

The Game Programmer’s
Guide to Torque

The Game Programmer’s
Guide to Torque

A K Peters, Ltd.
Wellesley, Massachusetts

Under the Hood of the
Torque Game Engine

A GarageGames Book

Edward F. Maurina III

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110714

International Standard Book Number-13: 978-1-4398-7115-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made
to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of
all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organiza-
tions that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identi-
fication and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

This book is dedicated to my wife Teresa, for her encouragement, her advice, and
most of all for her tolerance of the odd hours I kept while locked away in my office
writing this book.

I must give special thanks to Jerry for acting as an idea bouncing-board and for
listening patiently as I discussed chapter ideas over, and over, and

Of course, I must also thank the many members of the GarageGames community for
their unfailing interest in the guide and their encouragement.

Lastly, I would like to thank the GarageGames staff for making the publication of this
book possible, giving specific thanks to the “draft reviewers”—Josh Williams, Matt
Fairfax, Ben Garney, Matt Langley, and Justin Dujardin.

vii

Contents

 Preface . ix

I Introduction

1 Introduction . 3

II Engine Overview

2 Torque from 10,000 Feet . 13

3 Torque Tools . 35

4 Introduction to TorqueScript . 97

III Game Elements

5 Torque Core Classes . 143

6 Basic Game Classes . 157

7 Gameplay Classes . 201

8 Mission Objects . 263

9 Game Setup Scripting . 347

10 Gameplay Scripting . 383

11 Special Effects . 419

12 Standard Torque Game Engine GUI Controls 455

13 Game Interfaces . 539

IV Making the Game

14 Putting it All Together . 571

 Index . 599

ix

Preface

So, you want to make a game? You may be standing in a bookstore holding
this book in your hands, or you may be reading this online. Whatever the case
may be, some or all of the following thoughts and questions are probably run-
ning through your mind:

• I want to make a game, but can I do it on my own or with a small team?
Making a game is great fun, and a very rewarding experience. You can
defi nitely make a game alone or with a small team as long as you have the
right tools available to you. One of those tools is the Torque Game Engine
(TGE) and the other is Game Programmer’s Guide to Torque (GPGT). Using
TGE and GPGT, you can create any game that your imagination can encom-
pass and that your skills will allow.

• TGE sounds good, but will GPGT tell me what I need to know to make
my particular game? TGE is a powerful and fl exible game engine that
can be used to make any number of different and unique games. You may
choose to make single-player or multiplayer games. The game can be a
shooter, an adventures, or a role-playing-game, to name just a few. Game
Programmer’s Guide to Torque will teach you the Torque skills you need to
create these game types. (See section 1.1, “About the Torque Game Engine,”
and section 1.2, “What This Guide Contains,” to learn more.)

• Can I get up to speed fast enough to make my game? Like any other
complex and powerful piece of software, Torque can be hard or easy to
learn. Everything depends on your approach to the task and whether you
have the right resources available to you. With Game Programmer’s Guide
to Torque, with the hundreds of samples that come on the accompanying
disk, and with the experience of making the sample game we write while
reading this book, you will be able to ramp up very quickly and to move
on to your goal—namely, making your own game.

Having been down the path you are just now starting upon, I know how hard
it can be to get started and how hard it is to stay motivated in the face of the
many challenges involved with learning to use Torque along with the other
skills you will need to acquire. I decided to write this guide so that others
would not have to struggle to learn Torque.
 In closing, this guide is the result of my own need for a better reference
and my desire to help other learn about the powerful and fl exible Torque
Game Engine. It is the culmination of my own game-writing and Torque-using
journey. I sincerely hope that it provides you a pleasant beginning to your
own game-making adventures.

Introduction Part I

3

1.1 About the Torque Game Engine

1.1.1 What Is Torque?
The Torque Game Engine (TGE) is a AAA 3D game engine made available
to the indie games community by GarageGames. It is the product of many
years of dedicated work and interactive design and development by the staff
of Dynamix, a well-known game development company which the founders
of GarageGames previously started. As Dynamix made games, they would
reuse and refi ne, taking the best parts of their work to the next generation of
the engine. With this engine, they produced games like Earthsiege, Starsiege,
 Tribes, and eventually Tribes 2. All in all, it is safe to say that the code in this
engine has its roots in code written as far back as 1995 and perhaps even
earlier.
 In summary, the Torque Game Engine is a product with man-centuries
of development done by proven experts who time and time again used this
engine to produce stellar titles. As far as I know, there is no other game engine
like this on the market at any price.

1.1.2 Why Should I Use Torque?
Educational: One of the best ways to learn programming is to read code written
by other developers. If you are going to read code, you might as well have fun and
read game code and learn a few tricks in the process.

Resume Building: Mod (modify) the engine to show off your skills to future
employers.

MOD Makers: How many times have you gotten stuck trying to mod other engines
because they did not support feature X? Now you have the source and can easily
add any features you want and truly differentiate your mod from the rest.

To Make Great Games! That’s what we all live for, so do it. This is an unprecedented
opportunity to build your game using an industry-proven game engine that rocks!

—GarageGames Site

One of the beauties of the Torque Game Engine is that you don’t have to use
it to make games. “What’s that, you say?” I repeat, you do not have to use
the Torque Game Engine to make games. With the features included in this
engine, you can just as easily make a variety of professional, educational, or
“your category here” products.

Introduction
Chapter 1

Part I Introduction

4

 Of course, you must abide by the end user license agreement (EULA), but
once you have licensed the engine, the terms of the agreement are pretty free
about what you can create. The only real limitation is your own imagination.

1.1.3 Not Just First-Person Shooters
Some people, examining the Torque Game Engine for the fi rst time, may be
under the impression that it is only for making fi rst-person shooters (FPS).
Nothing could be further from the truth. Yes, it is well suited to the FPS genre,
but it can and has been used to make a variety of different game types.

Current Titles

Action Games

 Marble Blast GOLD Think Tanks

 Lore Orbz

 Introduction Chapter 1

5

Sports

 RocketBowl Plus Golden Fairway

Educational

 3-D Language Spain

Upcoming Titles

Racing / Driving

 dRacer

Part I Introduction

6

 Role Playing Games

 Minions Of Mirth

1.2 What This Guide Contains
By the end of this book, you will understand how to use Torque, and we
will even make our own little game in the process. This book aims to fi ll the
following needs.

• Learning guide. The guide is designed to quickly walk you through the
concepts and learning required to get started on your own games. To that
end, it comes with a lesson kit containing complete sets of ready-to-run
sample scripts (from discussions) and sample lessons covering all topics
discussed.

• Reference guide. To make this guide useful even after your preliminary
learning experience is complete, the guide is formatted in a way that facili-
tates looking up specifi c topics. Also, it comes with quick-reference guides
covering all TGE console classes, scripting, script functions and methods,
GUI (graphical user interface) controls, etc.

• Prototyping help. This guide and the accompanying lesson kit in combi-
nation with the resources that come with TGE itself should provide all the
materials you will need to create your own game prototypes.

• Teaching aid. The guide and associated kit have also been designed with
the classroom in mind. The contents are suitable to support game-design
courses. A specialized kit is included containing many ready-made les-
sons/samplers in the following categories: scripts, GUI controls, interfaces,
HUDs (heads-up displays), and all of the major 3D/engine topics discussed
in the guides. All lessons can be extended, and new lessons can be added
with relatively little effort.

1.2.1 Summary
This book is intended as a starting point for the completely new user, but it is
also suitable for the user who is moderately experienced with Torque already.

 Introduction Chapter 1

7

It has the following chapters:

• Part I: Introduction
• Chapter 1: Introduction

• Part II: Engine Overview
• Chapter 2: Torque From 10,000 Feet. This chapter gives the ten-minute

description of Torque and introduces the new user to important con-
cepts and terminology.

• Chapter 3: Torque Tools. Here, we discuss all of the built-in tools and
establish an understanding of how to use the TGE kit in editing mode.

• Chapter 4: Introduction to TorqueScript. Here, we introduce the em-
bedded scripting language that comes with TGE. This chapter covers
the complete syntax and the major concepts required to work with this
scripting language.

• Part III: Game Elements
• Chapter 5: Torque Core Classes. This chapter examines the core script-

ed classes and their importance in the hierarchy, structure, and behavior
of the engine.

• Chapter 6: Basic Game Classes. Here we cover the basic classes used to
represent shapes, images, and interiors.

• Chapter 7: Gameplay Classes. This chapter reviews the classes through
which we implement game interactions that defi ne the gameplay. We
also introduce important game-design concepts like the inventory.

• Chapter 8: Mission Objects. TGE provides a myriad of object classes. In
this chapter, we discuss all of the mission/game/level placeable objects
that have not yet been discussed, excluding special effects.

• Chapter 9: Game-Setup Scripting. Here we work through in-depth dis-
cussions of critical scripting classes and features that are associated with
setting up and maintaining a game.

• Chapter 10: Gameplay Scripting. In this last scripting chapter, we ex-
amine a variety of scripting functions, examining how they work and
providing the context in which they contribute to gameplay.

• Chapter 11: Special Effects. This chapter splits out several classes used
for audio and visual special effects.

• Chapter 12: Standard TGE GUI Controls. In this chapter, we discuss the
32 most important GUI controls.

• Chapter 13: Game Interfaces. This follow-on chapter builds on the last
chapter and walks through the creation of two sets of themed game in-
terfaces. Each set includes a splash screen, a main menu, and a credits
screen. We also specify and design three types of HUD to show that
complex HUDs can readily be created from basic TGE controls.

Part I Introduction

8

• Part IV: Making The Game
• Chapter 14: Putting It All Together. Here, we build a complete single-

player game prototype. We plan the game; accumulate many of the exam-
ple scripts, shapes, interiors, and interfaces created in the prior chapters;
and glue them all together with a small set of gameplay-specifi c scripts.

• Appendices. In order to facilitate the learning process and to fi ll the role
of reference, an extensive set of appendices is included in electronic form.
These appendices include complete references of game class fi elds and
methods, console functions, callbacks, and GUI controls, to name a few.

1.3 What This Guide Does Not Contain
This guide obviously does not contain the answer to every question that every
person who uses Torque can come up with. My hope is that it contains enough
information and is accessible enough that you can learn how to answer these
unanswered questions on your own. However, sometimes that just isn’t going
to happen, so a “Getting Help” appendix has been included to assist you.
First, though, let’s determine what you should know before starting.

1.4 What You Should Know Before
 Reading This Guide
Ah, the fateful question, “What do you, the reader, need to know?” First,
understand that this guide is here to help you, but you are going to have to do
some real work to learn what it has to tell you.

TANSTAAFL: There ain’t no such thing as a free lunch. —Robert Heinlein

 Second, since this guide is aimed at a broad audience, I have created a
pseudo-matrix below listing topics you should at least be passingly familiar
with based on your role in your team.

Who Are You? Some Stuff You Ought To Know

I’m like, the artist, dude. • Basic modeling and animation concepts: convex vs.
concave, skeletal animations, texture (IFL) animations,
blended animations.

• At least one modeling tool in this list: MilkShape 3D
(MS3D), 3ds Max, Maya, or gameSpace/trueSpace.
(Yes, there are other options; see appendix.)

• If the only tool (in the prior list) you know is MS3D, then
be sure to add QuArK, Cartography Shop, or Hammer to
your list.

• More? Sorry, this isn’t an art guide. In fact, you probably
know more about art than I do!

 Introduction Chapter 1

9

Who Are You? Some Stuff You Ought To Know

I’m the programmer, man.
 You got any Dewsky?

• C/C++
• Scripting in Perl, TCL, or perhaps another game-engine

scripting language.
• Math. If you fl inch when I say algebra, geometry,

trigonometry, vectors, matrices, or Cauchy-Schwartz
inequality (OK, you can fl inch on that last one),
MathWorld (http://mathworld.wolfram.com/) is your
friend.

• If you are familiar with client-server architectures and
simulation concepts, you will have a great head start.

I am the game designer.
Enter my world . . .

• The limitations of your target system(s) as well as
the limit on the speed of light. Sure, your team
can probably make a 4096-player RFMMOTTTG (really
freakin’ massively multiplayer online tick-tack-toe game),
but you probably don’t want to. I’m only partly joking
here. If this is your fi rst game and you are the idea guy
or gal, keep it realistic. There is real work in making a
game.

• The limits of the tools your team’s programmers, artists,
and other folks use to implement your ideas.

Me da boss. • What the . . . ? Why are you reading this . . . er, I mean
you should know of course, Sir/Madam/Other, every
member on your team will need two copies of this
guide. One for work and one for home. We can’t have
people getting hernias carrying these back and forth.

Jack of all trades (JOAT),
AKA lone wolf.

• This guide is specifi cally written for you (and for small
teams). You will need to know everything on the list
above (excluding da boss). Also, be sure to look at the
reference appendix and get your hands on some of
those books and resources. You’ve got a real challenge
ahead of you, but you can do it!

1.5 How To Obtain Torque (Licensing Torque)
OK, so you’re sold. You’ve bought this book (please tell me you’re not standing
in the bookstore still deciding . . .).
 Whatever the case, you have decided that this Torque thing sounds like
a good deal. To get your hands on this state-of-the-art engine, simply do the
following:

1. Visit the GarageGames website: http://www.garagegames.com/.

2. Follow the links to the products page.

3. Add Torque to your cart.

4. Click the “Buy Now” button and follow the instructions.

Part I Introduction

10

1.6 Getting Started, One Step at a Time . . .
On fi rst picking up the Torque Game Engine, you may be somewhat
overwhelmed. If asked, most GarageGames members will probably admit that
they were, too, and so was I. The fact is, this engine and all the associated
fi les are massive. Just doing a quick count on the current version of the code
brings up the following metrics (counts may vary):

• 2329 source fi les containing 593,930 lines (~325k lines of code and ~167k
lines of comments),

• 322 script fi les containing 49,856 lines of script (~37k lines of of script, and
~7k lines of comments), and

• this guide comes with a kit that adds another 187 script fi les containing
19,566 lines of script (~11k lines of script, and ~5k lines of comments).

No matter how you twist it, turn it, chop it, or sort it, Torque is big. Big not only
in raw size but in features. However, approached with an inquisitive mind,
and with the understanding that nothing is free, especially an understanding
of the ins and outs of this engine, you can master Torque.

1.7 The GarageGames Community and Resources
I’ve stated this in more than one forum, and I must state it here: the
GarageGames community is excellent. I continue to be impressed on a daily
basis by how well attended the forums are and how quickly people give
answers to questions. The GarageGames site provides several resources.

• Forums. These are areas where you can post questions, ideas, general
complaints, etc. To date, there have been tens of thousands of posts. At last
count (not including forums dedicated to released games), there were 12
major forum categories containing 64 subcategories.

• Resources. These are community submitted items including scripts, code,
web links, books that are good to read, accumulated references, and more.
These resources are organized by date and rating (among other catego-
ries).

• News. The GarageGames site has a news page and a newsletter. Very cool.

1.8 Conventions
Throughout the guide, I will attempt to align my naming conventions and
terminology with those you will encounter in the offi cial Torque SDK (software
development kit) documents and elsewhere on the GarageGames site. In the
cases where this is not possible, I will make it clear that the names/terms in
use are of my own invention.

 Introduction Chapter 1

11

1.8.1 Icons Legend: Warnings, Notes,
 and Expert Tips
Throughout this guide, you will be presented with side notes of various forms.
Some of these will be warnings of odd or misleading behavior, others will be
notes on interesting bits or facts, and some will be expert tips for those who
want to explore the edges of Torque’s behaviors. You will be able to recognize
these side notes by looking for the following icons.

Warning Note Expert Tip

1.8.2 Game-Building Lessons
Throughout the guide, you will fi nd sections marked as one of the following:

1. Maze Runner Lesson #123 (90 Percent Step). If you intend to make the
game at the end of the guide, you must complete these lessons. They con-
struct game elements without which the game will not function.

2. Maze Runner Lesson #123 (10 Percent Step). These lessons are consid-
ered optional when making the initial version of the game. If you should
choose to skip them, the game will still be playable but may be a bit rough
around the edges.

These lessons will be largely independent of each other, but if a lesson depends
on another lesson, the numeric ID of the lesson, as well as the chapter it is
in, will be referenced.

Combined Lessons Appendix

For those who want the entire lesson set in one place, all of the lessons from
the printed chapters, up to but not including Chapter 14, are included in the
“Combined Lessons” electronic appendix.

Skip Ahead!

To learn about the motivation for the above lesson titles, and to learn what
the game will be, please skip ahead to Chapter 14. There, you should read
Section 14.1, “Maze Runner: A Simple Single-Player Game,” which includes
the following.

Part I Introduction

12

• Game Elements. Here, we will briefl y discuss the concept of a game
element.

• Game Goals, Rules, and Mechanics. Next, we will explore the motivation
for planning a game’s goals, rules, and mechanics before we write the
game. Then, we will do this planning for our game.

• Setting up our workspace. Before we can start working on the lessons,
we need to set up a workspace. In this section, I will instruct you on what
steps are required to prepare for the lessons.

• 90 Percent or 10 Percent? Lastly, I will give you an overview of the 90
percent versus the 10 percent steps and why these ideas matter.

So, skip ahead; it’s OK. When you’re done, you can come back and start
learning about Torque!

Engine Overview Part II

15

The Torque Game Engine (TGE) has a long legacy. In its various incarnations,
it has been used to make both non-networked single-player games and
networked multiplayer games. Today, TGE has the following features.

• Single-player and multiplayer ready. TGE is based on a standard client-
server architecture and is fully scalable to 128 players and beyond.

• Raster-based graphics. TGE is not shader based but has the capability to
incorporate any features you desire (you have the source code). Further-
more, it is the predecessor to the Torque Shader Engine (TSE), and thus
most things learned using TGE will apply to TSE.

• Event-driven simulation. TGE is designed around an event-driven simu-
lator. It utilizes separate client and server event loops. Additionally, most
game logic and GUI logic is driven by an event system.

• Memory and network bandwidth effi cient. TGE is designed to have a
reduced memory footprint and an accompanying low-bandwidth require-
ment per connection. It utilizes static datablocks for common information
and network compression plus transmission-reduction algorithms.

• Broad functionality. Because of its long heritage, TGE comes ready with
most of the methods and functions required for standard game calcula-
tions, actions, and responses.

• Fully integrated. TGE incorporates all the code required to render/play/
capture all game elements, including GUIs, sound, 3D graphics, and other
I/O (input/output). It also includes a large and expanding set of content
creation and debugging tools out of the box.

2.1 TGE Terms and Concepts
When you fi rst start working with TGE, you will come across terms like inte-
rior, shape, datablock, portal, IFL, image, etc. Some of these words have TGE
specifi c meanings, others are industry-standard terms, and a small set are
hybrid terms with meanings in both worlds. Either way, if you are not very
experienced, just trying to fi gure out what these terms are may be a big chal-
lenge. To help ease this transition, we will run through some of the more con-
fusing terms and concepts you will encounter while working with TGE. For a
more extensive list of terms, see the “Glossary Of Terms” appendix.

Torque from 10,000 Feet
Chapter 2

Part II Engine Overview

16

2.1.1 Shapes and DTSs (TGE Term)
A shape, also known as a DTS object, is a model created using a polygon (or
equivalent) editor. Such models may have

• skeletal animations (see Section 2.1.8, "Animations: Blended vs. Non-
Blended"),

• multiple skins (textures),

• animated skins,

• visibility animations,

• multiple levels of detail (see Section 2.1.5, "Level of Detail"),

• translucent and/or transparent components,

• multiple collision boxes (see Section 2.1.6, "Collision Detection”),

• and much more.

This is the fi rst of two model categories used by TGE. DTS, which stands for
the Dynamix Threespace Shape, is both the shorthand notation for this con-
cept and the fi le extension (e.g., player.dts). Shapes are generally used to rep-
resent nonstructural entities such as players, power-ups, trees, and vehicles.
Shapes can be created with 3ds Max, MilkShape, or Caligari’s gameSpace/
trueSpace, to name just a few possible content-creation tools. See the Garage-
Games website to learn how this is done and to fi nd the proper exporter for
your content tool(s).

Non-DTS Renderers?

Some users have complained that they would rather use an alternate format
instead of being “forced” to use the DTS format. This is entirely possible.
Users have already produced alternate mesh renderers to include such formats
as 3DS and MS3D. If you have a favorite format and are familiar with how it
works, you can simply pick up one of the previously mentioned mesh render-
ers and modify it for your own format.

Shapes in Our Game

In the prototype for our game, we will need just a few shapes: a player, coins,
maze blocks, and fi reballs.

• An avatar or player. The lesson kit comes with Joe Maruschak’s “ Blue
Guy” (Figure 2.1, left), but we will not be using him beyond a quick intro-
duction. Why? In order to demonstrate the minimum set of animations that
need to be included to make the shape work with the Player class, we will
make the “Simplest Player” (Figure 2.1, right), a simple geometric shape.

• Pick-ups, maze blocks, and fi reball blocks. In our game, we will also
require shapes to represent coins that we can pick up. Also, we will need

 Torque from 10,000 Feet Chapter 2

17

a variety of blocks and obstacles (fi reball blocks) to build our mazes from
(see Figure 2.2).

2.1.2 Interiors and DIFs (TGE Term)
Interiors are models created using convex (see Section 2.1.3, “Convex vs.
Concave”) brushes.
 The InteriorInstance class, frequently referred to simply as Interior(s), is
used to display models that represent any structural object, to include such
things as buildings, bridges, walls, and other large structures. The motivation
for this name comes from the fact that these objects can have an actual inside,
i.e., interior.
 This modeling technique is used to solve a few technical issues associ-
ated with creating large and geometrically complex models that are intended
to be entered by other models (or the camera). Some of the biggest technical
problems solved by this technique are the following.

• Effi cient collision detection. Binary space partitioning (BSP) trees are gen-
erated and used for detecting collisions against Interior objects. BSP trees
provide a very effi cient way of determining object collision, one of the most
CPU-intensive processes a real-time application performs.

Figure 2.1.

Simple Player shapes.

 Blue Guy Simplest player

Figure 2.2.

Required shapes and
blocks.

Coins Maze blocks Fireball blocks

Part II Engine Overview

18

• Visibility culling. This technique also provides numerous shortcuts for
culling of visibility through the use of portals (see Section 2.1.7, “Portals”)
so that rooms and terrain that the player can’t see don’t get sent to the
graphics card for rendering. This is a lot harder to do, from a mathematical
standpoint, than a nonprogrammer might imagine.

