ ∈ ሾݐ − ܶ + ߬, ݐ − ܶ + ߠ + ߬ሾ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ 

Or: ܲݎሼݐ ∈ ሾܵݑሾݐ − ܶ + ߬, ,ሿݐ ݐሾ݂݊ܫ − ܶ + ߠ + ߬, ݐ + ሿ ሿ ߠ ݐ ∈⁄ ሾݐ, ݐ +  ሾሽߠ

Which depends on the value of ߬ with respect to ߠ and ܶ.    

Two situations can occur (see graph in Figure 2.5). 

We know that if a real random variable follows a uniform law over a given 
interval ሾܿ, ݀ሿ, then its probability density is equal to 1 ,ሾܿݏ݁ܯ ݀ሿ⁄  and that: ݏ݁ܯሾܿ, ݀ሿ = ቄ݀ − ܿ  if ݀ ≥ ܿ0  otherwise     
and if ݏ݁ܯሾܿ, ݀ሿ = 0, then the probability density will be zero because we are faced 
here with a continuous random variable 

if: ߠ < ߬ ≤ ܶ, then: ܵݑሾݐ − ܶ + ߬, ሿݐ = ݐሾ݂݊ܫ ݐ − ܶ + ߠ + ߬, ݐ + ሿ ߠ = ݐ − ܶ + ߠ + ሾ݂݊ܫ ߬ ሿ − ሾݑܵ ሿ = ߬ + ߠ − ܶ = ߬ − (ܶ −  (ߠ

So if ߠ < ߬ ≤ ܶ − ݍ the measure of the interval is zero, thus ,ߠ = 0.    

Otherwise, if ܶ − ߠ < ߬ ≤ ܶ, then the measure of the interval is given by: ߬ + ߠ − ܶ, and:  

ݍ = ߬ + ߠ − ߠܶ ൨ × 12 

so if: ߠ < ߬ ≤ ܶ − → : ߠ ݍ = 0 
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and if: 

ܶ − > ߠ ߬ ≤ ܶ : → ݍ = ߬ + ߠ − ߠܶ ൨ × 12 

– ܶℎ݅݊݅ݐܽݑݐ݅ݏ ݀ݎ: ߬ > ܶ. ܶ < ߬ < ܶ + → : ߠ ݍ = ܶ + ߠ − ߠ߬ ൨ × 12 

 

Figure 2.5. Second and third situations 
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In summary, for 0 < ߠ ≤ ܶ 2⁄  , if:  

ەۖۖ
۔ۖۖ
0ۓ ≤ ߬ ≤ ⇒                      ߠ  ܴ௦(߬) = ܸଶ × 2ܶߠ × ߠ − ߠ߬ ൨        ߠ < ߬ < ܶ − ⇒              ߠ  ܴ௦(߬) = 0                                        ܶ − ߠ ≤ ߬ ≤ ܶ              ⇒  ܴ௦(߬) = ܸଶ × 4ܶߠ × ߬ + ߠ − ߠܶ ൨ܶ ≤ ߬ ≤ ܶ + ⇒              ߠ  ܴ௦(߬) = ܸଶ × 4ܶߠ × ܶ + ߠ − ߠ߬ ൨

 

For values ߬ > ܶ +  we see that the intervals intervening in the conditional ,ߠ
probability relating to instants (ݐ − ߬) and  ݐ are different and therefore ݊ − ݇ < ݊. 
This implies that conditional probability ܲݎሼܽି ܽ⁄ ሽஷ =  ሼܽିሽ, and that theݎܲ
probability relating (ݐ − ߬) conditionally to ݐ will evolve periodically, from ܶ to ܶ, 
strictly as we have just described it. More precisely, we have: 

– for: ߠ + ݇ܶ ≤ ߬ < (݇ + 1)ܶ − ݍ then ,ߠ = 0; 

– for: (݇ + 1)ܶ − ߠ ≤ ߬ < (݇ + 1)ܶ, then: 

ݍ = ሾ߬ + ߠ − (݇ + 1)ܶሿߠ × 12 

– for: (݇ + 1)ܶ ≤ ߬ < (݇ + 1)ܶ + ݍ :then ,ߠ = ሾ(݇ + 1)ܶ + ߠ − ߬ሿߠ × 12 

– for: (݇ + 1)ܶ + ߠ ≤ ߬ < (݇ + 2)ܶ − ݍ then ,ߠ = 0. 

It is therefore a periodic function of period ܶ. 

Note that the autocorrelation function breaks down into a sum of two functions:  ܴ௦(߬) =  ܴଵ(߬) +  ܴଶ(߬) 

with ܴଵ(߬), a non-periodic function, and  ܴଶ(߬), a periodic function of period T. 

Calculation of the power spectral density ߁௦(݂):  ߁௦(݂) = ሼ ܴ௦(߬)ሽܨ = (݂)ଵ߁ +  (݂)ଶ߁

Calculation of the power spectral density ߁ଵ(݂): 

(݂)ଵ߁ = න ܴଵ(߬)expሾ−݆2݂߬ߨሿ݀߬ஶ
ିஶ  
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Figure 2.6. Autocorrelation function ܴ௦(߬) and its decomposition  

ܴଵ(߬) is an even symmetric function, hence:  

(݂)ଵ߁ = 2 න ܸଶ4ܶఏ
 ሾߠ − ߬ሿ cos(2݂߬ߨ) ݀߬ 

= ܸଶ2ܶ ቐߠ න cos(2݂߬ߨ) ݀߬ −ఏ
 න ߬ cos(2݂߬ߨ) ݀߬ఏ

 ቑ 

but: 

න cos(2݂߬ߨ) ݀߬ = ሾsin(2݂߬ߨ)ሿఏ2݂ߨఏ
 = ݂ߨ12 × sin(2ߠ݂ߨ) 
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and: 

න ߬ cos(2݂߬ߨ) ݀߬ = න ݒ݀ݑ = ݒݑ −ఏ


ఏ
 න ఏݑ݀ݒ

  

Integration by part, with: ݑ = ߬   and   ݒ = cos(2݂߬ߨ) ݀߬ 

hence: 

න ߬ cos(2݂߬ߨ) ݀߬ = ሾτsin(2݂߬ߨ)ሿఏ2݂ߨ − න sin(2ߠ݂ߨ)݂ߨ2ఏ


ఏ
 ݀߬ 

= ݂ߨ12 ߠ × sin(2ߠ݂ߨ) + ଶ(݂ߨ2)1 ሾcos(2݂߬ߨ)ሿఏ 

= ݂ߨ2ߠ × sin(2ߠ݂ߨ) + ଶ(݂ߨ2)1 ሾcos(2ߠ݂ߨ) − 1ሿ 
(݂)ଵ߁ = ܸଶ2ܶ ൜ ݂ߨ2ߠ sin(2ߠ݂ߨ) − ݂ߨ2ߠ sin(2ߠ݂ߨ) − ଶ(݂ߨ2)1 ሾcos(2ߠ݂ߨ) − 1ሿൠ 

(݂)ଵ߁ = ܸଶ2ܶ ൜ ଶ(݂ߨ2)1 ሾ1 − cos(2ߠ݂ߨ)ሿൠ = ܸଶ2ܶ ቊ2ሾsin(ߠ݂ߨ)ሿଶ(2݂ߨ)ଶ ቋ 

= ܸଶߠଶ4ܶ ቈsin(ߠ݂ߨ)ߠ݂ߨ ଶ
 

which is a classic result. Indeed, recall that if: 

 

Figure 2.7. Symmetrical triangular function 
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then: 

(݂)ܩ = ܣ × ߠ × ቈsin(ߠ݂ߨ)ߠ݂ߨ ଶ
 

  .ଵ(݂) has a continuous spectrum߁

Calculation of  ߁ଶ(݂).  

The basic form of ܴଶ(߬) is identical to that of ܴଵ(߬) and in addition, it is periodic 
with period ܶ, then:  

ܴଶ(߬) =  ܴଵ(߬ − ݊ܶ)ஶ
ୀିஶ = ܴଵ(߬)⨂  ߬)ߜ − ݊ܶ)ஶ

ୀିஶ  

(݂)ଶ߁ = ሼܴଶ(߬)ሽܨ = ሼܴଵ(߬)ሽܨ × ܨ ൝  ߬)ߜ − ݊ܶ)ஶ
ୀିஶ ൡ 

= (݂)ଵ߁ × 1ܶ  ߜ ൬݂ − ݇ܶ൰ஶ
ୀିஶ  

(݂)ଶ߁ = ܸଶߠଶ4ܶ ቈsin(ߠ݂ߨ)ߠ݂ߨ ଶ × 1ܶ  ߜ ൬݂ − ݇ܶ൰ஶ
ୀିஶ  

= ܸଶߠଶ4ܶଶ  ቈsin(݇ߠߨ ܶ⁄ ߠߨ݇( ܶ⁄ ଶ ߜ ൬݂ − ݇ܶ൰ஶ
ୀିஶ  

It is a discrete spectrum, the discrete spectral components being spaced 1 ܶ⁄  
apart from each other.  

 

Figure 2.8. Discrete spectral components of the power spectral density ߁ଶ(݂).   
For a color version of this figure, see www.iste.co.uk/assad/digital2.zip 
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Special case where ߠ = ܶ 2⁄ : binary RZ code.  

In this case, we then have:  

(݂)ଵ߁ = ܸଶܶ16 ቈsin(݂ߨ ܶ 2⁄ ݂ߨ( ܶ 2⁄ ଶ
 

and: 

(݂)ଶ߁ = ܸଶ16  ቈsin(݇ߨ 2⁄ ߨ݇( 2⁄ ଶ ߜ ൬݂ − ݇ܶ൰ஶ
ୀିஶ  

The continuous component is such that:   ߁ଶ(0) = ሾcontinuous componentሿଶ ×  (݂)ߜ

One has:  

ଶ(0)߁ = ܸଶ16 ൝lim→ ቈsin(݇ߨ 2⁄ ߨ݇( 2⁄ ଶൡ (݂)ߜ = 4ܸ൨ଶ  (݂)ߜ

Thus, the continuous component is then equal to ܸ 4⁄ .  

The function sin(݇ߨ 2⁄ ) is non zero for odd integer ݇, so by setting ݇ = 2݊ + 1, 
the expression of ߁ଶ(݂) is then written: 

(݂)ଶ߁ = ܸଶ16 (݂)ߜ + ܸଶ16  ቈsinሾ(2݊ + 1) ߨ 2⁄ ሿ(2݊ + 1) ߨ 2⁄ ଶ ߜ ቆ݂ − (2݊ + 1)ܶ ቇஶ
ୀିஶ  

(݂)ଶ߁ = ܸଶ16 (݂)ߜ + ܸଶ16   4(2݊ + 1)ଶߨଶ൨ ߜ ቆ݂ − (2݊ + 1)ܶ ቇஶ
ୀିஶ  

This is also written: 

(݂)ଶ߁ = 4ܸ൨ଶ (݂)ߜ + 4ܸ൨ଶ   2(2݊ + ൨ଶߨ(1 ߜ ቆ݂ − (2݊ + 1)ܶ ቇஶ
ୀିஶ  

 ଶ(݂) has discrete components at odd frequencies and in particular at the߁
frequency ݂ = 1 ܶ⁄  which makes it possible to recover the clock.  
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B. Second case, the one where ܶ 2⁄ < ߠ ≤ ܶ  

There are also three situations to consider. 

0 :݊݅ݐܽݑݐ݅ݏ ݐݏݎ݅ܨ – < ߬ ≤  .ߠ

 

Figure 2.9. First situation: 0 < ߬ ≤ ܶ with) ߠ 2⁄ < ߠ ≤ ܶ). For a  
color version of this figure, see www.iste.co.uk/assad/digital2.zip 

Calculation of  and ݍ. There are two cases:    

a) ߬ + ߠ ≤ ܶ → ݐ  and  ݐ − ߬ ∈ the same first part of time slice:   = ሽݐ  ሼܸ  atݎܲ = ݐሼݎܲ ∈ ሾݐ, ݐ + ሾሽߠ × ሼܽݎܲ = 1ሽ = ߠܶ × 12 

ݍ = ݐሼݎܲ − ߬ ∈ ሾݐ, ݐ + ሾߠ ݐ ∈⁄ ሾݐ, ݐ + ሾሽߠ = ߠ − ߠ߬  

b) ߬ + ߠ > ܶ, there are two possibilities:  

൜ݐ  and  ݐ − ߬ ∉ same ϐirst part of the time slice       → ,ଵ  ଵݍ
or  ݐ  and  ݐ − ߬ ∈ same ϐirst part of the time slice → ,ଶ ଶݍ  

t0 + θ

τ + θ – T

θ – τ

t0 + Tt0

V

t

s(t)

a)

b)

V

t

s(t – τ)

τ

V

t

s(t – τ)

τ

θ – τ



102     Digital Communications 2 

First possibility: ݐ and ݐ − ߬ do not belong to the same first part of the time slice, 
but to the first parts of adjacent time slices:   

ଵ = ሽݐ  ሼܸ  atݎܲ = ݐሼݎܲ ∈ ሾݐ, ݐ + ሾሽߠ × ሼܽݎܲ = 1ሽ = ߠܶ × ଵݍ 12 = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ ݍଵ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ,ሾߠ ܽିଵ = 1 ݐ ∈ ሾݐ, ݐ + ,ሾߠ ܽ = 1⁄ ሽ 

Or:    ݍଵ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ሾߠ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ × ሼܽିଵݎܲ = 1ሽ = ߬ + ߠ − ߠܶ ൨ × 12 

Second possibility: ݐ and ݐ − ߬ belong to the same first part of the time slice, 
hence:   

ଶ =  = ଵ = ߠܶ × 12    and   ݍଶ = ݍ = ߠ − ߠ߬  

ݍ = ଵݍ + ଶݍ = 12 ߬ + ߠ − ߠܶ ൨ + ߠ − ߠ߬ = 12 3ߠ − ܶ − ߠ߬ ൨ 

NOTE.– Both hypotheses a) and b) exclude each other.  

Thus, for: 

0 < ߬ ≤ ߠ → ۔ۖەۖ
a)   0ۓ < ߬ ≤ ܶ − →             ߠ ܴ௦(߬) = ܸଶ2ܶߠ ߠ − ߠ߬ ൨ = ܸଶ2 ߠ − ߬ܶ ൨      b)   ܶ − ߠ < ߬ ≤ →    ߠ ܴ௦(߬) = ܸଶ4ܶߠ ቈ߬ − (ܶ − ߠ(ߠ  + ܸଶ2ܶߠ ߠ − ߠ߬ ൨ 

Note that in the case a), the expression of ܴ௦(߬) is also valid throughout the time 
interval ߬ ∈ ሾ0,  .ሿߠ

 
θ :݊݅ݐܽݑݐ݅ݏ ݀݊ܿ݁ܵ – ≤ τ < ܶ. 

The only possibility is that (ݐ)ݏ = ܸ and ݐ)ݏ − ߬) = ܸ come from the first two 
parts of adjacent time slices.  
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Figure 2.10. Second situation: ߠ ≤ ߬ < ܶ  

Let’s set:   

 = ሽݐ  ሼܸ  atݎܲ = ݐሼݎܲ ∈ ሾݐ, ݐ + ሾሽߠ × ሼܽݎܲ = 1ሽ = ߠܶ × 12 
and: ݍ = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ ݍ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ,ሾߠ ܽିଵ = 1 ݐ ∈ ሾݐ, ݐ + ,ሾߠ ܽ = 1⁄ ሽ ݍ = ݐ൛ݎܲ − ߬ ∈ ൣሾݐ − ܶ, ݐ − ܶ + ሾൣߠ ݐ ∈⁄ ሾݐ, ݐ + ሾൟߠ × ሼܽିଵݎܲ = 1ሽ = ߬ + ߠ − ߠܶ ൨ × 12 

hence:   

ܴ௦(߬) = ܸଶ4ܶߠ ቈ߬ − (ܶ − ߠ(ߠ  

– ܶℎ݅݊݅ݐܽݑݐ݅ݏ ݀ݎ: ܶ ≤ ߬ < ܶ +  .ߠ
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Figure 2.11. Third situation: ܶ ≤ ߬ < ܶ +   For a color .ߠ
version of this figure, see www.iste.co.uk/assad/digital2.zip 

Calculation of  and ݍ. There are two cases:  

a) ܶ < ߬ ≤ 2ܶ − →  ߠ ݐ  and  ݐ − ߬ ∈ to the first two parts of adjacent time 
slices:   = ሽݐ  ሼܸ  atݎܲ = ݐሼݎܲ ∈ ሾݐ, ݐ + ሾሽߠ × ሼܽݎܲ = 1ሽ = ߠܶ × ݍ 12 = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 

Following the same approach as in the previous situation, we obtain: ݍ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ሾߠ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ × ሼܽିଵݎܲ = 1ሽ = ܶ + ߠ − ߠ߬ ൨ × 12 

b) 2ܶ − ߠ < ߬ < ܶ +    :there are two possibilities ,ߠ

൜ݐ  and  ݐ − ߬ ∈ to the  two  ϐirst parts of time slices distant from 2ܶ → ,ଵ ଵݍ
or  ݐ  and  ݐ − ߬ ∈  to the two ϐirst parts of adjacent time slices           → ,ଶ  ଶݍ

ଵ = ሽݐ  ሼܸ  atݎܲ = ݐሼݎܲ ∈ ሾݐ, ݐ + ሾሽߠ × ሼܽݎܲ = 1ሽ = ߠܶ × ଵݍ 12 = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 
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ଵݍ = ݐሼݎܲ − ߬ ∈ ሾݐ − 2ܶ, ݐ − 2ܶ + ሾߠ ݐ ∈ ሾݐ, ݐ + ⁄ሾߠ ሽ × ሼܽିଶݎܲ = 1ሽ = ߬ + ߠ − ߠ2ܶ ൨ × 12 

ଶ =  = ߠܶ × 12                         
ଶݍ  = ݍ = ܶ + ߠ − ߠ߬ ൨ × 12 

ݍ = ଵݍ + ଶݍ = 12 2ߠ − ߠܶ ൨ 

NOTE.– Both hypotheses a) and b) exclude each other.   

Thus, for  ܶ ≤ ߬ < ܶ +   :ߠ

→
۔ۖۖەۖۖ
ܶ  (aۓ < ߬ ≤ 2ܶ − →                    ߠ ܴ௦(߬) = ܸଶ4ܶߠ ܶ + ߠ − ߠ߬ ൨ = ܸଶ4 ܶ + ߠ − ߬ܶ ൨                           b) 2ܶ − ߠ < ߬ ≤ ܶ + →   ߠ  ܴ௦(߬) = ܸଶ4ܶߠ ߬ + ߠ − ߠ2ܶ ൨ + ܸଶ4ܶߠ ܶ + ߠ − ߠ߬ ൨                               = ܸଶ4ܶߠ 2ߠ − ߠܶ ൨ = ܸଶ4 2ߠ − ܶܶ ൨
Note that in case a), the expression of ܴ௦(߬) is also valid throughout the time 

interval ሾܶ ≤ ߬ ≤ ܶ +   .ሿߠ
In summary, for  ܶ 2⁄ < ߠ ≤ ܶ: 

– for 0 < ߬ ≤  :ߠ

→ ۔ۖەۖ
߬  (aۓ ≤ ܶ − →          ߠ ܴ௦(߬) = ܸଶ2 ߠ − ߬ܶ ൨                                                                              b)  ܶ − ߠ < ߬ ≤ → ߠ ܴ௦(߬) = ܸଶ4ܶߠ ቈ߬ − (ܶ − ߠ(ߠ  + ܸଶ2ܶߠ ߠ − ߠ߬ ൨ = ܸଶ4 3ߠ − ܶ − ߬ܶ ൨ 

– for ߠ ≤ ߬ < ܶ: 

→ ܴ௦(߬) = ܸଶ4ܶߠ ቈ߬ − (ܶ − ߠ(ߠ  =  ܸଶ4 ቈ߬ − (ܶ − ܶ(ߠ  
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– for ܶ ≤ ߬ ≤ ܶ +  :ߠ

→
۔ۖۖەۖۖ
߬  (aۓ ≤ 2ܶ − →                    ߠ ܴ௦(߬) = ܸଶ4ܶߠ ܶ + ߠ − ߠ߬ ൨ =  ܸଶ4 ܶ + ߠ − ߬ܶ ൨     b)  2ܶ − ߠ < ߬ ≤ ܶ + →  ߠ  ܴ௦(߬) = ܸଶ4ܶߠ ߬ + ߠ − ߠ2ܶ ൨ + ܸଶ4ܶߠ ܶ + ߠ − ߠ߬ ൨                                                    =  ܸଶ4ܶߠ 2ߠ − ߠܶ ൨ = ܸଶ4 2ߠ − ܶܶ ൨  

As in the case  0 < ߠ ≤ ܶ 2⁄ , the probability relating to (ݐ − ߬) conditionally at ݐ 
will evolve periodically from ܶ to ܶ, strictly as we have just described it above.  

 

Figure 2.12. Autocorrelation function ܴ௦(߬) and its decomposition. For a  
color version of this figure, see www.iste.co.uk/assad/digital2.zip 

In the same way as for 0 < ߠ ≤ ܶ 2⁄ , the autocorrelation function breaks down 
into a sum of two functions:  ܴ௦(߬) =  ܴଵ(߬) +  ܴଶ(߬) 
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with ܴଵ(߬), a non-periodic function, and ܴଶ(߬), a periodic function, of period T. In 
addition, we note that the expression of  ܴଵ(߬) and ܴଶ(߬) are the same as previously 
(case 0 < ߠ ≤ ܶ 2⁄ ). 

Calculation of the power spectral density, case where: ܶ 2⁄ < ߠ ≤ ܶ. 

The power spectral density of the signal (ݐ)ݏ can be broken down into the sum of 
two functions:  Γ௦(݂) = (݂)ଵ߁ +  (݂)ଶ߁

with: 

(݂)ଵ߁ = ܸଶߠଶ4ܶ ቈsin(ߠ݂ߨ)ߠ݂ߨ ଶ
 

This is a continuous spectrum. 

And: 

(݂)ଶ߁ = (݂)ଵ߁ × 1ܶ  ߜ ൬݂ − ݇ܶ൰ = ܸଶߠଶ4ܶ ቈsin(ߠ݂ߨ)ߠ݂ߨ ଶ ×ஶ
ୀିஶ

1ܶ  ߜ ൬݂ − ݇ܶ൰ஶ
ୀିஶ  

(݂)ଶ߁ = ܸଶߠଶ4ܶଶ  ቈsin(ߠߨ ݇ ܶ⁄ ߠߨ( ݇ ܶ⁄ ଶஶ
ୀିஶ × ߜ ൬݂ − ݇ܶ൰ 

This is a discrete spectrum.  

Special case: ߠ   = ܶ (NRZ code) 

In this case, we obtain: 

(݂)ଵ߁ = ܸଶܶ4 ቈsin(݂ܶߨ)݂ܶߨ ଶ
 

(݂)ଶ߁ = ܸଶ4  ቈsin(݇ߨ)݇ߨ ଶஶ
ୀିஶ × ߜ ൬݂ − ݇ܶ൰ 
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So: 

(݂)ଶ߁ = ܸଶ4 ,which gives the continuous component : (݂)ߜ equal to ܸ 2⁄  
Thus, finally we get: 

(݂)௦߁ = ܸଶܶ4 ቈsin(݂ܶߨ)݂ܶߨ ଶ + ܸଶ4  (݂)ߜ

Notice that for  ߠ = ܶ (NRZ code), the signal does not have a discrete spectrum 
component at 1 ܶ⁄ ݇ ଶ(݂) is zero for the other values of߁)  ≠ 0). Therefore, clock 
recovery is not easy with NRZ code.  

NOTE.– One could easily generalize the problem to the situation where the symbols 
of information to be transmitted are not equiprobable: ܲݎሼܽ = 0ሽ = ሼܽݎܲ :and ߣ = 1ሽ = 1 −  .ߣ

2.3. Problem 18 – Calculation of the autocorrelation function and the 
power spectral density by probabilistic approach of the bipolar RZ 
code   

The bipolar RZ code is a three-level code such as:  

if:   ൜ܾ = 0  → ܽ = 0                          ܾ = 1  → ܽ = ±1  alternately 

and: 

(ݐ)ݔ = ൜ܸ     for    0 ≤ ݐ ≤ ܶ 2⁄               0      for  ܶ 2⁄ < ≥ ݐ ܶ               
The binary random variables are assumed to be equiprobable:   ܲݎሼܾ = 1ሽ = ሼܾݎܲ = 0ሽ = 1 2⁄  

We consider the digital transmission signal defined by:  

(ݐ)ݏ =  ܽݐ)ݔ − ݊ܶ − )ஶݐ
ୀିஶ  
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The signal is a second-order stationary random signal assuming that the time of 
origin ݐ is random and uniformly distributed over the time interval ሾ0, ܶሾ.  
NOTE.– In this problem, we consider that the instant t belongs to the time interval ሾݐ, ݐ + ܶሾ. Without any loss of generalities, we will assign the index n to this 
interval where the time t is a priori.  

Moreover, as for problem 17, one could immediately generalize to the situation 
where the information source does not generate equiprobable ܾ symbols.  

However, we preferred not to complicate the problem. For those who wish to do 
so, after having analyzed the situation in the equiprobable case, it will be easy to 
generalize the results to a situation with a non-equiprobable source.   

Calculate the autocorrelation function ܴ௦(߬) and the power spectral density ߁௦(݂) 
of the signal (ݐ)ݏ. 

 

Figure 2.13. Example of a bipolar RZ signal waveform. For a color  
version of this figure, see www.iste.co.uk/assad/digital2.zip 

Solution of problem 18 

The signal (ݐ)ݏ can be represented by:   

(ݐ)ݏ =  ܽݐ)ݔ − ݊ܶ − )ஶݐ
ୀିஶ  
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where:  (ݐ)ݔ = ቄܸ     for    ݐ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿ0     elsewhere                        
is a deterministic function, and:  ܽ = ሼ1, 0, −1ሽ   with :   ܲݎሼܽ = 0ሽ = ሼܽݎܲ = 1  or  ܽ = −1ሽ = 1 2⁄  

The autocorrelation ܴ௦(߬) is written: ܴ௦(߬) = (ݐ)ݏሾܧ × ݐ)ݏ − ߬)ሿ =   (ݐ)ݏ൛ݎܲݏݏ = ݐ)ݏ    andݏ − ߬) = ൟݏ  
ܴ௦(߬) = ൞ ܸ × ܸ × ݐ  and   ܸ  at   ݐ  ሼܸ  atݎܲ − ߬ሽ +            ܸ × −ܸ × −  and  ݐ  ሼܸ  atݎܲ ܸ  at  ݐ − ߬ሽ +     −ܸ × ܸ × ݐ  and   ܸ  at  ݐ  ሼ−ܸ  atݎܲ − ߬ሽ +         −ܸ × −ܸ × −  and  ݐ  ሼ−ܸ  atݎܲ ܸ  at  ݐ − ߬ሽ      

Using the theorem of compound probabilities, ܴ௦(߬) is written as:  ܴ௦(߬) = ܸଶ × ሽݐ  ሼܸ  atݎܲ × ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ −ܸଶ × ሽݐ  ሼܸ  atݎܲ × ݐ  ሼ−ܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ −ܸଶ × ሽݐ  ሼ−ܸ  atݎܲ × ݐ  ሼܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ +ܸଶ × ሽݐ  ሼ−ܸ  atݎܲ × ݐ  ሼ−ܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ 

Calculation of the simple probabilities ܲݎሼܸ  at  ݐሽ and ܲݎሼ−ܸ  at  ݐሽ: ܲݎሼܸ  at  ݐሽ = ݐሼݎܲ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿ, ܽ = 1ሽ 

Since there is independence between ݐ and the symbols of information, we 
have:  ܲݎሼܸ  at  ݐሽ = ݐሼݎܲ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿሽ × ሼܽݎܲ = 1ሽ 

Likewise: ܲݎሼ−ܸ  at  ݐሽ = ݐሼݎܲ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿሽ × ሼܽݎܲ = −1ሽ 

and: 

ݐሼݎܲ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿሽ = ܶ 2⁄ܶ = 12 
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Besides:  ܲݎሼܽ = 1  or  ܽ = −1ሽ = ሼܽݎܲ = 1ሽ + ሼܽݎܲ = −1ሽ − ሼܽݎܲ = 1 and ܽ = −1ሽ 

And yet:  ܲݎሼܽ = 1  and  ܽ = −1ሽ = 0 

as we have two mutually exclusive hypotheses, hence:  ܲݎሼܽ = 1  or  ܽ = −1ሽ = ሼܽݎܲ = 1ሽ + ሼܽݎܲ = −1ሽ = 1 2⁄  

thus: ܲݎሼܽ = 1ሽ = ሼܽݎܲ = −1ሽ = 1 4⁄  

and: 

ሽݐ  ሼܸ  atݎܲ = ሽݐ  ሼ−ܸ  atݎܲ = 12 × 14 = 18 

Let’s now calculate the other probabilities, representing four mutually exclusive 
hypotheses. Note that for reasons of symmetry, we have: ܲݎሼܸ  at  ݐ − ߬ ܸ  at  ݐ⁄ ሽ = ݐ  ሼ−ܸ  atݎܲ  − ߬ −ܸ  at  ݐ⁄ ሽ 

and: ܲݎሼܸ  at  ݐ − ߬ −ܸ  at  ݐ⁄ ሽ = ݐ  ሼ−ܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 

0 :݁ݏܽܿ ݐݏݎ݅ܨ – ≤ ߬ ≤ ܶ 2⁄ .  

1) Let: ݍଵ = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 

The only possibility is that ݐ and ݐ − ߬ belong to the same first half of the time 
slice:  ݍଵ = ݐሼݎܲ − ߬ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿ ݐ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿ⁄ ሽ 

We have: ݐ < ݐ − ߬ < ݐ + ܶ 2⁄  → ݐ + ߬ < ݐ < ݐ + ߬ + ܶ 2⁄                           and  ݐ < ݐ < ݐ + ܶ 2⁄ ൠ → ݐ + ߬ < ݐ < ݐ + ܶ 2⁄  
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Figure 2.14. First case: 0 < ߬ < ܶ 2⁄  and a positive impulsion at t. For a  
color version of this figure, see www.iste.co.uk/assad/digital2.zip 

therefore:   

ଵݍ = ݐሼݎܲ ∈ ሾݐ + ߬, ݐ + ܶ 2⁄ ሿሽ = ܶ 2 − ߬⁄ܶ 2⁄ = 1 − 2߬ܶ
 

2) Let:  ݍଶ = ݐ  ሼ−ܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 

So, we have: ݍଶ = 0.  

So, we have also:  

ଷݍ = ݐ  ሼ−ܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ = ଵݍ = 1 − 2߬ܶ
 

and: ݍସ = ݐ  ሼܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ = ଶݍ = 0 

ܶ :݁ݏܽܿ ݀݊ܿ݁ܵ – 2 < ߬ ≤ ܶ⁄ .  
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Figure 2.15. First case: 0 ≤ ߬ ≤ ܶ 2⁄  and negative impulse at t. For a  
color version of this figure, see www.iste.co.uk/assad/digital2.zip 

 

Figure 2.16. Second case:  ܶ 2 < ߬ ≤ ܶ⁄ . For a color version  
of this figure, see www.iste.co.uk/assad/digital2.zip 
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The only possibility is that ݐ and ݐ − ߬ ∈ first halves of adjacent time slices.  

Since two successive bits to 1 are issued in alternating polarity, then:  

൜ݍଵ = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ = ଷݍ       0 = ݐ  ሼ−ܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ = 0 

ସݍ = ݐ  ሼܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ ݍସ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ܶ 2⁄ ሿ, ܽିଵ = 1 ݐ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿ,⁄ ܽ = −1ሽ ݍସ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ 2⁄ ሿ ݐ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿ ⁄ ሽ × ሼܽିଵݎܲ = 1 ܽ = −1⁄ ሽ 

yet: ܲݎሼܽିଵ = 1 ܽ = −1⁄ ሽ = ሼܾିଵݎܲ = 1 ܾ = 1⁄ ሽ = ሼܾିଵݎܲ = 1ሽ = |ሼ|ܽିଵݎܲ = 1ሽ = 1 2⁄  

(due to the independence between binary information symbols).  

And on the other hand:  ݐ − ܶ < ݐ − ߬ < ݐ −ܶ 2⁄  → ݐ − ܶ + ߬ < ݐ < ݐ −ܶ 2⁄ + ߬                           and:                                   ݐ < ݐ < ݐ + ܶ 2⁄ ൠ → ݐ < ݐ < ݐ −ܶ 2⁄ + ߬ 

hence:  ݍସ = ݐሼݎܲ ∈ ሾݐ, ݐ −ܶ 2⁄ + ߬ሿሽ × ሼܽିଵݎܲ = 1 ܽ = −1⁄ ሽ = ߬ − ܶ 2⁄ܶ 2⁄ × 12 = 12 2߬ܶ − 1൨ 

and, by symmetry, we have:  

ଶݍ = ݐ  ሼ−ܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ = ସݍ = 12 2߬ܶ − 1൨ 

– ܶℎ݅݁ݏܽܿ ݀ݎ: ܶ < ߬ ≤ ܶ + ܶ 2⁄ . 

The only possibility is that ݐ and ݐ − ߬ belong to the first two halves of adjacent 
time slices.    
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Figure 2.17. Third case: ܶ < ߬ ≤ ܶ + ܶ 2⁄ . For a color  
version of this figure, see www.iste.co.uk/assad/digital2.zip 

Since two successive bits at “1” are issued in alternating polarity, then as 
explained previously:  

൜ݍଵ = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ = ଷݍ       0 = ݐ  ሼ−ܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ = 0 

ସݍ = ݐ  ሼܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ ݍସ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ + ܶ 2⁄ ሿ, ܽିଵ = 1 ݐ ∈ ሾݐ, ݐ + ܶ 2⁄ ሿ,⁄ ܽ = −1ሽ 

hence: ݍସ = ݐሼݎܲ − ߬ ∈ ሾݐ − ܶ, ݐ − ܶ 2⁄ ሿ ݐ ∈  ሾݐ, ݐ + ܶ 2⁄ ሿ⁄ ሽ × ሼܽିଵݎܲ = 1 ܽ = −1⁄ ሽ 

We have:  ܲݎሼܽିଵ = 1 ܽ = −1⁄ ሽ = |ሼ|ܽିଵݎܲ = 1ሽ = 1 2⁄  

and, on the other hand:  ݐ − ܶ < ݐ − ߬ < ݐ − ܶ 2⁄  → ݐ − ܶ + ߬ < ݐ < ݐ − ܶ 2⁄ + ߬                           and                                    ݐ < ݐ < ݐ + ܶ 2⁄ ൠ → ݐ − ܶ + ߬ < ݐ < ݐ + ܶ 2⁄  
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hence: ݍସ = ݐሼݎܲ ∈ ሾݐ − ܶ + ߬, ݐ + ܶ 2⁄  ሿሽ × ሼܽିଵݎܲ = 1 ܽ = −1⁄ ሽ = 3 ܶ 2 − ߬⁄ܶ 2⁄ × 12 = 12 3 − 2߬ܶ൨ 

and, by symmetry, we have:  

ଶݍ = ݐ  ሼ−ܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ = ସݍ = 12 3 − 2߬ܶ൨ 

3ܶ :݁ݏܽܿ ℎݐݎݑܨ – 2 < ߬ ≤ 2ܶ⁄ . 

 

Figure 2.18. Fourth case: 3ܶ 2 < ߬ ≤ 2ܶ⁄ . For a color  
version of this figure, see www.iste.co.uk/assad/digital2.zip 
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The only possibility is that (ݐ − ߬) and ݐ belong to two first time slices separated 
by a time slot of intermediate duration ܶ: ݍଵ = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 

Moreover, since we have the conditional event: ሼܸ at (ݐ − ߬) ܸ at ݐ⁄ ሽ, we must 
also have in the intermediate time slot a negative impulse, and therefore a symbol ܽିଵ = −1.  

Therefore:  ݍଵ = ݐሼݎܲ − ߬ ∈ ሾݐ − 2ܶ, ݐ − 2ܶ + ܶ 2⁄ ሿ, ܽିଶ = 1, ܽିଵ  ⁄  = ݐ/1− ∈ ሾݐ, ݐ  +ܶ 2⁄ ሿ,  ܽ = 1ሽ 

Because of the statistical independence between the pairs of instants considered 
and the values of the symbols considered, we have:   ݍଵ = ݐሼݎܲ − ߬ ∈ ሾݐ − 2ܶ, ݐ − 3ܶ 2⁄ ሿ ݐ ∈⁄ ሾݐ, ݐ +ܶ 2⁄ ሿሽ × ሼܽିଶݎܲ = 1, ܽିଵ = −1 ܽ = 1⁄ ሽ 

The first conditional probability on the instants gives:  ܲݎሼݐ ∈ ሾݐ − 2ܶ + ߬, ݐ − 3ܶ 2⁄ + ߬ ሿ ݐ ∈ ሾݐ, ݐ +ܶ 2⁄ ሿ⁄ ሽ = ݐሼݎܲ ∈ ሾݐ, ݐ − 3ܶ 2⁄ + ߬ ሿሽ = ߬ − 3 ܶ 2⁄ܶ 2⁄ = 2߬ܶ − 3൨ 

The second conditional probability on the symbols gives (because of the 
independence between the symbols):   ܲݎሼܽିଶ = 1, ܽିଵ = −1 ܽ = 1⁄ ሽ = ሼܾିଶݎܲ = 1 ܾ = 1⁄ ሽ × ሼܾିଵݎܲ = 1 ܾ = 1⁄ ሽ 

and due to the independence between the symbols b:    ܲݎሼܾିଶ = 1 ܾ = 1⁄ ሽ × ሼܾିଵݎܲ = 1 ܾ = 1⁄ ሽ = ሼܾିଶݎܲ = 1ሽ × ሼܾିଵݎܲ = 1ሽ = 12 × 12 = 14 

hence:  

ଵݍ = 14 2߬ܶ − 3൨ 
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and, by symmetry, we have: ݍଷ =  :ଵ and thereforeݍ

ଷݍ = ݐ  ሼ−ܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ = 14 2߬ܶ − 3൨ ݍସ = ݐ  ሼܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ 

As before, the only possibility is that ݐ − ߬ and ݐ each belong to two first time 
slices separated by a time slice of intermediate duration ܶ but, unlike in the previous 
case, in the intermediate time slice, it must not have transmitted a pulse, therefore a 
symbol: ܽିଵ = 0. The conditional probability for the instants remains the same. It 
is the same for conditional probabilities on symbols ܽ. As a result, we have:  

ସݍ = 14 2߬ܶ − 3൨ 

and therefore: ݍସ = ଵݍ =  ଷݍ

And by symmetry, we also have ݍଶ =  :ସ and thereforeݍ

ଶݍ = ݐ  ሼ−ܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ = 14 2߬ܶ − 3൨ 

Consequently, we finally get: 

ܴ௦(߬) = 18 ܸଶ × ሾݍଵ + ଷݍ − ଶݍ − ସሿݍ = 0 

Actually, we show that for:  ߬ > ݇ܶ, with : ݇ ≥ 2 → ܴ௦(߬) = 0 

Indeed, let’s take for example the case: 2ܶ ≤ ߬ < 5ܶ 2⁄ . 

From the study of the previous case, we see that:  

ଵݍ = ଷݍ = 14 × ݐሼݎܲ ∈ ሾݐ − 2ܶ + ߬, ݐ − 2ܶ + ܶ 2⁄ + ߬ ሿ ݐ ∈ ሾݐ, ݐ  +ܶ 2⁄ ሿ⁄ ሽ 

ଵݍ = ଷݍ = 14 × ݐሼݎܲ ∈ ሾݐ − 2ܶ + ߬, ݐ  +ܶ 2⁄  ሿሽ = 14 × ቈ5 ܶ 2 − ߬⁄ܶ 2⁄  = 14 × 5 − 2߬ܶ൨ 
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Likewise:  ݍସ = ଶݍ = ଵݍ = ଷݍ  → ܴ௦(߬) = 0 

So in the general case where: ݇ܶ < ߬ ≤ (݇ + 1 2⁄ )ܶ and ݇ ≥ 2, we have: ܴ௦(߬) = 0. 

Indeed, (for clarity, see the case:  3 ܶ 2 < ߬ ≤ 2ܶ⁄ ), we have: ݍଵ = ݐ  ሼܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ 

That is: ݍଵ = ݐሼݎܲ − ߬ ∈ ሾݐ − ݇ܶ, ݐ − (݇ − 1 2⁄ )ܶሿ, ܽି = 1 ݐ ∈ ሾݐ, ݐ  +ܶ 2⁄ ሿ, ܽ = 1 ⁄ ሽ 

Because of the independence between ݐ and the information symbols ܽ, we 
therefore have:  ݍଵ = ݐሼݎܲ − ߬ ∈ ሾݐ − ݇ܶ, ݐ − (݇ − 1 2⁄ )ܶሿ ݐ ∈ ሾݐ, ݐ +ܶ 2⁄ ሿ⁄ ሽ × ሼܽିݎܲ = 1 ܽ = 1⁄ ሽ 

or: 

ଵݍ  = ଵଵݍ ×  ଵଷݍ

with: ݍଵଵ = ݐሼݎܲ − ߬ ∈ ሾݐ − ݇ܶ, ݐ − (݇ − 1 2⁄ )ܶሿ ݐ ∈ ሾݐ, ݐ  +ܶ 2⁄ ሿ ⁄ ሽ 

and:  ݍଵଷ = ሼܽିݎܲ = 1 ܽ = 1 ⁄ ሽ 

This last conditional probability implies implicitly the fact that between ݊ − ݇ 
and ݊, we have an odd number of bits ܾିᇲ at 1 (0 < ݇ᇱ < ݇).  

Thus:  ݍଵଷ = ሼ ܽିݎܲ = 1, odd number of bits  ܾିᇲ at 1 ܽ = 1⁄ ሽ 
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Because of the independence between the symbols, then one obtains 
successively:  ݍଵଷ = ሼ ܽିݎܲ = 1 ܽ = 1⁄ ሽ× ሼ odd number of bits  ܾିᇲ at 1 ܽݎܲ = 1⁄ ሽ 

ଵଷݍ = ሼܽିݎܲ = 1 ሽ × ሼ odd number of bits  ܾିᇲ at 1ሽݎܲ = 12 × 12 = 14 

because it is obvious that on a given bit length ݇, the probability of having an even 
number of bits at 1 is identical to having an odd number. Indeed, for each given 
configuration of ݇ − 1 bits, there are two configurations of the additional bit 
(whatever its position in the ݇ bits): one with 0, the other with 1.  

So we have: ݍଵ = ଵସ ×  .ଵଵݍ

By symmetry, we also have:   ݍଷ = ݐ  ሼ−ܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ =  ଵݍ

In addition, we also have:  ݍସ = ݐ  ሼܸ  atݎܲ − ߬ −ܸ  at  ݐ⁄ ሽ 

i.e.: ݍସ = ଵଵݍ ×   ସଶݍ

with:  ݍସଶ = ሼܽିݎܲ = 1  ⁄ ܽ = −1ሽ. 

For the same reasons as previously with the calculation of ݍଵଷ, it is easy to show 
that: ݍସଶ = ሼ ܽିݎܲ = 1, even number of bits ܾିᇲ at 1 ܽ = −1⁄ ሽ 

and with the independence of the information symbols:  

ସଶݍ = ሼܽିݎܲ = 1 ሽ × ሼ even number of bits ܾିᇲ at 1ሽݎܲ = 12 × 12 = 14 

By symmetry, we also have:  ݍଶ = ݐ  ሼ−ܸ  atݎܲ − ߬ ܸ  at  ݐ⁄ ሽ =  ସݍ
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because:   

ସସݍ = ሼܽିݎܲ = −1  ⁄ ܽ = 1ሽ = ସଶݍ = 14 

Thus, we obtain:   

ܴ௦(߬) = 18 ܸଶ × ሾݍଵ + ଷݍ − ଶݍ − ସሿݍ = 0 

In summary:  

ܴ௦(߬) = 14 ܸଶ × ሾݍଵ −  ସሿݍ
for: 

0 ≤ ߬ ≤ ܶ 2⁄       → ܴ௦(߬) = ܸଶ4 1 − 2߬ܶ൨     
ܶ 2 ≤ ߬ ≤ ܶ     → ܴ௦(߬) = −ܸଶ8 2߬ܶ − 1൨ൗ  

ܶ ≤ ߬ ≤ 3ܶ 2⁄     → ܴ௦(߬) = −ܸଶ8 3 − 2߬ܶ൨ 3ܶ 2 ≤ ߬ ≤ 2ܶ  → ܴ௦(߬) = 0⁄                       
The autocorrelation function ܴ௦(߬) of the bipolar RZ code represented in the 

Figure 2.19a shows that it can be decomposed into the sum of two functions ܴଵ(߬) 
and ܴଶ(߬) represented in the Figure 2.19b.  

