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Foreword

We have written this training book on digital communications in the spirit of
presenting — in an integrated form — the basic knowledge on which modern digital
communication systems are based and, above all, the way in which they are
technically implemented, both in principle, and in practice. This book is the product
of a long experience of training in this field in engineering school (Polytech Nantes,
France).

The training is comprehensive: courses, tutorials presenting many standard
problems targeted with detailed solutions, practical work concretely illustrating
various aspects of the techniques of implementation.

As we have mentioned, although our experience is primarily that of training
engineers, we have, through adaptations of the content, wished to address broader
audiences: first in initial training, engineers, Master 2, specialized telecommunications
licenses or other related specialties. But also to the trainers by providing them,
through tutorials and practices (Lab Works), content that can be very useful in
the construction of the training they provide. In continuing education, this book is
also addressed to telecommunication technicians or for an additional year of
specialization (specific years complementary to training in IUT).

This book, which is composed of two associated volumes, is presented in its first
aspect, as a very concise and complete synthesis of the foundations and techniques
of digital communications (Volume 1). It is broken down into two parts. The first
part concerns the theory of information itself, which deals with both sources of
information and communication channels, in terms of the errors they introduce in
the transmission of information, as well as ways to protect the latter by using
appropriate coding methods. The second part deals with the technical aspects of
transmission, we first present the baseband transmission with the important concept
of equalization and its implementations. The performance evaluation, in terms of
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probability of errors, is systematically developed and detailed as well as the on-line
codes used. We then present the transmissions with digital modulation of carriers
used in transmission (radio transmissions but also on electric cables).

A second important aspect, teaching knowledge and skills, composes this book
(first part of Volume 2). It concerns the tutorial aspect of a course. This is an ordered
set of about 30 standard problems with detailed solutions covering the different parts
of the course. The set should allow a learner to gradually and deeply understand the
essentials of this field and acquire the necessary skills to practice them in the
industrial world.

Finally, the last aspect concerns practices in the proper sense of the term, an
indispensable complement to training progressing to know-how (second part of
Volume 2). We propose here a set of five lab works. The interest of these is that they
go from the basic measurements on the transmission cables, to the design in software
simulation of modems and cyclic coders, through the use of blocks of electronic
modules carrying out basic functions useful in digital communications.

For every book sold, we will provide the buyer with two practical pieces of
software from MATLAB-Simulink: “Modem QPSK” and “Cyclic encoder-
decoder”, free of charge. We will provide necessary explanations and endeavor to
help with the set-up of the two pieces of practical material.



PART 1

Tutorials

Digital Communications 2: Directed and Practical Work,
First Edition. Safwan El Assad and Dominique Barba.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.



Theory of Information: Problems 1 to 15

1.1. Problem 1 — Entropy

We consider the information transmission channel of memoryless binary
symmetrical type of Figure 1.1.

Disturbances

!

X
. [X] Channel [Y] .
Information source > » Destination

p(yj/xi)

Figure 1.1. Basic diagram of a digital communication

It is assumed that the signal-to-noise ratio leads to the following values of
conditional probabilities of errors:

p(yj=1/x,=0)=p(y;=0/x;=1)=p
pi/x)=1-p

The source of binary information is considered to emit independent information
with the following probabilities:

p(x;) =p; and p(x) =p, =1-p,

1) Calculate the source entropy H (X).
2) Calculate the entropy H(Y) at the receiver end.
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3) Calculate the conditional entropy H(Y /X) (entropy of transmission error).
4) Calculate the loss of information in the transmission channel H(X/Y).

5) Deduce the average amount of information received by the recipient for each
binary symbol sent / (X, Y) (mutual information).

6) Determine the channel capacity C and show that it is obtained when p; = 0.5.

Solution of problem 1

1) By definition, we have:

2
HX) =— Z p(x;) log, p(x;)
i=1

then:

H(X) = —{p,log,ps + (1 = py) log, (1 —p)} = H(py)
2) By definition, we have:

2

HY)=- z p(y;)log. p(y;)

j=1
and:
2
p(y;) = Z p(x) x p(y;/x:)
i=1
hence:

HY) = —{[p,(1 —p) + (1 — py)p] X log,[p;(1 —p) + (1 — py)p]
Hpip+ (A —p)(A —p)]
xlog,[pip + (1 —p)(1 —p)]}

3) In the same way, we have:

2
HY/X =x) = — Z p(y;/x;) x log, p(y;/x;)
j=1
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and:

2
HOY/X) = ) p) HOY/X =x)

Since we are dealing with a binary symmetric communication channel, it turns
out that:

HY/X)=H(Y/X =x;) = —{(1 —p)log,(1 —p) + plog, p} = H(p)
4) We have:

2

HX/Y) = _Z Z p(x) x p(y;/x;) log, [p(x ) X(Z(y,/x )]
' 1

i=1j=1

That is:

1_
H(X/Y):_{p1(1_29)10g2[ Pl —p) ]

p1(1—p)+ (1 —p)p
p1p
pir+ (1 —p)(A—p)
(1-p)p ]
pi(1—-p)+ (1 —pp
1-p)A—-p) ]}
pir+ (1 —p)(A—p)

+ p1p log, [

+(1 —pplog; [

+(1 = p)(A —p)log, [

5) By definition, we have:
IX,Y)=HX)—-H{Y/X)
6) By definition, we have:

C=MaxI(X,Y)=MaxH(Y)—-H(Y/X)
{p(x)} {p(x)}
MachH}(Y) is got for p; such that BI;IEY)

GZI;Y) {(1_2p)1 0g, [(1—p)p1+p(1—p1) }:0

=0

ppr + (1 —p)(A —p1)
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You need to have the numerator of the log function equal to the denominator,
hence:

2p;(1—2p) =1—2p; hence p; =1/2

Thus, the maximum defines the capacity C of the communication channel and is
obtained for:

p1 = 1/2,hence Max H(Y) = 1 and therefore: C = 1 — H(p)

1.2. Problem 2 — K-order extension of a transmission channel

A memoryless binary symmetric transmission channel is considered: whatever
the binary information to be transmitted, the probability of the transmission error is
constant, equal to p.

Disturbances

'

Channel
P(y/-/x,-)

[X] [¥]

/
/

Information source » Destination

Figure 1.2. Basic block diagram of a digital
communication of a memoryless information source

A. K-order extension of a memoryless binary symmetric channel of
error probability p

The k-order extension channel has an input alphabet of 2¥ binary words of
length k and an output alphabet identical to that of the input alphabet. This channel
is thus represented by a square matrix P, of dimension [2¥, 2¥] whose element p; j
corresponds to the probability of receiving y; conditionally to have x; transmitted

p(y;/x;).

1) If d is the Hamming distance between the two binary words of length k
corresponding for one to the symbol x;, and for the other to the symbol y;, express

the probability p;; according to the three parameters: p, k, d.
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B. Second-order extension of a memoryless binary symmetric channel
2) Write completely in literal form as a function of p the matrix P,
representative of the second order extension of the binary symmetric channel.

3) The information source is considered to be transmitting equiprobable quaternary
symbols x; in the channel. Calculate the probability p(y]-) to receive a symbol y;.

4) Deduce the relationship which exists between the elements p;; of the matrix P,
representative of the second order extension of the binary symmetric channel and the
probability p(xl- / y]-) that the symbol x; was emitted conditionally having received y;.

5) Calculate the average amount of information H(X/Y) lost in the channel due
to transmission errors. You will express H(X/Y) as a function of:

H(p) = —{(1 —p)log,(1 — p) + plog, p}

C. Fourth-order extension of a memoryless binary symmetric channel

The size of the input alphabet of the source is then 16. The output alphabet is the
same as that of the input alphabet.

The source is considered to emit equiprobable symbols x;.
6) We extrapolate the result obtained in B-5 by considering that we have:
H(X/Y) = kH(p)
In the case p = 0.03, calculate the statistical mean of the information amount
H(X/Y) lost per symbol sent.
7) What is the entropy H (X) of the source?

8) What is the maximum number of possible errors on a symbol received?

Solution of problem 2
A. K-order extension

1) The symbol x; is made up of k bits. It is the same for the symbol y;, so:
pbij = P()’j/xi) = P(Yj,y}’j,z; :yj,k/xi,lvxi,Z: rxi,k)

The communication channel is memoryless, so the probability of obtaining a
given bit at the output depends only on the bit transmitted at the input (in addition to
the intrinsic properties of the transmission channel itself), hence:
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P(Yj/xi) = P(}’j,1/xi,1) X P(Yj,z/xi,z) X X p(yj,k/xi,k)

k
= 1_[ p(yj,n/xi,n)
n=1

because of the independence between the source of information and the
communication channel.

The Hamming distance d = dH(yj, xi) is the number of bits of the same rank
that are different between the symbol y; and symbol x;.

Then:
p(y;/x;) = p*(1 —p)<—@

This law is close to the Binomial law because if p is the probability of a wrong
decision on bit b, then (1 — p) is the probability of a right decision on bit b.

B. Second-order extension of the channel
2) We have:
k=2-p(y;j/x;) = p*(1 — p)*"¢ > the matrix P, (see Table 1.1)

4 4

Zp(yj/xz) =1 =Zp(yj/xl-)

j=1 i=1

because of the symmetry.

j 1 2 3 4
yi 00 01 10 11
i X;
1 00 (1 -p)? r(1—p) p(1-p) r’
2 01 p(1—p) (1-p)? p* p(1—p)
3 10 p(1—p) p* (1-p)? p(1—p)
4 11 v’ p(1-p) p(1—p) (1-p)?

Table 1.1. Matrix P, representative of second-order
extension of a binary symmetric channel
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3) We have:
p(xiy;) = p(x) x p(v;/x:) = p(v;) X p(x:/v))

4 4
p(y;) = Z p(xiy;) = Z p() x p(y;/x:)
i=1 i=1
Yet, the symbols are equiprobable:
1
p(x) = z Vi=1,,4
Then, the symbols y; are also equiprobable:

1 1
p(y) =7l =P +2p(A=p)+p’l =7 Vj=1,4

4) We have:
p(x;) X P()’j/xi)
p x/y = M L —p..
( i 1) p(yj) ij
because:

p(x) =p(y;) = 1/4

5) Average amount of bit of information H(X/Y) lost in the transmission
channel.

We have:

4

HX/Y =y;) = —Ep(xi/yj)logz p(x:/v;)

=1

H(X/Y) = E{H(X/Y = y;)} = Zp(y,-)H(X/Y =)

Jj=1
4 4
1

HX/Y) = ~2 p()’j/xi)logz p(}’j/xi)

j=11i=
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because here we have:
p(xi/yj) = P(Yj/xi)

1
H&X/Y) = -710 - p)?log,(1 — p)?
+2p(1 - p)log, p(1 — p) + p?log, p*] X 4
HX/Y) = =2{(1 - p)*log,(1 — p) +p(1 — p)[log, p + log,(1 — p)]
+p?log, p}
H(X/Y) = -2{(1 — p)[(1 — p) log,(1 — p) + plog, p]
+p[(1 —p)log,(1 —p) + plog, pl}
H(X/Y) =2[(1 —p)H(p) + pH(p)] = 2H(p) = kH(p)
C. Fourth-order extension of the transmission channel
6)p =0.03and H(X/Y) = 4H(p).
Average amount of information (in bit of information) lost per binary symbol sent?

We have:

H(X/Y) = —4[0.97 x log,(0.97) + 0.03 X log,(0.03)]
= 0.7777 bit of information/symbol

7) Entropy of the source?
H(X) = H(S*) = 4H(S)
and:

2
1
H(S) = = ) p(b)log, p(h) = 1 because p(by) = p(by) = 5

i=1
hence:
H(X) = 4 bits of information/symbol

8) Maximum number of possible errors?

Amax = 4
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1.3. Problem 3 — Compressed speech digital transmission and Huffman
coding

In the context of the transmission of the highly compressed speech signal over
the telephone channel entirely in digital form, let us look at the problem of statistical
source coding.

An information source S delivering elementary symbols s belonging to a symbol
dictionary of size 6 is considered. The probabilities of transmission of this simple
source of information are given in Table 1.2.

Si S1 S2 S3 Sy S5 Se
Pr{s;} | 0.05] 0.20 | 0.22 | 0.33 | 0.15 | 0.05

Table 1.2. Probabilities of emitting symbols s by the information source

The symbols are delivered by the source S every T = 1073 s.
1) Determine the entropy H(S) of the source. Deduce the entropy bitrate Dy.

2) Construct the statistical Huffman coding, called code C;, which generates a
binary code associated with each symbol s;.

3) Deduce the average length [; of code C; and the bitrate D; per second.
4) What are the efficiency n; and redundancy p; of code C;?

5) If we chose a fixed-length code (code C,), what would be its efficiency 71,?
What do you conclude?

6) Would it be possible to transmit this source of information over a transmission
channel having a bitrate capacity of 2,400 bit/second?

Solution of problem 3

1) The entropy of the source is:

HES) = = ) pls)log, p(s)

i=1
Recall:

log.(Z) 1
log,(Z) = and = 1.44
82D =10,@ ™ g @
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H(S) = —1.44[0.05 log,(0.05) + 0.210g,(0.2) + 0.22log.(0.22)

+0.331log.(0.33) + 0.15log.(0.15) + 0.05 log.(0.05)]
= 2.31 bits of information/symbol

The entropy bitrate of the source is:

H(S
D, = % = 2.31 x 103 = 2.31 Kbits of information/s

2) Construction of the Huffman code.

Symbol s; | p(s;), pls;), pls;), P(s;)y pis;), Code C,
033 —m| 033 —m=| 033 042 0580 |00

Sy \ ~

55 022 —pm| 022 | 025~ 7533 0 0.4:}1 10

$a 020 —m 0,30\40.:2—|o 025] 1 11

5 0.15 —s=| 0.15]0/ | 0.20]1 010

5, 0.051 0 Lo010]1 0110

aaaa v
Se 0.05] 1 0111

Table 1.3. Construction of the Huffman code C;
3) Average length of codewords:

6
l_1=Zp(si)><li=0.05><4+0.20><2+0.22><2+0.33><2

=1

+ 0.15 X 3 + 0.05 x 4 = 2.35 bit/symbol

Bitrate per second:

L
D, = % = 2.35 Kbit/second
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4) Efficiency and redundancy of the Huffman code:

_H®) 231

=12 220 L 9g30
T T 235 %

p1 = 1 _771 = 0.017
5) Fixed-length code C,.

Since we have 6 messages, we need 3 bits as: 22 < 6 < 23, then:

_HE) _231_
e

The fixed-length code C, is less efficient than the Huffman code C;.

The bitrate per second with code C, is: 3 X 1,000 = 3 Kbit/s.

6) The capacity of the channel is 2.4 Kbit/s, so we can transmit the code C; but
not the code C, because the bitrate of C, is more important than the capacity of the
channel.

1.4. Problem 4 — Coding without and with information compression

We consider a digital communication system, designed for the transmission of a
signal s(t) in digital form on a 34 Mbit/s transmission channel. Subsequently, we
are only interested in a part of the transmitter, composed of a device for digitization
and serialization (sampling, linear quantization on 8 bits, parallel to serial bytes
transformation) represented in Figure 1.3. The sampling frequency is 10 MHz.

s(2) s (b

— Digitizer # Serializer

8

Channel —»

Y

Figure 1.3. Block diagram of a digital transmission system for analog signal
1) With the system in Figure 1.3, is it possible to transmit this signal on the
channel?

The bitrate D; is important, so we try to reduce it. For this purpose, a coding
system with information compression of DPCM type (Differential Pulse Code
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Modulation) is interposed between the digitization and serialization blocks. The
DPCM coding system transforms the 256-level representation s’ (t;) into a 9-level
representation s(t;). The symbol s (corresponding to the encoded amplitude of the
sample s(t;)), is represented according to a natural binary code.

2) What is the bitrate D, at the output of the serialization unit?
To further reduce the bitrate, a block coding C which groups two consecutive

symbols to form bijectively a single code symbol S(t;) is inserted after the encoding
system DPCM (thus it has a frequency half that of s) : {s(t,1), S(t2x+1)} © S(tx).

3) The coding C does not using any statistical properties of s, what is its bitrate
D3?

To further reduce the bitrate, a Huffman code C, is used as the code C but
without grouping by two the symbols s. The probabilities of realization of s are the
following:

Pr(s =s;) = Pr(s =s3) = Pr(s =s,) = 0.0625
Pr(s =s,) = Pr(s =s5) = 0.125
Pr(s =sg) = Pr(s = s9) = 0.03125
Pr(s =s;) = Pr(s = sg) = 0.25
4) Construct the Huffman code C,. You will explicitly determine the codewords
associated with each of the possible realizations of s.

5) Determine the average length [, of the codewords of C, and the entropy H(s).

6) What is the bitrate D, of the code C,? What is its efficiency 7,? Can the signal
be transmitted on the transmission channel?

7) We want to protect the binary information transmitted against transmission
errors. The block encoding technique is used. This technique adds 15 bits of
protection (packet error detection code) to a packet of 240 useful bits. What is the
new average bitrate Dg and is it compatible with the transmission channel capacity?
Solution of problem 4

1) We have:

D, = 8 x 107 = 80 Mbit/s
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The rate D, is greater than the channel capacity, thus we cannot transmit the
signal on this channel.

2) It is a 9-level encoding, therefore it takes 4 bits per sample (fixed-length
code), hence:

D, = 4 X 107 = 40 Mbit/s
3) We have:

Code C
{s(tan), s(tar+1)} © S(ty)

The pair {s(tx), s(tax+1)} has 9 X 9 = 81 different configurations possible,
and since: 26 < 81 < 27, it takes 7 bits to encode a pair of samples, hence:

1
Dy =7 X=X 107 = 35 Mbit/s

4) Huffman coding.

s5; | plsp), pis;), pis), | pGspy | plspy | plsy)s | plsyg | Pls;), Cy

s | 025 025 025 | 025 025 025 |os |oslo/10

s | 025 025 025 | 025 0.25 025 /g,2§|0 051 11

7 | _w

5 | 0125 0.125 0125 | 0125 | 025 0,25?/ 0,25|1 010

4

s, | 0125 0125 0125 | 0125 ﬁ_lz—jlo ozjl 011

2 v

5, | 0.0625 0.0625 2_125 0.125 ?” 0_1zj1 0010

55 | 0.0625 0.0625 ﬁ.ezﬂ 0_0.125]1 0011
/ i

s | 0.0625 0.0625}{ o_ézjl 0000

5. | 003125]0 | 0.0625 1 00010

6 '/‘V

5 | 0.03125]1 00011

Table 1.4. Construction of the Huffman code C,
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5) By definition, we have for the average length:

9
L= ploxl
i=1

l_—2><<1x2)+2x(1x3)+3><<1 ><4>+2><(1 xs)
T 4 8 16 32
= 2.8125 bit/codeword

and for the entropy :

9
Hs) = = ) pls)logp(s)

Thus, by replacing:
H(s) = —{2x27%log, 272 +2x23log, 273+ 3
X 27*log, 27* + 2 x 2 % log, 275}

H()—4><1+6><1+12>< ! +10 % !
$) =%y 8 16 32

= 2.8125 bits of information/codeword

6) Bitrate D, of the code C, and its efficiency 7, for this source:

D, = I, x 107 = 28.125 Mbit/s

_H(s)

Ny = 1

ly
The code C, is optimal absolute, because the probabilities are of the form:

p;=27"

Since the bitrate D, is smaller than the capacity of the channel, it turns out that
the signal can be transmitted on the channel.

7) Block coding for protection against transmission errors:

D-=D ><255—29883Mb't/
ST M o0 T s
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In the same way, since the bitrate D5 is smaller than the capacity of the channel,
it turns out this signal can also be transmitted in a protected manner on the
communication channel.

1.5. Problem 5 - Digital transmission of a TV signal (luminance
component only) with information compression and Huffman coding

An information encoding and transmitting system for transmitting a
monochrome television signal s(t) in digital form is considered. The general
scheme of the preliminary part of this system is given in Figure 1.4.

s() s(ty) s'(ty) S (k) {b,,} {b,}
—{ Sampling > SAEI))HCS ﬁ Cogmg ﬁ Serialization —{ Buffer —
8 d
T, format d fixed or variable fixed
instantaneous bitrate D
bitrate D'

Figure 1.4. General scheme of a digital transmission
of a TV signal with information compression

The analog signal (luminance component) is sampled with a sampling period
T, = 100 ns. In an analog/digital converter, each sample is then quantized linearly
and converted to an integer s'of 8 bits (natural binary code). A coding block C
converts this number of 8 bits into another binary codeword S of fixed or variable
length d depending on the cases that we will examine. The codeword S of format d
is then serialized and thus generates a bit stream with a fixed or variable bitrate D',
depending on the case selected. A buffer is used to output a fixed bitrate D sequence
such that D can be considered equal to E[D'] (E is the expected value). The
transmission channel has a capacity of 34 Mbit/s of which only 32 Mbit/s can be
used for the transmission of the video signal itself.

1) We first consider a very simplified version where the coding block C does not
exist: the word S(k) is strictly identical to the binary representation s'(t;) of the
sampled signal s(t).

What is the bitrate D' (in bit/s) at the output of the serialization block and the
fixed bitrate D at the output of the buffer?

The bitrate D being considered too significant one seeks to reduce it. A Huffman
encoding C, is used, constructed from the knowledge (by estimation) of the
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amplitude probability law represented by the discrete random variable associated
with s’ is used. The entropy H(s") is equal to 6.65 bit of information per amplitude
and the efficiency 7, of the code C, is 0.95.

2) What is the average length [, = E(d) of the codewords S? Deduce the fixed
bitrate D,.

Since the bitrate is still too big, a differential pulse code modulation (DPCM)
coding system with information compression type, shown in Figure 1.5, is used.

$'(ty) s(t) S(k)

DPCM Coder
; ; with 11 levels ; ; C ; ;

8 4 d

Figure 1.5. Information compression using a DPCM system and a Huffman code C,

From a 256-level representation, the DPCM system generates a representation
of s(t,) with 11 levels. The number s is represented according to a natural binary
code.

3) We first consider in Figure 1.5 that the coding C does not exist. What are the
bitrate D3 at the output of the serialization block and the fixed bitrate D3? Is it too
large?

An alternative is now considered to further reduce the bitrate D;. The coding C
(called coding C3) groups two consecutive symbols s to form bijectively a single
codeword S (thus this one has a frequency half of that of s) : {s(t5;),s(t2k+1)} ©

S(ty).

4) Since the code C3 does not use any statistical properties of s, show that the
minimum length I3 of the codeword s is 7 bits. What is the fixed bitrate D3,? Are we
able to transmit the image on the transmission channel?

To further reduce the bitrate, a Huffman code C, is used as code C but without
grouping the s symbols by two. The probabilities of realization of s are as follows:

Pr(s =s;) = Pr(s =s,) = Pr(s = s;9) = Pr(s = s;,) = 0.03125

Pr(s =s3) = Pr(s =s,) = Pr(s = sg) = Pr(s = s4) = 0.0625
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Pr(s =ss) = Pr(s =s;) = 0.125
Pr(s =sg) = 0.375
5) Design the Huffman code C,. You will determine explicitly the codewords
associated with each of the possible realizations of s.

6) What is the average length [, of the codewords S. What is the efficiency 1, of
code C, since the entropy H(s) is 2.905 bit/amplitude?

7) What is the fixed bitrate D,? Are we able to transmit the image on the
channel?

We want to protect the binary information transmitted against transmission
errors. A coding block is used which adds a 16-bit protection to a useful 256-bit
packet (packet error detector code).

8) What is the new average bitrate D, and is it compatible with the capacity of
the transmission channel?

Solution of problem 5

1) Bitrate at the output?
T, =100ns - f, = 10 MHz
D'is fixed » D = D' = 8 x 107 = 80 Mbit/s

2) Average length of codewords and fixed bitrate?

256
H(s') = — Z p(s!) log, p(s!) = 6.65 bits of information/amplitude
i=1
Code C,
S - S
H(s") —  H(s') 6.65 7 bit/amplitud
= — - = = =
7, » 2 le YT it/amplitude

D, =1, X f, = 7 x 107 = 70 Mbit/s

3) 11-level DPCM coding, thus 4 bits per sample are needed because 23 < 11 <
2%,
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The bitrate Dj is fixed, hence:
D} = Dy = 4 x 107 = 40 Mbit/s

Yes, the bitrate D5 is too large because it is greater than the capacity of the
channel.
4) Coding Cs:
Code C5

{S2ks S2k+1} « Sk

The pair {s,, Sak41} has 11 X 11 = 121 different configurations possible and
since: 26 < 121 < 27, 7 bits are necessary to encode a pair of samples, so:

l; = 7 bit/pair of samples.

Dg; is fixed, hence:

R S ST ,
Dsy = Djy =7 x5 =7 x5 x 107 = 35 Mbit's

It is not possible to transmit the image on the channel because the bitrate D3, is
greater than the capacity of the channel.
5) Huffman coding C,.

6) Average length [, and efficiency 1 4

11
= > ps) x
i=1

[,=0375x1+0.125x3+0.125 X 4 + 4 x 0.0625 X 4 + 4
%X 0.03125 x 6 = 3 bit/codeword

H
= lgs) =96.83 %

4

o~
|

Ny

7) Fixed bitrate: D, = I, X f, = 3 x 107 = 30 Mbit/s.

The bitrate D, is lower than the capacity of the channel, therefore we can
transmit it on this communication channel.
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8) Block coding protection:

D w272 _ 31875 Mbiv
a1 = P X 550 s

The D, bitrate is less than the channel capacity, so it is compatible with the
channel transmission.

5; Pis;)g Pisy Pis;), pis;)y pis;y, Pls)s | Pls;)g | PUS); | Pls;dg | PUS;g
s | 0373 0375 0375 | 0375 | 0375 | 0375 | 0375 |037s «
5o | 0125 0.125 0125 | 0125 | 0125 | 0125 | 025 |025 03 5 3731
i 4
s, | 0125 0125 0125 | 0125 | 0125 o.us\Tﬁ.us 025 o o._ 1
s, |0062s |oo62s |ooe2s o125 o125 | 0125 \ﬂ:)us?‘o 12501
\4 1 T /
s, | 0062 | 0062 | 00625 00625 01“ o.us'q 0.1231
/
BN
s | 00625 | 00625 | 00625 [ 0.062 ‘506’5 011
sy | 00625 | o062 | 00625 [To0625]o /‘00&7:
N
s, | 003125 | o062 | oosasfo [oexs|
s, | 003125 .’% 031250 | 0.0625(1
2 /‘r
510 0.031357 0.03123[1
312
5, | 003291
s; S6 55 55 55 54 Sg
Code C, 1 001 0000 0110 0111 0100
Si S9 51 52 S10 S1
Code c, | 0101 000110 | 000111 | 000100 | 000101

Table 1.5. Construction of Huffman code C,

1.6. Problem 6 — Information, entropy, codes (1)

A color image coding system is considered for both storage and efficient
transmission over a transmission channel. A bank of still images considered as an S1
source of information, are in VGA format (video graphics array) 640 x 480 pixels
with only 16 color levels per pixel (luminance and chrominance jointly).
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The statistics on this bank of images show that out of the 16 colors:
— 4 are used 60% of the time, with equal frequency;

— 4 others are used 30% of the time, with equal frequency;

— the others are used 10% of the time, also with equal frequency.

1) What is the amount Q, of binary information required to store an image with a
fixed format binary code (code C;)?

We want to reduce this amount by using a variable length code like a Huffman
code.

2) Construct the code associated with this type of information (code C,). For
that, you can use a simple technique of grouping words to encode a class of words
(important gain of time).

Deduce the average length [,, the amount Q, of binary information needed to
store an image and the compression rate T given by this code.

3) What is the entropy H of this source of information (per pixel)?
Deduce the efficiency 7, of code C,.

One wants to transmit the coded images with code C, to a recipient through a
memoryless binary symmetric channel (BSC) having a fixed bitrate D. Let S2 be the
binary information source that is at the serial output of the Huffman coding.

4) What are for S2 the probability p, to issue x; = 0 and the probability p; to

issue x; = 1?

The transmission channel is a memoryless binary symmetric channel (BSC). It
introduces transmission errors with an error probability p (the numerical application
willbe p = 107%).

5) Determine the entropies H(X), H(Y) and H(Y /X).

6) Determine the amount of information received by the recipient for each binary
symbol sent I(X,Y), as well as the entropy H(X/Y) (called ambiguity).

7) What is the average loss of information per image transmitted?

8) Determine the average number of received pixels per image, whose value is
wrong.

9) Would it be possible to add a protection code after the coding C,?
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What do you suggest and justify your proposal?
Does it work at a codeword level or a block-code level?

Solution of problem 6

1) VGA image: 640 x 480 = 307 200 pixels, 16 colors per pixel.

4 bit/pixel (because 16 = 2*%) are necessary. Thus it needs:
Q. =307,200 x 4 = 1,228,800 bits = 153,600 bytes
2) The 16 colors are divided into 3 groups:
g1 © (co,c3)
g, © ((;4, e C7)
gz © (e, c15)

Construction of Huffman’s code on groups: code C,.

Groupg | p(g)o P& Code
g 0.6 0.67 0 0
2 03] 0/,,0.4J 1 1o
2 011 11
Group & Code Group g, Code Groupg, Code
¢ 000 cy 1000 cq 11000
¢ 001 e 1001 c 11001
e 010 e 1010 1o 11010
e 011 e 1011 . 11011
iy 11100
cis 11101
Cra 11110
c1s 11111

Table 1.6. Construction of Huffman code C,. For a color
version of this table, see www.iste.co.uk/assad/digital2.zip
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So, the average length of this coding is:

O 0.6 0.3 0.1

l, :Zpini:4X(TX3)+4X<TX4)+8X<?XS)
i=0

= 3.5 bit/color = 3.5 bit/pixel

NOTE.— This average length would actually be equal to 3.45 bit/color (or pixel) for
direct Huffman coding on colors ¢, to ¢;s.

Thus, with this code, one needs:
Q, = 307,200 x I, = 307,200 x 3.5 = 1,075,200 bits = 134,400 bytes

The compression rate T is given by:

Q1 4
=<1 = 1142857
t=0, 35

3) The entropy of this code is:

15
H(©) == ) p(e)log, p(co)
i=1

H(c) = {4 y 0.6l (0.6) +4x 0.3l (0.3) +8x 0.11 (O.l)}
c) = 40g24 40g24 80g28

= 3.395462 bits of information/color
= 3.395462 bits of information/pixel

Its efficiency is:

_ H(c) _ 3.395462

= =97 %
L 3.5 ’

N2

4) In the group g, there are 8 bits at 0 out of 12 bits.
In the group g, there are 8 bits at 0 out of 16 bits.

In the group g3, there are 12 bits at 0 out of 40 bits.
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So the probability of having a bit at 0 is:

8 8 12
po = Prix; =0} =p(x,) = 0'6XE+0'3 XE+O.1 XE_ 0.58

and a bit at 1 is:
p1=Prix; =1} =p(x;) =1—p, = 042
5) Recall that the source of information considered here is the binary source S2.

The three entropies are given successively by:

2
HX) =— Z p(x;) log, p(x;) = —{po log, po + p1log, P4}

i=1
H(X) = —1.44{0.58 x log, 0.58 + 0.42 x log, 0.42}
= 0.981454 bits of information/binary symbol

2

HY)=- Z p(y;)log. p(y;)

j=1

with:

2
p(y;) = z p(x;) X p(y;/x:)
i=1
p(y1) = Pr{y; = 0} = 0.58 x (1 — p) + 0.42 X p = 0.58 — 0.16p
= 0.579984
p(y,) = Pr{y; = 1} =1 —p(y,) = 0420016
H(Y) = —1.44{p(y1) X log, p(y1) + () X log, p(y,)}

= 0.981461 bits of information/binary symbol

HOY/X =) = = ) p(y;/x:) x 1og, p(y;/x:)

Jj=1
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and:

2
HOY/X) = ) p) HOY/X =x)

Since we are dealing with a binary symmetric communication channel, we get:

H(Y/X) = —1.44{(1 — p)log.(1 — p) + plog. p} = H(p)
H(Y/X) = 1.4730335 X 1073 bits of information/binary symbol
6) The amount of information transmitted is:
I(X,Y)=H)—H(Y/X) = 0.9799879 bits of information/binary symbol
H(X/Y)=H(X)—1(X,Y) = 1.46661 x 1073 bits of information/binary symbol
7) The average loss of information per image is:
H(X/Y) X Q, = 1,576.35 bits of information/image

8) Average number of wrong pixels received:

—if transmission of group g,: coding on 3 bits, p(g,;) = 0.6, then the
probability of error-free transmission of the group’s codewords g, is: (1 — p)3;

—if transmission of group g,: coding on 4 bits, p(g,) = 0.3, then the
probability of error-free transmission of the group’s codewords g, is: (1 — p)*;

—if transmission of group g5: coding on 5 bits, p(g;) = 0.1, then the
probability of error-free transmission of the group’s codewords g5 is: (1 — p)°>.

Then the probability of an error-free transmission of a pixel is:

Pr{error — free pixel}
=06Xx(1-p)¥+03x(1—p)*+01x(1-p)s

Andif p«1 - (1 —p)" =1 —np, hence:

Pr{error — free pixel}
= 0.6 x (1—3p) + 0.3 x (1 —4p) + 0.1 x (1 —5p)

=1-35p
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The probability of a transmission error of a pixel is then:
Pr{error of a pixel} = 3.5p

This result is quite logical since the average length of a codeword is:

l, = 3.5 bit/pixel
The average number of erroneous pixels received per image is then:
307,200 x 3.5 p = 108 pixels

9) The codewords € to the code C, are of variable lengths (3 or 4 or 5 bits), but
the protection codes studied in this course are dependent on the length of the
codewords, so the error correction will be difficult at the level of each codeword.
This is why the protection (error correction) will be built at the level of blocks of
bits instead of at the level of codewords.

1.7. Problem 7 — Information, entropy, codes (2)

Let us take a facsimile-type digitized image coding system, images with black
parts on a white background (handwritten or printed text, diagram, graphic, etc.), for
storage and efficient transmission on a communication channel. The scanned images
are in 1,600 x 2,400 pixels format with 2 grey levels per pixel. Pixels here are
considered to be independent in terms of random variables (it is a great
simplification).

The statistics made on the facsimile images show that the 0 label pixels
associated with white color are observed with a frequency equal to 0.9 and that
1 label pixels associated with black color are therefore observed with a frequency
equal to 0.1.

1) What is the quantity Q; of binary information needed to store an image with a
fixed format binary code (code C;)? Can a Huffman coding of this 2-symbol
information source reduce this quantity Q; and why?

NOTE.— In the Huffman codes that will be constructed later, the suffix 1 will always
be used for the lowest probability element and the suffix 0 for the highest
probability.

2) What is the entropy H(S;) of the source of information per pixel? Deduce the
efficiency 7, of the code ;.
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We want to increase efficiency by using a code associated not with each pixel
but associated with each group of 2 pixels (second-order extension code).

3) Construct the Huffman code associated with this new source S, of information
(code C,). Deduce the average length [,, the quantity Q, of coding bits necessary for
the storage of an image, the compression ratio 7, obtained by this code C, (with
respect to the code C;) and its efficiency 7,.

It is still necessary to increase the efficiency of the coding by using a code
associated with each group of 3 pixels (code with an extension of order 3).

4) Construct the Huffman code associated with this new source S3 of information
(code C3). Deduce the average length I3, the quantity Q5 of binary information
necessary for storing an image, the compression ratio 75 obtained by this code C;
(still with respect to the code C;) and its efficiency 7,.

One could thus go on increasing the number of grouped pixels to increase the
efficiency of the coding.

5) What would be the compression ratio T obtained by an almost infinite order
extension code (very large in practice) with respect to the code C; and its efficiency

n?

We want to transmit the coded images with the code C; to a recipient on a
transmission line having a fixed bitrate D. Let S3 be the source of binary information
that we have at the serial output of the Huffman code Cj.

6) What is for code C5, the probability p, to issue x; = 0 and the probability p;

to issue x; = 1?

The transmission channel is a memoryless binary symmetric channel. It
introduces transmission errors with a probability p (the numerical application will
be:p = 107°).

7) Determine the entropies H(X), H(Y) and H(Y /X).

8) Determine the amount of information received by the recipient for each binary
symbol sent I (X,Y), as well as the entropy H(X/Y).

9) What is the average loss of information per image transmitted?

10) Determine the average number of pixels received per image, whose value is
wrong.
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Solution of problem 7

1) Image size: N = 1,600 X 2,400 = 3,840,000 pixels.
In order to memorize an image with code C;: 1 bit/pixel, is needed:
Q; =1 x N = 3,840,000 bits = 480,000 bytes

The use of a Huffman coding of the source S; with 2 symbols {s; = 0,5, = 1},
gives an average length of [; = 1 bit/symbol, so there is no compression at all.

2) The entropy is given by:

2
H(S) = —Z p(s;) log, p(s;) = —1.44{0.9 x log. 0.9 + 0.1 x log, 0.1}

i=1

= (0.46812 bits of information/binary symbol
and its efficiency is:

H(S
= E_l) =46.81%

1

y

3) Second-order extension code: grouping 2 pixels together (symbol s;; =
s;Sj) hence there are four possible events.

Huffman coding: code C,

Symbols 5 pisyg plsy) pisy), Code C,

=55, |08 0.81 0.81 ‘ 0 0

S1p = 515, .11 0 Jo19 | 1 11

| 0.09 0 _
5y, = 55, 009“%0.09 | 1 100
001 |1

101

51

55y = 555,

Table 1.7. Construction of Huffman code C,



30 Digital Communications 2

The average length of the codewords is:

4

l_2=Zpi><li= 081 x 14 0.09 x 2+ 009 x 3+ 001 x3
i=1

= 1.29 bits/symbol

The amount of coding bits needed to store an image is:

N _ 3,840,000 .
Q, =EX l, = Tx 1.29 = 2,476,800 bits
The compression rate 7, relative to code C; and its efficiency 7, are
respectively:

T, = g—: = l_zl_;z = 1.550387579
H(S,)
LT
and:
H(S,) = H(S?) = 2H(S;) = 0.93624 bit of information/symbol
hence:

_H(S;) 093624

o2) ~ 72570
=T 1.29 S7%

4) Third-order extension code C5: grouping of 3 pixels together (symbol
Sijk = $;SjSk), so there are eight possible events.

The average length of the codewords is:

8
l_3=Zpixli=0.729><1+3x0.081><3+3x0.009x5+0.001><5
i=1

= 1.598 bits/symbol
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Si =5y, | pShy | p(SDy | p(SD, | p(Sh; | piSDy | p(Shs | p(Shg | Code Cy

S1 =50 | 0729 0.729 0720 [0720 |0720 |0.720 0.7% 0 0

§2 =54 | 0081 0.081 0081 | 0081 | 0100 0.1E1/o’rn_zj 1| 100
§3 =5 | 0081 0.081 0081 |0081 Joo0s1o 0.134 1 101
$4 =55, | 0081 0.081 0.081 0_03‘1 Noosi| 1 110
§5 =5y, | 0-009 0.01 0.08] 0 'o_og 1 11100
6 =5y, | 0009 o.uo?l 0011 11101
ST = so1, o_oﬁsl 0.009] 1 11110
58 =5y, | 0.00] 1 1111

Table 1.8. Construction of Huffman code C;

The amount of coding bits needed to store an image is:

_ 3,840,000 .
X |3 = ———— % 1.598 = 2,045,440 bits

N
3 3

Qs =

The relative compression rate 73 and the efficiency 77, compared to the code €y
are respectively:

@b L grraue6s3
% L/3 1598/3
H(S;) 3H(S

s = ($3) _3HGY) _ g7 80,

I, 1598

5) Quasi infinite-order extension code: n — o0 — [ = I,,,, = H(S;) hence the
compression rate and efficiency, respectively:

L

= = = 2.136204392
H(S,) ~0.46812

T

n=1
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6) Probability p, to issue 0 and p, to issue 1 for the code C5:

po = Pr{x; = 0} = p(xy)

2 1 2 1
= 1x0.729x+§x0.081+2x§x0.081+§x0.009+2x§x0.009
= 0.8442

p; = Pr{x; =1} = p(x,) =1 —p, = 0.1558

7) The three entropies are successively the following:

with:

and:

2
HX) =— Z p(x;) log, p(x;) = —{polog, Py + p1log, p1}

i=1
= —1.44{0.8442 X log, 0.8442 + 0.1558 X log, 0.1558}
= 0.6230004 bits of information/binary symbol

2

HY)=— Z p(y;)log,p(v;)

j=1

p(y;) = Z p(x;) X p(v;/x:)

i=1

p(y,1) = Pr{y; = 0} = 0.8442 x (1 — p) + 0.1558p = 0.8442 — 0.6884p
= 0.8441993

p(y,) = Pr{y; = 1} = 1 — p(y;) = 0.1558006

H(Y) = —1.44{p(y,) X loge p(y1) + p(y2) X log. p(y,)}
= 0.623002 bits of information/binary symbol

2
HY/X =x)=— Z p(y;/x;) x log, p(y;/x;)
j=1

2
HOY/X) = ) pG) HOY/X =)
i=1
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Since we are dealing with a binary symmetric communication channel, we get:
H(Y/X) = —1.44{(1 - p)log.(1 — p) + plog. p} = H(p)
H(Y/X) = 2.1334334 x 107> bits of information/binary symbol
8) Amount of information received by the recipient and entropy (ambiguity):
I(X,Y)=H(Y)—-H(Y/X) = 0.6229806 bits of information/binary symbol
H(X/Y)=H(X)—1(X,Y) = 1.98 x 1075 bits of information/binary symbol
9) The average loss of information per image is:

H(X/Y) x Q3 = 1.98 x 107> X 2,045,440
= 40.499712 bits of information/image

10) Group g, : transmission of symbol S1; coding on 1 bit, p(g,) = 0.729.

Then, the probability of error-free transmission of the codeword S1 of group g,
is: (1 —p).

Group g,: transmission of symbols S2 or S3 or S4; coding on 3 bits, p(g,) =
3% 0.081 = 0.243.

Then, the probability of error-free transmission of the codewords of group g, is:
(1-p)°.

Group g3: transmission of symbols S5 or S6 or S7 or §8; coding on 5 bits,
p(g3) =3 x0.009 +1 x0.001 = 0.028.

Then, the probability of error-free transmission of the codewords of group g5 is:
(1-p)°.

So the probability of error-free transmission of a 3-pixel packet is:

Pr{3 error — free pixels} = 0.729 x (1 — p) + 0.243 x (1 — p)3 + 0.028
x (1-p)®
And,if p«K1 > (1—p)" =1—np,hence:

Pr{3 error — free pixels} = 0.729 x (1 —p) + 0.243 x (1 — 3 p) + 0.028
X (1-5p)=1—1598p
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The probability of error in the transmission of a packet of 3 pixels is then:
Pr{3 wrong pixels} = 1.598 p

This result is quite logical since the average length of the codewords is:

[; = 1.598 bit/3 pixels
The average number of erroneous pixels received per image is then:

N 3,840,000 _ . .
3 X 1.598p = —g X 1.598 x 107 = 2.045 pixels = 3 pixels

1.8. Problem 8 - Coding and transmission of a television-type
information source

Let us take a coding system of analog television signal. The analog color TV
signals are digitized and encoded in (4:2:2) format. However, to simplify the
problem discussed here, only the luminance component will be considered. This
leads to having per frame:

— 576 useful lines, with 720 pixels of luminance per line (rectangular sampling
structure);

— 25 frames per second (50 fields per second);

— with 256 gray levels per monochrome pixel (initial binary coding on 8 bits).

To simplify, we consider that the pixel levels are independent (in terms of
random variables), denoted by: “U”.

However, the probability law Pr(U) of grey levels U is absolutely non-uniform.

Pr(U)
A

| = U
I
0 128 255 levels

Figure 1.6. Probability law Pr(U) of TV frames grey levels U
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1) What is the amount Q, of binary symbols needed to store a second of
monochrome TV frames with the initial fixed format binary code (code Cy)? We
assume that the entropy H(U) = 6 bits of information/pixel. Deduce the efficiency
1o of the code C,.

2) Can a Huffman coding (called code C;) of this source S, of information
reduce this amount and why?

If we consider that the Huffman coding C; performs the absolute optimal coding,
deduce the quantity Q; of binary symbols necessary to store a second of digital
monochrome TV frames.

We are looking at increasing the efficiency by using an information compression
of the source S,. For this, an adaptive (and thus non-linear) re-quantization of the
256 grey levels U of each pixel is carried out on 8 levels, now denoted “Z”. The
probability law Pr(Z) resulting from this new source of information (denoted S,)
and its binary code C, are shown in Table 1.9.

3) What is the amount @, of binary symbols needed to store one second of
digital monochrome TV frames (code C,)?

Grey levels
of Z

Pr(Z) 0.0625 | 0.0625 | 0.15 | 0.21 0.14 | 0.0625 0.25 | 0.0625

Code C, 000 001 010 011 100 101 110 111

Table 1.9. Probability law Pr(Z) of S, and binary code C,

4) Can a Huffman coding (called code C3) of this source of information reduce
this amount? What is the entropy per pixel and the total entropy of one second of
digital TV frames?

5) Design the Huffman code associated with this new source S, (code C3).