• Effi cient lighting. Finally, this technique “regularizes” (to abuse the Eng-
lish language a bit) the process of calculating lighting and shading as
affected by the presence of the model in the game world.

DIF, which stands for Dynamix Interior Format, is both a shorthand notation
for the same concept and the extension for these fi les (e.g., myBuilding.dif).
 Interiors can be created with QuArK, Worldcraft/Hammer, 3ds Max,
MilkShape (not advised), or Caligari’s gameSpace/trueSpace. See the Garage-
Games website to learn how this is done and to fi nd the proper exporter for
your content tool(s).

2.1.3 Convex vs. Concave (Industry Terms)
In TGE, all collision meshes must be convex, not concave. The trouble is,
many people either do not know what these terms are or cannot remember
how to identify a convex or concave mesh.
 Finding the parts of a mesh that are concave (making it a bad collision
mesh) can be frustrating at best. Therefore, you can follow this simple rule
when making collision meshes:

If any line segment on the mesh, when extended infinitely in both directions,
passes through the interior of your mesh, the collision mesh is concave and
therefore bad.

Or the shorter version:

Line segment passes through interior of collision mesh . . . bad (Figure 2.3).

Figure 2.3.

Using line segments to
discover concavity.

Line segment passes through—concave Problem solved—convex

 Torque from 10,000 Feet Chapter 2

19

Alternatively, you can examine your mesh and look for dimples, that is,
regions where the surface curves inward. (Figure 2.4)

2.1.4 Convex Brush (Industry Term)
A convex brush is a single instance of some regular convex geometry. Convex
brushes are combined to create models that can then be converted into an
interior. In TGE, any one interior may be composed of many hundreds or even
thousands of convex brushes.

2.1.5 Level of Detail (Industry Term)
Often referred to as simply LOD, level of detail pertains to the complexity of
a 3D model relative to the current viewing distance to that model. This com-
plexity increases or decreases as the camera (the viewer) moves nearer to or
farther from a shape, respectively.
 In TGE, both Shapes and Interiors support the ability to automatically
substitute new models for a Shape or Interior as the distance from the Shape/
Interior changes. These substituted models should have fewer polygons as
the distance increases. This has the effect of reducing the rendering load for
distant objects, increasing overall frame rates. Properly done, this allows for
the creation of complex and densely populated indoor, outdoor, and mixed
scenes.

2.1.6 Collision Detection, or COLDET (Industry Term)
Collision detection (COLDET) can loosely be described as the process of
detecting when two or more objects (in the simulated world) come into con-
tact with each other. COLDET is a feature that enables interactivity in the
game world. TGE (1.4+) supports a number of unlimited collision detection
bounding shapes for polygon models. This means that the level of COLDET

Figure 2.4.

Using dimples to find
concavity.

Has dimple—concave Problem solved—convex

Part II Engine Overview

20

interaction is completely under your control. Additionally, TGE provides auto-
mated generation of COLDET structures for some Shapes and for Interiors,
thus reducing your responsibility while not reducing fl exibility.

Collisions in Our Game

Like many games, our game relies on collisions for parts of the interactive
experience. In particular, we will want our player to be “killed” if he is struck
by a fi reball. We will want the player to be able to pick up coins and grenades,
which are part of the game’s objective.

2.1.7 Portals (Industry Term)
As was noted above when we discussed Interiors, TGE supports portalized
rendering of interior models. That is, Interiors support the insertion of portals.
These portals will divide an interior into sectors.
 In Figure 2.5, we have a single interior with four rooms, numbered 0
through 3. There are three doors in this interior. The thin lines in the picture
are portals situated within the doors that connect each room.
 In Room 0, there is an observer A, and in Room 2 there is an observer B.
 Observer A is facing the door between Rooms 0 and 1. Because a ray cast
from Observer A’s position can penetrate both the portal between Rooms 0
and 1 as well as the portal between 1 and 3, all three rooms (0, 1, and 3) must
be rendered for Observer A, but Room 2 does not need to be rendered.
 Observer B is facing the door between Rooms 2 and 3. Because a raycast
from Observer B’s position can only penetrate the portal between rooms 2 and
3, only these two rooms (2 and 3) need to be rendered for observer B. The
other two rooms (0 and 1) do not need to be rendered.
 In both of the above cases, if no portals were used, or if the feature were
not available, for both Observer A and Observer B, all four rooms would need
to be rendered.

2.1.8 Animations: Blended vs. Non-Blended
(Industry Terms)
In TGE, meshes (models) are animated using skeletal animation. The engine
supports two styles of skeletal animation: absolute (non-blended) and blended.
 In simplest terms, absolute animations override all prior animations of all
joints that the absolute animation affects. For example, we have an animated
arrow. This arrow has a base position, a non-blended animation to the left,
and a blended animation to the right. Assume that the left and right anima-
tions are equal and opposite each other.

Figure 2.5.

Interior with portals.

 Torque from 10,000 Feet Chapter 2

21

 If we play the sequences in Table 2.1, we get the listed results.

Sequence(s) Result

Non-blended Arrow leans left.

Blended Arrow leans right.

Blended followed by non-blended Arrow leans left.

Non-blended followed by blended Arrow back in base position (straight up).

Non-blended followed by non-blended Arrow leans left, just as if it were non-blended
only once.

Blended followed by blended Arrow leans twice as far right as single blended.

In Chapter 7, “Gameplay Classes,” we will build some real animations, but
if you wish to learn more, I suggest perusing some of the online animation
docs at GarageGames and/or purchasing BraveTree: Girl Pack (see “Favorite
Resources” appendix for details on where to fi nd these).

2.1.9 Image File Lists, or IFLs (TGE Term)
Another kind of animation supported by TGE is texture animation. The prem-
ise of this animation style is that the engine will swap the current texture for
another at fi xed time intervals, thereby animating the texture in question.
 This animation is accomplished by specifying texture names in a special
way, identifying the texture as an IFL-driven texture (in the model defi nition).
Then, a text fi le is supplied (by the modeler), specifying the names of the tex-
tures to use and the number of frames to play each texture. Beyond this, the
animation sequence is played like any other animation.

2.1.10 Callbacks (Industry Term)
For the purpose of this guide, a callback is any console method (scripted func-
tion associated with an object in the game world) that is automatically (or
directly) called by the engine (or scripts) in response to some event. These
callbacks are part of what drives a game.

Callbacks in Our Game

Although we do not strictly focus on callbacks in this guide, several of them
will be required to complete our game. Therefore, at the appropriate time, we
will take a little time out to discuss and clarify those callbacks that are in fact
needed: onCollision(), onPickup(), and others.

Table 2.1.

Blended and non-blended
animations.

Part II Engine Overview

22

2.1.11 2D and 3D Sound (Industry Term)
In the GarageGames forums, online documentation, and in this guide, you
will see references to sound as being either two-dimensional (2D), or three-
dimensional (3D). Although odd sounding (no pun intended), these concepts
are quite simple.
 A 2D sound is a sound that has no apparent origin, and when played, will play
equally loud from the left and the right speaker (assuming you have only two).
 A 3D sound has (at a minimum) an origin associated with it and is thus
transformed and attenuated based on the listener’s location relative to the
sound’s source. That is, 3D sound may play more loudly from one speaker
than the other(s).
 Please note that 3D sounds can have several other factors associated with
them, and that this code exists in the engine. However, all other specialized
3D sound effects are not (by default) compiled into the engine.

Sounds in Our Game

Our game would not be complete without sounds, both for the interfaces and
for the game itself. So, we will take time out in later chapters to walk through
the setup of the following sounds:

• Splash-screen music (2D non-networked). This sound plays when the
splash screen is displayed.

• Button-over and button-press feedback (2D non-networked). These
sounds play to indicate that the mouse has moved over a button, or that a
button has been pressed.

• In-game music (2D non-networked). We will learn to play music client side.

• Fireball warning (3D networked). This sound will be played when a fi re-
ball is about to shoot and will give warning in advance of the action. It is
the only networked and the only 3D sound we will work on.

2.1.12 Missions (TGE Term)
In the gaming world, there are many words used to described similar things.
One of those things is a game level. In Torque, a game may have one level or
many. These levels are called missions.
 Another way to come to grips with the mission concept is to understand
what goes into a mission fi le. Mission fi les (stored under the data directory)
have the extension .mis. If you were to open one of these fi les, you would
see that it contains a script that is creating and placing content. So in effect,
a mission can be thought of as a collection of content that is loaded by the

 Torque from 10,000 Feet Chapter 2

23

engine upon request. In fact, in most games, the mission is the primary means
of loading the initial content such as the terrain, sky, sun, etc. Subsequently,
game setup and gameplay scripts may be used to add and remove content, but
we get our start by loading a mission.

Do I Have to Use Missions?

Well, you don’t actually have to use this construct, but it is the best way to get
the base portions of a level/game/etc. loaded. So, if you are expert enough,
you can dynamically build the entire level/game/etc., but I do not suggest it.

How Big Can a Mission Be?

It is worth noting that a Torque mission can be extremely large. In fact, I
know that one of the GarageGames employees (Matt Fairfax), as part of some
research he was doing, loaded all of the interiors from every level in Quake IITM
simultaneously into a single Torque mission. He mentioned that there was no
noticeable dip in frame-rate nor did the engine lag at all. This was in fact a
small test of the true power and capabilities of the engine.

Missions in Our Game

Our game will utilize a single mission. It will load a terrain, the sky, a sun
(lighting defi nition), celestial bodies, and various other atmospheric effects.
 Subsequent to the initial load, we will be using scripts to dynamically
load and unload content from our mission. That is, we will stay in the same
mission but use scripts to build and rebuild levels of the game, without ever
reloading the mission.

2.1.13 Event-Driven Simulator (Industry Term)
TGE, like all other game engines, is a simulator. If you are at all familiar with
the concept of simulation, you will know that there are different types of
simulators.
 TGE is an event-driven simulator. In other words, all engine actions are
caused by some kind of event. There are a variety of events that TGE is aware
of and which we will discuss as we continue through this book. These events
are enqueued into one of three queues (depending on the event type) and
then processed by the engine in the order in which they occurred.
 At this point, the important thing to understand is that events drive the
game world and thus all of your game scripting, and coding should be designed
with that in mind.

Part II Engine Overview

24

Be aware that the granularity of a tick can be changed to suit your own
game (or other) needs; i.e., tick times of 2 ms, 16 ms, 64 ms, or even 128 ms

are all legal tick times.

2.1.14 Ticks (TGE Term)
In TGE, time is measured in terms of wall-clock time, that is, multiples of
milliseconds (ms). Additionally, TGE measures in simulation time. Simulation
time is called tick time or simply ticks.
 Because TGE is effectively an event-driven simulator, it cannot always
guarantee that events will occur on specifi c wall-clock time boundaries. Tick
time provides a new measure of time that is under the control of the engine
itself, allowing it to guarantee that all objects will get their allocated number
of ticks and that they will be ticked in the proper order. The elegance of this
solution trivializes the signifi cance of this problem. Just understand, without
a solution to the guarantee problem, it is for all practical purposes impossible
to simulate a multiplayer interactive world, not to mention the problem of
handling the additional burden introduced by a networked environment.
 Generally speaking, a standard TGE tick is equal to 32 ms, by default.

Events occurring on tick boundaries will normally experience an actual tick
time of 32 ms, plus or minus 1 to 3 ms.

2.1.15 Client-Server Architecture (Industry Term)
It is important to understand the architecture used by a game engine as it
affects the decisions you, the game designer/programmer/scripter, will make.
In the context of a game engine, the term architecture can be loosely trans-
lated as, “the organization of the game systems.” In other words, “What parts
of the engine do what tasks?”
 TGE implements a client-server architecture. When we talk about a cli-
ent-server architecture, we’re talking about an organization wherein one part
of the engine acts as a sort of controller (the server) and the other part of the
engine acts as a controllee (the client).
 While executing, the client and the server may either co-exist in the same
executable, execute separately on the same machine, or execute separately on
separate machines connected over a network.
 For a standard client-server architecture, there will always be one server
while there may be many clients. The server is aware of all clients, and the
clients may or may not be aware of each other.
 The client-server architecture is suitable for both single-player and multi-
player games. We will discuss variations on executable “modes” and “inter-
connects” momentarily.

 Torque from 10,000 Feet Chapter 2

25

Why Use a Client-Server Architecture?

This architecture has become common in the game industry for a few reasons.

• First, because it provides a meaningful and understandable way of dividing
labor and resources.

• Second, because (as stated previously) it is suitable for both single-player
games and multiplayer games. This means that a game can be designed for
both single play and multiplay without herculean effort.

• Third, because, in the case of multiplayer games, this architecture scales
well for N players, where N can be up to 128 or higher.

This architecture does have some drawbacks when writing a single-player
game such as unneeded duplication of objects (see Section 2.1.17), and some
added control complexity. However, the multiplayer benefi ts far outweigh
these considerations. Also, it cannot be stated too often, having the ability to
take a single-player game to the multiplayer arena with few or no changes is
well worth the added complexity.

The TGE Client-Server Modes and Connection Schemes

Torque implements the client-server model using a single executable. That is,
whenever the engine is run, it contains both a server and a client. In order
to implement different game types, the server or the client can effectively be
disabled. In essence, the engine can be run in one of the four modes shown
in Figure 2.6.

Figure 2.6.

Modes for running Torque

Single-Player
(Industry Term)

Listen Server
(Industry Term)

Remote Client
(Industry Term)

Dedicated Server
(Industry Term)

Part II Engine Overview

26

 The observant reader will point out, “The single-player and listen-server
modes look quite similar.” You are in fact correct.
 In fact, in the single-player image, the implication is that there is a server,
but it has not yet been activated. This activation will not occur until a con-
nection is requested by the client. Also note, in single-player mode, the server
will not accept external connection requests. The listen server, on the other
hand, does have an active server, and it will accept both internal and external
connection requests.
 Given these four modes, a game can be interconnected using one of three
connection schemes. The connection scheme we select is based on the game
type we wish to run.
 The simplest game type is the single-player game (Figure 2.7a). This is
accomplished by running a single instance of the executable on one machine.
In this case, the server and client connect via an internal (local) connection.
When this connection is requested, the server becomes active.
 The second game type involves a single executable with an active client
and an active server running on one machine as a listen server (Figure 2.7b)
One player (the hosting player) uses the local client and a local connec-
tion. The remaining players use client-only executables, running on separate
machines, and connect remotely to the listen server. This mode is appropriate
for LAN (local-area network) parties and other cases where a user wants to
host a game while participating.
 The last game type involves a single executable running as a dedicated
server (only the server is active; Figure 2.7c). Multiple client-only executables,
running on separate machines, can then connect with this executable, again
allowing for multiplayer games. Although this could be used for a LAN party,
it is more suited to a professional hosting setup, where your company hosts
one or more sessions on a machine used only as a server.

Figure 2.7.

Client-server
interconnection diagrams.

a. Single-Player b. Multiplayer Listen Server c. Multiplayer Dedicated

 Torque from 10,000 Feet Chapter 2

27

Master Servers (Industry Term)

In the two above multiplayer connection schemes, the remote connections
may be on a LAN or across the Internet. In the latter instance, another server
is required, namely a master server. It is the job of this specialized server to
assist clients in locating game servers.

TGE Client-Server Division of Labor

As was noted above, using a client-server architecture allows one to divide
both labor and the location of resources (assets). Table 2.2 shows a summa-
rized listing of the labor division between the TGE client and server.

Task Category Client Responsibilities Server Responsibilities

Sound 2D sounds 3D sounds

Input Capture and pre-process Post-process and determine response

GUI rendering All processing and rendering None

Game rendering All None

Animations Non-authoritative prediction Authoritative calculations and
interactions

Collision
detection

Non-authoritative prediction Authoritative calculations and
responses

Game content • Interfaces
• Ownership of content.

• Players, vehicles, weapons, etc.
• (Optional) validation of all content

Game decisions
and calculations

Limited to things that do
not affect gameplay, such
as particle effect calculations

All decisions regarding object
creation, deletion, movement,
damage, etc.

In short, the client is responsible for all tasks except those that affect gameplay
or those that require spatial calculations in the game world.

Client-Server Communications

This book focuses on making a single-player game and thus does not discuss
networking in any great detail. However, it is important to avoid forming bad
habits. One of these bad habits is direct manipulation of server data/routines
from the client and vice versa. Thus, in Chapter 10 we will talk briefl y about
how to execute server functions from the client and how to execute client
functions from the server.

Table 2.2.

Division of labor between
TGE client and server.

Part II Engine Overview

28

2.1.16 Objects (Industry Term)
Throughout this guide, you will see the term object being used to refer all
kinds of things, including GUI controls, shapes, interiors, and various script-
ing elements. This may be confusing, but in Torque, all classes used to imple-
ment the game are in fact engine objects. Some objects are accessible via the
console, and therefore scripts. Some are only accessible internally (by writing
C++). In this book, we are only interested in the former.

2.1.17 Ghosts, Control Objects, and Scoping
 (TGE Terms)
When we are playing a singleplayer or a multiplayer game, all objects are cre-
ated on the server and then some of these objects are duplicated on the client.
These duplicates are called ghosts (Figure 2.8).
 The duplication of objects as ghosts on the client(s) is controlled by scop-
ing. Each client that attaches to a server must defi ne a single control object.

Generally, this control object
is some type of avatar (biped,
vehicle, or other), but it may
also be a camera. Regardless,
this control object is respon-
sible for scoping (Figure 2.9).
 Scoping, in TGE terms, is
the act of determining which
objects in the game world are
visible, audible, and otherwise
required to be present for the
current control object to cor-
rectly interact with the game
world. These objects will be
ghosted to the client for that
control object and subse-
quently maintained.
 This description trivializes
the act of scoping to some
degree, but it does describe
the essence of what it means

and what it does. I will repeat it, but for now be aware that your game must
have a control object, otherwise it will be unable to render the game world.

Figure 2.8.

Ghosts on the client.

Figure 2.9.

Control objects.

 Torque from 10,000 Feet Chapter 2

29

2.1.18 Datablock (TGE Term)
In addition to normal objects, there is a special category of objects called data-
blocks. Datablocks are special for the following reasons.

• All datablocks are duplicated from the server to each client.

• A datablock XYZ on the server with ID 123 is guaranteed to have the same
name XYZ and ID 123 on all clients.

• Datablocks are transmitted to clients at the beginning of a game and not
updated after that, making them in effect static.

• Datablocks have special scripting properties, which we will discuss later.

• Because the content of a datablock is controlled by the server and not the
client, they are an effi cient means of preventing cheating (clients modifying
their own game abilities and statistics).

 You may ask, “Why do I really need these datablocks?” and that is a valid
question. In answer, please consider the following theoretical example.
 In game ABC, a multiplayer game, players are allowed to “create” a vari-
ety of wheeled vehicles. Each of these vehicles has between four and eight
tires, skins, special effects (sounds, dust emitters, etc.), and a rather lengthy
list of physical attributes. The complete structure describing these vehicles
has a memory size of approximately 2048 bytes (2 KB).
 At any time during the game, in which there are up to 32 participants, a
player (client) may create a new vehicle. With a client-server architecture, this
would require that the server create the object and then ghost all of its data to
the player. It is easy to see that in the worst case, where all of the players are
within visible range of the other players, the server might have to simultane-
ously ghost 32 x 2048 bytes of data to each of the 32 clients to inform them
of the update. This translates to an update of 2 MB of data that would be
required nearly instantly. In addition to all of the move update information
and other ghost updates that would be happening, it can be seen that this
game would quickly lag out (halt due to lack of bandwidth).
 Now, let us reexamine this example, introducing datablocks. The data-
block will predefi ne all of the vehicle data. This datablock is transmitted once
and only once (at the beginning of the game), still accruing the 2 MB penalty.
However, to dynamically create a new vehicle, we only need to send a small
packet of data, including the ID of the datablock, an initial creation posi-
tion, and some other miscellaneous data. An estimated size for this packet
is roughly 64 bytes. Now, our total simultaneous bandwidth requirement is:
32 x 32 x 64 bytes = 64 KB. This is a much more reasonable number and
would be easily handled even on a system using a modem.

Part II Engine Overview

30

2.2 Finding Your Assets
Game assets are things such as sound fi les, graphics fi les, game models, skins
for the models, client scripts, server scripts, etc. Deciding how these assets will
be organized is one of the most important decisions we will make while plan-
ning our game. I kid you not. How we organize our assets can have a signifi -
cant effect on our productivity as well as our game’s fi nal disk footprint.
 Unfortunately, deciding on an organizational scheme requires some expe-
rience and a plan. So, if this is your fi rst time making a game, it may be a bit
hard to do. I suggest you follow the organization used by the FPS Starter Kit
to start and then, when you have accrued some experience, draw up your own
plan, based on your game’s specifi c needs.
 Our sample game will use the Standard TGE Kit as a base.

2.2.1 Finding Assets—TGE FPS Starter Kit
The FPS Starter Kit that comes with TGE has the major directories and direc-
tory contents shown in Table 2.3.

Directory Name Contents

/ This is the root directory and represents the directory from
which the executable was run. This is the highest directory
visible to TGE and scripts. It isn’t necessarily the same as the
root directory on your disk.

/common This directory contains files that are common between games.
The intention here is that these scripts, images, models, etc.,
are reused at least in prototypes and often in final games.

/creator This directory contains the built-in tool scripts, GUIs, and
other assets.

/starter.fps This is the game directory (sometimes referred to as a mod
directory) and includes all of the scripts, images, models, etc.
used in your game. The results of our effort will be stored in
subdirectories of this.

/starter.fps/client This directory contains all of the interface art, GUI definitions,
local preference files, and scripts that relate to the client’s
behavior.

/starter.fps/data This directory contains models, skins, mission definitions, terrain
files, and terrain textures.

/starter.fps/server This directory contains gameplay scripts.

Table 2.3.

FPS Starter Kit directories.

The organization of
these directories is by
no means fixed or in
any way magical. As
I mentioned earlier,
when you become
more experienced,
you may begin to
modify this structure
significantly, perhaps
doing away with the
“common” directory, or
incorporating features
from other directories
where it suits your
organizational
scheme.

 Torque from 10,000 Feet Chapter 2

31

2.2.2 Finding Assets—Included Lesson Kit
Because the assets that come with this guide are quite extensive and shared
between many portions of the kit, the asset chart is too large to print in the
guide. Please refer to the “Lesson Kit Assets” electronic appendix for a com-
plete listing and discussion of what assets there are and where they live.

