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Preface

Differential equations have been used to model dynamic systems. Such modeling
has met great success primarily because solutions of differential equations precisely
predict the actual behaviors of the modeled systems. However, the analytic solution
of a dynamical system is in general quite challenging to obtain. Various methods
have been developed to determine and analyze the behaviors of dynamical systems
without obtaining their explicit solutions. Among these methods is the Lyapunov
function based analysis. Over the course of its development, the Lyapunov function
based analysis has shown its universal applicability to the study of a wide range
of systems such as linear and nonlinear systems, time-invariant and time-varying
systems, and deterministic and stochastic systems.

Time delay systems refer to those dynamic systems whose change of current state
depends on the past values of its state and/or input. Such lagging phenomena have
been frequently observed in engineering practice. Input delay of a system emerges
whenever the transmission of the control signal from the controller to the actuator
of the system takes a certain amount of time. This lagging effect in the input can
be caused by long-distance transmission of the control signal or time-consuming
computation of a control algorithm carried out by the controller. A fundamental
problem in the control of time delay systems is the problem of stabilization. The
importance of such a problem is obvious from the observation that feedback laws
designed without consideration of the delay typically fail to stabilize when the value
of the delay grows large.

There are two commonly followed paths to achieving the stabilization of linear
systems with input delay. The first path extensively involves the Lyapunov function
based analysis. We pick a Lyapunov function for the open loop system. By designing
a feedback law that makes the time derivative of the Lyapunov function along
the trajectory of the closed-loop system negative definite, we achieve closed-loop
stability. Typically, a stability criterion obtained from such an analysis is in the form
of linear matrix inequalities (LMIs). Thanks to effective computation techniques, the
solution of LMIs is an easy task. The Lyapunov function based method possesses
considerable advantages in dealing with time-varying features of a time delay
system, including time-varying delays and other time-varying system parameters.

vii
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Uncertainties in the system, such as external noises, stochastic nature of the system,
and even uncertainties in the delay, can also be readily handled.

The second path to achieving stabilization is more straightforward. To directly
compensate the input delay, we express the control input as the product of a feedback
gain matrix and the state of the system at a future time ahead of the current time
by the same amount of the delay. Such a feedback law results in a stable closed-
loop system free of delay. By predicting the future state as the sum of the zero
input solution and the zero state solution of the system, the feedback law allows
implementation from the causality point of view. Such a form of feedback is referred
to as the predictor feedback. However, the term in the predictor feedback that
corresponds to the zero state solution is distributed because the zero state solution
is a convolution between the state transition matrix and the input term. This causes
difficulty in the implementation of the predictor feedback.

A possible way to avoid such difficulty is to truncate the distributed term from
the predictor feedback law. The resulting feedback law is referred to as the truncated
predictor feedback law. The delay-dependent state transition matrix in the truncated
predictor feedback law prevents its application to control scenarios when the exact
knowledge of the delay is not available. A delay independent truncated predictor
feedback law results when the delay-dependent transition matrix in the truncated
predictor feedback law is further dropped. It has been shown that the truncated
predictor feedback law compensates an arbitrarily large delay in a linear system with
all its open loop poles in the closed left-half plane when the feedback gain matrix is
designed by the use of the low gain design techniques and is parametrized in a single
low gain parameter. Conversely, the delay independent truncated predictor feedback
law compensates an arbitrarily large delay in a linear system only when all its open
loop poles are at the origin or in the open left-half plane. The key to achieving
stabilization is the parameterization of the feedback gain matrix by a single constant
low gain parameter. For a given, arbitrarily large, delay, the closed-loop stability is
guaranteed by tuning the feedback parameter to a small enough value.

By either the truncated predictor feedback law or the delay independent truncated
predictor feedback law, the stabilization requires some knowledge of the delay.
In particular, the state transition matrix of the truncated predictor feedback law
contains the explicit value of the delay. An upper bound of the delay is required
for the determination of a stabilizing feedback parameter in the delay independent
truncated predictor feedback law. In the absence of any knowledge of the delay, the
design of a time-varying feedback parameter whose value is updated by an adaptive
algorithm is then crucial for arriving at a stabilizing feedback law. Even when we
have the knowledge of an upper bound of the delay, the design of a time-varying
feedback parameter in the delay independent truncated predictor feedback law helps
to result in stronger closed-loop performance in terms of a smaller overshoot and a
higher convergence rate.

This book focuses on the design of truncated predictor based feedback laws
for general, possibly exponentially unstable, linear systems. The first part of the
book is dedicated to the design of truncated predictor based feedback laws with a
constant feedback parameter. It is established through examples that these feedback
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laws cannot stabilize general, possibly exponentially unstable, linear systems with
a sufficiently large delay. Admissible delay bounds that guarantee closed-loop
stability are established. The second part of the book is dedicated to the design of
time-varying feedback parameters in the truncated predictor based feedback laws.
Such designs are motivated by the desire to improve the closed-loop performance
of systems under the truncated predictor feedback laws with a constant feedback
parameter and to enable the feedback laws to accommodate the unknown delay. In
particular, a family of time-varying feedback parameters in the delay independent
truncated predictor feedback law improves the closed-loop performance with a
smaller overshoot and a higher convergence rate. Moreover, we manage to not
require any knowledge of the delay in the regulation of linear systems by equipping
the delay independent truncated predictor feedback law with a delay independent
update algorithm for its feedback parameter.

The organization of the book is as follows: Chapter 1 introduces time delay
systems and recalls some fundamental concepts and design methods. Time delay as
a frequent scene in almost every aspect of engineering practice is illustrated through
examples. For the study of asymptotic behaviors of a closed-loop system with delay,
stability definitions are presented. At the end of the chapter, we introduce the basic
design of the predictor feedback law for the stabilization of linear systems with input
delay, along with a discussion on the difficulty associated with its implementation.

Chapter 2 introduces the design of the truncated predictor feedback law for
continuous-time linear systems. Low gain feedback design techniques are employed
to parameterize the feedback gain matrix of the truncated predictor feedback law by
a single constant low gain parameter. For a system with all its open loop poles
in the closed left-half plane, the truncated predictor feedback law compensates
an arbitrarily large delay as long as the low gain parameter is chosen small
enough. The original truncated predictor feedback law is parameterized by using an
eigenstructure assignment based low gain feedback design technique. An alternative
approach by using an algebraic Riccati equation based low gain design technique is
also reviewed. Both state and output feedback designs are covered.

Chapter 3 develops the discrete-time counterparts of the results in Chap. 2. It
is shown that the truncated predictor feedback law compensates an arbitrarily large
delay in a discrete-time linear system with all its open loop poles on or inside the unit
circle. Both an eigenstructure assignment based and an algebraic Riccati equation
based low gain feedback design techniques for the parameterization of the feedback
gain matrix are reviewed. As in Chap. 2, both state and output feedback designs are
presented.

Chapter 4 generalizes the results in Chaps. 2 and 3 to a general linear system
that is possibly exponentially unstable. For an exponentially unstable linear system,
no feedback law can achieve stabilization when the input delay is large enough.
We construct state and output feedback laws of the form of a truncated predictor
feedback law and establish conditions on the delay, the system, and controller
parameters under which the closed-loop system is asymptotically stable. Based on
these conditions, the design of the feedback law that allows maximum delay is
determined. Both continuous-time and discrete-time systems are considered.
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In Chaps. 5 and 6, we focus on the design of delay independent truncated
predictor based feedback laws. In the absence of the exact knowledge of the
delay, the truncated predictor feedback law is no longer implementable due to its
delay-dependent term. The removal of the delay-dependent term from the truncated
predictor feedback law results in the delay independent truncated predictor feedback
law. It is shown through an example that the delay independent feedback cannot
compensate an arbitrarily large delay in a linear system with purely imaginary open
loop poles. Admissible delay bounds with stability guarantee are then established
for general, possibly exponentially unstable, linear systems. However, for a system
with all its open loop poles at the origin or in the open left-half plane, the delay
independent truncated predictor feedback law compensates an arbitrarily large delay
as long as the low gain feedback design technique is applied to parameterize the
feedback gain matrix. Such a low gain nature of the delay independent truncated
predictor feedback law leads to a large overshoot and a low convergence rate of the
closed-loop system. A time-varying feedback parameter design is then proposed
to improve the closed-loop performance under the constant feedback parameter
design. To comprehensively study the stabilizing effects of the delay independent
truncated predictor feedback, we examine the stabilization of continuous-time and
discrete-time linear systems, respectively, in Chaps. 5 and 6, by either state or output
feedback.

The time-varying feedback parameter design in Chap. 5 requires an upper
bound of the delay to be known for the stabilization. We manage to not require
any knowledge of the delay in feedback designs in Chap. 7. In the absence of
any knowledge of the delay, a control scheme is proposed that equips the delay
independent truncated predictor feedback law with an updated algorithm, which
is also delay independent, for the feedback parameter. This control scheme allows
ease of implementation because only current state, and no knowledge of the delay, is
required. Discrete-time counterpart of such an adaptation scheme is also developed
in Chap. 8.

This monograph was typeset by the authors using LATEX. All simulation and
numerical computation were carried out in MATLAB.

The authors would like to thank the National Science Foundation for its generous
support that has led to most of the results contained in this book.

Charlottesville, VA, USA Yusheng Wei

Charlottesville, VA, USA Zongli Lin
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ẋt The restriction of ẋ(s) : R → R
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Chapter 1
Introduction

1.1 Introduction to Time Delay Systems

The phenomenon of time delay is a commonplace in almost every scientific
discipline. Time delay refers to the amount of time it takes for the matter, energy, or
information in a dynamic system to transfer from one place to another or to make
their full impact on the system after their emergence. Such a lagging effect causes
the change of current state of the system to rely on past values of its state and/or
input. For instance, the economic model in [127] reveals that economic growth relies
on population growth and technological advancement. In particular, the population
growth does not take effect on the economic growth until it transitions to the labor
growth, which potentially takes a couple of decades. Similarly, the technological
advancement does not boost the economy until the productivity of the workforce
is improved through technology innovations. Other examples of time delay in the
study of biology, physics, mathematics, and engineering are many, and we will
mention a few in the following subsection as examples.

1.1.1 Examples of Time Delay Systems

1.1.1.1 A Predator–Prey Model

In biology studies, the Lotka–Volterra equations are differential equations that
describe predator–prey interactions in a natural ecosystem. A typical set of the
Lotka–Volterra equations takes the following form (see [98]):

ẋ1(t) = αx1(t)
(

1 − x1(t)

K

)
− βx1(t)x2(t), (1.1)

ẋ2(t) = −γ x2(t) + ωx1(t − τ)x2(t − τ), (1.2)
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2 1 Introduction

where x1(t) and x2(t) are the populations of the prey and the predator, respectively,
and α,K, β, γ , and ω are positive constants determined by the characteristics of
the prey and the predator and the natural ecosystem in which they inhabit. The first
term on the right-hand side of (1.1) suggests that even in the absence of predation,
the population of the prey cannot exceed K , which represents the carrying capacity
of the ecosystem for the prey population. The second term on the right-hand side of
the equation describes the negative effect of the predation on the population of the
prey. Basically, the predation causes the population of the prey to decrease, and the
rate of this decrease is proportional to the number of interactions between the prey
and the predator, which can be characterized by the product of the population of the
prey and that of the predator.

The right-hand side of (1.2) also contains two terms. The first term suggests that,
in the absence of the prey, the population of the predator decreases exponentially
toward zero. The second term indicates that the positive effect of the predation
on the population of the predator does not occur instantly. The positive constant τ

represents the time it takes for the predation to show its impact on the growth of the
predator population. Compared to the predator–prey model without consideration of
the delay τ (see [45]), the differential equations (1.1) and (1.2) are more accurate in
describing the actual population dynamics of the two species.

1.1.1.2 The Distribution of Primes

In the study of the distribution of primes, mathematicians formulated the asymptotic
behavior of the prime counting function π(x) with respect to the prime x in the
Prime Number Theorem.1The prime countering function π(x) is the number of
prime numbers that are not greater than the prime number x. It turns out that such
a theorem can be proved from the perspective of time delay systems [96, 111].
Reference [96] defined a smooth curve y(x) that best fits the actual variation of
π(x). By using a probability argument for the distribution of primes, [96] obtained

2x
d2y

dx2 + dy

dx

dy

dx

(
x

1
2

)
= 0, (1.3)

where the first- and second-order derivatives with respect to x are defined as dy
dx

and
d2y

dx2 , respectively. Reference [111] defined two functions of x, v, and w, as

2v = ln x

and

1The Prime Number Theorem: limx→∞ π(x)
x

log(x)

= 1.
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w(v) = dy

dx
log x − 1,

which, together with (1.3), imply that

dx

dv
= αx log x, (1.4)

dw
dv

1 + w(v)
= α

(

1 − 2v−1 dy

dx

(
x

1
2

))

, (1.5)

1 + w(v − 1) = 2v−1 dy

dx

(
x

1
2

)
, (1.6)

where α = ln 2. Then, the following time delay system is obtained from (1.5) and
(1.6),

dw

dv
= −αw(v − 1)(1 + w(v)). (1.7)

According to [111], the solution to (1.7) satisfies that w(v) → 0 as v → ∞.
Therefore, dy

dx
approaches 1/ log x as x goes to infinity, which coincides with the

statement of the Prime Number Theorem. This example shows that the study of
time delay systems facilitates the development of number theory.

1.1.1.3 A Traffic Flow Model

The efficiency of a transportation system relies on the smooth flow of traffic. A
simple mathematical model for traffic flow can be established by considering n

number of automobiles that move along a straight road (see [32]). Denote the
position of the ith automobile at time t as xi(t) and let the (i + 1)th automobile
move in front of the ith one, i ∈ I [1, n]. The following sequence of equations
describes the movement of the automobiles in terms of their positions:

ẍi (t) = k(ẋi(t − τi) − ẋi+1(t − τi)), i ∈ I [1, n]. (1.8)

Basically, the ith equation implies that the acceleration of the ith automobile at time
t is proportional to the relative velocity between the ith and (i +1)th automobiles at
a past time instant t − τi , with the coefficient of proportionality k < 0. The constant
τi ∈ R

+
0 represents the time it takes for the driver of the ith automobile to sense

the traffic condition, determines a necessary action to accelerate or decelerate the
automobile, and regulates the gas paddle or the brake based on his/her decision.
These time delays are caused by the lagged behaviors of the drivers, which cannot
be neglected, especially in modeling fast moving traffic.
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1.1.2 Delay Differential Equations

The study of delay phenomena scatters among different scientific disciplines. A
systematic study of time delay and its effects within a unified framework relies
on modeling time delay systems by delay differential equations (also known as
functional differential equations, differential-difference equations, equations with
dead time, after-effects, or deviating arguments). A typical delay differential
equation is given by

ẋ(t) = f (t, xt , ẋt ), (1.9)

where f : R × C1([−τ, 0],Rn) × C([−τ, 0],Rn) → R
n is a general nonlinear

functional, xt and ẋt are respectively the restrictions of the state x(s) and its
derivative ẋ(s) to s ∈ [t − τ, t], and τ ∈ R

+
0 is the amount of the delay. The

equation indicates that the change of the current state x(t) depends on the values of
the state over the time interval [t − τ, t], rather than solely on the current value of
the state x(t).

Equation (1.9) belongs to the group of delay differential equations of neutral type
whose right-hand side depends on the derivative of xt . In contrast to the neutral type
is the retarded type of delay differential equations whose right-hand side does not
depend on the derivative of xt . A retarded equation takes the form of

ẋ(t) = f (t, xt ), (1.10)

where f : R × C([−τ, 0],Rn) → R
n is a general nonlinear functional . The focus

of this book is on the study of delay differential equations of retarded type. We refer
to the rich literature on delay differential equations of neutral type (see [31, 32, 43,
52, 55], and the references therein).

We note that the expression for a general delay free ordinary differential equation
is given by

ẋ(t) = f (t, x(t)), (1.11)

where f : R × R
n → R

n is a general nonlinear function. On the other hand, f

in (1.9) or (1.10) has two arguments, the time t and a function x(s) restricted to
s ∈ [t − τ, t]. It is thus natural that delay differential equations are also referred to
as functional differential equations.

The way xt appears in f in (1.9) or (1.10) determines whether the delay is
distributed or discrete (pointwise). As the names suggest, if f depends on xt over
a time interval [t1, t2], where t − τ ≤ t1 ≤ t2 ≤ t , then the delay is distributed.
For example, the following scalar equation with distributed delay describes the
circumnutation of a plant to geotropic movements [46],
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α̇(t) = −k

∫ ∞

1
f (n) sin α(t − nt0)dn, (1.12)

where α(t) denotes the angle of the plant with the plumb line, k is some constant,
f (n) is an exponentially decaying function, and t0 denotes the geotropic reaction
time of the plant. If, on the other hand, f depends only on the value of xt at distinct
time instants, then the delay is discrete or pointwise. Examples of delay differential
equations with discrete delay are (1.2), (1.7), and (1.8).

1.1.3 The Initial Condition, the Cauchy Problem, and the Step
Method

The initial condition of a delay differential equation is defined differently in
comparison with that of an ordinary differential equation without delay. We take
Eq. (1.7) for illustration of its initial condition. We first rewrite the equation as

ẋ(t) = −αx(t − 1)(1 + x(t)). (1.13)

Let x(t) start its evolution from t = 0. The value of x(t − 1) is required for
computing ẋ(t), t ∈ [0, 1]. As time elapses beyond t = 1, no information of x(t) on
t ≤ 0 is required. In order to depict the complete evolution of x(t) on t ∈ [0,∞), it
is necessary for (1.13) to take

x0 = φ(θ), θ ∈ [−1, 0], (1.14)

as its initial condition, where φ is typically assumed to be a piecewise continuous
function. Similarly, the initial condition of (1.9) or (1.10) can be defined by

x0 = ψ(t0 + θ), θ ∈ [−τ, 0], (1.15)

where the state of the equation starts its evolution from t0 ∈ R and ψ is a piecewise
continuous function. On the other hand, the initial condition of an ordinary
differential equation without delay is defined by x0 = x(t0) if the state of the
equation starts its evolution from t0. The distributed feature of the initial condition
of a delay differential equation implies that the equation is infinite-dimensional. In
contrast to delay differential equations, ordinary differential equations without delay
are finite-dimensional .

Closely related to the initial condition of a delay differential equation is the
Cauchy problem for the equation. The Cauchy problem, also referred to as the
initial value problem, is to determine whether the equation admits a unique solution
given an initial condition. For both the neutral type equation (1.9) and the retarded
type equation (1.10), comprehensive analysis was established in [43] that addresses
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the problem. Sufficient conditions on the general, possibly nonlinear, functional f

that guarantees the existence and uniqueness of the solution were established in
[37, 41, 43, 52], and [32]. Most of these sufficient conditions do not involve the
explicit solution. When f allows a delay differential equation to be explicitly solved,
we can address the Cauchy problem by directly solving the equation.

Consider Eq. (1.13) for example. Given the initial condition φ(θ) = c ∈ R \ {0},
θ ∈ [−1, 0], x(t) satisfies the ordinary differential equation without delay on t ∈
[0, 1],

ẋ(t) = −αc(1 + x(t)), (1.16)

and thus,

x(t) = (1 + c)e−αct − 1, t ∈ [0, 1]. (1.17)

Forwarding the time interval of interest to t ∈ [1, 2], we see that x(t) satisfies the
ordinary differential equation without delay,

ẋ(t) = −α
(
(1 + c)e−αc(t−1) − 1

)
(1 + x(t)), (1.18)

which is obtained by using the solution of x(t) on t ∈ [0, 1] in Eq. (1.13). From
(1.18), we obtain

x(t) = (1 + c)eα(t−1−c)+ 1+c
c

(
e−αc(t−1)−1

)

− 1, t ∈ [1, 2]. (1.19)

Following the same solution procedure for each of the time interval [k, k+1], k ∈ N,
in a successive manner, we obtain the explicit solution of x(t) on t ∈ [0,∞), which
obviously implies the existence and uniqueness of the solution. Such a method to
obtain the explicit solution to a delay differential equation is referred to as the step
method, which was originally proposed in [12]. The step method is applicable to
both equations of neutral type and retarded type with initial conditions that are
possibly time-varying.

The existence and uniqueness of the solution to a delay differential equation
are only byproducts of the use of the step method. In most circumstances, the
step method provides more intricate properties of the solution. For example, the
solution of a retarded type equation becomes smoother as time progresses, while it
is not the case for a neutral type equation. Such conclusions were reached in [12]
by employing the step method. Moreover, the solution to a neutral type equation
obtained by the use of the step method facilitates the stability analysis of the time
delay system described by the equation (see [55]).
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1.2 Stability of Time Delay Systems

1.2.1 Stability Definitions

Major interest in the study of a time delay system is in the evolution of the state of
the system as time tends to infinity. It is often desirable to find an equilibrium point
in the state space and that the state stays within a small neighborhood of the point
after some finite time, if such a point exists. Otherwise, a diverging state implies
that the system is unstable. We here present stability definitions for system (1.10).
It is assumed that given the initial condition xt0 = ψ(t0 + θ) ≡ 0, θ ∈ [−τ, 0],
x(t) ≡ 0, t ≥ t0, is a trivial solution of the system. We made this assumption
without loss of generality because the stability of a nontrivial solution x̄(t) of the
system is equivalent to that of the trivial solution x̃(t) ≡ 0 of the following system

˙̃x(t) = f (t, (x̃ + x̄)t ) − f (t, x̄t ), (1.20)

which is the delay differential equation governing the evolution of x̃(t) = x(t)−x̄(t)

(see [41]).

Definition 1.1 The trivial solution x(t) ≡ 0 of system (1.10) is stable if for every
ε > 0 and every t0 ≥ 0, there exists δ(ε, t0) > 0 such that

||xt0 ||C ≤ δ implies |x(t)| ≤ ε, t ≥ t0.

Definition 1.2 The trivial solution x(t) ≡ 0 of system (1.10) is uniformly stable if
δ in Definition 1.1 is independent of t0.

Definition 1.3 The trivial solution x(t) ≡ 0 of system (1.10) is attractive if there
exists δ(t0) > 0 such that

||xt0 ||C ≤ δ implies lim
t→∞ x(t) = 0.

Definition 1.4 The trivial solution x(t) ≡ 0 of system (1.10) is asymptotically
stable if it is both stable and attractive.

Definition 1.5 The trivial solution x(t) ≡ 0 of system (1.10) is uniformly
asymptotically stable if it is uniformly stable and there exists δ > 0, independent of
t0, such that, for every ε > 0, there exists T = T (δ, ε) such that

||xt0 ||C ≤ δ implies |x(t)| ≤ ε, t ≥ t0 + T .

Definition 1.6 The trivial solution x(t) ≡ 0 of system (1.10) is globally uniformly
asymptotically stable if δ in Definition 1.5 can be any positive number.

In the case of a linear system, we often refer to stability (asymptotic stability) of
its trivial solution as stability (asymptotic stability) of the system.
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1.2.2 Lyapunov Stability Theorems

A straightforward approach to analyzing the stability of a time delay system is to
obtain the analytic solution of the system by employing the step method. However,
the step method ceases to work when the analytic solution is not available. Even
when an analytic solution is available, it is in many instances challenging to express
the solution as a simple function of t ∈ R, as seen in the example for the illustration
of the step method in Sect. 1.1.3. Therefore, stability analysis that does not involve
the analytic solution is preferable. Similar to Lyapunov function based stability
analysis for systems without delay, Lyapunov functional based stability analysis
for time delay systems does not require an analytic solution. By picking a positive
definite Lyapunov functional V (t, xt ) and taking its time derivative along the system
trajectory, we conclude that the system is stable if this time derivative is negative
definite. The following theorem on the stability of system (1.10) lays foundation for
such Lyapunov functional based stability analysis.

Theorem 1.1 (The Krasovskii Stability Theorem) Suppose f in (1.10) maps
bounded sets in R × C([−τ, 0],Rn) to bounded sets in R

n, u, v,w : R+
0 → R

+
0

are continuous and nondecreasing functions, u(s), v(s) are positive for s > 0, and
u(0) = v(0) = 0. The trivial solution of system (1.10) is uniformly stable if there
exists a continuously differentiable functional V (t, φ) : R× C([−τ, 0],Rn) → R

+
0

such that

u(|φ(0)|) ≤ V (t, φ) ≤ v(||φ||C), (1.21)

and the time derivative of V (t, φ) along the trajectory of the system satisfies

V̇ (t, φ) ≤ −w(|φ(0)|). (1.22)

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable.
If in addition lims→∞ u(s) = ∞, then the trivial solution is globally uniformly
asymptotically stable.

It was pointed out in [32] that the inclusion of the time derivative of xt as an
additional argument of the Lyapunov functional in Theorem 1.1 might make the
stability conditions in the theorem easier to satisfy. The following theorem extends
Theorem 1.1 by allowing such an additional argument in the Lyapunov functionals.

Theorem 1.2 (An Extension of the Krasovskii Stability Theorem) Suppose f

in (1.10) maps bounded sets in R × C([−τ, 0],Rn) to bounded sets in R
n,

u, v,w : R
+
0 → R

+
0 are continuous and nondecreasing functions, u(s), v(s)

are positive for s > 0, and u(0) = v(0) = 0. The trivial solution of system
(1.10) is uniformly stable if there exists a continuously differentiable functional
V (t, φ, φ̇) : R × AC([−τ, 0],Rn) × L2([−τ, 0],Rn) → R

+
0 such that

u(|φ(0)|) ≤ V
(
t, φ, φ̇

) ≤ v(||φ||AC), (1.23)
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and the time derivative of V (t, φ) along the trajectory of the system satisfies

V̇ (t, φ, φ̇) ≤ −w(|φ(0)|). (1.24)

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable.
If in addition lims→∞ u(s) = ∞, then the trivial solution is globally uniformly
asymptotically stable.

In the application of the Lyapunov–Krasovskii Theorem or its extension, the
choice of a delicate Lyapunov functional V (t, xt ) that satisfies all the stability
conditions is the key. Typically, the time derivative of a Lyapunov functional along
the trajectory of a time delay system depends on xt in one form or another. This
makes the majorization of the time derivative by a negative definite term that
depends solely on the current state x(t) of the system difficult (see (1.22) or (1.24)).
To overcome such difficulty, the following stability theorem takes an approach
differently from Theorem 1.1 or 1.2. By picking a positive definite Lyapunov
function V (t, x(t)), we can conclude the stability of the system if V̇ (t, x(t)) along
the system trajectory is negative definite under a condition on the evolution of
V (s, x(s)) over the time interval s ∈ [t − τ, t]. This condition facilitates the
majorization of the time derivative of the Lyapunov function by a negative definite
term that depends solely on the current state x(t).

Theorem 1.3 (The Razumikhin Stability Theorem) Suppose f in (1.10) maps
bounded sets in R × C([−τ, 0],Rn) to bounded sets in R

n, u, v,w : R+
0 → R

+
0

are continuous and nondecreasing functions, u(s) and v(s) are positive for s > 0,
u(0) = v(0) = 0, and v is strictly increasing. The trivial solution of system (1.10)
is uniformly stable if there exists a continuously differentiable function V (t, x(t)) :
R × R

n → R
+
0 such that

u(|x|) ≤ V (t, x) ≤ v(|x|), (1.25)

and the time derivative of V (t, x(t)) along the trajectory of the system satisfies

V̇ (t, x(t)) ≤ −w(|x(t)|) whenever V (t +θ, x(t +θ)) ≤ V (t, x(t)), θ ∈ [−τ, 0].
(1.26)

If in addition, w(s) > 0 for s > 0, and there exists a continuous and nondecreasing
function p(s) > s for s > 0 such that condition (1.26) is strengthened to

V̇ (t, x(t)) ≤ −w(|x(t)|) whenever V (t + θ, x(t + θ)) ≤ p(V (t, x(t))), θ ∈ [−τ, 0],
(1.27)

then the trivial solution is uniformly asymptotically stable. If in addition
lims→∞ u(s) = ∞, then the trivial solution is globally uniformly asymptotically
stable.
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1.3 Control Systems with Time Delays

1.3.1 Input and State Delays

In a control system, time delay can take place in the input and/or state of the
system. One form of input delay is induced in the implementation of a digital
controller in continuous-time control systems. A digital controller typically consists
of a computer that generates an input signal according to a control algorithm,
an A/D converter before the computer, and a D/A converter after the computer.
Given a complex control algorithm that demands heavy computation, the computer
generates the input signal u(t − τ) in a non-negligible time τ ∈ R

+. Moreover,
transformation between digital and analog signals carried out by the A/D and D/A
converters also adds to the delay. Another form of input delay is induced by long-
distance transmission of the input signal between controllers and controlled plants.
This form of input delay typically appears in control of large networks where the
controller and the controlled plant are located far apart. In general, all the time
consumption related to the generation, processing, and transmission of the input
signal can be modeled as input delay.

State delay is also typical in control systems. One form of state delay appears in
open loop systems. Examples of this form of state delay were given in Sect. 1.1.1,
where the time delay systems are autonomous because no external input is applied to
the systems. Another form of state delay appears in closed-loop systems when their
open loop systems are subject to state feedback and input delay simultaneously. In
this case, the controller utilizes the current state x(t) to generate the current input
signal u(t). However, the actual input signal injected to the open loop systems lags
behind the current input signal by the amount of the input delay. Therefore, the
actual input appears as a function of past state in the closed-loop system.

The mathematical description for a control system with input and state delays is
given by

{
ẋ(t) = f (t, xt , ut ),

y(t) = w(t, x(t)),
(1.28)

where f : R × C([−σ, 0],Rn) × C([−τ, 0],Rm) → R
n is a general nonlinear

functional, w : R × R
n → R

q is a general nonlinear function, and τ, σ ∈ R
+
0

are the amount of the input delay and the state delay, respectively. A typical state
feedback law takes the form of

u(t) = z(t, xt , ut ), (1.29)

where z : R × C([−σ̃ , 0],Rn) × C([−τ̃ , 0],Rm) → R
m, for some σ̃ , τ̃ ∈ R

+
0 ,

is an appropriate functional and might contain linear operations such as addition,
multiplication by a constant and integration, as well as nonlinear operations.
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On the other hand, the output of a control system typically consists of physical
quantities that can be directly measured. Therefore, output feedback laws that
employ only the measurement of the output are more practical than state feedback
laws. A common output feedback law design for time delay systems first seeks to
utilize the measurement of ut and y(t) to construct an observer whose state x̂(t)

approaches x(t) asymptotically. Then, based on the observed state x̂(t), a feedback
law is constructed whose structure replicates that of a state feedback law. If the state
feedback law (1.29) achieved a certain control objective, the output feedback law

{ ˙̂x(t) = g
(
t, x̂t , ut , y(t)

)
,

u(t) = z(t, x̂t , ut ),
(1.30)

potentially achieves the same control objective, where g : R × C([−σ̃ , 0],Rn) ×
C([−τ̃ , 0],Rm) × R

q → R
n, for some σ̃ ∈ R

+
0 , is a proper functional that

guarantees

lim
t→∞

(
x(t) − x̂(t)

) = 0.

While most control systems behave in a nonlinear manner when the state of
the system is far away from the equilibrium point, near the equilibrium point,
their dynamics can be efficiently approximated by a linear system. Such an
approximation can be obtained by Jacobian linearization of the control systems at
the equilibrium point. The mathematical description for a linear system with input
and state delays is as follows:

{
ẋ(t) = ∫ 0

−σ
A(t, s)x(t + s)ds + ∫ 0

−τ
B(t, s)u(t + s)ds,

y(t) = C(t)x(t),
(1.31)

where τ, σ ∈ R
+
0 represent the input delay and the state delay, respectively, A(t, s) :

R× [−σ, 0] → R
n×n, B(t, s) : R× [−τ, 0] → R

n×m are the dynamics matrix and
control matrix of the system, respectively, and are of bounded variation with respect
to s, and C(t) : R → R

q×n is the sensor matrix of the system. System (1.31)
is time-varying and the delay is of distributed type. The time-invariant version of
system (1.31) is given by

{
ẋ(t) = ∫ 0

−σ
A(s)x(t + s)ds + ∫ 0

−τ
B(s)u(t + s)ds,

y(t) = Cx(t),
(1.32)

where A(s) : [−σ, 0] → R
n×n, B(s) : [−τ, 0] → R

n×m are the dynamics matrix
and the control matrix of the system, respectively, and are of bounded variation,
and C ∈ R

q×n is the sensor matrix of the system. Furthermore, the discrete delay
version of system (1.32) is given by
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{
ẋ(t) = ∑l

i=0 Aix(t − σi) +∑k
j=0 Bju(t − τj ),

y(t) = Cx(t),
(1.33)

where AI ∈ R
n×n, i ∈ I [0, l], and Bj ∈ R

n×m, j ∈ I [0, k], are the dynamics
matrices and control matrices of the system, respectively, and τj ∈ R

+
0 , j ∈ I [0, k],

and σI ∈ R
+
0 , i ∈ I [0, l], are the lengths of the input and state delays, respectively.

The attention of this book is restricted to linear time-invariant systems with a single
input delay,

{
ẋ(t) = Ax(t) + Bu(t − τ),

y(t) = Cx(t),
(1.34)

and its stabilization via either state or output feedback. Occasionally in this book,
the constant delay τ in system (1.34) is allowed to be time-varying but bounded,
namely, τ(t) : R → [0,D], where D ∈ R

+
0 is an upper bound on the delay.

1.3.2 An Overview of Stabilization of Time Delay Systems

The study of control systems with time delay spans a wide range of problems,
including stabilization, trajectory tracking, output regulation, disturbance rejec-
tion, performance improvement, robust control, and adaptation to accommodate
unknown system parameters.

Central to these problems is the problem of stabilization. The stabilization
of a time delay system can be accomplished through two different paths. The
first path extensively involves Lyapunov functional based stability analysis. We
pick a positive definite Lyapunov functional and compute its time derivative
along the trajectory of the system. By designing feedback that renders the time
derivative negative definite, we achieve closed-loop stability (see [47]). It turns
out that such analysis is effective for systems with either input or state delay (see
[31, 32, 41, 67, 82–86, 120] and references therein). Furthermore, the Lyapunov
functional based stability analysis has shown its universal applicability to the study
of various time delay systems, including time-varying, nonlinear, and stochastic
systems with delays allowed to be time-varying or even unknown (see [11, 13–
15, 43, 47, 58, 59, 91] and [97], for a small sample of the literature).

The second path to the stabilization of a time delay system is more straight-
forward. Given a linear system with a single constant input delay, a feedback law
completely cancels the effect of the delay by multiplying a feedback gain matrix
with the state of the system at the future time ahead of the current time by the
amount of the delay. Thanks to the linearility of the system, the future state can
be explicitly predicted as the sum of the zero input solution and the zero state
solution of the system. Such a feedback law is referred to as the predictor feedback
law [69] due to the prediction of the future state. The spectrum of the closed-loop
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system under the predictor feedback is finite and can be arbitrarily assigned in the
complex plane by an appropriate choice of the feedback gain matrix. Therefore,
such a predictor feedback design is also referred to as finite spectrum assignment
[68]. An alternative design that also leads to the predictor feedback law involves a
key step of transforming the original open loop system with delay into an open loop
system free of delay, and is referred to as the model reduction technique [7].

The predictor feedback laws for linear systems with input delay were generalized
to stabilize linear systems with input and state delays in [53, 54] and [56], where
the state of the systems at a future time is predicted by the use of the variation-
of-constants formula (see [12] for the formula). Such feedback laws designed by
the use of the variation-of-constants formula were further generalized to stabilize
neutral type systems with input delay in [55]. Besides these generalizations, the
combinated use of the finite spectrum assignment or the model reduction technique
with control techniques for nonlinear systems such as cross-term forwarding,
backstepping, and/or recursive methods induced various prediction methods for the
stabilization of linear and nonlinear systems with input and state delays (see [9, 48–
50, 59] and [11]). Predictor based feedback laws were also developed for linear
systems with input and state delays [117, 126].

In all these predictor based feedback designs, a distributed delay term appears
in the resulting predictor based feedback laws. Such a distributed nature of the
feedback laws originates from predicting the state of the system at a future time
by the use of the variation-of-constants formula . It was pointed out that these
distributed delay terms would cause difficulty in their implementation (see [95]
and [78]). Recently, a sequential predictors approach to the stabilization of linear
systems with input delay was proposed that manage to observe the state of the
system at the future time ahead of the current time by the amount of the delay
without using the variation-of-constants formula (see [13, 73, 74], and [16]). The
sequential predictors are a sequence of dynamic predictors that observe the future
state of the system in a progressive manner. Specifically, the state of the first
predictor observes that of the system at the future time ahead of the current time by a
small amount. Repeating such an observation manner, the state of the next predictor
observes that of the previous predictor at the future time ahead of the current time
by the same small amount. Given sufficiently large number of sequential predictors,
the state of the final predictor would observe the state of the system at the future
time ahead of the current time by the amount of the delay. The method of sequential
prediction has an advantage over other prediction methods because the sequential
predictors only contain discrete delay terms that can be readily implemented.

In the remainder of the book, we will focus our attention on predictor based
feedback designs for linear systems with input delay. The development of our
feedback laws is inspired by predictor feedback design methods, while the stability
analysis of the resulting closed-loop system is carried out by employing Lyapunov
functional based methods. The scope of the book is not limited to basic stabilization.
It expands to more challenging problems such as performance improvement and
adaptation to accommodate unknown system parameters. The proposed feedback
laws for stabilization will be modified to address each of these challenging problems
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effectively. In the following section, we review some predictor feedback laws and
their roles in the stabilization of linear systems with input and state delays.

1.4 Predictor Feedback

1.4.1 Linear Systems with a Single Input Delay

For a linear time-invariant system with a single input delay,

ẋ(t) = Ax(t) + Bu(t − τ), (1.35)

where x ∈ R
n, u ∈ R

m, τ ∈ R
+
0 , and (A,B) is controllable, the feedback law

u(t) = Fx(t + τ), (1.36)

where F is a feedback gain matrix such that A+BF is Hurwitz, completely cancels
the effect of the input delay. Under such a feedback law, the closed-loop system

ẋ(t) = (A + BF)x(t) (1.37)

is free of delay and is asymptotically stable. Also, the spectrum of the closed-
loop system is finite and can be arbitrarily assigned on the complex plane by
an appropriate choice of F . We note that feedback law (1.36) cannot be directly
implemented because it requires the future state of the system x(t +τ) to be known.
However, since system (1.35) is linear, the explicit solution of the future state can
be obtained as the sum of the zero input solution and the zero state solution of the
system,

x(t + τ) = eAτx(t) +
∫ t+τ

t

eA(t+τ−s)Bu(s − τ)ds

= eAτx(t) +
∫ t

t−τ

eA(t−s)Bu(s)ds. (1.38)

Then, the feedback law (1.36) is expressed as

u(t) = F eAτx(t) + F

∫ t

t−τ

eA(t−s)Bu(s)ds, (1.39)

which is referred to as the predictor feedback law due to the prediction of the future
state [69].

The predictor feedback law consists of two terms. The first term is a static
feedback term that is readily implementable. The second term is a distributed delay
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term that requires the input to be integrated over the past time interval [t − τ, t]. A
straightforward method to implement the distributed delay term is to approximate
the term by a finite sum. By using the backward rectangular rule to approximate the
distributed delay term, we arrive at the following feedback law:

u(t) = F eAτ x(t) + F
1

N

N−1∑

i=0

e
Aτ
(

1− i
N

)

Bu

(

t − τ
(

1 − i

N

))

, (1.40)

where N ∈ N \ {0} is the number of the integration steps used by the backward
rectangular approximation. The feedback law (1.40) can be readily implemented
and, intuitively, would achieve stabilization if N is sufficiently large. However, in
[95], it was shown through an example, where the system is given by

ẋ(t) = x(t) + u(t − 1), (1.41)

and the feedback gain is given by F = −2, that the feedback law (1.40) for system
(1.41) fails to stabilize no matter how large N is. The use of other numerical
integration methods such as the composite trapezoidal rule and the Simpson rule
to approximate the distributed delay term by a finite sum may encounter similar
difficulty in achieving stabilization.

The cause of the instability of the closed-loop system consisting of system (1.35)
and the feedback law (1.40) was examined in [26] and [78]. The characteristic
equation of the closed-loop system is given by

det

([
sI − A −Be−sτ

−F eAτ I − F
N

∑N−1
i=0 e

−τ
(

1− i
N

)
(sI−A)

B

])

= 0, (1.42)

which is the characteristic equation of a delay differential equation of neutral type.
According to [26] and [78], it is the neutral feature of this characteristic equation
that leads to instability.

In [78], a safe implementation method was proposed to resolve the implementa-
tion problem induced by the finite sum approximations of the distributed delay term
in the feedback law (1.39). By defining an augmented state vector

z(t) =
[

x(t)

u(t − τ)

]

, (1.43)

we obtain a new open loop system with z(t) as its state,

ż(t) =
[
A B

0 0

]

z(t) +
[

0
I

]

u̇(t − τ) = Ãz(t) + B̃u̇(t − τ). (1.44)

Inspired by the design of the predictor feedback law (1.39), we let
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u̇(t) = F̃ z(t + τ), (1.45)

where F̃ is a feedback gain matrix such that Ã + B̃F̃ is Hurwitz. The existence of
such an F̃ is guaranteed because the controllability of the pair (Ã, B̃) is implied by
that of the pair (A,B). Clearly, the closed-loop system

ż(t) =
(
Ã + B̃F̃

)
z(t) (1.46)

is asymptotically stable. The spectrum of the closed-loop system with z(t) as its
state is finite and can be arbitrarily assigned on the complex plane by an appropriate
choice of F̃ . Because x(t) is part of z(t), system (1.35) is stabilized. We rewrite
(1.45) as

u̇(t) = F̃ z(t + τ)

= F̃

[
x(t + τ)

u(t)

]

. (1.47)

Substituting the explicit solution of x(t + τ) given by (1.38) in (1.47), we arrive at
the following dynamic predictor based feedback law:

u̇(t) = F̃

[
eAτx(t) + ∫ t

t−τ
eA(t−s)Bu(s)ds

u(t)

]

. (1.48)

Let F̃ = [
F̃x F̃u

]
. The feedback law (1.48) can be written as

u̇(t) = F̃xeAτ x(t) + F̃x

∫ t

t−τ

eA(t−s)Bu(s)ds + F̃uu(t). (1.49)

By using the backward rectangular rule to approximate the distributed delay term in
(1.49), we arrive at

u̇(t) = F̃xeAτ x(t) + F̃x

N

N−1∑

i=0

e
Aτ
(

1− i
N

)

Bu

(

t − τ
(

1 − i

N

))

+ F̃uu(t). (1.50)

It was shown in [78] that (1.50) asymptotically stabilizes system (1.35) as long as
the number of the integration steps N in (1.50) is sufficiently large. The use of other
numerical integration methods to approximate the distributed delay term in (1.49)
by a finite sum was also shown to be effective in the stabilization of system (1.35).

The characteristic equation of the closed-loop system consisting of (1.35) and
(1.50) is given by
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det

([
sI − A −Be−sτ

−F̃xeAτ sI − F̃u − F̃x

N

∑N−1
i=0 e

−τ
(

1− i
N

)
(sI−A)

B

])

= det

(

sI −
[

A Be−τs

F̃xeAτ F̃u + F̃x

N

∑N−1
i=0 e

−τ
(

1− i
N

)
(sI−A)

B

])

= 0, (1.51)

which is the characteristic equation of a delay differential equation of retarded type.
According to [78], it is the retarded feature of the characteristic equation of the
closed-loop system that guarantees the safe implementation of the feedback law
(1.50).

1.4.2 Linear Systems with Multiple Input Delays

The predictor feedback law (1.39) cannot be directly generalized to stabilize linear
systems with multiple input delays. However, through the use of model reduction
technique [7], a predictor based feedback law can be constructed for the following
linear systems with multiple input delays:

ẋ(t) = Ax(t) +
k∑

i=0

Biu(t − τi), (1.52)

where τi ∈ R
+
0 , i ∈ I [0, k], are the lengths of the input delays. We first construct an

auxiliary signal

y(t) = x(t) +
k∑

i=0

∫ t

t−τi

eA(t−τi−s)BIu(s)ds. (1.53)

In view of (1.52), we have

ẏ(t) = Ay(t) +
(

k∑

i=0

e−Aτi Bi

)

u(t), (1.54)

which is an open loop system free of delay. Assume that the pair
(
A,
∑k

i=0 e−Aτi Bi

)

is controllable. Under the following feedback law:

u(t) = Fmy(t), (1.55)
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where Fm is such that A +
(∑k

i=0 e−Aτi Bi

)
Fm is Hurwitz, the closed-loop system

ẏ(t) =
(

A +
k∑

i=0

e−Aτi BiFm

)

y(t) (1.56)

is asymptotically stable. Moreover, the spectrum of the closed-loop system is finite
and can be freely assigned on the complex plane by an appropriate choice of Fm.
Since

x(t) = y(t) −
k∑

i=0

∫ t

t−τi

eA(t−τi−s)BIFmy(s)ds, (1.57)

system (1.52) is stabilized by the feedback law (1.55). In view of (1.53), we rewrite
(1.55) as

u(t) = Fmx(t) + Fm

k∑

i=0

∫ t

t−τi

eA(t−τi−s)BIu(s)ds. (1.58)

The core step in designing (1.58) is to define the auxiliary signal y(t), which helps
to transform the open loop system with multiple input delays (1.52) to the open loop
system free of delay (1.54). Thus, such a method of designing (1.58) is referred to
as the model reduction technique [7], which also applies to linear systems with a
single input delay.

In particular, when system (1.52) simplifies to a linear system with a single input
delay (1.35), the feedback law (1.58) simplifies to

u(t) = Fmx(t) + Fm

∫ t

t−τ

eA(t−τ−s)Bu(s)ds, (1.59)

where A+e−AτBFm is Hurwitz. Note that the controllability of the pair (A, e−AτB)

is equivalent to that of the pair (A,B). Let F be such that A + BF is Hurwitz and
Fm = F eAτ . Then,

A + e−AτBFm = e−Aτ (A + BF)eAτ (1.60)

is also Hurwitz. Therefore, the feedback law (1.59) is the same as the predictor
feedback law (1.39), recalled below,

u(t) = F eAτx(t) + F

∫ t

t−τ

eA(t−s)Bu(s)ds. (1.61)
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From this perspective, the feedback law (1.58) is of predictor type and can be
considered an extension of the predictor feedback law (1.39) for linear systems with
a single input delay.

1.4.3 Linear Systems with Input and State Delays

We consider the following linear systems with input and state delays:

ẋ(t) = A0x(t) + A1x(t − σ) + Bu(t − τ), (1.62)

where τ, σ ∈ R
+
0 are the amount of the input delay and the state delay, respectively.

Assume that there exist two feedback gain matrices F0 and F1 such that the time
delay system

ẋ(t) = (A0 + BF0)x(t) + (A1 + BF1)x(t − σ) (1.63)

is asymptotically stable. Basically, such matrices F0 and F1 can be obtained by
solving stability conditions of system (1.63), which are typically in the form of
linear matrix inequalities (LMIs) and thus can be numerically solved in an efficient
way.

Define the fundamental matrix K(t) : R → R
n×n of system (1.62) by

K̇(t) = A0K(t) + A1K(t − σ), t ≥ 0, (1.64)

with the initial condition

{
K(θ) = I, θ = 0,

K(θ) = 0, θ < 0.
(1.65)

Then, the variation-of-constants formula for the prediction of the state of the system
at a future time t + θ for any given θ ∈ R

+
0 is

x(t + θ) = K(θ)x(t) +
∫ 0

−σ

K(θ − σ − s)A1x(t + s)ds

+
∫ 0

−θ

K(−s)Bu(t + s + θ − τ)ds, (1.66)

from which we readily obtain

x(t +τ) = K(τ)x(t)+
∫ 0

−σ

K(τ −σ − s)A1x(t + s)ds +
∫ 0

−τ

K(−s)Bu(t + s)ds,

(1.67)
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and if τ ≥ σ ,

x(t + τ − σ) = K(τ − σ)x(t) +
∫ 0

−σ

K(τ − 2σ − s)A1x(t + s)ds

+
∫ −h

−τ

K(−s − σ)Bu(t + s)ds. (1.68)

We design the following feedback law for system (1.62),

u(t) = F0x(t + τ) + F1x(t + τ − σ), (1.69)

under which the closed-loop system is given by (1.63) and is thus asymptotically
stable. By using (1.67) and (1.68), we rewrite the feedback law as

u(t) = F0K(τ)x(t)+F0

∫ 0

−σ

K(τ −σ −s)A1x(t +s)ds +F0

∫ 0

−τ

K(−s)Bu(t +s)ds

+F1K(τ − σ)x(t) + F1

∫ 0

−σ

K(τ − 2σ − s)A1x(t + s)ds

+F1

∫ −σ

−τ

K(−s − σ)Bu(t + s)ds, if τ ≥ σ, (1.70)

or

u(t) = F0K(τ)x(t)+F0

∫ 0

−σ

K(τ −σ − s)A1x(t +s)ds +F0

∫ 0

−τ

K(−s)Bu(t +s)ds

+F1x(t + τ − σ), if τ < σ. (1.71)

If there is no state delay in system (1.62), that is σ = 0, then

K(t) = e(A0+A1)t

and F0 and F1 can be chosen such that A0 +A1 +B(F0 +F1) is Hurwitz. Thus, the
feedback law (1.70) becomes

u(t) = (F0 + F1)e
(A0+A1)τ x(t)

+ (F0 + F1)

∫ t

t−τ

e(A0+A1)(t−s)Bu(s)ds, (1.72)

which is the same as the predictor feedback law (1.39) if we let A = A0 + A1 and
F = F0 + F1 in (1.39). From this perspective, the design of the predictor based
feedback law (1.70) for linear systems with input and state delays can be considered
an extension of the predictor feedback design for linear systems with a single input
delay.
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1.5 Discrete-Time Systems with Delay

As counterparts of continuous-time systems with delay, discrete-time systems with
delay have been well studied in the past few decades (see [1–3, 25, 34, 35, 37], and
[119], for a small sample of the literature). The initial condition of a continuous-
time system with delay, which is given in Sect. 1.1.3, implies that the system
is infinite-dimensional. In contrast, discrete-time systems with delay are finite-
dimensional. This is due to the simple structure of the initial condition of a
discrete-time system with delay, which is defined at a finite number of time instants.
Therefore, control problems for discrete-time systems with delay are considerably
less challenging than those for their continuous-time counterparts. For instance,
the exact stability criterion for continuous-time linear time-invariant systems with
constant state delays has yet to be established, while such a criterion for their
discrete-time counterparts was identified in [37] by transforming the systems with
delays to systems without delay.

In this section, we introduce delay difference equations that parallel delay
differential equations in the continuous-time setting. The initial condition of delay
difference equations is defined to illustrate the finite-dimension nature of discrete-
time systems with delay. Stability definitions of delay difference equations that
parallel those of delay differential equations are formulated. As a powerful tool for
stability analysis of a delay difference equation, the Razumikhin Stability Theorem
in the discrete-time setting is introduced. The control design for discrete-time
systems with delay is focused on stabilization due to its fundamental importance.
The predictor feedback for the stabilization of continuous-time systems with delay
has its parallel in the discrete-time setting. The intuition and expression of the
predictor feedback for discrete-time linear systems with delay are presented.

1.5.1 Delay Difference Equations

Discrete-time systems evolve at discrete time instants. Typically, those isolated time
instants are equally spaced, and the separation distance is referred to as the sampling
period. As a result of the sampling feature, the time variable of discrete-time systems
is defined to take values from the set of integers, and the elements of the time
variable are referred to as time steps, or simply, steps. We refer to the textbook
[8] for engineering examples of discrete-time systems.

A discrete-time system without delay can be described by a difference equation,
where the value of the state at the next time step depends solely on the value of the
current state, i.e.,

x(k + 1) = f (k, x(k)), (1.73)
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where k ∈ Z represents the time step, x ∈ R
n denotes the state vector of the system,

and f : Z × R
n → R

n describes the system dynamics. When the delay appears
in the system such that the value of the state at the next time instant depends on
the state at past time instants, the system can be represented by the following delay
difference equation:

x(k + 1) = f (k, xk), (1.74)

where xk is the restriction of x(s) to s ∈ [k − r, k], for some r ∈ N, r represents the
amount of the delay, and f : Z × D([k − r, k],Rn) → R

n is a functional. The well
definedness of the delay difference equation (1.74) relies on its initial condition. If
Eq. (1.74) starts its evolution from the time step k0 and the initial condition is taken
to be

x(s) = φ(s), s ∈ I [k0 − r, k0], (1.75)

then x(k), k ≥ k0, can be uniquely determined by the functional f . It can be
readily observed from (1.75) that the initial condition of a delay difference equation
is defined at a finite number of time instants, whereas the initial condition of a
delay differential equation is defined over a continuous time interval. In contrast
to the infinite-dimension nature of delay differential equations, delay difference
equations are finite-dimensional, which significantly reduces the complexity in their
mathematical treatment, including but not restricted to stability analysis and control
design.

1.5.2 Stability of Delay Difference Equations

Central to the analysis of discrete-time systems with delay is the determination of
their stability. We follow the presentation of Sect. 1.2 to present definitions of the
stability of system (1.74), the Lyapunov method of analyzing its stability, and a
Razumikhin-type stability theorem as the discrete-time counterpart of Theorem 1.3.
Without loss of generality, we assume that given the zero initial condition x(s) = 0,
s ∈ I [k0 − r, k0], x(k) ≡ 0, k ∈ I [k0,∞), is a trivial solution of system (1.74). If,
on the other hand, a nontrivial solution x̄(k), k ∈ I [k0,∞), exists, then the stability
of such a nontrivial solution is equivalent to the stability of the trivial solution of the
following system:

x̃(k + 1) = f (k, x̃k + x̄k) − f (k, x̄k), (1.76)

where x̃(k) = x(k) − x̄(k).

Definition 1.7 The trivial solution x(k) ≡ 0 of system (1.74) is stable if for every
ε > 0 and every k0 ≥ 0, there exists δ(ε, k0) > 0 such that
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||xk0 ||D ≤ δ implies |x(k)| ≤ ε, k ∈ I [k0,∞).

Definition 1.8 The trivial solution x(k) ≡ 0 of system (1.74) is uniformly stable if
δ in Definition 1.7 is independent of k0.

Definition 1.9 The trivial solution x(k) ≡ 0 of system (1.74) is attractive if there
exists δ(k0) > 0 such that

||xk0 ||D ≤ δ implies lim
k→∞ x(k) = 0.

Definition 1.10 The trivial solution x(k) ≡ 0 of system (1.74) is asymptotically
stable if it is both stable and attractive.

Definition 1.11 The trivial solution x(k) ≡ 0 of system (1.74) is uniformly
asymptotically stable if it is uniformly stable and there exists δ > 0, independent of
k0, such that, for every ε > 0, there exists T = T (δ, ε) ∈ N such that

||xk0 ||D ≤ δ implies |x(k)| ≤ ε, k ∈ I [k0 + T ,∞).

Definition 1.12 The trivial solution x(k) ≡ 0 of system (1.74) is globally
uniformly asymptotically stable if δ in Definition 1.11 can be any positive number.

The Lyapunov based method for stability analysis of continuous-time systems
with delay can be naturally adapted for stability analysis of their discrete-time
counterparts. We define a positive definite Lyapunov functional V (k, xk) for
system (1.74). By computing the forward difference of the Lyapunov functional
�V (k, xk) = V (k + 1, xk+1) − V (k, xk) along the trajectory of the system, we
conclude that the system is asymptotically stable (stable) if this forward difference
is a negative definite (semi-definite) function of x(k). Such an approach is referred
to as the Krasovskii’s approach. However, the Krasovskii’s approach requires the
majorization of the forward difference by a negative definite term depending solely
on x(k), but not on the restriction of x(s) to s ∈ [k−r, k]. This elevates the difficulty
level in majorizing terms of the forward difference.

On the other hand, the Razumikhin’s approach overcomes such difficulty by
taking a slightly different route. We first define a Lyapunov function V (k, x(k)) and
then take its forward difference along the trajectory of the system. If the forward
difference is negative definite (semi-definite) under a condition on the evolution
of the Lyapunov function on the time interval s ∈ [k − r, k], then the system
is concluded to be asymptotically stable (stable). In what follows, we present the
Razumikhin Stability Theorem in the discrete-time setting as a powerful tool for the
stability analysis of discrete-time systems with delay.

Theorem 1.4 (The Razumikhin Stability Theorem for Discrete-Time Systems)
Suppose f in (1.74) maps bounded sets in Z × D([−r, 0],Rn) to bounded sets in
R

n, u, v,w : R+
0 → R

+
0 are continuous and nondecreasing functions, u(z) and v(z)

are positive for z > 0, u(0) = v(0) = 0, and v is strictly increasing. The trivial
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solution of system (1.74) is uniformly stable if there exists a continuous function
V (k, x(k)) : Z × R

n → R
+
0 in x such that

u(|x|) ≤ V (k, x) ≤ v(|x|), (1.77)

and the forward difference of V (k, x(k)) along the trajectory of the system satisfies

�V (k, x(k)) ≤ −w(|x(k)|), (1.78)

whenever

V (k + s, x(k + s)) ≤ V (k, x(k)), s ∈ I [−r, 0]. (1.79)

If, in addition, w(z) > 0 for z > 0, and there exists a continuous and nondecreasing
function p(z) > z for z > 0 such that condition (1.78) is strengthened to

�V (k, x(k)) ≤ −w(|x(k)|), (1.80)

whenever

V (k + s, x(k + s)) ≤ p(V (k, x(k))), s ∈ [−r, 0], (1.81)

then the trivial solution is uniformly asymptotically stable. If, in addition,
limz→∞ u(z) = ∞, then the trivial solution is globally uniformly asymptotically
stable.

1.5.3 Predictor Feedback

We are concerned with the stabilization problem of the following discrete-time
linear time-invariant system with input delay:

{
x(k + 1) = Ax(k) + Bu(k − r),

y(k) = Cx(k),
(1.82)

where x ∈ R
n, u ∈ R

m, and y ∈ R
p are the state, the input, and the output of the

system, respectively, r ∈ N is the amount of the input delay, and A,B, and C are
constant matrices of appropriate dimensions. It is assumed that (A,B) is stabilizable
and (A,C) is detectable. In some cases, the constant delay r is allowed to be time-
varying but bounded, i.e., r(k) ∈ I [0, R], k ∈ Z, where R ∈ N is an upper bound of
the delay.

Feedback designs for system (1.82) can be accomplished by following two
different paths. The first path is based on Lyapunov stability analysis. We take a
positive definite Lyapunov function/functional and compute its forward difference
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along the trajectory of the system. Those feedback designs that make the forward
difference negative definite are the desired ones, which achieve closed-loop stability.
Lyapunov based analysis is applicable not only to such linear time-invariant systems
as (1.82), but also to a wide range of systems including nonlinear systems, time-
varying systems, and even stochastic systems with time-varying or unknown delays
(see [1, 2, 33, 34], and [35], for a small sample of literature). The resulting stability
conditions are often expressed in the form of linear matrix inequalities (LMIs),
which can be efficiently solved through numerical computations carried out on
MATLAB.

The second path is the predictor feedback design as discussed for continuous-
time systems with delay. Take system (1.82) with a single constant input delay for
example. The predictor feedback law is the product of a feedback gain matrix and
the predicted state of the system at the future time step ahead of the current time
step by the amount of the delay. Thanks to the linearility of the system, the explicit
expression of the predicted future state can be written as the sum of the zero input
solution and the zero state solution of the system. Such a feedback law cancels the
effect of the input delay, no matter how large the delay is. The spectrum of the
closed-loop system under the predictor feedback law can be arbitrarily assigned
on the complex plane by choosing an appropriate feedback gain matrix. The finite
spectrum assignment and the model reduction technique for the stabilization of
continuous-time systems with input and state delays can be also adapted so as to
deal with their discrete-time counterparts.

We here illustrate the predictor feedback law and its stabilizing capacity on
system (1.82). The feedback law

u(k) = Fx(k + r), (1.83)

where F is a feedback gain matrix and assigns the eigenvalues of A+BF inside the
unit circle in the complex plane, cancels the effect of the input delay. Under such a
feedback law, the closed-loop system is given by

x(k + 1) = (A + BF)x(k), (1.84)

which is asymptotically stable. However, the feedback law (1.83) is not directly
implementable because it requires the future state x(t + r) to be known. As a result
of the linearility of system (1.82), we can write out the explicit expression of the
future state of system (1.82) as follows:

x(k + r) = Arx(k) +
k−1∑

i=k−r

Ak−1−iBu(i), (1.85)

where the first term on the right-hand side is the zero input solution of the system
and the second term is its zero state solution. Therefore, the feedback law (1.83)
becomes
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u(k) = FArx(k) + F

k−1∑

i=k−r

Ak−1−iBu(i), (1.86)

which can be readily implemented.
In contrast to the predictor feedback law (1.39) for continuous-time systems,

whose implementation by employing finite sum approximation may fail to achieve
closed-loop system stability, the predictor feedback law (1.86) for discrete-time sys-
tems is free from such implementation problems. Such a relief in implementing the
predictor feedback law for discrete-time systems with delay is a direct consequence
of their finite-dimension nature. This is another example from which we can see that
control problems for discrete-time systems with delay are generally less challenging
than those for their continuous-time counterparts.

The use of predictor based feedback to stabilize continuous-time linear systems
with multiple input delays and with both input and state delays, as seen in
Sects. 1.4.2 and 1.4.3, can be adapted to the stabilization of their discrete-time
counterparts. Like the predictor feedback law for system (1.82) with a single input
delay, these predictor based feedback laws for discrete-time systems with input and
state delays also contain finite summation terms that involve only past input.

1.6 Notes and References

This chapter covered basic elements of the analysis and control design for time delay
systems. Examples of time delay systems were presented to show that the study of
them is relevant to the development of many scientific and engineering fields. To
unify all the models in these examples into a single framework, we presented the
concept of the delay differential equation, along with the definition of its initial
condition. We refer to Krasovskii’s [57], Bellman and Cooke’s [12], Halanay’s [42],
and Hale’s [43] works for the early development of the mathematical theory on the
delay differential equation. A primary interest in the study of time delay systems
is to investigate their asymptotic behaviors, which relies on rigorous definitions
of stability. Following the celebrated monograph [41], Sect. 1.2 formulated basic
elements of the stability of time delay systems, including stability definitions and
Lyapunov stability theorems for stability analysis. For brevity in presentation, we
omitted the proofs of the Lyapunov stability theorems. Readers are referred to [43],
[41], or [32] for these proofs.

Apart from Lyapunov functional based methods, the stability analysis of time
delay systems has been extensively carried out by following frequency domain
approaches. Unlike Lyapunov functional based stability analysis which typically
leads to sufficient stability conditions with considerable conservativeness, the
frequency domain analysis tends to result in necessary and sufficient stability
conditions (see [17, 19, 24, 36, 38, 39, 41, 65, 66, 75, 80, 87], and [127]). However,
the Laplace transform as a key element of the frequency domain approaches limits
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their applications to the stability analysis of linear time-invariant systems with
constant delays.

Sections 1.3 and 1.4 focus on the control design for time delay systems. Among
various design techniques, we emphasized on the predictor feedback design. Dating
back to Smith’s predictor [89] in 1950s and Mayne’s predictor feedback law in
1960s [69], the development of the predictor based feedback design technique has
left a long historical trail, just as the Lyapunov functional based feedback design
has. The two celebrated papers, Manitius and Olbrot’s [68] and Artstein’s [7] papers,
formulated predictor feedback in the context of the finite spectrum assignment and
model reduction techniques, respectively. Predictor based feedback laws have since
also been developed for linear systems with input and state delays [29, 30, 53, 56],
nonlinear systems with input delay [72], and neutral systems with input delay [52].

In Sects. 1.4.2 and 1.4.3, we omitted discussions on the implementation of the
distributed delay terms in the predictor-type feedback laws (1.58), (1.70), and (1.71).
As extensions of the predictor feedback law for linear systems with a single input
delay, these feedback laws with distributed delay terms naturally encounter similar
implementation problems encountered in the predictor feedback law for a linear
system with a single input delay when the terms are approximated by finite sums.
In [54], Kharitonov proposed a dynamic feedback law for linear systems with input
and state delays that can be safely implemented when its distributed delay terms
are approximated by finite sums. Specifically, the stabilization by the approximated
feedback law is achieved as long as the number of the integration steps used by
finite sum approximations is sufficiently large. Readers are referred to [54] for the
detailed construction of the dynamic feedback law, the approximated feedback law,
and a proof of the stability of the resulting closed-loop system.

Section 1.5 covers the analysis and control design for discrete-time linear systems
with delay. Similarities between the notions of discrete-time linear systems and
those of continuous-time linear systems facilitate the exposition of delay difference
equations, their stability definitions, and the Razumikhin Stability Theorem in the
discrete-time setting. On the other hand, control design for discrete-time linear
systems emphasizes on predictor feedback.



Chapter 2
Truncated Predictor Feedback for
Continuous-Time Linear Systems

2.1 Introduction

A difficulty arises in the implementation of a predictor feedback law with the
distributed delay term in it. To overcome this implementation difficulty, the authors
of [63] proposed to truncate the distributed delay term from the predictor feedback
law, implementing only the remaining static state feedback term. This leads to a
truncated predictor feedback (TPF) law, which can be readily implemented. In this
chapter, we introduce the intuition, expression, and construction of the TPF law
and its output feedback counterpart. In particular, the construction of the feedback
gain matrix of the truncated predictor feedback law is first carried out by using an
eigenstructure assignment based low gain feedback design technique. An alternative
design is then presented by using the Lyapunov equation based low gain design
technique. Stabilization of linear systems with input delay by the TPF is established
under both the eigenstructure assignment based TPF and the Lyapunov equation
based TPF.

2.2 The Eigenstructure Assignment Based Design

This section examines the asymptotic stabilizability of linear systems with delayed
input by TPF laws. By explicit construction of stabilizing feedback laws, it is shown
that a stabilizable and detectable linear system with an arbitrarily large delay in the
input can be asymptotically stabilized by either a truncated predictor state feedback
law (also referred to as the state feedback TPF law) or a truncated predictor output
feedback law (also referred to as the output feedback TPF law) as long as the open
loop system is not exponentially unstable (i.e., all the open loop poles are on the
closed left-half plane). A simple example will show that such results would not be
true if the open loop system is exponentially unstable.
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Consider the following linear system with a time delay in the input:

⎧
⎨

⎩

ẋ(t) = Ax(t) + Bu(t − τ),

y(t) = Cx(t),

x(θ) = φ(θ), θ ∈ [−τ, 0],
(2.1)

where x ∈ R
n is the state, u ∈ R

m is the control input, y ∈ R
p is the measurement

output, and τ ≥ 0 is the amount of time delay in the control input. It is also assumed
that the pair (A,B) is stabilizable and the pair (A,C) is detectable.

Control problems for linear time delay systems in the form of (2.1) or in
a variety of other forms have been a subject of extensive research (see, for
example, [5, 6, 18, 20–23, 41, 44, 71, 76, 77, 79, 81, 93, 112–115, 118], and the
references therein). Various stability and stabilizability conditions were identified
and stabilizing feedback laws constructed. In particular, two special classes of (2.1)
were studied in [28, 71] and [70], respectively. Both [71] and [28] showed that an
oscillator system

{
ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + u(t − τ),
(2.2)

with an arbitrarily large delay τ , is globally asymptotically stabilizable by bounded
state feedback laws.

In [70], the authors established global asymptotic stabilizability by bounded state
feedback of a chain of integrators with an arbitrarily large delay in the input,

{
ẋi (t) = xi+1(t), i ∈ I [1, n − 1],
ẋn(t) = u(t − τ).