NOTE.— In the Huffman code that will be designed, the suffix 1 will always be used
for the element with the lowest probability and therefore the suffix 0 for the element
with the highest probability.

6) From the Huffman code C;, deduce:

— the average number of coding bits per pixel;
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—the amount Q5 of binary symbols needed to store one second of digital
monochrome TV frames;

— the compression rate T3 obtained by this code C; (with respect to the code
C2);

— its efficiency 7, and redundancy p,.

It is desired to transmit the coded frames with the code C; to a recipient over a
digital transmission line, having a given capacity, denoted “Cap”. Let S; be the
source of binary information X that we have at the serial output of the Huffman
coding.

7) What is the probability p, to issue x; = 0 and the probability p; to issue
x; = 1 for §3? Deduce its entropy H (X).

The transmission channel is a memoryless binary symmetric channel. It
introduces transmission errors with a probability p (the numerical application will be
p = 1072). The output of the binary transmission channel is called Y when its input
is X (the binary output of the source S5).

8) What is the entropy of Y. Deduce the amount of information (X, Y) received
by the recipient for each binary symbol sent by Ss.

9) What is the average loss of information in the channel per binary symbol sent
H(X/Y) and the average loss of information per second of transmitted TV frames?

10) Determine the average number of received pixels per second of TV frames
whose value is wrong.

11) What is the capacity Cap of the binary transmission channel and the capacity
Cap; per second of TV frames?

We model Pr(U) by a weighted sum (factors A, and A, respectively, with
Aq = 0.6225 and so 1, = 1 — A,) of two discrete Gaussian probability laws G, and
Gy, with: G,(U) = Gauss(64,8) and G,(U) = Gauss(160,4) where, in
Gauss(m, o), m is the mean value and ¢ is the standard deviation of the Gaussian
probability law.

12) What is (with justification) among the eight following values: 8; 7; 6; 5; 4; 3;
2 and 1 bit/pixel the order of magnitude of the entropy H,, of the source information
So per pixel?
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Solution of problem 8
1) The image size is: N = 576 X 720 = 414,720 pixels.

One second of digital TV frames has:
Ns = N x 25 = 10,368,000 pixel/s
Monochrome TV: [, = 8 bits/pixel

Code Cy: Qy = Ns x I, = 82,944,000 bits/s

Efficiency: ny = @ = g =75%
0
2) The source of information generating U is non-uniform on [0, 255], so:
H(U) < 8 bits of information/pixel

Therefore, the entropy coding is quite interesting.

If the Huffman code C; performs an absolute optimal coding, then [; = H(U),

hence:
Q; = Ns x I; = 62,208,000 bits/s
3) The amount of bits per second for the code C, is:

Q, = Ns x I, = Ns x 3 = 31,104,000 bit/s

4) Since Z has a non-uniform probability law, then the Huffman coding is

efficient.

The entropy per pixel is:

7
H(Z) == pilogp
i=0

4 % 0.0625 X log,(0.0625) + 0.15 X log,(0.15)
+0.21 X log,(0.21) + 0.14 x log,(0.14) + 0.25 X log,(0.25)

= 2.7804781 bits of information/pixel

H(Z) = —1.44{
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The total entropy of one second of monochrome TV frames is:
H(TVs) = Ns x H(Z) = 28,827,997 bits of information/s

5) Huffman coding: code C3.

Level | p(Z), p(Z)y piZ), | pl2)y; |p(2), | pZ)s | piZ)s | Code
z G
6 |025 0.25 025 025 |029_ |o046_|0540| 01

4 o
3021 0.21 021 o.zs%o_zs 2dofo4g 1| 11
2 o015 0.15 015 fo21_/ 0250/ To2y 1 000
4 |o014 0.14 014 /[o1s]/o To211 001
0 | 00625, |0.125 0_125J,10 014 1 1010
1| 00625 }0.0625[0] 0125 1 1011
\7'!\ -¥
5 U,Oﬁﬂ 9/ T0.0625 |1 1000
7 | 006251 1001

Table 1.10. Construction of Huffman code C;
6) The average codewords length is:

8
l_3=Zpi><li=0.25><2+0.21><2+0.15><3+0.14><3+4><0.0625><4
i=1

= 2.79 bit/grey level = 2.79 bits/pixel
The number of bits per second is:
Q3 = Ns x I3 = 28,926,720 bits/s

The compression ratio, efficiency and redundancy are respectively:

Q_L_ 3
BT L 279
_H(Z) 27804781 _ 99.66 %
e M Y

ps =1—1n5 = 0.0034128
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7) Probability py to issue x; = 0 and probability p; to issue x; = 1 for S5?

The probability of sending a bit at zero is given by:

1 0 3 2
Po = Prix; = 0} = p(x;) = 025 X5+ 0.21 X 5 +0.15 X = + 0.14 X 5 + 0.0625

X % + 0.0625 x % + 0.0625 x % + 0.0625 x % = 0.4933
and that of sending a bit at 1 is therefore:
p1=Prix; =1} =p(x;) =1 —p, = 05067
The entropy is given by:

2
HX) =— Z p(x;) log, p(x;) = —{po log, Py + p1log, p1}

=1
=~ —1.44{0.4933 x log, 0.4933 + 0.5067 x log, 0.5067}
= 0.99987 bits of information/binary symbol
8) The entropy of Y at the output of the communication channel is:

2

H(Y) = — Z p(v;)log2 p(¥;)

j=1

with:

2
p(y;) = Z p(x;) X p(y;/x:)

p(y;) = Pr{y; = 0} = 0.4933 x (1 — p) + 0.5067 x p = 0.493434
p(y;) = Pr{y; = 1} = 1 — p(y;) = 0.506566

H(Y) = —1.44{p(y,) X log. p(y1) + p(y2) X log. p(y2)}
= 0.99800773 bits of information/binary symbol
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The amount of information transmitted through the channel is:
IX,Y)=HY)-H{Y/X)=HX)—-HX/Y)

since we are dealing with a binary symmetric communication channel, we have:

2

HOV/X) = HOV/X =x) = = ) p(y;/%) x log, p(3;/%)

j=1
H(Y/X) = —1.44{(1 — p) log.(1 — p) + plog. p} = H(p)
H(Y/X) = 0.080642209 bits of information/binary symbol
hence:
I(X,Y)=H(Y)—H(Y/X) = 0917365521 bits of information/binary symbol

9) The average loss of information in the channel per binary symbol sent is given
by:

H(X/Y) =H(X)—1(X,Y) = 0.082504479 bits of information/binary symbol
The average loss of information per second of transmitted TV frames is:
Ns x I3 x H(X/Y) = 2,386,583.963 bits of information/s

10) We have to consider each of the codeword lengths:

— the group g, corresponds to the set of levels {0, 1,5, 7} each of which is coded
on 4 bits and of probability equal to 0.0625, hence:

p(g1) = p(0) + p(1) +p(5) + p(7) = 0.25

— the group g, corresponds to the set of levels {2, 4} each of which is coded on 3
bits and of probability equal to 0.15 and 0.14 respectively, hence:

p(g,) =p2) +p(4) = 0.15 + 0.14 = 0.29

— the group g5 corresponds to the set of levels {3, 6} each of which is coded on 2
bits and of probability equal to 0.21 and 0.25 respectively, hence:

p(gs) = p(3) +p(6) = 0.21 + 0.25 = 0,46
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The probability of error-free transmission of:

g1is (1 =p)*; g, is (1 —p)?; g3 is (1 — p)?
Thus, the probability of having no error with the code C; is:

Pr{noerror} = 0.25 X (1 —p)* + 0.29 X (1 — p)3 + 0.46 x (1 — p)?
Butifp <1 - (1 —p)" =1 — np, then:

Pr{noerror} = 0.25x (1 —4p)+0.29x (1 —3p) +0.46
x(1—2p)=1—-279p

The probability of having at least one error with the code C; is then:
Pr{error} = 1 — Pr{no error} = 2.79 p = 0.0279

The average number of wrong pixels received per second of frames is:
Ns x 0.0279 = 289,267 pixels

11) Since the transmission channel is binary symmetric:

Cap = Max I(X,Y)=1—H(p)
= 0.91935779 bits of information/binary symbol

and:
Caps = Cap X H(TVs) = 26,503,243 bits of information/s
12) We have:
Pr(U) = 24G,(U) + (1 = 2,) G, (U)

If we consider that a Gaussian law has a practical range of +3 ¢ around its mean
value m, then:

HW) = 2,HU,) + (1 = 2)HU,) + H(A,)

with U;, the random variable associated with the Gaussian law is (64, 8) and U,, the
random variable associated with the Gaussian law is (160, 4). In addition, we have:
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H(U;) < H(U;): entropy of a uniform law on [64 — (3 X 8), 64
+(3 x 8)] = [40, 88]

H(U,) < H(Uj): entropy of a uniform law on [160 — (3 X 4), 160
+(3 x 4)] = [148,172]

H(U;) = log,(88 — 40) = log,(48) = 5.585
H(U3) =log,(172 — 148) = log,(24) = 4.585
Consequently, we have:
H(U) <1, x5585+ (1 —1,) x 4585+ H(4,)
with:
H(1,) = 0.9544
hence:
H(U) < 6.1619 bits of information/pixel » H(U) < 6 bits of information/pixel
So, the order of magnitude of the entropy is:
H(U) = 6 bits of information/pixel.
1.9. Problem 9 - Entropy and motion information encoding of
multimedia source
The context is that of the transmission of coded video. Several categories of
information are represented and coded in a compressed form. One of these
categories is motion information. Each frame I; of a sequence SI of frames:
LY CCTO0 P A PR
is divided into K macro-blocks MB;, of size 16 x 16 pixels (we have: k = 1,---, K).

The sequence SI consists of L frames per second (typically in Europe L = 25).
Each macro-block MB is associated with a displacement vector D which makes it

possible to predict its content from previous frame(s). D is a vector with two
components: dx and dy, taking their values on integers and half integers. For
simplicity, it is assumed that in practice only seven values for dx and dy,
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respectively, are of significant probabilities. Each value of dx and dy is associated
with a symbol s. These values are given in Table 1.11 with their probabilities (for
the sake of simplicity, it has been assumed that the components dx and dy of the
displacement vector D have the same statistics. This is not really the case).

Value -1.5 -1 -0.5 0 0.5 1 1.5

Symbol S1 S5 S3 Sy Ss Se Sz

Probability 0.014 0.024 0.117 0.701 0.101 0.027 0.016

Table 1.11. Probabilities of a component d of motion vector D

1) Determine the entropy H(d) of a component dx or dy of the displacement
vector D. Deduce the entropy H (5) of the displacement vector D for a separate
coding of dx and of dy. What would be the efficiency 1, of a fixed length code C;
(length L;) coding D and the bitrate DB, per second for a number K = 396 macro-
blocks per frame and L = 25 frame/second for coding the vectors D?

2) Taking code C; the natural binary coding in the ascending order of the
symbols s;, determine the probability p, of having a bit at zero in the bitstream

encoding the displacement vector D. Deduce the probability p; of having a bit at
one.

3) Construct the Huffman code C, giving the codeword S; associated with each
of the symbols s; of a vector component D.

NOTE.— In the construction of the code C,, the coding suffix associated with the
element of lowest probability will be systematically set to 0.

Deduce from this: the average length [, of the codewords of C,, the average

length L, of the codewords encoding the vector D (again with a separate coding of
dx and dy), its efficiency 77, and the average bitrate per second DB, for coding the

=
vectors D.

4) It is considered that the source S delivers the following SS time sequence of
symbols s:
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Deduce the corresponding sequence SB of bits obtained at the output of the
Huffman coding C,. Sequence SB is of the form {---, by_4, by, bxy1, -+ }.

What do you observe?

Taking code C,, determine the probability p, to have a bit at zero in the bit

stream encoding the displacement vector D. Deduce the probability p; of having a
bit at one.

Solution of problem 9

1) The entropy of a component of the motion vector Dis given by:

H(@ = = ) pls) x log, p(5)
i=1

H(d) = —1.44 x {0.014 X log,(0.014) + 0.024 x log.(0.024) + 0.117
x 1og.(0.117) + 0.701 x log.(0.701) + 0.101
X 10ge(0.101) + 0.027 x log.(0.027) + 0.016 x log,(0.016)}

= 1.499 bits of information/component

The components dx and dy have the same statistics and are coded separately,
hence:

H(D) =2 x H(d) = 2.998 bits of information/vectorﬁ

There are seven values possible per dx or dy component, so for fixed length
coding, it takes 3 bits to encode dx and 3 bits to encode dy. So, a total of:

to encode each displacement vector D.

The efficiency of this simple encoding technique is then:

_H(D) 2998 _ 50 %
M= L, 6 °

and the bitrate for coding one second of D is:

DBy = L; X K XL =6X396 x 25 = 59,400 bits
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2) Since dx and dy have the same statistics, it is sufficient to consider only one
component to determine the probability p, of having a bit at zero.

Si S1 S2 S3 Sy S5 Se S7
Code C, 000 001 010 011 100 101 110
Number

of 0 3 2 2 1 2 1 1

Table 1.12. Code C; and number of 0 in each codeword

. Number of zeros in s;
Po = § p(si) X I
e i

i=1

3 2 2 1 2
Do = {0.014 X 3 + 0.024 x 3 +0.117 x 3 +0.701 x 3 +0.101 x 3

1 1
+0.027 x 3 + 0.016 x §} = 0.4233

The probability p, of having a bit at 1 is then:

p,=1—p,=0.5767

3) Huffman coding:
S; pls;, pPisi)y pis;), Pisg)y plsg, P(s:)s C,
54 0.701 0.701 0.701 0.701 0.701 0.?‘01| 11
Sa 0.117 0.117 0.117 0.117 0.182] 1 O.Z9Sj0 00
3 /"
S< 0.101 0.101 0.101 0.101| 14 0.117| 0 011
Sg 0.027 0.03 0.0SW 1 00810 01011
ad /‘4 P
, 0.024 0027 17003 | 0 01010
DENG S
54 0.016|1 0.024|0 01001
5 0.014(0 01000

Table 1.13. Construction of Huffman code C, of a component of vector D
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The average length of the codeword (one component d of the motion vector
only) is:

o~
N

7
I, = > p(s) X L)
i=1

o~

I, ={0.014 x5+ 0.024 x5+ 0.117 x 2+ 0.701 x 1 + 0.101 x 3
+0.027 X 5+ 0.016 x 5} = 1.643 bits/codeword

So, per a full motion vector:
L, = 2 x [, = 3.286 bits/vector D

Its efficiency is:

HD) 2998 _ o .,
I, 3286 07

M2 =
And per second of TV frames, an average rate of:

DB, =L, X K X L = 3.286 X 396 x 25 = 32,531.2 bits/s=32,531 bits/s

4) From the coded sequence (Table 1.14), there are rapid changes in the length of
the codewords from one motion vector to the next.

SS | s, S Sy | Sa | S3 | S5 | Sa Se Sy Sz

SB| 101010 1| 100|011 ] 1 |01011 | 1 | 01001

Table 1.14. Coding of a sequence of a motion vector component

The probability of having a bit at 0 is:

a Numbre of zeros in s;
Po = E p(si) X 7
o i

=1

4 3 2 0 1
Do = {0.014 X T + 0.024 x 3 +0.117 x > +0.701 x 1 +0.101 x 3
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2 3
+0.027 x T + 0.016 x g} = 0.1966

The probability of having a bit at 1 is then:

py =1—p, = 0.8034

1.10. Problem 10 — Hamming coding

The problem of coding binary words for protection against transmission errors is
tackled. The code C considered here is a single error correcting Hamming code. We
successively call:

— it: binary word of information to be transmitted, of length m:
it =iy, i, in]
— u': binary codeword resulting from the coding of if, of length n:
ut = [ug, Uy, Uyl
—v*': binary word obtained at the output of the transmission channel associated
with u® transmitted in the channel, also of length n:
vt = [v, 0,0, V0]

The construction of the codeword u® from the information word it is done by
using the generator matrix [G] of the code C:

The decoding of the word v* received is carried out in two phases:
a) the detection of a possible transmission error and correction of the error;

b) the decoding by itself.
In the first phase, we calculate the syndrome s" on the word received:
s" = vt x [H']
Where [H'] is the parity matrix of the code C associated with the matrix [G] via

the matrix [H]. The latter is obtained from [H'] by permutation of columns to satisfy
the form of [H].
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The syndrome makes it possible to detect the presence of a transmission error
and to locate its position in the word received.

The characteristics imposed on the code C are as follows:
— correction of single errors;

— it is a systematic code;

— it is a Hamming code, with m = 4.

1) What is the minimum distance of this code?

2) Show that the length n of the codewords is 7.

3) Deduce that the generator matrix of the code is of the form:
[G] = [14,4 | P4,3]
where I, 4 is the identity matrix.

4) Show that the parity matrix of the code is of the form:
[H] = [sz,g |13,3]

5) Show that the presence of a transmission error on the j** bit of u® generates a

syndrome s’tequal to the j* line h; of [H ¢ (hj is the natural binary representation
of the number j).

6) Determine the matrices [H']¢ and [H].
7) Determine the generator matrix [G] of the code.
8) Construct the codewords u! corresponding to the three information words:
0 01 0
=10 1. 1 0
1 1 0 1
We receive the three following words:
011 0110
vP=[0 1 1 1 0 1 1
1101 0 0 1

9) Check each of the words for a membership or non-membership to the code.

10) Make a block diagram of the encoder and the decoder.
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Solution of problem 10

1) The minimum distance of the code is given by:
dpmin = 2r +1; (r = 1): single errors, 1 wrong bit = d,,;, = 3
2) Length of Hamming code (corrector of one erroneous bit):
2k>14n; withn=m+k->2>1+m+k
—»28>5+k > k=3andn=4+3=7

with:
—n: number of bits of a codeword;
— m: number of bits of an information word;
— k: number of bits of a control word.
3) It is a systematic code:

ult =it x [G] = [i%,i* X [P]] = [Gla7 = [Is4 | Pas]

4) We should have:
[Gls7 X [H]57 = [0]43 s and also : [Gls7 X [H']5; = [0]43
= [I4 | Pys] x [H]S; = [0]43

Note that: [M]§, means [[M]3_7]t.

If:

P4—,3

[H]gﬂ =

I33
then:

P4,3

[14,4 | P4,3] X [_ -
I35

= [P]4,3®[P]4,3 = [0]4,3

- [H] = [sz,s | 13,3]
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5) If we receive:

vt = ut@et with € =10,0,--,1,0,,0]
Jjth position

then:
vi X [H']S, = shy = [ut@e] x [H']" = ut x [H']'®et x [H']*
=e7, X [H']S;

s =gt x [H']t = j*" row of [H']*

6) If s gives the position of the error coded in a natural binary code, the form of
the matrix [H']¢ is then:

—.
)
—
o
N
1]
R PR ROOO

R R OO R RO
PO RrORORr

Hence:
0 001 111 01 11100
[H’]3,7 =10 1.1 0 0 1 1|- [H]3,7 =1 01 1 0 1 O
1 01 01 0 1 11 01 0 0 1

We get [H] verifying the systematic code from [H'].

7) The generator matrix [G] of the code is such that:

0 1 17
1 0 1
L[
[H]§,7 il N e A Had [Glsr = [14,4 | P4,3]
1 0 of B3
0 1 0
‘0 0 14
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oo R
oo R o
o R oo
- o oo
[ =
[
_ O

8) Construction of the codeword u' corresponding to the information word:

ifm X [Gly; = u;,l

[u1 uz u3 u4] X [G] = [u1 uz u3 u4 u5 u6 u7]
0 0 1 0 (1) (1) 8 g (1) (1) 1 0 01 01 10
0 1 1 0fx =10 1. 1 0 0 1 1
1 1 0 1 00 1.0 110 11 0 1 0 0 1
0 001 1 1 1

Here:

—[u1r uz uz uy)=7J[i;y i, i3 i4]isthe information word,

—[Us U Uy] is the control word concatenated to the information word.

9) Checking of code membership or code non-membership:

Vi V2 Vs W Vs Vs V7]X[H']'=[s3 s; s1]
0 0 17
010
0110110 011 010
0111011]X100=[100]
11 01 0 01 1 0 1 0 0 0
1 1 0
‘1 1 1

The first word received is not a member of the code: error on the 2nd bit.
The second word received is not a member of the code: error on the 4th bit.
The 3rd word received is a member of the code: no error detected.

10) The relationship:

t

itx[Gl=u
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makes it possible to determine the control bits as a function of the information bits:
[Us Us Uj]=f[Ur Uz Uz U]
and, from 8), we get:
Us = u,Qu;DOuy
Ug = U Du;Duy
Uu; = u;Ou,Ouy
These same equations can be obtained from the following relationships:
upy X [H']5; =[0]y3 oragain: uf; x [H]5; = [0]y3

Hamming coder

_____________ .
ul _>| »} I »ul
uz—P: f - Uy
“3—l~| g 9 U3
Uy —>| 3 Uy
I
| L] |
I
I
| |
I =1 I - Ug
I
I
l I
I =1 —|—>”7
I
. e I

Figure 1.7. Block diagram of Hamming coder C(7,4)

Hamming decoder
The decoder is based on:

1) The calculation of the syndrome given by the relation: sgfl =vi, X [H']5:
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[s3 s3 si]=[v1 V2 V3 Vg Vs Vg V7] X

NN =
PR OoOOR RO
RPOROROR

53 = v,V DvDv,
53 = V,®V;DV,Dv,
s; = 1, Bv; BV DV,

2) The identification of the position of the error and its possible correction:

in
14 _|_> Calculation of the _»PO =1 —»
syndrome s' ® p i
v, — P 1 1
nh ¥ —> e |
| -1y °2 | L ;
v, d =1 > e v P =1 —»
i D J_ s’ - EEE—
| - 3 k3 ! ]
! | 3 ! !
[ 3 ! I
6 o
| A | | ~
| | Uz
V7 —— [ Pr =1 ——

Figure 1.8. Block diagram of Hamming decoder C(7,4)

1.11. Problem 11 — Cyclic coding (1)

The problem of coding the information to be transmitted in order to protect it
against transmission errors is tackled. For that, we propose to use a cyclic code C
defined by its generator polynomial g(x) of degree k = 3:

gx)=x3+x%2+1

with n = 7, the length of the codes generated by g (x).
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1) What is the necessary and sufficient condition for the code generated by g(x)
to be a cyclic code?

2) Give explicitly the generator matrix [G] of the code C.
3) Determine the polynomial h(x), then the corresponding matrix [H].

4) Determine the expressions of the control bits according to the information
bits, based on:

a) the matrix [H];

b) the generator polynomial g(x).
Let i(x) = x3 + 1 be the polynomial information (information word) to encode.

5) Determine the polynomials c(x) and u(x) corresponding to the control word
and to the codeword, respectively.

6) Give the implementation scheme of the encoder (based on D flip-flops)
providing a systematic code after n clock cycles.

7) Give the implementation scheme of the decoder associated with the coder
from question 6.

8) Give the implementation scheme of the encoder based on LFSR register
(linear feedback shift register) providing a systematic code after n clock cycles.

9) Give the implementation scheme of the decoder associated with the coder
from question 8.

10) Does the generated cyclic code detect single, double or triple errors? Justify
your answers.

11) Determine the length-percentage pairs of detectable error packets by this
code.

12) Give the implementation scheme of the pseudo-random number generator
based on the generator polynomial g(x). Starting from the initial state [Q]¢ =
[Qo=0 Q:=0 @, =1], give the state of the register at each clock cycle and
until the register returns to its initial state.

What is the length of the cycle produced at the output of this pseudo-random
number generator?
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Solution of problem 11

1) The necessary and sufficient condition for g(x) to generate a cyclic code is
that g(x) divides (x™ + 1) but does not divide (x™ + 1), withn;, <n =7:

g(x) divides (x7 + 1)
because:
"+ =03 +x2+ D x(x*+x3+x2+1)

but does not divide (x™ + 1), withn; <n=7.
2) Wehave:n =m+k,withn=7andk =3 - m = 4.

Generator matrix of the cyclic code:

1 1.0 1 0 0O

_ o111 0100
[G]m,n_[G]4,7_ 0 0 1 1 0 1 0
0 001 1 01

<g(x)

3) Polynomial h(x) and matrix [H]:

x7+1_ x”+1

h(x) = = =x* 3 24+1; dh(x)=m=4
(x) 90 —Prari " +x3+x% + x)=m
h(x) -
1 01 11 00
[H]k,n:[H]3,7: 01 0 1 1 10
0 01 0111

4) a) Expression of the control bits from the matrix [H].
We have:

[Hlgn X [ulns = [0]x1 = [Hl3; X [u];, = [0]34

Ug
Us
1 01 1 1 0 0 Uy 0
0101110]xu3=[ﬂl
0 0 1 0 1 1 1 U 0
U
K
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UePu, Pu;Bu, =0 U, = uz;Pu,Dug
- {u5®u3®u2€9u1 =0 - {ul = usQu;Qu;Ou,Ouy = u,BusDBug
u,Ou,Ou,Buy =0 Uy = u,Ou, Ouy = u;Ou,Ousg
4) b) Expression of the control bits from the generator polynomial g(x):

x*i(x)
g(x)

13 [ugx® 4+ usx? + uyx + u3]}

= Remainder
} : { x3+x2+1

c(x) = Remainder{

u6x6+u5x5+u4x4+u3x3|__3______2_ ________
U + UgXS + ugx3 | uex® + (us + ug)x® + (uy + us + uex

___________ +(us +uy +us)

(us + ug)x® + uyx* + (ug + ug)x®
(us + ug)x® + (us + ug)x* + (ug + ug)x?

(ug + us + ug)x* + (ug + ug)x3 + (us + ug)x?
(ug + us + ug)x* + (uy + us + ug)x® + (uy + us + ug)x

(ug + uy + us)x + (ug + ug)x? + (uy + us + ug)x
(us +ugy +ug)x® + (ug +uy +us)x? + (ug + uy + usg)

(uz + uy +ug) x2 + (uy + ug +ug) x + (uz + uy + ug)
> c(x) = upx? + ugx + uy

5) Control word and codeword generation:

i) =x3+1-xki(x) =x3(x3+1) = x° + x°

{u6=u3=1
u4=u5=0
u2=0
_){u1=u0=1

sc(x)=x+1andu(x) =x*i(x)+c(x) =x°+x3+x+1
6) Design of the encoder implementation scheme:

The multiplexers (Muxs) c1 and c2 are in position 1 during m = 4 clock cycles.
At the clock cycles m + 1,m + 2, -+, n that is from 5 to 7, the multiplexers are in

position 2.
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7) Design of the decoder implementation scheme:

s(x)

-

v(x) r"—"—"—"-—--—--Li-1
Word : :
received | [* | Po Qo=D; O D, 0,

.

|

]

| ]

Y

ck

Yy

Clear

Figure 1.10. Implementation scheme of the decoder

After n = 7 clock cycles, we look at the value of the syndrome s(x):

i {s(x) = 0 - no transmission error detected
s(x) =1 — detection of transmission error

8) Coder based on a linear feedback shift register (LFSR).

The multiplexer (Mux) ¢ is in position 1 during m = 4 clock cycles, then in
position 2 for the next clock cycles m + 1,m + 2,---,n, that is from 5 to 7.

9) Decoder based on a linear feedback shift register (LFSR).
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D, Q2—<>>D1 Q1—>D0 Q0
> > > =1
i i [ . ok
! : -—
Cl
car
& = 1 &~ 1* V

=]
1= 2 Infi i d
4.\‘}17 nformation wor
c

(%)

Codeword
U(x) --

Figure 1.11. Implementation scheme of the coder
based on a linear feedback shift register

-
=1 s(x)
Dy Oyre P D, © D, 9
> =1
e Dl Ll L
:‘_Cl
— ear
g =1 & =1 v y
< Word received
1= < —~ v(x)

Figure 1.12. Implementation scheme of the decoder
based on a linear feedback shift register
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10) The received word is: v(x) = u(x) + £(x)
The syndrome is given by:

v(x

s(x)]

)] = Remainder [g o)

s(x) = Remainder [g )

Error detection is possible if v(x) does not belong to the code and if g(x) does
not divide £(x).

— Single errors: in this case, £(x) is of the form £(x) = x! which is not divisible
by g(x) of the form g(x) = 1 + ---, consequently, detection of all the single errors.

— Triple errors: if g(x) # (1 + x)p(x), then no detection of all the triple errors
(see question 11).

— Double errors: in this case, £(x) is of the form e(x) = x! + x/ = x{(x/7t +
1). Since g(x) does not divide x?, it then suffices that g(x) does not divide (x/~¢ +
1) either. The generator polynomial g(x) divides x™ + 1 but does not divide
x™ + 1, with n; < n, then g(x) is said to be of order n. If n = 2¥ — 1, then g(x) is
a primitive polynomial. Here, n = 7, k = 3, and 7 = 23 — 1, thus, this code is able
to detect all the double errors because (j — i) < n.

11) A packet of errors that starts in position j and is of length [ is written:

e(x) = x) + g0/t 4 4 T
where the first and the last coefficients are at 1 and the others can be 0 or 1:
e() =x) X [14gx + -+ x71] =x/ x e1(x)

Several cases are to be considered:

—l—1<k:k=3 - [1=3, then detection of 100% of the error packets with
<k,

—l—1=k - 1=4, and the proportion of detectable error packets is then:
1—2"0-D =122 =0.75, i.e. 75% of the error packets;

—1l—1>k —1>4, and the proportion of detectable error packets is then:
1—-27%=1-273=0.875, i.e. 87.5% of the error packets.

12) Pseudo-random number generator.
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ch
r—-——-—"=-=-"—="-=-=-""=== a Output
| —D, O,l¢»[D, O}»{D, 0, : _
o | > > >
; [y | I I |_ — 1
gl | _ 8o |
| g3 = 1 8 = |
| 1
| - Y
b o o = — I ______ Jd
o, |0 |9 Output: s = 0,
=== Initial state
N° ck |_1 0 0 N
1° 1 1 0
2° 1 1 1
3° 0 1 1
40 1 0 1
5° 0 1 0
6° 0 0 1
== Return to initial state
70 o [0l

Figure 1.13. Pseudo-random number generator and register states

4bitsat1 .

The cycle length is: [=2¥—-1=23-1=7> {3 bits at 0 -

a quasi-balanced

sequence.

1.12. Problem 12 — Cyclic coding (2)

The problem of coding the information to be transmitted in order to protect it
against transmission errors is considered. For that, we use a cyclic code C defined by
its generator polynomial g(x) of degree k and the polynomial h(x) of degree m,
orthogonal to g(x) modulo (x™ + 1).
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We set n = 15 and the associated generator polynomial is:
gx) =x>+x*+x2+1
1) Does the cyclic code C detect double errors? Justify your answer.

We impose that the cyclic code be a systematic code, that will be denoted code
C;. In this case, a word to be encoded is represented by the polynomial i(x), and
from this the coded word represented by the polynomial u(x) is obtained.

2) What is the structure of the polynomial u(x): format of each of the two parts
of u(x)?

3) From the construction mechanism of the codewords u by the code Cj,
determine the implementation scheme of the coder associated with the code C;
(using only the operators: D flip-flop; multiplexer 2 to 1; XOR).

Taking as an example the word to be coded i represented by the polynomial
i(x) = x® + x% + x3 + x + 1, describe the operation of the pre-multiplied encoder:
internal state and values of the input and output at each clock cycle.

Deduce the polynomial code u, (x) associated with i(x).

4) Determine the implementation scheme of the decoder associated with the code
C; making it possible for the detection of errors and explain how it operates.

We no longer impose the cyclic code C to be systematic. Let C, be the code C
such that u(x) is obtained by multiplication of i(x) by g(x).

5) Determine the implementation scheme of the coder associated with the code
C, (using only the operators: D flip-flop; XOR).

Taking as an example the word to be coded i from question 3, describe the
operation of the coder. Deduce the polynomial code u,(x) associated with i(x).

Solution of problem 12
1) We have n = 15;k = 5 and:

g =x>+x*+x2+1=(x+DE*+x+1) =(x+1) xp)

g(x) is not primitive, but p(x) which is of degree 4, is primitive because:
n=15=2%-1.
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Two errors occurring in position i and j of a codeword are characterized by a
polynomial error of type:

e(x)=x'+x/ =x'(x/7t+ 1) with n>j>i

The polynomial p(x) being primitive, thus p(x) does not divide any of the
polynomials of the form (x™t 4 1) with n; < n. Then (j — i) is at most equal to
(n — 1). In addition, p(x) does not divide x‘, hence this cyclic code detects all the
double errors.

It should also be noted that the polynomial (x + 1) detects all the single and
triple errors.

2) Structure of the polynomial:
xKi(x) = g(x) X q(x) + c(x) - x¥i(x) + c(x) = g(x) x g(x) = ux)

with:
— x*i(x): polynomial information cyclically shifted from k positions to the left;
— ¢(x): polynomial control.

3) We have:
xFi(x) = g(x) x q(x) + c(x)
hence:
xSXx (B +x0+x3+x+1D) =3 +x*+x2+1) xq(x) + c(x)

Bt + a8+ x+ x5 = (P +xt+ P+ 1)
X8 +x"+x>+x+ D +x*+x3+x2+x+1

So finally:
u; (x) = xki(x) + c(x)

U () =xB+x + a8 +x+ xS +xt + 3+ 2+ x+1

Diagram of implementation of the coder associated with code C; (block diagram
of Table 1.15) and description of its operation.
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Table 1.15. Description of the operations of the premultiplied coder. For a
color version of this table, see www.iste.co.uk/assad/digital2.zip

4) The structure of the decoder for error detection is given in Figure 1.14.
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s(x)

Yyvvwy
\%

V(x)

== e ——
—

I
. 2 Q:)——.DI QI‘:E'—.Dz Qz—"Dg Q3':= D, 0,
o = [

Clear |_

171!

Figure 1.14. Structure of the decoder for the detection of errors. For a
color version of this figure, see www.iste.co.uk/assad/digital2.zip

The detection process is as follows:

— initialization: reset the register by performing the action Clear;

—during n clock cycles, the received word v(x) enters the divisor. The
remainder of the division x¥s(x) is stored in the register at the n** clock cycle, the
output of the OR gate will then indicate whether there is an error or not.

5) We have:
Uy (x) = i(x) X g(x) mod (x™ + 1)

m-1 k

u2(x)—ZLS Zg] =ZZL X g; X x5%]

s=0 j=0
Let'sset: l =s+:
m+k-1

5= ) [Z i X g1
=0

x! with (I —s) € [0,-,k]

again:

uy (x) = iggo + (i0g1 + i190)x + (i0g2 + 1191 + i290)Xx* + -

+(im-29k + im-1Gk-)x™ 72 iy grx™ T

A hardware implementation of this relation defines the coder associated with the
code C, (see the block diagram of Table 1.16). The information word is entered in a
shift register, least significant bit first, and the bits corresponding to the terms
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present in the register are added (modulo 2). The bits of the product come out, least
significant bit first.
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Table 1.16. Description of the operations of the encoder C,
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Indeed:

U () = i) Xgx) =B +x +x3+x+ 1) X (x5 +x*+x2+1)

=axB x4 x4 xB x7 x5+ xt x4 x+1

1.13. Problem 13 — Cyclic coding and Hamming coding (1)
We consider a linear block code C of parameter n = 7 and of primitive generator
polynomial: g(x) = x3 + x? + 1.

1) Show that this code is cyclic. Deduce the second primitive generator
polynomial g, (x).

2) Determine a matrix [G] generating this code. Deduce the generator matrix
[G,] from the systematic version of the code in question.

3) Determine the codeword u(x) in systematic form which is associated with the
information word: i(x) = x3 + 1.

4) Design the premultiplied coder making it possible to generate the codeword
u(x) from the information word: i(x) = x3 + 1.

5) Give the control matrix [H] of the dual code to the code C.

6) Find, from the relation linking the control matrix [H] and the codeword u, the
control bits as a function of the information bits of question 3.

7) Make your comments about the code C and its dual.

Solution of problem 13

1) The code is cyclic if g(x) divides (x™ + 1) but does not divide (x™ + 1)
withn,; <n.

Here n = 7 and:
T+ =03 +x2+ D) x(x* +x3+x2+1)
K+ =3 +x2+Dx 3 +x+ 1D x(x+1)
So, g(x) divides (x” + 1), and the code C is a cyclic code.
The second primitive generator polynomial g, (x) is:

g1 =0C3+x+1)



Theory of Information: Problems 1to 15 67

2) The generator matrix [G] of the code C(7,4) is given from the generator
polynomial g(x) as follows:

1101 0 0 0]¥°9®
o011 0 1 0 ofx*gx)
[Gly, =
00110 1 0fxg
000110 1l g

To get a systematic code, the generating matrix [G,] must have the form
[G] = [14,4 | P4,3] obtained from the arithmetic operations on the rows of the matrix
[G]4 7. Indeed, from the form of the matrix [G] we find that:

— the row 1 of the matrix [G,] is obtained by the sum of the rows: 1 +2 + 3 of the
matrix [G];

— the row 2 of the matrix [G,] is obtained by the sum of the rows: 2 + 3 + 4 of the
matrix [G];

— the row 3 of the matrix [G,] is obtained by the sum of the rows: 3 + 4 of the
matrix [G];

— the row 4 of the matrix [G,] is identical to the row 4 of the matrix [G], hence:

[Gs] =

o= oo
- o oo
e R Y
O R R
[ Y =

S O O
S O r O

3) We have:
xFi(x) = g(x) x q(x) + c(x) > x*iCx) + c(x) = g(x) x q(x) = u(x)
with:
iX)=x3+1;k=3 - x*Xi() =x3x (x> +1) =x°+ x°
hence:
3 +x2+1 « gx)

x® + x3 | mm 2

®x6+x5+x3 [x3+x>+x+1 < qx)
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x+1 «c(x)
Sulx)=x+x3+x+1
u=[1 0 0 1 0 1 1]

4) Construction of the pre-multiplied coder.

. = = —— = = — - = — - = — = - —— - -
>: t cl
k.
X i(x) I>DO Q1D Q- D, & j‘
> > > |
ck ,: { [ | I
c1ez?| "
g ! _ & .1

Figure 1.15. Implementation scheme of the pre-multiplied coder

5) Control matrix [H] of the dual code to the code C.

It is such that we have:

[Gs] x [H]* = [0]; [Gs] = [14,4 | P4,3] - [H] = [P4t,3 |13,3]

1011 1] 100
S[Hl, =1 11 0] 010
0111 1] 001

v
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6) Control bits according to the information bits of question 3:

[H]37; X uz; = [0]3

U
Us
1 01 1 1 0 O Uy 0
[1110010]><u3=[ol
01 11 0 0 1 Uz 0
U
LU,

u1:U4+uS+u6
u0=U3+u4_+u5

u6+u5+U4+u1=0 Ed

u6+u4+u3+u2:0
ﬁ{
Us+u,+uz; +uyg =0

{UZ=U3+U4+U(,

Thus, we have:

ut=[u6u5u4u3 u2u1u0]=[1001011]

information bits control bits

7) The dual code of a maximum length cyclic code is the Hamming code.

1.14. Problem 14 — Cyclic coding and Hamming coding (2)

We consider a linear block code defined by its following generator matrix:

1110100
[Glnn=[0 1 1 1 0 1 0
0011101

1) Give the expression of the generator polynomial g(x) associated with [G],,

2) Is the code generated by g(x) cyclic? Justify your answer.

It is required that the cyclic code generated by g(x) is systematic.

N

3) Determine the polynomial (codeword) u(x) from the polynomial (information

word): i(x) = x2 + 1.

4) Give the implementation scheme of the pre-multiplied encoder making it

possible to generate the codeword u(x) from the information word i(x) = x? + 1

and describe its operation: internal state and input and output values for three clock

cycles.
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5) Does the generated code detect odd numbers of errors and double errors?
Justify your answer.

6) Determine the proportion of error packets of length [ > 5, detectable by the
generated code.

7) Give explicitly the generating matrix [G,], from the matrix [G] given above,
which allows the generation of a systematic code C.

8) Determine explicitly the form of the control matrix [H] which enables the
generation of a code D dual to the code C.

9) Find, from the relation between the control matrix [H] and the codeword u,
the control bits as a function of the information bits.

10) Give the implementation scheme of the pseudo-random number generator
(PRNG) based on g(x).
Solution of problem 14

1) The last row of [G]l,,, = [G]3; is the lower-level codeword that represents
the generator polynomial g(x):

sg)=x*+x3+x*+1 k=4

2)From [G]37; »>m =3andn =m+k =3+ 4 =7. The generated code is
cyclic if g(x) divides (x™ + 1) but does not divide (x™ + 1), withn, <n =7:

4 3 2
T

Gax7+x6+x5+x3 | P4+l cq)
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0O 0 0 O

> X+ =(C*+x3+x2+1)x (3 +x%2+1)
g(x) q(x)

Therefore, since g(x) divides (x” + 1), but does not divide (x® + 1), (x° + 1),
or (x* + 1), then the code generated by g(x) is a cyclic one.

3) Determination of the polynomial u(x) associated to the polynomial: i(x) =
x%+1.

We have:
xKi(x) = g(x) X q(x) + c(x) = x¥i(x) + c(x) = g(x) x q(x) = u(x)
xKix) =xtx (x2+1) =x® +x*

xt+x3+x2+1 « g(x)

x® + x* | mm e

G9x6+x5+x4+xz | P Hx+l eql)
|

c) =x+1 -u@) =2 () +cx) =x*+x*+x+1

4) Block diagram of the pre-multiplied encoder generating the codeword u(x)
from the information word i(x) = x2 4+ 1 and description of its operation (see the
block diagram in Table 1.17).
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- cl| u
778y ——— || ¥l
0 Q1P 9 =1—D2 0 —1P3 0 =1

ck | = > =1 S S |77‘
e 1pS . 17 B | g5 = |
o ! } I—,
Clear 4
|2 -1 =1 gl e
cle2 |ck xki(x) D, 0, 0, D, 0, D, 0, u,
Dl
11 RE 0 0 1 0 1 0 1
Py Ny
1° 1 0 \1 "1
0 |1 1 1 0 0
2° G 1 X o
K 1 0 0 1
Y ~a
3° RS \Fo 0

Table 1.17. Block diagram of the premultiplied encoder and encoder operation:
internal state and input and output values for three clock cycles

5) a) Detection of an odd number of errors.

If g(x) can be set in the form g(x) = (x + 1)p(x), then g(x) detects odd
number of errors with (x + 1) (see Volume 1, Chapter 4).

S g =C+1)xE3+x+1D)=(@x+1)xplx)
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So, detection of an odd number of errors.
5) b) Detection of double errors.
The generator polynomial g(x) contains the polynomial p(x) = x3 + x + 1 that

is primitive, because 23 — 1 = 7 = n, so it makes it possible p(x) to detect all the
double errors.

6) Proportion of detectable error packets of length [ > 5.

We have k = 4, so the proportion of detectable error packets of length | > k +
1 ->1>5is:

1-27%=1-2"%*=93.75%

7) The matrix [G] is taken from the matrix [G]3, by shifting the positions of
some columns verifying the expected form of [Glyn = [Gsls7 = [Ia3 | Pas):

1110100
[G]37=[0 1110 1 ol—»[as]3,
0011101
100 | 1101
=[010|111ol
001 ] 0111

8) Form of the control matrix [H]:
[Gs]m,n X [H]Itc,n = [O]m,k
[Gs]m,n = [Im,m | Pm,k] - [H]k,n = [Prl;m,k | Ik,k]

[Gs]3,7 = [13,3 | P3,4] - [H]4,7 = [P3t,4 | 14,4]

11011000
11170100
"ML=l 11 001 0
1010001

9) Control bits as a function of information bits?

We have:

[Hla7 X [ul71 = [0]41
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_ul_
Uz
11 01 0 0 0 u 0
1110100 I o
X u.4 =
0110010 Us 0
101 0 0 0 1 u 0
6
_u7.
with:
Uy, Uy, Uz: information bits
Uy, Us, Ug, U5 control bits
u1®u2®u4 = 0 u4 = u]_@uz
N U Bu,Bu;Pu; =0 5 Uus = u;bu,Bu,
U, Quz;Pug =0 Ug = U, Duy
u1®u3®u7 = O u7 = u1®u3

10) Implementation scheme of the pseudo-random number generator (PRNG)
based on:

g =x*+x3+x2+1

The implementation scheme of the pseudo-random generator (PRNG) based on
the polynomial g(x) is given in Figure 1.16.

NOTE.— At start, the initial state [Qs, @2, @1, Qo] of the register must be different
from zero.

r -------------------- -IOul])ut
e e e e R A
o [ [ i |

1 1 = | 1

] Bl 1
L--_--_--_--_--_--_--J

Figure 1.16. Implementation scheme of the
pseudo-random number generator (PRNG)
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1.15. Problem 15 — Cyclic code, M-sequences, and Gold sequences

We consider the problem of coding the information to be transmitted so as to
protect it against transmission errors. For this purpose, a cyclic code C defined by its
following generator polynomial: g(x) = x> + x2 + 1, and n = 31 is used.

1) What is the necessary and sufficient condition for the proposed polynomial
g(x) to be primitive and generate a cyclic code?

It is desired to produce a systematic code C.

2) Give the expression of the codeword represented by the polynomial u(x)
corresponding to the information word represented by the polynomial: i(x) = x7 +
x*+x+ 1.