2.3 Sim Hierarchy Overview
As noted previously, TGE is in effect an event-driven simulator. This is made
quite clear by the fact that the class structure starts with a class aptly named
SimObject (simulation object). This class and its children form the “sim hier-
archy.” The sim hierarchy can be roughly divided as follows.

• SimObject. This is the root class for all simulation objects, that is, all
objects that are used to implement a game.

• SimSet and SimGroup. Two container classes, the latter acting as base
class to the GuiControls and to ScriptGroup.

• ScriptObject and ScriptGroup. Two classes used to create scripted classes.
These special classes give us the ability to associate fi elds and methods with
scripted classes, thus allowing us to neatly compartmentalize our scripts.

• SceneObject. This class is the root class for all objects to be included in the
game scene and adds the concepts of position, rendering, and collision.

• GameBase. This class is the root to most mission-placeable objects and
introduces ticking and datablocks.

• ShapeBase, ShapeBaseData, and Children. The ShapeBase classes and
children are used to display models. These models are used to represent
small world objects, players, vehicles, pick-ups, power-ups, etc. These
classes all support complex visible geometry/features and an unlimited
number of collision meshes.

• TSStatic. This is a lightweight shape-rendering class that does not incorpo-
rate any of the ShapeBase features. It merely renders a shape and encapsu-
lates it in a simple object-oriented bounding box. This is the preferred class
for noninteractive shapes that are used to add detail in scenes.

• Interiors. This class is used to display models that represent any structural
object, including such things as buildings, bridges, walls, and other large
structures. This class supports standard binary space partitioning of the
models. Interiors support portals for more effi cient subdivision of rendered
spaces.

• Special Effects. A last set of classes are supplied that do not fi t into either
the shape or interior hierarchies. These classes are used to provide a wide
set of possible special effects, including audio, visual, and physical (as
affects avatars and other game objects) effects.

Part II Engine Overview

32

2.4 TGE I/O Fundamentals
Out of the box, TGE supports inputs from mice and keyboards. With a little
work, it will support inputs from gamepads, joysticks, and other input devices
as well. TGE also supports basic fi le I/O out of the box.

2.4.1 TGE Device Input Architecture
When we speak of inputs in the context of TGE, we are talking about user
inputs from keyboards, mice, joysticks, and other devices. Although it is pos-
sible for there to be other types of inputs, the only ones we are interested in
are those that would be used to control gameplay. That said, inputs fl ow into
and through TGE as follows (see Figure 2.10):

• The OS (operating system) processes inputs and passes them to the TGE
Platform Layer.

• The TGE Platform Layer identifi es and categorizes the inputs, then passes
them on to the Game.

• The Game processes the inputs if it can, or ignores them if there are no
defi ned actions associated with them.

Game input processing is the part we are interested in. As can be seen in Fig-
ure 2.10, the input is processed as follows:

1. The GlobalActionMap (see below) gets fi rst dibs on the inputs. If it has no
mapping for an input, that input is passed on to the GUIs, or more specifi -
cally the Canvas.

2. The Canvas attempts to process an input, but passes it on if there is no GUI
control(s) programmed to use said input.

3. Lastly, the input is passed to any active (nonglobal) ActionMaps for pro-
cessing. If none of the currently stacked ActionMaps is coded to use the
input, the input is dropped.

Figure 2.10.

Torque input/output
architecture.

 Torque from 10,000 Feet Chapter 2

33

 ActionMaps

ActionMaps are a special class designed to capture and redirect inputs. There
are two kinds of ActionMap. There is the GlobalActionMap and the normal
ActionMap. The main differences between these are:

• GlobalActionMap. This is the daddy of input processors and supersedes all
other processing methods. This action map should not be popped from the
processing stack (see below).

• ActionMap. This is a generic action map. It takes lower priority than all
other processing methods. These action maps can be pushed and popped
from the processing stack as the game’s requirements change.

ActionMaps in Our Game

Our game will require some kind of mapping between keyboard and mouse
inputs to player movements and behaviors. We will stop briefl y and show
what these mappings are and discuss how they are attached (indirectly) to
the player.

Processing Stack

What the heck is a processing stack, you ask? TGE implements an event queue,
which is used to collect all user inputs and various other events. These events
are then processed by the engine. The ActionMap is one consumer of these
events. Because ActionMaps can be stacked and because they process events
on the input queue, I refer to this as the processing stack.
 In short, an ActionMap not on the processing stack is not catching and
therefore not processing input events.

2.4.2 TGE File I/O
TGE has a fi le manager that maintains a working list of all the fi les found in
the game directory and all subdirectories. This list is created on start-up. Sub-
sequently, the fi le manager will locate new fi les that you add and then attempt
to load from the console or via scripts. It will also notice when fi les have been
modifi ed and recompile and load them when requested to do so.
 In short, with TGE you can easily add new fi les and modify existing con-
tent without having to restart the engine. This is a huge timesaver when creat-
ing new content and while debugging.

It is worth mentioning
that finding new files
without restarting
is a new feature
(introduced in version
1.4). If you are
currently using 1.3 or a
prior version, you may
use the setModpaths()
function to find new
files. This isn’t as nice
as an automatic find,

but you can still work
without restarting.

Part II Engine Overview

34

File I/O and String Manipulation in Our Game

Earlier, when discussing shapes to be used in our game, I alluded to the idea
that we would be able to modify the layout of our game. To do that, we will
need to create a special level fi le and then create the scripts to load and parse
it. The level fi le will also specify the starting position of our player, coins, tele-
port stations, maze blocks, and fi reball shooters. By using a separate format,
we enable the ability to modify the game and add new levels using a simple
text editor. The scripts that do the loading and parsing will exercise several fi le
I/O and string manipulation features.
 On a side note, we will also be using fi le I/O to load the contents of our
credits screen.

2.5 Move Along . . . Nothing To See Here . . . Move
 Along . . .
Well, that was fun. That was a very fast and very dirty coverage of many, but
by no means all, of the features in the Torque Game Engine.
 Next, we will break out the FPS Starter Kit and start playing around. In the
next chapter, I will introduce you to all of the content creation and placement
tools that come (built-in) with the Torque Game Engine. You will get to see
their power fi rsthand and to learn about how they work.

35

3.1 What We Are About to Learn
This chapter covers all of Torque’s internal (built-in) content creation and
placement tools. This includes tools both for building a 3D world and for cre-
ation of graphical user interfaces (GUIs).
 In addition to learning about these very important tools, we will occasion-
ally pause to test out our newly acquired knowledge in exercises. The results
of many of these exercises will turn up in the game we will assemble in the
fi nal chapter of this guide.

3.2 Torque’s Basic Editors
Torque includes two basic editors, the World Editor and the GUI Editor. The
World Editor is further broken down into eight tools. In the following pages, I
will be using short names for the individual tools wherever it does not create
ambiguity (see Table 3.1).

Editors Start Editor Description

World Editor
(WE)

F11 This editor is composed of eight subeditors,
each one allowing you to modify and save
various aspects of a specific mission. This editor
can be used to edit existing missions or to
create new ones.

GUI Editor
(GE)

F10 This editor allows you to modify existing GUIs
and to create new GUIs, using a simple drag-
and-drop interface.

Tools Start Tool Description

World Editor
Manipulator

(Manipulator)

F2 This tool allows you to translate, rotate, and
scale objects that have already been placed in
the world.

World Editor
Inspector

 (Inspector)

F3 In addition to providing all the capabilities of the
World Editor, this editor allows you to view and
modify properties of individual mission objects.

World Editor
Creator

(Creator)

F4 In addition to providing all the capabilities of
the World Editor, this tool allows you to place
new objects in the current mission.

Torque Tools

Table 3.1.

Torque’s basic editors and
tools.

Chapter 3

Part II Engine Overview

36

Tools Start Tool Description

Mission Area
Editor

(Area Editor)

F5 This tool allows you to adjust the boundaries
of the current mission and provides a means to
mirror the current terrain.

Terrain Editor F6 This tool provides the ability to directly
manipulate the terrain using the mouse as a
multi-operation brush.

Terrain Terraform
Editor

(Terraformer)

F7 In addition to providing all the capabilities of
the Terrain Editor, this editor allows you to load
images as terrain files and to apply various
algorithmic generators and filters to the terrain.

Terrain Texture
Editor

F8 In addition to providing all the capabilities of
the Terrain Editor, this tool allows you to select
any number of textures and apply them using
a set of algorithms to determine blending and
placement.

Terrain Texture
Painter

(Terrain
Painter)

Window Menu �
Terrain Texture

Painter

In addition to providing all the capabilities of
the Terrain Editor, this tool allows you to select
and subsequently to apply up to six different
textures to the terrain.

3.3 The World Editor Tools
Let us tackle the World Editor toolset fi rst, as it has the most components and
is the most likely place to start when creating a simple mod (modifi cation) or
a new game.
 As we investigate and learn how to use each of the World Editor tools,
please use the GPGT Lesson Kit (provided on the accompanying CD) and run
the “World Editor Training” mission.

3.3.1 World Editor Basics
Before leaping into the World Editor tools, let us review some things that
hold true for all of the tools. First, we will review the user interface devices.

Subsequently, we will discuss the mechanics of movement and viewpoint
control, as well as object selection, translation, rotation, and scaling.

3.3.2 World Editor Devices
In this guide, the cursors, menus, and other graphical elements that you
encounter in the editors are referred to as devices. Simply stated, these devices
provide meaningful feedback to you regarding what action can or should be
taken. The terms below are mostly of my own invention, with the exclusion
of the appropriately named gizmo.

Table 3.1 (continued).

Please note that, while
you are editing in the
World Editor, you can
get help simply by
pressing F1. This will
bring up a help dialog
with descriptions of
the tools and their
features.

 Torque Tools Chapter 3

37

3.3.3 Cursors
Table 3.2 explains what each cursor image means.

Device Description

No-Select Cursor

When the cursor looks like this, it means that the cursor is not
over a selectable object. In other words, you are pointing to
an empty space.

Select Cursor

When the cursor looks like this, it means that the cursor is
over a selectable object. In other words, you are pointing to
an object that can be selected.

Grab Cursor

When the cursor looks like this, it means you have
successfully selected an object’s gizmo axis in translation
mode. In other words, you can move the object around by
clicking and dragging when this cursor device appears.

Rotate/Scale Cursor

When the cursor looks like this, it means you have
successfully selected an object’s gizmo axis in either rotation
or scaling mode. It also appears when you have successfully
selected a bounding box face for scaling or rotation.

3.3.4 The Gizmo and Gizmo Scales
The graphic in Figure 3.1 represents the gizmo. The gizmo is a device that is
activated when you select one or more objects. It displays the three traditional
x-y-z axes. Individual axes are selectable and afford the ability to translate,
rotate, and scale.
 By default, a gizmo axis is dark cyan when not selected and light cyan
when the cursor is over it or when it has been “grabbed.” Additionally, when
a selected gizmo is used for an operation, one of three scales will be shown:
the gizmo translation, rotation, or scaling scale.

This scale shows the current position of the
object’s centroid when you use the gizmo to
translate an object.

x: -51.024, y: -127.829, z: 226.473
Gizmo Translation Scale

This scale shows the current degrees of rotation
around the selected axis when you use the
gizmo to rotate an object.

x: 0.000, y: 0.000, z: 1.000, a: 52.519
Gizmo Rotation Scale

This scale shows the current height, width, and
depth of an object when you use the gizmo to
scale it. <w,h,d> correspond to the x,y,z axes
of the gizmo.

w: 1.2000, h: 1.2000, d: 2.144
Gizmo Scaling Scale

Table 3.2.

Descriptions of cursors.

Figure 3.1.

The axis gizmo.

Part II Engine Overview

38

3.3.5 Menus and Windows
The World Editor provides a set of traditional menus for selecting the current
tool as well as other features (see Figure 3.2).
 Please note that all of the menu options will be covered in Section 3.5.3,
“World Editor Menus.”

Figure 3.2.

World Editor menus.

Figure 3.3.

Tool windows.

 Several of the tools have windows that appear
on the right side of the screen (see Figure 3.3).
Although these windows have many similarities,
it will be better to explain them individually in the
respective tool sections below.

3.3.6 Selection Boxes
When selecting a previously unselected object,
the selection cursor lets you know when you can select something, and the
green selection box (see Figure 3.4) shows which previously unselected object
will be selected.
 Once you have successfully selected an object, the object will be shown
with both a red selection box and a yellow selection box (see Figure 3.5). The
red box is object aligned, while the yellow box is world aligned.
 The purpose of the yellow box is to show which objects are selected as a
group and will therefore be affected by any actions you take. The red boxes
are to show which individual objects in the group selection box are actually
part of the selection. Notice that, in Figure 3.5, the leftmost and rightmost
characters are selected, while the middle character is not.
 Once you have successfully selected an object, the selection box will turn
blue if your cursor passes over it (see Figure 3.6). Please note that this is not
true for drag-select.

 Torque Tools Chapter 3

39

3.3.7 The Handle and Level Grid
Every object in the world displays a handle (see Figure 3.7). The handle has
two labels next to it.

1. A number. The number signifi es which object this is in the mission object
list and is the (server-side) ID for the object.

2. A name. If the name is “(null)”, no name has been assigned to this object.
Names are optional but very useful for scripting purposes.

When an object is selected, a faint grid will appear (see Figure 3.8). The grid
is parallel to the world’s x-y plane and passes through the selected object at
the handle. When multiple objects are selected, the plane passes through
the group handle, which is located at the axis crossing point for the group
gizmo.
 This device can be used like
a ruler for placing objects accu-
rately. Unfortunately, there is
no vertical equivalent.

Figure 3.4.

Green selection box.

Figure 3.5.

Red and yellow selection boxes.

Figure 3.6.

Blue selection box.

Figure 3.8.

Level grid.

Figure 3.7.

Object handles.

Selected handle

Unselected handle

Part II Engine Overview

40

3.3.8 Scale Devices
You will see a scale device while editing the terrain and while adjusting terrain
parameters (see Figure 3.9). The premise of this device is simple. The 2D scale
(line with red dots) represents parameter in two dimensions. Depending on
the application, the horizontal spacing may represent elevation, radius, etc.
The vertical spacing may represent opacity, blending factor, strength of action,
etc. The red dots on the lines are control points. These points can only be
moved vertically. All scale interfaces come with a spin box to add or remove
control points, thereby increasing horizontal resolution.
 Please note that you are better off typing in the value you want, because
the spinner changes do not take effect unless you edit the textbox.

3.4 World Editor Mechanics
Now that we have familiarized ourselves with the various devices available in
the World Editor, let’s discuss the mechanics of how we manipulate objects in
the mission using the mouse. We will talk about how to move around the mis-
sion, switch camera modes and viewpoints, select objects, and use the mouse
to manipulate position, rotation, and scale via the gizmo.

3.4.1 Default Movement and Viewpoint
Table 3.3 gives the keystrokes for moving around the mission and changing
camera modes and viewpoint.

Description Key(s)

Moving around W, A, S, D, SpaceBar
(Up, Left, Right, Down, Jump)

Looking around + Motion

Zoom E (Zooms when held)

Toggle free-camera vs. player view ALT + C

Toggle 1st vs. 3rd POV
(in play mode only)

TAB

Free-camera speed
 (World Editor Only)

SHIFT + 1 . . . SHIFT + 7
(slowest . . . fastest)

Drop character at camera F7 (play mode after editing only)
ALT + W (World Editor mode only)

CTRL + F7 (both modes)

Drop camera at character ALT + Q (World Editor mode only)

Figure 3.9.

The scale device.

Table 3.3.

Moving and changing
viewpoint.

 Torque Tools Chapter 3

41

3.4.2 Object Selection and Translation
Table 3.4 shows how to use the mouse to select and translate objects.

Description Action Function

Selection
 on object

(see Figure 3.10a)

Selects:
• Previously unselected object

Shift + on object
(see Figure 3.10a)

Selects:
• Previously unselected object
Deselects:
• Previously selected object

 on empty space + Drag
(see Figure 3.10b)

Selects:
• Previously unselected object
• Previously selected object
Please note that the drag box must
enclose an object’s centroid (red dot) to
select the object.

Object
Translation

without using
gizmo

 + Drag
Translates:
• Single previously unselected object
• Single previously selected object
• Multiple previously selected objects

3.4.3 Using the Gizmo
As described earlier, the gizmo is the aptly named three-axis device that
appears when you select either a single object or a group of objects. The
gizmo has three individually selectable “handles” that run along the major
axes x, y, and z. These handles gives you the ability to translate, rotate, and
scale objects (see Table 3.5).

Function Mouse Action

To translate
(object-axis) gizmo axis

Drag left/right for x and y, up/down
for z.

To translate
(world-axis) SHIFT + gizmo axis

Drag left/right for x and y, up/down
for z. In this mode, the gizmo aligns
to the world axis and confines
translation to translation along the
selected world axis.

To rotate ALT + gizmo axis Drag left/right.

To scale (single
object only)

CTRL + ALT + gizmo
axis

Drag left to grow and right to
shrink.

Table 3.4.

Selecting and translating
objects.

Figure 3.10.

Object selection actions.

a.

b.

Table 3.5.

Using the gizmo.

Part II Engine Overview

42

 Gizmo translations and rotations can be applied to single or multiple
selected objects (see Figure 3.11). Rotations are always about the gizmo axis,
which is the handle for single selected objects and the group handle for mul-
tiple selected objects.
 Gizmo scaling can only be applied to a single selected object.

3.4.4 Scaling using Bounding-Box Planes
While experimenting, I accidentally discovered that there is another way to
scale objects with the mouse. Not only is this method slightly more intuitive,
but it also doesn’t require the use of the gizmo. Try the following:

1. Deselect all objects.

2. Find the object you wish to scale and select it.

3. Press and hold CTRL+ALT.

4. Click a bounding-box plane and drag the mouse to scale. You’ll notice that
the selected side of the bounding box is fi lled with a medium blue hash.

That is all there is to it! Figure 3.12 shows a selected bounding-box face.

Figure 3.12.

Using a bounding-box
plane to scale.

Figure 3.11.

Using the gizmo on single
and multiple objects.

Single object gizmo Multiple object gizmo

 Torque Tools Chapter 3

43

3.5 World Editor (Manipulator)

3.5.1 Starting the Manipulator
1. Start the World Editor by pressing F11.

2. Start the Manipulator by pressing F2.

3.5.2 The 3D World View Window
The real benefi t of the Manipulator tool comes from the fact that you can tra-
verse the world and the 3D world view is not blocked by any dialogs or menus
(except for the World Editor menu), giving you an almost-full screen view
while you manipulate objects via mouse and hot keys. Upon examination, it
can be seen that this tool is very plain (likely as intended). In the sample view
in Figure 3.13, we can see the world and its contents. We can apply all stan-
dard mouse manipulations as described in Section 3.3, “World Editor Tools”.

3.5.3 World Editor Menus
All World Editor tools have a top menu containing the same elements. How-
ever, in some tools, certain menu selections will be disabled. Tables 3.6–3.10
give a brief description of each menu and the menus’ choices. Some options’
descriptions will be deferred until we discuss the specifi c tool that is affected
by said option.

Figure 3.13.

World Editor screen
(Manipulator mode).

Part II Engine Overview

44

Menu Item Description

New Mission . . . Clicking this option will generate a new mission based
on preset values. This generates the same mission
every time.
WARNING: This wipes out the current mission. If
done at all, it should be done once and only once,
before editing.

Open Mission . . . (CTRL + O) Brings up a dialog to allow you to load an existing
mission.

Save Mission . . . (CTRL + S) This saves your current mission.

Save Mission As . . . As with “Save Mission . . .”, this allows you to save your
mission, but in this case, you can specify a name and
(existing) directory for the mission file.

Import Terraform Data . . . This feature is deprecated and no longer used.

Import Texture Data . . . This feature is deprecated and no longer used.

Export Terraform Bitmap . . . This choice is enabled by the Terraformer tool. We will
discuss it there.

Menu Item Description

Undo (CTRL + Z) Undo the last operation.
WARNING: This does not undo all operations, so
back up early and often.

Redo (CTRL + R) Redoes last operation. As with undo, this does not apply to
all operations.

Cut (CTRL + X)
Copy (CTRL + C)
Paste (CTRL + V)

Standard cut-copy-paste. Can be applied to single and
multiple objects.

Select All (CTRL + A) Selects all objects (shapes and interiors) in the mission.

Select None (CTRL + N) Deselects previously selected terrain. This does not
deselect objects.

Relight Scene (ALT + L) Causes the engine to relight the current terrain and apply
shadow maps. This trips up a lot of beginners. I will
discuss this further when we learn about adding interiors.

World Editor Settings . . . This brings up the World Editor Settings dialog. (Discussed
below.)

Terrain Editor Settings . . . This feature relates to the Terrain editor and will be
discussed there.

Table 3.6.

File menu.

Table 3.7.

Edit menu.

 Torque Tools Chapter 3

45

Menu Item Description

Render Plane Show plane when objects are selected.

Render Plane Hashes Show hashes when objects are selected.

Render Object Text Show objects’ names and IDs.

Render Object Handle Show objects’ handles (red dot).

Render Selection Box Show selection boxes.

Plane Extent Length by width dimensions of plane (floating point OK).

Grid Size Hash spacing for grid (floating point OK).

Show Mouse Popup Info Show mouse popup scales when moving-rotating-scaling.

Move Scale
Rotate Scale
Scale Scale

These values increase or decrease mouse sensitivity for
individual mouse actions (move, rotate, scale).

Planar Movement Checked: Object will move along plane when dragged.
Unchecked: Object will attempt to follow terrain when
dragged.

Collide with
Object’s Bounding Box

If checked, object can be selected by placing cursor
anywhere on object’s bounding box.

Objects Use Box Center If checked, handle is in object center; otherwise at lower
limit of object bounding box.

Axis Gizmo Active Enable gizmo.

Min Scale Factor
Max Scale Factor

Determine minimum and maximum multiple by which
objects can be scaled from original size.

Visible Distance Minimum distance within which object handles are visible/
selectable. (This has nothing to do with visible distance
during gameplay. Examine the Sky object for that.)

Gizmo Screen Len Gizmo axis length in screen pixels.

Project Distance Ray length for selection cursor.

Menu Item Description

Lock Selection Disable mouse actions (drag, rotate, scale) on current
selection(s).
This does not prevent changes via the Inspector window
although a will show up in the World Editor tree.

Unlock Selection Re-enable mouse actions on current selection(s).