(2.3)

While (2.2) and (2.3) are both special classes of (2.1), the feedback laws that
were constructed for stabilizing them are very different and the proofs of the closed-
loop stability involve different techniques. The feedback laws in [71] and [28]
both involve a saturation function and both require the explicit knowledge of the
amount of the delay. The asymptotic stability of the closed-loop system in [71]
was established through establishing the asymptotic stability of a system under
a distributed control law, while [28] resorted to the analysis of trajectories. The
feedback law in [70] does not require explicit knowledge of the amount of delay
but involves a set of nested saturation functions. The result of [70] was extended to
open loop systems with all poles located on the closed left-half plane [115], where
Lp stabilization is also considered.

These results in the literature in a way indicate the complexity in the stabilization
of systems in the form of (2.1). The objective of this section is to reexamine
asymptotic stabilizability of system (2.1). By explicit construction of TPF laws, we
will show that system (2.1), with an arbitrarily large finite delay, is asymptotically
stabilizable by either linear state or output feedback as long as the open loop system
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is not exponentially unstable (i.e., all the open loop poles are in the closed left-half
plane). Key to establishing our results is the low gain feedback design technique.
The potential of the low gain feedback design has been well demonstrated in [61].
In contrast to the bounded control laws in [28, 70, 71], which are all nonlinear, TPF
laws we are to construct are linear.

2.2.1 Low Gain Feedback Design

The eigenstructure assignment based low gain feedback design for multiple input
systems is developed from the design for single input systems.

Consider the following single input linear system:

ẋ(t) = Ax(t) + Bu(t), x ∈ R
n, u ∈ R, (2.4)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Assume that all eigenvalues of A are on the imaginary axis. Let F(ε) : (0, 1] 	→
R

1×n be the unique state feedback gain such that

λ(A + BF(ε)) = −ε + λ(A), ε ∈ (0, 1]. (2.5)

Then, we have the following lemmas [61] on the properties of the resulting closed-
loop system. Explicit construction of all the matrices involved in these lemmas can
be found in [61].

Lemma 2.1 Consider system (2.4) and let F be as given by (2.5). Then, there exists
a nonsingular transformation matrix Q(ε) ∈ R

n×n such that

Q−1(ε)(A + BF(ε))Q(ε) = J (ε)

= blkdiag {J0(ε), J1(ε), · · · , Jl(ε)} ,

where
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J0(ε) =

⎡

⎢
⎢
⎢
⎣

−ε 1
. . .

. . .

−ε 1
−ε

⎤

⎥
⎥
⎥
⎦

n0×n0

,

and for each i ∈ I [1, l]

Ji(ε) =

⎡

⎢
⎢
⎢
⎣

J �
i (ε) I2

. . .
. . .

J �
i (ε) I2

J �
i (ε)

⎤

⎥
⎥
⎥
⎦

2ni×2ni

,

J �
i (ε) =

[ −ε βi

−βi −ε

]

,

with βi > 0 for all i ∈ I [1, l] and βi 
= βj for i 
= j .

Lemma 2.2 Consider system (2.4) and let F be given by (2.5). Let J (ε) be as given
in Lemma 2.1. Let

S(ε) = blkdiag{S0(ε), S1(ε), S2(ε), · · · , Sl(ε)},

where

S0(ε) = diag
{
εn0−1, εn0−2, · · · , ε, 1

}
,

and for each i ∈ I [1, l],

Si(ε) = blkdiag
{
εni−1I2, ε

ni−2I2, · · · , εI2, I2

}
.

Then,

1. S(ε)J (ε)S−1(ε) = εJ̃ (ε) � εblkdiag
{
J̃0, J̃1(ε), · · · , J̃l(ε)

}
, where

J̃0 =

⎡

⎢
⎢
⎢
⎣

−1 1
. . .

. . .

−1 1
−1

⎤

⎥
⎥
⎥
⎦

n0×n0

,

and for each i ∈ I [I, l],
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J̃i (ε) =

⎡

⎢
⎢
⎢
⎣

J̃ �
i (ε) I2

. . .
. . .

J̃ �
i (ε) I2

J̃ �
i (ε)

⎤

⎥
⎥
⎥
⎦

2ni×2ni

,

J̃ �
i (ε) =

[ −1 βi/ε

−βi/ε −1

]

,

with βi > 0 for all i ∈ I [I, l] and βi 
= βj for i 
= j ;
2. The unique positive definite solution P̃ to the Lyapunov equation

J̃ T(ε)P̃ + P̃ J̃ (ε) = −I

is independent of ε.

Lemma 2.3 Consider system (2.4) and let F be as given by (2.5). Let Q(ε), l, and
ni for i = 0 to l, be as defined in Lemma 2.1. Let the scaling matrix S(ε) be as
defined in Lemma 2.2. Then, there exist γ, α, β, ϑ > 0, all independent of ε, such
that, for all ε ∈ (0, 1],

|F(ε)| ≤ γ ε,
∣
∣
∣F(ε)Q(ε)S−1(ε)

∣
∣
∣ ≤ αε,

∣
∣
∣F(ε)AQ(ε)S−1(ε)

∣
∣
∣ ≤ βε,

|Q(ε)| ≤ ϑ,
∣
∣
∣Q−1(ε)

∣
∣
∣ ≤ ϑ.

2.2.2 Truncated Predictor State Feedback Design

For system (2.1) with all eigenvalues of A on the closed left-half plane, we construct
a family of linear state feedback laws as follows.

Step 1. Find nonsingular transformation matrices TS and TI such that the pair
(A,B) is transformed into the following block diagonal control canonical form,

T −1
S ATS =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 0 · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Al 0
0 0 · · · 0 A0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (2.6)
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T −1
S BTI =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B1 B12 · · · B1l ∗
0 B2 · · · B2l ∗
...

...
. . .

...
...

0 0 · · · Bl ∗
B01 B02 · · · B0l ∗

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (2.7)

where A0 contains all the open left-half plane eigenvalues of A, for each i ∈
I [i, l], all eigenvalues of Ai are on the jω axis and (Ai, Bi) is controllable as
given by,

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...

0 0 0 · · · 1
−aini

−ai(ni−1) −ai(ni−2) · · · −ai1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and finally, ∗’s represent submatrices of less interest.
We note that the existence of the above canonical form was shown in [110]. The
software realization can be found in [62].

Step 2. For each (Ai, Bi), let Fi(ε) ∈ R
1×ni be the state feedback gain such that

λ(Ai + BiFi(ε)) = −ε + λ(Ai), ε ∈ (0, 1].

Note that Fi(ε) is unique.
Step 3. Construct a family of low gain state feedback laws as

u(t) = F(ε)eAτ x(t), (2.8)

where the low gain matrix F(ε) is given by

F(ε) = TI

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1(ε) 0 · · · 0 0 0
0 F2(ε) · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · Fl−1(ε) 0 0
0 0 · · · 0 Fl(ε) 0
0 0 · · · 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T −1
S . (2.9)

The low gain feedback law (2.8) is a truncated version of the predictor feedback
law (1.39), whose distributed delay term resulting from the zero state solution of
the predicted future state has been discarded. Therefore, the feedback law (2.8) is
referred to as the TPF law. The key here is to parameterize the feedback gain matrix
of the TPF law through the eigenstructure assignment based low gain feedback
design. The theorem below establishes that such a linear state feedback law (2.8)
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asymptotically stabilizes system (2.1) as long as all eigenvalues of A are on the
closed left-half plane, no matter how large the delay is.

Theorem 2.1 Consider the closed-loop system comprising of the plant (2.1) and
the state feedback TPF law (2.8). Let all eigenvalues of A be on the closed left-half
plane. Then, for any given arbitrarily large τ ≥ 0, there exists ε∗ > 0 such that, for
each ε ∈ (0, ε∗], the closed-loop system is asymptotically stable.

Proof Without loss of generality, assume that the pair (A,B) is already in the form
of (2.6)–(2.7). Under the state feedback law (2.8), the closed-loop system is given
by

ẋ(t) = Ax(t) + BF(ε)eAτ x(t − τ), (2.10)

from which we have

eAτ x(t − τ) = x(t) −
∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds. (2.11)

Substitution of (2.11) in (2.10) results in

ẋ(t) = (A+BF(ε))x(t)−BF(ε) =
∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds. (2.12)

Partitioning the state x according to the structure of (2.6)–(2.7), x = [
xT

1 xT
2 · · ·

xT
l xT

0

]T, xi ∈ R
ni , i ∈ I [1, l], we rewrite the state equation (2.12) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = (A1 + B1F1(ε))x1(t) +
l∑

j=2

B1jFj (ε)xj (t)

−BR1F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds,

ẋ2(t) = (A2 + B2F2(ε))x2(t) +
l∑

j=3

B2jFj (ε)xj (t)

−BR2F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds,

...

ẋl(t) = (Al + BlFl(ε))xl(t) − BRlF (ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds,

ẋ0(t) = A0x0(t) +
l∑

j=1

B0jFj (ε)xj (t)

−BR0F(ε)
∫ t

t−τ
eA(t−s)BF (ε)eAτ x(s − τ)ds,

(2.13)
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where for each i ∈ I [1, l], BRi is the ith row of the right-hand side of (2.7) and BR0
is the last row.

Now for each i ∈ I [1, l], let Qi(ε), Si(ε), J̃i (ε), P̃i , γi , αi , βi , and ϑi be the
matrices Q(ε), S(ε), J̃ (ε), and P̃ and the constants γ , α, β, and ϑ as defined in
Lemmas 2.1–2.3, but for the triple (Ai, Bi, Fi(ε)). Define a state transformation
as x̃ = [

x̃T
1, x̃

T
2, · · · , x̃T

l , x̃
T
0

]T
, where x̃0 = x0, and for each i ∈ I [1, l],

x̃i = Si(ε)Q
−1
i (ε)xi . It follows from Lemmas 2.1 and 2.2 that, under this state

transformation, the state equation (2.13) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1(t) = εJ̃1(ε)x̃1(t) +
l∑

j=2

S1(ε)Q
−1
1 (ε)B1jFj (ε)Qj (ε)S

−1
j (ε)x̃j (t) − S1(ε)

×Q−1
1 (ε)BR1F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ×Q(ε)S−1(ε)x̃(s − τ)ds,

˙̃x2(t) = εJ̃2(ε)x̃2(t) +
l∑

j=3

S2(ε)Q2(ε)B2jFj (ε)Qj (ε)S
−1
j (ε)x̃j (t) − S2(ε)

×Q−1
2 (ε)BR2F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)x̃(s − τ)ds,

...

˙̃xl(t) = εJ̃l(ε)x̃l(t) − Sl(ε)Q
−1
l (ε)BRlF (ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ

×Q(ε)S−1(ε)x̃(s − τ)ds,

˙̃x0(t) = A0x̃0(t) +
l∑

j=1

B0jFj (ε)Qj (ε)S
−1
j (ε)x̃j (t)

−BR0F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)x̃(s − τ)ds,

(2.14)
where

Q(ε) = blkdiag {Q1(ε),Q2(ε), · · · ,Ql(ε), I }
and

S(ε) = blkdiag{S1(ε), S2(ε), · · · , Sl(ε)I }.
Let us choose a Lyapunov function

V (x̃) =
l∑

i=1

κi x̃T
i P̃i x̃i + x̃T

0P̃0x̃0 � x̃TP̃ x̃,

where P̃0 > 0 is such that

AT
0P̃0 + P̃0A0 = −I,
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κ > 0 is a constant whose value is to be determined later, and

P̃ = blkdiag
{
κP̃1, κ

2P̃2, · · · , κlP̃l, P̃0

}
.

The existence of such a P̃0 is due to the fact that A0 is Hurwitz.
The derivative of V along the trajectory of the closed-loop system (2.14) can be

evaluated as follows:

V̇ (x̃(t)) =
l∑

i=1

[

εκi x̃T
i (t)

(
P̃i J̃i (ε) + J̃ T

i (ε)P̃i

)
x̃i (t) + 2

l∑

j=i+1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i

(ε)Bij

× Fj (ε)Qj (ε)S−1
j

(ε)x̃j (t)

]

+ x̃T
0(t)

(
AT

0P̃0 + P̃0A0

)
x̃0(t) + 2

n∑

j=1

x̃T
0(t)P̃0B0j

× Fj (ε)Qj (ε)S−1
j

(ε)x̃j (t) − 2

⎡

⎣
l∑

i=1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i

(ε)BRi + x̃T
0P̃0BR0

⎤

⎦

× F(ε)

∫ t

t−τ
eA(t−s)BF(ε)eAτ Q(ε)S−1(ε)x̃(s − τ)ds. (2.15)

Recall that

P̃i J̃i (ε) + J̃ T
i (ε)P̃i = −I

and

AT
0P̃0 + P̃0A0 = −I.

Also, it follows from Lemma 2.3 that the matrices defining the (x̃i , x̃j ) cross terms,
i ∈ I [0, l − 1], j ∈ [i + 1, l], are all of order ε. It is then straightforward to verify
that there exist κ > 0 and ε∗

1 ∈ (0, 1] such that

V̇ (x̃(t)) ≤ −ε

2
x̃T(t)x̃(t) − 2

[
l∑

i=1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i (ε)BRi + x̃T

0P̃0BR0

]

F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)x̃(s − τ)ds, ε ∈ (0, ε∗
1]. (2.16)

Recalling the special structural of J̃i (ε), we have

∣
∣
∣S(ε)Q−1AQ(ε)S−1(ε)

∣
∣
∣

≤
l∑

i=1

∣
∣
∣Si(ε)Q

−1
i

(ε)AiQi(ε)S
−1
i

(ε)

∣
∣
∣+ |A0|
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=
l∑

i=1

∣
∣
∣Si(ε)Q

−1
i

(ε)(Ai + BiFi(ε))Q(ε)S−1
i

(ε) − Si(ε)Q
−1
i

(ε)BiFi(ε)Qi(ε)S
−1
i

(ε)

∣
∣
∣

+|A0|

≤
l∑

i=1

(
ε

∣
∣
∣J̃i (ε)

∣
∣
∣+ εαiϑi |Bi |

)
+ |A0|δ, ε ∈ (0, ε∗

1 ],

for some δ > 0. Thus, by noting that

eAτ = I + Aτ + 1

2!A
2τ 2 + 1

3!A
3τ 3 + · · ·

and, for any i ≥ 1,

∣
∣
∣S(ε)Q−1(ε)AiQ(ε)S−1(ε)

∣
∣
∣

=
∣
∣
∣S(ε)Q−1(ε)AQ−1S−1(ε)S(ε)Q−1(ε)A · · · AQ(ε)S−1(ε)

∣
∣
∣

≤δi, (2.17)

we have,

∣
∣
∣F(ε)eAτQ(ε)S−1(ε)

∣
∣
∣

=
∣
∣
∣F(ε)Q(ε)S−1(ε)S(ε)Q−1(ε)eAτQ(ε)S−1(ε)

∣
∣
∣

≤
∣
∣
∣F(ε)Q(ε)S−1(ε)

∣
∣
∣
∣
∣
∣S(ε)Q−1eAτQ(ε)S−1(ε)

∣
∣
∣

≤
(

l∑

i=1

∣
∣
∣Fi(ε)Qi(ε)S

−1
i (ε)

∣
∣
∣

)

eδτ

≤ ε

(
l∑

i

αi

)

eδτ . (2.18)

Hence, inequality (2.16) can be continued as follows:

V̇ (x̃(t)) ≤ −ε

2
λ−1

max(P̃ )V (x̃(t)) + ε2�V
1
2 (x̃(t))

∫ t

t−τ

∣
∣
∣eA(t−s)

∣
∣
∣V

1
2 (x̃(s − τ))ds,

ε ∈ (0, ε∗
1],

for some � > 0, independent of ε. In arriving at the above inequality, we have used
the inequality
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V (x̃(t)) = x̃T(t)P̃ x̃(t)

≤ λmax(P̃ )x̃T(t)x̃(t).

Now, let η > 1 be any constant. If V (x̃(t + θ)) < ηV (x̃(t)), θ ∈ [−τ, 0], then

V̇ (x̃(t)) ≤ −ε

2
λ−1

max(P̃ )V (x̃(t)) + ε2�η

∫ τ

0

∣
∣
∣eAs

∣
∣
∣ dsV (x̃(t))

= −ε

[
1

2
λ−1

max(P̃ ) − ε�η

∫ τ

0

∣
∣
∣eAs

∣
∣
∣ ds

]

V (x̃(t)),

where the following estimate was used:

V
1
2 (x̃(s − τ)) ≤ √

ηV
1
2 (x̃(t − τ))

≤ ηV
1
2 (x̃(t)), s ∈ [t − τ, t].

It is clear that, for any given τ > 0 and η > 1, there exists ε∗ ∈ (0, ε∗
1] such that,

for each ε ∈ (0, ε∗],
V̇ (x̃(t)) ≤ −μ(ε)V (x̃(t)), if V (x̃(t + θ)) < ηV (x̃(t)), θ ∈ [−τ, 0],

for some positive scalar μ(ε). It thus follows from the Razumikhin Stability
Theorem (Theorem 1.3) that the closed-loop system (2.10) is asymptotically stable.

�

To examine the conservativeness of result of Theorem 2.1, we consider the

following simple system, whose open loop system is exponentially unstable,
{

ẋ = αx + u(t − τ), α > 0,

u = −kx, k > 0.
(2.19)

The following result from [79] shows that system (2.19) is not asymptotically
stable for any k > 0 if τ is large enough and thus the condition of Theorem 2.1 is
tight. This result also indicates that asymptotic stabilization of systems whose open
loop poles are not all in the closed left-half plane is possible for a smaller time delay.

Proposition 2.1 System (2.19) is asymptotically stable if and only if k > α and

τ <
arccos

(
α
k

)

√
k2 − α2

< 1.

On the other hand, it is well known [21] that one of the necessary condition for a
system of the form

ẋ(t) = Ax(t) + Bx(t − τ)

is asymptotically stable independent of τ is that all eigenvalues of A have negative
real parts. The result in Theorem 2.1 establishes that the real part of eigenvalues of
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A being non-positive alone is sufficient for achieving asymptotic stabilization for an
arbitrarily large bounded delay τ .

2.2.3 Truncated Predictor Output Feedback Design

For system (2.1) with all eigenvalues of A on the closed left-half plane, we construct
the following output feedback TPF law:

{ ˙̂x(t) = Ax̂(t) + Bu(t − τ) − L(y(t) − Cx̂(t)),

u(t) = F(ε)eAτ x̂(t),
(2.20)

where F(ε) is as given by (2.9) and L ∈ R
n×p is such that all eigenvalues of A+LC

have negative real parts. We note that such a matrix L exists as the pair (A,C) is
detectable.

The theorem below establishes that the output feedback law (2.20) asymptoti-
cally stabilizes system (2.1) as long as all eigenvalues of A are on the closed left-half
plane.

Theorem 2.2 Consider the closed-loop system comprising of the plant (2.1) and
the linear output feedback law (2.20). Let all eigenvalues of A be on the closed left-
half plane. Then, for any given arbitrarily large τ ≥ 0, there exists ε∗ > 0 such
that, for each ε ∈ (0, ε∗], the closed-loop system is asymptotically stable.

Proof Under the linear output feedback law (2.20), the closed-loop system is given
by,

{
ẋ(t) = Ax(t) + BF(ε)eAτ x̂(t − τ),
˙̂x(t) = Ax̂(t) + BF(ε)eAτ x̂(t − τ) − L(y(t) − Cx̂(t)),

(2.21)

which, in the new state (x, e) = (x, x − x̂), can be written as,

{
ẋ(t) = Ax(t) + BF(ε)eAτ x(t − τ) − BF(ε)eAτ e(t − τ),

ė(t) = (A + LC)e(t),
(2.22)

which in turn implies that

eAτ x(t − τ) = x(t) −
∫ t

t−τ

eA(t−s)BF (ε)eAτx(s − τ)ds

+
∫ t

t−τ

eA(t−s)BF (ε)eAτ e(s − τ)ds, (2.23)

and
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e(t − τ) = e−(A+LC)τ e(t). (2.24)

Substitution of (2.23) and (2.24) into (2.22) results in
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = (A + BF)x(t) − BF(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds + BF(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτ e(s − τ)ds − BF(ε)eAτ e−(A+LC)τ e(t),

ė(t) = (A + LC)e(t).

(2.25)

Without loss of generality, assume that the pair (A,B) is already in the form of
(2.6)–(2.7). Partitioning the state x according to the structure of (2.6)–(2.7) as

x = [
xT

1 xT
2 · · · xT

l xT
0

]T
, xi ∈ R

ni , i ∈ [1, l].
we rewrite the state equation (2.25) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = (A1 + B1F1(ε))x1(t) +
l∑

j=2

B1jFj (ε)xj (t) − BR1F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds + BR1F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτ e(s − τ)ds − BR1F(ε)eAτ e−(A+LC)τ e(t),

ẋ2(t) = (A2 + B2F2(ε))x2(t) +
l∑

j=3

B2jFj (ε)xj (t) − BR2F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds + BR2F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτ e(s − τ)ds − BR2F(ε)eAτ e−(A+LC)τ e(t),

...

ẋl(t) = (Al + BlFl(ε))xl(t) − BRlF (ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds

+BRlF (ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ e(s − τ)ds

−BRlF (ε)eAτ e−(A+LC)τ e(t),

ẋ0(t) = A0x0(t) +
l∑

j=1

B0jFj (ε)xj (t)

−BR0F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ x(s − τ)ds

+BR0F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ e(s − τ)ds

−BR0F(ε)eAτ e−(A+LC)τ e(t),

ė(t) = (A + LC)e(t),

(2.26)
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where, for each i ∈ I [1, l], BRi is the ith row of the right-hand side of (2.7) and BR0
is the last row.

Now, for each i ∈ I [1, l], let Qi(ε), Si(ε), J̃i (ε), P̃i , γi , αi , βi , and ϑi be the
matrices Q(ε), S(ε), J̃ (ε), and P̃ and the constants γ , α, β, and ϑ as defined in
Lemmas 2.1–2.3, but for the triple (Ai, Bi, Fi(ε)). Define a state transformation as

x̃ = [
x̃T

1, x̃
T
2, · · · , x̃T

l , x̃
T
0

]T
, ẽ = e,

where x̃0 = x0, and, for each i ∈ I [1, l],

x̃i = Si(ε)Q
−1
i (ε)xi .

It follows from Lemmas 2.1 and 2.2 that, under this state transformation, the state
equation (2.26) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1(t) = εJ̃1(ε)x̃1(t)

+
l∑

j=2

S1(ε)Q
−1
1 (ε)B1jFj (ε)Qj (ε)S

−1
j (ε)x̃j (t) − S1(ε)Q

−1
1 (ε)BR1

×F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)x̃(s−τ)ds+S1(ε)Q
−1
1 (ε)

×BR1F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)ẽ(s − τ)ds

−S1(ε)Q
−1
1 (ε)BR1F(ε)eAτ e−(A+LC)τ ẽ(t),

˙̃x2(t) = εJ̃2(ε)x̃2(t)+
l∑

j=3

S2(ε)Q2(ε)B2jFj (ε)Qj (ε)

×S−1
j (ε)x̃j (t) − S2(ε)Q

−1
2 (ε)BR2F(ε)

× ∫ t

t−τ
eA(t−s)BF (ε)eAτQ(ε)S−1(ε)x̃(s − τ)ds

+S2(ε)Q
−1
2 (ε)BR2F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)

×ẽ(s − τ)ds − S2(ε)Q
−1
2 (ε)BR2F(ε)eAτ e−(A+LC)τ ẽ(t),

...

˙̃xl(t) = εJ̃l(ε)x̃l(t)−Sl(ε)Q
−1
l (ε)BRlF (ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)

×S−1(ε)x̃(s − τ)ds+Sl(ε)Q
−1
l (ε)BRlF (ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτ

×Q(ε)S̃−1(ε)e(s − τ)ds − Sl(ε)Q
−1
l (ε)BR2F(ε)eAτ e−(A+LC)τ ẽ(t),

˙̃x0(t) = A0x̃0(t) +
l∑

j=1

B0jFj (ε)Qj (ε)S
−1
j (ε)x̃j (t) − BR0F(ε)

∫ t

t−τ

eA(t−s)

×BF(ε)eAτQ(ε)S−1(ε)x̃(s − τ)ds+BR0F(ε)

∫ t

t−τ

eA(t−s)

×BF(ε)eAτQ(ε)S−1(ε)ẽ(s − τ)ds − BR0F(ε)eAτ e−(A+LC)τ ẽ(t),
˙̃e(t) = (A + LC)ẽ(t),

(2.27)
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where

Q(ε) = blkdiag
{
Q1(ε),Q2(ε), · · · ,Ql(ε), I

}

and

S(ε) = blkdiag
{
S1(ε), S2(ε), · · · , Sl(ε), I

}
.

Let us choose the Lyapunov function

V (x̃, ẽ) =
l∑

i=1

κi x̃T
i P̃i x̃i + x̃T

0P̃0x̃0 + κl+1ẽTQ̃ẽ

= x̃TP̃ x̃ + ẽTQ̃ẽ,

where P̃0 > 0 and Q̃ > 0 are the solutions to the Lyapunov equations

AT
0P̃0 + P̃0A0 = −I,

and

Q̃(A + LC) + (A + LC)TQ̃ = −I,

respectively, κ > 0 is a constant whose value is to be determined later, and

P̃ = blkdiag
{
κP̃1, κ

2P̃2, · · · , κlP̃l, P̃0

}
.

The existence of such P̃0 and Q̃ is due to the fact that both A0 and A + LC are
Hurwitz.

The derivative of V along the trajectory of the closed-loop system (2.27) can be
evaluated as follows:

V̇ (x̃(t), ẽ(t))

=
l∑

i=1

[

εκi x̃T
i (t)

(
P̃i J̃i (ε) + J̃ T

i (ε)P̃i

)
x̃i (t) − 2κi x̃T

i (t)P̃iSi(ε)Q
−1
i (ε)BRi

×F(ε)eAτ e−(A+LC)τ ẽ(t) + 2
l∑

j=i+1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i (ε)BijFj (ε)Qj (ε)

×S−1
j (ε)x̃j (t)

]

+ x̃T
0(t)

(
AT

0P̃0 + P̃0A0

)
x̃0(t) + 2

l∑

j=1

x̃T
0(t)P̃0B0jFj (ε)
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×Qj(ε)S
−1
j (ε)x̃j (t) − 2x̃T

0(t)P̃0BR0F(ε)eAτ e−(A+LC)τ ẽ(t)

−2

[ l∑

i=1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i (ε)BRi + x̃T

0P̃0BR0

]

F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)x̃(s − τ)ds

+2

[
l∑

i=1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i (ε)BRi + x̃T

0P̃0BR0

]

F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)ẽ(s − τ)ds

+κl+1ẽT(t)
(
(A + LC)TQ̃ + Q̃(A + LC)

)
ẽ(t).

In view of Lemmas 2.3, the matrices defining the (x̃i , x̃j ), i 
= j , and (x̃i , ẽ)

cross terms are all in the order of ε. It is then straightforward to verify that there
exist κ > 0 and ε∗

1 ∈ (0, 1] such that,

V̇ (x̃(t), ẽ(t)) ≤ −ε

2
x̃T(t)x̃(t) − 1

2
ẽT(t)ẽ(t) − 2

[ l∑

i=1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i (ε)BRi

+x̃T
0P̃0BR0

]

F(ε)

∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)x̃(s − τ)ds

+2

[ l∑

i=1

κi x̃T
i (t)P̃iSi(ε)Q

−1
i (ε)BRi + x̃T

0P̃0BR0

]

F(ε)

×
∫ t

t−τ

eA(t−s)BF (ε)eAτQ(ε)S−1(ε)ẽ(s − τ)ds, ε ∈ (0, ε∗
1].

By using Lemma 2.3 again and (2.18), we easily see that,

V̇ (x̃(t), ẽ(t))≤−ε

2
min

{
λ−1

max

(
P̃
)

, λ−1
max

(
Q̃
)}

V (x̃(t), ẽ(t))+ε2�V
1
2 (x̃(t), ẽ(t))

×
∫ t

t−τ

∣
∣
∣eA(t−s)

∣
∣
∣V

1
2 (x̃(s − τ))ds, ε ∈ (0, ε∗

1],

for some � > 0, independent of ε.
Now, let η > 1 be any constant. If V (x̃(t + θ), ẽ(t + θ)) < ηV (x̃(t), ẽ(t)), θ ∈

[−τ, 0],

V̇ (x̃(t), ẽ(t)) ≤ −ε

2
min

{
λ−1

max

(
P̃
)

, λ−1
max

(
Q̃
)}

V (x̃(t), ẽ(t))
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+ε2�η

∫ τ

0

∣
∣
∣eAs

∣
∣
∣ dsV (x̃(t), ẽ(t)), ε ∈ (0, ε∗

1].

It is now clear that there exists an ε∗ ∈ (0, 1] such that, for all ε ∈ (0, ε∗],

V̇ (x̃(t), ẽ(t)) ≤ −√
εV (x̃(t), ẽ(t)).

It then follows from the Razumikhin Stability Theorem (Theorem 1.3) that the
closed-loop system (2.21) is asymptotically stable. This completes the proof. �


2.2.4 A Numerical Example

Consider system (2.1) with

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 −2 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , C = [

0 0 0 1
]
.

The open loop system has two pairs of repeated poles at s = ±j . Following the
proposed design method, we choose F(ε) = [−ε4−2ε2 −4ε3−4ε −6ε2 −4ε

]
.

Then, the state feedback TPF law (2.8) is given by

u(t) = F(ε)eAτx(t) =

⎡

⎢
⎢
⎣

−0.9974ε4 + 0.0203ε3 − 1.2757ε2 + 1.9177ε

−0.4997ε4 − 0.9974ε3 − 0.8766ε2 − 3.5103ε

−0.1199ε4 − 0.4591ε3 − 4.7861ε2 + 1.9177ε

−0.0203ε4 − 0.1199ε3 − 2.7953ε2 + 3.5103ε

⎤

⎥
⎥
⎦

T

x(t).

To design an output feedback law, we choose L = [−13 50 23 −10
]T

, which
places the eigenvalues of A + LC at {−1,−2,−3,−4}, and obtain the output
feedback TPF law (2.20) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) =

⎡

⎢
⎢
⎣

0 1 0 −13
0 0 1 50
0 0 0 24

−1 0 −2 −10

⎤

⎥
⎥
⎦ x̂(t) +

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ u(t − τ) −

⎡

⎢
⎢
⎣

−13
50
23

−10

⎤

⎥
⎥
⎦ y(t),

u(t) =

⎡

⎢
⎢
⎣

−0.9974ε4 + 0.0203ε3 − 1.2757ε2 + 1.9177ε

−0.4997ε4 − 0.9974ε3 − 0.8766ε2 − 3.5103ε

−0.1199ε4 − 0.4591ε3 − 4.7861ε2 + 1.9177ε

−0.0203ε4 − 0.1199ε3 − 2.7953ε2 + 3.5103ε

⎤

⎥
⎥
⎦

T

x̂(t).



46 2 Truncated Predictor Feedback for Continuous-Time Linear Systems

Some simulation results of the resulting closed-loop systems are shown in
Figs. 2.1, 2.2, 2.3, and 2.4. These simulation results verify the conclusion of
Theorems 2.1 and 2.2. In particular, under the TPF laws, a larger delay entails a
smaller value of the low gain parameter to achieve closed-loop stability.

2.3 The Lyapunov Equation Based Design

This section develops an alternative TPF design by adopting a Lyapunov equation
based low gain feedback design technique instead of the eigenstructure assignment
based low gain feedback design technique presented in Sect. 2.2.

The Lyapunov equation based design shows its advantages over the eigenstruc-
ture assignment based design in the following two aspects. TPF laws under the
eigenstructure assignment based design have been developed to handle constant
input delay, while those under the Lyapunov equation based design have been
developed to handle time-varying input delay. Moreover, explicit bounds on the
low gain parameter in the case of the Lyapunov equation based design have
been established, while no such bounds have been established in the case of the
eigenstructure assignment based design. Such bounds can also be established for
the eigenstructure assignment based design. However, doing so takes many more
steps and may incur more conservativeness, because of the multiple-step nature of
the eigenstructure assignment based design.

Consider the following linear system with input delay

{
ẋ(t) = Ax(t) + Bu(φ(t)),

y(t) = Cx(t),
(2.28)

where x ∈ R
n and u ∈ R

m are respectively the state and input, the pair (A,B)

and the pair (A,C) are assumed to be stabilizable and detectable, respectively, and
φ (t) : R+

0 → R denotes the delay function. Here, φ (t) can be defined in a more
standard form

φ (t) = t − d (t) , (2.29)

where d (t) : R
+ → R

+ is the time-varying delay that is continuously differen-
tiable. However, as pointed out in [60], the formalism involving the function φ (t)

turns out to be more convenient because the predictor problem we will consider
later requires the inverse function of φ (t) , namely, φ−1 (t) . In this section, we will
proceed with model (2.28) and assume (2.29) whenever necessary. Some necessary
assumptions on φ (t) is made as follows.

Assumption 2.1 The function φ : R
+
0 → R is a continuously differentiable,

invertible, and exactly known function such that d
dt

φ (t) > 0, t ≥ 0, and the delay
d (t) is bounded, namely, there exists a finite, but arbitrarily large, number D > 0
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Fig. 2.1 State response and control input under the state feedback TPF law (2.8): τ = 0.1s and
ε = 0.5
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Fig. 2.2 State response and control input under the state feedback TPF law (2.8): τ = 2s and
ε = 0.05
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Fig. 2.3 State response and control input under the output feedback TPF law (2.20): τ = 0.1s and
ε = 0.5
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Fig. 2.4 State response and control input under the output feedback TPF law (2.20): τ = 2s and
ε = 0.05
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such that

0 ≤ d (t) ≤ D, t ∈ [0,∞). (2.30)

2.3.1 Low Gain Feedback Design

Consider a controllable pair (A,B), where A ∈ R
n×n and B ∈ R

n×m. We construct
a parameterized feedback gain matrix F(γ ) as follows:

F(γ ) = −BTP(γ ), (2.31)

where P(γ ) is the unique positive definite solution to the parametric algebraic
Riccati equation,

ATP(γ ) + P(γ )A − P(γ )BBTP(γ ) = −γP (γ ), γ > −2 min{Re(λ(A))}.
(2.32)

Note that the inequality on the values of γ is necessary and sufficient for the
existence and uniqueness of a positive definite solution to (2.32). To compute P(γ ),
we can first compute the positive definite solution W(γ ) to the following Lyapunov
equation:

(
A + γ

2
I
)

W(γ ) + W(γ )
(
A + γ

2

)T = BBT, (2.33)

and then take P(γ ) = W−1(γ ). Equation (2.33) results from (2.32) by a substitution
of P(γ ) = W−1(γ ). We recall the following lemma on the properties of the solution
P(γ ) to (2.32).

Lemma 2.4 ([116, 121, 122]) Assume that all eigenvalues of A are on the closed
right-half plane. The unique positive definite solution P(γ ) to (2.32) satisfies

d

dγ
P (γ ) > 0, (2.34)

tr
(
BTP (γ )B

) = 2tr(A) + nγ, (2.35)

P (γ )BBTP (γ ) ≤ (2tr(A) + nγ )P (γ ) , (2.36)

eATtP (γ ) eAt ≤ eωγ tP (γ ) , (2.37)

where γ > 0, t ≥ 0, and ω ≥ 2 tr(A)
γ

+ n − 1. Moreover, the eigenvalues of A and

those of A + BF(γ ) are symmetric with respect to Re{s} = − γ
2 in the complex

plane, i.e.,
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λ(A) + λ(A + BF(γ )) = −γ, (2.38)

and P(γ ) is a rational matrix in γ . When all eigenvalues of A are on the imaginary
axis,

lim
γ→0+ P(γ ) = 0. (2.39)

In the case when all eigenvalues of A are on the imaginary axis, property (2.39) in
Lemma 2.4 and (2.31) imply that the norm of the feedback gain matrix F(γ ) goes
to zero as γ goes to zero. In this case, such a parametrization of a feedback gain
matrix in (2.31) is referred to as the Lyapunov equation based low gain feedback
design.

Throughout the book, stability analysis of time delay systems under feedback
laws whose feedback gain matrices are constructed by following the Lyapunov
equation based low gain feedback design frequently utilizes the following Jensen’s
Inequality.

Lemma 2.5 ([40]) For any positive semi-definite matrix Q ≥ 0, two scalars γ2
and γ1 with γ2 ≥ γ1, and a vector valued function ω : [γ1, γ2] → R

n such that the
integrals in the following are well defined, then

(∫ γ2

γ1

ωT (β) dβ

)

Q

(∫ γ2

γ1

ω (β) dβ

)

≤ (γ2 − γ1)

∫ γ2

γ1

ωT (β) Qω (β) dβ.

(2.40)

2.3.2 Truncated Predictor State Feedback Design

The main idea of predictor feedback is to design the feedback controller

u (φ (t)) = Fx (t) , φ (t) ≥ 0, (2.41)

such that the closed-loop system consisting of (2.28) and (2.41) is

ẋ (t) = (A + BF) x (t) , φ (t) ≥ 0, (2.42)

where F is such that A + BF is Hurwitz. The controller (2.41) can also be written
as

u (t) = Fx
(
φ−1 (t)

)
, t ≥ 0. (2.43)

However, as φ−1 (t) ≥ t,∀t ≥ 0, the above controller cannot be directly
implemented. To overcome this problem, x

(
φ−1 (t)

)
should be predicted based on
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the current state. By using the system model (2.28) and the variation-of-constants
formula [43, 60], it can be obtained that

x
(
φ−1 (t)

)
= eA

(
φ−1(t)−t

)

x (t) +
∫ φ−1(t)

t

eA
(
φ−1(t)−s

)

Bu (φ (s)) ds. (2.44)

Substituting the above relation into (2.43) gives the following predicator feedback:

u (t) = F

(

eA
(
φ−1(t)−t

)

x (t) +
∫ φ−1(t)

t

eA
(
φ−1(t)−s

)

Bu (φ (s)) ds

)

. (2.45)

For easy reference, the first term

us (t) = F eA
(
φ−1(t)−t

)

x (t) (2.46)

is referred to as the static state feedback term while the second term

ud (t) = F

∫ φ−1(t)

t

eA
(
φ−1(t)−s

)

Bu (φ (s)) ds (2.47)

is referred to as the distributed delay term .
We notice that, since d (t) is bounded, the function φ−1 (t) − t , which was

referred to as the prediction time, is also bounded. In fact,

0 ≤ φ−1 (t) − t ≤ D. (2.48)

Let the nominal feedback gain F be parameterized as F = F (γ ) : γ ∈ (0, 1]. If
F (γ ) is of order O(γ ) with respect to γ , namely,

lim
γ→0+

1

γ
|F (γ )| < ∞, (2.49)

then the static state feedback term us (t) in the predictor feedback law (2.45) is also
of order O(γ ) with respect to γ in view of (2.48). Consequently, control u (t) itself
is of order O(γ ) with respect to γ , namely,

lim
γ→0+

1

γ
|u (t)| < ∞, t ≥ 0. (2.50)

As a result, by virtue of (2.48),

lim
γ→0+

1

γ 2

∣
∣
∣
∣
∣
F (γ )

∫ φ−1(t)

t

eA
(
φ−1(t)−s

)

Bu (φ (s)) ds

∣
∣
∣
∣
∣
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= lim
γ→0+

∣
∣
∣
∣
∣

(
1

γ
F (γ )

)∫ φ−1(t)

t

eA
(
φ−1(t)−s

)

B

(
u (φ (s))

γ

)

ds

∣
∣
∣
∣
∣

≤ lim
γ→0+

1

γ
|F (γ )|

∫ φ−1(t)

t

(∣
∣
∣eA

(
φ−1(t)−s

)

B

∣
∣
∣

(

lim
γ→0+

1

γ
|u (φ(s))|

))

ds,

< ∞, (2.51)

namely, the distributed delay term ud (t) is at least of order O(γ 2) with respect to γ .
This indicates that, no matter how large the value of D is, the distributed delay term
ui (t) in (2.47) is dominated by the static state feedback term us (t) in (2.46) and
thus might be safely neglected in u (t) when γ is sufficiently small. As a result, the
predictor feedback law (2.45) can be truncated to result in the following TPF law:

u (t) = us (t) = F (γ ) eA
(
φ−1(t)−t

)

x (t) . (2.52)

When the delay in the time delay system (2.28) is constant, say, φ (t) = t −d, where
d is a positive constant, then φ−1 (t) = t + d, and the TPF (2.52) becomes

u (t) = F (γ ) eAdx (t) , (2.53)

which coincides with the TPF law (2.8) in Sect. 2.2.2 for linear systems with a
constant input delay.

Through the formulation of the TPF law, we have assumed a low gain nature of
F(γ ) with respect to a low gain parameter γ . It is well known that such a feedback
gain matrix F(γ ) can be explicitly constructed for the stabilization of linear systems
with all open loop poles on the closed right-half plane. Therefore, we impose the
following assumption on system (2.28).

Assumption 2.2 The matrix pair (A,B) ∈ (Rn×n × R
n×m

)
is controllable with all

the eigenvalues of A being on the imaginary axis.

In what follows, we first prove that the TPF (2.52) can indeed stabilize the time-
varying delay system (2.28) under Assumptions 2.1 and 2.2.

Theorem 2.3 Consider the linear system (2.28) with time-varying delay. Let
Assumptions 2.1 and 2.2 be satisfied and n ≥ 2. Then the TPF

u (t) = −BTP (γ ) eA
(
φ−1(t)−t

)

x (t) , t ≥ 0, (2.54)

(globally) asymptotically stabilizes system (2.28), where u (t) is a function that is
bounded over t ∈ [φ(0), 0), the matrix P (γ ) is the unique positive definite solution
to the parametric algebraic Riccati equation (2.32) and the parameter γ satisfies

γ ∈ (0, γ ∗) , γ ∗ = δ∗

Dω
, (2.55)
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with ω = n − 1 and δ∗ being the unique positive root of the following equation:

ω2

n3
= δeδ

(
eδ − 1

)
. (2.56)

Proof For simplicity, we denote F = F (γ ) = −BTP (γ ) and P = P (γ ) .

Consider an arbitrary initial condition of the time-varying delay system (2.28) as

x (t) = ϕ (t) , t ∈ [φ (0) , 0] . (2.57)

From the TPF (2.54) we can write

u (φ (t)) = F eA(t−φ(t))x (φ (t)) , t ≥ φ−1 (0) . (2.58)

The closed-loop system can thus be written as

ẋ (t) = Ax (t) + BF eA(t−φ(t))x (φ (t)) , t ≥ φ−1 (0) . (2.59)

Since u (t) , t ∈ [φ (0) , 0), is a bounded function, the solution in the interval[
0, φ−1 (0)

)
to the closed-loop system is simply given by

x (t) = eAtx (0) +
∫ t

0
eA(t−s)Bu (φ (s)) ds

= eAtϕ (0) +
∫ t

0
eA(t−s)Bu (φ (s)) ds, t ∈ [0, φ−1 (0)), (2.60)

which is also bounded for any bounded initial condition ϕ (t) , t ∈ [
φ−1 (0) , 0

]
.

Hence, we need only to consider the asymptotic stability of the closed-loop system
with t ≥ φ−1 (0) , say, asymptotic stability of system (2.59). However, the solution
to system (2.59) in the interval

[
φ−1 (0) , φ−1

(
φ−1 (0)

))
is given by

x (t) = eA
(
t−φ−1(0)

)

x
(
φ−1 (0)

)
+
∫ t

φ−1(0)

eA(t−s)BF eA(s−φ(s))x (φ (s)) ds,

(2.61)

which is again bounded for any bounded initial condition ϕ (t) ,∀t ∈ [φ−1 (0) , 0
]
,

in view of (2.60). Therefore, we need only to consider the asymptotic stability of
system (2.59) with t ≥ φ−1

(
φ−1 (0)

)
.

With the help of Eq. (2.59) and the variation-of-constants formula [43, 60], we
can compute, for all t ≥ φ−1

(
φ−1 (0)

)
,

x (t) = eA(t−φ(t))x (φ (t)) +
∫ t

φ(t)

eA(t−s)BF eA(s−φ(s))x (φ (s)) ds. (2.62)
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Then the closed-loop system (2.59) can be rewritten as

ẋ (t) = (A + BF) x (t) − BF

∫ t

φ(t)

eA(t−s)BF eA(s−φ(s))x (φ (s)) ds

= (A + BF) x (t) − BFλ (t) , (2.63)

where

λ(t) =
∫ t

φ(t)

eA(t−s)BF eA(s−φ(s))x (φ (s)) ds.

By virtue of (2.32) and Lemma 2.4, the time derivative of

V (x (t)) = xT (t) P x (t) (2.64)

along the trajectory of the system (2.63) satisfies

V̇ (x (t)) = xT (t)
(
(A + BF)T P + P (A + BF)

)
x (t) − 2λT (t) PBFx (t)

= −γV (x (t)) − xT (t) PBBTPx (t) − 2π T (t) PBBTPx (t)

≤ −γV (x (t))−xT (t) PBBTPx (t)+xT (t) PBBTPx (t)

+ λT (t) PBBTPλ (t)

= −γV (x (t)) + λT (t) PBBTPλ (t)

≤ −γV (x (t)) + nγλT (t) Pλ (t) . (2.65)

We next simplify the term λT (t) Pλ (t) . By using the Jensen’s inequality in
Lemma 2.5, we get

λT (t) Pλ (t)

=
(∫ t

φ(t)

eA(t−s)BF eA(s−φ(s))x (φ (s)) ds

)T

P

(∫ t

φ(t)

eA(t−s)BF eA(s−φ(s))x (φ (s)) ds

)

≤ (t−φ (t))

∫ t

φ(t)

xT (φ (s)) eAT(s−φ(s))PBBTeAT(t−s)P eA(t−s)BBTP eA(s−φ(s))x (φ (s)) ds.

Using Lemma 2.4 again, the above inequality can be continued as

λT (t) Pλ (t)

≤ d(t)

∫ t

φ(t)

eωγ (t−s)xT (φ (s)) eAT(s−φ(s))PBBTPBBTP eA(s−φ(s))x (φ (s)) ds
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≤ d(t)

∫ t

φ(t)

eωγ (t−s)xT (φ (s)) eAT(s−φ(s))PBtr
(
BTPB

)
BTP eA(s−φ(s))x (φ (s)) ds

= nγ d(t)

∫ t

φ(t)

eωγ (t−s)xT (φ (s)) eAT(s−φ(s))PBBTP eA(s−φ(s))x (φ (s)) ds

≤ (nγ )2 d(t)

∫ t

φ(t)

eωγ (t−s)xT (φ (s)) eAT(s−φ(s))P eA(s−φ(s))x (φ (s)) ds

≤ (nγ )2 d(t)

∫ t

φ(t)

eωγ (t−s)eωγ (s−φ(s))xT (φ (s)) Px (φ (s)) ds

= (nγ )2 d(t)

∫ t

φ(t)

eωγ (t−φ(s))V (x (φ (s))) ds, (2.66)

where ω = n − 1. By using the boundedness assumption on d(t), we further get

λT (t) Pλ (t) ≤ (nγ )2 D

∫ t

φ(t)

eωγ (t−φ(s))V (x (φ (s))) ds

= (nγ )2 D

∫ t

φ(t)

eωγ (t−s+d(s))V (x (φ (s))) ds

≤ (nγ )2 DeωγD

∫ t

φ(t)

eωγ (t−s)V (x (φ (s))) ds. (2.67)

Substituting (2.67) into (2.65) gives

V̇ (x (t)) ≤ −γV (x (t)) + (nγ )3 DeωγD

∫ t

φ(t)

eωγ (t−s)V (x (φ (s))) ds. (2.68)

Notice that

φ (φ (t)) = t − d(t) − d (t − d(t))

= t − d̃ (t) , (2.69)

where

d̃(t) = d(t − d(t)).

Clearly, we have
∣
∣d ′ (t)

∣
∣ ≤ 2D. Hence, under the condition that

V (x (t + θ)) < ηV (x (t)) , θ ∈ [−2D, 0] , (2.70)

where t ≥ φ−1
(
φ−1 (0)

)
and η > 1 is any given scalar, inequality (2.68) can be

continued as
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V̇ (x (t)) ≤ −γχ (γ ) V (x (t)) , (2.71)

where

χ (γ ) � 1 − eωγDηn3γ 2D

∫ t

t−D

eωγ (t−s)ds (2.72)

= 1 − ηn3γ 2DeωγD 1

ωγ

(
eωγD − 1

)

= ηn3

ω2

(
ω2

ηn3
− ηδeδ

(
eδ − 1

)
)

, (2.73)

in which δ = ωγD. Notice that

f (δ) = δeδ
(
eδ − 1

)
, δ ≥ 0, (2.74)

is a strictly increasing function. Therefore we deduce from Eq. (2.56) that

ω2

n3 − δeδ
(
eδ − 1

)
> 0, δ ∈ (0, δ∗) , (2.75)

and consequently, there exists a number η > 1 and a sufficiently small number
ε > 0 such that

ω2

ηn3
− ηδeδ

(
eδ − 1

)
> ε, δ ∈ (0, δ∗) . (2.76)

With inequality (2.76), we obtain from (2.71) and (2.73) that

V̇ (x (t)) ≤ −γ
ηn3ε

ω2 V (x (t)) , γ ∈
(

0,
δ∗

Dω

)

. (2.77)

The closed-loop system (2.59) is thus asymptotically stable by the Razumikhin
Stability Theorem (Theorem 1.3). The proof is complete. �

Remark 2.1 In Theorem (2.3) we have assumed that n ≥ 2. If n = 1, say, the
system (2.28) is of the form ẋ (t) = −u (φ (t)) , then we get from (2.72) that
χ (γ ) = 1 − ηγ 2D2. Consequently, inequality (2.71) reads

V̇ (x (t)) ≤ −γ
(

1 − ηγ 2D2
)

V (x (t)) . (2.78)

Therefore the asymptotic stability of the closed-loop system is guaranteed provided

that γ ∈
(

0, 1
D

)
. �
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Regarding the convergence rate of the closed-loop system, we have the following
result.

Proposition 2.2 Let γ satisfy (2.55) and α = α (δ) be defined as

α = 1

D

n3

ω3 δ

(
ω2

n3 − δeδ
(
eδ − 1

)
)

, (2.79)

where δ = ωγD and ω = n − 1. Then there exists a constant c = c (γ ) > 0 such
that, for any t ≥ 0,

|x (t)| ≤ c

(

sup
θ∈[φ(0),0]

{|x (θ)|} + sup
θ∈[φ(0),0]

{|u (θ)|}
)

e− α
2 t . (2.80)

Proof Since γ satisfies (2.55), it follows from (2.56) that

ω2

n3 − δeδ
(
eδ − 1

)
> 0, γ ∈ (0, γ ∗) . (2.81)

We next prove (2.80). Define a new state vector ξ (t) as

ξ (t) = x (t) e
α
2 t , t ≥ φ (0) , (2.82)

by which the closed-loop system (2.59) can be transformed as

ξ̇ (t) = ẋ (t) e
α
2 t + α

2
x (t) e

α
2 t

=
(
Ax (t) + BF eA(t−φ(t))x (φ (t))

)
e

α
2 t + α

2
ξ (t)

=
(
A + α

2
In

)
ξ (t) + BF eA(t−φ(t))ξ (φ (t)) e

α
2 (t−φ(t))

=
(
A + α

2
In

)
ξ (t) + BF e(A+ α

2 In)(t−φ(t))ξ (φ (t)) , (2.83)

where t ≥ φ−1 (0) . Moreover, by definition of V (x (t)) in (2.64), we can compute

V (ξ (t)) = eαtV (x (t)) . (2.84)

Let td > 0 be a prescribed number that is sufficiently small. It follows that

V (x (t)) = e−αtV (ξ (t)) ≤ e−αtd V (ξ (t)) , t ≥ td . (2.85)

Then, in view of (2.68), (2.84), and (2.85), the time derivative of V (ξ (t)) along the
trajectory of system (2.83) satisfies



60 2 Truncated Predictor Feedback for Continuous-Time Linear Systems

V̇ (ξ (t)) = eαt V̇ (x (t)) + αeαtV (x (t))

≤ αeαtV (x (t))

+ eαt

(

− γV (x (t)) + (nγ )3 DeωγD

∫ t

φ(t)

eωγ (t−s)V (x (φ (s))) ds

)

= (α − γ ) V (ξ (t)) + (nγ )3 DeωγD

∫ t

φ(t)

eωγ (t−s)V (x (φ (s))) ds

≤ (α − γ ) V (ξ (t))

+ (nγ )3 DeωγDe−αtd

∫ t

φ(t)

eωγ (t−s)V (ξ (φ (s))) ds

≤ (α − γ ) V (ξ (t))

+ (nγ )3 DeωγDe−αtd

∫ t

t−D

eωγ (t−s)V (ξ (φ (s))) ds, (2.86)

where t ≥ φ−1
(
φ−1 (td)

)
. Therefore, under the condition that

V (ξ (t + θ)) < ηV (ξ (t)) , θ ∈ [−2D, 0] , (2.87)

where t ≥ φ−1
(
φ−1 (td)

)
and η > 1 is a given scalar to be specified later, we can

obtain, for any t ≥ φ−1
(
φ−1 (td)

)
,

V̇ (ξ (t)) ≤
(

(α − γ ) + η (nγ )3 DeωγDe−αtd

∫ t

t−D

eωγ (t−s)ds

)

V (ξ (t))

=
(

α − 1

D

n3

ω3
δ

(
ω2

n3
− ηe−αtd δeδ

(
eδ − 1

)
))

V (ξ (t)) . (2.88)

Notice that, in view of (2.79) and (2.81),

α − 1

D

n3

ω3
δ

(
ω2

n3
− ηe−αtd δeδ

(
eδ − 1

)
)

= α − 1

D

n3

ω3
δ

(
ω2

n3
− eαtd (1 − ε) e−αtd δeδ

(
eδ − 1

)
)

= − 1

D

n3

ω3 δeδ
(
eδ − 1

)
ε, (2.89)

where ε is a sufficiently small positive number such that

η = eαtd (1 − ε) > 1. (2.90)

We then get from (2.88) that, for all t ≥ φ−1
(
φ−1 (td)

)
,
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V̇ (ξ (t)) ≤ − 1

D

n3

ω3
δeδ

(
eδ − 1

)
εV (ξ (t)) . (2.91)

Since V (·) is a quadratic function, by the Razumihkin Stability Theorem (Theo-
rem 1.3), we conclude from (2.91) that the ξ -system (2.83) is asymptotically stable,
namely, there exists a sufficiently small positive number ε and a positive number k

such that, for all t ≥ t0 = φ−1
(
φ−1 (td)

)
,

|ξ (t)| ≤ k sup
t∈[φ(0),t0]

{|ξ (t)|} e−ε(t−t0), (2.92)

which, according to (2.82), implies that, for all t ≥ t0 = φ−1
(
φ−1 (td)

)
,

|x (t)| ≤ k sup
τ∈[φ(0),t0]

{|ξ (τ )|} e−ε(t−t0)e− α
2 (t−t0)

≤ k′ sup
τ∈[φ(0),t0]

{|x (τ)|} e− α
2 (t−t0), (2.93)

where k′ = ke
α
2 t0 . Finally, it follows from (2.60), (2.61), and (2.62) that there exists

a positive constant c = c (γ ) such that

sup
τ∈[φ(0),t0]

{|x (τ)|} ≤ c

(

sup
θ∈[φ(0),0]

{|x (θ)|} + sup
θ∈[φ(0),0]

{|u (θ)|}
)

. (2.94)

Combining (2.93) and (2.94) gives the inequality (2.80). The proof is completed.
�


Remark 2.2 It follows from (2.56) that α (δ∗) = α (0) = 0, which indicates
that there exists at least one number δ† such that α (δ) is minimized, namely, the
estimation of the convergence rate is maximized. Letting d

dδ
α (δ) = 0 to give

ω2

n3
= δeδ

(
2
(
eδ − 1

)+ δ
(
2eδ − 1

))
, (2.95)

which has a unique solution δ† ∈ (0, δ∗) . Then α (δ) is minimized at δ = δ†. �
Remark 2.2 implies that, for a given delay bound D, a larger value of γ (or

δ) not necessarily leads to a higher convergence rate of the closed-loop system.
In our design, we may want to choose the optimal value of γ (denoted by γopt)
such that the convergence rate of the closed-loop system is maximized. Since the
convergence rate given in Proposition 2.2 is only an estimation, the optimal value

γopt may not be simply determined by γopt = δ†

ωD
according to Remark 2.2. We

notice that determining γopt is generally a hard problem if the delay d (t) is time-
varying. However, if the delay is a constant, we can propose the following numerical
method to compute γopt.
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When d(t) = d is a constant, the characteristic quasi-polynomial of the closed-
loop system (2.59) is given by

β (s, γ ) = det
(
sIn − A − BF (γ ) eAde−sd

)
. (2.96)

It is well known that, for any fixed γ and any prescribed number l, equation
β (s, γ ) = 0 has only a finite number of zeros on {s : Re{s} ≥ l} [43]. The right-
most zeros of equation β (s, γ ) = 0 can be computed by the efficient software
package DDE-BIFTOOL [27].

For a given γ ≥ 0, denote the real part of the right-most roots of the characteristic
quasi-polynomial equation β (s, γ ) = 0 by

λmax (γ ) = max {Re {s} : β (s, γ ) = 0} . (2.97)

It follows that the closed-loop system (2.59) is asymptotically stable if and only if
λmax (γ ) < 0. Moreover, it is well known that the convergence rate of the closed-
loop system (2.59) is totally determined by λmax (γ ), namely, the smaller the value
of λmax (γ ) , the faster the state converges to the origin [43].

According to Theorem 2.3, there is an interval I ⊂ (0,∞) such that λmax (γ ) <

0,∀γ ∈ I . Let γsup = supγ∈I {γ }. By definition, we have λmax (0) =
λmax

(
γsup

) = 0, namely, the closed-loop system (2.59) is marginally unstable with
γ = 0 and γ = γsup. Moreover, we have λmax (γ ) < 0, γ ∈ (

0, γsup
) = I ,

i.e., the closed-loop system is asymptotically stable with γ ∈ (
0, γsup

) = I .
Therefore, by continuity of zeros of quasi-polynomials [88], there exists a value
γopt ∈ (0, γsup

) = I such that λmax (γ ) is minimized with γ = γopt. Denote such
minimal value by λmin

max, namely,

λmin
max = min

γ∈I
{λmax (γ )} = min

γ∈I
{

max
{

Re {s} : β (s, γ ) = 0
}}

. (2.98)

Then λmin
max is the maximal convergence rate that the TPF (2.54) can achieve.

We can compute the function λmax (γ ) defined in (2.97) via the efficient software
package DDE-BIFTOOL [27] by choosing

γ = k�γ , k = 0, 1, · · · , N, (2.99)

where �γ is a sufficiently small number denoting the step size, and N is chosen
as the minimal number such that λmax

(
N�γ

) = 0. From the computational result
of λmax (γ ) , the optimal value γopt and the maximal convergence rate λmin

max can be
obtained accordingly.
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2.3.3 Truncated Predictor Output Feedback Design

In this subsection, we discuss the output feedback stabilization of system (2.28) by
a Lyapunov equation based TPF law. Without loss of generality, we assume that the
stabilizable pair (A,B) has the following block structure:

A =
[
AL 0
0 AR

]

, B =
[
BL

BR

]

, (2.100)

where AL ∈ R
nL×nL is Hurwitz, all eigenvalues of AR ∈ R

nR×nR are in the closed
right-half plane, nL + nR = n, and the dimensions of BL and BR correspond to those
of AL and AR, respectively. Based on this structure, the pair (AR, BR) is controllable.

We construct the following observer based controller:

{ ˙̂x (t) = Ax̂ (t) + Bu (φ (t)) − L
(
y (t) − Cx̂ (t)

)
,

u (t) = −BTP (γ ) eA
(
φ−1(t)−t

)

x̂ (t) ,
(2.101)

where

P(γ ) =
[

0 0
0 P(γ )

]

, (2.102)

P(γ ) is the unique positive definite solution to (2.32) with (A,B) replaced by
(AR, BR), and L ∈ R

n×p is such that A + LC is Hurwitz. The controllability of
the pair (AR, BR) guarantees the existence and uniqueness of such a P(γ ), and the
detectability of the pair (A,C) guarantees the existence of such an L.

By defining an error signal e(t) = x(t) − x̂(t), we obtain the dynamic of e(t) as

ė(t) = (A + LC)e(t). (2.103)

A combination of the dynamic of the error signal e(t) with the open loop system
(2.28) gives the following closed-loop system:

⎧
⎨

⎩

ẋL(t) = ALxL(t) − BLB
T
RP eARd(t)(xR(φ(t)) − eR(φ(t))),

ẋR(t) = ARxR(t) − BRB
T
RP eARd(t)(xR(φ(t)) − eR(φ(t))),

ė(t) = (A + LC)e(t),

(2.104)

where x = [
xL xR

]T
and e = [

eL eR

]T
are respectively the decompositions of the

state and the error signal corresponding to the structure of the (A,B) pair. Based on
the closed-loop system and the fact that AL is Hurwitz, we see that the asymptotic
stability of the second and third subsystems of the closed-loop system (2.104)
implies that of the overall closed-loop system. Therefore, in the following theorem,
we establish the stability of
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{
ẋR(t) = ARxR(t) − BRB

T
RP eARd(t)(xR(φ(t)) − eR(φ(t))),

ė(t) = (A + LC)e(t).
(2.105)

Theorem 2.4 If all eigenvalues of A are on the closed left-half plane, then there
exists γ � > 0 such that system (2.105) is asymptotically stable for any γ ∈ (0, γ ∗].

Proof We rewrite the dynamic of xR as

ẋR(t) = ARCxR(t) + BRB
T
RPλR(t) + BRB

T
RP eARd(t)eR(φ(t)), (2.106)

where ARC = AR − BRB
T
RP and λR(t) = xR(t) − eARd(t)xR(φ(t)). By applying the

variation-of-constants formula to (2.106), we obtain

λR(t) = −
∫ t

t−d(t)

eAR(t−s)BRB
T
RP eARd(s)(xR(φ(s)) − eR(φ(s)))ds. (2.107)

We now define a Lyapunov function

V (xR(t), e(t)) = xT
RPxR + eTRe, (2.108)

where R is the positive definite solution to the Lyapunov equation

(A + LC)TR + R(A + LC) = −I. (2.109)

Then, the time derivative of the Lyapunov function along the trajectory of system
(2.105) is

V̇ (xR(t), e(t)) = xT
R(PARC + AT

RCP)xR + 2xT
RPBRB

T
RPλR

+ 2xT
RPBRB

T
RP eARd(t)eR(φ(t))

+ eT(R(A + LC) + (A + LC)TR)e. (2.110)

In (2.110), we have suppressed all the time variable t for notational brevity, and we
will continue doing so in the rest of this proof as long as no ambiguity will occur. We
evaluate (2.110) by using the parametric algebraic Riccati equation (2.32), Young’s
Inequality, Lemma 2.4, (2.109), and (2.103),

V̇ ≤ − γ xT
RPxR + 2nRγ λT

RPλR

+ 2nRγ eωRγ d(t)eT
Re−(A+LC)Td(t)P e−(A+LC)d(t)eR − eTe, (2.111)

where ωR ≥ nR − 1 is any constant.
The term λT

RPλR can be evaluated as
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λT
RPλR ≤ d(t)

∫ t

t−d(t)

(xR(φ(s)) − eR(φ(s)))TeAT
Rd(s)PBT

ReAT
R(t−s)P eAR(t−s)BR

× BT
RP eARd(s)(xR(φ(s)) − eR(φ(s)))ds

≤ d(t)

∫ t

t−d(t)

eωRγ (t−s)(nRγ )2eωRγ d(s)

× (xR(φ(s)) − eR(φ(s)))TP(xR(φ(s)) − eR(φ(s)))ds

≤ 2De2ωRγD(nRγ )2

×
∫ t

t−D

(
xT

R(φ(s))PxR(φ(s)) + eT(φ(s))Pe(φ(s))
)
ds, (2.112)

based on which (2.111) can be continued as

V̇ (xR(t), e(t)) ≤ − γ xT
RPxR + 4D(nRγ )3e2ωRγD

∫ t

t−D

(

xT
R(φ(s))PxR(φ(s))

+ eT(φ(s))Pe(φ(s))

)

ds + 2nRγ eωRγ d(t)eT
R

× e−(A+LC)Td(t)P e−(A+LC)d(t)eR − eTe. (2.113)

The structure of P, combined with the low gain nature of P(γ ) as seen in
Lemma 2.4, implies that there exists γ �

1 > 0 such that for any γ ∈ (0, γ �
1 ],

P(γ ) ≤ R, (2.114)

which further implies that

V̇ (xR(t), e(t)) ≤ − γ xT
RPxR + 4D(nRγ )3e2ωRγD

∫ t

t−D

(

xT
R(φ(s))PxR(φ(s))

+ eT(φ(s))Re(φ(s))

)

ds + eT

(

− I + 2nRγ eωRγD

× e−(A+LC)Td(t)Pe−(A+LC)d(t)

)

e. (2.115)

Note that for any D ∈ R
+
0 , there exists γ �

2 ∈ (0, γ �
1 ] such that, for any γ ∈ (0, γ �

2 ]
and any d(t) ≤ D,

− I + 2nRγ eωRγDe−(A+LC)Td(t)Pe−(A+LC)d(t) ≤ −γR. (2.116)

Then, for any γ ∈ (0, γ �
2 ],
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V̇ (xR(t), e(t)) ≤ − γV + 4D(nRγ )3e2ωRγD

×
∫ t

t−D

(
xT

R(φ(s))PxR(φ(s)) + eT(φ(s))Re(φ(s))
)

ds.

(2.117)

Assume that V (xR(t + θ), e(t + θ)) < ηV (xR(t), e(t)), θ ∈ [−2D, 0], for some
η > 1. Then, we have

V̇ (xR(t), e(t)) ≤ −γV (xR(t), e(t))
(

1 − 4D2n3
Rγ

2e2ωRγD
)

. (2.118)

It is clear that if

γ < min
{
γ �

2 , γ �
3

}
� γ �, (2.119)

where γ �
3 is the unique positive solution to

4D2n3
Rγ

2e2ωRγD = 1, (2.120)

then by the Razumikhin Stability Theorem (Theorem 1.3), system (2.105) is
asymptotically stable. �


An estimate of the convergence rate of the closed-loop system (2.105) can also
be obtained by using the methods in the proof of Proposition 2.2. The details are
omitted for brevity.

2.3.4 A Numerical Example

We consider a delayed double oscillator system characterized by (2.28) in which A,
B, and C are given by

A =

⎡

⎢
⎢
⎣

0 ω 0 0
−ω 0 1 0
0 0 0 ω

0 0 −ω 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , C = [

1 0 0 1
]
. (2.121)

Here, ω is a positive number. It can be readily verified that (A,B) is controllable
and (A,C) is observable. For this system, the unique solution to the parametric
algebraic Riccati equation (2.32) can be computed as
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P =

⎡

⎢
⎢
⎢
⎢
⎣

γ 7

ω4 − 2γ 5

ω2 + 8γ 3 3γ 6

ω3 − 4γ 4

ω
3γ 5

ω3 − 8γ 3

ω
γ 4

ω2 − 4γ 2

3γ 6

ω3 − 4γ 4

ω
10γ 5

ω2 + 8γ 3 11γ 4

ω2 + 4γ 2 4γ 3

ω
3γ 5

ω3 − 8γ 3

ω
11γ 4

ω2 + 4γ 2 14γ 3

ω2 + 4γ
6γ 2

ω

−4γ 2 4γ 3

ω
6γ 2

ω
4γ

⎤

⎥
⎥
⎥
⎥
⎦

(2.122)

and the matrix exponential is given by

exp (As) =

⎡

⎢
⎢
⎣

cos (ωs) sin (ωs) 1
2 s sin (ωs) 1

2ω
� (s)

− sin (ωs) cos (ωs) 1
2ω

ψ (s) 1
2 s sin (ωs)

0 0 cos (ωs) sin (ωs)

0 0 − sin (ωs) cos (ωs)

⎤

⎥
⎥
⎦ (2.123)

in which � (s) = sin (ωs) − ωs cos (ωs) and ψ (s) = ωs cos (ωs) + sin (ωs) .