The power spectral density ߁௦(݂) of the bipolar code is therefore given by:  ߁௦(݂) = (݂)ଵ߁ +  (݂)ଶ߁

with:  

   :ଵ(݂), power spectral density of the signal whose autocorrelation function is ܴଵ(߬) of triangular shape. It is given by߁ –

(݂)ଵ߁ = ܸଶ2 × ܶ × ቈsin(݂ܶߨ)݂ܶߨ ଶ
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  :ଶ(݂), power spectral density of the signal whose autocorrelation function is ܴଶ(߬) of trapezoidal shape. And if ݃(߬) has a trapezoidal form (see Figure 2.20)߁ –

 

Figure 2.19. (a) Autocorrelation function of the bipolar RZ code and  
(b) its decomposition into the sum of two functions. For a color  

version of this figure, see www.iste.co.uk/assad/digital2.zip 

 

Figure 2.20. Trapezoidal function. For a color version  
of this figure, see www.iste.co.uk/assad/digital2.zip 
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It is obtained by convolution between two even rectangular functions that do not 
have the same support in general. Hence:  

(݂)ܩ = ߠ)ଶ(݂ߨ2)ܣ8 − (ଵߠ × sin ቈߠ)݂ߨ + ଵ)2ߠ  × sin ቈߠ)݂ߨ − ଵ)2ߠ  

Let’s apply this to ܴଶ(߬), with: ܣ = − ܸଶ 4⁄ ߠ            , = ଵߠ            ,3ܶ = ܶ 

Thus, we have successively:  

(݂)ଶ߁ = 8ሾ−ܸଶ 4⁄ ሿ(2݂ߨ)ଶ2ܶ × sinሾ2݂ܶߨሿ × sinሾ݂ܶߨሿ 
(݂)ଶ߁ = −ܸଶܶ(2݂ߨ)ଶ × 2sinሾ݂ܶߨሿ cosሾ݂ܶߨሿ × sinሾ݂ܶߨሿ 
(݂)ଶ߁ = −ܸଶ4 ܶ × ሾsin(݂ܶߨ)ሿଶ × ଶ(݂ܶߨ)2 cosሾ݂ܶߨሿ 
(݂)ଶ߁ = ܸଶ4 ܶ × ሾsin(݂ܶߨ)ሿଶ ×  ଶ(݂ܶߨ)2− ሼ1 − 2ሾsin(݂ߨ ܶ 2⁄ )ሿଶሽ൨ 

(݂)ଶ߁ = ܸଶ4 ܶ × ሾsin(݂ܶߨ)ሿଶ × ቈ ଶ(݂ܶߨ)2− + ሾsin(݂ߨ ܶ 2⁄ )ሿଶ(݂ߨ ܶ 2⁄ )ଶ  

Hence:  ߁௦(݂) = (݂)ଵ߁ +  (݂)ଶ߁

(݂)௦߁ = ܸଶ4 ܶ × ሾsin(݂ܶߨ)ሿଶ ൝ቈsin(݂ߨ ܶ 2⁄ ݂ߨ)( ܶ 2⁄ ) ଶ − ଶ(݂ܶߨ)2 +  ଶൡ(݂ܶߨ)2

Finally, it gives:  

(݂)௦߁ = ܸଶ4 ܶ × ቈsin(݂ߨ ܶ 2⁄ ݂ߨ)( ܶ 2⁄ ) ଶ × ሾsin(݂ܶߨ)ሿଶ 
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Figure 2.21. Power spectral density of the bipolar RZ code. For a  
color version of this figure, see www.iste.co.uk/assad/digital2.zip 

Properties of ߁௦(݂):  

– no continuous component; 

– no energy at frequency ݂ = 1 ܶ⁄ , however a double alternation rectification of 
the bipolar RZ code gives a RZ code which has a discrete component at frequency ݂ = 1 ܶ⁄  in its power spectral density and therefore, a rather easy clock recovery;  

– more than 90% of the energy is located in the physical frequency band ሾ0, 1 ܶ⁄ ሿ. 
2.4. Problem 19 – Transmission using a partial response linear coding  

We consider the transmission system using the partial response linear coding of 
Figure 2.22. 

 

Figure 2.22. Transmission system with partial response linear encoder 

(ݐ)ܾ =  ܾݐ)ߜ − ݊ ܶ)        ܾ ∈ ሼ0, 1ሽ 

ܾᇱ(ݐ) =  ܾᇱ ݐ)ߜ − ݊ ܶ)       ܾᇱ ∈ ሼ0, 1ሽ 
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(ݐ)ܽ =  ܽݐ)ߜ − ݊ ܶ)        ܽ = 2ܾᇱ − 1       ܽ ∈ ሼ−1, 1ሽ 

(ݐ)ܿ =  ܿݐ)ߜ − ݊ ܶ)         ܿ positive, negative or null integer 

1) Explain in no more than two sentences the interest of the use of a partial 
response linear encoder for the baseband transmission of independent binary 
symbols ܾ.  

2) Why is it advantageous to use a precoder associated with the partial response 
linear coder at the transmitter side? Is this precoder necessary for reception? Why?  

A partial response linear encoder of the form 1 −  ଶ where D is the delayܦ
operator of ܶ (time slice dedicated to the transmission of symbol ܿ) is used.  

3) Give the construction rule of ܿ from ܽ. Deduce the associated precoder: you 
will give the construction rule of ܾᇱ  as a function of ܾ.  

We consider the following 21-bit sequence ሼܾሽ  (time running from left to 
right):  

000  010  110  100  011  101  000 

4) Determine:  

– the associated time sequence ሼܾᇱ ሽ at the output of the pre-coder (the latter is 
considered initialized to zero); 

– the time sequence ሼܽሽ at the output of the transcoder;  

– the time sequence ሼܿሽ at the output of the encoder.  

5) Give the decoding relationship providing the ܾ as a function of ܿ̂. 

Let (ݐ)ݔ be the following deterministic pulse (return to zero code, RZ):   

 

Figure 2.23. Basic pulse shape (type RZ)  
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And the signal transmitted (without pre-filtering) is ݏ(ݐ).   

6) How is it related to the sequence ሼܿሽ? Represent on a time diagram the signal ݏ(ݐ) transmitted, for the sequence of binary information ሼܾሽ in question 4. In this 
example, does the signal transmitted have a continuous component? On statistical 
average, does this signal have a continuous component?   

7) If the ܾ are equiprobable and independent, determine the probabilities of 
achievement of each element of the alphabet of symbol ܿ. 

8) Determine the power spectral density function  ߁௦(݂).    

9) We now consider the following 21-bit time sequence {ܾ} (time running from 
left to right):  

100 001 100 000 110 000 010 

Use the HDB-3 coding scheme (high density bipolar pulse code of order 3) to 
represent the signal ݏுିଷ(ݐ) carrying the information and represent it on a time 
diagram.  

Solution of problem 19 

1) It makes a spectrum shaping. This is performed by the introduction of a 
certain correlation. The effect is a reduction of the frequency bandwidth of the signal 
transmitted. 

2) A precoder is associated with the encoder to ensure that the decoding of the 
symbols ܾ is instantaneous. The precoder is not necessary in reception because the 
decoding is instantaneous.  

3) Since we have:  

(ݖ)ܪ = (ݖ)ܣ(ݖ)ܥ = 1 − ଶିݖ → (ݖ)ܥ = (ݖ)ܣ − (ݖ)ܣ × ଶିݖ → ܿ = ܽ − ܽିଶ 

then: 

(ݖ)ܲ = (ݖ)ܤ(ݖ)ᇱܤ = (ݖ)ܪ1 = 11 − ଶିݖ → (ݖ)ᇱܤ = (ݖ)ܤ + (ݖ)ᇱܤ ×  ଶିݖ

→ ܾᇱ = ܾ⨁ܾିଶᇱ  

4) Time sequence.  
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Table 2.5. Chronogram of the time sequence and of the transmitted signal.  
For a color version of this table, see www.iste.co.uk/assad/digital2.zip 

5) From the previous relation, we have:  ܿ = ܽ − ܽିଶ = ሾ2ܾᇱ − 1 − (2ܾିଶᇱ − 1)ሿ = 2ሾܾᇱ − ܾିଶᇱ ሿ = 2ܾ → ܾ = 12 ܿ̂   mod 2   → ܾ = 12 |ܿ̂|   mod 2 

6) We have:  ݏ(ݐ) =  ܿݐ)ݔ − ݊ ܶ)  

The chronogram of the signal ݏ(ݐ) is shown in Table 2.5 above (answer to 
question 4).  

In this sequence, we have a continuous component, since there are five +ܸ 
pulses and three −ܸ pulses. This continuous component has the value: 

2ܸ × 121 × 2 = 2ܸ1 

Value 2 in the denominator comes from the fact that the signal (ݐ)ݔ is of type 
RZ.  

On a statistical average: ܧሼݏ(ݐ)ሽ = 0. (i.e. no continuous component) 

7) Since ሼܾሽ are equiprobable, then:   ܲݎሼܿ = 0ሽ = 1 2,       ⁄ ሼܿݎܲ = 2ሽ = ሼܿݎܲ = −2ሽ = 1 4⁄  
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8) The power spectral density ߁௦(݂) is given by: 

Γ௦(݂) = 1ܶ × ଶ|(݂)ܪ| × |ܺ(݂)|ଶ 

(ݖ)ܪ = 1 − ଶିݖ → (݂)ܪ = ݖ)ܪ = exp (݆2݂ߨ ܶ) = 1 − exp(−݆4݂ߨ ܶ) ܪ(݂) = 1 − ሾcos(4݂ߨ ܶ) − ݆ sin(4݂ߨ ܶ)ሿ 
hence: |ܪ(݂)|ଶ = ሾ1 − cos(4݂ߨ ܶ)ሿଶ + ሾsin(4݂ߨ ܶ)ሿଶ |ܪ(݂)|ଶ = 1 + ሾcos(4݂ߨ ܶ)ሿଶ − 2 cos(4݂ߨ ܶ) + ሾsin(4݂ߨ ܶ)ሿଶ = 2ሾ1 − cos(4݂ߨ ܶ)ሿ 
since: 1 − cos(2ݔ) = 2ሾsin (ݔ)ሿଶ → ଶ|(݂)ܪ| = 2 × 2ሾsin(2݂ߨ ܶ)ሿଶ = 4ሾsin(2݂ߨ ܶ)ሿଶ      

Furthermore:   

|ܺ(݂)| = 2ܸ × ܶ2 × sin(2݂ߨ ܶ 4⁄ ݂ߨ2( ܶ 4⁄ = ܸ ܶ4 × sin(݂ߨ ܶ 2⁄ ݂ߨ( ܶ 2⁄  

hence:  

(݂)௦߁ = 1ܶ × 4ሾsin(2݂ߨ ܶ)ሿଶ × ቈܸ ܶ4 × ݂ߨ)݊݅ݏ ܶ 2⁄ ݂ߨ( ܶ 2⁄ ଶ
 

finally, we have: 

(݂)௦߁ = ܸଶ ܶ4 × ሾsin(2݂ߨ ܶ)ሿଶ × ቈ݂ߨ)݊݅ݏ ܶ 2⁄ ݂ߨ( ܶ 2⁄ ଶ
 

This code is well suited to long distance cable transmissions because:  

– it has no continuous component, and no power spectral density at very low 
frequencies;  

– from a practical point of view, most of its power is distributed in the frequency 
band ሾ0, 1 2 ܶ⁄ ሿ. 
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9) High density pulse code: HDB-3 (ݏு-ଷ(ݐ) signal).  

 
With V: polarity alternation violation bit (bit of violation); B: stuffing bit. 

Table 2.6. Generation of the HDB-3 signal and chronogram. For a  
color version of this table, see www.iste.co.uk/assad/digital2.zip 

2.5. Problem 20 – Signal information coding and digital transmissions 
with partial response linear encoder 

We consider the problem of long-distance transmission (d > 1 Km) over an 
electrical cable of a source ܵ, of equiprobable binary symbol information, and 
delivering a binary symbol every ܶ seconds. To illustrate this problem, it will be 
considered that a limited (20-element) length realization of the binary symbol 
sequence produced by ܵ is:  ሼܾሽ = ⋯ 101  000  110  000  001  001  01 ⋯ 

The amplitude of the modulated pulses is equal to ܸ except for the partial 
response coding where the amplitude will be ܸ 2⁄ .  

NOTE.– For a better comparison, time representations of transmitted signals ݏ(ݐ),݅ = ሼ1, ⋯ , 4ሽ will be drawn on the same sheet, as well as the sequences ሼܾᇱ ሽ, ሼܽሽ 
and ሼܿሽ.  

In order to construct the signal ݏଵ(ݐ) carrying the information, a binary return to 
zero code (RZ code) is used.    

1) Represent the signal ݏଵ(ݐ) carrying the sequence ሼܾሽ. Is this RZ code of 
interest for long distance digital transmissions? Justify precisely the reasons for this 
(you can rely on the properties of the power spectral density ߁ଵ(݂) of ݏଵ(ݐ) to 
argue).   
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A bipolar code of the RZ type is now used to construct the signal ݏଶ(ݐ) carrying 
the information to be transmitted.  

2) Represent the signal ݏଶ(ݐ) encoding the sequence ሼܾሽ. Is this code more 
interesting than the first one? What are the qualities and defects of long-range 
transmissions (argue based on the properties of power spectral density ߁ଶ(݂)). 

We want to use a code with a high density of pulses of type HDB-2.   

3) Represent the signal ݏଷ(ݐ) carrying the sequence ሼܾሽ of information 
transmitted. What are the characteristics of such a code compared to the RZ bipolar 
code? What do you conclude about its suitability for long-range transmissions over 
an electric cable of binary information?   

We want to further reduce the bandwidth of the transmitted signal. For this, we 
use a partial response linear coding as shown in the diagram of Figure 2.24, with:  ܾ(ݐ) =  ܾݐ)ߜ − ݊ ܶ)         ܾ ∈ ሼ0, 1ሽ 

ܾᇱ(ݐ) =  ܾᇱ ݐ)ߜ − ݊ ܶ)         ܾᇱ ∈ ሼ0, 1ሽ 

(ݐ)ܽ =  ܽݐ)ߜ − ݊ ܶ)        ܽ = 2ܾᇱ − 1       ܽ ∈ ሼ−1, 1ሽ 

(ݐ)ܿ =  ܿݐ)ߜ − ݊ ܶ)        ܿ positive, negative or null integer 

 

Figure 2.24. Block diagram of the partial response linear coder 

The structure of the partial response coder is given in Figure 2.25.  
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Figure 2.25. Structure of the partial response linear coder  
(D: D flip-flop synchronized on the binary symbol clock)  

4) Describe the relationship between the ܿ output of the encoder and its input ܽ. Why does the encoder have to be preceded by a precoder? 

5) Describe the relationship connecting the output of the precoder ܾᇱ  to its input ܾ (the precoder used is obviously that associated with the partial response linear 
coder). 

6) For the sequence ሼܾሽ, give successively the sequences obtained:  

– at the output of the precoder; 

– at the output of the transcoder; 

– at the output of the linear partial response coder (it will be considered that 
the ሼܾᇱ ሽ are zero for the two instants preceding the beginning of the sequence ሼܾሽ).   

7) Represent the signal ݏସ(ݐ) coding the sequence ሼܾሽ obtained at the output of 
the partial response coder for a RZ shaping signal (ݐ)ݔ of amplitude ܸ 2⁄ . 

8) Determine the power spectral density ߁ସ(݂) of this partial response linear 
code. Is it adequate for long distance transmission? 

9) For this partial response linear code, how does the decoding produce ܾ  from ܿ̂? Justify your answer.  

10) What happens to the reconstructed binary information ܾ if an error (due to 
transmission) occurs for one of the ܿ̂ symbols reconstructed on reception?  

11) Considering that the symbols ܾ are independent (besides being 
equiprobable), determine the probabilities of realization of each of the possible 
values of the symbols ܿ.  

Solution of problem 20  

Chronograms of the different signals:   

D D

+

-
cn

an

Ck



132     Digital Communications 2 

 

Table 2.7. Temporal representations of the different signals. For a  
color version of this table, see www.iste.co.uk/assad/digital2.zip 

1) Look at chronograms of the different signals.   

The power spectral density ߁ଵ(݂) of the RZ code is:  

(݂)ଵ߁ = ܸଶ ܶ16 ቈ݂ߨ)݊݅ݏ ܶ 2⁄ ݂ߨ( ܶ 2⁄ ଶ + ܸଶ16  (݂)ߜ

+ ܸଶ4ߨଶ   1(2݊ + 1)ଶ൨ ߜ ቆ݂ − (2݊ + 1)ܶ ቇஶ
ୀିஶ  

This code is not interesting for transmission over long distance cable because: 

– it has a continuous component equal to ܸ 4⁄  and a high power spectral density 
at low frequencies; 
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– the spectral occupancy of the code is practically 2 ܶ⁄ , twice that of the NRZ 
code.   

However, the presence of a discrete component at the frequency 1 ܶ⁄  in the 
power spectral density facilitates the recovery of the clock rate in reception.  

2) See the graph of the temporal representations of the different signals in  
Table 2.7. The power spectral density ߁ଶ(݂) of the bipolar code RZ is:  

(݂)ଶ߁ = ܸଶ4 ܶ × ቈsin(݂ߨ ܶ 2⁄ ݂ߨ)( ܶ 2⁄ ) ଶ × ሾsin(݂ߨ ܶ)ሿଶ 

Benefits of this code:  

– it has no continuous component, and no power spectral density at very low 
frequencies;  

– its spectral occupancy is only 1 ܶ⁄ . 

Disadvantage of this code: it does not produce pulses to encode a sequence of  
consecutive 0, therefore the receiver may lose synchronization.  

3) See the graph of the temporal representations of the different signals in  
Table 2.7. The HDB code has the same advantages as the bipolar code RZ, but in 
addition we always have pulses even if a long sequence of 0 is presented. So, it has a 
good match for the transmission of binary information over long distance cable.  

4) We have:  

(ݖ)ܪ = (ݖ)ܣ(ݖ)ܥ = 1 − ଶିݖ → (ݖ)ܥ = (ݖ)ܣ − (ݖ)ܣ × ଶିݖ → ܿ = ܽ − ܽିଶ 

The precoding makes it possible to perform in reception (after transmission) an 
instantaneous decoding. 

5) We have:   ܲ(ݖ) = (ݖ)ܤ(ݖ)ᇱܤ = (ݖ)ܪ1 = 11 − ଶିݖ → (ݖ)ᇱܤ = (ݖ)ܤ + (ݖ)ᇱܤ ×  ଶିݖ

→ ܾᇱ = ܾ⨁ܾିଶᇱ  

6) and 7) See the graph of the temporal representations of the different signals in 
Table 2.7. 
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8) The power spectral density ߁ସ(݂) is:  

(݂)ସ߁ = 1ܶ × ଶ|(݂)ܪ| × |ܺ(݂)|ଶ 

(ݖ)ܪ = 1 − ଶିݖ → (݂)ܪ = ݖ)ܪ = exp (݆2݂ߨ ܶ) = 1 − exp(−݆4݂ߨ ܶ) ܪ(݂) = 1 − ሾcos(4݂ߨ ܶ) − ݆ sin(4݂ߨ ܶ)ሿ |ܪ(݂)|ଶ = ሾ1 − cos(4݂ߨ ܶ)ሿଶ + ሾsin(4݂ߨ ܶ)ሿଶ |ܪ(݂)|ଶ = 1 + ሾcos(4݂ߨ ܶ)ሿଶ − 2 cos(4݂ߨ ܶ) + ሾsin(4݂ߨ ܶ)ሿଶ = 2ሾ1 − cos(4݂ߨ ܶ)ሿ 
Since:  1 − cos(2ݔ) = 2ሾsin (ݔ)ሿଶ → ଶ|(݂)ܪ| = 2 × 2ሾsin(2݂ߨ ܶ)ሿଶ = 4ሾsin(2݂ߨ ܶ)ሿଶ      
Furthermore:   

|ܺ(݂)| = 2ܸ × ܶ2 × sin(2݂ߨ ܶ 4⁄ ݂ߨ2( ܶ 4⁄ = ܸ ܶ4 × sin(݂ߨ ܶ 2⁄ ݂ߨ( ܶ 2⁄  

hence:  

(݂)ସ߁ = 1ܶ × 4ሾsin(2݂ߨ ܶ)ሿଶ × ቈܸ ܶ4 × ݂ߨ)݊݅ݏ ܶ 2⁄ ݂ߨ( ܶ 2⁄ ଶ
 

(݂)ସ߁ = ܸଶ ܶ4 × ሾsin(2݂ߨ ܶ)ሿଶ × ቈ݂ߨ)݊݅ݏ ܶ 2⁄ ݂ߨ( ܶ 2⁄ ଶ
 

This code is well suited for long distance cable transmission because:  

– it has no continuous component, and no power spectral density at very low 
frequencies; 

– its spectral occupancy is only 1 2 ܶ⁄ .  

9) We have:    ܿ = ܽ − ܽିଶ = ሾ2ܾᇱ − 1 − (2ܾିଶᇱ − 1)ሿ = 2ሾܾᇱ − ܾିଶᇱ ሿ = 2ܾ 
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→ ܾ = 12 ܿ̂   mod 2   → ܾ = 12 |ܿ̂|   mod 2 

10) If error on ܿ̂, we have:  ܿ̂ = ܿ + 2݁        ݁ = ቄ0 : even  error number1 : odd error number    ܾ = 12 |ܿ̂| + ݁   mod 2 

Thus, decision error on ܾ if ݁ is odd (݁ = 1) and no decision error on ܾ if ݁ 
is even (݁ = 0).  

11) We have:   ܲݎሼܾ = 0ሽ = ሼܾݎܲ = 1ሽ = 1 2⁄  

Independence:  ܲݎሼܾܾሽ = ሼܾሽݎܲ × ݉    ሼܾሽݎܲ ≠ ݊  

For the reasoning that follows, see the graph of the temporal representations of 
the different signals:  ܲݎሼܿ = 0ሽ = ሼሾܾᇱݎܲ − ܾିଶᇱ ሿ = 0ሽ = ሼܾᇱݎܲ = ܾିଶᇱ ሽ = ሼܾݎܲ = 0ሽ = 1 2⁄ ሼܿݎܲ  = 2ሽ = ሼܾᇱݎܲ = 1, ܾିଶᇱ = 0ሽ = ሼܾݎܲ = 1, ܾିଶᇱ = 0ሽ = ሼܾݎܲ = 1ሽ × ሼܾିଶᇱݎܲ = 0ሽ = 1 2⁄ × 1 2⁄ = 1 4⁄ ሼܿݎܲ  = −2ሽ = 1 − ሼܿݎܲ = 0ሽ − ሼܿݎܲ = 2ሽ = 1 4⁄  

2.6. Problem 21 – Baseband digital transmission system (1) 

A baseband digital transmission system of binary information is considered. It 
transmits coded digital images (with information compression) on a reduced capacity 
transmission channel (cable). The characteristics of the system in Figure 2.26 will be 
studied.     
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Figure 2.26. Block diagram of the baseband transmission system  

The random sequence ሼܾሽ is of a given probability law and ܾ are assumed to 
be independent. The transcoding of binary information sequence ሼܾሽ into symbol 
sequence ሼܽሽ corresponds to the following assignment:   

if  ܾ = 1  then  ܽ = 1 ;    if  ܾ = 0  then  ܽ = −1 

with the following probability law: ܲݎሼܽ = 1ሽ = ଵ = ሼܾݎܲ = 1ሽ = 4 5⁄ ሼܽݎܲ  = −1ሽ = ଵି = ሼܾݎܲ = 0ሽ = 1 5 ⁄  

The symbols ܽ of information to be transmitted are supplied to the transmitter 
at a rate of 1 ܶ⁄ = 13.5 MHz which corresponds to the sampling frequency of the 
luminance signal in television (standard CCIR 4: 2: 2).   

The transmitted signal ݏ(ݐ) is given by: ݏ(ݐ) =  ܽݐ)ݔ − ݊ܶ)  
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where (ݐ)ݔ is a rectangular signal of amplitude ܸ and duration: ߠ = ܶ  (NRZ: non return to zero), or ߠ = ܶ 2⁄   (RZ: return to zero) 

The transmission channel is modeled by a linear filter whose impulse response is 
denoted by ℎ(ݐ) (the propagation delay is not taken into account) and an additive 
degradation noise ܾ(ݐ) at the output of the channel. The noise ܾ(ݐ) is assumed to 
be a second-order stationary Gaussian random process, independent of the useful 
signal. It has a zero mean value, a power ߪబଶ , and its power spectral density ߁బ(݂) 
is modeled by a rectangular function of support Δ ݂ (on positive frequency axis) as 
shown on Figure 2.27.  

 

Figure 2.27. Power spectral density ߁బ(݂) of noise ܾ(ݐ) 

The equalization of the channel is performed by a linear filtering of the signal 
received ݏ(ݐ): impulse response filter ݃(ݐ), frequency gain ܩ(݂) such that its 
support is fully included in the frequency band of the noise ܾ(ݐ).   

The clock regeneration system is assumed to be flawless, and thus provides the 
decision system with a sequence of decision instants ሼݐሽ with ݐ = ݐ + ݇ܶ 
(thereafter, ݐ is assumed to be zero).  

The decision system uses a given decision threshold ߤ and the decision rule is 
as follows:   ݀ሾݏ(ݐ)ሿ = ොܽ = 1  if  ݏ(ݐ) ≥ ሿ(ݐ)ݏ ݀ሾߤ = ොܽ = −1  if  ݏ(ݐ) <  ߤ

Decoding ሼ ොܽሽ → ሼܾሽ is obvious.  

We denote successively:   (ݐ)ݕ = (ݐ)     and     (ݐ)ℎ⨂(ݐ)ݔ =  (ݐ)݃⨂(ݐ)ݕ

where ⨂ is the convolution product.   
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The frequency gain of the equalizer ܩ(݂) is assumed to be equal to 1 at zero 
frequency: ܩ(0) = 1.  

1) Determine the noise characteristics ܾଵ(ݐ) at the output of the equalization: the 
power spectral density ߁భ(݂) and the power ߪభଶ  of the noise ܾଵ(ݐ), as a function of 
that ߪబଶ  of ܾ(ݐ), its bandwidth Δ ݂ and the energy bandwidth Δ ݂ of the 
equalization filter.   

From now on, the equalization filter is assumed such that the amplitude spectrum ܲ(݂) of (ݐ)  is constant, equal to ܸܶ on the frequency domain ቂି(ଵାఈ)ଶ் , (ଵାఈ)ଶ்  ቃ, and  

equal to zero otherwise.  

2) Give the expression of the signal ݏ(ݐ) (made of the useful signal + 
intersymbol interference + noise) at the instants of the form: ݐ = ݇ܶ. 

Subsequently, for sake of simplification, it will be considered that only the two 
symbols adjacent to a given symbol ܽ can interfere with it (namely symbols ܽିଵ 
and  ܽାଵ), and that  ߙ = 1 6⁄ .  

3) Calculate the probability  and the intersymbol interference ܫ(ݐ) for each 
possible message ݉ interfering with ܽ. (For the sake of simplification, take ߨ ≅ 3 
in the rest of this problem).  

Assuming that at the output of the equalizer the signal-to-noise ratio obtained is:  

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 10.88 dB 

4) Give the expressions of the conditional probabilities of error:  ܲݎ൛ ොܽ = ܽ ܽ = ܽ, ݉⁄ ൟ ;    ݅ ≠ ݆ ;    ܽ = ቄ−11 ቅ ;   ܽ = ቄ−11 ቅ 

5) For each possible message ݉, calculate these probabilities.  

6) Finally, deduce the average probability of error ܲ,ଵ.  

NOTE.– For a Gaussian random variable X centered (݉ = 0) and reduced (ߪ = 1), 
we will assume that we have approximately: ܲݎሼ|ܺ| > 2.3ሽ = 2.14 × 10ିଶ ; ܲݎሼ|ܺ| > 2.7ሽ = 7 × 10ିଷ ܲݎሼ|ܺ| > 3.3ሽ = 9.6 × 10ିସ ; ܲݎሼ|ܺ| > 3.7ሽ = 2.2 × 10ିସ ܲݎሼ|ܺ| > 4.3ሽ = 3 × 10ିହ ; ܲݎሼ|ܺ| > 4.7ሽ ≅ 0 
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7) Calculate the average probability of error ܲ, that we would have had (with 

the same ratio ቂ௦ቃ at the output of the equalizer) if the intersymbol interference had 

been canceled.  

Solution of problem 21 

1) The power spectral density is:   ߁భ(݂) = (݂)బ߁ × (݂)|ଶܩ| = ߁ ×  (݂)|ଶܩ|

The noise power ܾ(ݐ) is ߪబଶ  given by:  

బଶߪ = න ݂݀(݂)బ߁ = ߁ න ݂݀ = ߁2
௱್

ି௱್
ஶ

ିஶ ߂ ݂ → ߁ = ߂బଶ2ߪ ݂ 

The power of the noise ܾଵ(ݐ) is ߪభଶ  given by:  

భଶߪ = න ݂݀(݂)భ߁ = ߁ න (݂)|ଶ݂݀ܩ| = 2௱߁
ି௱

ஶ
ିஶ ߂ ݂|ܩ(0)|ଶ = ߂߁2 ݂ 

→ భଶߪ = బଶߪ × ߂ ݂߂ ݂ 

2) The signal transmitted ݏ(ݐ) is:    

(ݐ)ݏ =  ܽݐ)ݔ − ݊ܶ)ஶ
ୀିஶ  

The signal received ݏ(ݐ) is:  

(ݐ)ݏ =  ܽݐ)ݕ − ݊ܶ) + ܾ(ݐ)ஶ
ୀିஶ  

with: (ݐ)ݕ =  (ݐ)ℎ⨂(ݐ)ݔ

 



140     Digital Communications 2 

The signal (ݐ)ݕ is the response of the channel to the basic pulse (rectangular 
shape) (ݐ)ݔ, of duration ߠ, in the noiseless case.  

The equalized signal (corrected) ݏ(ݐ) is:  

(ݐ)ݏ =  ܽݐ) − ݊ܶ) + ܾଵ(ݐ)ஶ
ୀିஶ  

with: (ݐ) = (ݐ)݃⨂(ݐ)ݕ =  (ݐ)݃⨂(ݐ)ℎ⨂(ݐ)ݔ

The noise ܾଵ(ݐ) is the result of noise ܾ(ݐ) filtering by the equalizer whose 
impulse response is ݃(ݐ).  

At sampling times ݐ = ݇ܶ, the signal ݏ(ݐ) is written:  

(ܶ݇)ݏ = ܽ(0) +  ܽஶ
ୀିஶ,ஷ ݇)ሾ − ݊)ܶሿ + ܾଵ(݇ܶ) 

The term ܽ(0) represents the useful response of the system (channel + 
equalization) to the transmission of the symbol ܽ associated with the time interval ݇ܶ.   

The term ܫ(݇ܶ) = ∑ ܽஶୀିஶ,ஷ ݇)ሾ − ݊)ܶሿ is the intersymbol interference. 
It is a disturbing signal depending on all of the symbols transmitted ሼܽሽ, except for 
the symbol ܽ which is related to the time interval considered.  

The term ܾଵ(݇ܶ) is the noise at the time of decision.   

3) The messages of only the form ݉ = ሾܽିଵ, ܽାଵ ሿ interferes with symbol ܽ, 
thus:  

(ܶ݇)ܫ =  ܽାଵ
ୀିଵ,ஷ ݇)ሾ − ݊)ܶሿ = ܽିଵ(ܶ) + ܽାଵ(−ܶ) 

݇)ሾ (݇ܶ) depends onܫ − ݊)ܶሿ, here on (±ܶ). We must first calculate (ݐ) 
from ܲ(݂). 
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Figure 2.28. Amplitude spectrum ܲ(݂) of (ݐ)  

By definition, we have: (ݐ) =  :ଵሼܲ(݂)ሽ, henceିܨ

(ݐ) = ܸܶ × 1ܶ (1 + (ߙ × sin ቂ2ݐߨ × 12ܶ (1 + ݐߨቃ2(ߙ × 12ܶ (1 + (ߙ  

= ܸ(1 + (ߙ × sinሾ1)ߨ + (ߙ ݐ ܶ⁄ ሿ1)ߨ + (ߙ ݐ ܶ⁄  

This gives:  (0) = ܸ(1 + (ߙ = ܸ 7 6⁄  

and: 

(ܶ±) = 76ܸ × sinሾߨ + ߨ 6⁄ ሿ7ߨ 6⁄ = ߨܸ− sinሾߨ 6⁄ ሿ = ߨ2ܸ− ≅ −6ܸ   (with ߨ ≅ 3)  
 = ሾିࢇ, (ࢀ)ࡵ ା ሿࢇ ≅ ࢂ− ሾିࢇ +  ାሿࢇ  

-1         -1 ܸ 3⁄  
15 × 15 = 125 

-1         1 0 
15 × 45 = 425 

1         -1 0 
45 × 15 = 425 

1          1 −ܸ 3⁄  
45 × 45 = 1625 

Table 2.8. Intersymbol interference: amplitudes and probabilities 
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4) The two expressions of conditional probabilities of error are:  

ܲషభ = ሼݎܲ ොܽ = 1 ܽ = −1, ݉⁄ ሽ = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵஶ
ఓబା()ିூ(்)  

ܲభ = ሼݎܲ ොܽ = −1 ܽ = 1, ݉⁄ ሽ = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵ
ఓబିቂ()ାூ(்)ቃ

ିஶ  

5) To calculate these conditional probabilities for each message ݉, it is 
necessary to express the integration domains as a function of ߪభ. As: 

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 20 × logଵ ቈ7ܸ భߪ⁄6  = 10.88 dB 

→ ܸ ≅ (0)   భ   andߪ 3 = 7ܸ 6⁄ ≅  భߪ 3.5

Furthermore:  

ߤ = (0)భଶ2ߪ log ିଵଵ ൨ ≅   భߪ 0.2−
hence the following Table 2.9. 

 = ሾିࢇ, ࣆ ା ሿࢇ + −() షࢋࡼ (ࢀ)ࡵ  
ࣆ − −() ࢋࡼ (ࢀ)ࡵ  

-1       -1 2.3  భߪ
≅ 1.07× 10ିଶ −4.7 ≅ భߪ 0 

-1        1 3.3  భߪ
≅ 4.8× 10ିସ −3.7  భߪ

≅ 1.1× 10ିସ 

1       -1 3.3  భߪ
≅ 4.8× 10ିସ −3.7  భߪ

≅ 1.1× 10ିସ 

1        1 4.3  భߪ
≅ 1.5× 10ିହ −2.7  భߪ

≅ 3.5× 10ିଷ 

Table 2.9. Conditional probabilities of error with intersymbol interference 
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6) The average probability of error ܲ,ଵ is given by:  

ܲ,ଵ = ଵି   × ܲషభ
ଶమ

ୀଵ  + ଵ   × ܲభ
ଶమ

ୀଵ  

ܲ,ଵ = 15  125 × 1.07 × 10ିଶ + 2 × 425 × 4.8 × 10ିସ + 1625 × 1.5 × 10ିହ൨ + 45  125 × 0 + 2 × 425 × 1.1 × 10ିସ + 1625 × 3.5 × 10ିଷ൨ ≅ 1.938 × 10ିଷ 

7) As there is no intersymbol interference, this means that the first Nyquist 
frequency criterion is verified (ߙ = 0). So, from the previous results we get: 

(ݐ) = ܸ × sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄ ; (0)    = ܸ; (݈ܶ±)    = 0;  with  ݈ ≠ 0 

At sampling times ݐ = ݇ܶ, the equalized signal (corrected) ݏ(ݐ) is now: ݏ(݇ܶ) = ܽ(0) + ܾଵ(݇ܶ) 

The two simplified expressions of conditional probabilities of error are now: 

ܲషభ = ሼݎܲ ොܽ = 1 ܽ = −1⁄ ሽ = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵஶ
ఓబା()  

ܲభ = ሼݎܲ ොܽ = −1 ܽ = 1⁄ ሽ = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵ
ఓబି()

ିஶ  

As we have the same signal-to-noise ratio as before, it means that: (0) ≅  భߪ 3.5

And we can keep (as the approximation remains rather good) the value of the 
optimal threshold ߤ as a function of the noise power ߪభଶ : 

ߤ = (0)భଶ2ߪ log ିଵଵ ൨ ≅   భߪ 0.2−
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Thus, in this case, the previous Table 2.9 is replaced by Table 2.10: ࣆ + ࣆ షࢋࡼ () − ࢋࡼ () ≅ భߪ 3.3  4.8 × 10ିସ −3.7 ≅ భߪ 1.1 × 10ିସ 

Table 2.10. Conditional probabilities of error without intersymbol interference 

Finally, we get: 

ܲ,ଵ = ଵି × ܲషభ + ଵ × ܲభ 

ܲ, = 15 ሾ4.8 × 10ିସሿ + 45 ሾ1.1 × 10ିସሿ = 9.6 × 10ିହ + 8.8 × 10ିହ ≅ 1.84 × 10ିସ 

Thus, in this case (with the same signal-to-noise ratio), the probability of 
transmission error without intersymbol interference is approximately 10 times lower 
than it was in the presence of intersymbol interference. 

2.7. Problem 22 – Baseband digital transmission (2) 

The following baseband digital transmission system (Figure 2.29) is considered 
for the transmission of binary information. 

 

Figure 2.29. Block diagram of the baseband digital transmission system  
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The source of information produces a random sequence ሼܾሽ of equiprobable  
and independent binary variables. The coding of binary information ሼܾሽ into 
information symbol ሼܽሽ corresponds to the following assignment:  

if  ܾ = 1  then  ܽ = 1 ; if  ܾ = 0  then  ܽ = −1 

The symbols ܽ of information to be transmitted are supplied to the transmitter 
at a rate of 1 ܶ⁄ . The coder information to signal generates a transmitted signal ݏ(ݐ) 
given by:    ݏ(ݐ) =  ܽݐ)ݔ − ݊ܶ)  

where (ݐ)ݔ is a rectangular signal of amplitude ܸ and duration ܶ 2⁄ .  

The transmission channel is modeled by a linear filter whose impulse response is 
denoted by ℎ(ݐ) (the propagation delay here is not taken into account) and an 
additive degradation noise ܾ(ݐ) at the transmission channel output.  

The noise ܾ(ݐ) is modeled by the low pass filtering of a white noise, of constant 
power spectral density ߁. This low pass filter is considered as a first-order low pass 
R-C filter whose frequency gain is denoted by ܮ(݂). The noise ܾ(ݐ) is assumed to 
be a second-order stationary Gaussian random process with zero mean, and 
independent of the useful signal. We called ߪబଶ  its average power and ߁బ(݂)  its 
power spectral density.   

A receiver makes it possible to retrieve the binary information from the signal 
received at the output of the channel according to the block diagram from Figure 2.29. 
The channel equalization is produced by a linear filter of impulse response ݃(ݐ) 
and complex gain ܩ(݂). The clock recovery, supposed to be faultless, produces a 
sequence of decision instants ሼݐሽ of the form ݐ = ݐ + ݇ܶ (thereafter, ݐ is 
assumed to be zero).     

The decision system uses a given decision threshold ߤ and the decision rule is 
as follows:  ݀ሾݏ(ݐ)ሿ = ොܽ = 1  if  ݏ(ݐ) ≥ ሿ(ݐ)ݏ ݀ሾߤ = ොܽ = −1  if  ݏ(ݐ) <  ߤ

Decoding ሼ ොܽሽ → ሼܾሽ is obvious. 
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We denote successively (⨂ : convolution product):   (ݐ)ݕ = (ݐ)  and  (ݐ)ℎ⨂(ݐ)ݔ =  (ݐ)݃⨂(ݐ)ݕ

1) Determine the energy bandwidth Δ ݂ of the noise ܾ(ݐ). This will allow us to 
consider in the following problem that its spectrum Γబ(݂) is constant on the 
frequency band ሾ−Δ ݂, Δ ݂ ሿ, and zero otherwise (see Figure 2.30). 

 

Figure 2.30. Equivalent power spectral density of noise ܾ(ݐ) 

It is assumed that the equalization is of gain ܩ(݂) on a support fully included in 
the frequency band ሾ−߂ ݂, ߂ ݂ ሿ and ܩ(0) = 1. We denoted Δ ݂ as its equivalent 
energy bandwidth.  

2) Determine the noise characteristics ܾଵ(ݐ) at the output of the equalization: the 
power spectral density ߁భ(݂) and the power ߪభଶ  of the noise ܾଵ(ݐ), as a function of 
that ߪబଶ  of ܾ(ݐ), its equivalent energy bandwidth Δ ݂ and the energy bandwidth Δ ݂ 
of the equalization filter.       

The equalization filter is set so that the amplitude spectrum ܲ(݂) of (ݐ)  is 

constant, equal to ܸܶ ⁄ߙ  in the frequency band ቂିఈଶ் , ఈଶ் ቃ, and equal to zero otherwise 

(see Figure 2.31).   

 

Figure 2.31. Amplitude spectrum ܲ(݂) of (ݐ) 
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3) Give the expression of the signal ݏ(ݐ) (made of the useful signal + 
intersymbol interference + noise) at the instants of the form: ݐ = ݇ܶ. 

Subsequently, for sake of simplification, it will be considered that only the two 
symbols adjacent to a given symbol ܽ can interfere with it (namely symbols ܽିଵ 
and ܽାଵ). 

4) Which minimum value ߙ of the parameter ߙ ensures no intersymbol 
interference?  

We then adjust the equalizer with the value ߙ. Under these conditions, the 
signal-to-noise ratio obtained at the output of the equalizer is equal to 6 dB with:   

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  

5) Calculate the conditional probabilities of error:  ܲݎ൛ ොܽ = ܽ ܽ = ܽ⁄ ൟ ;   ݅ ≠ ݆ ;  ܽ = ቄ−11 ቅ ;  ܽ = ቄ−11 ቅ 

knowing that we have: 

න ݔ݀(ݔ) = 0.95    if    (ݔ) = ଶఙߨ2√ߪ1
ିଶఙ exp ቈ−ݔଶ2ߪଶ  

Solution of problem 22  

1) The calculation of energy bandwidth ߂ ݂ of noise ܾ(ݐ) is made from the 
expression of the power ߪబଶ :  

బଶߪ = න బ(݂)݂݀ஶ߁
ିஶ  

On one hand:  

బଶߪ = න ݂݀(݂)బ߁ = ߁ න ݂݀ = ߁2
௱್

ି௱್
ஶ

ିஶ ߂ ݂ 
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On the other hand, we have to calculate ߪబଶ  from the expression of ߁బ(݂), which 
is the result of filtering ߁  by the first-order RC low pass filter: ߁బ(݂) = ߁ × ଶ|(݂)ܮ|

 

Calculation of the transfer function of a 1st order low pass R-C filter:  

 

Figure 2.32. First-order R-C low pass filter 

Zଵ(P) = R,      Zଶ(P) = 1CP      and  ܲ: Laplace variable ܧ(ܲ) = ܴ × (ܲ)ܫ + ܵ(ܲ)ܵ(ܲ) = (ܲ)ܫ ⁄              ܲܥ ൠ → ሾܴܲܥ + 1ሿܵ(ܲ) =  (ܲ)ܧ

→ (ܲ)ܮ = (ܲ)ܧ(ܲ)ܵ = 11 + ܲܥܴ = 11 + ߬ܲ 

For:  ܧ(ܲ) = 1ܲ = ൠ݂ߨ2݆ → (݂)ܮ = 11 + ݂߬ߨ2݆ → ଶ|(݂)ܮ| = 11 +  ଶ݂ଶ߬ଶߨ4

and: 

(݂)బ߁ = ߁ × ଶ|(݂)ܮ| = 1߁ +  ଶ݂ଶ߬ଶߨ4

then: 

బଶߪ = න ݂݀(݂)బ߁ = ߁ න 11 + ଶ݂ଶ߬ଶߨ4 ݂݀ஶ
ିஶ

ஶ
ିஶ  
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Recall:  

න ଶܽݔ݀ + ଶݔ = 1ܽ tanିଵ ቂܽݔቃ 
→ బଶߪ = ଶ߬ଶߨ4߁ න ଶ߬ଶߨ114 + ݂ଶ

ஶ
ିஶ ݂݀ = ଶ߬ଶߨ4߁ × ߬ߨ2 × ሾtanିଵ(2݂߬ߨ)ሿିஶஶ  

→ బଶߪ = ߬ߨ2߁ ቂ2ߨ − ቀ− 2ቁቃߨ =  2߬߁

Finally, we get:  

బଶߪ = 2߬߁ = ߂߁2 ݂ → ߂ ݂ = 14߬ =  ܥ14ܴ

2) Power spectral density ߁భ(݂) and power ߪభଶ  of noise ܾଵ(ݐ).  