Hide Selection Hide (i.e., do not render) current selection(s).

Table 3.8.

World Editor settings.

To modify the World Editor
settings, click Edit � World
Editor Settings . . . , then
change the appropriate
setting.

Table 3.9.

World menu.

Part II Engine Overview

46

Menu Item Description

Show Selection Un-hide previously hidden object(s).
Use the Inspector to select these objects. They have a next
to them in the World Editor tree.

Delete Selection Delete current selection(s).

Camera to Selection Move camera to centroid of current selection(s).

Reset Transforms • Un-rotate selected objects that are rotated (i.e., align to
objects’ default alignment).

• Un-scale selected objects that are scaled (i.e., scale all objects’
dimensions to 100% of default scale).

• Works for multi-select.
• This is not the same as Undo.

Drop Selection Make currently selected object(s) drop according to drop current
rule (see Table 3.10).

Add Selection to
Instant Group

We will discuss this feature when we discuss the Inspector.

Drop at . . . We will discuss these in Table 3.10.

Menu Item Description

Drop at Origin This causes new or pasted objects to be created at the World Origin.

Drop at
Camera

This causes new or pasted objects to be created at the current location
of the current camera. You could think of there being three cameras:
• one in the character’s head during 1st POV (Point of View) viewing,
• a second in the following camera position during 3rd POV, and
• the third being the actual free-floating camera.
Figure 3.14 shows an object dropped in 1st and 3rd POV to clarify this.

Drop at
Camera w/Rot

This does the same as “Drop at Camera” with the addition that the
object will have the camera’s rotation.

Drop below
Camera

In this mode, new objects are created somewhere below the current
camera.

Drop at Screen
Center

This is the default “drop at” mode. I think this mode’s title is a bit of a
misnomer. It seems that this behaves more in the following fashion:
Cast ray from camera eye:
• On collision with object bounding box, water, or terrain, drop the

object at point of collision.
• If ray extends beyond “Project Distance” (set in World Editor dialog),

drop object at camera eye (position).

Drop at
Centroid

This option allows you to select multiple objects and have the newly
created object placed in the virtual centroid of the group.

Table 3.9 (continued).

Table 3.10.

“Drop At . . .” menu item.

In the World menu drop-
down, there is a group
of “Drop at xyz . . .’ radio-
selections (only one can
be selected). Before you
start placing objects in
the Creator, you should
understand what these
settings are going to do
for you.

 Torque Tools Chapter 3

47

Menu Item Description

Drop to
Ground

Objects are dropped to the ground at mission center. I wouldn’t
use this if there is any possibility that there could be an overlapping
interior at the mission center, because dropping another interior there
will crash the editor.

The Window menu is probably the most easily understood. It allows you to
select which of the World Editor tools you wish to use. The only important
thing to remember is that you must use this menu to select the Terrain Texture
Painter tool since there is no hot key for it.

3.6 World Editor Inspector (Inspector)

3.6.1 Starting the Inspector
1. Start the World Editor by pressing F11.

2. Start the Inspector by pressing F3.

3.6.2 Examining the Inspector
The Inspector tool (Figure 3.15) allows you to select an object and manip-
ulate its script-exposed parameters via text boxes, spinners, radio buttons,
checkboxes, etc. These parameters will vary based on the object. Later, we
will examine specifi c parameters for water, terrain, the character, the sky, etc.
Now, for the purpose of learning about this tool, we will work with a simpler
object, namely the SpawnSphere. The purpose of this object is unimportant at
this time. The key thing is that it is easily located and manipulated.
 To begin, look directly overhead. You should see a gray object. Select it
and you should have a view similar to Figure 3.16.
 Taking a quick inventory of the screen elements, we see the World Editor
menu at the top, the 3D World View window which takes up nearly two-thirds
of the screen, the World Editor tree window in the upper right, and fi nally the
World Editor Inspector window in the lower right.

3.6.3 World Editor Tree
Before we jump into the relatively straightforward World Editor Inspector,
let’s discuss the World Editor tree and some important organization features
it provides.
 First, expand the list in the World Editor tree window. The initial list is
completely collapsed, which doesn’t do us a lot of good when we’re trying to
manipulate objects.

Table 3.10 (continued).

Figure 3.14.

Drop at camera (ouch!).

Part II Engine Overview

48

Figure 3.15.

World Editor screen
(Inspector mode).

Figure 3.16.

The Inspector screen
elements.

 Torque Tools Chapter 3

49

1. Expand the MissionGroup SimGroup
by clicking the [+] next to the text
“####: MissionGroup – SimGroup.”
See Figure 3.17; numbers may vary
from illustration.

2. Expand the PlayerDropPoints – Sim-
Group.

You should now have something similar to Figure 3.17. If for some reason the
SpawnSphere entry is not highlighted, please click on it once to select it.

Locked Items

You will notice that some entries in the tree have a lock icon next to them.
This means that the entry is “locked” and cannot be edited. You may lock an
item by creating a dynamic fi eld (see “Inspector—Dynamic Fields” in Section
3.6.6) named “locked” and then setting that fi eld to true. You may unlock an
entry by deleting this fi eld, or by setting it to false.

3.6.4 SimGroups
At this point, you may be asking, “What is a SimGroup?” Subsequent chap-
ters in Part III will get into the nitty gritty details about SimGroups, SimSets,
and SimObjects. For now, we’ll simply describe SimGroups as a means by
which we organize objects. This is both useful from an organization sense,
i.e., knowing where to fi nd things while you are editing, and for scripting
purposes. By predefi ning a consistent set of SimGroups and by organizing
your objects within them, your current job as a mission/level designer will be
greatly simplifi ed. Your script writers will thank you also. If that is your job,
too, then pat yourself on the back.
 As can be seen from the current view of the World Editor tree, SimGroups,
as well as particular entities (SimObjects), can be nested within SimGroups.
In fact, every mission entity is present in this list and will be found nested
within a SimGroup.
 So, how exactly do we place objects within a SimGroup? Let’s fi nd out.
First, make a duplicate copy of the SpawnSphere. We already have it selected,
so all you need to do is type CTRL+C (to copy) followed by CTRL+V (to
paste). Alternately, you can use the Edit Menu � Copy/Paste operations.
 Now that you’ve created a new SpawnSphere, you need to locate it in
the World Editor tree. If you’ve followed the instructions above, you will fi nd
the new SpawnSphere at the bottom of the tree (see Figure 3.18). We would
much rather have it in the PlayerDropPoints – SimGroup with the rest of the
SpawnSpheres. So, let’s manually move this one to the correct spot and then
learn how to place objects in the right SimGroup the fi rst time.

Figure 3.17.

World Editor tree window.

Figure 3.18.

Part II Engine Overview

50

Moving Existing Objects into a SimGroup (Add-Group or
Instant Group)

The new SpawnSphere should already be selected, but if it isn’t, please click
on it to select it. Now, use the slider on the right side of the World Editor tree
and fi nd the PlayerDropsPoints – SimGroup. Select this as the Add-Group
through the key/mouse combination: ALT+ . The Add-Group should now
be selected with a gray background (see Figure 3.19).
 Now, select the menu item World � Add Selection to Instant Group. Voilà!
The SpawnSphere is in the PlayerDropPoints – SimGroup (see Figure 3.20).
 These steps will work in all versions of Torque, but in version 1.4 and later,
you may simply drag and drop objects from SimGroup to SimGroup.

Creating Objects in a Preexisting SimGroup (Add-Group)

OK, so that was a hassle. How do we get objects to place in the correct Sim-
Group when we create them? Simple. You already have a SpawnSphere in
your copy buffer, and you already have the Add-Group selected (see above).
Paste another SpawnSphere and it should show up in the PlayerDropPoints
– SimGroup (Figure 3.21). Easy as pie! The trick is to select your instant
group before pasting objects and they will automatically be placed in that
SimGroup.

3.6.5 World Editor Key Stroke/Mousing List
Table 3.11 is a summary of operations you may perform on SimGroups and
Objects with the mouse and key combinations.

Mouse Action Function

ALT +
On SimGroup Set current Add-Group.

CTRL +
On SimGroup (De)select all members in SimGroup.

CTRL +
On Object (De)select object(s).

SHIFT +
On Object Select multiple objects.

3.6.6 World Editor Inspector Window
Now let’s address the World Editor Inspector. This is, of course, the window
from which this tool gets its name. The purpose of this window is to allow you
to inspect and modify parameters for individual objects. If you play around
a bit and click on different objects, you will begin to see that different object
types have different parameters. For now, we’ll address the more common

Figure 3.19.

Figure 3.20.

Figure 3.21.

Table 3.11.

 Torque Tools Chapter 3

51

values, add new values, and fi nish off with some tips on using the interface
effectively. We will leave a detailed inspection of individual objects’ param-
eters for Chapter 8, “Mission Objects.”

Inspector—Common Fields

Table 3.12 describes the common fi elds used in the World Editor Inspector.

Field Description

Position (X,Y,Z) Three floating-point values representing the coordinates of
the selected object in world space.

Rotation (Xm,Ym,Zm,A) Four floating-point values where the first three are
multipliers and the fourth value is the angle (in degrees) of
the rotation(s).
Example: rotation 0 1 0 90.0 means the object is
rotated 90 degrees about the y-axis, relative to the world-
axis.

Scale (Xm,Ym,Zm) Three floating point values representing a relative scaling.
The values act as multipliers of the object’s default
dimension(s) in the indicated axes.
Example: scale 1 1 2 means that this object will be
twice as tall as the default when loaded into the world.
Please note that these values correspond indirectly to
those you see when mouse scaling. Mouse-scaling values
are actual world dimension.

shapeName
(shapes only)

This parameter’s name is a misnomer. It actually gives the
relative path and filename of the selected shape.

interiorFile
(interiors only)

This parameter gives the relative path and filename of the
selected interior.

Object Name There isn’t actually a parameter tag for “Object Name,” but
there is an editable text field for it. The text field is located
to the right of the Apply button. You can type just about
anything in this field, though no spaces are allowed. Click
Apply to name your object. Please note that objects can
be given the same name. We’ll leave further discussion of
object naming for a later chapter. Just remember that this
is how you change it from the Inspector.

Inspector—Dynamic Fields

I won’t explain what dynamic fi elds are yet, but rather I will explain a way
that they can be added to objects. To add a dynamic fi eld:

• select the object to which you wish to add a fi eld,

• click the Add button found in the Dynamic Fields section of the World Edi-
tor inspector window (see Figure 3.22), and

Table 3.12

Common fields in
Inspector.

Figure 3.22.

Part II Engine Overview

52

Figure 3.24.

World Editor screen
(Creator mode).

• give the fi eld a meaningful and unique name and an initial value.

 To modify the value of a dynamic fi eld, follow the same steps as changing
the value of any other fi eld. Just modify the contents of the text fi eld next to
the dynamic fi eld name and click Apply.
 To delete the dynamic fi eld click on the garbage-can icon next to the
dynamic fi eld (see Figure 3.23), and the fi eld will be removed permanently.
This cannot be undone.

3.7 World Editor Creator (Creator)

3.7.1 Starting World Editor Creator
1. Start the World Editor by pressing F11.

2. Start the Creator by pressing F4.

3.7.2 World Editor Creator Window
The Creator (see Figure 3.24) tool is used to create (or place) new content.
From the World Editor Creator, we can select objects to insert into our current
mission. Figure 3.25 shows the Creator’s top-level folders.

Figure 3.23.

 Torque Tools Chapter 3

53

• Interiors. Buildings and other interiors.

• Shapes. Animatable shapes.

• Static Shapes. Lightweight inanimate shapes.

• Mission Objects
• Environmental stuff like the sky, sun, water.
• Mission stuff like MissionArea, Triggers, and Cameras.
• System stuff like SimGroups.

Placing (Creating) New Objects

Creating new objects is much like pasting objects. Simply

1. move to the location in the mission area where you would like to place the
object;

2. look approximately where you want to place the object;

3. fi nd the object you wish to place by looking in the World Editor Creator
tree; and

4. click once on the object in the list.

Once an object is placed in the world, you can freely manipulate its position,
rotation, and scale via the mouse. If, however, you want to change object
parameters, you’ll need to switch back to the Inspector.

Adding Objects to Creator Tree

When the engine is fi rst started, it creates a list of all fi les found in the mod
directory. Later, when we start the Creator, the Interiors tree is populated
with all known DIF fi les, and the Static Shapes is populated with all DTS fi les
found. In both cases, the original directory hierarchy for the mod is main-
tained (see “abcshack” sample below).
 The Shapes tree is populated with ShapeBase objects created in scripts.
We’ll defer discussing these shapes until Part III, “Game Elements.” For
now, let’s learn how to get basic interiors and shapes into their respective
trees.

Adding Interiors to the Creator Tree

Torque needs the following fi les to create an Interior:

• DIF. Once an Interior has been properly generated, there will be a fi le
named interior_name.dif, where interior_name is whatever you chose to
name your interior object.

• Graphics fi le(s). An Interior will have at least one graphics fi le. By default,
the graphics fi les used for the Interior need to be located in a directory
above the Interior’s DIF fi le or in the same directory as the DIF fi le.

Figure 3.25.

World Editor Creator
top-level folders.

Spaces in a folder
name will make

the parts after spaces
show up like a sub-
directory.

Bobs Room\room.dif
produces:

[-]–� Bobs
 |
 [-]–� Room
 |
 — room

Part II Engine Overview

54

Figure 3.27.

Example:

1. In the directory “example\gpgt\data\GPGTBase\interiors\abcshack” you
will fi nd a fi le named abcshack.dif. Make a copy of this fi le and rename it
myabcshack.dif.

2. Completely exit the GPGT Lesson Kit, reload it, and start the World Editor
Creator again.

3. Now, in the Creator tree, under Interiors � gpgt � data � GPGTBase �
Interiors � abcshack, you will see a new Interior named myabcshack (see
Figure 3.26).

Adding Static Shapes to the Creator Tree

Torque needs the following fi les to create a Static Shape:

• DTS. Once a shape has been properly generated, there will be a fi le named
shape_name.dts, where shape_name is whatever you chose to name your
shape object.

• Graphics fi le(s). A shape will have at least one graphics fi le. By default,
the graphics fi les used for the shape need to be located in the same direc-
tory as the shape’s DTS fi le.

• DSQ(s) (optional). For an animated shape created in 3ds Max, there is a
third type of fi le, containing animation data. For simplicity’s sake, this will
not be discussed here, other than to note that they may exist. By default,
the DSQ fi le(s) used for the shape need to be located in the same directory
as the shape’s DTS fi le.

Example:

1. In the directory “example\gpgt\data\GPGTBase\shapes\markers” you
will fi nd a fi le named dummy.dts. Make a copy of this fi le and rename it
mydummy.dts.

2. Completely exit the GPGT Lesson Kit, reload it, and start the World Editor
Creator again.

3. Now, in the Creator Tree, under “Static Shapes � gpgt � data � GPGTBase
� shapes � markers” you will see a new Shape named mydummy (see
Figure 3.27). Try placing it.

 You might be wondering why the object showed up in Static Shapes
instead of Shapes. Objects under Static Shapes are lightweight objects (created
with TSStatic). Objects under the Shapes tree are created using the ShapeBase
hierarchy. ShapeBase adds several capabilities, including animations, sounds,
rendering effects, etc. This requries the creation of a datablock. We will dis-
cuss creating ShapeBase objects and their datablocks in Chapter 6, “Basic
Game Classes.”

Figure 3.26.

 Torque Tools Chapter 3

55

3.8 Mission Area Editor (Area Editor)

3.8.1 Starting the Mission Area Editor
1. Start the World Editor by pressing F11.

2. Start the Mission Area Editor by pressing F5.

3.8.2 The Mission Area Editor Window
In the upper right corner of the screen, you will see a blue and white image
(see Figure 3.28). This image represents the mission map. The Mission Area
Editor provides the ability to select the size and location of the mission bounds
(or area). Interestingly, it also provides a terrain editing feature.

Editing the Mission Area

The Mission Area Editor is very simple to use. Simply click the Edit Area check-
box, and handles will appear on the mission area box. Now drag and resize to
your heart’s content. You will be able to see the effect of your changes in the
3D World View window also. One thing to keep in mind is that the image is
inverted; that is, the top of the image is what most would consider south, the
bottom north, and the left and right, respectively, west and east. This could
quickly become cumbersome to remember, so the creators of the Area Editor

Figure 3.28.

Mission Area Editor screen.

Part II Engine Overview

56

Figure 3.29.

Mission Area Editor details.

provided a device to give you a better hint as to where you are looking when
you edit. The device I’m speaking of is the Field Of View (FOV) ‘V’. Look at
the labeled example in Figure 3.29.
 Before moving on, there are a couple of things that you should know.

• You can use the Area Editor window to rapidly relocate your character/
camera. Simply be sure that the Edit Area button is not checked and click
in the window. Your character/camera (depending on view mode) will
“jump” to that point.

• If you have made modifi cations to your terrain using the Terraformer or the
Terrain Editor, those changes will not automatically be refl ected in the Area
Editor image. To refresh the image, do the following.

1. Make your terrain changes.

2. Start the Area Editor and make sure Edit Area is checked.

3. Drag the mission area off center.

4. Recenter by clicking the Center button. The updated terrain should now
be refl ected in the Area Editor image.

The moral of this story is to edit your terrain topography fi rst, then edit your
mission area. And do all this before placing interiors, shapes, or other mission
objects.

 Torque Tools Chapter 3

57

Mirroring the Mission Area

As I mentioned above, the Mission Area Editor also provides what I would
label a “terrain editing feature”—namely, the ability to mirror the terrain. This
is very useful if you wish to create a balanced (in terms of terrain obstacles)
mission area. To use this feature, click on the “mirror” and you will see some-
thing similar to Figure 3.30. The application of this tool is simple:

• select the orientation of the mirroring plane (with <-- -->buttons) and

• click Apply to mirror copy the source onto the destination.

3.9 Terrain Editor

3.9.1 Starting The Terrain Editor
1. Start the World Editor by pressing F11.

2. Start the Terrain Editor by pressing F6.

3.9.2 The Terrain Editor Window
When you start the Terrain Editor, you will see a shot like the one in Figure
3.31. This looks very much like the view in the Manipulator, except that there
are no windows obscuring your view. However, if you look closely, you’ll

Figure 3.30.

Mirror in Mission Area
Editor.

Mirroring plane

Cancel mirroring
operation

Apply mirroring
operation

Rotate mirroring
plane

Mirroring
destination

Mirroring source

Part II Engine Overview

58

notice some odd squares following your cursor around while you move your
mouse. These squares are yet another Torque user-interface device, the pur-
pose of which is to give you feedback on what terrain area will be affected
when you choose to manipulate it and, to some degree, how it will be affected.
Before we jump right into learning how to edit the terrain, let’s look at the
other two devices on the screen.

The Over Vertex Brush Scale

I refer to the text beside the label “(Mouse Brush)” in Figure 3.32 as the Over
Vertex Brush Scale. The purpose of this scale is twofold.

1. It shows how many vertices are currently under the brush. In Figure 3.32,
we have 69 vertices under the brush.

2. It shows the average elevation of the vertices under the brush.

The Selected Brush Scale

I refer to the text beside the label “(Selection)” in Figure 3.33 as the Selected
Brush Scale. The purpose of this scale is twofold.

1. It shows how many vertices are currently selected. (We’ll learn about
selecting below.)

2. It shows the average elevation of these selected vertices.

Figure 3.31.

Terrain Editor screen.

 Torque Tools Chapter 3

59

3.9.3 Editing
There are two basic modes for editing via the Terrain Editor:

1. Brush mode. The default mode, which I call brush mode, is a free-fl oating
9×9 vertex brush. You can adjust the shape and hardness of the brush as
well as change its size by rough increments. In addition, this mode pro-
vides several operations.

2. Selection mode. The second mode, which I use less frequently, but which can
do things that you cannot do in brush mode, is what I call the selection mode.
In this mode, you select arbitrary blocks of terrain. Then, you can perform a
single operation upon them—modify their height via mouse movement.

Editing in Brush Mode

I think it is fair to say that most of your editing is going to be in brush mode,
and because it is the default mode, I’ll discuss it fi rst. As mentioned pre-
viously, you can modify the brush shape, hardness, and size. Figure 3.34
describes the details that are modifi able in the Brush menu.

Figure 3.32.

The Over Vertex Brush
Scale.

Figure 3.33.

The Selected Brush Scale.

Figure 3.34.

Details of the brush menu.

Hardness: A soft brush
has a “tunable” strength

of action across the brush,
whereas a hard brush acts

at 100% strength across
the entire brush.

Shape: There are two
basic shapes:
• a box or
• a circle (roughly).
You may select one or the
other.

Size: As can be seen,
you may select one of six
brush sizes. Take note of
the keyboard shortcuts.

Part II Engine Overview

60

Figure 3.35.

Action menu.

Table 3.14.

Making selections.

Action Result

Previously Unselected Vertex

Selects vertex.

Previously Selected Vertex

May increase strength of action (see discussion of brush
hardness below) if the selection cursor has a stronger
value than the currently selected vertex’s action strength.

CTRL +
Previously Selected Vertex

De-selects vertex.

Basic Brush Editing Actions

OK, now that we know about basic brush manipulation, what about the opera-
tions? In Table 3.13, let’s take a look at the action menu (shown in Figure 3.35).

Operation Meaning

Add Dirt * Raises terrain under brush.

Excavate * Lowers terrain under brush.

Adjust Height * Temporarily selects vertices under brush.
• Mouse Up—raises vertices
• Mouse Down—lowers vertices.

Flatten Sets all vertices under brush to average height of vertices under brush.

Smooth * Does a nearest-neighbor elevation average on vertices under brush.

Set Height Sets all vertices to preselected height. (See “Terrain Editor Settings”
section for setting this value.)

Set Empty ** Removes the terrain between the outer edges of the brush.

Clear Empty ** Puts terrain back in spots where it was previously removed.

Paint Material Paints vertex with currently selected texture. (See Section 3.12, “Terrain
Texture Painter.”)

* This action is affected by brush hardness settings.

** Not a vertex operation per se. These operations modify the block of terrain between a
set of vertices.

Selection in Brush Mode

All right, so what about this other mode, selection? There isn’t really much to
it. To get into selection mode, just open the Action menu (see Figure 3.35) and
click Select. Now, you can select terrain as explained in Table 3.14.

Table 3.13.

Action menu descriptions.