We consider two cases of the delay function φ (t):

• In the first case, the delay function is (Example 5.3 in [60])

φ (t) = t − t + 1

2t + 1
, t ≥ 0. (2.124)

It follows that D = 1 and the inverse function of φ (t) is

φ−1 (t) = t +
√

(t + 2)2 + 1

2
. (2.125)

Hence, according to Theorem 2.3, the truncated predictor state feedback law
(2.54) is given as

u (t) = −BTP (γ ) exp

(

A

(
t + 1

√
(t + 1)2 + 1 + t

))

x (t) . (2.126)

• In the second case, the delay function is given by

φ (t) = t − 4
t + 1

2t + 1
, t ≥ 0. (2.127)

It follows that D = 4 and the inverse function of φ (t) is

φ−1 (t) = −2t + 3 + √
4t2 + 20t + 41

4
. (2.128)

Hence, according to Theorem 2.3, the truncated predictor state feedback law
(2.54) is given as
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u (t) = −BTP (γ ) exp

(

A

(
8t + 8√

4t2 + 20t + 41 + 2t − 3

))

x (t) . (2.129)

With a given initial condition

x (θ) = [1 0 − 1 2]T , θ ∈ [−D, 0] , (2.130)

and by setting ω = 2, and letting γ = 0.3 and γ = 0.1 for the first and second
case of the delay function, respectively, the state response and control input under
these two cases are shown in Figs. 2.5 and 2.6. It is clear that the systems are indeed
stabilized by the truncated predictor state feedback TPF law (2.54).

The stabilization of system (2.121) by the truncated predictor output feedback
law (2.101) is also studied through simulation. We pick L = [−35 −18.5 −5 25

]T

to assign the eigenvalues of A + LC at {−1,−2,−3,−4} in the complex plane.
With the given initial condition (2.130) and x̂(θ) = [

0 0 0 0
]T

, θ ∈ [−D, 0], system
(2.121) with the delay function given by either (2.124) or (2.127) is stabilized by the
output feedback TPF law (2.101), which is shown in Figs. 2.7 and 2.8. The feedback
parameter γ in the first and second case of the delay function is chosen as 0.3 and
0.1, respectively, just as in the simulation for the state feedback case.

2.4 Conclusions

By truncating the distributed delay term of the predictor feedback law that stems
from the zero state solution of the predicted future state, we arrived at the
truncated predictor feedback (TPF) law, containing only the static state feedback
term of the predictor feedback law that stems from the zero input solution of the
predicted future state. The safety in discarding the distributed delay term relies on
a delicate parametrization of the feedback gain matrix of the TPF law, either by the
eigenstructure assignment low gain design or by the Lyapunov equation based low
gain design. Stabilization of linear systems with input delay by the TPF justifies
the effectiveness of such a parametrization, in which the eigenstructure assignment
based approach and the Lyapunov equation based approach were revisited. Both
state feedback and output feedback TPF laws were considered.

2.5 Notes and References

The predictor feedback design for linear systems with input delay results in a
distributed control law, which is known to incur difficulty in its implementation.
Reference [63] overcomes such a difficulty by proposing the method of discarding
the distributed delay term, leading to a TPF law. The validity of such a truncation
process requires the parameterization of the feedback gain matrix of the TPF law by
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Fig. 2.5 State response and control input under the state feedback TPF law (2.54): d (t) = t+1
2t+1

and γ = 0.3
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and γ = 0.1
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Fig. 2.8 State response and control input under the output feedback law (2.101): d (t) = 4 t+1
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and γ = 0.1
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using low gain feedback design techniques. An eigenstructure assignment based
low gain design technique was utilized in [63], while an alternative design, a
Lyapunov equation based low gain design technique, was employed in [124] and
[102]. An advantage of the Lyapunov equation based design over the eigenstructure
assignment based design is that the former facilitates the treatment of the time-
varying delay. The presentation of Sects. 2.2 and 2.3 mostly follows that of [63] and
[124], respectively. However, [124] does not consider the effect of stable poles of
the open loop system throughout its output feedback results. In the output feedback
setting, it is not without loss of generality to assume that the open loop system
does not have stable poles. The contribution of the output signal corresponding
to the subsystem with all its open loop poles on the imaginary axis cannot be
distinguished from the output signal of the overall system. Therefore, in Sect. 2.3.3,
we reformulated the truncated predictor output feedback law for linear systems with
open loop poles in the closed left-half plane, along with the corresponding stability
analysis of the closed-loop system under our output feedback law.



Chapter 3
Truncated Predictor Feedback for
Discrete-Time Linear Systems

3.1 Introduction

Based on the predictor feedback law for the stabilization of discrete-time systems
with delay, as introduced in Sect. 1.5, we develop a truncated predictor feedback
(TPF) law that simplifies the implementation of its predictor feedback prototype. An
eigenstructure assignment based low gain design as well as an alternative Lyapunov
equation based design are employed to parameterize the feedback gain matrix of the
TPF law in a low gain parameter. The core of low gain feedback designs is that a
sufficiently small low gain parameter would compensate an arbitrarily large delay
in a discrete-time linear system without exponentially unstable open loop poles.

Consider system (1.82) recalled below,

{
x(k + 1) = Ax(k) + Bu(k − r),

y(k) = Cx(k),
(3.1)

where (A,B) is stabilizable and (A,C) is detectable. The implementation of the
predictor feedback law (1.86), recalled below,

u(k) = FArx(k) + F

k−1∑

i=k−r

Ak−1−iBu(i), (3.2)

requires to measure, store, and extract the input signal u(s) on the time interval
s ∈ [k − r, k] in real time. As the amount of delay grows large, the number of
memory units that store the values of past input grows large accordingly. This leads
to considerable burden on the implementation of the predictor feedback law. The
state feedback TPF law

u(k) = FArx(k) (3.3)

© Springer Nature Switzerland AG 2021
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requires solely the measurement of the current state. Compared with the predictor
feedback law (1.86), the TPF law (3.2) is much easier to implement. In the following
two sections, we introduce two methods of parameterizing the feedback gain matrix
F of the TPF law in a low gain feedback parameter, and establish the stabilizing
effects, in the presence of an arbitrarily large delay, of the TPF law on system (3.1)
without exponentially unstable open loop poles.

3.2 The Eigenstructure Assignment Based Design

Our interest in discrete-time systems of the form (3.1) has been motivated by several
results on asymptotic stabilization of their continuous-time counterparts (2.1). A
general result on stabilizability of system (2.1) was established in [63]. By explicit
construction of stabilizing feedback laws, it was shown that system (2.1), with an
arbitrarily large finite delay, is asymptotically stabilizable by the truncated predictor
state or output feedback law, namely, (2.8) or (2.20), as long as the open loop system
is not exponentially unstable (i.e., all the open loop poles are in the closed left-half
plane).

This result in a way indicates the complexity in the stabilization of systems with
delay in the input such as those in the form of (3.1). The objective of this section
is to establish parallel results of [63] in the discrete-time setting. That is, system
(3.1), with an arbitrarily large finite delay, is asymptotically stabilizable by either
truncated predictor state or output feedback law as long as the open loop system is
not exponentially unstable (i.e., all the open loop poles are inside or on the unit
circle). Key to establishing this discrete-time result is the Razumikhin Stability
Theorem in the discrete-time setting, Theorem 1.4. Simple examples show that these
results would not be true if the open loop system is exponentially unstable and thus
are not conservative.

3.2.1 Low Gain Feedback Design

The eigenstructure assignment based low gain feedback design for discrete-time
systems with multiple inputs is developed from the design for single input systems.

Consider the following linear system with a single input:

x(k + 1) = Ax(k) + Bu(k), (3.4)

where x ∈ R
n, u ∈ R, and
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (3.5)

Assume that all eigenvalues of A are on the unit circle. Let

F(ε) : (0, 1] → R
1×n

be the unique state feedback gain such that

λ(A + BF(ε)) = (1 − ε)λ(A), ε ∈ (0, 1]. (3.6)

Then, we have the following lemmas [61] on the properties of the resulting closed-
loop system. Explicit construction of all the matrices involved in these lemmas can
be found in [61].

Lemma 3.1 Consider system (3.4) and let F be as given by (3.6). Then, there exists
a nonsingular transformation matrix Q(ε) ∈ R

n×n such that

Q−1(ε)(A + BF(ε))Q(ε) = J (ε)

� blkdiag
{
J−1(ε), J+1(ε), J1(ε), · · · , Jl(ε)

}
,

where

J−1(ε) =

⎡

⎢
⎢
⎢
⎣

−(1 − ε) 1
. . .

. . .

−(1 − ε) 1
−(1 − ε)

⎤

⎥
⎥
⎥
⎦

n−1×n−1

, (3.7)

J+1(ε) =

⎡

⎢
⎢
⎢
⎣

1 − ε 1
. . .

. . .

1 − ε 1
1 − ε

⎤

⎥
⎥
⎥
⎦

n+1×n+1

, (3.8)

and, for each i ∈ I [1, l],
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Ji(ε) =

⎡

⎢
⎢
⎢
⎣

J �
i (ε) I2

. . .
. . .

J �
i (ε) I2

J �
i (ε)

⎤

⎥
⎥
⎥
⎦

2ni×2ni

, (3.9)

J �
i (ε) = (1 − ε)

[
αi βi

−βi αi

]

, (3.10)

with

α2
i + β2

i = 1

for all i ∈ I [1, l] and

αi 
= αj

for i 
= j .

Lemma 3.2 Consider system (3.4) and let F be as given by (3.6). Let J (ε) be as
given in Lemma 3.1. Let

S(ε) = blkdiag
{
S−1(ε), S+1(ε), S1(ε), S2(ε), · · · , Sl(ε)

}
, (3.11)

where

S−1(ε) = diag
{
εn−1−1, εn−1−2, · · · , ε, 1

}
, (3.12)

S+1(ε) = diag
{
εn+1−1, εn+1−2, · · · , ε, 1

}
(3.13)

and, for each i ∈ I [1, l],

Si(ε) = blkdiag
{
εni−1I2, ε

ni−2I2, · · · , εI2, I2

}
. (3.14)

Then,

1.

S(ε)J (ε)S−1(ε) = J̃ (ε)

� blkdiag
{
J̃−1(ε), J̃+1(ε), J̃1(ε), · · · , J̃l(ε)

}
,

where
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J̃−1(ε) =

⎡

⎢
⎢
⎢
⎣

−(1 − ε) ε

. . .
. . .

−(1 − ε) ε

−(1 − ε)

⎤

⎥
⎥
⎥
⎦

n−1×n−1

, (3.15)

J̃+1(ε) =

⎡

⎢
⎢
⎢
⎣

1 − ε ε

. . .
. . .

1 − ε ε

1 − ε

⎤

⎥
⎥
⎥
⎦

n+1×n+1

, (3.16)

and, for each i ∈ I [1, l],

J̃i (ε) =

⎡

⎢
⎢
⎢
⎣

J �
i (ε) εI2

. . .
. . .

J �
i (ε) εI2

J �
i (ε)

⎤

⎥
⎥
⎥
⎦

2ni×2ni

, (3.17)

J �
i (ε) = (1 − ε)

[
αi βi

−βi αi

]

,

with

βi > 0

for all i ∈ I [1, l] and

βi 
= βj

for i 
= j ;
2. There exists ε∗ ∈ (0, 1] such that the unique positive definite solution P̃ (ε) to the

Lyapunov equation

J̃ T(ε)P̃ J̃ (ε) − P̃ = −εI (3.18)

is bounded over ε ∈ (0, ε∗], i.e., there exist positive definite matrices P̃1 and P̃2
such that

P̃1 ≤ P̃ (ε) ≤ P̃2, ∀ε ∈ (0, ε∗]. (3.19)

Lemma 3.3 Consider system (3.4) and let F be as given by (3.6). Let Q(ε), l, and
ni for i = 0 to l, be as defined in Lemma 3.1. Let the scaling matrix S(ε) be as
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defined in Lemma 3.2. Then, there exist γ, α, β, ϑ > 0, all independent of ε, such
that, for all ε ∈ (0, 1],

|F(ε)| ≤ γ ε, (3.20)
∣
∣
∣F(ε)Q(ε)S−1(ε)

∣
∣
∣ ≤ αε, (3.21)

∣
∣
∣F(ε)AQ(ε)S−1(ε)

∣
∣
∣ ≤ βε, (3.22)

|Q(ε)| ≤ ϑ, (3.23)
∣
∣
∣Q−1(ε)

∣
∣
∣ ≤ ϑ. (3.24)

3.2.2 Truncated Predictor State Feedback Design

For system (3.1) with all eigenvalues of A on or inside the unit circle, we construct
a family of linear state feedback laws as follows.

State Feedback Design

Step 1. Find nonsingular transformation matrices TS and TI such that the pair
(A,B) is transformed into the following block diagonal control canonical form,

T −1
S ATS =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1 0 · · · 0 0
0 A2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Al 0
0 0 · · · 0 A0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.25)

T −1
S BTI =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

B1 B12 · · · B1l ∗
0 B2 · · · B2l ∗
...

...
. . .

...
...

0 0 · · · Bl ∗
B01 B02 · · · B0l ∗

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.26)

where A0 contains all the eigenvalues of A that are strictly inside the unit circle,
for each i ∈ I [1, l], all eigenvalues of Ai are on the unit circle and hence (Ai, Bi)

is controllable and is given by,



3.2 The Eigenstructure Assignment Based Design 81

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aini

−ai(ni−1) −ai(ni−2) · · · −ai1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and finally, ∗’s represent submatrices of less interest.
We note that the existence of the above canonical form was shown in [110]. The
software realization can be found in [62].

Step 2. For each (Ai, Bi), let Fi(ε) ∈ R
1×ni be the state feedback gain such that

λ(Ai + BiFi(ε)) = (1 − ε)λ(Ai), ε ∈ (0, 1]. (3.27)

Note that Fi(ε) is unique.
Step 3. Construct the family of low gain state feedback laws as

u(k) = F(ε)Arx(k), (3.28)

where the low gain matrix F(ε) is given by

F(ε) = TI

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1(ε) 0 · · · 0 0 0
0 F2(ε) · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · Fl−1(ε) 0 0
0 0 · · · 0 Fl(ε) 0
0 0 · · · 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T −1
S . (3.29)

The theorem below establishes that the state feedback TPF law (3.28) asymptot-
ically stabilizes system (3.1) as long as all eigenvalues of A are on or inside the unit
circle.

Theorem 3.1 Consider the closed-loop system comprising of system (3.1) and the
state feedback TPF law (3.28). Let all eigenvalues of A be on or inside the unit
circle. Then, for any given arbitrarily large r ≥ 0, there exists ε∗ > 0, such that, for
each ε ∈ (0, ε∗], the closed-loop system is asymptotically stable.

Proof Without loss of generality, assume that the pair (A,B) is already in the form
of (3.25)–(3.26). Under the state feedback law (3.28), the closed-loop system is
given by

x(k + 1) = Ax(k) + BF(ε)Arx(k − r), (3.30)

from which we have



82 3 Truncated Predictor Feedback for Discrete-Time Linear Systems

Arx(k − r) = x(k) −
r−1∑

s=0

Ar−s−1BF(ε)Arx(k + s − 2r). (3.31)

Substitution of (3.31) in (3.30) results in

x(k+1) = (A+BF(ε))x(k)−BF(ε)

r−1∑

s=0

Ar−s−1BF(ε)Arx(k+s−2r). (3.32)

Partitioning the state x according to the structure of (3.25)–(3.26),

x = [
xT

1 xT
2 · · · xT

l xT
0

]T
, xi ∈ R

ni , i ∈ I [1, l],
we rewrite the state equation (3.32) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = (A1 + B1F1(ε))x1(k) +
l∑

j=2

B1jFj (ε)xj (k)

−BR1F(ε)

r−1∑

s=0

Ar−s−1BF(ε)Arx(k + s − 2r),

x2(k + 1) = (A2 + B2F2(ε))x2(k) +
l∑

j=3

B2jFj (ε)xj (k)

−BR2F(ε)

r−1∑

s=0

Ar−s−1BF(ε)Arx(k + s − 2r),

...

xl(k + 1) = (Al + BlFl(ε))xl(k)

−BRlF (ε)

r−1∑

s=0

Ar−s−1BF(ε)Arx(k + s − 2r),

x0(k + 1) = A0x0(k) +
l∑

j=1

B0jFj (ε)xj (k)

−BR0F(ε)
∑r−1

s=0 Ar−s−1BF(ε)Arx(k + s − 2r).

(3.33)

where for each i ∈ I [1, l], BRi is the ith row of the right-hand side of (3.26) and BR0
is the last row.

Now for each i ∈ I [1, l], let Qi(ε), Si(ε), J̃i (ε), P̃i , γi , αi , βi , and ϑi be the
matrices Q(ε), S(ε), J̃ (ε), and P̃ and the constants γ , α, β, and ϑ as defined in
Lemmas 3.1–3.3, but for the triple (Ai, Bi, Fi(ε)). Define a state transformation as,

x̃ = [
x̃T

1, x̃
T
2, · · · , x̃T

l , x̃
T
0

]T
, (3.34)

where x̃0 = x0, and, for each i ∈ I [1, l], x̃i = Si(ε)Q
−1
i (ε)xi .
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It follows from Lemmas 3.1 and 3.2 that under the state transformation (3.34) the
state equation (3.33) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1(k + 1) = J̃1(ε)x̃1(k) +
l∑

j=2

S1(ε)Q
−1
1 (ε)B1jFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

−S1(ε)Q
−1
1 (ε)BR1F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r),

x̃2(k + 1) = J̃2(ε)x̃2(k) +
l∑

j=3

S2(ε)Q2(ε)B2jFj (ε)Qj (ε)S
−1
j (ε)x̃j (k)

−S2(ε)Q
−1
2 (ε)BR2F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r),

...

x̃l(k + 1) = J̃l(ε)x̃l(k) − Sl(ε)Q
−1
l (ε)BRlF (ε)

×
r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r),

x̃0(k + 1) = A0x̃0(k) +
l∑

j=1

B0jFj (ε)Qj (ε)S
−1
j (ε)x̃j (k)

−BR0F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r).

(3.35)

where

Q(ε) = blkdiag
{
Q1(ε),Q2(ε), · · · ,Ql(ε), I

}
(3.36)

and

S(ε) = blkdiag
{
S1(ε), S2(ε), · · · , Sl(ε), I

}
. (3.37)

Let us choose a Lyapunov function

V (x̃) =
l∑

i=1

κi x̃T
i P̃i (ε)x̃i + x̃T

0P̃0x̃0

� x̃TP̃ (ε)x̃, (3.38)

where P̃0 > 0 is such that

AT
0P̃0A0 − P̃0 = −I,

κ > 0 is a constant whose value is to be determined later, and
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P̃ (ε) = blkdiag
{
κP̃1(ε), κ

2P̃2(ε), · · · , κlP̃l(ε), P̃0

}
. (3.39)

The existence of such P̃0 is due to the fact that A0 is Schur stable. The forward
difference of V along the trajectory of the closed-loop system (3.35) can be
evaluated as follows:

�V (x̃(k)) =
l∑

i=1

⎡

⎢
⎣−κi x̃T

i (k)
(
J̃ T
i (ε)P̃i (ε)J̃i (ε) − P̃i

)
x̃i (k)

+ 2
l∑

j=i+1

κi x̃T
i (k)J̃ T

i (ε)P̃i (ε)Si(ε)Q
−1
i

(ε)BijFj (ε)Qj (ε)S−1
j

(ε)x̃j (k)

− 2κi

⎛

⎝
l∑

j=i+1

Si(ε)Q
−1
i

(ε)BijFj (ε)Qj (ε)S−1
j

(ε)x̃j (k)

⎞

⎠

T

P̃i (ε)

× Si(ε)Q
−1
i

(ε)BRiF (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)

× x̃(k + s − 2r) + ki

⎡

⎣
l∑

j=i+1

Si(ε)Q
−1
i

(ε)BijFj (ε)Qj (ε)S−1
j

(ε)x̃j (k)

⎤

⎦

T

×P̃i (ε)

⎡

⎣
l∑

j=i+1

Si(ε)Q
−1
i

(ε)BijFj (ε)Qj (ε)S−1
j

(ε)x̃j (k)

⎤

⎦

⎤

⎥
⎦

− x̃T
0(k)

(
AT

0P̃0A0 − P̃0

)
x̃0(k) + 2

l∑

j=1

x̃T
0(k)AT

0P̃0B0jFj (ε)Qj (ε)

× S−1
j

(ε)x̃j (k) +
⎡

⎣
l∑

j=1

B0jFj (ε)Qj (ε)S−1
j

(ε)x̃j (k)

⎤

⎦

T

P0

×
⎡

⎣
l∑

j=1

B0jFj (ε)Qj (ε)S−1
j

(ε)x̃j (k)

⎤

⎦

− 2

⎡

⎣
l∑

i=1

κi x̃T
i (k)J̃ T

i (ε)P̃i (ε)Si(ε)Q
−1
i

(ε)BRi + x̃T
0AT

0P̃0BR0

⎤

⎦F(ε)

×
r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)
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+
⎡

⎣
r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

⎤

⎦

T

×
[ l∑

i=1

κiF T(ε)BT
Ri (Q

−1
i

)TST
i (ε)P̃i (ε)Si(ε)Q

−1
i

(ε)BRiF (ε) + F T(ε)BT
R0

× P̃0BR0F(ε)

]
⎡

⎣
r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k+s−2r)

⎤

⎦ . (3.40)

Recall that

J̃ T(ε)P̃i (ε)J̃i (ε) − P̃i = −I (3.41)

and

AT
0P̃0A0 − P̃0 = −I. (3.42)

Also, it follows from Lemma 3.3 that the matrices defining the remaining
(x̃i (k), x̃j (k)) terms, other than the terms defined by J̃ T(ε)P̃i (ε)J̃i (ε) − P̃i and
AT

0P̃0A0 − P̃0, are all of order O(ε) or order O(ε2). It is then straightforward to
verify that there exist κ > 0 and ε∗

1 ∈ (0, 1] such that,

�V (x̃(k)) ≤ −ε

2
x̃T(k)x̃(k) − 2

⎡

⎣x̃T
0A

T
0P̃0BR0 +

l∑

i=1

κi

⎡

⎣x̃T
i (k)J̃ T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi

+
⎛

⎝
l∑

j=i+1

Si(ε)Q
−1(ε)BijFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

⎞

⎠

T

P̃i (ε)Si(ε)

⎤

⎦

× Q−1
i (ε)BRi

⎤

⎦F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+
[

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

]T

×
[ l∑

i=1

κiF T(ε)BT
Ri (Q

−1
i (ε))TST

i (ε)Si(ε)Q
−1
i (ε)BRiF (ε)

+ F T(ε)BT
R0BR0F(ε)

][ r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)

× x̃(k + s − 2r)

]

, ε ∈ (0, ε∗
1]. (3.43)
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Recalling the special structure of J̃i (ε) and Lemma 3.3, we have

∣
∣
∣S(ε)Q−1(ε)AQ(ε)S−1(ε)

∣
∣
∣

=
l∑

i=1

∣
∣
∣Si(ε)Q

−1
i

(ε)AiQi(ε)S
−1
i

(ε)

∣
∣
∣+ |A0|

=
l∑

i=1

∣
∣
∣Si(ε)Q

−1
i

(ε)(Ai +BiFi(ε))Q(ε)S−1
i

(ε)−!Si(ε)Q
−1
i

(ε)BiFi(ε)Qi(ε)S
−1
i

(ε)

∣
∣
∣+|A0|

≤
l∑

i=1

(∣
∣
∣J̃i (ε)

∣
∣
∣+ εαiϑi |Bi |

)
+ |A0| ≤ δ, ε ∈ (0, ε∗

1 ]. (3.44)

Hence, we have
∣
∣
∣S(ε)Q−1(ε)AiQ(ε)S−1(ε)

∣
∣
∣

=
∣
∣
∣S(ε)Q−1(ε)AQ−1(ε)S−1(ε)S(ε)Q−1(ε)A · · · AQ(ε)S−1(ε)

∣
∣
∣ ≤ δi , (3.45)

and
∣
∣
∣F(ε)ArQ(ε)S−1(ε)

∣
∣
∣

=
∣
∣
∣F(ε)Q(ε)S−1(ε)S(ε)Q−1(ε)ArQ(ε)S−1(ε)

∣
∣
∣

≤
∣
∣
∣F(ε)Q(ε)S−1(ε)

∣
∣
∣
∣
∣
∣S(ε)Q−1(ε)ArQ(ε)S−1(ε)

∣
∣
∣

≤
⎛

⎝
l∑

i=1

∣
∣
∣Fi(ε)Qi(ε)S

−1
i

(ε)

∣
∣
∣

⎞

⎠ δr

≤ ε

⎛

⎝
l∑

i=1

αi

⎞

⎠ δr . (3.46)

Consequently, the inequality (3.43) can be continued as follows:

�V (x̃(k)) ≤ − ε

2
λ−1

max
(
P̃ (ε)

)
V (x̃(k))

+ε2�1(r)V
1
2 (x̃(k))

r−1∑

s=0

|A|r−s−1 V
1
2 (x̃(k + s − 2r)),

+ε4�2(r)

⎡

⎣
r−1∑

s=0

|A|r−s−1 V
1
2 (x̃(k + s − 2r))

⎤

⎦

2

, ε ∈ (0, ε∗
1 ],
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for some �1(r),�2(r) > 0, both independent of ε. In arriving at the above inequality,
we have used the inequality

V (x̃(k)) = x̃T(k)P̃ (ε)x̃(k) ≤ λmax(P̃ (ε))x̃T(k)x̃(k).

Now, let η > 1 be any constant. If V (x̃(k + s)) < ηV (x̃(k)), s ∈ I [−r, 0], then

�V (x̃(k)) ≤ − ε

2
λ−1

max
(
P̃ (ε)

)
V
(
x̃(k)

)+ ε2�1(r)η

⎛

⎝
r−1∑

s=0

|A|r−s−1

⎞

⎠V (x̃(k))

+ε4�2(r)η2

⎛

⎝
r−1∑

s=0

|A|r−s−1

⎞

⎠

2

V (x̃(k))

= −ε

⎡

⎣1

2
λ−1

max
(
P̃ (ε)

)− ε�1(r)η

⎛

⎝
r−1∑

s=0

|A|r−s−1

⎞

⎠

−ε3�2(r)η2

⎛

⎝
r−1∑

s=0

|A|r−s−1

⎞

⎠

2
⎤

⎥
⎦V (x̃(k)), ε ∈ (0, ε∗

1 ], (3.47)

where the following estimate was used:

V
1
2 (x̃(k + s − 2r)) ≤ √

ηV
1
2 (x̃(k − r))

≤ ηV
1
2 (x̃(k)), s ∈ I [−r, 0]. (3.48)

We recall that, by the definition of P̃ (ε) in (3.39) and because of (3.19),
λmax(P̃ (ε)), as a function of ε, is bounded from below by a positive scalar
independent of ε. It is clear that, for any given r ≥ 0 and η > 1, there exists
ε∗ ∈ (0, ε∗

1 ] such that, for all ε ∈ (0, ε∗],

�V (x̃(k)) ≤ −μ(ε)V (x̃(k)), if V (x̃(k + s)) < ηV (x̃(k)), s ∈ I [−r, 0], (3.49)

for some positive scalar μ(ε). It thus follows from Lemma 1.4 that the closed-loop
system (3.30) is asymptotically stable. �


To examine the conservativeness of the result of Theorem 3.1, we consider the
following simple system, whose open loop system is exponentially unstable,

{
x(k + 1) = βx(k) + u(k − r), β > 1,

u(k) = −αx(k).
(3.50)

We will show that, for large enough delay r , system (3.50) is not asymptotically
stable for any choice of the feedback gain α, and thus the condition of Theorem 3.1
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is tight. To this end, let us consider the characteristic equation of the closed-loop
system,

zr+1 − βzr + α = 0. (3.51)

We assume that there exists at least one solution z0 to the characteristic equation
(3.51) that lies inside the unit circle, i.e., |z0| < 1. Then, as r increases to infinity,
both |z0|r+1 and |z0|r go to zero. Thus, the first two terms on the left-hand side of
the characteristic equation go to zero accordingly, no matter what the value of β

is. This leads to a contradiction if α 
= 0, which implies that all the roots of the
characteristic equation lie outside the unit circle when r is sufficiently large. On the
other hand, if α = 0, then the characteristic equation has r number of solutions at
z = 0 and an unstable solution at z = β > 1, which also implies that the system is
unstable. Concluding from the above, we know that, given a sufficiently large r , if
β > 1, then any α as the feedback gain would cause instability of the closed-loop
system. Moreover, all the solutions to the characteristic equation of the closed-loop
system are unstable because they all lie outside the unit circle.

3.2.3 Truncated Predictor Output Feedback Design

For system (3.1) with all eigenvalues of A on or inside the unit circle, we construct
the following family of output feedback laws:

{
x̂(k + 1) = Ax̂(k) + Bu(k − r) − L(y(k) − Cx̂(k)),

u(k) = F(ε)Ar x̂(k),
(3.52)

where F(ε) is as given by (3.29), and L ∈ R
n×p is such that all eigenvalues of

A + LC are strictly inside the unit circle. We note that such a matrix L exists as the
pair (A,C) is detectable.

The theorem below establishes that the output feedback law (3.52) asymptoti-
cally stabilizes system (3.1) as long as all eigenvalues of A are on or inside the unit
circle.

Theorem 3.2 Consider the closed-loop system comprising of system (3.1) and the
linear output feedback law (3.52). Let all eigenvalues of A be on or inside the unit
circle. Then, for any given arbitrarily large r ≥ 0, there exists ε∗ > 0 such that, for
each ε ∈ (0, ε∗], the closed-loop system is asymptotically stable.

Proof Under the linear output feedback law (3.52), the closed-loop system is given
by,

{
x(k + 1) = Ax(k) + BF(ε)Ar x̂(k − r),

x̂(k + 1) = Ax̂(k) + BF(ε)Ar x̂(k − r) − L(y(k) − Cx̂(k)),
(3.53)
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which, in the new state (x, e) = (x, x − x̂), can be written as

{
x(k + 1) = Ax(k) + BF(ε)Arx(k − r) − BF(ε)Are(k − r),

e(k + 1) = (A + LC)e(k),
(3.54)

which in turn implies that

Arx(k − r) = x(k) −
r−1∑

s=0

Ar−s−1BF(ε)Arx(k + s − 2r)

+
r−1∑

s=0

Ar−s−1BF(ε)Are(k + s − 2r) (3.55)

and

e(k − r) = (A + LC)−re(k). (3.56)

Substitution of (3.55) and (3.56) into (3.54) results in

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) = (A + BF)x(k) − BF(ε)

r−1∑

s=0

Ar−s−1BF(ε)Arx(k + s − 2r)

+BF(ε)

r−1∑

s=0

Ar−s−1BF(ε)Are(k + s − 2r)

−BF(ε)Ar(A + LC)−re(k),

e(k + 1) = (A + LC)e(k).

(3.57)
Without loss of generality, assume that the pair (A,B) is already in the form of

(3.25)–(3.26). Partitioning the state x according to the structure of (3.25)–(3.26),

x = [
xT

1 xT
2 · · · xT

l xT
0

]T
, xi ∈ R

ni , i ∈ I [1, l],

we rewrite the state equation (3.57) as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = (A1 + B1F1(ε))x1(k) +
l∑

j=2

B1jFj (ε)xj (k) − BR1F(ε)
∑r−1

s=0 Ar−s−1B

×F(ε)Arx(k + s − 2r) + BR1F(ε)

r−1∑

s=0

ArBF(ε)Are(k + s − 2r)

−BR1F(ε)Ar(A + LC)−r e(k),

x2(k + 1) = (A2 + B2F2(ε))x2(k) +
l∑

j=3

B2jFj (ε)xj (k) − BR2F(ε)
∑r−1

s=0 Ar−s−1B

×F(ε)Arx(k + s − 2r) + BR2F(ε)

r−1∑

s=0

Ar−s−1BF(ε)Are(k + s − 2r)

−BR2F(ε)Ar(A + LC)−r e(k),
...

xl(k + 1) = (Al + BlFl(ε))xl(k) − BRlF (ε)

r−1∑

s=0

ArBF(ε)Arx(k + s − 2r)

+BRlF (ε)

r−1∑

s=0

ArBF(ε)Are(k + s − 2r) − BRlF (ε)Ar(A + LC)−r e(k),

x0(k + 1) = A0x0(k) +
l∑

j=1

B0jFj (ε)xj (k) − BR0F(ε)

r−1∑

s=0

ArBF(ε)Arx(k+s−2r)

+BR0F(ε)

r−1∑

s=0

ArBF(ε)Are(k + s − 2r) − BR0F(ε)Ar(A+LC)−r e(k),

e(k + 1) = (A + LC)e(k),

(3.58)
where, for each i ∈ I [1, l], BRi is the ith row of the right-hand side of (3.26) and
BR0 is the last row.

Now, for each i ∈ I [1, l], let Qi(ε), Si(ε), J̃i (ε), P̃i , γi , αi , βi , and ϑi be the
matrices Q(ε), S(ε), J̃ (ε), and P̃ and the constants γ , α, β and ϑ as defined in
Lemmas 3.1–3.3, but for the triple (Ai, Bi, Fi(ε)). Define a state transformation
as, x̃ = [

x̃T
1, x̃

T
2, · · · , x̃T

l , x̃
T
0

]T
, ẽ = e, where x̃0 = x0, and, for each i ∈ I [1, l],

x̃i = Si(ε)Q
−1
i (ε)xi .

It follows from Lemmas 3.1 and 3.2 that, under this state transformation, the state
equation (3.58) can be written as,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1(k + 1) = J̃1(ε)x̃1(k) +
l∑

j=2

S1(ε)Q
−1
1 (ε)B1jFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

−S1(ε)Q
−1
1 (ε)BR1F(ε)

×∑r−1
s=0 Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+S1(ε)Q
−1
1 (ε)BR1F(ε)

×∑r−1
s=0 Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−S1(ε)Q
−1
1 (ε)BR1F(ε)Ar(A + LC)−r ẽ(k),

x̃2(k + 1) = J̃2(ε)x̃2(k) +
l∑

j=3

S2(ε)Q2(ε)B2jFj (ε)Qj (ε)S
−1
j (ε)x̃j (k)

−S2(ε)Q
−1
2 (ε)BR2F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

−S2(ε)Q
−1
2 (ε)BR2F(ε)eAτ e−(A+LC)τ ẽ(k),

+S2(ε)Q
−1
2 (ε)BR2F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−S2(ε)Q
−1
2 (ε)BR2F(ε)Ar(A + LC)−r ẽ(k),

...

x̃l(k + 1) = J̃l(ε)x̃l(k)

−Sl(ε)Q
−1
l (ε)BRlF (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+Sl(ε)Q
−1
l (ε)BRlF (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−Sl(ε)Q
−1
l (ε)BR2F(ε)Ar(A + LC)−r ẽ(k),

x̃0(k + 1) = A0x̃0(k) +
l∑

j=1

B0jFj (ε)Qj (ε)S
−1
j (ε)x̃j (k)

−BR0F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r),

+BR0F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

−BR0F(ε)Ar(A + LC)−r ẽ(k),

ẽ(k + 1) = (A + LC)ẽ(k),

(3.59)
where

Q(ε) = blkdiag
{
Q1(ε),Q2(ε), · · · ,Ql(ε), I

}
,

and

S(ε) = blkdiag
{
S1(ε), S2(ε), · · · , Sl(ε), I

}
.
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Let us choose the Lyapunov function

V (x̃, ẽ) =
l∑

i=1

κi x̃T
i P̃i x̃i + x̃T

0P̃0x̃0 + κl+1ẽTQ̃ẽ

� x̃TP̃ x̃ + κl+1ẽTQ̃ẽ, (3.60)

where P̃0 > 0 and Q̃ > 0 are the solutions to the Lyapunov equations

AT
0P̃0A0 − P̃0 = −I,

and

(A + LC)TQ̃(A + LC) − Q̃ = −I,

respectively, κ > 0 is a constant whose value is to be determined later, and

P̃ = blkdiag
{
κP̃1, κ

2P̃2, · · · , κlP̃l, P̃0

}
.

The existence of such P̃0 and Q̃ is due to the fact that both A0 and A+LC are Schur
stable.

The forward difference of V along the trajectory of the closed-loop system (3.59)
can be evaluated as follows:

�V (x̃(k)) =
l∑

i=1

⎡

⎢
⎣−κi x̃T

i (k)
(
J̃ T

i (ε)P̃i(ε)J̃i (ε) − P̃i (ε)
)

x̃i (k)

+ 2
l∑

j=i+1

κi x̃T
i (k)J̃ T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BijFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

− 2κi x̃T
i (k)J̃i (ε)P̃i(ε)Si(ε)Q

−1
i (ε)BRiF (ε)Ar(A + LC)−1ẽ(k)

− 2κi

⎛

⎝
l∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

⎞

⎠

T

P̃i (ε)

× Si(s)Q
−1
i (ε)BRiF (ε)Ar(A + LC)−r ẽ(k)

− 2κi

⎛

⎝
l∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

⎞

⎠

T

P̃i (ε)

× Si(ε)Q
−1
i (ε)BRiF (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k+s−2r)
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− 2κi

⎛

⎝
l∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

⎞

⎠

T

P̃i (ε)

× Si(ε)Q
−1
i (ε)BRiF (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

+ 2κi ẽT(k)
(
Si(ε)Q

−1
i (ε)BRiF (ε)Ar(A + LC)−r

)T

P̃i (ε)Si(ε)Q
−1
i (ε)

× BRiF (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

− 2κi ẽT(k)
(
Si(ε)Q

−1
i (ε)BRiF (ε)Ar(A + LC)−r

)T

P̃i (ε)Si(ε)Q
−1
i (ε)

× BRiF (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

+ ki

⎡

⎣
l∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

⎤

⎦

T

P̃i (ε)

×
[ l∑

j=i+1

Si(ε)Q
−1
i (ε)BijFj (ε)Qj (ε)S

−1
j (ε)x̃j (k)

]

+ κi
(
Si(s)Q

−1
i (ε)BRiF (ε)Ar(A + LC)−r ẽ(k)

)T

P̃i (ε)

×Si(s)Q
−1
i (ε)BRiF (ε)Ar(A + LC)−r ẽ(k)

⎤

⎥
⎦

− x̃T
0(k)

(
AT

0P̃0A0 − P̃0

)
x̃0(k) + 2

l∑

j=1

x̃T
0(k)AT

0P̃0B0jFj (ε)Qj (ε)S
−1
j (ε)

× x̃j (k) − 2x̃T
0(k)AT

0P̃0BR0F(ε)Ar(A + LC)−r ẽ(k)

− 2

⎛

⎝
l∑

j=1

B0jFj (ε)Qj (ε)S
−1
j (ε)x̃j (k)

⎞

⎠

T

P̃0BR0F(ε)Ar(A + LC)−r ẽ(k)

+
[ l∑

j=1

B0jFj (ε)Qj (ε)S
−1
j (ε)x̃j (k)

]T

P̃0

[ l∑

j=1

B0jFj (ε)Qj (ε)S
−1
j (ε)

× x̃j (k)

]

+ (
BR0F(ε)Ar(A + LC)−r ẽ(k)

)T
P̃0BR0F(ε)Ar(A + LC)−r ẽ(k)
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− 2

[
l∑

i=1

κi x̃T
i (k)J̃ T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + x̃T

0A
T
0P̃0BR0

]

× F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+ 2

[
l∑

i=1

κi x̃T
i (k)J̃ T

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + x̃T

0A
T
0P̃0BR0

]

× F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

+
[

F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

]T

×
[

l∑

i=1

κiBT
Ri (Q

−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + BT

R0P̃0BR0

]

×
[

F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

]

+
[

F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

]T

×
[

l∑

i=1

κiBT
Ri (Q

−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + BT

R0P̃0BR0

]

×
[

F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

]

− 2

[

F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

]T

×
[

l∑

i=1

κiBT
Ri (Q

−1
i (ε))TST

i (ε)P̃i(ε)Si(ε)Q
−1
i (ε)BRi + BT

R0P̃0BR0

]

×
[

F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

]

+ κl+1ẽT(k)
(
(A + LC)TQ̃(A + LC) − Q̃

)
ẽ(k). (3.61)
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In view of Lemmas 3.3, the matrices defining the (x̃i , x̃j ) and (x̃i , ẽ)

cross terms, other than the terms x̃T
i (k)

(
J̃ T

i (ε)P̃i(ε)J̃i(ε) − P̃i(ε)
)

x̃i (k),

x̃T
0(k)

(
AT

0P̃0A0−P̃0

)
x̃0(k), and ẽT(k)

(
(A + LC)TQ̃(A +LC) − Q̃

)
ẽ(k), are

all of order O(ε). It is then straightforward to verify that there exists κ > 0 and an
ε∗

1 ∈ (0, 1] such that,

�V (x̃(k), ẽ(k)) ≤ −ε

2
x̃T(k)x̃(k) − 1

2
ẽT(k)ẽ(k)

+ x̃T(k)M1(ε)F (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+ x̃T(k)M2(ε)F (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

+ ẽT(k)M3(ε)F (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+ ẽT(k)M4(ε)F (ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

+
(

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

)T

F T(ε)M5(ε)

× F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

+
(

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

)T

F T(ε)M5(ε)

× F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r)

+
(

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)x̃(k + s − 2r)

)T

F T(ε)M6(ε)

× F(ε)

r−1∑

s=0

Ar−s−1BF(ε)ArQ(ε)S−1(ε)ẽ(k + s − 2r), (3.62)

where matrices Mi(ε), i = 1, 2, · · · , 6, are defined in an obvious way and are all of
order ε0.

By using Lemma 3.3 again and (3.46), we can easily see that,
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�V (x̃(k), ẽ(k)) ≤ −ε

2
min

{
λ−1

max

(
P̃
)

, λ−1
max

(
κl+1Q̃

)}
V (x̃(k), ẽ(k))

+ ε2�1(r)V
1
2 (x̃(k), ẽ(k))

r−1∑

s=0

|A|r−s−1

× V
1
2 (x̃(k + s − 2r), ẽ(k + s − 2r)) + ε4�2(r)

×
[

r−1∑

s=0

|A|r−s−1V
1
2 (x̃(k + s − 2r), ẽ(k + s − 2r))

]2

, ε ∈ (0, ε∗
1],

for some �1(r),�2(r) > 0, both independent of ε.
Now, let η > 1 be any constant. If V (x̃(k + s), ẽ(k + s) < ηV (x̃(k), ẽ(k)), s ∈

I [−r, 0],

�V (x̃(k), ẽ(k)) ≤ −ε

2
min

{
λ−1

max

(
P̃
)

, λ−1
max

(
κl+1Q̃

)}
V (x̃(k), ẽ(k))

+ ε2�1(r)η

(
r−1∑

s=0

|A|r−s−1

)

V (x̃(k), ẽ(k))

+ ε4�2(r)η
2

(
r−1∑

s=0

|A|r−s−1

)2

V (x̃(k), ẽ(k)), ε ∈ (0, ε∗
1].
(3.63)

It is now clear that, for any given r , there exists ε∗ ∈ (0, 1] such that, for all ε ∈
(0, ε∗],

�V (x̃(k), ẽ(k)) ≤ −√
εV (x̃(k), ẽ(k)). (3.64)

It then follows from the Razumihkin Stability Theorem for discrete-time systems
(Theorem 1.4) that the closed-loop system (3.53) is asymptotically stable. This
completes the proof. �


3.2.4 A Numerical Example

Consider system (3.1) with

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 2
√

2 −4 2
√

2

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , C = [

1 0 0 0
]
. (3.65)
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The open loop system has two pair of repeated poles on the unit circle at z =
±√

2/2 ± j
√

2/2. Following the proposed design method, we choose

F(ε)= [−ε4 +4ε3 −6ε2 +4ε −2
√

2ε3 + 6
√

2ε2 − 6
√

2ε −4ε2 + 8ε −2
√

2ε
]
.

Then, the family of linear state feedback laws (3.28) is given by

u(k) = F(ε)Arx(k). (3.66)

To design an output feedback law, we choose L = [−2
√

2 −4 −2
√

2 3/4
]T

, which
places the eigenvalues of A+LC at z = ±1/2±j/2, and obtain the family of linear
output feedback laws (3.52) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂(k + 1) =

⎡

⎢
⎢
⎣

−2
√

2 1 0 0
−4 0 1 0

−2
√

2 0 0 1
−1/4 0 −2 2

√
2

⎤

⎥
⎥
⎦ x̂(k) +

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦Arx̂(k − r) −

⎡

⎢
⎢
⎣

−2
√

2
−4

−2
√

2
3/4

⎤

⎥
⎥
⎦ y(k),

u(k) = F(ε)Ar x̂(k).

(3.67)
Some simulation results of the resulting closed-loop systems are shown in Figs. 3.1,
3.2, 3.3, and 3.4.

3.3 The Lyapunov Equation Based Design

This section presents an alternative low gain feedback design for the parametrization
of the feedback gain matrix F of the TPF law (3.3). Like the eigenstructure
assignment based low gain feedback design presented in Sect. 3.2, the Lyapunov
equation based design enables the TPF law to compensate an arbitrarily large input
delay in a discrete-time linear system without exponentially unstable open loop
poles.

3.3.1 Low Gain Feedback Design

Consider a controllable pair (A,B) where A ∈ R
n×n and B ∈ R

n×m. We construct
a parameterized feedback gain matrix F(γ ) as follows:

F(γ ) = − (Im + BTP(γ )B
)−1

BTP(γ )A, (3.68)

where P(γ ) is the unique positive definite solution to the following parametric
discrete-time algebraic Riccati equation
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Fig. 3.1 State response and control input under the state feedback TPF law (3.28): r = 1 and
ε = 0.1
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Fig. 3.2 State response and control input under the state feedback TPF law (3.28): r = 2 and
ε = 0.04
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Fig. 3.3 State response and control input under the output feedback TPF law (3.52): r = 1 and
ε = 0.05
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Fig. 3.4 State response and control input under the output feedback TPF law (3.52): r = 2 and
ε = 0.01
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ATP(γ )A − P(γ ) − ATP(γ )B
(
Im + BTP(γ )B

)−1
BTP(γ )A = −γP (γ ),

γ ∈
(

1 − min
{
|λ(A)|2

}
, 1
)

.

(3.69)

According to [123], the range of γ guarantees the existence and uniqueness of a
positive definite solution P(γ ). Also, such a design requires that min{|λ(A)|} 
= 0,
which implies that the open loop system cannot have any poles at the origin.

To compute P(γ ), we can first compute the positive definite solution W(γ ) to
the following discrete-time Lyapunov equation,

W(γ ) − 1

1 − γ
AW(γ )AT = −BBT. (3.70)

By taking P(γ ) = W−1(γ ), we obtain the solution of P(γ ). Equation (3.70) results
from Eq. (3.69) by letting W(γ ) = P −1(γ ).

When all eigenvalues of A are on the unit circle, we recall the following lemmas
on the properties of the solution P(γ ) to (3.69).

Lemma 3.4 ([100, 125]) The eigenvalues of A and those of A + BF(γ ) are
reciprocal with respect to |s| = √

1 − γ in the complex plane, i.e.,

λ(A)λ(A + BF(γ )) = 1 − γ, (3.71)

P(γ ) is a rational matrix in γ , and P(γ ) is strictly increasing with respect to γ .
If all eigenvalues of A are on or outside the unit circle, the unique positive definite
solution P(γ ) to (3.69) satisfies

(Ai)TPAi ≤ det2(A)

(1 − γ )(n−1)i
P , (3.72)

F T(γ )R(γ )F (γ ) ≤ det2(A) − (1 − γ )n

(1 − γ )n−1 P(γ ), (3.73)

where i ∈ N, R(γ ) = Im + BTP(γ )B, and F(γ ) is given in (3.68). If, in addition,
all eigenvalues of A are on the unit circle,

lim
γ→0+ P(γ ) = 0. (3.74)

Lemma 3.5 ([100, 125]) Assume that all eigenvalues of A are on or outside the
unit circle. Then, the unique positive definite solution P(γ ) to (3.69) satisfies
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(
Ar−s−1BR(γ )−1BTP(γ )Ar+1

)T

F T(γ )R(γ )F (γ ) (3.75)

×Ar−s−1BR−1(γ )BTP(γ )Ar+1

≤
(

det2(A) − (1 − γ )n
)3

(1 − γ )(n−1)(2r−s+1)
(det2(A))2r−s−2P(γ ), (3.76)

with r ≥ 1, s ∈ I [0, r − 1] and R(γ ) is defined as in Lemma 3.4.

Property (3.74) in Lemma 3.4 and (3.68) imply that the feedback gain matrix
F(γ ) goes to zero as γ goes to zero. Such a parametrization of a feedback gain
matrix is referred to as the Lyapunov equation based low gain feedback design.

Throughout the book, stability analysis of time delay systems under feedback
laws whose feedback gain matrices are constructed by adopting the discrete-time
Lyapunov equation based low gain feedback design frequently utilizes the following
discrete-time Jensen’s Inequality.

Lemma 3.6 ([40]) For any positive semi-definite matrix M ≥ 0, two integers r2
and r1 with r2 ≥ r1, and a vector valued function ω : I [r1, r2] → R

n, then

⎛

⎝
r2∑

i=r1

ω (i)

⎞

⎠

T

M

⎛

⎝
r2∑

i=r1

ω (i)

⎞

⎠ ≤ (r2 − r1 + 1)

r2∑

i=r1

ωT (i)Mω (i) .

3.3.2 Truncated Predictor State Feedback Design

In this subsection, we present the stabilization of system (3.1) by a truncated
predictor state feedback law whose feedback gain matrix is parameterized by the
use of the Lyapunov equation based low gain feedback design.

Without loss of generality, we assume that (A,B) of system (3.1) is given in the
following form:

A =
[

As 0
0 Ao

]

, B =
[

Bs

Bo

]

, (3.77)

where As ∈ R
ns×ns contains all eigenvalues of A that are strictly inside the unit

circle, Ao ∈ R
no×no contains all eigenvalues of A that are on the unit circle, and

ns +no = n. The stabilizability of (A,B) then implies that (Ao, Bo) is controllable.
Clearly, the subsystem (As, Bs) does not affect the stabilizability of the system. In
the following theorem, we can safely omit all stable eigenvalues of A.

Theorem 3.3 Assume that all eigenvalues of A are on the unit circle. Then there
exists a positive scalar γ ∗ ∈ (0, 1), where
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γ ∗ = 2
−
(

(n−1)(2r+1)
2 +1

)

n
√

nr
, (3.78)

such that the following state feedback TPF law

u (k − r) = −F(γ )Arx (k − r) , γ ∈ (0, γ ∗] , k ≥ 0, (3.79)

asymptotically stabilizes system (3.1), where F(γ ) is given by (3.68).

Proof With the feedback law (3.79), the resulting closed-loop system is given by

x (k + 1) = Ax (k) − BFArx (k − r) . (3.80)

We solve (3.80) to give

Arx (k − r) = x (k) +
r−1∑

s=0

Ar−s−1BFArx (k + s − 2r) ,

with which the closed-loop system (3.80) can be written as,

x (k + 1) = Acx (k) − BFq (k) , (3.81)

where

Ac = A + BF, q (k) =
r−1∑

s=0

Ar−s−1BFArx (k + s − 2r) . (3.82)

Choose the following Lyapunov function:

V (x (k)) = xT (k) Px (k) .

Then the forward difference of V (x (k)) along the trajectory of system (3.81) can
be evaluated as follows:

�V (x(k)) � xT (k + 1) Px (k + 1) − xT (k) Px (k)

= xT (k)
(
AT

c PAc − P
)

x (k) + qT (k) F TBTPBFq (k)

− xT (k)AT
c PBFq (k) − qT (k) F TBTPAcx (k) . (3.83)

Therefore, by using (3.69), Eq. (3.83) can be further simplified as

�V (x(k)) = xT (k)
(
−γP − F TF

)
x (k) + qT (k) F TBTPBFq (k)
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− xT (k) F TFq (k) − qT (k) F TFx (k) . (3.84)

By using Young’s Inequality, we have

−2xT (k) F TFq (k) ≤ xT (k) F TFx (k) + qT (k) F TFq (k) .

Inserting the above inequality into (3.84) gives

�V (x(k)) ≤ −γ xT (k) Px (k) + qT (k) F TRFq (k) . (3.85)

By using (3.82) and Lemma 3.6, we obtain

qT (k) F TRFq (k)

≤ r

r−1∑

s=0

(
Ar−s−1BFArx (k + s − 2r)

)T
F TRF

(
Ar−s−1BFArx (k + s − 2r)

)

= r

r−1∑

s=0

xT (k + s − 2r) U (s, γ ) x (k + s − 2r) ,

where U (s, γ ) is defined as the left-hand side of (3.75). Then it follows from
Lemma 3.5 that

qT (k) F TRFq (k) ≤ r

r−1∑

s=0

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(2r−s+1)
xT (k + s − 2r) Px (k + s − 2r) .

(3.86)

Therefore, under the condition

V (x (k + s)) < ηV (x (k)) , s ∈ I [−2r, 0], η > 1,

it follows from (3.86) that

qT (k) F TRFq (k) ≤ ηr

r−1∑

s=0

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(2r−s+1)
xT (k) Px (k) .

With this, the inequality in (3.85) reduces to

�V (x(k)) ≤ −γg (γ, η) xT (k) Px (k) , (3.87)

where g (γ, η) is given by
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g (γ, η) = 1 − ηr
(
1 − (1 − γ )n

)3

γ (1 − γ )(n−1)(2r+1)

r−1∑

s=0

(
(1 − γ )(n−1)

)s

≥ 1 − ηr2
(
1 − (1 − γ )n

)3

γ (1 − γ )(n−1)(2r+1)
. (3.88)

It is clear that limγ→0+ g (γ, η) = 1 and limγ→1− g (γ, η) = −∞. Then, for any
η > 1, there exists γ ∗ (η) ∈ (0, 1) such that

g (γ, η) ≥ 1

2
, ∀γ ∈ [0, γ ∗ (η)

]
. (3.89)

Therefore, it follows from (3.87) and (3.89) that

�V (x(k)) ≤ −1

2
γ xT (k) Px (k) , ∀γ ∈ (0, γ ∗ (η)

]
,

which, in view of the Razumikhin Stability Theorem for discrete-time systems
(Theorem 1.4), implies the asymptotic stability of the closed-loop system (3.80).

Therefore, to complete the proof, we need only to show that there exists η > 1
such that (3.89) is satisfied with γ ∈ (0, γ ∗]. To show this, we note that 1 − γ < 1
and it follows that

1 − (1 − γ )n = γ

n−1∑

s=0

(1 − γ )s ≤ nγ. (3.90)

We then deduce from (3.88) that

g (γ, η) ≥ 1 − ηr2γ 2n3

(1 − γ )(n−1)(2r+1)
. (3.91)

Since n ≥ 1 and r ≥ 1, we compute from (3.78) that

1 − γ ≥ 1 − γ ∗ = 1 −
(

2

(
(n−1)(2r+1)

2 +1
)

n
√

nr

)−1

≥ 1

2
.

Thus, if we let η = 2, the inequality in (3.91) can be continued as

g (γ, 2) ≥ 1 − 2r2γ 2n32(n−1)(2r+1)

≥ 1 − 2r2 (γ ∗)2 n32(n−1)(2r+1)

= 1 −
(

2

(
(n−1)(2r+1)

2 +1
)

n
√

nr

)−2

2r2n32(n−1)(2r+1)
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= 1 − 2

4

= 1

2
,

which completes the proof. �


3.3.3 Truncated Predictor Output Feedback Design

In this subsection, we propose the stabilization of system (3.1) by a truncated
predictor output feedback law whose feedback gain matrix is parameterized by
the use of the Lyapunov equation based low gain feedback design. For an output
feedback problem, it is no longer without loss of generality to assume that all the
eigenvalues of A are located on the unit circle. To see this, assume that (A,B) is in
the form of (3.77) and let

x (k) =
[
xT

o (k) , xT
s (k)

]T
,

then system (3.1) becomes

⎧
⎪⎨

⎪⎩

xs (k + 1) = Asxs (k) + Bsu (k − r) ,

xo (k + 1) = Aoxo (k) + Bou (k − r) ,

y (k) = C
[
xT

o (k) xT
s (k)

]T
,

(3.92)

which indicates that the stable substate xs (k) will appear in the output signal y (k),
and the output signal related to the unstable substate xo (k) cannot be separated from
the whole output signal y. Therefore, the stable open loop poles of the system cannot
be ignored when we carry out an output feedback design and the corresponding
closed-loop stability analysis.

We construct the following observer-based output feedback law for system (3.1):

{
x̂(k + 1) = Ax̂(k) + Bu(k − r) − L(y(k) − Cx̂(k)),

u(k) = F̃ (γ )Ar x̂(k),
(3.93)

where

F̃ (γ ) = −
(
I + BTP̃ (γ )B

)−1
BTP̃ (γ )A, P̃ (γ ) =

[
0 0
0 PO(γ )

]

, (3.94)

and PO(γ ) is the unique positive definite solution to the discrete-time parametric
algebraic Riccati equation
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AT
OPO(γ )AO − PO(γ ) − AT

OPO(γ )BO

(
I + BT

OPO(γ )BO

)−1
BT

OPO(γ )AO = −γPO(γ ),

(3.95)

and L is such that A + LC is Schur stable. The detectability of the pair (A,C)

implies that such an L exists. Define an error between the state of the system of the
system and the state of the observer as e(k) = x(k) − x̂(k). Then, the dynamic of
this error signal is computed as

e(k + 1) = (A + LC)e(k). (3.96)

Consequently, the closed-loop system consisting of the open loop system (3.1) and
the output feedback law (3.93) can be written as,

{
x(k + 1) = Ax(k) + BF̃ (γ )Ar(x(k − r) − e(k − r)),

e(k + 1) = (A + LC)e(k).
(3.97)

Recalling the structure of the pair (A,B) as given in (3.77) and P̃ (γ ) as in (3.94),
we see that the parameterized feedback gain matrix of the output feedback law has
the following form:

F̃ (γ ) = − (I + BT
OPO(γ )BO

)−1 [
0 BT

OPO(γ )AO

]
, (3.98)

from which the closed-loop system can be decomposed into the following three
subsystems:

⎧
⎨

⎩

xS(k + 1) = ASxS(k) + BSFO(γ )Ar
O(xO(k − r) − eO(k − r)),

xO(k + 1) = AOxO(k) + BOFO(γ )Ar
O(xO(k − r) − eO(k − r)),

e(k + 1) = (A + LC)e(k),

(3.99)

where FO(γ ) = −(I + BT
OPO(γ )BO)

−1BT
OPO(γ )AO is defined for notational sim-

plicity. It is clear from AO in the first subsystem of the closed-loop system that the
asymptotic stability of the system

{
xO(k + 1) = AOxO(k) + BOFO(γ )Ar

O(xO(k − r) − eO(k − r)),

e(k + 1) = (A + LC)e(k)
(3.100)

implies that of the whole closed-loop system. Therefore, stabilization of system
(3.1) by the output feedback TPF law (3.93) is achieved if the stability of system
(3.100) is established.

Theorem 3.4 Assume that AS does not have eigenvalues at the origin and AO has
all its eigenvalues on the unit circle. Then, there exists a sufficiently small positive
constant γ ∗ such that for each γ ∈ (0, γ ∗], the closed-loop system (3.100) is
asymptotically stable.
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Proof Define a Lyapunov function

V (xO(k), e(k)) = xT
O(k)POxO(k) + eT(k)Qe(k), (3.101)

where Q is the positive definite solution to the following discrete-time Lyapunov
equation,

(A + LC)TQ(A + LC) − Q = −I. (3.102)

The existence and uniqueness of such Q are due to the fact that A + LC is Schur
stable. Then, we define the forward difference of the Lyapunov function as

�V (xO(k), e(k)) = V (xO(k + 1), e(k + 1)) − V (xO(k), e(k)). (3.103)

To facilitate our stability analysis, we rewrite the dynamic of system (3.100) as
follows:

{
xO(k + 1) = AOC(γ )xO(k) + BOFO(γ )λ(k) − BOFO(γ )Ar

OeO(k − r),

e(k + 1) = (A + LC)e(k),
(3.104)

where AOC(γ ) = AO + BOFO(γ ) and λ(k) = Ar
OxO(k − r) − xO(k). By the first

equation of (3.100), we obtain

λ(k) = −
r∑

s=1

As−1
O BOFOA

r
Ox̂O(k − s − r),

from which and the first equation of (3.1), the forward difference �V (xO(k), e(k))

along the trajectory of the closed-loop system can be computed as

�V (xO(k), e(k))

= xT
O(k)AT

OCPOAOCxO(k) + λO(k)F T
O BT

OPOBOFOλO(k)

+ eT
O(k − r)(Ar

O)
TF T

O BT
OPOBOFOA

r
OeO(k − r) + 2xT

O(k)AT
OCPOBOFOλO(k)

− 2xT
O(k)AT

OCPOBOFOA
r
OeO(k − r) − 2λT

O(k)F T
O BT

OPOBOFOA
r
OeO(k − r)

− eT(k)e(k) − xT
O(k)POxO(k). (3.105)

By using Young’s Inequality and Eq. (3.95), the forward difference can be evaluated
as follows:

�V (xO(k), e(k))

≤ − γ xT
OPOxO + 2λT

OF
T

O (I + BT
OPOBO)F

T
O λO

+ 2eT
O(k − r)(Ar

O)
TF T

O (I + BT
OPOBO)FOA

r
OeO(k − r) − eT(k)e(k). (3.106)
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The use of the discrete-time Jensen’s Inequality given by Lemmas 3.6 and 3.5
yields

λT
OF

T
O

(
I + BT

OPOBO

)
FOλO

≤ r

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)
x̂T

O(k − s − r)POx̂O(k − s − r). (3.107)

Moreover, a combined use of Lemmas 3.4 and 3.5 gives

(Ar
O)

TF T
O

(
I + BT

OPOBO

)
FOA

r
O ≤ 1 − (1 − γ )n

(1 − γ )(n−1)(r+1)
PO, (3.108)

which, along with inequality (3.108), implies

�V (xO(k), e(k))

≤ − γ xT
OPOxO + 2r

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)
x̂T

O(k − s − r)POx̂O(k − s − r)

+ 2
1 − (1 − γ )n

(1 − γ )(n−1)(r+1)
eT

O(k − r)POeO(k − r) − eT(k)e(k). (3.109)

By the assumptions that the pair (A,C) is detectable and that AS does not have
any eigenvalues at the origin, there exists matrix L such that A+LC is Schur stable
and does not have eigenvalues at the origin neither. Therefore, A+LC is invertible.
Based on the invertibility of A + LC and the dynamics of the error e(k), we obtain

e(k − r) = (A + LC)−re(k). (3.110)

Then, the forward difference can be further evaluated as,

�V (xO(k), e(k))

≤ − γ xT
OPOxO + 2r

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)
xT

O(k − s − r)POxO(k − s − r)

+ eT(k)

(

4r

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)

(
(A + LC)T

)−(s+r)
P̃ (A + LC)−(s+r)

+ 2
1 − (1 − γ )n

(1 − γ )(n−1)(r+1)

(
(A + LC)T

)−r
P̃ (A + LC)−r − I

)

e(k). (3.111)

By the properties of P̃ (γ ) as given in Lemma 3.4, there exists a sufficiently small
γ ∗

1 such that for each γ ∈ (0, γ ∗
1 ], the following inequality holds:
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4r

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)

(
(A + LC)T

)−(s+r)
P̃ (A + LC)−(s+r)

+ 2
1 − (1 − γ )n

(1 − γ )(n−1)(r+1)

(
(A + LC)T

)−r
P̃ (A + LC)−r − I ≤ −γQ, (3.112)

which implies that

�V (xO(k), e(k))

≤ − γV (k) + 4r

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)
xT

O(k − s − r)POxO(k − s − r).

Under the assumption that V (xO(k + s), e)(k + s) < ηV (xO(k), e(k)), s ∈
[−2r, 0], where η > 1, we have

�V (xO(k), e(k)) ≤
(

− γ + 4ηr

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)

)

V (xO(k), e(k)).

(3.113)

Note that there exists γ ∗ ∈ (0, γ ∗
1 ] such that, for each γ ∈ (0, γ ∗],

−γ + 4ηr

r∑

s=1

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(r+s+1)
≤ −γ

2
. (3.114)

Then,

�V (xO(k), e(k)) ≤ −γ

2
V (xO(k), e(k)). (3.115)

The asymptotic stability of system (3.100) follows from the Razumikhin Stability
Theorem for discrete-time systems (Theorem 1.4). �


3.3.4 A Numerical Example

We first consider the state feedback of a discrete-time linear system under the
TPF law (3.79) when its feedback gain matrix is parameterized by the use of the
Lyapunov equation based low gain feedback design. Consider system (3.1) with
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A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 1
0 0 0 1

−1 2
√

2 −4 2
√

2

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , C = [

1 0 0 0
]
. (3.116)

It can be verified that A has all its eigenvalues on the unit circle, (A,B) is
controllable and (A,C) is observable. Take r = 3 and the initial condition of the
system as

x(s) = [
1 0 −1 2

]T
, s ∈ I [0, r]. (3.117)

We tune the low gain parameter of the TPF law (3.79) to small values until the
stabilization of the closed-loop system is achieved. Such a process results in γ =
0.02. The system performance is illustrated in Fig. 3.5.

We next examine the counterpart of the first simulation in the output feedback

setting. Let L assign the eigenvalues of A + LC at
{

1
2 ± 1

2j,− 1
2 ± 1

2j
}

. The initial

condition of the state and the observed state are given by

x(s) = x̂(s) = [
1 0 −1 2

]T
, s ∈ I [0, r]. (3.118)

As in the state feedback case, we tune the low gain parameter to a sufficiently small
value γ = 0.01. The stabilization of the system by the output feedback law (3.93)
can be readily seen from Fig. 3.6.

3.4 Conclusions

By truncating the finite summation term of the predictor feedback law for discrete-
time systems, a TPF law that simplifies the implementation of the predictor feedback
law was formulated. Such a design involves the parameterization of the feedback
gain matrix of the TPF law, whether by the eigenstructure assignment based low
gain feedback design or the Lyapunov equation based design. The low gain nature
of the TPF law is the key to the stabilization of discrete-time linear systems with
input delay whose open loop poles are inside or on the unit circle. Both state and
output feedback TPF laws were explicitly constructed.

3.5 Notes and References

Parallel to Chap. 2, this chapter introduces the formulation, expression, and con-
struction of the predictor feedback law in the discrete-time setting. The presentation
of Sect. 3.2 mostly follows that of [64], except that we provide a different analysis
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Fig. 3.5 State response and control input under the state feedback TPF law (3.79): r = 3 and
γ = 0.02
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Fig. 3.6 State response and control input under the output feedback TPF law (3.93): r = 3 and
γ = 0.01
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of the conservativeness of the result of Theorem 3.1. The original analysis in [64]
resorts to the method of root locus in order to determine the positions of the
closed-loop poles. The analysis provided in this chapter scrutinizes the characteristic
equation of the closed-loop system to reach the same conclusion. Also, the state
feedback results of Sect. 3.3.2 were drawn from [125].