We have:  ߁భ(݂) = (݂)బ߁ ×  (݂)|ଶܩ|

and: 

భଶߪ = න ݂݀(݂)భ߁ = න (݂)బ߁ × (݂)|ଶ݂݀ܩ| =ஶ
ିஶ ߁ න (݂)|ଶ݂݀௱್ܩ|

ି௱್
ஶ

ିஶ  

Since the support of ܩ(݂) is included in ሾ−߂ ݂, ߂ ݂ሿ, then: 

భଶߪ = ߁ න (݂)|ଶ݂݀ܩ| = ߁ න (0)|ଶ݂݀ܩ| = ߁ × ߂2 ݂
௱

ି௱
௱

ି௱  

hence: 

భଶߪ = బଶߪ × ߂ ݂߂ ݂ 

3) The equalized signal (corrected) ݏ(ݐ) is:  

(ݐ)ݏ =  ܽݐ) − ݊ܶ) + ܾଵ(ݐ)ஶ
ୀିஶ  
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with:  (ݐ) = (ݐ)݃⨂(ݐ)ݕ =  (ݐ)݃⨂(ݐ)ℎ⨂(ݐ)ݔ

The noise ܾଵ(ݐ) is the result of filtering ܾ(ݐ) by the equalizer filter whose 
impulse response is ݃(ݐ).   

At the sampling times ݐ = ݇ܶ, the signal ݏ(ݐ) is written:   

(ܶ݇)ݏ = ܽ(0) +  ܽஶ
ୀିஶ,ஷ ݇)ሾ − ݊)ܶሿ + ܾଵ(݇ܶ) 

The term ܽ(0) represents the response of the system (channel + equalization) 
to the transmission of the symbol ܽ associated with the time interval ݇ܶ.    

The term ܫ(݇ܶ) = ∑ ܽஶୀିஶ,ஷ ݇)ሾ − ݊)ܶሿ is the intersymbol interference.  

It is a disturbing signal depending on all the transmitted symbols ሼܽሽ, except for 
the symbol ܽ which is related to the time interval considered.   

The term ܾଵ(݇ܶ) is the noise at the output of the equalizer at the decision instant.    

4) Only messages in the form ݉ = ሾܽିଵ, ܽାଵ ሿ interfere with symbol ܽ, so:  

(ܶ݇)ܫ =  ܽାଵ
ୀିଵ,ஷ ݇)ሾ − ݊)ܶሿ = ܽିଵ(ܶ) + ܽାଵ(−ܶ) 

݇)ሾ (݇ܶ) depends onܫ − ݊)ܶሿ, here on (±ܶ). We have to calculate (ݐ) 
from its Fourier transform ܲ(݂) which is defined (see Figure 2.33).   

 

Figure 2.33. Amplitude spectrum ܲ(݂) of (ݐ) 
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We have: (ݐ) =  :ଵሼܲ(݂)ሽ. This givesିܨ

(ݐ) = ߙܸܶ × ߙܶ × sin ቂ2ݐߨ × ݐߨ2ܶቃ2ߙ × 2ܶߙ = ܸ × sinሾߨߙ ݐ ܶ⁄ ሿߨߙ ݐ ܶ⁄  

Finally, we get:  

(0) = (ܶ±)     ,ܸ = ܸ × sinሾߨߙሿߨߙ  

So: ܫ(݇ܶ) = (ܶ±)  ݂݅  0 = 0 

This must be true for ߙ non null integer.  

→ ߙ = (ߙ)݊݅݉ = 1    and    (ݐ) = ܸ × ߨሾ݊݅ݏ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄  

5) Conditional probabilities of error:  

Relation between ܸ and ߪభ. We have  

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 20 × logଵ ቈܸߪభ = 6 dB → ܸ =  భߪ2

Since  ߤ = 0 (equiprobable symbols) and ܫ(݇ܶ) = 0, then: 

ܲషభ = ሼݎܲ ොܽ = 1 ܽ = −1, ݉⁄ ሽ = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵஶ
ଶఙ್భ

 

ܲభ = ሼݎܲ ොܽ = −1 ܽ = 1, ݉⁄ ሽ = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵ
ିଶఙ್భ
ିஶ  

Knowing that: 

න ݔ݀(ݔ) = 1    and න ݔ݀(ݔ) = 0.95 = 1 − 0.05ଶఙ್భ
ିଶఙ್భ

 ஶ
ିஶ  
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and: 

න ݔ݀(ݔ) = න ݔ݀(ݔ) + න ݔ݀(ݔ) +ଶఙ್భ
ିଶఙ್భ

ିଶఙ್భ
ିஶ  න ݔ݀(ݔ) = 1ஶ

ଶఙ್భ
ஶ

ିஶ  

→ න ݔ݀(ݔ) = න ݔ݀(ݔ) = 0.052ஶ
ଶఙ್భ

ିଶఙ್భ
ିஶ = 0.025 

Finally we then get:  

ܲషభ = ܲభ = 0.025 

2.8. Problem 23 – M-ary baseband digital transmission 

This problem deals with the baseband transmission of coded digital images over 
a transmission channel (cable) with reduced capacity. The different characteristics of 
the transmitter and receiver system in Figure 2.34 below will be analyzed together 
with its performances.  

 

Figure 2.34. Block diagram of the baseband transmission system on a cable 
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The symbols ܾ are delivered by the binary source every ܶ second (with the use 
of a buffer memory). Moreover, they are supposed to be independent and 
equiprobable.   

The coding of binary information ሼܾሽ into information symbols ሼܽሽ is done by 
grouping 2 bits ܾ to form a quaternary symbol ܽ = ሼ−3, −1, 1, 3ሽ of period ܶ = 2 ܶ.    

The symbols ܽ of information are provided to the transmitter at a rate of: 1 ܶ⁄ = 10 MHz.  

The transmitted signal ݏ(ݐ) is given by ݏ(ݐ) = ∑ ܽݐ)ݔ − ݊ܶ)  where (ݐ)ݔ is a 
rectangular signal of amplitude ܸ over the time interval ሾ0, ܶሾ, zero elsewhere.  

The transmission channel is modeled by a linear filtering whose impulse 
response is denoted ℎ(ݐ) with an additive degradation noise ܾ(ݐ) at the output of 
the channel. The latter is supposed to be a second-order stationary Gaussian random 
noise, with zero mean value, having a broad frequency bandwidth, and a mean 
power ߪబଶ .  

The equalization filter of the transmission channel works in a frequency band 
totally included in that of the noise. The clock regeneration is assumed to be perfect 
and provides a sequence of decision instants of the form: ݐ = ݐ + ݇ܶ.  

The decision system uses three thresholds, denoted ିߤଵ, , ߤ  ଵ, to separate theߤ
equalized signal ݏ(ݐ) into four classes. They are given by:  ߤ = 2݉ × ݉  with  (0) ∈ ሾ−1, 0, 1ሿ 

We have:    ݀ሾݏ(ݐ)ሿ = ොܽ = −3  if  ݏ(ݐ) < ሿ(ݐ)ݏଵ ݀ሾିߤ = ොܽ = −1  if  ିߤଵ ≤ (ݐ)ݏ < ሿ(ݐ)ݏ ݀ሾߤ = ොܽ = 1  if  ߤ ≤ (ݐ)ݏ < ሿ(ݐ)ݏଵ ݀ሾߤ = ොܽ = 3  if  ݏ(ݐ) ≥  ଵߤ

We denote successively (⨂ is the convolution product): (ݐ)ݕ = (ݐ)    and    (ݐ)ℎ⨂(ݐ)ݔ =  (ݐ)݃⨂(ݐ)ݕ
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In a first phase, the equalization filter is such that the frequency gain ܲ(݂) of (ݐ) is constant, equal to 2ܸܶ in the frequency band ሾ− 1 4ܶ, 1 4ܶ⁄⁄ ሿ, and zero 
elsewhere.  

1) Give the expression of the signal ݏ(ݐ) (composed of the useful signal + 
intersymbol interference + noise) at the decision instants of the form: ݐ = ݇ܶ.  

2) From the expression of the intersymbol interference ܫ(݇ܶ), show that only 
symbols ܽ of odd-rank index ሾ݇ ± (2݅ + 1)ሿ interfere with symbol ܽ (݅ positive or 
negative integer).   

Afterwards, for sake of simplification, it is considered that only the two symbols 
adjacent to the symbol ܽ interfere with it (namely ܽିଵ and ܽାଵ).  

3) By listing the different possible combinations of the message ݉ =ሾܽିଵ, ܽାଵ ሿ interfering with ܽ, show that ܫ(݇ܶ) can only take seven possible 

values that will be determined. (Afterwards, you will take ߨ ≅  3 as a simplification 
for the calculation).  

Also calculate the different probabilities, each of them associated to one of the 
seven different values of the intersymbol interference. Here the ܽ will be 
considered equiprobable.   

4) Show that, even without noise at the input of the receiver, the probability of 
error is very high.  

So, we decide to perform a better equalization of the cable distortion. This 
second equalization is such that the frequency spectrum ܲ(݂) of (ݐ) is constant on 
the frequency band ሾ− 1 2ܶ, 1 2ܶ⁄⁄ ሿ, zero elsewhere, and ܲ(0) = 2ܸܶ.  

5) Show that the intersymbol interference is now cancelled.  

Under these new conditions, we will assume that at the output of the equalizer 
the signal-to-noise ratio is:  

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 12 dB 

6) Calculate the following 16 conditional probabilities:   ܲݎ൛ ොܽ = ܽ ܽ = ܽ⁄ ൟ;     ݅, ݆ = 1, ⋯ , 4 

and show that the 4x4 conditional probability matrix:  ܲݎ൛ ොܽ = ܽ ܽ = ܽ⁄ ൟ;     ݅, ݆ = 1, ⋯ , 4 
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is quasi of the form given in Table 2.11: ࢇ\ࢇෝ3 + 1 + 1 - 3 -  

-3 1 −  0 0  

1  1- − 2  0  

1  0 1+ − 2   

1  0 0 3+ −  

Table 2.11. Form of the conditional probability matrix  

NOTE.– We will consider here that if (ݔ) is the probability density function of a 
Gaussian random variable with zero mean value: 

(ݔ) = ߨ2√ߪ1 exp ቈ−ݔଶ2ߪଶ  , then න ݔ݀(ݔ) = 1 − 2 × 10ିହ  with   =ସఙ
ିସఙ 10ିହ 

Solution of problem 23  

1) The transmitted signal ݏ(ݐ) is: 

(ݐ)ݏ =  ܽݐ)ݔ − ݊ܶ)ஶ
ୀିஶ  

The received signal ݏ(ݐ) is:  

(ݐ)ݏ =  ܽݐ)ݕ − ݊ܶ) + ܾ(ݐ)ஶ
ୀିஶ  

with: (ݐ)ݕ =  .(ݐ)ℎ⨂(ݐ)ݔ

The signal  (ݐ)ݕ is the output of the channel when its input is the basic impulse 
(rectangular shape) (ݐ)ݔ of period ܶ and without noise.  

The equalized (corrected) signal ݏ(ݐ) is:  

(ݐ)ݏ =  ܽݐ) − ݊ܶ) + ܾଵ(ݐ)ஶ
ୀିஶ  

with: (ݐ) = (ݐ) :that is ,(ݐ)݃⨂(ݐ)ݕ =   .(ݐ)݃⨂(ݐ)ℎ⨂(ݐ)ݔ
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The noise ܾଵ(ݐ) is the result of filtering the noise ܾ(ݐ) by the equalizer whose 
impulse response is ݃(ݐ).    

At the sampling times ݐ = ݇ܶ, the signal ݏ(ݐ) is written:  

(ܶ݇)ݏ = ܽ(0) +  ܽஶ
ୀିஶ,ஷ ݇)ሾ − ݊)ܶሿ + ܾଵ(݇ܶ) 

The term ܽ(0) represents the useful response of the system (channel + 
equalization) to the transmission of the symbol ܽ associated with the time interval  ݇ܶ.   

The term  ܫ(݇ܶ) = ∑ ܽஶୀିஶ,ஷ ݇)ሾ − ݊)ܶሿ is the intersymbol interference.  

It is a disturbing signal which depends on all the symbol ሼܽሽ transmitted, except 
for the symbol ܽ which is related to the time interval considered.   

The term ܾଵ(݇ܶ) is the noise at the decision instant.   

2) The intersymbol interference  ܫ(݇ܶ) is given by:  

(ܶ݇)ܫ =  ܽஶ
ୀିஶ,ஷ ݇)ሾ − ݊)ܶሿ 

It depends on ሾ(݇ − ݊)ܶሿ, so we have to calculate (ݐ) from ܲ(݂).   

 

Figure 2.35. Amplitude spectrum ܲ(݂) of (ݐ)  

By definition, we have: (ݐ) =   :ଵሼܲ(݂)ሽ, henceିܨ

(ݐ) = 2ܸܶ × 12ܶ × sin ቂ2ݐߨ × 14ܶቃ2ݐߨ × 14ܶ = ܸ × sinሾߨ ݐ 2ܶ⁄ ሿߨ ݐ 2ܶ⁄  
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(0) = ܸ, (ܶ±)  = ߨ2ܸ , (2ܶ±) = 0, (3ܶ±) = ߨ2ܸ3− , (4ܶ±) = 0 

From these values, we can conclude that:  ሾ±(2݅ܶ)ሿ = 0 → (ܶ݇)ܫ = 0    for   ݊ = (݇ ± ሾ±(2݅ (2݅ + 1)ܶሿ ≠ 0 → (ܶ݇)ܫ ≠ 0    for   ݊ = ሾ݇ ± (2݅ + 1)ሿ 
3) Possible values of ܫ(݇ܶ).   

In the case where the messages only of the form ݉ = ሾܽିଵ, ܽାଵ ሿ interfere 
with the symbol ܽ, we have (with ߨ ≅ 3):   

(ܶ݇)ܫ =  ܽାଵ
ୀିଵ,ஷ ݇)ሾ − ݊)ܶሿ = ܽିଵ(ܶ) + ܽାଵ(−ܶ) 

= ሾܽିଵ + ܽାଵሿ 23ܸ  

  = ሾିࢇ, ାࢇ ሿ (ࢀ)ࡵ = ሾିࢇ + ାሿࢇ ࢂ  

 - 3     - 3 - 4 V 

 - 3     - 1 - 2.6 V 

                           -  3        1 - 1.3 V 

 - 3        3 0 

 - 1      - 3 - 2.6 V 

 - 1      - 1 - 1.3 V 

 - 1        1 0 

 - 1        3 1.3 V 

   1      - 3 - 1.3 V 

   1       - 1 0 

   1         1 1.3 V 

   1         3 2.6 V 

   3       - 3 0 

   3       - 1 1.3 V 

   3         1 2.6 V 

   3         3 4 V 

Table 2.12. Interfering messages and intersymbol interference amplitude  
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Thus, there are seven distinct values of ܫ(݇ܶ). 

 ൟ(ࢀ)ࡵ൛࢘ࡼ (ࢀ)ࡵ

4 V 1/16 

2.6 V 1/8 

1.3 V 3/16 

0 1/4 

- 1.3 V 3/16 

- 2.6 V 1/8 

- 4 V 1/16 

Table 2.13. Probabilities of amplitude of intersymbol interference  

4) Neglecting the noise, after equalization the signal ݏ(݇ܶ) is written:   ݏ(ݐ) = ܽ(0) + (ܶ݇)ܫ = ܸܽ +  (ܶ݇)ܫ

The decision thresholds are given by:  ߤ = 2݉ × ݉  with  (0) ∈ ሾ−1, 0, 1ሿ → ଵିߤ = (0)2− = ߤ     ; 2ܸ− = ଵߤ     ; 0 = (0)2 = 2ܸ 

 

Figure 2.36. Sample values ܸܽ, optimal  
thresholds and decision classes of ܽ: ොܽ   
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It can easily be seen that to change the decision class, it is sufficient that ܫ(݇ܶ) = ±ሾܸ +   :ሿ. More preciselyߝ

– an erroneous decision on the transmitted symbol ܽ = 3  is made for all the 
values of ܫ(݇ܶ) < −ܸ, that is in 6/16 of cases; 

– similarly, an erroneous decision on the transmitted symbol ܽ = −3 is made 
for all the values of ܫ(݇ܶ) > ܸ, which is also in 6/16 cases;  

– An erroneous decision on the symbols transmitted ܽ = ±1 is made for all the 
values of หܫ(݇ܶ)ห > ܸ, that is in 12/16 of the cases. 

In view of these results, even without noise, the probability of error is extremely 
high.  

5) Null value of the intersymbol interference: 

Under these new conditions, we have:  

(ݐ) = ଵሼܲ(݂)ሽିܨ = 2ܸ × sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄  

(0) = 2ܸ, (ܶ݇)  = 0 ∀ ݇ non null integer → (ܶ݇)ܫ = 0 

6) Calculation of the 16 following conditional probabilities:   ܲݎ൛ ොܽ = ܽ ܽ = ܽ⁄ ൟ;     ݅, ݆ = 1, ⋯ , 4 

Let us first express ܸ as a function of ߪభଶ  and calculate the new values of the 
decision thresholds ିߤଵ, , ߤ   :ଵߤ

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 20 × logଵ ቈ2ܸߪభ = 12 dB → ܸ =  భߪ2

At the output of the equalizer, the signal is then written:  ݏ(݇ܶ) = ܽ(0) + ܾଵ(݇ܶ) = ܽ2ܸ + ܾଵ(݇ܶ) = ܽ4ߪభ + ܾଵ(݇ܶ) 

and the threshold values of the decision blocks are: 
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Figure 2.37. Sample values ܽ2ܸ, optimal  
thresholds and decision classes of ܽ: ොܽ 

The calculation of the conditional error probabilities is based on the knowledge 
of the noise intervals given by the course formulas (see the relations in Chapter 6 of 
Volume 1). For each value of the symbol ܽ transmitted, we have four possible 
decisions (three erroneous, and a correct one) on the estimated value ොܽ of the 
symbol ܽ.     

Recall that for the intermediate values of the symbol ܽ transmitted, the 
conditional error probability is given by:   

ܲమశభ = ሼݎܲ ොܽ = 2݉ + 1 ܽ⁄ = 2݅ + 1, ݉ሽ 

for ݉ ≠ ݅ and ݉ ≠ ܯ− ܯ) ; 2 2⁄ )⁄ − 1 

and for the extreme values of the transmitted symbol ܽ, the two conditional error 
probabilities are:  

ܲమశభ = ሼݎܲ ොܽ = ܯ) − 1) ܽ⁄ = 2݅ + 1 ≠ ܯ) − 1), ݉ሽ 

ܲమశభ = ሼݎܲ ොܽ = ܯ)− − 1) ܽ⁄ = 2݅ + 1 ≠ ܯ)− − 1), ݉ሽ 

The conditional probability matrix is then obtained like this: 

– for the symbol transmitted ܽ = −1 → ݅ = −1 → ܲషభ, and the four decisions 
in reception are: ොܽ = 1 → ݉ = 0 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ(0), → ሾ(0)3 ܾଵ(݇ܶ) ∈ ,భߪ4ൣ   భൣߪ12
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ොܽ = −1 → ݉ = −1 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ−(0), → ሾ(0) ܾଵ(݇ܶ) ∈ ,భߪ4−ൣ భൣ ොܽߪ4 = 3 → from (6.96), ܾଵ(݇ܶ) ∈ ሾ3(0), ∞ሾ → ܾଵ(݇ܶ) ∈ ,భߪ12ൣ ∞ൣ ොܽ = −3 → from (6.103), ܾଵ(݇ܶ) ∈ ሾ−∞, ሾ(0)− → ܾଵ(݇ܶ) ∈ ൣ−∞,  భൣߪ4−
– for the symbol transmitted ܽ = 1 → ݅ = 0 → ܲభ, and the four decisions in 

reception are: ොܽ = −1 → ݉ = −1 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ−3(0), → ሾ(0) − ܾଵ(݇ܶ) ∈ ,భߪ12−ൣ భൣ  ොܽߪ4− = 1 → ݉ = 0 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ−(0), → ሾ(0) ܾଵ(݇ܶ) ∈ ,భߪ4−ൣ భൣ ොܽߪ4 = 3 → from (6.96), ܾଵ(݇ܶ) ∈ ሾ(0), ∞ሾ → ܾଵ(݇ܶ) ∈ ,భߪ4ൣ ∞ൣ ොܽ = −3 → from (6.103), ܾଵ(݇ܶ) ∈ ሾ−∞, → ሾ(0)3− ܾଵ(݇ܶ) ∈ ൣ−∞,  భൣߪ12−
– for the symbol transmitted ܽ = 3 → ݅ = 1 → ܲయ , and the four decisions in 

reception are:  ොܽ = −1 → ݉ = −1 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ−5(0), → ሾ(0)3 − ܾଵ(݇ܶ) ∈ ,భߪ20−ൣ భൣ ොܽߪ12− = 1 → ݉ = 0 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ−3(0), → ሾ(0)− ܾଵ(݇ܶ) ∈ ,భߪ12−ൣ భൣ ොܽߪ4− = −3 → from (6.103), ܾଵ(݇ܶ) ∈ ሾ−∞, → ሾ(0)5− ܾଵ(݇ܶ) ∈ ൣ−∞, భൣ ොܽߪ20− = 3 → from (6.96), ܾଵ(݇ܶ) ∈ ሾ−(0), ∞ሾ → ܾଵ(݇ܶ) ∈ ,భߪ4−ൣ ∞ൣ 
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– for the symbol transmitted ܽ = −3 → ݅ = −2 → ܲషయ, and the four decisions 
in reception are:   ොܽ = −1 → ݉ = −1 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ(0), → ሾ(0)3 ܾଵ(݇ܶ) ∈ ,భߪ4ൣ భൣ ොܽߪ12 = 1 → ݉ = 0 → from (6.90), ܾଵ(݇ܶ) ∈ ሾ3(0), → ሾ(0)5 ܾଵ(݇ܶ) ∈ ,భߪ12ൣ భൣ ොܽߪ20 = −3 → from (6.103), ܾଵ(݇ܶ) ∈ ሾ−∞, → ሾ(0) ܾଵ(݇ܶ) ∈ ൣ−∞, భൣ ොܽߪ4 = 3 → from (6.96), ܾଵ(݇ܶ) ∈ ሾ5(0), ∞ሾ → ܾଵ(݇ܶ) ∈ ,భߪ20ൣ ∞ൣ 

Furthermore, we have: 

න ݔ݀(ݔ) = 1 − 2 × 10ିହସఙ
ିସఙ = 1 −  2

න ݔ݀(ݔ) = න +ିସఙ
ିஶ

ஶ
ିஶ න + න = 1 →ஶ

ସఙ
ସఙ

ିସఙ න = න = 10ିହ = ஶ
ସఙ

ିସఙ
ିஶ  

න = න = න = න = 0 → න = න =ஶ
ସఙ

ଵଶఙ
ସఙ

ஶ
ଵଶఙ

ஶ
ଶఙ

ିଵଶఙ
ିஶ

ିଶఙ
ିஶ 10ିହ = නିସఙ

ିଵଶఙ  

න = න +ିସఙ
ିஶ

ସఙ
ିஶ න = 10ିହ + 1 − 2 × 10ିହ = 1 − 10ିହ = නஶ

ିସఙ
ସఙ

ିସఙ  

න = න + න + න = 10ିହ + 1 − 2 × 10ିହ +ଵଶఙ
ସఙ

ସఙ
ିସఙ

ିସఙ
ିஶ

ଵଶఙ
ିஶ 10ିହ = 1 → න = 1ଶఙ

ିஶ  

Hence see the matrix of conditional decision probabilities in Table 2.14 below. 
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 3 + 1 + 1 - 3 - ෝࢇ\ࢇ

-3 1 −  0 0  

1  1- − 2  0  

1  0 1+ − 2   

1  0 0 3+ −  

Table 2.14. Conditional decision probability matrix   

2.9. Problem 24 – Baseband digital transmission of bipolar coded 
information  

We consider the transmission of information (speech) in digital form on a two-
wire cable transmission channel. The on-line code used is the bipolar code. The 
block diagram of the transmission system is shown in Figure 2.38.  

The source produces a series of independent but not equiprobable binary 
sequence ሼܾሽ, with:  ܲݎሼܾ = 0ሽ = 2 5⁄ ሼܾݎܲ   ; = 1ሽ = 3 5⁄  

 

Figure 2.38. Practical chain of a digital baseband  
communication system with bipolar code 
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â { k}b̂Equalization

Threshold
detector

Sampling Bipolar
to binary
decodinggc(t);    Gc( f )

Clock
recovery



164     Digital Communications 2 

The transmitted signal is given by: ݏ(ݐ) = ∑ ܽݐ)ݔ − ݊ܶ) .   

The signal (ݐ)ݔ is a pulse of amplitude V on the time interval ሾ0, ܶ 2⁄ ሾ. The 
additive noise ܾ(ݐ) is assumed to be stationary, Gaussian and centered, with a very 
broad power spectral density ߁బ(݂) compared to that of the signal (energy 
bandwidth equal to Δ ݂) and an average power ߪబଶ .  

1) Cite two major reasons that digital information transmissions are superior to 
analog transmissions.  

2) What is the bandwidth of the standard telephone channel? And what is the 
maximum possible bitrate of a digital signal transmitted through this channel? 

3) Give the transformation rule which allows us to transcode the binary symbol ܾ into the ternary symbol ܽ (bipolar code).   

4) Considering that the first non-zero symbol transmitted is always positive, 
what is the sequence ሼܽሽ resulting from the bipolar coding of the following binary 
sequence ሼܾሽ of length 16 in Table 2.15.  

ሼ࢈ሽ 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 

ሼࢇሽ                 

Table 2.15. Generation of the sequence ሼܽሽ of the bipolar code    

5) What is the advantage of using a bipolar code in baseband transmission (cite 
at least two reasons)? 

6) What is the limitation? How do we bypass this limitation to prevent the 
coding of four consecutive null symbols ܾ from leading to the absence of pulses in 
the on-line code, while ensuring that the system is operating correctly on reception? 

7) Draw the diagram of realization of the RZ bipolar encoder and decoder.  

8) What is the purpose of equalization? What does the Nyquist frequency 
criterion express? 

9) Assuming that the equalization filter ܩ(݂) has a unit gain at zero frequency, 
determine the power ߪభଶ  of the noise at the decision level based on that of the 
observation noise and the equivalent energy bandwidth Δ ݂ of the equalization filter.   
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10) Give the number and value(s) of the decision threshold(s) ߤ of the bipolar 
code.   

In the rest of the problem, it will be considered that the equalization is not 
perfect and that actually, the amplitude spectrum of the signal (ݐ) at the output of 
the equalizer, denoted ܲ(݂), when a single impulse (ݐ)ݔ is sent by the transmitter 
and without considering the noise, is constant, equal to ܸܶ on the frequency domain ሾ−(1 + (ߙ 2ܶ, (1 + (ߙ ⁄ 2ܶ ⁄ ሿ, and zero elsewhere, with ߙ = 0.1. 

So we have: (ݐ) =   .(ݐ)݃⨂(ݐ)ℎ⨂(ݐ)ݔ

11) Give the expression of the signal (ݐ) and its particular values at times  ݐ = 0  and  ݐ = ±ܶ (We shall consider for simplification that sin ሾ1)ߨ − ሿ(ߙ ߨ ≅ 0.1⁄ ). 

Similarly and for simplicity, intersymbol interference will only be considered as 
that resulting from the two symbols ܽିଵ and ܽାଵ adjacent to symbol ܽ.   

12) Give the expression of the equalized signal ݏ(݇ܶ) for the ݇௧ instant of 
decision by showing the different contributions to the amplitude of this signal.   

13) Determine for each possible value of ܽ the possible messages ݉ =ሾܽିଵ, ܽାଵ ሿ and their conditional probabilities ( ⁄ ) = ሼ݉ݎܲ ܽ = ݅⁄ ሽ, according 
to Tables 2.16 and 2.17.  

14) Give the expression of the probability  and its value for each message ݉. 
Give also the amplitude of the intersymbol interference ܫ of each message.   

15) Deduce the different possible values of intersymbol interference and the 
associated probabilities.  

 = ሾିࢇ, ࢇ        ା ሿࢇ = −        ࢇ =         ࢇ =         

Table 2.16. Possible messages ݉ for each ܽ 
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 = ሾିࢇ, ሼ࢘ࡼ ା ሿࢇ ࢇ = −⁄ ሽ ሼ࢘ࡼ ࢇ = ⁄ ሽ ࢘ࡼሼ ࢇ = ⁄ ሽ ( , )    ( , )    ( , )    ( , )    ( , )    ( , )ૠ    ( , )ૡ    ( , )ૢ    ( , )    

Table 2.17. Conditional probabilities ܲݎሼ݉ ܽ⁄ ሽ of messages ݉ 
 = ሾିࢇ,  ା ሿࢇ , ) ࡵ  , )   ( , )   ( , )   ( , )   ( , )   ( , )ૠ   ( , )ૡ   ( , )ૢ   ( )   

Table 2.18. Probability  and value of the  
intersymbol interference for each message ݉   
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ࡵ  ࡵ ࡵ ࡵ ିࡵ ିࡵ 

Value of ࢘ࡼ      ࡵ൛ࡵൟ      

Table 2.19. Possible values of inter-symbol interference and associated probabilities  

16) Give the expression of the probability of error ܲ, on the symbols of the 
bipolar code.   

To simplify, it is considered that only the errors ොܽ of the following type: “the 
decided values are adjacent to the prior value ܽ”, are of non-zero probability:  ܽ = −1 → ොܽ = 0 ;      ܽ = 1 → ොܽ = 0 ;      ܽ = 0 → ොܽ = ±1 

17) Give the expression of each of these four conditional probabilities of 
possible errors (by specifying the intervals of the noise amplitude):  ܲ(ିଵ ,⁄ ) = ሼݎܲ ොܽ = −1   ܽ = 0⁄ , ݉ሽ ܲ(ଵ ,⁄ ) = ሼݎܲ ොܽ = 1   ܽ = 0⁄ , ݉ሽ ܲ( ିଵ,⁄ ) = ሼݎܲ ොܽ = 0   ܽ = −1⁄ , ݉ሽ ܲ( ଵ,⁄ ) = ሼݎܲ ොܽ = 0   ܽ = 1⁄ , ݉ሽ 

It is assumed that at the output of the equalization, the signal-to-noise ratio is: 

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 13.064 dB 

18) For each message ݉, calculate the intervals of the noise dynamics and the 
values of the conditional probability of errors according to Table 2.20 (based on the 
table of a centered and reduced Gaussian law).  

NOTE.–  

– ul: upper limit of the interval of the noise amplitude. 

– ll: lower limit of the interval of the noise amplitude. 
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࢛ ૢ ૡ ૠ          = = 
ି)ࢋࡼ          ,⁄ ࢛          (    = = 
)ࢋࡼ          ,⁄ ࢛          (   = = 
)ࢋࡼ          ି,⁄ ࢛          (   = = 
)ࢋࡼ          ,⁄ )          

Table 2.20. Noise dynamics interval and conditional error probabilities  

19) Deduce the value of the error probability ܲ,.   

20) What would be the value of the probability of error ܲଵ,, if we kept, for each 
of the possible values of ܽ, only the configuration ݉ leading to the most 
unfavorable value of the intersymbol interference ܫ?    

21) Give the expression and the value of the probability of error ܲ, on the 
binary symbols decoded, under the same conditions of question 20.  

22) What would be the value of the probability of error ܲଶ,, if there was no 
more intersymbol interference?  

Solution of problem 24  

1) Major reasons:  

– integration of services, therefore lower costs;  

– performance in terms of error / distortion not cumulable, because the 
regeneration of signals can be exactly performed.   

2) The frequency bandwidth of the standard telephone channel is:  ܤ = ݂ − ݂ = 3,400 − 300 = 3,100 Hz 
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The maximum possible symbol rate (according to Nyquist criterion) is:  ܦ௦ = ܤ2 = 6,200 symbol s⁄  

The maximum possible bitrate is:   ܦ = ௦ܦ × logଶ  ܯ

If coding on two levels, then: ܦ = ௦ܦ = 6,200 bit/s  
NOTE.– Usually, one uses a M-ary coding system with ܯ ≫ 2 where the number ܯ 
is a function of the signal-to-noise ratio at the input of the decision block which 
ensures a probability of a wrong decision lower than a given level of admissible 
errors.  

3) Rule of transformation of a binary symbol into a ternary symbol (bipolar 
code).  

The bipolar code is a three-level code such as:  ܾ = 0 → ܽ = 0 ;  ܾ = 1 → ܽ = ±1 alternately. 

4) Generation of the sequence ሼܽሽ (bipolar code).  ሼ࢈ሽ 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 ሼࢇሽ 1 0 0 -1 1 0 -1 0 1 -1 1 0 0 0 -1 0 

Table 2.21. Generation of the sequence ሼܽሽ  
5) The interests in using a bipolar code in baseband transmission are: 

– no continuous component;  

– the spectrum of the transmitted signal vanishes at all the multiples of 1 ܶ⁄   
and limitation of the spectral occupation. 

6) Bipolar code limitation: 

If we have a long series of bits at zero, then there are no pulses issued over a 
period that can be significant. This causes the loss of clock synchronization at the 
receiver side. To overcome this drawback, the bipolar code with a high pulse density 
is used. 
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If on a period of 4 ܶ, there are no pulses, we have to use the HDB-3 code.  

7) Block diagram of the RZ bipolar encoder and decoder.  

 

Figure 2.39. Block diagram of RZ bipolar coder and decoder  

8) The ultimate goal of equalization is to cancel the influence of the transmission 
channel in order to have an ISI as small as possible (and even null).  
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The Nyquist frequency criterion states that the equalization must ensure that we 
have:  

 ܲ ൬݂ − ݇ܶ൰ = (0)ܶ = Constant

ஶ
ୀିஶ  

9) The noise power ܾଵ(ݐ) is:  

భଶߪ = න Γభ(݂)ஶ
ିஶ ݂݀ 

The power spectral density ܾଵ(ݐ) is given by:  ߁భ(݂) = (݂)బ߁ × (݂)|ଶܩ| = ߁ ×  (݂)|ଶܩ|

The noise power ܾ(ݐ) is:  

బଶߪ = න Γబ(݂)ஶ
ିஶ ݂݀ = ߁ න ݂݀ = 2∆್

ି∆್ ߁ × ∆ ݂ 

hence: 

߁ = ∆బଶ2ߪ ݂ 

and: 

భଶߪ = න భ(݂)ஶ߁
ିஶ ݂݀ = ∆బଶ2ߪ ݂ න (݂)|ଶ݂݀ܩ| =∆

ି∆
∆బଶ2ߪ ݂ 

× 2∆ ݂|ܩ(0)|ଶ 

భଶߪ = బଶߪ × ∆ ݂∆ ݂ 

10) Number and value(s) of the decision threshold(s) of the bipolar code: two 
decision thresholds, denoted: ߤା = ିߤ− = (0) 2⁄ .  

11) Expression of the signal (ݐ) obtained by the inverse Fourier transform of 
the amplitude spectrum ܲ(݂).  
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Figure 2.40. Amplitude spectrum ܲ(݂) of (ݐ) 

(ݐ) = (1 − ܸ(ߙ × sinሾߨ (1 − ݐ(ߙ ܶ⁄ ሿ1)ߨ − ݐ(ߙ ܶ⁄  

(0) = (1 − ܸ(ߙ = 0.9ܸ = 9ܸ10 

(ܶ±) = ܸ sinሾ1)ߨ − ߨሿ(ߙ ≅ 0.1 ܸ = ܸ 10⁄  

12) Expression of the received and corrected signal: ݏ(݇ܶ) = ܽ(0) + (ܶ݇)ܫ + ܾଵ(݇ܶ) 

with:  

(ܶ݇)ܫ = ܽିଵ(ܶ) + ܽାଵ(−ܶ) = 1ܸ0 ሾܽିଵ + ܽାଵሿ 
hence: 

(ܶ݇)ݏ = 910 ܸܽ + 1ܸ0 ሾܽିଵ + ܽାଵሿ + ܾଵ(݇ܶ) 

13) For each possible value of ܽ, determination of possible interfering messages 
and their conditional probabilities: ( ⁄ ) = ሼ݉ݎܲ ܽ = ݅⁄ ሽ. 

 = ሾିࢇ, ࢇ        ା ሿࢇ = − 0    0 0    1 1    0 1    1    ࢇ =  0    0 0   -1 0    1 -1   0 -1   1 1    0 1   -1 ࢇ =  0    0 0   -1 -1   0 -1  -1    

Table 2.22. Possible messages interfering with ܽ 

P f( )

f

1 α–( )–
2T

-------------------- 1 α–( )
2T

-----------------
0

VT
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ሼ ࢇ = −⁄ ሽ  = ሾିࢇ, ାࢇ ሿ ) ି⁄ ) = ሼ࢘ࡼ ࢇ = −⁄ ሽ 

ሼܾିଵݎܲ 0       0 = 0, ܾାଵ = 0ሽ = 4 25⁄  

ሼܾିଵݎܲ 1       0 = 0, ܾାଵ = 1ሽ = 6 25⁄  

ሼܾିଵݎܲ 0       1 = 1, ܾାଵ = 0ሽ = 6 25⁄  

ሼܾିଵݎܲ 1       1 = 1, ܾାଵ = 1ሽ = 9 25⁄  

Table 2.23. Conditional probabilities: ( ିଵ⁄ ) = ሼ݉ݎܲ ܽ = −1⁄ ሽ  
ሼ ࢇ = ⁄ ሽ  = ሾିࢇ, ) ା ሿࢇ ⁄ ) = ሼ࢘ࡼ ࢇ = ⁄ ሽ 

ሼܾିଵݎܲ 0       0 = 0, ܾାଵ = 0ሽ = 4 25⁄  

ሼܾିଵݎܲ 1       0 = 0, ܾାଵ = 1 and ܽାଵ > 0ሽ = 6 50⁄  

ሼܾିଵݎܲ 1-       0 = 0, ܾାଵ = 1 and ܽାଵ < 0ሽ = 6 50⁄  

ሼܾିଵݎܲ 0       1 = 1, ܾାଵ = 0 and ܽିଵ > 0ሽ = 6 50⁄  

ሼܾିଵݎܲ 1-       1 = 1, ܾାଵ = 1 and ܽିଵ > 0ሽ = 9 50⁄  

ሼܾିଵݎܲ 0       1- = 1, ܾାଵ = 0 and ܽିଵ < 0ሽ = 6 50⁄  

ሼܾିଵݎܲ 1       1- = 1, ܾାଵ = 1 and ܽିଵ < 0ሽ = 9 50⁄  

Table 2.24. Conditional probabilities:  ( ⁄ ) = ሼ݉ݎܲ ܽ = 0⁄ ሽ 
ሼ ࢇ = ⁄ ሽ  = ሾିࢇ, ାࢇ ሿ ) ⁄ ) = ሼ࢘ࡼ ࢇ = ⁄ ሽ 

ሼܾିଵݎܲ 0       0 = 0, ܾାଵ = 0ሽ = 4 25⁄  

ሼܾିଵݎܲ 1-       0 = 0, ܾାଵ = 1ሽ = 6 25⁄  

ሼܾିଵݎܲ 0       1- = 1, ܾାଵ = 0ሽ = 6 25⁄  

ሼܾିଵݎܲ 1-       1- = 1, ܾାଵ = 1ሽ = 9 25⁄  

Table 2.25. Conditional probabilities: ( ଵ⁄ ) = ሼ݉ݎܲ ܽ = 1⁄ ሽ 
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The summary of all these values is given in Table 2.26.  

 = ሾିࢇ, ሼ࢘ࡼ ା ሿࢇ ࢇ = −⁄ ሽ ࢘ࡼሼ ࢇ = ⁄ ሽ ࢘ࡼሼ ࢇ = ⁄ ሽ ݉ଵ = (0, 0) 4 25⁄  4 25⁄  4 25⁄  ݉ଶ = (0, 1) 6 25⁄  6 50⁄   ݉ଷ = (0, −1)  6 50⁄  6 25⁄  ݉ସ = (1, 0) 6 25⁄  6 50⁄   ݉ହ = (1, −1)  9 50⁄   ݉ = (−1,       0)  6 50⁄  6 25⁄  ݉ = (−1, 1)  9 50⁄   ଼݉ = (−1, −1)   9 25⁄  ݉ଽ = (1, 1) 9 25⁄    

Table 2.26. Conditional probabilities: ( ⁄ ) = ሼ݉ݎܲ ܽ = ݅⁄ ሽ  
14) Expression of the probability :    =  ,݅) ݉)ଵ

ୀିଵ =  ଵ
ୀିଵ × ) ⁄ )     and      

ଽ
ୀଵ = 1 

 = ሾିࢇ,  ା ሿࢇ ࡵ   ݉ଵ = (0, 0) 3 10 × 4 25 + 2 5 × 4 25⁄⁄⁄⁄ + 3 10 × 4 25⁄⁄ = 4 25⁄  0 ݉ଶ = (0, 1) 3 10 × 6 25 + 2 5 × 6 50⁄⁄⁄⁄ = 3 25⁄  ܸ 10⁄  ݉ଷ = (0, −1) 2 5 × 6 50 + 3 10 × 6 25⁄⁄⁄⁄ = 3 25⁄  −ܸ 10⁄  ݉ସ = (1, 0) 3 10 × 6 25 + 2 5 × 6 50⁄⁄⁄⁄ = 3 25⁄  ܸ 10⁄  ݉ହ = (1, −1) 2 5 × 9 50⁄⁄ = 1.8 25⁄  0 ݉ = (−1,       0) 2 5 × 6 50 + 3 10 × 6 25⁄⁄⁄⁄ = 3 25⁄  −ܸ 10⁄  ݉ = (−1, 1) 2 5 × 9 50⁄⁄ = 1.8 25⁄  0 ଼݉ = (−1, −1) 3 10 × 9 25⁄⁄ = 2.7 25⁄  −ܸ 5⁄  ݉ଽ = (1, 1) 3 10 × 9 25⁄⁄ = 2.7 25⁄  ܸ 5⁄  

Table 2.27. Intersymbol interference amplitudes and associated  
probabilities with each possible interfering message  
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with:  = ሼܽݎܲ = 0ሽ = ሼܾݎܲ = 0ሽ = 2 5⁄ ଵ  = ሼܽݎܲ = 1ሽ = ଵି = ሼܽݎܲ = −1ሽ = 1 2 × ሼܾݎܲ = 1ሽ = 3 10⁄⁄  

and we actually have:  

 
ଽ

ୀଵ = 1 

15) Possible values of intersymbol interference and associated probabilities. ࡵ  ࡵ ࡵ ࡵ ିࡵ ିࡵ 

Value of ࡵ −ܸ 5⁄  −ܸ 10⁄  0 ܸ 10⁄  ܸ 5⁄ ൟ 1ࡵ൛࢘ࡼ  9⁄  2 9⁄  3 9⁄  2 9⁄  1 9⁄  

Table 2.28. Inter-symbol interference values and associated probabilities 

And we have:  ൟܫ൛ݎܲ = 1 

16) Expression of the probability of error on the symbols ܽ:  

ܲ, =  ଵ
ୀିଵ  ) ⁄ )  ܲ( ,⁄ )ஷ

ଵ
ୀିଵ

ଽ
ୀଵ ൩ 

17) Expression of each of the four conditional probabilities of possible error.  