 Torque Tools Chapter 3

61

 Having selected the terrain blocks that we wish to modify, we can open
the action menu and click Adjust Selection. Now, we can and drag up/
down to raise/lower the elevation of the selected blocks.
 To leave selection mode, select any other operation in the Action menu.
Also, once selected, vertices stay selected, regardless of mode. If you wish to
deselect all selected vertices, press CTRL+N or click Select None in the Edit
Menu.

 Brush Hardness

Brush hardness has been mentioned
several times but not completely
explained. When the brush hard-
ness is set to Soft, the action strength
along the diameter of the brush can
be modifi ed. In simple terms, if the
strength of action is set low, then the
value change for that part of the brush
is also low. If the strength of action
is set high, the value change for that
part of the brush will be high. This
attenuation is in relation to the move-
ment of the mouse. The brush gives
strength of action feedback through
coloration (see Table 3.15). Brush
coloration is a continuous scale from
red to green. You can manipulate this hardness in the Terrain Editor Settings
dialog found under the Edit menu. See Figure 3.36 for examples.

Terrain Editor Settings

Earlier, I deferred a discussion of these settings. Now is the time to under-
stand them. The Terrain Editor Settings . . . (see Figure 3.37), found under
the Edit menu, gives us
some additional control
beyond brush shape,
hardness, and size. Table
3.16 gives further expla-
nation of the settings
found in this dialog box.

Table 3.15.

Brush hardness and
coloration.

Figure 3.36.

Brush hardness results.

Color Relative Hardness
(Strength of Action)

Red Hardest (100%)

Orange Hard (> 50%)

Yellow Soft (< 50%)

Green Softest (almost 0%)

Figure 3.37.

Terrain Editor Settings
dialog box.

Part II Engine Overview

62

Dialog Area Purpose

Soft Selection
spline

This spline scale modifies the brush hardness. Left is the center of
the brush and right is the outer edge.

<Radius> See “ Selection and <Radius>” section.

Adjust Height Increment by which the height of fully selected (hard) terrain is
adjusted per mouse tick.

Set Height Height to set selected terrain to when Set Height operation is used.

Scale Height Increment by which height is scaled when using scaling operations.

Smooth Factor Strength of smoothing operation. Higher values smooth more
aggressively but may produce less interesting terrains as a result.

 Selection and <Radius>

Instead of attempting to explain <Radius> with words, I give a pictorial
example in Figure 3.38. In the following sequence, I have changed to selection
mode and am using a 1×1 brush. I then select four separate vertices. Next,
after opening the Terrain Editor Settings dialog, I change the radius values to
those shown and hit Apply. See how the selection changes?

Table 3.16.

Terrain Editor settings.

Figure 3.38.

Example of using <Radius>.

<Radius> == 1 <Radius> == 8

<Radius> == 12 <Radius> == 14
Slight increase in strength of action

(greens becoming more yellow).

<Radius> == 15
Larger increase in strength of action

(green selections are almost entirely yellow).

<Radius> == 16

 Torque Tools Chapter 3

63

3.10 Terrain Terraform Editor (Terraformer)

3.10.1 Starting the Terraformer
1. Start the World Editor by pressing F11.

2. Start the Terraformer by pressing F7.

3.10.2 The Terraformer (An Overview)
Of all the in-game editor tools, the Terraformer is probably the most elaborate
and complicated. The shortest explanation of the Terraformer is that it is a tool
to algorithmically build terrains. You may ask why you would want to use this
tool to build terrains. The number one reason I can think of is that it is a fast
way to create interesting terrains.
 In this section, I provide the following details about the Terraformer:

• description of Terraformer windows,

• summary of all operations,

• rundown on how operations are applied,

• brief descriptions of the individual operation interfaces, and

• a list of important Terraformer factoids.

Figure 3.39.

Terraformer screen.

Part II Engine Overview

64

3.10.3 The Terraformer Preview Window
If you are reading this guide from front to back, this will be the fi rst time that
you have seen the window in Figure 3.40. You’ll note that it is similar to the Mis-
sion Area Editor window. In fact, this window displays very similar data. For the
purpose of this discussion, we’ll focus on the following aspects.

1. Center marker. There is a faint
white + in the preview window.
This marks the center of the map.
Every time you apply Terraformer
operations, this is where the cam-
era will be moved to.

2. FOV marker. There is a red V that
is always in the center of the win-
dow. This shows your current fi eld
of view, i.e., area in your view rela-
tive to the map.

3. Boundary marks. In addition to
the center marker, there are faint
horizontal and vertical lines, repre-
senting the boundaries of the cur-
rent heightmap.

4. Heightmap image. Although it may not be obvious at fi rst, the image in
the preview window is a translation of the heightmap. The funky coloring
can be interpreted very easily. The darker an area is, the lower it is; like-
wise, the lighter an area is, the higher it is.

3.10.4 Terraformer Operations Tree
 In the lower right corner of the screen, you will fi nd the Terraformer operations
tree. There is a button labeled Operations and clicking on this will bring up
a pull-down menu with all the operations (see Figure 3.41). When you select
an operation, it is added after the currently highlighted operation (so you can
insert new operations into the middle of a list of existing operations).

Terraformer Operations

Each of the Terraformer operations has its own settings. These can be accessed
in the upper right window. Before we cover these, let’s quickly enumerate and
describe the general properties of the operations.
 In his Tribes editing guide, Editing Maps and Missions in Tribes 2, Tim
Hammock appropriately categorizes the operations as either “generators” or
“fi lters.” In addition, I would like to add the category “base”. Table 3.17 gives
a summary of the base, generator, and fi lter operations.

Figure 3.40.

Terraformer window.

Figure 3.41.

a. Terraformer operations
tree.

b. Terraformer operations
pull-down menu.

 Torque Tools Chapter 3

65

Table 3.17.

Base, generator, and filter Terraformer operations.

Base Summary

General This is the default operation. It cannot be removed from your list of operations. The values set in this
operation are used by subsequent generators and filters.

Generator Summary

fBm Fractal The random fractional Brownian motion generator (if you were wondering what the acronym means) is a
basic terrain generator. It produces rolling hills with various steepness based on settings. It tends to produce
smoothly topped hills but can produce jagged peaks.

Rigid
MultiFractal

Another fractal-based generator, this tends to produce hills with serrated (or sharp) peaks.

Canyon
Fractal

This fractal-based generator produces a series of troughs (canyons). It can produce shallow to deep
canyons that run straight or twist.

Sinus This generator would probably be impossible to get a handle on without the code. However, a quick peek
shows that this generator creates terrain by iteratively adding the scaled sum of a sine and cosine pair with
some basic noise for flavor. Just remember that, ignoring the noise element, all terrains produced with this
generator have the same base shape. Your choice of settings will determine how this shape is applied to
progressively smaller sections of the terrain. I’ll give more details below.

Bitmap This operation allows you to import an image file as your terrain heightmap.

Filter Summary

Turbulence This filter erodes and redeposits terrain features and kind of reminds me of the smudge brush applied
algorithmically. It seems to erode more than it redeposits. Both of these actions are done in a swirly,
turbulent (therefore the name) fashion. This filter significantly alters the look of your terrain.

Smoothing This is a simple nearest-neighbor averaging filter. It will tend to remove jagged areas in your terrain.

Smooth
Water

This is like the smooth filter but is limited to smoothing terrain that is at or below the level of global water
height (set under General operation). No smoothing is done for features above the water height.

Smooth
Ridges/
Valleys

As the name implies, this filter affects specific regions based on their characteristics. Plateaus with jagged
edges will be rounded at the edges while retaining their original steepness. Deep dimples in valleys will be
filled in—how much depends on settings.

Filter This filter allows you to adjust groups of like elevations globally. In other words, terrain heights are divided
into discretely modifiable groups, from lowest elevation to highest elevation.

Thermal
Erosion

This is a very aggressive eroding filter. You can rapidly remove materials from sloped areas of your terrain
with this. The official docs say this uses a “thermal erosion” algorithm.

Hydraulic
Erosion

This is a very weak eroding filter. The official docs say this uses a “hydraulic erosion” algorithm.

Blend This filter allows you to combine two existing operations via a set of mathematical operations, blending
them together. We will look at an example of this shortly.

Part II Engine Overview

66

How Operations Are Applied

Operations are applied to the terrain in the order they appear in the list, top
to bottom. This means that if you apply two generators in a row, the second
generator’s results are the only ones that will be seen. More interestingly, you
can apply fi lters in different orders for different results. The best way to learn
about these operations is to experiment.

Operations’ Settings

I’ll give a quick rundown of the various operations’ settings and then set you
loose.

General
• Min Terrain Height (0..500). Defi nes the lowest possible point in the map.

Tools and generators will not be allowed to create terrain elevations lower
than this.

• Height Range (5..500). Defi nes the maximum difference between min
height and max height. Therefore, max height == min height + range.

• Water Level. A global value used as input to subsequent fi lters. It does not
place water.

• Center on Camera. Sets the map origin to the current camera location.

fBm Fractal
• Hill Frequency (1..24). Indirectly determines number of hills. Higher val-

ues create more hills.

• Roughness (0.0..1.0). Determines roundness of hills. Lower values tend
to create more rounded hills, while higher values create taller and more
pointy hills, i.e., steeper slopes.

• Detail (Very Low..Very High). In terms of visual results, higher values pro-
duce more jagged peaks (knife edges).

• Random Seed. Seed that feeds into random portion of generator. Using
the same value for subsequent generations produces the same sequence of
numbers.

• New Seed. Creates a new seed.

Rigid MultiFractal
• Hill Frequency (1..24). Indirectly determines number of hills. Higher val-

ues create more hills.

• Roughness (0.0..1.0). Determines roundness of hills. Lower values tend
to create more rounded hills, while higher values create taller and more
pointy hills, i.e, steeper slopes.

fBm Fractal Tips:
• If your height range
is large (say 350+),
you will tend to have
jagged hills, regardless
of other settings.

• With a default height
range (300), Very
High Detail will tend
to create knife-edged
hills, even for low Hill
Frequencies (8).

 Torque Tools Chapter 3

67

• Detail (Very Low..Very High). In terms of visual results, higher values pro-
duce more jagged peaks (knife edges).

• Random Seed. Seed that feeds into random portion of generator. Using
the same value for subsequent generations produces the same sequence of
numbers.

• New Seed. Creates a new seed.

Canyon Fractal
• Canyon Frequency (4..10). Number of canyons to produce.

• Chaos (0.0..1.0). A value of zero will produce very artifi cial-looking and
straight canyons. A value of one will produce squirrelly features, almost
unrecognizable as canyons.

• Random Seed. Seed that feeds into random portion of generator. Using
the same value for subsequent generations produces the same sequence of
numbers.

• New Seed. Creates a new seed.

Sinus
• Scale (on..off). Although the scale implies there are ranges of values for

each control point, values are either on or off. Dragging a control point to
the bottom turns it off. Any other vertical position is on.

• Random Seed. Seed that feeds into random portion of generator. Using
the same value for subsequent generations produces the same sequence of
numbers.

• New Seed. Creates a new seed.

• Control Points. Controls number of points on scale. Type values into this
fi eld. More control points mean more detail, i.e., higher levels of subdivi-
sion and iteration.

As mentioned before, the Sinus gen-
erator builds the terrain using a com-
bination of sinusoidal values and
noise. If you want to see the under-
lying structure, set the seed to 0.
Now, poking around with the control
points will produce something that
looks like Figure 3.42.
 Now set the number of control points to 3. Notice in Figure 3.43 that the
overall structure is still recognizable.

Figure 3.42.

Sinus generator with seven
control points.

Part II Engine Overview

68

Turbulence
• Turbulence Factor (0..1.0). Determines strength of action. Lower values

mean less displacement and less variation in height. Higher values mean
vigorous swirling and modifi cations to height.

• Radius of Effect (1..40). Determines fi lter size. 1 equals a 3×3 fi lter, 2
equals a 4×4 fi lter, etc., up to a 42×42 fi lter.

Smoothing
• Iterations (0..40). Determines number of smoothing passes to run.

• Aggressiveness (0.0..1.0). A relative factor, determining how much mate-
rial to remove.

Smooth Water
• Iterations (0..40). Determines number of smoothing passes to run.

• Aggressiveness (0.0..1.0). A relative factor, determining how much mate-
rial to remove.

Smooth Ridges/Valleys
• Iterations (0..40). Determines number of smoothing passes to run.

• Aggressiveness (0.0..1.0). A relative factor, determining how much mate-
rial to remove.

Figure 3.43.

Sinus generator with three
control points and various
point scales.

 Torque Tools Chapter 3

69

Filter
• Scale. Each control point corresponds to a specifi c height (see below for

calculation). Subsequent applications change these values.

• Control Points. Determines now many elevation bands there are.

 You can make signifi cant and rapid changes to your terrain with this fi lter.
Understanding how this works can be kind of tricky. At fi rst, you might think
that the ranges will be based on the Min Terrain Height and Height Range set
in the General settings. This may or may not be true. If your current terrain
extends to the lowest and highest points, then, yes. However, let’s say your
Min Terrain Height is set to 0, but your lowest elevation is 100. Also, Height
Range is set to 200, but your highest elevation is only 200 (i.e., half the range).
Then, the elevation bands are determined as follows:

• Lowest elevation: 100 world units

• Highest elevation: 200 world units

• Control points: 5

• Width of each elevation band: (200−100)/5 == 20 world units

• Resultant elevation bands (left-to-right in scale):

Control Point 1
100..119 meters

Control Point 2
120..139 meters

Control Point 3
140..159 meters

Control Point 4
160..179 meters

Control Point 5
180..200 meters

 Moving a control point is like grabbing all elevations in that band and
raising or lowering them by a relative amount. Additionally, there is a push-
pull relationship between bands of elevation; that is, by modifying one band,
you also (slightly) modify all other elevation bands. Figure 3.44 shows some
sample changes so you can judge for yourself. This tool rapidly changes the
face of your terrain, so caution is the word. Please note that, by default, the scale comes up looking like Figure 3.44a
(only it has seven control points). If left like this, no changes will be made.
 In Figure 3.44b, we raise the low elevation band as much as possible.
Remembering that lighter values are higher elevation, notice that some pre-
viously dark regions are now very light. Also, notice that, overall, the total
elevation of the map seems to have been lowered.
 In Figure 3.44c, we lower the high elevation band as much as possible. Lo
and behold, previously high areas are now completely dark, but what else has
happened? The rest of the map seems to have raised.
 In Figure 3.44d, we’ve lowered all bands except for the middle band. As
can be easily seen, we’ve basically said, “make the middle band the highest
range.”

Part II Engine Overview

70

Thermal Erosion
• Iterations (0..50). Determines number of smoothing passes to run.

• Min Erosion Slope (0.0..89.0 degrees). Defi nes a cutoff slope value. What
this is saying is, do not apply this erosion to slopes with a current value
lower than that set here; i.e, if a slope has a 15 degree inclination and this
value is set to 45, no changes will be made to that part of the map.

• Material Loss (0..100). The relative percentage of material that should be
removed per pass.

Hydraulic Erosion
• Scale. No effect.

• Iterations (0..50). Determines number of erosion passes to run.

• Control Points. No effect.

Figure 3.44.

Sample changes using
control points.

a. b.

c. d.

Thermal Erosion Tips:
• For multiple
iterations, if a slope falls
below the Min Erosion
Slope, erosion no
longer affects that area.

• The Material
Loss value is a bit
misleading. A 100%
loss does not mean,
“set this value to lowest
height.” Instead it
means something like,
“set this value to lowest
nearby height.”

• This is a very
vigorous filter, quickly
removing large
quantities of material.

Hydraulic Erosion Tips:
• This is one of those cases where having access to the code shortens research
drastically. The scale (filter) is passed in to the erosion method but not used. So,
whatever changes you make to it are going to be ignored. Since control points
are part of the same mechanism, you can ignore these, too. The only thing you
need to modify is Iterations.

• This sweet little filter fills one duty: erode the channels, or low points, between
steep hills. It erodes wide flat basins, too, but the effects are not as noticeable.
You’ve got to admire the person who coded this. To write an algorithm that
consistently targets a specific terrain feature for erosion? Brilliant!

 Torque Tools Chapter 3

71

Blend

The parameters to this fi lter modify the blending equation above the Apply
button. Easy as pie. Just remember that Source A is always the operation
prior to this blend. (Yes, it can be a blend of a blend of a . . . well, you get the
idea) Figure 3.45 shows the recreation of a nice terraformer sample from the
Tribes 2 days. It nicely demonstrates the power of the Blend fi lter.

Step 1: General
Min Height: 20
Height Range: 200
Water Level: 0

Step 3: fBm fractal
Hill Frequency: 24
Roughness: 0.000
Detail: Very High
Seed: 1588197333

Step 2: Rigid Multifractal
Hill Frequency: 1
Roughness: 0.000
Detail: Very Low
Seed: 2080079341

Step 4: Blend
Factor: 0.358
Source B: 1
Operation: Max

Loading a Bitmap

I have purposely deferred a discussion of loading your own bitmaps until the
end. Of all the questions I see asked over and over in the forums, one of the
most repeated is, “How do I load a bitmap as my terrain?” As you would imag-
ine, doing this is relatively simple. Once you have the PNG fi le you wish to use
as your terrain bitmap, simply place it anywhere in the current mod directory
(gpgt\data\heightFields, for example). Now, in the Terraformer, select the bit-
map operation and choose the newly placed bitmap as the operation’s
source fi le. Click Apply, and you’re done.

Figure 3.45.

The Blend filter.

Although “loading a
bitmap” seems to imply
a BMP file, you must

actually use PNG
files.

Part II Engine Overview

72

Loading a Terrain File

Similar to loading a bitmap is the operation to load a previously created ter-
rain fi le. When you select this operation, the engine will pop up a dialog from
which you may select any currently available terrains.
 Be warned that this operation will completely replace your current ter-
rain. Also, if you are missing textures that are used in the to-be-loaded terrain
(or the textures are in a new location), your terrain painting may start off
white. To resolve this problem, please read the section “Fixing Broken Terrain
Paths” at the end of Section 3.12, “Terrain Texture Painter.”

3.10.5 Maze Runner Lesson #1 (90 Percent Step)—
 Terrain for Our Game

Here is the fi rst of several lessons in which we’ll apply the massive
amount of knowledge we’re gaining in a practical situation, building our

own simple game step by step. In this fi rst quick lesson, we’ll create a terrain
for our game to be played out on. Follow the simple steps in this section to
get started.

Copy Required Files

From the accompanying disk, please copy the “\MazeRunner\Lesson_001\
heightFields” directory into “\MazeRunner\prototype\data”.

Generate New Terrain

To generate the cauldron for our game terrain, do the following (see Figure
3.46).

1. Quit the Lesson Kit and start up the Maze Runner prototype.

2. Start the Maze Runner mission.

3. Start the Terraformer.

4. Use the Bitmap operation to generate a terrain using the fi le “\MazeRun-
ner\prototype\data\heightFields\mazerunner.png”.

 After applying the generator, the terrain should be shaped like a cauldron.
Save the mission.

Adjust Spawn Point

Now we have a simple terrain. You might also want to use the Inspector to
remove all but one spawn point and to position it at “0 0 100” so we don’t
have such a long way to fall when we spawn into the mission again. Now,
don’t forget to save your changes.

Figure 3.46.

a. Terrain preview.

b. Terraformer settings.

If you have not yet
followed the steps in
Section 14.4, “Setting
Up Our Workspace,”
please do so before
doing Lesson #1.

 Torque Tools Chapter 3

73

 And with that, we have taken the fi rst small step towards making our little
Maze Runner game!

3.11 Terrain Texture Editor

3.11.1 Starting the Terrain Texture Editor
1. Start the World Editor by pressing F11.

2. Start the Terrain Texture Editor by pressing F8.

3.11.2 The Terrain Texture Editor Preview Window
After the Terraformer, the Terrain Texture Editor is probably the second most
complicated tool in the World Editor tool kit. Again, we’re faced with an array
of operations that can be performed, based on various factors and settings.
When all is said and done, this tool’s main goal is to allow us to place textures
on our terrain via selection algorithms and calculations. The end result of said
placement can be a very natural- or unnatural-looking landscape. Like the
Terraformer, we have the preview window, operations tree, and settings win-
dow (see Figure 3.47). In addition, we have a textures list, snuggled between
the settings window and the operations tree.

Figure 3.47.

Terrain Texture Editor
screen.

Part II Engine Overview

74

3.11.3 The Texture Editor Textures List (Loading
 Textures)

Before we can start texturing our terrain,
we need to decide which textures will
be part of our palette. To load a terrain,
simply click the Add Material . . . button
and select a terrain from the dialog that
comes up (Figure 3.48).
 The Terrain Texture Editor places
our textures in layers. The fi rst (top-
most) texture in the texture list is the
base layer. This is the texture that is vis-
ible if no other textures get applied to
a point on the terrain. In this case, we
have selected the grass texture as our
base texture (Figure 3.49).
 Subsequently added materials
are always placed at the end of the list.
These textures are applied based on an
algorithm and settings (or placement
operations). See Figure 3.50.
 In the case that two textures
(besides the base texture) are applied to
the same pixel on the terrain, they are
blended.

3.11.4 Terrain Texture Editor Operations

Fractal Distortion (Base Filter)

Every texture gets a base fi lter called Fractal Distortion, the purpose of which
is to provide randomness to the way the textures are placed. The interface
is very similar to the Terraformer’s fBm generator. The major difference is
the scale interface. The math behind the fi lter and the interface controls are
somewhat complicated to describe. Honestly, the easiest way to understand
what this fi lter does is to simply play around with it a bit and observe what
happens with various settings.

Figure 3.48.

Figure 3.49.

Figure 3.50.

 Torque Tools Chapter 3

75

Place by Fractal

The Place by Fractal fi lter is also complex to describe, and in my opinion, not
incredibly important for your day-to-day game-development needs. Here again,
if you’re interested in learning about this fi lter, the best way to understand it is
to experiment, testing different settings and values, and noting their effects.

Place by Height

This fi lter has a simple purpose. It places textures at certain delineated eleva-
tion bands and blends them based on the vertical setting for that band. I’ll
show the result of this in Figure 3.51.

Place by Slope

As with the Place by Height fi lter, this fi lter is relatively straightforward. The
left side of the scale represents less steep terrain and the right side represents
more steep terrain. Again, the vertical scale is the blending factor.