3) Give the implementation scheme of the encoder based on a division circuit
pre-multiplied by x*, where k is the degree of the generator g(x). Describe how it
works.

4) Give the implementation scheme of the decoder associated with the code C
allowing the detection of errors and explain how it works.

5) Does the generated cyclic code detect single, double or triple errors? Justify
your answer in each case.

6) Determine the length-percentage pairs of error packets detectable by this code.

7) Give the wiring diagram of the pseudo-random number generator of maximum
length (M-sequences), based on the primitive polynomial g(x) defined above.

8) Give the expression of the generator polynomial g,..(x) reciprocal of the
generator polynomial g(x). What is the essential characteristic of the M-sequence
generated by g,..(x) compared to that generated by g(x)?

9) Give the number of M-sequences generated by g(x) and the ratio between the
maximum of cross-correlation and that of the autocorrelation.

10) Show that the generator g;(x) = x> + x* + x? + x + 1 associated with
g(x) forms a preferred pair.

11) Give the wiring diagram of the Gold generator based on g(x) and g, (x), to
generate all the Gold sequences.

12) Give the number of Gold sequences generated and the ratio between the
maximum of cross-correlation and that of the autocorrelation.
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Solution of problem 15

1) The necessary and sufficient condition that g(x) is primitive is that:
2k—1=n=25-1
s0 g(x) is primitive.

The polynomial g(x) is generating a cyclic code, if it divides x3! + 1 but does
not divide (x™ + 1), with n; < 31.

3

The generator g(x) divides x3! — 1, because, after division we get a null

remainder:

3 +1=0@5+x2+1)
X (220 4+ x23 + x21 + 220 + x17 4+ x16 4 x15 4 x4 4 x13

+x% +x8 + x5 +x° +x* + 2%+ 1)

2) Expression of the codeword represented by the polynomial u(x)
corresponding to the information word represented by the polynomial i(x):

We have:
xFi(x) = g(x) x q(x) + c(x) > x*i(x) + c(x) = g(x) X q(x) = u(x)
or again:

i) =x"x (7 +xt+x+1) =x2 +x°+x°+x°
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O+ xt+x3+x%+x
x5 +x%+1
cx)=x*+x3+x+1

Su(x)=xP+x% +x0+ xS +xt +x3+x+1

xki(x) c(x)

3) Implementation scheme of the coder based on a division circuit premultiplied
by x*.

6—}!_ ——————————————————— a1 cl u]
Fice] i, Qi ol %@@N&@»zl |
AR SEES |

Figure 1.17. Implementation scheme of the coder. For a color
version of this figure, see www.iste.co.uk/assad/digital2.zip

The operation of the encoder is as follows:
—resetting the D flip-flops;

— during m = 8 clock cycles, the multiplexers (Muxs) 1 and 2 are in position 1.
The information bits are applied simultaneously to the divider and to the output. The
k control bits (k = 5) are in the k flip-flops of the register;

—during k clock cycles, multiplexers (Muxs) 1 and 2 are in position 2; zeros
enter the register and the control bits go out. The encoder uses (m + k) =
(8 +5 =13) clock cycles and the transmission channel is used throughout the
operation. At the 13th clock cycle, the register flip-flops are zero and the encoder is
ready to receive another information word to code. The encoder has a good
efficiency.
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4) Implementation scheme of the decoder associated with the code C.
The received word v(x) is written:
v(x) = ulx) + e(x)
with €(x) as a possible error word.

The syndrome is defined by:

v(x)
g(x)

= Remainder [

] = Remainder [:g;] + Remainder [;((jc))

s(x) = Remainder [
£(x)
9(x)

So: if €(x) is non null, and if v(x) & C(n, m),then s(x) # 0, hence the decoder
implementation scheme.

s(x)

2] —»

l‘” Yy

V(X) ‘r"_"_"-"'_"_"_"_"_"_"1

1 ™1 Do QO——>D1 o\r D, Q% Dy O5F
>

l_> l_>

—

1
V

-

ck

Clear 1

T e |

Figure 1.18. Implementation scheme of the decoder. For a color
version of this figure, see www.iste.co.uk/assad/digital2.zip

The received word v(x) is divided by g(x) duringn=m+k=8+5=13
clock cycles. Then, the contents of the register are verified by a simple OR logic
gate. If the content of the register is zero, then the received word is decided to be
correct. Otherwise (the content of the register is not zero), the received word is
decided to be erroneous.

5) Cyclic code capability to detect single, double or triple errors?
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We know that:

s(x)]

s(x) = Remainder [g o)

Thus, error detection is possible if g(x) does not divide £(x).

— Single errors: in this case an error in position i, represented by £(x) = x! is not
divisible by g(x) = 1 4 ---, thus detection of all the single errors.

— Triple errors: in this case, £(x) = x' + x/ + x!, and as g(x) # (1 + x)p(x)
then in principle, no detection of triple errors (see Volume 1, Chapter 4).

— Double errors: in this case, €(x) is of the form e(x) = x' + x/ = x!(x/7 + 1)
with i < j < n. Since g(x) does not divide x’, it suffices then that g(x) does not
divide either (x/~% + 1). The generator g(x) divides x™ + 1 but does not divide
x™ 4+ 1, with n; < n, so g(x) is said to be of order n. The primitive polynomials
are irreducible. They detect all double errors because (j —i) < n.

6) Determination of the length-percentage pairs of detectable error packets.
An error packet that starts in position j and has a length [ is written:
e(x) = x) 4 g x4 4 T

where the first and the last coefficients of €(x) are at 1, the other coefficients can be
at 1 or O:

g(x) =x/ x [1 + Ej41X + -+ xl_l] =x/ x 51(9()

Three cases are encountered:

—l—1<k (k=5) =l =75, hence detection at 100% of all the error packets
of'length | < k;

—1l—1=k —»1=k+ 1= 6, the proportion of error packets detectable is then:
1—2"&"1D =1 -27%=0.9375, i.e. 93.75% of the packets;

—-l—-1>k - 1>6, the proportion of error packets detectable is then:
1-27%=1-275=0.9687, i.c. 96.87%.

7) The implementation scheme of the pseudo-random number generator (PRNG)
based on g(x) is given in Figure 1.19.
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- = —— = —— = —— = ——  —— —- |
!:>D4 Q4 'DS Q3 V>DZ Q2*$>Dl Q1 Do Qo li
, > >
A= e PP e
47| - I
] 1= la |
0 L

Figure 1.19. Implementation scheme of the pseudo-random
number generator based on g(x)

NOTE.— At the start, the initial state of the D flip-flops [Q4, Q3, Q4, Q1, Qo] of the
register should be different of zero.

8) Expression of the generator polynomial g,..(x) reciprocal of the generator
g ).

We have:
Grec(@) =xFx g(1/x) =x>X (x> +x 2+ 1) =x+x3+1

The M-sequence generated by g,..(x) corresponds to the one generated by g(x)
but in a reverse sense.

9) Number of M-sequences generated by g(x).

k =5, so the number of M-sequences generated by g(x) is 6 (see volume 1,
chapter 4). The ratio Rgg,,,./Rss(0) = 0.35 (see Volume 1, Chapter 4).

10) Does the generator polynomial g;(x) = x° + x* + x2 + x + 1, form with
the polynomial g(x) as a preferred pair?

Let a be aroot of: g(x) = x° + x2 + 1.

The polynomial g;(x) = x5+ x*+ x?+ x + 1, forms a preferred pair with
g(x) because:

{1) k is odd, since k = 5, conditions in 1) are satisfied
if

k-1
2) g,(x) is such that a2[T]+1 = a® is aroot of g, (x)
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It means that g(a) divides g, (a®). This condition is also satisfied, because:
gi@®=a*®*+a*®+a®+a®+1

g1@)=g@x @ +a’+a*+a?+a''+a®+a’ +a®+a*
+a’+1)

with: g(a) = (@® + a® + 1)

11) Implementation scheme of the Gold generator based on g(x) and g, (x).

g 2,00
=1 | =1
i i i b1
o[ o || DD 1 o, | oy | b, | DD
VYV YV YT VY Y

u®Dly 1=0,1,..,2F-2

Figure 1.20. Implementation scheme of the Gold generator

12) The number of Gold sequences is G(u,v) = {u, v, u®D'v}, a set of n + 2
sequences. The ratio is I (k) /Rs;(0) = 0.29 (see Volume 1, Chapter 4).
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Baseband Digital Transmission:
Problems 16 to 26

2.1. Problem 16 — Entropy and information to signal source coding

We consider the problem of long-distance transmission over low cost electric
cable of a compressed information source S from a video signal compression
system. The compression system used makes sure that the source S delivers words s
taken in a dictionary with only five words: [sq, S5, S3,S4, S5]. The probabilities of
issuing symbols are given in Table 2.1.

s S1 Sy S3 Sy Ss
Pr(s) 0.11 0.19 0.40 0.21 0.09

Table 2.1. Probability of emission of source S

The symbols are delivered by the source with a rate of 13.5 X 10® symbols per
second.

1) Determine the entropy H(S) of the source S. Deduce the entropy rate per
second. What would be the efficiency 1, of a fixed-length code C;, its length L,, and
the bitrate per second, denoted D, ?

2) Construct the Huffman code C, generating the codeword S; associated with
each of the symbols s;.

NOTE.— In the design of the code C,, the coding suffix associated with the element of
lower probability will be systematically set to 1.

Digital Communications 2: Directed and Practical Work,
First Edition. Safwan El Assad and Dominique Barba.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Deduce the average length L, of the codeword C,, its efficiency 1, and the
bitrate per second D,.