The corrected and sampled signal is:  ݏ(݇ܶ) = ܽ(0) + (ܶ݇)ܫ + ܾଵ(݇ܶ) 

The decision thresholds are such that: 
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Figure 2.41. Sample values without ISI and noise,  
optimal thresholds and decision classes of ܽ: ොܽ  

The noise ܾଵ(݇ܶ) is written:   ܾଵ(݇ܶ) = (ܶ݇)ݏ − ܽ(0) −  (ܶ݇)ܫ

If: ݏ(݇ܶ) ∈ ሿܿ, ݀ሿ 
Then, we have: ܾଵ(݇ܶ) ∈ ൧ܿ − ܽ(0) − ,(ܶ݇)ܫ ݀ − ܽ(0) −  (݇ܶ) ൧ܫ
ܽ ݊݅ݏݏ݅݉ݏ݊ܽݎݐ ݂ ݁ݏܽܥ – = 0. 

If we decide:  ොܽ = −1 → (ܶ݇)ݏ ∈ ሿ−∞, ሿିߤ → ܾଵ(݇ܶ) ∈ ൧−∞, ିߤ −  (݇ܶ)൧ܫ
→ ܲ(ିଵ ,⁄ ) = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵ

ఓషିூ(்)
ିஶ  

If we decide:  ොܽ = 1 → (ܶ݇)ݏ ∈ ሿߤା, ∞ሾ → ܾଵ(݇ܶ) ∈ ൧ߤା − ,(ܶ݇)ܫ ∞ൣ 
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→ ܲ(ଵ ,⁄ ) = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵஶ
ఓశିூ(்)  

ܽ ݊݅ݏݏ݅݉ݏ݊ܽݎݐ ݂ ݁ݏܽܥ – = −1. 

If we decide:  ොܽ = 0 → (ܶ݇)ݏ ∈ ሿିߤ, → ାሿߤ ܾଵ(݇ܶ) ∈ ൧ିߤ + (0) − ,(ܶ݇)ܫ ାߤ  + (0) −  (݇ܶ) ൧ܫ
→ ܲ( ିଵ,⁄ ) = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵ

 ఓశା()ିூ(்)
ఓషା()ିூ(்)  

ܽ ݊݅ݏݏ݅݉ݏ݊ܽݎݐ ݂ ݁ݏܽܥ – = 1. 

If we decide:  ොܽ = 0 → (ܶ݇)ݏ ∈ ሿିߤ, → ାሿߤ ܾଵ(݇ܶ) ∈ ൧ିߤ − (0) − ,(ܶ݇)ܫ ାߤ  − (0) −  (݇ܶ) ൧ܫ
→ ܲ( ଵ,⁄ ) = ߨభ√2ߪ1 න exp ቈ−12 ܾଵଶߪభଶ  ܾ݀ଵ

 ఓశି()ିூ(்)
ఓషି()ିூ(்)  

18) For each message ݉, calculation of intervals of noise dynamics and values 
of the conditional probabilities of error, are given in Table 2.29.  

The noise amplitude intervals should be expressed as a function of ߪభ. We have: 

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 20 × logଵ ቈ9ܸ భߪ⁄10  = 13.064 dB 

→ భߪ9ܸ10 = 4.5 → ܸ = ାߤ   భ  andߪ5 = 94 ିߤ   ;భߪ = −94 ;భߪ =(0)    92  భߪ
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19) Calculation of the probability of error  ܲ,:  

ܲ, = ଵି  425 × 0.0122 + 625 × 0.0401 + 625 × 0.0401 + 925 × 0.1056൨ +  425 (0.0122 + 0.0122) + 650 (0.0030 + 0.0401) + 650 (0.0401 + 0.0030) + 650 (0.0030 + 0.0401) + 950 (0.0122 + 0.0122) + 650 (0.0401 + 0.0030) + 950 (0.0122 + 0.0122)൨ +ଵ  425 × 0.0122 + 625 × 0.0401 + 625 × 0.0401 + 925 × 0.1056ሿ = 0.0490336 

20) We keep only the most unfavorable case of intersymbol interference 
according to the table giving the values of the conditional probabilities for each 
message:  ܲ(ିଵ ,య⁄ ) = 0.0401 ↔ ݉ଷ = (0, ܫି           ; (1− ଵ = భ ܲ(ଵߪ 0.5− ,మ⁄ ) = 0.0401 ↔ ݉ଶ = (0, ଵܫ           ; (1 = భ ܲ(ߪ 0.5 ିଵ,వ⁄ ) = 0.1056 ↔ ݉ଽ = (1, ଶܫ           ; (1 = భ ܲ(ߪ  ଵ,ఴ⁄ ) = 0.1056 ↔ ଼݉ = (−1, ܫି           ; (1− ଶ =  భߪ 

hence: 

ܲଵ, = ଵି × ܲ( ିଵ,వ⁄ ) +  × ൣܲ(ିଵ ,య⁄ ) + ܲ(ଵ ,మ⁄ )൧ + × ଵ ܲ( ଵ,ఴ⁄ ) 
ܲଵ, = 310 × 0.1056 + 25 × ሾ0.0401 + 0.0401ሿ + 310 × 0.1056 = 0.038416 
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21) Expression and value of the probability of error ܲ,: 

ܲ, = ሼܾݎܲ = 0ሽ × ൛ݎܲ ܾ = 1 ܾ = 0⁄ ൟ + ሼܾݎܲ = 1ሽ × ൛ݎܲ ܾ = 0 ܾ = 1⁄ ൟ 

ܲ, =  × ൣܲ(ିଵ ,య⁄ ) + ܲ(ଵ ,మ⁄ )൧ + ଵି × ܲ( ିଵ,వ⁄ ) + ଵ × ܲ( ଵ,ఴ⁄ ) 
therefore: ܲ, = ܲଵ,. 

This result was predictable with the simplification of the statement because:  ܲݎሼ ොܽ = 1 ܽ = −1⁄ ሽ = ሼݎܲ 0 ොܽ = −1 ܽ = 1⁄ ሽ = 0 

But these errors on ܽ do not introduce errors on ܾ, hence: ܲ, = ܲଵ,. 

22) Probability of error ܲଶ, in the absence of ISI. We have:  

ܲଶ, =  ଵ
ୀିଵ ×   ܲ( ⁄ )ஷ

ଵ
ୀିଵ ൩ 

hence: 

ܲଶ, = ଵି × ܲ( ିଵ⁄ ) +  × ൣܲ(ିଵ ⁄ ) + ܲ(ଵ ⁄ )൧ + ଵ × ܲ( ଵ⁄ ) 
ܲଶ, = 310 × 0.0122 + 25 × ሾ0.0122 + 0.0122ሿ + 310 × 0.0122 = 0.01708 

We have, from the normalized Gaussian law table: 

න ݔ݀(ݔ) = 0.5 − න ݔ݀(ݔ) = 0.5 − 0.4878 = 0.0122ଶ.ଶହ


ஶ
ଶ.ଶହ  

න = 0.5 − න = 0.5 − න = 0.5 − 0.4970 = 0.0030ଶ.ହ



ିଶ.ହ

ିଶ.ହ
ିஶ  

න = 0.5 −  න + න
ିଶ.ଶହ

ି.ହ
ିஶ ିଶ.ଶହ

ି.ହ = 0.5 −  න + නଶ.ଶହ


ஶ
.ହ  

= 0.5 − ሾ0 + 0.4878ሿ = 0.0122 
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න = න − න = 0.5 − 0.4599 =ଵ.ହ


.ଶହ


.ଶହ
ଵ.ହ 0.0401 

න = න − න = 0.5 − 0.3944 =ଵ.ଶହ


ହ.ହ


ହ.ହ
ଵ.ଶହ 0.1056 

2.10. Problem 25 – Baseband transmission and reception using a 
partial response linear coding (1) 

The problem of baseband transmitting and receiving independent binary 
information on a reduced capacity channel is considered.   

The transmission and reception system in question uses partial response linear 
coding according to the Figure 2.42.  

 

Figure 2.42. Baseband transmission and reception  
chain with partial response linear coder 

Where: ܾ(ݐ) =  ܾݐ)ߜ − ݊ ܶ)         ܾ ∈ ሼ0, 1ሽ 
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ܾᇱ(ݐ) =  ܾᇱ ݐ)ߜ − ݊ ܶ)         ܾᇱ ∈ ሼ0, 1ሽ 

(ݐ)ܽ =  ܽݐ)ߜ − ݊ ܶ)        ܽ = 2ܾᇱ − 1       ܽ ∈ ሼ−1, 1ሽ 

(ݐ)ܿ =  ܿݐ)ߜ − ݊ ܶ)        ܿ positive, negative or null integer 

The partial response linear coding used in this problem is the NRZ duobinary 
coding, characterized by its transfer function:  (ݖ)ܪ = 1 + ଵିݖ = 1 +  ܦ

Where ܦ is the delay operator ܶ (time slot allocated to the transmission of a 
symbol ܿ). 

1) Give the transfer function ܲ(ݖ) of the precoder filter as well as its equation 
providing ܾᇱ  as a function of ܾ. 

2) Give the equation of the encoder generating ܿ from ܽ.  

3) Give the relationships allowing us to estimate the binary symbols emitted ܾ ∶  ܾ from the symbols received ܿ : ܿ̂, with and without precoding. Comment on 
each case.  

4) Give the block diagram of the precoder, transcoder and duobinary combined 
encoder.  

The shaping filter has an impulse response (ݐ)ݔ considered as an NRZ signal of 
duration ܶ and amplitude ܸ.  

Let us take the 14-bit ሼܾሽ time sequence shown in Figure 2.43 (time running 
from left to right).   

5) Determine (temporal representations will be plotted directly in Figure 2.43):   

– the time sequence ሼܾᇱ ሽ associated with the output of the precoder (the latter 
is considered initialized to zero);  

– the corresponding temporal sequences ሼܽሽ, ሼܿሽ, ൛ ܾൟ and signal ݏ(ݐ). 

The transmission channel is modeled by a linear filtering and additive noise at 
the output of the channel. The latter is a stationary second-order Gaussian noise, 
with a zero mean and a broad spectrum.  
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We assume that at the output of the equalizer, the signal-to-noise ratio obtained is:  

ቂܾݏቃ,ௗ = 20 × logଵ ቈ(ݐ)ߪభ  = 7.96 dB 

First, we consider the classical baseband transmission system (without precoding 
and coding). 

6) Give the expression of the signal ݏ(݇ܶ +  ) at the input of the decision unitݐ
according to the symbols a.  

Take the case of the duobinary partial response transmission and reception system.  

7) Particularize the expression of the signal ݏ(݇ܶ +    .(ݐ

We assume for the rest of the problem that: (ܶ + (ݐ = (ݐ) = ܸ. 

8) Deduce the new expression of ݏ(݇ܶ +   . ) according to the symbols ܿݐ
9) Calculate the conditional probabilities of error:  

ܲೖ = ሼܿ̂ݎܲ ≠ ݇ ܿ = ݇⁄ ሽ   with  ݇ = ሼ2, −2, 0ሽ 

10) Deduce the total probability of error: ܲ = ሼܿ̂ݎܲ ≠ ܿሽ with: ܿ = ሼ2, −2, 0ሽ.  

 

Figure 2.43. Temporal diagrams of duobinary coding and decoding  
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NOTE.– If ܺ is a Gaussian random process, with mean value ݉ and standard 
deviation ߪ, you will take:  ܲݎሼ|ܺ − ݉| > ሽߪ 7.5 = 2 × ܺ|ሼݎܲ 10ି଼ − ݉| > ሽߪ 2.5 = 2 × 10ିସ 

Solution of problem 25  

1) Transfer function ܲ(ݖ) of the precoder and equation giving ܾᇱ  as a function of ܾ:   

(ݖ)ܲ = (ݖ)ܪ1 = 11 + ଵିݖ = (ݖ)ܤ(ݖ)ᇱܤ → (ݖ)ᇱܤ = (ݖ)ܤ − (ݖ)ᇱܤ ×  ଵିݖ

→ ܾᇱ = ܾ⨁ܾିଵᇱ  

2) Equation of the coder giving ܿ as a function of ܽ:  

(ݖ)ܪ = (ݖ)ܣ(ݖ)ܥ = 1 + ଵିݖ → (ݖ)ܥ = (ݖ)ܣ + (ݖ)ܣ × ଵିݖ → ܿ = ܽ + ܽିଵ 

3) Equation allowing the estimation of the emitted symbols ܾ ∶  ܾ from the 
received symbols ܿ : ܿ̂.   

With precoding, the transcoder provides: ܽ = 2ܾᇱ − 1  

hence: ܿ = ܽ + ܽିଵ = ሾ2ܾᇱ − 1 + 2ܾିଵᇱ − 1 ሿ = 2ሾܾᇱ + ܾିଵᇱ − 1ሿ 
→ 12 ܿ + 1 = ܾᇱ + ܾିଵᇱ = ܾᇱ ⨁ܾିଵᇱ = ܾ  from 1) 

Thus, we get a direct estimation of the emitted sequence ሼܾሽ from the received 
sequence  ሼܿ̂ሽ.  

Without precoding: 

ܾᇱ = ܾ → ܾ = 12 ܿ̂ + 1 − ܾିଵ  mod 2 

 



Baseband Digital Transmission: Problems 16 to 26     185 

This leads to a propagation of decision errors. Indeed, if ܾିଵ is badly decoded, it 
will also be the case for ܾ.  

4) Block diagram of the precoder, transcoder and duobinary coder. 

 

Figure 2.44. Duobinary precoder, transcoder and coder scheme 

5) Chronograms of duobinary coding and decoding.  

 

Figure 2.45. Chronograms of duobinary coding and decoding. For a  
color version of this figure, see www.iste.co.uk/assad/digital2.zip 
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6) Expression of the signal ݏ(݇ܶ + ܶ݇)ݏ     :(ݐ + (ݐ = (ݐ)ࢇ +  ܽሾ(݇ − ݊)ܶ + ஷሿݐ + ܾଵ(݇ܶ +  (ݐ

7) Duobinary partial response transmission and reception system: expression of  ݏ(݇ܶ +   .(ݐ

With  (ܶ + (ݐ = (ݐ) = ܸ, the intersymbol interference is now given by:    ܫ(݇ܶ) =  ܽሾ(݇ − ݊)ܶ + ሿஷݐ = ܽିଵ(ܶ +  (ݐ

→ ܶ݇)ݏ + (ݐ = ܽ(ݐ) + ܽିଵ(ܶ + (ݐ + ܾଵ(݇ܶ +  (ݐ

8) New expression of ݏ(݇ܶ + ܶ݇)ݏ  :(ݐ + (ݐ = ሾܽ + ܽିଵሿ(ݐ) + ܾଵ(݇ܶ + ܶ݇)ݏ (ݐ + (ݐ = ܿ(ݐ) + ܾଵ(݇ܶ + (ݐ = ܸܿ + ܾଵ(݇ܶ +  (ݐ

9) Conditional probabilities of error:   

ܲೖ = ሼܿ̂ݎܲ ≠ ݇ ܿ = ݇⁄ ሽ   with  ݇ = ሼ2, −2, 0ሽ 

From the result obtained in response 8, we have: ܾଵ(݇ܶ + (ݐ = ܶ݇)ݏ + (ݐ −  ܸܿ 

If  ݏ(݇ܶ + (ݐ ∈ ሾܿ, ݀ሾ  then  ܾଵ(݇ܶ + (ݐ ∈ ሾܿ − ܸܿ, ݀ − ܸܿሾ  
and  ܲݎሼܿ̂ ≠ ݇ ܿ = ݇⁄ ሽ = ሼܿݎܲ − ܸܿ ≤ ܾଵ(݇ܶ + (ݐ < ݀ − ܸܿሽ 

The decision thresholds are located in the middle of two adjacent levels obtained 
without noise: 

ܸܿ = ൝ 20ܸ−2ܸ   → ଵߤ = ܸ  and  ିߤଵ = −ܸ 

Let’s express the decision thresholds according to ߪభ:  

ቂܾݏቃ,ௗ = 20 × logଵ ቈܸߪభ = 7.96 dB  → ܸ = భߪ 2.5 → ൜ߤଵ = ଵିߤ     భߪ 2.5 =  భߪ 2.5−
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Figure 2.46. Values of sample ܸܿ, optimum  
thresholds and decision classes of ܿ: ܿ̂  

We have three possible decision values of symbol ܿ̂, one without errors and two 
with errors.  

Transmission of ܿ = 2, we decide on reception: ܿ̂ = ܶ݇)ݏ  ݂݅  0 + (ݐ ∈ ሾିߤଵ, ଵሾߤ  → ܾଵ(݇ܶ + (ݐ ∈ ሾିߤଵ − ܸܿ, ଵߤ − ܸܿሾ → ܾଵ(݇ܶ + (ݐ ∈ ,భߪ 7.5−ൣ భൣ ܿ̂ߪ 2.5− = ܶ݇)ݏ  ݂݅  2− + (ݐ ∈ ሾ−∞, ଵሾିߤ  → ܾଵ(݇ܶ + (ݐ ∈ ሾ−∞, ଵିߤ − ܸܿሾ → ܾଵ(݇ܶ + (ݐ ∈ ൣ−∞, → భൣߪ 7.5− ܲమ = ሼܿ̂ݎܲ = 0 ܿ = 2⁄ ሽ + ሼܿ̂ݎܲ = −2 ܿ = 2⁄ ሽ = 10ିସ + 10ି଼≅ 10ିସ 

Transmission of ܿ = 0, we decide on reception: ܿ̂ = ܶ݇)ݏ  ݂݅  2− + (ݐ ∈ ሾ−∞, ଵሾିߤ  → ܾଵ(݇ܶ + (ݐ ∈ ሾ−∞, ଵିߤ − ܸܿሾ → ܾଵ(݇ܶ + (ݐ ∈ ൣ−∞, భൣ ܿ̂ߪ 2.5− = 2  if  ݏ(݇ܶ + (ݐ ∈ ሾߤଵ, ∞ሾ  → ܾଵ(݇ܶ + (ݐ ∈ ሾߤଵ − ܸܿ, ∞ሾ → ܾଵ(݇ܶ + (ݐ ∈ ,భߪ 2.5ൣ ∞ൣ 
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→ ܲబ = ሼܿ̂ݎܲ = −2 ܿ = 0⁄ ሽ + ሼܿ̂ݎܲ = 2 ܿ = 0⁄ ሽ = 10ିସ + 10ିସ = 2 × 10ିସ 

Transmission of  ܿ = −2, we decide on reception: ܿ̂ = 0  if  ݏ(݇ܶ + (ݐ ∈ ሾିߤଵ, ଵሾߤ  → ܾଵ(݇ܶ + (ݐ ∈ ሾିߤଵ − ܸܿ, ଵߤ − ܸܿሾ → ܾଵ(݇ܶ + (ݐ ∈ ,భߪ 2.5ൣ భൣ ܿ̂ߪ 7.5 = ܶ݇)ݏ  ݂݅  2 + (ݐ ∈ ሾߤଵ, ∞ሾ  → ܾଵ(݇ܶ + (ݐ ∈ ሾߤଵ − ܸܿ, ∞ሾ → ܾଵ(݇ܶ + (ݐ ∈ ,భߪ 7.5ൣ ∞ൣ → ܲషమ = ሼܿ̂ݎܲ = 0 ܿ = −2⁄ ሽ + ሼܿ̂ݎܲ = 2 ܿ = −2⁄ ሽ = 10ିସ + 10ି଼ ≅ 10ିସ 

10) Calculation of the total probability of error:  

ܲ = ሼܿ̂ݎܲ ≠ ܿሽ 

The total probability of error is then given by:  

ܲ =   × ܲೖ   with    = ሼܿݎܲ = ݇ሽ   and   ݇ = ሼ−2, 0, 2, ሽ 

The binary symbols ܾ are independent and identically distributed on the 
alphabet ሼ0, 1ሽ, hence:  ܲݎሼܾ = 0ሽ = ሼܾݎܲ = 1ሽ = 1 2⁄  

The probabilities of transmitting the symbols ܿ are respectively:   

 = ሼܿݎܲ = 0ሽ = 12 ; ଶ     = ሼܿݎܲ = 2ሽ = ଶି    ; 14 = ሼܿݎܲ = −2ሽ = 14 

Hence, the total probability of error:  

ܲ =  × ܲబ + ଶ × ܲమ + ଶି × ܲషమ 

ܲ = 12 × 2 × 10ିସ + 14 × 10ିସ + 14 × 10ିସ = 1.5 × 10ିସ 
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Figure 2.47. Gaussian probability law and distribution intervals 

Calculation of integrals: 

න ݔ݀(ݔ) = 1 = න + න +ିଶ.ହ
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ଶ.ହ  

→ 2 න = 1 − 2.ହ
ଶ.ହ න −ஶ

.ହ න = 1 − 2ଶ.ହ
ିଶ.ହ × 10ି଼ − 1 + 2 × 10ିସ ≅ 2 × 10ିସ 

→ න =.ହ
ଶ.ହ න ≅ିଶ.ହ

ି.ହ 10ିସ 

2.11. Problem 26 – Baseband transmission and reception using a 
partial response linear coding (2) 

The problem of transmitting and receiving independent binary information on a 
reduced capacity channel is considered. The baseband transmission and reception 
system in question uses the partial response linear coding according to the following 
Figures 2.48 and 2.49.  

p x( )

x

2.5–2.5 7.5–7.5 0
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Figure 2.48. Partial response transmitter and receiver block diagram 

 

Figure 2.49. Details of the partial response transmitter block diagram   

with: ܾ(ݐ) =  ܾݐ)ߜ − ݊ ܶ)         ܾ ∈ ሼ0, 1ሽ 
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(ݐ)ܿ =  ܿݐ)ߜ − ݊ ܶ)      ܿ positive, negative or null integer 

The partial response linear coding used in this problem is defined by the two 
following transfer functions:  ܪଵ(ݖ) = 1 − ଷିݖ ଶ⁄    and   ܪଶ(ݖ) = 1 + ଷିݖ ଶ⁄  

The transmission channel is modeled by a linear filtering and additive noise at 
the output of the channel. Noise is considered as a second-order stationary, Gaussian 
random process, with zero mean and broad spectrum.  

1) Give the transfer function of the encoder filter (ݖ)ܪ. 

2) Give the transfer function of the precoder filter ܲ(ݖ) as well as its equation 
providing ܾᇱ   as a function of ܾ.  

3) Give the equation of the encoder providing ܿ as a function of ܽ.  

4) Give the relationships providing the estimation of the transmitting symbols ܾ 
from the received symbols ܿ̂, with and without precoding. Comment on each case.  

5) Give the implementation scheme of the precoder, transcoder and combined 
encoder.  

The shaping filter has an impulse response (ݐ)ݔ considered as an NRZ signal of 
duration ܶ and amplitude ܸ 2⁄ .  

Let us take the 14-bit sequence ሼܾሽ shown in Table 2.30 (time running from left 
to right).   

6) Determine (the temporal diagrams will be given in Table 2.30):  

– the time sequence ሼܾᇱ ሽ associated with the output of the precoder (the latter 
is considered initialized to zero);  

– the corresponding time sequences ሼܽሽ, ሼܿሽ, ൛ ܾൟ and plot the signal ݏ(ݐ).  

We assume that at the output of the equalizer, the signal-to-noise ratio obtained 
is: 

ቂܾݏቃ,ௗ = 20 × logଵ ቈߪ(0)భ  = 10.88 

We first consider the classical baseband transmission system (without precoding 
and coding).  
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7) Give the expression of the signal ݏ(݇ܶ) at the input of the decision unit.  

In the case of the partial response transmission and reception system defined in 
Figure 2.48. 

8) Particularize the expression of ݏ(݇ܶ).   

Assuming that: (3ܶ) = (0) = ܸ.  

9) Deduce the new expression of ݏ(݇ܶ) according to, in particular, the symbols ܿ.  

10) Calculate the conditional probabilities of error:  

ܲೖ = ሼܿ̂ݎܲ ≠ ݇ ܿ = ݇⁄ ሽ   with  ݇ = ሼ−2, 0, 2ሽ 

11) Deduce the total probability of error:  

ܲ = ሼܿ̂ݎܲ ≠ ܿሽ   with  ܿ = ሼ2, −2, 0ሽ 

NOTE.– If ܺ is a Gaussian random process, with mean value ݉ and standard 
deviation  ߪ, you will take:  ܲݎሼ|ܺ − ݉| > ሽߪ 10.5 = 4 × 10ିଽ ܲݎሼ|ܺ − ݉| > ሽߪ 3.5 = 6 × 10ିହ 

 

Table 2.30. Temporal representation of the proposed  
partial response coding and decoding system 
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Solution of problem 26  

1) Transfer function of the encoding filter:  (ݖ)ܪ = (ݖ)ଵܪ × (ݖ)ଶܪ = ൣ1 − ଷିݖ ଶ⁄    ൧ × ൣ1 + ଷିݖ ଶ⁄    ൧ = 1 −  ଷିݖ

2) Transfer function of the precoder: 

(ݖ)ܲ = (ݖ)ܪ1 = 11 − ଷିݖ = (ݖ)ܤ(ݖ)ᇱܤ  → (ݖ)ᇱܤ = (ݖ)ܤ + (ݖ)ᇱܤ ×  ଷିݖ

→ ܾᇱ = ܾ⨁ܾିଷᇱ  

3) Equation defining the encoder:  

(ݖ)ܪ = (ݖ)ܣ(ݖ)ܥ = 1 − ଷିݖ → (ݖ)ܥ = (ݖ)ܣ − (ݖ)ܣ × ଷିݖ → ܿ = ܽ − ܽିଷ 

4) Equation giving the estimate of ܾ.  

With precoding, the transcoder gives: ܽ = 2ܾᇱ − 1 , hence:  ܿ = ܽ − ܽିଷ = ሾ2ܾᇱ − 1 − 2ܾିଷᇱ + 1 ሿ = 2ሾܾᇱ − ܾିଷᇱ ሿ = 2ܾ 

→ ܾ = 12 |ܿ̂|  mod 2 → ቊ ܿ̂ = 0 → ܾ = 0ܿ̂ = ±2 → ܾ = 1 

So a direct estimate of the sequence ሼܾሽ issued from the sequence ሼܿሽ received. 

Without precoding: 

ܾᇱ = ܾ → ܿ = 2ሾܾ − ܾିଷሿ → ܾ = 12 |ܿ̂|⨁ܾିଷ  mod 2 

This leads to a propagation of decision errors. Indeed, if ܾିଷ is badly decoded, it 
will be also the same case for ܾ.  

5) Block diagram of the combined precoder, transcoder and encoder: 

 

Figure 2.50. Combined scheme of precoder, transcoder and encoder 
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6) Temporal sequences:  

 

Table 2.31. Temporal sequences. For a color version  
of this table, see www.iste.co.uk/assad/digital2.zip 

7) Expression of the signal ݏ(݇ܶ):  ݏ(݇ܶ) = ܽ(0) +  ܽሾ(݇ − ݊)ܶሿஷ + ܾଵ(݇ܶ) 

8) In this case, the intersymbol interference is: ܫ(݇ܶ) =  ܽሾ(݇ − ݊)ܶሿஷ = −ܽିଷ(3ܶ) 

→ (ܶ݇)ݏ = ܽ(0) − ܽିଷ(3ܶ) + ܾଵ(݇ܶ) 

9) In this particular case, we have:  ݏ(݇ܶ) = ሾܽ − ܽିଷሿ(0) + ܾଵ(݇ܶ) = ܿ(0) + ܾଵ(݇ܶ) = ܸܿ + ܾଵ(݇ܶ) 

10) The different conditional probabilities of errors are as follows:   

ܲమ = ሼܿ̂ݎܲ ≠ 2 ܿ = 2⁄ ሽ → ܲమ = ሼܿ̂ݎܲ = 0 ܿ = 2⁄ ሽ + ሼܿ̂ݎܲ = −2 ܿ = 2⁄ ሽ 

ܲషమ = ሼܿ̂ݎܲ ≠ −2 ܿ = −2⁄ ሽ 
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→ ܲషమ = ሼܿ̂ݎܲ = 0 ܿ = −2⁄ ሽ + ሼܿ̂ݎܲ = 2 ܿ = −2⁄ ሽ 

ܲబ = ሼܿ̂ݎܲ ≠ 0 ܿ = 0⁄ ሽ → ܲబ = ሼܿ̂ݎܲ = 2 ܿ = 0⁄ ሽ + ሼܿ̂ݎܲ = −2 ܿ = 0⁄ ሽ 

a) Calculation of conditional probabilities of errors. According to the result 
obtained in question 9, we have: ܾଵ(݇ܶ) = (ܶ݇)ݏ −  ܸܿ 

If  ݏ(݇ܶ) ∈ ሾܿ, ݀ሾ  then  ܾଵ(݇ܶ) ∈ ሾܿ − ܸܿ, ݀ − ܸܿሾ   
and  ܲݎሼܿ̂ ≠ ݇ ܿ = ݇⁄ ሽ = ሼܿݎܲ − ܸܿ ≤ ܾଵ(݇ܶ) < ݀ − ܸܿሽ 

The decision thresholds ሾܿ, ݀ሾ are such that:  ܿ, ݀ ∈ ሼߤ, ±∞ሽ ;    ߤ = (0)݉ = ܸ݉ ;      ݉ = ሼ−1, 1ሽ  
ܸܿ = ൝ 20ܸ−2ܸ   → ଵߤ = ܸ  et  ିߤଵ = −ܸ 

Let’s express the decision thresholds according to ߪభ:  

ቂܾݏቃ,ௗ = 20 × logଵ ቈܸߪభ = 10.88 dB  → ܸ = భߪ 3.5 → ൜ߤଵ = ଵିߤ     భߪ 3.5 =  భߪ 3.5−

 

Figure 2.51. Values of sample ܸܿ, optimum  
thresholds and decision classes of ܿ: ܿ̂  
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b) Application of the decision rules. We have three possible decision values on ܿ, one without errors and two with errors.  

c) Transmission of symbol ܿ = 2, we decide on reception:   ܿ̂ = 0  if  ݏ(݇ܶ) ∈ ሾିߤଵ, ଵሾߤ  → ܾଵ(݇ܶ) ∈ ሾିߤଵ − ܸܿ, ଵߤ − ܸܿሾ ܲݎሼܿ̂ = 0 ܿ = 2⁄ ሽ = ܸ−ሼݎܲ − 2ܸ ≤ ܾଵ(݇ܶ) < ܸ − 2ܸሽ ܲݎሼܿ̂ = 0 ܿ = 2⁄ ሽ = భߪ ൛−10.5ݎܲ ≤ ܾଵ(݇ܶ) < భൟߪ 3.5− ≅ 3 × 10ିହ ܿ̂ = −2  if  ݏ(݇ܶ) ∈ ሾ−∞, ଵሾିߤ  → ܾଵ(݇ܶ) ∈ ሾ−∞, ଵିߤ − ܸܿሾ ܲݎሼܿ̂ = −2 ܿ = 2⁄ ሽ = ∞−ሼݎܲ ≤ ܾଵ(݇ܶ) < −ܸ − 2ܸሽ ܲݎሼܿ̂ = −2 ܿ = 2⁄ ሽ = ∞−൛ݎܲ ≤ ܾଵ(݇ܶ) < భൟߪ 10.5− = 2 × 10ିଽ → ܲమ = ሼܿ̂ݎܲ = 0 ܿ = 2⁄ ሽ + ሼܿ̂ݎܲ = −2 ܿ = 2⁄ ሽ ≅ 3 × 10ିହ + 2 × 10ିଽ ≅ 3 × 10ିହ 

d) Transmission of symbol ܿ = 0, we decide on reception:   ܿ̂ = −2  if  ݏ(݇ܶ) ∈ ሾ−∞, ଵሾିߤ  → ܾଵ(݇ܶ) ∈ ሾ−∞, ଵିߤ − ܸܿሾ ܲݎሼܿ̂ = −2 ܿ = 0⁄ ሽ = ∞−ሼݎܲ ≤ ܾଵ(݇ܶ) < −ܸሽ ܲݎሼܿ̂ = −2 ܿ = 0⁄ ሽ = ∞−൛ݎܲ ≤ ܾଵ(݇ܶ) < భൟߪ 3.5− ≅ 3 × 10ିହ ܿ̂ = 2  if  ݏ(݇ܶ) ∈ ሾߤଵ, ∞ሾ  → ܾଵ(݇ܶ) ∈ ሾߤଵ − ܸܿ, ∞ሾ ܲݎሼܿ̂ = 2 ܿ = 0⁄ ሽ = ሼܸݎܲ ≤ ܾଵ(݇ܶ) < ∞ሽ ܲݎሼܿ̂ = 2 ܿ = 0⁄ ሽ = భߪ ൛3.5ݎܲ ≤ ܾଵ(݇ܶ) < ∞ൟ ≅ 3 × 10ିହ 

ܲబ = ሼܿ̂ݎܲ = −2 ܿ = 0⁄ ሽ + ሼܿ̂ݎܲ = 2 ܿ = 0⁄ ሽ ≅ 3 × 10ିହ + 3 × 10ିହ ≅ 6 × 10ିହ 

e) Transmission of symbol ܿ = −2, we decide on reception: ܿ̂ = 0  if  ݏ(݇ܶ) ∈ ሾିߤଵ, ଵሾߤ  → ܾଵ(݇ܶ) ∈ ሾିߤଵ − ܸܿ, ଵߤ − ܸܿሾ ܲݎሼܿ̂ = 0 ܿ = −2⁄ ሽ = ܸ−ሼݎܲ + 2ܸ ≤ ܾଵ(݇ܶ) < ܸ + 2ܸሽ ܲݎሼܿ̂ = 0 ܿ = −2⁄ ሽ = భߪ ൛3.5ݎܲ ≤ ܾଵ(݇ܶ) < భൟߪ 10.5 ≅ 3 × 10ିହ 
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ܿ̂ = 2  if  ݏ(݇ܶ) ∈ ሾߤଵ, ∞ሾ  → ܾଵ(݇ܶ) ∈ ሾߤଵ − ܸܿ, ∞ሾ ܲݎሼܿ̂ = 2 ܿ = −2⁄ ሽ = ሼ3ܸݎܲ ≤ ܾଵ(݇ܶ) < ∞ሽ ܲݎሼܿ̂ = 2 ܿ = −2⁄ ሽ = భߪ ൛10.5ݎܲ ≤ ܾଵ(݇ܶ) < ∞ൟ = 2 × 10ିଽ → ܲషమ = ሼܿ̂ݎܲ = 0 ܿ = −2⁄ ሽ + ሼܿ̂ݎܲ = 2 ܿ = −2⁄ ሽ ≅ 3 × 10ିହ + 2 × 10ିଽ ≅ 3 × 10ିହ 

 

Figure 2.52. Gaussian probability law with zero mean  
and unit standard deviation, and distribution intervals 
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→ න =ଵ.ହ
ଷ.ହ න ≅ 3 × 10ିହିଷ.ହ

ିଵ.ହ  

11) The total probability of error is then:  

ܲ =   × ܲೖ   with    = ሼܿݎܲ = ݇ሽ   and   ݇ = ሼ−2, 0, 2, ሽ 

The symbols ܾ are independent and identically distributed on the alphabet ሼ0, 1ሽ, hence:  ܲݎሼܾ = 0ሽ = ሼܾݎܲ = 1ሽ = 1 2⁄  

The probabilities of emission of the symbols ܿ are:  

 = ሼܿݎܲ = 0ሽ = 12 ; ଶ     = ሼܿݎܲ = 2ሽ = ଶି    ; 14 = ሼܿݎܲ = −2ሽ = 14 

Hence finally:  

ܲ =  × ܲబ + ଶ × ܲమ + ଶି × ܲషమ 

ܲ = 12 × 6 × 10ିହ + 14 × 3 × 10ିହ + 14 × 3 × 10ିହ = 4.5 × 10ିହ 



3 

Digital Transmissions with Carrier  
Modulation: Problems 27 to 33 

3.1. Problem 27 – Digital transmissions with carrier modulation 

We consider the general system of transmission of digital information with 
modulation of a carrier represented in the block diagram of Figure 3.1.  

The symbols ܾ delivered by the binary source are emitted every ܶ seconds. 
The baseband encoder of the transmission system generates two baseband signals (ݐ)ܫ and ܳ(ݐ) as follows:   

– separation of the binary sequence ሼܾሽ into two binary sequences ሼܾଶሽ and ሼܾଶାଵሽ;  

– transcoding of the sequences ሼܾଶሽ and ሼܾଶାଵሽ into two sequences of symbols ሼܽሽ and ሼܽᇱ ሽ ∈ ଵܯ − ary and ܯଶ − ary respectively; 

– pulse amplitude modulation using the basic pulse (ݐ)ݔ :(ݐ)ݔ = ቄ1   for   ݐ ∈ ሾ− ܶ 2,  ܶ 2⁄⁄ ሾ0   elsewhere                        
The two baseband signals (ݐ)ܫ and ܳ(ݐ) are expressed by:  (ݐ)ܫ =  ܽݐ)ݔ − ݊ܶ)       and      ܳ(ݐ) =  ܽᇱ ݐ)ݔ − ݊ܶ) 

and indicate that symbols ሼܽሽ and ሼܽᇱ ሽ are emitted every ܶ seconds.   

Digital Communications 2: Directed and Practical Work, 
First Edition. Safwan El Assad and Dominique Barba. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Figure 3.1. General block diagram of a digital transmission system with  
carrier modulation and demodulation (Transmitter – Channel – Receiver) 

The modulator is defined by the carrier signal:  (ݐ) = ܸexpሾ݆(2ߨ ݂ݐ + ߮)ሿ 
It constructs a real signal (ݐ)ݏ by an adequate linear modulation of the digital 

signal to be modulated:  ܿ(ݐ) = (ݐ)ܫ +  (ݐ)ܳ

The linear transmission filter (of complex gain ܩ(݂)) and reception filter (of 
complex gain ܩ(݂)) are of the band-pass type around the frequencies ݂ and − ݂. 
The transmission channel is supposed to be modeled by a linear filter (of complex 
gain ܪ(݂)) to which is added an observation noise ܾ(ݐ).   

This latter is assumed to be a Gaussian white random process, with a power 
spectral density equal to ߁ 2⁄  in the frequency band covered by the receiving band-
pass filter.  
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Moreover, let: ܪ(݂) = (݂)ܩ × (݂)ܪ ×   (݂)ܩ

and: ℎ(ݐ) = ݃(ݐ)⨂ℎ(ݐ)⨂݃(ݐ) be assumed real.  

1) What is the real signal (ݐ)ݏ at the output of the modulator in the general case 
of amplitude and phase shift keying modulation (APSK) at ܯଵ ×  ଶ states? Thenܯ
determine its complex envelope, denoted ݏ(ݐ). Finally, in the expression of the real 
signal (ݐ)ݏ, show explicitly the two components modulating in quadrature the carrier (ݐ).  

2) From the previous results, determine the real signal (ݐ)ݏ, its complex 
envelope ݏ(ݐ) and the components of the signal (ݐ)ݏ modulating in quadrature the 
carrier for the following modulations:   

a) QAM: quadrature amplitude modulation at ܯଵ ×   ;ଶ statesܯ

b) PSK: phase shift keying modulation at ܯ states;  

c) ASK: amplitude shift keying modulation at ܯ states.  

3) Considering that the bitrate is set to ܦ, and that ܯ = ଵܯ = ଶܯ = 2, what is 
the symbol rate ܦ௦ of the signal (ݐ)ݏ for each of the four preceding digital 
modulations (that of question 1 plus the three of question 2)?  

From now on, it is assumed that the amplitude spectrum of the transmitted digital 
modulation signal has a frequency band limited to:  

|݂| ∈  ݂ − ∆2݂ , ݂ + ∆2݂  ൨    with  ∆݂ ≪ ݂ 

We call ܪ(݂) the frequency gain of the low-pass filter equivalent to the total 
filter of frequency gain ܪ(݂) (which is a band-pass filter around frequencies ݂ and − ݂) and ݕ(ݐ) the signal at the output of the equivalent low-pass filter (frequency 
gain ܪ(݂)) when the input signal is the previous signal (ݐ)ݔ (noise excepted).    

We denote: ݕ(ݐ) = (ݐ) +  (ݐ)ݍ݆

In the same way, by denoting ܾ(ݐ), the noise ܾ(ݐ) filtered by the receiving 
band-pass filter, we note:  ܾ(ݐ) = ܾ,(ݐ) + ݆ܾ,(ݐ), the complex envelope of the filtered noise ܾ(ݐ). 

4) What is the response of the global filter ܪ(݂) to the signal (ݐ)ݔ ×   ?(ݐ)
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5) If the impulse response of the equivalent low-pass filter ܪ(݂) to the total 
band-pass filter ܪ(݂) is: ℎ(ݐ) = ℎ,(ݐ) + ݆ℎ,(ݐ), then demonstrate that the 
impulse response ℎ(ݐ) of the total band-pass filter is: ℎ(ݐ) = 2ൣℎ,(ݐ) cos(2ߨ ݂ݐ + ߮) − ℎ,(ݐ) sin(2ߨ ݂ݐ + ߮)൧ 

In the following, we consider a 4-QAM digital modulation for which the 
symbols ܽ and ܽᇱ  take the values 1 and –1. Decisions are made at instants of the 
form: ݐ = ݇ܶ. 

6) a) Considering the equivalent baseband transmission and reception system: 
the digital modulated signals are replaced by their complex envelope, the band-pass 
filters by their equivalent low-pass filter, determine the complex envelope, denoted ݏ,(ݐ), of signal ݏ(ݐ) at the output of filter of frequency gain ܪ(݂). Particularize 
this one at the decision instants ݐ = ݇ܶ: i.e. ݏ,(݇ܶ). 

b) By separating the real and imaginary parts of the complex envelope ݏ,(݇ܶ), 
determine the intersymbol interference on the symbol ܽ, denoted ܫ(݇ܶ), on the one 
hand, and on the symbol ܽᇱ , denoted ܫᇲᇱ (݇ܶ), on the other hand. 

7) It is assumed in the following, again in the context of a 4-QAM modulation 
that the characteristics of the band-pass filters and of the transmission channel are 
such that the equivalent low-pass filter ܪ(݂) satisfies the Hermitian symmetry.   

a) Show that ݕ(ݐ) is then a real signal ((ݐ)ݍ = 0).  

b) Show that the intersymbol interference is of a purely intra-channel type. 

Solution of problem 27 

1) The real signal (ݐ)ݏ at the output of the modulator is written:  (ݐ)ݏ = ℜ ൝ܸ  ݐ)ݔߩ − ݊ܶ) expሾ݆(2ߨ ݂ݐ + ߮ + ߰)ሿൡ 

or: 

(ݐ)ݏ = ℜ ൝ܸ  ߩ exp(݆߰)ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

with:   

(݆߰)exߩ = ܿ = ܽ + ݆ܽᇱ  ; ߩ    = ൣܽଶ + ܽᇱ ଶ൧ଵ ଶ⁄  ;    ߰ = tanିଵ ܽᇱܽ൨ 
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The pair (ߩ, ߰) belongs to a set of ܯଵ ×  ߩ :ଶ possible amplitude-phase pairsܯ
being ܯଵ − ary and ߰  being ܯଶ − ary.   

The signal (ݐ)ݏ can also be written:   (ݐ)ݏ = ℜሼݏ(ݐ) × expሾ݆(2ߨ ݂ݐ + ߮)ሿሽ 

hence its complex envelope ݏ(ݐ) is: ݏ(ݐ) = ܸ  ߩ exp(݆߰)ݐ)ݔ − ݊ܶ) 

= ܸ  ߩ cos(߰)ݐ)ݔ − ݊ܶ) + ݆  ߩ sin(߰)ݐ)ݔ − ݊ܶ)൩ 

The signal (ݐ)ݏ is also written:  (ݐ)ݏ = ܸ  ߩ cos(߰)ݐ)ݔ − ݊ܶ) cos(2ߨ ݂ݐ + ߮) 

−ܸ  ߩ sin(߰)ݐ)ݔ − ݊ܶ) sin(2ߨ ݂ݐ + ߮) 

or: (ݐ)ݏ = ܸሾ(ݐ)ܫ cos(2ߨ ݂ݐ + ߮) − (ݐ)ܳ sin(2ߨ ݂ݐ + ߮)ሿ 
The signals (ݐ)ܫ and ܳ(ݐ) are linear combinations of the baseband digital 

signals.  

2) From the preceding results, we have:  

a) QAM: ߩexp(݆߰) = ܿ = ܽ + ݆ܽᇱ . 