Place by Water Level

This last fi lter allows us to place a texture at or below the water level we set
in our Terraformer. This is useful if you are building an island or have a large
lake, but I suggest avoiding it otherwise. Instead, for smaller bodies of water,
you can hand paint using the Texture Painter, which we’ll be talking about in
Section 3.12.
 Because it is said that a picture is worth a thousand words, Figure 3.51
includes some sample pictures of the Terrain Texture Editor in use.

Base layer of grass only.

Operation: Fractal Distortion
Fractal Distortion Settings:
 Hill Frequency: 20
 Roughness: 0.0
 Random Seed: 801422093
Control Points: 7
Material: Grass

Figure 3.51.

Samples of Terrain Texture
Editor.

Part II Engine Overview

76

Grass base with detail1 texture placed by fractal.

Operation: Place By Fractal
Fractal Mask Settings:
 Hill Frequency: 16
 Roughness: 0.0
 Random Seed: 821699541
Control Points: 7
Material: detail1

Grass base with detail1 applied by height.
Notice height setting set to place only at highest
elevation band.

Operation: Place By Height
Height Mask Settings:
Control Points: 6
Use Fractal Distortion: true
Materials: Grass, detail1

Grass base with detail1 applied by slope. Notice
slope setting set to place only on least steep
(flattest) areas.

Operation: Place By Slope
Slope Mask Settings:
Control Points: 7
Use Fractal Distortion: true
Materials: Grass, detail1

Figure 3.51 (continued).

 Torque Tools Chapter 3

77

Grass base with detail1 and patchy set to apply
at same elevation (by height). Notice blending of
detail1 and patchy.

Operation: Place By Height
Height Mask Settings:
Control Points: 6
Use Fractal Distortion: false
Materials: Grass, detail1, patchy

3.12 Terrain Texture Painter (Terrain Painter)

3.12.1 Starting the Terrain Texture Painter
1. Start the World Editor by pressing F11.

2. Select Terrain Texture Painter from the Window menu.

Figure 3.51 (continued).

Figure 3.52.

Terrain Texture Painter
screen.

Part II Engine Overview

78

3.12.2 Examining the Terrain Painter
The last of the tools we will examine in this section is the Terrain Painter.
Among all the tools, this is probably the most straightforward. If you have
successfully loaded the Terrain Painter, you will see something like the image
in Figure 3.52. If you have used any tools like Worldcraft, Wally, or any of a
number of other content-creation tools, you will be familiar with the concept
of a palette, but just in case, I will describe it.

The Terrain Painter Palette

Currently, the palette is limited to six textures. Also, the palette texture “spots”
must be loaded in counterclockwise
order. In other words, if you tried
clicking on the Add . . . button in the
upper right corner right now, noth-
ing would happen. Try clicking the
Add . . . button in the middle left.
Load the patchy.png texture.
 When you click either an Add . . .
button or a Change . . . button, the
Load File . . . dialog pops up (see Fig-
ure 3.53). The tool will automatically

fi nd fi les in either of the following two formats:

1. Portable Network Graphics (*.png)

2. JPEG (*.jpg)

I strongly suggest using PNG fi les. Also, you should adhere to strict rules
regarding the dimensions and color content of your graphics fi les.

Dimension Required: 256 × 256 pixels

DPI or PPI Suggested: 72

Pixel Depth/Colors Suggested: 24/16 million

Alpha Layer Suggested: none

 On the right side of the screen, you should see a window that looks simi-
lar to Figure 3.54. In this image, there are two of six allowed textures enabled.
The purpose of this window is to act as a sort of painter’s palette for textures.
Simply by dabbing your cursor on (clicking on) a loaded texture, you can use
that texture to paint the terrain with the now familiar brush. As with the Ter-
rain Editor, you can change the shape, size, and hardness of the brush. In this
case, the hardness will affect blending. A softer brush provides a softer stroke,

Figure 3.53.

“Load File...” dialog box.

 Torque Tools Chapter 3

79

therefore less of the new texture is applied per stroke, with more of the under-
lying texture showing through. Give it a try. Click on the “patchy” texture and
paint some lines, swirls, whatever. Cool, eh?

Fixing Broken Terrain Paths (All White Terrain)

Sometimes, we will fi nd it necessary to move our terrain fi les (*.ter) and/or
our terrain textures. As a result, the next time we relight our terrains, they may
render without textures. TGE embeds relative texture paths within the body of
the terrain fi le, so when we move the terrain fi le, we break these paths.
 Fixing this problem is relatively painless. Simply follow these steps.

1. Load the mission with the broken terrain. The terrain will be all white (see
Figure 3.55).

2. Open the Terrain Painter tool. If you examine the painter palette, you will
see that all of the texture slots are blank, even though they do have the
texture name listed (see Figure 3.56).

3. One by one, click on the Change . . . buttons and relocate the matching
texture (as is listed by the blank palette chip) using the Texture Selection
dialog (see Figure 3.57).

4. Finally, save the terrain, and your terrain fi le will be fi xed!

Figure 3.54.

The palette.

Figure 3.55.

Broken terrain; shows up as white.

Figure 3.56.

Blank palette texture slot.

Figure 3.57.

Texture Selection dialog.

Part II Engine Overview

80

3.13 World Editor Quick Tips

3.13.1 Manipulator (F11 + F2) Tips
• Translating rotated objects. To move a rotated object, press and hold

SHIFT before selecting the object’s gizmo. This will force the gizmo to
align to the world axes, thus making it easier to move the object about.

• Quick scaling. Select the object to be scaled. Press and hold CTRL+
ALT, then hover the mouse over the side to be scaled. A blue hash will
appear. Clicking on this and moving the mouse scales in the selected
dimension.

• Quick move. Select an object with the mouse and then, being sure the
gizmo is not highlighted, click on the object’s bounding box and hold the
left mouse button. Now you can move the object about the world plane in
x and y directions.

• Better placement (snap-to). Turn on the editor’s snap-to by opening the
console (~) and typing “ snapToggle();”. Now, open the WorldEditor Set-
tings dialog (under the Edit menu) and set the Move Scale to the value you
want snaps to happen on. While moving objects with the gizmo, move-
ments will snap to this increment.

3.13.2 Inspector (F11 + F3) Tips
• Staying organized. Make sure to add SimGroups before placing objects,

and then be sure to place objects in them when populating the mission.

• Locking objects. To make editing simpler and safer, objects can be locked.
A locked object cannot be translated, rotated, or scaled using the mouse.
However, changes can still be applied via the Inspector pane. To lock
an object, simply select the object in the Inspector and add a dynamic
fi eld named locked. If locked is set to true, the object will be mouse-
modifi cation immune. To unlock the object, delete the variable or set it to
false.

3.13.3 Creator (F11 + F4) Tips
• New Interiors are black (relighting the scene). In versions prior to TGE

1.4, interiors started out black and needed to be “relit” to get their tex-
tures. To get the textures to render and to get the shadow for this DIF
baked into the terrain, you need to relight the scene. Simply type ALT+L.
In version 1.4 and beyond, all newly placed interiors will be draft-lit. This
means that the interior will be lit, but no self-shadowing or terrain shad-
owing will be done. To see the fi nal lighting results, you will still need to
relight the scene. Draft lighting was added to save time and give better
feedback while editing.

 Torque Tools Chapter 3

81

3.13.4 Area Editor (F11 + F5) Tips
• Quick camera/player movement. To quickly move the camera/player to a

point on the map, open the Area Editor and click on the preview map. The
camera/player will be moved to that point on the map.

3.13.5 Terraformer (F11 + F7) Tips
• Setting map to zero elevation (perfectly fl at). To create a map at zero ele-

vation, open the Terraformer, add the operation Terrain File, do not select
a terrain fi le, and apply the operation. Because no terrain fi le was selected,
the loader will fl atten the terrain to zero elevation.

• Setting map to non-zero elevation (perfectly fl at). To create a fl at map at
a set elevation, open the Terraformer, then:
• remove all current operations;
• add a Sinus operation;
• click on General and set Min Terrain Height to desired height;
• type 0 in Height Range (clicking roller buttons does not allow this, only

typing);
• click on previously added Sinus operation; and
• click Apply.

3.13.6 Terrain Painter (Windows � Texture
 Painter) Tips
• Increasing texture count. Search the GarageGames website for a resource

titled “8 terrain textures instead of 6” that provides an easy solution for
increasing the number of textures the Terrain Painter palette can hold.

3.13.7 General Editing Tips
• Better placement (use the grid). Use the grid like a ruler when placing

objects. Don’t forget that the grid size can be adjusted in the World Editor
Settings dialog. Using this feature in addition to snap-to can simplify place-
ment greatly.

• Reduce visual clutter while editing. When the number of objects in a
mission is signifi cant, too many labels (centroid + object ID) may be vis-
ible. To alleviate this, either disable “render object text” (in the World Edi-
tor Settings dialog), or reduce the “visible distance” (a fi eld in the Sky
object).

• Exact scaling. When you want to scale an object by an exact factor, use
the min/max scale factor settings found in the World Editor Settings dialog.
By simply setting these factors to the same number, then applying a scale
operation, the object will scale to the exact value.

Part II Engine Overview

82

• Stop selecting far objects accidentally. Along with visual clutter, some-
times it occurs that far objects get selected by mouse movements; i.e., while
attempting to select a near object, a far object is alternately or additionally
selected. Simply reduce the “project distance” for the pointer (World Editor
Settings dialog), or reduce the “visible distance” (a fi eld in Sky object).

• Stop objects falling through terrain during placement. To keep objects
from falling through the terrain while you place them, open the World Edi-
tor Settings dialog and uncheck “Planar movement”, then uncheck “objects
use box center”. Now sliding objects around with the mouse will be less
likely to cause them to fall through the terrain.

• Speed up scene relight. When editing, we don’t necessarily care if the
scene lighting is perfect. To speed up scene relights (ALT+L), open the
console (~) and type

$pref::sceneLighting::terrainGenerateLevel=0;

 Now relights will be done with the lowest precision. In general, this is still
pretty good, and it may be all right to leave it here. Note that the highest
value is 4, but this setting can take 50 or more times the length of time it
takes to relight with a setting of 0.

3.14 The GUI Editor

3.14.1 Starting the GUI Editor

1. Select the GUI you wish to start editing in:
• Main Menu (for now start here);
• In-Game (playGui); or
• other . . . anywhere else in your game.

2. Start the GUI Editor by pressing F10.

3.14.2 Examining the GUI Editor
If you have just started the GPGT Lesson Kit and then pressed F10, you will
see pretty much what is shown in Figure 3.58 except the Content Editor will
contain the Main Menu.
 The GUI Editor can get confusing quickly if you don’t know what you’re
doing, or if you don’t pay attention to what you’ve done. As Figure 3.58
shows, there are four areas to the GUI Editor. In clockwise order from the top
left, they are as follows.

1. Content Editor. This is the place where you will be mouse-interacting with
your GUI(s).

 Torque Tools Chapter 3

83

2. Content Tree. This will display the hierarchical (parent-child) relationship
of the controls in the current GUI.

3. GUI Inspector. This inspector is similar in function to the World Editor
Inspector in that it is used to display all the data about a chosen object.
In this case, the object is a selected GUI control (a window, button, slider,
etc.).

4. Toolbar (at top, not labeled). The toolbar provides several major functions,
which will be described shortly.

This all may seem simple enough, but there are a few things to beware of and
a few things you should know before you start.

3.14.3 Things to Beware!
• Hosing up is so easy to do. Please understand that it is very easy to com-

pletely hose up an interface if you are not cautious. That said, it is an excel-
lent idea to make frequent backups of your project.

• I can’t see jack . . . The minimum resolution for editing GUIs is 800×600,
but if at all possible, I suggest editing at 1024×768. You will fi nd that
the Content Tree and Inspector are much easier to use and read at this
resolution.

Figure 3.58.

The GUI Editor screen.

Part II Engine Overview

84

• I’m stuck! It is easy to get stuck while editing GUIs. That is, you may fi nd
yourself in a situation in which you are unable to exit the GUI Editor. This
will happen less and less as you become more familiar with the tool and its
operation. If you do get stuck, you can kill the application.

• Duplicate GUIs (backups). If you edit like I do, you may be accustomed
to creating backup copies of your fi les as you work. You may continue to
do this, but you should not leave them in the current game directory hier-
archy. If you do, TGE will fi nd them. Subsequently, when you go to save,
this will confuse the save dialog when it tries to fi nd the best place to save
the GUI you are editing.

• Start and stop the editor from the same parent GUI. The most common
mistake I made when I started playing around with the GUI Editor was
starting the editor and then later trying to exit after having switched to a
different GUI. For example, try the following.

1. Start the GPGT Lesson Kit and press F10.

2. on MainMenuGui and switch to playGui.

3. Try to exit by pressing F10.

4. Huh? Now the mouse is locked, and the screen didn’t change. Hmmm . . .

5. Press F10 (should be able to move mouse now).

6. on the button with playGui displayed.

7. Switch back to MainMenuGui.

8. Try to exit again by pressing F10.

9. Voilà! Back to the Main menu.

So what happened there? Well, F10 gets us in and out of the editor, but if we
have changed the current menu, it exits into the new editor in order for us to
test it. The reason the screen seemed to lock up was because the playGui was
not properly activated. The important thing to remember is this: when you
are fi nished editing GUIs, switch back to the GUI you started from, and then
exit the GUI Editor.

3.14.4 GUI Editor Basics
We will review the user-interface devices. Then, we will discuss the mechan-
ics of control manipulation, GUI navigation, how to add new controls to an
existing GUI, and how to create a new GUI.

GUI Editor Devices

As with the World Editor, there are graphic controls that provide you with
feedback while editing. There are far fewer of these devices in the GUI Editor,
but it is important to give them a quick review (see Table 3.18).

 Torque Tools Chapter 3

85

Table 3.18.

GUI Editor graphic
controls.

Device Description

Single Select

When you have a single control
selected, eight black squares will
show up. The little squares are
handles that allow you to resize
the control.

Multi-Select

Similar to the single select is
the multi-select. When you have
multiple objects selected, each
object will have eight squares
along the perimeter of the object.
The difference is that when the
squares are white, it means that
you cannot resize. Only dragging
is allowed.

APPLY OK

When you have a single control
selected and are editing fields in
the Inspector, the handles turn
gray. If they have a white outline,
it means APPLY will take effect if
clicked.

APPLY OK

When you have multiple controls
selected and are editing fields
in the Inspector, the handles on
all selected controls turn gray.
If they have a black outline, it
means APPLY will not take effect
if clicked.
Think of the black outline as
a warning. Sometimes it isn’t
obvious when objects get
crowded together.

Add Parent

The final device is the Add Parent
box. Hierarchy in your GUI is an
important concept. In order to
create hierarchy (add controls to
existing controls vs. to the top
parent), you must select an Add
Parent. The Add Parent box gives
feedback, showing which control
is the current Add Parent.

Part II Engine Overview

86

3.14.5 Control Manipulation
Now that we’ve covered the basic GUI Editor devices, let’s talk about how we
manipulate controls; i.e., how do we resize, move, etc. See Tables 3.19, 3.20
and 3.21. Unlike the World Editor, the GUI Editor has no menu, so you have
to use hot keys to cut, copy, and paste. Naturally, these hot keys are the same
in both editors.

Mouse
Resizing

 an object(s) in either the Control Editor or the Content Tree. (Multi-
select only works in the Control Editor.)
AND

 a handle and drag.

Mouse
Moving

 an object(s) in either the Control Editor or the Content Tree. (Multi-
select only works in Control Editor.)
AND

 a selected object(s) (not on a handle) and drag.

Keyboard
Moving

 an object(s) in either the Control Editor or the Content Tree. (Multi-
select only works in Control Editor.)
AND
(Up, Down, Left, or Right) Arrow Key moves one pixel in selected
direction.
OR
SHIFT + (Up, Down, Left, or Right) Arrow Key moves ten pixels in
selected direction.

Align Left
(CTRL + L)

Align all
selected controls’
left edges to left
edge of leftmost-
selected control.

Before After

Table 3.20.

Moving and resizing
(Layout menu).

Table 3.19.

Moving and resizing
(mouse and keyboard).

 Torque Tools Chapter 3

87

Align Right
(CTRL + R)

Align all
selected controls’

right edges
to right edge
of rightmost-

selected control.

Before After

Align Top
(CTRL + T)

Align all selected
controls’ top
edges to top

edge of topmost-
selected control. Before

After

Align Bottom
(CTRL + B)

Align all selected
controls’

bottom edges
to bottom edge
of bottommost-
selected control.

Before

After

Center
 Horizontally

Centers all
selected controls

horizontally
within rectangle
defined by edges

of outermost-
selected controls.

Before After

Table 3.20 (continued).

Part II Engine Overview

88

Space
Horizontally
Evenly spaces

controls
horizontally

within bounds
of leftmost and

rightmost edges.

Before

After

Space
 Vertically

Evenly spaces
controls vertically

within bounds
of topmost and

bottommost
edges.

Before After

Bring to Front
Raises control so
that it displays

on top (in front)
of any siblings.

Before After

Send to Back
Lowers control

so that it displays
below (behind)
any siblings.

Before After

Table 3.20 (continued).

 Torque Tools Chapter 3

89

Cut CTRL + X Single or multiple controls OK.

Copy CTRL + C Single or multiple controls OK.

Paste
(to current Add Parent)

CTRL + V Please note that, if controls are selected,
the paste will happen (to currently selected
Add Parent), but you will not see the pasted
objects if they are not normally visible unless
selected.

Add Parents

I’ve mentioned the term Add Parent a few times now, but to be absolutely
clear, I’m going to discuss it one more time. In order to add a new control as
a child of another control (parent), you must have selected the parent control
by right-clicking it. If properly done, the control that you wish to be the parent
will get a yellow and a blue outline (the yellow might look green). Now, any
added controls will automatically become children of the Add Parent control.
There is no mouse-only method of moving a child into a parent. You’ll either
have to:

1. cut, select Add Parent, and paste, or

2. edit the GUI fi le by hand later.

GUI Navigation

In order to edit an existing GUI, we need to know how to get to it; i.e., we
need to know how to load a GUI into our Content Editor. If you have been fol-
lowing this guide in order, you have already done this. However, even if you
have, there are a few ways to do it.

• If you want to edit the Main menu, simply start the GPGT Lesson Kit and
open the GUI Editor.

• If you want to edit the playGui, simply start the GPGT Lesson Kit, load the
“World Editor Training” mission, and open the GUI Editor.

What, however, do you do if you want to edit a GUI that isn’t easy to get to
work with the Load Mission dialog, for example? Let’s say we want to add
a label to the existing Create New GUI dialog. How would we get to it if we
started editing in the Main menu? Assuming that you are at the Main menu:

• open the GUI Editor (F10), and

• NewGuiDialog from the middle pull-down (above Content Editor).

At this point, the Create new GUI dialog should be visible in the Content Edi-
tor (see Figure 3.59). That is basically it. Just select whatever GUI you need
to edit, and there you are.

Figure 3.59.

Create New GUI dialog.

Table 3.21.

Cutting, copying, and
pasting.

Part II Engine Overview

90

Figure 3.64. Saving the GUI.

 Before we move on, get yourself back to the MainMenuGui and close the
GUI Editor (F10).

3.14.6 Adding Controls to an Existing GUI
Adding a new control to an existing GUI is very simple. That is, adding the
graphical portion is simple. We’ll cover hooking scripts to your new controls
a little later. For now, do the following.

• Start the GPGT Lesson Kit.

• Open the GUI Editor (F10).

• Expand the Content Tree by clicking on the [+].

• on MainMenuGui (top of tree) to select it as your Add Parent. Your Con-
tent Tree will look something like Figure 3.60. Also note that the main win-
dow now has a yellow and a blue outline, meaning it is the Add Parent.

• on the New Control button and select GuiButtonCtrl from the pop-up
list.

• A new button will appear in the upper corner of the Content Editor. Drag it
so that it is on the right side of your Quit button (see Figure 3.61).

• In the Inspector, give your new button the name “My First Button.” on
APPLY and verify that the button now appears in the Content Tree and that
it has a name (Figure 3.62).

• Now, in the Inspector, make the command equal to “ quit();” and on
APPLY again (see Figure 3.63).

• Now, to save your work select File � Save GUI, select MainMenu.gui, then
 on the Save button in the dialog (see Figure 3.64).

Figure 3.60.

Content Tree.

Figure 3.61.

New button.

Figure 3.62. “My First Button.”

Figure 3.63. Quit command.

 Torque Tools Chapter 3

91

 At this point, your changes to the GUI are fi nal. Let’s test it.

• Get out of the GUI Editor (F10).

• Exit the GPGT Lesson Kit.

• Restart the GPGT Lesson Kit.

• What happened? If you followed the instructions above, you placed spaces
in the name of your new button. This is a no-no. If you restarted with-
out deleting the DSO fi les (as instructed), the old menu is now showing,
and the new button is not showing. If you deleted the DSO fi les and then
restarted, the splash screen hung when switching to the main menu. In
the former case, you can simply press the Quit button and keep reading.
In the latter case, open the console by pressing the tilde (~) key, and then
type quit; followed by ENTER.

All right, so we’ve killed the game, but we still have to fi x our problem. To do
so, follow these steps.

1. Open the fi le “gpgt\client\Interfaces\mainMenu\mainMenu.gui”.

2. Search for “new GuiButtonCtrl(My First Button) {”.

3. Replace it with “new GuiButtonCtrl(MyFirstButton) {”.

4. Start the GPGT Lesson Kit.

5. Click your new button, and the GPGT Lesson Kit quits.

 If you are observant, at this point you have a big question. Namely, why
did the button (seem) to move from where you put it to somewhere else? That
is, we placed it near the Quit button, but then when we ran the app it, well,
. . . it moved! This brings us to the important discussion of horizSizing and
vertSizing.

horizSizing and vertSizing

In general, these settings defi ne how a control will be resized or reposi-
tioned when the control’s parent container is resized. As a general rule, you
can assume that the root container (the Canvas) will have a starting size of
640×480, and it (and all of the controls it contains) will be resized/reposi-
tioned from this state.
 As any container is resized, all of its child controls are resized and/or
repositioned according to the horizSizing and vertSizing properties of each
control. If any of those controls are containers with children of their own, they
too will be resized and/or repositioned in the same fashion. This behavior
cascades down the parent-child tree of controls. This provides a basic layout
capability.
 The basic settings for these two properties are: center, relative, left/top,
right/bottom, and width/height. Each is explained below.

Part II Engine Overview

92

Figure 3.65.

Creating a parent.

• Center. This setting will center the control in its container. Only the con-
trol’s position is altered—the control’s extent (width and height) remains
the same.