3) It is considered here that the source S delivers the following time sequence SS
of symbols s:

~~~~~~ Sy Ss S3 S4 S3 S3 Sy S3 Sy Sgcreerr —>time

Deduce the corresponding sequence SB of bits obtained at the output of the
Huffman coding C,. SB is of the form {----- by_1,by, byyq }. What do you
observe?

4) The transmitter constructs a baseband signal supporting the transmitted
information bits.

a) It first uses a bipolar encoder (called CODBip) of RZ type, with amplitude
V and duration Tj,. Draw a graph of the signal portion associated with SB
transmitted by this CODBip encoder. What are the problems encountered in
reception?

NOTE.— Both here and also in question b), we will consider, at the start of the
sequence, that the parity flip-flop of the number of “1” is equal to 1.

b) It then uses an encoder (called CODHDB) of HDB-2 type. Draw a graph of
the signal portion associated with SB transmitted by this CODHDB encoder. Are
some problems solved now and why?

¢) What is the approximate bandwidth of the signal emitted by the bipolar or
HDB-2 code to encode the S source? (We can rely on the properties of the power
spectral density I'(f) of the signal transmitted). To transmit this source of
information on this type of cable, is there a good fit?

5) We want to reduce the bandwidth of the transmitted signal. Thus, it is desired
to use an information-to-signal coder of partial response linear encoder type. This
encoder will be very simple, of the form 1 — D? (here D is the delay operator of T},
time slice allocated to the transmission of a binary symbol). The signal x(t) which
carries the symbols ¢;, is of NRZ type, amplitude V /2 and duration T,.

The following SBB binary sequence will be used for the rest of this problem:
0010001101110011000101

a) This type of encoder needs to be preceded by an appropriate precoder. Why?

b) Describe the relationship between the pre-encoder output (giving the
symbols by,) and its input by,.
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c) Describe the relationship between the encoder output (producing the
symbols ¢y ) and its input a;.

d) Represent graphically, the signal portion associated with SBB transmitted
by this whole partial response coder (for a pulse amplitude modulation of duration
Tp). It will be necessary to first determine the sequence obtained at the output of the
precoder (it will be assumed that the two symbols b;, not known at the beginning of
the sequence are zero).

e) What is the approximate bandwidth of the signal emitted by this partial
response linear code to encode the source S? Have we gained any bandwidth
reduction?

6) For this partial response linear code, how does decoding produce the symbols
b, from c,? Justify your answer. What happens to the reconstructed binary
information by, if a transmission error occurs for one of the symbols ¢, reconstructed
on reception?

Solution of problem 16
1) Entropy H(S):

5
HS) = = ) p(s) x log, p(s)
i=1

0.11 x log,(0.11) +0.19 X log,(0.19) }

H(S) = - {+0.4 x log,(0.4) + 0.21 x log,(0.21) + 0.09 X log,(0.09)

= 2.12 bits of information/symbol
Entropy bitrate:
D(S) = H(S) x 13.5 x 10® = 28.26 Mbits of information/s

Fixed-length code C; (length L;): we have five symbols to encode, hence:
L, = 3 bits.

Efficiency:

_H®) 212,

m

Bitrate of code C;:

D; = 3 X 13.5 X 10° = 40.5 Mbits/s
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2) Huffman code C,.

S; pis), pls;), Pis;), pis;), c,

52 0.4 0.4 04 0610 1

E

s, | 021 021 0.39>{4 1 01
s, |0.19 o.:ow/a){o.n 1 001
5, 0.11_%@ 1 0000

55 0091 0001

Table 2.2. Construction of Huffman code C,

Average length of the codewords:

5
Lz:Zp(si)xli=0.11><4+O.19><3+0.4><1+O.21><2+0.09><4

i=1

= 2.19 bits/symbol
Efficiency of code C,:

_HE) _212_
M2 ="~ =319 " 70°7

Bitrate of code C,:
D, = 2.19 X 13.5 x 10° = 29.565 Mbit/s

3) Sequence SB of bits obtained at the output of the Huffman coding.

SS S Ss S3 | S S3 S3 S S3 Ss Sy
SB | 001 | 0001 | 1 | O1 1 1 001 1 0001 01

Table 2.3. Construction of binary sequence SB
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More bits are observed at zero than at one and, in addition, we have sequences of
three consecutive zeros from time to time.

4) Information for baseband signal encoding.

a) Bipolar CODBIip encoder of RZ type (see the graph in Table 2.4). The
problems encountered in reception are related to the difficulties of getting a correct
clock recovery in some cases, here three consecutive zeros, because the encoder
produces no pulse for duration 3T.

b) CODHDB coder of HDB-2 type: look at the graph in Table 2.4.

Sequences of three consecutive zeros are replaced by sequences of type “0 0 V”
or “B 0 V” and thus, we can have a maximum duration of 2T without impulse.

c¢) The power spectral density of the RZ bipolar code is given by:

X [sin(mfTy)]?

L) = V2T, [sin(nf T,/2)1?

4 | nfT,/2

The zeros of Ix;(f) occur every 1/T,, so its bandwidth is 1/T,. It is
substantially the same for the HDB-n code (here HDB-2).

Furthermore, in the vicinity of the frequency f = 0, the power is zero, this code
can therefore be used for long-distance cable transmission. However, the presence of
long sequences of zeros is detrimental to the clock recovery, therefore we use the
code HDB-n.

5) Partial response code (PRC).

a) Yes, it is necessary to use a pre-encoder so that on reception, the decoding is
instantaneous (without recursion) and therefore, if a decoding error occurs, it does
not propagate recursively.

b) Pre-encoder output (symbol by) as a function of its input by.

bk b’k ak Ck Sg(t)
T
—| Precoder rzazlscolder B Coder x(t) —»

Figure 2.1. Partial response linear coding scheme
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- _ L, B 1 1
Hw)—l—D%:H&)—l—zZ:BA@_H&)_l_TZ

& Bj(z) = Bi(2) + B(2) X 272 = b}, = b ®by,_,

c¢) Relationship between the encoder output (symbol ¢ ) and its input ay:

Hiz)=1-2z7? =%@ C(z) =A()—A(Z) X z72 > ¢, = ay — Ayx_,

d) Graphical representation of the signal portion associated with SBB
transmitted by this whole partial response coder: look at the graph in Table 2.4.

e) The power spectral density of the partial response code concerned is given
by (see Volume 1, Chapter 5):

2

sin(nfTp) X [sin(ZTl’fTb)]2

I, (f) = VT, [W

The zeros of I (f) take place every 1/2T), its bandwidth is then approximately
1/2T,.

Thus, there is a reduction of the bandwidth of the transmitted signal by a factor
of 2, compared to question 4, because of the introduction of the correlation. In
addition, one has no continuous component.

6) We have:
€ = ax — ag—p = [(2by, — 1) — 2bj_, — 1] = 2(by, — by_;)

-1
= 2(b;®by_,) = 2b, = by, = Eék mod 2
hence, an instantaneous decoding (no recursion). Thus:

—if no decision error on ¢, then, no decision error on by;

— if decision error on ¢y, then decision error on b, only (not on subsequent ones).
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(b} ofof1fofofol1[1]of1]1]1]o]o]1]1]0]0]0]1]0]1
1 hlal
CODB; -
T
i NI RIREEIREcIRE
HDB2 0
b W T il il
(b} oloft]ol1]afol1]olo[1]1]1]1]0]0]olo]0][1]0]0
00
(a;} EENENEENEE NI AERINE
g |1 1 11 1)1 1l ) 11
{c) olof2|olo|o]-|2]0]-[2]2]0]0|-]-|0lo|0]2]0]-
L 2 2 2|2 2
PRC v 1.
Sel1) 3 I_ ;— |:————| -d- Tl,_‘;l

Table 2.4. Chronograms of the signals and coded symbols. For a

color version of this table, see www.iste.co.uk/assad/digital2.zip

2.2. Problem 17 — Calculation of autocorrelation function and power
spectral density by probabilistic approach of RZ and NRZ binary

on-line codes

We consider the digital transmission signal defined by:

[oe]

s(t) = Z a,x(t —nT —ty)

n=-—oo

and:

(t) Vv for 0<t<é@
X =
0 for O0<t<T

with:

0<8<T and V>0
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The symbols a, are independent random variables which can take only the
values 0 and 1 with a probability equal to 1/2 and t, is random, of uniform law on
the time interval [0, T|.

NOTE.— In this problem, we consider that the instant ¢t belongs to the time interval
[to, to + T[. Without any loss of generalities, we will assign the index n to this
interval where the time ¢ is a priori.

Calculate the autocorrelation function Ry (7) and the power spectral density I (f)
of s(t) and carry out the two particular cases:

0 =T/2 (binary RZ) and 0 =T (binary NRZ)

x(1) x(1)
1 o 11l Yoo
V : | 124 —
I | |
| | | | > | N
T T T T T T
- -

Figure 2.2. Examples of binary RZ and NRZ codes. For a color
version of this figure, see www.iste.co.uk/assad/digital2.zip

Solution of problem 17
Let us make the following form of the signal s(t) (with 8 < T /2 on Figure 2.3).

s(1)
A

ty to+0 ty+T ty+T+0

Figure 2.3. Example of signal s(t) waveform with 6§ < T /2
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Such a signal can be represented by:

[oe]

s(t) = Z a,x(t —nT —ty)

n=-—oo
With the deterministic function (pulse):

_(V for t€]0,0]
x(t) = {0 elsewhere

and:
{1 .
a, = 0} with Pr(a, =1) = Pr(a, = 0) = 1/2
Since t, is uniform on time interval [0, T[, then s(t) is a second-order stationary

random signal.
Moreover, the autocorrelation function R.(7) is an even function: R,(—7) =
R, (7) and thus the calculation can be done with suitability with t = 0 or 7 < 0.

The autocorrelation function Rg(7) is written:
R,(1) = E[s(t) xs(t—1)] = Z Z sisjPr{s(t) =s; and s(t—1) = sj}
i

VXVXPr{V att and V at t —1}+
R.(7) = OXVXPr{0 attand V at t—1}+
s VxO0XxPr{Vattand 0 att—1}+
O0xO0xPr{0 attand 0 at t — 71}

hence:
R (t) =V?2xPr{V att and V at t — 1}

Moreover, using the theorem of compound probability, Rg(7) is also written:

R(t) =V2xPr{V at t} x Pr{V at t—1/V at t}

To calculate R (7), it is sufficient to calculate Pr{V at t} and

Pr{V at t —t/V at t}.
case:0< 8 <T/2

Two cases can be encountered: {
W | case: T/2< 6O <T
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A. First case, where 0 < 9 <T/2
There are three situations to consider.

— First situation: 0 <t < 0.

The only possibility is that t and t — 7 belong to the same first part of time slice
(hatched region).

s(2)
A
y
t
|
ty 1o+0  to+T
s(t—‘c)i
0-1
V .| 1 -
T
t
T -

Figure 2.4. First situation: 0 <t <0 (with6 <T/2)

Let:

1
p = Pr{V at t} = Pr{t € [ty, ty + 0]} X Pr{a, = 1} = XE

~|

and:

q=Pr{V at t—1/V at t}
=Pr{t—1€ [ty ty +0[,a, =1/t € [ty to + 0] a, =1}

or, since a,, = 1:
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that is to say:
q=Pr{te[ty+t,ty+0+1[/t €[ty ty,+6[}
Or:
q=Prite[ty+1,ty+0[}

with random t,, of a posteriori law uniform over a measurement interval 6,
therefore with probability density (ddp(to)) equal to 1/6.

Hence:
to+0
0—1
a= [ ddpeo)dt, =5~
to+T
So finally:
1 6 60—t
R,(1) =V? xzx?x< 7 )

NOTE.— In general, if a priori t belongs to a time interval, of measurement T (t; is
random, of uniform law on time interval [0, T[), we know a posteriori that t belongs
to a first part of the time interval, of measure 8. It is therefore this posterior uniform
law that is used in time conditional probabilities.

—Second situation: 9 <t <T.

The only possibility is that s(t) and s(t —7) come from two first parts of
adjacent time slots, hence independence between the variables a considered.

In general, we will always have:

Pria,_ = a;/a, = aj}k#) = Pr{a,_, = a;}

1
p =Pr{V at t} = Pr{t € [ty, t, + O[} X Pr{a, = 1} = =X 7

~

q=Pr{V at t—1/V at t}
q=Prit—t€[ty—T,t,—T+0[a,_1 =1/t € [ty, ty +0[a, =1}

q=Pr{t—t€[ty—T,t, —T +0[/t € [to, to + O]} X Pr{a,,_, = 1}
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and:
Prit—t€[ty—T,to—T + 0[/t € [to, to + 6}
turns into:
Priteto—T+1,to—T+0+1[/t €[ty ty +0[}
Or:

Which depends on the value of 7 with respect to 8 and T.
Two situations can occur (see graph in Figure 2.5).

We know that if a real random variable follows a uniform law over a given
interval [c, d], then its probability density is equal to 1/Mes|[c, d] and that:

d—cifd=c

Mes[c,d] = {0 otherwise

and if Mes[c, d] = 0, then the probability density will be zero because we are faced
here with a continuous random variable

if: 6 <t < T, then:
Suplty —T +1,ty] = to
Inflto,—T+0+71,t,+0]=t, —T+0+1
Infl[ 1-Supl[ 1=7t+6-T=7—-(T—-0)
Soif 8 <t <T — 6, the measure of the interval is zero, thus g = 0.

Otherwise, if T — 68 <7 <T, then the measure of the interval is given by:
T4+ 6 —T,and:

T+60—-T 1
0= [0
7] 2

so if:

0<t<T—-0:>q=0
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and if:
T <7<T [r+9—T] 1
t= 1 g 2
— Third situation:t > T.
T<t<T+80 F+6_q !
4 = |— -
t 1 9 2
s(1)
y
V
-
0 t0+6 l‘o:‘FT :
| |
| |
s(t—1) : :
1 [ [
| |
V | |
. | |
< - | |
| |
| | -
I I =1
| |
| |
s(t—1) : :
[ I I
THO-T |
V -l - |
|
T i |
- > | |
| |
T T » [
| |
| |
| |
S(l‘—’[) | |
i | |
| T+0l-x
14 I-'-—-—-r'—
|
|

Figure 2.5. Second and third situations
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In summary, for0 < 6 < T/2, if:

0<7t<86 :R()—szgx_g_r]
STS s\T) = 2T o
6<T<T-86 = R,(t)=0
\T—o<c<T :R()—szngJre_T]
STS s\T) = aT | 9
T<t<T+86 =>R()—V2x6x»T+9_T]
== SSO= R ar T e

For valuest > T + 0, we see that the intervals intervening in the conditional
probability relating to instants (t — 7) and t are different and therefore n — k < n.
This implies that conditional probability Pr{a,_i/as}ikzo = Pr{a,_i}, and that the
probability relating (t — T) conditionally to ¢t will evolve periodically, from T to T,
strictly as we have just described it. More precisely, we have:

—for: 0 + kT <t < (k+ 1)T — 8, then q = 0;
—for: (k+ 1)T — 0 <t < (k + 1)T, then:

_[+6-G+D1] 1

0 2

—for: (k + DT <1< (k+ 1)T + 6, then:
[(k+DT+0—-17] 1

X
0 2

—for: (k+1DT+0<t<(k+2)T—0,theng =0.
It is therefore a periodic function of period T.
Note that the autocorrelation function breaks down into a sum of two functions:
Rs(r) = Ri(7) + R,(7)
with R, (t), a non-periodic function, and R, (t), a periodic function of period 7.

Calculation of the power spectral density I;(f):
() = F{R;(D)} = L(f) + L(f)

Calculation of the power spectral density I (f):

[oe]

r(f) = f Ry (D)expl—j2nfrldr

—00
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R (7)
[
2T
e
N\4T !
: : N
27 -T-0 -T -T+8 9 o @ T-0 T T+8 a7
Ri(7)
e
4T
T
) 0 0
Ry(7)
v |
4T ! :
: 1 T
27 -T7-0 -T -T+6 -6 O 0 T-0 T T+0

Figure 2.6. Autocorrelation function Ry(t) and its decomposition

R, (7) is an even symmetric function, hence:

]
L) = 2[%[9 — 1] cos(2rf1) dt
0

6

0
GJ- cos(2mfT) dr—frcos(anr) dt

0 0

2

T 2T

but:

6

f cos(2rft)dt =

0

[sin(2rf)]§ 1 _
T = ﬁ X sin(2mf0)
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and:

6 6 0

frcos(anr) dt = fudv = uv—fvdu

0 0 0

Integration by part, with:
u=1t and v = cos(2nft)dt

hence:

0
; 0
fTCOS(ZT[fr) dr = [‘tsmgi;ff)]o fsm(22n7;f9) .

0 0

= i@ X sin(2rf6) + —— [cos(2nf1)]§

2nf (2 f)2

6
= f X sin(2nf0) + — @ f)2 [cos(2mfB) — 1]

2

L) = Z—T{ism(ZﬂfH)— o sin(2mf@) —

2nf 2nf [cos(2tfO) — 1]}

(2nf)? f)2
V2 {Z[Sin(nfe)]z}

np =2

5T [1 COS(ZT[fQ)]}

1
(2rf)?
_ V26 [sin(nf0) 2
_T[ nfo

2T|  (@2nf)?

which is a classic result. Indeed, recall that if:

g(1)
A

a

9 0 0

Figure 2.7. Symmetrical triangular function
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then:

B sin(mf0) 2
G(f)=Ax0x [nf—e

I (f) has a continuous spectrum.

Calculation of L, (f).

The basic form of R, (7) is identical to that of R, (7) and in addition, it is periodic
with period T, then:

R,(x) = Z R,(t — nT) = R,(D)® Z 5( —nT)

n=—oo n=—oo

L(f) = F{R,(D)} = F{R, (D)} F{ Z 5(t— nT)}

-50x3 3, 0(-)
k=—o0
Y

V292 i sin(km6 /T) 25( k)
T o472 e km6/T f T
It is a discrete spectrum, the discrete spectral components being spaced 1/T

apart from each other.

Fz(f)
e’
44T
o // \ ) f
- Ny o N .
2N AT .
01 1 2
T 6 0

Figure 2.8. Discrete spectral components of the power spectral density I, (f).
For a color version of this figure, see www.iste.co.uk/assad/digital2.zip
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Special case where 8 = T /2: binary RZ code.

In this case, we then have:

_ sm(nfT/Z)
L) = F nf T/2

and:

¢ sm(kn/Z) k
LU= Z [ km/2 f_?>

The continuous component is such that:
I,(0) = [continuous component]? x §(f)

One has:

10) = V2 {k__% [sin(kﬂ/Z)

16 k]2 ] }‘S(f) N [%]Z‘W)

Thus, the continuous component is then equal to V /4.

The function sin(km/2) is non zero for odd integer k, so by setting k = 2n + 1,
the expression of I;,(f) is then written:

— [sin [2n+ 1) /2] 2n+1)
L =15 ‘WH_Z[ Q2n+1)n/2 ]S(f_T>

y2 V2 4 Q2n+1)
L) =R6(f) +Ean [(2n+1)2n2]6(f_ T )

This is also written:

sn=[if 50+ ] 3l o(r-452)

L,(f) has discrete components at odd frequencies and in particular at the
frequency f = 1/T which makes it possible to recover the clock.
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B. Second case, the one where T/2 <0 <T
There are also three situations to consider.

— First situation: 0 <17 < 6.

s(1)
i
%
» [
to zo+}6 tojt T
| |
| |
s(t—1) I I
a) i } }
0 -1l \
V — |
T I
- |
|
‘ t
| |
| |
| |
s(t—1) | |
bt o
04t THO-T
V - Pt
T
>

Figure 2.9. First situation: 0 <7< 0 (withT/2 <0 <T). Fora
color version of this figure, see www.iste.co.uk/assad/digital2.zip

Calculation of p and q. There are two cases:

aA)T+60 <T -t and t —1 € the same first part of time slice:

1
Pa = Pr{V at t} = Pr{t € [to, t, + 0[} X Pr{a, = 1} ==X >

~Nl o

-7
0

6
qo = Prit —t € [to, to + O/t E[to, to +0[} =

b) T + 8 > T, there are two possibilities:

{t and t — 7 & same first part of the time slice - P10
or t and t — T € same first part of the time slice — p,,q,
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First possibility: t and t — T do not belong to the same first part of the time slice,
but to the first parts of adjacent time slices:

6 1
p1 = Pr{V at t} = Pr{t € [ty, ty + 0]} X Pr{a, = 1} = ? 7

q,=Pr{V at t—1/V at t}
qu=Prit—t€ty—T,to—T+0[,a,_1 =1/t € [ty, tx +0[,a, =1}
Or:

qu=Prit—t€ty—T,t, — T +0[/t € [ty, ty +O0[} X Pr{a,_, = 1}
_r+9—qxl
B 0 2

Second possibility: t andt — T belong to the same first part of the time slice,
hence:

6—1
and q; =qq = 5

NI»—\

0
P2=Pa:P1:T
1
2

F+9 q 9—1_1F9—T—1
T2

qQp =q1 +q2 = )

NOTE.— Both hypotheses a) and b) exclude each other.

Thus, for:
( -7 60—t
a) 0<7t<T-6 - R,(1) = [ T ]
0<r=<6- V20 r—(T 9) V29
b) T-6<1<6 -R(r)= oy r— 5 ]

Note that in the case a), the expression of R¢(7) is also valid throughout the time
interval T € [0, 8].

— Second situation: 0 <t <T.

The only possibility is that s(t) =V and s(t — t) =V come from the first two
parts of adjacent time slices.
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s(1)

i
V
> !
to th+0 mHT
|
|
s(t—1) |
Y |
%+97T
%4 -~ -
T
» [
Figure 2.10. Second situation: 6 <t <T
Let’s set:
6 1
p = Pr{V at t} = Pr{t € [ty, ty + 0]} X Pr{a, = 1} = TXE
and:
q=Pr{V at t—1t/V at t}
q =PT{t—‘L’E [tO_T'tO _T+9[,an_1 = 1/t € [to,to +9[,an = 1}
q=Prit—-te€ [[t0 —T,to— T+ 6[[/t €[ty to + 9[} X Pr{a,., = 1}
_ [r +0 - T] y 1
h 6 2
hence:

RS(T) =

V20 [t — (T —6)
4T 6

—Third situation: T <t <T+86.
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s(1)

|

|

|

|

s(t—n1) |

a) }
|

I
I

s(t—1) }

b) !
|

t

Figure 2.11. Third situation: T <t < T + 6. For a color
version of this figure, see www.iste.co.uk/assad/digital2.zip

Calculation of p and q. There are two cases:

A)T<t<2T—-6 —>tandt—r1€ to the first two parts of adjacent time
slices:

1
x_
2

~Nl o

Pa = Pr{V at t} = Pr{t € [ty, ty, + 0[} X Pr{a, = 1} =

Qo =Pr{V at t—t/V at t}
Following the same approach as in the previous situation, we obtain:

Qo =Pr{t—t€[ty—T,to—T +0[/t € [ty, ty + O[} X Pr{a,_, = 1}
[T+9—‘L’] 1
(7]

X
2
b) 2T — 6 < v < T + 0, there are two possibilities:

{t and t — 7 € to the two first parts of time slices distant from 2T — p4, g4
or t and t — T € to the two first parts of adjacent time slices - 2,4

><1
2

~

p1 = Pr{V at t} = Pr{t € [ty, t, + 0]} X Pr{a, = 1} =

q,=Pr{V at t—1/V at t}
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ql =PT{t—TE [tO—ZT,tO_ZT‘l'H[/tE [to,to-l-@[}XPT{an_z = 1}

_[r+9—2T]X1
- 0 2
_ Hxl
pz_pa_T 2
_[T+9—r] 1
QZ qa_ 9 2
N 1[26—T]
b =q1 T q2 2 )

NOTE.— Both hypotheses a) and b) exclude each other.

Thus, for T <7< T +6:

{a)T<T<2T—9 - Ry(7) = A LO_T]=V—2[T+—0_T]
= T | 6 4 T
S{b)2T—0<t<T+6 - R,(1)= Vzg[—r+9_2T]+V—20—T+9_T]
4T ] 4T ]
_V20[20-T] _V2[20-T
Tt o9 ]_T T ]

Note that in case a), the expression of R;(7) is also valid throughout the time
interval [T <7 <T +0].

In summary, for T/2 <0 <T:

—for0<7<6:

() r<7-06 R ="
Jwrsroe s(r)—7[ -

b T <0 >R V[t —(T-6) —T_VZ 36 -T—-71
[ 7-0<r20 R = 2|5+ B e
—for <t <T:
V29[t = (T =) _ V:[r—(T-6)
CRO=7r g ] G
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—forT<t<T+86:

V20T+6 -7 V2[T+6-7
a) t<2T-06 —>R(T)_4T T]:TT]
V20t +6—2T V2O[T+6 -7
=4b)2T—-0<1t<T+80 —>R(‘L’)_4T T]-l-W[T]
l [29 T V2 20 — T]
B T

As inthe case 0 < 6 < T/2, the probability relating to (t — t) conditionally at t
will evolve periodically from T to T, strictly as we have just described it above.

R (1) 2 V050 1)

-0 0 0
Ry(7) 7’0
YO900-1
vol ar0D
N 47: TN
I
0T 6 071 | 7+02T
27-9

Figure 2.12. Autocorrelation function Ry(t) and its decomposition. For a
color version of this figure, see www.iste.co.uk/assad/digital2.zip

In the same way as for 0 < 8 < T /2, the autocorrelation function breaks down
into a sum of two functions:

Rs(1) = Ri(1) + Ry()
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with R; (T), a non-periodic function, and R, (7), a periodic function, of period 7. In
addition, we note that the expression of R, (7) and R, () are the same as previously
(case 0 < 0 <T/2).

Calculation of the power spectral density, case where:T/2 < 0 <T.

The power spectral density of the signal s(t) can be broken down into the sum of
two functions:

L,(F) = L) + ()

with:

r) = V26?2 [sin(nf@)

AT nfo

This is a continuous spectrum.

And:
n=rnxg ) or-5) =S [ < Y o(r-5)
=t 3 [P -

This is a discrete spectrum.
Special case: 8 = T (NRZ code)

In this case, we obtain:

V2T [sin(zfT)]?

ﬂ(f)_T T

Lo =2 Z [sm(kn) f B _

k=—o0
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So:

2
L(f) = T 6(f) :which gives the continuous component, equal to V /2

Thus, finally we get:

L) T

_ V2T [sin(nfT) 2y
—7f[ ]*zﬁq)

Notice that for 8 = T (NRZ code), the signal does not have a discrete spectrum
component at 1/T (I,(f) is zero for the other values of k # 0). Therefore, clock
recovery is not easy with NRZ code.

NOTE.— One could easily generalize the problem to the situation where the symbols
of information to be transmitted are not equiprobable: Pr{a = 0} =1 and:
Pria=1}=1- A

2.3. Problem 18 — Calculation of the autocorrelation function and the
power spectral density by probabilistic approach of the bipolar RZ
code

The bipolar RZ code is a three-level code such as:

£ {bn=0 -a,=0
t b, =1 - a, = +£1 alternately

and:

_(V for 0<t<T/2
x(t)‘{o for T/2<t <T

The binary random variables are assumed to be equiprobable:
Pr{b, =1} = Pr{b, =0} =1/2

We consider the digital transmission signal defined by:

[oe]

s(t) = Z a,x(t —nT —ty)

n=-—oo
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The signal is a second-order stationary random signal assuming that the time of
origin t, is random and uniformly distributed over the time interval [0, T[.

NOTE.— In this problem, we consider that the instant t belongs to the time interval
[to, to + T[. Without any loss of generalities, we will assign the index n to this
interval where the time ¢ is a priori.

Moreover, as for problem 17, one could immediately generalize to the situation
where the information source does not generate equiprobable b symbols.

However, we preferred not to complicate the problem. For those who wish to do
so, after having analyzed the situation in the equiprobable case, it will be easy to
generalize the results to a situation with a non-equiprobable source.

Calculate the autocorrelation function R (7) and the power spectral density I;(f)
of the signal s(t).

x(2)

A | | ! ‘
S R
V ! \ } \
! l i 1
| | | |
| | | |
| | | |

O } ‘ ; | | =t
| | | |
| | | |
| | | |
-V 1 1 l l
77777 R
r T T\ T | T !
[ - - ———

Bipolar RZ signal

Figure 2.13. Example of a bipolar RZ signal waveform. For a color
version of this figure, see www.iste.co.uk/assad/digital2.zip

Solution of problem 18
The signal s(t) can be represented by:

[oe]

s(t) = Z a,x(t —nT —ty)

n=-oo
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where:

V. for tE€E [ty ty+T/2]
t) =
x(®) {0 elsewhere

is a deterministic function, and:
a, ={1,0,—1} with: Pr{a, =0}=Pr{a,=1or a,=-1}=1/2

The autocorrelation Ry () is written:

R,(t) =E[s(t) xs(t—1)] = Z Z sisjPr{s(t) =s; and s(t—1) = sj}
U

VXV XPr{V att and V at t—1}+

VXx—-VXPr{Vattand —V att—1}+
—VXVXPr{—V att and V at t — 7} +
—Vx—-VxPr{—V attand —V at t—1}

Rs(1) =

Using the theorem of compound probabilities, R;(7) is written as:

R () =V2 X Pr{V at t} x Pr{V at t—1/V at t}
—V2xPr{V at t} x Pr{-V at t—1t/V at t}
—V2xPr{-V at t} x Pr{V at t—1/-V at t}
+V2 X Pr{-V at t} x Pr{-V at t—1/-V at t}

Calculation of the simple probabilities Pr{V at t} and Pr{—V at t}:
Pr{V at t} = Pr{t € [ty, t, + T/2],a, = 1}

Since there is independence between t, and the symbols of information, we
have:

Pr{V at t} = Pr{t € [ty to + T/2]} X Pr{a, = 1}
Likewise:
Pr{—V at t} = Pr{t € [to, to + T/2]} X Pr{a, = —1}
and:

Prit € [ty to +T/2]} = TTﬁ = %
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Besides:

Pria, =1 or a, = -1}

= Pr{a, = 1} + Pr{a, = -1} — Pr{a, =1 and a, = —1}
And yet:

Pr{a,=1and a,=-1}=0
as we have two mutually exclusive hypotheses, hence:

Pr{a, =1 or a, = -1} = Pr{a, = 1} + Pr{a, = -1} = 1/2
thus:

Pr{a, =1} =Pr{a, = -1} =1/4
and:

1 1 1
= —_ ==X —-—=—
Pr{V at t} = Pr{-V at t} X158

Let’s now calculate the other probabilities, representing four mutually exclusive
hypotheses. Note that for reasons of symmetry, we have:

Pr{V at t—1t/V at t} = Pr{-V at t—1/-V at t}
and:
Pr{V at t—t/-V at t} = Pr{-V at t—1/V at t}

—Firstcase:0<t<T/2.
1) Let:
q.=Pr{V at t—1t/V at t}

The only possibility is that t and t — 7 belong to the same first half of the time
slice:

g1 = Pr{t —t € [to,to + T/2]/t € [to, to + T/2]}
We have:

and ty <t <ty +T/2 }_)t°+f<t<t°+T/2
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s(1)

/
Vv
0+ T
| -1
0[ G T
0 oty
|
|
7 |
|
|
|
s(t—1) T}
i jFT
14
T
0 ] -1
-V

Figure 2.14. First case: 0 < t < T/2 and a positive impulsion at t. For a
color version of this figure, see www.iste.co.uk/assad/digital2.zip

therefore:

T/2—1 2T
q, = Pr{t e [t0+‘r,t0+T/2]}=/—=1——

T/2 T
2) Let:
q, = Pr{-V at t—1/V at t}
So, we have: q, = 0.
So, we have also:
2t

qs = Pr{-V at t—1t/-V at t}=q1=1—?

and:
qo=Pr{V at t—1/-Vatt}=q,=0

—Second case: T/2 <1 <T.
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s(1)

o+ T

A
V
T
t0+5
0
lo
-V
|
|
|
s(t—1) }
A |
v |
T
21"
I
0
T
-V

Figure 2.15. First case: 0 < T < T /2 and negative impulse att. For a
color version of this figure, see www.iste.co.uk/assad/digital2.zip

s(1)
[

Vv
3T
to+ T t0+7
0 T | > !
fo 5 to+2T
-V
I I
| |
| |
I I
s(t—1) |
A rﬁ‘ng
v R
T
0 L
-V

Figure 2.16. Second case: T/2 <t < T. For a color version
of this figure, see www.iste.co.uk/assad/digital2.zip
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The only possibility is that t and t — t € first halves of adjacent time slices.

Since two successive bits to 1 are issued in alternating polarity, then:

{ql =Pr{V at t—1/V at t} =0
qgs=Pr{-V at t—1/-V at t} =0

qs =Pr{V at t—t/-V at t}

qQu=Prit—t€[ty—T,t,—T+T/2],a,1 =1/t € [to, to +T/2],a, = —1}

Q. =Pr{it—t€[ty—T,t, —T/2]/t € [ty,to + T/2]} X Pr{a,_, = 1/a,
yet:
pr{a,_, =1/a, = -1} = Pr{b,_, = 1/b, = 1}
= Pr{b,_, =1} = Pr{la,_1| =1} = 1/2
(due to the independence between binary information symbols).
And on the other hand:

to—T<t—1<ty—T/2 —>t0—T+T<t<t0—T/2+T}
and: to<t<ty,+T/2

Sty <t<ty,-T/2+T
hence:

qq = Pr{t € [ty, t, —T/2 + 7]} X Pr{a,_, = 1/a, = —1}
_T—T/le_l 2t ]
Tor/2 T2 21T

and, by symmetry, we have:

1127
G, =Pr{-Vat t—7/V at t}=qs =3 ?_1]

—Third case:T <T<T+T/2.

-1}

The only possibility is that t and t — t belong to the first two halves of adjacent

time slices.
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s(1)

V
T
htT fht5
0 7 . t
‘o oty to+2T
-V
|
|
|
|
s(t—1) T
T+5—r
|t
14
T
0 | t
-V

Figure 2.17. Third case:T <t < T + T/2. For a color
version of this figure, see www.iste.co.uk/assad/digital2.zip

Since two successive bits at “1” are issued in alternating polarity, then as
explained previously:

{ql =Pr{V at t—1/V at t} =0
qgs=Pr{-V at t—t/-V at t} =0

qs =Pr{V at t—t/-V at t}
qu=Prit—1€[ty—T,t,—T+T/2],a,_1 =1/t € [to,to +T/2]),a, = -1}
hence:
qu=Pr{it—t€[ty—T,to —T/2]/t € [to,to +T/2]} X Pr{a,_, = 1/a, = -1}
We have:
Pria,_, = 1/ay = =1} = Pr{lay_,| = 1} = 1/2
and, on the other hand:

to—T<t—1<ty—T/2 —>t0—T+T<t<t0—T/2+T}
and to<t<ty+T/2
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hence:
g, =Pr{it e [
3T/2 —T [
T/2 2

and, by symmetry, we have:

g =Pr{-Vat t—t/Vatt}=q,=3 [3__

— Fourth case: 3T/2 <t < 2T.

s(1)

T+, t0+T/2]}><Pr{an ,=1/a, =

A } | 57 |
% ‘ | Ty
\
o HT 3T }
Iofot |
T [ | !
b g+ 42T 1oH3T
v [ [
_ | ‘
[
s(t—1) T
i r+}§ -2T
y | ]
T
0 -t
-V
s(1) \ \ \
I} } I |
v | | ‘
! \
lo‘*‘}T fo‘HzT
H I
T
fo z(,+§ to+3T
-V
[
s(t—1) T
i r+}§ -2T
v | ]
T
0 %
-V

Figure 2.18. Fourth case: 3T /2 < t < 2T. For a color

-1}

version of this figure, see www.iste.co.uk/assad/digital2.zip
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The only possibility is that (t — 7) and t belong to two first time slices separated
by a time slot of intermediate duration T

q,=Pr{V at t—t/V at t}

Moreover, since we have the conditional event: {V at (t — 7)/V att}, we must
also have in the intermediate time slot a negative impulse, and therefore a symbol
ap_1 = _1.

Therefore:

ql = PT‘{t —TE [to - ZT,tO — 2T + T/Z],an_z = 1,an_1

Because of the statistical independence between the pairs of instants considered
and the values of the symbols considered, we have:

q, = Pr{t—t €[ty — 2T, ty — 3T /2]/t €[ty ty +T/2]}
xPria,_, =1,a,_1 =—-1/a, =1}

The first conditional probability on the instants gives:
Prit € [ty — 2T + 1,t, —3T/2 + 1]/t € [to, t, +T/2]}

—3T/2 2
T-37/2 _ 1_3]

=Priteltoto=3T/2+ 7} =—7 T

The second conditional probability on the symbols gives (because of the
independence between the symbols):

Pri{a,_, =1,a,_,=-1/a, =1}

and due to the independence between the symbols b:

Prib,_, = 1/b, = 1} X Pr{b,_, = 1/b, = 1}
1 1 1
= P?"{bn_z = 1} XPT{bn_l = 1} = EXE = Z

hence:

_1 2T 3]
Q1—4 T
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and, by symmetry, we have: q; = g, and therefore:
112t
qs =Pr{-V at t—t/-V at t} = Z[T_ 3]

qe=Pr{V at t—t/-V at t}

As before, the only possibility is that t — ¢ and t each belong to two first time
slices separated by a time slice of intermediate duration T but, unlike in the previous
case, in the intermediate time slice, it must not have transmitted a pulse, therefore a
symbol: a,_; = 0. The conditional probability for the instants remains the same. It
is the same for conditional probabilities on symbols a. As a result, we have:

11271

_2[== 3]
=g\

and therefore:
qd4s = q1 = q3
And by symmetry, we also have g, = q, and therefore:

112t
=Pr{-Vat t—t/V att}==-|—-3
@ =Pr(-V at t—o/V at = 5|7 - 3]

Consequently, we finally get:
Ry(®) =%V2 X[q1+q3—q2—q] =0
Actually, we show that for:
T>kT,with:k>2 - R(t) =0
Indeed, let’s take for example the case: 2T < T < 5T /2.

From the study of the previous case, we see that:

1

g =X Pr{tEfty— 2T + 1ty +T/2]} = = x ST/Z_T—lx[s ZT]
G =qs =320 0 bl % /2 | 2 T
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Likewise:
qGa=q2=q1=q3 2 R(1) =0

So in the general case where: kT <t < (k+ 1/2)T and k > 2, we have:
R.(1) = 0.

Indeed, (for clarity, see the case: 3T /2 < T < 2T), we have:
qu=Pr{V at t—1/V at t}
That is:
qu = Prit—7 € [ty — kT, to — (k = 1/2)T), ay_y = 1/t € [to,t +T/2],a, =1}

Because of the independence between t, and the information symbols a, we
therefore have:

qy =Prit—t €[ty — kT, ty — (k—1/2)T]/t € [to, ty +T/2]}
X Pria,_x =1/a, =1}

or:
41 = q11 X q13
with:
Gi1 = Pri{t —t € [ty — kT, to — (k — 1/2)T1/t € [to,to +T/2]}
and:

013 = Pria,_, =1/a, =1}

This last conditional probability implies implicitly the fact that between n — k
and n, we have an odd number of bits b,,_,r at 1 (0 < k' < k).

Thus:

q13 = Pr{a,_, = 1, odd number of bits b,_,ratl /a, = 1}
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Because of the independence between the symbols, then one obtains
successively:

q13 =Priay =1/a, =1}
x Pr{ odd number of bits b,,_,r at1 /a, = 1}

X

1
4

N =
N| =

g3 = Pr{a,_; = 1} x Pr{ odd number of bits b,,_,r at 1} =

because it is obvious that on a given bit length k, the probability of having an even
number of bits at 1 is identical to having an odd number. Indeed, for each given
configuration of k —1 bits, there are two configurations of the additional bit
(whatever its position in the k bits): one with 0, the other with 1.

So we have: q; = i X qq1-
By symmetry, we also have:
qs =Pr{-V at t—1/-V at t} =q,
In addition, we also have:
q,=Pr{V at t—t/-V at t}
Le.: Gy = q11 X Qg2
with:
Qa2 = Pr{ay_ =1/ a, = -1}

For the same reasons as previously with the calculation of g3, it is easy to show
that:

Qa2 = Pr{ a,_; = 1,even number of bits b,_, at1 /a, = —1}

and with the independence of the information symbols:

X

N =
ENJ

N =

qa4z = Pr{a,_, = 1} x Pr{ even number of bits b,_, at 1} =

By symmetry, we also have:

q; =Pr{-V at t—t/V at t} =q,
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because:
1
Gaa = Prian = -1/ ay =1} = qq, = 2
Thus, we obtain:
1,
Rs(7) =§V X[q1+q3—q—q] =0

In summary:

1
Ry(1) = ZVZ X [q1 — q4]

for:
V? 27
OSTST/Z —)RS(T)=T[1—?
-V22t
T/2<t<T —>Rs(r)=T[?—1
& 2T
T <t<3T/2 —>RS(T)=T[3—?

3T/2<1<2T >R, (1)=0

The autocorrelation function Ry () of the bipolar RZ code represented in the
Figure 2.19a shows that it can be decomposed into the sum of two functions R, (7)

and R, (7) represented in the Figure 2.19b.
The power spectral density I;(f) of the bipolar code is therefore given by:

L(f) = L() + ()

with:

— I (f), power spectral density of the signal whose autocorrelation function is

R, (t) of triangular shape. It is given by:

. 2
() = V; X T x [—Smgf)]
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—L,(f), power spectral density of the signal whose autocorrelation function is
R, (7) of trapezoidal shape. And if g(7) has a trapezoidal form (see Figure 2.20):

Ry(7)
A
V4
\ | \ | | T
a t t 1 T
) 27 BTN T -r 0 T T 37 2T
2 2 ___/ V2/8 2 2
R(T) = R (1) + R,y(7)
A
V2
R](T)
Triangle
b : ‘ T
) 2T 3T 2T
2
Ry(7)
Trapeze

Figure 2.19. (a) Autocorrelation function of the bipolar RZ code and
(b) its decomposition into the sum of two functions. For a color

version of this figure, see www.iste.co.uk/assad/digital2.zip

g(7)
A
A
| 1
N T |
0 91 9
B} 2

Figure 2.20. Trapezoidal function. For a color version
of this figure, see www.iste.co.uk/assad/digital2.zip
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It is obtained by convolution between two even rectangular functions that do not
have the same support in general. Hence:

84 . [nf(@ + 91)] ) [T[f(@ - 91)]
sin X sin [————=

¢ = Garre—ay 2 2

Let’s apply this to R, (1), with:
A=—V2/4, 0 = 3T, 0, =T

Thus, we have successively:

_p2
L(f) = E(Bz[nj‘:)z/;’l]" X sin[2mfT] X sin[rnfT]
—V?
L(f) = T(Z—nf)z X 2sin[mfT] cos[nfT] X sin[rfT]
.
() = ST X [sinGef T X s coslnf T]
L(f) = Y rx [sin(fT)]? x —2 {1 - 2[sin(zf T/2)]2}]
VST g (TfT)?
2 ) -2 [sin(mf T/2)]?
L(f) = TT X [sin(rfT)]* x [(T[fT)Z + (nfT/2)?
Hence:
L(f) = () + I(f)

s [sinGef T/ 2 2
() = 7T [sin(mfT)] {[ (nfT/2) (nfT)? * (ﬂfT)Z}

Finally, it gives:

sm(nf T/Z)

; 2
T/ FT/2) X [sin(zfT)]

Fs(f)——
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BN

2
T 2T T 2T 27

1 2
T 2T T

Figure 2.21. Power spectral density of the bipolar RZ code. For a
color version of this figure, see www.iste.co.uk/assad/digital2.zip

Properties of I, (f):
— 1o continuous component;

—no energy at frequency f = 1/T, however a double alternation rectification of
the bipolar RZ code gives a RZ code which has a discrete component at frequency
f = 1/T in its power spectral density and therefore, a rather easy clock recovery;

—more than 90% of the energy is located in the physical frequency band
[0,1/T].
2.4. Problem 19 — Transmission using a partial response linear coding

We consider the transmission system using the partial response linear coding of
Figure 2.22.

b(r) b'(1) a(r) c(t) 1 s.(n)
Precoder _ | Transcoder ~ Cod - Shaping
— Preco YT oder filter |

Figure 2.22. Transmission system with partial response linear encoder
b(t) = Z b,8(t—nT,) b, €{0,1}
n

b'(E) = Z b.8(t—nT,) bl € {0,1}
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a(t) = Z a,6(t—nTy) a,=2b,—1 a,€{-11}

n

c(t) = Z cp,6(t —nTp) ¢, positive, negative or null integer

n

1) Explain in no more than two sentences the interest of the use of a partial
response linear encoder for the baseband transmission of independent binary
symbols b,,.

2) Why is it advantageous to use a precoder associated with the partial response
linear coder at the transmitter side? Is this precoder necessary for reception? Why?

A partial response linear encoder of the form 1 — D? where D is the delay
operator of T, (time slice dedicated to the transmission of symbol c,) is used.

3) Give the construction rule of ¢,, from a,,. Deduce the associated precoder: you
will give the construction rule of by, as a function of b,,.

We consider the following 21-bit sequence {b,} (time running from left to
right):

000 010 110 100 011 101 000

4) Determine:

— the associated time sequence {b;,} at the output of the pre-coder (the latter is
considered initialized to zero);

— the time sequence {a,,} at the output of the transcoder;
— the time sequence {c,,} at the output of the encoder.

5) Give the decoding relationship providing the b,, as a function of ¢,.
Let x(t) be the following deterministic pulse (return to zero code, RZ):

V/2

t 7
T,/2 T,

Figure 2.23. Basic pulse shape (type RZ)



126  Digital Communications 2

And the signal transmitted (without pre-filtering) is s, (t).

6) How is it related to the sequence {c, }? Represent on a time diagram the signal
s, (t) transmitted, for the sequence of binary information {b,,} in question 4. In this
example, does the signal transmitted have a continuous component? On statistical
average, does this signal have a continuous component?

7) If the b, are equiprobable and independent, determine the probabilities of
achievement of each element of the alphabet of symbol c,,.

8) Determine the power spectral density function I, (f).

9) We now consider the following 21-bit time sequence {b,} (time running from
left to right):

100 001 100 000 110 000 010

Use the HDB-3 coding scheme (high density bipolar pulse code of order 3) to
represent the signal sypp_3(t) carrying the information and represent it on a time
diagram.

Solution of problem 19

1) It makes a spectrum shaping. This is performed by the introduction of a
certain correlation. The effect is a reduction of the frequency bandwidth of the signal
transmitted.

2) A precoder is associated with the encoder to ensure that the decoding of the
symbols b,, is instantaneous. The precoder is not necessary in reception because the
decoding is instantaneous.

3) Since we have:

H(z)=%=1—z‘2—>€(z)=A(z)—A(z)><z‘2—>(:n=an—an_2
then:
B@_ 1 1 , .
P(Z)_B(z)_H(z)_l—z‘z B'(z) =B(z)+B'(z) Xz
- by = b,®b,,_,

4) Time sequence.
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{b,} 0/0(0{0O|L|O|1|1|{0O|1]|0O|0|O|1|1|1|0O|L|O|O]|O
v} 0[0|0[O|1]{O0fO|1[O|O[O|O[O|1|L|O|L|1|1]1]|1
00
{a,} D N I B e I B e I e e e R RN
FEEREIRER 1|1 Lf1j1]1]1 1
{c,} 0/0/0[{0[2|0|-|2[{0]|-]0]|0]|0|2|2]|-]0|2|0|0]0
2 2 2
v
() 0 i fH I
v |

Table 2.5. Chronogram of the time sequence and of the transmitted signal.
For a color version of this table, see www.iste.co.uk/assad/digital2.zip

5) From the previous relation, we have:

Cn = Qn— Ay = [2by — 1 = (2bp_, — 1)] = 2[b;, — by _,] = 2b,

~ 1 ~ 1
—>bn=56n mod 2 _’bn:E|én| mod 2

6) We have:

5o(6) = ) cyx(t = nTy)

n

The chronogram of the signal s,(t) is shown in Table 2.5 above (answer to
question 4).

In this sequence, we have a continuous component, since there are five +V
pulses and three —V pulses. This continuous component has the value:

1 4

X =—
2V 21x2 21

Value 2 in the denominator comes from the fact that the signal x(t) is of type
RZ.

On a statistical average: E{s.(t)} = 0. (i.e. no continuous component)

7) Since {b,,} are equiprobable, then:

Pr{c,=0}=1/2, Pr{c,=2}=Pr{c,=-2}=1/4
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8) The power spectral density I, (f) is given by:

L,(f) = T—l,, X JH(PI? X X ()2

H(z) =1—2"2 - H(f) = H(z = exp (j2nf T,) = 1 — exp(—j4nfT,)
H(f) = 1 — [cos(4nfT,) — j sin(4nfT,)]

hence:
IH(OI? = [1 - cos(4nfT,)]? + [sin(4nfT,)]

IH()I? = 1+ [cos(4nfTy)]* — 2 cos(4nfT,) + [sin(4mfT,)]*
= 2[1 — cos(4mfT,)]

since:
1 — cos(2x) = 2[sin (x)]?
= |H(P)|? = 2 x 2[sin(QufT)]? = 4[sin(2mfT})]?
Furthermore:

_V T, sin@nfTy,/4) VT, sin(nfT,/2)
XD =X X e = 2 X 2T, 2

hence:

VT, sin(nfT, /2)]2

I-'?e(f) =Tib)<4-[sil'l(27'[fTb)]2 X Tx wfTy,/2

finally, we have:

V2T,
4

sin(nfT,/2)]?
T[fTb/Z

L, (f) = X [sin(2mfT,)]? % [

This code is well suited to long distance cable transmissions because:

— it has no continuous component, and no power spectral density at very low
frequencies;

— from a practical point of view, most of its power is distributed in the frequency
band [0, 1/2T].
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9) High density pulse code: HDB-3 (s, 5.5 (t) signal).

{b,} 1/0{0{0(0|1{1]0|0]0O|O|O|1|1]|0O]O0O|0O|0O|0O]1]|O
\'% B \% B \%
+ - - + +

0 1] 1] L]
S IRR RN NR AR

With V: polarity alternation violation bit (bit of violation); B: stuffing bit.

Table 2.6. Generation of the HDB-3 signal and chronogram. For a
color version of this table, see www.iste.co.uk/assad/digital2.zip

2.5. Problem 20 - Signal information coding and digital transmissions
with partial response linear encoder

We consider the problem of long-distance transmission (d > 1 Km) over an
electrical cable of a source S, of equiprobable binary symbol information, and
delivering a binary symbol every T, seconds. To illustrate this problem, it will be
considered that a limited (20-element) length realization of the binary symbol
sequence produced by S is:

{b,} =--101 000 110 000 001 001 O1--

The amplitude of the modulated pulses is equal to V except for the partial
response coding where the amplitude will be V /2.

NOTE.— For a better comparison, time representations of transmitted signals s;(t),
i ={1,--+,4} will be drawn on the same sheet, as well as the sequences {b;,}, {a,}
and {c,}.

In order to construct the signal s, (t) carrying the information, a binary return to
zero code (RZ code) is used.

1) Represent the signal s;(t) carrying the sequence {b,}. Is this RZ code of
interest for long distance digital transmissions? Justify precisely the reasons for this
(you can rely on the properties of the power spectral density I3 (f) of s;(t) to
argue).
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A bipolar code of the RZ type is now used to construct the signal s,(t) carrying
the information to be transmitted.

2) Represent the signal s,(t) encoding the sequence {b,}. Is this code more
interesting than the first one? What are the qualities and defects of long-range
transmissions (argue based on the properties of power spectral density I, (f)).

We want to use a code with a high density of pulses of type HDB-2.

3) Represent the signal s;(t) carrying the sequence {b,} of information
transmitted. What are the characteristics of such a code compared to the RZ bipolar
code? What do you conclude about its suitability for long-range transmissions over
an electric cable of binary information?

We want to further reduce the bandwidth of the transmitted signal. For this, we
use a partial response linear coding as shown in the diagram of Figure 2.24, with:

b(t) = Z b,8(t —nT,) by €{0,1}
b'(6) = 2 bi8(t—nT,) bl e{0,1)

a(t) = Z a,6(t—nTy,) a,=2b,—1 a,€{-1,1}

n

c(t) = Z cn6(t —nTp) ¢, positive, negative or null integer

n

b(r) b'(1) T P a(r) c(t) Shant s4(1)
ranscoder aping
— Precoder o1 Coder ™ fler [

Figure 2.24. Block diagram of the partial response linear coder

The structure of the partial response coder is given in Figure 2.25.
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S T S Y S R

Figure 2.25. Structure of the partial response linear coder
(D: D flip-flop synchronized on the binary symbol clock)

4) Describe the relationship between the c¢,, output of the encoder and its input
a,. Why does the encoder have to be preceded by a precoder?

5) Describe the relationship connecting the output of the precoder by, to its input
b, (the precoder used is obviously that associated with the partial response linear
coder).

6) For the sequence {b, }, give successively the sequences obtained:
— at the output of the precoder;
— at the output of the transcoder;

— at the output of the linear partial response coder (it will be considered that
the {b;,} are zero for the two instants preceding the beginning of the sequence {b,}).

7) Represent the signal s, (t) coding the sequence {b,,} obtained at the output of
the partial response coder for a RZ shaping signal x(t) of amplitude VV /2.

8) Determine the power spectral density I,(f) of this partial response linear
code. Is it adequate for long distance transmission?

9) For this partial response linear code, how does the decoding produce b,, from
€, ? Justify your answer.

10) What happens to the reconstructed binary information b,, if an error (due to
transmission) occurs for one of the ¢,, symbols reconstructed on reception?

11) Considering that the symbols b, are independent (besides being
equiprobable), determine the probabilities of realization of each of the possible
values of the symbols c,,.

Solution of problem 20

Chronograms of the different signals:
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{b,} 1{0{1(0|0|0f1|1]0{0[0O|0O|0O|O|1[0O|0O]|1]0]1

[
]

|

]
1
’_I

s1(1) 0

<
—

Sz(t) 0

o <
—

53(t)

! tjojolojofo|t|ft|t{t|t|t|f1|1][o|1]0|0|0]1
00
{a,} V=== |- - |- |1]-|-]-]|1
11
L)} 2{0f-|ojojo|2|2]{0f0|0]0f0|0[-|0]0|-|0]2

ol [
v i

Table 2.7. Temporal representations of the different signals. For a
color version of this table, see www.iste.co.uk/assad/digital2.zip

54(t)

1) Look at chronograms of the different signals.

The power spectral density I7 (f) of the RZ code is:

RO = V2T, [sin(nfTb/Z) 2y

16 | =fT,/2 ] TR
1?2« 1 Q2n+1)
+WHZOO [(2n+ 1)2]5<f_ T, )

This code is not interesting for transmission over long distance cable because:

— it has a continuous component equal to VV /4 and a high power spectral density
at low frequencies;
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— the spectral occupancy of the code is practically 2/T),, twice that of the NRZ
code.

However, the presence of a discrete component at the frequency 1/T, in the
power spectral density facilitates the recovery of the clock rate in reception.

2) See the graph of the temporal representations of the different signals in
Table 2.7. The power spectral density I (f) of the bipolar code RZ is:

V2 [sin(nf T,/2)

2
B =5 T X |~ 7 ] X [sin(rfT;)]?