Chapter 4
Truncated Predictor Feedback for
General Linear Systems

4.1 Introduction

Low gain feedback designs, such as the eigenstructure assignment based design
and the Lyapunov equation based design, are essential elements of TPF designs.
TPF laws whose feedback gain matrices are parameterized in a feedback parameter
compensate an arbitrarily large delay in linear systems that are not exponentially
unstable. Given any amount of delay, stabilization is achieved as long as the
feedback parameter is sufficiently small. As manifested in Chaps. 2 and 3, such a
low gain nature of the TPF laws, of both state feedback and output feedback types,
is the core of their stabilizing ability.

The low gain feedback designs that have been introduced so far in this book
actually do not restrict values of the feedback parameter to be small. A small value of
the feedback parameter is required to achieve stabilization for linear systems that are
not exponentially unstable and are subject to arbitrarily large bounded input delay.
Take for example the Lyapunov equation based feedback design for continuous-
time systems (see Sect. 2.3). Such a design is valid as long as a positive definite
solution to the parametric algebraic Riccati equation (2.32) exists and is unique, that
is, γ > −2 min{Re(λ(A))}. It turns out that, given any feedback parameter within
a range, the TPF law stabilizes a general, possibly exponentially unstable, linear
system, as long as the delay is not too large. Stability of the closed-loop system can
be seen as follows.

Because the stable open loop poles of a linear system typically do not affect the
stabilizability of the system, we assume, without loss of generality, that all the open
loop poles of the system are in the closed right-half plane. Let γ ∈ R

+ in order to
satisfy γ > −2 min{Re(λ(A))}. Recall that the truncated predictor state feedback
law is given as follows:

u(t) = F(γ )eAτx(t), (4.1)
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where F(γ ) results from the parameterized Lyapunov equation based low gain
feedback design. Given any γ ∈ R

+, the Lyapunov equation based design assigns
the eigenvalues of A + BF(γ ) at those positions in the complex plane that are
symmetric to the eigenvalues of A with respect to Re{s} = − γ

2 < 0 (see [121]).
Since the eigenvalues of A are all in the closed right-half plane, the eigenvalues
of A + BF(γ ) are all in the open left-half plane, which implies that the system
is stabilized if the amount of delay is zero. If the amount of delay is nonzero, the
overall feedback gain of the TPF law F̄ = F(γ )eAτ satisfies

F̄ → F(γ ) as τ → 0+. (4.2)

Thus, such an F̄ still assigns the eigenvalues of A + BF̄ in the open left-half plane
when the amount of delay is small. Recall from [67] the fact that the system

ẋ(t) = Ax(t) + BF̄x(t − τ) (4.3)

with A + BF̄ Hurwitz is asymptotically stable as long as the amount of the delay τ

is sufficiently small. It then follows that the closed-loop system under the TPF law
is asymptotically stable as long as the delay is sufficiently small.

The above examination is based on the robustness of the stability of a stable
linear system to a small amount of state delay. This implies that the TPF law is
robust to a certain amount of input delay, even though the feedback law itself is
delay dependent due to its exponential factor eAτ . In this chapter, we fully examine
such a robustness property of the TPF law in the stabilization of a general linear
system that is possibly exponentially unstable. Both state and output feedbacks are
considered. All the feedback designs in this chapter adopt the Lyapunov equation
based method.

We will deal with continuous-time and discrete-time systems separately, in
Sects. 4.2 and 4.3.

4.2 Continuous-Time Systems

Recall the linear system with a time-varying input delay (2.28) from Sect. 2.3,

{
ẋ(t) = Ax(t) + Bu(φ(t)),

y(t) = Cx(t),
(4.4)

where x ∈ R
n and u ∈ R

m are respectively the state and input, the pair (A,B) and
the pair (A,C) are stabilizable and detectable, respectively, and φ (t) : R+

0 → R

denotes the delay function. Here, φ (t) can be defined in a more standard form

φ (t) = t − d (t) , (4.5)
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where d (t) : R
+ → R

+ is the time-varying delay that is continuously differen-
tiable. The function φ : R+

0 → R is a continuously differentiable, invertible, and
exactly known function such that d

dt
φ (t) > 0, t ≥ 0, and the delay d (t) is bounded,

namely, there exists a finite, yet arbitrarily large, number D > 0 such that

0 ≤ d (t) ≤ D, t ∈ [0,∞). (4.6)

Section 2.3 considers stabilization of system (4.4) by TPF when the system has all
its open loop poles on the closed left-half plane. In this section, we remove such a
restriction on the open loop poles and solve the stabilization problem for a general
linear system that may have exponentially unstable poles. The section is divided into
two parts, containing state and output feedback results, respectively.

4.2.1 Truncated Predictor State Feedback Design

As explained in Sect. 2.3, the stable open loop poles of system (4.4) do not affect
the stabilizability of the system under the truncated predictor state feedback. Thus,
it is without loss of generality to assume that all the open loop poles of the system
are in the closed right-half plane.

Recall the Lyapunov equation based truncated predictor state feedback law, also
referred to as the state feedback TPF law, from Sect. 2.3,

u (t) = −BTP (γ ) eA
(
φ−1(t)−t

)

x (t) , (4.7)

where P(γ ) is the unique positive definite solution to the parametric algebraic
Riccati equation

ATP(γ ) + P(γ )A − P(γ )BBTP(γ ) = −γP (γ ), γ > −2 min{Re(λ(A))}.
(4.8)

In the case where all eigenvalues of A are in the closed left-half plane, the delay
can be arbitrarily large but bounded, and the value of the parameter is required
to approach zero as the bound on the delay increases to infinity. As a result, the
parametric algebraic Riccati equation (4.8) is a low gain feedback design and the
feedback parameter is referred to as the low gain parameter.

The following theorem establishes stabilizability of system (4.4) by the state
feedback TPF law (4.7).

Theorem 4.1 Consider the system (4.4). Assume that all the eigenvalues of A are
on the closed right-half plane. Then, if, for each γ > 0,

D < D∗, (4.9)

where D∗ is the unique positive solution to the following equation:
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D2e2γωD = γ
(
2tr(A) + nγ

)3 , (4.10)

and ω is defined as in Lemma 2.4, then the state feedback TPF law (4.7)
asymptotically stabilizes the system.

Proof Applying the state feedback TPF law (4.7) to system (4.4) results in the
closed-loop system,

ẋ(t) = ACx(t) + BFλ(t), (4.11)

where AC = A + BF , F = F(γ ) = −BTP(γ ), and λ(t) is defined as

λ(t) = eAd(t)x(φ(t)) − x(t) (4.12)

and λ(t) can be obtained by solving the closed-loop system as

λ(t) = −
∫ t

φ(t)

eA(t−s)Bu(φ(s))ds

= −
∫ t

φ(t)

eA(t−s)BF eA(s−φ(s))x(φ(s))ds. (4.13)

Define a Lyapunov function for the closed-loop system,

V (x(t)) = xT(t)P (γ )x(t), (4.14)

and compute its time derivative along the trajectory of the closed-loop system as

V̇ (x(t)) = xT(t)
(−γP − PBBTP

)
x(t) + 2xT(t)PBFλ(t), (4.15)

where we have used the parametric Lyapunov based equation (2.32), that is,

ATP(γ ) + P(γ )A − P(γ )BBTP(γ ) = −γP (γ ), γ > −2 min{Re(λ(A))}.
(4.16)

An estimate of V̇ (x(t)) is obtained by the use of Young’s Inequality and
Lemma 2.4,

V̇ (x(t)) ≤ −γXT(t)P x(t) + (
2tr(A) + nγ

)
λT(t)Pλ(t). (4.17)

A further estimate of V̇ (x(t)) relies on the following estimate of λT(t)Pλ(t):

λT(t)Pλ(t) ≤ d(t)

∫ t

φ(t)

xT(φ(s))eATd(s)F TBTeAT(t−s)P eA(t−s)BF eAd(s)x(φ(s))ds
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≤ De2γωD
(
2tr(A) + nγ

)2
∫ t

t−D

xT(φ(s))Px(φ(s))ds, (4.18)

where we have used Lemma 2.5, Lemma 2.4, and the fact that d(t) ≤ D.
Using (4.18) and (4.17), we have

V̇ (x(t)) ≤ − γ xT(t)P x(t)

+ (
2tr(A) + nγ

)3
De2γωD

∫ t

t−D

xT(φ(s))Px(φ(s))ds. (4.19)

When V (x(t + θ)) ≤ ηV (x(t)), θ ∈ [−2D, 0], for some constant η > 1, we
have

V̇ (x(t)) ≤
(
−γ + ηD2e2γωD

(
2tr(A) + nγ

)3
)

V (x(t)), (4.20)

which implies, by the Razumikhin Stability Theorem (Theorem 1.3), that the closed-
loop system is asymptotically stable if

D2e2γωD <
γ

(
2tr(A) + nγ

)3 , (4.21)

holds. The left-hand side of inequality (4.21) is strictly increasing with respect to γ

and its right-hand side is a positive constant independent of D. Moreover, the left-
hand side goes to zero as D goes to zero and goes to infinity as D goes to infinity.
Thus, Eq. (4.10) has a unique positive solution. This completes the proof. �


Theorem 4.1 states that, given any feedback parameter γ > 0, the state feedback
TPF law (4.7) stabilizes a general linear system, possibly exponentially unstable, as
long as the delay is small enough. An explicit bound on the delay is provided that
guarantees stability. From this point of view, the theorem establishes a robustness
property of the TPF law to a certain amount of delay. An intuitive explanation of
such a property is already given in Sect. 4.1.

Corollary 4.1 Consider system (4.4). Assume that all the open loop poles are on
the imaginary axis. Then, given a time-varying delay with an arbitrarily large upper
bound D, the state feedback TPF law (4.7) stabilizes the system as long as γ ∈
(0, γ �), where γ � is the unique positive solution to the following nonlinear equation:

γ 2e2γωD = 1

n3D2 . (4.22)

Proof As all the eigenvalues of A are on the imaginary axis, tr(A) = 0 in (4.21).
After a simple manipulation on the inequality (4.21), we obtain

γ 2e2γωD <
1

n3D2
, γ > 0. (4.23)
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Note that the left-hand side of inequality (4.23) is strictly increasing with respect to
γ , goes to zero as γ → 0+, and goes to infinity as γ → ∞, whereas its right-hand
side is a positive constant. Thus, the nonlinear equation (4.23) has a unique positive
solution γ �. This completes the proof. �


Corollary 4.1 includes as a special case the low gain feedback result of the state
feedback TPF law (2.41) in the stabilization of a linear system with all its open
loop poles on the closed left-half plane. Similar recoveries of the low gain feedback
results in Chaps. 2 and 3 will frequently appear throughout the rest of this chapter.

4.2.2 Truncated Predictor Output Feedback Design

Consider system (4.4), recalled as follows:

{
ẋ(t) = Ax(t) + Bu(φ(t)),

y(t) = Cx(t).
(4.24)

It is assumed, without loss of generality, that the stabilizable pair (A,B) has the
following block structure:

A =
[
AL 0
0 AR

]

, B =
[
BL

BR

]

, (4.25)

where AL ∈ R
nL×nL is Hurwitz, all eigenvalues of AR ∈ R

nR×nR are in the closed
right-half plane, nL + nR = n, and the dimensions of BL and BR correspond to those
of AL and AR, respectively. Based on this structure, the pair (AR, BR) is controllable.

We recall from Sect. 2.3 the observer based truncated predictor output feedback
law (output feedback TPF law) whose feedback gain matrix is parameterized
through a parametric Lyapunov equation,

{ ˙̂x (t) = Ax̂ (t) + Bu (φ (t)) − L
(
y (t) − Cx̂ (t)

)
,

u (t) = −BTP (γ ) eA
(
φ−1(t)−t

)

x̂ (t) ,
(4.26)

where the pair (A,B) is in the form of (4.25), P(γ ) has the form of (2.102), that is,

P(γ ) =
[

0 0
0 P(γ )

]

, (4.27)

and L is such that A + LC is Hurwitz. As discussed in Sect. 2.3, it is no longer
without loss of generality to assume in the output feedback setting that all the open
loop poles of system (4.7) are in the closed right-half plane.
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As pointed out in Sect. 2.3, output feedback stabilization of system (4.24) by
the output feedback TPF law (4.26) is equivalent to the asymptotic stability of the
following closed-loop system:

{
ẋR(t) = ARxR(t) − BRB

T
RP eARd(t)(xR(φ(t)) − eR(φ(t))),

ė(t) = (A + LC)e(t).
(4.28)

The following theorem establishes the stability of system (4.28) and relaxes the
restriction on the eigenvalues of AR that they must locate on the imaginary axis, as
imposed in Theorem 2.4.

Theorem 4.2 For each γ > 0, there exists D� > 0 such that, if

D < D�,

system (4.28) is asymptotically stable.

Proof Define a Lyapunov function that consists of two terms corresponding to the
two subsystems of system (4.28), respectively,

V (xR(t), e(t)) = xT
R(t)P (γ )xR(t) + eT(t)Re(t), (4.29)

where R is the unique positive definite solution to the following Lyapunov equation

(A + LC)TR + R(A + LC) = −βI, (4.30)

and β is a positive constant whose value is to be determined later. Such R exists
because A + LC is Hurwitz. Then, the time derivative of the Lyapunov function
along the trajectory of the closed-loop system (4.28) is given by

V̇ (xR(t), e(t)) = − xT
R(t)

(
γP + PBRB

T
RP
)
xR(t) + 2xT

R(t)PBRB
T
RPλR(t)

+ 2xT
R(t)PBRB

T
RP eARd(t)eR(φ(t)) − βeT(t)e(t), (4.31)

where λR(t) is defined by (2.107), that is,

λR(t) = −
∫ t

t−d(t)

eAR(t−s)BRB
T
RP eARd(s)(xR(φ(s)) − eR(φ(s)))ds. (4.32)

Using Young’s Inequality and Lemma 2.4, we obtain

V̇ (xR(t), e(t)) ≤ − γ xT
R(t)P xR(t) + 2

(
2tr(AR) + nRγ

)
λT

R(t)PλR(t)

+ 2
(
2tr(AR) + nRγ

)
eωRγ d(t)eT

R(φ(t))P eR(φ(t)) − βeT(t)e(t).

(4.33)
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Note that

ė(t) = (A + LC)e(t), (4.34)

which yields

e(φ(t)) = (A + LC)φ(t)−t e(t). (4.35)

This implies that

V̇ (xR(t), e(t)) ≤ − γ xT
R(t)P xR(t) + 2

(
2tr(AR) + nRγ

)
λT

R(t)PλR(t)

+ 2
(
2tr(AR) + nRγ

)

× eωRγ d(t)eT(t)
(
(A + LC)φ(t)−t

)T P(A + LC)φ(t)−t e(t)

− βeT(t)e(t). (4.36)

By Lemmas 2.4 and 2.5, we have

λT
R(t)PλR(t) ≤ 2De2wRγD

(
2tr(AR) + nRγ

)2

×
∫ t

t−D

(
xT

R(φ(s))PxR(φ(s)) + eT(φ(s))Pe(φ(s))
)

ds, (4.37)

based on which ˙xR(t), e(t)(t) can be further estimated as

V̇ (xR(t), e(t)) ≤ −γ xT
R(t)P xR(t) + 4De2wRγD(2tr(AR) + nRγ )3

×
∫ t

t−D

(
xT

R(φ(s))PxR(φ(s))

+ eT(φ(s))Pe(φ(s))
)
ds + 2

(
2tr(AR) + nRγ

)
eωRγ d(t)

× eT(t)
(
(A + LC)φ(t)−t

)T P(A + LC)φ(t)−t e(t) − βeT(t)e(t).

(4.38)

For any γ > 0, there exists a sufficiently large β > 0 such that

P(γ ) ≤ R, (4.39)

γ I + 2
(
2tr(AR) + nRγ

)P(γ ) < βI, (4.40)

1 ≤ λmax(R). (4.41)

Fix the value of β. Then, inequality (4.39) implies that

V̇ (xR(t), e(t)) ≤ − γ xT
R(t)P xR(t) + 4De2wRγD(2tr(AR)
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+ nRγ )3
∫ t

t−D

V (φ(s))ds + 2(2tr(AR) + nRγ )eωRγ d(t)

× eT(t)
(
(A + LC)φ(t)−t

)T P(A + LC)φ(t)−t e(t) − βeT(t)e(t).

The inequality in (4.40) further implies that there exists a sufficiently small D1 > 0
such that, for any D < D1,

γ I + 2eωRγD
(
2tr(AR) + nRγ

) (
(A + LC)φ(t)−t

)T P(γ )(A + LC)φ(t)−t ≤ βI.

(4.42)

Here, we have used the boundedness of φ(t)− t . Then, by a simple manipulation of
inequality (4.42), we obtain

−βI + 2ewRγD
(
2tr(AR) + nRγ

) (
(A + LC)φ(t)−t

)T P(γ )(A + LC)φ(t)−t ≤ −γ I,

which implies that

V̇ (xR(t), e(t)) ≤ − γ
(
xT

RPxR + eTe
)+ 4De2wRγD(2tr(AR)

+ nRγ )3
∫ t

t−D

V (xR(φ(s)), e(φ(s)))ds

≤ − γ

(

xT
RPxR + 1

λmax(R)
eTRe

)

+ 4De2wRγD
(
2tr(AR) + nRγ

)3
∫ t

t−D

V (xR(φ(s), e(φ(s)))ds

≤ − γ

λmax(R)
V (xR(t), e(t))

+ 4De2wRγD
(
2tr(AR) + nRγ

)3
∫ t

t−D

V (xR(φ(s)), e(φ(s)))ds,

where we have used inequality (4.41).
When V (xR(t+θ), e(t+θ)) < ηV (xR(t), e(t)), θ ∈ [−2D, 0], for some constant

η > 1, we have

V̇ (xR(t), e(t)) ≤
(

− γ

λmax(R)

+ 4D2ηe2ωRγD
(
2tr(AR) + nRγ

)3
)

V (xR(t), e(t)).

It then follows from the Razumikhin Stability Theorem (Theorem 1.3) that the
closed-loop system is asymptotically stable if
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D2e2wRγD <
γ

4λmax(R)
(
2tr(AR) + nRγ

)3 . (4.43)

The left-hand side of inequality (4.43) is strictly increasing with respect to D and its
right-hand side is a positive constant independent of D. Moreover, its left-hand side
goes to zero as D goes to zero and goes to infinity as D goes to infinity. Thus, the
equality (4.43) has a unique positive solution on D, which is denoted as D2. Letting
D� = min{D1,D2} completes the proof. �


Theorem 4.2 shows that the output feedback TPF law (4.26) is robust to a certain
amount of delay in the input of a general linear system that is possibly exponentially
unstable. This theorem extends such a robustness property of the state feedback TPF
law, which is implied by Theorem 4.1, to the output feedback TPF law.

Theorem 4.3 Consider system (4.28). Assume that all the eigenvalues of AR are on
the imaginary axis. Given an arbitrarily large delay bound D, there exists γ ∗ > 0
such that, for each γ ∈ (0, γ ∗), the system is asymptotically stable.

Proof The same Lyapunov function as in (4.29), along with the estimate (4.38)
on its time derivative along the trajectory of system (4.28), are adopted for our
stability analysis. In view of the assumption that all the eigenvalues of AR are on
the imaginary axis, we rewrite (4.38) as

V̇ (xR(t), e(t)) ≤ − γ xT
R(t)P xR(t) + 4De2wRγDn(Rγ )3

∫ t

t−D

(
xT

R(φ(s))PxR(φ(s))

+ eT(φ(s))Pe(φ(s))
)

ds + 2nRγ eωRγ d(t)eT(t)
(
(A + LC)φ(t)−t

)T

× P(A + LC)φ(t)−t e(t) − βeT(t)e(t). (4.44)

Pick a β such that

1 < λmax(R). (4.45)

For this β, there exists γ1 > 0 such that, for each γ ∈ (0, γ1],

P(γ ) ≤ R,

γ I + 2eωRγDnRγ
(
(A + LC)φ(t)−t

)T P(γ )(A + LC)φ(t)−t ≤ βI. (4.46)

Then, the estimate on the time derivative of V can be continued as

V̇ (xR(t), e(t)) ≤ − γ xT
R(t)P xR(t) + 4De2wRγD(nRγ )3

∫ t

t−D

V (xR(φ(s)), e(φ(s)))ds

+ 2nRγ eωRγ d(t)eT(t)
(
(A + LC)φ(t)−t

)T P(A + LC)φ(t)−t e(t)
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− βeT(t)e(t)

≤ − γ
(
xT

RPxR + eTe
)+ 4De2ωγD(nRγ )3

∫ t

t−D

V (φ(s))ds

≤ − γ

λmax(R)
V + 4De2wRγD(nRγ )3

∫ t

t−D

V (xR(φ(s)), e(φ(s)))ds,

(4.47)

where we have employed (4.45).
When V (xR(t+θ), e(t+θ)) < ηV (xR(t), e(t)), θ ∈ [−2D, 0], for some constant

η > 1, we have

V̇ (xR(t), e(t)) ≤
(

− γ

λmax(R)
+ 4D2ηe2ωRγD(nRγ )3

)

V (xR(t), e(t)). (4.48)

It then follows from the Razumikhin Stability Theorem (Theorem 1.3) that the
closed-loop system is stable if

γ 2e2ωRγD <
1

4λmax(R)n3
RD

2 . (4.49)

There exists γ2 > 0 such that, for each γ ∈ (0, γ2], inequality (4.49) holds. Taking
γ ∗ = min{γ1, γ2} completes the proof. �


Theorem 4.3 manifests the low gain nature of the output feedback TPF law (4.26)
in its compensation of an arbitrarily large bounded delay in a linear system with all
its open loop poles in the closed left-half plane.

4.2.3 A Numerical Example

Consider an exponentially unstable linear system (4.4) with

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−1 0 −2 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, C = [
0 0 0 1 1

]
. (4.50)

This system is both controllable and observable with all its open loop poles at λ =
{±j,±j, 1}. We choose the feedback parameter of the TPF laws (4.7) and (4.26) as
γ = 0.2. Given such a γ , the time-varying delay is allowed to have an upper bound
D = 0.5. Let
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d(t) = 0.5
t + 1

2t + 1
. (4.51)

Based on the expression of d(t), we compute

φ−1(t) − t = t + 1√
4t2 + 6t + 4.25 + 2t + 0.5

(4.52)

which appears in the expression of the TPF laws (4.7) and (4.26). Simulation is run
in both the state feedback setting and the output feedback setting. In the case of state
feedback, the initial condition of the system is given by

x(θ) = [
1 0 −1 2 0

]T
. (4.53)

In the case of output feedback, the initial condition of the open loop system is taken
to be

x(θ) = [
1 0 −1 2 0

]T
, x̂(θ) = [

0 0 0 0 0
]T

, (4.54)

and the eigenvalues of A + LC are assigned at λ = {−1,−2,−3,−4,−5}. The
performance of the system and the control input under the state feedback and output
feedback TPF laws are given in Figs. 4.1 and 4.2, respectively.

4.3 Discrete-Time Systems

We consider the following discrete-time linear system with a time-varying input
delay:

{
x(k + 1) = Ax(k) + Bu(φ(k)),

y(k) = Cx(k),
(4.55)

where x ∈ R
n, u ∈ R

m and y ∈ R
q are the state, input and output, respectively,

(A,B) is stabilizable and (A,C) is detectable. The time-varying delay function
φ(k) : N → Z is assumed to have the standard form of

φ(k) = k − r(k), (4.56)

whose inverse function φ−1(k) : Z → N exists and is known. Also, r(k) : N → N

denotes the time-varying delay that satisfies r(k) ∈ I [0, R], where R ∈ N is an
upper bound of the delay.

Note that system (4.55) contains a time-varying input delay. To formulate state
and output feedback laws that adapt to a time-varying delay, we introduce the
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Fig. 4.1 State response and control input under the state feedback TPF law (4.7): d(t) = 0.5 t+1
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and γ = 0.2
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Fig. 4.2 State response and control input under the output feedback TPF law (4.26): d(t) =
0.5 t+1

2t+1 and γ = 0.2
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predictor feedback laws and the TPF laws in the time-varying delay setting in the
following subsections.

4.3.1 Truncated Predictor State Feedback Design

Consider the following feedback law for system (4.55),

u(φ(k)) = Fx(k), (4.57)

where F is the feedback gain matrix such that A + BF is Schur stable. Under the
feedback law (4.57), the closed-loop system

x(k + 1) = (A + BF)x(k) (4.58)

is asymptotically stable because A + BF is Schur stable.
Since φ−1(k) exists and is known, we obtain from (4.57) that

u(k) = Fx
(
φ−1(k)

)
. (4.59)

Recall that φ(k) = k − r(k) and r(k) ≥ 0. We have

k = φ
(
φ−1(k)

)
= φ−1(k) − r

(
φ−1(k)

)
≤ φ−1(k). (4.60)

Thus, the right-hand side of (4.59) may contain the state at a future time instant,
namely, x(φ−1(k)). This state can be obtained as the solution of system (4.55),

x(φ−1(k)) = Aφ−1(k)−kx(k) +
k−1∑

s=2k−φ−1(k)

Ak−s−1Bu(s). (4.61)

Substitution of (4.61) in (4.59) yields the predictor state feedback law,

u(k) = FAφ−1(k)−kx(k) + F

k−1∑

s=2k−φ−1(k)

Ak−s−1Bu(s). (4.62)

The predictor feedback law consists of two terms, corresponding to the zero input
solution and the zero state solution of the system, respectively. The zero state
solution only involves past input u(s), s ≤ k − 1. This can be readily verified by
observing the fact that

2k − φ−1(k) ≤ k. (4.63)
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Note that the equality sign in (4.63) holds if and only if r(k) = 0. In this case,
no delay exists in the input and the summation term in (4.62) disappears. Thus, the
predictor feedback law reduces to a static state feedback law

u(k) = Fx(k).

Discarding the summation term of the predictor feedback law results in the TPF
law,

u(k) = FAφ−1(k)−kx(k), (4.64)

which simplifies the implementation of the predictor feedback law.
If the time-varying delay in system (4.55) is constant, that is, φ(k) = k − r ,

where r ∈ N is a constant, then the predictor feedback law (4.62) and the TPF law
(4.64) simplify to (1.86) and (3.3), respectively.

Following the Lyapunov equation based feedback design, we construct the
truncated predictor state feedback law whose feedback gain matrix is parameterized
in a feedback parameter γ ,

u(k) = F(γ )Aφ−1(k)−kx(k)

= − (Im + BTP(γ )B
)−1

BTP(γ )Aφ−1(k)−k+1x(k), (4.65)

where P(γ ) is the unique positive definite solution to the discrete-time Riccati
equation (3.69), that is

ATP(γ )A − P(γ ) − ATP(γ )B
(
Im + BTP(γ )B

)−1
BTP(γ )A = −γP (γ ),

γ ∈
(

1 − min
{
|λ(A)|2

}
, 1
)

.

(4.66)

In the case where all eigenvalues of A are inside or on the unit circle, the delay
is allowed to be arbitrarily large but bounded, and the value of the parameter γ is
required to approach zero as the bound on the delay increases to infinity. As a result,
the parametric algebraic Riccati equation (4.66) is a low gain feedback design and
the feedback parameter is referred to as the low gain parameter.

As discussed in Sect. 3.3.2, in asymptotic stabilization of system (4.55) by state
feedback, it is without loss of generality to assume that there is no asymptotically
stable open loop poles. Thus, in the following theorem on the stabilization of
a general discrete-time linear system that is possibly exponentially unstable, we
assume, without loss of generality, that the system has all its open loop poles on or
outside the unit circle.

Theorem 4.4 Consider system (4.55). Assume that all the eigenvalues of A are on
or outside the unit circle. If, for each γ ∈ (0, 1),
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R < R�, (4.67)

where R� is the unique positive solution to the following equation:

R2(det(A))2R−4

(1 − γ )(n−1)(2R+1)
= γ
(
det2(A) − (1 − γ )n

)3 , (4.68)

then the system is asymptotically stabilized by the state feedback TPF law (4.65).

Proof Under the state feedback TPF law (4.65), the closed-loop system can be
written as follows:

x(k + 1) = Ax(k) + Bu(φ(k))

= Ax(k) + BF(γ )Ar(k)x(φ(k))

= ACx(k) + BF(γ )μ(k),

where

AC = A + BF(γ ) (4.69)

and

μ(k) = Ar(k)x(φ(k)) − x(k). (4.70)

From

x(k + 1) = Ax(k) + BF(γ )Ar(k)x(φ(k)), (4.71)

we can recursively obtain

x(k) = Ar(k)x(φ(k)) +
r(k)∑

s=1

As−1BF(γ )Ar(k−s)x(k − s − r(k − s)),

which implies that

μ(k) = −
r(k)∑

s=1

As−1BF(γ )Ar(k−s)x(k − s − r(k − s)). (4.72)

We adopt the Lyapunov function

V (x(k)) = xT(k)P (γ )x(k), (4.73)
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where P(γ ) is the unique positive definite solution to the discrete-time Riccati
equation (4.66). Let γ ∈ (0, 1) be such that γ ∈ (1 − min{|λ(A)|2}, 1). Then the
forward difference of V (x(k)) along the trajectory of the closed-loop system can be
evaluated as,

�V (x(k)) = V (x(k + 1)) − V (x(k))

= xT(k)
(
AT

CPAC−P
)
x(k) + 2xT(k)AT

CPBFμ(k) + μT(k)F TBTPBFμ(k)

= xT(k)
(−γP −F TF

)
x(k)+2xT(k)AT

CPBFμ(k) + μT(k)F TBTPBFμ(k)

≤ −γ xT(k)Px(k)+μT(k)F T
(
I +BTPB

)
Fμ(k),

where AT
CPAC −P = −γP −F TF and F = −BTPAC. Also, for notational brevity,

we have suppressed the dependence on γ of P and F and will continue to do so in
the rest of the proof.

In view of the fact that F T (I + BTPB) F is positive semi-definite, (4.72) and
Lemmas 3.5 and 3.6, we compute

μT(k)F T
(
I + BTPB

)
Fμ(k)

≤ r(k)

r(k)∑

s=1

xT(k − s − r(k − s))
(
Ar(k−s)

)T

F TBT
(
As−1

)T

F T(I + BTPB)F

× As−1BFAr(k−s)x(k − s − r(k − s))

≤ r(k)

r(k)∑

s=1

(
det2(A) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)
(det(A))2r(k−s)+2s−4xT(k − s − r(k − s))P

× x(k − s − r(k − s)). (4.74)

By (4.74), �V (x(k)) can be further evaluated as

�V (x(k)) ≤ − γ xT(k)Px(k) + r(k)

r(k)∑

s=1

(det(A))2r(k−s)+2s−4

×
(
det2(A) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)
xT(k − s − r(k−s))P

× x(k − s − r(k − s)). (4.75)

Notice that s ≤ K for any s ∈ I [1, r(k)], and r(k − s) ≤ K . It follows that
k − s − r(k − s) ∈ I [k − 2K, k]. Thus, when V (x(k + z)) < ηV (x(k)) for any
z ∈ I [−2K, 0], where η > 1 is some constant, we have
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�V (x(k)) ≤ − γV (x(k)) + ηr(k)V (x(k))

r(k)∑

s=1

(det(A))2r(k−s)+2s−4

×
(
det2(A) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)

= −
(

γ − ηr(k)

r(k)∑

s=1

(det(A))2r(k−s)+2s−4

×
(
det2(A) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)

)

V (x(k))

≤ −
(

γ − ηR2(det(A))2R−4

×
(

det2(A) − (1 − γ )n
)3

(1 − γ )(n−1)(2R+1)

)

V (x(k)). (4.76)

If

R2(det(A))2R−4

(1 − γ )(n−1)(2R+1)
<

γ
(
det2(A) − (1 − γ )n

)3 , (4.77)

then the asymptotic stability of the closed-loop system follows from the Razumikhin
Stability Theorem for discrete-time systems (Theorem 1.4). Given γ ∈ (0, 1), the
left-hand side of inequality (4.77) is a strictly increasing function of R and its right-
hand side is a positive constant independent of R. Moreover, its left-hand side goes
to zero as R goes to zero and goes to infinity as R goes to infinity. Thus, Eq. (4.68)
has a unique positive solution D�. This completes the proof. �


Like the state feedback TPF law in the continuous-time setting, the state feedback
TPF law in the discrete-time setting is also robust to a certain amount of input
delay. Theorem 4.4 establishes an admissible bound on the delay in terms of the
feedback parameter and parameters of the open loop system that guarantees closed-
loop stability.

Corollary 4.2 Consider the system (4.55). Assume that all the eigenvalues of A are
on the unit circle. Given an arbitrarily large delay, there exists γ � ∈ (0, 1) such that,
for each γ ∈ (0, γ �), the system is asymptotically stabilized by the state feedback
TPF law (4.65).

Proof When all the eigenvalues of A are on the unit circle, det(A) = 1, which
implies that the stability condition (4.77) simplifies to
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(
1 − (1 − γ )n

)3

γ (1 − γ )(n−1)(2R+1)
<

1

R2 . (4.78)

Given any R, the left-hand side of inequality (4.78) is strictly increasing as γ , and
goes to zero as γ goes to zero because

lim
γ→0+

(
1 − (1 − γ )n

)3

γ

= lim
γ→0+ 3

(
1 − (1 − γ )n

)2
n(1 − γ )n−1

= 0 (4.79)

and goes to infinity as γ goes to 1. Thus, there exists a unique γ � ∈ (0, 1) such that,
for each γ ∈ (0, γ �), the simplified stability condition (4.78) holds. This completes
the proof. �


This corollary recovers the low gain nature of the state feedback TPF law (3.79)
in its compensation of an arbitrarily large delay in a discrete-time linear system with
all its open loop poles on or inside the unit circle.

4.3.2 Truncated Predictor Output Feedback Design

Without loss of generality, we assume that the pair (A.B) in system (4.55) are in the
form of

A =
[

As 0
0 Ao

]

, B =
[

Bs

Bo

]

, (4.80)

where As ∈ R
ns×ns contains all eigenvalues of A that are strictly inside the unit

circle, Ao ∈ R
no×no contains all eigenvalues of A that are on or outside the unit

circle, and ns + no = n. The stabilizability of (A,B) then implies that (Ao, Bo) is
controllable.

Unlike the truncated predictor output feedback law (3.93), as given in Sect. 3.3.3,
for a discrete-time linear system with a constant delay, a truncated predictor output
feedback law that copes with a time-varying delay is to be constructed to achieve
asymptotic stabilization of system (4.55). Referring to the state feedback case where
the time-varying prediction time φ−1(k) − k of the state feedback TPF law (4.64)
replaces the constant prediction time r to cope with the time-varying input delay,
we construct the following observed based truncated predictor output feedback law
that handles the time-varying delay φ(k) in system (4.55),
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{
x̂(k + 1) = Ax̂(k) + Bu(φ(k)) − L

(
y(k) − Cx̂(k)

)
,

u(k) = F̃ (γ )Aφ−1(k)−kx̂(k),
(4.81)

where

F̃ (γ ) = −
(
I + BTP̃ (γ )B

)−1
BTP̃ (γ )A, P̃ (γ ) =

[
0 0
0 PO(γ )

]

, (4.82)

with PO(γ ) being the unique positive definite solution to the discrete-time paramet-
ric algebraic Riccati equation

AT
OPO(γ )AO − PO(γ ) − AT

OPO(γ )BO

(
I + BT

OPO(γ )BO

)−1
BT

OPO(γ )AO = −γPO(γ ),

(4.83)

and L is such that A + LC is Schur stable. The detectability of the pair (A,C)

implies that such L exists.
The two truncated predictor output feedback laws (3.93) and (4.81) are highly

similar. Basically, the latter can be considered an extension of the former to cope
with a time-varying delay.

Define the estimation error as

e(k) = x(k) − x̂(k), (4.84)

then the error dynamics can be written as

e(k + 1) = (A + LC)e(k). (4.85)

In terms of the state x(k) and the estimation error e(k), the closed-loop system under
the output feedback TPF law (4.81) can be rewritten as

{
x(k + 1) = Ax(k) + BF̃ (γ )Aφ−1(k)−k(x(φ(k)) − e(φ(k))),

e(k + 1) = (A + LC)e(k),
(4.86)

which, in view of the special structure of the pair (A,B) in (4.80), can be expanded
as

⎧
⎪⎨

⎪⎩

xS(k + 1) = ASxS(k) + BSFO(γ )A
φ−1(k)−k
O (xO(φ(k)) − eO(φ(k))),

xO(k + 1) = AOxO(k) + BOFO(γ )A
φ−1(k)−k
O (xO(φ(k)) − eO(φ(k))),

e(k + 1) = (A + LC)e(k),

(4.87)

where FO(γ ) = − (I + BT
OPO(γ )BO

)−1
BT

OPO(γ )AO. Notice that the dynamics of the
first subsystem is governed by the Schur matrix AS, which implies that the stability
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of the second and the third subsystems determines the stability of the whole closed-
loop system. Thus, in the following theorem, we establish the stability of the system
comprising of the second and the third subsystems,

{
xO(k + 1) = AOxO(k) + BOFO(γ )A

φ−1(k)−k
O (xO(φ(k)) − eO(φ(k))),

e(k + 1) = (A + LC)e(k).
(4.88)

Theorem 4.5 Consider system (4.88). Assume that AS is nonsingular. For each
γ ∈ (0, 1), there exists R∗ > 0 such that, for each R ∈ I [0, R∗), the system is
asymptotically stable.

Proof Construct a Lyapunov function as

V (xO(k), e(k)) = xT
O(k)PO(γ )xO(k) + eT(k)Qe(k), (4.89)

where Q is the unique positive definite solution to the Lyapunov equation

(A + LC)TQ(A + LC) − Q = −βI, (4.90)

and β is some positive constant whose values are to be determined. Note that the
existence and uniqueness of such Q are guaranteed by the Schur stability of A+LC.

We rewrite the first subsystem of (4.88) as

xO(k + 1) = AOCxO(k) + BOFO(γ )λO(k) − BOFO(γ )Ar(k)
O eO(φ(k)), (4.91)

where

AOC = AO + BOFO(γ ), λO(k) = Ar(k)
O xO(φ(k)) − xO(k). (4.92)

Then, λO(k) can be computed by the use of the solution of the first subsystem of
(4.88) as follows:

λO(k) = −
r(k)∑

s=1

As−1
O BOFO(γ )Ar(k−s)

O x̂O(k − s − r(k − s)), (4.93)

where x̂O(k) = xO(k) − eO(k).
The forward difference of V (xO(k), e(k)) along the trajectory of the closed-loop

system (4.88) can be evaluated as follows:

�V (xO(k), e(k)) = V (xO(k + 1), e(k + 1)) − V (xO(k), e(k))

= xT
O(k)AT

OCPOAOCxO(k) + 2xT
O(k)AT

OCPOBOFOλO(k)

− 2xT
O(k)AT

OCPOBOFOA
r(k)
O eO(φ(k))
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+ λT
O(k)F T

O BT
OPOBOFOλO(k)

− 2λT
O(k)F T

O BT
OPOBOFOA

r(k)
O eO(φ(k))

+ eT
O(φ(k))(AT

O)
r(k)F T

O BT
OPOBOFOA

r(k)
O eO(φ(k))

−βeT(k)e(k) − xT
O(k)POxO(k)

≤ −γ xT
O(k)POxO(k) + 2λT

O(k)F T
O

(
I + BT

OPOBO

)
FOλO(k)

+ 2eT
O(φ(k))(AT

O)
r(k)F T

O

(
I + BT

OPOBO

)
FOA

r(k)
O eO(φ(k))

−βeT(k)e(k),

where

AT
OCPOAOC − PO = −γPO − F T

O FO, FO = −BT
OPOAOC (4.94)

and Young’s Inequality have been used.
In view of Lemmas 3.4 and 3.6, we have

λT
O(k)F T

O

(
I + BT

OPOBO

)
FOλO(k)

≤ r(k)

r(k)∑

s=1

(
det2(AO) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)
(det(AO))

2r(k−s)+2s−4x̂T
O(k − s − r(k − s))

×POx̂O(k − s − r(k − s)). (4.95)

On the other hand, by Lemma 3.5, we have

(AT
O)

r(k)F T
O

(
I + BT

OPOBO

)
FOA

r(k)
O ≤

(

1 − (1 − γ )n

det2(AO)

)(
det2(AO)

(1 − γ )n−1

)r(k)+1

PO.

(4.96)
Then, the evaluation of �V (xO(k), e(k)) can be continued as

�V (xO(k), e(k)) ≤ − γ xT
O(k)POxO(k)

+ 2r(k)

r(k)∑

s=1

(
det2(AO) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)
det(AO)

2r(k−s)+2s−4

× x̂T
O(k − s − r(k − s))POx̂O(k − s − r(k − s))

+ 2

(

1 − (1 − γ )n

det2(AO)

)(
det2(AO)

(1 − γ )n−1

)r(k)+1

eT
O(φ(k))POeO(φ(k))

− βeT(k)e(k), (4.97)
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which, in view of x̂O(k) = xO(k) − eO(k) and the special structure of P̃ , can be
further continued as

�V (xO(k), e(k)) ≤ − γ xT
O(k)POxO(k)

+ 4r(k)

r(k)∑

s=1

(
det2(AO) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)
det2(AO)

r(k−s)+s−2

×
(

xT
O(k − s − r(k − s))POxO(k − s − r(k − s))

+ eT(k − s − r(k − s))P̃ e(k − s − r(k − s))

)

− βeT(k)e(k) + 2

(

1 − (1 − γ )n

det2(AO)

)(
det2(AO)

(1 − γ )n−1

)r(k)+1

× eT(φ(k))P̃ e(φ(k)). (4.98)

Since AS is nonsingular, there exists L that assigns the eigenvalues of A + LC

inside the unit circle but not at the origin. Thus, A + LC is also nonsingular. Then,
based on the error dynamics, we obtain

e(φ(k)) = (A + LC)−r(k)e(k),

from which it follows that

�V (xO(k), e(k)) ≤ − γ xT
O(k)POxO(k)

+ 4r(k)

r(k)∑

s=1

(
det2(AO) − (1 − γ )n

)3

(1 − γ )(n−1)(r(k−s)+s+1)
(det(AO))

2r(k−s)+2s−4

×
(

xT
O(k − s − r(k − s))POxO(k − s − r(k − s))

+ eT(k − s − r(k − s))P̃ e(k − s − r(k − s))

)

+ eT(k)

(

2

(

1 − (1 − γ )n

det2(AO)

)(
det2(AO)

(1 − γ )n−1

)r(k)+1

×
(

(A + LC)T

)−r(k)

P̃ (A + LC)−r(k) − βI

)

e(k). (4.99)

For each γ ∈ (0, 1), there exists a sufficiently large β > 0 such that
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P̃ (γ ) ≤ Q, (4.100)

γ I + 2

(

1 − (1 − γ )n

det2(AO)

)(
det2(AO)

(1 − γ )n−1

)

P̃ (γ ) < βI, (4.101)

1 < λmax(Q). (4.102)

Fix this β. Inequality (4.100) indicates that P̃ (γ ) in (4.99) can be replaced by R.
Inequality (4.101) implies that there exists D1 > 0 such that, for each D ∈ (0,D1),

2

(

1 − (1 − γ )n

det2(AO)

)(
det2(AO)

(1 − γ )n−1

)r(k)+1 (

(A + LC)T

)−r(k)

×P̃ (A + LC)−r(k) − βI

≤ −γ I. (4.103)

The use of (4.100), (4.103), and (4.102) in (4.99) then suggests that

�V (xO(k), e(k)) ≤
(

− γ

λmax(Q)

+ 4R2η

(
det2(AO) − (1 − γ )n

)3

(1 − γ )(n−1)(2R+1)
(det(AO))

4R−4
)

× V (xO(k), e(k)), (4.104)

when V (k + s) < ηV (k), s ∈ I [−2R, 0] holds for some constant η > 1. Then, if
the condition

R2 (det(AO))
4R−4

(1 − γ )(n−1)(2R+1)
<

γ

4λmax(Q)
(
det2(AO) − (1 − γ )n

)3 (4.105)

holds, system (4.88) is asymptotically stable according to the Razumikhin Stability
Theorem (Theorem 1.4). The left-hand side of inequality (4.105) is a strictly
increasing function of R. Moreover, it goes to zero as R goes to zero and goes to
infinity as R goes to infinity. On the other hand, the right-hand side of the inequality
is a positive constant independent of R. Thus, the nonlinear equation

R2 (det(AO))
4R−4

(1 − γ )(n−1)(2R+1)
= γ

4λmax(Q)
(
det2(AO) − (1 − γ )n

)3 (4.106)

has a unique positive solution R2. Taking R∗ = min{R1, R2} competes the proof.
�


Theorem 4.5 suggests that our truncated predictor output feedback law for a
general discrete-time linear system stabilizes the system as long as the delay of
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the system is small enough. An admissible delay bound in terms of open loop
parameters and the feedback parameter is established to guarantee the closed-loop
stability.

Theorem 4.6 Consider system (4.88). Assume that AS is nonsingular and all the
eigenvalues of AO are on the unit circle. Then, given an arbitrarily large R, there
exists γ ∗ such that, for each γ ∈ (0, γ ∗), the system is asymptotically stable.

Proof The same Lyapunov function as in (4.89), along with the estimate (4.99) of
the forward difference along the trajectory of system (4.88), are adopted for our
stability analysis. We rewrite (4.99) as

�V (xO(k), e(k)) ≤ − γ xT
O(k)POxO(k)

+ 4r(k)

r(k)∑

s=1

(1 − (1 − γ )n)3

(1 − γ )(n−1)(r(k−s)+s+1)

×
(

xT
O(k − s − r(k − s))POxO(k − s − r(k − s))

+ eT(k − s − r(k − s))P̃ e(k − s − r(k − s))

)

+ eT(k)

(

2
(
1 − (1 − γ )n

)
(

1

(1 − γ )n−1

)r(k)+1

×
(

(A + LC)T

)−r(k)

P̃ (A + LC)−r(k) − βI

)

e(k).

(4.107)

There exists β > 0 such that

1 < λmax(Q). (4.108)

Fix this β. Then, there exists γ1 > 0 such that, for each γ ∈ (0, γ1),

P̃ (γ ) ≤ Q, (4.109)

γ I + 2
(
1 − (1 − γ )n

)
(

1

(1 − γ )n−1

)r(k)+1

(
(A + LC)T

)−r(k)
P̃ (γ ) (A + LC)−r(k) < βI. (4.110)

Inequalities (4.109) and (4.110) imply that

�V (xO(k), e(k)) ≤
(

− γ

λmax(Q)
+ 4R2η

(
1 − (1 − γ )n

)3

(1 − γ )(n−1)(2R+1)

)

V (xO(k), e(k)),

(4.111)
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when V (k + s) < ηV (k), s ∈ I [−2R, 0], holds for some constant η > 1. Then, if
the condition

(
1 − (1 − γ )n

)3

γ (1 − γ )(n−1)(2R+1)
<

1

4λmax(Q)R2
(4.112)

holds, system (4.88) is asymptotically stable according to the Razumikhin Stability
Theorem (Theorem 1.4). In view of the fact that

lim
γ→0+

(
1 − (1 − γ )n

)3

γ

= lim
γ→0+ 3

(
1 − (1 − γ )n

)2
n(1 − γ )n−1

= 0, (4.113)

there exists γ2 > 0 such that, for each γ ∈ (0, γ2), the inequality (4.112) holds.
Taking γ ∗ = min{γ1, γ2} completes the proof. �


Again, our analysis on the stabilization of a general discrete-time linear system
by truncated predictor output feedback reconstructs the low gain nature of the
feedback law when it comes to the stabilization of a discrete-time linear system
with all its open loop poles on or inside the unit circle.

4.3.3 A Numerical Example

Consider the discrete-time linear system (4.55) with

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−1 2
√

2 −4 2
√

2 0
0 0 0 0 1.1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, C = [
1 0 0 0 1

]
. (4.114)

It can be readily verified that the triple (A,B,C) is both controllable and observable.
Also, the eigenvalues of A are at

λ =
{√

2

2
±

√
2

2
j,

√
2

2
±

√
2

2
j, 1.1

}

,

four on the unit circle and one outside the unit circle. Thus, we pick a γ = 0.05.
Then, based on such a γ , the time-varying delay of the system is chosen as follows
to have a sufficiently small upper bound of R = 2,
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r(k) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if mod (k, 3) = 0,

1, if mod (k, 3) = 1,

2, if mod (k, 3) = 2,

where mod(p, q) denotes the remainder after division of p by q. Set the initial
condition of the system as

x(k) = [
1 0 −1 2 0

]T
, k ∈ I [0, R]. (4.115)

The state response and the input evolution under the truncated predictor state
feedback law are shown in Fig. 4.3.

The truncated predictor output feedback law (4.81) involves the eigenvalue
assignment of A + LC inside the unit circle. For this purpose, we design an L

such that the eigenvalues of A + LC are assigned at

λ =
{

1

2
± 1

2
j,

1

2
± 1

2
j, 0.9

}

.

We pick γ = 0.03 for illustration. Given the same time-varying delay as in the state
feedback simulation, the stabilization is achieved. The state response and the input
evolution of the system are shown in Fig. 4.4. In the simulation, we have chosen the
initial condition of the system and that of the observer as

x(k) = [
1 0 −1 2 0

]T
, x̂(k) = [

0 0 0 0 0
]T

, k ∈ I [0, R]. (4.116)

4.4 Conclusions

A TPF law, simplified from a predictor feedback law, is able to stabilize a
general, possibly exponentially unstable, linear system as long as the input delay
of the system is small enough. We consider this property of the TPF law its
robustness to a certain amount of delay. Such a robustness holds in various control
settings as manifested throughout this chapter. One of the many implications of the
robustness property is the low gain nature of the TPF law in the stabilization of a
linear system that is not exponentially unstable, namely, given an arbitrarily large
delay, the feedback law stabilizes the system as long as its feedback parameter is
tuned to be sufficiently small. Another noteworthy implication of the robustness
property concerns the tuning of the feedback parameter of the feedback law in the
stabilization of an exponentially unstable system. There exists an admissible bound
on the delay such that, for each delay below this bound, the TPF law would stabilize
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Fig. 4.3 State response and control input under the state feedback TPF law (4.65): γ = 0.05
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Fig. 4.4 State response and control input under the output feedback TPF law (4.26): γ = 0.03
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the system with any feedback parameter belonging to a certain range. Such a bound
on the delay and the range of the feedback parameter will be further elaborated in
the following section.

4.5 Notes and References

The stability conditions given in this chapter address the stabilization problem from
the perspective that given a feedback parameter, a general, possibly exponentially
unstable, linear system is stabilized as long as the delay is small enough. However,
in practice, the problem is typically formulated from an opposite perspective. Given
a certain amount of delay, is a TPF law able to stabilize a general linear system?
The answer to this problem is clear for a linear system that is not exponentially
unstable. It lies in the low gain nature of the TPF law. For a linear system that is
exponentially unstable, the answer is also clear from a simple examination of the
stability conditions established in this chapter. For illustration, we consider the case
of the truncated predictor state feedback law in the continuous-time setting. The
established delay bound implied by (4.10) is a function of γ and tr(A). For a given
exponentially unstable system, the function of the delay bound solely depends on
γ > 0. Sweeping the value of γ over positive numbers, we note that the delay bound
has a maximum that is positive. This observation can be readily made by noting that
the delay bound goes to zero as γ goes to zero and as γ goes to infinity. Thus, given
any delay that is below this maximum, there exists at least one continuous interval
of γ within which stabilization is achieved.

The above discussion on the maximum delay bound of an exponentially unstable
system is inspired by [116], in which the method of tuning the feedback parameter of
the state feedback TPF law in the stabilization of an exponentially unstable system
is also presented. Moreover, the presentation of Sect. 4.3 roughly follows that of
[100].



Chapter 5
Delay Independent Truncated Predictor
Feedback for Continuous-Time Linear
Systems

5.1 Introduction

The truncated predictor feedback design simplifies the predictor feedback design
by discarding the distributed delay term. The implementation of the remaining
static feedback term of the predictor feedback law requires the exact knowledge
of the input delay. The truncated predictor state feedback law for continuous-time
linear systems with a constant delay is such an example. The exact value of the
delay appears in the exponential factor eAτ of the truncated predictor feedback
law. Moreover, the determination of the value of the feedback parameter of the
truncated predictor feedback law requires, although not the exact value of the delay,
an upper bound of the delay to be known. This requirement of the information of
the delay, which explicitly or implicitly appears in the truncated predictor feedback
law, suggests that the truncated predictor feedback law is delay-dependent. The
delay-dependency of the truncated predictor feedback law also manifests itself
in the observer based feedback design. To construct an observer whose state
asymptotically approaches the state of the open loop system, the dynamics of the
observer generally contains the delayed input. This implies that the exact value of
the delay is also required in the construction of the observer used in the observer
based truncated predictor feedback law.

The truncated predictor feedback design compensates a constant delay by
requiring the exact value of the delay. Such compensation becomes trickier when
the delay is time-varying. The compensation of a bounded time-varying delay via
a truncated predictor feedback design relies on the prediction of the future state of
the system at the future time instant φ−1(t), where φ(t) represents the past time
instant at which the input is injected into the system. Clearly, the implementation of
a truncated predictor feedback law in the face of a time-varying delay fails if φ(t)

does not admit an inverse. Consider a standard form of

φ(t) = t − d(t),
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where d(t) is the time-varying delay. The inverse of φ(t) does not exist whenever

d(t) = t − t1,

on some time interval t ∈ [t1, t2]. It is noteworthy that such a time-varying delay
is physically meaningful. The requirement on the existence of φ−1(t) restricts the
application of truncated predictor feedback in compensating time-varying delays.
Therefore, the exact knowledge of time-varying delays is only necessary, but not
necessarily sufficient, for the success in the implementation of a truncated predictor
feedback law.

Compared to feedback laws whose realization relies heavily on the knowledge
of the delay, those that require less such knowledge are preferable. The craving
for feedback laws that are delay independent, at least partially if not completely, is
driven by the lack of the information of the delay in practice. In practice, the delay
is hardly precisely known. Oftentimes, only its upper bound and/or lower bound is
known. In the worst case, no knowledge of the delay can be assumed. Basically, the
overall objective of the rest of this book is to relax the assumption on the availability
of the knowledge of the delay for control design.

In this chapter, we introduce delay independent truncated predictor feedback
laws that discard the exponential factor of the truncated predictor feedback laws.
The remaining feedback gain of the delay independent truncated predictor feedback
laws is parameterized in a feedback parameter, whose value is determined based on
the knowledge of an upper bound of the delay. The delay independent truncated
predictor feedback laws are less delay dependent than the truncated predictor
feedback laws because their implementation no longer requires the exact knowledge
of the delay to be known. Besides the basic stabilization problem, we further
consider the problem of improving the performance of a closed-loop system under
a delay independent truncated predictor feedback law. Such a problem originates
from the low gain nature of the delay independent truncated predictor feedback law
in the stabilization of a linear system with all its open loop poles at the origin or
in the open left-half plane. It has been observed that an excessively small value of
the feedback parameter results in a large overshoot and a slow convergence rate of
the closed-loop system. The poor closed-loop performance inspires the design of
a time-varying feedback parameter whose value is chosen large at the beginning
phase of the system evolution and is decreased as needed to facilitate the proof
of stability. The large value of the parameter at the starting phase of the system
evolution reduces the overshoot and increases the convergence rate. Benefits of the
time-varying parameter design in the closed-loop performance are demonstrated in
the convergence rate analysis and the numerical studies.
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5.2 Delay Independent Truncated Predictor State Feedback
Design

In a predictor feedback law for a linear system with input delay, the future state is
predicted by the solution of the linear system. The zero input solution contains the
transition matrix. The zero state solution gives rise to the distributed nature of the
feedback law. In Chap. 2, it is established that when the system is not exponentially
unstable, low gain feedback can be designed such that the predictor feedback law,
with the distributed delay term truncated, still achieves stabilization in the presence
of an arbitrarily large delay. Furthermore, in the absence of purely imaginary poles,
the transition matrix in the truncated predictor feedback can be safely dropped,
resulting in a delay independent truncated predictor feedback law , which is simply
a delay independent linear state feedback. In this section, we first construct an
example to show that, in the presence of purely imaginary poles, the linear delay
independent truncated predictor feedback in general cannot stabilize the system
for an arbitrarily large delay. By using the extended Krasovskii Stability Theorem
(Theorem 1.2), we derive a bound on the delay under which a delay independent
truncated predictor feedback law achieves stabilization for a general system that
may be exponentially unstable.

We consider the asymptotic stabilization problem for the following linear system
with time-varying delay in the input:

{
ẋ(t) = Ax(t) + Bu(φ(t)),

x(θ) = φ(θ), θ ∈ [−D, 0], (5.1)

where x ∈ R
n and u ∈ R

m are state and input, respectively. The time-varying delay
function φ(t) : R+ → R is assumed to take the standard form of

φ(t) = t − d(t), (5.2)

where d(t) : R+ → R
+ denotes time-varying delay which is bounded by a finite

positive constant D, i.e.,

0 ≤ d(t) ≤ D, t ≥ 0. (5.3)

Only the information on the bound D, but not the delay d(t) itself, will be required
in our feedback design and stability analysis. We also assume that the pair (A,B) is
stabilizable.

In [63], it is shown that when the open loop system is not exponentially unstable,
a parametrized feedback gain matrix F(γ ) can be designed by the low gain feedback
design technique [61] such that the finite-dimensional truncated predictor feedback
law

u(t) = F(γ )eAdx(t) (5.4)
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would still asymptotically stabilize system (5.1) for an arbitrarily large constant
delay d as long as the low gain parameter γ is tuned small enough. In the absence of
purely imaginary poles, the transition matrix in the truncated predictor feedback law
(5.4) can be dropped and the feedback law further simplifies to a delay independent
truncated predictor state feedback law (also referred to as the delay independent
state feedback TPF law),

u(t) = F(γ )x(t). (5.5)

Such a feedback law, parameterized in the low gain parameter γ , is referred to as
the delay independent truncated predictor feedback law. The truncated predictor
feedback design originally proposed in [63] uses the eigenstructure assignment
based low gain feedback design method. The design was simplified in [122], where
a parametric Lyapunov equation based low gain feedback design was adopted.

In this section, we will examine the properties of the delay independent truncated
predictor feedback for general systems, which may have purely imaginary (nonzero
poles on the imaginary axis) or exponentially unstable poles. In particular, we will
first construct an example to show that, in the presence of purely imaginary poles,
the delay independent state feedback TPF law in general does not have the ability
to stabilize the system for an arbitrarily large delay. We then derive, by applying the
extended Krasovskii Stability Theorem (Theorem 1.2), a bound on the delay under
which a delay independent truncated predictor feedback law achieves stabilization
for the system. The expression of this bound indicates that when all the closed right-
half plane poles are at the origin, stabilization of the system would be achieved for an
arbitrarily large delay as long as the low gain parameter is chosen to be sufficiently
small. This observation coincides with the results in both [63] and [122]. Moreover,
it will be shown that, for a given delay with an arbitrarily large upper bound, the
upper bound of the low gain parameter derived in this chapter that guarantees
stability is less conservative than the one given in [122].

5.2.1 Preliminaries

It is shown in [63] that a linear system with all its open loop poles at the origin or
in the open left-half plane can be stabilized for an arbitrarily large delay by a delay
independent truncated predictor feedback law,

u(t) = F(γ )x(t), γ > 0. (5.6)

The construction of F(γ ) was given in [124] by utilizing the Lyapunov equation
based low gain design technique [121]. That is, for a controllable pair (A,B), the
parametrized feedback gain matrix F(γ ) in (5.6) is constructed as,

F(γ ) = −BTP(γ ), (5.7)
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where the positive definite matrix P(γ ) is the solution to the parametric algebraic
Riccati equation

ATP(γ ) + P(γ )A − P(γ )BBTP(γ ) = −γP (γ ) (5.8)

with

γ > −2min{Re(λ(A))}. (5.9)

In the case where all eigenvalues of A are at the origin or in the open left-half
plane, the delay is allowed to be arbitrarily large but bounded, and the value of
the parameter γ is required to approach zero as the bound on the delay increases
to infinity. As a result, the parametric algebraic Riccati equation (5.8) is a low gain
feedback design and the feedback parameter is referred to as the low gain parameter.

In this section, we will first show that when system (5.1) is not exponentially
unstable but has purely imaginary poles, the delay independent truncated predictor
feedback law (5.6) is in general not able to achieve asymptotic stabilization for
a large enough delay. We will then derive bound on the delay under which the
delay independent truncated predictor feedback law would achieve stabilization for
a general system that may be exponentially unstable.

To achieve our objectives, we need some technical preliminaries. We first recall
some properties of the solution P(γ ) of the algebraic Riccati equation (5.8) from
[124].

Lemma 5.1 Assume that (A,B) is controllable and γ satisfies (5.9). Then,

AT
c (γ )P (γ )Ac(γ ) ≤ �(γ )P (γ ),

where

Ac(γ ) = A − BBTP(γ ) (5.10)

and

�(γ ) = 1

2

(
nγ + 2tr(A)

)(
(n + 1)γ + 2tr(A)

)
− γ tr(A) − tr

(
A2
)

. (5.11)

We next establish the following simple fact and its two corollaries.

Lemma 5.2 If all eigenvalues of A ∈ R
n×n are on the closed right-half plane, then

tr2(A) ≥ tr
(
A2
)

. (5.12)

Moreover, the equality sign holds if and only if all the eigenvalues of A are real and
at most one of them is positive.
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Proof Let the eigenvalues of A be λ1, λ2, · · · , λp, α1±jβ1, α2±jβ2, · · · , αq±jβq ,
where

p + 2q = n (5.13)

and

⎧
⎨

⎩

λi ≥ 0, i = 1, 2, · · · , p,

αi ≥ 0, i = 1, 2, · · · , q,

βi > 0, i = 1, 2, · · · , q.

(5.14)

It then follows that

tr(A) =
p∑

i=1

λi + 2
q∑

i=1

αi (5.15)

and

tr
(
A2
)

=
p∑

i=1

λ2
i + 2

q∑

i=1

(
α2

i − β2
i

)
. (5.16)

Then, the difference between tr2(A) and tr
(
A2
)

can be expressed as

tr2(A) − tr
(
A2
)

=
(

p∑

i=1

λi

)2

+ 4

(
q∑

i=1

αi

)2

+ 4

(
p∑

i=1

λi

)(
q∑

i=1

αi

)

−
p∑

i=1

λ2
i − 2

q∑

i=1

(
α2

i − β2
i

)

= 2
∑

1≤i<j≤p

λiλj + 4
p∑

i=1

λi

q∑

i=1

αi + 2
q∑

i=1

α2
i

+8
∑

1≤i<j≤q

αiαj + 2
q∑

i=1

β2
i

≥ 0, (5.17)

from which we can readily conclude by invoking (5.14) that if A has at least one
pair of imaginary eigenvalues, then

tr2(A) > tr
(
A2
)

. (5.18)
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Therefore, a necessary condition for the equality sign to hold is that all the
eigenvalues of A are real. Under this condition, (5.17) can be simplified as

tr2(A) − tr
(
A2
)

=
(∑p

i=1
λi

)2 −
∑p

i=1
λ2

i , (5.19)

where p ≥ 1. Now, we consider two separate cases, p = 1 and p ≥ 2. If p = 1,
tr2(A) − tr

(
A2
) = 0 for any λ1 ≥ 0. If p ≥ 2,

tr2(A) − tr
(
A2
)

= 2
∑

1≤i<j≤p
λiλj , (5.20)

from which it readily follows that the necessary and sufficient condition for the
equality sign to hold is that at most one of the eigenvalues of A is positive.
Combining the two separate cases, we can conclude that the equality sign in (5.12)
holds if and only if all eigenvalues of A are real and at most one of them is positive.

�

Corollary 5.1 If all eigenvalues of A ∈ R

n×n are on the closed right-half plane,
then the following inequality holds for any real γ > 0:

⎛

⎜
⎜
⎜
⎝

γ

2

(

2tr(A) + nγ

)((
2tr(A) + nγ

)(

tr(A) + n + 3

2
γ

)

− γ tr(A) − tr
(
A2
)
)

⎞

⎟
⎟
⎟
⎠

1
2

<
1√

2
(

2tr(A) + nγ
) . (5.21)

Proof First we denote the left-hand side and the right-hand side of inequality (5.21)
as D1(γ ) and D2(γ ), respectively. The functions D1(γ ) and D2(γ ) are well defined
because of the assumption that all eigenvalues of A are in the closed right-half plane,
Lemma 5.2 and γ > 0. We notice that D1(γ ) can be written as follows:

D1(γ ) =

⎛

⎜
⎜
⎜
⎝

2
(
2tr(A) + nγ

)2

⎛

⎜
⎜
⎜
⎝

n + 3

2
+ tr(A)

γ
−

tr(A) + tr
(
A2
)

γ

2tr(A) + nγ

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

− 1
2

.

In order to show that inequality (5.21) holds, it suffices to show that

n + 3

2
+ tr(A)

γ
−

tr(A) + tr
(
A2
)

γ

2tr(A) + nγ
> 1,
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which is equivalent to

2nγ tr(A) + n(n + 1)

2
γ 2 + 2tr2(A) − tr

(
A2
)

> 0,

which can be easily verified by using the facts that tr(A) ≥ 0 and γ > 0, along with
Lemma 5.2. �

Corollary 5.2 If A ∈ R

n×n is exponentially unstable with all eigenvalues on the
closed right-half plane, then D1(γ ) as defined in the proof of Corollary 5.1, where
γ > 0, has a unique maximal value D1(γ

�) achieved at γ = γ �, where

γ � =
n
(

2tr2(A) − tr
(
A2
)+ (n + 1)tr(A)

)
+ √

�

n(n + 3)tr(A)
, (5.22)

and

� = n2
(

2tr2(A) − tr
(
A2
)

+ (n + 1)tr(A)
)2

+2n(n + 3)tr2(A)
(

2tr2(A) − tr
(
A2
) )

. (5.23)

Proof We determine the monotonicity of D1(γ ), which is equivalent to the
monotonicity of D2

1(γ ). The derivative of D2
1(γ ) with respect to γ is derived as

follows:

dD2
2(γ )

dγ
=

h(γ ) − γ
dh(γ )

dγ

h2(γ )
,

where

h(γ ) = 2
(
2tr(A) + nγ

)
(
(
2tr(A) + nγ

)(
tr(A) + n+3

2
γ
)

− γ tr(A) − tr
(
A2
))

.

(5.24)

Then, it suffices to determine the sign of h(γ ) − γ
dh(γ )

dγ
, whose expression can be

obtained as,

h(γ ) − γ
dh(γ )

dγ
= −2n(n+3)tr(A)γ 2 +2n

(
4tr2(A)−2tr

(
A2
)

+ (2n+2)tr(A)
)
γ

+4tr(A)
(

2tr2(A) − tr
(
A2
))

. (5.25)
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It can be observed that the right-hand side of (5.25) is a quadratic function of γ . By
Lemma 5.2, it has a unique positive root γ � as long as A is exponentially unstable
with all its eigenvalues in the closed right-half plane, where γ � is defined as in
(5.22). Moreover, for each γ ∈ (0, γ �),

h(γ ) − γ
dh(γ )

dγ
> 0, (5.26)

and for each γ ∈ [γ �,∞),

h(γ ) − γ
dh(γ )

dγ
≤ 0. (5.27)

Therefore, the continuity of D1(γ ) with respect to γ implies that D1(γ ) reaches its
unique maximal value D1(γ

�) at γ �. �


5.2.2 Stability Analysis

We first provide an example to show that for a system that is not exponentially
unstable but has purely imaginary poles, delay independent truncated predictor
feedback in general is not able to achieve stabilization for a sufficiently large delay.