• Relative. When this setting is applied, the control in question will be
resized and repositioned to maintain the same size and position relative
to the parent container. For example, if the parent doubles in size, so will
this control; additionally, the space between the control and the parent’s
borders will double.

• Left/Top and Right/Bottom. These settings only affect position. Extent is
unaffected. Simply put, the change in size of the parent is applied to the
distance between the control and the specifi ed edge of the screen. This
means that the control will maintain its distance from the opposite edge.

• Width/Height. These settings result in changes to the extent of the control
only. The difference in size of the containing control is applied directly to
the extents of the control itself.

3.14.7 Creating a New (Parent) GUI
Now, we’ll learn how to create a new GUI. I warn you in advance that there
is more to this topic than might seem apparent. For now, I’ll demonstrate the
mechanics of creating a new page. In later chapters, I’ll go into greater detail
on how the GUI system works.
 Let’s create a new dialog box. The dialog will have a label and a single
button.

The Parent
• Start the GPGT Lesson Kit.

• Open the GUI Editor (F10).

• Select File � New Gui.

• In the dialog that comes up, rename the GUI to MyFirstGui (no spaces) and
 on Create (see Figure 3.65).

That’s it for creating the parent. Now let’s add some controls.

The Dialog
If you have not yet read through Section 3.14.6, “Adding Controls to an Exist-
ing GUI,” please stop and do so. If you have, then do the following.

• Add a new GuiWindowCtrl control and, using the Inspector, modify the
following parameters as indicated.
• Name: MyFirstWindow
• position: 200 100
• extent: 350 250

 Torque Tools Chapter 3

93

• Select the MyFirstWindow control as the Add Parent.

• Add a new GuiTextCtrl control and using the Inspector modify the follow-
ing parameters as indicated.
• Name: MyFirstLabel
• position: 145 5
• extent: 60 20
• text: My First Gui (notice the spaces)

• Add a new GuiButtonCtrl control and, using the Inspector, modify the fol-
lowing parameters as indicated.
• Name: MySecondButton
• position: 150 100
• extent: 50 50
• command: Canvas. setContent(mainMenuGui);
• text: Cool

• Save this GUI under the name MyFirstGui.gui in the “gpgt/client/interfaces”
directory.

Now, quickly test your new GUI by pressing F10. Note that earlier I warned
you not to do this. In fact, it is OK to do so, but you must understand what
is happening. We’re not really trying to quit the editor. We want to temporar-
ily suspend it so we can test our GUI. It just so happens that this suspending
quits the GUI Editor if we press F10 while editing the same page we entered
the GUI Editor on. It can be confusing. Your new dialog should look like the
one in Figure 3.66.
 The next step is hooking up our dialog so
we can load and unload it in the GPGT Lesson
Kit.

3.14.8 Loading New GUIs
Now that we’ve successfully created our fi rst
dialog box, let’s make it available in the GPGT Lesson Kit. In other words, let’s
use it. If you have been following the guide in order, you have already created
a new button in the Main menu. Using what you have already learned, please
make the following changes to the button.

• Select the existing GuiButtonCtrl control named MyFirstButton and, using
the Inspector, modify the following parameters as indicated.
• command: Canvas. setContent(MyFirstGUI);
• text: Open Dialog

• Save the GUI.

Figure 3.66.

Creating a dialog box.

Part II Engine Overview

94

Let’s test it by pressing F10 to exit the GUI Editor.

• on the relabeled button Open Dialog should start our new dialog GUI.

• on the button Cool should return you to the Main menu.

 Notice that I said should above. If you quit the GPGT Lesson Kit between
the sections “The Dialog” and “Loading New GUIs,” then when you on the
Open Dialog button, nothing will happen. Why? Because it didn’t get loaded.
In order for any GUI to be available, it needs to be loaded before you try to
wake it. This loading is done in various places. The organization of GUI load-
ing scripts is beyond the scope of this section, but for completeness, I’ll show
you how to get your new GUI loaded.
 Open the fi le “GPGT LessonKit\gpgt\client\init.cs” and search for the
 following code.

// Load up the shell GUIs
 exec(“./interfaces/mainMenu/loader.cs”);

Modify the code so it looks like this:

// Load up the shell GUIs
exec(“./interfaces/mainMenu/loader.cs”);
exec(“./interfaces/MyFirstGUI.gui”);

Save the fi le. Restart the GPGT Lesson Kit. Now, you can switch back and
forth between the newly created dialog and the Main menu.

3.14.9 Summary
We started this chapter by learning that TGE provides two basic editors, the
World Editor for editing the game world, and the GUI Editor for editing inter-
faces. Next, we summarized the eight tools contained in the World Editor.
 After the introduction, and for the bulk of the chapter, we worked our way
through the individual World Editor tools.

• The Manipulator. A full-screen editor made for tweaking the scene arrange-
ment.

• The Inspector. A partial-screen editor created for tweaking the properties
of existing objects in the scene.

• The Creator. A partial-screen editor with an object selection tree used to
create new objects.

• The Area Editor. A partial-screen editor used to adjust the mission bound-
aries, to mirror the terrain, and for quick navigation of the camera/player
position within a mission.

 Torque Tools Chapter 3

95

• The Terrain Editor. A partial-screen editor using various brushes to directly
manipulate terrain geometry.

• The Terraformer. A partial-screen editor containing algorithmic base, gen-
erator, and fi lter elements used to create (or import) complex terrain geom-
etries.

• The Terrain Texture Editor. A partial-screen editor utilizing sophisticated
algorithmic generators and fi lters to paint the terrain with stunning detail.

• The Terrain Painter. A partial-screen editor utilizing a palette and brushes
for making modifi cations to generated terrain textures, and/or for the
wholesale editing of terrain textures by hand.

Having completed the long World Editor tools discussions, we ended the
chapter with a detailed walk-through discussing the use of the GUI Editor.
In this discussion, we learned about creating and saving new interfaces.
We learned about placing controls and modifying their dynamic scaling and
anchor behaviors. Finally, we made a simple interface to exercise and cement
our newfound knowledge.
 At a few points along the way, we took the time to make use of TGE edi-
tors/tools to create content for the prototype of the game we will be complet-
ing at the end of this guide.
 All in all, we accomplished quite a lot in this chapter. At this point, you
should already be able to open the kit, start the editors, and with some con-
fi dence in your results, poke about and start to create the worlds in your
mind.

97

Introduction to TorqueScript

This chapter offers an introduction to the Torque Game Engine scripting
language, often referred to simply as TorqueScript. Besides introducing the
TorqueScript language itself, this chapter will provide a foundation to build
on when discussing other TGE topics.
 Before starting, please understand that it is assumed you are familiar with
some basic programming concepts. You do not need to be a guru, but having
a basic familiarity with C/C++ and object-oriented programming principles
will greatly facilitate learning TorqueScript.

4.1 TorqueScript Concepts and Terminology

4.1.1 To Script or Not To Script?
A frequent question I’ve seen in the forums is, “Do I need to use scripts?” No,
you really don’t need to use the built-in scripting language if you don’t want
to, but I’m 99 percent sure that, once you do start to use TorqueScript, it will
be apparent that scripting in Torque is by far easier and more effi cient than
coding and recompiling every change you wish to make.
 Even though the engine is written in C++ and assembly language, most
of your game will be programmed in TorqueScript, denoted by fi les with the
*.cs extension. The advantages of using a scripting language instead of cod-
ing everything in C++ are that your game does not have to be recompiled
every time you make a change; it’s a more-targeted, higher-level game lan-
guage than C++; and you don’t have to worry about memory management.
A popular misconception is that scripts are slow; this is not necessarily true.
TorqueScript is compiled into byte-code before being executed and is surpris-
ingly fast. While C++ code will always be faster, the fl exibility of scripting is
superior for most gameplay-related functions.
 Perhaps you doubt me? Or, maybe you aren’t familiar with scripting in
general. In either case, let’s talk about scripting, and I’ll see if I can set you on
the right course.

What Is Scripting?

What exactly is a scripting language? What can you do with scripts? And why
are they used so much in modern game development?

Chapter 4

Part II Engine Overview

98

 Scripting languages are programming languages designed to enable script-
ing. Scripting is the act of using preexisting [engine] components to accom-
plish new tasks. In other words, we use a scripting language to access features
in the engine and then use those features to provide a game experience.
 Generally, scripting languages are interpreted, not compiled (like C++
and other languages). This makes scripted tasks somewhat slower than com-
piled tasks, but we make this trade in order to gain fl exibility and visibility, as
well as ease of use. Because scripting languages also allow you to modify your
program without having to recompile it, we are able to rapidly prototype and
repair code. This speeds development signifi cantly.
 Often, scripting languages allow you to write code without worrying
about nitty-gritty details like data types or memory management. This is both
a boon and a bane. It is a boon as it simplifi es many programming tasks, but
a bane because it allows us to make mistakes that a strict compiled language
and its compiler would fi nd.
 Given the above, it should be easy to see why scripting languages are used
so heavily in modern games. However, if you are not convinced, consider
these possible uses for a scripting language.

• Prototyping. During the development of your game, you will often need
to test out ideas. New gameplay features might come up, or features in the
original design might not work as well as envisioned and will need to be
modifi ed or replaced. To be effi cient, you will need the ability to quickly
test all these ideas, so you can decide whether to keep or modify each of
them. Creating these quick tests is called prototyping. Scripts are great for
prototyping because they are so quick to code with, test, and modify. After
you prototype in script, performance-critical functionality can be ported
over to C++ for fi nal inclusion in the game.

• Debugging. Scripts are great for debugging, too. Because scripts are easily
modifi ed (on the fl y), you can identify problems, address them, and retest
without having to recompile and, in some cases, without even having to
restart the game. Scripts can also be used to quickly create test units that
stress other pieces of code to identify otherwise hard-to-fi nd problems.

• Game customization and tweaking. The look and feel of a game’s inter-
face and many of its gameplay mechanics normally go through tweaks and
revisions during the course of development. Thus, it is best to place most
code related to these areas in script. This helps to rapidly test different
looks and gameplay behaviors, as mentioned in the point on prototyping,
above. There is a side benefi t to developing your game this way as well.
Having code related to your interface and gameplay in scripts allows end-
users to customize your game to their liking (but only to the extent you
choose to allow them when playing the offi cial version of your game). Also,
these types of script changes are the basis of many game mods. Mods are

 Introduction to TorqueScript Chapter 4

99

very popular in games like Unreal, Quake, and Tribes. Taking Tribes 2 as an
example, War 2002, Renegades, and Team Aerial Combat are all script-based
mods. From a coding perspective, mods can be very simple to implement
when working with games that incorporate fl exible scripting languages and
use them for much of the game’s code. Implementing your game in such a
fashion can obviously be a big draw for potential players that are interested
in playing and/or creating mods. This allows user communities to breathe
new life into your game, extending its shelf life.

• Writing non–performance-critical functionality. Really, any piece of
functionality that won’t have a big impact on performance can be coded in
script. Writing render pipelines in script isn’t a good idea, but writing code
to modify the behavior of an existing pipeline is perfectly feasible and quite
common.

 Scripting makes sense in many more situations. The inclusion of scripting
languages is a powerful feature of modern game engines, and developers are
wise to leverage the advantages of scripting at every sensible opportunity.

4.1.2 Features We Need
If you accept that scripting is useful, what should you be looking for in a
scripting language? What functionality should it provide? At minimum, a
scripting language for use in a game should provide the following features.

• Basic programming-language features. The scripting language should
provide all of the basic features common to modern programming lan-
guages, such as powerful variable types, basic operations (addition, sub-
traction, etc.), standard control statements (if-then-else, for, while,
etc.), and subprograms (functions, fi le inclusion).

• Access to engine structures. This is a critical feature. For a game engine’s
scripting environment to be of use, it must provide some kind of interface
to manipulate the core engine functionality and structures. The scripting
system should allow access to the rendering, audio, physics, AI, and I/O
systems. It must also allow the creation and deletion of objects and the
defi nition of new functions.

Some other (very) nice features to have are the following.

• Familiar and consistent syntax. Ideally, the syntax of a scripting language
is familiar, meaning it is similar to the syntax of a language many program-
mers are already familiar with, for example, C or C++.

• Object-oriented functionality. Object-oriented programming has been a
revolution in the art and science of software engineering. Scripting lan-
guages that provide object-oriented functionality offer many benefi ts,
including the following.

Part II Engine Overview

100

• Encapsulation. Provides a means of limiting access to code and data
(not directly supported in TorqueScript).

• Inheritance. Provides a means of creating new objects from the defi ni-
tions of existing engine objects and/or scripted objects.

• Polymorphism. Allows us to override the default behavior of derived
object code, whether the object is derived from engine objects or other
scripted objects.

• On-demand loading and scoping. Why have all the code in memory at
once when it can be loaded as needed? Besides saving memory, scripting
languages that allow the dynamic loading and unloading of pieces of code
also make it easy to override a program’s functionality on the fl y.

• Means of speeding up scripted code. As noted above, scripted code is
not usually compiled—it is simply interpreted at run time. A feature that
many common scripting languages (Perl, Tcl, VBScript, Java) provide is the
ability to compile scripts into byte-code. This byte-code is then executed
on a virtual machine. The benefi ts of this are size and speed. Byte-code is
(normally) smaller than and executes faster than interpreted code.

4.2 What about TorqueScript?
All right, enough generalities. What is Torque’s scripting language like? Torque-
Script is a strong and fl exible language with syntax similar to C++. It pro-
vides all of the features listed above, including those on the “would be nice”
list. The remainder of this chapter is dedicated to script-only functionality.
 Please note that all the pertinent functions both for scripting and for
exposing engine features to the console are covered in the “TorqueScript Quick
Reference” appendix.

4.2.1 The Console and Sample Scripts
In order to facilitate your learning experience, many sample scripts are
included with the GPGT Lesson Kit. These scripts are organized by chapter.
Furthermore, all labeled scripts (labeled in the text of this document) can be
run from the console simply by typing the supplied function name.
 For example, the following sample script:

//bt99();

 echo(“Torque Rocks”);
echo (1 + 1);

can be run by typing bt99(); into the console command line and then press-
ing ENTER.

 Introduction to TorqueScript Chapter 4

101

 To bring up the console, fi rst, start the GPGT Lesson Kit, then hit the tilde
key (~) in the upper left corner of the US-standard keyboard (next to the 1).
The console will come right up (Figure 4.1).

4.2.2 The Sample Script Console
In addition to prewritten scripts, you may at any time bring up a special appli-
cation supplied with the Lesson Kit, the Sample Script Console. This applica-
tion has an editor window where you can type (or paste) a script and then
execute it at the push of a button. The sample console will execute your script
and show you the results.
 To start this application, just run the Lesson Kit and press the Sample
Script Console button.

Figure 4.1.

Script console.

Some of the sample scripts rely on the presence of datablocks. Thus, it will
be necessary for you to first load the “3D Lessons” mission, before running
them. As a reminder, the prewritten scripts will print a warning if you are not
running the lessons mission:

Note: If you are not running the Lesson Sampler
Mission, some examples may not work. Please click
‘Start Mission..’ from the GPGT Main Menu and select ‘3D
Lessons’ mission.

Part II Engine Overview

102

4.3 TorqueScript Features
This scripting language has the following features.

• Type-insensitive. In TorqueScript, variable types are converted as neces-
sary and can be used interchangeably. TorqueScript provides several basic
literal types, which are described later in this chapter.

//bt00();

if(“1.2” == 1.2) {
 echo(“Same, TorqueScript is type-insensitive”);
}
else {
 echo(“Different, what!?”);
}

 The code above will echo “Same, TorqueScript is type-insensitive.”

• Case-insensitive. TorqueScript ignores case when interpreting variable and
function names.

//bt01();

$a = “An example”;
echo($a);
echo($A);

 This code will echo “An example” twice.

• Statement termination. Statements are terminated with a semicolon as in
many modern programming languages (C++, Java, JavaScript, etc.).

$a = “This is a statement”;

 If you do not include the semicolon at the end of a TorqueScript statement,
an error will be echoed to the console.

• Full complement of operators. The complete list of TorqueScript’s opera-
tors is given in the appendix. TorqueScript provides all the basic operators
common to most programming languages, along with a few more advanced
operators.

• Very complete set of supplemental string, math, and other functions. In
addition to the built-in operators, TorqueScript comes with a very complete
set of console functions that handle various string, math, and other opera-
tions. Table 4.1 lists some of the most commonly used functions. Please
note that these functions are fully described later in the book (in Chapter
9, “Game-Setup Scripting,” and Chapter 10, “Gameplay Scripting”), and
a quick-reference with complete syntax, description, and sample usage is
provided in electronic form with this guide.

 Introduction to TorqueScript Chapter 4

103

Table 4.1

Commonly used Torque
console functions.

Strings

getSubStr ltrim rtrim strchr

strcmp stricmp stripChars stripTrailingSpaces

strlen strlwr strpos strreplace

strstr strupr trim

Words, Records, Fields

detag firstWord getField getFieldCount

getFields getRecord getRecordCount getRecords

getTag getWord getWordCount getWords

NextToken removeField removeRecord removeWord

restWords setField setRecord setWord

Files

expandFileName fileBase fileExt fileName

filePath findFirstFile findNextFile getFileCount

getFileCRC isFile isWriteableFileName

Vectors

VectorAdd VectorCross VectorDist VectorDot

VectorLen VectorNormalize VectorOrthoBasis VectorScale

VectorSub

Matrices

MatrixCreate MatrixCreateFromEuler MatrixMulPoint MatrixMultiply

MatrixMulVector

Random Numbers

getRandom getRandomSeed setRandomSeed

Math

mAbs mAcos mAsin mAtan

mCeil mCos mDegToRad mFloatLength

mFloor mLog mPow mRadToDeg

mSin mSolveCubic mSolveQuadratic mSolveQuartic

mSqrt mTan

Part II Engine Overview

104

• Full complement of control structures. As with any robust language,
TorqueScript provides the standard programming constructs: if-then-
else, for, while, and switch.

//bt02();

for($a=0; $a<5; $a++) {
 echo($a);
}

• Functions. TorqueScript provides the ability to create functions with the
optional ability to return values. Parameters are passed by value and by
reference (see Section 4.3.5 for a detailed description and examples).

• Provides inheritance and polymorphism. TorqueScript allows you to
inherit from engine objects and to subsequently extend or override object
methods (see Section 4.3.6 for a detailed description and examples).

• Provides on-demand loading and unloading of functions. TorqueScript
supports a very cool feature that allows you to load and unload functions
as needed (see Section 4.3.8 for a detailed description and examples.)

• Provides namespaces. Like C++, TorqueScript supports the concept of
namespaces. Namespaces are used to localize names and identifi ers to
avoid collisions. This means, for example, that you can have two different
functions named doIt() that exist in two separate namespaces, but which
are used in the same code (see Section 4.3.9 for a detailed description and
examples).

• Compiles and executes byte-code. As a bit of icing on the cake, the
TorqueScript engine compiles scripts prior to executing them, giving a
speed increase as well as providing a point at which errors in scripts can
be reasonably found and diagnosed. This compilation is done just-in-time
and results in p-code, which is not the same as compilation of C++ or C,
which result in machine code.

With this overview of TorqueScript’s features, we can begin taking a detailed
look at how TorqueScript works. We’ll start by examining how TorqueScript
handles the basics—variables, operators, and control statements. With these
topics covered, we’ll move on to cover in detail the more advanced features
of TorqueScript.

4.3.1 Variables
Variables come in two fl avors in TorqueScript: local and global. Local vari-
ables are transient, meaning they are destroyed automatically when they go
out of scope. And what is scope? Scope is a term used to refer to the block
of code a variable is defi ned in. For example, if we have a function, and

 Introduction to TorqueScript Chapter 4

105

we declare a local variable inside of that function, the local variable will be
destroyed as soon as the function is done processing. When this happens,
we say the variable has “gone out of scope.” So, local variables only exist in
their local scope—the function they are defi ned in. A piece of code inside a
different function is not able to see the local variable. Global variables, on the
other hand, are permanent and exist throughout the entire program they are
defi ned in.
 TorqueScript specifi cally marks local and global variables with special
characters so that they are easy to tell apart. The syntax is as follows.

%local_var = value1;
$global_var = value2;

 In TorqueScript, variables do not need to be declared before you use them.
If a piece of code attempts to evaluate a variable that was not previously cre-
ated, TorqueScript will declare the variable automatically.

//bt03();

for(0 ; %a < 5 ; %a++) {
 echo(“%a == ” , %a);
}

echo(“%a == ” , %a);

Let’s take a closer look at what this code does. On its fi rst pass through the
loop, the above code creates a new variable named %a. It must do so because
%a has not yet been created when the loop tries to use it for the fi rst time.

1. The echo() command inside the loop will print the value contained in the
variable %a four times, echoing the values “”, 1, 2, 3, 4, and 5 as the loop
iterates and %a’s value increases. “” is known as the null string. The fi rst
time through the above loop, %a is not yet defi ned, so TGE prints the null
string.

2. After the loop fi nishes, %a will be echoed once again, by the line after the
loop.

 That is a basic description of how local and global variables work in
TorqueScript. However, we have not yet discussed the rules for naming
 variables.
 Variable names may contain any number of alphanumeric (a..z, A..Z,
0..9) characters, as well as the underscore (_) character. However, the fi rst
character in a variable’s name cannot be a number. You may end variable

In computer-
science classes, we

are taught time and
time again that global
variables are bad.

Used to replace or
circumvent a feature of
the language you are
programming in, they
are bad.

In languages like C,
we have the ability to
pass values between
various levels of scope
(either file or function)
using pointers and
references.

As a scripting
language, TorqueScript
does not support these
constructs: everything
is passed by value.
Instead, the global
variable construct is
supplied. Its purpose is
to make data available
across any and all
scopes and contexts. In
short, globals are not
bad, and you should
use them while writing
scripts for Torque.

Part II Engine Overview

106

names with a number, but if you do, you must be especially careful with array
names. For further explanation, see “Arrays” in Section 4.3.2.
 Lastly, local and global variables can have the same name but contain
different values. The following code will echo GPGT , GPGT 1, GPGT 2, and
GPGT 3.

//bt04();

$a=”GPGT”;

for(0 ; %a < 4 ; %a++) {
 echo($a , “ ” , %a);
}

4.3.2 Data Types
TorqueScript implicitly supports several variable data types: numbers, strings,
Booleans, arrays, and vectors. Each type is detailed below.