Benefits of this code:

— it has no continuous component, and no power spectral density at very low
frequencies;

— its spectral occupancy is only 1/Ty,.

Disadvantage of this code: it does not produce pulses to encode a sequence of
consecutive 0, therefore the receiver may lose synchronization.

3) See the graph of the temporal representations of the different signals in
Table 2.7. The HDB code has the same advantages as the bipolar code RZ, but in
addition we always have pulses even if a long sequence of 0 is presented. So, it has a
good match for the transmission of binary information over long distance cable.

4) We have:

H(2) =%= 1-2%25C2)=A4@)—A@)xz72 >, =a, — ap_;

The precoding makes it possible to perform in reception (after transmission) an
instantaneous decoding.
5) We have:

P(2) = 5@ ! —12‘2 > B'(z)=B(z)+B'(z) xz72

= by = by ®by_,

6) and 7) See the graph of the temporal representations of the different signals in
Table 2.7.
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8) The power spectral density I, (f) is:
1 2 2
L) = - x IHOP x 1X ()]
b

H(z) =1—-2z"2 - H(f) = H(z = exp (j2nfT,) = 1 — exp(—j4nfT})
H(f) =1 — [cos(4nfT,) — j sin(4mfTp)]
[H(f)I? = [1 — cos(4nfT,)]? + [sin(4mfT,)]?
IH(F)I2 = 1 + [cos(4nfT})]? — 2 cos(4nfT,) + [sin(4nfT,)]?
= 2[1 — cos(4fT,)]
Since:
1 — cos(2x) = 2[sin (x)]?

> |H(f)|? = 2 x 2[sin(2rf T,)]? = 4[sin(2rfT,)]?

Furthermore:
V T, sin(2nfT,/4) VT, sin(nfT,/2
X)) = Lx Ty SMCUT/4) VT, | sin(fT;/2)
2 2 2nfTy/4 4 fT,/2
hence:

1 VT, sin(efT, /2)T?
L) = 7 x AlsinCrf T,) x [Tb y %]

V2T, sin(nfT,/2)]
I = X [sin(2QrfTy)]? X |[—————=
W) = X [sin@rfTy)] [ P2
This code is well suited for long distance cable transmission because:

— it has no continuous component, and no power spectral density at very low

frequencies;
— its spectral occupancy is only 1/2T;,.

9) We have:
Cn = Qnp — Ay = [2by — 1 — (2by_, — 1)] = 2[by, — by_,] = 2b,
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- -1
—>bn=56n mod 2 —>bn=zlén| mod 2

10) If error on ¢, we have:

o — {0 :even error number
=

¢, =c, + 2e
noomn n 1 : odd error number

~ 1
b, =§|6n| +e, mod?2

Thus, decision error on b,, if e, is odd (e, = 1) and no decision error on b, if e,
is even (e, = 0).

11) We have:

Pr{b, =0} =Pr{b, =1} =1/2
Independence:

Pr{b,b,,} = Pr{b,} x Pr{b,,} m=+n

For the reasoning that follows, see the graph of the temporal representations of
the different signals:

Pr{c, = 0} = Pr{lbj — by_5] = 0} = Pr{b} = b} ;) = Prib, = 0} = 1/2

Pr{c, = 2} = Pr{b,, = 1,b,_, = 0} = Pr{b, = 1,b;,_, = 0}
=Pri{b, =1} x Pr{b, , =0} =1/2%x1/2 = 1/4

Pric,=-2}=1-Pr{c, =0} —Pr{c, =2} =1/4

2.6. Problem 21 — Baseband digital transmission system (1)

A baseband digital transmission system of binary information is considered. It
transmits coded digital images (with information compression) on a reduced capacity
transmission channel (cable). The characteristics of the system in Figure 2.26 will be
studied.
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Transmitter i Transmission channel
{b,} S(f) | 5,(1)
Binary Transcoding | | Linear filter N
information |—»| binary to M-ary and M-ary to signal : >
source {a,} {a,} | h(®); H() +
Thf T f ! Noise = by(?)
| o @ Receiver w
s, (¢ s.(t s.(2 a ~
: - k {a,} (b}
| Equalization
I » Sampling | Decision —»| Decoding —
s.(0; G.(f)

Clock J d

recovery

Figure 2.26. Block diagram of the baseband transmission system

The random sequence {b,} is of a given probability law and b,, are assumed to
be independent. The transcoding of binary information sequence {b,} into symbol
sequence {a,} corresponds to the following assignment:

if b=1thena=1; if b=0 then a=-1

with the following probability law:

Pr{a, =1} =p, = Pr{b, =1} =4/5
pPr{a, =-1}=p_, = Pr{b, =0} =1/5
The symbols a,, of information to be transmitted are supplied to the transmitter
at a rate of 1/T = 13.5 MHz which corresponds to the sampling frequency of the
luminance signal in television (standard CCIR 4: 2: 2).

The transmitted signal s, (t) is given by:

S.(t) = Z apx(t —nT)

n
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where x(t) is a rectangular signal of amplitude V and duration:
0 =T (NRZ: non return to zero), or 6 = T /2 (RZ: return to zero)

The transmission channel is modeled by a linear filter whose impulse response is
denoted by h(t) (the propagation delay is not taken into account) and an additive
degradation noise b, (t) at the output of the channel. The noise by (t) is assumed to
be a second-order stationary Gaussian random process, independent of the useful
signal. It has a zero mean value, a power ofo, and its power spectral density I}, (f)
is modeled by a rectangular function of support Af;, (on positive frequency axis) as
shown on Figure 2.27.

A Tpo()

Ty

-Afy 0 Afy

Figure 2.27. Power spectral density I}, (f) of noise by(t)

The equalization of the channel is performed by a linear filtering of the signal
received s,.(t): impulse response filter g.(t), frequency gain G.(f) such that its
support is fully included in the frequency band of the noise b, (t).

The clock regeneration system is assumed to be flawless, and thus provides the
decision system with a sequence of decision instants {t,} with t, =ty + kT

(thereafter, t, is assumed to be zero).

The decision system uses a given decision threshold y, and the decision rule is
as follows:

dlsc(ti)] = @, = 1 if sc(ty) = po

dsc(t)] = @ = =1 if sc(&) < po
Decoding {@,} — {b,} is obvious.
We denote successively:

y() =x(@®®h(t) and p(t) =y(t)®g.(t)

where ® is the convolution product.
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The frequency gain of the equalizer G.(f) is assumed to be equal to 1 at zero
frequency: G.(0) = 1.

1) Determine the noise characteristics b, (t) at the output of the equalization: the
power spectral density I}, (f) and the power aﬁl of the noise b, (t), as a function of
that a,fo of by(t), its bandwidth Af, and the energy bandwidth Af. of the
equalization filter.

From now on, the equalization filter is assumed such that the amplitude spectrum
-(1+a) (1+a) d
27 o2 P

P(f) of p(t) is constant, equal to VT on the frequency domain [

equal to zero otherwise.

2) Give the expression of the signal s.(t,) (made of the useful signal +
intersymbol interference + noise) at the instants of the form: t;, = kT.

Subsequently, for sake of simplification, it will be considered that only the two
symbols adjacent to a given symbol a; can interfere with it (namely symbols a;_4
and ay,,), and that a = 1/6.

3) Calculate the probability p,,, and the intersymbol interference I, (t)) for each
possible message m; interfering with a;,. (For the sake of simplification, take w = 3
in the rest of this problem).

Assuming that at the output of the equalizer the signal-to-noise ratio obtained is:

s p(O)]
— =20xIo =10.88dB
[b]c,dB 810 [ Op,

4) Give the expressions of the conditional probabilities of error:
" S -1 -1
Priay = aj/ay = aym}; i #j; aj=[1}; al-={ 1}
5) For each possible message m;, calculate these probabilities.
6) Finally, deduce the average probability of error P, ;.

NOTE.— For a Gaussian random variable X centered (m = 0) and reduced (o = 1),
we will assume that we have approximately:

Pr{|X| > 2.3} = 2.14 x 1072 ; Pr{|X| > 2.7} = 7 x 1073
Pr{|X] > 3.3} = 9.6 x 10~*; Pr{|X| > 3.7} = 2.2 x 10~*

Pr{|X| > 43} =3 %1075 ; Pr{|X| > 4.7} =0



Baseband Digital Transmission: Problems 16 to 26 139

7) Calculate the average probability of error P, o that we would have had (with
the same ratio [%] at the output of the equalizer) if the intersymbol interference had
[

been canceled.

Solution of problem 21

1) The power spectral density is:
Iy, (f) = L, (f) X 1Gc(HI? = I X 1G.(NI?

The noise power by (t) is J,fo given by:

2
O
ot = [npar=r [ ar=2raf -1 =0
241,
® —Afp
The power of the noise by (t) is g, given by:
° Afe
= [ B =5 [ 160 = 02 011GOF = 2nar
- —Afc
Afe
05, = o, <

2) The signal transmitted s, (t) is:

(oo}

s.(t) = Z a,x(t —nT)

n=-oo

The signal received s,.(t) is:

[ee)

5:@® = D @yt —nT)+bo(®)

n=-—oo
with:

y(t) = x(t)®h(t)
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The signal y(t) is the response of the channel to the basic pulse (rectangular
shape) x(t), of duration 8, in the noiseless case.
The equalized signal (corrected) s, (t) is:

oo}

(0= D aup(t—nT)+by(0)

with:
p() = y()®g.(t) = x(t)®h(t)®g.(t)

The noise b, (t) is the result of noise by(t) filtering by the equalizer whose
impulse response is g.(t).

At sampling times t; = kT, the signal s, (t) is written:

5(kD) = ap@ + ) anpllk = mT] +by(kT)

n=—oco,n#k

The term a;p(0) represents the useful response of the system (channel +
equalization) to the transmission of the symbol a; associated with the time interval
KkT.

The term I, (kT) = X3 _ oo nxk @n P[(k —n)T] is the intersymbol interference.
It is a disturbing signal depending on all of the symbols transmitted {a,,}, except for
the symbol a; which is related to the time interval considered.

The term b, (kT) is the noise at the time of decision.

3) The messages of only the form m; = [a;_;, a1 | interferes with symbol a,
thus:

k+1

I (6T) = ) anpllk =TT = a4 yp(T) + @y ap(=T)

n=k-1n#k

I, (kT) depends on p[(k —n)T], here on p(£T). We must first calculate p(t)
from P(f).
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P()

A
VT

>/

-1 1
71+ o) 0 71+ )
Figure 2.28. Amplitude spectrum P(f) of p(t)

By definition, we have: p(t) = F~{P(f)}, hence:

sin [27rt X % 1+ 0()]

p(t)=VT><l(1+a)>< 7
T 21t X 5 (1 + @)
sin[r(1 + a) t/T]
7(1+a)t/T

=V({A+a) X

This gives:

p(0)=V(1+a)=V7/6

and:
7V sin[r +m/6] -V -V =V
+T)=—X———F+—— = —5ij 6]=—=— (withm =3
p(ET) =~ 71/6 o sinln/6] = 5= —= (withw = 3)
-V
my = [ag_q, Q44 ] Ly, (KT) = = [@g-1 + Qg1 Pm

111

1 ! v/3 575 25

1 4_4

! ! 0 575 25

4 1_4

! 1 0 575 25

4 4_16

! ! —v/3 575 25

Table 2.8. Intersymbol interference: amplitudes and probabilities
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4) The two expressions of conditional probabilities of error are:

[ee)

. 1 [—1 b2
P, =Pr{iay=1/a,=-1,m} = > exp 5oz db,
TN T 4D (O I k) o
Ho=[P(0) +1m, (kT)]
1 —1 b?
P, =Pr{a,=-1/a, =1,m;} = J exp |—=—-|db
e {ay k 1 O—blm J p B 0131_ 1

5) To calculate these conditional probabilities for each message m;, it is
necessary to express the integration domains as a function of g;, . As:

sT p(0)
[E]C,dB = 20 X logy, [ >

-V =30, and p(0)=7V/6=3.50,

7V /6
= 20 X logy,
O-bl

] =10.88dB

Furthermore:

P-1
Ho = 2p(0) [ ] —020,,

hence the following Table 2.9.

1o +p(0) po —p(0)
my = [ag_q, Q44 ] — Iy, (KT) P, — Iy, (KT) Pe,
= 1.07
-1 -1 2.3 O'bl X 10—2 —4.7 Ubl =(
=48 =11
11 3.3 gy, % 104 —3.7 0p, x 107*
=48 =11
1 -1 3.3 0p, % 104 —3.7 0y, x 107
=15 = 3.5
11 43 0y, % 10-5 —2.7 0p, x 1073

Table 2.9. Conditional probabilities of error with intersymbol interference
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6) The average probability of error P, ; is given by:

22 22
Per =p_1 zpmlxpe_l +Pp1 melxpel
=1 =1

1 i 4 L, . 16 .

Pe_1=§[£x1.07x10 T2X oo X 4B X107 + =X 15X 10
P 02X X 11X 107 + 22 x 3.5 x 10-3] = 1.938 x 10-
*3\25 25 25 '

7) As there is no intersymbol interference, this means that the first Nyquist
frequency criterion is verified (@ = 0). So, from the previous results we get:

sin[mt/T] _

pt) =V T

p(0) =V; p(&IT)=0; with [ #0

At sampling times t;, = kT, the equalized signal (corrected) s, (t) is now:
s¢(kT) = a,p(0) + by (kT)

The two simplified expressions of conditional probabilities of error are now:

b
P, =Pr{iay=1/a,=-1}= exp[ > ] db,
w/ o
" ko2 b1
#o—p(0)

R 1 -1 bf
P, =Pr{ay = -1/a, =1} = - f exp | — = db,
by kR Op,

As we have the same signal-to-noise ratio as before, it means that:
p(0) = 3.5 0y,

And we can keep (as the approximation remains rather good) the value of the
optimal threshold y, as a function of the noise power alfl:

p- 1]
-0.2
Ho = 2p(0) [ Jbl
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Thus, in this case, the previous Table 2.9 is replaced by Table 2.10:

Bo +p(0) P, ko —p(0) P,
330y, =48x107* =370, | =11x107*

Table 2.10. Conditional probabilities of error without intersymbol interference

Finally, we get:

Pe,l =P XPe_1 + D1 XPel

1 4
Peo =2 [48x 107+ Z[11x 107" = 9.6 X 1075 + 8.8 x 1075
=184x107*

Thus, in this case (with the same signal-to-noise ratio), the probability of

transmission error without intersymbol interference is approximately 10 times lower
than it was in the presence of intersymbol interference.

2.7

. Problem 22 — Baseband digital transmission (2)

The following baseband digital transmission system (Figure 2.29) is considered

for the transmission of binary information.
Transmitter i Transmission channel
b} S0 1 50
- | "
Binary bi . MTranSC(;d;[lg to sienal : Linear filter +
information [ DInary to M-ary and M-ary to signal i .
source {a,} {a,} || 0 HY) +
T,,f T f ! Noise = by(7)
| Receiver R .
s s.(%) s.(t) {a,} {b}
| e
| Equalization . o .
T »| Sampling —{ Decision — Decoding —
5.(0; G(f)

Clock J )

recovery

Figure 2.29. Block diagram of the baseband digital transmission system
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The source of information produces a random sequence {b,} of equiprobable
and independent binary variables. The coding of binary information {b,} into
information symbol {a,,} corresponds to the following assignment:

if b=1thena=1;if b=0 then a=-1

The symbols a,, of information to be transmitted are supplied to the transmitter
at a rate of 1/T. The coder information to signal generates a transmitted signal s, (t)
given by:

s.(t) = Z a,x(t —nT)

n

where x(t) is a rectangular signal of amplitude V and duration T /2.

The transmission channel is modeled by a linear filter whose impulse response is
denoted by h(t) (the propagation delay here is not taken into account) and an
additive degradation noise by (t) at the transmission channel output.

The noise by (t) is modeled by the low pass filtering of a white noise, of constant
power spectral density I. This low pass filter is considered as a first-order low pass
R-C filter whose frequency gain is denoted by L(f). The noise b,(t) is assumed to
be a second-order stationary Gaussian random process with zero mean, and
independent of the useful signal. We called oj, its average power and I}, (f) its
power spectral density.

A receiver makes it possible to retrieve the binary information from the signal
received at the output of the channel according to the block diagram from Figure 2.29.
The channel equalization is produced by a linear filter of impulse response g.(t)
and complex gain G.(f). The clock recovery, supposed to be faultless, produces a
sequence of decision instants {t,} of the form t, =ty + kT (thereafter, t, is
assumed to be zero).

The decision system uses a given decision threshold p, and the decision rule is
as follows:

dlsc(t)] = @, =1 if s.(tx) = 1o
dlsc(t)] = @, = =1 if s.(tx) < 1o

Decoding {d;} — {b;} is obvious.
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We denote successively (® : convolution product):
y() = x()®h(t) and p(t) = y(t)®g.(t)

1) Determine the energy bandwidth Af;, of the noise by(t). This will allow us to
consider in the following problem that its spectrum [}, (f) is constant on the

frequency band [—Af},, Af}, 1, and zero otherwise (see Figure 2.30).

A

Iy

-Af), 0 Af,,

Figure 2.30. Equivalent power spectral density of noise by(t)

It is assumed that the equalization is of gain G.(f) on a support fully included in
the frequency band [—Af;, Af, ] and G.(0) = 1. We denoted Af; as its equivalent
energy bandwidth.

2) Determine the noise characteristics b, (t) at the output of the equalization: the
power spectral density I}, (f) and the power a,fl of the noise b, (t), as a function of
that aﬁo of by (t), its equivalent energy bandwidth Af; and the energy bandwidth Af,
of the equalization filter.

The equalization filter is set so that the amplitude spectrum P(f) of p(t) is
constant, equal to VT /a in the frequency band [%, % ], and equal to zero otherwise
(see Figure 2.31).

P(f)
AO‘

VT/o

>
-o/2T 0 o/2T

Figure 2.31. Amplitude spectrum P(f) of p(t)
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3) Give the expression of the signal s.(t;) (made of the useful signal +
intersymbol interference + noise) at the instants of the form: t;, = kT.

Subsequently, for sake of simplification, it will be considered that only the two
symbols adjacent to a given symbol a; can interfere with it (namely symbols a;_,
and ay4q)-

4) Which minimum value @, of the parameter a ensures no intersymbol
interference?

We then adjust the equalizer with the value @,. Under these conditions, the
signal-to-noise ratio obtained at the output of the equalizer is equal to 6 dB with:
s p(O)]
- =20xlo
[b]c,dB 810 [ Op,

5) Calculate the conditional probabilities of error:
~ L -1 -1
Pri{a, = aj/a; = a;}; i #]; af={1}; ai={1}

knowing that we have:

20 1 —x2

x)dx = 0.95 if X) =———eXxp|—

!M) ) = ——ewp|
—40

Solution of problem 22

1) The calculation of energy bandwidth Af; of noise by(t) is made from the
expression of the power 030:

[oe]

o = [ B

On one hand:

o Afp

o= [ hpar =1 [ ar=2n 4,

—% —Afp
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On the other hand, we have to calculate Ufo from the expression of I, (f), which
is the result of filtering I, by the first-order RC low pass filter:

Iy, (f) = Iy X IL(HI?

Calculation of the transfer function of a 1st order low pass R-C filter:

1—‘0 rbn(f)
— L) —

P R

oL
E(P)T C TS(P)
Figure 2.32. First-order R-C low pass filter

1
Z,(P) =R, Z,(P)= P and P: Laplace variable

P
E(P) =R xI(P) + S(P)

Sy = 1(mcp } > rep + 115 = £ ()

sp) 1 1

LP= = =
L) = By T T¥RCP 1+ P

For:

E(P)=1 _ N _
P =j2ﬂf} ~ L= 1+ j2nft LI = 1+ 4m2f2r2

and:

_ ___
(D) = 1o X LA = T

then:

[oe] [ee)

1
oh, = fﬂo(f)df=15 fHTzfzr?df

—00 —00
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Recall:

[z

I7 r 1 I
2 _ 0 _ 0 - [e%)
> 0hy = 1 f i e df = ey x 2wt X [tan™1(2rtf)] %%
—® A2

I I
- - (D5

Finally, we get:

1 1

Iy
O-I?OZZ:Z[E)Afb_)Afb:E:m

2) Power spectral density I}, (f) and power Ugl of noise by (t).

We have:

Iy, (f) = L, () X 1G(I?

and:
oo o) Afb
o= [ nar = [ B xienrar =1 [ 16.(rar
—o0 —0o0 —Afp
Since the support of G.(f) is included in [—Af;, Af;], then:
Afe Afe
o =Ty [ 16OFdf =Ty [ l6.)PaF =1, x 241,
_Afc _Afc
hence:
Af,
oy, = o X A_f:

3) The equalized signal (corrected) s, (t) is:

[ee)

5= ) anp(t=nT) +bi(6)

n=-oo
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with:
p(t) = y()®g.(t) = x(t)®h(t)®g.(t)

The noise b, (t) is the result of filtering by(t) by the equalizer filter whose
impulse response is g.(t).

At the sampling times t;, = kT, the signal s.(t) is written:

5e(kT) = ap©@+ ) anpl(k = mT]+ by (KT)

n=-oo,n*k

The term a;p(0) represents the response of the system (channel + equalization)
to the transmission of the symbol a;, associated with the time interval kT

The term L, (KT) = X7~ _ ooz @n PL(k — n)T] is the intersymbol interference.

It is a disturbing signal depending on all the transmitted symbols {a,,}, except for
the symbol a; which is related to the time interval considered.

The term b, (kT) is the noise at the output of the equalizer at the decision instant.

4) Only messages in the form m; = [ay_q, i, | interfere with symbol ay, so:

k+1

I (1) = " @y pllk = mT] = G1p(T) + @yup(-T)

n=k-1n#k

L, (kT) depends on p[(k —n)T], here on p(£T). We have to calculate p(t)
from its Fourier transform P(f) which is defined (see Figure 2.33).

P(f)
A VT/ao
o -/
_a e
3T 0 2T

Figure 2.33. Amplitude spectrum P(f) of p(t)
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We have: p(t) = F7{P(f)}. This gives:

. a
VT « Sin|2mt X% sin[arn t/T
p(t)=—X—X[—aZT]=VXM
a T 2mt X 5 ant/T

Finally, we get:

p(0) =V, p(*T)=Vx sin[ar]

So:
L (kT) = 0 if p(£T) =0
This must be true for & non null integer.

sin[mt/T]

- ay=min(a) =1 and p(t) =V x —

5) Conditional probabilities of error:

Relation between V and g, . We have

ST p(0)
[b]c,dB = 20 X logy, [ o

Since uy = 0 (equiprobable symbols) and I, (kT) = 0, then:

|74
]=20><log10[o_—]=6dB—>V=2crb1

1 by

1 [—1 b7 ]
P, =Priag,=1/a;, =—-1,m} = exp |—=—|db;
1 Ublvzn20b1 | 2 O'bl_
—20’b1
1 [—1 b2]
P, =Pr{d,=-1/a,=1m} = f exp |[—=——|db
ey k k l Ublm J p 2 0,31_ 1

Knowing that:

. Zabl

f p(x)dx =1 and J p(x)dx = 0.95=1-0.05

—0 —20p,
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and:
. —20'1,1 Zubl ©
fp(x)dx = f p(x)dx + f p(x)dx + f p(x)dx =1
—0co —0co —20p, 20p,
—20'b1 o
0.05
- f p(x)dx = f p(x)dx = — = 0.025
—o0 20’b1
Finally we then get:

P, =P, =0.025

2.8. Problem 23 — M-ary baseband digital transmission

This problem deals with the baseband transmission of coded digital images over
a transmission channel (cable) with reduced capacity. The different characteristics of
the transmitter and receiver system in Figure 2.34 below will be analyzed together
with its performances.

Transmitter i Transmission channel
{b,} s(0) | 5,(0)
- | "
Binary Transcoding : Linear filter +
information |—s binary to M-ary and M-ary to signal |-
source {a,} {a,} || s HO) +
| .
be T ? . Noise ' by(?)
| Receiver X .
s, 5.(9) s.(t) {a} b}
: Equalization ) o .
i Sampling [—{ Decision —| Decoding —
s.(); G.(f)

-

Clock J (i

recovery

Figure 2.34. Block diagram of the baseband transmission system on a cable
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The symbols b,, are delivered by the binary source every T}, second (with the use
of a buffer memory). Moreover, they are supposed to be independent and
equiprobable.

The coding of binary information {b,,} into information symbols {a, } is done by
grouping 2 bits b, to form a quaternary symbol a, = {—3,—1,1,3} of period
T = 2T,.

The symbols a, of information are provided to the transmitter at a rate of:
1/T = 10 MHz.

The transmitted signal s, (t) is given by s, (t) = Y., apx(t — nT) where x(t) is a
rectangular signal of amplitude V over the time interval [0, T[, zero elsewhere.

The transmission channel is modeled by a linear filtering whose impulse
response is denoted h(t) with an additive degradation noise b,(t) at the output of
the channel. The latter is supposed to be a second-order stationary Gaussian random
noise, with zero mean value, having a broad frequency bandwidth, and a mean
power oy, .

The equalization filter of the transmission channel works in a frequency band
totally included in that of the noise. The clock regeneration is assumed to be perfect

and provides a sequence of decision instants of the form: t,, = t, + kT.

The decision system uses three thresholds, denoted p_4, tig, 141, to separate the
equalized signal s.(t;) into four classes. They are given by:

Um = 2m X p(0) with m € [-1,0,1]
We have:
dlsc(t)] = @ = =3 if s.(t,) < u_4
dlsc(t )] = @ = =1 if u_y < s.(tx) < o
dlsc(ti)] = @, =1 if po < sc(ty) <y
dlsc(t)] = @ = 3 if s.(t,) =y
We denote successively (& is the convolution product):

y() = x(©O)®h(t) and p(t) = y(t)®g.(t)
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In a first phase, the equalization filter is such that the frequency gain P(f) of
p(t) is constant, equal to 2VT in the frequency band [—1/4T,1/4T], and zero
elsewhere.

1) Give the expression of the signal s.(t;) (composed of the useful signal +
intersymbol interference + noise) at the decision instants of the form: t, = kT.

2) From the expression of the intersymbol interference I, (kT), show that only

symbols a of odd-rank index [k + (2i + 1)] interfere with symbol a; (i positive or
negative integer).

Afterwards, for sake of simplification, it is considered that only the two symbols
adjacent to the symbol a;, interfere with it (namely a;_; and ay1).

3) By listing the different possible combinations of the message m; =
[ak—1, A1 ] interfering with ay, show that I, (kT) can only take seven possible

values that will be determined. (Afterwards, you will take m = 3 as a simplification
for the calculation).

Also calculate the different probabilities, each of them associated to one of the

seven different values of the intersymbol interference. Here the a;, will be
considered equiprobable.

4) Show that, even without noise at the input of the receiver, the probability of
error is very high.

So, we decide to perform a better equalization of the cable distortion. This

second equalization is such that the frequency spectrum P(f) of p(t) is constant on
the frequency band [— 1/2T, 1/2T], zero elsewhere, and P(0) = 2VT.

5) Show that the intersymbol interference is now cancelled.

Under these new conditions, we will assume that at the output of the equalizer
the signal-to-noise ratio is:

[%]W = 20 x logy, [%(?] —12dB
6) Calculate the following 16 conditional probabilities:
Pr{&k =aj/ay = ai}; i,j=1,-,4
and show that the 4x4 conditional probability matrix:

Pr{&k=aj/ak=ai}; l,]=1,,4
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is quasi of the form given in Table 2.11:

ak\ﬁk -3 -1 +1 +3
-3 1-p p 0
-1 p 1-2p p 0
+1 0 p 1-2p p
+3 0 0 p 1-p

Table 2.11. Form of the conditional probability matrix

NOTE.— We will consider here that if p(x) is the probability density function of a
Gaussian random variable with zero mean value:

40
1 —x?
x) = ——exp |[=——=|, then J. x)dx=1—-2x10"5 with p =107°
p(x) o p[ZGZ] p(x) 14

—40
Solution of problem 23

1) The transmitted signal s, (t) is:

(oo}

s.(t) = Z a,x(t —nT)

n=-oo

The received signal s,.(t) is:

[ee)

5:® = D @t —nT)+bo(®)

with: y(t) = x()®h(t).

The signal y(t) is the output of the channel when its input is the basic impulse
(rectangular shape) x(t) of period T and without noise.

The equalized (corrected) signal s (t) is:

5(® = ) ayp(t—nT) + by (0)

n=-oo

with: p(t) = y(t)®g.(t), that is: p(t) = x(t)®h(t)®g.(t).
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The noise b, (t) is the result of filtering the noise by (t) by the equalizer whose
impulse response is g.(t).

At the sampling times t;, = kT, the signal s.(t) is written:

[oe]

5 (kD) = ap@ + > anpllk =TT+ by(kT)

n=—oo,n¥k

The term a;p(0) represents the useful response of the system (channel +
equalization) to the transmission of the symbol a; associated with the time interval
KT.

The term Iy, (kT) = ¥3-_co sk @n P[(k — n)T] is the intersymbol interference.

It is a disturbing signal which depends on all the symbol {a,,} transmitted, except
for the symbol a; which is related to the time interval considered.

The term b, (kT) is the noise at the decision instant.

2) The intersymbol interference I, (kT) is given by:

D) = ) anplk =]

n=-oo,n¥k

It depends on p[(k — n)T], so we have to calculate p(t) from P(f).

—1 1
4T aT

Figure 2.35. Amplitude spectrum P(f) of p(t)

By definition, we have: p(t) = F~{P(f)}, hence:

. 1
sin [27‘[t X ﬁ] v sin[r t/2T]

1 - wt/2T
2t X aT

t) =2VT X — X
p(t) 5T
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2V vV

From these values, we can conclude that:
p[£Q2iT)] =0 > Ly, (kT) =0 for n = (k£ 2i)
pl£Qi+ DT] # 0 > L, (kT) # 0 for n=[k £ (2i +1)]

3) Possible values of I,,, (kT).

In the case where the messages only of the form m; = [a,_q, ar4q | interfere
with the symbol a;, we have (with T = 3):

Kk+1
I (6T) = > anplk =] = a4 1p(T) + @ierap(=T)
n=k—-1n=#k
2V
= [ar1 + ak+1]?
2V
my = [ay_q, Qgyq ] L, (kT) = [ay_1 + aj41] 3
N 4V
-3 -1 26V
-3 1 -13V
-3 3 0
-1 -3 -26V
-1 -1 -13V7
-1 1 0
-1 3 1.3V
1 -3 -13V7
1 -1 0
1 1 1.3V
1 26V
3 -3 0
3 -1 1.3V
3 1 26V
3 3 4V

Table 2.12. Interfering messages and intersymbol interference amplitude
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Thus, there are seven distinct values of Iy, (kT).

Iy, (KT) Pr{l,, (kT)}
4y 1/16
26V 1/8
137 3/16
0 1/4
-137 3/16
2.6V 18
-4V 1/16

Table 2.13. Probabilities of amplitude of intersymbol interference

4) Neglecting the noise, after equalization the signal s.(kT) is written:
Se(tx) = agp(0) + Iy (kT) = a V + Iy, (kT)

The decision thresholds are given by:
Um = 2m X p(0) with m € [-1,0,1]

- u=-2p(0)==2V; po=0; p =2p(0)=2V

3V e ak—3
******* W =27
V e i a, =1
******* My =0 R
-V o ¢ ak——l
****** oy =21
_3Vo ak=—3

Figure 2.36. Sample values a,V, optimal
thresholds and decision classes of a;: d,
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It can easily be seen that to change the decision class, it is sufficient that
I, (kT) = £[V + €]. More precisely:

—an erroneous decision on the transmitted symbol a;, = 3 is made for all the
values of I,,, (kT) < =V, that is in 6/16 of cases;

— similarly, an erroneous decision on the transmitted symbol a;, = —3 is made
for all the values of I, (kT) >V, which is also in 6/16 cases;

— An erroneous decision on the symbols transmitted a; = +1 is made for all the
values of |Iml (kT)| >V, that is in 12/16 of the cases.

In view of these results, even without noise, the probability of error is extremely
high.

5) Null value of the intersymbol interference:
Under these new conditions, we have:

sin[mt/T]

p() = FHP(} = 2V x—

p(0) = 2V, p(kT) = 0V k non null integer — I, (kT) =0
6) Calculation of the 16 following conditional probabilities:
PT{&k=aj/ak=ai}; l,]=1,,4

Let us first express V as a function of Ufl and calculate the new values of the
decision thresholds p_q, i, t1:

[] p(0) 2V
—ZOxlglo— =20 Xlogg|—|=12dB -V = 20,
blcap Op,

At the output of the equalizer, the signal is then written:
SC(kT) = akp(()) + bl(kT) = ak2V + bl(kT) = ak40'b1 + bl(kT)

and the threshold values of the decision blocks are:
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1206, - a, =3
,,,,,,, = ggb A -
401,] ° (Zk =1
7777777 Lo = 0 }k ~
-40 o a, = -1
b, g V k
****** oy =- Gbl A R
_126b1° a, = -3
\J

Figure 2.37. Sample values a; 2V, optimal
thresholds and decision classes of ay: @,

The calculation of the conditional error probabilities is based on the knowledge
of the noise intervals given by the course formulas (see the relations in Chapter 6 of
Volume 1). For each value of the symbol a; transmitted, we have four possible
decisions (three erroneous, and a correct one) on the estimated value @, of the
symbol a,.

Recall that for the intermediate values of the symbol aq; transmitted, the
conditional error probability is given by:

P

€2i+1

=Pr{d, =2m+ 1/a; = 2i + 1,m;}
form=#iandm =+ -M/2; (M/2) -1

and for the extreme values of the transmitted symbol a;, the two conditional error
probabilities are:

P, =Prigy=M-1/a,=2i+1%M—1),m}
P, =Priagy=-M-1/a,=2i+1+—(M-1),m}

The conditional probability matrix is then obtained like this:

— for the symbol transmitted @ = —1 - i = —1 - F,_, and the four decisions
in reception are:

a, =1->m=0 - from (6.90), b, (kT) € [p(0),3p(0)[

- by (kT) € [40p,, 120, |



Baseband Digital Transmission: Problems 16 to 26 161

4y = —1 - m = —1 - from (6.90), b, (kT) € [~p(0), p(0)[
- by (kT) € [—40y,, 40y, |

ay = 3 - from (6.96), b, (kT) € [3p(0), o[ - by (kT) € [120},, 0|

ax = —3 - from (6.103), b, (kT) € [0, —p(0)[ - by (kT) € [—o0, —4a, |

— for the symbol transmitted a, =1 — i =0 - F, , and the four decisions in
reception are:

4 = —1 > m = —1 - from (6.90), b, (kT) € [-3p(0), — p(0)[
- by (kT) € [—120,, —40p, |

a4 =1 - m =0 - from (6.90), b, (kT) € [-p(0), p(0)[

- by (kT) € [—40y,, 40y, |

ay = 3 - from (6.96), b, (kT) € [p(0), [ - b, (kT) € [40y,,, |
dx = —3 — from (6.103), b, (kT) € [—o0, —3p(0)[

- by (kT) € [0, —120y, |

— for the symbol transmitted a, =3 - i =1 - F,,, and the four decisions in
reception are:

d, =—-1->m=—1- from (6.90), b, (kT) € [-5p(0), — 3p(0)[
- by (kT) € [-200,, 120, |

d, =1-m=0 - from (6.90), b, (kT) € [—-3p(0), —p(0)[

- by (kT) € [—120,, —40p, |

4, = —3 - from (6.103), b, (kT) € [—o0, —5p(0)[

- by (kT) € [0, —200,, [

a, = 3 - from (6.96), b, (kT) € [—p(0), o[ - b,y (kT) € [—4ab1,oo[
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— for the symbol transmitted a, = —3 - i = —2 - P,__, and the four decisions
in reception are:

d, =—1-m = —1 - from (6.90), b, (kT) € [p(0),3p(0)[

- by (kT) € [40p,, 120, |

a,=1->m=0 - from (6.90), b, (kT) € [3p(0),5p(0)[

- by (kT) € [120,,, 200y, [

a, = —3 - from (6.103), b, (kT) € [—o0,p(0)[

— b, (kT) € [—, 40, |

a = 3 > from (6.96), b, (kT) € [5p(0), o[ - by (kT) € [200,,, 0|

Furthermore, we have:

40
f p(x)dx=1-2x105=1-2p
—40
—40 o ~40
fp(x)dx—f f f—1—>f f—lOS—p
~ig
—200 -120 120 -0
[T [T ]
200 120 —i20
-4 ®
f f J—IO +1-2x10°=1-10"° = J
~4¢ -~
126 -40c 40 120 200
f j f f =10°+1-2x10" +10_5—1—)f
—40

Hence see the matrix of conditional decision probabilities in Table 2.14 below.
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ak\ﬁk -3 -1 +1 +3
-3 1-p p 0
-1 D 1-2p p 0
+1 0 p 1-2p p
+3 0 0 p 1-p

Table 2.14. Conditional decision probability matrix

2.9. Problem 24 — Baseband digital transmission of bipolar coded

information

We consider the transmission of information (speech) in digital form on a two-
wire cable transmission channel. The on-line code used is the bipolar code. The
block diagram of the transmission system is shown in Figure 2.38.

The source produces a series of independent but not equiprobable binary

sequence {b, }, with:

Pr{b, =0}=2/5; Pr{b,=1}=3/5

Transmitter

Transcoding

binary to M-ary and M-ary to signal

Transmission channel

C s.1)

Noise ' b,(7)

b(t) Binary a(t) s.(1) Channel
—»| to bipolar - »| Linear filter
|| coding x(@, X() K@), H()
P S S 4
Linear receiver
Threshold
; detector
s5,(f) | Equalization | S.(?) Sampling s.(t)
o - o | =
g®; G o\;\ T
\ A I
{1 —
Clock
recovery

Bipolar
to binary
decoding

/

Figure 2.38. Practical chain of a digital baseband

communication system with bipolar code
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The transmitted signal is given by: s,(t) = X, a,x(t — nT).

The signal x(t) is a pulse of amplitude ¥ on the time interval [0,T/2[. The
additive noise b,y (t) is assumed to be stationary, Gaussian and centered, with a very
broad power spectral density I}, (f) compared to that of the signal (energy
bandwidth equal to Af}) and an average power alfo.

1) Cite two major reasons that digital information transmissions are superior to
analog transmissions.

2) What is the bandwidth of the standard telephone channel? And what is the
maximum possible bitrate of a digital signal transmitted through this channel?

3) Give the transformation rule which allows us to transcode the binary symbol
b,, into the ternary symbol a,, (bipolar code).

4) Considering that the first non-zero symbol transmitted is always positive,
what is the sequence {a,} resulting from the bipolar coding of the following binary
sequence {b, } of length 16 in Table 2.15.

byltrf{ofofrfrfofrfofrfrfrfofofof1rf|o

{an}

Table 2.15. Generation of the sequence {a,} of the bipolar code

5) What is the advantage of using a bipolar code in baseband transmission (cite
at least two reasons)?

6) What is the limitation? How do we bypass this limitation to prevent the
coding of four consecutive null symbols b from leading to the absence of pulses in
the on-line code, while ensuring that the system is operating correctly on reception?

7) Draw the diagram of realization of the RZ bipolar encoder and decoder.

8) What is the purpose of equalization? What does the Nyquist frequency
criterion express?

9) Assuming that the equalization filter G.(f) has a unit gain at zero frequency,
determine the power crlfl of the noise at the decision level based on that of the

observation noise and the equivalent energy bandwidth Af, of the equalization filter.
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10) Give the number and value(s) of the decision threshold(s) u of the bipolar
code.

In the rest of the problem, it will be considered that the equalization is not
perfect and that actually, the amplitude spectrum of the signal p(t) at the output of
the equalizer, denoted P(f), when a single impulse x(t) is sent by the transmitter
and without considering the noise, is constant, equal to VT on the frequency domain
[-(1+ a)/2T, (1 + a) / 2T ], and zero elsewhere, with « = 0.1.

So we have: p(t) = x(t)®h(t)®g.(t).

11) Give the expression of the signal p(t) and its particular values at times
t =0 and t = +T (We shall consider for simplification that sin [7(1 — @)]/m = 0.1).

Similarly and for simplicity, intersymbol interference will only be considered as
that resulting from the two symbols a;_; and a,,, adjacent to symbol a,.

12) Give the expression of the equalized signal s.(kT) for the k" instant of
decision by showing the different contributions to the amplitude of this signal.

13) Determine for each possible value of a; the possible messages m; =
[@k—1, ax+1 ] and their conditional probabilities p(m, /iy = Pr{m;/a, = i}, according
to Tables 2.16 and 2.17.

14) Give the expression of the probability p,,, and its value for each message m;.
Give also the amplitude of the intersymbol interference [, of each message.

15) Deduce the different possible values of intersymbol interference and the
associated probabilities.

my = [ay_q, Qg1 ]

ak——l
ak—O
ak—l

Table 2.16. Possible messages m,; for each a,,
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my = [ay_q1, Qpq ] Prim;/a;, = -1}

Pr{m;/a; = 0}

Prim;/a; = 1}

ml(r)

mZ(l)

m3(r)

m4(l)

m5(r)

m6(r)

m7(,)

mB(r)

m9(l)

Table 2.17. Conditional probabilities Pr{m,;/a,} of messages m,

my = [a_q, Q1] Pm,

Im

1

ml(:)

mZ(')

m3(')

m4-(')

mS(!)

m6(!)

m7(!)

mg(,)

m9(r)

Table 2.18. Probability p,,, and value of the
intersymbol interference for each message m;
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I, I, I, Io I I

Value of I,

Pr{I,,}

Table 2.19. Possible values of inter-symbol interference and associated probabilities

16) Give the expression of the probability of error F,; on the symbols of the
bipolar code.

To simplify, it is considered that only the errors @, of the following type: “the
decided values are adjacent to the prior value a;”, are of non-zero probability:

ak=—1—>dk=0; ak=1—>€lk=0; ak=0—>&k=i1

17) Give the expression of each of these four conditional probabilities of
possible errors (by specifying the intervals of the noise amplitude):

Pec—1/0mp = Pridy = -1/ a,, = 0,m}
Peijomy = Pri@, =1/ a, = 0,m;}
Peo/-1,mp) = Pr{a, =0/ a, =—1,m;}
Peosimy = Pr{da, =0/ a, =1,m}

It is assumed that at the output of the equalization, the signal-to-noise ratio is:

S 0
2] =20xlogy, [p( )| = 13064 a8
blcas Op,

18) For each message m,;, calculate the intervals of the noise dynamics and the
values of the conditional probability of errors according to Table 2.20 (based on the
table of a centered and reduced Gaussian law).

NOTE.—
— ul: upper limit of the interval of the noise amplitude.

— II: lower limit of the interval of the noise amplitude.
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m,; mp; | My | M3 | My | M5 | Mg | M7 | Mg | Mg

ul =
=

Pe—1/0my)

ul =
=

Pec1/0mp

ul =
=

Peo/-1,m)

ul =
=

Peo/1,mp

Table 2.20. Noise dynamics interval and conditional error probabilities

19) Deduce the value of the error probability P, ;.

20) What would be the value of the probability of error P, 4, if we kept, for each
of the possible values of ay, only the configuration m; leading to the most
unfavorable value of the intersymbol interference [,;,,?

21) Give the expression and the value of the probability of error P,; on the
binary symbols decoded, under the same conditions of question 20.

22) What would be the value of the probability of error P, ,, if there was no
more intersymbol interference?
Solution of problem 24
1) Major reasons:
— integration of services, therefore lower costs;

—performance in terms of error / distortion not cumulable, because the
regeneration of signals can be exactly performed.

2) The frequency bandwidth of the standard telephone channel is:

B = f, — f, = 3,400 — 300 = 3,100 Hz
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The maximum possible symbol rate (according to Nyquist criterion) is:

D; = 2B = 6,200 symbol/s

The maximum possible bitrate is:

If coding on two levels, then:

D, = D; X log, M

D, = D, = 6,200 bit/s

NOTE.— Usually, one uses a M-ary coding system with M > 2 where the number M
is a function of the signal-to-noise ratio at the input of the decision block which
ensures a probability of a wrong decision lower than a given level of admissible

€ITOorS.

3) Rule of transformation of a binary symbol into a ternary symbol (bipolar

code).

The bipolar code is a three-level code such as:

b,=0-a,=0; b, =1- a, = +1 alternately.

4) Generation of the sequence {a, } (bipolar code).

{bn}

1

1

1

1

1

1

{a,}

1

0 |-1

1

-1

1

-1

5) The interests in using a bipolar code in baseband transmission are:

—no continuous component;

Table 2.21. Generation of the sequence {a,}

— the spectrum of the transmitted signal vanishes at all the multiples of 1/T;,

and limitation of the spectral occupation.

6) Bipolar code limitation:

If we have a long series of bits at zero, then there are no pulses issued over a
period that can be significant. This causes the loss of clock synchronization at the
receiver side. To overcome this drawback, the bipolar code with a high pulse density

is used.
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If on a period of 4T, there are no pulses, we have to use the HDB-3 code.

7) Block diagram of the RZ bipolar encoder and decoder.

NRZ-M —

RZ —»

X +— Bipolar RZ

Bipolar RZ code
b(r) —] RZ
X H——»
Ck(t) —
RZ coder
b() a(t) NRZ-M
| =1 » D Q » 2a-1 "™
Ck
NRZ-M coder by n-1 n
b 0 0 0 0
= — =
if { n ap=4a,_\ 0 1 1
b,=1—a,#a, =a,=a,_, 1 0 1
1 1 0

Constant 1 J_l—‘_l_
—_——>
Comparator
Bipolar RZ code . . RZ code
—]
Constant 2 Comparator
7 g T
Bipolar RZ decoder

Figure 2.39. Block diagram of RZ bipolar coder and decoder

8) The ultimate goal of equalization is to cancel the influence of the transmission
channel in order to have an ISI as small as possible (and even null).
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The Nyquist frequency criterion states that the equalization must ensure that we
have:

i P <f - ;) = Tp(0) = Constant

k=—o0

9) The noise power b, (t) is:

o= [ nas

The power spectral density b, (t) is given by:
Iy, (f) = Ly () X 1Gc(NI? = I X 1G(NI?

The noise power by (t) is:

o Afp
Op, = beo(f)df=I*o j df = 2T, X Af,
- —-Afp
hence:
I __aﬁo
° 7 2Af,
and:
i Afec 2
2 _ _ _
T, ffbl(f)df 2Af f|G (H2df = 2Af
o _Af,
X 201G, (0)[?
2 _ Afe
% =% X3,

10) Number and value(s) of the decision threshold(s) of the bipolar code: two
decision thresholds, denoted: u* = —u~ = p(0)/2.

11) Expression of the signal p(t) obtained by the inverse Fourier transform of
the amplitude spectrum P(f).
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P(HA
VT

A B

-1-o) 0 (1-a)
2T 2T

Figure 2.40. Amplitude spectrum P(f) of p(t)

sin[ (1 — a)t/T]

p(6) =1 —a)V X

n(1—a)t/T
9V
p(0) =1 —a)V =09V = Tl

I
12) Expression of the received and corrected signal:
sc(kT) = agp(0) + Iy, (kT) + by (kT)

with:

Vv
Iy, (kT) = ay_1p(T) + ay1p(=T) = 10 [a-1 + Qps4]

hence:

9 Vv
sc(kT) = T0V% * 15 [ax-1 + a1l + by (KT)

13) For each possible value of a, determination of possible interfering messages
and their conditional probabilities: pon, /iy = Pr{m;/a; = i}.

my = [ay_q, Qyyq ]
a,=-1 0 0|0 1|1 0|1 1
a, =0 0 0{0O-1|{0 1|-10}-1 1|1 01 -1
a, =1 0 00 -1]-1 O0f-1-1

Table 2.22. Possible messages interfering with a;,
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{my/a;, = -1}

my = [ag_q1, A ]

Pamy/-1) = Pr{im;/a; = -1}

Pr{bk_l =0, bk+1 = 0} = 4/25

Pr{bk_l =0, bk+1 = 1} = 6/25

Pr{bk_l =1, bk+1 = 0} = 6/25

Pr{bk_l =1, bk+1 = 1} = 9/25

Table 2.23. Conditional probabilities: p(y,/—1y = Prim;/a, = —1}

{m;/a; = 0}

my = [ag_q, Qg1 ]

P(m,/0) = Prim;/a; = 0}

0 0 Pr{be_y = 0,by4, = 0} = 4/25
0 1 Pr{be_y = 0,byyy = 1 and a4 > 0} = 6/50
0 -1 Pr{by_4 =0,by4; =1 and a;4, < 0} =6/50
1 0 Pr{by_y = 1,by41 =0 and a;_, > 0} =6/50
1 - Pr{by_1 = 1,by41 =1 and a;_, > 0} =9/50
10 Pr{by_, = 1,bjs; = 0 and a,_, < 0} = 6/50
-1 1 Pr{by_1 =1,bg4y1 =1 and a;_, < 0} =9/50
Table 2.24. Conditional probabilities:
P@my/0) = Pr{m;/a; = 0}
{my/a; =1}

my = [@g_q, Qi1 ]

P(my/1) = Prim/a;, = 1}

Pr{bk_l =0, bk+1 = 0} = 4/25

Pr{bk_l =0, bk+1 = 1} = 6/25

Pr{by_; = 1,bp4, = 0} = 6/25

Pr{be_y = 1,bpsy = 1} = 9/25

Table 2.25. Conditional probabilities: pm, /1y = Prim;/a, = 1}
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The summary of all these values is given in Table 2.26.

my = [ag_q1, Qg1 ] Prim;/a; = -1} | Pr{m;/a, = 0} Prim;/a; = 1}
m =@, 0 4/25 4/25 4/25
m, =0, 1) 6/25 6/50
ms = (0, -1) 6/50 6/25
m,=(1, 0) 6/25 6/50
ms = (1, -1) 9/50
me=(~1, 0) 6/50 6/25
my=(-1, 1) 9/50
mg=(~1, —1) 9/25
mg = (1, 1) 9/25

Table 2.26. Conditional probabilities: p(m, /iy = Prim;/a, = i}

14) Expression of the probability py,:

1 1
Pm, = Z p(i,m) = Z Di X D(myiy and

9
Z pml = 1
=1

=1 =1
m; = [ay_q, Qyyq ] Pm, L,
my = (0, 0) 3/10x4/25+2/5%x4/25+3/10 x 4/25 =4/25 0
m, = (0, 1) 3/10x6/25+2/5x%x6/50 = 3/25 V/10
ms = (0, -1) 2/5%x6/50+3/10 x 6/25 =3/25 -V/10
my = (1, 0) 3/10x6/25+2/5%x6/50 = 3/25 V/10
mg = (1, -1) 2/5%x9/50 =1.8/25 0
me = (-1, 0) 2/5%x6/50+3/10%x 6/25 =3/25 -V/10
m; = (—1, 1) 2/5%x9/50 =1.8/25 0
mg = (—1, -1) 3/10x9/25 = 2.7/25 -V/5
me=(1, 1) 3/10 x 9/25 = 2.7/25 v/s5

Table 2.27. Intersymbol interference amplitudes and associated
probabilities with each possible interfering message
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with:
po = Pr{a, = 0} = Pr{b, =0} =2/5
p1=Pria, =1} =p_, =Pr{a, =—-1}=1/2x Pr{b, =1} = 3/10

and we actually have:

9
Z pml = 1
=1

15) Possible values of intersymbol interference and associated probabilities.

Im, I I, I I,
Value of I, -V/5 -V/10 0 V/10 v/s
Pr{l,,} 1/9 2/9 3/9 2/9 1/9

Table 2.28. Inter-symbol interference values and associated probabilities

And we have:

Z Pr{l,} =1

16) Expression of the probability of error on the symbols a:
1 9 1
Pe,a = z Di [Z Pmy /i) Z Pe(m/i’ml)m#l
i=—1 L= m=—1
17) Expression of each of the four conditional probabilities of possible error.
The corrected and sampled signal is:
Sc(kT) = agp(0) + Ly, (KT) + by (kT)

The decision thresholds are such that:



176  Digital Communications 2

-—9-—V a, =1
10 9
N
o -2y ¥
K 20 :
0 a, =0
- _ -9
- =2y —Y - _
K 20
_9 ~
'l-aV a, = -1

Figure 2.41. Sample values without ISI and noise,
optimal thresholds and decision classes of a;: a;

The noise b, (kT) is written:
by (kT) = s.(kT) — axp(0) — L, (kT)
If:
s.(kT) € ]c,d]
Then, we have:
by (kT) € |c — a;p(0) — L, (KT),d — ayp(0) — I, (kT) |

— Case of transmission a; = 0.
If we decide:
G = =1 5o(KT) € | =00, 5] = by (kT) € |00, 1™ — Iy, (kT)]
#__Iml(kT)
S
d _ = — ex —_—
e(-1/0,my) O_blm ] p 2 O_gl 1
If we decide:

ax =1 - sc(kT) € Ju*, o[ = by (kT) € |u* — Ly, (kT), |
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- Pe(l/O,ml) = ; f exp [le—f] db,
O-bl\/_nu*'—lml(kT) 2 %,
— Case of transmission a; = —1.
If we decide:
=0 - sc(kT) € Ju~, u*]
~ by (kT) € Ju™ +p(0) = Iy, (KT), u* +p(0) = Iy, (KT) |

w*+p(0) =l (KT)
1

- PC(O/_l»ml) = o m
by

—1 b?
exp | ——5 db,
Op,
U= +p(0)—=Im, (KT)
— Case of transmission a; = 1.
If we decide:
G =0 - s.(kT) € Ju~, "]
> by (kT) € |u™ = p(0) — Iy, (KT), * = p(0) — L, (kT) |

#*=p(0) =y, (KT)

1 ~157]
= Poojrmp = m exp 2 oz |4
1 1

4= =p(0) I, (KT)

18) For each message m,, calculation of intervals of noise dynamics and values