Hence, from response 1, we can write: 

(ݐ)ݏ = ℜ ൝ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

(ݐ)ݏ = ܸ  ܿ ݐ)ݔ − ݊ܶ) = ܸ  ܽ ݐ)ݔ − ݊ܶ) + ݆  ܽᇱ ݐ)ݔ − ݊ܶ)൩ 
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(ݐ)ݏ = ܸ  ܽ ݐ)ݔ − ݊ܶ) cos(2ߨ ݂ݐ + ߮) 

−ܸ  ܽᇱ ݐ)ݔ − ݊ܶ) sin(2ߨ ݂ݐ + ߮) 

ܽ being ܯଵ − ary and ܽᇱ  being ܯଶ − ary.  

Or: (ݐ)ݏ = ܸሾ(ݐ)ܫ cos(2ߨ ݂ݐ + ߮) − (ݐ)ܳ sin(2ߨ ݂ݐ + ߮)ሿ 
b) In PSK modulation, we have: ߩ = (ݐ)ݏ .1 = ℜ ൝ܸ  ݐ)ݔ − ݊ܶ) expሾ݆(2ߨ ݂ݐ + ߮ + ߰)ሿൡ 

with:  ߰ = ܯߨ + 2݅ ܯߨ ;     ݅ = ሼ0, 1, ⋯ ܯ − 1ሽ  and  ܯ > 2 

Also:  

(ݐ)ݏ = ℜ ൝ܸ  exp(݆߰) ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

→ (ݐ)ݏ = ܸ  exp(݆߰) ݐ)ݔ − ݊ܶ) 

= ܸ  cos(߰) ݐ)ݔ − ݊ܶ) + ݆  sin(߰) ݐ)ݔ − ݊ܶ)൩ 

The signal (ݐ)ݏ can also be written:  (ݐ)ݏ = ܸ  cos(߰) ݐ)ݔ − ݊ܶ) cos(2ߨ ݂ݐ + ߮) 

−ܸ  sin(߰) ݐ)ݔ − ݊ܶ) sin(2ߨ ݂ݐ + ߮) (ݐ)ݏ = ܸሾ(ݐ)ܫ cos(2ߨ ݂ݐ + ߮) − (ݐ)ܳ sin(2ߨ ݂ݐ + ߮)ሿ 
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By setting: ܽ = cos(߰) ;   ܽᇱ = sin(߰) 

We note that the PSK modulation is identical to the QAM modulation. 

c) ASK: ܽᇱ = 0. 

From the QAM modulation expression in which ܽᇱ  is set to zero, we have:  

(ݐ)ݏ = ℜ ൝ܸ  ܽ ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

with:  

ܽ = ܯ2݅ − 1 − 1 ;      ݅ = ሼ0, 1, ⋯ ܯ − 1ሽ   and  ܯ = 2 

(ݐ)ݏ = ܸ  ܽ ݐ)ݔ − ݊ܶ) 

(ݐ)ݏ = ܸ  ܽ ݐ)ݔ − ݊ܶ) cos(2ߨ ݂ݐ + ߮) 

ܽ being ܯ − ary.   

Or also: (ݐ)ݏ = ܸሾ(ݐ)ܫ cos(2ߨ ݂ݐ + ߮)ሿ 
3) One has:  ܦ = 1ܶ ௦ܦ   ; = 1ܶ௦ ;     ௦ܶ = ݇ ܶ ; ܯ    = 2  → ݇ = logଶ  ܯ

→ ௦ܦ = 1ܶ௦ = 1݇ ܶ = ܦ݇ = logଶܦ  ܯ

with ܦ: bitrate; ܦ௦: symbol rate. 

– APSK modulation: at ܯଵ × ଶܯ = 2 × 2 = 2ଶ states → ௦ܦ =  2݇ܦ
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– QAM modulation:  

at ܯଵ × ଶܯ = 2 × 2 = 2ଶ states → ௦ܦ =  2݇ܦ

– PSK modulation: 

at ܯ = 2 states → ௦ܦ = ܦ݇
 

– ASK modulation: 

at ܯ = 2 states → ௦ܦ = ܦ݇
 

4) We have:  ݕ(ݐ) = (ݐ) + (ݐ)ܾ (ݐ)ݍ݆ = ܾ,(ݐ) + ݆ܾ,(ݐ) 

 

We can write:  (ݐ)ݕ = ሾ(ݐ)ݔ ×  (ݐ)ሿ⨂ℎ(ݐ)

But this relation is not very useful here.  

To find the expression of (ݐ)ݕ, one has just to apply the definition of the 
complex envelope:   (ݐ)ݕ = ℜሼݕ(ݐ) × expሾ݆(2ߨ ݂ݐ + ߮)ሿሽ (ݐ)ݕ = ℜሼሾ(ݐ) + ሿ(ݐ)ݍ݆ × ሾcos(2ߨ ݂ݐ + ߮) + ݆ sin(2ߨ ݂ݐ + ߮)ሿሽ 

So: (ݐ)ݕ = (ݐ) × cos(2ߨ ݂ݐ + ߮) − (ݐ)ݍ × sin(2ߨ ݂ݐ + ߮) 

5) Demonstration of:   ℎ(ݐ) = 2ൣℎ,(ݐ) cos(2ߨ ݂ݐ + ߮) − ℎ,(ݐ) sin(2ߨ ݂ݐ + ߮)൧ 

h t( )
x t( ) pc t( )× y t( )?
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Figure 3.2. Supports of transfer function ܪ(݂) and ܪ(݂). For a color  
version of this figure, see www.iste.co.uk/assad/digital2.zip 

(݂)ܪ   :breaks down into (݂)ܪ = (݂)ାܪ +  (݂)ିܪ

Yet ܪ(݂) is such that: ܪ(−݂) =   is a real function (ݐ)because ℎ (݂)∗ܪ
(* denotes the conjugate complex).  

By definition:  ܪ(݂) = ݂)ାܪ + ݂) 

→ ൜ܪା(݂) = ݂)ܪ − ݂) = ݂)ߜ⨂(݂)ܪ − ݂)           ିܪ(݂) = ሾܪା(−݂)ሿ∗ = ሾܪ(−݂)⨂ߜ(−݂ − ݂)ሿ∗ 

but:  ሾߜ( )ሿ∗ = )ߜ ); ݂−)ߜ      − ݂) = ݂)ߜ + ݂) → (݂)ିܪ = ݂)ߜ⨂(݂−)∗ܪ + ݂) 

Finally, we get:  ܪ(݂) = (݂)ାܪ + (݂)ିܪ = ݂)ߜ⨂(݂)ܪ − ݂) + ݂)ߜ⨂(݂−)∗ܪ + ݂) 

and as: 

ሽ(ݐ)∗ݖሼܨ  = ܼ∗(−݂) 

hence:  ℎ(ݐ) = ℎ(ݐ) expሾ݆(2ߨ ݂ݐ + ߮)ሿ + ℎ∗(ݐ) expሾ−݆(2ߨ ݂ݐ + ߮)ሿ 
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so: ℎ(ݐ) = ൣℎ,(ݐ) + ݆ℎ,(ݐ)൧ሾcos(2ߨ ݂ݐ + ߮) + ݆ sin(2ߨ ݂ݐ + ߮)ሿ +ൣℎ,(ݐ) − ݆ℎ,(ݐ)൧ሾcos(2ߨ ݂ݐ + ߮) − ݆ sin(2ߨ ݂ݐ + ߮)ሿ 
Finally, we get: ℎ(ݐ) = 2ൣℎ,(ݐ) cos(2ߨ ݂ݐ + ߮) − ℎ,(ݐ) sin(2ߨ ݂ݐ + ߮)൧ 
6) 4-QAM modulation: ܽ   and  ܽᇱ  ∈ ሼ−1, 1ሽ. 

a) Determination of the complex envelope, denoted ݏ,(ݐ), of the signal ݏ(ݐ) 
at the output of the filter ܪ(݂)? 

We have:  

(ݐ)ݏ = ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ) 

As the action of (ݐ)ݔ on the input of the equivalent baseband system is ݕ(ݐ) (ݐ)= +  (݂) (noise-free), and taking into account theܪ at the output of filter (ݐ)ݍ݆
response of filtered noise turned into its equivalent baseband noise, that is ܾ(ݐ), the 
response ݏ,(ݐ) is then: 

(ݐ),ݏ = ܸ ሾܽ + ݆ܽᇱ ሿ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ) 

With ݐ = ݐ = ݇ܶ, then we have: 

(ܶ݇),ݏ = ܸ ሾܽ + ݆ܽᇱ ሿ ሼሾ(݇ − ݊)ܶሿ + ݇)ሾݍ݆ − ݊)ܶሿሽ + ܾ(݇ܶ) 

b) Intersymbol interference on the symbols ܽ and  ܽᇱ , respectively: ℜൣݏ,(݇ܶ)൧ = ܸ ൝ܽ(0) +  ܽሾ(݇ − ݊)ܶሿ −  ܽᇱ ݇)ሾݍ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) 
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ℑൣݏ,(݇ܶ)൧ = ܸ ൝ܽᇱ (0) +  ܽᇱ ݇)ሾ − ݊)ܶሿ +  ܽݍሾ(݇ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) 

Hence:  

(ܶ݇)ܫ = ܸ ێێێۏ
ۍ ܽሾ(݇ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

−  ܽᇱ ݇)ሾݍ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

ᇲᇱܫ (݇ܶ) = ܸ ێێێۏ
ۍ ܽᇱ ݇)ሾ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

+  ܽݍሾ(݇ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

7) Show that ݕ(ݐ) is a real signal and that the intersymbol interference is purely 
an intra-channel interference.  

a) As: ܪ(݂) = (݂),ܩ × (݂),ܪ ×  ,,(݂) satisfies the Hermitian symmetryܩ
then ℎ(ݐ) is a real function, hence ℎ(ݐ) = ℎ,(ݐ) and ݕ(ݐ) =  is a (ݐ)ℎ⨂(ݐ)ݔ
real function. Therefore, we have: (ݐ)ݍ = 0 and ݕ(ݐ) =   .(ݐ)

b) From question 6 (b), we have: ܫ(݇ܶ) = ܸ  ܽሾ(݇ − ݊)ܶሿ ; ᇲᇱܫ       (݇ܶ) =  ܸ  ܽᇱ ݇)ሾ − ݊)ܶሿஷஷ  

therefore, the intersymbol interference is of a purely intra-channel type. 

3.2. Problem 28 – 4-QAM digital modulation transmission (1) 

The transmission of binary information based on a 4-QAM digital modulation is 
considered. The block diagram of this transmission system (transmitter, transmission 
channel, receiver) is given in Figure 3.3. In this type of modulation, symbols ሼܽሽ 
and ሼܽᇱ ሽ  take the values on the set ሼ1, − − 1ሽ.  

The symbols ܾ delivered by the binary source are emitted every ܶ seconds. 
The baseband encoder of the transmission system generates two baseband signals (ݐ)ܫ and ܳ(ݐ) as follows:   

– separation of the binary sequence ሼܾሽ into two binary sequences ሼܾଶሽ and ሼܾଶାଵሽ; 
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– transcoding the sequences ሼܾଶሽ and ሼܾଶାଵሽ into two sequences of symbols ሼܽሽ and ሼܽᇱ ሽ ∈ ሼ1, − − 1ሽ; 

– pulse amplitude modulation using the basic pulse (ݐ)ݔ :(ݐ)ݔ = ቄ1   for   ݐ ∈ ሾ− ܶ 2,  ܶ 2⁄⁄ ሾ0   elsewhere                        

 

Figure 3.3. General block diagram of a digital transmission  
system with quadrature amplitude modulation 

The two baseband signals (ݐ)ܫ and ܳ(ݐ) are expressed by: (ݐ)ܫ =  ܽݐ)ݔ − ݊ܶ)  

(ݐ)ܳ =  ܽᇱ ݐ)ݔ − ݊ܶ) 

and indicate that symbols ሼܽሽ and ሼܽᇱ ሽ  are emitted every ܶ seconds.  

The modulator is defined by the carrier signal: (ݐ) = ܸexpሾ݆(2ߨ ݂ݐ + ߮)ሿ 
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It constructs a real signal (ݐ)ݏ by an adequate linear modulation of the digital 
signal to be modulated:  ܿ(ݐ) = (ݐ)ܫ +  (ݐ)݆ܳ

The linear transmission filter (of complex gain ܩ(݂)) and reception filter (of 
complex gain ܩ(݂)) are of the band-pass type around the frequencies ݂ and − ݂. 
The transmission channel is supposed to be modeled by a linear filter (of complex 
gain ܪ(݂)) to which is added an observation noise ܾ(ݐ). This latter is assumed to 
be a Gaussian white random process, with a power spectral density equal to ߁ 2⁄  in 
the frequency band covered by the receiving band-pass filter.      

Moreover, let:   ܪ(݂) = (݂)ܩ × (݂)ܪ ×  (݂)ܩ

and: ℎ(ݐ) = ݃(ݐ)⨂ℎ(ݐ)⨂݃(ݐ) 

be assumed real.  

1) a) Write the real signal (ݐ)ݏ at the output of the 4-QAM modulator at ܯଵ ×  ଶܯ
states. Show explicitly in the expression of the real signal (ݐ)ݏ the two components 
modulating in quadrature the carrier (ݐ).  

b) Then determine its complex envelope, noted ݏ(ݐ). 

From now on, it is assumed that the amplitude spectrum of the transmitted digital 
modulation signal has a frequency band limited to: 

|݂| ∈  ݂ − ∆2݂ , ݂ + ∆2݂  ൨   with  ∆݂ ≪ ݂  

We call ܪ(݂) the frequency gain of the low-pass filter equivalent to the total 
filter of frequency gain  ܪ(݂) (which is a band-pass filter around the frequencies ݂ 
and − ݂) and ݕ(ݐ) the signal at the output of the equivalent low-pass filter 
(frequency gain ܪ(݂)) when the input signal is the previous signal (ݐ)ݔ (noise 
excepted).      

We denote:  ݕ(ݐ) = (ݐ) +  (ݐ)ݍ݆
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In the same way, by denoting ܾ(ݐ), the noise ܾ(ݐ) filtered by the receiving 
band-pass filter, we denote by ܾ(ݐ) the complex envelope of the filtered noise ܾ(ݐ):   ܾ(ݐ) = ܾ,(ݐ) + ݆ܾ,(ݐ)  

2) a) Determine the complex envelope, denoted ݏ,(ݐ), of signal ݏ(ݐ) at the 
output of the filter of frequency gain ܪ(݂), and taking into account the noise  ܾ(ݐ). 

b) Particularize this one at the decision instants ݐ = ݇ܶ, that is ݏ,(݇ܶ).  

3) By separating the real and imaginary parts of the complex envelope ݏ,(݇ܶ), 
determine the intersymbol interference on the symbol ܽ, denoted ܫ(݇ܶ), on the 
one hand, and on the symbol ܽᇱ , denoted ܫᇲᇱ (݇ܶ), on the other hand.  

It is considered that: 

ܲ(݂) = ሽ(ݐ)ሼܨ = ቐܶ  for  ݂ ∈ ቈ−(1 + 2ܶ(ߙ , (1 + 2ܶ(ߙ 0  otherwise                                     with ߙ = 16 

ܳ(݂) = ሽ(ݐ)ݍሼܨ = ൝ܶߙ  for  ݂ ∈ −12ܶ , 12ܶ൨0  otherwise                
4) Determine the expressions of (ݐ) and (ݐ)ݍ. Then deduce: ݍ  ,(0)ݍ ,(2ܶ±) ,(ܶ±) ,(0)(±݅ܶ) with ݅ integer ≠ 0  

5) Give the two simple expressions of the intersymbol interference ܫ(݇ܶ) and  ܫᇲᇱ (݇ܶ) in the case where we consider (݅ܶ) = 0  ∀ ݅ ≠ ሼ0, −1, 1ሽ, then the values 

of these intersymbol interferences for the messages ݉ interfering with ܽ and for 
the messages ݉ᇱ interfering with ܽᇱ  (you will take for simplification ߨ ≅ 3).  

After the quadrature demodulation, both noises ܾ,(݇ܶ) and ܾ,(݇ܶ) are 
supposed to have the same power ଶ. Let the signal-to-noise ratio defined as: 

ቂܾݏቃ = 20 × logଵ ቈܸߪ(0)  

be equal to 14.4 dB after demodulation for each signal (ݐ)ܫ and ܳ(ݐ). 

From now on, we assume that symbols ܾ are independent and equiprobable. 
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6) Give the expression of the probability ܲ, of error on symbol ܽ at the output 
of the decision block, and the probability ܲ,ᇲ of error on symbol ܽᇱ .  

7) a) Calculate the conditional probabilities of error on symbol ܽ: ܲݎ൛ ොܽ = ܽ ܽ = ܽ, ݉⁄ ൟ ;  ݆ ≠ ݅ ;  ܽ = ሼ−1, 1ሽ ;  ܽ = ሼ−1, 1ሽ 

for each of the messages ݉ interfering with ܽ .  
b) Deduce the probability of error ܲ, on symbol  ܽ.  

8) a) Calculate the conditional probabilities of error on symbol ܽᇱ ൛ݎܲ : ොܽᇱ = ܽᇱ ܽᇱ = ܽᇱ, ݉ᇱ⁄ ൟ ;  ݆ ≠ ݅ ;  ܽᇱ = ሼ−1, 1ሽ ;  ܽᇱ = ሼ−1, 1ሽ 

for each of the messages ݉ᇱ interfering with ܽᇱ  .  

b) Deduce the probability of error ܲ,ᇲ on symbol ܽᇱ  .  

9) By considering that symbols ܽ  and ܽᇱ  are independent and equiprobable, 
what is the total probability of error ܲ, on the quaternary symbol ሼܿ = ܽ, ܽᇱ ሽ  
transmitted?   

NOTE.– If ܺ is a Gaussian random process, of mean value ݉ and standard deviation ߪ, you will take: ܲݎሼ|ܺ − ݉| > ሽߪ 3 = 2.6 × 10ିଷ ܲݎሼ|ܺ − ݉| > ሽߪ 4.5 = 6 × 10ି ܲݎሼ|ܺ − ݉| > ሽߪ 6 ≅ 0 

Solution of problem 28 

1) a) The real signal (ݐ)ݏ at the output of the modulator (with 4-QAM 
modulation) is written:   (ݐ)ݏ = ℜ ൝ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

(ݐ)ݏ = ܸ  ܽ ݐ)ݔ − ݊ܶ) cos(2ߨ ݂ݐ + ߮) 

−ܸ  ܽᇱ ݐ)ݔ − ݊ܶ) sin(2ߨ ݂ݐ + ߮) 
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b) By definition, (ݐ)ݏ is also written:  (ݐ)ݏ = ℜሼݏ(ݐ) × expሾ݆(2ߨ ݂ݐ + ߮)ሿሽ 

Hence the complex envelope of signal (ݐ)ݏ is: ݏ(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ) 

2) a) As the action of (ݐ)ݔ at the input of the equivalent baseband system is ݕ(ݐ) = (ݐ) +  ,(݂) (noise-free)ܪ at the output of the filter of frequency gain (ݐ)ݍ݆
and taking into account the response of filtered noise turned into its equivalent 
baseband noise, that is  ܾ(ݐ), the response ݏ,(ݐ) is then: ݏ,(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ) 

b) With: ݐ = ݐ = (ܶ݇),ݏ   :,(݇ܶ) is writtenݏ ,ܶ݇ = ܸ ሾܽ + ݆ܽᇱ ሿ ሼሾ(݇ − ݊)ܶሿ + ݇)ሾݍ݆ − ݊)ܶሿሽ + ܾ(݇ܶ) 

3) Determination of the intersymbol interference on symbols ܽ and ܽᇱ , 
respectively.  

We have:  

ℜൣݏ,(݇ܶ)൧ = ܸ ൝ܽ(0) +  ܽሾ(݇ − ݊)ܶሿ −  ܽᇱ ݇)ሾݍ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) 

ℑൣݏ,(݇ܶ)൧ = ܸ ൝ܽᇱ (0) +  ܽᇱ ݇)ሾ − ݊)ܶሿ +  ܽݍሾ(݇ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) 

hence: 

(ܶ݇)ܫ = ܸ ێێێۏ
ۍ ܽሾ(݇ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

−  ܽᇱ ݇)ሾݍ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
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ᇲᇱܫ (݇ܶ) = ܸ ێێێۏ
ۍ ܽᇱ ݇)ሾ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

+  ܽݍሾ(݇ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

4) We have successively:  (ݐ) = ଵሼܲ(݂)ሽିܨ = ܶ × (1 + ܶ(ߙ × sinሾ2ߨ (1 + ݐ(ߙ 2ܶ⁄ ሿ21)ߨ + ݐ(ߙ 2ܶ⁄  

= (1 + (ߙ × sinሾߨ (1 + ݐ(ߙ ܶ⁄ ሿ1)ߨ + ݐ(ߙ ܶ⁄  

(ݐ)ݍ = ଵሼܳ(݂)ሽିܨ = ܶܶߙ × sinሾ2ݐߨ 2ܶ⁄ ሿ2ݐߨ 2ܶ⁄ = ߙ × sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄ (0)  = (1 + (ߙ = 1 + 1 6 = 7 6⁄⁄  

(ܶ±) = 76 × sin ቂߨ + ߨ6ቃߨ × 76 = ߨ12− ≅ −16  

because: sin ቂߨ + 6ቃߨ = −sin ቂ6ߨቃ = −12  

(2ܶ±) = 76 × sin ቂ2ߨ + ߨ3ቃ2ߨ × 76 = √3 ߨ2⁄2 = ߨ34√ ≅ √312 

(0)ݍ = ߙ = 1 6⁄ (ܶ݅±)ݍ  ;  = 0 ∀ ݅ ≠ 0 ;  ݅: integer     

5) One has successively:  

(ܶ݇)ܫ = ܸ   ܽሾ(݇ − ݊)ܶሿାଵ
ୀିଵ; ஷ −  ܽᇱ ݇)ሾݍ − ݊)ܶሿ ൩ 

(ܶ݇)ܫ = ܸሾܽିଵ(ܶ) + ܽାଵ(−ܶ) − ܽᇱ ሿ(0)ݍ = −6ܸ ሾܽିଵ + ܽାଵ + ܽᇱ ሿ 
ᇲᇱܫ (݇ܶ) = ܸ   ܽᇱ ݇)ሾ − ݊)ܶሿାଵ

ୀିଵ; ஷ +  ܽݍሾ(݇ − ݊)ܶሿ ൩ 

ᇲᇱܫ (݇ܶ) = ܸሾܽିଵᇱ (ܶ) + ܽାଵᇱ (ܶ−) + ܽ(0)ݍሿ = −6ܸ ሾܽିଵᇱ + ܽାଵᇱ − ܽሿ 
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Hence, the values of the intersymbol interference for decision on the symbols ܽ 
and ܽᇱ  are given in Table 3.1. 

 = ൛ିࢇ, ′ࢇ , ′ (ࢀ)ࡵ ାൟࢇ = ൛ିࢇ′ , ,ࢇ ′ାࢇ ൟ ࡵ′′  (ࢀ)

-1    -1    -1 ܸ 2⁄  -1    -1    -1 ܸ 6⁄  

-1    -1     1 ܸ 6⁄  -1    -1     1 −ܸ 6⁄  

-1     1    -1 ܸ 6⁄  -1     1    -1 ܸ 2⁄  

-1     1     1 −ܸ 6⁄  -1     1     1 ܸ 6⁄  

1    -1    -1 ܸ 6⁄  1    -1    -1 −ܸ 6⁄  

1    -1     1 −ܸ 6⁄  1    -1     1 −ܸ 2⁄  

1     1    -1 −ܸ 6⁄  1     1    -1 ܸ 6⁄  

1     1     1 −ܸ 2⁄  1     1     1 −ܸ 6⁄  

Table 3.1. Amplitudes of intersymbol interference for decision on ܽ and ܽ′  

6) The probability of error on symbols ܽ and ܽᇱ  are, respectively:  

ܲ, = ଵି  
଼

ୀଵ × ܲషభ൩ + ଵ  
଼

ୀଵ × ܲభ൩ 

ܲ,ᇲ = ଵᇱି  ᇲ
଼

ୀଵ × ܲషభᇲ ൩ + ଵᇱ  ᇲ
଼

ୀଵ × ܲభᇲ ൩ 

where:  

 = ሼܽݎܲ = ݅ሽ = ܯ1 = ᇱ ; 12 = ሼܽᇱݎܲ = ݅ሽ = ܯ1 = 12  ;   ݅ = ሼ−1, 1ሽ 

since the symbols are equiprobable. ܯ is the number of levels a symbol can take.  

There are  ܯ = 2ଷ = 8 interfering messages ݉ with symbol ܽ. Likewise, 
there are  ܯᇲ = 2ଷ = 8 interfering messages ݉ᇱ with symbol ܽᇱ . Moreover: 

 = ܯ1 = 18 ; ᇲ   = ᇲܯ1 = 18 

from the fact that the binary symbols are equiprobable, then the messages are 
equiprobable.  



Digital Transmissions with Carrier Modulation: Problems 27 to 33     217 

Finally, note that:  

ܲషభ = ܲ(ଵ ିଵ, ⁄ ) = ሼݎܲ ොܽ = 1 ܽ = −1, ݉⁄ ሽ 

ܲభ = ܲ(ିଵ ଵ, ⁄ ) = ሼݎܲ ොܽ = −1 ܽ = 1, ݉⁄ ሽ ܲషభᇲ = ܲᇲ൫ଵ ିଵ,ᇲ⁄ ൯ = ሼݎܲ ොܽᇱ = 1 ܽᇱ = −1, ݉ᇱ⁄ ሽ ܲభᇲ = ܲᇲ൫ିଵ ଵ,ᇲ⁄ ൯ = ሼݎܲ ොܽᇱ = −1 ܽᇱ = 1, ݉ᇱ⁄ ሽ 

7) a) Calculation of the conditional probabilities of error on symbols ܽ: 

ܲషభ = ܲ(ଵ ିଵ,⁄ ) = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ஶ
()ିூ(்) ܾ݀, 

ܲభ = ܲ(ିଵ ଵ,⁄ ) = ߨ2√ୣߪ1 න exp ቈ− 12 ܾୣ,୮ଶߪଶୣ ିቂ()ାூ(்)ቃ
ିஶ ܾ݀, 

The signal-to-noise ratio is:  

ቂܾݏቃ = 20 × logଵ ቈܸߪ(0)  = 20 × logଵ ቈܸ × 7 ߪ⁄6  = 14.4 dB 

→ ߪ7ܸ6 ≅ 5.25 → ܸ = ߪ 4.5 → 53ܸ = ߪ 7.5 → 43ܸ = ߪ 6 → 23ܸ =  ߪ 3

Hence, Table 3.2 gives the probabilities of error conditional to the interfering 
messages ݉.   = ሼିࢇ, ᇱࢇ , ()ࢂ ାሽࢇ − ࡵ ()ࢂൣ− షࢋࡼ + ൧ࡵ ࢋࡼ  

 1.3ߪ 3 1-    1-    1- × 10ିଷ −7.5   0ߪ

-1    -1     1 4.5  3ߪ × 10ି −6   0ߪ

-1     1    -1 4.5  3ߪ × 10ି −6   0ߪ

 0 −4.5ߪ 6 1      1     1-  3ߪ × 10ି 

1    -1    -1 4.5  3ߪ × 10ି −6   0ߪ

 0 −4.5ߪ 6 1     1-    1  3ߪ × 10ି 

 0 −4.5ߪ 6 1-    1     1  3ߪ × 10ି 

1     1     1 7.5  0 −3ߪ  1.3ߪ × 10ିଷ 

Table 3.2. Probabilities of error on ܽ conditional  
on possible ݉ interfering messages 



218     Digital Communications 2 

b) Probability of error ܲ,: 

ܲ, = 12 × 18 × ൣ ܲషభ + ܲభ൧଼
ୀଵ  

ܲ, = 116 ሾ1.3 × 10ିଷ + 3 × 3 × 10ି + 3 × 3 × 10ି + 1.3 × 10ିଷሿ = 1.636 × 10ିସ 

8) a) Calculation of the conditional probabilities of error on symbols ܽᇱ : 

ܲషభᇲ = ܲᇲ൫ଵ ିଵ,ᇲ⁄ ൯ = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ஶ
()ିூᇲᇲ (்) ܾ݀, 

ܲభᇲ = ܲᇲ൫ିଵ ଵ,ᇲ⁄ ൯ = ߨ2√ୣߪ1 න exp ቈ− 12 ܾୣ,ଶߪଶୣ ିቈ()ାூᇲᇲ (்)
ିஶ ܾ݀, 

Hence, Table 3.3 gives the probabilities of error on ܽᇱ , conditional on the 
interfering messages ݉ᇱ.  

ᇱ = ሼିࢇᇱ , ,ࢇ ାᇱࢇ ሽ ࢂ() − ᇲᇱࡵ షᇲࢋࡼ   − ቂࢂ() + ᇲᇱࡵ ቃ ࢋࡼᇲ  

-1    -1    -1 4.5  3ߪ × 10ି −6   0ߪ

-1    -1     1 6  0 −4.5ߪ  3ߪ × 10ି 

-1     1    -1 3  1.3ߪ × 10ିଷ −7.5   0ߪ

-1     1     1 4.5  3ߪ × 10ି −6   0ߪ

 1    -1    -1 6  0 −4.5ߪ  3ߪ × 10ି 

 1   -1      1 7.5  0 −3ߪ  1.3ߪ × 10ିଷ 

 1    1     -1 4.5  3ߪ × 10ି −6   0ߪ

 1    1      1 6  0 −4.5ߪ  3ߪ × 10ି 

Table 3.3. Probabilities of error on ܽᇱ  conditional  
on possible ݉ᇱ interfering messages 
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b) Probability of error ܲ,ᇲ: 
ܲ,ᇲ = 12 × 18 × ቂܲషభᇲ + ܲభᇲ ቃ଼

ୀଵ  

ܲ,ᇲ = 116 ሾ1.3 × 10ିଷ + 3 × 3 × 10ି + 3 × 3 × 10ି + 1.3 × 10ିଷሿ = 1.636 × 10ିସ = ܲ, 

9) The probability of error per quaternary symbol emitted  ܿ = ሼܽ, ܽᇱ ሽ is: 

ܲ, = ሼܿ̂ݎܲ ≠ ܿሽ = ሼݎܲ ොܽ ≠ ܽ or ොܽᇱ ≠ ܽᇱ ሽ 

ܲ, = ሼݎܲ ොܽ ≠ ܽሽ + ሼݎܲ ොܽᇱ ≠ ܽᇱ ሽ − ሼݎܲ  ොܽ ≠ ܽ and ොܽᇱ ≠ ܽᇱ ሽ 

Since ܽ and ܽᇱ  are independent symbols, then we have:   

ܲ, = ሼݎܲ ොܽ ≠ ܽሽ + ሼݎܲ ොܽᇱ ≠ ܽᇱ ሽ − ሼݎܲ  ොܽ ≠ ܽሽ × ሼݎܲ ොܽᇱ ≠ ܽᇱ ሽ → ܲ, = ܲ, + ܲ,ᇲ − ܲ, × ܲ,ᇲ ≅ 3.27 × 10ିସ 

3.3. Problem 29 – Digital transmissions with 2-ASK modulation 

We consider the transmission system with 2-state ASK digital amplitude 
modulation given by the block diagram of Figure 3.4.  

The symbols ܾ delivered by the binary source are emitted every ܶ seconds 
with the following probability law:   ܲݎሼܾ = 0ሽ = 1 4 ; ⁄ ሼܾݎܲ     = 1ሽ = 3 4⁄  

and the binary symbols ܾ are considered independent.     

The transcoding of binary information ሼܾሽ into symbols ሼܽሽ corresponds to the 
following rule:    

if: ܾ = 1   then: ܽ = 1 ;    if:  ܾ = 0   then: ܽ = −1 

The baseband encoder of the transmission system generates the baseband signal (ݐ)ܫ by pulse amplitude modulation using the basic pulse (ݐ)ݔ :(ݐ)ݔ = ቄ1   for   ݐ ∈ ሾ− ܶ 2,  ܶ 2⁄⁄ ሾ0  otherwise                        
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Figure 3.4. Block diagram of a digital transmission system with 2-ASK modulation 

The baseband signal (ݐ)ܫ is expressed as:  (ݐ)ܫ =  ܽݐ)ݔ − ݊ܶ)  

The modulator is defined by the carrier signal: (ݐ) = ܸexpሾ݆(2ߨ ݂ݐ + ߮)ሿ 
It constructs a real signal (ݐ)ݏ by an adequate linear modulation of the baseband 

signal (ݐ)ܫ to be modulated.  

The linear transmission filter (of complex gain ܩ(݂)) and reception filter (of 
complex gain ܩ(݂)) are of the band-pass type around frequencies ݂ and − ݂. The 
transmission channel is assumed to be modeled by a linear filter (of complex 
frequency gain ܪ(݂)) to which is added an observation noise ܾ(ݐ). This latter is 
assumed to be a Gaussian white random process, with a power spectral density equal 
to ߁ 2⁄  in the frequency band covered by the receiving band-pass filter. 
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Moreover, let:  ܪ(݂) = (݂)ܩ × (݂)ܪ ×  (݂)ܩ

and:  ℎ(ݐ) = ݃(ݐ)⨂ℎ(ݐ)⨂݃(ݐ) 

be assumed real.   

1) Write explicitly the real signal (ݐ)ݏ at the output of the modulator then 
determine its complex envelope: ݏ(ݐ).   

From now on, it is assumed that the amplitude spectrum of the transmitted digital 
modulation signal has a frequency band limited to:  

|݂| ∈  ݂ − ∆2݂ , ݂ + ∆2݂  ൨   with  ∆݂ ≪ ݂ 

We call ܪ(݂) the frequency gain of the low-pass filter equivalent to the total 
filter of frequency gain ܪ(݂) (which is a band-pass filter around frequencies ݂ and − ݂) and ݕ(ݐ) the signal at the output of the equivalent low-pass filter (frequency 
gain ܪ(݂)) when the input signal is the previous signal (ݐ)ݔ (noise excepted).      

We denote:  ݕ(ݐ) = (ݐ) +  (ݐ)ݍ݆

In the same way, by denoting ܾ(ݐ), the noise ܾ(ݐ) filtered by the receiving 
band-pass filter, we note ܾ(ݐ) the complex envelope of the filtered noise ܾ(ݐ):  ܾ(ݐ) = ܾ,(ݐ) + ݆ܾ,(ݐ) 

2) a) Determine the complex envelope, denoted ݏ,(ݐ), of the signal ݏ(ݐ) at the 
output of filter ܪ(݂) and in taking into account the noise ܾ(ݐ). Particularize this 
one at the instant ݐ = ݇ܶ of decision, that is ݏ,(݇ܶ).  

b) By separating real and imaginary parts of the complex envelope ݏ,(݇ܶ), 
determine the intersymbol interference on symbol ܽ, denoted ܫ(݇ܶ), on the one 
hand, and on symbol ܽᇱ , denoted ܫᇲᇱ (݇ܶ), on the other hand.    

3) Is it interesting to consider thereafter that the filter ܪ(݂) verifies the 
Hermitian symmetry in the case of a 2-ASK modulation? Justify your answer.   
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After quadrature demodulation, both noises ܾ,(݇ܶ) and ܾ,(݇ܶ) are supposed 
to have the same power ଶ. The signal-to-noise ratio given by: 

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  

is equal to 12 dB for signal ℜൣݏ,(݇ܶ)൧ after demodulation.  

It is considered that the amplitude spectrum ܲ(݂) of the real part is given by: 

ܲ(݂) = ሽ(ݐ)ሼܨ = ቐܶ  for  ݂ ∈ ቈ−(1 + 2ܶ(ߙ , (1 + 2ܶ(ߙ 0  otherwise                                     with ߙ = 56 

4) a) Determine the expression of the signal (ݐ) and give the values of (0) and (±ܶ).  

b) Give the relation of the optimal threshold ߤ =  ௧ of the decision blockߤ
and calculate its value according to ߪ (to simplify, you will take later in the 
problem π ≅ 3).  

c) In the case where we consider that only the symbols adjacent to a given 
symbol ܽ interfere with it, so the interfering messages are of the form: ݉ =ሼܽିଵ, ܽାଵሽ, calculate the intersymbol interference ܫ(݇ܶ) and the probability  =  .ሼ݉ሽ for each message ݉ interfering with ܽݎܲ

5) a) Determine the expression of the probability of error ܲ, on symbol ܽ.  

b) For each message ݉ interfering with symbol ܽ, calculate the conditional 
probabilities of erroneous decisions: 

ܲషభ = ܲ(ଵ ିଵ, ⁄ ) = ሼݎܲ ොܽ = 1 ܽ = −1, ݉⁄ ሽ 

ܲభ = ܲ(ିଵ ଵ, ⁄ ) = ሼݎܲ ොܽ = −1 ܽ = 1, ݉⁄ ሽ 

c) Deduce the probability of error ܲ, on symbol ܽ. What is the probability of 
error ܲ, on the binary information ܾ transmitted?   

NOTE.– If ܺ is a Gaussian random process with mean value ݉ and standard 
deviation ߪ, you will take: ܲݎሼ|ܺ − ݉| > ሽߪ 3.119 = 1.92 × 10ିଷ  ܲݎሼ|ܺ − ݉| > ሽߪ 3.395 = 6.8 × 10ିସ  



Digital Transmissions with Carrier Modulation: Problems 27 to 33     223 

ܺ|ሼݎܲ − ݉| > ሽߪ 3.842 = 1.4 × 10ିସ  ܲݎሼ|ܺ − ݉| > ሽߪ 4.118 = 6 × 10ିହ  ܲݎሼ|ܺ − ݉| > ሽߪ 4.5 ≅ 0 

Solution of problem 29 

1) Signals (ݐ)ݏ and ݏ(ݐ) are given by:   (ݐ)ݏ = ℜ ൝ܸ  ܽ ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

= ܸ  ܽ ݐ)ݔ − ݊ܶ) cos(2ߨ ݂ݐ + ߮) 

hence its real envelope ݏ(ݐ): ݏ(ݐ) = ܸ  ܽ ݐ)ݔ − ݊ܶ) 

2) a) One has: ݏ(ݐ) = ܸ ∑ ܽ ݐ)ݔ − ݊ܶ) and since the action of (ݐ)ݔ at the 
input of the equivalent baseband system is ݕ(ݐ) = (ݐ) +  at the output of (ݐ)ݍ݆
filter ܪ(݂) (noise-free), and taking into account the response of filtered noise 
turned into its equivalent baseband noise, that is ܾ(ݐ), the response ݏ,(ݐ) is then: ݏ,(ݐ) = ܸ  ܽ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ) 

For  ݐ = ݐ = (ܶ݇),ݏ  :,(݇ܶ) is writtenݏ  ,ܶ݇ = ܸ  ܽ ሼሾ(݇ − ݊)ܶሿ + ݇)ሾݍ݆ − ݊)ܶሿሽ + ܾ(݇ܶ) 

So: 

ℜൣݏ,(݇ܶ)൧ = ܸ ൝ܽ(0) +  ܽሾ(݇ − ݊)ܶሿஷ ൡ + ܾ,(݇ܶ) 

ℑൣݏ,(݇ܶ)൧ = ܸ ൝ ܽݍሾ(݇ − ݊)ܶሿ ൡ + ܾ,(݇ܶ) 
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b) Hence: 

(ܶ݇)ܫ = ܸ  ܽሾ(݇ − ݊)ܶሿஷ ൩ ᇲᇱܫ  ; (݇ܶ) = ܸ  ܽݍሾ(݇ − ݊)ܶሿ ൩ 

Since the useful signal is only carried by the real component in phase (because in 
2-ASK, ܽᇱ = 0  ∀ ݊), only the real part of ݏ,(݇ܶ) is interesting.   

3) Considering that ܪ(݂) verifies Hermitian symmetry does not matter, 
because, ܽᇱ = 0  ∀  ݊, the real part of ݏ,(݇ܶ) does not change. After demodulation, 
only the channel resulting from the demodulation with the carrier in phase is 
reconstructed and thus, even if the imaginary part of ݏ,(݇ܶ) is non-zero, this does 
not matter.   

4) a) We have:  

(ݐ) = ଵሼܲ(݂)ሽିܨ = (1 + (ߙ × sinሾߨ (1 + ݐ(ߙ ܶ⁄ ሿ1)ߨ + ݐ(ߙ ܶ⁄  

(0) = (1 + (ߙ = 1 + 5 6 = 1.833⁄  

(ܶ±) = sin ቂߨ + 6ߨ5 ቃߨ =   −sin ቂ56ߨ ቃߨ = −sin ቂ6ߨቃߨ = ߨ12− ≅ −16  

b) The optimal threshold is given by:   

,ߤ = ௧,ߤ = (0)ଶ2ܸߪ log ିଵଵ ൨ 

ଵି = 1 4  ; ଵ   = 3 4 → ,ߤ  = ⁄⁄ߪ  0.138−   

The signal-to-noise ratio is such that:  

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  = 12 dB 

hence:  ܸ(0) = ߪ 3.98  → ܸ =  ߪ 2.17
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c) Amplitude ܫ(݇ܶ) and probability  of the intersymbol interference: 

(ܶ݇)ܫ = ܸ   ܽሾ(݇ − ݊)ܶሿାଵ
ୀିଵ ; ஷ ൩ 

(ܶ݇)ܫ = ܸሾܽିଵ(ܶ) + ܽାଵ(−ܶ)ሿ = −6ܸ ሾܽିଵ + ܽାଵሿ 
Hence the amplitude and probabilities of the intersymbol interference for 

decision on symbol ܽ given in Table 3.4. 

  = ሼିࢇ,  ାሽࢇ
ࢂ− ሾିࢇ +  ାሿࢇ  

1 -1       -1 ܸ 3⁄ = 0.723   1/16ߪ

2 -1        1 0 3/16 

3 1       -1 0 3/16 

4 1        1 −ܸ 3⁄ = −0.723   9/16ߪ

Table 3.4. Amplitude ܫ(݇ܶ) and probability  of the intersymbol interference 

5) a) Expression of the probability of error ܲ, on symbol ܽ:  

ܲ, = ଵି  
ସ

ୀଵ × ܲషభ൩ + ଵ  
ସ

ୀଵ × ܲభ൩ 

b) Calculation of the conditional probabilities of error on symbol ܽ: 

ܲషభ = ܲ(ଵ ିଵ,⁄ ) = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ஶ
ఓబ,ା()ିூ(்) ܾ݀, 

ܲభ = ܲ(ିଵ ଵ,⁄ ) = ߨ2√ୣߪ1 න exp ቈ− 12 ܾୣ,୮ଶߪଶୣ ఓబ,ିቂ()ାூ(்)ቃ
ିஶ ܾ݀, 

Hence, Table 3.5 gives the conditional probabilities of erroneous decisions based 
on interfering messages. 
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 = ሼିࢇ, ࢋ,ࣆ ାሽࢇ + ()ࢂ − ࡵ ࢋ,ࣆ షࢋࡼ − ()ࢂൣ + ൧ࡵ ࢋࡼ  

-1 -1 3.119  9.6ߪ × 10ିସ −4.841   0ߪ

-1 1 3.842  7ߪ × 10ିହ −4.118  3ߪ × 10ିହ 

1 -1 3.842  7ߪ × 10ିହ −4.118  3ߪ × 10ିହ 

1 1 4.565  0 −3.395ߪ  3.4ߪ × 10ିସ 

Table 3.5. Conditional probabilities of erroneous  
decisions based on interfering messages  

c) Calculation of the probability of error: 

ܲ, = ଵି  
ସ

ୀଵ × ܲషభ൩ + ଵ  
ସ

ୀଵ × ܲభ൩ 

ܲ, = 14  116 × 9.6 × 10ିସ + 2 × 316 × 7 × 10ିହ൨ + 34 2 × 316 × 3 × 10ିହ + 916 × 3.4 × 10ିସ൨ ≅ 1.73 × 10ିସ 

We have: ܲ, = ܲ,  since a symbol ܽ depends only on a single symbol ܾ. 