Example 5.1 Consider system (5.1) with a constant delay

d(t) = τ

and

A =
[

0 1
−1 0

]

, B =
[

0
1

]

. (5.28)

The system is controllable with λ(A) = {±j}. Consider the delay independent state
feedback TPF law (5.6) with

F(γ ) = − [γ 2 2γ
]
, (5.29)

where γ > 0 by the inequality in (5.9). The characteristic equation of the closed-
loop system is given by

det
(
sI − A + BBTP(γ )e−τs

) = s2 + 2γ se−τs + γ 2e−τs + 1 = 0.

We first define two real sequences as
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τi,1 = 1

ωR

cos−1
( ω2

R − 1

4ω2
R + γ 2

)
+ i

2π

ωR

, i ∈ N,

τi,2 = 1

ωL

cos−1
( ω2

L − 1

4ω2
L + γ 2

)
+ i

2π

ωL

, i ∈ N,

(5.30)

where τi,1 is defined on γ ∈ (0,+∞), τi,2 is defined on γ ∈ (0, 1),

ωR =
(

1 + 2γ 2 + γ

√

5γ 2 + 4

) 1
2

(5.31)

and

ωL =
(

1 + 2γ 2 − γ

√

5γ 2 + 4

) 1
2

. (5.32)

We consider two cases with respect to the value of γ .

(I) Fix a γ ≥ 1. Then, according to [24], the closed-loop system is unstable if

τ > τ0,1.

Note from (5.30) that

τ0,1 <
π

2
√

6
,

because

ωR >
√

6

and

cos−1
(

ω2
R − 1

4ω2
R + γ 2

)

≤ π

2
.

This implies that the closed-loop system is unstable if

τ >
π

2
√

6
.

(II) Fix a γ ∈ (0, 1). According to [24], because the closed-loop system in the
absence of delay is stable and

ωR > ωL > 0,
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there exists k ∈ N \ {0} such that the sequences in (5.30) satisfy

0 < τ0,1 < τ0,2 < τ1,1 < τ1,2 < . . . < τk−1,1 < τk−1,2 < τk,1

< τk+1,1 < τk,2 < . . . ,

and the closed-loop system is unstable if

τ ∈ ∪i∈I [0,k−1][τi,1, τi,2] ∪ [τk,1,∞).

Note from (5.30) that

τi,1 <
π

2
+ 2πi

and

τi,2 >
π

2
+ 2πi, i ∈ N,

because

ωR > 1,

cos−1
(

ω2
R − 1

4ω2
R + γ 2

)

≤ π

2
,

ωL < 1,

and

cos−1
(

ω2
L − 1

4ω2
L + γ 2

)

≥ π

2
.

Therefore, if

τ = π

2
+ 2πl, l ∈ N,

the closed-loop system is unstable.

Combining the two cases, we see that, for any of the delays,

τ = π

2
+ 2πl, l ∈ N,



160 5 Delay Independent Truncated Predictor Feedback for Continuous-Time Linear. . .

the closed-loop system is unstable for each γ > 0. This implies that the delay
independent truncated predictor feedback law (5.6) fails to stabilize the system with

τ = π

2
+ 2πl, l ∈ N.

�
Unlike the class of linear systems with open loop poles at the origin, linear

systems with purely imaginary open loop poles cannot be stabilized by tuning the
feedback parameter of the delay independent state feedback law if the delay is
too large. However, the stabilization of a general linear system can be achieved
by tuning the feedback parameter as long as the delay value is small enough. We
now present a theorem on this fact. Before presenting the theorem, we make the
following assumption on system (5.1).

For a general system (5.1), the eigenvalues of A can be anywhere on the complex
plane. Without loss of generality, let the pair (A,B) be given in the following form:

A =
[
AL 0
0 AR

]

, B =
[
BL

BR

]

,

where all eigenvalues of AL are in the open left-half plane and all eigenvalues of AR

are in the closed right-half plane. Correspondingly, system (5.1) can be written as

{
ẋL(t) = ALxL(t) + BLu(φ(t)),

ẋR(t) = ARxR(t) + BRu(φ(t)),

where

x(t) = [
xT

L(t) xT
R(t)

]T
.

It is clear that any linear state feedback law that stabilizes xR subsystem would
stabilize the entire system. Thus, we will assume, without loss of generality, that all
eigenvalues of A are on the closed right-half plane.

Theorem 5.1 Consider system (5.1). Let (A,B) be controllable and all eigenvalues
of A be on the closed right-half plane. If, for each γ > 0,

D <

⎛

⎜
⎜
⎜
⎝

γ

2
(
2tr(A) + nγ

)
(
(
2tr(A) + nγ

)
(

tr(A) + n + 3

2
γ

)

− γ tr(A) − tr
(
A2
)
)

⎞

⎟
⎟
⎟
⎠

1
2

,

(5.33)
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then the delay independent state feedback TPF law (5.6) asymptotically stabilizes
the system.

Proof Under the assumption that all eigenvalues of A are on the closed right-half
plane, we let γ > 0 satisfy (5.9). The closed-loop system consisting of system (5.1)
and the delay independent truncated predictor feedback law (5.6) is expressed as

ẋ(t) = Ax(t) + B
(−BTP

)
x(φ(t)))

= (
A − BBTP

)
x(t) + BBTP(x(t) − x(φ(t)))

= ACx(t) + BBTPλ(t), (5.34)

where

AC = A + BF(γ )

= A − BBTP(γ ) (5.35)

is defined in Lemma 5.1 and

λ(t) = x(t) − x(φ(t)).

Consider a Lyapunov functional

V (xt ) = V1(x) + V2(xt ), (5.36)

where

V1(x) = xT(t)P x(t), (5.37)

V2(xt ) = ε

∫ 0

−D

∫ t

t+θ

ẋT(s)P ẋ(s)dsdθ,

and ε is some real positive constant whose value is to be determined later. Then the
derivative of V (xt ) along the trajectory of the closed-loop system is

V̇ (xt ) = V̇1(x) + V̇2(xt ).

On one hand, V̇1(x) can be evaluated as

V̇1(x) = ẋT(t)P x(t) + xT(t)P ẋ(t)

= xT(t)
(
AT

CP + PAC

)
x(t) + 2λT(t)PBBTPx(t)

= xT(t)
(−γP − PBBTP

)
x(t) + 2λT(t)PBBTPx(t)
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≤ −γ xT(t)P x(t) + λT(t)PBBTPλ(t)

≤ −γ xT(t)P x(t) + (
2tr(A) + nγ

)
λT(t)Pλ(t), (5.38)

where we have used Young’s Inequality and the properties of P(γ ) as established
in Lemma 5.1. Considering that

λ(t) =
∫ t

φ(t)

ẋ(s)ds,

we can continue (5.38) by using Lemma 2.2 as follows:

V̇1(x) ≤ −γ xT(t)P x(t) + (
2tr(A) + nγ

)
(∫ t

φ(t)

ẋ(s)ds

)T

P

(∫ t

φ(t)

ẋ(s)ds

)

≤ −γ xT(t)P x(t) + (
2tr(A) + nγ

)
d(t)

∫ t

t−d(t)

ẋT(s)P ẋ(s)ds

≤ −γ xT(t)P x(t) + (
2tr(A) + nγ

)
D

∫ t

t−D

ẋT(s)P ẋ(s)ds. (5.39)

On the other hand, we have

V̇2(xt ) = ε

∫ 0

−D

(
ẋT(t)P ẋ(t) − ẋT(t + θ)P ẋ(t + θ)

)
dθ

= ε

(

DẋT(t)P ẋ(t) −
∫ t

t−D

ẋT(s)P ẋ(s)ds

)

. (5.40)

Combining (5.39) and (5.40), we have

V̇ (xt ) ≤ −γ xT(t)P x(t) + (
2tr(A) + nγ

)
D

∫ t

t−D

ẋT(s)P ẋ(s)ds

+εDẋT(t)P ẋ(t) − ε

∫ t

t−D

ẋT(s)P ẋ(s)ds. (5.41)

By (5.34), Young’s Inequality, Lemma 5.1, and Lemma 2.2, ẋT(t)P ẋ(t) can be
evaluated as

ẋT(t)P ẋ(t) =
(
ACx(t) + BBTPλ(t)

)T

P
(
ACx(t) + BBTPλ(t)

)

≤ 2xT(t)AT
CPACx(t) + 2λT(t)PBBTPBBTPλ(t)

≤ 2�xT(t)P x(t) + 2
(
2tr(A) + nγ

)2
λT(t)Pλ(t)

≤ 2�xT(t)P x(t) + 2
(
2tr(A) + nγ

)2
(∫ t

t−d(t)
ẋ(s)ds

)T

P

(∫ t

t−d(t)
ẋ(s)ds

)
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≤ 2�xT(t)P x(t) + 2
(
2tr(A) + nγ

)2
D

∫ t

t−D
ẋT(s)P ẋ(s)ds, (5.42)

where � is as defined in Lemma 5.1.
Substitution of (5.42) into (5.41) results in

V̇ (xt ) ≤ (−γ + 2εD�)xT(t)P x(t)

+
(
(
2tr(A) + nγ

)
D + 2εD2(2tr(A) + nγ

)2 − ε

)

×
∫ t

t−D

ẋT(s)P ẋ(s)ds. (5.43)

Let

ε =
(
2tr(A) + nγ

)
D

1 − 2D2
(
2tr(A) + nγ

)2 (5.44)

be such that the second term in (5.43) is zero. Notice that ε is positive if and only if

D <
1√

2
(
2tr(A) + nγ

) . (5.45)

Hence, under condition (5.45),

V̇ (xt ) ≤ (−γ + 2εD�)xT(t)P x(t).

Furthermore, if

− γ + 2εD� < 0, (5.46)

then there exists some positive constant ρ(γ ), depending on γ , such that

V̇ (xt ) ≤ −ρ(γ )xT(t)P x(t)

≤ −ρ(γ )λmin(P )‖x(t)‖2
2 < 0, x(t) 
= 0,

where λmin(P ) denotes the minimal eigenvalue of P and ‖x(t)‖2 is the Euclidean
norm of x(t). Recalling the structure of V (xt ), we have

λmin(P )‖x(t)‖2
2 ≤ V (xt )

≤ λmax(P ) max
s∈[−D,0] ‖xt (s)‖2

2 + εDλmax(P )

∫ 0

−D

‖ẋt (s)‖2
2ds,
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where λmax(P ) is the maximum eigenvalue of P . By Theorem 1.1, stabilization of
system (5.1) is achieved under the delay independent truncated predictor feedback
law (5.6) as long as (5.45) and (5.46) hold.

Substitution of the expressions of ε and � into (5.46) gives

γ > 2D2 2tr(A) + nγ

1 − 2D2
(
2tr(A) + nγ

)2

(
1

2

(
nγ + 2tr(A)

)(
(n + 1)γ + 2tr(A)

)

−γ tr(A) − tr
(
A2
))

,

which is equivalent to (5.33). In view of (5.45), if the delay bound D satisfies

D < min{D1,D2},

where D1 and D2 are as defined in the proof of Corollary 5.1, then the closed-loop
system is asymptotically stable. Noting that 0 < D1 < D2 for any γ > 0 by
Corollary 5.1, we have

min{D1,D2} = D1.

This completes the proof. �


Remark 5.1 To examine the conservativeness of Theorem 5.1, we now compare
(5.33) with the existing results in the literature. Considering the case where all
eigenvalues of the open loop system are at the origin, we have

tr(A) = tr
(
A2
)

= 0.

Inequality (5.33) then simplifies to

D <
1

n
√

n + 3γ
, γ > 0,

which is equivalent to

γ <
1

n
√

n + 3D
, D > 0. (5.47)

This implies that for any time-varying delay that is bounded by an arbitrarily large
D, the system would be stabilized under the delay independent truncated predictor
feedback law as long as γ is chosen sufficiently small. Moreover, the upper bound
on γ is given by (5.47). Recall the result of Theorem 2 from [122], which establishes
an upper bound of γ as

γ <
1

3
√

3n
√

nD
, D > 0. (5.48)
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Comparing (5.47) with (5.48), we can easily observe that, for any system whose
eigenvalues are all at the origin, our result on the upper bound of γ is less
conservative than that of [122]. Note that the Razumikhin Stability Theorem was
adopted to obtain (5.48). We consider the Krasovskii stability analysis an advantage
over the Razumikhin stability analysis. �
Remark 5.2 We consider a system whose open loop poles are all on the imaginary
axis and there exist at least one pair of nonzero poles. In this case, tr(A) = 0 and
tr
(
A2
)

< 0. Consequently, (5.33) reduces to

D <

⎛

⎝ 1

n
(
n(n + 3)γ 2 − 2tr

(
A2
) )

⎞

⎠

1
2

, γ > 0. (5.49)

Moreover, the right-hand side of (5.49) is strictly decreasing with respect to γ .
Hence, any

D <

(
1

−2ntr
(
A2
)

) 1
2

(5.50)

is a valid bound for some γ > 0.
In addition, recall that the system in Example 5.1 is unstable under any feedback

parameter if

τ = π

2

On the other hand, by (5.50), the delay bound of the system can be arbitrarily close

to
1

2
√

2
<

π

2
, which requires γ to approach zero. This implies that Theorem 5.1

does not conflict with Example 5.1. �
Remark 5.3 We now consider exponentially unstable systems whose open loop
poles are all on the closed right-half plane. By Corollary 5.2, we observe that the
delay bound given in (5.33) has the unique maximal value D1(γ

�) at γ = γ �, where
γ � is the unique positive solution to (5.22), D1(γ ) is as defined in Corollary 5.1 and
D1(γ

�) is independent of γ . Furthermore, we note that

lim
γ→0+ D1(γ ) = lim

γ→+∞ D1(γ )

= 0. (5.51)



166 5 Delay Independent Truncated Predictor Feedback for Continuous-Time Linear. . .

Therefore, any delay bound that satisfies 0 < D ≤ D1(γ
�) is valid for some γ > 0.

�
Remark 5.4 We note that only the information of the delay bound, not even the
information on the derivative of the delay, is involved in (5.33), which guarantees
the stabilization of system (5.1) under the delay independent truncated predictor
feedback law (5.6). Therefore, Theorem 5.1 can be applied to systems whose input
delays are fast-varying, which will be shown in the simulation to be presented
in Sect. 5.2.3. It is worth mentioning here that, for the practical application of
Theorem 5.1, the delay bound D of the time-varying delay d(t) needs to be known
in order to determine an appropriate value of γ for the stability of the closed-loop
system. However, no knowledge of the delay itself is needed in the construction of
the delay independent state feedback TPF law (5.6). This illustrates the robustness
of the feedback law (5.6) with respect to uncertainty in the delay. �

5.2.3 Numerical Examples

In this section, we provide simulation results to demonstrate the theoretical conclu-
sion of Theorem 5.1. We consider three different cases of system (5.1): a system
whose open loop poles are all at the origin, a system whose open loop poles are all
on the imaginary axis with at least one pair of nonzero poles, and an exponentially
unstable system whose open loop poles are all on the closed right-half plane.

Example 5.2 (A System with All Poles at the Origin) Consider system (5.1) with

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ .

Clearly, the system is controllable with all its open loop poles at the origin. For a
linear system with all its open loop poles at the origin, the delay independent state
feedback TPF law stabilizes the system in the presence of any bounded input delay
as long as the value of the low gain feedback parameter in the feedback law is chosen
sufficiently small. Consider a fast-varying time delay

d(t) = 0.5
(

1 + sin2(100t)
)

, (5.52)

with an upper bound D = 1. We pick a feedback parameter γ = 0.3. Let the initial
condition of the system be

x(θ) = [
1 0 −1 2

]T
, θ ∈ [−D, 0]. (5.53)
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Fig. 5.1 Example 5.2: State response and control input under the delay independent state feedback
TPF law (5.6): γ = 0.3
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The state response and control evolution under the delay independent state feedback
TPF law are shown in Fig. 5.1. To examine the low gain nature of the feedback law
(5.6), we pick a smaller value for γ as 0.1 and observe its effects on the closed-
loop performance of the system. Figure 5.2 illustrates the state response and input
evolution of the closed-loop system with the same initial condition as given by
(5.53). A comparison of the two figures clearly shows that although the stabilization
of the system in the presence of a large input delay requires the feedback parameter
to be sufficiently small, an excessively small feedback parameter typically leads
to poor closed-loop performance in the form of a large overshoot and a small
convergence rate. Thus, we need to avoid choosing an unnecessarily small value
of the low gain parameter. �

Example 5.3 (A System with All Poles on the Imaginary Axis) Consider system
(5.1) with

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 −2 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ .

Clearly, (A,B) is controllable with λ(A) = {±j,±j}. Also, tr(A) = 0 and
tr
(
A2
) = −4. Let γ = 0.5 be the feedback parameter, and the corresponding delay

bound in (5.49) is given as D < 0.1291. For the simulation purpose, let D = 0.12.
In order to show that the delay independent truncated predictor feedback law (5.6)
is applicable to systems with a fast-varying input delay, we choose the time-varying
delay as follows:

d(t) = 0.06
(

1 + sin2(100t)
)
,

from which it can be easily verified that d(t) ∈ [0.06, 0.12] and |ḋ(t)| ≤ 6, t ≥ 0.
Simulation is run for 20 s with the initial condition

xT(θ) = [−2 1 0 2
]
, θ ∈ [−0.12, 0].

Shown in Fig. 5.3 are the state response x(t) and the control input u(t), for γ = 0.5.
The stability of the closed-loop system is clear. To examine the conservativeness of
delay bound in Theorem 5.1, we determine through simulation the tight bound on
the constant delay for γ = 0.5 to be D = 0.50. �

Example 5.4 (An Exponentially Unstable System) Consider system (5.1) with a
controllable pair
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Fig. 5.2 Example 5.2: State response and control input under the delay independent state feedback
TPF law (5.6): γ = 0.1
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Fig. 5.3 Example 5.3: State response and control input under the delay independent state feedback
TPF law (5.6): γ = 0.5
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
−1 0 1 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

It can be verified that λ(A) = {±j,±j, 1}. Also, tr(A) = 1 and tr
(
A2
) = −3. Let

γ = 0.1. The corresponding delay bound in (5.33) is given as D < 0.1768. For the
simulation purpose, we choose D = 0.17, and a fast-varying delay

d(t) = 0.085
(

1 + sin2(100t)
)
.

Clearly, d(t) ∈ [0.085, 0.17] and |ḋ(t)| ≤ 8.5, t ≥ 0. With the initial condition
given by

xT(θ) = [−2 1 0 2 −1
]
, θ ∈ [−0.17, 0],

simulation is run for 100 s. Shown in Fig. 5.4 are the state response and the control
input, which show that the system is asymptotically stable. As in Example 1, we
determine through simulation the tight bound on the constant delay for γ = 0.1 to
be D = 0.45. �

5.3 Improvement on the Closed-Loop Performance

Example 5.2 in Sect. 5.2 numerically verifies that a small value of the feedback
parameter increases the ability of the delay independent truncated predictor feed-
back law to stabilize a linear system with all its open loop poles at the origin
or in the open left-half plane. However, too small a feedback parameter degrades
the closed-loop performance in terms of the overshoot and the convergence rate.
Generally speaking, poor closed-loop performance with a large overshoot and a
slow convergence rate is the consequence of the application of low gain feedback
designs. We will examine the side effects of small values of the feedback parameter
on the closed-loop performance in the stabilization of a linear system with all
its open loop poles at the origin or in the open left-half plane. Furthermore, we
will propose an approach to improving the closed-loop performance under a delay
independent truncated predictor feedback law. Specifically, the traditional low gain
feedback design with a constant feedback parameter is generalized to a time-
varying parameter design. For an unknown delay with a known upper bound, a
delay independent truncated predictor feedback law with a time-varying feedback
parameter, constructed by using the parametric Lyapunov equation based approach,
globally regulates the system to zero as long as the time-varying low gain parameter
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Fig. 5.4 Example 5.4: State response and control input under the delay independent state feedback
TPF law (5.6): γ = 0.1
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has a continuous second derivative and approaches a sufficiently small constant with
its derivative approaching zero as time goes to infinity. Improvement on the closed-
loop performance over the traditional constant parameter design is demonstrated
through a convergence rate analysis and then observed in simulation.

The value of the low gain parameter embedded in the feedback gain matrix
of the delay independent truncated predictor feedback law is determined by an
upper bound of the delay (see [63] and [122]). The upper bound of the feedback
parameter derived based on a Lyapunov analysis is conservative due to numerous
estimations made throughout the derivation. Inspired by the spirit of the traditional
low gain feedback design [61], we propose the concept of time-varying low gain
feedback, where the low gain parameter is time-dependent. To improve the closed-
loop performance, we design the parameter that starts from a relatively large value,
and approaches a sufficiently small positive constant dependent on the known bound
on the delay as time goes to infinity. Intuitively, such a time-varying parameter
reduces the overshoot and increases the convergence rate in the early stage of the
state evolution. As the closed-loop system reaches a state around zero, the value of
the parameter is decreased to a sufficiently small constant that would not affect the
closed-loop performance while guaranteeing stability.

A fundamental difficulty in stability analysis that involves a feedback law
with a time-varying feedback parameter lies in the Lyapunov analysis. Typically,
Lyapunov analysis requires V̇ (x(t)) ≤ −w(|x(t)|), where V (x(t)) is a Lyapunov
function, w(·) is a positive scalar function, and |x(t)| is the Euclidean norm of the
current state of system. In the case of time-varying feedback laws, taking the time
derivative of a typical Lyapunov function V (x(t), t) = xT(t)P (t)x(t), where P(t)

is a time-varying positive definite matrix, results in terms involving different time
instants such as xT(s)P (θ)x(s) with s 
= θ . Majorization of the time derivative
by −w(|x(t)|) poses challenges. However, the partial differential equation (PDE)
representation of the closed-loop system, which has been extensively explored
in [59], provides us with more freedom to construct a Lyapunov functional that
facilitates such majorization. Indeed, this PDE representation has been exploited
in [14] and [15] to carry out design and stability analysis of adaptive predictor
feedback laws. Furthermore, as seen in these references, the Lyapunov analysis
is direct, without resorting to the Krasovskii or Razumikhin Stability Theorem.
Recent advancements in designing predictor-based feedback laws have been made
by employing the PDE method and various backstepping transformations for linear
time-invariant systems with distinct input delays [94] and nonlinear systems with
multiple input delays [11] or even distributed input delays [10]. In this section, we
will also adopt the PDE representation of the closed-loop system and direct stability
analysis to obtain design specifications for the feedback parameter that guarantee
closed-loop stability.
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5.3.1 Time-Varying Low Gain Feedback Design

We consider the regulation of a linear system with delayed input,

Ẋ(t) = AX(t) + BU(t − τ), t ≥ 0, (5.54)

where X ∈ R
n and U ∈ R

m are the state and the input, respectively, and τ ∈ R
+

is an unknown constant delay with a known upper bound τ ≥ τ . In this section, we
adopt capital letters X and U to denote the state and the input of the system because
their lower cases are reserved for other purposes. The initial condition is given by

X(θ) = φ(θ), (5.55)

where φ(θ) ∈ C[−τ, 0]. It is assumed that (A,B) is controllable with all
eigenvalues of A at the origin.

Remark 5.5 Alternatively, we can define the initial condition of the delayed system
(5.54) as

U(θ) = ψ(θ) ∈ C[−τ, 0] (5.56)

and

X(0) = X0 ∈ R
n. (5.57)

Because we are considering the closed-loop system under a state feedback law, it is
more convenient to define the initial condition solely in terms of the state X(t). �

It was pointed out in Theorem 1 of [122] that the delay independent truncated
predictor state feedback law (also referred to as the delay independent state feedback
TPF law)

U(t) = F(γ )X(t)

= −BTP(γ )X(t),

with a constant feedback parameter γ , asymptotically stabilizes system (5.54) for
an arbitrarily large delay τ if

γ ∈
(

0,
1

3
√

3n
√

nτ

]

, (5.58)

where P(γ ) is the unique positive definite solution to the parametric algebraic
Riccati equation,

ATP(γ ) + P(γ )A − P(γ )BBTP(γ ) = −γP (γ ), γ > 0. (5.59)
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Notice that the feedback gain matrix F(γ ) in the delay independent state feedback
TPF law is constant when γ is fixed. Also, the theoretical bound of γ given by (5.58)
is considerably smaller compared with the bound observed from simulation.

To overcome this conservativeness in determining the value of γ , we design a
time-varying low gain feedback law whose feedback parameter is time-dependent,

U(t) = F(γ (t))X(t)

= −BTP(γ (t))X(t), t ≥ −τ. (5.60)

Considering the inverse proportionality relationship between the upper bound of γ

and τ as shown in (5.58), we design the time-varying feedback parameter as

γ (t) = h

τ̂ (t)
. (5.61)

Here h is a positive constant and τ̂ (t) satisfies the following conditions:

τ̂ (t) ∈ C2[−τ,∞), τ̂ (t) > 0, lim
t→∞ τ̂ (t) = τ , lim

t→∞
˙̂τ(t) = 0. (5.62)

5.3.2 PDE-ODE Cascade Representation

As pointed out in [59], the delayed input U(t−τ) in system (5.54) can be considered
as the boundary value of

u(x, t) = U(t + τ(x − 1)), x ∈ [0, 1] (5.63)

at x = 0, where u(x, t) is the solution of a transport PDE

τut (x, t) = ux(x, t), (5.64)

with the boundary condition

u(1, t) = U(t). (5.65)

Thus, system (5.54) is equivalent to the cascade of an ordinary differential equation
(ODE) with a transport PDE,

Ẋ(t) = AX(t) + Bu(0, t), (5.66)

τut (x, t) = ux(x, t), (5.67)

u(1, t) = U(t). (5.68)
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Following the idea in analyzing an adaptive predictor feedback law for linear
systems with unknown input delay [15], we define a signal associated with τ̂ (t),

û(x, t) = U(t + τ̂ (t)(x − 1)), (5.69)

which can be verified to satisfy the PDE,

τ̂ (t)ût (x, t) = (1 + ˙̂τ(t)(x − 1))ûx(x, t), (5.70)

û(1, t) = U(t). (5.71)

In view of the expression for the time-varying low gain feedback law (5.60), we
have the difference between û(x, t) and U(t) as

ŵ(x, t) = û(x, t) − U(t)

= û(x, t) + BTP(γ (t))X(t). (5.72)

To measure the distance between τ̂ (t) and the actual delay τ , we define

τ̃ (t) = τ − τ̂ (t), (5.73)

and correspondingly,

ũ(x, t) = u(x, t) − û(x, t), (5.74)

from which, along with (5.60), (5.66), (5.70), (5.71), and (5.72), we obtain the PDE
for ŵ(x, t) as

τ̂ (t)ŵt (x, t) = ŵx(x, t)
(

1 + ˙̂τ(t)(x − 1)
)

+ τ̂ (t)BT
∂P

∂γ
γ̇ (t)X(t)

+ τ̂ (t)BTP(γ (t))
((

A − BBTP(γ (t))
)
X(t)

+ Bũ(0, t) + Bŵ(0, t)
)
, (5.75)

ŵ(1, t) = 0. (5.76)

By (5.66), (5.72) and (5.74), the closed-loop system under the time-varying low
gain feedback law (5.60) takes the form,

Ẋ(t) = (
A − BBTP(γ (t))

)
X(t) + Bũ(0, t) + Bŵ(0, t). (5.77)

By (5.67), (5.70), (5.71), (5.72), (5.73), and (5.74), the PDE for ũ(x, t) is
obtained as
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τ ũt (x, t) = ũx(x, t) − τ̃ + τ ˙̂τ(t)(x − 1)

τ̂ (t)
ŵx(x, t), (5.78)

ũ(1, t) = 0. (5.79)

The constructed Lyapunov functional used in the stability analysis to be carried
out in the next subsection also contains ŵx(x, t) besides ũ(x, t) and ŵ(x, t). Thus,
in view of (5.70), (5.72), (5.75), and (5.76), we derive the governing PDE for
ŵx(x, t) as

τ̂ (t)ŵxt (x, t) = ŵxx(x, t)
(

1 + ˙̂τ(t)(x − 1)
)

+ ˙̂τ(t)ŵx(x, t), (5.80)

ŵx(1, t) = − τ̂ (t)BT
∂P

∂γ
γ̇ (t)X(t) − τ̂ (t)BTP(γ (t))

(
(A − BBTP(γ (t)))X(t)

+ Bũ(0, t) + Bŵ(0, t)
)
. (5.81)

The following lemma establishes estimates of cross terms between ũ(x, t),
ŵ(x, t), ŵx(x, t), ŵxx(x, t)„ and X(t).

Lemma 5.3 The following properties hold for system (5.54):

−
∫ 1

0
(1 + x)

(
τ̃ + τ ˙̂τ(t)(x − 1)

)
ũT(x, t)ŵx(x, t)dx

≤
(

|τ̃ | + 1

2
τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

)(

ε ||ũ(t)||2 + 1

ε

∥
∥ŵx(t)

∥
∥2
)

, (5.82)

for any positive constant ε,

∫ 1

0
(1 + x)

(
1 + ˙̂τ(t)(x − 1)

)
ŵT(x, t)ŵx(x, t)dx

≤ 1

2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

) ∣
∣ŵ(0, t)

∣
∣2 +

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

2

)
∥
∥ŵ(t)

∥
∥2

, (5.83)

∫ 1

0
(1 + x)ŵT(x, t)τ̂ (t)BT

∂P

∂γ
γ̇ (t)X(t)dx

≤ h
1
2
∥
∥ŵ(t)

∥
∥2 +

( ˙̂τ(t)

τ̂ (t)

)2

h
3
2 XT(t)

∂P

∂γ
BBT

∂P

∂γ
X(t), (5.84)

∫ 1

0
(1 + x)ŵT(x, t)τ̂ (t)BTP(γ (t))

((
A − BBTP(γ (t))

)
X(t) + Bũ(0, t) + Bŵ(0, t)

)
dx
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≤ τ̂ (t)nγ (t)
∥
∥ŵ(t)

∥
∥2 + 3

2
τ̂ (t)n(n + 1)γ 2(t)XT(t)P (γ (t))X(t)

+3τ̂ (t)nγ (t)
(
|ũ(0, t)|2 + |ŵ(0, t)|2

)
, (5.85)

∫ 1

0
(1 + x)

(
1 + ˙̂τ(t)(x − 1)

)
ŵT

x(x, t)ŵxx(x, t)dx

≤ |ŵx(1, t)|2 + 1

2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
|ŵx(0, t)|2 +

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

2

)
∥
∥ŵx(t)

∥
∥2

,(5.86)

and

|ŵx(1, t)|2 ≤ 2τ̂ 2(t)γ̇ 2(t)XT(t)
∂P

∂γ
BBT

∂P

∂γ
X(t) + 6τ̂ 2(t)n2γ 2(t)

×
(

n + 1

2
γ (t)XT(t)P (γ (t))X(t) + |ũ(0, t)|2 + |ŵ(0, t)|2

)

.

(5.87)

Proof Equation (5.82): By using Young’s Inequality, we obtain

−
∫ 1

0
(1 + x)

(
τ̃ + τ ˙̂τ(t)(x − 1)

)
ũT(x, t)ŵx(x, t)dx

≤
(

|τ̃ | + 1

2
τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

) ∫ 1

0

(

ε |ũ(x, t)|2 + 1

ε

∣
∣ŵx(x, t)

∣
∣2
)

dx

=
(

|τ̃ | + 1

2
τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

)(

ε ‖ũ(t)‖2 + 1

ε

∥
∥ŵx(t)

∥
∥2
)

,

where ε is any positive constant.
Equation (5.83): Noting that ŵ(1, t) = 0 and using integration by parts, we have

∫ 1

0
(1 + x)ŵT(x, t)ŵx(x, t)dx = (1 + x)ŵT(x, t)ŵ(x, t)

∣
∣1
0

−
∫ 1

0
ŵT(x, t)ŵ(x, t)dx −

∫ 1

0
(1+x)ŵT(x, t)ŵx(x, t)dx,

which implies that

∫ 1

0
(1 + x)ŵT(x, t)ŵx(x, t)dx = −1

2

(∣
∣ŵ(0, t)

∣
∣2 + ∥

∥ŵ(t)
∥
∥2
)

. (5.88)

On the other hand,
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∫ 1

0

(
x2 − 1

)
ŵT(x, t)ŵx(x, t)dx = 1

2

∣
∣ŵ(0, t)

∣
∣2 −

∫ 1

0
x
∣
∣ŵ(x, t)

∣
∣2 dx

implies that

˙̂τ(t)

∫ 1

0

(
x2 − 1

)
ŵT(x, t)ŵx(x, t)dx ≤

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

(
1

2
|ŵ(0, t)|2 + ∥

∥ŵ(t)
∥
∥2
)

.

(5.89)
Thus, (5.83) readily follows from adding (5.88) and (5.89).

Equation (5.84): By (5.61) and Young’s Inequality, we have

∫ 1

0
(1 + x)ŵT(x, t)τ̂ (t)BT

∂P

∂γ
γ̇ (t)X(t)dx

= −
∫ 1

0
(1 + x)ŵT(x, t)

˙̂τ(t)

τ̂ (t)
hBT

∂P

∂γ
X(t)dx

≤ 2
∫ 1

0

∣
∣
∣
∣
∣
h

1
4 ŵT(x, t)

˙̂τ(t)

τ̂ (t)
h

3
4 BT

∂P

∂γ
X(t)

∣
∣
∣
∣
∣
dx

≤ h
1
2
∥
∥ŵ(t)

∥
∥2 +

( ˙̂τ(t)

τ̂ (t)

)2
h

3
2 XT(t)

∂P

∂γ
BBT

∂P

∂γ
X(t).

Equation (5.85): By Lemma 2.1 and Young’s Inequality, we derive

∫ 1

0
(1 + x)ŵT(x, t)τ̂ (t)BTP(γ (t))

((
A − BBTP(γ (t))

)
X(t) + Bũ(0, t) + Bŵ(0, t)

)
dx

= τ̂ (t)

∫ 1

0
(1 + x)ŵT(x, t)BTP

1
2 (γ (t))P

1
2 (γ (t))

((
A − BBTP(γ (t))

)
X(t)

+Bũ(0, t) + Bŵ(0, t)
)

dx

≤ τ̂ (t)

∫ 1

0
ŵT(x, t)BTP(γ (t))Bŵ(x, t)dx + τ̂ (t)

∫ 1

0

((
A − BBTP(γ (t))

)
X(t)

+Bũ(0, t) + Bŵ(0, t)
)T

P(γ (t))
((

A − BBTP(γ (t))
)
X(t) + Bũ(0, t) + Bŵ(0, t)

)
dx

≤ τ̂ (t)nγ (t)
∣
∣ŵ(t)

∥
∥2 + 3τ̂ (t)

∫ 1

0

(
XT(t)(A − BBTP(γ (t)))TP(γ (t))

(
A

−BBTP(γ (t)))X(t) + ũT(0, t)BTP(γ (t))Bũ(0, t) + ŵT(0, t)BTP(γ (t))Bŵ(0, t)
)

dx

≤ τ̂ (t)nγ (t)
∣
∣ŵ(t)

∥
∥2 + 3

2
τ̂ (t)n(n + 1)γ 2(t)XT(t)P (γ (t))X(t)

+3τ̂ (t)nγ (t)
(
|ũ(0, t)|2 + ∣

∣ŵ(0, t)
∣
∣2
)

.
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Equation (5.86): It can be verified that

∫ 1

0
(1 + x)ŵT

x(x, t)ŵxx(x, t)dx = ∣
∣ŵx(1, t)

∣
∣2 − 1

2

∣
∣ŵx(0, t)

∣
∣2 − 1

2

∣
∣ŵx(t)

∥
∥2

.

On the other hand,

∫ 1

0

(
x2 − 1

)
ŵT

x(x, t)ŵxx(x, t)dx = 1

2

∣
∣ŵx(0, t)

∣
∣2 −

∫ 1

0
x
∣
∣ŵx(x, t)

∣
∣2 dx

implies that

˙̂τ(t)

∫ 1

0

(
x2 − 1

)
ŵT

x(x, t)ŵxx(x, t)dx ≤
∣
∣
∣ ˙̂τ(t)

∣
∣
∣

(
1

2

∣
∣ŵx(0, t)

∣
∣2 + ∥

∥ŵx(t)
∥
∥2
)

.

Thus, (5.86) holds.
Equation (5.87): We evaluate ŵx(1, t) by using (5.81), Young’s Inequality and
Lemma 2.1 as follows:

|ŵx(1, t)|2

≤ 2τ̂ 2(t)γ̇ 2(t)XT(t)
∂P

∂γ
BBT

∂P

∂γ
X(t) + 2τ̂ 2(t)

((
A − BBTP(γ (t))

)
X(t)

+Bũ(0, t) + Bŵ(0, t)
)T

P(γ (t))BBTP(γ (t))
((

A − BBTP(γ (t))
)
X(t)

+Bũ(0, t) + Bŵ(0, t)
)

≤ 2τ̂ 2(t)γ̇ 2(t)XT(t)
∂P

∂γ
BBT

∂P

∂γ
X(t) + 2nγ (t)τ̂ 2(t)

((
A − BBTP(γ (t))

)
X(t)

+Bũ(0, t) + Bŵ(0, t)
)T

P(γ (t))
((

A − BBTP(γ (t))
)
X(t)

+Bũ(0, t) + Bŵ(0, t)
)

≤ 2τ̂ 2(t)γ̇ 2(t)XT(t)
∂P

∂γ
BBT

∂P

∂γ
X(t) + 6nγ (t)τ̂ 2(t)

(
XT(t)

(
A − BBTP(γ (t))

)T

×P(γ (t))
(
A − BBTP(γ (t))

)
X(t) + ũT(0, t)BTP(γ (t))Bũ(0, t)

+ŵT(0, t)BTP(γ (t))Bŵ(0, t)
)

≤ 2τ̂ 2(t)γ̇ 2(t)XT(t)
∂P

∂γ
BBT

∂P

∂γ
X(t)

+6τ̂ 2(t)n2γ 2(t)

(
n + 1

2
γ (t)XT(t)P (γ (t))X(t) + |ũ(0, t)|2 + ∣

∣ŵ(0, t)
∣
∣2
)

.

�
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5.3.3 Direct Stability Analysis

Based on the fact that τ̂ (t) has a continuous second derivative, we can establish the
second-order differentiability of the feedback gain matrix F(γ (t)), the state X(t)

and the input U(t). The differentiability of these signals is extensively involved in
the construction of the Lyapunov functional and stability analysis to be carried out
next.

Lemma 5.4 The time-varying feedback gain matrix F(γ (t)) in (5.60) is bounded
and has a continuous second derivative on t ∈ [−τ,∞).

Proof By the time-varying low gain feedback design (5.62), τ̂ (t) ∈ C[−τ,∞) is
positive and has a finite limit τ , and hence τ̂ (t) is bounded on t ∈ [−τ,∞). Suppose
that

inf
t≥−τ

τ̂ (t) = τmin, (5.90)

and

sup
t≥−τ

τ̂ (t) = τmax, (5.91)

where 0 < τmin ≤ τmax. By the inverse proportionality relationship between γ (t)

and τ̂ (t), γ (t) is also bounded, with

inf
t≥−τ

γ (t) = h/τmax (5.92)

and

sup
t≥−τ

γ (t) = h/τmin. (5.93)

The increasing monotonicity of P(γ ) with respect to γ by Lemma 2.1 implies that
P(γ (t)) is bounded with

P(h/τmax) ≤ P(γ (t)) ≤ P(h/τmin). (5.94)

Therefore, the boundedness of F(γ (t)) follows readily from the construction of

F(γ (t)) = −BTP(γ (t)).

On the other hand, as noted in [121], P(γ ) is a rational matrix function of γ ,
which implies that P(γ ) is infinitely differentiable with respect to the feedback
parameter. The first and second derivatives of F(γ (t)) with respect to t are given as
follows:
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Ḟ (γ (t)) = BT
∂P

∂γ

h

τ̂ 2(t)
˙̂τ(t), (5.95)

F̈ (γ (t)) = BT
h

τ̂ 2(t)

(
− ∂2P

∂γ 2

h

τ̂ 2(t)
˙̂τ 2(t) − 2

∂P

∂γ

˙̂τ 2(t)

τ̂ (t)
+ ∂P

∂γ
¨̂τ(t)

)
, (5.96)

from which it follows that F(γ (t)) has a continuous second derivative with respect
to t since τ̂ (t) ∈ C2[−τ,∞). �

Lemma 5.5 With the initial condition X(θ) = ψ(θ) ∈ C[−τ, 0], system (5.54)
under the time-varying low gain feedback law (5.60) has a unique solution X(t) ∈
C[−τ,∞). Moreover, U(t) ∈ C[−τ,∞) and X(t), U(t) ∈ C1(0,∞) ∩ C2(τ,∞),
where the notation C1(0,∞) ∩ C2(τ,∞) denotes the set of functions defined on
(0,∞) that has continuous first-order derivative on (0,∞) and has continuous
second-order derivative on (τ,∞).

Proof The proof follows the general idea of the proof of Theorem 3.1 in [12]. Under
the time-varying low gain feedback law (5.60), system (5.54) becomes

Ẋ(t) = AX(t) + BF(γ (t − τ))X(t − τ), t ≥ 0. (5.97)

Considering the continuity of both F(γ (θ)) and ψ(θ) on θ ∈ [−τ, 0], there exists a
unique solution

X(t) = eAtψ(0) +
∫ t

0
eA(t−s)BF (γ (s − τ))ψ(s − τ)ds,

on t ∈ [0, τ ], which implies that X(t) ∈ C[−τ, τ ]. Furthermore, the solution X(t)

on t ∈ [τ, 2τ ] is obtained as follows:

X(t) = eA(t−τ)X(τ) +
∫ t

τ

eA(t−s)BF (γ (s − τ))X(s − τ)ds, t ∈ [τ, 2τ ],

which implies that X(t) ∈ C[−τ, 2τ ] due to the continuity of X(t) and F(γ (t))

on [0, τ ]. Similarly, the existence and uniqueness of X(t) can be established along
the time axis toward positive infinity. The continuity and uniqueness of X(t) on
t ∈ [−τ,∞) follow readily.

From the right-hand side of (5.97), we obtain Ẋ(t) ∈ C(0,∞) in view of the fact
that X(t − τ) is continuous on t ∈ (0,∞). Taking the time derivative of both sides
of (5.97) yields

Ẍ(t) = A2X(t) + ABF(γ (t − τ))X(t − τ) + BḞ (γ (t − τ))X(t − τ)

+BF(γ (t − τ))AX(t − τ) + BF(γ (t − τ))BF(γ (t − 2τ))X(t − 2τ),

which implies that X(t) ∈ C2(τ,∞) since X(t) ∈ C[−τ,∞) and F(γ (t)) is
continuously differentiable on t ∈ [−τ,∞), as established in Lemma 5.4.
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Considering the time-varying low gain feedback law

U(t) = F(γ (t))X(t), (5.98)

we know that U(t) ∈ C[−τ,∞) because both X(t) and F(γ (t)) are continuous on
t ∈ [−τ,∞). Also, the first and second derivatives of U(t) take the following form:

U̇ (t) = Ḟ (γ (t))X(t) + F(γ (t))Ẋ(t), (5.99)

Ü (t) = F̈ (γ (t))X(t) + 2Ḟ (γ (t))Ẋ(t) + F(γ (t))Ẍ(t), (5.100)

which, in view of X(t) ∈ C[−τ,∞) ∩ C1(0,∞) ∩ C2(τ,∞) and the continuity of
the second derivative of F(γ (t)), imply that U(t) ∈ C1(0,∞) ∩ C2(τ,∞). �


With the time-varying low gain feedback law and the PDE representation of the
closed-loop system in hand, we can now establish global regulation of the system
by a direct Lyapunov stability analysis.

Theorem 5.2 There exists a sufficiently small positive constant h� such that, for
each h ∈ (0, h�], the time-varying low gain feedback law (5.60) globally regulates
X(t) and U(t) of system (5.54) to zero, that is,

lim
t→∞ X(t) = 0, lim

t→∞ U(t) = 0,

for any given X(θ) ∈ C[−τ, 0] and U(θ) ∈ C[−τ, 0].
Proof Inspired by the Lyapunov functional in the stability analysis of linear systems
under an adaptive predictor feedback law [15], where a term involving τ̃ 2(t) is
introduced to bound τ̃ (t), we consider

V (xt , γ (t)) = XT(t)P (γ (t))X(t) + b1τ

∫ 1

0
(1 + x) |ũ(x, t)|2 dx

+ b2τ̂ (t)

∫ 1

0
(1 + x)

(∣
∣ŵ(x, t)

∣
∣2 + ∣

∣ŵx(x, t)
∣
∣2
)

dx, (5.101)

by discarding the term associated with τ̃ 2(t) because τ̂ (t) in our case is not an
estimate of τ but only provides information of an upper bound of delay to the time-
varying low gain feedback law in order to achieve regulation. Here, b1 and b2 are
two positive constants whose values are to be determined later. Taking the time
derivative of V along the closed-loop trajectory gives,

V̇ (Xt , γ (t))

= 2ẊT(t)P (γ (t))X(t) + XT(t)Ṗ (γ (t))X(t)
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+ 2b1

∫ 1

0
(1 + x)ũT(x, t)

(

ũx(x, t)

−
(
τ̃ + τ ˙̂τ(t)(x − 1)

) ŵx(x, t)

τ̂ (t)

)

dx + 2b2

∫ 1

0
(1 + x)ŵT(x, t)

×
(

ŵx(x, t)
(

1 + ˙̂τ(t)(x − 1)
)

+ τ̂ (t)BT
∂P

∂γ
γ̇ (t)X(t) + τ̂ (t)BTP(γ (t))

×
((

A − BTP(γ (t))
)
X(t) + Bũ(0, t) + Bŵ(0, t)

))

dx

+ 2b2

∫ 1

0
(1 + x)ŵT

x(x, t)
(
ŵxx(x, t)

(
1 + ˙̂τ(t)(x − 1)

)
+ ˙̂τ(t)ŵx(x, t)

)
dx

+ b2
˙̂τ(t)

∫ 1

0
(1 + x)

(∣
∣ŵ(x, t)

∣
∣2 + ∣

∣ŵx(x, t)
∣
∣2
)

dx, (5.102)

where (5.70), (5.75), (5.78), and (5.80) are used.
To determine a time domain where V̇ (Xt , γ (t)) is well defined, we first observe

from the right-hand side of (5.102) that the highest order derivative is ŵxx(x, t),
which can be computed as,

ŵxx(x, t) = ûxx(x, t)

= ∂2U

∂s2 τ̂ 2(t)

∣
∣
∣
s=t+τ̂ (t)(x−1)

(5.103)

by virtue of (5.72) and (5.69). Recall from Lemma 5.5 that U(t) has a continuous
second derivative on t ∈ (τ,∞). Then, ŵxx(x, t) is well defined if

t > τ + τmax, (5.104)

where τmax is defined in the proof of Lemma 5.4 as the supremum of τ̂ (t) on t ∈
[−τ,∞). This guarantees that

s = t + τ̂ (t)(x − 1) > τ (5.105)

for any x ∈ [0, 1]. It then follows from X(t) ∈ C1(0,∞), the continuous
differentiability of P(γ (t)) with respect to t , which is equivalent to that of F(γ (t))

as indicated in Lemma 5.4, and τ̂ (t), γ (t) ∈ C1[−τ,∞), which is implied by the
time-varying low gain feedback design (5.61) and (5.62), that V̇ ∈ C[τ + τmax +
1,∞) is well defined. Let

ts = τ + τmax + 1 (5.106)

denote the starting point of the consideration of V̇ (Xt , γ (t)) as a function of t .
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With the help of the parametric algebraic Riccati equation (5.59) and the closed-
loop representation (5.77), we obtain from (5.102) that

V̇ (Xt , γ (t)) = XT(t)
(

− γ (t)P (γ (t)) − P(γ (t))BBTP(γ (t))
)
X(t)

+ 2XT(t)P (γ (t))Bũ(0, t) + 2XT(t)P (γ (t))Bŵ(0, t)

+ XT(t)
∂P

∂γ
γ̇ (t)X(t)

+ 2b1

∫ 1

0
(1 + x)ũT(x, t)ũx(x, t)dx

− 2b1

τ̂ (t)

∫ 1

0
(1 + x)

(
τ̃ + τ ˙̂τ(t)(x − 1)

)
ũT(x, t)ŵx(x, t)dx

+ 2b2

∫ 1

0
(1 + x)ŵT(x, t)ŵx(x, t)

(
1 + ˙̂τ(t)(x − 1)

)
dx

+ 2b2

∫ 1

0
(1 + x)ŵT(x, t)τ̂ (t)BTP(γ (t))

×
( (

A − BBTP(γ (t))
)
X(t) + Bũ(0, t) + Bŵ(0, t)

)
dx

+ 2b2

∫ 1

0
(1 + x)ŵT(x, t)τ̂ (t)BT

∂P

∂γ
γ̇ (t)X(t)dx

+ 2b2

∫ 1

0
(1 + x)ŵT

x(x, t)ŵxx(x, t)
(

1 + ˙̂τ(t)(x − 1)
)

dx

+ 2b2

∫ 1

0
(1 + x)

∣
∣ŵx(x, t)

∣
∣2 ˙̂τ(t)dx

+ b2
˙̂τ(t)

∫ 1

0
(1 + x)

(∣
∣ŵ(x, t)

∣
∣2 + ∣

∣ŵx(x, t)
∣
∣2
)

dx.

Next, we use

∫ 1

0
(1 + x)ũT(x, t)ũx(x, t)dx = −1

2
(|ũ(0, t)|2 + |ũ(t)‖2),

Young’s Inequality and the properties (5.82)–(5.86) in Lemma 5.3 to estimate
V̇ (Xt , γ (t)) as,

V̇ (Xt , γ (t)) ≤ −γ (t)XT(t)P (γ (t))X(t) + 2 |ũ(0, t)|2

+ 2
∣
∣ŵ(0, t)

∣
∣2 + XT(t)

∂P

∂γ
γ̇ (t)X(t)
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− b1

(
|ũ(0, t)|2 + ‖ũ(t)‖2

)
+ 2b1

|τ̃ | + 1
2 τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)

(
ε ‖ũ(t)‖2

+1

ε

∥
∥ŵx(t)

∥
∥2
)

+ 2b2

(
1

2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

) ∣
∣ŵ(0, t)

∣
∣2

+
(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

2

)
∥
∥ŵ(t)

∥
∥2
)

+ 2b2

(

τ̂ (t)nγ (t)
∥
∥ŵ(t)

∥
∥2 + 3

2
τ̂ (t)n(n + 1)γ 2(t)XT(t)P (γ (t))X(t)

+3τ̂ (t)nγ (t)
(
|ũ(0, t)|2 + ∣

∣ŵ(0, t)
∣
∣2
))

+ 2b2

⎛

⎝h
1
2
∥
∥ŵ(t)

∥
∥2 +

( ˙̂τ(t)

τ̂ (t)

)2

h
3
2 XT(t)

∂P

∂γ
BBT ∂P

∂γ
X(t)

⎞

⎠

+ 2b2

(
∣
∣ŵx(1, t)

∣
∣2 + 1

2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

) ∣
∣ŵx(0, t)

∣
∣2 +

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

2

)
∥
∥ŵx(t)

∥
∥2
)

+ 4b2| ˙̂τ(t)
∥
∥ŵx(t)

∥
∥2 + 2b2| ˙̂τ(t)|

(∥
∥ŵ(t)

∥
∥2 + ∥

∥ŵx(t)
∥
∥2
)

. (5.107)

Substitution of
∣
∣ŵx(1, t)

∣
∣2 in (5.107) by its estimate (5.87) and arranging the terms

in (5.107) give

V̇ (Xt , γ (t)) ≤ XT(t)P (γ (t))X(t)
(
−γ (t) + 6b2τ̂2(t)n2(n + 1)γ 3(t)

+ 3b2τ̂ (t)n(n + 1)γ 2(t)
)

+ |ũ(0, t)|2 (2 − b1 + 6b2τ̂ (t)nγ (t)

+ 12b2τ̂2(t)n2γ 2(t)
)

+ ∣
∣ŵ(0, t)

∣
∣2
(

2 + b2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
+ 6b2τ̂ (t)nγ (t)

+ 12b2τ̂2(t)n2γ 2(t)
)

+ ‖ũ(t)‖2

⎛

⎝−b1 + 2b1ε
|τ̃ | + 1

2 τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)

⎞

⎠

+ XT(t)

⎛

⎝∂P

∂γ
γ̇ (t) + 2b2h

3
2

( ˙̂τ(t)

τ̂ (t)

)2
∂P

∂γ
BBT ∂P

∂γ

+ 4b2τ̂2(t)γ̇ 2(t)
∂P

∂γ
BBT ∂P

∂γ

)

X(t)

+ ∥
∥ŵx(t)

∥
∥2

(
2b1

ε

|τ̃ | + 1
2 τ | ˙̂τ(t)|

τ̂ (t)
− b2 + 8b2| ˙̂τ(t)|

)

+ ∥
∥ŵ(t)

∥
∥2
(
−b2 + 2b2τ̂ (t)nγ (t) + 2b2h

1
2 + 4b2| ˙̂τ(t)|

)

+ ∣
∣ŵx(0, t)

∣
∣2 b2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
. (5.108)
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Recall that

γ (t) = h

τ̂ (t)
. (5.109)

We have

h = γ (t)τ̂ (t).

Substitution of γ (t)τ̂ (t) in (5.108) by h simplifies the estimate of V̇ (Xt , γ (t)) as
follows:

V̇ (Xt , γ (t)) ≤ γ (t)XT(t)P (γ (t))X(t)
(
−1 + 6b2n

2(n + 1)h2

+3b2n(n + 1)h) + |ũ(0, t)|2
(

2 − b1 + 6b2nh + 12b2n
2h2
)

+ ∣
∣ŵ(0, t)

∣
∣2
(
b2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
+ 2 + 6b2nh + 12b2n

2h2
)

+ ‖ũ(t)‖2 b1

⎛

⎝−1 + 2ε
|τ̃ | + 1

2τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)

⎞

⎠

+ XT(t)

⎛

⎝− h

τ̂ 2(t)
˙̂τ(t)

∂P

∂γ
+ 2b2

( ˙̂τ(t)

τ̂ (t)

)2
∂P

∂γ
BBT

∂P

∂γ
h

3
2

+4b2

( ˙̂τ(t)

τ̂ (t)

)2
∂P

∂γ
BBT

∂P

∂γ
h2

⎞

⎠X(t)

+ ∥
∥ŵx(t)

∥
∥2

⎛

⎝2b1

ε

|τ̃ | + 1
2τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)
+ 8b2

∣
∣
∣ ˙̂τ(t)

∣
∣
∣− b2

⎞

⎠

+ ∥
∥ŵ(t)

∥
∥2

b2

(
−1 + 2nh + 2h

1
2 + 4

∣
∣
∣ ˙̂τ(t)

∣
∣
∣
)

+ ∣
∣ŵx(0, t)

∣
∣2 b2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
. (5.110)

To group terms that involve ∂P
∂γ

in (5.110), we consider

∂P

∂γ
BBT

∂P

∂γ
=
(

∂P

∂γ

) 1
2
(

∂P

∂γ

) 1
2

BBT

(
∂P

∂γ

) 1
2
(

∂P

∂γ

) 1
2

≤ tr

(

BT
∂P

∂γ
B

)
∂P

∂γ

= ∂

∂γ

(
tr
(
BTP(γ )B

)) ∂P

∂γ

= n
∂P

∂γ
,
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where Lemma 2.1 is used. It then follows that

− h

τ̂ 2(t)
˙̂τ(t)

∂P

∂γ
+ 2b2

( ˙̂τ(t)

τ̂ (t)

)2
∂P

∂γ
BBT

∂P

∂γ

(
h

3
2 + 2h2

)

≤ h
∂P

∂γ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ 2(t)

(
1 + 2b2

∣
∣
∣ ˙̂τ(t)

∣
∣
∣h

1
2 n + 4b2

∣
∣
∣ ˙̂τ(t)

∣
∣
∣hn

)

≤ γ (t)P (γ (t))
τmaxλmax

(
maxγ∈[h/τmax,h/τmin]

{
∂P
∂γ

})

λmin(P ( h
τmax

))

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ 2
min

×
(

1 + 2b2

∣
∣
∣ ˙̂τ(t)

∣
∣
∣h

1
2 n + 4b2

∣
∣
∣ ˙̂τ(t)

∣
∣
∣hn

)
, (5.111)

where λmin(·) and λmax(·) denote respectively the minimum and the maximum
eigenvalue of a real symmetric matrix, τmin and τmax are respectively the infimum
and the supremum of τ̂ (t) over [−τ,∞), and we have used the boundedness of τ̂ (t),
γ (t) and P(γ (t)) as shown in the proof of Lemma 5.4. By denoting

σ =
τmaxλmax

(
maxγ∈[h/τmax,h/τmin]

{
∂P
∂γ

})

τ 2
minλmin

(
P
(

h
τmax

)) ,

and recalling from the design of τ̂ (t) that

lim
t→∞ τ̂ (t) = τ (5.112)

and

lim
t→∞

˙̂τ(t) = 0, (5.113)

we see that there exists a sufficiently large time constant t0 ≥ ts such that, for each
t ≥ t0,

| ˙̂τ(t)| ≤ min

{
1

2b2h
1
2 n + 4b2hn

,
h

σ

}

.

Thus, (5.111) can be continued as follows:

− h

τ̂ 2(t)
˙̂τ(t)

∂P

∂γ
+ 2b2

( ˙̂τ(t)

τ̂ (t)

)2
∂P

∂γ
BBT

∂P

∂γ

(
h

3
2 + 2h2

)
≤ 2hγ (t)P (γ (t)).
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The estimate of V̇ (Xt , γ (t)) then takes the form,

V̇ (Xt , γ (t)) ≤ γ (t)XT(t)P (γ (t))X(t)
(
−1 + 2h + 6b2n

2(n + 1)h2 + 3b2n(n + 1)h
)

+ |ũ(0, t)|2
(

2 − b1 + 6b2nh + 12b2n
2h2
)

+ ∣∣ŵ(0, t)
∣
∣2
(
b2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
+ 2 + 6b2nh + 12b2n

2h2
)

+‖ũ(t)‖2 b1

⎛

⎝−1 + 2ε
|τ̃ | + 1

2τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)

⎞

⎠

+ ∥∥ŵx(t)
∥
∥2

⎛

⎝2b1

ε

|τ̃ | + 1
2τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)
+ 8b2

∣
∣
∣ ˙̂τ(t)

∣
∣
∣− b2

⎞

⎠

+ ∥∥ŵ(t)
∥
∥2

b2

(
−1 + 2nh + 2h

1
2 + 4| ˙̂τ(t)|

)

+ ∣∣ŵx(0, t)
∣
∣2 b2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
. (5.114)

We next simplify those terms in (5.114) that contain | ˙̂τ(t)|. In view of

lim
t→∞ τ̂ (t) = τ

and

lim
t→∞

˙̂τ(t) = 0,

both of which are required by the time-varying parameter design, as given in (5.62),
there exists a sufficiently large positive constant t1 ≥ t0 such that, for each t ≥ t1,

0 ≤ τ

τ̂ (t)
≤ 2

(

or
|τ̃ |
τ̂ (t)

≤ 1

)

,

| ˙̂τ(t)| ≤ τmin

τ
,

which together guarantee that

|τ̃ | + 1
2τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)
≤ 1 + τmin

2τ̂ (t)

≤ 3

2
. (5.115)

Let ε = 1
4 . Then,

−1 + 2ε
|τ̃ | + 1

2τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)
< 0.
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Then, the term associated with ‖ũ(t)‖2 in (5.114) becomes negative. Also, there
exists a sufficiently large positive constant t2 ≥ t1 such that,

∣
∣
∣ ˙̂τ(t)

∣
∣
∣ ≤ 1

16
, t ≥ t2. (5.116)

Thus, with the help of (5.115), we obtain

2b1

ε

|τ̃ | + 1
2τ

∣
∣
∣ ˙̂τ(t)

∣
∣
∣

τ̂ (t)
+ 8b2

∣
∣
∣ ˙̂τ(t)

∣
∣
∣− b2 ≤ 12b1 − b2

2
. (5.117)

To make the right-hand side of (5.117) non-positive, we let b1 and b2 satisfy

24b1 ≤ b2. (5.118)

It then follows that the term corresponding to
∥
∥ŵx(t)

∥
∥2 in (5.114) is non-positive.

Choose b2 > 4. Then, there exists a sufficiently large constant t3 ≥ t2 such that,
for each t ≥ t3,

∣
∣
∣ ˙̂τ(t)

∣
∣
∣ ≤ 1

2
− 2

b2
, (5.119)

which is equivalent to

1 −
∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 2

b2
≥ 1

2
. (5.120)

Then,

b2

(∣
∣
∣ ˙̂τ(t)

∣
∣
∣− 1

)
+ 2 + 6b2nh + 12b2n

2h2 < 0, (5.121)

which is implied by

6nh + 12n2h2 <
1

2
, (5.122)

leads to the negativeness of the coefficient associated with
∣
∣ŵ(0, t)

∣
∣2 in (5.114).

Note that the definition of t3 naturally gives rise to the negativeness of the coefficient
associated with

∣
∣ŵx(0, t)

∣
∣2 in (5.114), and

−1 + 2nh + 2h
1
2 + 4

∣
∣
∣ ˙̂τ(t)

∣
∣
∣ < 0 (5.123)

if
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2nh + 2h
1
2 <

1

2
. (5.124)

In view of (5.114), we see that there exists a sufficiently large constant t3 such
that, for each t ≥ t3, the coefficients associated with ‖ũ(t)‖2,

∥
∥ŵx(t)

∥
∥2,

∥
∥ŵ(t)

∥
∥2,

|ŵ(0, t)|2 and |ŵx(0, t)|2 in (5.114) are all non-positive as long as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b2 > 4,

24b1 ≤ b2,

nh(1 + 2nh) < 1
12 ,

nh + h
1
2 < 1

4 .

It is then clear that V̇ (Xt , γ (t)) < 0 on t ≥ t3 if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2h + 6b2n
2(n + 1)h2 + 3b2n(n + 1)h < 1,

6b2nh(1 + 2nh) < b1 − 2,

nh(1 + 2nh) < 1
12 ,

nh + h
1
2 < 1

4 ,

24b1 ≤ b2,

b1 > 2,

b2 > 4

(5.125)

holds. We first choose b1 and b2 according to the last row of (5.125). Then,
substitution of b1 and b2 in the rest of (5.125) shows that there exists a sufficiently
small h� such that, for each h ∈ (0, h�],

V̇ (Xt , γ (t)) < 0, t ≥ t3. (5.126)

It is worth mentioning here that h� is independent of any information of the delay,
including τ , but only depends on the dimension of the system n.

To complete the proof, it remains to establish global regulation of both X(t) and
U(t). We first demonstrate the square integrability of X(t) over t ≥ 0. By denoting

1 − 2h − 6b2n
2(n + 1)h2 − 3b2n(n + 1)h = η,

which is a positive constant as long as h is chosen small enough, we have from
(5.114) that

V̇ (Xt , γ (t)) ≤ −ηγ (t)XT(t)P (γ (t))X(t), t ≥ t3.

Then, in view of the boundedness of γ (t) and P(γ (t)), as established in the proof
of Lemma 5.4, we have,
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ηλmin

(
P

(
h

τmax

)) h

τmax
|X(t)|2 ≤ −V̇ , t ≥ t3,

which leads to
∫ ∞

t3

|X(t)|2dt ≤ τmax(V (Xt3 , γ (t3)) − V (X∞, γ (∞))

ηλmin

(
P
(

h
τmax

) )
h

≤ τmaxV (Xt3 , γ (t3))

ηλmin

(
P
(

h
τmax

) )
h

.

Recalling that V is continuously differentiable on t ∈ [ts ,∞), we see that V is
bounded for t ∈ [ts , t3], where t3 ≥ ts according to the definition of t3. Then,

∫ ∞

t3

|X(t)|2dt < ∞,

which, together with the fact that X(t) ∈ C[0, t3], as indicated in Lemma 5.4, imply
that

∫ ∞

0
|X(t)|2dt =

∫ t3

0
|X(t)|2dt +

∫ ∞

t3

|X(t)|2dt

≤ t3 max
t∈[0,t3]

{
|X(t)|2

}
+
∫ ∞

t3

|X(t)|2dt

< ∞,

that is, X(t) is square integrable on t ∈ [0,∞).
On the other hand, from the definition of V (Xt , γ (t)) in (5.101) and the

boundedness of V (Xt , γ (t)) for t ∈ [ts ,∞), which can be seen by noting the
boundedness of V (Xt , γ (t)) on t ∈ [ts , t3] and V̇ (Xt , γ (t)) < 0 on t ≥ t3, we
establish the boundedness of X(t) on t ∈ [ts ,∞). Then, X(t) < ∞ for t ∈ [−τ,∞)

readily follows from the continuity of X(t) on t ∈ [−τ, ts]. Thus, (5.97) implies the
boundedness of Ẋ(t) on t ≥ 0 since F(γ (t)) is bounded, as indicated in Lemma 5.4.
With the square integrability of X(t) and the boundedness of Ẋ(t), global regulation
of X(t), which further implies that

lim
t→∞ U(t) = 0 (5.127)

by (5.60) and the boundedness of F(γ (t)), follows from the Barbalat’s lemma. �

Remark 5.6 The requirement for τ̂ (t) to have a continuous second derivative comes
from the requirement for the well definedness of the partial derivatives in the
PDEs (5.70), (5.75), (5.78), and (5.80), where ŵxt and ŵxx are the highest order
derivatives. From the definition of ŵ(x, t) in (5.72) and the time-varying low gain
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feedback law (5.60) it follows that both the second-order partial derivatives contain
the same term ¨̂τ(s)|s=t+τ̂ (x−1). Take ŵxx(x, t) for example,

ŵxx(x, t) =
(

BT
h

τ̂ 2(s)

(
− ∂2P

∂γ 2(s)

h

τ̂ 2(s)
˙̂τ 2(s)−2

∂P

∂γ (s)

˙̂τ 2(s)

τ̂ (s)
+ ∂P

∂γ (s)
¨̂τ(s)

)
X(s)

+2BT
∂P

∂γ (s)

h

τ̂ 2(s)
˙̂τ(s)Ẋ(s) − BTP(γ (s))Ẍ(s)

)

τ̂ 2(t)

∣
∣
∣
∣
s=t+τ̂ (t)(x−1)

,

where we have used (5.95), (5.96), (5.100), (5.103), and the fact that

F(γ (t)) = −BTP(γ (t)). (5.128)

Thus, the existence of ¨̂τ(t) is necessary for that of ŵxx(x, t). Without loss of
generality, we assume that τ̂ (t) ∈ C2[−τ,∞) as in the design of the time-varying
low gain feedback laws in Sect. 5.3.1. This requirement on τ̂ (t), which is necessary
in our design, facilitates all our derivations in Sects. 5.3.2 and 5.3.3, and in general,
cannot be relaxed unless a new Lyapunov analysis on the closed-loop system is
established involving at most the first derivative of τ̂ (t). �

Theorem 5.2 reveals a group of time-varying low gain feedback laws which
achieve global regulation of the closed-loop system. By the structure of the time-
varying feedback parameter in (5.61) and Theorem 5.2, h and τ̂ (t) need to be
designed first in order to construct γ (t). Thus, for the sake of simplicity, we consider
directly designing γ (t) without involving h and τ̂ (t).