of the conditional probabilities of error, are given in Table 2.29.

The noise amplitude intervals should be expressed as a function of g,,. We have:

2] 20 X1 [p(o) 20 X1 [9'//10] 13.064 dB
— = 0 = (0] = .
blcas g10 Op, g10 Op,
9V .9 _ -9
—>100_b1 =45->V =50, and pu =700 W = 0p; p(0)
9

2901
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19) Calculation of the probability of error P, 4:

4 6 6 9
Pou =11 [ﬁ x 0.0122 + ﬁ x 0.0401 + E x 0.0401 + E X 0.1056
4 6

+po [E (0.0122 + 0.0122) + %(0.0030 + 0.0401)

6 6
+%(0.0401 +0.0030) + %0 (0.0030 + 0.0401)

9 6
+£5(0.0122 +0.0122) + = (0.0401 + 0.0030)

9
+%(0.0122 + 0.0122)]

4 6 6 9
— % 0.0122 + — X 0.0401 + — X 0.0401 + —
P [25 *7s *7s +7s

% 0.1056] = 0.0490336

20) We keep only the most unfavorable case of intersymbol interference
according to the table giving the values of the conditional probabilities for each
message:

Pe~1/0ms) = 0.0401 & m3 = (0, -1); I_; =-050
Pe1/0my) = 0.0401 & m, = (0, 1); I; =050y,
Peo/-1,mg) = 0.1056 & mq = (1, 1); I, = oy,
Peoo/1,mg) = 0.1056 & mg = (-1, -1); I_, = oy,

hence:

Pe1,a = P-1 X Po(o/—1,mg) T Do X [Pe(—l/O,m3) + Pe(1/o,m2)] +p1

X Pe(o/1,mg)

3 2 3
Porg = 10 x 0.1056 + 3 x [0.0401 + 0.0401] + 10 X 0.1056 = 0.038416
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21) Expression and value of the probability of error P, j,:
P,y =Pr{b=0}xPr{b=1/b=0}+Pr{b=1}x Pr{b=0/b =1}

Pep = Do X [Pec-1/0ms) + Pei/omp] + P=1 X Peoj—1mg) + P1 X Pe(o/1mg)

therefore: P, = Py 4.
This result was predictable with the simplification of the statement because:
pria,=1/a;, =-1}=0
Pri{d, =-1/a;, =1}=0
But these errors on a;, do not introduce errors on by, hence: P, ;, = Py 4.

22) Probability of error P,; 4 in the absence of ISI. We have:

1 1
Pera = Z pi X [ Z Pe(m/i)miil

i=-1 m=-1

hence:

Poza = P-1 X Peo/—1) + Po X [Pe(—l/O) + Pe(l/O)] + 1 X Peo/)

3 2 3
Porq = —=x0.0122 + 3 % [0.0122 4+ 0.0122] + 0 x0.0122 = 0.01708

10

We have, from the normalized Gaussian law table:

2.25

f p(x)dx = 0.5 — f p(x)dx = 0.5 — 0.4878 = 0.0122
2.25

—2.75

0 275
f =0.5- j =0.5- f = 0.5-0.4970 = 0.0030
2.7 0

—00 —

-2.25 -6.75 2.25
| =os- f f —o05—| [+ f
-6.75 -2.25 0

=0.5—[0+ 0.4878] = 0.0122
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6.25 6.25 1.75

_ f - f = 0.5 — 0.4599 = 0.0401
1.75 0 0
5.75 5.75 1.25
f _ f —f — 0.5 —0.3944 = 0.1056
1.25 0 0

2.10. Problem 25 - Baseband transmission and reception using a
partial response linear coding (1)

The problem of baseband transmitting and receiving independent binary
information on a reduced capacity channel is considered.

The transmission and reception system in question uses partial response linear
coding according to the Figure 2.42.

Partial response transmitter

r-r—-———""™—"F~"~"~"~"F"~""~~"~"~—~""~"~"~""~" " ~"~"~"~">"~" " ""—/"¥—/V—/ 7/ /' - - A
| |
b(t) | b'(t a(t) c(?) I s,(0)
—+»{ Precoding » Transcoding » Coding » Shaping H
| |
| |
P S S S J
Y
Channel
Partial response receiver Noise ++ ¢
by(1)
Threshold
- R detector - s(0)
(b} {ci} s.t)| Sampling | s.(2)
-—{ Decoding (= 1 e o - Equalization
— -
I [ J
i} Clock
recovery

Figure 2.42. Baseband transmission and reception
chain with partial response linear coder

Where:

b(t) = Z b,8(t —nT,) by €{0,1}
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b'(E) = Z b.8(t—nT,) bl €{0,1}

a(t) = Z a,6(t—nTy) a,=2b,—1 a,€{-11}

n

c(t) = Z c,6(t —nT,) ¢, positive, negative or null integer

n

The partial response linear coding used in this problem is the NRZ duobinary
coding, characterized by its transfer function:

HZz)=1+z1'=1+D
Where D is the delay operator T (time slot allocated to the transmission of a
symbol cy).

1) Give the transfer function P(z) of the precoder filter as well as its equation
providing by, as a function of by.

2) Give the equation of the encoder generating c;, from ay.

3) Give the relationships allowing us to estimate the binary symbols emitted
by : by from the symbols received cy : &, with and without precoding. Comment on
each case.

4) Give the block diagram of the precoder, transcoder and duobinary combined

encoder.

The shaping filter has an impulse response x(t) considered as an NRZ signal of
duration T and amplitude V.

Let us take the 14-bit {b;} time sequence shown in Figure 2.43 (time running
from left to right).
5) Determine (temporal representations will be plotted directly in Figure 2.43):

— the time sequence {b;} associated with the output of the precoder (the latter
is considered initialized to zero);

— the corresponding temporal sequences {a; }, {c;}, {b; } and signal s, (t).
The transmission channel is modeled by a linear filtering and additive noise at

the output of the channel. The latter is a stationary second-order Gaussian noise,
with a zero mean and a broad spectrum.
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We assume that at the output of the equalizer, the signal-to-noise ratio obtained is:

S p(to)]
- =20x%lo = 7.96dB
[b]c,dB 810 [ Op,

First, we consider the classical baseband transmission system (without precoding
and coding).

6) Give the expression of the signal s.(kT + t,) at the input of the decision unit
according to the symbols a.

Take the case of the duobinary partial response transmission and reception system.

7) Particularize the expression of the signal s, (kT + t;).

We assume for the rest of the problem that: p(T + t,) = p(t,) = V.
8) Deduce the new expression of s.(kT + t,) according to the symbols ¢, .

9) Calculate the conditional probabilities of error:
P, = Pr{é, # k/c, =k} with k={2,-2,0}

10) Deduce the total probability of error: P, = Pr{é, # ¢} with: ¢, = {2,-2,0}.

Precoding
{p} 0

|
|
|
e
1
|
|

]
|
|
I
|

Transcoding | __ e o N w il

{az} | |
|
]
|
|
|
I
|
|
]

LU S T A N T A S N AR S R A A

Figure 2.43. Temporal diagrams of duobinary coding and decoding
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NOTE.— If X is a Gaussian random process, with mean value m and standard
deviation o, you will take:

Pr{lX—m|>750}=2x10"8
Pr{lX—m|>250}=2x10"*

Solution of problem 25

1) Transfer function P(z) of the precoder and equation giving by, as a function of
bk:

1 B'(z)

1 -1
16 =T3,1" 5Q) - B'(z)=B(z)—B'(z) Xz

P(2) =

- b;( = bk®b,’€_1
2) Equation of the coder giving c¢; as a function of a;:

C(2) _ _
H(z) =m= 1+z15C2)=4@)+A@) xz7 5 ¢ = a + ayx_
3) Equation allowing the estimation of the emitted symbols by : by, from the
received symbols ¢y, : Cp.
With precoding, the transcoder provides:
ay = Zb]’( -1
hence:

Ck = ak + ak_1 = [Zb;( -1 + Zb;(_l - 1] = Z[b;c + bl’(—l - 1]
1
=5 Ck +1=by+by_, =b,®b,_, =b, from1)

Thus, we get a direct estimation of the emitted sequence {b,} from the received
sequence {¢;}.

Without precoding:

~ 1 ~
bl;=bk_)bk=§ék+1_bk—1 mod 2
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This leads to a propagation of decision errors. Indeed, if b, _; is badly decoded, it

will also be the case for by,.

4) Block diagram of the precoder, transcoder and duobinary coder.

5e(1)

ay

2b' -1

a,_, z - x(f) [
—>

2b'-1

b,
7]

4>

by

Figure 2.44. Duobinary precoder, transcoder and coder scheme

5) Chronograms of duobinary coding and decoding.
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Figure 2.45. Chronograms of duobinary coding and decoding. For a

color version of this figure, see www.iste.co.uk/assad/digital2.zip
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6) Expression of the signal s.(kT + t;):

Se (KT + £0) = @p(to) + ) aypl(le =T + ] + by (KT + £)

n+k

7) Duobinary partial response transmission and reception system: expression of
sc (kT + ty).

With p(T + t,) = p(t,) =V, the intersymbol interference is now given by:

I (6T) = > anplCk = 1T + to] = @ p (T + )

nzk
= s (kT + to) = axp(ty) + arp_1p(T + to) + by (kT + t,)
8) New expression of s, (kT + t;):
sc(kT + to) = [ay + ax-1]p(to) + by (KT + to)
Sc(KT + ty) = cpp(ty) + by (kKT + ty) = Ve + by (KT + t)
9) Conditional probabilities of error:
P, = Pr{é, # k/c, =k} with k ={2,-2,0}
From the result obtained in response 8, we have:
by (kT + ty) = sc.(kT + ty) — Ve
If s.(kT + t;) € [c,d[ then by (kT + ty) € [c — Vi, d — Ve[
and Pr{¢, #k/c, =k} =Pr{c—Vc, < b (kT +t,) <d—Vc}
The decision thresholds are located in the middle of two adjacent levels obtained
without noise:
2V
Vck={ 0 »uy=Vandpu,=-V
-2V

Let’s express the decision thresholds according to gy, :

Uy = 2.5 0,

S vV
— =20xlo —|=796dB -V =250, —>{
[b]c,dB 810 |:O-b1] by H_q1 = -2.5 abl
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27 ¢ =2
——— — —u; =250, — - — -
0 Iék—o
—————ul——2.50b1—————
-2V ¢ =2

Figure 2.46. Values of sample ¢, V, optimum
thresholds and decision classes of c;: ¢,

We have three possible decision values of symbol ¢, one without errors and two

with errors.

Transmission of ¢, = 2, we decide on reception:

G =0 if sc(KT +to) € [u_y, sl = by (KT + to) € [u_y — Vg, g — Vel

- by (kT + t,) € [-7.5 05, —2.5 0|

€ = =2 if sc(KT +to) € [—oo,u_1[ = by (kT + t) € [—00, u_y — Vi |

- by (kT + t,) € [-o0,—-7.5 o’bl[

=P, =Pr{¢, =0/c, =2} +Pr{¢,=-2/c, =2} =10"*+1078
=107*

Transmission of ¢, = 0, we decide on reception:

€ = =2 if sc(KT +to) € [—oo,uu_1[ — by (kT +t) € [—00, u_y — Vi |

- by (kT + t,) € [-0,-2.5 0, |
6k =2 lf SC(kT + to) € [,ul,OO[ d bl(kT + to) € [Hl - VCk,OO[

- by (kT + t,) € [2.5 0’b1:°°[
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= P, =Pr{¢, =—=2/c;, =0} +Pr{éy =2/c, =0} =10"*+10"*
=2x10"*

Transmission of ¢, = —2, we decide on reception:
&, =0 if s, (kKT + to) € [u_1, e[ = b1 (KT + t) € [u_1 — Ve, s — Vil
- by (KT + to) € [2.5 0p,,7.5 0p, |
& =2 if sc(KT +ty) € [y, 0[ = by (kT + o) € [y — Vg, o[
- by (kT +t,) € [7.5 0’b1:°°[

- Pe_2 = PT{ék = O/Ck = —2} + Pr{ék = Z/Ck = —2} =10"*+ 1078
=10"*

10) Calculation of the total probability of error:
Pe = PT{@k * Ck}

The total probability of error is then given by:

P, = Z Pi X P, with p, = Pr{c, =k} and k={-2,0,2,}
K

The binary symbols b, are independent and identically distributed on the
alphabet {0, 1}, hence:

Prib, =0} =Pr{b, =1} =1/2
The probabilities of transmitting the symbols ¢, are respectively:
1 1 1
po=Pricy=0}=5; p,=Price=2}=+; p,=Price=-2}=+
2 4 4
Hence, the total probability of error:

P =p0xpe0+p2xpez +p_2XPe_Z

1 1 1
Pe=§><2><10‘4+1>< 10‘4+Z>< 107* =1.5x107*
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A p(x)

2.5 7.5

Figure 2.47. Gaussian probability law and distribution intervals

Calculation of integrals:

w -75  -25 25 75

fp(x)dx=1=f+ + f+f+f

“oo “o 75 -25 25 75

-75 -25 75 25 o
= f and f = f and f = f

“o 75 -75 25 “o 25

-25 25 o 25 o
+f+f=1—>f=1—2f=1—2><10_4

“o  -25 25 -2.5 25
7.5 o 25

-2 =1—2J—f=1—2><10_8—1+2><10'4EZXIO'4
25 75  -2.5

.5

-[-]

-2.5
2.5 -7.5

=104

2.11. Problem 26 - Baseband transmission and reception using a
partial response linear coding (2)

The problem of transmitting and receiving independent binary information on a
reduced capacity channel is considered. The baseband transmission and reception
system in question uses the partial response linear coding according to the following
Figures 2.48 and 2.49.
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Partial response transmitter

b(1) Partial response s.(0)
— .
transmitter
\
Channel
Partial response receiver Noise  + i
by(1)
Threshold
- R detector ; S0

{6} {c s.(t,)| Sampling s.() .
-«—{ Decoder | T |- o/:c < Equalizer

T A y

{f) Clock
recovery

Figure 2.48. Partial response transmitter and receiver block diagram

b(1) b'(r) a(?) c(n) 5.(0)
e L TS L ) Lo ) e x0) e
H(2) H,y(2) coder
| Precoder | | Coder | Shaping
filter

Figure 2.49. Details of the partial response transmitter block diagram

with:

b(t) = Z b,8(t—nT,) b, € (0,1}
b'(e) = Z b.5(t—nT,) b, €{0,1)

a(t) = Z a,6(t—nTy) a,=2b,—1 a,€{-1,1}

n
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c(t) = Z cn6(t —nTy) ¢, positive, negative or null integer

n

The partial response linear coding used in this problem is defined by the two
following transfer functions:

Hi(z) =1—2"32% and H,(z) =1+ 273/

The transmission channel is modeled by a linear filtering and additive noise at
the output of the channel. Noise is considered as a second-order stationary, Gaussian
random process, with zero mean and broad spectrum.

1) Give the transfer function of the encoder filter H(z).

2) Give the transfer function of the precoder filter P(z) as well as its equation
providing by, as a function of by,.

3) Give the equation of the encoder providing c; as a function of a;.

4) Give the relationships providing the estimation of the transmitting symbols by,
from the received symbols ¢, with and without precoding. Comment on each case.

5) Give the implementation scheme of the precoder, transcoder and combined
encoder.

The shaping filter has an impulse response x(t) considered as an NRZ signal of
duration T and amplitude V /2.

Let us take the 14-bit sequence {b;} shown in Table 2.30 (time running from left
to right).

6) Determine (the temporal diagrams will be given in Table 2.30):

— the time sequence {b;} associated with the output of the precoder (the latter
is considered initialized to zero);

— the corresponding time sequences {ay}, {ci}, {Bk} and plot the signal s, (t).

We assume that at the output of the equalizer, the signal-to-noise ratio obtained
is:

s p(0)
— =20xlo —1 =10.88
[b]c,dB g10 [ Op,

We first consider the classical baseband transmission system (without precoding
and coding).
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7) Give the expression of the signal s.(kT) at the input of the decision unit.

In the case of the partial response transmission and reception system defined in
Figure 2.48.

8) Particularize the expression of s.(kT).
Assuming that: p(3T) = p(0) =V.

9) Deduce the new expression of s.(kT) according to, in particular, the symbols
Ck.

10) Calculate the conditional probabilities of error:
P, = Pr{é, # k/c, =k} with k ={-2,0,2}
11) Deduce the total probability of error:
P, = Pr{¢, # ¢} with ¢, ={2,-2,0}

NOTE.— If X is a Gaussian random process, with mean value m and standard
deviation o, you will take:

Pr{]X —m| > 1050} =4 x107°

Pr{lX —m|>350}=6x107°

(b} (o jo (1 (ot {1t (1 f{oj|1{ojo {1l |0

b, 0 fa o

{ai}

o

(b}

s,()

Table 2.30. Temporal representation of the proposed
partial response coding and decoding system
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Solution of problem 26

1) Transfer function of the encoding filter:
H(z) = H,(2) X Hy(z) = [1 —z73/2 ] X [1 +z73/2 ] =1—z73
2) Transfer function of the precoder:

! =B,(Z) > B'(z)=B(z)+B'(z) xz3

1
P = H(z) T1-773 B(z)

= by, = b;®bj_;
3) Equation defining the encoder:

H(z) =%= 1-2z35C2)=4@)—A@) xz73 5 = ay — a3

4) Equation giving the estimate of by,.
With precoding, the transcoder gives: a; = 2b; — 1, hence:
Cp = Qar — Qg3 = [Zb;( —-1- 2b1’(_3 + 1] = Z[b]’( - b],(_3] = Zbk

-1 6, =0-b, =0
- by ==|é| mod2 - ACk ~ Ok
2 Cx = iZ d bk =1
So a direct estimate of the sequence {b,} issued from the sequence {c; } received.

Without precoding:
~ 1
b = by = ¢, = 2[by — by_3] = by = §|Ck|@bk—3 mod 2

This leads to a propagation of decision errors. Indeed, if by, _5 is badly decoded, it
will be also the same case for by,.

5) Block diagram of the combined precoder, transcoder and encoder:

b, a
201 5.(0)
k-3 Z .

Figure 2.50. Combined scheme of precoder, transcoder and encoder
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6) Temporal sequences:

(b, rf{ofojrjof{rfry1rjof{1rfofoj11o
b, 0o (0 |0 |1 (O jOJOJO T | (L[ ]JO |1 |1 |1]1
fa,} -1 -1 )1 -1 f{-1 (-1 (1 |1 |1 [T |-1]1 |1 |1{l1
{c,} 210 (0 (-2]0 (22 |2 (0 (|-2]|]0 (020
{{;k} r{ofojrjof{rfry1rjof{1r (o foj1ijo

SO R o o 00 O

Table 2.31. Temporal sequences. For a color version
of this table, see www.iste.co.uk/assad/digital2.zip

7) Expression of the signal s, (kT):

5e(KT) = ,p(0) + ) anpl(k = 1T] + by (kT)

n*k

8) In this case, the intersymbol interference is:

I (6T) = ) @yl = mT] = —a_5p(37)

nzk
= sc(kT) = ayp(0) — ay_sp(3T) + by (kT)
9) In this particular case, we have:
sc(kT) = [a;, — ax_3]p(0) + by (kT) = ¢;,p(0) + by (kT) = Vi + b, (kT)
10) The different conditional probabilities of errors are as follows:
P, = Pr{¢y # 2/c, =2}
- P, = Pr{¢y =0/c, =2} + Pri{éy = —2/c, =2}

Pe_z = PT{@k * —Z/Ck = —2}
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- P,_, =Pr{¢,=0/c, =—=2}+Pr{¢, =2/c, =—2}
PeO = Pr{ék * O/Ck = 0}
- P, = Pr{¢y = 2/c,y =0} + Pr{¢, = —2/c, = 0}

a) Calculation of conditional probabilities of errors. According to the result
obtained in question 9, we have:

by (kT) = s.(kT) — V¢,

If s.(kT) € [c,d[ then by (kT) € [c —Vcy,d — Ve[

and Pr{é, # k/c, =k} =Pr{c—Vc, < b, (kT) <d —Vc¢}
The decision thresholds [c, d[ are such that:

¢, d € {y, £o}; Up=mp0)=mvV; m={-11}

2V
VCk= 0 —>#1=Vet;l_1=—V
=2V

Let’s express the decision thresholds according to gy, :

[5] — 20 x logo |-—| = 1088 dB >V =350 —>{“1:3'50b1
b c,dB 810 O-bl ' ' by U1 = —-3.5 abl
—_———— =y 356, — - — — -
0 Iék—o
———— —p, = 350, — - — -
=2V Cp =2

Figure 2.51. Values of sample c,/V, optimum
thresholds and decision classes of c;: ¢,
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b) Application of the decision rules. We have three possible decision values on
Cy, one without errors and two with errors.

c¢) Transmission of symbol ¢, = 2, we decide on reception:

G = 0 if sc(kT) € [u—g,pa[ = by (kT) € [y — Ve, iy — Ver|
Pr{é, =0/c, =2} =Pr{-V =2V < b, (kT) <V =2V}
Pr{¢y =0/c, =2} = Pr{-10.50,, < b;(kT) < —3.505,} =3 x 1075
&, = =2 if s.(kT) € [—oo,u_1[ = b (kT) € [—oo,u_y — Vi
Pr{¢, = =2/¢;, =2} = Pr{—o < b (kT) < =V — 2V}
Pr{¢, = —2/c;, =2} = Pr{—o0 < by (kT) < -10.50;, } =2 x 107°
- P, =Pr{¢, =0/c, =2}+Pr{cy =—-2/c, =2}
=3x107°+2x1072=3x%x107°

d) Transmission of symbol ¢, = 0, we decide on reception:
b = =2 if sc(KT) € [—oo,u_4[ = by (kT) € [0,y = Vi [
Pr{¢, = -2/¢c;, =0} = Pr{—o < b, (kT) < -V}
Pr{¢, = —2/c;, =0} = Pr{—o0 < by (kT) < =350, } =3 x 107°
&, = 2 if s.(kT) € [y, 0] = by (kT) € [uy — Vg, o[
Pr{é, =2/c, =0} =Pr{V < b, (kT) < o0}
Pr{¢y =2/c;y =0} = Pr{3.50, < b,(kT) <0} =3x107°
P, =Pr{¢y ==2/c;, =0} +Pr{¢, =2/c, =0} =3x107°+3x10"°
=6x107°

e) Transmission of symbol ¢, = —2, we decide on reception:
€ =0 if s, (KT) € [p_y, pis[ = by (kT) € [u_q — Ve, uq — Ve[
Pr{é, =0/c, = =2}y =Pr{—-V +2V < b, (kT) <V + 2V}

Pr{¢, =0/c, = —2} = Pr{3.50, < b, (kT) <1050, } =3 x107°
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G = 2 1f sc(kT) € [pg,00[ = by (KT) € [y — Vg, 0]

Pr{é, = 2/c, = —2} = Pr{3V < b, (kT) < o}

Pr{¢, = 2/c;, = —2} = Pr{10.5 0, < by(kT) < 00} =2 x 107°
P, =Pr{¢,=0/c, =—=2}+Pr{¢, =2/c, =—2}
=23x10°+2x10°=3x10"°

A p(x)

. et N . *
—16.5 —3..5 0 \ 3..5 10I.5 =
Figure 2.52. Gaussian probability law with zero mean
and unit standard deviation, and distribution intervals
Calculation of integrals:
o -10.5 -3.5 3.5 105 o
fp(x)dx=1=f + + f+ +f
o0 —o0 -105 -35 35 10.5
-10.5 o -35 105 -35 )
f=f andJ.=f andf=f
—oo 10.5 -105 35 - 3.5
-3.5 3.5 5] 3.5 oo
f+f+ =1—>f=1—2f=1—2><3><10‘5
-  -35 35 -3.5 3.5
=1-6x107°
10.5 © 3.5
—>2f =1—2f—f=1—2><2x10‘9—1+6><10‘5
3.5 10.5 =35
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10.5 -35
- f = f =~3x107°
35 -105

11) The total probability of error is then:

P, = Z Pi X P, with p, = Pr{c, =k} and k={-2,0,2,}
X

The symbols b, are independent and identically distributed on the alphabet
{0, 13}, hence:

Pri{b, =0} = Pr{b, =1} =1/2

The probabilities of emission of the symbols ¢, are:
1 1 1
P0=PT{Ck=0}=§I p2=PT{Ck=2}=Z; P—2=PT{Ck=_2}=Z

Hence finally:

b, =pOXPeO +p2XPe2 +p—2XPe_2

1 1 1
Pg=§><6><10‘5+Zx3x10‘5+1><3x10‘5=4.5><10‘5
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Digital Transmissions with Carrier

Modulation: Problems 27 to 33

3.1. Problem 27 - Digital transmissions with carrier modulation

We consider the general system of transmission of digital information with

modulation of a carrier represented in the block diagram of Figure 3.1.

The symbols b,, delivered by the binary source are emitted every T}, seconds.
The baseband encoder of the transmission system generates two baseband signals

I(t) and Q(t) as follows:

— separation of the binary sequence {b,} into two binary sequences {b,,} and

{b2n+1};

— transcoding of the sequences {b,,} and {b,,,1} into two sequences of symbols

{a,} and {a;,} € M; — ary and M, — ary respectively;

— pulse amplitude modulation using the basic pulse x(t):

_ (1 for t€[-T/2, T/2[
x(t) = {0 elsewhere

The two baseband signals I(t) and Q(t) are expressed by:

n

I(t) = Z a,x(t—mT) and Q(t)= Z an x(t —nT)

and indicate that symbols {a,} and {a,,} are emitted every T seconds.

Digital Communications 2: Directed and Practical Work,
First Edition. Safwan El Assad and Dominique Barba.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Transmitter Transmission channel
. — 1) () (1) 0
a, > .
Coder Modulator - Transmitter . Channel
o filter filter
E o .
t .
b1 { Gf). g(n)  h(0: H() Noise byo)
x(1) (fos 90
Receiver
st st Rs, (¢ p -
— Receiver » Demodulator - | Decision B} Transcoder —»
filter »| System >
G0 e | Faont B O F
Carrier > Clock
| recovery »| Tecovery

Figure 3.1. General block diagram of a digital transmission system with
carrier modulation and demodulation (Transmitter — Channel — Receiver)

The modulator is defined by the carrier signal:

pc(t) = Vexp[j2nfet + @.)]

It constructs a real signal s(t) by an adequate linear modulation of the digital
signal to be modulated:

c@® =11+ Q)

The linear transmission filter (of complex gain G,(f)) and reception filter (of
complex gain G,(f)) are of the band-pass type around the frequencies f, and —f.
The transmission channel is supposed to be modeled by a linear filter (of complex
gain H,(f)) to which is added an observation noise by (t).

This latter is assumed to be a Gaussian white random process, with a power
spectral density equal to I/2 in the frequency band covered by the receiving band-
pass filter.
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Moreover, let: H(f) = G,(f) X H.(f) X G.(f)

and: h(t) = g.(t)®h.(t)®g, (t) be assumed real.

1) What is the real signal s(t) at the output of the modulator in the general case
of amplitude and phase shift keying modulation (APSK) at M; X M, states? Then
determine its complex envelope, denoted s, (t). Finally, in the expression of the real
signal s(t), show explicitly the two components modulating in quadrature the carrier

pe(t).

2) From the previous results, determine the real signal s(t), its complex
envelope s, (t) and the components of the signal s(t) modulating in quadrature the
carrier for the following modulations:

a) QAM: quadrature amplitude modulation at M; X M, states;
b) PSK: phase shift keying modulation at M states;
¢) ASK: amplitude shift keying modulation at M states.

3) Considering that the bitrate is set to D, and that M = M; = M, = 2¥, what is
the symbol rate Dy of the signal s(t) for each of the four preceding digital
modulations (that of question 1 plus the three of question 2)?

From now on, it is assumed that the amplitude spectrum of the transmitted digital
modulation signal has a frequency band limited to:

A A
|f|e[fc—7f,fc+7f with Af < f.

We call H,(f) the frequency gain of the low-pass filter equivalent to the total
filter of frequency gain H(f) (which is a band-pass filter around frequencies f, and
—f.) and y,(t) the signal at the output of the equivalent low-pass filter (frequency
gain H,(f)) when the input signal is the previous signal x(t) (noise excepted).

We denote:
ye(t) = p(t) +jq(t)

In the same way, by denoting b(t), the noise by(t) filtered by the receiving
band-pass filter, we note:

be(t) = bep(t) + jbeq(t), the complex envelope of the filtered noise b(t).

4) What is the response of the global filter H (f) to the signal x(t) X p.(t)?
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5) If the impulse response of the equivalent low-pass filter H,(f) to the total
band-pass filter H(f) is: h.(t) = hey,(t) + jheq(t), then demonstrate that the

impulse response h(t) of the total band-pass filter is:
h(t) = Z[he,p(t) cos2rfet + @;) — heq(t) sin(2nf.t + (pc)]

In the following, we consider a 4-QAM digital modulation for which the
symbols a,, and a,, take the values 1 and —1. Decisions are made at instants of the
form: t;, = kT.

6) a) Considering the equivalent baseband transmission and reception system:
the digital modulated signals are replaced by their complex envelope, the band-pass
filters by their equivalent low-pass filter, determine the complex envelope, denoted
Sce(t), of signal s.(t) at the output of filter of frequency gain H,(f). Particularize
this one at the decision instants t;, = kT i.e. s, ,(kT).

b) By separating the real and imaginary parts of the complex envelope s, . (kT),
determine the intersymbol interference on the symbol a;., denoted I, (kT), on the one
hand, and on the symbol aj,, denoted Ir'n{ (kT), on the other hand.

7) It is assumed in the following, again in the context of a 4-QAM modulation
that the characteristics of the band-pass filters and of the transmission channel are
such that the equivalent low-pass filter H, (f) satisfies the Hermitian symmetry.

a) Show that y, (t) is then a real signal (q(t) = 0).

b) Show that the intersymbol interference is of a purely intra-channel type.

Solution of problem 27

1) The real signal s(t) at the output of the modulator is written:
s(t) =R {VZ pux(t —nT) explj(2nfet + ¢ + wn)]}
n

or:

5(0) = % {vz pnexp(jtbn) (¢ — nT)expli(2rft + m]}

with:

!

. ., L 271/2 _Ta
pnexp(ﬁpn) =cp=aptjay; pp= [arzl + anz] ; Yp =tan ! [_n]

an
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The pair (p,, P,,) belongs to a set of M; X M, possible amplitude-phase pairs: p,
being M, — ary and y,, being M, — ary.

The signal s(t) can also be written:
s(t) = Ris.(t) X exp[j2nfet + o)1}

hence its complex envelope s, (t) is:

Se(6) =V ) puexp(iipn)x(c = )

=V

> pucos@)xe —nT) +] ) pysin()x(t - nr)l
n n
The signal s(t) is also written:

s(t) = VZ Pn cos(P)x(t — nT) cos2nf.t + ¢.)
—VZ P Sin()x(t — nT) sin(2nf .t + ¢.)

or:

s(t) = V[I(t) cosnuf.t + ¢.) — Q(t) sin(2rf .t + ¢.)]

The signals I(t) and Q(t) are linear combinations of the baseband digital
signals.

2) From the preceding results, we have:
a) QAM: pexp(jin) = ¢ = ay + jay.

Hence, from response 1, we can write:

s®) =R

V) lan + jan) x(c — nDexpliCanft + M]

Zanx(t —nT) +jz ay x(t — nT)l

n

s.(t) = VZ cpx(t—nT) =V
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s(t) = VZ a, x(t —nT) cos(2rf.t + ¢.)
—VZ ay x(t —nT) sin(2rf.t + ¢.)

a, being M; — ary and a,, being M, — ary.
Or:
s(t) = V[I(t) cosruf.t + ¢.) — Q(t) sin(2nf.t + ¢.)]

b) In PSK modulation, we have: p,, = 1.

s(t) = ER{VZ x(t —nT) exp[j(2nf.t + @, + wn)]}

n

with:
7T .71- .
1/)1.=M+21M; i={0,1,--M—1} and M > 2

Also:

S0 =% {vZ exp(jpn) x(t = nTexplj(2fet + <pc>]}

n

= 50(6) =V ) exp(jih) x(t = nT)

=V

Z cos(y,) x(t — nT) +jz sin(y,,) x(t — nT)l

n

The signal s(t) can also be written:

s(t) = VZ cos(y,) x(t — nT) cos2nf.t + ¢.)

—VZ sin(y,,) x(t —nT) sin(2xf.t + ¢.)

s(t) = VII(E) cosrfot + @,) — Q) SinQrfat + 0L)]
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By setting:
an = cos(¥p); an = sin(¥,)
We note that the PSK modulation is identical to the QAM modulation.
¢) ASK: a;, = 0.

From the QAM modulation expression in which a;, is set to zero, we have:

s(t) =R VZ a, x(t —nT)exp[j2rf.t + ¢.)]

n

with:

2i
M-1

a; = 1; i={0,1,~-M—1} and M = 2k

s.(t) = VZ a, x(t —nT)

s(t) = VZ a, x(t —nT) cos(2rf.t + ¢.)

a, being M — ary.
Or also:

s(t) = V[I(t) cosrf.t + ¢.)]

3) One has:
1 1
D=—=—; Dy==; T,=kT,; M=2F >k=log, M
T, T,

1 1 D D
T, kT, k log,M

with D: bitrate; D,: symbol rate.
— APSK modulation:

at M; X M, = 2% x 2% = 22k states — Dy =
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— QAM modulation:
at My X M, = 2F x 2% = 22k states — Dj =5k
— PSK modulation:
X D
at M = 2% states —» D; = T

— ASK modulation:
D
at M = 2K states — Ds = T
4) We have:
Ye(£) = p(6) +jq(¢)

be(t) = bey(t) + jbeq(t)

x(1) X p () »(6)?
— (1) >

We can write:
y(©) = [x(t) X p.()I®h(t)
But this relation is not very useful here.

To find the expression of y(t), one has just to apply the definition of the
complex envelope:

y(t) = R{y.(t) X exp[j@nft + @)1}

y(©) = R{[p(®) +jq(O)] X [cos2mfet + @c) + jsin@@rfet + )]}
So:

y(@) = p(t) X cos2ufct + @c) — q(t) X sin(2nft + ¢c)
5) Demonstration of:

h(t) = Z[he,p(t) cos2rfet + @;) — heq(t) sin(2nf.t + <pc)]
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I
H () H,(f) H'
n n } 1 »
S A -, -+ A 0 SO o oA,

Figure 3.2. Supports of transfer function H(f) and H,(f). For a color
version of this figure, see www.iste.co.uk/assad/digital2.zip

H(f) breaks down into:
H(f)=H"(f)+H (f)

Yet H(f) is such that: H(—f) = H*(f) because h(t) is a real function
(* denotes the conjugate complex).

By definition:
He(f) = H*(f + fo)

N {H+(f) =H(f = fo) = H.(H®(f - fo)
H=(f) = [H* (=T = [He (=R (—f — fOI

but:
[6C )I"=6C ) 6(-f—-f)=6(f+f)
- H(f) = H:(=H®S(f + f2)
Finally, we get:
H(f)=H"(f) +H (f) = He(H®S(f — fo) + Ho(=/)®S(f + f2)
and as:
Flzz@®}=2"(-f)
hence:

h(t) = ho(t) exp[j(2nf.t + @) + hi(t) exp[—j2rf .t + ¢c)]
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SO:

h(t) = [he,p(t) + jheq (t)][cos(anCt + @) + jsinuf.t + ¢.)]
+[he,p(t) _jhe,q (t)] [cos@rfet + @c) — jsin(ufet + ¢.)]

Finally, we get:
h(t) = Z[he,p(t) cos2rfet + @;) — he () sin(2nf,t + (pc)]

6) 4-QAM modulation: a, and aj, € {—1,1}.

a) Determination of the complex envelope, denoted s, . (t), of the signal s.(t)
at the output of the filter H, (f)?

We have:

5o(6) =V ) [an + ja] x(¢ = nT)

As the action of x(t) on the input of the equivalent baseband system is y,(t) =
p(t) + jq(t) at the output of filter H,(f) (noise-free), and taking into account the
response of filtered noise turned into its equivalent baseband noise, that is b, (t), the
response S (t) is then:

5ee® =V Y [an + ja] [p(c = nT) + jq(t = nT)] + b (0
With t = t;, = kT, then we have:
See(kT) =V ) [y + jay] (pICk = T + jqle = wT1} + b (kT)

b) Intersymbol interference on the symbols a; and ay,, respectively:

R[s. o (kT)] = V {akpm) + D @l =T = > anqllh - nm}

n*k n

+bep, (KT)
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SseekD] =V [a;p(m £ apllk = mTT+ ) anqlle - n)T]}

n+k n
+be,q (kT)
Hence:

I (KT) = V| Y anplk =mT] = ) atqlk = mT]

n*k n

ISl intra—channel ISIinter—channel

Iy ) = V| aipl(k =mT]+ ) anqlCe = mT]

n*k
ISIintra—channel ISIinter—channel

7) Show that y, (t) is a real signal and that the intersymbol interference is purely
an intra-channel interference.

a) As: Ho(f) = Go o (f) X Heo(f) X Gy o (f) satisfies the Hermitian symmetry,
then h,(t) is a real function, hence h,(t) = h,,(t) and y,(t) = x(t)®h,(t) is a
real function. Therefore, we have: q(t) = 0 and y,(¢t) = p(t).

b) From question 6 (b), we have:

I (6T) =V ) anplCe =m)T]; L, (6T) = V > aiplCe = n)T]

n#k n#*k

therefore, the intersymbol interference is of a purely intra-channel type.

3.2. Problem 28 - 4-QAM digital modulation transmission (1)

The transmission of binary information based on a 4-QAM digital modulation is
considered. The block diagram of this transmission system (transmitter, transmission
channel, receiver) is given in Figure 3.3. In this type of modulation, symbols {a,}
and {a,} take the values on the set {1, — — 1}.

The symbols b, delivered by the binary source are emitted every T} seconds.
The baseband encoder of the transmission system generates two baseband signals
I(t) and Q(t) as follows:

— separation of the binary sequence {b,} into two binary sequences {b,,} and
{b2ns1};
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— transcoding the sequences {b,,} and {b,,,,} into two sequences of symbols
{an}and {ap} € {1,— -1}

— pulse amplitude modulation using the basic pulse x(t):

_(1 for te[-T/2, T/2[
x(t) {0 elsewhere

Transmitter Transmission channel
. — 10 () 50 0
n a" > 1 +
—»| Coder Modulator £ Tragii:rltter > C?_jgiel
T, {a',} > +
o .
b1 4 G, &) h(n; Hf) Noise by)
x(1) (/> 9.
Receiver
s (1 s.(t NRls, (¢ o A
(0) 10 [s...(1)] (o 3
— Receiver » Demodulator Decision Transcoder —»
filter »| System >
= N ¢ —
(N g | oot [pO1 k7 ta
Carrier = Clock
| recovery »| TECOVETY

Figure 3.3. General block diagram of a digital transmission
system with quadrature amplitude modulation

The two baseband signals I(t) and Q(t) are expressed by:

I(t) = Z a,x(t —nT)

n

Q) = ) ayx(t —nT)

n

and indicate that symbols {a,} and {a;,} are emitted every T seconds.

The modulator is defined by the carrier signal:

pc(t) = Vexp[j2nfet + @.)]
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It constructs a real signal s(t) by an adequate linear modulation of the digital
signal to be modulated:

c(®) =1(t) +jQ(t)

The linear transmission filter (of complex gain G.(f)) and reception filter (of
complex gain G,(f)) are of the band-pass type around the frequencies f, and —f.
The transmission channel is supposed to be modeled by a linear filter (of complex
gain H.(f)) to which is added an observation noise b, (t). This latter is assumed to
be a Gaussian white random process, with a power spectral density equal to I/2 in
the frequency band covered by the receiving band-pass filter.

Moreover, let:

H(f) = Ge(f) X He(f) X Gr(f)

and:

h(t) = g.(®)®h()®g,(t)

be assumed real.

1) a) Write the real signal s(t) at the output of the 4-QAM modulator at M; X M,
states. Show explicitly in the expression of the real signal s(t) the two components
modulating in quadrature the carrier p.(t).

b) Then determine its complex envelope, noted s, (t).

From now on, it is assumed that the amplitude spectrum of the transmitted digital
modulation signal has a frequency band limited to:

A A
|f|e[fc—7f,fc+7f with Af « .

We call H,(f) the frequency gain of the low-pass filter equivalent to the total
filter of frequency gain H(f) (which is a band-pass filter around the frequencies f
and —f;) and y,(t) the signal at the output of the equivalent low-pass filter
(frequency gain H,(f)) when the input signal is the previous signal x(t) (noise
excepted).

We denote:

Ye(t) = p(t) +jq(t)
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In the same way, by denoting b(t), the noise by(t) filtered by the receiving
band-pass filter, we denote by b, (t) the complex envelope of the filtered noise b(t):

be(t) = bey(t) + jbeq(t)

2) a) Determine the complex envelope, denoted s.(t), of signal s.(t) at the
output of the filter of frequency gain H,(f), and taking into account the noise
b (t).

b) Particularize this one at the decision instants t;, = kT, that is s, (kT).

3) By separating the real and imaginary parts of the complex envelope s, . (kT),
determine the intersymbol interference on the symbol ay, denoted I,,,, (kT), on the
one hand, and on the symbol aj,, denoted IT'n; (kT), on the other hand.

It is considered that:

—-1+a) (1+a) 1
2T ' 2T witha=g

P(f) = Fipy =47 T/ € [

0 otherwise
-1 1
Q(f) =F{q(O)} = {aT for /€ [ﬁﬁ]

0 otherwise

4) Determine the expressions of p(t) and q(t). Then deduce:
p(0), p(£T), p(£2T), q(0), q(£iT) with i integer # 0

5) Give the two simple expressions of the intersymbol interference I,,,, (kT) and
Ir'n; (kT) in the case where we consider p(iT) = 0 Vi # {0,—1, 1}, then the values

of these intersymbol interferences for the messages m,; interfering with a; and for
the messages m; interfering with a;, (you will take for simplification = = 3).

After the quadrature demodulation, both noises b,,(kT) and b,q(kT) are
supposed to have the same power 2. Let the signal-to-noise ratio defined as:

[%] = 20 x logy, [VZ(O)]

e

be equal to 14.4 dB after demodulation for each signal I(t) and Q(t).

From now on, we assume that symbols b,, are independent and equiprobable.
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6) Give the expression of the probability P, ; of error on symbol a; at the output
of the decision block, and the probability P, ,/ of error on symbol ay,.

7) a) Calculate the conditional probabilities of error on symbol ay:
Pr{('ik = a]-/ak = ai,ml}; ] * l, aj = {—1,1}, a; = {—1, 1}
for each of the messages m; interfering with a;, .

b) Deduce the probability of error P, ; on symbol a,.
8) a) Calculate the conditional probabilities of error on symbol aj,:
Pri{a, = aj/aj = a;m}; j#i; aj ={-1,1}; aj = {-1,1}
for each of the messages m; interfering with a;, .

b) Deduce the probability of error P, ,» on symbol ay, .

9) By considering that symbols a; and a;, are independent and equiprobable,
what is the total probability of error P, on the quaternary symbol {c, = ay, a;}
transmitted?

NOTE.— If X is a Gaussian random process, of mean value m and standard deviation
o, you will take:

Pr{lX—-m|>30}=26x%x10"3
Pr{lX—m|>450}=6x10"°
Pr{lX—m|>60}=0

Solution of problem 28

1) a) The real signal s(t) at the output of the modulator (with 4-QAM
modulation) is written:

s@®) =R VZ[an + jay] x(t —nT)exp[jrf.t + ¢.)]

n

s(t) = VZ a, x(t —nT) cos(2rf.t + ¢.)

—VZ ay x(t —nT)sin(2rf.t + ¢.)
n
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b) By definition, s(t) is also written:
s(t) = Rise(t) x exp[j@nfet + @)}

Hence the complex envelope of signal s(t) is:
5o(6) =V ) [an + ja) x(¢ = nT)
n

2) a) As the action of x(t) at the input of the equivalent baseband system is
v, (t) = p(t) + jq(t) at the output of the filter of frequency gain H,(f) (noise-free),
and taking into account the response of filtered noise turned into its equivalent
baseband noise, that is b, (t), the response s, (t) is then:

5ee(®) =V ) [ay +jas] [p(t = nT) + jg(t = nT)] + b,(©)

b) With: t = t;, = kT, s, (kT) is written:

SeeKT) =V ) [an + ja ] {pl(k = mT] + jal(k = wT1} + b, (KT)

3) Determination of the intersymbol interference on symbols a; and a,
respectively.
We have:

R[seo(kT)] =V {akpm) + 2 auplle =Tl = ) anqllh - n)T]}

n#k n

+bep(KT)

SscekD] =V [a;p(m £ apllk = mTT+ ) anqlle - n)T]}

n+k n
+b q(KT)
hence:
[ 1
1) =V| Y el =71 - Y agalte - w1
lnik n J
ISI intra—channel ISI inter—channel
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[ 1

I, G6T) = V| > aiplle =TT+ ) auqlCk = m)T] |

ln#k n J
ISIintra—channel ISI inter—channel

4) We have successively:

1 _ (14+a) sin[2n(1+ a)t/2T]
P(O) = FP(Y = T X = X /2T

sin[ (1 4+ a)t/T]

=0+ax (1 + a)t/T

a(0) = Fi{Q(p)} = oL  Sinl2nt/2T] _  sinlwt/T]

T~ 2mt/2lT 7 wt/T
p(=Q+a)=1+1/6=7/6

7 sin|r+g] -1 -1

p(&T) =X nx% 2~ 6
because: sin [n + %] = —sin [%] = _71

7 sin 27T+E 3/2 3 3
p(£27) = = x 3] v _ve 1£

27‘[)(% 2n

3

q(0) =a=1/6; q(£iT) =0V i=+0; i:integer

5) One has successively:

k+1

I, (kT) =V

anpl(c =T = > ahaql(k =mT]

n=k—1; n#k n l

-V
L, (kT) = V[ag_1p(T) + ay11p(~T) — a;q(0)] = o [ak-1 + arsr +ail

k+1
I (kT) = V[

n=k-1; n¥k

apllc =]+ ) anqllk = mT]

! ! ! _V ! !
Im{(kT) = Vla_1p(T) + aj41p(=T) + axq(0)] = 3 (@1 + Qpyr — ]
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Hence, the values of the intersymbol interference for decision on the symbols a;
and a,, are given in Table 3.1.

my = (@1, Qe Qia} | Ty (KT) | my = {@)_q, Qg Qs } I;n,’(kT)
S T T V/2 11 - V/6
-1 V/6 -1 1 -V/6
-1 -1 v/e -1 -1 V/2
111 -V/6 111 V/6
1 -1 -1 v/6 1 -1 -1 —V/6
1 -1 1 —-V/6 1 -1 1 —V/2
11 - -V/6 11 -1 V/6
11 1 -v/2 111 -V/6

Table 3.1. Amplitudes of intersymbol interference for decision on a;, and a,,

6) The probability of error on symbols a; and ay, are, respectively:

8 8
Poa =01 [2 Pm; X Pe_1 Z Pm; X Pell
=1 =1

+D1

8 8

Pear =P [Z Py X Per, | + 11 Z Pmj % Pe;
1=1 =1
where:
1 1 1 1
pi=Pr{ak=i}=M=§;p{=Pr{a,’(=i}=M=§ ; i={-1,1}

since the symbols are equiprobable. M is the number of levels a symbol can take.

There are M! = 23 = 8 interfering messages m; with symbol a;. Likewise,
there are ML = 23 = 8 interfering messages m; with symbol aj,. Moreover:

1 1 1 1

MY 8

pml:ML_g; pmi

from the fact that the binary symbols are equiprobable, then the messages are
equiprobable.
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Finally, note that:
P._, = Pe1/-1,m) = Pri@y = 1/a, = —1,m;}
Pe1 = Pe(—l/l,ml) = Pr{dy = —1/a, = 1,m;}
Por, =Por(1yoam)) = pria, =1/a;, = -1, my}
Poy = Por(ajimy) = Pridh = —1/aj, = 1,m}}
7) a) Calculation of the conditional probabilities of error on symbols a,:
1

P, =Per/-1mp = T exp [_E
& VD(0) =l (kT)

2
ep db
O_ez ] ep

~[vo(0)+1m, e ,

1 1 be’p
exp [— 50'_92] dbe,p

P€1 = Pe(—l/l.ml) = o m
e —00

The signal-to-noise ratio is:

Vp(0 Vx7/6

[ﬂ] — 20 xlogyg [_/
O, o

e

[%] = 20 x logy, ] =14.4dB

A% 5V 2V
_>6—0655'25_>V:4'509_)?:7'5Ue_)?:606_)?:306

Hence, Table 3.2 gives the probabilities of error conditional to the interfering
messages m;.

my = {1, @ A1} | VP(O) — I, | Pe, |—[VP(0) +1,,,] P,
101 -1 30, 1.3x1073 -7.50, 0
-1 011 450, 3% 1076 —6 0, 0
4101 A1 450, 3x10°6 —60, 0
101 1 60, 0 —4.50, 3x107°
1 -1 -1 450, 3x10°6 —60, 0
1 -1 1 60, 0 -4.50, 3x107°
1 1 -1 60, 0 —4.50, 3x107°
1 1 1 7.5 0, 0 -30, 1.3 x 1073

Table 3.2. Probabilities of error on a; conditional
on possible m; interfering messages
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b) Probability of error P, 4:

1 8
X g% Z[Pe-l +P,]

=1

Poo=

N| =

1
P, = E[1.3 X103 +3x3x107°+3x3x107°+ 1.3 x 1073]
=1.636 x107*

8) a) Calculation of the conditional probabilities of error on symbols ay,:

1 ( 162,
Per, = Porajmami) = — = f exp| =55 | dbeg
T vp©-1! kD)
m

—[Vp(0)+1’ ,(kT)]
m
P,r=P 1=; ex ——@db
ey e'(-1/1,mj) 0% o 1Y 2 O'ez eq

Hence, Table 3.3 gives the probabilities of error on ay, conditional on the
interfering messages m,.

m) = @y, @ Ofsr} | VPO — L | P, | =[vp@ +L,] | Py
1041 -1 4.5 g, 3x107° —60, 0
1011 60, 0 —4.50, 3x10°°
101 A 30, 1.3x1073 -7.50, 0
1011 450, 3x107° -6, 0

1 1 41 60, 0 —450, 3x107°
1 -1 1 750, 0 -30, 1.3x 1073
11 - 4.5 g, 3x1076 —60, 0

11 1 60, 0 —-4.5a, 3x1076

Table 3.3. Probabilities of error on a;, conditional
on possible m; interfering messages
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b) Probability of error P, ,/:
8
1.1
Pe‘al —§X§XZ[P9L1 +Pe{:|
1=1

1
P :E[1.3><10'3+3><3x10‘6+3x3><10'6+1.3><10'3]

ea

=1.636x107*=P,,

9) The probability of error per quaternary symbol emitted ¢, = {ay, a;} is:

P, = Pr{¢y # cy} = Pr{dy # a, or 4; # a;}

P, . = Pr{a, # ai} + Pr{a, # a;} — Pr{d, # a, and a; # a;}
Since a;, and a;, are independent symbols, then we have:

P, . = Pr{a, # ai} + Pr{a;, # ai} — Pr{d, # a,} x Pr{d; # a;}

> PBc=Fq+ Pe,a’ —F,, X Pe,a’ =327 x 1074

3.3. Problem 29 - Digital transmissions with 2-ASK modulation

We consider the transmission system with 2-state ASK digital amplitude
modulation given by the block diagram of Figure 3.4.

The symbols b,, delivered by the binary source are emitted every T, seconds
with the following probability law:

Prib=0}=1/4; Prib=1}=3/4
and the binary symbols b,, are considered independent.

The transcoding of binary information {b, } into symbols {a,} corresponds to the
following rule:

iftb=1 thena=1; if: b=0 thenia= -1

The baseband encoder of the transmission system generates the baseband signal
I(t) by pulse amplitude modulation using the basic pulse x(t):

_ (1 for t€[-T/2, T/2[
x(t) = {0 otherwise
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Transmitter Transmission channel
1) () 50 0
b} Coder Transmitter Channel +
— » Modulator £ fil I
T {a} ilter ilter v
b
br 4 G gty h(0; Hp Noise b0
x(1) (/> @)
Receiver
s (1 st NRls, (¢ p -
S‘r( ) s‘(( ) [S(,,r,( )] {ak} {bk}
— Receiver » Demodulator - | Decision » Transcoder —»
filter »| System
A RIGARG -
G ). gl . o0t S
Carrier > Clock
| recovery »| Tecovery

Figure 3.4. Block diagram of a digital transmission system with 2-ASK modulation

The baseband signal I(t) is expressed as:

I(t) = Z a,x(t —nT)

n

The modulator is defined by the carrier signal:

pc(t) = Vexp[jnfet + @.)]

It constructs a real signal s(t) by an adequate linear modulation of the baseband
signal I(t) to be modulated.

The linear transmission filter (of complex gain G,(f)) and reception filter (of
complex gain G,(f)) are of the band-pass type around frequencies f, and —f,. The
transmission channel is assumed to be modeled by a linear filter (of complex
frequency gain H.(f)) to which is added an observation noise by(t). This latter is
assumed to be a Gaussian white random process, with a power spectral density equal
to I;/2 in the frequency band covered by the receiving band-pass filter.
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Moreover, let:

H(f) = Ge(f) X He(f) X Gr(f)

and:

h(t) = g.(®)®h()®g,(t)
be assumed real.
1) Write explicitly the real signal s(t) at the output of the modulator then

determine its complex envelope: s, (t).

From now on, it is assumed that the amplitude spectrum of the transmitted digital
modulation signal has a frequency band limited to:

A A
|f|e[fc—7f,fc+7f with Af < f.

We call H,(f) the frequency gain of the low-pass filter equivalent to the total
filter of frequency gain H(f) (which is a band-pass filter around frequencies f, and
—f.) and y,(t) the signal at the output of the equivalent low-pass filter (frequency
gain H,(f)) when the input signal is the previous signal x(t) (noise excepted).

We denote:

ye(t) = p(t) +jq(t)

In the same way, by denoting b(t), the noise by(t) filtered by the receiving
band-pass filter, we note b, (t) the complex envelope of the filtered noise b(t):

b.(t) = be,p (®) +jbe,q ®)

2) a) Determine the complex envelope, denoted s..(t), of the signal s.(t) at the
output of filter H,(f) and in taking into account the noise b, (t). Particularize this
one at the instant t,, = kT of decision, that is s, (KT).

b) By separating real and imaginary parts of the complex envelope s, .(kT),
determine the intersymbol interference on symbol ay, denoted I, (kT), on the one
hand, and on symbol ay,, denoted 11'712 (kT), on the other hand.

3) Is it interesting to consider thereafter that the filter H,(f) verifies the
Hermitian symmetry in the case of a 2-ASK modulation? Justify your answer.
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After quadrature demodulation, both noises b, ,(kT) and b, ,(kT) are supposed
to have the same power o2. The signal-to-noise ratio given by:

Vp(0)
g,

[%]dB =20 x loglo[

is equal to 12 dB for signal R[s, . (kT)] after demodulation.
It is considered that the amplitude spectrum P (f) of the real part is given by:

—-(1+a) O+a) 5
2T ' 2T witha=g

P(f)=Flp)y =47 P S € [

0 otherwise

4) a) Determine the expression of the signal p(t) and give the values of p(0) and
p(£T).

b) Give the relation of the optimal threshold ug = po,p: of the decision block
and calculate its value according to o, (to simplify, you will take later in the
problem 1 = 3).

c¢) In the case where we consider that only the symbols adjacent to a given
symbol a; interfere with it, so the interfering messages are of the form: m; =
{ak—1,axs1}, calculate the intersymbol interference I, (kT) and the probability

Pm, = Pr{m,} for each message m, interfering with a,.
5) a) Determine the expression of the probability of error P, ; on symbol ay,.

b) For each message m,; interfering with symbol ay, calculate the conditional
probabilities of erroneous decisions:

Pe_y = Pe(1/-1,mp = Prid, =1/a; = —-1,m;}
Pe1 = Pe(—l/l,mz) = Pri{d, = -1/a, = 1,m}

c¢) Deduce the probability of error P, , on symbol a;. What is the probability of