3.4. Problem 30 – 4-QAM digital modulation transmission (2) 

We consider the digital transmission system with 4-QAM modulation given by 
the block diagram of Figure 3.5. For this type of modulation, symbols ܽ  and ܽᇱ  
take the values ሼ1, −1ሽ with the following probability law:   ܲݎሼܽ = 1ሽ = ሼܽᇱݎܲ = 1ሽ = ଵ = ሼܽݎܲ 0.65 = −1ሽ = ሼܽᇱݎܲ = −1ሽ = ଵି = 0.35 
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Figure 3.5. Block diagram of a digital transmission  
system with quadrature amplitude modulation  

We call ܪ(݂) the frequency gain of the low-pass filter equivalent to the total 
filter ܪ(݂) (which is band-pass around frequencies ݂ and − ݂) and we denote ݕ(ݐ) 
the signal at the output of the equivalent low-pass filter (frequency gain ܪ(݂)) 
when the signal input is the previous signal (ݐ)ݔ (noise excepted):  ݕ(ݐ) = (ݐ) +  (ݐ)ݍ݆

In the same way, we call ܾ(ݐ), the noise ܾ(ݐ) filtered by the receiving band-pass 
filter and we denote ܾ(ݐ) its complex envelope:  ܾ(ݐ) = ܾ,(ݐ) + ݆ܾ,(ݐ) 

The two components (real and imaginary parts) of the noise ܾ(ݐ) are assumed to 
be Gaussian, zero mean, of the same variance ߪଶ and decorrelated. Moreover, after 
demodulation, the signal-to-noise ratio on each channel is the following:  

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  = 9.6 dB 
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1) Give the expression of the complex envelope ݏ(ݐ) of the 4-QAM modulation 
signal.  

2) Determine the complex envelope, denoted ݏ,(ݐ), of signal ݏ(ݐ) at the output 
of the filter of frequency gain ܪ(݂), and taking into account the noise ܾ(ݐ). 
Particularize this one at the decision instants ݐ = ݇ܶ, that is ݏ,(݇ܶ).   

3) Write the real part ℜൣݏ,(݇ܶ)൧, and imaginary part ℑൣݏ,(݇ܶ)൧ of the signal ݏ,(݇ܶ), showing explicitly the useful signal, intersymbol interference (intra and 
inter-channel), and noise on each of these two parts.   

It is considered that the amplitude spectrum ܲ(݂) of signal (ݐ) is a constant 
function, equal to  ܶ on the frequency domain:  

– (1 + )2ܶ , (1 + )2ܶ ൨ 

with ߙ = 1 4⁄ , and zero elsewhere.   

It is also considered that the amplitude spectrum ܳ(݂) of signal (ݐ)ݍ is a 
constant function, equal to  ሾ1 +   :ሿܶ on the frequency domainߙ

−12ܶ , 12ܶ൨ 

and zero elsewhere.  

4) Determine the expressions of signals (ݐ) and (ݐ)ݍ and give the values of:  ݍ ; (0)ݍ  ; (ܶ±)  ; (0)(±ܶ) 

(in the rest of the problem you will take ߨ ≅ 3). 

5) Give the expressions of the intersymbol interferences ܫ(݇ܶ) and ܫᇲᇱ (݇ܶ) in 

the case where we have (݅ܶ) = 0 ∀ ݅ ≠ ሼ0, −1, 1ሽ. 

6) Calculate the values of the intersymbol interference ܫᇲᇱ (݇ܶ) for the different 

possible combinations of the message ݉ᇱ interfering with symbol ܽᇱ . 

7) Give the expression of the optimal threshold , ᇱ =  , =  ௧, and 

calculate its value according to ߪ.  

8) Show that, even without noise, the probability of error is very high.  
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Also, it is decided to more completely correct the equalization filter on the  
in-phase channel so that the amplitude spectrum ܲ(݂) of signal (ݐ) is constant, 
equal to ܶ, on the frequency domain:  

−12ܶ , 12ܶ൨ 

and zero elsewhere.  

Moreover, the amplitude spectrum ܳ(݂) of signal (ݐ)ݍ is adjusted to the value ܶߙ 2⁄  over the frequency domain:  

−12ܶ , 12ܶ൨ 

and zero elsewhere.  

9) Under these conditions, give the new expression of the intersymbol 
interference ܫᇲᇱ (݇ܶ) and calculate its value for the different messages ݉ᇱ.   

10) Give the expressions of the conditional probabilities of errors: ܲషభᇲ = ܲᇲ൫ଵ ିଵ,ᇲ⁄ ൯ = ሼݎܲ ොܽᇱ = 1 ܽᇱ = −1, ݉ᇱ⁄ ሽ ܲభᇲ = ܲᇲ൫ିଵ ଵ,ᇲ⁄ ൯ = ሼݎܲ ොܽᇱ = −1 ܽᇱ = 1, ݉ᇱ⁄ ሽ 

and calculate their values.  

11) Give the expression of the probability of error ܲ,ᇲ = ሼݎܲ ොܽᇱ ≠ ܽᇱ ሽ 

and calculate its value.  

NOTE.– If ܺ is a Gaussian random process, with zero mean (݉ = 0) and reduced 
standard deviation (ߪ = 1), we will assume we have approximately:   ܲݎሼ|ܺ| > 3.2ሽ = 1.4 × 10ିଷ ;   ܲݎሼ|ܺ| > 2.6ሽ = 9.4 × 10ିଷ ܲݎሼ|ܺ| > 2.8ሽ = 5.2 × 10ିଷ ;    ܲݎሼ|ܺ| > 3.4ሽ = 6 × 10ିସ 

Solution of problem 30 

1) The complex envelope is given by:   ݏ(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ) 
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2) Determination of the complex envelope ݏ,(ݐ).  

Since the action of (ݐ)ݔ at the input of the equivalent baseband system is ݕ(ݐ) = (ݐ) +  ,(݂) (noise-free)ܪ at the output of filter of frequency gain (ݐ)ݍ݆
and taking into account the response of filtered noise turned into its equivalent 
baseband noise, that is  ܾ(ݐ), the response ݏ,(ݐ) is then:   ݏ,(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ) 

For ݐ = ݐ = (ܶ݇),ݏ  :,(݇ܶ) is writtenݏ ,ܶ݇ = ܸ ሾܽ + ݆ܽᇱ ሿ ሼሾ(݇ − ݊)ܶሿ + ݇)ሾݍ݆ − ݊)ܶሿሽ + ܾ(݇ܶ) 

3) Expressions of the real ℜൣݏ,(݇ܶ)൧ and imaginary ℑൣݏ,(݇ܶ)൧ parts of the 
signal ݏ,(݇ܶ):  ℜൣݏ,(݇ܶ)൧ = ܸܽ(0) + (ܶ݇)ܫ + ܾ,(݇ܶ) ℑൣݏ,(݇ܶ)൧ = ܸܽᇱ (0) + ᇲᇱܫ (݇ܶ) + ܾ,(݇ܶ) 

with: 

(ܶ݇)ܫ = ܸ ێێێۏ
ۍ ܽሾ(݇ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

−  ܽᇱ ݇)ሾݍ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

ᇲᇱܫ (݇ܶ) = ܸ ێێێۏ
ۍ ܽᇱ ݇)ሾ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

+  ܽݍሾ(݇ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

4) We have:  (ݐ) = ଵሼܲ(݂)ሽିܨ = (1 + (ߙ × sinሾߨ (1 + ݐ(ߙ ܶ⁄ ሿ1)ߨ + ݐ(ߙ ܶ⁄  

(ݐ)ݍ = ଵሼܳ(݂)ሽିܨ = (1 + (ߙ × sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄  

(0) = (1 + (ߙ = 1 + 1 4 = 5 4 = 1.25⁄⁄  
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(ܶ±) = sinሾ5ߨ 4⁄ ሿߨ = ߨ22√− ≅ ߨ)      0.235− ≅ (0)ݍ (3 = (1 + (ߙ = (ܶ݅±)ݍ  ;1.25 = 0 ∀ ݅ ≠ 0;  ݅: integer 

5) Expressions of the intersymbol interference: 

(ܶ݇)ܫ = ܸ   ܽሾ(݇ − ݊)ܶሿାଵ
ୀିଵ; ஷ −  ܽᇱ ݇)ሾݍ − ݊)ܶሿ ൩ 

(ܶ݇)ܫ = ܸሾܽିଵ(ܶ) + ܽାଵ(−ܶ) − ܽᇱ ≅ ሿ(0)ݍ −ܸ3√2 ܽିଵ + ܽାଵ + 54 × 3√2 × ܽᇱ ൨ 

ᇲᇱܫ (݇ܶ) = ܸ   ܽᇱ ݇)ሾ − ݊)ܶሿାଵ
ୀିଵ; ஷ +  ܽݍሾ(݇ − ݊)ܶሿ ൩ 

ᇲᇱܫ (݇ܶ) = ܸሾܽିଵᇱ (ܶ) + ܽାଵᇱ (ܶ−) + ܽ(0)ݍሿ ≅ −ܸ3√2 ܽିଵᇱ + ܽାଵᇱ − 54 × 3√2 × ܽ൨ 

ᇲᇱܫ (݇ܶ) ≅ −ܸ3√2 ቈܽିଵᇱ + ܽାଵᇱ − 15√24 × ܽ 

6) Amplitudes of the intersymbol interference. 

These are given in Table 3.6 for the different possible intersymbol interferences. ᇱ = ሼିࢇᇱ , ,ࢇ ାᇱࢇ ሽ ࡵᇲᇱ  (ࢀ)

-1    -1    -1 −0.788 ܸ 

-1    -1     1 −1.25 ܸ 

-1     1    -1 1.72 ܸ 

-1     1     1 1.25 ܸ 

 1     -1    -1 −1.25 ܸ 

 1     -1     1 −1.72 ܸ 

 1      1    -1 1.25 ܸ 

  1      1     1 0.778 ܸ 

Table 3.6. Amplitudes of intersymbol interference ܫᇲᇱ (݇ܶ)  
for the different possible interfering messages ݉ᇱ 
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7) Calculation of the optimal threshold. We have:  

, ᇱ =  , =  ௧, = (0)ଶ2ܸߪ logୣ ିଵଵ ൨ = ଶ2ܸߪ × 1.25 logୣ 0.350.65൨≅ − 0.247 ܸ  ଶߪ

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  = 9.6 dB → ߪ(0)ܸ ≅ 3 → ܸ ≅   1.25ߪ3
hence: 

, ≅  ߪ 0.103−

8) Without noise, ℑൣݏ,(݇ܶ)൧ is written:   ℑൣݏ,(݇ܶ)൧ = ܸܽᇱ (0) + ᇲᇱܫ (݇ܶ) = 1.25 ܸܽᇱ + ᇲᇱܫ (݇ܶ) = ߪ3 × ܽᇱ + ᇲᇱܫ (݇ܶ) 

 

Figure 3.6. Sample value ܽᇱ ܸ, optimal threshold and estimation classes 

From the graph represented in Figure 3.6 and previous results on the values of ܫᇲᇱ (݇ܶ), we find that for taking a wrong decision, it suffices that: 

ቚܫᇲᇱ (݇ܶ)ቚ > 1.25 ܸ 

Specifically, the probability of taking an erroneous decision on ܽᇱ  is (see  
Table 3.6):  ܲݎሼof taking a wrong decision on ሾܽᇱ = ±1ሿሽ = 1 8 = 0.125⁄  

μ0, e σe–0.043  V = –0.103=0

σe1.25  V = 3

σe–1.25  V = –3

1=a'k
ˆ

–1=a'k
ˆ
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This is a very large value compared to a usual probability of error.   

9) New expression of the intersymbol interference ܫᇲᇱ (݇ܶ). We now have: 

(ݐ) = sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄  

thus: (0) = (ܶ݅±)  ; 1 = 0  ∀  ݅ ≠ 0 ;  ݅: integer  
And: 

(ݐ)ݍ = 2ߙ × sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄  

thus: (0)ݍ = 2ߙ = (ܶ݅±)ݍ  ;0.125 = 0  ∀  ݅ ≠ 0 ;  ݅: integer  
hence: ܫᇲᇱ (݇ܶ) = ܸܽ × (0)ݍ = 0.125 × ܸܽ =    ܽߪ 0.3

The amplitudes of the intersymbol interference for the different possible 
interfering messages are given in Table 3.7.  ᇱ = ᇲᇱࡵ ࢇ (ࢀ) = .  ࢋ࣌  ࢇ

1 -1 −0.3  ߪ

2 1 0.3  ߪ

Table 3.7. Amplitude of intersymbol interference ܫᇲᇱ (݇ܶ)  
for the different possible interfering messages ݉ᇱ 

10) Expressions of the conditional probabilities of error:    

ܲషభᇲ = ܲᇲ൫ଵ ିଵ,ᇲ⁄ ൯ = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ஶ
ఓబ,ା()ିூᇲᇲ (்) ܾ݀, 
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ܲభᇲ = ܲᇲ൫ିଵ ଵ,ᇲ⁄ ൯ = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ఓబ,ିቈ()ାூᇲᇲ (்)
ିஶ ܾ݀, 

Hence the probabilities of error on ܽᇱ  conditional on the interfering messages 
given in Table 3.8.  

ᇱ = ࢋ,ࣆ ࢇ + ()ࢂ − ᇲᇱࡵ షᇲࢋࡼ  ࢋ,ࣆ  − ቂࢂ() + ᇲᇱࡵ ቃ ࢋࡼᇲ  

-1 
ሾ−0.103 + 3 + 0.3ሿߪ≅  7ߪ 3.2  × 10ିସ 

ሾ−0.103 − 3 + 0.3ሿߪ≅ −2.8  2.6ߪ × 10ିଷ 

1 
ሾ−0.103 + 3 − 0.3ሿߪ≅  4.7ߪ 2.6  × 10ିଷ ሾ−0.103 − 3 − 0.3ሿߪ≅ −3.4  3ߪ × 10ିସ 

Table 3.8. Probabilities of error on ܽᇱ   
conditional on interfering messages ݉ᇱ  

11) Probability of error on symbol ܽᇱ : 

ܲ,ᇲ = ଵᇱି  ᇲ
ଶ

ୀଵ × ܲషభᇲ ൩ + ଵᇱ  ᇲ
ଶ

ୀଵ × ܲభᇲ ൩ 

The number of interfering messages on ܽᇱ  is ܯ, with:  ܯ = ܮ  ;2 = 1 → ܯ = 2ଵ = 2 

ᇲ = ೖ → ቊభᇲ = ଵି = 0.35  for  ܽ = మᇲ1− = ଵ = 0.65  for  ܽ = 1       ܲ,ᇲ = 0.35ሾ0.35 × 7 × 10ିସ + 0.65 × 4.7 × 10ିଷሿ +0.65ሾ0.35 × 2.6 × 10ିଷ + 0.65 × 3 × 10ିସሿ = 1.873 × 10ିଷ 
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3.5. Problem 31 – Digital transmissions with 4-QAM digital modulation: 
case of single and double paths propagation  

The 4-QAM digital modulation (also called QPSK modulation) transmission 
system given by the block diagram of Figure 3.7 is considered. In this kind of 
modulation symbols ܽ  and ܽᇱ  take their values on ሼ1, −1ሽ. 

 

Figure 3.7. Block diagram of a digital transmission system with QAM modulation 

A. Case of a single path propagation 

The symbols ܾ delivered by the binary source are emitted every ܶ seconds. 
The baseband encoder of the transmission system generates two baseband signals (ݐ)ܫ and ܳ(ݐ) as follows:   

– separation of the binary sequence ሼܾሽ into two binary sequences ሼܾଶሽ and ሼܾଶାଵሽ;  

– transcoding the sequences ሼܾଶሽ and ሼܾଶାଵሽ into two sequences of symbols ሼܽሽ and ሼܽᇱ ሽ ∈ ሼ1, −1ሽ; 

– pulse amplitude modulation using the basic pulse (ݐ)ݔ  :(ݐ)ݔ = ቄ1   for   ݐ ∈ ሾ− ܶ 2,  ܶ 2⁄⁄ ሾ0  elsewhere                       
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The two baseband signals (ݐ)ܫ and ܳ(ݐ) are expressed by: (ݐ)ܫ =  ܽݐ)ݔ − ݊ܶ)       and      ܳ(ݐ) =  ܽᇱ ݐ)ݔ − ݊ܶ) 

and indicate that the symbols ሼܽሽ and ሼܽᇱ ሽ  are emitted every ܶ seconds.  

The modulator is defined by the carrier signal: (ݐ) = ܸexpሾ݆(2ߨ ݂ݐ + ߮)ሿ 
It constructs a real signal (ݐ)ݏ by adequate linear modulation of the digital signal 

to be modulated:  ܿ(ݐ) = (ݐ)ܫ +  (ݐ)݆ܳ

The linear transmission filter (of complex gain ܩ(݂)) and reception filter (of 
complex gain ܩ(݂)) are of the band-pass type around frequencies ݂ and − ݂. The 
transmission channel is assumed to be modeled by a linear filter (of complex gain ܪ(݂)) to which is added an observation noise ܾ(ݐ). This latter is assumed to be a 
Gaussian white random process, with power spectral density equal to ߁ 2⁄  in the 
frequency band covered by the receiving band-pass filter.       

Moreover, let:   ܪ(݂) = (݂)ܩ × (݂)ܪ ×  (݂)ܩ

and: ℎ(ݐ) = ݃(ݐ)⨂ℎ(ݐ)⨂݃(ݐ) 

be assumed real.  

1) Write the real signal (ݐ)ݏ obtained at the output of the modulator in 
quadrature at ܯଵ ×    .(ݐ) the two components modulating in quadrature the carrier (ݐ)ݏ ଶ states. Show explicitly in the expression of the real signalܯ

2) Determine its complex envelope, denoted ݏ(ݐ).  

From now on, it is assumed that the amplitude spectrum of the transmitted digital 
modulation signal has a frequency band limited to: 

|݂| ∈  ݂ − ∆2݂ , ݂ + ∆2݂  ൨  with  ∆݂ ≪ ݂  
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We call ܪ(݂) the frequency gain of the low-pass filter equivalent to the total 
filter of frequency gain  ܪ(݂) (which is a band-pass filter around the frequencies ݂ 
and − ݂) and ݕ(ݐ) the signal at the output of the equivalent low-pass filter 
(frequency gain ܪ(݂)) when the input signal is the previous signal (ݐ)ݔ (noise 
excepted). We denote:   ݕ(ݐ) = (ݐ) +  (ݐ)ݍ݆

In the same way, by denoting ܾ(ݐ), the noise ܾ(ݐ) filtered by the receiving 
band-pass filter, we note:  ܾ(ݐ) = ܾ,(ݐ) + ݆ܾ,(ݐ) 

the complex envelope of the filtered noise ܾ(ݐ). The two components of the noise ܾ(ݐ) (real and imaginary parts) are assumed to be Gaussian, zero mean, of the same 
variance ߪଶ and decorrelated.  

3) Determine the complex envelope, denoted ݏ,(ݐ), of the signal ݏ(ݐ) at the 
output of the equivalent low-pass filter of frequency gain ܪ(݂), and in taking the 
noise ܾ(ݐ) into account.  

4) Particularize this one at the decision instants ݐ = ݇ܶ, that is ݏ,(݇ܶ).   

5) By separating the real and imaginary parts of the complex envelope ݏ,(݇ܶ), 
determine the intersymbol interference on the symbol ܽ, denoted ܫ(݇ܶ), on the 
one hand, and on the symbol ܽᇱ , denoted ܫᇲᇱ (݇ܶ), on the other hand. 

6) In the following, we assume that the characteristics of the band-pass filters 
and of the channel are such that the equivalent low-pass filter ܪ(݂) satisfies the 
Hermitian symmetry. Show that ݕ(ݐ) is then a real signal ((ݐ)ݍ = 0).  

7) Then give the new expression of the signal ݏ,(݇ܶ).  

Moreover, the amplitude spectrum ܲ(݂) is:  

ܲ(݂) = ሽ(ݐ)ሼܨ = ൝ܶߙ  for  ݂ ∈ −12ܶ , 12ܶ൨0  elsewhere                
8) Show that the intersymbol interference ܫ(݇ܶ) is null.  

The signal-to-noise ratio:  

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  
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after demodulation of each of the (ݐ)ܫ and ܳ(ݐ) signals is equal to 14 dB.  

9) For independent and equiprobable binary symbols ܾ, calculate the probability 
of error ܲ, on symbol ܽ.  

B. Case of a double path propagation (a direct and a delayed 
transmission path)  

In this section, we will keep the hypothesis that the equivalent low-pass filter has 
an even frequency gain ܪ(݂) (hence (ݐ)ݍ = 0). The intersymbol interference ܫ(݇ܶ) due to the delayed path is assumed to be limited only to symbols adjacent 
to a given symbol ܽ (so symbols ܽିଵ and ܽାଵ). 

Similarly, the inter-symbol interference ܫᇲᇱ (݇ܶ) also due to the delayed path is 

assumed to be limited only to symbols adjacent to a given symbol ܽᇱ  (so symbols ܽିଵᇱ  and  ܽାଵᇱ ). 

The equivalent baseband signal ݏ,(ݐ) is now considered to be the sum of two 
signals:  

– the first, denoted ݏ,  ;corresponds to a transmission through the direct path ,(ݐ)

– the second signal corresponds to a delayed transmission (with a delay ߬) due to 
a complex reflection.  

Under these conditions, the complex envelope of the resulting signal received 
can be written in the form:  ݏ,(ݐ) = ,ݏ (ݐ) + ߩ × expሾ−݆2ߨ ݂߬ሿ × ,ݏ ݐ) − ߬) 

with: ߩ =   .expሾ݆߮ሿ  a complex reflection coefficient|ߩ|

A record of the signal ݏ,(݇ܶ) shows that the amplitude of the latter oscillates 
between two levels:  

– a maximum level (summation in phase of the two components); 

– a minimum level (summation in opposite phase of the two components) 

and that the maximum dynamics between these two levels is given by the following 
expression (standing wave ratio): 1 + 1|ߩ| − |ߩ| = 3 
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For the sake of simplification, we assume that the phase shift ߮ due to the 
complex reflection coefficient ߩ compensates for that, due to the difference in the 
path lengths ሾ−2ߨ ݂߬ሿ for given values of ߬ and ݂.   

10) Determine the reflection coefficient modulus |ߩ|.  
11) Give the new expression of the signal ݏ,(݇ܶ) (at the instant ݐ = ݇ܶ).   

12) By separating real and imaginary parts of the complex envelope ݏ,(݇ܶ), 
determine the intersymbol interference on symbol ܽ, denoted ܫ(݇ܶ), on the one 
hand, and on symbol ܽᇱ , denoted ܫᇲᇱ (݇ܶ), on the other hand.  

13) Taking ߬ = ܶ 2⁄ , rewrite the new expression of intersymbol interference ܫ(݇ܶ) and calculate its value for the different messages ݉ (to simplify, you will 
take ߨ ≅ 3). 

14) Is the digital link affected compared to that of part A? If yes, why? Justify 
your answer.  

15) Calculate the new probability of error on symbol ܽ (equiprobable 
messages).  

NOTE.– If ܺ is a Gaussian random process, with mean value ݉ and standard 
deviation ߪ, you will take:  ܲݎሼ|ܺ − ݉| > ሽߪ 5 = 2 × 10ି ;   ܲݎሼ|ܺ − ݉| > ሽߪ 5.55 = 10ି ܲݎሼ|ܺ − ݉| > ሽߪ 4.44 = 2 × 10ିହ ;    ܲݎሼ|ܺ − ݉| > ሽߪ 6 ≅ 0 

Solution of problem 31 

A. Case of a single path propagation 

1) The real signal (ݐ)ݏ at the output of the modulator is written:   (ݐ)ݏ = ℜ ൝ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

(ݐ)ݏ = ܸ  ܽ ݐ)ݔ − ݊ܶ) cos(2ߨ ݂ݐ + ߮) 

−ܸ  ܽᇱ ݐ)ݔ − ݊ܶ) sin(2ߨ ݂ݐ + ߮) 

2) By definition, (ݐ)ݏ is also written:  (ݐ)ݏ = ℜሼݏ(ݐ) × expሾ݆(2ߨ ݂ݐ + ߮)ሿሽ 
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Hence the complex envelope of signal (ݐ)ݏ is: ݏ(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ) 

3) Expression of the signal ݏ,(ݐ): since the action of (ݐ)ݔ at the input of the 
equivalent baseband system is ݕ(ݐ) = (ݐ) +  at the output of filter of (ݐ)ݍ݆
frequency gain ܪ(݂) (noise-free), and taking into account the response of filtered 
noise turned into its equivalent baseband noise, that is ܾ(ݐ), the response ݏ,(ݐ) is 
then:     ݏ,(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ) 

4) For ݐ = ݐ = (ܶ݇),ݏ :,(݇ܶ) is writtenݏ ,ܶ݇ = ܸ ሾܽ + ݆ܽᇱ ሿ ሼሾ(݇ − ݊)ܶሿ + ݇)ሾݍ݆ − ݊)ܶሿሽ + ܾ(݇ܶ) 

5) Intersymbol interference on ܽ and ܽᇱ  respectively  

ℜൣݏ,(݇ܶ)൧ = ܸ ൝ܽ(0) +  ܽሾ(݇ − ݊)ܶሿ −  ܽᇱ ݇)ሾݍ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) ℑൣݏ,(݇ܶ)൧ = ܸ ൝ܽᇱ (0) +  ܽᇱ ݇)ሾ − ݊)ܶሿ +  ܽݍሾ(݇ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) 

hence: 

(ܶ݇)ܫ = ܸ ێێێۏ
ۍ ܽሾ(݇ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

−  ܽᇱ ݇)ሾݍ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

ᇲᇱܫ (݇ܶ) = ܸ ێێێۏ
ۍ ܽᇱ ݇)ሾ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

+  ܽݍሾ(݇ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
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6) The filter of frequency gain ܪ(݂) satisfies the Hermitian symmetry, then  ℎ(ݐ) is a real function. Therefore ݕ(ݐ) = (ݐ)ℎ⨂(ݐ)ݔ =  is a real function (ݐ)
(ݐ)ݍ) = 0).  

7) In this case, the signal ݏ,(݇ܶ) becomes:    ݏ,(݇ܶ) = ܸ ሾܽ + ݆ܽᇱ ሿ ሼሾ(݇ − ݊)ܶሿሽ + ܾ(݇ܶ) 

8) Show that the intersymbol interference ܫ(݇ܶ) is null.  

We have: 

(ݐ)ݍ = 0 → (ܶ݇)ܫ = ܸ  ܽሾ(݇ − ݊)ܶሿஷ ൩ 

which depends on (ݐ). And (ݐ) is such that:  

(ݐ) = ଵሼܲ(݂)ሽିܨ = ߙ × sinሾߨ ݐ ܶ⁄ ሿݐߨ ܶ⁄  → (0) = (ܶ݅±)  ;ߙ = 0 ∀ ݅ ≠ 0; ݅: integer 

hence: ܫ(݇ܶ) = 0. 

9) Calculation of the probability of error ܲ,: ℜൣݏ,(݇ܶ)൧ = ܸܽ(0) + ܾ,(݇ܶ) 

hence: 

ܲ, = ଵି × ܲషభ + ଵ × ܲభ 

Indeed, since the ISI is zero, the notion of interfering messages disappears and 
we have:  ିଵ = ଵ = 1 ܯ = 1 ⁄⁄,ߤ   ;2 = 0 

→ ܲ, = 12 ൣ ܲషభ + ܲభ൧ 
with:  

ܲషభ = ܲ(ଵ ିଵ,⁄ ) = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ஶ
() ܾ݀, 
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ܲభ = ܲ(ିଵ ଵ,⁄ ) = ߨ2√ୣߪ1 න exp ቈ− 12 ܾୣ,୮ଶߪଶୣ ି()
ିஶ ܾ݀, 

The signal-to-noise ratio is:   

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  = 14 dB → (0)ܸ ≅  ߪ 5

Hence:  

ܲ, = 12 ൣ ܲషభ + ܲభ൧ = 12 ሾ10ି + 10ିሿ = 10ି 

B. Case of a double path propagation (a direct and a delayed transmission 
path)  

10) Reflection coefficient modulus:   1 + 1|ߩ| − |ߩ| = 3 → |ߩ| = 1 2⁄  

11) New expression of ݏ,(݇ܶ): ݏ,(݇ܶ) = ܸ ሾܽ + ݆ܽᇱ ሿ ሼሾ(݇ − ݊)ܶሿ + ݇)ሾ|ߩ| − ݊)ܶ − ߬ሿሽ + ܾ(݇ܶ) 

12) Determination of the intersymbol interferences on ܽ and ܽᇱ  . We have:  

ℜൣݏ,(݇ܶ)൧ = ܸ ൝ܽሾ(0) + ሿ(߬−)|ߩ| +  ܽାଵ
ୀିଵ ;  ஷ ݇)ሾ − ݊)ܶሿ 

|ߩ|+  ܽାଵ
ୀିଵ ;  ஷ ݇)ሾ − ݊)ܶ − ߬ሿൡ + ܾ,(݇ܶ) 

The terms of the first summation are null because (±݅ܶ) = 0 ∀ ݅ ≠0; ݅: integer, hence:  ܫ(݇ܶ) = ܶ)ሾܽିଵ|ߩ|ܸ − ߬) + ܽାଵ(−ܶ − ߬)ሿ 
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And we have: 

ℑൣݏ,(݇ܶ)൧ = ܸ ൝ܽᇱ ሾ(0) + ሿ(߬−)|ߩ| +  ܽᇱାଵ
ୀିଵ ;  ஷ ݇)ሾ − ݊)ܶሿ 

|ߩ|+  ܽᇱାଵ
ୀିଵ ;  ஷ ݇)ሾ − ݊)ܶ − ߬ሿൡ + ܾ,(݇ܶ) 

The terms of the first summation are null because (±݅ܶ) = 0 ∀ ݅ ≠0; ݅: integer, hence:  ܫᇲᇱ (݇ܶ) = ሾܽିଵᇱ|ߩ|ܸ ܶ) − ߬) + ܽାଵᇱ ܶ−) − ߬)ሿ 
13) For ߬ = ܶ 2⁄ (ܶ݇)ܫ : = ܶ)ሾܽିଵ|ߩ|ܸ 2⁄ ) + ܽାଵ3ܶ−) 2⁄ )ሿ 
From the result of question 8:  (± ܶ 2⁄ ) = ߨߙ2 ≅ 3ߙ2 ±)   ; 3ܶ 2⁄ ) = ߨ3ߙ2− ≅ 9ߙ2−  

And from the results of questions 9, 10 and 13, we have:  

|ߩ| = 12 ܸߙ    ;  = ܸ(0) =  ߪ 5

→ (ܶ݇)ܫ = 12 ܸ 23ߙ ܽିଵ − 9ߙ2 ܽାଵ൨ = 9ܸߙ ሾ3ܽିଵ − ܽାଵሿ 
Hence, the amplitudes of the new intersymbol interference are given in Table 3.9. 

 = ሼିࢇ, (ࢀ)ࡵ ାሽࢇ = ૢࢂࢻ ሾିࢇ −  ାሿࢇ
-1       -1 

−29 ܸߙ = −109  ߪ

-1       1 
−49 ܸߙ = −209  ߪ

1       -1 
49 ܸߙ = 209  ߪ

1        1 
29 ܸߙ = 109  ߪ

Table 3.9. Amplitudes of the new intersymbol interference  ܫ(݇ܶ)  
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14) From the results of questions 12 and 13, the digital link is well affected 
because the ISI, caused by the delayed path via the function ݐ) − ߬), is non-zero. 

15) New probability of error on symbol ܽ:  

ܲ, = ଵି  
ସ

ୀଵ × ܲషభ൩ + ଵ  
ସ

ୀଵ × ܲభ൩ 

From the fact that the symbols are independent and equiprobable, we have: ିଵ = ଵ = 1 ܯ = 1 2;   ⁄⁄  = 1 ܯ = 1 2ଶ⁄⁄ = 1 4⁄  

ܲ, = 18 ൣ ܲషభ + ܲభ൧ସ
ୀଵ  

with respectively: 

ܲషభ = ܲ(ଵ ିଵ,⁄ ) = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ஶ
ሾ()ା|ఘ|(ି் ଶ⁄ )ሿିூ(்) ܾ݀, 

ܲభ = ܲ(ିଵ ଵ,⁄ ) = ߨ2√ୣߪ1 න exp ቈ− 12 ܾୣ,୮ଶߪଶୣ ିሾ()ା|ఘ|(ି் ଶ⁄ )ሿିூ(்)
ିஶ ܾ݀, 

We have: 

ܸሾ(0) + −)|ߩ| ܶ 2⁄ )ሿ = ܸ ቂߙ + 3ቃߙ = 43 ܸߙ = 43 × ߪ 5 = 203  ߪ 

hence the calculations of the conditional probability intervals and the associated 
conditional probabilities for symbol ܽ presented in Table 3.10.  

Hence, finally, the new probability of error on symbol ܽ is: 

ܲ, = 18 × ൣ ܲషభ + ܲభ൧ସ
ୀଵ = 10ିହ + 12 × 10ି + 12 × 10ି + 10ିହ൨ 

= 2.625 × 10ି 
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 = ሼିࢇ,  ାሽࢇ
()ሾࢂ + −)|࣋| ࢀ ⁄ )ሿ− షࢋࡼ (ࢀ)ࡵ ()ሾࢂ− + −)|࣋| ࢀ ⁄ )ሿ −(ࢀ)ࡵ 

 ࢋࡼ

-1       -1 203 ߪ + 109 ߪ = 7.77 −  0ߪ 203 ߪ − 109 ൨ߪ =  ߪ 5.55−
10ି2  

-1       1 203 ߪ + 209 ߪ = 8.88 −  0ߪ 203 ߪ − 209 ൨ߪ =   10ିହߪ 4.44−

1       -1 203 ߪ − 209 ߪ = 4.44  10ିହߪ − 203 ߪ + 209 ൨ߪ =   0ߪ 8.88−

1        1 
203 ߪ − 109 ߪ = 5.55  ߪ

10ି2 − 203 ߪ + 109 ൨ߪ =   0ߪ 7.77−

Table 3.10. Conditional probability intervals and the  
associated conditional probabilities for symbol ܽ 

3.6. Problem 32 – Performance of digital modulations and 16-QAM 
digital modulation 

For the digital radio modulations displayed in Table 3.11 hereinafter, operating 
at the same bitrate ܦ = 12 Mbit/s and the same carrier frequency ݂ (90 MHz), 
determine:   

1) The fundamental frequency ݂ (MHz), the necessary minimum frequency 
band of channel ே݂ (MHz) for transmitting, without intersymbol interference, the 
corresponding symbol rate ܦ௦ (Msymbol/s), the lower value of the frequency band 
(MHz) (minimum lower side frequency: LSF), and the upper value of the frequency 
band (MHz) (maximum upper side frequency: USF).   

Modulation ࡺࢌ (ܢ۶ۻ) ࢇࢌ =(ܢ۶ۻ) ࢙ࡰ  LSF (MHz) USF (MHz) (࢙/ܔܗ܊ܕܡܛۻ)

BPSK     

QPSK     

OQPSK     

8-PSK     

16-QAM     

Table 3.11. Comparative characteristics of the minimum frequency  
bands required for different types of digital modulations 

The choice of a linear modulation method depends on several parameters (bitrate, 
channel bandwidth, noise, phase jitter, maximum cost). The constellation diagram 
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2) Determine for each of the three constellation diagrams (4-ASK, 4-QAM 
(QPSK), 16-QAM) presented in Figure 3.9: 

a) the distance ݀; 

b) the distance between two adjacent states ݀ெ,ெೕ ;  ݅ ≠ ݆ expressed in  ݀ெభ,ெమ(ref); 

c) the decrease ߜ in dB of the signal-to-noise ratio (ܵ ⁄ܤ ) with respect to the  
2-PSK modulation.    

 

Figure 3.9. Constellation diagrams of 4-ASK, 4-QAM  
(QPSK) and16-QAM digital modulations 

4-state Amplitute Shift Keying (4-ASK)

4-state Quatemary Phase Shift Keying (QPSK)

16-state Quadrature Amplitude Modulation (16-QAM)
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We now want to realize a 16-QAM modulation whose polar coordinates of the 
first state ܯ (state 0000) are:  ൣߩ = √18  ;  ߰ = 45 °൧ 

3) Determine the pair of amplitudes ሾܽ ; ܽᇱ ሿ allowing homogeneous 
distribution of the 16 states in the plane ሼܫ, ܳሽ.  

The carrier is defined by: (ݐ) = ܸexpሾ݆(2ߨ ݂ݐ + ߮)ሿ  
and the signal (ݐ)ݔ is given by: (ݐ)ݔ = ቄ1   for   ݐ ∈ ሾ− ܶ 2,  ܶ 2⁄⁄ ሾ0  elsewhere                       

4) What is the expression of the real signal (ݐ)ݏ at the output of the modulator? 
Give its complex envelope ݏ(ݐ). 

We call ܪ(݂) the frequency gain of the low-pass filter equivalent to the total 
filter of frequency gain ܪ(݂) (which is a band-pass filter around the frequencies ݂ 
and − ݂)  and ݕ(ݐ) the output of the low-pass filter of frequency gain ܪ(݂) when 
the input signal is the previous signal (ݐ)ݔ (noise excepted). We denote:  ݕ(ݐ) = (ݐ) +  (ݐ)ݍ݆

In the same way, by denoting ܾ(ݐ), the noise ܾ(ݐ) filtered by the receiving 
band-pass filter, we denote by ܾ(ݐ) the complex envelope of ܾ(ݐ):  ܾ(ݐ) = ܾ,(ݐ) + ݆ܾ,(ݐ)  

5) Determine the complex envelope, denoted ݏ,(ݐ), of the signal ݏ(ݐ) at the 
output of the filter of frequency gain ܪ(݂), taking into account the noise ܾ(ݐ).  

6) Give the expression of the signal ݏ(ݐ) and its amplitude spectrum ܵ(݂).  

7) Give the block diagram of the 16-QAM modulator built from two 4-QAM 
(QPSK) modulators.  

8) We note ݏଵ(ݐ) the output of the first modulator 4-QAM: M1(R, J), and by ݏଶ(ݐ) the output of the second modulator 4-QAM: M2(Q, I). Give the expression of 
the signal (ݐ)ݏ at the output of the 16-QAM modulator.   
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Solution of problem 32 

1) We have:  

 

Figure 3.10. Fundamental frequency characteristics of a digital modulation 

The minimum bandwidth ே݂ of a transmission channel in digital communication 
with carrier modulation is:  

ே݂ = ሾ ݂ + ݂ሿ − ሾ ݂ − ݂ሿ = 2 ݂ = ௦ܦ  ௦  andܦ = ܦ݇   such that: 2 =   ܯ
The minimum lower side frequency (LSF) is:  LSF = ݂ − ݂ 

The maximum upper side frequency (USF) is:   USF = ݂ + ݂ 

According to the modulation used, we have the following results (Table 3.12):  

Modulation ࡺࢌ (ܢ۶ۻ) ࢇࢌ =(ܢ۶ۻ) ࢙ࡰ  LSF (MHz) USF (MHz) (࢙/ܔܗ܊ܕܡܛۻ)

BPSK 
2ܦ = ܦ 6 = 12 90 – 6 = 84 90 + 6 = 96 

QPSK 4ܦ = 3 
2ܦ = 6 90 – 3 = 87 90 + 3 = 93 

OQPSK 
2ܦ = ܦ 6 = 12 90 – 6 = 84 90 + 6 = 96 

8-PSK 
6ܦ = 2 

3ܦ = 4 90 – 2 = 88 90 + 2 = 92 

16-QAM 
8ܦ = 1.5 

4ܦ = 3 90 – 1.5 = 88.5 90 + 1.5 = 91.5 

Table 3.12. Comparative characteristics of the minimum frequency  
bands required for different types of digital modulation  

fN

fc
fc fc  + fa

Max USF
fc  – fa

Min LSF
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2) We have for reference the constellation diagram (Figure 3.8) of a 2-PSK 
(BPSK) modulation, hence: ܲ =  ܸଶ.  

In the case of any digital modulation with the same average power ܸଶ and 
equiprobability of the constellation points (symbols), we have: 

ܲ =   ܸଶ = 1݊
ୀଵ  ܸଶ = (ଶ݀)ܧ = ܸଶ

ୀଵ   
– 4-ASK modulation: 

a)  
ଵସ × 2ൣ݀ெయଶ + ݀ெరଶ ൧ = ଵଶ ሾ݀ଶ + (3݀)ଶሿ = 5݀ଶ = ܸଶ  → ݀ = √ହ 

b) ݀ெభெమ = 2݀ = ଶ√ହ = ௗಾభಾమ(୰ୣ)√ହ
 

c) ߜ = −20 × logଵ ቀ ଵ√ହቁ ≅ 7 dB  

– 4-QAM (QPSK) modulation: 

a)  
ଵସ × 4ൣ݀ெభଶ ൧ = 2݀ଶ = ܸଶ  → ݀ = √ଶ 

b) ݀ெమெభ = 2݀ = √2 ܸ = ௗಾభಾమ(୰ୣ)√ଶ  

c) ߜ = −20 × logଵ ቀ ଵ√ଶቁ ≅ 3 dB 

– 16-QAM modulation: 

a) ݀ெబଶ = 2݀ଶ  ;    ݀ெభଶ = 10݀ଶ  ;    ݀ெరଶ = 10݀ଶ  ;    ݀ெఱଶ = 18݀ଶ → 116 × 4ൣ݀ெబଶ + ݀ெభଶ + ݀ெరଶ + ݀ெఱଶ ൧ = 14 ሾ40݀ଶሿ = 10݀ଶ = ܸଶ  → ݀ = √ܸ10 

b) ݀ெబெభ = 2݀ = ଶ √ଵ = ௗಾభಾమ(୰ୣ)√ଵ  

c) ߜ = −20 × logଵ ቀ ଵ√ଵቁ ≅ 10 dB 

3) In the state ܯ (0 0 0 0), we have:   ߩ = √18߰ = 45 °ቋ → ൜ܽ = ߩ cos(߰) = 3ܽᇱ = ߩ sin(߰) = 3 
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To have a homogeneous distribution of the 16 states in the (ܫ, ܳ) plane, it is 
necessary to take:   ሼܽ, ܽᇱ ሽ = ሼ±3, ±9ሽ 

 

Figure 3.11. Examples of positioning the points in the  
constellation diagram of the 16-QAM modulation 

4) The real signal (ݐ)ݏ at the output of the modulator is written:  (ݐ)ݏ = ℜ ൝ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ)expሾ݆(2ߨ ݂ݐ + ߮)ሿൡ 

(ݐ)ݏ = ℜሼݏ(ݐ) × expሾ݆(2ߨ ݂ݐ + ߮)ሿሽ → (ݐ)ݏ = ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ) 

5) We have:  ݏ(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ) 

Since the action of (ݐ)ݔ at the input of the equivalent baseband system is:  ݕ(ݐ) = (ݐ) +   (ݐ)ݍ݆

At the output of the filter of frequency gain ܪ(݂) (noise-free), and taking into 
account the response of filtered noise turned into its equivalent baseband noise, i.e. ܾ(ݐ), the response ݏ,(ݐ) is then: 
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(ݐ),ݏ = ܸ ሾܽ + ݆ܽᇱ ሿ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ) 

6) Expression of signal ݏ(ݐ) and its amplitude spectrum ܵ(݂)? We have: ݏ(ݐ) = ℜ൛ݏ,(ݐ) × expሾ݆(2ߨ ݂ݐ + ߮)ሿൟ 

(ݐ)ݏ = ℜ ൝ܸ ሾܽ + ݆ܽᇱ ሿ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ)൩ 

× ሾcos(2ߨ ݂ݐ + ߮) + ݆ sin(2ߨ ݂ݐ + ߮)ሿሽ → (ݐ)ݏ = ܸ ሾܽݐ) − ݊ܶ) − ܽᇱ ݐ)ݍ − ݊ܶ)ሿ × cos(2ߨ ݂ݐ + ߮) 

−ܸ ሾܽᇱ ݐ) − ݊ܶ) − ܽݐ)ݍ − ݊ܶ)ሿ × sin(2ߨ ݂ݐ + ߮) +  (ݐ)ܾ

The signal ݏ(ݐ) is also written:  

(ݐ)ݏ = 12 ൛ݏ,(ݐ) × expሾ݆(2ߨ ݂ݐ + ߮)ሿ + ∗,ݏ (ݐ) × expሾ−݆(2ߨ ݂ݐ + ߮)ሿൟ 

→ ܵ(݂) = 12 ൛ܵ,(݂)⨂ߜ(݂ − ݂) + ܵ,∗ ݂−)ߜ⨂(݂−) − ݂)ൟ 

thus: 

ܵ(݂) = 12 ൛ܵ,(݂ − ݂) + ܵ,∗ (−݂ − ݂)ൟ 
7) See Figure 3.12. See also Volume 1, Chapter 7 for more details. 