Corollary 5.3 There exists a sufficiently small positive constant γ �, which is
inversely proportional to the delay bound τ , such that the time-varying low gain
feedback law (5.60) globally regulates X(t) and U(t) of system (5.54) as long as

γ (t) ∈ C2[−τ,∞), γ (t) > 0, lim
t→∞ γ (t) ∈ (0, γ �], lim

t→∞ γ̇ (t) = 0.(5.129)

Proof Given a γ (t) satisfying (5.129), we write γ (t) in the form of (5.61), where h

and τ̂ (t) are selected as

h = τ lim
t→∞ γ (t) > 0 (5.130)

and

τ̂ (t) = h

γ (t)
. (5.131)

It can be readily verified that

lim
t→∞ τ̂ (t) = τ . (5.132)
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Also, γ (t) ∈ C2[−τ,∞), γ (t) > 0, and limt→∞ γ̇ (t) = 0 imply that τ̂ (t) ∈
C2[−τ,∞), τ̂ (t) > 0 and limt→∞ ˙̂τ(t) = 0, respectively, because

˙̂τ(t) = −hγ̇ (t)

γ 2(t)
,

¨̂τ(t) = h

γ 2(t)

(
2γ̇ 2(t)

γ (t)
− γ̈ (t)

)

.

Note from the selection of

h = τ lim
t→∞ γ (t) (5.133)

that limt→∞ γ (t) ∈ (0, γ �] is equivalent to h ∈ (0, τγ �]. Theorem 5.2 concludes
that there exists a sufficiently small positive constant h�, which is independent of
any information of the delay, such that, for any h ∈ (0, h�], the time-varying low
gain feedback law

U(t) = −BTP(γ (t))X(t) (5.134)

globally regulates the system. Thus, there exists a sufficiently small positive constant

γ � = h�

τ
, (5.135)

which is inversely proportional to τ , such that the regulation of the closed-loop
system is guaranteed if limt→∞ γ (t) ∈ (0, γ �]. �

Remark 5.7 The traditional constant low gain feedback law is a special case of the
time-varying low gain feedback law. In particular, Corollary 5.2 concludes that there
exists a sufficiently small positive constant γ �, which is inversely proportional to the
upper bound of delay τ such that, for each γ ∈ (0, γ �], the low gain feedback law

U(t) = −BTP(γ )X(t) (5.136)

globally regulates system (5.54). This observation is consistent with the observation
in Remark 5.1. �
Remark 5.8 Dealing with the conservativeness incurred in the Lyapunov stability
analysis on the upper bound of feedback parameter γ under the constant parameter
low gain feedback design, as given by (5.58), the time-varying parameter design
proposed in this section takes a proactive selection of γ at a relatively large
value, which corresponds to a fast convergence rate, during the starting phase of
the system evolution. After the system reaches a state near the equilibrium point
zero, reducing γ to a sufficiently small constant, as required by Corollary 5.3,
would not affect the closed-loop transient performance, while guaranteeing stability.
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Therefore, such a time-varying parameter design would manifest its merits in the
closed-loop performance compared with that of the constant parameter design. �
Remark 5.9 Remark 5.8 provides a guideline for the construction of a time-varying
γ (t) that outperforms a constant γ in terms of the closed-loop performance,
as demonstrated by simulation. A theoretical proof of such an improvement is
challenging due to the time-varying design of γ (t) and remains to be carried out. �

5.3.4 Convergence Rate Analysis

To illustrate the merits of the time-varying low gain feedback design in comparison
with the constant parameter design in terms of the closed-loop performance, we
compare the convergence rates of the closed-loop system under a constant parameter
feedback with different values of the feedback parameter within the range where
exponential stability of the closed-loop system is ensured.

Theorem 5.3 The delay independent state feedback TPF law with a constant
parameter,

U(t) = −BTP(γ )X(t), (5.137)

for a sufficiently small γ > 0, exponentially stabilizes system (5.54) with

|X(t)|2 ≤ λ−1
min(P (γ ))e− β

ζ
t
V (X0, 0), t ≥ 0, (5.138)

where

β = min
{
γ
(

1 − 120n2(n + 1)τ2γ 2 − 60n(n + 1)τγ
)
, 20

(
1 − 2nτγ − 2τ

1
2 γ

1
2

)
, 1
}
,

ζ = max{1, 40τ },

and V (Xt , t) is as given in (5.101) with γ (t) = γ and τ̂ (t) = τ .

Proof The proof follows an analysis similar to that in the proof of Theorem 5.2,
except the distinction between a constant feedback parameter and a time-varying
parameter. With a Lyapunov functional V (Xt , γ (t)) given by (5.101), its estimated
time derivative along the trajectory of the closed-loop system (5.97), (5.108), for the
special case of the constant parameter design takes the form of

V̇ (Xt , γ (t))

≤ γXTPX
(

− 1 + 6b2n
2(n + 1)τ 2γ 2 + 3b2n(n + 1)τγ

)

+|ũ(0, t)|2
(

2 − b1 + 6b2nτγ + 12b2n
2τ 2γ 2

)
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+|ŵ(0, t)|2
(

− b2 + 2 + 6b2nτγ + 12b2n
2τ 2γ 2

)

+‖ũ(t)‖2 b1

(
− 1 + 2ε

|τ̃ |
τ̂ (t)

)
+ ∥
∥ŵx(t)

∥
∥2
(2b1

ε

|τ̃ |
τ̂ (t)

− b2

)

+ ∥∥ŵ(t)
∥
∥2

b2

(
− 1 + 2nτγ + 2τ

1
2 γ

1
2

)
− |ŵx(0, t)|2b2, (5.139)

where we have replaced h with γ τ and all the terms involving γ̇ or ˙̂τ(t) disappear
because of the constant parameter design. Noting that

|τ̃ |
τ̂ (t)

= τ − τ

τ
< 1

and taking ε = 1
3 in (5.139), we arrive at a further estimate of V̇ (Xt , γ (t)),

V̇ (Xt , γ (t)) ≤ γXTPX
(
−1 + 6b2n

2(n + 1)τ 2γ 2 + 3b2n(n + 1)τγ
)

+ |ũ(0, t)|2
(

2 − b1 + 6b2nτγ + 12b2n
2τ 2γ 2

)

+ ∣∣ŵ(0, t)
∣
∣2
(
−b2 + 2 + 6b2nτγ + 12b2n

2τ 2γ 2
)

−1

3
‖ũ(t)‖2 b1 + ∥

∥ŵx(t)
∥
∥2

(6b1 − b2)

+ ∥∥ŵ(t)
∥
∥2

b2

(
−1 + 2nτγ + 2τ

1
2 γ

1
2

)
− ∣
∣ŵx(0, t)

∣
∣2 b2.

(5.140)

With the selection of b1 > 2 and b2 > 6b1, the terms involving ‖ũ(0, t)‖2, |ŵ(0, t)|2
or
∥
∥ŵx(t)

∥
∥2 in (5.140) are negative if

6b2nτγ + 12b2n
2τ 2γ 2 < b1 − 2.

For illustration, we choose b1 = 3 and b2 = 20. Then, a sufficiently small γ

satisfying

max
{

120n2(n + 1)τ 2γ 2 + 60n(n + 1)τγ, 2nτγ + 2τ
1
2 γ

1
2

}
< 1

results in

V̇ (Xt , γ (t)) ≤ − β
(
XTPX + ‖ũ(t)‖2 + ∥

∥ŵ(t)
∥
∥2 + ∥

∥ŵx(t)
∥
∥2
)

≤ − β

ζ
V (Xt , γ (t)),
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where we have used

V (Xt , γ (t)) ≤ max{1, 2b1τ, 2b2τ̂ (t)}
(
XTPX + ‖ũ(t)‖2 + ∥

∥ŵ(t)
∥
∥2 + ∥

∥ŵx(t)
∥
∥2
)

≤ ζ
(
XTPX + ‖ũ(t)‖2 + ∥

∥ŵ(t)
∥
∥2 + ∥

∥ŵx(t)
∥
∥2
)
.

Consequently, an estimate of V (Xt , γ (t)) readily follows from the comparison
lemma,

V (Xt , γ (t)) ≤ e− β
ζ
t
V (X0, 0), t ≥ 0,

which, by the definition of V (Xt , γ (t)) in (5.101), further implies the exponential
convergence of X(t), as expressed in (5.138). �

Remark 5.10 Theorem 5.3 establishes a guaranteed convergence rate of β

2ζ
for

the state of the closed-loop system under the constant parameter design of the
delay independent truncated predictor feedback law. Examination of the guaranteed
convergence rate indicates that γ only appears in the expression of β and

lim
γ→0

β = lim
γ→γ

β

= 0,

where

γ = min{γ1, γ2} (5.141)

with γ1 and γ2 being the unique positive solutions to the nonlinear equations,

120n2(n + 1)τ 2γ 2 + 60n(n + 1)τγ = 1,

2nτγ + 2τ
1
2 γ

1
2 = 1,

respectively. Thus, there exists a maximum β on the interval γ ∈ (0, γ ), corre-
sponding to the fastest convergence rate. �

5.3.5 A Numerical Example

To compare the closed-loop performance of system (5.54) under the traditional
constant parameter low gain feedback and the time-varying parameter low gain
feedback, we consider system (5.54) with

A =
[

0 1
0 0

]

, B =
[

0
1

]

, τ = τ = 1, φ(θ) =
[

1
−1

]

, θ ∈ [−1, 0],
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as an example. The values of γ (t) is designed to decrease slowly from 0.3. On the
other hand, limt→∞ γ (t) is computed as 7.6 × 10−4 by employing (5.125), where
b1 = 3 and b2 = 72, Corollary 5.3 and the fact that τ = 1.

Simulation shows that, regardless of how conservative the bound on limt→∞ γ (t)

is, it does not prevent us from designing a time-varying low gain feedback law with
better closed-loop performance than a traditional constant parameter design. This
can be demonstrated by selecting

γ (t) = −0.0953 arctan(t − 20) + 0.1504, t ≥ −1, (5.142)

which satisfies all the design requirements in (5.129). Evolution of the time-varying
low gain parameter, the system state, and the control input under the time-varying
parameter design is illustrated in Figs. 5.5 and 5.6. The system evolution under the
constant parameter design with γ = 0.068, which is the theoretical upper bound
given by (5.58), is also given for comparison. Obviously, this choice of γ (t) achieves
better closed-loop performance than the choice of a constant γ .

5.4 Delay Independent Truncated Predictor Output
Feedback Design

A delay-dependent or delay independent truncated predictor state feedback law
stabilizes a general linear system in the presence of a certain amount of input
delay. Results in Chap. 4 and Sect. 5.2 provide estimates of the maximum delay
bound under which the closed-loop stability can be achieved. In the face of time-
varying or unknown delay, delay independent feedback laws are preferable over
delay-dependent feedback laws as the former provide robustness to uncertainties
in the delay. We present in this section a delay independent observer based output
feedback law that stabilizes the system. Our design is of the delay independence
nature. We establish an estimate of the maximum allowable delay bound through a
Razumikhin-type stability analysis. This delay bound result reveals the capability
of the proposed output feedback law in handling an arbitrarily large input delay in
linear systems with all open loop poles at the origin or in the open left-half plane.
Compared with that of the delay-dependent output feedback laws in the literature,
this same level of stabilization result is not sacrificed by the absence of the prior
knowledge of the delay.

More specifically, we consider stabilization of a general linear system with time-
varying input delay by delay independent output feedback. A state observer is
constructed, without resorting to any knowledge of the delay, not even its upper
bound. The design of such an observer based output feedback law, seemingly
straightforward at the first glance, turns out to be a meticulous one because of the
feed of the current input signal rather than the delayed version into the dynamic of
the state observer to guarantee the delay independence of the observer dynamics.
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Fig. 5.5 γ (t) given by (5.142) and γ = 0.068, and the corresponding evolution of X1(t)
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Fig. 5.6 The evolution of X2(t) and U(t) corresponding to γ (t) given by (5.142) and γ = 0.068
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An estimated maximum delay bound for the stability of a general linear system
under the influence of the proposed observer-based output feedback law is derived.
The expression of the delay bound indicates that, for a class of systems whose
open loop poles are at the origin or in the open left-half plane, the proposed delay
independent output feedback law would handle an arbitrarily large delay, just as the
delay-dependent truncated predictor output feedback laws constructed in [63].

5.4.1 Feedback Design

We consider a linear system with a time-varying delay in the input,

⎧
⎨

⎩

ẋ(t) = Ax(t) + Bu(φ(t)), t ≥ 0,

y(t) = Cx(t),

x(0) = x0,

(5.143)

where x ∈ R
n, u ∈ R

m, y ∈ R
q , and x0 ∈ R

n are the state, the input, the output,
and the initial state, respectively. The time-varying delay function φ(t) : R+ → R

is assumed to be expressed by

φ(t) = t − d(t),

where the time-varying delay d(t) is continuous and satisfies

0 ≤ d(t) ≤ D, t ≥ 0, (5.144)

and D ∈ R
+ represents an upper bound of the delay. We also assume that the pair

(A,B) is stabilizable and the pair (A,C) is detectable.
Without loss of generality, it is assumed that the pair (A,B) are in the form of

A =
[
AL 0
0 AR

]

, B =
[
BL

BR

]

,

where all eigenvalues of AL ∈ R
nL×nL are on the open left-half plane and all

eigenvalues of AR ∈ R
nR×nR are on the closed right-half plane. The block diagonal

form of matrix A indicates that the stabilizability of the pair (A,B) implies the
controllability of the pair (AR, BR).

It was established in [63] that an output feedback law built upon a delay-
dependent state observer,

{ ˙̂x(t) = Ax̂(t) + Bu(φ(t)) − L
(
y(t) − Cx̂(t)

)
,

u(t) = F(γ )eAd(t)x̂(t),
(5.145)
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stabilizes the system with all open loop poles on the closed left-half plane for an
arbitrarily large delay as long as the feedback gain matrix F(γ ) is designed by the
use of the eigenstructure assignment based low gain feedback technique [61] and the
value of the low gain parameter γ is sufficiently small. Moreover, a slightly simpler
observer-based output feedback law,

{ ˙̂x(t) = Ax̂(t) + Bu(φ(t)) − L
(
y(t) − Cx̂(t)

)
,

u(t) = F(γ )x̂(t),
(5.146)

is shown to stabilize a system with all open loop poles at the origin or in the open
left-half plane for an arbitrarily large delay if F(γ ) is constructed by using the
low gain technique (see [61]). However, in (5.146), the complete knowledge of
the time-varying delay, d(t), is still required in the observer. Thus, to achieve the
objective of a delay independent observer-based output feedback law, we propose
the following observer-based delay independent truncated predictor output feedback
law, also referred to as the delay independent output feedback TPF law,

⎧
⎨

⎩

˙̂x(t) = Ax̂(t) + Bu(t) − L
(
y(t) − Cx̂(t)

)
, t ≥ 0,

u(t) = F(γ )x̂(t),

x̂(θ) = ψ(θ), θ ∈ [−D, 0],
(5.147)

where x̂ is the state of the observer, ψ(θ) is the initial condition of x̂(t) and is
assumed to be piecewise continuous on θ ∈ [−D, 0], L ∈ R

n×p is such that all
eigenvalues of A + LC have a negative real part,

F(γ ) = −B
T
P(γ ),

and

P(γ ) =
[

0 0
0 PR(γ )

]

, (5.148)

with PR(γ ) ∈ R
nR×nR being the unique positive definite solution to the parametric

algebraic Riccati equation

AT
RPR(γ ) + PR(γ )AR − PR(γ )BRB

T
RPR(γ ) = −γPR(γ ), (5.149)

for γ > −2min{Re(λ(AR))}. Note that the controllability of the pair (AR, BR)

guarantees the existence and uniqueness of such PR [122], and the detectability of
the pair (A,C) ensures the existence of such L.

By defining an error signal as

e(t) = x(t) − x̂(t), (5.150)
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we obtain the derivative of e(t) from (5.143) and (5.147),

ė(t) = ẋ(t) − ˙̂x(t)

= Ae(t) + Bu(φ(t)) − Bu(t) + LCe(t)

= (A + LC)e(t) − BBTP
(
x̂(φ(t)) − x̂(t)

)

= (A + LC)e(t) + BBTP(α(t) − β(t)),

where

α(t) = x(t) − x(φ(t)) (5.151)

and

β(t) = e(t) − e(φ(t)). (5.152)

Then, the closed-loop system consisting of system (5.143) and the output feedback
law (5.147) can be written as

{
ẋ(t) = Ax(t) − BBTP(x(φ(t)) − e(φ(t))),

ė(t) = (A + LC)e(t) + BBTP(α(t) − β(t)).
(5.153)

Decompose the state x(t) as

x(t) =
[
xL(t)

xR(t)

]

,

we rewrite the closed-loop system as

⎧
⎨

⎩

ẋL(t) = ALxL(t) − BLB
T
RPR(xR(φ(t)) − eR(φ(t))),

ẋR(t) = ACxR(t) + BRB
T
RPR(αR(t) + eR(φ(t))),

ė(t) = (A + LC)e(t) + BBT
RPR(αR(t) − βR(t)),

(5.154)

where

AC = AR − BRB
T
RPR (5.155)

and signals eL(t) ∈ R
nL , eR(t) ∈ R

nR , αL(t) ∈ R
nL , αR(t) ∈ R

nR , βL(t) ∈ R
nL and

βR(t) ∈ R
nR correspond to the following partitions:

e(t) =
[
eL(t)

eR(t)

]

, α(t) =
[
αL(t)

αR(t)

]

, β(t) =
[
βL(t)

βR(t)

]

,

respectively.
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Clearly, the asymptotic stability of

{
ẋR(t) = ACxR(t) + BRB

T
RPR(αR(t) + eR(φ(t))),

ė(t) = (A + LC)e(t) + BBT
RPR(αR(t) − βR(t))

(5.156)

guarantees that of system (5.154) because AL is Hurwitz. Hence, without loss of
generality, we only need to consider the asymptotic stability of system (5.156) for
simplicity.

As pointed out throughout Chaps. 2–4, it is no longer without loss of generality
to make the assumption on system (5.143) that all the eigenvalues of A are on the
closed right-half plane, as is the case for stabilization analysis of truncated predictor
based state feedback laws (see [124] or [122]).

5.4.2 Stability Analysis

Theorem 5.4 For each γ > 0, there exists D∗ > 0 such that, for each D < D∗,
system (5.156) is asymptotically stable.

Proof We adopt the following Lyapunov function for the closed-loop system
(5.156):

V (xR(t), e(t)) = xT
R(t)PR(γ )xR(t) + eT(t)Re(t),

where PR(γ ) is the unique positive definite solution to (5.149) with

γ > −2min{Re(λ(AR))}, (5.157)

R is the unique positive definite solution to the Lyapunov equation

(A + LC)TR + R(A + LC) = −ξI, (5.158)

and ξ is some positive constant whose value is to be determined later. By using
Young’s Inequality and Lemma 2.1, and defining

σ = tr
(
BTR2B

)
, (5.159)

the derivative of V (xR(t), e(t)) along the trajectory of system (5.156) can be
evaluated as follows:

V̇ (xR(t), e(t))

= (
ACxR(t) + BRB

T
RPR(αR(t) + eR(φ(t)))

)T
PRxR(t) + xT

R(t)PR

(
AcxR(t) + BRB

T
RPR

× (αR(t) + eR(φ(t)))
)+ (

(A + LC)e(t) + BBT
RPR(αR(t) − βR(t))

)T
Re(t)

+ eT(t)R
(
(A + LC)e(t) + BBT

RPR(αR(t) − βR(t))
)
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= xT
R(t)(A

T
CPR + PRAc)xR(t) + 2αT

R(t)PRBRB
T
RPRxR(t) + 2eT

R(φ(t))PRBRB
T
RPRxR(t)

+ eT(t)
(
(A + LC)TR + R(A + LC)

)
e(t) + 2(αR(t) − βR(t))

TPRBRB
TRe(t)

≤ −xT
R(t)

(
γPR + PRBRB

T
RPR

)
xR(t) + 2αT

R(t)PRBRB
T
RPRαR(t)

+ 2eT
R(φ(t))PRBRB

T
RPReR(φ(t)) + xT

R(t)PRBRB
T
RPRxR(t) − ξeT(t)e(t) + 1

2
eT(t)e(t)

+ 2(αR(t) − βR(t))
TPRBRB

TR2BBT
RPR(αR(t) − βR(t))

≤ −γ xT
R(t)PRxR(t)+ 2

(
2tr(AR)+ nRγ

)
αT

R(t)PRαR(t)+ 4
(
2tr(AR) + nRγ

)
eT

R(t)PReR(t)

+ 4
(
2tr(AR) + nRγ

)
βT

R(t)PRβR(t) −
(

ξ − 1

2

)

eT(t)e(t) + 4
(
2tr(AR) + nRγ

)

× σ
(
αT

R(t)PRαR(t) + βT
R(t)PRβR(t)

)

= −γ xT
R(t)PRxR(t) + 2

(
2tr(AR) + nRγ

)
(1 + 2σ)αT

R(t)PRαR(t) + 4
(
2tr(AR) + nRγ

)

× (1 + σ)βT(t)Pβ(t) + eT(t)

(

−
(

ξ − 1

2

)

I + 4
(
2tr(AR) + nRγ

)
P

)

e(t).

(5.160)

For each γ > −2min{Re(λ(AR))}, there exists a sufficiently large ξ such that

γ I + 4
(
2tr(AR) + nRγ

)
P(γ ) ≤

(

ξ − 1

2

)

I, (5.161)

P(γ ) ≤ R, (5.162)

1 < λmax(R), (5.163)

4(A + LC)TP(γ )(A + LC) ≤ 3R
(
�R(γ ) + 2

(
2tr(AR) + nRγ

)2
)

, (5.164)

where �R(γ ) is given by

�R(γ ) = 1

2

(
nRγ + 2tr (AR)

)(
(nR + 1) γ + 2tr (AR)

)− γ tr (AR) − tr
(
A2

R

)
.

Fix this ξ . Based on inequality (5.161), which is equivalent to

−
(

ξ − 1

2

)

I + 4
(
2tr(AR) + nRγ )P (γ

) ≤ −γ I, (5.165)

we estimate V̇ as

V̇ (xR(t), e(t)) ≤ −γ xT
RPRxR − γ eTe + 2

(
2tr(AR) + nRγ

)
(1 + 2σ)αT

R(t)PRαR(t)

+4
(
2tr(AR) + nRγ

)
(1 + σ)βT(t)Pβ(t). (5.166)
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It follows from the definition of αR(t) and (5.156) that

αR(t) =
∫ t

φ(t)

(
AcxR(t) + BRB

T
RPRαR(t) + BRB

T
RPReR(φ(t))

)
dt.

By using Lemmas 2.1, 2.2, and Young’s Inequality, we evaluate

αT
R(t)PRαR(t)

≤ (t − φ(t))

∫ t

φ(t)

(

ACxR(t) + BRB
T
RPRαR(t) + BRB

T
RPReR(φ(t))

)T

×PR

(

ACxR(t) + BRB
T
RPRαR(t) + BRB

T
RPReR(φ(t))

)

dt

≤ 3D

∫ t

φ(t)

(

xT
R(t)AT

CPRACxR(t) + αT
R(t)PRBRB

T
RPRBRB

T
RPRαR(t)

+eT
R(φ(t))PRBRB

T
RPRBRB

T
RPReR(φ(t))

)

dt

≤ 3D

∫ t

φ(t)

(

�R(γ )xT
R(t)PRxR(t) + 2

(
2tr(AR) + nRγ

)2
xT

R(t)PRxR(t)

+2
(
2tr(AR) + nRγ

)2
xT

R(φ(t))PRxR(φ(t)) + (
2tr(AR) + nRγ

)2
eT

R(φ(t))PReR(φ(t))

)

dt

≤ 3D

∫ t

φ(t)

((
�R(γ ) + 2

(
2tr(AR) + nRγ

)2
)
xT

R(t)PRxR(t)

+2
(
2tr(AR) + nRγ

)2
(
xT

R(φ(t))PRxR(φ(t)) + eT(φ(t))P e(φ(t))
))

dt. (5.167)

Similarly, by the definition of β(t) and (5.156), we have

β(t) =
∫ t

φ(t)

(
(A + LC)e(t) + BBT

RPR(αR(t) − βR(t))
)

dt.

Then, by using Lemmas 2.1, 2.2, Young’s Inequality, and the fact that

BTPB = BT
RPRBR,

we evaluate

βT(t)Pβ(t) ≤ (t − φ(t))

∫ t

φ(t)

(

(A + LC)e(t) + BBT
RPR

(
αR(t) − βR(t)

)
)T

×P

(

(A + LC)e(t) + BBT
RPR

(
αR(t) − βR(t)

)
)

dt
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≤ 2D

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + (
αR(t) − βR(t)

)T

×PRBRB
TPBBT

RPR

(
αR(t) − βR(t)

)
)

dt

≤ 2D

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + 2
(
2tr(AR) + nRγ

)2

×αT
R(t)PRαR(t) + 2

(
2tr(AR) + nRγ

)2
βT

R(t)PRβR(t)

)

dt

≤ 2D

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + 4
(
2tr(AR) + nRγ

)2

×
(
xT

R(t)PRxR(t) + xT
R(φ(t))PRxR(φ(t)) + eT

R(t)PReR(t)

+eT
R(φ(t))PReR(φ(t))

))

dt

= 2D

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + 4
(
2tr(AR) + nRγ

)2

×
(
xT

R(t)PRxR(t) + xT
R(φ(t))PRxR(φ(t)) + eT(t)P e(t)

+eT(φ(t))P e(φ(t))
))

dt. (5.168)

We employ (5.162) to simplify (5.167) and (5.168) as

αT
R(t)PRαR(t) ≤ 3D

∫ t

φ(t)

((
�R(γ ) + 2

(
2tr(AR) + nRγ

)2
)
xT

R(t)PRxR(t)

+2
(
2tr(AR) + nRγ

)2
V (xR(φ(t)), e(φ(t))

)

dt,

and

βT(t)Pβ(t) ≤ 2D

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + 4
(
2tr(AR) + nRγ

)2

×
(
V (xR(t), e(t)) + V (xR(φ(t)), e(φ(t)))

))

dt,

respectively.
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It then follows from (5.166) that

V̇ (xR(t), e(t))

≤ −γ
(
xT

RPRxR + eTe
)+ 6D

(
2tr(AR) + nRγ

)
(1 + 2σ)

×
∫ t

φ(t)

((
�R(γ ) + 2

(
2tr(AR) + nRγ

)2
)
xT

R(t)PRxR(t)

+2
(
2tr(AR) + nRγ

)2
V (xR(φ(t)), e(φ(t))

)

dt + 8D
(
2tr(AR) + nRγ

)

×(1 + σ)

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + 4
(
2tr(AR) + nRγ

)2

×
(
V (xR(t), e(t)) + V (xR(φ(t)), e(φ(t)))

))

dt. (5.169)

We simplify (5.169) by using (5.162) and (5.164) as follows:

V̇ (xR(t), e(t))

≤ − γ

λmax(R)
V (xR(t), e(t)) + 6D

(
2tr(AR) + nRγ

)
(1 + 2σ)

×
∫ t

φ(t)

((
�R(γ ) + 2

(
2tr(AR) + nRγ

)2
)
V (xR(t), e(t))

+2
(
2tr(AR) + nRγ

)2
V (xR(φ(t)), e(φ(t))

)

dt

+32D
(
2tr(AR) + nRγ

)3
(1 + σ)

∫ t

φ(t)

(
V (xR(t), e(t)) + V (xR(φ(t)), e(φ(t)))

)
dt.

When V (xR(t + θ), e(t + θ)) < ηV (xR(t), e(t)), θ ∈ [−2D, 0], for a constant
η > 1, we have

V̇ (xR(t), e(t))

≤ − γ

λmax(R)
V (xR(t), e(t)) + 6D2η

(
2tr(AR) + nRγ

)
(1 + 2σ)

×
(
�R(γ ) + 4

(
2tr(AR) + nRγ

)2
)
V (xR(t), e(t))

+64D2η
(
2tr(AR) + nRγ

)3
(1 + σ)V (xR(t), e(t))

= −V (xR(t), e(t))

(
γ

λmax(R)
− 6D2η

(
2tr(AR) + nRγ

)
(1 + 2σ)

×
(
�R(γ ) + 4

(
2tr(AR) + nRγ

)2
)

− 64D2η
(
2tr(AR) + nRγ

)3
(1 + σ)

)

.
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It then follows that if

γ

λmax(R)
> 6D2(2tr(AR) + nRγ

)
(1 + 2σ)

(
�R(γ ) + 4

(
2tr(AR) + nRγ

)2
)

+64D2(2tr(AR) + nRγ
)3

(1 + σ), (5.170)

then V̇ (xR(t), e(t)) < −ρ(γ )V (xR(t), e(t)) for some positive constant ρ(γ ), which
implies that system (5.156) is asymptotically stable by the Rzumikhin Stability
Theorem (Theorem 1.3). By γ > −2min{Re(λ(AR))}, the definitions of σ and
�R(γ ), and Lemma 2.3, the right-hand side of (5.170) is nonnegative. Thus, γ > 0,
which naturally satisfies γ > −2min{Re(λ(AR))}, is necessary for (5.170) to hold.
We further note that the right-hand side of (5.170) is a strictly increasing function
of D, and it goes to zero as D goes to zero and goes to infinity as D goes to infinity.
On the other hand, the left-hand side of (5.170) is a positive constant independent
of D. Therefore, for each D < D∗, where D∗ is the unique positive solution to the
following nonlinear equation,

γ

λmax(R)
= 6D2(2tr(AR) + nRγ

)
(1 + 2σ)

(
�R(γ ) + 4

(
2tr(AR) + nRγ

)2
)

+ 64D2(2tr(AR) + nRγ
)3

(1 + σ), (5.171)

system (5.156) is asymptotically stable. This completes the proof. �

Theorem 5.5 Assume that all the eigenvalues of AR are at the origin. For an
arbitrarily large delay bound D, there exists γ ∗>0 such that, for each γ ∈ (0, γ ∗),
system (5.156) is asymptotically stable.

Proof We adopt the same Lyapunov function (5.157) and the estimate (5.160) of its
time derivative along the trajectory of system (5.156) for our stability analysis. In
view of the assumption that all the eigenvalues of AR are at the origin, we rewrite
(5.160) as

V̇ (xR(t), e(t)) ≤ − γ xT
R(t)PRxR(t) + 2nRγ (1 + 2σ)αT

R(t)PRαR(t)

+ 4nRγ (1 + σ)βT(t)Pβ(t) + eT(t)

(

−
(

β − 1

2

)

I + 4nRγP

)

e(t).

(5.172)

By the low gain feedback design,

lim
t→∞ P(γ ) = 0,

and hence there exist ν > 0 and γ1 > 0 such that

P(γ ) ≤ γ νI, γ ≤ γ1. (5.173)
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Pick ξ > max
{

1
2 , ν

}
. Then, there exists γ2 > 0 such that, for each γ ∈ (0, γ2),

−
(

ξ − 1

2

)

I + 4nRγP (γ ) ≤ −γR, (5.174)

which implies that

V̇ (xR(t), e(t)) ≤ − γV (xR(t), e(t)) + 2nRγ (1 + 2σ)αT
R(t)PRαR(t)

+ 4nRγ (1 + σ)βT(t)Pβ(t). (5.175)

To further estimate the time derivative (5.175) of V , we follow (5.167) and (5.168)
to derive

αT
R(t)PRαR(t) ≤ 3D

∫ t

φ(t)

((
�R(γ ) + 2(nRγ )2

)
xT

R(t)PRxR(t)

+2(nRγ )2
(
xT

R(φ(t))PRxR(φ(t)) + eT(φ(t))P e(φ(t))
))

dt

and

βT(t)Pβ(t) ≤ 2D

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + 4(nRγ )2

×
(
xT

R(t)PRxR(t) + xT
R(φ(t))PRxR(φ(t)) + eT(t)P e(t)

+eT(φ(t))P e(φ(t))
))

dt,

respectively.
There exists γ3 > 0 such that, for each γ ∈ (0, γ3),

P(γ ) ≤ R, (5.176)

by which αT
R(t)PRαR(t) and βT(t)Pβ(t) can be respectively majorized further as

αT
R(t)PRαR(t) ≤ 3D

∫ t

φ(t)

((
�R(γ ) + 2(nRγ )2

)
xT

R(t)PRxR(t)

+2(nRγ )2V (xR(φ(t)), e(φ(t))

)

dt,

and
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βT(t)Pβ(t) ≤ 2D

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t) + 4(nRγ )2

×
(
V (xR(t), e(t)) + V (xR(φ(t)), e(φ(t)))

))

dt.

Inequality (5.175) can then be continued as

V̇ (xR(t), e(t)) ≤ − γV (xR(t), e(t)) + 6DnRγ (1 + 2σ)

∫ t

φ(t)

((
�R(γ )

+ 2(nRγ )2
)
xT

R(t)PRxR(t) + 2(nRγ )2V (xR(φ(t)), e(φ(t))

)

dt

+ 8DnRγ (1 + σ)

∫ t

φ(t)

(

eT(t)(A + LC)TP(A + LC)e(t)

+ 4(nRγ )2
(
V (xR(t), e(t)) + V (xR(φ(t)), e(φ(t)))

))

dt.

(5.177)

When V (xR(t +θ), e(t +θ)) < ηV (xR(t), e(t)), θ ∈ [−2D, 0], for a constant η > 1,
we obtain

V̇ (xR(t), e(t)) ≤ − γV (xR(t), e(t)) + 6D2nRγ (1 + 2σ)(�R(γ )

+ 4(nRγ )2)V (xR(t), e(t)) + 8D2nRγ (1 + σ)

×
(

eT(t)(A + LC)TP(A + LC)e(t) + 8(nRγ )2V (xR(t), e(t))

)

,

(5.178)

which, by (5.173), can be continued as,

V̇ (xR(t), e(t)) ≤ − γV (xR(t), e(t)) + 6D2nRγ (1 + 2σ)
(
�R(γ ) + 4(nRγ )2

)
V (xR(t), e(t))

+ 8D2nRγ
2(1 + σ)

(
ν

λmax(R)
+ 8(nRγ )2

)

V (xR(t), e(t))

= − γ

(

1 − 6D2nR(1 + 2σ)
(
�R(γ ) + 4(nRγ )2

)
− 8D2nRγ (1 + σ)

×
(

ν

λmax(R)
+ 8(nRγ )2

))

V (xR(t), e(t)). (5.179)

Then, there exists γ4 > 0 such that, for each γ ∈ (0, γ4),
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6D2nR(1 + 2σ)
(
�R(γ ) + 4(nRγ )2

)
+ 8D2nRγ (1 + σ)

(
ν

λmax(R)
+ 8(nRγ )2

)

< 1.

Taking γ ∗ = min{γ1, γ2, γ3, γ4} completes the proof. �


5.4.3 Numerical Examples

We consider two examples. The first example illustrates the ability of the delay
independent output feedback law (5.147) in stabilizing a linear system with all open
loop poles at the origin and in the presence of a large fast-varying input delay. The
second example demonstrates the stabilization of an exponentially unstable system
with a fast-varying input delay under the delay independent observer based feedback
law (5.147).

Example 5.5 (A System with All Open Loop Poles at the Origin) Consider system
(5.143) with

A =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , C = [

1 0 0 0
]

(5.180)

and initial conditions

x(0) = [
1 0 −1 2

]T
, x̂(θ) = [

0 0 0 0
]T

, θ ∈ [−D, 0]. (5.181)

To study the nonsensitivity of the controller in handling a fast-varying delay, we
consider a delay function,

d(t) = 1 + sin(10t). (5.182)

This delay function has an upper bound of 2 and its time derivative reaches a peak
value of 10.

For linear systems whose open loop poles are all at the origin, we note from
Theorem 5.5 that, in the face of an arbitrarily large bounded delay, the delay
independent observer-based feedback law asymptotically stabilizes the system as
long as γ is chosen small enough. With the pole placement of λ(A + LC) =
{−1,−2,−3,−4}, the selection of a small γ = 0.3 completes the design elements
of the feedback law (5.147) for simulation of the closed-loop system. Figures 5.7
and 5.8 show the evolution of the system states, the error signal, and the control
input.
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Fig. 5.7 Example 5.5: The evolution of x and x̂ in system (5.180) under the delay independent
output feedback TPF law (5.147)
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Fig. 5.8 Example 5.5: The evolution of e and u in system (5.180) under the delay independent
output feedback TPF law (5.147)
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Example 5.6 (An Exponentially Unstable System) Consider system (5.143) with

A =
⎡

⎣
0 1 0

−1 0 1
0 0 1

⎤

⎦ , B =
⎡

⎣
1
0
1

⎤

⎦ , C = [
1 0 1

]
, (5.183)

and initial conditions

x(0) = [
1 0 −1

]T
, x̂(θ) = [

0 0 0
]T

, θ ∈ [−D, 0]. (5.184)

The time-varying delay is specified to be

d(t) = 0.5(1 + sin(10t)). (5.185)

Placing the eigenvalues of A + LC at λ = {−1,−2,−3} and picking a small low
gain parameter γ = 0.1, we run the simulation and obtain the closed-loop evolution
of system (5.183) under (5.147), which, as shown in Figs. 5.9 and 5.10, verifies the
stabilizing effect of controller (5.147).

5.5 Conclusions

To overcome the lack of the exact knowledge of the delay, we constructed truncated
predictor based feedback laws that do not involve the delay in their expression.
We formulated the stability conditions in terms of the robustness of the feedback
laws to a certain amount of input delay. Specifically, for each value of the
feedback parameter, a general linear system that is possibly exponentially unstable is
stabilized as long as the delay is below a certain bound. The proposed feedback laws
are not completely delay independent because the design of the feedback parameter
requires an upper bound of the delay to be known. Examination of the stability
conditions shows that as long as the delay is below some upper bound, there exist
some intervals of the feedback parameter such that any feedback parameter within
such intervals would stabilize the system.

5.6 Notes and References

We here provide an intuitive explanation to the robustness of the delay independent
TPF laws to a certain amount of input delay. Take the delay independent TPF law
(5.6) for a general linear system (5.1) for example. Following the reasoning in
Sect. 4.1, we assume that all open loop poles of the system are on the closed right-
half plane. Such an assumption can be made without loss of generality because the
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Fig. 5.9 Example 5.6: The evolution of x and x̂ in system (5.183) under the delay independent
output feedback TPF law (5.147)
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Fig. 5.10 Example 5.6: The evolution of e and u in system (5.183) under the delay independent
output feedback TPF law (5.147)
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stable open loop poles of the system do not affect the stabilizability of the system.
Then, we derive

ẋ(t) = Ax(t) + Bu(t − τ)

= Ax(t) − BBTP(γ )x(t − τ), (5.186)

where P(γ ) is parametrized by the use of the Lyapunov equation based feedback
design. Let γ ∈ R

+ be such that γ > −2min{Re(λ(A))}, which guarantees
the existence and uniqueness of a positive definite solution P(γ ). The Lyapunov
equation based design assigns the eigenvalues of A − BBTP(γ ) at locations on
the complex plane that are symmetric to the eigenvalues of A with respect to
s = − γ

2 < 0. Thus, the matrix A − BBTP(γ ) is Hurwitz. This implies that the
closed-loop system under the delay independent TPF law is asymptotically stable if
τ = 0. According to [67], the following system

ẋ(t) = Ax(t) + BFx(t − τ) (5.187)

with A+BF being Hurwitz is asymptotically stable as long as the value of the delay
is small enough. It then follows directly from this fact that the closed-loop system
(5.186) is asymptotically stable as long as τ is sufficiently small. The robustness of
the delay independent TPF law to a small input delay is thus established. However,
such a robustness property is merely an implication of Theorem 5.1, which further
establishes an explicit upper bound of the delay that guarantees stability. Similar
improvements by establishing explicit upper bounds on the delay in the theorems
throughout this chapter imply that our stability results are established quantitatively
rather than qualitatively.

Sections 5.2 and 5.3 are presented by following the presentation of [101] and
[105], respectively. The only difference lies in the stability analysis of the closed-
loop system in the constructed example at the beginning of Sect. 5.2.2. Section 5.4.1
contains stability results that are stronger than those in [104]. In particular, the
robustness of the delay independent output feedback law (5.147) is established in
Theorem 5.4 for all γ > 0, whereas in [104], it is only established for γ less than a
positive constant.



Chapter 6
Delay Independent Truncated Predictor
Feedback for Discrete-Time Linear
Systems

6.1 Introduction

As with a continuous-time linear system, the predictor state feedback law for a
discrete-time linear system with input delay is the product of a feedback gain matrix
with the predicted state at a future time instant ahead of the current time instant by
the amount of the delay, which is the sum of the zero input solution and the zero
state solution of the system. The zero state solution for a discrete-time system is a
finite summation that involves past input. The zero input solution is the product of
the transition matrix and the initial state. The truncated predictor feedback (TPF),
which results from discarding the finite summation part of the predictor feedback
law, reduces implementation complexity. The delay independent TPF law further
discards the delay-dependent transition matrix in the TPF law and is thus robust to
unknown delays. It was pointed out in [64] and [125] that such a delay independent
TPF law stabilizes a discrete-time linear system with all its poles at z = 1 or inside
the unit circle no matter how large the delay is.

In this chapter, we first construct an example to show that the delay independent
truncated predictor state feedback law cannot compensate too large a delay if the
open loop system has poles on the unit circle at z 
= 1. Then, a delay bound
is provided for the stabilizability of a general, possibly exponentially unstable,
discrete-time linear system by the delay independent truncated predictor state
feedback. Parallel to the continuous-time setting, an observer based output feedback
law is also constructed for a general discrete-time linear system that manages to
require only an upper bound of the delay to be known. Such a relaxed requirement on
the knowledge of the delay is an improvement if we consider the existing truncated
predictor output feedback designs, which require the exact knowledge of the delay in
their observer dynamics because of the delayed input. Similar to the continuous-time
setting, we establish robustness of our proposed output feedback law to a certain
amount of time-varying delay. We further reveal the low gain nature of the delay
independent output feedback in the stabilization of a discrete-time linear system
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whose open loop poles are all at z = 1 or inside the unit circle. Specifically, the
output feedback law with a sufficiently small feedback parameter compensates a
time-varying input delay with an arbitrarily large upper bound.

6.2 Delay Independent Truncated Predictor State Feedback
Design

We consider asymptotic stabilization of a discrete-time linear system with time-
varying delay in the input,

{
x(k + 1) = Ax(k) + Bu(φ(k)), k ≥ 0,

x(k) = ψ(k), k ∈ I [−R, 0], (6.1)

where x ∈ R
n and u ∈ R

m are the state and the input, respectively, and the delay
function φ(k) takes the standard form of

φ(k) = k − r(k).

The time-varying delay r(k) : N → N satisfies r(k) ≤ R, where R ∈ N is a delay
bound. It is assumed that (A,B) is stabilizable.

Recall the predictor feedback law (4.62) for system (6.1)

u(k) = FAφ−1(k)−kx(k) + F

k−1∑

s=2k−φ−1(k)

Ak−s−1Bu(s), (6.2)

which involves the zero input solution and the zero state solution of the system, and
a feedback gain F that is designed such that A + BF is Schur stable. Then, the
closed-loop system

x(k + 1) = (A + BF)x(k), (6.3)

is exponentially stable. The following truncated predictor state feedback law, also
referred to as the state feedback TPF law,

u(k) = FAφ−1(k)−kx(k), (6.4)

discards the finite summation part of the predictor state feedback law (6.2) and is
easy to implement. Furthermore, the delay independent state feedback TPF law

u(k) = Fx(k) (6.5)
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further discards the delay-dependent transition matrix Aφ−1(k)−k in the truncated
predictor state feedback law (6.4). This simplification results in the robustness of
(6.5) with respect to time-varying delays and even unknown delays. It was shown in
[64] that the state feedback TPF law (6.4) stabilizes system (6.1) with all open loop
poles on or inside the unite circle no matter how large the delay r is. Furthermore,
the delay independent state feedback TPF law (6.5) stabilizes system (6.1) with all
open loop poles at z = 1 or inside the unit circle, again, no matter how large the
delay r is. The eigenstructure assignment low gain feedback design technique was
employed in [64] to construct the feedback gain matrix F , while in [123] and [125],
the Lyapunov equation based low gain feedback design was employed.

In this section, we first construct an example to show that the delay independent
state feedback TPF law (6.5) cannot compensate an arbitrarily large delay if the
open loop system has poles on the unit circle at z 
= 1. Then, an admissible delay
bound under the feedback law (6.5) is given for a general linear system that may
be exponentially unstable. The results extend their continuous-time counterparts in
Sect. 5.2.

6.2.1 Preliminaries

The feedback gain matrix of the delay independent state feedback TPF law (6.5) for
system (6.1) with a controllable pair (A,B) is constructed following the Lyapunov
equation based feedback design (see Sect. 4.3.1),

u(k) = F(γ )x(k)

= − (I + BTP(γ )B
)−1

BTP(γ )Ax(k), (6.6)

where P(γ ) is the unique positive definite solution to the discrete-time parametric
algebraic Riccati equation,

ATP(γ )A−P(γ )−ATP(γ )B
(
I + BTP(γ )B

)−1
BTP(γ )A = −γP (γ ), (6.7)

with

γ ∈
(

1 − |λ(A)|2min, 1
)

. (6.8)

Note that (6.8) is necessary and sufficient for the existence and uniqueness of P(γ ).
In the case where all eigenvalues of A are at the origin or in the open left-half
plane, the delay is allowed to be arbitrarily large but bounded, and the value of
the parameter γ is required to approach zero as the bound on the delay increases
to infinity. As a result, the parametric algebraic Riccati equation (6.7) is a low gain
feedback design and the feedback parameter is referred to as the low gain parameter.

We recall the following lemma from [99].



222 6 Delay Independent Truncated Predictor Feedback for Discrete-Time Linear. . .

Lemma 6.1 Let (A,B) be controllable with A nonsingular. For each γ ∈ (1 −
|λ(A)|2min, 1), the unique positive definite solution P(γ ) to the parametric algebraic
Riccati equation (6.7) satisfies

F TBTPBF ≤ �P, (6.9)

F T(I + BTPB)F ≤ ϑP, (6.10)

(AC − I )TP(AC − I ) ≤ �P, (6.11)

where

F = − (I + BTPB
)−1

BTPA,

AC = A + BF,

� =
(
det2(A) − (1 − γ )n

)2

(1 − γ )2n−1 ,

ϑ = det2(A) − (1 − γ )n

(1 − γ )n−1
,

� = det2(A)

(1 − γ )n
− 1 − nγ + 2(n − tr(A)) +

(
det2(A) − (1 − γ )n

)2

det2(A)(1 − γ )n−1
.

We next establish an inequality relating the determinant and the trace of a class
of matrices.

Lemma 6.2 If A ∈ R
n×n has all its eigenvalues on or outside the unit circle, then

4det4(A) − 6det2(A) + det−2(A) + 1 + 2n − 2tr(A) ≥ 0.

Proof We use polar coordinates to denote the eigenvalues of A as

λi = rie
jθi ,

where ri ≥ 1 and θi ∈ (−π, π ], for i ∈ I [1, n]. The determinant and the trace of A

are respectively expressed as

det(A) =
n∏

i=1

rie
jθi

=
n∏

i=1

ri,
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and

tr(A) =
n∑

i=1

rie
jθi

=
n∑

i=1

ri cos θi,

where we have used the fact that eigenvalues appear in conjugate pairs. We then
have

4det4(A) − 6det2(A) + det−2(A) + 1 + 2n − 2tr(A)

≥ 4
n∏

i=1

r4
i − 6

n∏

i=1

r2
i +

n∏

i=1

r−2
i + 1 + 2n − 2

n∑

i=1

ri .

Thus, it suffices to show that

4
n∏

i=1

r4
i − 6

n∏

i=1

r2
i +

n∏

i=1

r−2
i + 1 + 2n − 2

n∑

i=1

ri ≥ 0.

Define a multivariate function

g(r1, r2, . . . , rn) = 4
n∏

i=1

r4
i − 6

n∏

i=1

r2
i +

n∏

i=1

r−2
i + 1 + 2n − 2

n∑

i=1

ri,

where ri ≥ 1, i ∈ I [1, n]. We observe that g(r1, r2, . . . , rn) remains unchanged
under any permutation of r1, r2, . . . rn. We consider the partial derivative of
g(r1, r2, . . . , rn) with respect to rn,

∂g(r1, r2, . . . , rn)

∂rn
= 16

(
n−1∏

i=1

r4
i

)

r3
n − 12

(
n−1∏

i=1

r2
i

)

rn − 2

(
n−1∏

i=1

r−2
i

)

r−3
n − 2.

(6.12)

In addition,

∂2g(r1, r2, . . . , rn)

∂r2
n

= 12
n−1∏

i=1

r2
i

(

4

(
n−1∏

i=1

r2
i

)

r2
n − 1

)

+ 6
n−1∏

i=1

r−2
i r−4

n

> 0, (6.13)
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from which it follows that
∂

∂rn
g(r1, r2, . . . , rn) is strictly increasing with respect to

rn. Recalling the fact that ri ≥ 1, i ∈ I [1, n], we get

∂g(r1, r2, . . . , rn)

∂rn

∣
∣
rn=1 = 4

n−1∏

i=1

r2
i

(

4
n−1∏

i=1

r2
i − 3

)

− 2
n−1∏

i=1

r−2
i − 2

≥ 0,

where the equality sign holds if and only if ri = 1 for all i ∈ I [1, n− 1]. Therefore,

∂

∂rn
g(r1, r2, . . . , rn) ≥ 0,

and g(r1, r2, . . . , rn) is nondecreasing with respect to rn. Since g(r1, r2, . . . , rn)

remains unchanged under any permutation of r1, r2, . . . and rn, we have

∂

∂ri
g(r1, r2, . . . , rn) ≥ 0, i ∈ I [1, n].

It follows from (6.12) that

g(r1, r2, · · · , rn) ≥ g(1, 1, · · · , 1)

= 0.

This completes the proof. �

Without loss of generality, we assume that the stabilizable pair (A,B) in system

(6.1) takes the following decomposed form:

A =
[
AI 0
0 AO

]

, B =
[
BI

BO

]

,

where AI ∈ R
nI×nI has all its eigenvalues inside the unit circle and AO ∈ R

nO×nO has
all its eigenvalues on or outside the unit circle. Then, system (6.1) can be written as,

⎧
⎨

⎩

xI(k + 1) = AIxI(k) + BIu(φ(k)),

xO(k + 1) = AOxO(k) + BOu(φ(k)),

x(k) = ψ(k), k ∈ I [−R, 0],

where

x(k) = [
xT

I (k) xT
O(k)

]T
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and

ψ(k) = [
φT

I (k) φT
O(k)

]T
.

The stabilizability of (A,B) implies that (AO, BO) is controllable. Note that the
asymptotic stabilizability of the second subsystem implies that of the whole system
because all eigenvalues of AI are inside the unit circle. Thus, without loss of
generality, we assume that the pair (A,B) is controllable with all eigenvalues of
A on or outside the unit circle.

6.2.2 An Admissible Delay Bound

We first construct an example to show that if system (6.1) has open loop poles on
the unit circle at z 
= 1, the delay independent state feedback TPF law (6.6) cannot
stabilize the system when the delay is large enough.

Consider system (6.1) with

A =
[

0 1
−1 0

]

, B =
[

0
1

]

,

and a constant delay r(k) = 2, k ∈ N. It can be readily verified that (A,B) is
controllable with eigenvalues of A at z = ±j . By solving the parametric algebraic
Riccati equation (6.7), we obtain the unique positive definite solution

P(γ ) =
[

1
1−γ

− 1 + γ 0

0 1
(1−γ )2 − 1

]

,

where γ ∈ (0, 1) in view of (6.8). Hence, the delay independent state feedback TPF
law (6.6) is given by

u(k) = − [γ 2 − 2γ 0
]
x(k),

under which the closed-loop system is given by

{
x1(k + 1) = x2(k),

x2(k + 1) = −x1(k) + (
2γ − γ 2

)
x1(k − 2),

The characteristic equation of the closed-loop system is

z4 + z2 + γ 2 − 2γ = 0,
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whose four roots are

z1,2 = ±
(√

1 + 4γ (2 − γ ) − 1

2

) 1
2

,

z3,4 = ± j

(√
1 + 4γ (2 − γ ) + 1

2

) 1
2

.

Note that z3 and z4 both lie outside the unit circle for each γ ∈ (0, 1). Thus, the
delay independent TPF law (6.6) fails to stabilize the system.

We next establish a delay bound for a general linear system to be stabilizable by
the delay independent state feedback TPF law (6.6).

Theorem 6.1 Let all the eigenvalues of A in the system (6.1) be on or outside the
unit circle. If

R <

√
√
√
√
√
√

γ

2
det2(A) − (1 − γ )n

(1 − γ )n−1

(

� + 4

(
det2(A) − (1 − γ )n

)2

(1 − γ )2n−1

) , γ ∈ (0, 1),

(6.14)

where � is as defined in Lemma 6.1, then the delay independent state feedback TPF
law (6.6) asymptotically stabilizes system (6.1).

Proof The closed-loop system under the delay independent TPF law (6.6) is given
by

x(k + 1) = ACx(k) − BFxd(k), (6.15)

where AC and F are defined as in Lemma 6.1 and

xd(k) = x(k) − x(φ(k)).

Consider a Lyapunov function

V (x(k)) = xT(k)P (γ )x(k).

In view of the assumption on system (6.1) that all the eigenvalues of A are on
or outside the unit circle, we let γ ∈ (0, 1) satisfy (6.8). By Young’s inequality,
Lemma 6.1 and (6.15), we evaluate the forward difference of V (x(k)) along the
trajectory of the closed-loop system (6.15) as follows:

�V (x(k)) = V (x(k)) − V (x(k − 1))

= xT(k)
(−γP − F TF

)
x(k) − 2xT(k)AT

CPBFxd(k)
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+xT
d(k)F TBTPBFxd(k)

≤ −γ xT(k)Px(k) + det2(A) − (1 − γ )n

(1 − γ )n−1
xT

d(k)Pxd(k).

By the fact that

xd(k) =
k∑

l=φ(k)+1

(
(AC − I )x(l − 1) − BFxd(l − 1)

)
,

and Lemmas 3.6 and 6.1, xT
d(k)Pxd(k) satisfies

xT
d(k)Pxd(k) ≤ 2r(k)

k∑

l=φ(k)+1

(
�xT(l − 1)Px(l − 1)

+
(
det2(A) − (1 − γ )n

)2

(1 − γ )2n−1
xT

d(l − 1)Pxd(l − 1)

)

≤ 2r(k)

k∑

l=φ(k)+1

(
�xT(l − 1)Px(l − 1)

+2

(
det2(A) − (1 − γ )n

)2

(1 − γ )2n−1

(
xT(l − 1)Px(l − 1)

+xT(l − 1 − r(l − 1))Px(l − 1 − r(l − 1))
))

.

Then, we have

�V (x(k)) ≤ −γ xT(k)Px(k) + 2
det2(A) − (1 − γ )n

(1 − γ )n−1 r(k)

×
k∑

l=φ(k)+1

(

�xT(l − 1)Px(l − 1) + 2

(
det2(A) − (1 − γ )n

)2

(1 − γ )2n−1

× (
xT(l − 1)Px(l − 1) + xT(l − 1 − r(l − 1))Px(l − 1 − r(l − 1))

))
.

For V (x(k + κ)) < ηV (x(k)), κ ∈ I [−2R, 0], with some positive constant
η > 1, we have

�V (x(k)) ≤ −
(

γ − 2R2η
det2(A) − (1 − γ )n

(1 − γ )n−1

(

� + 4

(
det2(A) − (1 − γ )n

)2

(1 − γ )2n−1

))

V (x(k)). (6.16)
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In view of (6.14), it follows from (6.16) that

�V (x(k)) ≤ −εV (x(k))

for some ε > 0. The asymptotic stability of the closed-loop system then follows
from the Razumikhin Stability Theorem (Theorem 1.4). It remains to verify that the
denominator inside the square root on the right-hand side of (6.14) is positive. This
can be trivially verified by the use of Lemma 6.2 and the facts that det2(A) ≥ 1 and
γ ∈ (0, 1). This completes the proof. �

Corollary 6.1 Let A in system (6.1) have all its eigenvalues at z = 1. Given an
arbitrarily large delay bound R, the delay independent state feedback TPF law (6.6)
with each γ ∈ (0, γ ∗) asymptotically stabilizes the system, where γ ∗ is the smallest
positive solution to the following nonlinear equation,

1 − (1 − γ )n

γ (1 − γ )n−1

(
(1 − (1 − γ )n)2

(1 − γ )n−1

(
4

(1 − γ )n
+ 1

)

+ 1

(1 − γ )n
− 1 − nγ

)

= 1

2R2 . (6.17)

Proof Since A has all its eigenvalues at z = 1, tr(A) = n and det2(A) = 1. Thus,
(6.14) is equivalent to (6.17) with the equality sign replaced by “ < ". Note that the
left-hand side of (6.17) approaches zero as γ → 0 and goes to infinity as γ → 1,
which implies that (6.17) has a smallest positive solution γ ∗. This completes the
proof. �

Remark 6.1 The result of Corollary 6.1 is consistent with a result in [64] or [125],
where it is established that a discrete-time linear system with all its open loop poles
at z = 1 or inside the unit circle can be stabilized by the delay independent state
feedback TPF law (6.6) no matter how large the delay is.

6.2.3 Numerical Examples

Example 6.1 (A System with All Poles at z = 1) Consider system (6.1) with

A =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦ . (6.18)

Clearly, the open loop system has all its poles at z = 1 and is controllable.
Corollary 6.1 suggests that the delay independent state feedback TPF law (6.6)
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is capable of asymptotically stabilizing the system with an arbitrarily large delay
bound. Consider a fast-varying delay

r(k) =
⌈

1 + sin2(100k)
⌉

, k ∈ N,

with an upper bound R = 2, where �·� denotes the ceiling function. Let γ = 0.1.
For the initial condition

x(k) = [
1 −1 0 1

]T
, k ∈ I [0, R],

the state response of the closed-loop system and the control input are shown in
Fig. 6.1, from which the stability of the system is clear. �

Example 6.2 (A System with All Poles on the Unit Circle) Consider system (6.1)
with

A =
⎡

⎣
0.987 0.1607 0

−0.1607 0.987 0
0 0 1

⎤

⎦ , B =
⎡

⎣
0
1
1

⎤

⎦ . (6.19)

The open loop system has a pair of poles on the unit circle at z = 0.987 ± j0.1607
and another pole at z = 1. It can be easily verified that (A,B) is controllable and
tr(A) = 2.974. Consider

r(k) = 1 + (−1)k

2
, k ∈ N,

which is 1 when k is even and is 0 otherwise. Let γ = 0.0078. Let the initial
condition be

x(k) = [
1 −1 0

]T
, k ∈ I [0, 1].

The state response and the input signal are shown in Fig. 6.2, which demonstrates
the convergence of the closed-loop signals. �

Example 6.3 (An Exponentially Unstable System) Consider system (6.1) with

A =
⎡

⎣
1 0.09 0

−0.09 1 0
0 0 1

⎤

⎦ , B =
⎡

⎣
0
1
1

⎤

⎦ . (6.20)

The open loop system has a pair of exponentially unstable poles at z = 1 ± j0.09
and another pole at z = 1. It can be readily verified that (A,B) is controllable,
det(A) = 1.0163 and tr(A) = 3. We consider
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Fig. 6.1 Example 6.1: State response and control input under the delay independent state feedback
TPF law (6.6) with γ = 0.1
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Fig. 6.2 Example 6.2: State response and control input under the delay independent state feedback
TPF law (6.6) with γ = 0.0078
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r(k) = 1 + (−1)k

2
, k ∈ N.

Let the initial condition be

x(k) = [
1 −1 0

]T
, k ∈ I [0, 1].

Simulation is run with γ = 0.016, which satisfies (6.14). The convergent state
response and the corresponding input signal are shown in Fig. 6.3. �

6.3 Delay Independent Truncated Predictor Output
Feedback Design

In this section, we consider stabilization of a general discrete-time linear system
with a time-varying input delay by delay independent truncated predictor output
feedback. Such feedback can be considered parallel to the delay independent
truncated predictor output feedback in the continuous-time setting. With only the
knowledge of an upper bound of the time-varying delay, it is established that
a general discrete-time linear system is stabilized by an observer based output
feedback law as long as the delay does not exceed a certain upper bound. An explicit
upper bound is provided that guarantees stabilizability. Moreover, given a time-
varying delay with an arbitrarily large upper bound, our output feedback law with
a sufficiently small feedback parameter stabilizes a discrete-time linear system with
all its open loop poles at z = 1 or inside the unit circle. Existing results in the
literature on the output feedback design require the exact knowledge of the delay
(see [64] and [125]) to achieve stabilization. Our design relaxes the requirement to
the extent that only an upper bound of the delay is required to be known. This is
why we refer to our feedback as the delay independent truncated predictor output
feedback.

6.3.1 Feedback Design

Consider output feedback stabilization for the following discrete-time linear system
with a time-varying input delay,

{
x(k + 1) = Ax(k) + Bu(φ(k)), k ≥ 0,

y(k) = Cx(k),
(6.21)
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Fig. 6.3 Example 6.3: State response and control input under the delay independent state feedback
TPF law (6.6) with γ = 0.016
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where x ∈ R
n, u ∈ R

m, and y ∈ R
p correspond to the state, the input, and the

output, respectively, the triple (A,B,C) are both stabilizable and detectable, and
φ(k) takes the standard form of

φ(k) = k − r(k).

The time-varying delay r(k) : N → N is assumed to be bounded from above by
R ∈ N, that is,

r(k) ≤ R, k ∈ N.

Our feedback design only requires that R be known. It does not require to know
how the delay r(k) vary with respect to time.

It was established in [64] that the following observer based output feedback law

{
x̂(k + 1) = Ax̂(k) + Bu(k − r) − L

(
y(k) − Cx̂(k)

)
,

u(k) = F(γ )x̂(k),
(6.22)

where F(γ ) is constructed by using the eigenstructure assignment based low gain
feedback design and L is designed such that A + LC is Schur stable, stabilizes
system (6.21) with all open loop poles at z = 1 or inside the unit circle no
matter how large the constant delay r is. The compensation of an arbitrarily large
constant delay is achieved by tuning the low gain parameter γ to be small enough.
Alternatively, the use of the Lyapunov equation based low gain feedback design to
parametrize F(γ ) in (6.22) also achieves stabilization (see [125]).

However, the dynamics of the observer of the output feedback law (6.22) involves
the delayed input u(k − r). Clearly, the implementation of such a feedback law
requires the exact value of the constant delay r . Our goal in this section is to design
a delay independent truncated predictor output feedback law that does not involve
the delay in its expression even when the delay is time-varying.

Before proceeding to our output feedback design, we assume, without loss of
generality, that the triple (A,B,C) in system (6.21) are in the following form:

A =
[

AI 0
0 Ao

]

, B =
[

BI

Bo

]

, C = [
CI Co

]
, (6.23)

where all the eigenvalues of AI ∈ R
ns×ns are inside the unit circle and all the

eigenvalues of Ao ∈ R
no×no are on or outside the unit circle, and no + ns = n.

We propose the following delay independent output feedback law, also referred
to as the delay independent output feedback TPF law, for system (6.21),

{
x̂(k + 1) = Ax̂(k) + Bu(k) − L

(
y(k) − Cx̂(k)

)
,

u(k) = F(γ )x̂(k),
(6.24)



6.3 Delay Independent Truncated Predictor Output Feedback Design 235

where L is such that A + LC is Schur stable and the Lyapunov equation based
feedback design is adopted to construct F(γ ) as

F(γ ) = − (I + BTP(γ )B
)−1

BTP(γ )A, (6.25)

where

P(γ ) =
[

0 0
0 PO(γ )

]

, (6.26)

and PO(γ ) is the unique positive definite solution to the discrete-time parametric
Riccati equation,

AT
oPO(γ )Ao − PO(γ ) − AT

oPO(γ )Bo
(
I + BT

oPO(γ )Bo
)−1

BT
oPO(γ )Ao = −γPO(γ ),

γ ∈
(

1 − min
{
|λ(Ao)|2

}
, 1
)

. (6.27)

The existence of such an L is guaranteed by the assumption that the pair (A,C) are
detectable. Note that the stabilizability of the pair (A,B) implies the controllability
of the pair (Ao, Bo), which in turn implies the existence and uniqueness of the
solution PO(γ ) to the discrete-time parametric Riccati equation the Lyapunov
equation (6.27).

Comparing the proposed feedback law (6.24) to the existing feedback law (6.22),
we see that our design replaces the delay input u(k − r) with its undelayed version
u(k), thus eliminating the requirement for the exact knowledge of the delay. We can
see that such an improvement is not trivial if we consider the error signal between
the state of the system and the observer state,

e(k) = x(k) − x̂(k). (6.28)

Under the delay-dependent design (6.22), the error signal exponentially decreases
to zero because

e(k + 1) = (A + LC)e(k),

which naturally leads to the stabilization of system (6.21) in view of the delay
independent truncated predictor state feedback design (see Sect. 6.2). However,
under our design (6.24), the error signal is governed by

e(k + 1) = (A + LC)e(k) + BF(γ )
(
x̂(φ(k)) − x̂(k)

)
, (6.29)

whose right-hand side contains a difference between x(φ(k)) and x(k). As will
become clear in Sect. 6.3.2 next, the presence of this difference drastically com-
plicates the stability analysis.
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6.3.2 Stability Analysis

The closed-loop system consisting of system (6.21) and the delay independent
truncated predictor output feedback law (6.24) can be written in terms of the state
(x, e) as,

{
x(k + 1) = Ax(k) + BF(γ )(x(φ(k)) − e(φ(k))),

e(k + 1) = (A + LC)e(k) + BF(γ )(x(φ(k)) − e(φ(k)) − (x(k) − e(k))).

(6.30)
Let

{
ξ(k) = x(k) − x(φ(k)),

ζ(k) = e(k) − e(φ(k)).
(6.31)

Then, the closed-loop system is simplified to

{
x(k + 1) = Ax(k) + BF(γ )(x(φ(k)) − e(φ(k))),

e(k + 1) = (A + LC)e(k) + BF(γ )(ζ(k) − ξ(k)).
(6.32)

Noting the structure of (A,B,C) shown in (6.23), we have

F(γ ) = [
0 FO(γ )

]
,

where FO(γ ) is defined as

FO(γ ) = − (I + BT
OPO(γ )BO

)−1
BT

OPOAO. (6.33)

Hence, the closed-loop system can be decomposed as

⎧
⎨

⎩

xI(k + 1) = AIxI(k) + BIFO(γ )(xO(φ(k)) − eO(φ(k))),

xO(k + 1) = AOxO(k) + BOFO(γ )(xO(φ(k)) − eO(φ(k))),

e(k + 1) = (A + LC)e(k) + BFO(γ )(ζO(k) − αO(k)),

(6.34)

where xI(k) and xO(k) are respectively the first nI and the last nO states of x(k),
eO(k), ξO(k) and ζO(k) are the last nO states of e(k), ξ(k) and ζ(k), respectively. The
second and the third subsystems describe the dynamics of xO(k) and e(k), whereas
the first subsystem takes xO(k) and eO(k) as external signals. Moreover, the internal
stability of the first subsystem is determined by the Schur stability of matrix AI.
Therefore, the asymptotic stability of the last two subsystems implies that of the
whole closed-loop system, and it suffices to consider only the stability of

{
xO(k + 1) = AOxO(k) + BOFO(γ )(xO(φ(k)) − eO(φ(k))),

e(k + 1) = (A + LC)e(k) + BFO(γ )(ζO(k) − ξO(k)).
(6.35)
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Theorem 6.2 Given any γ ∈ (0, 1), there exists R� ∈ N such that, for each R <

R�, the closed-loop system (6.35) is asymptotically stable.