error P, ;, on the binary information b, transmitted?

NOTE.— If X is a Gaussian random process with mean value m and standard
deviation o, you will take:

Pr{|X —m| > 3.119 ¢} = 1.92 x 1073

Pr{|X —m| > 3.395 0} = 6.8 x 10~*
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Pr{]X —m|>3.8420} =14 x107*
Pr{lX —m| > 4.118 0} = 6 x 1075
Pr{lX—m|>450}=0

Solution of problem 29

1) Signals s(t) and s,(t) are given by:

s(t) = ER{VZ a, x(t —nT)expljrf.t + )]

n

= VZ a, x(t —nT) cos2nf,t + ¢.)
n
hence its real envelope s, (t):
s.(t) = VZ a, x(t —nT)
n

2) a) One has: s,(t) =V Y, a,x(t —nT) and since the action of x(t) at the
input of the equivalent baseband system is y,(t) = p(t) + jq(t) at the output of
filter H,(f) (noise-free), and taking into account the response of filtered noise
turned into its equivalent baseband noise, that is b, (t), the response s, . (t) is then:

5ee®) =V ) @, [p(t = nT) + ja(t = nT)] + b (2)
For t =t = kT, s.,(kT) is written:
5ee(kT) =V ) @y {pllk = mT] + jqllk =TI} + b (kT)

So:

ER[Sc,e (kT)] =V [akp(o) + Z a,pl[(k — n)T]} + be,p(kT)

n+k

S[sce(kT)] = V ;2 a,ql(k n)T]} + by g (KT)

n



224  Digital Communications 2

b) Hence:

Iy, (kT) =V

> anplte = m1]

n+k

P L) =V

> anale - nml

n

Since the useful signal is only carried by the real component in phase (because in
2-ASK, a,, = 0 V n), only the real part of s, ,(kT) is interesting.

3) Considering that H,(f) verifies Hermitian symmetry does not matter,
because, a; = 0 V n, the real part of s ,(kT) does not change. After demodulation,
only the channel resulting from the demodulation with the carrier in phase is
reconstructed and thus, even if the imaginary part of s ,(kT) is non-zero, this does
not matter.

4) a) We have:

sin[r (1 + a)t/T]

p(®) = FTHP(N} = 1+ @) x —

p(0)=(1+a)=1+5/6=1833

sin [n + 5?”] _ —sin [5?”] _ —sin [%] _ __1 N __1

+7) = =
p(T) T T s 2m 6

b) The optimal threshold is given by:
U =U = _0—32 lOg I:E]
0,e Oopt.e ZVp (0) e 1

p-1=1/4; p1=3/4 - uy.=-0.138 g,
The signal-to-noise ratio is such that:

s Vp(0)
[E]dB =20 x loglo[ p

e

]=12dB

hence:

Vp(0) =3.980, »V =217,
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¢) Amplitude I,,,, (kT) and probability p,,, of the intersymbol interference:

k+1
Iy (KT) = V a,pl(k —n)T]
n=k—1;n#k
L, (KT) = Vi[ag_1p(T) + e 1p(~T)] = — [a_1 + Qs 1]

6

Hence the amplitude and probabilities of the intersymbol interference for
decision on symbol a; given in Table 3.4.

U | my={ay1, ars1} %V [ak-1+ ags1] | Pmy
1 -1 -1 V/3=0.723 g, 1/16
2 -1 1 0 3/16
3 1 -1 0 3/16
4 11 —V/3=-07230, | 916

Table 3.4. Amplitude L, (kT) and probability p,, of the intersymbol interference

5) a) Expression of the probability of error P, ;, on symbol ay:

4 4
Poa =01 [2 Pm; X Pe_1 Z Pm; X Pell
=1 =1

b) Calculation of the conditional probabilities of error on symbol ay,:

+D1

1 1 bép
Pe_l = Pe(l/—l,ml) = o €xp _50'_92 dbe,p
¢ o, +VD(0)=Im, (KT)
to,e=[VP(0)+1m (kT)]
P, =P ! f Lbe, db
= _ = —m ex —— —
eq e(-1/1,my) O'em p 2 O_ez ep

Hence, Table 3.5 gives the conditional probabilities of erroneous decisions based
on interfering messages.
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m; = {@y_1, Qys1}| Hoe + VP(0) — Iy, P, , Hoe — [VP(0) + I, | P,
5 . | 3.119 0, 9.6 x 107* —4.841 0, 0
-1 1 3.842 g, 7% 1075 —4.118 o, 3x107°
1 -1 3.842 g, 7 %1075 -4.118 g, 3x1075
1 1 4.565 o, 0 —3.395 g, 3.4 x107*

Table 3.5. Conditional probabilities of erroneous
decisions based on interfering messages

c¢) Calculation of the probability of error:

4 4
Peq =Pp-1 [Z Pm, X Pe_1 Z Pm, X Pel]
=1 =1

P —1[1 X 9.6 X107+ 2 x 3 x7x10‘5]
ea " 4l16 7 16

+D1

+3[2x 3 X 3% 1075 + ? x34x10‘4]
4 16 16 '
=173 x107*

We have: P, , = P, ; since a symbol a depends only on a single symbol b.

3.4. Problem 30 — 4-QAM digital modulation transmission (2)

We consider the digital transmission system with 4-QAM modulation given by
the block diagram of Figure 3.5. For this type of modulation, symbols a,, and a,
take the values {1, —1} with the following probability law:

Pr{a, = 1} = Pr{a,, = 1} = p, = 0.65

Pr{a,

-1} =Pr{a, = -1} =p_, =035
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Transmitter Transmission channel
. — 1) () (1) 0
a, > .
Coder Modulator - Transmitter . Channel
o filter filter
E o .
t .
b1 { Gf). gty h(0: H() Noise byo)
x(1) (fos 90
Receiver
st st Rs, (¢ p -
— Receiver » Demodulator - | Decision B} Transcoder —»
filter »| System >
(), g(1) . oot EE N P
Carrier > Clock
| recovery »| Tecovery

Figure 3.5. Block diagram of a digital transmission
system with quadrature amplitude modulation

We call H,(f) the frequency gain of the low-pass filter equivalent to the total
filter H(f) (which is band-pass around frequencies f, and —f,) and we denote y, (t)
the signal at the output of the equivalent low-pass filter (frequency gain H.(f))
when the signal input is the previous signal x(t) (noise excepted):

Ye(t) = p(®) +jq(t)

In the same way, we call b(t), the noise b, (t) filtered by the receiving band-pass
filter and we denote b, (t) its complex envelope:

be(t) = bep(t) + jbeq(t)

The two components (real and imaginary parts) of the noise b, (t) are assumed to
be Gaussian, zero mean, of the same variance 62 and decorrelated. Moreover, after
demodulation, the signal-to-noise ratio on each channel is the following:

s Vp(0)
[E]as =20 x logy, [0—8] =9.6dB
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1) Give the expression of the complex envelope s, (t) of the 4-QAM modulation
signal.
2) Determine the complex envelope, denoted s, . (t), of signal s.(t) at the output

of the filter of frequency gain H,(f), and taking into account the noise b,(t).
Particularize this one at the decision instants t, = kT, that is s . (kT).

3) Write the real part ‘R[sc‘e (kT)], and imaginary part S[sc,e (kT)] of the signal
Sc,e(KT), showing explicitly the useful signal, intersymbol interference (intra and
inter-channel), and noise on each of these two parts.

It is considered that the amplitude spectrum P(f) of signal p(t) is a constant
function, equal to T on the frequency domain:

-(1+0) 1+ a)
2T ' 2T

with @ = 1/4, and zero elsewhere.

It is also considered that the amplitude spectrum Q(f) of signal q(t) is a
constant function, equal to [1 + a]T on the frequency domain:

[—1 1
2T ' 2T
and zero elsewhere.

4) Determine the expressions of signals p(t) and q(t) and give the values of:
p(0); p(£T); q(0); q(£T)

(in the rest of the problem you will take m = 3).

5) Give the expressions of the intersymbol interferences Iml(kT) and Ir'n{ (kT) in
the case where we have p(iT) = 0V i # {0,—1, 1}.

6) Calculate the values of the intersymbol interference Ir'n; (kT) for the different
possible combinations of the message m; interfering with symbol a;.

7) Give the expression of the optimal threshold pj, 6 = p and

0,e = MOopt,e
calculate its value according to a,.

8) Show that, even without noise, the probability of error is very high.
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Also, it is decided to more completely correct the equalization filter on the
in-phase channel so that the amplitude spectrum P(f) of signal p(t) is constant,
equal to T, on the frequency domain:

[ZT 2T

and zero elsewhere.

Moreover, the amplitude spectrum Q(f) of signal q(t) is adjusted to the value
aT /2 over the frequency domain:

[ZT 2T

and zero elsewhere.

9) Under these conditions, give the new expression of the intersymbol
interference IT'n; (kT) and calculate its value for the different messages m.

10) Give the expressions of the conditional probabilities of errors:
Por, = Por(1jo1ml) = pria, =1/a;, = -1, my}
Por =Po(_ijiml) = pria, =-1/a;, = 1,my}
and calculate their values.

11) Give the expression of the probability of error P, ,» = Pr{d, # a;}

and calculate its value.

NOTE.— If X is a Gaussian random process, with zero mean (m = 0) and reduced
standard deviation (o = 1), we will assume we have approximately:

Pr{|X| > 32} =14x1073; Pr{|X|> 2.6} = 9.4 x 1073
Pr{|X| >28}=52%x10"3; Pr{|X|>34}=6x10"*

Solution of problem 30

1) The complex envelope is given by:

so(t) = Vz[an +jal] x(t —nT)
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2) Determination of the complex envelope s, . (t).
Since the action of x(t) at the input of the equivalent baseband system is
v.(t) = p(t) + jq(t) at the output of filter of frequency gain H,(f) (noise-free),

and taking into account the response of filtered noise turned into its equivalent
baseband noise, that is b, (t), the response s, (t) is then:

5ee(©) =V ) [an +jas] [p(t = nT) + ja(t = nT)] + b,(6)

For t =t} = kT, s;,(kT) is written:

5ee(kT) =V ) [an + jas] {pl(k — mT] + jqllhk = mTT} + o (KT)

3) Expressions of the real R[s..(kT)| and imaginary 3[s..(kT)| parts of the
signal s, (kT):

R[sc,e (k)] = Vayp(0) + Ly, (KT) + b, (kT)

S[sce®kT)] = Vap(0) + L (KT) + be g (KT)

with:
I (€)= V| Y anple = w)T] = > asqlCe = )T]
nxk n
ISIintra—channel ISI inter—channel
I, (k1) = V| Y aipl(e =1+ ) auql(k = mT]
n#k n
ISIintra—channel ISIinter—channel
4) We have:

sin[r (1 + a)t/T]
(14 a)t/T

p(®) = F{P(} =1 +a) x

. B sin[m t/T]
qt) =F {Q(f)}—(1+a)xw

p(0)=1+a)=1+1/4=5/4=1.25
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p(T) = Sin[i”/ 4 _2‘7/? =~ —-0235 (m=3)

q(0) = (1+ a) =1.25; q(xiT) =0V i +* 0; i: integer

5) Expressions of the intersymbol interference:

k+1
D =V| > awlte=mT] =) anqlte - n)T]l
n=k—-1; n#k n
L, (KT) = V{ay_1p(T) + ay41p(=T) — a;,q(0)]
3\/1/_[(1,( 1+ Ageq +ix 3v2 x ak]
k+1
Ly =V Y alpltk=mT]+ ) anqlle=n)T]
n=k-1; n#k n

I;n; (kT) = V]ag_1p(T) + ap1p(=T) + axq(0)]

5
a + a ><3\/§><a]
3\/—[k1 k+1 — k
" (kT) = V[ +q 15\/§x ]
m) = a a —Xa
32 k-1 k+1 7 k

6) Amplitudes of the intersymbol interference.

These are given in Table 3.6 for the different possible intersymbol interferences.

m; = {ay_q, ay, Aj14} I;n;(kT)
-1 -1 -1 —0.788V
-1-1 1 —-1.25V
-1 1 -1 1.72V
-1 1 1.25V
1 -1 -1 —-1.25V
1 -1 1 —1.72V
1 1 -1 1.25V

1 1 1 0.778V

Table 3.6. Amplitudes of intersymbol interference I ;(kT)
for the different possible interfering messages m;
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7) Calculation of the optimal threshold. We have:

. _ _ 02 [ 1] Uczz 0.35
Hoe = MHoe = Hoopte = 2Vp(0) loge D1 2V x 1.25 loge 0.65
0247
=-—0

p(© 2357 = —13(2735

p(0)
[b]dB =20 x logw[ - ] =9.6dB -

e

hence:

Ho, = —0.103 0,

8) Without noise, 3[s . (kT)] is written:
S[scekT)] = Va;p(0) + 11’71; (kT) = 1.25Vaj + I;ni (kT)

=30, X aj, + IT'n; (kT)

125 V=3g,

0 Mo .= —0.043 ¥=-0.1030, — | — — - -

-125 V=-3q,

\)

Figure 3.6. Sample value a;,V, optimal threshold and estimation classes

From the graph represented in Figure 3.6 and previous results on the values of
I ;(kT), we find that for taking a wrong decision, it suffices that:

|17’n2(kT)| >1.25V

Specifically, the probability of taking an erroneous decision on a; is (see
Table 3.6):

Pr{of taking a wrong decision on [aj, = +1]} = 1/8 = 0.125



Digital Transmissions with Carrier Modulation: Problems 27 to 33

233

This is a very large value compared to a usual probability of error.

9) New expression of the intersymbol interference Ir’nl’ (kT). We now have:

sin[r t/T]
p(t) = ———
nt/T
thus:
p(0) =1; p(£iT) =0 V i # 0; i:integer
And:
a sin[rt/T]
q(®) = 2 % wt/T
thus:
a .
q(0) = 5= 0.125; q(£iT) =0 V i # 0; i: integer
hence:

Ir'nl, (kT) =Va, x q(0) = 0.125 X Va, = 0.3 g, a,

The amplitudes of the intersymbol interference for the different possible

interfering messages are given in Table 3.7.

l m; = ay I;n;(kT) =0.3 O,

1 -1 -0.3 0,
2 1 0.3 0,

Table 3.7. Amplitude of intersymbol interference I’ ,(kT)
for the different possible interfering messages m,

10) Expressions of the conditional probabilities of error:

[oe]

1 2

1 =P n=—— exp —lbe—'qdb
el e'(1/-1,my) O_em 2 o2 eq
HoetVP(O)=1, (kT

P
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Iio,e_[Vp(O)‘Hr,n;(kT)]

1 1bZ,
Pei = Percapmp = = f exp| =552 | beq
€ —00

Hence the probabilities of error on a;, conditional on the interfering messages
given in Table 3.8.

m) = a; Mo +Vp(0) — 1;,1; P, Hoe — [Vp(O) + I;n;] P,
[-0.103 + 3 + 0.3]0, [-0.103 — 3 + 0.3]0,
1 ~ 320, 7x10* | = 28, 2.6x 1073
[-0.103 + 3 — 0.3]0, [-0.103 — 3 — 0.3]0,
1 = 2,60, 47x1073| ~ _34 o, 3x107*

Table 3.8. Probabilities of error on a;,
conditional on interfering messages m;

11) Probability of error on symbol ay,:

2
P = plq [Z P} X Pell

=1

2

me; X P

=1

+p1

The number of interfering messages on aj, is M~, with:
M=2L=1->M:=21=2
P! =P-1= 0.35 for a, = —1
P = Pay = {pmg =p, =0.65 for g, =1
P, o =0.35[0.35% 7 x 107* + 0.65 x 4.7 x 1073]

+0.65[0.35 X 2.6 X 1073 + 0.65 X 3 X 107*]
=1.873x 1073
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3.5. Problem 31 — Digital transmissions with 4-QAM digital modulation:
case of single and double paths propagation

The 4-QAM digital modulation (also called QPSK modulation) transmission
system given by the block diagram of Figure 3.7 is considered. In this kind of
modulation symbols a, and a;, take their values on {1, —1}.

Transmitter Transmission channel
b e " o 50
n anJ - . +
— o] Coder Modulator _ | Transmitter _ | Channel
- ﬁlter ﬁ]ter
T, {a'} o é
t .
?T ? G.(f), g.(0) h(1); H.(f) Noise by1)
x(?) (> 9.)
Receiver
s, s (2 NR[s, (¢ b .
0 0 [5...(0)] o i
- Recelver »| Demodulator " | Decision " | Transcoder
filter »| System -
N R} S (7 i - r&/
G, &(1) . 00 [4.4)] PERRCH
_ | Carrier » (Clock
| recovery »| recovery

Figure 3.7. Block diagram of a digital transmission system with QAM modulation

A. Case of a single path propagation

The symbols b,, delivered by the binary source are emitted every T) seconds.

The baseband encoder of the transmission system generates two baseband signals
1(t) and Q(t) as follows:

— separation of the binary sequence {b,} into two binary sequences {b,,} and
{bans1ks

— transcoding the sequences {b,,} and {b,,.,} into two sequences of symbols
{a,}and {an} € {1, -1}

— pulse amplitude modulation using the basic pulse x(t):

_(1 for te[-T/2,T/2[
x(0) {0 elsewhere
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The two baseband signals I(t) and Q(t) are expressed by:
I(t) = Z a,x(t—nT) and Q(t) = Z a, x(t —nT)
n n

and indicate that the symbols {a, } and {a,,} are emitted every T seconds.

The modulator is defined by the carrier signal:

pc(t) = Vexp[jrf.t + ¢.)]

It constructs a real signal s(t) by adequate linear modulation of the digital signal
to be modulated:

c(®) =1(t) +jo)

The linear transmission filter (of complex gain G,(f)) and reception filter (of
complex gain G,(f)) are of the band-pass type around frequencies f, and —f,. The
transmission channel is assumed to be modeled by a linear filter (of complex gain
H.(f)) to which is added an observation noise b, (t). This latter is assumed to be a
Gaussian white random process, with power spectral density equal to I/2 in the
frequency band covered by the receiving band-pass filter.

Moreover, let:

H(f) = Ge(f) X He(f) X G- (f)

and:

h(t) = g.(®)®h()®g,(t)
be assumed real.

1) Write the real signal s(t) obtained at the output of the modulator in
quadrature at M; X M, states. Show explicitly in the expression of the real signal
s(t) the two components modulating in quadrature the carrier p,(t).

2) Determine its complex envelope, denoted s, (t).

From now on, it is assumed that the amplitude spectrum of the transmitted digital
modulation signal has a frequency band limited to:

A A
|f|€[fc—7f,fc+7f with Af < f
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We call H,(f) the frequency gain of the low-pass filter equivalent to the total
filter of frequency gain H(f) (which is a band-pass filter around the frequencies f
and —f;) and y,(t) the signal at the output of the equivalent low-pass filter
(frequency gain H.(f)) when the input signal is the previous signal x(t) (noise
excepted). We denote:

Ye(t) = p(t) +jq(t)

In the same way, by denoting b(t), the noise by(t) filtered by the receiving
band-pass filter, we note:

b, (t) = be,p (t) +jbe,q (t)

the complex envelope of the filtered noise b(t). The two components of the noise
b, (t) (real and imaginary parts) are assumed to be Gaussian, zero mean, of the same
variance g2 and decorrelated.

3) Determine the complex envelope, denoted s..(t), of the signal s.(t) at the
output of the equivalent low-pass filter of frequency gain H.(f), and in taking the
noise b, (t) into account.

4) Particularize this one at the decision instants t; = kT, that is s; ,(kT).

5) By separating the real and imaginary parts of the complex envelope s, . (kT),
determine the intersymbol interference on the symbol ay, denoted I,,,, (kT), on the
one hand, and on the symbol a;,, denoted Ir'n; (kT), on the other hand.

6) In the following, we assume that the characteristics of the band-pass filters
and of the channel are such that the equivalent low-pass filter H,(f) satisfies the
Hermitian symmetry. Show that y, (t) is then a real signal (q(t) = 0).

7) Then give the new expression of the signal s, . (kT).

Moreover, the amplitude spectrum P (f) is:

-1 1
P(f) = F{p(t)} = {“T for f € [ﬁﬁ]
0 elsewhere

8) Show that the intersymbol interference L, (kT is null.

The signal-to-noise ratio:

E]db = 20 X logyg [VI;(O)]

e
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after demodulation of each of the I(t) and Q(t) signals is equal to 14 dB.

9) For independent and equiprobable binary symbols b,,, calculate the probability
of error P, ; on symbol ay.

B. Case of a double path propagation (a direct and a delayed
transmission path)

In this section, we will keep the hypothesis that the equivalent low-pass filter has
an even frequency gain H.(f) (hence q(t) = 0). The intersymbol interference
L, (KT) due to the delayed path is assumed to be limited only to symbols adjacent

to a given symbol a; (so symbols a,_, and a;1).

Similarly, the inter-symbol interference IT'n; (kT) also due to the delayed path is

assumed to be limited only to symbols adjacent to a given symbol a;, (so symbols
Gy and @lyy).

The equivalent baseband signal s, .(t) is now considered to be the sum of two
signals:
— the first, denoted s2, (t), corresponds to a transmission through the direct path;

— the second signal corresponds to a delayed transmission (with a delay 7) due to
a complex reflection.

Under these conditions, the complex envelope of the resulting signal received
can be written in the form:

Sc,e(t) = Sge(t) +pX exp[—jancr] X Sge(t - T)
with: p = |plexp[j@] a complex reflection coefficient.

A record of the signal s, ,(kT) shows that the amplitude of the latter oscillates
between two levels:

—a maximum level (summation in phase of the two components);

—a minimum level (summation in opposite phase of the two components)

and that the maximum dynamics between these two levels is given by the following
expression (standing wave ratio):

1+1pl

=3
1—|pl
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For the sake of simplification, we assume that the phase shift ¢ due to the
complex reflection coefficient p compensates for that, due to the difference in the
path lengths [—27nf.T] for given values of T and f..

10) Determine the reflection coefficient modulus |p|.

11) Give the new expression of the signal s, ,(kT) (at the instant t,, = kT).

12) By separating real and imaginary parts of the complex envelope s..(kT),
determine the intersymbol interference on symbol ay, denoted I,,, (kT), on the one
hand, and on symbol ay,, denoted Ir'nl, (kT), on the other hand.

13) Taking © = T/2, rewrite the new expression of intersymbol interference
L, (kT) and calculate its value for the different messages m; (to simplify, you will

take T = 3).

14) Is the digital link affected compared to that of part A? If yes, why? Justify
your answer.

15) Calculate the new probability of error on symbol aj (equiprobable
messages).

NoTE.— If X is a Gaussian random process, with mean value m and standard
deviation g, you will take:

Pr{lX—m|>50}=2x10"%; Pr{|X—-m|>5550}=10"°
Pri{lX —m| > 4440} =2x10"%; Pr{|{X—-m|>60}=0
Solution of problem 31

A. Case of a single path propagation

1) The real signal s(t) at the output of the modulator is written:

s®) =R VZ[an + jay] x(t —nT)exp[jrf.t + ¢.)]

n

s(t) = VZ a, x(t —nT) cos(2rf.t + ¢.)
—VZ ay x(t —nT) sin(2rf.t + ¢.)

2) By definition, s(t) is also written:
s(t) = Ris.(t) X exp[j(2nfet + @I}
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Hence the complex envelope of signal s(t) is:
50(6) =V ) [ay + jay] x(c = nT)
n

3) Expression of the signal s, (t): since the action of x(t) at the input of the
equivalent baseband system is y,(t) = p(t) +jq(t) at the output of filter of
frequency gain H.(f) (noise-free), and taking into account the response of filtered
noise turned into its equivalent baseband noise, that is b, (t), the response s;,(t) is
then:

5ee(©) =V ) [a +jai] [p(e = nT) + g (¢ = nT)] + be(©)
n
4)Fort = t, = kT, s.,(kT) is written:

5ee(kT) =V ) [an + jas] {pl(k = mT] + jqllk = mT]} + bo (KT

5) Intersymbol interference on a; and a; respectively

R[s. o (kT)] = V {akpm) + D auplle =Tl = > anqll - nm}

n#k n

+bep, (KT)

S[see (kD] = V [akp(O) £ apll=mTl+ ) anqle - n)T]]
n#k n

+beq(kT)

hence:

I (T) = V| Y anplk =m)T] = ) atql(k = m)T]

n#k n
ISIintra—channel ISIinter—channel

I GT) = V| > aiplCe =TT+ ) auqlCk = m)T]

n+k
ISIintra—channel ISI inter—channel
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6) The filter of frequency gain H,(f) satisfies the Hermitian symmetry, then
he(t) is a real function. Therefore y,(t) = x(t)®h,(t) = p(t) is a real function
(q(®) = 0).

7) In this case, the signal s. ,(kT) becomes:

See(kT) =V ) [an + ja ] {pl(k = mTT} + be(kT)

8) Show that the intersymbol interference L, (kT is null.

We have:

q(5) =0 > Iy, (kT) =V

> anpllk nml

n+k
which depends on p(t). And p(t) is such that:

sin[m t/T]

PO = FHP(} = ax—

- p(0) =a; p(£iT) =0V i+ 0;i: integer
hence: I, (kT) = 0.

9) Calculation of the probability of error P, ;:
R[sce(kT)] = Varp(0) + b, , (kT)

hence:
Poa =p_1 X% Pe_1 +p X P91

Indeed, since the ISI is zero, the notion of interfering messages disappears and
we have:

p-1=p1=1/M=1/2; Uoe =0
1
> P, = > [P._, +P..]
with:

P, =P - _Lbep db
e.; — Te(1/-1mp) — o m exp 2 O'g e,p
¢ vp(o)
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-Vp(0)
1b3,

1
P, =Py =— f ex db
e e(-1/1,my) O'em . p[ 2 O,ez] ep
The signal-to-noise ratio is:

s Vp(0)
[E]dB =20 x loglo[ o

Hence:

]=14dB - Vp(0)=5ag,

1 1. _ _
P, =§[Pe_1+Pel] =510 +107°] = 107°

B. Case of a double path propagation (a direct and a delayed transmission
path)

10) Reflection coefficient modulus:

1+ |pl
1—|pl

=3 > |pl=1/2
11) New expression of s, (kT):

5ee(kT) =V ) [an +jas] {pl(k = mT] + plpl(k = m)T = I} + b, (kT)

12) Determination of the intersymbol interferences on a; and a;, . We have:

k+1

R[sce(kT)] = V[ak [p(0) + lplp(-D)] + Z a, pl(k — n)T]
n=k—-1; n#k
k+1

+|P| Z an P[(k -n)T — T]} + be,p (kT)

n=k-1; n#k

The terms of the first summation are null because p(+iT)=0Vi#
0; i: integer, hence:

L, (kT) = Vlpl[ag_1p(T — 7) + ay41p(~=T — 7)]
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And we have:
k+1
I[sce(kT)] = V{al’c[p(O) + lplp(=D)] + Z a, p[(k —n)T]

n=k-1; n#k
k+1

ol ) a;p[<k—n>r—r]]+be,q<kn

n=k—-1; n¥k

The terms of the first summation are null because p(+iT) =0Vi#

0; i: integer, hence:
I,'n; (kT) = Vlpllag_1p(T — 7) + ajs1p(-T — 7)]
13)Fort=T/2:

L, (KT) = V|pllax-1p(T/2) + ays1p(=3T/2)]
From the result of question 8:

(+T/2)_2a~2a' (+ 3T/2)_—2a~—2a
pAE 7 -3 P= “ 3z - 9

And from the results of questions 9, 10 and 13, we have:

1
IpI=5; aV =p(0)V =50,

1 [2a 2a aV
= L, (KT) = EV [? A1 = 5 Ger1 | = [Bak-1 — ax41]

Hence, the amplitudes of the new intersymbol interference are given in Table 3.9.

aV
my = {ag_y, ay41} Ly, (KT) = 7[3‘11(—1 = Qyq]
-2 -10
-1 -1 F(ZV = T O¢
—4 —20
-1 1 70{ = 9 O¢
4 20
1 -1 aaV = ? O¢
2 10
1 1 §(ZV = ? O¢

Table 3.9. Amplitudes of the new intersymbol interference I, (kT)
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14) From the results of questions 12 and 13, the digital link is well affected
because the ISI, caused by the delayed path via the function p(t — ), is non-zero.

15) New probability of error on symbol a;:

4 4
Pea =01 [z Pm; X Pe_1 Z Pm; X Pell
=1 =1

From the fact that the symbols are independent and equiprobable, we have:

+ D1

P-1=p1=1/M=1/2; pp, = 1/ME=1/22=1/4

4
1
P.= §Z[Pe_1 +P, ]

=1
with respectively:

2

=P — 1 e,p db
1 — Te(/-1my) — exp _E o2 ep
eV el e
VIp(0)+|plp(=T/2)]~Im, (kT)

Fe

=VIp(0)+lplp(=T/2)]—Im; (kT)

1 1b2,
Fe, = Pecyimp = = f exp| =552 | thep
e

— 00

We have:

4 20

V[p(O) + |,0|P(—T/2)] = V[a+%] :gaV =§x 5O-e =? o,

hence the calculations of the conditional probability intervals and the associated
conditional probabilities for symbol a; presented in Table 3.10.

Hence, finally, the new probability of error on symbol ay, is:

4
1 1 1
Pea =g X Z[Pe_1 +P,]= [10—5 +2X 1070 +-x 1070 +107°
=1

=2.625%x107°
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V[p(0) + |plp(—T/2)] =V[p(0) + |plp(—T/2)]
my={ay_ 1, ap41}| — Iy, (KT) P, L,y (KT) P,
-1 -1 ?O'E + 19—an =777 o, 0 190 ] —5.55 0, 107
11 ?ae + 29_0% -8880, | 0 290 ] = —4440,|105
1 ?ae - 29—005, = 4440, |1075 290 ] =-8880,| 0
11 ?ae - %oe = 5550, 102_6 190 ] ~7770,| 0

Table 3.10. Conditional probability intervals and the
associated conditional probabilities for symbol a,,

3.6. Problem 32 - Performance of digital modulations and 16-QAM
digital modulation

For the digital radio modulations displayed in Table 3.11 hereinafter, operating
at the same bitrate D, = 12 Mbit/s and the same carrier frequency f. (90 MHz),
determine:

1) The fundamental frequency f, (MHz), the necessary minimum frequency
band of channel fy (MHz) for transmitting, without intersymbol interference, the
corresponding symbol rate Dg (Msymbol/s), the lower value of the frequency band
(MHz) (minimum lower side frequency: LSF), and the upper value of the frequency
band (MHz) (maximum upper side frequency: USF).

fn (MHz)

Modulation | f, (MHz)| _ D, (Msymbol/s)

LSF (MHz) | USF (MHz)

BPSK
QPSK
OQPSK
8-PSK
16-QAM

Table 3.11. Comparative characteristics of the minimum frequency
bands required for different types of digital modulations

The choice of a linear modulation method depends on several parameters (bitrate,
channel bandwidth, noise, phase jitter, maximum cost). The constellation diagram
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provides an approximate but rapid comparative evaluation of the performance of
various linear modulation methods with respect to noise and phase jitter.

The probability of error in the presence of noise depends on the type of
modulation, the characteristics of the channel, those of the filters contained in the
transmitter and the receiver and the nature of the noise. Only the influence of the
type of modulation defined by its constellation diagram will be considered in
the following, the noise being assumed to be a Gaussian white random process and
the filters conforming to the first Nyquist criterion.

The comparison of different modulation methods requires the representation of
their constellation diagrams in a scale ratio such that the average powers are equal.
In all cases considered, the average power is equal to V2 and they have the same
symbol rate: Dg = 1/T.

On the other hand, if the diagram contains n symbols represented by points
My, My, -+, My, if V4, V,, -, V, are the corresponding signal amplitudes and if
P1,P2, '+, Pn, are their associated probabilities, the average power P, of the signal is
given by:

n
By =Zpi XVL'Z
i=1

In the case where all the symbols are equiprobable (case to be considered here),
the mean power is the average of the square distances between the origin and each
point of the constellation diagram: P,, = E(d?) where E (-) represents the statistical
expectation.

Taking as a reference the following constellation diagram (Figure 3.8) of a
2-PSK modulation (also denoted BPSK modulation):

o
A
;7 //_q““MIF
/ A\ ; b(ref) N
| ‘ |
| 4 I
' PM / 0 o M, /
N |/ d=V\ 172,
~ L1 - -+ — . it]/
I dyg o (ref) = 21 :
e i >

Figure 3.8. Constellation diagram of a 2-PSK modulation (reference)
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2) Determine for each of the three constellation diagrams (4-ASK, 4-QAM
(QPSK), 16-QAM) presented in Figure 3.9:

a) the distance d;
b) the distance between two adjacent states dMi_M]. ; 1 # j expressed in
dMl,Mz (ref);

¢) the decrease & in dB of the signal-to-noise ratio (S/B) with respect to the
2-PSK modulation.

4-state Amplitute Shift Keying (4-ASK)

'y
MZ.____ ____.M1
: MHMy :
I e
I ]
> ]
S P
I I
I ]
e----ft----@
M, M,

16-state Quadrature Amplitude Modulation (16-QAM)

0
A A N A
-0--|--0----o
1 1 1
I 1 1
) )

Moo M M, N

e----0----0----0
! ! ! dMoMl !
I I - 1
I I I I

My MO MM
e----0--|--0----0
I I I I

Mis M, M, M,
o----0--|--0----o

Figure 3.9. Constellation diagrams of 4-ASK, 4-QAM
(QPSK) and16-QAM digital modulations



248 Digital Communications 2

We now want to realize a 16-QAM modulation whose polar coordinates of the
first state M, (state 0000) are:

[pn:m;¢n=4so]

3) Determine the pair of amplitudes [a,; a;] allowing homogeneous
distribution of the 16 states in the plane {I, Q}.

The carrier is defined by:

pc(t) = Vexp[jnfet + @.)]
and the signal x(t) is given by:

_ (1 for t€[-T/2, T/2[
x(t) = {0 elsewhere

4) What is the expression of the real signal s(t) at the output of the modulator?
Give its complex envelope s, (t).

We call H,(f) the frequency gain of the low-pass filter equivalent to the total
filter of frequency gain H(f) (which is a band-pass filter around the frequencies f
and —f.) and y,(t) the output of the low-pass filter of frequency gain H,(f) when
the input signal is the previous signal x(t) (noise excepted). We denote:

ye(t) = p(t) +jq(t)

In the same way, by denoting b(t), the noise by(t) filtered by the receiving
band-pass filter, we denote by b, (t) the complex envelope of b(t):

be (t) = be,p (t) + jbe,q (t)
5) Determine the complex envelope, denoted s..(t), of the signal s.(t) at the
output of the filter of frequency gain H,(f), taking into account the noise b, (t).

6) Give the expression of the signal s.(t) and its amplitude spectrum S.(f).

7) Give the block diagram of the 16-QAM modulator built from two 4-QAM
(QPSK) modulators.

8) We note s;(t) the output of the first modulator 4-QAM: MI(R, J), and by
s,(t) the output of the second modulator 4-QAM: M2(Q, I). Give the expression of
the signal s(t) at the output of the 16-QAM modulator.
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Solution of problem 32
1) We have:
Iy
—————— T——————

|

|

|

, >/

fo~1, 1. fot1,
Min LSF Max USF

Figure 3.10. Fundamental frequency characteristics of a digital modulation

The minimum bandwidth fy of a transmission channel in digital communication
with carrier modulation is:

fv=1U+fJd-1f.— fud =2f, = Dg and Dy =% such that: 2k = M

The minimum lower side frequency (LSF) is:
LSF=f.—f,

The maximum upper side frequency (USF) is:
USF=f.+f,

According to the modulation used, we have the following results (Table 3.12):

. fn (MHz)

Modulation | f, (MHz) | _ D, (Msymbol/s) LSF (MHz) USF (MHz)
BPSK §=6 D =12 90-6=284 90 +6=96
QPSK %:3 §=6 90 -3=287 90+3=093
OQPSK §=6 D =12 90-6=284 90 +6 =96
8-PSK %:2 §=4 90-2=2388 90+2=92

D D
16-QAM i 1.5 Z=3 90-1.5=88.5| 90+1.5=91.5

Table 3.12. Comparative characteristics of the minimum frequency

bands required for different types of digital modulation
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2) We have for reference the constellation diagram (Figure 3.8) of a 2-PSK
(BPSK) modulation, hence: B, = V2.

In the case of any digital modulation with the same average power V? and
equiprobability of the constellation points (symbols), we have:

n

n
1
Pu= ) pVE=> VE=E(d) =V
i=1 i=1

i=

— 4-ASK modulation:

a) 7 x 2[d}, +d,] = [d? + (3d)?] = 5d? = V? —d =

T2

v
V5
2V _ dyym,(refd)

b) dMle = Zd = 75 NG

¢)6 = =20 x logyy () = 7 dB

—4-QAM (QPSK) modulation:

a) ;X 4[df,| =2d? =V? > d =2

M, (ref)

b) dyu, = 2d = VZV = 2tz

¢) 8 = —20 x logy, (%) ~3dB

— 16-QAM modulation:
a)dy =2d*; d, =10d?; d3, =10d?; d}_ =18d>

1 1
~ ¢ X 4ldi, + iy, + diy, + diy ] = 7[40d%] = 10d% = V2 > d =

2~
o

2V dmym,(ref)

b)dM0M1=2d=\/?0= \/1_0
1
¢) 8 = —20 x logy, (ﬁ) ~ 10 dB

3) In the state M, (0 0 0 0), we have:

Pn = ‘/ﬁ 5 {an = ppcos(Py,) =3
P, =45° an = ppsin(yy,) =3
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To have a homogeneous distribution of the 16 states in the (I, Q) plane, it is
necessary to take:

{an, ap} = {£3,19}

0
9 — [e}
o (o) o
| | | -
-9 -3 0 3 9
34 o
79——

Figure 3.11. Examples of positioning the points in the
constellation diagram of the 16-QAM modulation

4) The real signal s(t) at the output of the modulator is written:

s®) =R VZ[an + jay] x(t —nT)exp[jrf.t + ¢.)]

n

s(t) = Ris.(t) X exp[j2nfct + @)1}

= 50(0) =V ) [an +jaj] x(¢ = nT)

5) We have:

5o(6) =V ) [an + ja] x(¢ = nT)

Since the action of x(t) at the input of the equivalent baseband system is:
Ye(t) = p(8) +jq(t)
At the output of the filter of frequency gain H,(f) (noise-free), and taking into

account the response of filtered noise turned into its equivalent baseband noise, i.e.
b, (t), the response s, . (t) is then:
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5ee® =V Y [an + ja] [p(t = nT) + jq(t = nT)] + b (0

6) Expression of signal s, (t) and its amplitude spectrum S.(f)? We have:
Sc(t) = 9a{sc,e(t) X EXp[]'(ZTL'fCt + (pc)]}

sc(t) =R

V) lan + ja] [p(t = nT) + ja(¢ = nT)] + e (8

X [cos2mf,t + @.) + jsin(2uf .t + ¢.)]}

- s.(t) = VZ[anp(t —nT) — a,q(t —nT)] X cos2nf.t + ¢.)

—VZ[a;lp(t —nT) — a,q(t —nT)] x sin(2uf.t + ¢.) + b(t)

The signal s.(t) is also written:

1
sc(t) = E{sc,e () x exp[j2ft + 9] + 55 () X exp[—j2nfet + @)1}

1
- Sc(f) = E{Sc,e(f)®5(f - fc) + S:,e(_f)®5(_f - fc)}

thus:

S ) = 5 {Sealf = ) + Siu(~f — £2)

7) See Figure 3.12. See also Volume 1, Chapter 7 for more details.

8) Expression of s(t) at the output of the 16-QAM modulator based on two
4-QAM modulators:

5:(&) = V[J(t) cosrf.t + ;) — R(t) sin(2rf,t + ¢.)]

s,(t) = V[I(t) cosrf .t + ¢.) — Q(t) sin(2nf.t + ¢.)]

5(0) = 5,(0) + 55,0
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Vv
ck: bitrate D . __..__ <
| |
Y Y Di4 I | |
J Xp-—t-—1x
Lol g e = >
iz i
52
£ 8 Rn‘ QPSK * +
. P ¢ A >
2 s(t)
E‘J D/4 + Y —
& 1
e I B " -
R M2 | At 4 +
2.3 >
- % s|o, QPSK 6dB
CTE > ‘ v/

r
0 1
Sequence {b } = {1} ‘
.

Figure 3.12. Block diagram of the realization of the 16-QAM modulator
constructed from two QPSK modulators

3.7. Problem 33 - QAM encoding and transmission of motion
information of digital video

The context is that of the transmission of coded video. Several categories of
information are to be represented and coded in a compressed form. One of these
categories is motion information.

Each frame I, of a temporal sequence SI of digital frames SI =
{ I_1, 11, Iy, -+ } is divided into K macro-blocks MB,, of size 16 x 16 pixels
(we have k=1,2,---,K). The SI sequence consists of L frames per second
(typically in Europe L = 25). Each macro-block MB is associated with a motion
vector (also called displacement vector) D which makes it possible to predict its
content from the decoded preceding frame. D is a vector with two components d
denoted (dx, dy), with values considered to be integers in this problem.

For simplicity, we suppose that in practice only seven values for dx, on the one
hand, and for dy, on the other hand, are of significant probabilities. It is also
assumed that dx and dy components have the same statistics (this is not true at all in
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practice). Each value of d (dx and dy) is associated with a symbol s. These values
are given in Table 3.13 below with their associated probability.

Value -3 -2 -1 0 1 2 3

s; S1 Sy S3 Sa Sg Se Sy
Probability | 0.0625 | 0.125 | 0.25 | 0.35 | 0.125 | 0.0625 | 0.025

Table 3.13. Values and probabilities of a |
component d of the displacement vector D

1) a) Determine the entropy H(d) of a component d (dxordy) of the
displacement vector D (we indicate: log,(0.35) = —1.5146 and log,(0.025) =
—5.322).

b) Deduce the entropy H (5) of the displacement vector D for a separate
coding of dx and dy.

c) What would be the efficiencyn, of a fixed-length code C1 (length L;)
encoding the components of displacement vector D?

d) What is the bitrate per second D, for a number of macro-blocks K = 396
per frame and with a frame rate per second L = 25 for encoding the displacement
vectors D?

2) Using in code C1 the natural binary coding in ascending order for encoding
symbols s;, determine the probability p, ¢; of having a bit at zero in the bitstream of

the displacement vectors D. Deduce the probability p; ¢; of having a bit at one.

3) Construct the Huffman code C2 giving the codeword S; associated with each
of the symbols s; of a component d of vector D.

NOTE.— In the construction of the code €2, the coding suffix associated with the
element of greatest probability will systematically be set to 0.

4) Determine for code C2:
a) the average length [, of the codewords of a displacement component;

b) the average length L, of the codewords encoding vector D (again for a
separate coding of dx and dy);

c) the efficiency 7, of this code;
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d) the average bitrate per second D,,, for encoding vectors D;

e) the probability py., of having a bit at zero in the bitstream coding D.
Deduce the probability p; ¢, of having a bit at one.

From now on, we consider the transmission of motion information (code C2)
using the 4-QAM (QPSK) modulation (Figure 3.13 below).

Transmitter Transmission Channel
1(0) s() 5) 5,(0)
{b,} {a} > ] 4
" Transmitter Channel
—{ Coder Modulator == =
T , filter filter
b {a’} > +
r 0 G, 2.0 h (0): H(f)
Noise b,(?)
x(1) .0,
Receiver
NO) S(1) RIS, (0] {a} {b.}
Receiver o Decision o
— »{ Demodulator Transcoder |—
filter system
e | Gay b wsilor K
kT
Carrier h Clock
recovery | | recovery

Figure 3.13. Digital transmission system with quadrature amplitude modulation

The symbols b,, are emitted every T, seconds. The baseband encoder of the
transmission system generates two baseband signals I(t) and Q(t) as follows:

— separation of the binary sequence {b,} into two binary sequences {b,,} and
{bani1ks

— transcoding the sequences {b,,} and {b,,,,} into two sequences of symbols
{a,}and {an} € {1,-1};

— pulse amplitude modulation using the basic pulse x(t):

_ (1 for t€[-T/2, T/2[
x(t) = {0 elsewhere
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The two baseband signals I(t) and Q(t) are expressed by:
I(t) = Z a,x(t—nT) and Q(t) = Z an x(t —nT)
n n

and indicate that symbols {a,} and {a;,} are emitted every T seconds.
The modulator is defined by the carrier signal:

pc(t) = Vexp[jrf.t + ¢.)]

It constructs a real signal s(t) by an adequate linear modulation of the digital
signal to be modulated:

c(®) =1(t) +jo)

We call H,(f) the frequency gain of the low-pass filter equivalent to the total
filter of frequency gain H(f) (which is a band-pass type around frequencies f, and
—f.) and y,(t) the signal at the output of the equivalent low-pass filter (frequency
gain H,(f)) when the input signal is the previous signal x(t) (noise excepted).

We note:

Ye() = p(@) +jq(t)

In the same way, by denoting b(t) the noise by (t) filtered by the receiving band-
pass filter, we denote by b, (t) the complex envelope of the filtered noise b(t):

be(t) = bep(£) + jbeq(t)

In the following part of the problem, we assumed the two components (real and
imaginary parts) of the complex envelope b, (t) to be Gaussian, with zero mean, of
the same variance o2 and decorrelated.

5) a) Determine the complex envelope, noted s..(t), of the signal s.(t) at the
output of the filter H,(f), and taking into account the noise b, (t). Particularize this
later at the decision instants t;, = kT, that is s, (kT).

b) By separating the real and imaginary parts of the complex envelope
Sc,e(KT), determine for each part: the useful signal, the intersymbol interference
(intra-channel, inter-channel) and the noise.
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We consider that the amplitude spectrum P(f) of signal p(t) is a constant
function, equal to T, on the frequency domain [—1/2T, 1/2T], and zero elsewhere.

We consider also that the amplitude spectrum Q(f) of signal q(t) is 1/8 times
that of P(f).

6) a) Deduce precisely each of the 3 components of the real part of 5., (kT). Do
the same for the imaginary part of s, . (kT).

Moreover, the signal-to-noise ratio after demodulation on each channel is:

Vp(0)

[5] = 20 x logy, = 12.0412 dB
blap

b) Give the expression of the optimal threshold: and calculate

= MOopt,e
its value as a function of the variance 2.

c¢) Calculate the various conditional probabilities of the following types:
Pria, = aj/ay = ai,ml}jii; g ={-11}; a; ={-1,1}
necessary to calculate the probability of error P, , = Pr{@; # a;} on symbol a.
d) Deduce: P, , = Pr{dy # a;}.

Similarly, deduce the probability of error P, ,» = Pr{dj, # a;} on symbol a;.

7) Finally, what is the probability P; that a component d of the decoded motion

vector is erroneous? Deduce the probability P;, that the decoded motion vector Dis
erroneous.

NOTE.— If X is a Gaussian random process, with zero mean (m = 0) and reduced
standard deviation (o = 1), we will assume that we have approximately:

Pr{|X| > 3.57} = 3.64 x 10~* ; Pr{|X| > 4.43} = 4.4 x 1075
Pr{|X| > 457} =4 x107%; Pr{|X| >3.43} =6x107*

Solution of problem 33

1) a) Entropy of a component:

H(@ = H(dx) = H(dy) = = ) p(s0)log, p(s)

i=1
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7
H(d) = —1.4427 Z p(s;) loge p(s;)

i=1

= 2.41315 bits of information/component

Recall:

l08eZ _ 1 4427 x 10g, Z
log.2 ~ ©8e

log,Z =

b) The components dx and dy have the same statistics and are coded
separately, hence:

H(D) =2 x H(d) = 4.8263 bits ofinformation/vectorﬁ

c¢) There are seven values per component dx and dy, then with a fixed-length
code, 3 bits are required for coding dx and 3 bits for dy. Thus, L; = 2 X 3 = 6 bits

are required to encode the vector D. The efficiency of the code is then:
_H(D) 4.8263

= 80.44%
L, 6 &

n

d) The bitrate per second is:
Dy, =Ly XK XL =6X396 X 25 = 59,400 bit/s

2) Since dx and dy have the same statistics, one component is sufficient to
determine the probability py ¢; of having a bit at zero.

Si S1 S2 S3 S4 S5 Se S7
p(sy) 0.0625 0.125 0.25 | 0.35 | 0.125 | 0.0625 | 0.025
Code C1 000 001 010 011 100 101 110

Table 3.14. Coding C1 of one component d of the displacement vector D

. Nb of zeros in s;
Poc1 = Z p(s) X ———

l:
i=1 L

1
Poc1 =3{0.0625 X 3+0.125 X 2 +0.25 X 2+ 035 X 1+0.125 x 2

+0.0625 x 1 + 0.025 x 1} = 0.54167
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The probability of having a bit at 1 is then:
pl,Cl =1- p0,51 = 0.45833

3) Huffman coding. Table 3.15 describes the Huffman coding process and the
resulting code in the right-hand side column.

5; pls;), p(s;), pls;), pls;), bls;), s c,
s, | 035 0.35 0.35 0.35 0.40 o.ﬂ 0 |00
s, | 025 0.25 0.25 0.25 0.35—‘ 0 .4J 1 |ol

s, |o12s 0.125 0.15 o.zﬂ)a/ D.Zijl 100
s, | 0125 0.125 ’40.123%.@1 101

s, | 00625 o.osﬂ 0]0.125| 1 111
56 o.oezﬂ 0/0.0625) 1 1100
s, 0.025J 1 1101

Table 3.15. Huffman coding C2 of one component d of the displacement vector

4) a) Average length of the codewords of code C2:

7

L= P X L

i=1

o~
N

o~

[, = [(0.35 + 0.25) x 2 + (0.125 + 0.125 + 0.0625) x 3
+(0.0625 + 0.025) x 4] = 2.4875 bit/symbol

b) Average length of the codewords in coding vector D:
L, = 2 x I, = 4.975 bit/vector D

c¢) The efficiency of code C2 is:

_HD) _48263 _
T =" T 4975 ~ 7
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d) The average bitrate Dy, is:
Dy, = L, x K X L = 4.975 x 396 x 25 = 49,252.5 bit/s

e) Probability of having a bit at zero:

- Nb of zeros in s;
Pocz2 = Z p(si) X -
i=1 :

0 2 1 2 1
= [0.0625 x 2 + 0.125 X = + 0.25 X = + 035 X =+ 0.125 X =
Poca [0065 3+ 0125 X 5+ 025 x5 + 035 X5 + 0.125 X 5
2 1
+0.0625 x § +0.025 x 4| = 0.6375

The probability p; ¢, of having a bit at 1 is then:
P1cz =1 —Doc2 = 0.3625
To summarize, the probability of issuing a bit at 0 (or at 1) is dependent on the
code used, therefore the hypothesis that Pr{b = 0} = Pr{b =1} =1/2 is not
realistic.

5) a) We have:

5e(6) =V ) [ay + jay] x(c = nT)

As the action of x(t) at the input of the equivalent baseband system is y,(t) =
p(t) + jq(t) at the output of filter of frequency gain H,(f) (noise-free), and taking
into account the response of filtered noise turned into its equivalent baseband noise,
i.e. by(t), the response s, (t) is then:

5ee® =V Y [an + jan] [p(t = nT) + jq(t = nT)] + be (0
n
Fort = t, = kT, s, (kT) is written:

5ee(KT) =V ) [an + jas] {pl(k — mT] + jqlCk = mTT} + by (KT

b) Useful signal, intra-channel and inter-channel inter-symbol interferences.
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We have successively:

R[seo (k1)) = V {akpm) + 3 auplle =Tl = ) anqllh - n)T]}

n+k n

+bep (KT)

Nsce (k1] =V [akp(O) £ aplle=mTl+ ) anqle - n)T]]

n+k n

+b o (KT)

hence:

I (6T) = V| " apl(k = mT] = ) asqlle = m)T]

n+k n
ISIintra—channel IST inter—channel

I, (k1) = V| Y aipl(e =TT+ ) auqlCk = m)T]
n#k n
ISIintra—channel ISIinter—channel

6) a) We have:

i T
p(6) = Py =
p(0) =1; p(£iT) =0V i+ 0;i: integer

1 1 ; T
q(0) = FHQ(N} = g x p(t) = 5 %

q(0) =1/8; q(£iT) =0V i+ 0;i: integer
hence:

R[sce(kT)] =Va, —V/8 X ay + b, ,(kT)
Useful ISI In-phase
signal  inter-channel noise

S[scekT)] = Vay +V/8 X ay + b, 4 (kT)

—— — N————

Useful ISI In-quadrature
signal  inter-channel noise
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b) Expression of the optimal decision threshold ug . = Uoopte:

o? p_1] 02 Do,cz 0.6375 o?
Hoe = ]

log, —lo log, = 0.28—
2Vp(0) pl 2V % pies 2V 0.3625 v

¢) Calculation of the conditional probabilities of the following types:

Pr{ak =aqj/a, = a“m’};m

We have:

2
Pe,a =P-1 [z Pm,; X Pe_1
=1

2
+ D1 Z Pmy X Pell
=1
with:
1 [ 1b2,]
P, =Peqrj—1mp = o exp |- = db,,
C T oo tVP(O) Iy (kT) T :
Hoe=[VP(O)+m (kD] _
P —p 1 f 1b¢, b
= Fe(- = exp|—=——-
e e(-1/1,my) O'e\/% p _ > 0_62 | ep

— 00

The signal-to-noise ratio is:
2] =20 xlogyy |- PO _ 20 x1og,, [K] — 12.0412 dB
b aB O¢ Oe
>—=4->V=4g0,
Je

Moreover, we have:

m; = ay Ly, (kT) = —V/8 X ay,
-1 V/8
1 -V/8

Table 3.16. Amplitudes of the inter-channel intersymbol interference
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Calculation of intervals and of conditional probabilities of error:

m; = (l;( Hoe + Vp(O) - Im, Pe_1 Hoe — [Vp(O) + Im,] Pel
-1 3.57 o, 1.82 x 107* —4.43 g, 2.2x107°
1 457 g, 2x107° —3.43 g, 3x107*

Table 3.17. Intervals and conditional probabilities of error

d) We have:

2
Peq =P-1 [Z Pm, X Pe_1 +D1
=1

2
Z pml X Pel]
=1

or:
Poa = D-1[Pmy X Po_y + Pmy X Po_ | + 1 [Pmy X Poy + Py X Py
with:
P-1 =Poc2 5 P1 =Pic2 ) Pmy =P-1;5 Pmy, = D1
hence:

Poo = Doz [Po,cz XP_, + P12 X Pe_l] + D12 [Po,cz X P, + P12 X Pel]

- P,, = 0.6375[0.6375 x 1.82 x 107* 4+ 0.3625 X 2 X 107°]