8) Expression of (ݐ)ݏ at the output of the 16-QAM modulator based on two  
4-QAM modulators:  ݏଵ(ݐ) = ܸሾ(ݐ)ܬ cos(2ߨ ݂ݐ + ߮) − (ݐ)ܴ sin(2ߨ ݂ݐ + ߮)ሿ ݏଶ(ݐ) = ܸሾ(ݐ)ܫ cos(2ߨ ݂ݐ + ߮) − (ݐ)ܳ sin(2ߨ ݂ݐ + ߮)ሿ 

(ݐ)ݏ = (ݐ)ଵݏ + 12  (ݐ)ଶݏ
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Figure 3.12. Block diagram of the realization of the 16-QAM modulator  
constructed from two QPSK modulators 

3.7. Problem 33 – QAM encoding and transmission of motion 
information of digital video  

The context is that of the transmission of coded video. Several categories of 
information are to be represented and coded in a compressed form. One of these 
categories is motion information. 

Each frame ܫ௧ of a temporal sequence ܵܫ of digital frames ܵܫ = ሼ⋯ , ,௧ିଵܫ ,௧ܫ ,௧ାଵܫ ⋯ ሽ is divided into ܭ macro-blocks ܤܯ, of size 16 × 16 pixels  
(we have ݇ = 1, 2, ⋯ ,  frames per second ܮ sequence consists of ܫܵ The .(ܭ
(typically in Europe ܮ = 25). Each macro-block ܤܯ is associated with a motion 
vector (also called displacement vector) ܦሬሬԦ which makes it possible to predict its 
content from the decoded preceding frame. ܦሬሬԦ is a vector with two components ݀ 
denoted (݀ݔ,     .with values considered to be integers in this problem ,(ݕ݀

For simplicity, we suppose that in practice only seven values for ݀ݔ, on the one 
hand, and for ݀ݕ, on the other hand, are of significant probabilities. It is also 
assumed that ݀ݔ and ݀ݕ components have the same statistics (this is not true at all in 

R
eg

is
te

r

d

c

b

a

D
iff

er
en

tia
l

co
di

ng
D

iff
er

en
tia

l
co

di
ng

÷ 4
ck: bitrate D

M1
QPSK

D/4
Jn

Rn

D/4

M2
QPSK

In

Qn

Att
6dB

∑

Sequence {bn} = 
0
1

s(t)

+

+

V
×

×

×

×

V/2



254     Digital Communications 2 

practice). Each value of ݀ (݀ݔ and ݀ݕ) is associated with a symbol ݏ. These values 
are given in Table 3.13 below with their associated probability.       

Value -3 -2 -1 0 1 2 3 ݏ ࢙ଵ ݏଶ ݏଷ ݏସ ݏହ ݏ ݏ 

Probability 0.0625 0.125 0.25 0.35 0.125 0.0625 0.025 

Table 3.13. Values and probabilities of a  
component d of the displacement vector ܦሬሬԦ 

1) a) Determine the entropy ܪ(݀) of a component ݀ (݀ݔ or ݀ݕ) of the 
displacement vector ܦሬሬԦ (we indicate: logଶ(0.35) = −1.5146 and logଶ(0.025) =−5.322).  

b) Deduce the entropy ܪ൫ܦሬሬԦ൯ of the displacement vector ܦሬሬԦ for a separate 
coding of ݀ݔ and ݀ݕ.   

c) What would be the efficiency ߟଵ of a fixed-length code 1ܥ (length ܮଵ) 
encoding the components of displacement vector ܦሬሬԦ? 

d) What is the bitrate per second ܦభ for a number of macro-blocks ܭ = 396 
per frame and with a frame rate per second ܮ = 25 for encoding the displacement 
vectors ܦሬሬԦ? 

2) Using in code 1ܥ the natural binary coding in ascending order for encoding 
symbols ݏ, determine the probability ,ଵ of having a bit at zero in the bitstream of 

the displacement vectors ܦሬሬԦ. Deduce the probability ଵ,ଵ of having a bit at one.  

3) Construct the Huffman code 2ܥ giving the codeword ܵ associated with each 
of the symbols ݏ of a component ݀ of vector ܦሬሬԦ.  

NOTE.– In the construction of the code 2ܥ, the coding suffix associated with the 
element of greatest probability will systematically be set to 0.  

4) Determine for code 2ܥ:   

a) the average length ݈ଶ̅ of the codewords of a displacement component;  

b) the average length ܮതଶ of the codewords encoding vector ܦሬሬԦ  (again for a 
separate coding of ݀ݔ and  ݀ݕ); 

c) the efficiency ߟଶ of this code; 
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d) the average bitrate per second ܦమ  for encoding vectors ܦሬሬԦ; 

e) the probability ,ଶ of having a bit at zero in the bitstream coding ܦሬሬԦ. 
Deduce the probability ଵ,ଶ of having a bit at one.  

From now on, we consider the transmission of motion information (code 2ܥ) 
using the 4-QAM (QPSK) modulation (Figure 3.13 below).  

 

Figure 3.13. Digital transmission system with quadrature amplitude modulation 

The symbols ܾ are emitted every ܶ seconds. The baseband encoder of the 
transmission system generates two baseband signals (ݐ)ܫ and ܳ(ݐ) as follows: 

– separation of the binary sequence ሼܾሽ into two binary sequences ሼܾଶሽ and ሼܾଶାଵሽ;  

– transcoding the sequences ሼܾଶሽ and ሼܾଶାଵሽ into two sequences of symbols ሼܽሽ and ሼܽᇱ ሽ ∈ ሼ1, −1ሽ;  

– pulse amplitude modulation using the basic pulse (ݐ)ݔ  :(ݐ)ݔ = ቄ1   for   ݐ ∈ ሾ− ܶ 2,  ܶ 2⁄⁄ ሾ0  elsewhere                       
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The two baseband signals (ݐ)ܫ and ܳ(ݐ) are expressed by: (ݐ)ܫ =  ܽݐ)ݔ − ݊ܶ)     and     ܳ(ݐ) =  ܽᇱ ݐ)ݔ − ݊ܶ) 

and indicate that symbols ሼܽሽ and ሼܽᇱ ሽ are emitted every ܶ seconds.  

The modulator is defined by the carrier signal: (ݐ) = ܸexpሾ݆(2ߨ ݂ݐ + ߮)ሿ 
It constructs a real signal (ݐ)ݏ by an adequate linear modulation of the digital 

signal to be modulated:  ܿ(ݐ) = (ݐ)ܫ +  (ݐ)݆ܳ

We call ܪ(݂) the frequency gain of the low-pass filter equivalent to the total 
filter of frequency gain ܪ(݂) (which is a band-pass type around frequencies ݂ and − ݂) and ݕ(ݐ) the signal at the output of the equivalent low-pass filter (frequency 
gain ܪ(݂)) when the input signal is the previous signal (ݐ)ݔ (noise excepted).     

We note:  ݕ(ݐ) = (ݐ) +  (ݐ)ݍ݆

In the same way, by denoting ܾ(ݐ) the noise ܾ(ݐ) filtered by the receiving band-
pass filter, we denote by ܾ(ݐ) the complex envelope of the filtered noise ܾ(ݐ):  ܾ(ݐ) = ܾ,(ݐ) + ݆ܾ,(ݐ)  

In the following part of the problem, we assumed the two components (real and 
imaginary parts) of the complex envelope ܾ(ݐ) to be Gaussian, with zero mean, of 
the same variance ߪଶ and decorrelated. 

5) a) Determine the complex envelope, noted ݏ,(ݐ), of the signal ݏ(ݐ) at the 
output of the filter ܪ(݂), and taking into account the noise ܾ(ݐ). Particularize this 
later at the decision instants ݐ = ݇ܶ, that is ݏ,(݇ܶ).   

b) By separating the real and imaginary parts of the complex envelope ݏ,(݇ܶ), determine for each part: the useful signal, the intersymbol interference 
(intra-channel, inter-channel) and the noise. 
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We consider that the amplitude spectrum ܲ(݂) of signal (ݐ) is a constant 
function, equal to ܶ, on the frequency domain ሾ−1 2ܶ, 1 2ܶ⁄⁄ ሿ, and zero elsewhere. 

We consider also that the amplitude spectrum ܳ(݂) of signal (ݐ)ݍ is 1/8 times 
that of ܲ(݂). 

6) a) Deduce precisely each of the 3 components of the real part of ݏ,(݇ܶ). Do 
the same for the imaginary part of ݏ,(݇ܶ).  

Moreover, the signal-to-noise ratio after demodulation on each channel is: 

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  = 12.0412 dB 

b) Give the expression of the optimal threshold: ,  =  ௧, and calculate 

its value as a function of the variance ߪଶ.   

c) Calculate the various conditional probabilities of the following types: ܲݎ൛ ොܽ = ܽ ܽ = ܽ, ݉⁄ ൟஷ ;  ܽ = ሼ−1, 1ሽ ;  ܽ = ሼ−1, 1ሽ 

necessary to calculate the probability of error ܲ, = ሼݎܲ ොܽ ≠ ܽሽ on symbol ܽ.  

d) Deduce: ܲ, = ሼݎܲ ොܽ ≠ ܽሽ. 

Similarly, deduce the probability of error ܲ, ᇲ = ሼݎܲ ොܽᇱ ≠ ܽᇱ ሽ on symbol ܽᇱ . 

7) Finally, what is the probability ௗܲ that a component ݀ of the decoded motion 
vector is erroneous? Deduce the probability ܲ that the decoded motion vector ܦሬሬԦ is 
erroneous.  

NOTE.– If ܺ is a Gaussian random process, with zero mean (݉ = 0) and reduced 
standard deviation (ߪ = 1), we will assume that we have approximately:  ܲݎሼ|ܺ| > 3.57ሽ = 3.64 × 10ିସ ;   ܲݎሼ|ܺ| > 4.43ሽ = 4.4 × 10ିହ ܲݎሼ|ܺ| > 4.57ሽ = 4 × 10ି ;    ܲݎሼ|ܺ| > 3.43ሽ = 6 × 10ିସ 

Solution of problem 33 

1) a) Entropy of a component:  

(݀)ܪ = (ݔ݀)ܪ = (ݕ݀)ܪ = −  (ݏ)
ୀଵ ଶ݈݃  (ݏ)
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(݀)ܪ ≅ −1.4427  (ݏ)
ୀଵ log ≅(ݏ) 2.41315 bits of information/component 

Recall:  

logଶ ܼ = log ܼlog 2 ≅ 1.4427 × log ܼ 

b) The components ݀ݔ and ݀ݕ have the same statistics and are coded 
separately, hence:  (ܦ)ܪ = 2 × (݀)ܪ = 4.8263 bits of information vector DሬሬԦ⁄  

c) There are seven values per component ݀ݔ and ݀ݕ, then with a fixed-length 
code, 3 bits are required for coding ݀ݔ and 3 bits for ݀ݕ. Thus, ܮଵ = 2 × 3 = 6 bits 
are required to encode the vector ܦሬሬԦ. The efficiency of the code is then: ߟଵ = ଵܮ(ܦ)ܪ = 4.82636 ≅ 80.44% 

d) The bitrate per second is: ܦభ = ଵܮ × ܭ × ܮ = 6 × 396 × 25 = 59,400 bit/s 

2) Since ݀ݔ and ݀ݕ have the same statistics, one component is sufficient to 
determine the probability ,ଵ of having a bit at zero.   ࢙ ࢙ ࢙ ࢙ ࢙ ࢙ ࢙ ࢙ૠ 0.025 0.0625 0.125 0.35 0.25 0.125 0.0625 (࢙) 

Code  000 001 010 011 100 101 110 

Table 3.14. Coding 1ܥ of one component ݀ of the displacement vector ܦሬሬԦ  
,ଵ =  (ݏ) × Nb of zeros in ݏ ݈


ୀଵ  

,ଵ = 13 ሼ0.0625 × 3 + 0.125 × 2 + 0.25 × 2 + 0.35 × 1 + 0.125 × 2 +0.0625 × 1 + 0.025 × 1ሽ = 0.54167 
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The probability of having a bit at 1 is then:  ଵ,ଵ = 1 − ,ଵ = 0.45833 

3) Huffman coding. Table 3.15 describes the Huffman coding process and the 
resulting code in the right-hand side column.  

 

Table 3.15. Huffman coding 2ܥ of one component ݀ of the displacement vector 

4) a) Average length of the codewords of code 2ܥ: 

݈ଶഥ =  (ݏ) × ݈ଶ(݅)
ୀଵ  

݈ଶഥ = ሾ(0.35 + 0.25) × 2 + (0.125 + 0.125 + 0.0625) × 3 +(0.0625 + 0.025) × 4ሿ = 2.4875 bit/symbol 

b) Average length of the codewords in coding vector ܦሬሬԦ: ܮଶതതത = 2 × ݈ଶഥ = 4.975 bit vector ܦሬሬԦ⁄  

c) The efficiency of code 2ܥ is: ߟଶ = ଶതതതܮ(ܦ)ܪ = 4.82634.975 ≅ 97% 
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d) The average bitrate ܦమ  is:  ܦమ = ଶതതതܮ × ܭ × ܮ = 4.975 × 396 × 25 = 49,252.5 bit/s 

e) Probability of having a bit at zero: 

,ଶ =  (ݏ) × Nb of zeros in ݏ ݈


ୀଵ  

,ଶ = 0.0625 × 03 + 0.125 × 23 + 0.25 × 12 + 0.35 × 22 + 0.125 × 13 +0.0625 × 24 + 0.025 × 14൨ = 0.6375 

The probability ଵ,ଶ of having a bit at 1 is then: ଵ,ଶ = 1 − ,ଶ = 0.3625 

To summarize, the probability of issuing a bit at 0 (or at 1) is dependent on the 
code used, therefore the hypothesis that ܲݎሼܾ = 0ሽ = ሼܾݎܲ = 1ሽ = 1 2⁄  is not 
realistic. 

5) a) We have: ݏ(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ݐ)ݔ − ݊ܶ) 

As the action of (ݐ)ݔ at the input of the equivalent baseband system is ݕ(ݐ) (ݐ)= +  (݂) (noise-free), and takingܪ at the output of filter of frequency gain (ݐ)ݍ݆
into account the response of filtered noise turned into its equivalent baseband noise, 
i.e.  ܾ(ݐ), the response ݏ,(ݐ) is then:  ݏ,(ݐ) = ܸ ሾܽ + ݆ܽᇱ ሿ ሾݐ) − ݊ܶ) + ݐ)ݍ݆ − ݊ܶ)ሿ + ܾ(ݐ) 

For ݐ = ݐ = (ܶ݇),ݏ :,(݇ܶ) is writtenݏ ,ܶ݇ = ܸ ሾܽ + ݆ܽᇱ ሿ ሼሾ(݇ − ݊)ܶሿ + ݇)ሾݍ݆ − ݊)ܶሿሽ + ܾ(݇ܶ) 

b) Useful signal, intra-channel and inter-channel inter-symbol interferences. 
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We have successively: 

ℜൣݏ,(݇ܶ)൧ = ܸ ൝ܽ(0) +  ܽሾ(݇ − ݊)ܶሿ −  ܽᇱ ݇)ሾݍ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) 

ℑൣݏ,(݇ܶ)൧ = ܸ ൝ܽᇱ (0) +  ܽᇱ ݇)ሾ − ݊)ܶሿ +  ܽݍሾ(݇ − ݊)ܶሿஷ ൡ +ܾ,(݇ܶ) 

hence: 

(ܶ݇)ܫ = ܸ ێێێۏ
ۍ ܽሾ(݇ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

−  ܽᇱ ݇)ሾݍ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

ᇲᇱܫ (݇ܶ) = ܸ ێێێۏ
ۍ ܽᇱ ݇)ሾ − ݊)ܶሿஷᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲୰ୟିୡ୦ୟ୬୬ୣ୪

+  ܽݍሾ(݇ − ݊)ܶሿᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ୍ୗ୍ ୧୬୲ୣ୰ିୡ୦ୟ୬୬ୣ୪ ۑۑۑے
ې
 

6) a) We have:  (ݐ) = ଵሼܲ(݂)ሽିܨ = sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄ (0)  = (ܶ݅±)  ; 1 = 0 ∀ ݅ ≠ 0 ; ݅: integer     (ݐ)ݍ = ଵሼܳ(݂)ሽିܨ = 18 × (ݐ) = 18 × sinሾߨ ݐ ܶ⁄ ሿߨ ݐ ܶ⁄ (0)ݍ  = 1 8⁄ (ܶ݅±)ݍ  ;  = 0 ∀ ݅ ≠ 0 ; ݅: integer   

hence: ℜൣݏ,(݇ܶ)൧ = ܸܽต − ܸ 8 × ܽ′⁄ᇣᇧᇧᇤᇧᇧᇥ + ܾ,(݇ܶ)ᇣᇧᇤᇧᇥ
                   Useful         ISI             In-phase

                 signal      inter-channel    noise

 

ℑൣݏ,(݇ܶ)൧ = ܸܽ′ต + ܸ 8 × ܽ⁄ᇣᇧᇧᇤᇧᇧᇥ + ܾ,(݇ܶ)ᇣᇧᇤᇧᇥ                  
                     Useful      ISI               In-quadrature

              signal      inter-channel    noise
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b) Expression of the optimal decision threshold ߤ, = ,ߤ :௧,ߤ = (0)ଶ2ܸߪ log ିଵଵ ൨ = ଶ2ܸߪ log ቈ,ଶଵ,ଶ = ଶ2ܸߪ log 0.63750.3625൨ ≅ 0.28  ଶܸߪ

c) Calculation of the conditional probabilities of the following types: 

൛ݎܲ  ොܽ = ܽ ܽ = ܽ, ݉⁄ ൟஷ  
We have:  

ܲ, = ଵି  
ଶ

ୀଵ × ܲషభ൩ + ଵ  
ଶ

ୀଵ × ܲభ൩ 

with: 

ܲషభ = ܲ(ଵ ିଵ,⁄ ) = ߨ√2ߪ1 න exp ቈ− 12 ܾ,ଶߪଶ ஶ
ఓబ,ା()ିூ(்) ܾ݀, 

ܲభ = ܲ(ିଵ ଵ,⁄ ) = ߨ2√ୣߪ1 න exp ቈ− 12 ܾୣ,୮ଶߪଶୣ ఓబ,ିቂ()ାூ(்)ቃ
ିஶ ܾ݀, 

The signal-to-noise ratio is:    

ቂܾݏቃௗ = 20 × logଵ ቈܸߪ(0)  = 20 × logଵ ܸߪ൨ = 12.0412 dB 

 → ߪܸ = 4 → ܸ =  ߪ 4

Moreover, we have:   = ᇱࢇ (ࢀ)ࡵ  = − ࢂ ૡ ×⁄ ᇱࢇ  

-1     ܸ 8⁄  

 1 −ܸ 8⁄  

Table 3.16. Amplitudes of the inter-channel intersymbol interference 
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Calculation of intervals and of conditional probabilities of error:  = ᇱࢇ ࢋ,ࣆ  + ()ࢂ − ࡵ ࢋ,ࣆ షࢋࡼ  − ()ࢂൣ + ࢋࡼ ൧ࡵ  

 1.82ߪ 3.57 1- × 10ିସ −4.43  2.2ߪ × 10ିହ 

 2ߪ 4.57 1  × 10ି −3.43  3ߪ × 10ିସ 

Table 3.17. Intervals and conditional probabilities of error  

d) We have: 

ܲ, = ଵି  
ଶ

ୀଵ × ܲషభ൩ + ଵ  
ଶ

ୀଵ × ܲభ൩ 

or: 

ܲ, = భଵൣି × ܲషభ + మ × ܲషభ൧ + భଵൣ × ܲభ + మ × ܲభ൧ 
with: ିଵ = ;  ,ଶ ଵ   = ;  ଵ,ଶ భ   = ;  ଵି మ   =  ଵ

hence: 

ܲ, = ,ଶ,ଶൣ × ܲషభ + ଵ,ଶ × ܲషభ൧ + ,ଶଵ,ଶൣ × ܲభ + ଵ,ଶ × ܲభ൧ → ܲ, = 0.6375ሾ0.6375 × 1.82 × 10ିସ + 0.3625 × 2 × 10ିሿ +0.3625ሾ0.6375 × 2.2 × 10ିହ + 0.3625 × 3 × 10ିସሿ ≅ 1.1893 × 10ିସ 

We evidently have: ܲ,ᇲ = ܲ, = ܲ,. 

7) The probability ௗܲ   that a component ݀ of displacement vector ܦሬሬԦ be wrong 
decoded is:  

ௗܲ =  (ݏ)
ୀଵ × ܲ,ௗ 

With: ܲ,ௗ, the probability that ݀ represented by ݏ be erroneously decoded. But 
the correct decoding of ݏ is such that:   ൫1 − ܲ,ௗ൯ = ൫1 − ܲ,൯  → ܲ,ௗ = 1 − ൫1 − ܲ,൯ 
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As we have:  

ܲ, ≪ 1 → ൫1 − ܲ,൯ ≅ 1 − ݈ × ܲ,  → ܲ,ௗ ≅ ݈ × ܲ, 

then: 

ௗܲ ≅ ܲ, ×  (ݏ) × ݈ = ܲ, × ݈ଶഥ
ୀଵ ≅ 1.1893 × 10ିସ × 2.4875 = 2.9583 × 10ିସ 

Thus, the probability ܲ that the displacement vector ܦሬሬԦ be erroneously 
decoded is:  (1 − ܲ) = (1 − ௗܲ)ଶ  → ܲ = 1 − (1 − ௗܲ)ଶ ≅ 1 − (1 − 2 ௗܲ) ≅ 2 ௗܲ ≅ 5.9167 × 10ିସ 
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Practical Works 
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4 

Study of the Transmission of Digital 
Information on Two-wire Cables 

4.1. Introduction 

The electrical transmission of information in digital form is not a recent 
phenomenon and it has even preceded the transmission of information in analog 
form, however it is only recently that digital transmissions have grown considerably. 
They used and still use, as a transmission medium, the important and classical 
infrastructure provided by the telephone and telegraph network of 
Telecommunications, infrastructure that has the advantage of existing.  

However, the switched telephone network (the telex network being limited to 
very low modulation speeds) designed for the analog transmission of speech, only 
allocates a 300 to 3,400 Hz frequency band. This 3,100 Hz bandwidth allows, at the 
current time and under normal conditions, the transmission of digital information 
from 9,600 bit/s up to roughly 38 or even 56 Kbit/s. These limitations were due to 
amplitude and phase distortions and to the noise present in the transmission channel.  

Developments in teleinformatics and the Internet (transmission of data, 
documents, still images, digital video-phone or television programs), the difficulties 
of performing correct equalization encountered in analog transmissions, while the 
needs of the telephone and its applications are also increasing, have led to the study 
and development of a high-speed universal network of digital transmissions of 
analog and digital information.  

The study and development of such transmission systems is very complex. We 
will limit ourselves here to the study of the transmission medium that is the 
symmetrical twisted two-wire cable used in line equipment for digital transmissions 
at 2.048 Mbit/s, and also to the on-line codes necessary for the transmission.  



268     Digital Communications 2 

This system is known as DT1 (first order digital transmissions in the European 
hierarchy of digital transmission systems, able to transmit 30 or 60 digital phone 
lines, each of them at 64 or 32 Kbit/s), the basic system for building digital 
multiplexes of higher orders:  

– DT2: 8.448 Mbit/s, or 4 x DT1 or 120 or 240 phone lines; 

– DT3: 34 Mbit/s, or 4 x DT2 or 480 or 960 phone lines; 

– DT4: 140 Mbit/s, or 4 x DN3 or 1,920 or 3,840 phone lines;  

– etc. 

4.2. Recall of essential results on transmission line theory 

When the dimensions of the cables (lengths) are comparable to the wavelength ߣ, 
one then deals with distributed constant circuits. The propagation time in this case is 
no longer negligible relative to the period of the wave that propagates on the 
structure. The theory of lines allows the study of these circuits.  

It is shown that at any location on the line, along the axis of propagation ݖ and at 
any time, the voltage (ݖ)ݒ is: (ݖ)ݒ = ఊ௭ି݁ܣ + ఊ௭݁ܤ = (ݖ)ݒ +  (ݖ)ݒ

with: 

ߛ – = ߙ +  ;the exponent of propagation (normalized per unit length) ߚ݆

  ;the attenuation and the phase constants ߚ ,ߙ –

 ;a pair of constants to be determined by the boundary conditions ܤ and ܣ –

  .are the incident and the reflected voltages, respectively (ݖ)ݒ and (ݖ)ݒ –

Moreover, the linear exponent of propagation ߛ and the characteristic impedance ܼ of the line are related to the distributed parameters of the line ( ݎ , ݈ , ܿ , ݃ ) with: ݎ: series resistance per unit length, for both conductors, in Ω ݉⁄  ݈: series inductance per unit length, for both conductors, in H ݉⁄  ܿ: shunt capacitance per unit length, in F ݉⁄  ݃: shunt conductance per unit length, in S ݉⁄  
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by: γ =  ඥz × y  and  ܼ =  ඥݖ ⁄ݕ  

where: ݖ = ݎ +  is the impedance of the line per unit length ݓ݈݆

and: ݕ = ݃ +  is the admittance of the line per unit length ݓ݆ܿ

For a line of low losses (case in practice and neglecting the dielectric losses), we 
have:  

ߙ ≅ 12 ඨ݈ܿݎ = ݇ඥ݂ 

due to the “skin effect”, ݇ is a constant and ݂ is the working frequency.   ߚ ≅ ݓ ; ݈ܿ√ݓ =  ݂ߨ2

is the pulsation; 

ܼ ≅ ඨ݈ܿ    and  ߥఝ = ߚݓ ≅ 1√݈ܿ ≅  ߝ√ߥ

is the phase velocity or propagation of the wave, where:  

  ; is the velocity of lightߥ  –

–   is the relative permittivity of the insulation used in the cable.   

4.3. Practical study 

There are two cables of different colors and with different propagation 
characteristics:  

– gray cable: ߥఝ = 2 × 10଼ m/s; 

– black cable: ߥఝ = 2.52 × 10଼ m/s.  
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4.4. Objectives  

The most important parameters to know when you want to develop a cable 
transmission system include:  

– the characteristic impedance ܼ(Ω); 

– the attenuation ߙ (dB/m ou dB/Km); 

– the maximum possible bitrate.  

In these practical works, you will try to determine by some adequate 
measurements the values of these important parameters on the cable sections that are 
at your disposal.  

4.5. Measurement of the characteristic impedance ࢉࢆ by a reflectometry 
method (Time Domain Reflectometry: TDR) 

 

Figure 4.1. Practical implementation of the TDR method 

To determine the characteristic impedance of the cable, the load ܼ is varied 
until the observed reflected pulse ݒ is canceled (Figure 4.1), hence:  ܼ =  ܼ. 

Measure the characteristic impedance ܼ by the reflectometry method on the  
10 m or 20 m cable section. In your opinion, will the measurement of ܼ be correct 
on a section of length >> 20 m? If not, why?   
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The same scheme is also used to measure the length ܮ of the cable knowing the 
phase velocity ߥఝ. Indeed, measuring ߬ (for ܼ = ∞ preferently), we have:  2ܮ = ߬ ×   ఝߥ

You have to measure the lengths of the three available cable sections.   

4.6. Measurement of attenuation ࢻ as a function of frequency 

When the cable is matched (the cable is loaded with its characteristic 
impedance), we then have:  

(ݖ)ݒ – = (z)ݒ  = ܣ  exp(−ݖ ߛ); 

– (ݖ)ݒ = ܣ  exp(−ݖ ߙ); 

– (0)ݒ =  ;voltage delivered by the source generator at the input of the cable :ܣ 

– (ܮ)ݒ = ܣ  exp(−ܮ ߙ): voltage measured at the output of the cable (for ܼ =  ܼ). 

These two measurements make it possible to determine ߙ(݂):   

(݂)ߙ = ܮ1 20 × logଵ dB)  |(ܮ)ݒ||(0)ݒ| m⁄ ) 

Measure the variation of attenuation as a function of frequency.  

Measurements will be made for the following values of the frequency ݂(KHz): 
40; 60; 100; 200; 300; 500; 700; 1,000; 1,200; 1,500; 3,000 KHz; and for the cable 
section of median length.  

Draw the curve ߙ(݂). Check that the measured law ߙ(݂) follows the theoretical 
law ߙ(݂).  

4.7. Variation of the attenuation ࢻ as a function of length 

For the frequency ݂ = 100 KHz, determine the variation of the attenuation as a 
function of the length (for the three available sections). Deduce the 100 kHz 
attenuation produced by a cable length of 1,800 m (nominal length of a section for a 
DT1 two-wire cable).   
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4.8. Measurement of the bitrate D (bit/s) 

The measurement is done in pulsed mode (see Figure 4.2), when the cable is 
matched (loaded with its characteristic impedance). 

For each pulse duration 500 ;400 ;300 ;200 ;100 :(ݏ݊)ߠ ns transmitted and using 
the pulse generator in dual pulse mode (the second pulse is transmitted with a delay ߬ adjustable with respect to the first), the time ߬ which must separate these 
double pulses will be determined so that the response due to the first pulse lowers to 
50% of its maximum amplitude before the appearance of the response due to the 
second transmitted pulse.  

Draw the curve: ߬ =  .(ߠ)݂

With this rather simplistic criterion, which does not take into account any signal 
processing (equalization) performed both in the transmitter and the receiver units, 
draw a line ߬ =  for deducing the maximum bitrate (case of the binary RZ code) ߠ2
(see Figure 4.2). 

NOTE.– Measurements will be made on the medium length cable section (# 600 m). 

 

Figure 4.2. Bitrate measurement scheme 
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5 

Study of Baseband Digital Transmission 
Systems for the Transmission of Analog 

Signals (Transmitter and Receiver) 

5.1. Objectives 

The goals of this lab work are to study the various functions necessary for serial 
transmission under digital form of analog signals. These are distributed in the 
transmitter on the one hand, and in the receiver on the other hand. Although most of 
them are present simultaneously in both of them, the receiver has some additional 
specific functions.  

The study will largely be of a qualitative nature but will also include some 
measures allowing a quantitative assessment of the influence of certain parameters.  

This study first deals with a pulse amplitude modulation transmission system 
with time division multiplexing. Then, the operation of a pulse code modulation 
(PCM) transmission system is analyzed. For these two systems, we will study in 
particular the two mechanisms of recovering the frame synchronization and the 
clock without additional links between transmitter and receiver other than that of 
transmission of the on-line code. In addition, for PCM transmission, codes for 
protection against transmission errors (error detection code, error detection and error 
correction code) are also used.  

Digital Communications 2: Directed and Practical Work, 
First Edition. Safwan El Assad and Dominique Barba. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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5.2. First part – Study of a pulse amplitude modulation and time 
division multiplex signal transmission system 

A MODICOM2 educational electronic board from the company LJ Technical 
Systems (the reader must simply see the block diagram on the board) is at your 
disposal. It has two distinct parts: the transmitter and the receiver.   

Its main features are as follows:  

– time multiplexing of four channels, each associated with a signal on 
transmission and demultiplexing on reception;  

– four sinusoidal signal generators, all synchronized, of frequencies ݂ = 250 Hz, 
500 Hz, 1 KHz and 2 KHz respectively, and of variable amplitudes;  

– a pure sampler with variable pulse duration (10 values ߠ = ݅ܶ 10⁄  where ܶ is 
the time unit); 

– three operating modes corresponding to the interconnection signals between 
transmitter and receiver;  

– a system for recovering the clock and a frame locking system in reception; 

– four interpolation filters on reception. 

Power is to be supplied to the electronic board ሺ+5 ܸ, ± ;ܣ 1 12 ܸ,   .ሻܣ 1

The sampling frequency ݂ of each of the four channels is fixed at 16 KHz ሺ ܶ = TX CH. 0 = 62.5 μsሻ and therefore a unit of time ܶ allocated to the 
transmission of a channel is equal to: ܶ = ܶ 4 = TX CLOCK⁄ .  

The three operating modes correspond to three compromises between the 
number of connections between the transmitter and the receiver, the complexity of 
the receiver and the time required for the transmission of the signals:  

– mode 1: three connections between transmitter and receiver; four analog 
channels; minimum receiver complexity: 

TX CH.0            →          RX CH.0 

TX CLOCK       →          RX CLOCK 

TX OUTPUT     →          RX INPUT 
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– mode 2: two connections between transmitter and receiver; four analog 
channels; regeneration of the clock by phase-locked loop on reception: 

TX CH.0             →           PLL I/P 

TX OUTPUT      →           RX INPUT 

– mode 3: a single connection between transmitter and receiver; three analog 
channels and a synchronization channel; regeneration of the clock by phase-locked 
loop and for the synchronization of the channels on reception: 

TX OUTPUT       →         RX INPUT 

5.2.1. Experimental study 

IMPORTANT NOTE.– In all experiments, you will only power the boards (±12 volts;  
5 volts) when the wiring has been fully completed and checked. 

In this lab work, you will study qualitatively and quantitatively the operation of 
this system of transmission of several signals by time multiplexing and pulse 
amplitude modulation according to its three modes of operation.   

5.2.1.1. Mode 1 of operation 

The parameter ߠ (pulse duration) is fixed at ܶ 2⁄  and the amplitudes of the four 
input signals are set to their maximum value, each of them being sent to one of the 
four inputs of the analog multiplexer of the transmitter.   

Display the different signals available and the TX OUTPUT signal at the output 
of the transmitter by changing the amplitude of the analog signals. Simultaneously 
display the input and output of the interpolation filter corresponding to the channel 
receiving the signal at frequency: ݂ = 250 Hz.  

By setting the maximum amplitude of the signal ݏ ሺ ݂ = 250 Hzሻ on 
transmission, measure the output amplitudes of the interpolation filter for the nine 
possible values of the parameter ߠ (duty cycle control). Repeat the same 
measurements for the other three channels: ݏଵ ሺ ଵ݂ = 500 Hzሻ;  ݏଶ ሺ ଶ݂ = 1 000 Hzሻ;  ݏଷ ሺ ଷ݂ = 2 000 Hzሻ 
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5.2.1.2. Mode 2 of operation (without separate transmission of the clock) 

Make the following connections:  

TX CH.0          →        PLL I/P 

SYNC → RX CH.0 

CLK → RX CLOCK 

Set the phase-lock loop switch to the PLL I / P position. Under these conditions, 
the phase-lock loop locks on the signal coming from the channel 0: TX CH.0 and 
generates two output signals:  

SYNC → channel synchronization signal 

CLK → regenerated clock signal 

Check that the four channels are correctly reassigned and that the four output 
signals are correctly restored. 

In particular, you will modify the amplitude and frequency of the signal 
transmitted on channel 0. Explain your conclusions. 

5.2.1.3. Mode 3 of operation (one link only between the transmitter and the 
receiver) 

Channel 0 is assigned to frame synchronization. For this, the SYNC LEVEL is 
connected to the CH.0 input of the transmitter, the other three inputs receiving three 
of the four available signals.   

The SYNC → RX CH.O and CLK → RX CLOCK connections are maintained, 
however the TX CH.0 → PLL I/P connection is removed. It is replaced internally by 
switching the switch of the phase-lock loop, by the RX INPUT input signal of the 
comparator connection.   

– Display the TX OUTPUT signals and one of the input signals on channels 1 to 
3. Check that the amplitude of the pulse on channel 0 of the TX OUTPUT signal 
varies with the amplitude of the SYNC LEVEL.  

– Set the amplitude of the synchronization detection comparator to synchronize 
correctly in reception for a maximum amplitude of the SYNC LEVEL. Then reduce 
the amplitude of the SYNC LEVEL signal. What are you observing? Explain your 
conclusions. 
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– Conversely, for a maximum amplitude of the SYNC LEVEL, vary the 
comparator threshold (COMPARATOR THRESHOLD LEVEL). What are you 
observing? Explain the phenomenon observed.  

– Determine the two constraints on the level of the synchronization channel and 
on the threshold of the comparator for this system to work correctly in mode 3.  

IMPORTANT NOTE.– Depending on the mode chosen, the phase of the regenerated 
clock (or not) at the receiver varies compared to the signal received at the receiver. 
Also, and more particularly for pulse durations ߠ > 70 % of ܶ, it will sometimes be 
necessary to set the potentiometer of the clock control circuit to a value allowing a 
good reception operation. For this, it suffices that the falling edges of the clock 
obtained at the output of the clock phase shifter (signal at point 33) are located at the 
center of the interval separating two pulses of the re-amplified received signal 
(signal at point 41).  

5.3. Second part – Study of a pulse code modulation (PCM) signal 
transmission system and transmission error control (error detector 
code and error corrector code)  

You have at your disposal an educational electronic board MODICOM 3 from 
the company LJ Technical Systems. It actually consists of two distinct boards: one 
concerns the transmitter (MODICOM 3/1), the other the receiver (MODICOM 3/2) 
(the block diagrams are displayed on each of the electronic boards).  

The main features of these boards are:  

– time multiplexing of two signal transmission channels;  

– two transmission rates: one fast (FAST mode, the normal operation), the other 
slow (SLOW mode, for operation analysis with the LEDs). The transmission bitrates 
are 240 Kbit/s and 1 bit/s respectively.   

The transmitter includes two sinusoidal signal generators of frequencies  ݂ = 1 KHz and ଵ݂ = 2 KHz, of variable amplitudes which are synchronized, usable 
for the fast operating mode. In addition, there are two continuous signals of variable 
amplitudes usable for both the fast and slow operation modes. 

The transmission and reception system can work according to three modes of 
operation concerning the control of transmission errors: 

– no error checking: digitization and coding of 7-bit useful signal samples;  
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– odd/even parity bit error checking: encoding of 6-bit useful signal samples,  
1-bit error detection control at the receiver;  

– Hamming code error control at the transmitter: coding of the 4-bit signal 
samples used and addition of 3 control bits, detection and correction of a single error 
at the receiver;  

– multiple possibilities of introduction of errors at the sending or receiving phase 
for analyzing the performance of the error control modes (detection/detection and 
correction of a single error).  

Moreover, as for the system studied in part 1, it also has three modes of 
operation corresponding to the number of interconnection links between transmitter 
and receiver, and therefore included: 

– a clock recovery system on reception;  

– a frame synchronization generation system in transmission and frame detection 
and locking in reception.   

The system operates according to the following basic principle. Each input signal 
is sampled at 16 KHz (sample-and-hold) and digitized on 7 bits with 2-order 
sampling interleaving because there are two transmission channels. A binary 
information frame of length 15 is formed whose structure is as follows:  ܾଵଷ                      ܾ    ܾ                        ܾ           ܥܥହܥସܥଷܥଶ ܥଵ ܥ   ܥܥହܥସܥଷܥଶ ܥଵ ܥ  ܵ → Canal 0                     Canal 1            

where:  

– ܵ is a frame synchronization bit, first transmitted;   

ܥ – ⋯ ⋯   corresponds to the 7-bit word allocated to the transmission of theܥ
sample of channel 0 or channel 1. The transmission time of a frame is 1 16,000⁄  ;(in fast mode) ݏߤ 62.5=

– according to the selected error control mode, we have: 

ܥ - ⋯ ⋯ ܦ  corresponds exactly to the 7 scan bitsܥ ⋯ ⋯   of the consideredܦ
sample if no error check, 

ܥ - ⋯ ⋯ ܦ ଵ corresponds to the 6 most significant bits of digitizationܥ ⋯ ⋯   is the parity check bit added if parity control isܥ ଵ of the sample andܦ
chosen (even or odd), 
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ܥ - ⋯ ⋯ ܦ ଷ corresponds to the respectively 4 most significant bitsܥ ⋯ ⋯  ଷܦ
of digitization of the sample and ܥଶ ܥଵ ܥ is the sub-word of control for the detection 
and correction of a single error by Hamming code if this one is chosen.   

Regarding the frame synchronization bit, this bit can be generated at the 
transmitter so that, on reception, it can almost certainly be identified in the received 
binary data stream. In the mode of operation 2, the transmitter uses a pseudo-random 
generator generating the repetitive sequence “000 100 110 101 111” of which 
successively a bit will be used as synchronization bit ܵ per transmitted frame. The 
receiver also has this pseudo-random sequence in this mode and thus locks on it.    

Finally, mode 3 allows, by the use of a clock regeneration block in reception and 
simultaneously by the use of the frame synchronization mode of mode 2, to 
regenerate the transmitted signals only from the global signal of transmission (RX 
DATA OUTPUT).  

Two error generation blocks separately allow the transmitter and the receiver to 
insert errors at different levels. Each of them has four possibilities associated with a 
SF switch.  

In the transmitter, if:  

– SF1 = 1 →  the bit ܦ after digitization of each sample is forced to 0; 

– SF2 = 1 →  the bit ܥ after coding of each sample is forced to 1;  

– SF3 = 1 → the bit ܥହ after coding is correctly transmitted but the error 
protection bits (ܥ or ܥଵ ܥଶ) are generated considering that the bit ܦହ  was at 1; 

– SF4 = 1 →  the frame synchronization bit ܵ is no longer generated by the 
pseudo-random generator but is modified deterministically.  

In the receiver, if:   

– SF1 = 1 → defect in the phase-lock loop of the clock regeneration block 
(between the output of the “EXCLUSIVE OR” and the low-pass filter);  

– SF2 = 1 →  defect in the frame synchronization detection block; 

– SF3 = 1 → defect in the detection block and correction of transmission errors 
by Hamming code given by the following Table 5.1; 

– SF4 = 1 → defect in reconstituting the channel 0 signal by interrupting the 
input of the sampling and hold amplifier.   
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Wrong bit Error indicated Corrected bit 
None ܥଵ None  ܥ ܥଷ ܦଷ  ܥଵ ܥଵ None  ܥଶ ܥହ ܦହ  ܥଷ ܥଷ ܦଷ  ܥସ ܥ ܦ  ܥହ ܥହ ܦହ  ܥ ܥ ܦ 

Table 5.1. Types of defects in the detection and correction  
block of transmission errors by Hamming code (SF3 = 1) 

5.3.1. Experimental study  

The multiple possibilities of operating of this system, including the aspect of 
generation and control of transmission errors, imply a rather rich experimental study.  

5.3.1.1. Study without error of transmission and without protection code  

5.3.1.1.1. Mode 1 of operation (clock and frame synchronization are also 
provided to the receiver) 

– In fast mode, display the signals to be transmitted, the digital signal transmitted 
and the signals restored in reception for different amplitudes. What do you observe 
for large amplitudes? Using continuous signals, determine the useful amplitude 
range avoiding the saturation of the converters and associated codes. 

– In slow mode, examine the operation of the transmitter and the receiver in 
detail. In particular, the value of the frame synchronization bit, the times of 
modification of the transmitted signal and the transmission order of the bits 
associated with the representation of the samples will be specified. 

5.3.1.1.2. Mode 2 of operation (only the clock is also provided to the 
receiver)  

The frame synchronization generator is used on transmission and the frame 
synchronization detector on reception.  

– In fast mode, check the correct operation of the entire system for different 
input signals. In particular, it will be verified that the indicator of the bit 
synchronization counter is on. What do you observe if you turn off the frame 
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synchronization generator at the transmitter? Same question if you put it back into 
operation. 

– In slow mode, examine in detail the operation of the frame synchronization 
part at the transmitter and at the receiver the frame synchronization detection. 

5.3.1.1.3. Mode 3 of operation (only the transmitted signal is used as a link 
between transmitter and receiver)  

Due to the mandatory use of the clock regeneration block in reception, only the 
fast mode is possible. 

– Set the correct operation of the clock regeneration block by using a continuous 
signal on transmission and adjusting the “TRIM” of the voltage-controlled oscillator 
of the clock regeneration block so that the synchronization bit counter LED remains 
on for all possible amplitudes. 

– Check for different amplitudes of the sinusoidal signals that are to be 
transmitted that they are correctly restored. Make the appropriate measures.  

5.3.1.2. Study with protection code against transmission errors 

5.3.1.2.1. Error-free  

– In slow mode and in mode 2, analyze the operation with a detector code of a 
single error with even and then odd bit of parity.  