Proof Choose a Lyapunov function

V (xO(k), e(k)) = xT
O(k)PO(γ )xO(k) + eT(k)Qe(k),

where Q is the unique positive definite solution to the following discrete-time
Lyapunov equation,

(A + LC)TQ(A + LC) − Q = −ρI, (6.36)

and ρ is a positive constant whose value is to be determined later.
By defining

AOC(γ ) = AO + BOFO(γ ),

we rewrite the closed-loop system (6.35) as follows:

{
xO(k + 1) = AOCxO(k) − BOFO(γ )(ξO(k) + eO(φ(k))),

e(k + 1) = (A + LC)e(k) + BFO(γ )(ζO(k) − ξO(k)).
(6.37)

The forward difference of V (xO(k), e(k)) can be computed as

�V (xO(k), e(k)) = V (xO(k + 1), e(k + 1)) − V (xO(k), e(k))

= xT
O(k)

(−γPO − F T
O FO

)
xO(k) − ρeT(k)e(k)

+2(ξO(k) + eO(φ(k)))TF T
O FOxO(k)

+(ξO(k) + eO(φ(k)))TF T
O BT

OPOBOFO(ξO(k) + eO(φ(k)))

+2(ζO(k) − ξO(k))TF T
O BQ(A + LC)e(k)

+(ζO(k) − ξO(k))TF T
O BTQBFO(ζO(k) − ξO(k)),

where we have used the discrete-time Riccati equation (6.27) and the discrete-time
Lyapunov equation (6.36). Let

σ = tr
(
BTQ2B

)
. (6.38)

The linear relation between Q and ρ in (6.36) suggests that there exists a sufficiently
large ρ1 such that for each ρ ≥ ρ1,

Q ≤ Q2,
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and thus

�V (xO(k), e(k)) ≤ xT
O(k)(−γPO − F T

O FO)xO(k) − ρeT(k)e(k)

+2ξ T
O(k)F T

O FOxO(k) + 2eT
O(φ(k))F T

O FOxO(k)

+(ξO(k) + eO(φ(k)))TF T
O BT

OPOBOFO(ξO(k) + eO(φ(k)))

+2(ζO(k) − ξO(k))TF T
O BQ(A + LC)e(k)

+σ(ζO(k) − ξO(k))TF T
O FO(ζO(k) − ξO(k)).

By Young’s Inequality and the definitions of ξ(k) and ζ(k), we obtain

�V (xO(k), e(k)) ≤ −γ xT
O(k)POxO(k) − ρeT(k)e(k)

+2ξ T
O(k)F T

O FOξO(k) + 4eT
O(k)F T

O FOeO(k)

+4ζ T
O (k)F T

O FOζO(k) + 2ξ T
O(k)F T

O BT
OPOBOFOξO(k)

+2eT
O(φ(k))F T

O BT
OPOBOFOeO(φ(k))

+σ(ζO(k) − ξO(k))TF T
O FO(ζO(k) − ξO(k))

+eT(k)(A + LC)T(A + LC)e(k)

+2σζ T
O (k)F T

O FOζO(k) + 2σξ T
O(k)F T

O FOξO(k). (6.39)

Grouping similar terms in the above inequality yields

�V (xO(k), e(k)) ≤ −γ xT
O(k)POxO(k) + 2ξ T

O(k)F T
O

(
I + BT

OPOBO

)
FOξO(k)

+4σξ T
O(k)F T

O FOξO(k) + 4ζ T
O (k)

(
I + BT

OPOBO

)
FOζO(k)

+4σζ T
O (k)F T

O FOζO(k) + 4eT
O(k)

(
I + BT

OPOBO

)
FOeO(k)

+eT(k)
(−ρI + (A + LC)T(A + LC)

)
e(k),

to which we apply Lemma 6.1 to obtain

�V (xO(k), e(k)) ≤ −γ xT
O(k)POxO(k) + (2 + 4σ)ϑOξ

T
O(k)POξO(k)

+(4 + 4σ)ϑOζ
T(k)P ζ(k)

+eT(k)
(−ρI + (A + LC)T(A + LC) + 4ϑOP

)
e(k), (6.40)

with

ϑO = det2(AO) − (1 − γ )nO

(1 − γ )nO−1 .
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Notice that there exists ρ2 ≥ ρ1 such that, for each ρ ≥ ρ2,

γ I + (A + LC)T(A + LC) + 4ϑOP ≤ ρI,

based on which inequality (6.40) can be continued as

�V (xO(k), e(k)) ≤ −γ (xT
O(k)POxO(k) + eT(k)e(k)) + (2 + 4σ)ϑOξ

T
O(k)POξO(k)

+(4 + 4σ)ϑOζ
T(k)P ζ(k)

≤ − γ

λmax(Q)
V (xO(k), e(k)) + (2 + 4σ)ϑOξ

T
O(k)POξO(k)

+(4 + 4σ)ϑOζ
T(k)P ζ(k).

Next, we focus our attention on the terms ξ T
O(k)POξO(k) and ζ(k)P ζ(k). Using

xO(l + 1) = AOCxO(l) − BOFO(ξO(l) + eO(φ(l)))

for l ∈ I [k − r(k), k − 1] repeatedly, we obtain

ξO(k) =
r(k)∑

l=1

(AOC − I )xO(k − l) − BOFO(ξO(k − l) + eO(φ(k − l))),

which implies that

ξ T
O(k)POξO(k) ≤ r(k)

r(k)∑

l=1

(
(AOC − I )xO(k − l) − BOFO(ξO(k − l) + eO(φ(k − l)))

)T

PO

×
(
(AOC − I )xO(k − l) − BOFO(ξO(k − l) + eO(φ(k − l)))

)

≤ 2r(k)

r(k)∑

l=1

xT
O(k − l)(AOC − I )TPO(AOC − I )xO(k − l)

+
(
ξO(k − l) + eO(φ(k − l)))TF T

O BOPOBOFO(ξO(k − l) + eO(φ(k − l))
)

≤ 2R

R∑

l=1

�Ox
T
O(k − l)POxO(k − l) + �O(ξO(k − l) + eO(φ(k − l)))T

×PO(ξO(k − l) + eO(φ(k − l)))

≤ 2R

R∑

l=1

�Ox
T
O(k − l)POxO(k − l) + 4�Ox

T
O(k − l)POxO(k − l)

+4�Ox
T
O(φ(k − l))POxO(φ(k − l)) + 2λOe

T(φ(k − l))P e(φ(k − l)),
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where we have used Young’s Inequality, Lemmas 3.6 and 6.1, and have defined

�O = det2(AO)

(1 − γ )nO
− 1 − nOγ + 2

(
nO − tr(AO)

)

+
(
det2(AO) − (1 − γ )nO

)2

det2(AO)(1 − γ )nO−1
,

�O =
(
det2(AO) − (1 − γ )nO

)2

(1 − γ )2nO−1 .

Again, by the linear relation between Q and ρ, note that there exists ρ3 ≥ ρ2
such that, for each ρ ≥ ρ3,

P(γ ) ≤ Q,

which implies that

ξ T
O(k)POξO(k) ≤ 2R

R∑

l=1

(�O + 4�O)x
T
O(k − l)POxO(k − l)

+4�Ox
T
O(φ(k − l))POxO(φ(k − l))

+2λOe
T(φ(k − l))Qe(φ(k − l)). (6.41)

On the other hand, by using

e(l + 1) = (A + LC)e(l) + BFO(ζO(l) − ξO(l))

for l ∈ I [k − r(k), k − 1] repeatedly, we obtain

ζ(k) =
r(k)∑

l=1

(A + LC − I )e(k − l) + BFO(ζO(k − l) − ξO(k − l)),

based on which we have

ζ T(k)P ζ(k) ≤ 2R

r(k)∑

l=1

eT(k − l)(A + LC − I )TP(A + LC − I )e(k − l)

+(ζO(k − l) − ξO(k − l))TF T
O BTPOBFO(ζO(k − l) − ξO(k − l))

≤ 2R

R∑

l=1

eT(k − l)(A + LC − I )TP(A + LC − I )e(k − l)

+2�Oζ
T

O (k − l)POζO(k − l) + 2�Oξ
T
O(k − l)POξO(k − l)
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≤ 2R

R∑

l=1

eT(k − l)(A + LC − I )TP(A + LC − I )e(k − l)

+4�Oe
T(k − l)Qe(k − l) + 4�Oe

T(φ(k − l))Qe(φ(k − l))

+4�Ox
T
O(k − l)POxO(k − l) + 4�Ox

T
O(φ(k − l))POxO(φ(k − l)).

Once again, by the linear relation between Q and ρ, there exists ρ4 ≥ ρ3 such
that, for each ρ ≥ ρ4,

(A + LC − I )TP(γ )(A + LC − I ) ≤ Q,

which implies that

ζ T(k)P ζ(k) ≤ 2R

R∑

l=1

eT(k − l)Qe(k − l)

+4�Oe
T(k − l)Qe(k − l) + 4�Oe

T(φ(k − l))Qe(φ(k − l))

+4�Ox
T
O(k − l)POxO(k − l) + 4�Ox

T
O(φ(k − l))POxO(φ(k − l)).

Fix a ρ ≥ ρ4. Using the above inequalities on the terms ξ T
O(k)POξO(k) and

ζ(k)P ζ(k) yields

�V (xO(k), e(k)) ≤ − γ

λmax(Q)
V (xO(k), e(k))

+ (2 + 4σ)ϑO

(

2R

R∑

l=1

(�O + 4�O)x
T
O(k − l)

× POxO(k − l) + 4�Ox
T
O(φ(k − l))POxO(φ(k − l))

+ 2λOe
T(φ(k − l))Qe(φ(k − l))

)

+ (4 + 4σ)ϑO

×
(

2R

R∑

l=1

eT(k − l)Qe(k − l) + 4�Oe
T(k − l)Qe(k − l)

+ 4�Oe
T(φ(k − l))Qe(φ(k − l)) + 4�Ox

T
O(k − l)POxO(k − l)

+ 4�Ox
T
O(φ(k − l))POxO(φ(k − l))

)

.
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Consequently, under the assumption that V (k + s) ≤ ηV (k), s ∈ I [−2R, 0], for a
constant η > 1, we have

�V (xO(k), e(k)) ≤
(

− γ

λmax(Q)
+ 4ηR2(1 + 2σ)ϑO(�O + 10�O)

+ 8ηR2(1 + σ)ϑO(1 + 12�O)

)

V (xO(k), e(k)).

Thus, by the Razumikhin Stability Theorem (Theorem 1.4), the closed-loop system
is asymptotically stable if

R <

√
γ

8λmax(Q)ϑO(1 + σ)(1 + �O + 22�O)
.

This completes the proof. �

Theorem 6.2 suggests that, for any feedback parameter γ , the delay independent

output feedback TPF law (6.24) is robust to a certain amount of input delay in a
general, possibly exponentially unstable, discrete-time linear system.

Theorem 6.3 Let all the eigenvalues of AO be at z = 1. Then, given a time-varying
delay with an arbitrarily large upper bound, there exists γ ∗ > 0 such that, for each
γ ∈ (0, γ ∗), the closed-loop system (6.35) is asymptotically stable.

Proof The scheme of the proof follows mostly that of Theorem 6.2, with minor
differences in the handling of the parameters γ and ρ. Consider the Lyapunov
function

V (xO(k), e(k)) = xT
O(k)PO(γ )xO(k) + eT(k)Qe(k),

and recall (6.40) as

�V (k) ≤ −γ xT
O(k)POxO(k) + (2 + 4σ)ϑOξ

T
O(k)POξO(k)

+(4 + 4σ)ϑOζ
T(k)P ζ(k)

+eT(k)
(−ρI + (A + LC)T(A + LC) + 4ϑOP

)
e(k),

with σ and ϑO being defined in the proof of Theorem 6.2. Choose a sufficiently large
ρ such that

{
λmin(Q) > 1,

max{ρI,Q} > (A + LC)T(A + LC).



6.3 Delay Independent Truncated Predictor Output Feedback Design 243

Then, there exists a sufficiently small γ1 > 0 such that, for each γ ∈ (0, γ1),

⎧
⎪⎪⎨

⎪⎪⎩

P(γ ) < Q,

γ I + 4ϑOP(γ ) + (A + LC)T(A + LC) < ρI,

(A + LC − I )TP(γ )(A + LC − I ) < Q,

P (γ ) < γ νI,

where ν is a positive constant that depends on γ1. All the above four inequalities
come from the properties that when all the eigenvalues of AO are at z = 1, PO(γ ) is
a rational function of γ and property (3.74) (see Lemma 3.4).

We adopt the inequality on the term ξ T
O(k)POξO(k), as given by (6.41),

ξ T
O(k)POξO(k) ≤ 2R

R∑

l=1

(�O + 4�O)x
T
O(k − l)POxO(k − l)

+4�Ox
T
O(φ(k − l))POxO(φ(k − l)) + 2λOe

T(φ(k − l))Qe(φ(k − l)).

Moreover, the term ζ T(k)P ζ(k) can be majorized as

ζ T(k)P ζ(k) ≤ 2R

R∑

l=1

γ νeT(k − l)Qe(k − l)

+4�Oe
T(k − l)Qe(k − l) + 4�Oe

T(φ(k − l))Qe(φ(k − l))

+4�Ox
T
O(k − l)POxO(k − l) + 4�Ox

T
O(φ(k − l))POxO(φ(k − l)).

Consequently, under the assumption that V (k + s) ≤ ηV (k), s ∈ I [−2R, 0], for a
constant η > 1, the forward difference �V (k) can be computed as

�V (k) ≤
(

− γ

λmax(Q)
+ 4η(1 + 2σ)ϑOR

2(�O + 10�O)

+8ηR2(1 + σ)ϑO(γ ν + 12�O)

)

V (xO(k), e(k)),

where ϑO, �O, and �O are as defined in the proof of Theorem 6.2. With all the
eigenvalues of AO at z = 1, we have tr(AO) = n and det(AO) = 1, which imply
that ϑO, �O and �O all approach zero as γ does. This further implies that there exists
a γ ∗ ≤ γ1 such that, for each γ ∈ (0, γ ∗),

4(1 + 2σ)ϑOR
2(�O + 10�O) + 8R2(1 + σ)ϑO(γ ν + 12�O) <

γ

λmax(Q)
.

The asymptotic stability of the closed-loop system (6.35) then follows from the
Razumihkin Stability Theorem (Theorem 1.4). �
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Theorem 6.3 suggests that, given a time-varying delay with an arbitrarily large
upper bound, the delay independent output feedback TPF law (6.24) asymptotically
stabilizes a discrete-time linear system with all its open loop poles at z = 1 or
inside the unit circle. No restriction on the variation of the time-varying delay is
imposed on the system. This is particularly remarkable even when compared to the
predictor feedback for a general discrete-time linear system. Recall that the general
predictor feedback, as described in Chap. 3, manages to stabilize the system by
predicting the future state of the open loop system at the future time step φ−1(k),
which inevitably requires the inverse of φ(k) = k−r(k) to exist and be known. Such
a requirement limits the ability of the predictor feedback to handle time-varying
delays. Therefore, our proposed output feedback law manifests its advantage over
the predictor feedback in the stabilization of discrete-time linear systems with time-
varying delays.

6.3.3 Numerical Examples

Example 6.4 (A System with All Poles at z = 1) Consider system (6.21) with

A =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , C = [

1 0 0 0
]
. (6.42)

Clearly, the open loop system has all its poles at z = 1 and the triple (A,B,C) are
both controllable and observable. We design the matrix L such that

λ(A + LC) =
{

± 1

2
,±1

2

}
.

Theorem 6.3 suggests that the delay independent truncated predictor output feed-
back law (6.24) asymptotically stabilizes the system with a time-varying delay
whose upper bound can be arbitrarily large. Consider a fast-varying delay

r(k) =
⌈

1 + sin2(100k)
⌉

, k ∈ N

with an upper bound R = 2, where �·� denotes the ceiling function. Let γ = 0.1
and the initial condition be

x(k) = [
1 0 −1 2

]T
, x̂(k) = [

0 0 0 0
]T

, k ∈ I [0, R].
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The evolutions of the closed-loop state, the state estimate error, and the correspond-
ing input are shown in Figs. 6.4 and 6.5. �

Example 6.5 (A System with All Poles on the Unit Circle) Consider system (6.21)
with

A =
⎡

⎣
0 1 0

−1 0 0
0 0 1

⎤

⎦ , B =
⎡

⎣
1
1
1

⎤

⎦ , C = [
1 0 1

]
. (6.43)

The open loop system has a pair of poles on the unit circle at z = ±j and another
pole at z = 1. It can be easily verified that (A,B,C) are both controllable and
observable. The matrix L is designed such that

λ(A + LC) =
{

0,±1

2

}
,

and the feedback parameter is chosen as γ = 0.1. For simulation purpose, let a
time-varying delay be

r(k) = 1 + (−1)k

2
, k ∈ N,

and the initial condition be

x(k) = [
1 0 −1

]T
, x̂(k) = [

0 0 0
]T

, k ∈ I [0, 1].

The state, the state estimation, the estimation error, and the control input are shown
in Figs. 6.6 and 6.7. �

Example 6.6 (An Exponentially Unstable System) Consider system (6.21) with

A =
⎡

⎣
0 1 0

− 1 0 0
0 0 2

⎤

⎦ , B =
⎡

⎣
1
1
1

⎤

⎦ , C = [
1 0 1

]
. (6.44)

The open loop system has an exponentially unstable poles at z = 2 and a pair
of imaginary poles at z = ±j . It can be readily verified that (A,B,C) are both
controllable and observable. The matrix L is designed such that

λ(A + LC) =
{

0,±1

2

}
,
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Fig. 6.4 Example 6.4: State and state estimation under the delay independent output feedback
TPF law (6.24) with γ = 0.1
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Fig. 6.5 Example 6.4: State estimation error and control input under the delay independent output
feedback TPF law (6.24) with γ = 0.1
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Fig. 6.6 Example 6.5: State and state estimation under the delay independent output feedback
TPF law (6.24) with γ = 0.1
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Fig. 6.7 Example 6.5: Estimation error and control input under the delay independent output
feedback TPF law (6.24) with γ = 0.1
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and the feedback parameter is chosen as γ = 0.1. Consider a constant delay

r(k) = 1, k ∈ N.

Let the initial condition be

x(k) = [
1 −1 0

]T
, x̂(k) = [

0 0 0
]T

, k ∈ I [0, 1].

The convergent state, state estimation, estimation error, and control input are shown
in Figs. 6.8 and 6.9. �

6.4 Conclusions

A general discrete-time linear system that is possibly exponentially unstable can
be stabilized by delay independent TPF, either of state feedback type or of output
feedback type, as long as the input delay does not exceed a certain bound. Since the
construction of the delay independent TPF does not rely on the explicit knowledge
of a time-varying delay, the feedback has the ability to handle time-varying delays
that cannot be handled by the general predictor feedback of Chap. 3. Moreover,
when all the open loop poles are at z = 1 or inside the unit circle, the delay
independent predictor feedback laws achieve asymptotic stabilization no matter how
large the bound on the time-varying delay is as long as the feedback parameter is
chosen small enough.

6.5 Notes and References

The presentation of the results on the delay independent truncated predictor state
feedback follows [106], whereas the results on its output feedback counterparts are
from [109].
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Fig. 6.8 Example 6.6: State and state estimation under the delay independent output feedback
TPF law (6.24) with γ = 0.1



252 6 Delay Independent Truncated Predictor Feedback for Discrete-Time Linear. . .

Fig. 6.9 Example 6.6: Estimation error and control input under the delay independent output
feedback TPF law (6.24) with γ = 0.1



Chapter 7
Regulation of Continuous-Time Linear
Input Delayed Systems Without Delay
Knowledge

7.1 Introduction

In this chapter, we propose a control scheme that, in the absence of any knowledge
of the delay, regulates to zero the state and the control input of a linear input delayed
system whose open loop poles are at the origin or in the open left-half plane. Two
main features of our control scheme are its non-distributed nature in the sense that
only the current state is used in the feedback and its delay independence in the
sense that no knowledge of the delay, neither its exact value nor its upper bound,
is required. The main ingredients of our control scheme and the regulation proof
include the design of a delay independent truncated predictor feedback law with a
time-varying feedback parameter, Lyapunov function based adaptation of the time-
varying parameter, a mechanism for switching between two update laws of the time-
varying parameter, and the partial differential equation based analysis of the closed-
loop system.

Both the truncated predictor feedback law and the delay independent truncated
predictor feedback law, as presented in Chaps. 2 and 5, respectively, require
knowledge of the input delay. The delay appears in the exponential factor of the
truncated predictor feedback law. An upper bound of the delay is necessary for
determining the value of a low gain feedback parameter of the delay independent
truncated predictor feedback laws. In Sect. 5.2, a delay independent truncated
predictor feedback law was proposed for a general linear system and an admissible
delay bound for the closed-loop stability was established. A delay independent
output feedback law was proposed in Sect. 5.4 for a general linear system, and
an admissible delay bound that assures closed-loop stability was given. Also, an
upper bound of the delay is required to be known for the stability guarantee. To
study the potential of the delay independent truncated predictor feedback law to
achieving faster convergence of the closed-loop system, Sect. 5.3 presented a time-
varying feedback parameter that guarantees closed-loop stability of linear systems
with all open loop poles at the origin or in the open left-half plane. An upper bound
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of the delay is still required for the design of the time-varying feedback parameter
therein. For systems with open loop poles in the closed left-half plane, reference
[103] developed adaptation of the truncated predictor feedback law to accommodate
unknown delay, but the delay is required to be in a sufficiently small range whose
upper and lower bounds are known. A control scheme that employs the full actuator
states U(t + θ), θ ∈ [−τ, 0], regulates a general linear system with input delay, but
requires the upper bound of the delay to be known [58]. Typically, a delay-adaptive
control scheme for a general linear system utilizes a lower bound and an upper
bound of the delay (see [14] and [15]). Regardless of different types of systems
and various control schemes, regulation of linear systems by using a feedback law
independent of any knowledge of the delay still remains an open problem.

The delay independent truncated predictor feedback law as a non-distributed
controller allows easy implementation and requires relatively less knowledge of
the delay. To achieve regulation, in the absence of any knowledge of the delay, of
linear systems with all open loop poles at the origin or in the open left-half plane,
in this chapter, we consider the delay independent feedback law as the nominal
controller for the design of a regulation scheme. The Lyapunov equation based
low gain feedback design results in a feedback gain matrix with a single feedback
parameter. An update algorithm for the feedback parameter consists of two update
laws with a switching mechanism. This update algorithm guarantees the regulation
of the state and the control input of the system to zero and the regulation of the
feedback parameter to a positive constant. The regulation proof is carried out by
the use of the partial differential equation (PDE) based system representation and a
Lyapunov analysis of the closed-loop system. The development and the applications
of the PDE approach to the representation and analysis of delayed systems can be
found in great detail in [59].

7.2 A Feedback Law with a Time-Varying Parameter

We consider the design of a delay compensation scheme that regulates to zero the
state and the control input of the following linear system with input delay,

{
Ẋ(t) = AX(t) + BU(t − τ), t ≥ 0,

X(θ) = ψ(θ), θ ∈ [−τ, 0], (7.1)

where X ∈ R
n and U ∈ R

m are the state vector and the input vector, respectively,
τ ≥ 0 is an arbitrarily large unknown delay, and the initial condition

ψ(θ) ∈ PC[−τ, 0].

It is assumed that all eigenvalues of A are at the origin and (A,B) is controllable.
In Chap. 5, the delay independent truncated predictor feedback law with the

Lyapunov equation based low gain feedback design takes the form of
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U(t) = −BTP(γ )X(t), t ≥ −τ, (7.2)

where γ is the low gain feedback parameter, −BTP(γ ) is the feedback gain matrix,
and P(γ ) is the unique positive definite solution to the parametric algebraic Riccati
equation,

ATP(γ ) + P(γ )A − P(γ )BBTP(γ ) = −γP (γ ), γ > 0. (7.3)

With the knowledge of an upper bound of the delay, an upper bound of γ that ensures
the asymptotic stability of the closed-loop system was established.

In the absence of any knowledge of the delay value, an upper bound of the low
gain parameter with stability guarantee cannot be determined. Inspired by the time-
varying low gain feedback design in Sect. 5.3, we adopt

U(t) = −BTP(γ (t))X(t), t ≥ −τ, (7.4)

with a time-varying feedback parameter

γ (t) > 0.

The initial condition of γ (t) is given as

γ (θ) = φ(θ), θ ∈ [−τ, 0].

It is assumed that

φ(θ) ∈ PC[−τ, 0],

and satisfies

φ(θ) > 0, θ ∈ [−τ, 0].

For notational brevity, γ (0) is denoted as γ0 in the rest of the chapter.

Remark 7.1 We have defined the initial condition of the closed-loop system con-
sisting of (7.1) and (7.4) as ψ(θ) and φ(θ) on θ ∈ [−τ, 0]. The initial condition for
U(t) is determined by the initial conditions ψ(θ) and φ(θ). If we consider t = 0 as
the starting time instant of the feedback law (7.4), then the initial condition of the
closed-loop system can be defined by X(0), γ0 and

U(θ) = υ(θ) ∈ PC[−τ, 0).

�
The bottleneck to achieving the regulation of closed-loop signals including X(t),

γ (t), and U(t) under (7.4), without resorting to any knowledge of the delay, is
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the design of an appropriate delay independent update algorithm for γ (t). Such an
algorithm and its main features are presented in the next section.

7.3 An Update Algorithm for the Feedback Parameter

An update algorithm for γ (t), which constructs a continuous γ (t) on t ≥ 0, consists
of two update laws and a mechanism that governs the switching between them.
Update law I takes the form of

γ̇ (t) = −α
V p(t)

V p(t) + β
γ q(t), t ≥ 0, (7.5)

where

α, β > 0, p ≥ 1, q ≥ 2,

and

V (X(t), t) = XT(t)P (γ (t))X(t)

is a Lyapunov function commonly used for stability analysis of systems with or
without delays. For notational convenience, we will denote

V (t) = V (X(t), t)

in the rest of the chapter.
Update law II takes the following form:

γ̇ (t) = −ζγ r(t), t ≥ 0, (7.6)

where

ζ > 0, r ≥ 2.

The switching between the two update laws is based on an event-triggered
switching condition according to the value of the Lyapunov function V (t). The
update law is switched from I to II whenever

V (t) ≥ ε,

where ε > 0 is a threshold. Denote the time instant of a switch from update law I to
update law II as TI,II. We consider isolated time instants
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TI,II + δi, i ∈ N,

such that

γ (TI,II + δi) = γ (TI,II)

ξ i
, (7.7)

where

ξ > 1

and δi is computed by the use of (7.6) and (7.7) as

δi = γ 1−r (TI,II)

(r − 1)ζ

(
ξ (r−1)i − 1

)
. (7.8)

Then, the time instant of the next switch from update law II back to update law I is

TII,I = TI,II + min
i∈N

{δi : V (TI,II + δi) < ε} . (7.9)

Note from (7.8) that δi is strictly increasing with respect to i. Thus, (7.9) indicates
that after a switch from update law I to update law II, we check the value of V at the
isolated time instants

TI,II + δi, i ∈ N,

and switch from update law II back to update law I at the first time instant

TI,II + δi

at which

V (TI,II + δi) < ε.

Two main features of the update algorithm for γ (t) are its non-distributed nature
and delay independence. In particular, the update algorithm utilizes exclusively the
current state as the feedback, rather than resorting to the past values of any closed-
loop signal. On the other hand, no knowledge of the delay is required in the update
algorithm. As a result, the integrated control scheme consisting of the feedback law
(7.4) and the update algorithm is also non-distributed and delay independent.

Remark 7.2 According to the switching mechanism, the value of V (0) uniquely
determines which update law is to implement at t = 0. If

V (0) < ε,
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then the closed-loop system starts to evolve under update law I. Otherwise, it starts
to evolve under update law II. By the definition of V (t), the selection of the update
law for γ (t) at t = 0 solely depends on ψ(0) and φ(0). �
Remark 7.3 Both TI,II and TII,I can be infinite, provided that the switching condition
from one update law to another is never satisfied. In particular,

Tl,I,II = ∞

if

V (t) < ε, t ≥ Tl,II,I,

where Tl,I,II and Tl,II,I are the time instants of the last time of switch from update law I
to update law II and from II to I, respectively. Similarly,

Tl,II,I = ∞

if

V (Tl,I,II + δi) ≥ ε, i ∈ N,

where δi is defined in (7.8) with TI,II replaced by TII,I. �
Remark 7.4 On every time interval

[
TI,II, TII,I

]
, where TI,II is the time instant of a

switch from update law I to update law II and TII,I is the time instant of the next
switch from update law II back to update law I, γ (t) evolves according to update law
II. Equation (7.7) shows that the values of γ (t) at the time instants of the sequence

{
TI,II + δi

}i=J

i=0 ,

where

J = min
{
j ∈ N : V

(
TI,II + δj

)
< ε

}
,

form a decreasing geometric sequence of a ratio

ξ−1 < 1.

From this perspective, update law II decreases the value of γ (t) geometrically.
Another feature of update law II is that the switching condition from update law

II to update law I is only required to be examined at the isolated time instants of the
sequence

{TI,II + δi}i=J
i=0 ,
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while for the rest of the time on the interval
[
TI,II, TII,I

]
, there is no feedback from

other closed-loop signals to γ (t). �
Remark 7.5 The frequency of switching between the two update laws for γ (t) can
be partially described by an examination of (7.9). Note that

TII,I − TI,II ≥ δ1 = γ 1−r (TI,II)

(r − 1)ζ

(
ξ r−1 − 1

)
≥ γ 1−r

0

(r − 1)ζ

(
ξ r−1 − 1

)
,

because of the nonincreasing monotonicity of γ (t) on t ∈ [0,∞) and r ≥ 2.
Therefore, every time update law I switches to update law II, the time it takes to
switch from update law II back to update law I is bounded from below by a positive
constant. This implies that on any bounded time interval, the number of switches
between the two update laws must be finite. Thus, the time-varying function γ̇ (t) is
piecewise continuous on every bounded time interval. �

In the rest of the chapter, we aim to prove the following two theorems on the well
definedness and regulation to zero of the closed-loop signals under the proposed
control scheme.

Theorem 7.1 Under the update algorithm for γ (t) and for any given initial
conditions ψ(θ), φ(θ) ∈ PC[−τ, 0], there exist unique solutions

X(t), γ (t), U(t) ∈ C[0,∞).

Moreover,

γ (t) ∈ (0, γ0], t ∈ [0,∞).

Theorem 7.2 The feedback law (7.4) with γ (t) updated by the update algorithm
achieves

lim
t→∞ X(t) = 0, lim

t→∞ U(t) = 0.

Moreover,

lim
t→∞ γ (t)

exists and is positive. In particular, on t ∈ [0,∞), the number of switches between
the two update laws for γ (t) is finite, and the last switch happens from update law
II to update law I.

The proof of Theorem 7.1 is given in Sect. 7.4. Preliminary results for the proof
of Theorem 7.2 are presented in Sects. 7.5 and 7.6, and the proof of Theorem 7.2 is
given at the end of Sect. 7.6.
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7.4 Proof of the Properties of the Closed-Loop Signals

Proof of Theorem 7.1 The proof is inspired by the continuation progress employed
in the existence and the uniqueness proof of the solution of a functional differential
equation (see Theorem 3.1 in [12]).

In view of the facts that

ψ(θ), φ(θ) ∈ PC[−τ, 0],

the open loop system (7.1) and the feedback law (7.4), there exists a unique solution
X(t) on t ∈ [0, τ ] expressed as

X(t) = eAtX(0) −
∫ t

0
BBTP(φ(s − τ))ψ(s − τ)ds,

which leads to

X(t) ∈ C[0, τ ].

With the solution X(t), t ∈ [0, τ ], the evolution of γ (t) on t ∈ [0, τ ] follows the
update algorithm presented in Sect. 7.3. Consider an auxiliary signal

s(t) = γ −1(t)

on t ∈ [0, τ ]. Then, s(t) either satisfies

ṡ(t) = α
V p(t)

V p(t) + β
s2−q(t), (7.10)

or

ṡ(t) = ζ s2−r (t),

corresponding to update laws I and update law II, respectively.
The existence of the signal s(t) on t ∈ [0, τ ] is shown by using the technique

of proof by contradiction. Suppose that the solution s(t) only exists on t ∈ [0, tf),
where 0 < tf ≤ τ . Note from Remark 7.5 that the number of switches between
the two update laws on t ∈ [0, tf) is finite. Denote the time instant of the last time
of switch as ts. On t ∈ [ts, tf), either update law I or update law II is implemented.
Suppose that it is the first case. According to (7.10),

ṡ(t) ≤ αs2−q(t), t ∈ [ts, tf),

which leads to
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s(t) ≤
(
α(q − 1)(t − ts) + sq−1(ts)

) 1
q−1

< ∞, t ∈ [ts, tf).

This contradicts with

lim
t→t−f

s(t) = ∞.

Applying a similar argument to the second case, where update law II is implemented
on t ∈ [ts, tf), also results in a contradiction. Therefore, s(t), and thus γ (t), exist on
t ∈ [0, τ ]. Note that

ṡ(t) ≥ 0.

Thus,

s(t) ≥ γ −1
0 > 0,

and

γ (t) > 0, t ∈ [0, τ ].

The uniqueness of the solution γ (t) on t ∈ [0, τ ] again follows from proof
by contradiction. Suppose that the time instant of the first time the solution γ (t)

becomes nonunique is t ′, where t ′ ∈ [0, τ ). Again, recall from Remark 7.5 that
the number of switches between the two update laws is finite on any bounded time
interval. Therefore, there exists a sufficiently small

ε > 0

such that either update law I or update law II, is implemented on t ∈ [t ′, t ′ + ε].
Consider the first case where update law I is implemented. The right-hand side of
(7.5) is continuous with respect to both t and γ at the point (t ′, γ (t ′)) because

X(t) ∈ C[0, τ ]

and P(γ ) is infinitely differentiable with respect to γ (see Lemma 2.4). Further-
more,

∂

∂γ

(

−α
V p(t)

V p(t) + β
γ q

)

= −α
V p−1(t)γ q−1

V p(t) + β

(
pγβXT(t) ∂P

∂γ
X(t)

V p(t) + β
+ qV (t)

)

,

and is continuous with respect to t and γ at (t ′, γ (t ′)). By the existence and
uniqueness theorem on the solution of an ordinary differential equation, there exists
an
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η ∈ (0, ε]

such that the solution γ (t) on [t ′, t ′+η] is unique. This contradicts the fact that γ (t)

starts to become nonunique from t ′. Applying a similar argument to the second case
where update law II is implemented also leads to a contradiction. Therefore, γ (t)

has a unique solution on t ∈ [0, τ ].
With

X(t), γ (t) ∈ C[0, τ ],

the existence and the uniqueness of X(t) and γ (t) on t ∈ [τ, 2τ ] can be
obtained similarly. Repeatedly applying the analysis along the time axis leads to
the conclusion that there exists unique solutions

X(t), γ (t) ∈ C[0,∞).

In view of the feedback law (7.4), the existence, the uniqueness, and the continuity
of U(t) then directly follow from those of X(t) and γ (t). On the other hand, by
the use of the continuation progress, the positiveness of γ (t) on t ∈ [0,∞) follows
readily from the fact that

γ (t) > 0

on t ∈ [0, τ ]. By the nonincreasing monotonicity of γ (t), we get

γ (t) ∈ (0, γ0], t ∈ [0,∞).

�
Remark 7.6 The positiveness of γ (t) on t ∈ [0,∞) as a conclusion of Theorem 7.1
shows that the update algorithm for γ (t) successfully avoids the singularity at

γ = 0.

According to Chap. 2, such a singularity destroys the existence of a positive definite
solution to (7.3). �
Remark 7.7 Theorem 7.1 also holds when γ (t) is updated according to either
update law I or update law II on t ∈ [0,∞). The proof for the case of a single
update law is simpler, without the consideration of the other update law and the
switching mechanism. �

In the rest of this section, we establish a lower bound of γ (t) on t ∈ [0,∞) as a
motivation for the more refined nonzero lower bound to be established in the proof
of Theorem 7.2 in Sect. 7.6.

Proposition 7.1 γ (t) ≥ 1/ω(t) under the update algorithm for γ (t), where
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ω̇(t) = max
{
αω2−q(t), ζω2−r (t)

}

�f (ω), t ≥ 0, (7.11)

and

ω(0) = γ −1
0 .

Proof Consider an auxiliary signal

s(t) = 1/γ (t), t ∈ [0,∞).

The upper Dini derivative of s(t) satisfies

D+s(t) = lim sup
a→0+

s(t + a) − s(t)

a

≤ max

{

α
V p(t)

V p(t) + β
s2−q(t), ζ s2−r (t)

}

≤ max
{
αs2−q(t), ζ s2−r (t)

}
, t ≥ 0. (7.12)

Regardless of the values of α, q, ζ , r , and γ0 given in Sect. 7.3, ω(t) has a unique
solution on t ∈ [0,∞). In fact, the explicit solution of ω(t) can be obtained. Take
the case where

q > r

and

γ0 >

(
ζ

α

) 1
q−r

for example. We compute

ω(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(
(q − 1)αt + γ

1−q

0

) 1
q−1

, t ∈ [0, tω],
(

(r − 1)ζ(t − tω) +
(

α
ζ

) r−1
q−r

) 1
r−1

, t ∈ [tω,∞),

tω =
(

α
ζ

) q−1
q−r − γ

1−q

0

α(q − 1)
.
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The solution of ω(t) for other cases regarding the values of α, q, ζ , r can be obtained
similarly. For brevity, we omit the solution of ω(t) for other cases.

By its definition in (7.11), f (ω) is locally Lipschitz in w ∈ R
+ ⊂ R. On the

other hand, the interval [0,∞) is the maximum time interval of existence of both
ω(t) and s(t). By the continuity and the positiveness of s(t) on t ∈ [0,∞),

s(0) = w(0)

and (7.12), it follows from the comparison lemma (Lemma 3.4 in [51]) that

s(t) ≤ ω(t), t ∈ [0,∞).

�


7.5 The PDE Description of the Closed-Loop System

The modeling of an input delayed system as a cascade of an ordinary differential
equation (ODE) with a PDE brings a wealth of tools in the PDE analysis to
the control systems analysis, advancing control techniques for state regulation,
trajectory tracking, and compensation for unknown delays (see [4, 11, 14, 15], and
[59]). While the PDE analysis in those earlier works applies to general linear or
certain nonlinear delayed systems under predictor-based feedback laws, Sect. 5.3
introduces the PDE method for the analysis of system (7.1) under the feedback
law (7.4). We recall from Sect. 5.3 the PDE-based modeling of such a closed-loop
system.

We first define a series of functions and some auxiliary signals,

u(x, t) = U(t + τ(x − 1)), (7.13)

û(x, t) = U
(
t + τ̂ (t)(x − 1)

)
, (7.14)

τ̂ (t) = h

γ (t)
, (7.15)

ŵ(x, t) = û(x, t) − U(t), (7.16)

ũ(x, t) = u(x, t) − û(x, t), (7.17)

τ̃ (t) = τ − τ̂ (t), (7.18)

where

x ∈ [0, 1], t ≥ 0,

and h is some positive constant. Note from Theorem 7.1 that
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γ (t) > 0, t ∈ [0,∞).

Thus, τ̂ (t) is well defined on the interval [0,∞). With the actuator state u(x, t), the
open loop system (7.1) is represented as a cascade of an ODE with a PDE,

Ẋ(t) = AX(t) + Bu(0, t), (7.19)

τut (x, t) = ux(x, t), (7.20)

u(1, t) = U(t). (7.21)

Then, we arrive at the following closed-loop system representation:

Ẋ(t) = (
A − BBTP(γ (t))

)
X(t) + Bũ(0, t) + Bŵ(0, t). (7.22)

Next, we recall from Sect. 5.3 the governing PDEs for û(x, t), ŵ(x, t), ũ(x, t)

and ŵx(x, t) as

{
τ̂ ût (x, t) = (

1 + ˙̂τ(x − 1)
)
ûx(x, t),

û(1, t) = U(t),
(7.23)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ̂ ŵt (x, t) = ŵx(x, t)
(

1 + ˙̂τ(x − 1)
)

+ τ̂BT
∂P

∂γ
γ̇ (t)X(t) + τ̂BTP(γ (t))

×
((

A − BBTP(γ (t))
)
X(t) + Bũ(0, t) + Bŵ(0, t)

)
,

ŵ(1, t) = 0,

(7.24)

⎧
⎨

⎩
τ ũt (x, t) = ũx(x, t) − τ̃ + τ ˙̂τ(x − 1)

τ̂
ŵx(x, t),

ũ(1, t) = 0,

(7.25)
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and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ̂ ŵxt (x, t) = ŵxx(x, t)
(

1 + ˙̂τ(x − 1)
)

+ ˙̂τŵx(x, t),

ŵx(1, t) = −τ̂BT
∂P

∂γ
γ̇ (t)X(t) − τ̂BTP(γ (t))

× ((A − BBTP(γ (t)))X(t) + Bũ(0, t) + Bŵ(0, t)
)
,

(7.26)

respectively.
We finally recall a lemma from Sect. 5.3 on some properties of the functions

(7.13)–(7.18).

Lemma 7.1 Consider the closed-loop system consisting of (7.1) and (7.4). The
following properties hold:

−
∫ 1

0
(1 + x)

(
τ̃ + τ ˙̂τ(x − 1)

)
ũT(x, t)ŵx(x, t)dx

≤
(∣
∣
∣
∣τ̃

∣
∣
∣
∣+

1

2
τ

∣
∣
∣
∣
˙̂τ
∣
∣
∣
∣

)(

ρ||ũ(t)||2 + 1

ρ
||ŵx(t)||2

)

,

where ρ > 0 is any constant,

∫ 1

0
(1 + x)

(
1 + ˙̂τ(x − 1)

)
ŵT(x, t)ŵx(x, t)dx ≤ 1

2

(∣
∣
∣ ˙̂τ
∣
∣
∣− 1

) ∣
∣ŵ(0, t)

∣
∣2 +

( ∣
∣
∣ ˙̂τ
∣
∣
∣− 1

2

) ∣
∣
∣
∣ŵ(t)

∣
∣
∣
∣2 ,

∫ 1

0
(1 + x)ŵT(x, t)τ̂BT ∂P

∂γ
γ̇ (t)X(t)dx ≤ h

1
2
∣
∣
∣
∣ŵ(t)

∣
∣
∣
∣2 +

( ˙̂τ
τ̂

)2
h

3
2 XT(t)

∂P

∂γ
BBT ∂P

∂γ
X(t),

∫ 1

0
(1 + x)ŵT(x, t)τ̂BTP(γ (t))

((
A − BBTP(γ (t))

)
X(t) + Bũ(0, t) + Bŵ(0, t)

)
dx

≤ τ̂ nγ (t)
∣
∣
∣
∣ŵ(t)

∣
∣
∣
∣2 + 3

2
τ̂ n(n + 1)γ 2(t)XT(t)P (γ (t))X(t)

+3τ̂ nγ (t)
(
|ũ(0, t)|2 + ∣

∣ŵ(0, t)
∣
∣2
)

,

∫ 1

0
(1 + x)

(
1 + ˙̂τ(x − 1)

)
ŵT

x(x, t)ŵxx(x, t)dx

≤ ∣
∣ŵx(1, t)

∣
∣2 + 1

2

(∣
∣
∣ ˙̂τ
∣
∣
∣− 1

) ∣
∣ŵx(0, t)

∣
∣2 +

( ∣
∣
∣ ˙̂τ
∣
∣
∣− 1

2

) ∣
∣
∣
∣ŵx(t)

∣
∣
∣
∣2 ,
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|ŵx(1, t)|2 ≤ 2τ̂ 2γ̇ 2(t)XT(t)
∂P

∂γ
BBT

∂P

∂γ
X(t) + 6τ̂ 2n2γ 2(t)

×
(n + 1

2
γ (t)XT(t)P (γ (t))X(t) + |ũ(0, t)|2 + |ŵ(0, t)|2

)
.

In our regulation analysis later in this chapter, we adopt the following Lyapunov
functional:

V(Xt , γ (t)) = V (t)+b1τ

∫ 1

0
(1+x)|ũ(x, t)|2dx +b2τ̂ (t)

∫ 1

0
(1+x)|ŵ(x, t)|2dx

+b2τ̂ (t)

∫ 1

0
(1 + x)|ŵx(x, t)|2dx, (7.27)

where

b1, b2 > 0

and their values are to be determined.
In the following lemma, we establish the continuity of V(t) with respect to time

under the update algorithm for γ (t).

Lemma 7.2 Under the update algorithm for γ (t) and with the initial conditions

ψ(θ), φ(θ) ∈ PC[−τ, 0],

there exists

tc > 0

such that

V(t) ∈ C[tc,∞)

if

h ≤ 1

2 max
{
αγ

q−2
0 , ζγ r−2

0

} . (7.28)

Proof We study the continuity of V(Xt , γ (t)) term by term. The first term in
V(Xt , γ (t)) is continuous on t ∈ [0,∞) because of the continuity of X(t) and
γ (t) on the same interval. By a change of variables,

τ

∫ 1

0
(1 + x)|ũ(x, t)|2dx
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=
∫ t

t−τ

(

2 + s − t

τ

)

|U(s)|2ds + τ

τ̂ (t)

∫ t

t−τ̂ (t)

(

2 + s − t

τ̂ (t)

)

|U(s)|2ds

− 2τ

τ̂ (t)

∫ t

t−τ̂ (t)

(

2 + s − t

τ̂ (t)

)

U T(s)U

(
τ

τ̂ (t)
s + t

(

1 − τ

τ̂ (t)

))

ds,

when τ 
= 0. The continuity of U(t) on t ∈ [0,∞) implies that the second term of
V(Xt , γ (t)) is continuous with respect to t if

t ≥ max
{
τ, τ̂ (t)

}
.

The continuity of the second term of V(Xt , γ (t)) is obvious when

τ = 0.

Noting that

τ̂ (t)

∫ 1

0
(1 + x)|ŵ(x, t)|2dx =

∫ t

t−τ̂ (t)

(

2 + s − t

τ̂ (t)

)

|U(s)|2ds + 3

2
τ̂ (t)|U(t)|2

−2
∫ t

t−τ̂ (t)

(

2 + s − t

τ̂ (t)

)

U(s)dsU(t),

we deduce that the third term of V(Xt , γ (t)) is continuous if

t ≥ max
{
τ̂ (t), 0

}

= τ̂ (t).

The last term of V(Xt , γ (t)) needs careful examination because it involves γ̇ (t),
which is not necessarily continuous on t ∈ [0,∞) because of possible switching
between the two update laws for γ (t). It follows from a change of variables that

∫ 1

0
(1 + x)|ŵx(x, t)|2dx

=
∫ t

t−τ̂ (t)

(
2τ̂ (t) + s − t

)
(

γ̇ 2(s)

∣
∣
∣
∣B

T
∂P

∂γ
X(s)

∣
∣
∣
∣

2

+ |BTP(γ (s))AX(s)|2

+ ∣
∣BTP(γ (s))BBTP(γ (s − τ))X(s − τ)

∣
∣2 + 3γ̇ (s)XT(s)

∂P

∂γ
BBTP(γ (s))AX(s)

− 3γ̇ (s)XT(s)
∂P

∂γ
BBTP(γ (s))BBTP(γ (s − τ))X(s − τ)
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− 3XT(s)ATP(γ (s))BBTP(γ (s))BBTP(γ (s − τ))X(s − τ)

)

ds. (7.29)

On the time interval [t − τ̂ (t), t], where

t ≥ τ̂ (t),

γ̇ (t) is piecewise continuous according to Remark 7.5. Also,

0 ≥ γ̇ (t)

≥ min
{−αγ q(t),−ζγ r(t)

}

≥ min
{−αγ

q

0 ,−ζγ r
0

}
(7.30)

implies that γ̇ (t) is bounded. In view of the continuity and the boundedness of X(t)

and γ (t) on [t − τ̂ (t), t], the integrand of the right-hand side of (7.29) is Riemann
integrable on the same interval as long as

t ≥ τ + τ̂ (t).

Combining the continuity analysis for all the terms of V(Xt , γ (t)), we conclude
that, if

t ≥ τ + τ̂ (t),

V(Xt , γ (t)) is continuous. Under the update algorithm for γ (t), the term

γ̇ (t)

γ 2(t)

is bounded on t ∈ [0,∞) because

0 ≥ γ̇ (t)

γ 2(t)

≥ min
{
−αγ q−2(t),−ζγ r−2(t)

}

≥ min
{
−αγ

q−2
0 ,−ζγ r−2

0

}
.

By the use of the comparison lemma, we compute

γ (t) ≥ 1
1
γ0

+ max
{
αγ

q−2
0 , ζγ r−2

0

}
t
, t ≥ 0. (7.31)
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If h satisfies (7.28), we have

h <
1

max
{
αγ

q−2
0 , ζγ r−2

0

} .

Therefore, there exists

tc > 0

such that, for each t ≥ tc,

t ≥ τ + h
(
γ −1

0 + max
{
αγ

q−2
0 , ζγ r−2

0

}
t
)

, (7.32)

which implies that

t ≥ τ + τ̂ (t)

according to (7.31). Then, the continuity of V(Xt , γ (t)) follows. �

Remark 7.8 If γ (t) is updated by either update law I or update law II on t ∈ [0,∞)

alone, Lemma 7.2 also holds with the denominator of the right-hand side of (7.28)
becoming

2αγ
q−2
0

or

2ζγ r−2
0 ,

respectively. The proof for the case of a single update law resembles the proof of
Lemma 7.2, with a difference in the estimate of the lower bound of γ̇ (t) in (7.30).
�

We compute the time derivative of V(Xt , γ (t)) along the trajectory of the closed-
loop system between switchings for γ (t) as follows:

V̇(Xt , γ (t)) = XT(t)
(

− γ (t)P (γ (t)) − P(γ (t))BBTP(γ (t))
)
X(t)

+2XT(t)P (γ (t))Bũ(0, t) + 2XT(t)P (γ (t))Bŵ(0, t)

+XT(t)
∂P

∂γ
γ̇ (t)X(t) + 2b1

∫ 1

0
(1 + x)ũT(x, t)ũx(x, t)dx

−2b1

τ̂

∫ 1

0
(1 + x)

(
τ̃ + τ ˙̂τ(x − 1)

)
ũT(x, t)ŵx(x, t)dx
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+2b2

∫ 1

0
(1 + x)ŵT(x, t)ŵx(x, t)

(
1 + ˙̂τ(x − 1)

)
dx

+2b2

∫ 1

0
(1 + x)ŵT(x, t)τ̂BTP(γ (t))

( (
A − BBTP(γ (t))

)
X(t)

+Bũ(0, t) + Bŵ(0, t)
)

dx + 2b2

∫ 1

0
(1 + x)ŵT(x, t)τ̂BT ∂P

∂γ
γ̇ (t)X(t)dx

+2b2

∫ 1

0
(1 + x)ŵT

x(x, t)ŵxx(x, t)
(

1 + ˙̂τ(x − 1)
)

dx

+2b2

∫ 1

0
(1 + x)|ŵx(x, t)|2 ˙̂τdx + b2

˙̂τ
∫ 1

0
(1 + x)

(∣
∣ŵ(x, t)

∣
∣2

+ ∣∣ŵx(x, t)
∣
∣2
)

dx, (7.33)

where we have used the closed-loop system representation (7.22), the Riccati
equation (7.3), and the governing PDEs (7.23)–(7.26). It then follows that

V̇(Xt , γ (t))

≤ γ (t)V (t)
(
−1 + 6b2n

2(n + 1)h2 + 3b2n(n + 1)h
)

+ |ũ(0, t)|2
(

2 − b1

+6b2nh + 12b2n
2h2
)

+ |ŵ(0, t)|2
(
b2( ˙̂τ − 1) + 2 + 6b2nh + 12b2n

2h2
)

+||ũ(t)||2b1

(

−1 + 2ρ
|τ̃ | + 1

2τ ˙̂τ
τ̂

)

+ XT(t)
∂P

∂γ
X(t)

(

− h

τ̂ 2
˙̂τ + 2b2n

( ˙̂τ
τ̂

)2
h

3
2

+4b2n
( ˙̂τ
τ̂

)2
h2
)

+ ||ŵx(t)||2
(

2b1

ρ

|τ̃ | + 1
2τ ˙̂τ

τ̂
+ 8b2

˙̂τ − b2

)

+||ŵ(t)||2b2

(
− 1 + 2nh + 2h

1
2 + 4 ˙̂τ

)
+ |ŵx(0, t)|2b2( ˙̂τ − 1), (7.34)

where we have employed

∫ 1

0
(1 + x)ũT(x, t)ũx(x, t)dx = −1

2

(
|ũ(0, t)|2 + ||ũ(t)||2

)

and

∂

∂γ
P (γ )BBT

∂

∂γ
P (γ ) ≤ n

∂

∂γ
P (γ ),
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from Sect. 5.3, Young’s Inequality, Lemma 7.1, and the facts that

h = γ (t)τ̂ (t)

and γ (t) is nonincreasing.

7.6 Regulation Under the Update Algorithm

The regulation analysis of the closed-loop signals under the update algorithm for
γ (t) is not straightforward due to the intrinsic mechanism of switching between
the two update laws. We first establish two propositions on the regulation effects of
update law I on γ (t).

Proposition 7.2 There exists γ �
0 > 0 such that, for each γ0 ∈ (0, γ �

0 ], the feedback
law (7.4) with γ (t) updated by update law I as given in (7.5) achieves

lim
t→∞ X(t) = 0, lim

t→∞ U(t) = 0. (7.35)

Also,

lim
t→∞ γ (t)

exists and is positive.

Proof Let

h = γ0

in the definition of τ̂ (t) and take V(Xt , γ (t)) given by (7.27) as the Lyapunov
functional. Choose

b1 = 3 > 0, b2 = 50

(

τ + 1 + 1

2
ταγ

q−1
0

)2

> 0,

in (7.27), and

ρ = 1

4
(
τ + 1 + 1

2ταγ
q−1
0

) > 0

in (7.34). Define a positive constant

γ ∗
0 = (2α)

1
1−q .
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In view of update law I,

0 ≤ ˙̂τ(t) = αγ0
V p(t)

V p(t) + β
γ q−2(t)

≤ αγ
q−1
0 , (7.36)

which implies that the inequality

2nαb2

(

γ
q− 1

2
0 + 2γ

q

0

)

≤ 1

suffices for

−γ0

τ̂ 2
˙̂τ + 2b2

( ˙̂τ
τ̂

)2

nγ
3
2

0 + 4b2

( ˙̂τ
τ̂

)2

nγ 2
0 ≤ 0

to hold. Replacing ˙̂τ by its upper bound αγ
q−1
0 on the right-hand side of (7.34),

we see that the non-positiveness of V̇(Xt , γ (t)) is guaranteed by the following
inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 + 6b2n
2(n + 1)γ 2

0 + 3b2n(n + 1)γ0 < 0,

2 − b1 + 6b2nγ0 + 12b2n
2γ 2

0 < 0,

2nαb2

(

γ
q− 1

2
0 + 2γ

q

0

)

≤ 1,

−1 + 2nγ0 + 2γ
1
2

0 + 4αγ
q−1
0 < 0,

αγ
q−1
0 < 1,

2 + b2

(
αγ

q−1
0 − 1

)
+ 6b2nγ0 + 12b2n

2γ 2
0 < 0,

−1 + 2ρ
|τ̃ | + 1

2ταγ
q−1
0

τ̂
< 0,

2b1

ρ

|τ̃ | + 1
2ταγ

q−1
0

τ̂
+ 8b2αγ

q−1
0 − b2 < 0.

(7.37)

Note that the last two inequalities in (7.37) still contain the time-varying term τ̂ (t).
By the nonincreasing monotonicity of γ (t), we obtain

τ̂ (t) ≥ 1,

which implies that

(

|τ̃ | + 1

2
ταγ

q−1
0

)

/τ̂ ≤ τ + 1 + 1

2
ταγ

q−1
0 .
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Thus, the value of ρ makes the last but one inequality in (7.37) hold. On the other
hand, the last inequality of (7.37) holds if

8

(

τ + 1 + 1

2
ταγ

q−1
0

)2

b1 < b2

(
1 − 8αγ

q−1
0

)
. (7.38)

In view of (7.37), (7.38), and the values of b1, b2, and ρ, we have that if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b2αγ
q−1
0 + 6b2nγ0 + 12b2n

2γ 2
0 < b2 − 2,

max
{

3b2n(n + 1)γ0 + 6b2n
2(n + 1)γ 2

0 , 6b2nγ0 + 12b2n
2γ 2

0 ,

2nαb2

(

γ
q− 1

2
0 + 2γ

q

0

)

, 2nγ0 + 2γ
1
2

0 + 4αγ
q−1
0 , 16αγ

q−1
0

}
< 1,

then (7.37) holds. Notice that b2 approaches

50(τ + 1)2

as

γ0 → 0+.

This shows that there exists a sufficiently small γ �
0 ≤ γ ∗

0 such that, for each γ0 ∈
(0, γ �

0 ],

V̇(Xt , γ (t)) ≤ −μγ (t)V (t)

≤ 0, (7.39)

where

μ = 1 − 3b2n(n + 1)γ0 − 6b2n
2(n + 1)γ 2

0

> 0

and we have used (7.34).
Fix a γ0 ∈ (0, γ �

0 ]. It follows from

h = γ0, γ0 ≤ γ ∗
0

and Remark 7.8 that there exists t1 > 0 such that

V(Xt , γ (t)) ∈ C[t1,∞).

In fact, Remark 7.7 and the proof of Lemma 7.2 imply that

V̇(Xt , γ (t)) ∈ C[t1,∞).
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Then, by the use of the mean value theorem and (7.39), we have

V(Xt , γ (t)) ≤ V(Xt1 , γ (t1)), t ∈ [t1,∞).

Furthermore, (7.39) implies that

∫ t

t1

μγ (s)V (s)ds ≤ −
∫ t

t1

V̇(Xs, γ (s))ds

= V(Xt1, γ (t1)) − V(Xt , γ (t))

≤ V(Xt1, γ (t1)), t ≥ t1, (7.40)

where we have used the fundamental theorem of calculus based on the fact that

V̇(Xt , γ (t)) ∈ C[t1,∞).

By update law I, we obtain

dγ (t)

γ q−1(t)
= −α

V p−1(t)

V p(t) + β
V (t)γ (t)dt. (7.41)

When q = 2, integrating both sides of (7.41) from t1 to t gives

γ (t) = γ (t1) exp

(

−α

∫ t

t1

γ (s)V (s)
V p−1(s

V p(s) + β
ds

)

,

≥ γ (t1) exp

(

−α

β

∫ t

t1

γ (s)V (s)dsVp−1(Xt1 , γ (t1))

)

≥ γ (t1) exp

(

− α

βμ
Vp(Xt1 , γ (t1))

)

> 0, t ≥ t1, (7.42)

where

p ≥ 1, V (t) ≤ V(Xt , γ (t)),

and (7.39) and (7.40) are used. When q > 2, following a similar procedure leads to

γ (t) ≥
(

γ 2−q(t1) + α

μβ
(q − 2)Vp(Xt1 , γ (t1))

) 1
2−q

> 0, t ≥ t1. (7.43)
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The lower bounds on γ (t) in (7.42) and (7.43) and the nonincreasing monotonicity
of γ (t) imply that

lim
t→∞ γ (t)

exists and is positive.
It remains to prove the regulation to zero of X(t) and U(t). By (7.40), the positive

lower bounds of γ (t) in (7.42) and (7.43), and the boundedness of X(t) on t ∈
[0, t1], we get the square integrability of X(t) on [0,∞). Moreover, the positive
lower bounds of γ (t) in (7.42) and (7.43), the continuity of X(t), and

V (t) ≤ V(Xt1 , γ (t1))

on t ≥ t1 imply the boundedness of X(t) on [0,∞), which leads to the boundedness
of Ẋ(t) in view of (7.1) and (7.4). Then,

lim
t→∞ X(t) = 0

follows from the Barbalat’s lemma (Lemma 2.14 in [92]), and

lim
t→∞ U(t) = − BTP

(
lim

t→∞ γ (t)
)

lim
t→∞ X(t)

=0.

This completes the proof. �

Proposition 7.2 reveals the regulation effect of update law I when γ0 is small.

To illustrate the global behavior of the closed-loop system under update law I with
respect to γ0, we present a regulation result concerning an arbitrarily large γ0 in the
following proposition.

Proposition 7.3 Under the feedback law (7.4) with γ (t) updated by update law I
as given in (7.5), for any given γ0 > 0,

lim inf
t→∞ |X(t)| = 0, lim inf

t→∞ |U(t)| = 0, (7.44)

and

lim
t→∞ γ (t) (7.45)

exists and is positive. Moreover, if X(t) is bounded on t ∈ [0,∞), then

lim
t→∞ X(t) = 0, lim

t→∞ U(t) = 0. (7.46)
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Proof We consider the following two cases.

a) There exists t0 > 0 such that

γ (t0) ≤ γ �
0 ,

where γ �
0 is as described in Proposition 7.2. Reset the starting point of system

evolution at t = t0, and define the initial conditions as X(θ) and γ (θ), θ ∈
[t0 − τ, t0]. Then, the regulation of X(t) and U(t) to zero as time goes to infinity,
and the fact that

lim
t→∞ γ (t)

exists and is positive, are straightforward from Proposition 7.2.
b) There does not exist t0 > 0 such that

γ (t0) ≤ γ �
0 .

This implies

γ (t) > γ �
0 , t ≥ 0,

With the nonincreasing monotonicity of γ (t), we have that

lim
t→∞ γ (t)

exists and is positive. Denote this limit as γ , which satisfies

γ ≥ γ �
0 .

We claim that

lim inf
t→∞ |X(t)| = 0.

Suppose the opposite. There exist ν > 0 and t1 > 0 such that

|X(t)| ≥ ν, t ≥ t1.

Then,

V (t) ≥ λmin(P (γ �
0 ))ν2

� M
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on t ∈ [t1,∞). By update law I,

γ̇ (t) ≤ −α

1 + β
Mp

γ q(t),

from which we have

γ (t) ≤
(

γ 1−q(t1) + α(q − 1)

1 + β
Mp

(t − t1)

) 1
1−q

→ 0 as t → ∞.

This contradicts the fact that

γ (t) > γ �
0 > 0

on t ∈ [0,∞), and the claim follows.
It follows from

d

dγ
P (γ ) > 0

(see Lemma 2.4),

|U(t)| ≤ |B||P(γ0)||X(t)|

and

lim inf
t→∞ |X(t)| = 0

that

lim inf
t→∞ |U(t)| = 0.

The remainder of the proof is to show the regulation to zero of X(t) and U(t) under
the assumption that X(t) is bounded on t ∈ [0,∞).

Consider the factor

V p(t)

V p(t) + β

on the right-hand side of (7.5). We compute
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d

dt

(
V p(t)

V p(t) + β

)

= pβV p−1(t)

(V p(t) + β)2

(

2XT(t)P (γ (t))
(
AX(t)

−BBTP(γ (t − τ))X(t − τ)
)

− XT(t)
∂P

∂γ
X(t)α

× V p(t)

V p(t) + β
γ q(t)

)

,

and

∣
∣
∣
∣

d

dt

(
V p(t)

V p(t) + β

)∣
∣
∣
∣ ≤ p

β
λ

p−1
max (P (γ0))|X(t)|2(p−1)

(

2|A||P(γ0)||X(t)|2

+ 2|B|2|P(γ0)|2|X(t)||X(t − τ)|

+αγ
q

0 max
γ∈
[
γ ,γ0

]

{
∂P

∂γ

}

|X(t)|2
)

< ∞.

In view of its boundedness, we deduce that the factor

V p(t)

V p(t) + β

is uniformly continuous. On the other hand, (7.5) implies that
∫ t

0

V p(s)

V p(s) + β
ds = −1

α

∫ t

0

dγ (s)

γ q(s)

= γ 1−q(t) − γ
1−q

0

α(q − 1)

≤ γ 1−q

α(q − 1)
,

from which it follows that

V p(t)

V p(t) + β
∈ L1.

Therefore, by the Barbalat’s lemma (Lemma 2.16 in [92]),

lim
t→∞

V p(t)

V p(t) + β
= 0,

and thus

lim
t→∞ V (t) = 0.
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By the fact that

γ (t) > γ �
0

on t ∈ [0,∞) and the use of the squeeze theorem of limit, we obtain (7.46). �

Remark 7.9 Proposition 7.3 shows that, given any γ0, update law I regulates γ (t)

to a positive constant, but the regulation of X(t) and U(t) to zero requires the
boundedness of X(t). Under update law I alone, we are unable to exclude the case
where X(t) is not bounded while still concurring with (7.44) and (7.45) exists.
To guarantee that X(t) is bounded, we introduce update law II and the switching
mechanism to ensure that after some finite time, update law I remains in effect with
a bounded X(t). �

Before proceeding to the proof of Theorem 7.2, we establish a result on the
regulation of the Lyapunov function V (t) to zero by the update algorithm that is
assumed to achieve the regulation of γ (t) to zero. This regulation result is the key
to designing the event-triggered switching mechanism between the two update laws
for γ (t) in the sense that an update law switches only when the value of V (t) crosses
a certain threshold.

Proposition 7.4 If the closed-loop system consisting of (7.1) and (7.4) with γ (t)

updated by the update algorithm achieved

lim
t→∞ γ (t) = 0,

then

lim
t→∞ V (t) = 0.

Proof Consider the Lyapunov functional V(Xt , γ (t)) in (7.27). Pick

b1 = 3, b2 = 100

of V(Xt , γ (t)) in (7.27),

ρ = 1/8

in (7.34), and a small h > 0 such that

max
{

6b2n
2(n + 1)h2 + 3b2n(n + 1)h, 6b2nh + 12b2n

2h2,

b2Dh + 6b2nh + 12b2n
2h2, 8b2Dh, 2nh + 2h

1
2 + 4Dh,

2b2nDh
3
2

(
1 + 2h

1
2

) }
< 1, (7.47)
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and

(
1 − 6b2n

2(n + 1)h2 − 3b2n(n + 1)h
)

2b2h ≤ min

{
b1

2
, b2 − 32b1 − 8b2Dh,

1 − 2nh,−2h
1
2 − 4Dh

}

, (7.48)

where

D = max
{
αγ

q−2
0 , ζγ r−2

0

}
,

which, according to the update algorithm in Sect. 7.3, is an upper bound of

∣
∣
∣
∣
γ̇ (t)

γ 2(t)

∣
∣
∣
∣ .

Note from Lemma 7.2 that such a selection of h implies that there exists t1 > 0 such
that

V(Xt , γ (t)) ∈ C[t1,∞).

In view of the boundedness of

γ̇ (t)

γ 2(t)
,

and the continuity of γ (t) on t ∈ [0,∞), as given in Theorem 7.1, we compute by
using the comparison lemma,

γ (t) ≥ 1
1

γ0
+ Dt

, t ≥ 0. (7.49)

The definition of τ̂ (t) and the boundedness of

γ̇ (t)

γ 2(t)

imply that

0 ≤ ˙̂τ(t)

= − h

γ 2(t)
γ̇ (t)

≤ Dh. (7.50)
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Therefore, the inequality

2b2nDh
3
2

(
1 + 2h

1
2

)
≤ 1,

which is implied by (7.47), leads to

− h

τ̂ 2
˙̂τ + 2b2n

( ˙̂τ
τ̂

)2
h

3
2 + 4b2n

( ˙̂τ
τ̂

)2
h2 ≤ 0.