+0.3625[0.6375 X 2.2 X 107° + 0.3625 x 3 x 107*] = 1.1893 x 10™*

We evidently have: P, ;» = P, ; = Pe .

7) The probability P; that a component d of displacement vector D be wrong
decoded is:

7
Py = ZP(SL') X P g
=1

With: P, g,, the probability that d; represented by s; be erroneously decoded. But
the correct decoding of s; is such that:

(1=Pog)=(1=Pep)" =Py, =1—(1=P,)"
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As we have:
Popy <1 - (1=P,) =1—1;xP,,
2 Peg, =1 X Py
then:
7
Py=P,;, X Z p(s;) X l; =P, x I, = 1.1893 x 107* x 2.4875
i=1

=2.9583 x 107*

Thus, the probability P, that the displacement vector D be erroneously
decoded is:

(1_PD)=(1_Pd)2 _)PD=1_(1_Pd)251_(1_2Pd)52Pd
=~ 59167 x 1074
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Study of the Transmission of Digital
Information on Two-wire Cables

4.1. Introduction

The electrical transmission of information in digital form is not a recent
phenomenon and it has even preceded the transmission of information in analog
form, however it is only recently that digital transmissions have grown considerably.
They used and still use, as a transmission medium, the important and classical
infrastructure provided by the telephone and telegraph network of
Telecommunications, infrastructure that has the advantage of existing.

However, the switched telephone network (the telex network being limited to
very low modulation speeds) designed for the analog transmission of speech, only
allocates a 300 to 3,400 Hz frequency band. This 3,100 Hz bandwidth allows, at the
current time and under normal conditions, the transmission of digital information
from 9,600 bit/s up to roughly 38 or even 56 Kbit/s. These limitations were due to
amplitude and phase distortions and to the noise present in the transmission channel.

Developments in teleinformatics and the Internet (transmission of data,
documents, still images, digital video-phone or television programs), the difficulties
of performing correct equalization encountered in analog transmissions, while the
needs of the telephone and its applications are also increasing, have led to the study
and development of a high-speed universal network of digital transmissions of
analog and digital information.

The study and development of such transmission systems is very complex. We
will limit ourselves here to the study of the transmission medium that is the
symmetrical twisted two-wire cable used in line equipment for digital transmissions
at 2.048 Mbit/s, and also to the on-line codes necessary for the transmission.
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This system is known as DT1 (first order digital transmissions in the European
hierarchy of digital transmission systems, able to transmit 30 or 60 digital phone
lines, each of them at 64 or 32 Kbit/s), the basic system for building digital
multiplexes of higher orders:

—DT2: 8.448 Mbit/s, or 4 x DT1 or 120 or 240 phone lines;
— DT3: 34 Mbit/s, or 4 x DT2 or 480 or 960 phone lines;
— DT4: 140 Mbit/s, or 4 x DN3 or 1,920 or 3,840 phone lines;

— eftc.

4.2. Recall of essential results on transmission line theory

When the dimensions of the cables (lengths) are comparable to the wavelength 4,
one then deals with distributed constant circuits. The propagation time in this case is
no longer negligible relative to the period of the wave that propagates on the
structure. The theory of lines allows the study of these circuits.

It is shown that at any location on the line, along the axis of propagation z and at
any time, the voltage v(z) is:

v(z) = Ae™Y? + Be?* = v;(2) + v,.(2)

with:
—y = a + jp the exponent of propagation (normalized per unit length);
— a, f the attenuation and the phase constants;
— A and B a pair of constants to be determined by the boundary conditions;

—v;(2) and v,.(2) are the incident and the reflected voltages, respectively.

Moreover, the linear exponent of propagation y and the characteristic impedance
Z of the line are related to the distributed parameters of the line (r,[,c, g ) with:

7 series resistance per unit length, for both conductors, in Q/m
l: series inductance per unit length, for both conductors, in H/m
¢: shunt capacitance per unit length, in F/m

g: shunt conductance per unit length, in S/m
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by:

y = JZXy and 7, = \z/y
where:

z =1 + jlw is the impedance of the line per unit length
and:

y = g + jcw is the admittance of the line per unit length

For a line of low losses (case in practice and neglecting the dielectric losses), we

have:
1 |l
2" /z =kJs

due to the “skin effect”, k is a constant and f is the working frequency.

IR

a

ﬁsw«/ﬁ;w=2nf

is the pulsation;

7 l d w 1 Vi
= |- andvy,=—-=—=

N BT VIe Ve

is the phase velocity or propagation of the wave, where:

— v, is the velocity of light;

— & is the relative permittivity of the insulation used in the cable.

4.3. Practical study

There are two cables of different colors and with different propagation
characteristics:
— gray cable: v, = 2 X 10% m/s;

—black cable: v, = 2.52 x 108 m/s.
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4.4. Objectives

The most important parameters to know when you want to develop a cable
transmission system include:

— the characteristic impedance Z.(Q);

— the attenuation @ (dB/m ou dB/Km);

— the maximum possible bitrate.

In these practical works, you will try to determine by some adequate

measurements the values of these important parameters on the cable sections that are
at your disposal.

4.5. Measurement of the characteristic impedance Z,. by a reflectometry
method (Time Domain Reflectometry: TDR)

Q A\

V
Pulse TV,f Z
|

Py ‘ VA
L
generator HV” S g T T {
I :
VLI
Oscilloscope
0
V. a=0 V.
v, Case {ZL: °©
‘ =L, ‘

Figure 4.1. Practical implementation of the TDR method

To determine the characteristic impedance of the cable, the load Z; is varied
until the observed reflected pulse v, is canceled (Figure 4.1), hence:

Measure the characteristic impedance Z. by the reflectometry method on the
10 m or 20 m cable section. In your opinion, will the measurement of Z. be correct
on a section of length >> 20 m? If not, why?
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The same scheme is also used to measure the length L of the cable knowing the
phase velocity v,,. Indeed, measuring 7 (for Z;, = oo preferently), we have:

2L=‘[XV(p

You have to measure the lengths of the three available cable sections.

4.6. Measurement of attenuation «a as a function of frequency

When the cable is matched (the cable is loaded with its characteristic
impedance), we then have:

—v(z) = v;i(z) = Aexp(-y 2);

~v(2)| = Aexp(-a z);

—|v(0)] = A: voltage delivered by the source generator at the input of the cable;

—|v(L)| = Aexp(—a L): voltage measured at the output of the cable (for
Z; = Z¢).

These two measurements make it possible to determine a(f):

[v(0)]

oy (4B/m

1
a(f) = ZZO x logyo

Measure the variation of attenuation as a function of frequency.

Measurements will be made for the following values of the frequency f(KHz):
40; 60; 100; 200; 300; 500; 700; 1,000; 1,200; 1,500; 3,000 KHz; and for the cable
section of median length.

Draw the curve a(f). Check that the measured law a(f) follows the theoretical

law a(f).

4.7. Variation of the attenuation a as a function of length

For the frequency f = 100 KHz, determine the variation of the attenuation as a
function of the length (for the three available sections). Deduce the 100 kHz
attenuation produced by a cable length of 1,800 m (nominal length of a section for a
DT1 two-wire cable).
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4.8. Measurement of the bitrate D (bit/s)

The measurement is done in pulsed mode (see Figure 4.2), when the cable is
matched (loaded with its characteristic impedance).

For each pulse duration (ns): 100; 200; 300; 400; 500 ns transmitted and using
the pulse generator in dual pulse mode (the second pulse is transmitted with a delay
T adjustable with respect to the first), the time 7,,;, which must separate these
double pulses will be determined so that the response due to the first pulse lowers to
50% of its maximum amplitude before the appearance of the response due to the
second transmitted pulse.

Draw the curve: T, = f(6).
With this rather simplistic criterion, which does not take into account any signal
processing (equalization) performed both in the transmitter and the receiver units,
draw a line T = 26 (case of the binary RZ code) for deducing the maximum bitrate

(see Figure 4.2).

NOTE.— Measurements will be made on the medium length cable section (# 600 m).

wa

k6 k>1

min

Tonin =20

T, = J(0)

Dbitls) = 1k,

Figure 4.2. Bitrate measurement scheme
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Study of Baseband Digital Transmission
Systems for the Transmission of Analog
Signals (Transmitter and Receiver)

5.1. Objectives

The goals of this lab work are to study the various functions necessary for serial
transmission under digital form of analog signals. These are distributed in the
transmitter on the one hand, and in the receiver on the other hand. Although most of
them are present simultaneously in both of them, the receiver has some additional
specific functions.

The study will largely be of a qualitative nature but will also include some
measures allowing a quantitative assessment of the influence of certain parameters.

This study first deals with a pulse amplitude modulation transmission system
with time division multiplexing. Then, the operation of a pulse code modulation
(PCM) transmission system is analyzed. For these two systems, we will study in
particular the two mechanisms of recovering the frame synchronization and the
clock without additional links between transmitter and receiver other than that of
transmission of the on-line code. In addition, for PCM transmission, codes for
protection against transmission errors (error detection code, error detection and error
correction code) are also used.

Digital Communications 2: Directed and Practical Work,
First Edition. Safwan El Assad and Dominique Barba.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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5.2. First part — Study of a pulse amplitude modulation and time
division multiplex signal transmission system

A MODICOM2 educational electronic board from the company LJ Technical
Systems (the reader must simply see the block diagram on the board) is at your
disposal. It has two distinct parts: the transmitter and the receiver.

Its main features are as follows:

—time multiplexing of four channels, each associated with a signal on
transmission and demultiplexing on reception;

— four sinusoidal signal generators, all synchronized, of frequencies f, = 250 Hz,
500 Hz, 1 KHz and 2 KHz respectively, and of variable amplitudes;

— a pure sampler with variable pulse duration (10 values 8; = iT /10 where T is
the time unit);

—three operating modes corresponding to the interconnection signals between
transmitter and receiver;

— a system for recovering the clock and a frame locking system in reception;

— four interpolation filters on reception.
Power is to be supplied to the electronic board (+5V,14; +12V,1 A).

The sampling frequency f, of each of the four channels is fixed at 16 KHz
(T, = TXCH.0 = 62.5pus) and therefore a unit of time T allocated to the
transmission of a channel is equal to: T = T, /4 = TX CLOCK.

The three operating modes correspond to three compromises between the
number of connections between the transmitter and the receiver, the complexity of
the receiver and the time required for the transmission of the signals:

—mode I: three connections between transmitter and receiver; four analog
channels; minimum receiver complexity:

TX CH.0 - RX CH.0
TXCLOCK — RX CLOCK

TX OUTPUT — RX INPUT
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—mode 2: two connections between transmitter and receiver; four analog
channels; regeneration of the clock by phase-locked loop on reception:

TX CH.0 - PLL I/P
TXOUTPUT — RX INPUT

—mode 3: a single connection between transmitter and receiver; three analog
channels and a synchronization channel; regeneration of the clock by phase-locked
loop and for the synchronization of the channels on reception:

TXOUTPUT — RX INPUT

5.2.1. Experimental study

IMPORTANT NOTE.— In all experiments, you will only power the boards (+12 volts;
5 volts) when the wiring has been fully completed and checked.

In this lab work, you will study qualitatively and quantitatively the operation of
this system of transmission of several signals by time multiplexing and pulse
amplitude modulation according to its three modes of operation.

5.2.1.1. Mode 1 of operation

The parameter 6 (pulse duration) is fixed at T/2 and the amplitudes of the four
input signals are set to their maximum value, each of them being sent to one of the
four inputs of the analog multiplexer of the transmitter.

Display the different signals available and the TX OUTPUT signal at the output
of the transmitter by changing the amplitude of the analog signals. Simultaneously
display the input and output of the interpolation filter corresponding to the channel
receiving the signal at frequency: f, = 250 Hz.

By setting the maximum amplitude of the signal sy (f, = 250Hz) on
transmission, measure the output amplitudes of the interpolation filter for the nine
possible values of the parameter 6 (duty cycle control). Repeat the same
measurements for the other three channels:

s; (fi =500 Hz); s, (f, = 1000 Hz); s; (f; =2 000 Hz)
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5.2.1.2. Mode 2 of operation (without separate transmission of the clock)

Make the following connections:
TX CH.0 - PLL I/P
SYNC - RX CH.0
CLK - RX CLOCK

Set the phase-lock loop switch to the PLL I/ P position. Under these conditions,
the phase-lock loop locks on the signal coming from the channel 0: TX CH.0 and
generates two output signals:

SYNC - channel synchronization signal
CLK - regenerated clock signal

Check that the four channels are correctly reassigned and that the four output
signals are correctly restored.

In particular, you will modify the amplitude and frequency of the signal
transmitted on channel 0. Explain your conclusions.

5.2.1.3. Mode 3 of operation (one link only between the transmitter and the
receiver)

Channel 0 is assigned to frame synchronization. For this, the SYNC LEVEL is
connected to the CH.0 input of the transmitter, the other three inputs receiving three
of the four available signals.

The SYNC — RX CH.O and CLK — RX CLOCK connections are maintained,
however the TX CH.0 — PLL I/P connection is removed. It is replaced internally by
switching the switch of the phase-lock loop, by the RX INPUT input signal of the
comparator connection.

— Display the TX OUTPUT signals and one of the input signals on channels 1 to
3. Check that the amplitude of the pulse on channel 0 of the TX OUTPUT signal
varies with the amplitude of the SYNC LEVEL.

— Set the amplitude of the synchronization detection comparator to synchronize
correctly in reception for a maximum amplitude of the SYNC LEVEL. Then reduce
the amplitude of the SYNC LEVEL signal. What are you observing? Explain your
conclusions.
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— Conversely, for a maximum amplitude of the SYNC LEVEL, vary the
comparator threshold (COMPARATOR THRESHOLD LEVEL). What are you
observing? Explain the phenomenon observed.

— Determine the two constraints on the level of the synchronization channel and
on the threshold of the comparator for this system to work correctly in mode 3.

IMPORTANT NOTE.— Depending on the mode chosen, the phase of the regenerated
clock (or not) at the receiver varies compared to the signal received at the receiver.
Also, and more particularly for pulse durations 8 > 70 % of T, it will sometimes be
necessary to set the potentiometer of the clock control circuit to a value allowing a
good reception operation. For this, it suffices that the falling edges of the clock
obtained at the output of the clock phase shifter (signal at point 33) are located at the
center of the interval separating two pulses of the re-amplified received signal
(signal at point 41).

5.3. Second part — Study of a pulse code modulation (PCM) signal
transmission system and transmission error control (error detector
code and error corrector code)

You have at your disposal an educational electronic board MODICOM 3 from
the company LJ Technical Systems. It actually consists of two distinct boards: one
concerns the transmitter (MODICOM 3/1), the other the receiver (MODICOM 3/2)
(the block diagrams are displayed on each of the electronic boards).

The main features of these boards are:

— time multiplexing of two signal transmission channels;

— two transmission rates: one fast (FAST mode, the normal operation), the other
slow (SLOW mode, for operation analysis with the LEDs). The transmission bitrates
are 240 Kbit/s and 1 bit/s respectively.

The transmitter includes two sinusoidal signal generators of frequencies
fo = 1KHz and f; = 2 KHz, of variable amplitudes which are synchronized, usable
for the fast operating mode. In addition, there are two continuous signals of variable
amplitudes usable for both the fast and slow operation modes.

The transmission and reception system can work according to three modes of
operation concerning the control of transmission errors:

—no error checking: digitization and coding of 7-bit useful signal samples;



278 Digital Communications 2

—odd/even parity bit error checking: encoding of 6-bit useful signal samples,
1-bit error detection control at the receiver;

— Hamming code error control at the transmitter: coding of the 4-bit signal
samples used and addition of 3 control bits, detection and correction of a single error
at the receiver;

— multiple possibilities of introduction of errors at the sending or receiving phase
for analyzing the performance of the error control modes (detection/detection and
correction of a single error).

Moreover, as for the system studied in part 1, it also has three modes of
operation corresponding to the number of interconnection links between transmitter
and receiver, and therefore included:

— a clock recovery system on reception;

— a frame synchronization generation system in transmission and frame detection
and locking in reception.

The system operates according to the following basic principle. Each input signal
is sampled at 16 KHz (sample-and-hold) and digitized on 7 bits with 2-order
sampling interleaving because there are two transmission channels. A binary
information frame of length 15 is formed whose structure is as follows:

by3 b; b by
CeCsClC3C, €y Cy CeCsClC3C,CLCH S —
Canal 0 Canal 1

where:
— S is a frame synchronization bit, first transmitted;

—Cg e C, corresponds to the 7-bit word allocated to the transmission of the
sample of channel 0 or channel 1. The transmission time of a frame is 1/16,000 =
62.5 us (in fast mode);

— according to the selected error control mode, we have:

-Cgeeee C, corresponds exactly to the 7 scan bits Dg «+« -+ D, of the considered
sample if no error check,

-Cgereee C; corresponds to the 6 most significant bits of digitization
Dg«ev e D; of the sample and C, is the parity check bit added if parity control is
chosen (even or odd),
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= Cgrenee C; corresponds to the respectively 4 most significant bits Dg -+ -+ Dy
of digitization of the sample and C, C; C, is the sub-word of control for the detection
and correction of a single error by Hamming code if this one is chosen.

Regarding the frame synchronization bit, this bit can be generated at the
transmitter so that, on reception, it can almost certainly be identified in the received
binary data stream. In the mode of operation 2, the transmitter uses a pseudo-random
generator generating the repetitive sequence “000 100 110 101 111” of which
successively a bit will be used as synchronization bit S per transmitted frame. The
receiver also has this pseudo-random sequence in this mode and thus locks on it.

Finally, mode 3 allows, by the use of a clock regeneration block in reception and
simultaneously by the use of the frame synchronization mode of mode 2, to
regenerate the transmitted signals only from the global signal of transmission (RX
DATA OUTPUT).

Two error generation blocks separately allow the transmitter and the receiver to
insert errors at different levels. Each of them has four possibilities associated with a
SF switch.

In the transmitter, if:
—SF1 =1 — the bit Dy after digitization of each sample is forced to 0;
—SF2 =1 — the bit C4 after coding of each sample is forced to 1;

—SF3 =1 — the bit (5 after coding is correctly transmitted but the error
protection bits (C, or C; C,) are generated considering that the bit D; was at 1;

—SF4 =1 — the frame synchronization bit S is no longer generated by the
pseudo-random generator but is modified deterministically.

In the receiver, if:

—SF1 = 1 — defect in the phase-lock loop of the clock regeneration block
(between the output of the “EXCLUSIVE OR” and the low-pass filter);

—SF2 =1 — defect in the frame synchronization detection block;

— SF3 =1 — defect in the detection block and correction of transmission errors
by Hamming code given by the following Table 5.1;

—SF4 = 1 — defect in reconstituting the channel 0 signal by interrupting the
input of the sampling and hold amplifier.
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Wrong bit Error indicated | Corrected bit
None Cy None
Co Cs Dy
Cy (o None
C, Cs Ds
C3 Cs D5
C, Ce D¢
Cs Cs Ds
Ce Ce D¢

Table 5.1. Types of defects in the detection and correction
block of transmission errors by Hamming code (SF3 = 1)

5.3.1. Experimental study

The multiple possibilities of operating of this system, including the aspect of
generation and control of transmission errors, imply a rather rich experimental study.

5.3.1.1. Study without error of transmission and without protection code

5.3.1.1.1. Mode 1 of operation (clock and frame synchronization are also
provided to the receiver)

— In fast mode, display the signals to be transmitted, the digital signal transmitted
and the signals restored in reception for different amplitudes. What do you observe
for large amplitudes? Using continuous signals, determine the useful amplitude
range avoiding the saturation of the converters and associated codes.

—In slow mode, examine the operation of the transmitter and the receiver in
detail. In particular, the value of the frame synchronization bit, the times of
modification of the transmitted signal and the transmission order of the bits
associated with the representation of the samples will be specified.

5.3.1.1.2. Mode 2 of operation (only the clock is also provided to the
receiver)

The frame synchronization generator is used on transmission and the frame
synchronization detector on reception.

—In fast mode, check the correct operation of the entire system for different
input signals. In particular, it will be verified that the indicator of the bit
synchronization counter is on. What do you observe if you turn off the frame
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synchronization generator at the transmitter? Same question if you put it back into
operation.

—In slow mode, examine in detail the operation of the frame synchronization
part at the transmitter and at the receiver the frame synchronization detection.
5.3.1.1.3. Mode 3 of operation (only the transmitted signal is used as a link

between transmitter and receiver)

Due to the mandatory use of the clock regeneration block in reception, only the
fast mode is possible.

— Set the correct operation of the clock regeneration block by using a continuous
signal on transmission and adjusting the “TRIM” of the voltage-controlled oscillator
of the clock regeneration block so that the synchronization bit counter LED remains
on for all possible amplitudes.

— Check for different amplitudes of the sinusoidal signals that are to be
transmitted that they are correctly restored. Make the appropriate measures.
5.3.1.2. Study with protection code against transmission errors

5.3.1.2.1. Error-free

— In slow mode and in mode 2, analyze the operation with a detector code of a
single error with even and then odd bit of parity.

— Similarly, analyze the operation with a Hamming code correcting a single
error. In particular, for each of the words to be coded D D5 D, D, determine the
corresponding codeword Cg «++ ++ Co.

— In fast mode and mode 3, check that the complete system is working correctly
with the Hamming code. Are the signals restored correctly? What precision do we
get on the amplitudes?
5.3.1.2.2. With errors in the transmitter or in the transmission channel

— In fast mode and in mode 3, without error protection, what do you observe if
you set SF2 to 1? Same question with an error detector code. Explain.

— In the context of the previous question, but with a Hamming code, what do you
observe? Explain.

—Set SF1 at 1 and explain what you observe in the three possible situations:
unprotected, detection of an error, detection and correction of a single error.

— Set SF3 at 1. Same question as before.
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— Finally, by setting SF4 at 1 and in the three possible situations, what do you
observe? What proposal do you make so that in this context, the receiver
synchronizes again correctly?

5.3.1.2.3. With errors in the receiver

In the same way as in the previous part, you will test and explain the overall
operation of the system with various error modes and depending on the modes of
protection against errors.

— Set SF1 at 1 and in mode 3, what do you observe? Explain.
— Set SF2 at 1 and in mode 2 or 3, what do you observe? Explain.

—Set SF3 at 1 and with Hamming coding, what do you observe? Also set the
SF2 transmitter to 1. Is the result normal?

— Finally, set SF4 at 1 (with SF2 set at 0 in the transmitter) and observe the
analog outputs at the receiver.
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Study of On-line Codes for Baseband
Modulation and Carrier Modulation

6.1. Objectives

In this lab work, you will study the various on-line codes for representing the
binary information for its transmission on a communication channel. Two sets of
codes are studied. The first provides a baseband signal. This one can be sent as it is.
It can also modulate a carrier. The various digital modulations with carrier are also
available (second way of transmission) and will be studied in principle and
technique, especially at the demodulation level.

6.2. Description of the electronic boards

The MODICOM 5 system consists of two electronic boards. The MODICOM
5/1 board includes the conditioning of data (on-line coding) into baseband signals
and, if necessary, carrier modulation and thus corresponds to the transmission part.
The MODICOM 5/2 board performs the reverse operations and therefore
corresponds to the reception part (see the block diagrams on the boards concerned).

The data conditioning part in baseband signals (information-to-signal coding)
allows for working with the following on-line codes:

—NRZ-L coding (level type);

— NRZ-M coding (Mark (differential) type);

—RZ coding;

— Biphase coding (Manchester code);

— Biphase-M coding (Mark);

Digital Communications 2: Directed and Practical Work,
First Edition. Safwan El Assad and Dominique Barba.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.



284  Digital Communications 2

— Bipolar coding (also called AMI coding: Alternation Mark Inversion);
— RB coding (Return-to-Bias);

— Quaternary differential coding.

The carrier modulation part performs the following modulation types:
— ASK modulation: Amplitude Shift Keying modulation;

— FSK modulation: Frequency Shift Keying modulation;

— PSK modulation: Phase Shift Keying modulation;

— QPSK modulation: Quaternary Phase Shift Keying modulation.

The boards MODICOM 5/1 and MODICOM 5/2 are inter-connectable upstream
with the MODICOM 3/1 board for the transmitter part (MODICOM 5/1) and
downstream with the MODICOM 3/2 board for the receiver part (MODICOM 5 / 2).
The MODICOM 5/1 and 5/2 boards have signal generators with a carrier at
1.44 MHz for one, and a carrier at 960 KHz for the other. Moreover, the latter also
has a version in quadrature (Q) relative to the other (I).

More precisely, the MODICOM 5/1 board comprises the following elements:

—two inputs: a TTL binary signal input (TX DATA INPUT) and associated
clock input (TX clock INPUT);

— direct signal outputs associated with on-line codes and the associated clock;

— two unipolar-bipolar connection blocks that can be used to build bipolar codes;

— an inversion block.

In addition, it is possible to simultancously output a group of two digits (usable
for QPSK modulation). Two modulation blocks with carrier and a block of
summation make it possible to carry out the various types of digital modulation. On

each modulation block, the gain and offsets of the carrier and the modulating signal
are adjustable.

Similarly, the MODICOM 5/2 board (Receiver) includes the following elements:
— arectifier detector block for amplitude modulation (ASK);

— a frequency demodulation block (FSK) with phase-lock loop;

— a phase demodulation block (PSK) with quadratic phase lock loop;

—a quaternary phase demodulation block (QPSK) with phase-lock loop (with
power 4);
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— two low-pass filters;

—a system for regeneration of bipolar signals into unipolar signals with double
thresholds (data squaring circuits);

— a differential decoder;

— a clock regeneration system for the biphase code.

6.3. First part — Study of on-line codes for baseband digital
transmission

IMPORTANT NOTE.— In all experiments, you will only power the boards (+12 volts;
5 volts) when the wiring has been fully completed and checked.

When using boards MODICOM 3/1 and 3/2, these will be used in the following
modes and configurations:

— selection of fast mode;

— selection of SYNC CODE DETECTOR mode;

—no detector and corrector error code mode (A =B = 0);

—no addition of transmission errors or defects.

6.3.1. Experimental part

From the MODICOM 3/1 board and continuous analog input for it, set the signal
amplitude so that the binary word transmitted in serial form by the channel is the
following:

Dg-+Dy=0100011

for example. However, you can modify the information transmitted at your
convenience.

— Study successively the NRZ-L, NRZ-M, RZ codes and represent their observed
chronograms. How does the NRZ-M code compare to the classic NRZ-L code?

—Study the biphase code (MANCHESTER) and represent the observed
chronogram. Explain how the Manchester code works. The next step is to decode
the Manchester code. Why does a simple clock regeneration circuit not work?
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The clock regeneration specific circuit will be used for the biphase code. What does
it produce as a regenerated clock signal?

— Study the biphase-M code and represent the observed chronogram. Based on
your observations, build the biphase-M decoder and explain how it works.

— Study the bipolar code (AMI code) and represent the observed chronogram. To
build it, you will connect the NRZ-M output to the input of the unipolar-bipolar
converter and the RZ output to the DISABLE input of the same converter. Study the
decoding of the bipolar code and carry it out by using the “Data Squaring Circuits”
system and by properly adjusting the two thresholds of the two comparators.

It will then be possible to transmit sinusoidal analog signals over the whole
system (MODICOM 3/1; 5/1; 5/2; 3/2) using any of these codes.

6.4. Second part — Study of digital modulations with carrier

We will study successively the digital amplitude modulation and demodulation
(ASK), the digital frequency modulation and demodulation (FSK), the digital phase
modulation and demodulation (PSK).

In analysis mode, the information sent will be taken equal to “0 1 00 0 1 1” for
example.

6.4.1. Amplitude shift keying modulation (ASK)

An amplitude modulation will be performed using a modulation block and a
1.44 MHz carrier. The mode of the MODICOM 5/1 board will be set to position 1
and the SYNC CODE GENERATOR of the MODICOM 3/1 board to “OFF”.
Perform amplitude demodulation as follows:

ASK
Input Data Low Pass Voltage Data
Signal [: | » Filter Comparator ’ Output

Figure 6.1. Block diagram of the ASK demodulation

The SYNC CODE GENERATOR of the MODICOM 3/2 board will be set to
“ON” and the clock regeneration block will be used with an appropriate setting of
“PULSE GENERATOR DELAY ADJUST”.
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You will adjust the gain and the offsets of the modulating signal and the carrier.

Examine the signals obtained at the output of each of the blocks of the
demodulation system (the comparator threshold must be set correctly). Comments.

Change the amplitude of the transmitted signal (MODICOM 3/1) and check that
the reconstructed signal is correct by setting the SYNC CODE GENERATOR of the
MODICOM 3/1 board to “ON”.

6.4.2. Digital frequency shift modulation (FSK)

Perform a digital frequency modulation according to the block diagram of Figure 6.2.

Modulator 1

Sinewave F1

; Carrier
Input
Output
Modulation
Data Stream Input . FSK
— ™ Summing Output
Modulator 2 Amplifier
Sinewave F2 Carri > P
arrier
Input
Output
Modulation
Inverted Data Stream Input

Figure 6.2. Block diagram of FSK modulation

In reception, the signal is decoded by means of a phase-locked loop, a low-pass
filter and a comparator, according to the block diagram of Figure 6.3.

FSK

Voltage Data
Input p» PLL Low Pass
SiI;nal Detector Filter Comparator Output

Figure 6.3. Block diagram of digital FSK demodulation
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The two boards MODICOM 3/1 and MODICOM 3/2 will be used to generate the
information to be transmitted with modulation and to reconstruct the signal on
reception. Set the SYNC GENERATOR of the MODICOM 3/1 board to “OFF” and
the SYNC CODE DETECTOR of the MODICOM 3/2 board to “ON”.

— Analyze, for a configuration of information to be transmitted given by “0 1 0 0
0 11 17, the modulator and demodulator operations (you will adjust the two carriers
used (960 KHz and 1.44 MHz) at the same amplitude. What do you observe before
and after the low-pass filter? Adjust the threshold on the comparator so that the
baseband signal is correctly reconstructed.

— By setting the SYNC CODE GENERATOR of the MODICOM 3/1 module to
“ON”, the system is fully operational for transmitting analog signals. Analyze the
operation of the entire system.

6.4.3. Phase shift keying modulation (PSK)

Perform a digital phase modulation according to the block diagram of Figure 6.4.

Carrier Carrier
—_———P
Sinewave Input
Output PSK .
Unipolar Unipolar-Bipolar | | Modulation avetorm
Data Stream Converter Input
Double-Balanced Modulator
Figure 6.4. Block diagram of a digital PSK modulation
In reception, the signal is decoded in two steps.
i Phase
Signal PLL I 2 I '
Squarer Adjust
PSK
Demodulator
Input > o >
Signal Output

Figure 6.5. Block diagram of a digital PSK demodulation
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A demodulator composed of four blocks performs a PSK demodulation (see
Figure 6.5).
In a second step a low-pass filter and a comparator provide a logical signal.

— Show that if the code used at the input of the modulator is an NRZ-L code,
there is ambiguity in the decoding.

— In order to remove this ambiguity, the code used will be an NRZ-M code and
the complete scheme to be realized will be the following (Figure 6.6).

Carrier - Carrier
Sinewave Input
PSK
Output .
. . . Waveform
NRZ(M) Unipolar-Bipolar Modulation v
Waveform Converter Input
(Unipolar) Double-Balanced Modulator
PSK Transmitter
PSK . . NRZ(L)
PSK Low Pass Voltage Differential
Input —pm| - |
bu Detector Filter Comparator [ ™| Bit Decoder - Data
Signal Output
PSK Receiver

Figure 6.6. Block diagrams of a digital PSK modulation
and demodulation by using an NRZ-M code

— A carrier at 960 kHz will be used. Using the word “0 1 0 0 0 1 1” to transmit,

analyze the operation of the global system in detail. For that we will use an NRZ-L
code at the beginning. Comments.

— To remove the ambiguity, use an NRZ-M code and analyze the transmission
and reception.

Give your general conclusions on PSK modulation.
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Study of a QPSK Modem Under MATLAB,
Simulink, Communications and DSP

7.1. Objective

The objective of this lab work is the study, then the simulation under MATLAB,
Simulink, Communications and DSP of a QPSK digital transmission modem
(modulator and demodulator).

The complexity of telecommunications and signal processing systems has grown
enormously in the last two decades.

The evaluation of performance on “hardware” prototypes is of course the best
method to validate a concept, a structure or system. However, this approach is
usually very time-consuming and expensive in terms of equipment. It is therefore
understandable why the implementation phase intervenes only at the end of the
development cycle.

The role of simulation is precisely to perform all these tests, at a lower cost both
in terms of time and equipment.

The objective here is the study and the complete simulation of the proposed
QPSK modem (see the block diagram in the Appendix).

The QPSK modem in question uses the following software modules, MATLAB,
SIMULINK, COMMUNICATIONS and DSP:
— MATLAB:
- analysis, design, optimization;

- off-line data processing;

Digital Communications 2: Directed and Practical Work,
First Edition. Safwan El Assad and Dominique Barba.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.
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— Simulink:
- block diagram modeling;
- off-line simulation;

— Communications Toolbox (uses: SIMULINK and MATLAB): modeling and
simulation of all the components of a digital or analog communication system
“commlib”;

— DSP Blockset (uses: MATLAB, SIMULINK, SIGNAL PROCESSING
TOOLBOX): set of libraries specific to signal processing. They are used by
SIMULINK “dsplib”.

A MODEM (Modulator-Demodulator) is a system that modulates the baseband
information at transmitter level and demodulates the received signal at receiver level
to retrieve the information carried by a baseband signal.

The MODEM is decomposed into two essential functions:
— the transmission function (transmitter);

— the reception function (receiver).

The receiver consists of blocks that perform reverse functions to the transmitter
blocks.

7.2. Required work

Under Simulink, open the “mgpsk.mdl” modem to view it, then execute the
“pmgpsk.m” parameter file under MATLAB. The two files in question will be
provided to you (see the different figures in the Appendix).

—Study very thoroughly the different blocks constituting the modem and
simulate the whole for a time duration up to 1,000 x T,. Observe and comment on
the spatial diagram, the constellation diagram and the eye diagram. Then analyze the
different intermediate signals.

— For different values of the signal-to-noise ratio (40 dB, 20 dB, 10 dB, 5 dB),
qualitatively compare the results, the roll-off R parameter of the Nyquist filter being
fixed at 0.5.

— Set the signal-to-noise ratio to 40 dB and vary the roll-off R parameter
(R = 0.1, 0.3, 0.7 and 0.9). Analyze their influence on the demodulated signals
(spatial diagram, constellation diagram and eye diagram).
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— Replace the “QPSK map” block given in Figure 7.2 by that given in Figure 7.8
and redo the study done above.

Explain your conclusions.

7.3. Appendix: Diagrams of the QPSK modem and its different blocks

[]

v

> -((2'D+1)"2 >
1 2)
D Integer Delay Time
Scope
Time
Scope2
L e B
Random |« QI\:'SK In1Out— ——=1 |bow In10ut
Integer ap
Random-Integer  QPSK Map IN20uti—»] In20ut
Generator RCE p—
Transmitter1 Receiverl
r

A
Reallmagto|2 E
I:| Complex Ed

Scopel
Discrete-Time  Discrete-Time  Discrete-Time
Signal Trajectory  Scatter Plot Eye Diagram
Scope Scope Scope

Figure 7.1. Block diagram of a QPSK modem “mqpsk.mdl”

1 1

Lol o h—
—= —= Out1
UnitDelay1 UnitDelay2 Zero-Crder

In1

Look-Up 1 "‘J-Ll_
eE I —
Unit Delay Zero-Crder

Hold1

Figure 7.2. Decomposition of function “Map QPSK”
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I

/]\ (F=/F d)

Upsample

/l\ (FsiFd)

Upsample1

ol Digital

| Filter
Digital FIR RC1

ol Digital

|  Filter
Digital FIR RC2

»| FiFd
Out1
Gain2
»| FaFd
Out2
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Figure 7.3. Decomposition of function “transmitter1”

X
T" < X
1 —»>
Upsample
DSH Re|— S
}rﬁg_. 7 < ®
Complex Carrier Gain1
L
X
(2 ) » T >
> Y
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Figure 7.4. Decomposition of function “up”
> bl
> X e
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Complex Carrier
N \s
o X n
Out2

Downsample1

Figure 7.5. Decomposition of function “down”



Study of a QPSK Modem Under MATLAB, Simulink, Communications and DSP 295

Digital
CO— it [—CD
In Out1
Digitsl FIR RC1

- > Digital >
Filter

In2

Digital FIR RC2

Figure 7.6. Decomposition of function “receiver1”

% pmqpsk.m

% Settings for mqpsk modem example
% Frequencies relations:

% Fs > Fc > Fd, with Fs >= 2Fc
% Fs: sampling frequency

% Fc: carrier frequency

% Fd: symbol frequency of input data
% Bit rate Fb=2*Fd (Hz) or bit/s
% Bit interval Tb =1/Fb s

% R: roll off factor

% D: delay of rcos FIR filter

% Ph: phase of the carrier

Fb = 50,000

Tb = 1/Fb

Td=2*Tb

Fd=1/Td

Fc=2*Fd

Tc=1/Fc

Fs=3*Fc

Ts=1/Fs

Ph=0

R=0.5

D=2

N=1

Figure 7.7. Parameter file “pmqpsk.m”
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Figure 7.8. QPSK map
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Study of a Coding and Decoding
System by Cyclic Codes

8.1. Objective

The objective of this lab work is the study, then the complete simulation under
MATLAB and Simulink, of a coding and decoding application using cyclic codes.
8.2. Recall of the principles of cyclic coding and decoding

Cyclic codes are block codes where the n symbols which constitute a word are
considered as coefficient of a polynomial of degree n — 1:

ut = [un—llun—Z' ""u1:uo] d u(x)

= Uy XV Uy XV 4 e ugx U

Any circular permutation on the symbols of a codeword gives a codeword:
[Un—1,Un—2, "+, Us, Ug] € C = [Up_p, Up_3,"*, Ug, Un_1] EC

The addition of two codewords is a codeword:
Vuf,uf €C = uf +uf €C

The set of all the words of the code constitutes an algebra, while the set of words
having a meaning constitutes an ideal.

Digital Communications 2: Directed and Practical Work,
First Edition. Safwan El Assad and Dominique Barba.
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The benefits of these codes are multiple:
— they are well suited to the detection of independent and packet errors;

— their implementation is easy, since the coding and decoding procedures can be
made automatic by means of shift registers;

— their basic principle is based on the theory of polynomials and algebra.

8.3. Coding by division: systematic code
Let the information word represented by its polynomial:
() = b x™ P+ i +
The same word can be written:

00 -0 iyyq-iyig

k m
Let us multiply i(x) by x¥ :
XRI(X) = b ™1+ e xRt 4 igxk

This shifts the word i of k positions to the left:

i1 ipip 00 -0
2Y Y
m k

Now divide x¥i(x) by g(x) (whose degree is k):
x¥i(x) = g(x)q(x) + c(x) with d°c(x) <k
c(x) can be written:

0 0 0 Ck—l "'C]_CO

m k

Or again, the polynomial:

xKi() + c(x) = g()q (x)
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being a multiple of g(x), is a polynomial of the code. The corresponding codeword
consists of two disjoint sub-words:

lm—1"""l1lg Ck—1""C1Cp

m k

This word has on the left the m bits of information. The following k bits are the
control bits. The whole word of m + k bits is a codeword.

In summary, we can code a word of information by:
1) multiplying it by x*;

2) then dividing the result by g(x). The remainder of the division provides the
control bits.

8.4. Decoding by division: principle of calculating the syndrome
In general:
v(x) = ulx) + e(x)

with:
—v(x) : received word;
—u(x) : codeword transmitted;

— &(x) : possible error word.

The syndrome is:

v(x

7 (33] = Remainder [;((Tc))]

s(x) = Remainder[

If there have been errors, and if the erroneous received word v(x) does not belong

to the code, the division of the received word by g(x) will give a non-zero

remainder. For the error detection it is sufficient to add an “OR” gate whose inputs
are the contents of the register.
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8.5. Required work

Under Simulink, open the cyclic encoder-decoder: “codec3f.mdl” (provided to
you, see block diagrams in the Appendix below) using a generator polynomial g(x)
of degree k = 3:

gx)=x3+x+1
— Study very thoroughly the different blocks constituting the encoder and the
decoder.

— In the MATLAB workspace, set the following parameters:
n= 7, k = 3, Tb =1

Then, in the Bernoulli generator of the transmission “channel” (Figure 8.4), set
the “probability of a zero” parameter to 1.

Then run the simulation for up to 15 X T}, (two codewords plus one bit). Analyze
the results obtained for the encoder and the decoder.

— Calculate the codewords analytically and compare them with the result of the
simulation.

—Now set in the Bernoulli generator of the transmission “channel”, the
“probability of a zero” parameter to 0.8 and start the simulation. Analyze the results
obtained for the encoder and the decoder.

— Realize and test under Simulink the linear feedback shift register encoder using
the preceding generator polynomial g(x) given in Figure 8.7, and the associated
decoder given in Figure 8.8.

— Realize and test under Simulink (see Volume 1, Chapter 4):

- the following generator polynomial: g;(x) =x°>+x2+1 as a pseudo-
random generator, starting from a non-zero initial state of the register.

- the following generator polynomial: g,(x) =x°+x*+x3+x?+1 as a
pseudo-random generator, starting from a non-zero initial state of the register.

- the Gold generator polynomial gs(x) based on the two preceding generators
g1(x) and g,(x) (which are preferred pairs).

What is the length n of the sequences generated?
What is the number of sequences generated?

Conclusions.
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8.6. Appendix: Block diagrams
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Figure 8.6. Example of simulation results
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Figure 8.7. Coder based on linear feedback shift register (LFSR)
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Figure 8.8. Decoder based on linear feedback shift register (LFSR)
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