– Similarly, analyze the operation with a Hamming code correcting a single 
error. In particular, for each of the words to be coded ܦ ܦହ ܦସ ܦଷ, determine the 
corresponding codeword ܥ ⋯ ⋯   .ܥ

– In fast mode and mode 3, check that the complete system is working correctly 
with the Hamming code. Are the signals restored correctly? What precision do we 
get on the amplitudes? 

5.3.1.2.2. With errors in the transmitter or in the transmission channel 

– In fast mode and in mode 3, without error protection, what do you observe if 
you set SF2 to 1? Same question with an error detector code. Explain.  

– In the context of the previous question, but with a Hamming code, what do you 
observe? Explain.  

– Set SF1 at 1 and explain what you observe in the three possible situations: 
unprotected, detection of an error, detection and correction of a single error.  

– Set SF3 at 1. Same question as before.  
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– Finally, by setting SF4 at 1 and in the three possible situations, what do you 
observe? What proposal do you make so that in this context, the receiver 
synchronizes again correctly?  

5.3.1.2.3. With errors in the receiver  

In the same way as in the previous part, you will test and explain the overall 
operation of the system with various error modes and depending on the modes of 
protection against errors.   

– Set SF1 at 1 and in mode 3, what do you observe? Explain.  

– Set SF2 at 1 and in mode 2 or 3, what do you observe? Explain. 

– Set SF3 at 1 and with Hamming coding, what do you observe? Also set the 
SF2 transmitter to 1. Is the result normal? 

– Finally, set SF4 at 1 (with SF2 set at 0 in the transmitter) and observe the 
analog outputs at the receiver. 
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Study of On-line Codes for Baseband 
Modulation and Carrier Modulation 

6.1. Objectives 

In this lab work, you will study the various on-line codes for representing the 
binary information for its transmission on a communication channel. Two sets of 
codes are studied. The first provides a baseband signal. This one can be sent as it is. 
It can also modulate a carrier. The various digital modulations with carrier are also 
available (second way of transmission) and will be studied in principle and 
technique, especially at the demodulation level.  

6.2. Description of the electronic boards  

The MODICOM 5 system consists of two electronic boards. The MODICOM 
5/1 board includes the conditioning of data (on-line coding) into baseband signals 
and, if necessary, carrier modulation and thus corresponds to the transmission part. 
The MODICOM 5/2 board performs the reverse operations and therefore 
corresponds to the reception part (see the block diagrams on the boards concerned). 

The data conditioning part in baseband signals (information-to-signal coding) 
allows for working with the following on-line codes:  

– NRZ-L coding (level type);  

– NRZ-M coding (Mark (differential) type);  

– RZ coding; 

– Biphase coding (Manchester code); 

– Biphase-M coding (Mark); 

Digital Communications 2: Directed and Practical Work, 
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– Bipolar coding (also called AMI coding: Alternation Mark Inversion);  

– RB coding (Return-to-Bias);  

– Quaternary differential coding.  

The carrier modulation part performs the following modulation types:  

– ASK modulation: Amplitude Shift Keying modulation; 

– FSK modulation: Frequency Shift Keying modulation; 

– PSK modulation: Phase Shift Keying modulation; 

– QPSK modulation: Quaternary Phase Shift Keying modulation. 

The boards MODICOM 5/1 and MODICOM 5/2 are inter-connectable upstream 
with the MODICOM 3/1 board for the transmitter part (MODICOM 5/1) and 
downstream with the MODICOM 3/2 board for the receiver part (MODICOM 5 / 2). 
The MODICOM 5/1 and 5/2 boards have signal generators with a carrier at  
1.44 MHz for one, and a carrier at 960 KHz for the other. Moreover, the latter also 
has a version in quadrature (Q) relative to the other (I).  

More precisely, the MODICOM 5/1 board comprises the following elements: 

– two inputs: a TTL binary signal input (TX DATA INPUT) and associated 
clock input (TX clock INPUT);  

– direct signal outputs associated with on-line codes and the associated clock;  

– two unipolar-bipolar connection blocks that can be used to build bipolar codes;  

– an inversion block. 

In addition, it is possible to simultaneously output a group of two digits (usable 
for QPSK modulation). Two modulation blocks with carrier and a block of 
summation make it possible to carry out the various types of digital modulation. On 
each modulation block, the gain and offsets of the carrier and the modulating signal 
are adjustable.  

Similarly, the MODICOM 5/2 board (Receiver) includes the following elements:  

– a rectifier detector block for amplitude modulation (ASK);  

– a frequency demodulation block (FSK) with phase-lock loop; 

– a phase demodulation block (PSK) with quadratic phase lock loop; 

– a quaternary phase demodulation block (QPSK) with phase-lock loop (with 
power 4); 
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– two low-pass filters; 

– a system for regeneration of bipolar signals into unipolar signals with double 
thresholds (data squaring circuits); 

– a differential decoder; 

– a clock regeneration system for the biphase code.  

6.3. First part – Study of on-line codes for baseband digital 
transmission 

IMPORTANT NOTE.– In all experiments, you will only power the boards (±12 volts;  
5 volts) when the wiring has been fully completed and checked. 

When using boards MODICOM 3/1 and 3/2, these will be used in the following 
modes and configurations:  

– selection of fast mode; 

– selection of SYNC CODE DETECTOR mode; 

– no detector and corrector error code mode (A = B = 0); 

– no addition of transmission errors or defects.  

6.3.1. Experimental part  

From the MODICOM 3/1 board and continuous analog input for it, set the signal 
amplitude so that the binary word transmitted in serial form by the channel is the 
following: ܦ ⋯ ⋯ ܦ = 0 1 0 0 0 1 1 

for example. However, you can modify the information transmitted at your 
convenience. 

– Study successively the NRZ-L, NRZ-M, RZ codes and represent their observed 
chronograms. How does the NRZ-M code compare to the classic NRZ-L code?  

– Study the biphase code (MANCHESTER) and represent the observed 
chronogram. Explain how the Manchester code works. The next step is to decode 
the Manchester code. Why does a simple clock regeneration circuit not work?  
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The clock regeneration specific circuit will be used for the biphase code. What does 
it produce as a regenerated clock signal?  

– Study the biphase-M code and represent the observed chronogram. Based on 
your observations, build the biphase-M decoder and explain how it works.  

– Study the bipolar code (AMI code) and represent the observed chronogram. To 
build it, you will connect the NRZ-M output to the input of the unipolar-bipolar 
converter and the RZ output to the DISABLE input of the same converter. Study the 
decoding of the bipolar code and carry it out by using the “Data Squaring Circuits” 
system and by properly adjusting the two thresholds of the two comparators. 

It will then be possible to transmit sinusoidal analog signals over the whole 
system (MODICOM 3/1; 5/1; 5/2; 3/2) using any of these codes. 

6.4. Second part – Study of digital modulations with carrier  

We will study successively the digital amplitude modulation and demodulation 
(ASK), the digital frequency modulation and demodulation (FSK), the digital phase 
modulation and demodulation (PSK).  

In analysis mode, the information sent will be taken equal to “0 1 0 0 0 1 1” for 
example. 

6.4.1. Amplitude shift keying modulation (ASK) 

An amplitude modulation will be performed using a modulation block and a  
1.44 MHz carrier. The mode of the MODICOM 5/1 board will be set to position 1 
and the SYNC CODE GENERATOR of the MODICOM 3/1 board to “OFF”. 
Perform amplitude demodulation as follows: 

 

Figure 6.1. Block diagram of the ASK demodulation 

The SYNC CODE GENERATOR of the MODICOM 3/2 board will be set to 
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You will adjust the gain and the offsets of the modulating signal and the carrier.  

Examine the signals obtained at the output of each of the blocks of the 
demodulation system (the comparator threshold must be set correctly). Comments.  

Change the amplitude of the transmitted signal (MODICOM 3/1) and check that 
the reconstructed signal is correct by setting the SYNC CODE GENERATOR of the 
MODICOM 3/1 board to “ON”. 

6.4.2. Digital frequency shift modulation (FSK) 

Perform a digital frequency modulation according to the block diagram of Figure 6.2.  

 

Figure 6.2. Block diagram of FSK modulation 

In reception, the signal is decoded by means of a phase-locked loop, a low-pass 
filter and a comparator, according to the block diagram of Figure 6.3. 

 

Figure 6.3. Block diagram of digital FSK demodulation 
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The two boards MODICOM 3/1 and MODICOM 3/2 will be used to generate the 
information to be transmitted with modulation and to reconstruct the signal on 
reception. Set the SYNC GENERATOR of the MODICOM 3/1 board to “OFF” and 
the SYNC CODE DETECTOR of the MODICOM 3/2 board to “ON”. 

– Analyze, for a configuration of information to be transmitted given by “0 1 0 0 
0 1 1 1”, the modulator and demodulator operations (you will adjust the two carriers 
used (960 KHz and 1.44 MHz) at the same amplitude. What do you observe before 
and after the low-pass filter? Adjust the threshold on the comparator so that the 
baseband signal is correctly reconstructed.  

– By setting the SYNC CODE GENERATOR of the MODICOM 3/1 module to 
“ON”, the system is fully operational for transmitting analog signals. Analyze the 
operation of the entire system.  

6.4.3. Phase shift keying modulation (PSK) 

Perform a digital phase modulation according to the block diagram of Figure 6.4.  

 

Figure 6.4. Block diagram of a digital PSK modulation 

In reception, the signal is decoded in two steps. 

 

Figure 6.5. Block diagram of a digital PSK demodulation 
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A demodulator composed of four blocks performs a PSK demodulation (see 
Figure 6.5).  

In a second step a low-pass filter and a comparator provide a logical signal.  

– Show that if the code used at the input of the modulator is an NRZ-L code, 
there is ambiguity in the decoding.  

– In order to remove this ambiguity, the code used will be an NRZ-M code and 
the complete scheme to be realized will be the following (Figure 6.6). 

 

 

Figure 6.6. Block diagrams of a digital PSK modulation  
and demodulation by using an NRZ-M code  
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Study of a QPSK Modem Under MATLAB, 
Simulink, Communications and DSP 

7.1. Objective 

The objective of this lab work is the study, then the simulation under MATLAB, 
Simulink, Communications and DSP of a QPSK digital transmission modem 
(modulator and demodulator).   

The complexity of telecommunications and signal processing systems has grown 
enormously in the last two decades.  

The evaluation of performance on “hardware” prototypes is of course the best 
method to validate a concept, a structure or system. However, this approach is 
usually very time-consuming and expensive in terms of equipment. It is therefore 
understandable why the implementation phase intervenes only at the end of the 
development cycle.  

The role of simulation is precisely to perform all these tests, at a lower cost both 
in terms of time and equipment. 

The objective here is the study and the complete simulation of the proposed 
QPSK modem (see the block diagram in the Appendix). 

The QPSK modem in question uses the following software modules, MATLAB, 
SIMULINK, COMMUNICATIONS and DSP: 

– MATLAB: 

- analysis, design, optimization; 

- off-line data processing; 
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– Simulink: 

- block diagram modeling; 

- off-line simulation;  

– Communications Toolbox (uses: SIMULINK and MATLAB): modeling and 
simulation of all the components of a digital or analog communication system 
“commlib”; 

– DSP Blockset (uses: MATLAB, SIMULINK, SIGNAL PROCESSING 
TOOLBOX): set of libraries specific to signal processing. They are used by 
SIMULINK “dsplib”. 

A MODEM (Modulator-Demodulator) is a system that modulates the baseband 
information at transmitter level and demodulates the received signal at receiver level 
to retrieve the information carried by a baseband signal.  

The MODEM is decomposed into two essential functions: 

– the transmission function (transmitter); 

– the reception function (receiver).  

The receiver consists of blocks that perform reverse functions to the transmitter 
blocks.   

7.2. Required work  

Under Simulink, open the “mqpsk.mdl” modem to view it, then execute the 
“pmqpsk.m” parameter file under MATLAB. The two files in question will be 
provided to you (see the different figures in the Appendix).  

– Study very thoroughly the different blocks constituting the modem and 
simulate the whole for a time duration up to 1,000 × . Observe and comment on 
the spatial diagram, the constellation diagram and the eye diagram. Then analyze the 
different intermediate signals.  

– For different values of the signal-to-noise ratio (40 dB, 20 dB, 10 dB, 5 dB), 
qualitatively compare the results, the roll-off R parameter of the Nyquist filter being 
fixed at 0.5.  

– Set the signal-to-noise ratio to 40 dB and vary the roll-off R parameter  
(R = 0.1, 0.3, 0.7 and 0.9). Analyze their influence on the demodulated signals 
(spatial diagram, constellation diagram and eye diagram).   
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– Replace the “QPSK map” block given in Figure 7.2 by that given in Figure 7.8 
and redo the study done above.   

Explain your conclusions.  

7.3. Appendix: Diagrams of the QPSK modem and its different blocks 

 

Figure 7.1. Block diagram of a QPSK modem “mqpsk.mdl” 

 

Figure 7.2. Decomposition of function “Map QPSK” 
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Figure 7.3. Decomposition of function “transmitter1” 

 

Figure 7.4. Decomposition of function “up” 

 

Figure 7.5. Decomposition of function “down” 
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Figure 7.6. Decomposition of function “receiver1” 

% pmqpsk.m 
% Settings for mqpsk modem example 
% Frequencies relations: 
% Fs > Fc > Fd, with Fs >= 2Fc  
% Fs: sampling frequency  
% Fc: carrier frequency  
% Fd: symbol frequency of input data 
% Bit rate Fb=2*Fd (Hz) or bit/s 
% Bit interval Tb =1/Fb s 
% R: roll off factor 
% D: delay of rcos FIR filter 
% Ph: phase of the carrier 
Fb = 50,000 
Tb = 1/Fb 
Td = 2*Tb 
Fd = 1/Td 
Fc = 2*Fd 
Tc = 1/Fc 
F s = 3*Fc 
Ts = 1/Fs 
Ph = 0 
R = 0.5 
D = 2 
N = 1 

Figure 7.7. Parameter file “pmqpsk.m” 
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Figure 7.8. QPSK map 
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Study of a Coding and Decoding  
System by Cyclic Codes  

8.1. Objective  

The objective of this lab work is the study, then the complete simulation under 
MATLAB and Simulink, of a coding and decoding application using cyclic codes. 

8.2. Recall of the principles of cyclic coding and decoding 

Cyclic codes are block codes where the ݊ symbols which constitute a word are 
considered as coefficient of a polynomial of degree ݊ − ௧ݑ   :1 = ሾݑିଵ, ,ିଶݑ ⋯ , ,ଵݑ ሿݑ ⟺ = (ݔ)ݑ ିଵݔିଵݑ + ିଶݔିଶݑ + ⋯ + ݔଵݑ +  ݑ

Any circular permutation on the symbols of a codeword gives a codeword:  ሾݑିଵ, ,ିଶݑ ⋯ , ,ଵݑ ሿݑ ∈ ܥ ⟹ ሾݑିଶ, ,ିଷݑ ⋯ , ,ݑ ିଵሿݑ ∈  ܥ

The addition of two codewords is a codeword:  ∀ ݑ௧, ௧ݑ ∈ ܥ ⟹ ௧ݑ + ௧ݑ ∈  ܥ

The set of all the words of the code constitutes an algebra, while the set of words 
having a meaning constitutes an ideal. 
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The benefits of these codes are multiple:  

– they are well suited to the detection of independent and packet errors;  

– their implementation is easy, since the coding and decoding procedures can be 
made automatic by means of shift registers;  

– their basic principle is based on the theory of polynomials and algebra.  

8.3. Coding by division: systematic code 

Let the information word represented by its polynomial: ݅(ݔ) = ݅ିଵݔିଵ + ⋯ + ݅ଵݔ + ݅ 

The same word can be written:  0 0 ⋯ 0 ᇣᇧᇤᇧᇥ ݅ିଵ ⋯ ݅ଵ ݅ᇣᇧᇧᇤᇧᇧᇥ݇              ݉  

Let us multiply ݅(ݔ) by ݔ : ݔ݅(ݔ) = ݅ିଵݔିଵ + ⋯ + ݅ଵݔାଵ + ݅ݔ 

This shifts the word ݅ of ݇ positions to the left: ݅ିଵ ⋯ ݅ଵ ݅ᇣᇧᇧᇤᇧᇧᇥ  0 0 ⋯ 0 ᇣᇧᇧᇤᇧᇧᇥ݉                ݇  

Now divide ݔ݅(ݔ) by ݃(ݔ) (whose degree is ݇): ݔ݅(ݔ) = (ݔ)ݍ(ݔ)݃ + (ݔ)ܿ°݀  with  (ݔ)ܿ < can be written:  0 0 (ݔ)ܿ ݇ ⋯ 0ᇣᇧᇤᇧᇥ  ܿିଵ ⋯ ܿଵܿ ᇣᇧᇧᇧᇤᇧᇧᇧᇥ݉               ݇  

Or again, the polynomial:  ݔ݅(ݔ) + (ݔ)ܿ =  (ݔ)ݍ(ݔ)݃
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being a multiple of ݃(ݔ), is a polynomial of the code. The corresponding codeword 
consists of two disjoint sub-words:  ݅ିଵ ⋯ ݅ଵ ݅ᇣᇧᇧᇤᇧᇧᇥ  ܿିଵ ⋯ ܿଵܿ ᇣᇧᇧᇧᇤᇧᇧᇧᇥ݉                    ݇  

This word has on the left the ݉ bits of information. The following ݇ bits are the 
control bits. The whole word of ݉ + ݇ bits is a codeword.  

In summary, we can code a word of information by: 

1) multiplying it by ݔ; 

2) then dividing the result by ݃(ݔ). The remainder of the division provides the 
control bits.   

8.4. Decoding by division: principle of calculating the syndrome  

In general:  (ݔ)ݒ = (ݔ)ݑ +  (ݔ)ߝ

with: 

 ;received word : (ݔ)ݒ –

 ;codeword transmitted : (ݔ)ݑ –

  .possible error word : (ݔ)ߝ –

The syndrome is:   

(ݔ)ݏ = Remainder (ݔ)݃(ݔ)ݒ൨ = Remainder (ݔ)݃(ݔ)ߝ൨ 

If there have been errors, and if the erroneous received word v(x) does not belong 
to the code, the division of the received word by g(x) will give a non-zero 
remainder. For the error detection it is sufficient to add an “OR” gate whose inputs 
are the contents of the register.  
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8.5. Required work 

Under Simulink, open the cyclic encoder-decoder: “codec3f.mdl” (provided to  
you, see block diagrams in the Appendix below) using a generator polynomial ݃(ݔ) 
of degree ݇ = (ݔ)݃  :3 = ଷݔ + ݔ + 1 

– Study very thoroughly the different blocks constituting the encoder and the 
decoder.  

– In the MATLAB workspace, set the following parameters:  ݊ = 7, ݇ = 3, ܶ = 1 

Then, in the Bernoulli generator of the transmission “channel” (Figure 8.4), set 
the “probability of a zero” parameter to 1.   

Then run the simulation for up to 15 × ܶ (two codewords plus one bit). Analyze 
the results obtained for the encoder and the decoder.  

– Calculate the codewords analytically and compare them with the result of the 
simulation. 

– Now set in the Bernoulli generator of the transmission “channel”, the 
“probability of a zero” parameter to 0.8 and start the simulation. Analyze the results 
obtained for the encoder and the decoder.   

– Realize and test under Simulink the linear feedback shift register encoder using 
the preceding generator polynomial ݃(ݔ) given in Figure 8.7, and the associated 
decoder given in Figure 8.8. 

– Realize and test under Simulink (see Volume 1, Chapter 4):   

- the following generator polynomial: ଵ݃(ݔ) = ହݔ + ଶݔ + 1 as a pseudo-
random generator, starting from a non-zero initial state of the register. 

- the following generator polynomial: ݃ଶ(ݔ) = ହݔ + ସݔ + ଷݔ + ଶݔ + 1 as a 
pseudo-random generator, starting from a non-zero initial state of the register. 

- the Gold generator polynomial  ݃ଷ(ݔ) based on the two preceding generators ଵ݃(ݔ) and ݃ଶ(ݔ)  (which are preferred pairs).  

What is the length ݊ of the sequences generated? 

What is the number of sequences generated? 

Conclusions. 
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8.6. Appendix: Block diagrams 

 

Figure 8.1. Codec3f: Cyclic coding and decoding 

 

Figure 8.2. Generation of the word information 

 

Figure 8.3. Encoding diagram  
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Figure 8.4. Binary transmission channel generator 

 

Figure 8.5. Decoding diagram 

 

Figure 8.6. Example of simulation results 
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Figure 8.7. Coder based on linear feedback shift register (LFSR) 

 

Figure 8.8. Decoder based on linear feedback shift register (LFSR) 

 

D0 Q0

 = 1

Ck

 1 = 

i x( )u x( ) c
1

2

D1 Q1D2 Q2

D0 Q0

 = 1

Ck

 1 = v x( )

D1 Q1D2 Q2

1≥
s x( )



 

References 

Assaf, R., El Assad, S., Harkous, Y. (2010). Simulation et égalisation adaptative des canaux 
de transmission. Éditions universitaires européennes, Nantes. 

Barba, D. (2019). Cours de théorie et transmission de l’information. Polytech, Nantes. 

Baudoin, G. (2002). Radiocommunications numériques 1. Dunod, Paris. 

Bic, J.C., Duponteil, D., Imbeaux, J.C. (1986). Éléments de communications numériques. 
Dunod, Paris. 

Caragata, D., El Assad, S., Luduena, M. (2015). An improved fragile watermarking algorithm 
for JPEG images. International Journal of Electronics and Communications, 69, 1783–
1794. 

Charbit, M. (2003). Systèmes de communications et théorie de l’information. Hermes-
Lavoisier, Cachan. 

Combes, P.F. (1996). Micro-ondes : lignes, guides et cavités, cours et exercices. Dunod, Paris. 

Csillag, P. (1990). Introduction aux codes correcteurs. Ellipses, Paris. 

De Cannière, C., Preneel, B. (2006). Trivium specifications [Online]. Available at: http:// 
www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf. 

Dixon, R.C. (1994). Spread Spectrum Systems with Commercial Applications. John Wiley & 
Sons, Hoboken. 

El Assad, S. (2001). Conception et simulation d’un modem MDP-8 cohérent et différentiel. 
International Conference on Image and Signal Processing (ICISP 2001), Agadir,  
845–852. 

El Assad, S. (2019). Cours de communications numériques : bases et techniques. Polytech, 
Nantes. 

El Assad, S., Barba, D. (2020). Digital Communications 1: Fundamentals and Techniques. 
ISTE Ltd, London, and John Wiley & Sons, New York.  

Digital Communications 2: Directed and Practical Work, 
First Edition. Safwan El Assad and Dominique Barba. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.



306     Digital Communications 2 

El Assad, S. et al. (2003–2005). COBBALT : coopération ouest BAL en télécommunications. 
Internal report, Université virtuelle en Pays de la Loire. 

El Assad, S. et al. (2006–2008). MASTER-FOAD, projet UVPL. Internal report, Université 
virtuelle en Pays de la Loire. 

Fontolliet, P.G. (1983). Systèmes de télécommunications. Dunod, Paris. 

Glavieux, A., Joindot, M. (1996). Communications numériques. Masson, Paris. 

Guglielmi, M. (2004). Signaux aléatoires : modélisation, estimation, détection. Hermes-Lavoisier, 
Paris. 

Haykin, S. (1988). Digital Communications. John Wiley & Sons, Hoboken. 

MathWorks (2020). comm.KasamiSequence [Online]. Available at: https://fr.mathworks.com/ 
help/comm/ref/comm.kasamisequence-system-object.html. 

MacWilliams, F.J., Stoane, N.J.A. (1977). The Theory of Error Correcting Codes. Bell 
Laboratories, Murray Hill. 

Maximov, A., Biryukov, A. (2007). Two trivial attacks on Trivium. In Selected Areas in 
Cryptography, Adams, C., Miri, A., Wiener, M. (eds). Springer-Verlag, Berlin, 36–55. 

Paar, C., Oelzl, J. (2010). Understanding Cryptography. Springer-Verlag, Berlin. 

Pätzold, M. (2002). Mobile Fading Channels. John Wiley & Sons, Hoboken. 

Penaud, S. (2001). Étude des potentialités du chaos pour les systèmes de télécommunications : 
évaluation des performances de systèmes à accès multiples à répartition par les codes 
(CDMA) utilisant des séquences d’étalement chaotiques. PhD Thesis, University of 
Limoges.  

Proakis, J.G. (1995). Digital Communications. McGraw-Hill, New York. 

Roubine, E. (1970). Introduction à la théorie de la communication, tome III. Masson, Paris.  

Sanchez, J., Thioune, M. (2008). UMTS, 3rd edition. Hermes-Lavoisier, Cachan. 

Servin, C. (2009). Réseaux & télécoms. Dunod, Paris. 

Sklar, B. (1988). Digital Communications. Prentice Hall, Upper Saddle River. 

Spataru, A. (1987). Fondements de la théorie de la transmission de l’information. Presses 
polytechniques et universitaires romandes, Lausanne. 

Stein, M. (1991). Les modems pour transmission des données. Masson, Paris. 

Tomasi, W. (1998). Electronic Communications Systems. Prentice Hall, Upper Saddle River. 

Webb, W., Hanzo, L. (1994). Modern Quadrature Amplitude Modulation. Pentech Press, 
London. 



Index 

4-QAM digital modulation 
transmission, 209, 226 

16-QAM modulator constructed from 
two QPSK modulators, 248, 252, 
253 

A 

amount of binary information, 22, 27, 
28 

amplitude shift keying (ASK) 
modulation, 201, 205, 206 
 219–221, 224, 247, 250, 284, 286 

amplitude spectrum, 257 
autocorrelation function, 89–91, 96, 

97, 106, 108, 109, 121, 122 
average  

amount of information 
lost, 7, 9, 10 
received, 4, 22, 28 

length, 16, 272 

B 

baseband  
digital transmission, 83, 135, 144, 

152, 163, 273, 285 
 of bipolar coded information, 

163 

transmission and reception using a 
partial response linear coding, 
129 

binary symmetric channel, 7 
bipolar  

encoder, 84, 164, 170 
RZ code, 108 

bitrate, 14, 20, 272 
measurement, 272 

block diagram  
baseband transmission system, 136, 

152 
carrier modulation and 

demodulation, 200 
combined precoder, transcoder and 

encoder, 193 
precoder, transcoder and duobinary 

coder, 185 
RZ bipolar encoder and decoder, 

170 

C 

carrier signal, 200, 210, 220, 236, 
256 

channel capacity, 14, 20 
characteristic impedance, 268, 

270–272 

Digital Communications 2: Directed and Practical Work, 
First Edition. Safwan El Assad and Dominique Barba. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.



308     Digital Communications 2 

chronograms, 89, 127, 129, 185, 285, 
286 
of the different signals, 131, 132 

code  
cyclic, 53–55, 60–62, 66, 69, 75, 

76, 78, 297 
HDB-2, 84 
HDB-3, 129 
Huffman, 11–15, 17–22, 24, 27–29, 

31, 35–38, 43– 45, 83, 84, 86, 
254 

RZ and NRZ binary on-line, 89, 
108 

systematic, 48–50, 54, 61, 67, 70, 
75, 298   

coder based on a linear feedback shift 
register (LFSR), 58 

coding and decoding by cyclic codes, 
297 

complex envelope, 201–203, 206, 
208, 211, 212, 214, 221, 227–230, 
236–240, 248, 256 

compression ratio, 28 
constellation diagram, 245, 247, 250, 

251, 292 
continuous component, 88, 100, 108, 

124, 126–128, 132–134, 169 
control bits, 52, 54–56, 66, 69, 70, 

73, 74, 77, 278, 299 

D 

decision thresholds, 137, 145, 158, 
159, 165, 171, 175, 186, 195, 262 

decoder  
based on a linear feedback shift 

register (LFSR), 57, 58 
implementation scheme, 56, 78 

digital modulations with carrier, 286  
digital transmission 

on two-wire cables, 267 
with carrier modulation, 199 

E, F 

efficiency, 28, 29 
encoder  

filter, 191 
implementation scheme, 56 

energy, 124 
bandwidth, 138, 146, 147, 164 

entropy, 16 
conditional, 4 
receiver, 3, 22, 28, 33 
source, 3, 7, 10–12, 22, 27, 83 
transmission error, 4 

equalization, 164 
filter, 138, 146 

equivalent  
baseband transmission and 

reception system, 202 
low-pass filter, 201, 202, 211, 221, 

227, 237, 238, 256 
error 

decision, 88, 135, 185, 193 
detection, 59, 63, 79, 273, 278, 

281, 299 
double, 59, 73 
packet (see also proportion of 

detectable error packets), 59 
average, 138 
conditional, 3, 138, 147, 183, 

229 
single, 48, 59, 79 
triple, 54, 59, 62, 75, 78, 79 
word, 78, 299 

frequency 
attenuation, 271 
fundamental, 245, 249 

G, H 

generator polynomial, 53, 56, 300 
Gold  

generator, 81, 300 
sequences, 75 
 



Index     309 

Hamming  
coder, 52 
coding, 66, 69 
decoder, 53 

Hermitian symmetry, 202, 209, 221, 
224, 237, 241 

I, K 

information  
bits, 52, 54, 66, 69, 70, 73, 77, 84 
motion, 42, 253, 255 
source, 7, 11 
theory of, 3 

instantaneous decoding, 133 
interfering messages, 157, 172, 174, 

216–218, 222, 225, 226, 231, 233, 
234, 241 

intersymbol interference (ISI), 140, 
142, 144, 150, 157, 158, 168, 231, 
243, 245 
inter-channel, 228, 256, 260–262 
intra-channel, 202, 209, 228, 256, 

260, 261 
K-order extension channel, 6 

L, M, N, O 

length-percentage pairs of error 
packets, 75 

long distance transmission, 131 
M-sequences, 75, 80 
matrix 

generator, 47, 48, 50, 54, 55, 66, 
67, 69 

parity, 47, 48 
minimum distance, 48, 49 
noise, 140, 146, 155, 167, 186, 212, 

221, 256, 261 
Nyquist frequency criterion, 164 
on-line codes for baseband digital 

transmission, 285 

P 

partial response linear encoder, 124, 
181, 190 

path propagation 
double, 238, 242 
single, 235, 239 

performance of digital modulations, 
245 

periodic function, 96, 107 
phase shift keying (PSK) modulation, 

201, 204–206, 235, 245–250, 253, 
255, 284–286, 288, 289, 291, 293 

polynomial information, 80 
power, 84, 87–90, 96, 99, 107–109, 

121, 122, 124, 126, 128–134, 
137–139, 143, 145–147, 149, 153, 
164, 171, 200, 211, 212, 220, 222, 
236, 246, 250, 274, 275, 285 
noise, 139, 143, 146, 149, 171 
spectral density, 96, 126 

calculation, 89, 90, 96, 107–109, 
126, 131, 138, 146 

partial response linear on-line 
codes, 131 

precoder, 131, 193 
premultiplied coder, 63, 68 
primitive, 59, 61, 62, 66, 73, 75, 76, 

79 
probability  

conditional, 172 
compound, 91, 110 
error, 168, 178, 180, 226, 241 
of having a bit at one , 47 
of having a bit at zero, 25, 46, 260 
of having at least one error, 41 
of having no errors, 41 

proportion of detectable error 
packets, 59, 73 

pseudo-random number generator 
(PRNG), 74 

 



310     Digital Communications 2 

pulse amplitude modulation (PAM), 
274 

pulse code modulation (PCM), 277 

Q, R 

QPSK modem, 291 
quadrature amplitude modulation 

(QAM), 201 
redundancy, 36 

S 

serial transmission under digital form 
of analog signals, 273 

signal  
bandwidth, 84, 85, 126 
equalized, 140, 143, 149, 153, 165 
received, 137, 139, 145, 238, 277 
useful, 137, 138, 145, 147, 154, 

224, 228, 256, 260, 277, 278 
signal-to-noise ratio, 222 
source of binary information, 3, 28, 

36 
spectrum shaping, 126 
structure 

of the partial response coder, 130 
of the polynomial, 80 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

symbol, 7, 10, 12, 14, 25, 26, 29, 30, 
32, 39, 85, 86, 118, 150, 165, 169, 
213, 218, 222, 244, 257, 259 

syndrome, 57, 299 
systematic code, 48, 49 

T, V, W 

time domain reflectometry (TDR), 
270 

time multiplexing, 274 
transmission  

channel, 4, 14, 281 
error control, 277 
line theory, 268 
of motion information of digital 

video, 253 
using a partial response linear 

coding, 124 
transmitted signal, 126, 127 
value of the frequency band,  

lower, 245 
upper, 245 

word  
code-, 20, 45, 49, 86 
control, 49, 51, 54, 56   
information, 49, 51, 66, 301  
received, 47, 4 

 



Other titles from  

 

in 

Information Systems, Web and Pervasive Computing 

2020 
CLIQUET Gérard, with the collaboration of BARAY Jérôme 
Location-Based Marketing: Geomarketing and Geolocation 

DE FRÉMINVILLE Marie 
Cybersecurity and Decision Makers: Data Security and Digital Trust 

GEORGE Éric 
Digitalization of Society and Socio-political Issues 2: Digital, Information 
and Research 

SEDKAOUI Soraya, KHELFAOUI Mounia 
Sharing Economy and Big Data Analytics 

2019 
ALBAN Daniel, EYNAUD Philippe, MALAURENT Julien, RICHET Jean-Loup, 
VITARI Claudio 
Information Systems Management: Governance, Urbanization and 
Alignment  

AUGEY Dominique, with the collaboration of ALCARAZ Marina 
Digital Information Ecosystems: Smart Press 

BATTON-HUBERT Mireille, DESJARDIN Eric, PINET François 
Geographic Data Imperfection 1: From Theory to Applications  



BRIQUET-DUHAZÉ Sophie, TURCOTTE Catherine 
From Reading-Writing Research to Practice  

BROCHARD Luigi, KAMATH Vinod, CORBALAN Julita, HOLLAND Scott, 
MITTELBACH Walter, OTT Michael 
Energy-Efficient Computing and Data Centers  

CHAMOUX Jean-Pierre 
The Digital Era 2: Political Economy Revisited 

COCHARD Gérard-Michel 
Introduction to Stochastic Processes and Simulation 

DUONG Véronique 
SEO Management: Methods and Techniques to Achieve Success 

GAUCHEREL Cédric, GOUYON Pierre-Henri, DESSALLES Jean-Louis 
Information, The Hidden Side of Life  

GEORGE Éric 
Digitalization of Society and Socio-political Issues 1: Digital, 
Communication and Culture 

GHLALA Riadh 
Analytic SQL in SQL Server 2014/2016 

JANIER Mathilde, SAINT-DIZIER Patrick 
Argument Mining: Linguistic Foundations  

SOURIS Marc 
Epidemiology and Geography: Principles, Methods and Tools of Spatial 
Analysis 

TOUNSI Wiem 
Cyber-Vigilance and Digital Trust: Cyber Security in the Era of Cloud 
Computing and IoT 

2018 
ARDUIN Pierre-Emmanuel  
Insider Threats 
(Advances in Information Systems Set – Volume 10) 



CARMÈS Maryse 
Digital Organizations Manufacturing: Scripts, Performativity and 
Semiopolitics 
(Intellectual Technologies Set – Volume 5) 

CARRÉ Dominique, VIDAL Geneviève  
Hyperconnectivity: Economical, Social and Environmental Challenges 
(Computing and Connected Society Set – Volume 3) 

CHAMOUX Jean-Pierre 
The Digital Era 1: Big Data Stakes 

DOUAY Nicolas 
Urban Planning in the Digital Age   
(Intellectual Technologies Set – Volume 6) 

FABRE Renaud, BENSOUSSAN Alain 
The Digital Factory for Knowledge: Production and Validation of Scientific 
Results  

GAUDIN Thierry, LACROIX Dominique, MAUREL Marie-Christine, POMEROL 
Jean-Charles 
Life Sciences, Information Sciences  

GAYARD Laurent 
Darknet: Geopolitics and Uses 
(Computing and Connected Society Set – Volume 2) 

IAFRATE Fernando 
Artificial Intelligence and Big Data: The Birth of a New Intelligence   
(Advances in Information Systems Set – Volume 8) 

LE DEUFF Olivier  
Digital Humanities: History and Development   
(Intellectual Technologies Set – Volume 4) 

MANDRAN Nadine 
Traceable Human Experiment Design Research: Theoretical Model and 
Practical Guide    
(Advances in Information Systems Set – Volume 9) 



PIVERT Olivier 
NoSQL Data Models: Trends and Challenges  

ROCHET Claude 
Smart Cities: Reality or Fiction   

SAUVAGNARGUES Sophie 
Decision-making in Crisis Situations: Research and Innovation for Optimal 
Training 

SEDKAOUI Soraya 
Data Analytics and Big Data 

SZONIECKY Samuel 
Ecosystems Knowledge: Modeling and Analysis Method for Information and 
Communication 
(Digital Tools and Uses Set – Volume 6) 

2017 
BOUHAÏ Nasreddine, SALEH Imad 
Internet of Things: Evolutions and Innovations  
(Digital Tools and Uses Set – Volume 4) 

DUONG Véronique  
Baidu SEO: Challenges and Intricacies of Marketing in China 

LESAS Anne-Marie, MIRANDA Serge 
The Art and Science of NFC Programming  
(Intellectual Technologies Set – Volume 3) 

LIEM André 
Prospective Ergonomics  
(Human-Machine Interaction Set – Volume 4) 

MARSAULT Xavier 
Eco-generative Design for Early Stages of Architecture 
(Architecture and Computer Science Set – Volume 1) 



REYES-GARCIA Everardo 
The Image-Interface: Graphical Supports for Visual Information 
(Digital Tools and Uses Set – Volume 3) 

REYES-GARCIA Everardo, BOUHAÏ Nasreddine 
Designing Interactive Hypermedia Systems  
(Digital Tools and Uses Set – Volume 2) 

SAÏD Karim, BAHRI KORBI Fadia 
Asymmetric Alliances and Information Systems:Issues and Prospects 
(Advances in Information Systems Set – Volume 7) 

SZONIECKY Samuel, BOUHAÏ Nasreddine  
Collective Intelligence and Digital Archives: Towards Knowledge 
Ecosystems  
(Digital Tools and Uses Set – Volume 1) 

2016 
BEN CHOUIKHA Mona 
Organizational Design for Knowledge Management 

BERTOLO David 
Interactions on Digital Tablets in the Context of 3D Geometry Learning 
(Human-Machine Interaction Set – Volume 2) 

BOUVARD Patricia, SUZANNE Hervé 
Collective Intelligence Development in Business 

EL FALLAH SEGHROUCHNI Amal, ISHIKAWA Fuyuki, HÉRAULT Laurent, 
TOKUDA Hideyuki  
Enablers for Smart Cities 

FABRE Renaud, in collaboration with MESSERSCHMIDT-MARIET Quentin, 
HOLVOET Margot 
New Challenges for Knowledge 

GAUDIELLO Ilaria, ZIBETTI Elisabetta 
Learning Robotics, with Robotics, by Robotics  
(Human-Machine Interaction Set – Volume 3) 



HENROTIN Joseph 
The Art of War in the Network Age  
(Intellectual Technologies Set – Volume 1) 

KITAJIMA Munéo 
Memory and Action Selection in Human–Machine Interaction  
(Human–Machine Interaction Set – Volume 1) 

LAGRAÑA Fernando  
E-mail and Behavioral Changes: Uses and Misuses of Electronic 
Communications 

LEIGNEL Jean-Louis, UNGARO Thierry, STAAR Adrien  
Digital Transformation 
(Advances in Information Systems Set – Volume 6) 

NOYER Jean-Max 
Transformation of Collective Intelligences 
(Intellectual Technologies Set – Volume 2) 

VENTRE Daniel 
Information Warfare – 2nd edition 

VITALIS André 
The Uncertain Digital Revolution 
(Computing and Connected Society Set – Volume 1) 

2015 
ARDUIN Pierre-Emmanuel, GRUNDSTEIN Michel, ROSENTHAL-SABROUX 
Camille  
Information and Knowledge System  
(Advances in Information Systems Set – Volume 2) 

BÉRANGER Jérôme  
Medical Information Systems Ethics 

BRONNER Gérald 
Belief and Misbelief Asymmetry on the Internet 



IAFRATE Fernando  
From Big Data to Smart Data  
(Advances in Information Systems Set – Volume 1) 

KRICHEN Saoussen, BEN JOUIDA Sihem  
Supply Chain Management and its Applications in Computer Science 

NEGRE Elsa  
Information and Recommender Systems  
(Advances in Information Systems Set – Volume 4) 

POMEROL Jean-Charles, EPELBOIN Yves, THOURY Claire  
MOOCs 

SALLES Maryse  
Decision-Making and the Information System  
(Advances in Information Systems Set – Volume 3) 

SAMARA Tarek  
ERP and Information Systems: Integration or Disintegration  
(Advances in Information Systems Set – Volume 5) 

2014 
DINET Jérôme 
Information Retrieval in Digital Environments 

HÉNO Raphaële, CHANDELIER Laure 
3D Modeling of Buildings: Outstanding Sites 

KEMBELLEC Gérald, CHARTRON Ghislaine, SALEH Imad 
Recommender Systems 

MATHIAN Hélène, SANDERS Lena 
Spatio-temporal Approaches: Geographic Objects and Change Process 

PLANTIN Jean-Christophe 
Participatory Mapping 

VENTRE Daniel 
Chinese Cybersecurity and Defense 



2013 
BERNIK Igor 
Cybercrime and Cyberwarfare 

CAPET Philippe, DELAVALLADE Thomas 
Information Evaluation 

LEBRATY Jean-Fabrice, LOBRE-LEBRATY Katia 
Crowdsourcing: One Step Beyond 

SALLABERRY Christian 
Geographical Information Retrieval in Textual Corpora  

2012 
BUCHER Bénédicte, LE BER Florence 
Innovative Software Development in GIS 

GAUSSIER Eric, YVON François 
Textual Information Access 

STOCKINGER Peter 
Audiovisual Archives: Digital Text and Discourse Analysis 

VENTRE Daniel 
Cyber Conflict 

2011 

BANOS Arnaud, THÉVENIN Thomas 
Geographical Information and Urban Transport Systems 

DAUPHINÉ André 
Fractal Geography 

LEMBERGER Pirmin, MOREL Mederic 
Managing Complexity of Information Systems 

STOCKINGER Peter 
Introduction to Audiovisual Archives 

STOCKINGER Peter 
Digital Audiovisual Archives 



VENTRE Daniel 
Cyberwar and Information Warfare 

2010 
BONNET Pierre 
Enterprise Data Governance 

BRUNET Roger 
Sustainable Geography 

CARREGA Pierre 
Geographical Information and Climatology 

CAUVIN Colette, ESCOBAR Francisco, SERRADJ Aziz 
Thematic Cartography – 3-volume series 
Thematic Cartography and Transformations – Volume 1 
Cartography and the Impact of the Quantitative Revolution – Volume 2 
New Approaches in Thematic Cartography – Volume 3 

LANGLOIS Patrice 
Simulation of Complex Systems in GIS 

MATHIS Philippe 
Graphs and Networks – 2nd edition 

THERIAULT Marius, DES ROSIERS François 
Modeling Urban Dynamics 

2009 

BONNET Pierre, DETAVERNIER Jean-Michel, VAUQUIER Dominique 
Sustainable IT Architecture: the Progressive Way of Overhauling 
Information Systems with SOA 

PAPY Fabrice 
Information Science 

RIVARD François, ABOU HARB Georges, MERET Philippe 
The Transverse Information System 



ROCHE Stéphane, CARON Claude 
Organizational Facets of GIS 

2008 

BRUGNOT Gérard 
Spatial Management of Risks 

FINKE Gerd 
Operations Research and Networks 

GUERMOND Yves 
Modeling Process in Geography 

KANEVSKI Michael 
Advanced Mapping of Environmental Data 

MANOUVRIER Bernard, LAURENT Ménard 
Application Integration: EAI, B2B, BPM and SOA 

PAPY Fabrice 
Digital Libraries 

2007 
DOBESCH Hartwig, DUMOLARD Pierre, DYRAS Izabela  
Spatial Interpolation for Climate Data 

SANDERS Lena 
Models in Spatial Analysis 

2006 

CLIQUET Gérard 
Geomarketing 

CORNIOU Jean-Pierre 
Looking Back and Going Forward in IT 

DEVILLERS Rodolphe, JEANSOULIN Robert 
Fundamentals of Spatial Data Quality 