The boundedness of

γ̇ (t)

γ 2(t)

implies that

∣
∣
∣
∣
γ̇ (t)

γ (t)

∣
∣
∣
∣ ≤ Dγ (t).

By

lim
t→∞ γ (t) = 0

and the use of the squeeze theorem of limit, we obtain

lim
t→∞

γ̇ (t)

γ (t)
= 0,

and thus

lim
t→∞

˙̂τ(t)

τ̂ (t)
= 0.

Then,

|τ̃ | + 1
2τ ˙̂τ

τ̂
≤ τ

h
γ (t) + 1 + 1

2
τ

˙̂τ
τ̂

→ 1 as t → ∞,

indicating that there exists t2 ≥ t1 such that, for each t ≥ t2,

|τ̃ | + 1
2τ ˙̂τ

τ̂
≤ 2.
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In view of (7.34) and (7.50), we deduce that the non-positiveness of V̇(Xt , γ (t)) on
t ≥ t2 is guaranteed by (7.47). Therefore,

V̇(Xt , γ (t)) ≤ −κγ (t)V (t) − σ
(
||ũ(t)||2 + ||ŵ(t)||2 + ||ŵx(t)||2

)
, t ≥ t2,

where

κ = 1 − 6b2n
2(n + 1)h2 − 3b2n(n + 1)h

> 0

and

σ = min

{
b1

2
, b2 − 32b1 − 8b2Dh, 1 − 2nh − 2h

1
2 − 4Dh

}

> 0.

The definition of V(Xt , γ (t)) leads to

V (t) ≥ V(Xt , γ (t)) − W(t)
(
||ũ(t)||2 + ||ŵ(t)||2 + ||ŵx(t)||2

)
,

where

W(t) = max
{

2b1τ, 2b2τ̂ (t)
}
,

and thus

V̇(Xt , γ (t)) ≤ − κγ (t)V(Xt , γ (t))

+ (κW(t)γ (t) − σ)
(
||ũ(t)||2 + ||ŵ(t)||2 + ||ŵx(t)||2

)
.

Note from (7.48) and

lim
t→∞ γ (t) = 0

that there exists t3 ≥ t2 such that, for t ≥ t3,

κW(t)γ (t) − σ ≤ 0.

This implies that

V̇(Xt , γ (t)) ≤ −κγ (t)V(Xt , γ (t)), t ≥ t3.
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By the use of the definition and the continuity of V(Xt , γ (t)), and (7.49), we obtain
by using the comparison lemma that, for each t ∈ [t3,∞),

V (t) ≤ V(Xt , γ (t))

≤ V(Xt3 , γ (t3)) exp

(

−κ

∫ t

t3

γ (s)ds

)

≤ V(Xt3 , γ (t3))

(
1 + Dγ0t

1 + Dγ0t3

)− κ
D

.

Proposition 7.4 then follows from the squeeze theorem of limit. �

We now present the proof of Theorem 7.2.

Proof of Theorem 7.2 We claim that the number of switches between update law
I and update law II is finite on t ∈ [0,∞). Suppose the number of switches from
update law I to update law II is infinite, then there are an infinite number of disjoint
time intervals on which update law II is in effect. By Remarks 7.4 and 7.5, and the
fact that

γ̇ (t) ≤ 0, t ∈ [0,∞),

we get

lim
t→∞ γ (t) = 0.

Therefore,

lim
t→∞ V (t) = 0

follows from Proposition 7.4. On the other hand, an infinite number of switches
from update law I to update law II and Remark 7.5 imply that there exists a sequence
{tk}∞k=0 such that

lim
k→∞ tk = ∞

and

V (tk) = ε, k ∈ N.

This contradicts with

lim
t→∞ V (t) = 0.

Therefore, the claim follows.
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We next claim that the last switch between the two update laws happens from
update law II to update law I. Suppose the opposite. Denote the time instant of the
last switch as tl. Then, γ (t) evolves according to update law II on t ≥ tl and the
closed-loop system under update law II satisfies

V (tl + δi) ≥ ε, i ∈ N,

where δi is as defined in (7.8) with T12 replaced by tl. By (7.6), we obtain

lim
t→∞ γ (t) = 0.

It then follows from Proposition 7.4 that

lim
t→∞ V (t) = 0,

which again contradicts the fact that

V (tl + δi) ≥ ε, i ∈ N.

We conclude that the last switch happens from update law II to update law I.
Note that a natural consequence of this conclusion is that

V (t) < ε, t ≥ tI,

according to the switching condition from update law I to update law II, where tI is
the time instant of the last switch and is also the time instant of the system evolution
from which update law I remains in effect all the time. Recall from Proposition 7.3
that γ (t) is bounded below by a positive constant. Therefore, X(t) is bounded
on t ≥ tI. The regulation of X(t) and U(t) to zero then follows directly from
Proposition 7.3. �

Remark 7.10 The assumption on system (7.1) that all its open loop poles are at the
origin can be relaxed to that all its open loop poles are at the origin or in the open
left-half plane. Without loss of generality, we assume that the pair (A,B) has the
following stability structural decomposition:

A =
[
AL 0
0 AO

]

, B =
[
BL

BO

]

,

where AL ∈ R
nL×nL is Hurwitz, all eigenvalues of AO ∈ R

nO×nO are at the origin,
and nL + nO = n. Accordingly, we decompose system (7.1) into the following two
subsystems:

{
ẊL(t) = ALXL(t) + BLU(t − τ),

ẊO(t) = AOXO(t) + BOU(t − τ),
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where

X(t) = [
XT

L(t) XT
O(t)

]T

is the corresponding decomposition of the state vector X(t), U(t) is constructed
for the XO subsystem by following the design of our proposed control scheme. By
Theorem 7.2, the regulation of the XO subsystem is achieved under the constructed
U(t). It is then clear that the regulation of the whole system is achieved. �

7.7 A Numerical Example

Consider a linear system (7.1) with

A =

⎡

⎢
⎢
⎣

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ .

The unknown input delay is

τ = 1

and the initial condition of the state is given by

ψ(θ) = [
1 1 1 1

]T
, θ ∈ [−τ, 0].

Note that (A,B) is controllable with all eigenvalues of A located at the origin. The
parameters of our control scheme are chosen as

α = 1, β = 1, p = 1, q = 2, ζ = 1, r = 2, ε = 1, ξ = 1.1,

and the initial condition of γ (t) is set to be

φ(θ) = 0.3, θ ∈ [−τ, 0].

The evolutions of the closed-loop signals including X(t), U(t), V (t), γ (t), γ̇ (t),
and γ̇ (t)/γ 2(t) are shown in Figs. 7.1, 7.2, and 7.3.

Ample information on the mechanism of the update algorithm for γ (t) can be
observed from Figs. 7.1, 7.2, and 7.3. With

V (0) = 2.7

> ε

= 1,
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Fig. 7.1 Evolutions of the state and the input of the closed-loop system
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Fig. 7.2 Evolutions of the closed-loop signals V (t) and γ (t)
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Fig. 7.3 Evolutions of the closed-loop signals γ̇ (t) and γ̇ (t)/γ 2(t)
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update law II is implemented at the beginning phase of the system evolution. A
switch from update law II to update law I does not happen at

t = δ1

= 0.3

because

V (δ1) > 1.

However, a switch from update law II to update law I happens at

t = δ2 = 0.7

because

V (δ2) < 1.

Note from the plot of γ̇ (t)/γ 2(t) that the first switch, which in fact is the only switch
between update laws I and II, happens at

t = δ2

by the discontinuity of γ̇ (t)/γ 2(t) at

t = δ2.

After

t = δ2,

update law I remains in effect all the time because

V (t) < 1, t ≥ δ2.

It is interesting to mention here that a switch from update law II to update law I does
not happen at t = 0.4 when V (t) crosses the threshold ε = 1, as marked in the plot
of V (t). This is because the switching condition from update law II to update law I
is checked only at the isolated time instants

TI,II + δi, i ∈ N,

where in this simulation,
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TI,II = 0.

To study the regulation performance of the control scheme, we carry out more
simulation runs. In this simulation, we pick a larger

γ0 = 1.

The rest of system parameters are the same as those in the previous simulation,
except that

ε = 50.

Figures 7.4, 7.5, and 7.6 illustrate the evolutions of the closed-loop signals with
such a choice of γ0. Note from the evolution of X(t) that the overshoot and the
convergence time of X(t) are larger than those in the previous simulation. This is
caused by the excessively large value of γ0, which tends to destabilize the system
at the starting phase of system evolution. The feedback law (7.4) starts to stabilize
the system only after γ (t) decreases to a small value. Also, we observe from the
evolution of γ̇ (t)/γ 2(t) that γ (t) is updated by update law II only on the time
interval t ∈ [0.8135, 2.0154].

The regulation performance of the control scheme can also be examined under
larger values of τ . Consider a closed-loop system whose system parameters are
the same as those in the first simulation except that τ = 5 and ε = 10.
Picking a larger ε is due to the expectation of a large overshoot of the closed-
loop system in the presence of a large τ . The closed-loop evolution is presented
in Figs. 7.7, 7.8, and 7.9. Consider an even larger τ = 10 and an ε = 10. The
simulation results are presented in Figs. 7.10, 7.11, and 7.12. Note that, as the
value of τ increases, the regulation effects of the control scheme becomes weaker,
resulting in a larger overshoot and a slower convergence rate of the closed-loop
system. This can be easily explained by the low gain nature of the feedback law
(7.4). Smaller values of the feedback parameter increase the ability to achieve
regulation at the cost of slower convergence rate of the closed-loop system. We
also note that the computation of our control scheme is heavier in comparison
with the delay independent truncated predictor feedback law (7.2) with a constant
feedback parameter due to the adaptation of the time-varying feedback parameter. In
particular, the real-time solution of the algebraic Riccati equation (7.3) contributes
significantly to the computational burden.

Remark 7.11 As seen in Sect. 7.3, the update algorithm for γ (t) provides a parame-
ter space in which we can choose the values of (α, β, p, q, ζ, r, γ0) freely to achieve
the regulation of the system. Given an open loop system, the analysis on the closed-
loop performance with respect to the choice of the parameters in the space remains
to be carried out. �



292 7 Regulation of Continuous-Time Linear Input Delayed Systems Without Delay. . .

0 20 40 60 80 100
-40

-20

0

20

40

60

80

100

0 20 40 60 80 100
-10

-5

0

5

10

15

Fig. 7.4 Evolutions of the state and the input of the closed-loop system
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Fig. 7.5 Evolutions of the closed-loop signals V (t) and γ (t)
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Fig. 7.6 Evolutions of the closed-loop signals γ̇ (t) and γ̇ (t)/γ 2(t)
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Fig. 7.7 Evolutions of the state and the input of the closed-loop system
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7.7 A Numerical Example 297

0 100 200 300 400 500
-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 100 200 300 400 500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Fig. 7.9 Evolutions of the closed-loop signals γ̇ (t) and γ̇ (t)/γ 2(t)



298 7 Regulation of Continuous-Time Linear Input Delayed Systems Without Delay. . .

0 200 400 600 800 1000

104

-8

-6

-4

-2

0

2

4

6

8

10

12

0 200 400 600 800 1000
-2

-1

0

1

2

3

4

Fig. 7.10 Evolutions of the state and the input of the closed-loop system
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Fig. 7.12 Evolution of the closed-loop signals γ̇ (t) and γ̇ (t)/γ 2(t)
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7.8 Conclusions

For an input delayed linear system with open loop poles at the origin or in
the open left-half plane, the regulation of its state and control input is achieved
without any knowledge of the delay. This is made possible by the adaptation
of the delay independent truncated predictor feedback law with a time-varying
feedback parameter. An update algorithm for the feedback parameter is proposed
to compensate an arbitrarily large unknown delay. The use of only the current state
as the feedback contributes to the non-distributed nature of the control scheme. A
limitation of the results in this chapter is the restriction of the open loop systems to
those with poles at the origin or in the open left-half plane. Generalization of the
method for the regulation of more general systems entails further investigation.

7.9 Notes and References

This chapter is presented by following the presentation in [107].



Chapter 8
Regulation of Discrete-Time Linear Input
Delayed Systems Without Delay
Knowledge

8.1 Introduction

Regulation of linear systems without using any knowledge of the delay in the input
is an open problem that is known to be challenging. This is the case both in the
continuous-time setting and in the discrete-time setting. This chapter presents a
solution to this problem for a discrete-time linear system with an arbitrarily large
bounded input delay. When the system has all its open loop poles at z = 1 or
inside the unit circle, an adaptive feedback law is proposed to regulate the state
and the input of the system to zero as time tends to infinity. The main features of
the feedback law are its accommodation to unknown delay and its memorylessness.
No knowledge of the delay, not even the knowledge of its variation with time and
its upper bound, is needed in the implementation of the feedback law. Moreover,
only the current state is used for feedback. These two features of the feedback law
contribute to the simplicity of its implementation. The simplicity of our adaptive
control design in turn entails a delicate regulation analysis. A new paradigm of
regulation analysis is developed that does not follow any Lyapunov type analysis
for time delay systems. Numerical study demonstrates the analyzed regulation
results and further provides an indication of the robustness of our control scheme to
exponentially unstable open loop poles.

We briefly recall the design of the predictor feedback law for a discrete-time
linear system with input delay. Consider a discrete-time linear system subject to
input delay,

x(k + 1) = Ax(k) + Bu(k − r),

where x and u represent the state and the input of the system, respectively, and r is
the amount of input delay, the predictor feedback law takes the form of

u(k) = Fx(k + r),
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where F is the feedback gain matrix such that A + BF is Schur stable, that is, all
the eigenvalues of A + BF are inside the unit circle. Under the predictor feedback,
the closed-loop system

x(k + 1) = (A + BF)x(k)

is asymptotically stable. Obviously, the predictor feedback law is not directly viable
for implementation because it requires the future value of the state. Thanks to the
linearity of the system, the future state of the system can be explicitly obtained as
the solution of the system, which is the sum of the zero input solution and the zero
state solution,

x(k + r) = Arx(k) +
k−1∑

l=k−r

Ak−1−lBu(l).

This leads to an explicit expression of the predictor feedback in an implementable
form,

u(k) = FArx(k) + F

k−1∑

l=k−r

Ak−1−lBu(l).

As we can see, the predictor feedback design does not place any restriction on the
delay and manages to cancel the effect of the delay.

The predictor feedback law is clearly delay dependent. It requires the precise
value of the delay to be known for its implementation. Chapter 3 proposed an easy-
to-implement feedback law by truncating the finite summation term of the predictor
feedback law,

u(k) = FArx(k),

where

F = F(γ )

is parameterized by the use of an eigenstructure assignment based low gain feedback
design (see [61]). Such a parametrization enables the truncated predictor feedback
law to compensate for an arbitrarily large delay in a discrete-time linear system with
all open loop poles on or inside the unit circle. Still, the value of the delay appears
in the state transition matrix Ar of the truncated predictor feedback law. In Chap. 3,
an even simplified feedback law,

u(k) = F(γ )x(k),
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was proposed that does not explicitly contain any information of the delay. It was
pointed out that, by the same parametrization of the feedback gain matrix, such
a delay independent truncated predictor feedback law also compensates for an
arbitrarily large delay in a discrete-time linear system with all open loop poles at
z = 1 or inside the unit circle. An alternative low gain feedback design technique,
the Lyapunov equation based design, was adopted in Chap. 6, to reproduce the
stabilization results in Chap. 3.

The delay independent truncated predictor feedback law in Chap. 6 is not
completely independent of any knowledge of the delay. An upper bound of the
delay is required to determine the value of the low gain feedback parameter γ

involved in the parametrization of the feedback gain matrix F = F(γ ). We are
thus still one step away from designing a feedback law that does not require any
knowledge of the delay. An effort was made in [90] toward excluding any knowledge
of the delay in a feedback design that is based on the delay independent truncated
predictor feedback. However, the adaptive feedback law therein requires its low gain
parameter to be switched and to check a switching condition on every step of the
system evolution. Because the switching condition involves the past values of the
state in a time window whose length is correlated with the amount of the delay, the
adaptive feedback law in [90] is not memoryless.

In this chapter, we provide a much more simplified solution to this challenging
problem of regulating, without any knowledge of the input delay, a discrete-time
linear system whose open loop poles are at z = 1 or inside the unit circle.
The simplicity of the solution lies in the complete delay independence of our
proposed adaptive feedback law that accommodates any bounded input delay and
its memorylessness property. To be specific, the proposed feedback law takes the
form of the delay independent truncated predictor state feedback law with an online-
updated low gain parameter, and only the current state is used as the feedback
signal. The simplicity of our adaptive control scheme however incurs difficulty in
the analysis of its regulation effects. A new paradigm for closed-loop analysis is
developed that differentiates itself from any Lyapunov type analysis.

Inspired by the Lyapunov analysis method, we first define a quadratic-like
function in terms of the state of the closed-loop system and its updated low
gain parameter. By analyzing the forward difference of the quadratic-like function
along the trajectory of the closed-loop system, we arrive at the boundedness of
the quadratic-like function as time tends to infinity. Unlike any Lyapunov type
analysis for time delay systems, the negativeness of the forward difference of the
quadratic-like function is unnecessary in our analysis. Meanwhile, we establish the
boundedness of the summation of the product of the low gain parameter and the
quadratic-like function. These two boundedness properties, together with the update
law for the low gain parameter, imply that the low gain parameter is bounded away
from zero. Finally, by using the update law of the low gain parameter, we conclude
the regulation of the quadratic-like function and that of the state and the input of
the system. The contribution of this chapter is clear from the fact that not only does
our adaptive law drastically simplify the existing adaptive law in [90], but also our
regulation analysis adopts a completely new paradigm of proof, which is expected
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to be applicable to a wide range of regulation problems for time delay systems.
Simulation study verifies the proven regulation results and further sheds light upon
the robustness of our adaptive feedback design to the presence of open loop poles
that are exponentially unstable.

This chapter solves the counterpart of the regulation problem for a continuous-
time linear system without delay knowledge in the discrete-time setting. Unlike the
adaptive control scheme in the continuous-time linear setting in Chap. 7, which
involves two update laws for the feedback parameter and a switching mechanism
between them, the adaptive control scheme in the discrete-time setting presented
in this chapter is more elegant and easier to implement. Moreover, we adopt
a completely new closed-loop analysis paradigm to prove regulation, while the
regulation proof in Chap. 7 relies heavily on PDE analysis. Such simplification in
terms of both the adaptive law and its regulation analysis is attributed partly to the
reduced complexity in the analysis of discrete-time linear systems compared to their
continuous-time counterparts. Because the regulation problems in both continuous-
time and discrete-time settings have been solved by taking unparallel approaches,
the development in this chapter is expected to inspire establishing PDE analysis
for the regulation problem in the discrete-time setting, and vice versa, finding a
simplified solution to the regulation problem in the continuous-time setting.

8.2 An Adaptive Feedback Law

Consider the regulation of the state and the input of a discrete-time linear system
with a bounded input delay,

x(k + 1) = Ax(k) + Bu(φ(k)), k ∈ N, (8.1)

where x ∈ R
n and u ∈ R

m are the state and the input, respectively, and (A,B) is
stabilizable. It is assumed that all the eigenvalues of A are at z = 1 or inside the unit
circle. The delayed effect of the input of the system is represented through φ(k),
which is assumed to take the form of

φ(k) = k − r(k).

Here, the time-varying delay r(k) is bounded from above by an R ∈ N, i.e.,

r(k) ≤ R, k ∈ N,

and the boundedness of r(k) is the only assumption posed on the time-varying
delay. This is a rather mild assumption on the input delay, considering that the
compensation of an input delay in a discrete-time linear system by the predictor
feedback law requires that the inverse function of φ(k) associated with r(k) exists
and is exactly known. In this chapter, not only is the widely adopted assumption on
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the invertibility of φ(k) not required, but also the upper bound of the time-varying
delay R is not required to be known in the implementation of our adaptive feedback
law. The initial condition of the system is given by

x(0) ∈ R
n, u(θ) ∈ R

m, θ ∈ I [−R, 0].

Without loss of generality, we assume that the pair (A,B) are in the form of

A =
[
AI 0
0 AO

]

, B =
[
BI

BO

]

,

where all the eigenvalues of AI are inside the unit circle and all the eigenvalues of
AO are at z = 1. Given such a structure, system (8.1) can be decomposed as

{
xI(k + 1) = AIxI(k) + BIu(φ(k)),

xO(k + 1) = AOxI(k) + BOu(φ(k)),

where xI(k) and xO(k) are partitions of x(k) corresponding to AI and AO, respec-
tively. In view of the two subsystems of system (8.1), the regulationof the state and
the input of the second subsystem, represented by the evolution of xO(k), to zero,
implies the regulation of the state and the input of the whole system. Since the
overall objective of this chapter is to design a feedback law that regulates the state
and the input of system (8.1), we, without loss of generality, make the assumption
in the rest of the chapter that all the eigenvalues of A are at z = 1, and design
a feedback law that regulates only the second subsystem of the system. By doing
so, our overall control objective remains intact while the complexity of a feedback
design and its corresponding regulation analysis will be reduced.

Our adaptive feedback law consists of two parts. The first part defines a state
feedback law whose right-hand side is the product of a feedback gain matrix and the
current state,

u(k) = F(γ (k))x(k), k ∈ N, (8.2)

where, for a given value of γ (k) = γ , the feedback gain matrix F(γ ) is constructed
by using the Lyapunov equation based low gain feedback design (see Chap. 3),

F(γ ) = − (I + BTP(γ )B
)−1

BTP(γ )A, (8.3)

and P(γ ) is the unique positive definite solution to the following discrete-time
parametric algebraic Riccati equation,

ATP(γ )A − P(γ ) − ATP(γ )B
(
I + BTP(γ )B

)−1
BTP(γ )A = −γP (γ ),

(8.4)
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with γ ∈ (0, 1). According to Chap. 3, γ ∈ (0, 1) is necessary and sufficient to
the existence and uniqueness of such a P(γ ). Two lemmas on the properties of the
solution to the parametric algebraic Riccati equation (8.4) are presented at the end
of this section, where a lemma known as Jensen’s Inequality in the discrete setting
is also recalled. All these three technical lemmas are extensively involved in the
closed-loop analysis to be given in the next section.

Note that in (8.2), the feedback gain matrix is parametrized in a time-varying
feedback parameter γ (k), whose update as the second part of the adaptive feedback
law is determined by

γ (k + 1) = γ (k) − α
V p(x(k), γ (k))

V p(x(k), γ (k)) + 1
γ q(k), k ∈ N, (8.5)

with any initial condition

γ (0) ∈ (0, 1).

In (8.5), V (x(k), γ (k)) is defined by

V (x(k), γ (k)) = xT(k)P (γ (k))x(k),

α ∈ (0, 1], p ≥ 1, and q is such that

q ≥ 2, q > q̃

Here, q̃ is the highest degree of the numerator polynomials in P(γ ) with respect
to γ . Such a q̃ is well defined because by [125], all elements of P(γ ) are rational
function of γ and

lim
γ→0+ P(γ ) = 0.

Clearly q̃ ≥ 1. Take a simple case where A = 1 and B = 1 for instance. We
compute the solution P(γ ) to the parametric algebraic Riccati equation (8.4) as

P(γ ) = γ

1 − γ
,

for which q̃ = 1. Therefore, in this case, q in our feedback design is any positive
constant that satisfies q ≥ 2. It is worth mentioning that the knowledge of q̃ is
obtained from A and B matrices, which are independent of R. Therefore, the update
law (8.5) for γ (k) can be implemented without using any knowledge of the time-
varying delay r(k).

The adaptive feedback law as a whole consists of the state feedback law (8.2)
and the update law (8.5) for the time-varying feedback parameter, both of which
are delay independent and utilizes only the current state as the feedback signal. The
delay independence property and the memorylessness of our adaptive feedback law
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are both appealing features of a controller. The proposed feedback law allows easy
implementation due to its simple form. Prior to its implementation, it only requires
to determine three parameters α, p and q, the first and the second of which can be
arbitrarily chosen based on the range of their predetermined values and the last of
which can be determined by a simple examination of the matrix P(γ ). After the
determination of these control parameters, the time-varying feedback gain matrix
F(γ ) is updated online according to (8.5), and the regulation of the state and the
input of the system is left to the state feedback law (8.2).

To examine the well posedness of our adaptive feedback law, the update law (8.5)
for γ (k) has to guarantee that

γ (k) ∈ (0, 1), k ∈ N.

The proof of this fact can be split into two parts. On one hand, since γ (0) ∈ (0, 1),
q ≥ 2, and α ∈ (0, 1],

γ (1) = γ (0)

(

1 − α
V p(x(0), γ (0))

V p(x(0), γ (0)) + 1
γ q−1(0)

)

> γ (0)(1 − αγ (0))

> 0.

Assume that γ (k) > 0 for some k ∈ N\ {0}. Then, by following a similar argument,
we have

γ (k + 1) = γ (k)

(

1 − α
V p(x(k), γ (k))

V p(x(k), γ (k)) + 1
γ q−1(k)

)

> γ (k)(1 − αγ (k))

> 0.

Thus, γ (k) > 0, k ∈ N, is obvious by induction. On the other hand, γ (k) is
nonincreasing with respect to k according to the update law (8.5). Thus, γ (k) < 1
for all k ∈ N. This completes the proof.

In the rest of this section, we present three technical lemmas as preparation for
the regulation analysis to be carried out in the next section.

Lemma 8.1 Let (A,B) be controllable with all eigenvalues of A at z = 1. For each
γ ∈ (0, 1), the unique positive definite solution P(γ ) to the parametric algebraic
Riccati equation (8.4) satisfies

F T(γ )BTP(γ )BF(γ ) ≤ �(γ )P (γ ),

F T(γ )
(
I + BTP(γ )B

)
F(γ ) ≤ ϑ(γ )P (γ ),

(AC(γ ) − I )T P (AC(γ ) − I ) ≤ �(γ )P (γ ),
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where

F(γ ) = − (I + BTP(γ )B
)−1

BTP(γ )A,

AC(γ ) = A + BF(γ ),

�(γ ) = (1 − (1 − γ )n)2

(1 − γ )2n−1
,

ϑ(γ ) = 1 − (1 − γ )n

(1 − γ )n−1 ,

�(γ ) = 1

(1 − γ )n
− 1 − nγ + (1 − (1 − γ )n)2

(1 − γ )n−1 .

Lemma 8.1 can be readily obtained from Lemma 6.1 by letting tr(A) = n and
det(A) = 1. We omit the proof for brevity.

Lemma 8.2 The polynomials �(γ ) and �(γ ) in Lemma 8.1 are infinitesimal
quantities of at least second order with respect to γ , and they are strictly increasing
with respect to γ . The polynomial ϑ(γ ) in Lemma 8.1 is an infinitesimal quantity
of at least first order with respect to γ and is strictly increasing with respect to γ .
Moreover,

ϑ(γ )

γ

is nondecreasing with respect to γ .

Proof It is obvious that

lim
γ→0+ �(γ ) = 0.

By

d�(γ )

dγ
= 2n(1 − (1 − γ )n)(1 − γ )n + (2n − 1)(1 − (1 − γ )n)2

(1 − γ )2n
> 0, γ > 0,

�(γ ) is strictly increasing with respect to γ . Also, notice that limγ→0
d�(γ )

dγ
= 0.

Thus, �(γ ) is an infinitesmal quantity of at least second order with respect to γ .
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As for �(γ ), we have

lim
γ→0+ �(γ ) = 0

and

lim
γ→0+

�(γ )

γ

= lim
γ→0+

1
(1−γ )n

− 1 − nγ

γ
+ (1 − (1 − γ )n)2

γ (1 − γ )n−1

= lim
γ→0+

1 − (1 − γ )n

γ (1 − γ )n
− n + (1 − (1 − γ )n)2

γ (1 − γ )n−1

= lim
γ→0+

n(1 − γ )n−1

(1 − γ )n − γ n(1 − γ )n−1
− n + 2n (1 − (1 − γ )n(1 − γ ))

(1 − γ ) − γ (n − 1)

= 0.

Thus, �(γ ) is an infinitesimal quantity of at least second order with respect to γ .
Moreover,

d�(γ )

dγ
= n

(1 − γ )n+1 − n + 2n(1 − (1 − γ )n)(1 − γ )n + (n − 1) (1 − (1 − γ )n)2

(1 − γ )n

> 0.

The rational function ϑ(γ ) of γ is strictly increasing because

dϑ(γ )

dγ
= n(1 − γ )n + (1 − (1 − γ )n) (n − 1)

(1 − γ )n+1

> 0.

The monotonicity of

ϑ(γ )

γ

can be examined as follows:

dϑ(γ )
γ

dγ
= nγ (1 − γ )n − (1 − (1 − γ )n) (2 − n − γ )

γ 2

= (n − 1)γ (1 − γ )n + (n − 2) (1 − (1 − γ )n) + γ

γ 2 ,
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which is positive when n ≥ 2. When n = 1,

dϑ(γ )
γ

dγ
= 0.

This completes the proof. �

Lemma 8.3 For any positive semi-definite matrix M ≥ 0, two integers r2 and r1
with r2 ≥ r1, and a vector valued function ω : I [r1, r2] → R

n,

⎛

⎝
r2∑

i=r1

ω (i)

⎞

⎠

T

M

⎛

⎝
r2∑

i=r1

ω (i)

⎞

⎠ ≤ (r2 − r1 + 1)

r2∑

i=r1

ωT (i)Mω (i) .

8.3 Closed-Loop Analysis

The closed-loop analysis is carried out in the following two steps. In the first step,
we show that there exists a sufficiently small positive constant such that for any
given initial condition of γ (k) below such a constant, the regulation of the state and
the input of the system (8.1) is achieved. In the second step, we further show that for
any given initial condition γ (0) ∈ (0, 1), such regulation can still be achieved. We
formulate these two results in two theorems, respectively. To carry out the first step,
we establish a new paradigm for the analysis of the closed-loop system. In doing so,
we define a quadratic-like function in terms of the state of the system and the low
gain parameter, and compute the forward difference of this quadratic-like function
along the trajectory of the closed-loop system. We establish the boundedness of the
quadratic-like function. The boundedness of the summation of the product of the
low gain parameter and the quadratic-like function is also clear from this analysis.
We next show that these two boundedness properties, together with the update law
for the low gain parameter, imply that the low gain parameter is bounded away from
zero. Then, the regulation of the state and the input of the system can be readily
obtained by the use of the update law for the low gain parameter. The second step
follows from the first step readily.

8.3.1 The Boundedness of V (x(k), γ (k)) and∑∞
l=2R γ (l)V (x(l), γ (l))

Under the proposed adaptive feedback law (8.2), along with the update law for the
feedback parameter γ (k), system (8.1) takes a closed-loop form,
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x(k + 1) = Ax(k) + Bu(φ(k))

= Ax(k) + BF(γ (φ(k)))x(φ(k))

= AC(γ (k))x(k) + B (F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)) , (8.6)

where AC(γ (k)) for each k ∈ N is defined by

AC(γ (k)) = A + BF(γ (k)).

Define a positive definite function along the trajectory of the closed-loop system,

V (x(k), γ (k)) = xT(k)P (γ (k))x(k). (8.7)

The forward difference of the function (8.7) along the trajectory of the closed-loop
system can be computed as

�V (x(k), γ (k))

= V (x(k + 1), γ (k + 1)) − V (x(k), γ (k))

= xT(k + 1)P (γ (k + 1))x(k + 1) − xT(k)P (γ (k))x(k)

= (AC(γ (k))x(k) + B (F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)))T P(γ (k + 1))

× (AC(γ (k))x(k) + B (F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)))

− xT(k)P (γ (k))x(k)

= xT(k)AT
C(γ (k))P (γ (k + 1))AC(γ (k))x(k) + 2xT(k)AT

C(γ (k))P (γ (k + 1))

×B (F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)) + (F (γ (φ(k)))x(φ(k))

−F(γ (k))x(k))TBTP(γ (k + 1))B(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

−xT(k)P (γ (k))x(k)

= xT(k)AT
C(γ (k))P (γ (k))AC(γ (k))x(k) + xT(k)AT

C(γ (k))(P (γ (k + 1))

−P(γ (k)))AC(γ (k))x(k) + 2xT(k)AT
C(γ (k))P (γ (k + 1))

×B(F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)) + (F (γ (φ(k)))x(φ(k))

−F(γ (k))x(k))TBTP(γ (k + 1))B(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

−xT(k)P (γ (k))x(k)

= xT(k)(AT
C(γ (k))P (γ (k))AC(γ (k)) − P(γ (k)))x(k) + xT(k)AT

C(γ (k))

×(P (γ (k + 1)) − P(γ (k)))AC(γ (k))x(k) + 2xT(k)AT
C(γ (k))P (γ (k + 1))

×B(F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)) + (F (γ (φ(k)))x(φ(k))

−F(γ (k))x(k))TBTP(γ (k + 1))B(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))
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= xT(k)(−γ (k)P (γ (k)) − F T(γ (k))F (γ (k)))x(k)

+ xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))AC(γ (k))x(k)

+ 2xT(k)AT
C(γ (k))P (γ (k + 1))B(F (γ (φ(k)))x(φ(k))

−F(γ (k))x(k)) + (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))T

×BTP(γ (k + 1))B(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

= −γ (k)xT(k)P (γ (k))x(k) − xT(k)F T(γ (k))F (γ (k))x(k)

+ xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))AC(γ (k))x(k)

+ 2xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))B

× (F (γ (φ(k)))x(φ(k))−F(γ (k))x(k))

+ 2xT(k)AT
C(γ (k))P (γ (k))B(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBTP(γ (k + 1))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k)),

where we have used the parametric algebraic Riccati equation (8.4) to obtain

AT
C(γ (k))P (γ (k))AC(γ (k)) − P(γ (k)) = −γ (k)P (γ (k)) − F T(γ (k))F (γ (k)).

By the construction of F(γ ) as given by (8.3), we get

F(γ (k)) = −AT
C(γ (k))P (γ (k))B,

which implies that

�V (x(k), γ (k))

= − γ (k)xT(k)P (γ (k))x(k) − xT(k)F T(γ (k))F (γ (k))x(k)

+ xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))AC(γ (k))x(k)

+ 2xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

− 2xT(k)F T(γ (k))(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBTP(γ (k + 1))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

= − γ (k)xT(k)P (γ (k))x(k) − xT(k)F T(γ (k))F (γ (k))x(k)

+ xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))AC(γ (k))x(k)

+ 2xT(k)AT
C(γ (k))(P (γ (k + 1))−P(γ (k)))B
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× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

− 2xT(k)F T(γ (k))(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBT(P (γ (k + 1)) − P(γ (k)))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBTP(γ (k))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k)).

By Young’s Inequality, the evolution of the forward difference �V (x(k), γ (k)) can
be continued as follows:

�V (x(k), γ (k))

≤ − γ (k)xT(k)P (γ (k))x(k) − xT(k)F T(γ (k))F (γ (k))x(k)

+ xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))AC(γ (k))x(k)

+ 2xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))B

× (F (γ (φ(k)))x(φ(k))−F(γ (k))x(k))

+ xT(k)F T(γ (k))F (γ (k))x(k) + (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))T

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBT(P (γ (k + 1)) − P(γ (k)))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBTP(γ (k))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

= − γ (k)xT(k)P (γ (k))x(k) + xT(k)AT
C(γ (k))(P (γ (k + 1))

− P(γ (k)))AC(γ (k))x(k) + 2xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))T(I + BTP(γ (k))B)

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBT(P (γ (k + 1)) − P(γ (k)))

× B(F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)).

Because γ (k) is updated nonincreasingly with respect to k and P(γ ) is strictly
increasing with respect to γ (see Lemma 3.4),

P(γ (k)) ≥ P(γ (k + 1)), k ∈ N, (8.8)
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which, together with Young’s Inequality, imply that

�V (x(k), γ (k))

≤ − γ (k)xT(k)P (γ (k))x(k) + xT(k)AT
C(γ (k))(P (γ (k + 1)) − P(γ (k)))

× AC(γ (k))x(k) + xT(k)AT
C(γ (k))(P (γ (k)) − P(γ (k + 1)))AC(γ (k))x(k)

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBT(P (γ (k)) − P(γ (k + 1)))

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))T(I + BTP(γ (k))B)

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

+ (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))TBT(P (γ (k + 1)) − P(γ (k)))B

× (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))

= − γ (k)xT(k)P (γ (k))x(k) + (F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k))T

× (I + BTP(γ (k))B)(F (γ (φ(k)))x(φ(k)) − F(γ (k))x(k)). (8.9)

To examine the quadratic term associated with F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)

after the equality sign in (8.9), we compute

F(γ (φ(k)))x(φ(k)) − F(γ (k))x(k)

= (F (γ (φ(k))) − F(γ (k)))x(φ(k)) + F(γ (k))(x(φ(k)) − x(k)),

which suggests that (8.9) can be continued as

�V (x(k), γ (k)) ≤ − γ (k)xT(k)P (γ (k))x(k) + ((F (γ (φ(k))) − F(γ (k)))x(φ(k))

+ F(γ (k))(x(φ(k)) − x(k)))T(I + BTP(γ (k))B)((F (γ (φ(k)))

− F(γ (k)))x(φ(k)) + F(γ (k))(x(φ(k)) − x(k))).

Again, by Young’s Inequality, we obtain

�V (x(k), γ (k))

≤ − γ (k)xT(k)P (γ (k))x(k) + 2xT(φ(k))(F (γ (φ(k))) − F(γ (k)))T

× (I + BTP(γ (k))B)(F (γ (φ(k))) − F(γ (k)))x(φ(k)) + 2(x(φ(k)) − x(k))T

× F T(γ (k))(I + BTP(γ (k))B)F (γ (k))(x(φ(k)) − x(k)).

By employing Lemma 8.1 and defining for each k ∈ N,

ϑ(γ (k)) =1 − (1 − γ (k))n

(1 − γ (k))n−1 ,
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we continue the evaluation as

�V (x(k), γ (k))

≤ − γ (k)xT(k)P (γ (k))x(k) + 2xT(φ(k))(F (γ (φ(k))) − F(γ (k)))T

× (I + BTP(γ (k))B)(F (γ (φ(k))) − F(γ (k)))x(φ(k))

+ 2ϑ(γ (k))(x(φ(k)) − x(k))TP(γ (k))(x(φ(k)) − x(k)). (8.10)

Further examination of �V (x(k), γ (k)) relies on finding upper bounds of
the quadratic terms in (8.10) that are associated with F(γ (φ(k))) − F(γ (k))

and x(φ(k)) − x(k). Based on Jensen’s Inequality as given in Lemma 8.3, the
nonincreasing property of P(γ (k)) as given by (8.8) and the fact that

F(γ (φ(k))) − F(γ (k)) =
l=k−1∑

l=φ(k)

(F (γ (l + 1)) − F(γ (l))),

we derive

(F (γ (φ(k))) − F(γ (k)))T
(
I + BTP(γ (k))B

)
(F (γ (φ(k))) − F(γ (k)))

=
⎛

⎝
l=k−1∑

l=φ(k)

(F (γ (l + 1)) − F(γ (l)))

⎞

⎠

T

(I + BTP(γ (k))B)

×
⎛

⎝
l=k−1∑

l=φ(k)

(F (γ (l + 1)) − F(γ (l)))

⎞

⎠

≤ R

l=k−1∑

l=φ(k)

(F (γ (l + 1)) − F(γ (l)))T
(
I + BTP(γ (k))B

)
(F (γ (l + 1)) − F(γ (l)))

≤ R

l=k−1∑

l=φ(k)

(F (γ (l + 1)) − F(γ (l)))T
(
I + BTP(γ (l))B

)
(F (γ (l + 1)) − F(γ (l)))

= R

l=k−1∑

l=φ(k)

�F T(l)
(
I + BTP(γ (l))B

)
�F(l),

where �F(l) is defined as

�F(l) = F(γ (l + 1)) − F(γ (l)).

By the mean value theorem and the nonincreasing property of γ (k) with respective
to k, we have
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�F(l) = dF(γ )

dγ

∣
∣
∣
∣
γ∈[γ (l+1),γ (l)]

(γ (l + 1) − γ (l))

= −dF(γ )

dγ

∣
∣
∣
∣
γ∈[γ (l+1),γ (l)]

α
V p(x(l), γ (l))

V p(x(l), γ (l)) + 1
γ q(l),

which implies that

�F T(l)
(
I + BTP(γ (l))B

)
�F(l)

≤ α2γ 2q(l)

(
dF(γ )

dγ

∣
∣
∣
∣
γ∈[γ (l+1),γ (l)]

)T
(
I + BTP(γ (l))B

)

×
(

dF(γ )

dγ

∣
∣
∣
∣
γ∈[γ (l+1),γ (l)]

)

.

According to Lemma 3.4, P(γ ) is a rational matrix in γ and

lim
γ→0+ P(γ ) = 0. (8.11)

These two facts indicate that all the elements of P(γ ) are infinitesimal quantities of
at least first order with respect to γ , which further implies that

dP(γ )

dγ

is bounded from above over γ ∈ (0, γ1(0)), where γ1(0) is any positive constant
within (0, 1). Let γ (0) ∈ (0, γ1(0)). We compute

dF(γ )

dγ
= (

I + BTP(γ )B
)−2

BT dP(γ )

dγ
BBTP(γ )A − (

I + BTP(γ )B
)−1

BT dP(γ )

dγ
A,

from which and the property (8.11), the nonincreasing monotonocity of γ (k) and
P(γ (k)) with respect to k, we obtain

(
dF(γ )

dγ

∣
∣
∣
∣
γ∈[γ (l+1),γ (l)]

)T
(
I + BTP(γ (l))B

)
(

dF(γ )

dγ

∣
∣
∣
∣
γ∈[γ (l+1),γ (l)]

)

≤ βI,

(8.12)

where β is a positive constant. The value of β solely depends on the value of γ1(0)

and the pair (A,B).
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Inequality (8.12) implies that

xT(φ(k))(F (γ (φ(k))) − F(γ (k)))T
(
I + BTP(γ (k))B

)

×(F (γ (φ(k))) − F(γ (k)))x(φ(k))

≤ βα2R

k−1∑

l=φ(k)

γ 2q(l)xT(φ(k))x(φ(k))

≤ βα2R2γ 2q(φ(k))xT(φ(k))x(φ(k)).

By q > q̃, we have

γ 2q(φ(k)) ≤ γ q(φ(k))P (γ (φ(k))), (8.13)

as long as the initial condition γ (0) for γ (k) is chosen sufficiently small. Then, there
exists γ2(0) ∈ (0, γ1(0)) such that, for each γ (0) ∈ (0, γ2(0)),

xT(φ(k))(F (γ (φ(k))) − F(γ (k)))T
(
I + BTP(γ (k))B

)
(F (γ (φ(k))) − F(γ (k)))x(φ(k))

≤ βα2R2γ q(φ(k))xT(φ(k))P (γ (φ(k)))x(φ(k))

= βα2R2γ q(φ(k))V (x(φ(k)), γ (φ(k))).

On the other hand, we establish an upper bound of the quadratic term in (8.10)
that is associated with x(φ(k)) − x(k). We compute

x(k) − x(φ(k)) =
k−1∑

l=φ(k)

(x(l + 1) − x(l))

=
k−1∑

l=φ(k)

(
AC(γ (l))x(l) + B

(
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

))− x(l)

=
k−1∑

l=φ(k)

(
AC(γ (l)) − I

)
x(l) + B

(
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

)
,

and then

(x(k) − x(φ(k)))TP(γ (k))(x(k) − x(φ(k)))

≤ R

k−1∑

l=φ(k)

((
AC(γ (l) − I )x(l) + B

(
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

))T
P(γ (k))

×((AC(γ (l) − I )x(l) + B
(
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

))

≤ 2R

k−1∑

l=φ(k)

xT(l)
(
AC(γ (l)) − I

)T
P(γ (k))

(
AC(γ ) − I

)
x(l) + (

F(γ (φ(l)))x(φ(l))
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−F(γ (l))x(l)
)T

BTP(γ (k))B
(
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

)

= 2R

k−1∑

l=φ(k)

xT(l)
(
AC(γ (l)) − I

)T(
P(γ (k)) − P(γ (l))

)(
AC(γ ) − I

)
x(l)

+ xT(l)
(
AC(γ (l)) − I

)T
P(γ (l))

(
AC(γ ) − I

)
x(l) + (

F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)
)T

×BTP(γ (k))B
(
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

)

≤ 2R

k−1∑

l=φ(k)

�(γ (l))xT(l)P (γ (l))x(l) + (
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

)T

×BTP(γ (k))B
(
F(γ (φ(l)))x(φ(l)) − F(γ (l))x(l)

)

≤ 2R

k−1∑

l=φ(k)

�(γ (l))xT(l)P (γ (l))x(l)

+ 2xT(φ(l))F T(γ (φ(l)))BTP(γ (k))BF(γ (φ(l)))x(φ(l))

+ 2xT(l)F (γ (l))BTP(γ (k))BF(γ (l))x(l)

≤ 2R

k−1∑

l=φ(k)

�(γ (l))xT(l)P (γ (l))x(l)

+ 2xT(φ(l))F T(γ (φ(l)))BTP(γ (φ(l)))BF(γ (φ(l)))x(φ(l))

+ 2xT(l)F (γ (l))BTP(γ (l))BF(γ (l))x(l)

≤ 2R

k−1∑

l=φ(k)

�(γ (l))xT(l)P (γ (l))x(l)

+ 2�(γ (φ(l)))xT(φ(l))P (γ (φ(l)))x(φ(l)) + 2�(γ (l))xT(l)P (γ (l))x(l)

= 2R

k−1∑

l=φ(k)

(�(γ (l)) + 2�(γ (l)))xT(l)P (γ (l))x(l)

+ 2�(γ (φ(l)))xT(φ(l))P (γ (φ(l)))x(φ(l)),

where we have employed the nonincreasing monotonocity of P(γ (k)) with respect
to k and Lemma 8.1, and have defined for each k ∈ N,

�(γ (k)) =
(
1 − (1 − γ (k))n

)2

(1 − γ (k))2n−1 ,

�(γ (k)) = 1

(1 − γ (k))n
− 1 − nγ (k) +

(
1 − (1 − γ (k))n

)2

(1 − γ (k))n−1
.

Applying the derived upper bounds of the quadratic terms associated with
F(γ (φ(k))) − F(γ (k)) and x(φ(k)) − x(k) in (8.9) then yields
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�V (x(k), γ (k)))

≤ − γ (k)V (x(k), γ (k)) + 2R2βα2γ q(φ(k))V (x(φ(k)), γ (φ(k)))

+ 4ϑ(γ (k))R

k−1∑

l=φ(k)

(�(γ (l)) + 2�(γ (l)))V (x(l), γ (l))

+ 2�(γ (φ(l)))V (x(φ(l)), γ (φ(l))). (8.14)

Taking the summation of both sides of inequality (8.14) from k = 2R to k = N ,
where N ∈ N and N ≥ 2R, we obtain

N∑

k=2R

�V (x(k), γ (k))

≤ −
N∑

k=2R

γ (k)V (x(k), γ (k)) + 2R2βα2
N∑

k=2R

γ q(φ(k))V (x(φ(k)), γ (φ(k)))

+ 4
N∑

k=2R

ϑ(γ (k))R

k−1∑

l=φ(k)

(�(γ (l)) + 2�(γ (l)))V (x(l), γ (l))

+ 2�(γ (φ(l)))V (x(φ(l)), γ (φ(l)))

≤ −
N∑

k=2R

γ (k)V (x(k), γ (k)) + 2R3βα2
N∑

l=R

γ q(l)V (x(l), γ (l))

+
N∑

k=2R

4ϑ(γ (k))R2
k−1∑

l=k−R

(�(γ (l)) + 2�(γ (l)))V (x(l), γ (l))

+
N∑

k=2R

8ϑ(γ (k))R2
k−1∑

l=k−2R

�(γ (l))V (x(l), γ (l)), (8.15)

in which the second inequality sign holds for the following reasons. We examine the
second summation after the first inequality sign in (8.15),

N∑

k=2R

γ q(φ(k))V (x(φ(k)), γ (φ(k))). (8.16)

The index of this summation runs from k = 2R to k = N , which implies that

φ(k) ∈ I [R,N ].
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When the index of this summation is changed to l = φ(k), the range of l becomes
[R,N ]. Furthermore, for each l ∈ I [R,N ],

γ q(l)V (x(l), γ (l))

is counted at most R times by the summation (8.16) because of the boundedness of
r(k). Thus, by a change of the index of this summation from k to l = φ(k), we get

N∑

k=2R

γ q(φ(k))V (x(φ(k)), γ (φ(k))) ≤ R

N∑

l=R

γ q(l)V (x(l), γ (l)).

This, along with similar changes of the indices in the third and the fourth
summations after the first inequality sign in (8.15), yield the second inequality in
(8.15).

By the strictly increasing monotonicity of ϑ(γ ) with respect to γ , as established
in Lemma 8.2, we compute

N∑

k=2R

�V (x(k), γ (k))

≤ −
N∑

k=2R

γ (k)V (x(k), γ (k)) + 2R3βα2
N∑

l=R

γ q(l)V (x(l), γ (l))

+ 4R2
N∑

k=2R

k−1∑

l=k−R

ϑ(γ (l))(�(γ (l)) + 2�(γ (l)))V (x(l), γ (l))

+ 8R2
N∑

k=2R

k−1∑

l=k−2R

ϑ(γ (l))�(γ (l))V (x(l), γ (l))

≤ −
N∑

k=2R

γ (k)V (x(k), γ (k)) + 2R3βα2
N∑

l=R

γ q(l)V (x(l), γ (l))

+ 4R3
N−1∑

l=R

ϑ(γ (l))(�(γ (l)) + 2�(γ (l)))V (x(l), γ (l))

+ 16R3
N−1∑

l=0

ϑ(γ (l))�(γ (l))V (x(l), γ (l))

≤ −
N∑

k=2R

γ (k)V (x(k), γ (k)) +
N∑

l=0

(2R3βα2γ q(l)V (x(l), γ (l))

+ 4R3θ(γ (l))(�(γ (l)) + 2�(γ ))V (x(l), γ (l))
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+ 16R3ϑ(γ (l))�(γ (l))V (x(l), γ (l)))

≤ −
N∑

l=2R

(
γ (l) − 2R3(βα2γ q(l) + 2ϑ(γ )

(
�(γ (l)) + 2�(γ (l))

)

+ 8ϑ(γ (l))�(γ (l)))V (x(l), γ (l)) + 2R3
2R−1∑

l=0

(
βα2γ q(l) + 2θ(γ (l))

× (�(γ (l)) + 2�(γ (l))) + 8ϑ(γ (l))
)
�(γ (l))

)
V (x(l), γ (l)). (8.17)

If

βα2γ q−1(l) + 2
ϑ(γ (l))

γ (l)
�(γ (l)) + 12

ϑ(γ (l))

γ (l)
�(γ (l)) <

1

2R3 (8.18)

for each l ∈ I [2R,N ], then the first summation after the last inequality sign in (8.17)
is negative definite. By the nonincreasing monotonicity of γ (k) and Lemma 8.2,
there exists γ3(0) ∈ (0, γ2(0)) such that γ (0) ∈ (0, γ3(0)) suffices for (8.18) to
hold. Thus,

N∑

k=2R

�V (x(k), γ (k))

≤ 2R3
2R−1∑

l=0

(βα2γ q(0) + 2θ(γ (0))(�(γ (0))

+ 2�(γ (0))) + 8ϑ(γ (0)))�(γ (0)))V (x(l), γ (l)). (8.19)

This implies that, for each γ (0) ∈ (0, γ3(0)),

V (x(N), γ (N)) ≤
2R∑

l=0

clV (x(l), γ (l)), (8.20)

where

cl = 1 (8.21)

for l = 2R and

cl = 2R3(βα2γ q(0) + 2θ(γ (0))(�(γ (0)) + 6�(γ (0))) (8.22)

for l ∈ I [0, 2R − 1]. Note that (8.20) holds for any N ≥ 2R. Thus, V (x(k), γ (k))

is bounded over k ∈ N.
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From (8.17), we notice that, for each γ (0) ∈ (0, γ2(0)),

N∑

l=2R

�V (x(k), γ (k))

≤ − 1

2

N∑

l=2R

γ (l)V (x(l), γ (l)) − 1

2

N∑

l=2R

γ (l)V (x(l), γ (l))

+ 2R3
N∑

l=0

(
βα2γ q(l) + 2ϑ(γ (l))(�(γ (l)) + 6�(γ (l)))

)
V (x(l), γ (l)),

from which we get

N∑

l=2R

γ (l)V (x(l), γ (l))

≤ −
N∑

l=2R

γ (l)V (x(l), γ (l)) + 4R3
N∑

l=0

(
βα2γ q(l) + 2ϑ(γ (l))(�(γ (l))

+ 6�(γ (l)))
)
V (x(l), γ (l)) − 2

N∑

l=2R

�V (x(k), γ (k))

=
N∑

l=2R

(
−γ (l) + 4R3(βα2γ q(l) + 2ϑ(γ (l))(�(γ (l)) + 6�(γ (l))))

)
V (x(l), γ (l))

+ 4R3
2R−1∑

l=0

(
βα2γ q(l) + 2ϑ(γ (l)) (�(γ (l)) + 6�(γ (l)))

)
V (x(l), γ (l))

+ 2(V (x(2R), γ (2R)) − V (x(N), γ (N)).

Using an argument similar to the one used in obtaining (8.19), we conclude that
there exists γ4(0) ∈ (0, γ3(0)) such that, for each γ (0) ∈ (0, γ4(0)),

N∑

l=2R

γ (l)V (x(l), γ (l)) ≤ 4R3
2R−1∑

l=0

(
βα2γ q(l) + 2ϑ(γ (l))(�(γ (l))

+ 6�(γ (l)))
)
V (x(l), γ (l)) + 2V (x(2R), γ (2R)),
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based on which we derive

N∑

l=2R

γ (l)V (x(l), γ (l)) ≤ 4R3
2R−1∑

l=0

(
βα2γ q(l) + 2ϑ(γ (l))(�(γ (l))

+ 6�(γ (l)))
)
V (x(l), γ (l)) + 2V (x(2R), γ (2R))

≤ 2
2R∑

l=0

clV (x(l), γ (l)), (8.23)

where we have defined cl as in (8.21) and (8.22).

8.3.2 The Boundedness of γ (k) Away from Zero

By the update law (8.5) for γ (k), we compute

N∑

l=2R

γ (k + 1) − γ (k)

= −
N∑

l=2R

α
V p(x(k), γ (k))

V p(x(k), γ (k)) + 1
γ q(k)

= −
N∑

k=2R

α
V p−1(x(k), γ (k))γ q−1(k)

V p(x(k), γ (k)) + 1
V (x(k), γ (k))γ (k)

≥ −α

N∑

k=2R

V p−1(x(k), γ (k))γ q−1(k)V (x(k), γ (k))γ (k)

≥ −α

N∑

k=2R

V p−1(x(k), γ (k))γ q−1(0)V (x(k), γ (k))γ (k)

≥ −αγ q−1(0)

(
2R∑

l=0

clV (x(l), γ (l))

)p−1 N∑

l=2R

V (x(k), γ (k))γ (k)

≥ −2αγ q−1(0)

(
2R∑

l=0

clV (x(l), γ (l))

)p

,

where we have applied an upper bound of V (x(k), γ (k)) for each of k ≥ 2R, as
given by (8.20), and an upper bound of

∑N
l=2R γ (l)V (x(l), γ (l)), as given by (8.23).

Then,
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γ (N) ≥ γ (2R) − 2αγ q−1(0)

(
2R∑

l=0

clV (x(l), γ (l))

)p

≥ γ (0) − α(2R + 1)γ q(0) − 2αγ q−1(0)

(
2R∑

l=0

clV (x(l), γ (l))

)p

.

From

V (x(l), γ (l)) ≤ max
l∈I [0,2R]{V (x(l), γ (l))}

≤
2R∑

l=0

V (x(l), γ (l))

≤
2R∑

l=0

xT(l)P (γ (l))x(l)

≤ |P(γ (0))|
2R∑

l=0

|x(l)|2 , l ∈ I [0, 2R], (8.24)

we can see that as γ (0) tends to zero, each γ (l), l ∈ I [0, 2R], tends to zero. This
implies that over the time interval k ∈ I [0, 2R], the state of the closed-loop system
(8.6) tends to that of the open loop system

x(k + 1) = Ax(k)

as γ (0) tends to zero. Thus,

2R∑

l=0

|x(l)|2

in (8.24) approaches a positive constant that depends solely on A and R. Therefore,
there exists a sufficiently small γ5(0) ∈ (0, γ4(0)) such that for each γ (0) ∈
(0, γ5(0)),

γ (N) ≥ γ (0) − α(2R + 1)γ q(0) − 2αγ q−1(0)

(
2R∑

l=0

clV (x(l), γ (l))

)p

≥ γ (0) − α(2R + 1)γ q(0) − 2αγ q−1(0)

(
2R∑

l=0

cl |P(γ (0))|
2R∑

l=0

|x(l)|2
)p

> 0. (8.25)
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Note that inequality (8.25) holds for each N ≥ 2R. This implies that γ (k)

is bounded from below by a positive constant. In view of the nonincreasing
monotonocity of γ (k), we have that

lim
k→∞ γ (k)

exists and is positive as long as γ (0) ∈ (0, γ5(0)).

8.3.3 The Regulation of the State and the Input Given a
Sufficiently Small γ (0)

Based on the update law for γ (k) (8.5), that is,

γ (k + 1) = γ (k) − α
V p(x(k), γ (k))

V p(x(k), γ (k)) + 1
γ q(k),

and the fact that γ (k) has a positive limit, which is denoted by γc, we derive

lim
k→∞(γ (k + 1) − γ (k)) = −α lim

k→∞
V p(x(k), γ (k))

V p(x(k), γ (k)) + 1
γ q(k)

= −αγ q
c lim

k→∞
V p(x(k), γ (k))

V p(x(k), γ (k)) + 1

= 0,

which implies that

lim
k→∞ V (x(k), γ (k)) = 0.

By

V (x(k), γ (k)) ≥ |P(γc)| |x(k)|2 ,

we have

lim
k→∞ |x(k)| ≤ lim

k→∞

√
V (x(k), γ (k))

|P(γc)| = 0.

Thus,

lim
k→∞ x(k) = 0.
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Obviously,

lim
k→∞ u(k) = lim

k→∞ F(γ (k)) lim
k→∞ x(k)

=0.

To summarize, we have the following result.

Theorem 8.1 There exists γ �(0) ∈ (0, 1) such that for each γ (0) ∈ (0, γ �(0)), the
adaptive feedback law (8.2) with γ (k) updated by following (8.5) globally regulates
system (8.1), that is,

lim
k→∞ x(k) = 0, lim

k→∞ u(k) = 0,

given any initial condition of the state x. Moreover,

lim
k→∞ γ (k)

exists and is positive.

8.3.4 The Regulation of the State and the Input Given Any
γ (0)

Theorem 8.1 establishes global regulation of system (8.1) given a small enough
initial condition for γ (k). However, as seen in the proof of the theorem, the upper
bound of this sufficiently small γ (0) depends on the upper bound of the delay R.
We now give a regulation analysis of system (8.1) under the adaptive feedback law
with an arbitrarily initial γ (0). It turns out that our adaptive feedback law achieves
global regulation of the system for any given initial condition of γ (k).

We consider two separate cases. The first case assumes that, given an initial
condition of γ (k), γ (k) never decreases to the value of γ �(0), where γ �(0) is given
in Theorem 8.1. This suggests that

γ (k) > γ �(0), k ∈ N,

and thus,

lim
k→∞ γ (k)

exists and is a positive constant that is greater or equal to γ �(0). Denote this limit
by γd. Based on the update law for γ (k), we obtain
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lim
k→∞

V p(x(k), γ (k))

V p(x(k), γ (k)) + 1
= 0,

and hence

lim
k→∞ V (x(k), γ (k)) = 0.

Thus,

lim
k→∞ |x(k)| ≤ lim

k→∞

√
V (x(k), γ (k))

|P(γd)|
= 0,

and

lim
k→∞ x(k) = 0.

In view of the boundedness of γ (k) from below, we get

lim
k→∞ u(k) = 0.

Therefore, global regulation of the system (8.1) is achieved.
We now consider the second case where γ (k) decreases to some γ (0) ∈

(0, γ �(0)) at some time instant k̃. Set this k̃ as the time instant at which the closed-
loop system (8.6) starts evolution. Then, according to Theorem 8.1, the closed-loop
system achieves

lim
k→∞ x(k) = 0, lim

k→∞ u(k) = 0.

Also,

lim
k→∞ γ (k)

exists and is positive.
We now summarize the above conclusion in the following theorem.

Theorem 8.2 The adaptive feedback law (8.2), with γ (k) updated according to
(8.5), globally regulates system (8.1), that is,

lim
k→∞ x(k) = 0, lim

k→∞ u(k) = 0.
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Moreover,

lim
k→∞ γ (k)

exists and is positive.

To the best of our knowledge, no design achieves what the adaptive feedback law
(8.2) has achieved. First, no knowledge of a time-varying bounded delay is required
to implement our adaptive feedback law. Considering that the compensation of an
arbitrarily large delay without using any delay knowledge is still open for a general
linear system, the result in this chapter makes a step toward the solution to this
long-standing problem. Second, the implementation of our adaptive feedback law
is easy due to its memorylessness. Finally, any time-varying bounded delay can be
compensated by our adaptive feedback law, which cannot be done by a traditional
predictor based feedback. Because the predictor feedback handles only a group
of time-varying delays whose associated φ(k) function has an inverse function,
any adaptive feedback law that takes the predictor feedback law as the nominal
controller will not be able to compensate for a time-varying delay whose associated
φ(k) function does not have an inverse function.

8.4 A Numerical Example

The regulation and performance of the adaptive feedback law (8.2) are discussed in
this section through numerical examples. Consider system (8.1) with

A =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ . (8.26)

All the open loop poles of this system are at z = 1, and the pair (A,B) is
controllable. Let the time-varying delay be

r(k) = mod(k, 5).

It can be readily seen that an upper bound of the delay is R = 4 and that the inverse
function of

φ(k) = k − r(k)

does not exist. Actually, any function φ(k) associated with a time-varying delay in
the form of



8.4 A Numerical Example 331

r(k) = mod(k, l),

where l ∈ N \ {0} does not have an inverse image. We pick this particular type of
time-varying delay to numerically demonstrate the ability of our adaptive feedback
law to regulate the system, which is not possessed by a traditional predictor based
adaptive feedback law. Let the initial condition of the system be given by

x(k) = [
1 −1 0 1

]T
, k ∈ I [0, R].

Throughout the simulation study, we pick the control parameters in our design as
follows:

α = 1, p = 1, q = 2.

Here, q = 2 is chosen based on q̃ = 1. In the simulation, we first let γ (k) decrease
from

γ (0) = 0.1.

Figures 8.1, 8.2, and 8.3 show the evolutions of the state, the input, and the feedback
parameter of the closed-loop system, respectively, under our adaptive feedback law
(8.1). It can be readily observed in Fig. 8.3 that γ (k) has a positive limit as k tends
to infinity.

Keeping all the parameters the same as in the first simulation, we change the
initial condition of the feedback parameter to a larger value

γ (0) = 0.2.

Figures 8.4, 8.5, and 8.6 show respectively the evolutions of the state, the input, and
the feedback parameter of the closed-loop system under our adaptive feedback law
(8.1). We further increase the initial condition of γ (k) to

γ (0) = 0.5,

under which the closed-loop evolution is shown in Figs. 8.7, 8.8, and 8.9.
These simulation results demonstrate that although the regulation of system

(8.26) can be achieved no matter what the value of γ (0) is, the closed-loop
performance in terms of the overshoot and the convergence rate varies as the initial
value of γ (k) varies. Specifically, the value of γ (0) cannot be chosen to be neither
too large nor too small. An excessively large or small γ (0) would induce large
overshoot and slow convergence rate, while a modest value of γ (0) tends to result
in better closed-loop performance. A similar observation on how the value of the
feedback parameter affects the closed-loop performance was made in Sect. 5.3.

More evidence of the ability of the adaptive feedback law in its regulation
of system (8.26) can be seen by considering an even larger time-varying delay.
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Fig. 8.1 State evolution of the closed-loop system with γ (0) = 0.1

Fig. 8.2 Input evolution of the closed-loop system with γ (0) = 0.1
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Fig. 8.3 Evolution of the feedback parameter of the closed-loop system with γ (0) = 0.1

Fig. 8.4 State evolution of the closed-loop system with γ (0) = 0.2
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Fig. 8.5 Input evolution of the closed-loop system with γ (0) = 0.2

Fig. 8.6 Evolution of the feedback parameter of the closed-loop system with γ (0) = 0.2
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Fig. 8.7 State evolution of the closed-loop system with γ (0) = 0.5

Fig. 8.8 Input evolution of the closed-loop system with γ (0) = 0.5
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Fig. 8.9 Evolution of the feedback parameter of the closed-loop system with γ (0) = 0.5

Consider

r(k) = mod(k, 10),

whose peak value is R = 9. Set all the other parameters the same as those in the last
simulation. Let the feedback parameter decrease its value from

γ (0) = 0.5.

Figures 8.10, 8.11, and 8.12 show the evolutions of the state, the input, and the
feedback parameter of the closed-loop system. The performance of the closed-loop
system is not as good as in the corresponding simulation with R = 4.

The following numerical study reveals that our adaptive feedback design is not
sensitive to open loop poles that are exponentially unstable. Replace matrix A in
system (8.26) with

A =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1.2

⎤

⎥
⎥
⎦ ,
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Fig. 8.10 State evolution of the closed-loop system with R = 9 and γ (0) = 0.5

Fig. 8.11 Input evolution of the closed-loop system with R = 9 and γ (0) = 0.5
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Fig. 8.12 Evolution of the feedback parameter of the closed-loop system with R = 9 and
γ (0) = 0.5

which contains an exponentially unstable pole z = 1.2 of the open loop system.
Choose the same set of system parameters as those in first simulation except the
matrix A. Figures 8.13, 8.14, and 8.15 show the evolution of the closed-loop system
with this unstable open loop pole. The simulation results show that the adaptive
feedback design is robust to the presence of open loop poles that are exponentially
unstable.

8.5 Conclusions

This chapter presented an adaptive feedback law that accommodates unknown input
delay in discrete-time linear systems with all open loop poles at z = 1 or inside
the unit circle. Two main features of the feedback law are its delay independence
nature and its memorylessness. No knowledge of the delay is required for the
implementation of the feedback law. Also, only the current state is used in the
feedback. These two features contribute to the convenience in the implementation
of the feedback law. A direct closed-loop analysis that does not base on Lyapunov
type stability analysis was developed to establish regulation. Numerical examples
demonstrated the regulation effects of the feedback design and its robustness to the
presence of exponentially unstable open loop poles.
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Fig. 8.13 State evolution of the closed-loop system with an exponentially unstable open loop pole

Fig. 8.14 Input evolution of the closed-loop system with an exponentially unstable open loop pole
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Fig. 8.15 Evolution of the feedback parameter of the closed-loop system with an exponentially
unstable open loop pole

8.6 Notes and References

This chapter was presented to sole the regulation problem for a discrete-time
linear system in the presence of any knowledge of the delay. The problem is the
counterpart to the problem in the continuous-time setting studied in Chap. 7. The
presentation follows from [108] submission.
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