 Numbers

Nothing mysterious here. TorqueScript handles your standard numeric types.

123 (integer)
1.234 (floating point)
1234e-3 (scientific notation)
0xc001 (hexadecimal)

 Strings

This is for string data.

“abcd” (string)
‘abcd’ (tagged string)

Standard strings, in double quotes, behave as you would expect. Try these
examples:

//bt05();

echo(“Hello!”);
echo(“1.5” + “0.5”);

 Strings that appear in single quotes, ‘abcd’, are treated specially by
TorqueScript. These strings are called tagged strings, and they are special in

 Introduction to TorqueScript Chapter 4

107

that they contain string data but also have a special numeric tag associated
with them. Tagged strings are used for sending string data across a network.
The value of a tagged string is only sent once, regardless of how many times
you actually attempt the sending. On subsequent sends, only the tag value is
sent. Tagged values must be detagged when printing.
 Try the following examples.

//bt06();

$a=“This is a regular string”;
$b=‘This is a tagged string’;
echo(“Regular String: ” $a);
echo(“Tagged String: ” $b);

 Now that we know how to name strings and assign them values (normal
or tagged), let’s take a look at the special string operators TorqueScript offers.

 String Operators

There are four string operators.

@ (concatenates two strings)
TAB (concatenation with tab)
SPC (concatenation with space)
NL (newline)

To concatenate two strings means, simply, to stick them together. For exam-
ple, if we concatenate the strings “Hi” and “there”, we end up with a big
string reading “Hithere”.
 The basic syntax for these string operators is “string1” op “string2”.

//bt07();

echo(“Hi” @ “there.”);
echo(“Hi” TAB “there.”); // Note: TAB prints as ^ in console
echo(“Hi” SPC “there.”);
echo(“Hi” NL “there.”);

 Escape Sequences

There is one last area you need to know about in order to work with strings
in TorqueScript: escape sequences.

\n (newline)
\r (carriage return)

You may find
it odd that the

last line shows a
blank. This is because,
although we have
created the tagged
string, it has not been
transmitted to us.
You can only detag a
tagged string that has
been passed to you.

Part II Engine Overview

108

\t (tab)
\c0..\c9 (colorize subsequent text)
\cr (reset to default color)
\cp (push current color on color stack)
\co (pop color from color stack)
\xhh (two digit hex value ASCII code)
\\ (backslash)

As in C, TorqueScript allows you to create a new line and tabs using the
tried and true backslash character. These are called escape sequences. Escape
sequences are used to indicate to the string-processing system that a special
character is being read.
 Additionally, for data that is printed to the console and GUIs, you can
colorize by using \cn, where n is a value between 0 and 9, representing a
predefi ned set of colors.

//bt08();

echo(“\c2ERROR!!!\c0 => oops!”);

The code above prints the line ERROR!!! => oops! with the fi rst part in red
and the second part in black. Going into detail about console output color-
izing is beyond the scope of this chapter, but a little experimentation will go a
long way toward helping you understand how the system works.

 Booleans

Like most programming languages, TorqueScript also supports Booleans.
Boolean variables have only two values—true or false.

true (1)
false (0)

Again, as in many programming languages, the constant true evaluates to the
number 1 in TorqueScript, and the constant false evaluates to the number 0.
Be careful, however, when comparing numeric values to the Boolean values
true and false: only the values 1 and 0 will compare correctly. That is, in
TorqueScript, the following statement will echo 0.

echo(100 == true);

Numbers, strings, and Booleans: those are the basic data types in many pro-
gramming languages, and TorqueScript supports them all. Next, we’ll look at
higher-level variable data types: arrays and vectors.

 Introduction to TorqueScript Chapter 4

109

 Arrays

It is a common misconception that TorqueScript does not support multi-
dimensional arrays. This is not true, as the code below shows. The reason
many people get confused about multidimensional arrays in TorqueScript is
that there are multiple ways to address the array. As you can see, you can
separate the dimension indices (M and N) with commas or underscores.

$MyArray[N] (one-dimensional array)
$MyMultiArray[N,N] (multidimensional array)
$MyMultiArrayM_N (multidimensional array)

You must understand that in TGE all variables are eventually interpreted as
strings. Furthermore, square brackets are removed, and commas are con-
verted to underscores during the interpretation process. Underscores remain
untouched. The real purpose of the brackets, commas, and underscores is that
they function as “composers;” i.e., they help build the string from its various
components. This is where the power of TorqueScript’s arrays comes in to
play. Consider the following code.

//bt09();

$TestVarEDO = 10;
$substring = EDO;
echo($substring); // prints EDO
echo($TestVar[$substring]); // prints 10

What we have done here is use the square brackets to compose a variable
name on the fl y.
 There are a couple more things to know about TGE arrays.

1. $a and $a[0] are separate and distinct variables.

//bt10();

$a = 5;
$a[0] = 6;
echo(“$a == “, $a);
echo(“$a[0] == “, $a[0]);

 Run this code, and you will see that $a and $a[0] are distinct in the out-
put.

2. $MyArray0 and $MyArray[0] are the same. It may be surprising, but
TorqueScript allows you to access array indices without using the common
bracket [] syntax.

The use of
the square

bracket operator
to concatenate
(compose) variable
names on the fly is very
useful in TorqueScript,
but it should only be
used when the usage
does not obfuscate or
otherwise render the
script unreadable to
others.

We will in fact take
advantage of this
scripting feature in the
guide, but I will explain
my reasoning before
doing so.

Part II Engine Overview

110

//bt11();

$MyArray[0] = “slot 0”;
echo ($MyArray0);
$MyArray[1] = “slot 1”;
echo ($MyArray1);
$MyArray[0,0] = “slot 0,0”;
echo ($MyArray0_0);

Now that we have a basic understanding of arrays, it’s time to move on to
vectors.

 Vectors

This helpful data type is used throughout Torque.

“1.0 1.0 1.0 1.0” (4 element vector)

For example, many fi elds in the World Editor take numeric values in sets of 3
or 4. These are stored as strings and interpreted as vectors. There is a whole
set of console operations for manipulating vectors. Also, vectors are taken
as input for many game methods. In the following example, two vectors are
added together using the console function Vector Add().

//bt12();

$srcRay = “1.0 0.0 1.0”;
$destRay = “1.0 6.0”;
echo(Vector Add($srcRay , $destRay));

Remember, TorqueScript does not support pointers or references. This means
that all functions return values. In the above code, Vector Add() is taking
two vectors as inputs and returning a new vector as an output.
 We could alternately write the above code as follows.

$srcRay = “1.0 0.0 1.0”;
$destRay = “1.0 6.0”;
$resultVec = Vector Add($srcRay , $destRay);
echo($resultVec);

Either of the above code snippets will output 2 6 1, which represents the
vector <2 , 6 , 1>, the result of adding the vectors <1.0 , 0.0 , 1.0> and
<1.0 , 6.0>.

 Introduction to TorqueScript Chapter 4

111

Bad Vector Math

A common mistake among beginning Torque scripters is something like the
following.

echo(“1 2 3” + “4 5 6”); // Wrong!

The inexperienced scripter might expect the resultant output to be 5 7 9.
Instead, the output will simply be 5. Why? Because the built-in operators
only look at the fi rst element of each vector. To correctly add (or otherwise
manipulate) vectors, use the supplied vector functions (full syntax given later
and in the appendices): VectorAdd, VectorCross, VectorDist, Vector-
Dot, VectorLen, VectorNormalize, VectorOrthoBasis, VectorScale,
and VectorSub.

4.3.3 Operators
A complete listing of TorqueScript’s operators can be found in the “Torque-
Script” appendix. Refer to the appendix for detailed information. In general,
operators in TorqueScript behave very similarly to operators in C-derived lan-
guages. However, there are two commonly encountered caveats when work-
ing with TorqueScript’s operators.

• Syntactically, the ++ and -- operators are only post-fi x operators (i.e.,
++%a; which is a pre-fi x operation, does not work; only %a++, which is a
post-fi x operation, will work).

$a = 15;
echo($a++); // Prints 16

• String comparisons are of the following form:

$= (string equal to operator)
!$= (string not equal to operator)

In TorqueScript, the equivalent of 0 for strings is the null string “”.
However, one has to be very careful when using the comparison operators.
If you use the numeric operator == to compare zero (0) and a null string (“”),
you will get a return value of true.

echo(0 == “”); \\ Will print 1 to console.

However, if we use the string comparison operator $=, the same comparison will
return false.

echo(0 $= “”); \\ Will print 0 to console.

Part II Engine Overview

112

4.3.4 Control Statements
We’ll now take a look at TorqueScript’s control statements—branching and
looping structures. TorqueScript supports all the common control statements.

 Branching Structures

We compare three branching control statements.

• if-then-else. The general structure of the if-then-else statement is
the following.

if(expression) {
 statements;
} else {
 alternate statements;
}

 Things to know:
• Brackets ({}) are optional for single-line statements. (Many program-

mers fi nd it more helpful to always use brackets.)
• Compound if-then-else-if-then- . . . statements are perfectly

legal. (Many programmers fi nd switch statements easier to read for
large blocks of related if cases).

• switch. The general structure of the switch statement is as follows:

switch(expression) {
case value0:
 statements;
 break;
case value1:
 statements;
 break;
...
case valueN:
 statements;
 break;
default:
 statements;
}

 Things to know:
• switch only (correctly) evaluates numerics. There is a special state-

ment, switch$, for strings.

 Introduction to TorqueScript Chapter 4

113

• break statements are superfl uous. TorqueScript will only exe-
cute matching cases.

• In TorqueScript, switch statements are no faster than if-
then-else statements.

• switch$. This statement behaves exactly like the switch state-
ment with one important exception: it is only for strings.

Looping Structures

We look at two looping control statements.

• for. The general structure of the for loop is the following.

for(expression0; expression1; expression2) {
 statement(s);
}

 Here is an example.

//bt13();

for(%count = 0; %count < 5; %count++) {
 echo(%count);
}

 As you can see, this is identical to the for loop in C++.

• while. The general structure of the while loop is the following.

while(expression) {
 statement(s);
}

 Here is an example.

//bt14();

%count = 0;
while (%count < 5) {
 echo(%count);
 %count++;
}

 Again, this is very similar to the looping structure in C++.

If you are a C or C++
coder, you may be used

to taking advantage of the
fall through in a switch
statement. For example, in C,
the following code will print
the same message for values 1,
2, and 3, but not for 4:

 // C code
switch(val) {
case 1:
case 2:
case 3:
 printf(“Hello”);
case 4:
 printf(“World\n”);
}

In this sample, the cases 1
through 3 will print Hello
and fall through case 4 to
print World\n, in the end
producing Hello World\n.

You cannot do this in
TorqueScript. In the following
similarly structured example,
nothing will print for cases 1
or 2, and we will get Hello
for 3 and World for 4:

// TorqueScript
switch(%val)
{
case 1:
case 2:
case 3:
 echo(“Hello”);
case 4:
 echo(“World”);
}

Remember: switch
statements do not fall
through in TorqueScript.

Part II Engine Overview

114

 As you can see, TorqueScript supports the standard set of control state-
ments and handles them very similarly to familiar languages like C++.
 In the next section, we continue our detailed examination of Torque-
Script’s standard features. We’ll be looking at how TorqueScript handles func-
tions (it’s similar to C++, but more fl exible).

4.3.5 Functions
Basic functions in TorqueScript are defi ned as follows.

function func_name([arg0],...,[argn]) {
 statements;
 [return val;]
}

Here is an example.

//echoRepeat();

function echoRepeat (%echoString, %repeatCount) {
 for (%count = 0; %count < %repeatCount; %count++) {
 echo(%echoString);
 }
}

echoRepeat(“hello!”, 5);

The code above will echo the string hello! fi ve times to the console.
 TorqueScript functions can take any number of arguments, each separated
by commas. Functions may return a value by using the return statement,
just as in C++.
 Things to know:

• If you defi ne a function and give it the same name as a previously defi ned
function, TorqueScript will completely override the old function. Even if
you defi ne the new function with a different number of parameters, if its
name is exactly the same as another function, the older function will be
overridden. This is important to note: TorqueScript does not support func-
tion polymorphism in the same way C++ does. However, TorqueScript pro-
vides packages (see Section 4.3.8), which can get around this problem.

• For functions defi ned in TorqueScript, if you call a function and pass fewer
parameters than the function’s defi nition specifi es, the unpassed param-
eters will be given an empty string as their default value. Similarly, if you
pass too many parameters, the extras will be dropped.

 Introduction to TorqueScript Chapter 4

115

• For functions defi ned in C++, if you call a function and pass fewer param-
eters than the function’s defi nition specifi es, the engine will complain, and
the call will fail. The same goes for passing too many arguments.

• TorqueScript supports recursion, and it behaves just as in C++. The follow-
ing example is a rewrite of the echoRepeat() function we used above, but
this version uses recursion instead of a for loop:

//echoRepeatRecurse();

function echoRepeatRecurse (%echoString, %repeatCount) {
 if (%repeatCount > 0) {
 echo(%echoString);
 echoRepeatRecurse(%echoString, %repeatCount--);
 }
}

echoRepeatRecurse(“hello!”, 5);

4.3.6 Objects
Having covered the basics of the language, it’s time to examine some of
TorqueScript’s more powerful details.
 In Torque, every item in a game is a SimObject, or a subclass of SimOb-
ject, and all of these objects can be accessed via script. For example, Player,
WheeledVehicle, and Item are all accessible via script, although they are
defi ned in C++.
 Objects are created in TorqueScript using the following syntax (see
Table 4.2).

%var = new ObjectType(Name : CopySource, arg0, ..., argn) {
 <datablock = DatablockIdentifier;>

 [existing_field0 = InitialValue0;]
 ...
 [existing_fieldM = InitialValueM;]

 [dynamic_field0 = InitialValue0;]
 ...
 [dynamic_fieldN = InitialValueN;]
};

Let’s create a fi rst object, with no initialization.

Part II Engine Overview

116

Table 4.2

Definitions of object syntax
elements.

Syntax Element Description

%var The variable where the object’s handle will be stored.

new A keyword telling the engine to create an instance of the following
ObjectType.

ObjectType Any class declared in the engine or in script that has been derived
from SimObject or a subclass of SimObject. SimObject-derived
objects are what we were calling “game world objects” earlier in
this book.

Name
(optional)

Any expression evaluating to a string, which will be used as the
object’s name.

CopySource
(optional)

The name of an object that is previously defined somewhere
in script. Existing field values will be copied from CopySource
to the new object being created. Any dynamic fields defined in
CopySource will also be defined in the new object, and their values
will be copied. Note that if CopySource is of a different ObjectType
than the object being created, only CopySource’s dynamic fields will
be copied.

arg0, ...,
argn (optional)

A comma-separated list of arguments to the class constructor (if it
takes any).

datablock Many objects (those derived from GameBase, or subclasses of
GameBase) require datablocks to initialize specific attributes of the
new object. Datablocks are discussed in Section 4.3.10.

existing_
fieldN

In addition to initializing values with a datablock, you may also
initialize existing class members (fields) here.
Note that if you wish to modify a member of a C++-defined class,
the member must have been exposed to the console.

dynamic_fieldN Lastly, you may create new fields (which will exist only in script) for
your new object. These will show up as dynamic fields in the World
Editor Inspector.

// Create a SimObject w/o modifying any fields
$example_object = new SimObject();

Then create a second object using an initialization block.

// Create a SimObject w/ dynamic fields
$example_object = new SimObject() {
 a_new_field = “Hello world!”;
};

Now let’s create a datablock defi nition.

 Introduction to TorqueScript Chapter 4

117

// Create a StaticShape using a datablock
datablock StaticShapeData(MyFirstDataBlock) {
 shapeFile = “~/data/shapes/player/player.dts”;
 junkvar = “helloworld”;
};

Then make an object that uses that defi nition.

new StaticShape() {
 dataBlock = “MyFirstDataBlock”;
 position = “0.0 0.0 0.0”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
};

In the Expert Tip on p. 111, I mentioned that == and $= will return
opposite results when the operands are 0 and “”. Specifically, == will
compare them as being equal and $= as not equal. This is important to
remember when you check for the nonpresence of a dynamic field.

The safest way to check for a nonpresent field is the following.

$y = new StaticShape() {
 dataBlock = “MyFirstDataBlock”;
 position = “0.0 0.0 0.0”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
};
if($y.myField == 0) {
 echo(“myField is not initialized (not present)”);
}

This is the safest method of comparing, because it will continue to compare
correctly for:

• field not initialized,

• field set to 0,

• field set to “”.

In other words, we can forget (or goof) later and preinitialize the field with a
value equivalent to logical false and this code will still work.

Of course, if you are really sharp and don’t make mistakes, you can compare for
uninitialized fields as follows:

if($y.myField $= “”) {
 echo(“myField is not initialized (not present)”);
}

Just remember that this comparison can fail if the field is later preinitialized to 0.

Part II Engine Overview

118

 Handles and Names

Every object in the game is identifi ed and tracked by two parameters.

• Handle. Every object is assigned a unique numeric ID upon creation. This
is generally referred to as the object’s handle.

• Name. Additionally, all objects may have a name.

In most cases, handles and names may be used interchangeably to refer to
the same object, but a word of caution is in order: handles are always unique,
whereas multiple objects may have the same name. If you have multiple
objects with the same name, referencing that name will fi nd one and only one
of the objects.

 Fields and Console Methods

TorqueScript object fi elds and console methods are the equivalents of C++
object members and methods. Objects instantiated via script may have data
members (referred to as fi elds) and functional methods (referred to as console
methods). In order to access an object’s fi elds or console methods, one uses
the standard dot notation, as in C++.

// Note: The scripts below assume we have an object with a
// handle of 123, and a name of AName

// Directly access via handle
//
123.field_name = value;
123.command_name();

// Directly access via name
//
AName.field_name = value;
AName.command_name();

// Indirectly access via a variable
// containing either a name or a handle
//
%AVar.field_name = value;
%AVar.command_name();

To get a picture of how this works for real, do the following.

• Start the GPGT Lesson Kit.

• Run one of the missions.

 Introduction to TorqueScript Chapter 4

119

• Start the World Editor Inspector (press F11).

• Switch to camera view (press ALT+C; on a Mac, you may need to select
Camera View from the Camera menu) and select the character (hold down
the right mouse button to look around; drag the mouse down until your
player comes into view).

• Give the character a name, such as myGuy (type myGuy in the textbox next
to the Apply button, and then click the Apply button).

• Open the console (press the ~ key).

• Then, run the following sample.

//bt16();

$player_name = “myGuy”;
$player_id = $player_name. getID();
echo($player_name.position);
echo($player_name. getID());
echo(“myGuy”. getID());
echo(myGuy. getID());

 In the above example, getID() returns the unique ID of the player object.

 Dynamic Fields

In addition to normal fi elds (object fi elds exposed to script by the engine),
TorqueScript allows you to create dynamic fi elds. Dynamic fi elds are associated
with a single instance of an object and can be added and removed at will.
 Adding a dynamic fi eld in TorqueScript is automatic. If you try to read
an object fi eld and the fi eld is not found, TorqueScript will simply return
an empty string, and no dynamic fi eld will be created. However, if you try
to write to an object fi eld that doesn’t exist, TorqueScript will automatically
create a matching dynamic fi eld for the object, and assign it the value you
indicated.

//bt17();

// new_var will not be created because we are only
// ‘reading’ it
echo($player_id.new_var);

// new_var2 will be created and initialized to “Hello”
$player_id.new_var2 = “Hello”;

echo($player_id.new_var2);

Dynamic fields, if
created, are only visible
by the server. When
objects and datablocks
are sent to the clients,
only those fields that
are exposed by the
engine will be sent to
the clients. This can
be a little confusing
until you understand
that the engine does
not have any context
for dynamic fields and
thus cannot send them
across the network.

If you find yourself
needing to add new
fields to existing objects
or datablocks, and if
you want them to be
transmitted to clients,
you may either write
networking scripts to
do this, or you may
edit the code and
recompile the engine.
Unfortunately, these
are both advanced
topics beyond the
scope of this book. For
now, just remember:

Dynamic fields are
not networked!

Part II Engine Overview

120

4.3.7 Console Methods
In addition to supporting the creation of functions, TorqueScript allows you
to create methods within the scope of the console (not requiring you to use
C++ to add them). These are called console methods and are like functions,
except that they are associated with a specifi c namespace (see Section 4.3.9,
“Namespaces”).

function classname::method_name(%this, [arg0],...,[argn]) {
 statements;
 [return val;]
}

Syntax Element Description

function A keyword telling TorqueScript we are defining a new function.

classname:: The class type this function is supposed to work with.

func_name The name of the function we are creating.

%this A variable that will contain the handle of the “calling object.”

... Any number of additional arguments.

At a minimum, console methods require that you pass them an object han-
dle. You will often see the fi rst argument named %this. People use %this

(contains object ID of object calling this method), but you can name it
anything you want. As with console functions, any number of additional

arguments can be specifi ed separated by commas. Also, a console method
may optionally return a value.
 Being associated with a namespace, console methods may be called on
an instance of any object in that namespace. Calling on an instance means
that the method is called using dot (.) notation in one of the following three
ways:

// Aname is the object’s name
AName.methodName([arguments]);

or

// 123 is is the object’s numeric ID
123.methodName([arguments]);

or

Table 4.3.

Definitions of console
method syntax elements.

When a console
method is called
by the engine, or on
the handle or name
of an object, the ID of
the object is passed
automatically as the
first argument.

 Introduction to TorqueScript Chapter 4

121

// %var contains the object’s name or ID
%var.methodName([arguments]);

Here are some examples.

function Goober::hi(%this) {
 echo(“Goober Hello ”, %this);
}

Assuming our player handle is 1000, if we type:

1000.hi();

we get the following.

<input> (0): Unknown command hi.
Object (1000) Player->ShapeBase->GameBase->SceneObject->
NetObject->SimObject

What has happened is that Torque has searched the entire hierarchy of Player
and its parent classes, looking for a function called hi() defi ned in the con-
text of one of those classes. Not fi nding one, it prints the above message. To
demonstrate that Torque does search the class hierarchy of Player, try the fol-
lowing next.

function NetObject::hi(%this) {
 echo(“NetObject Hello ”, %this);
}

Typing:

1000.hi();

we get the following.

NetObject Hello 1000

Next, if we defi ne:

function Player::hi(%this) {
 echo(“Player Hello ”, %this);
 Parent::hi(%this);
}

Part II Engine Overview

122

we can type:

1000.hi();

and get the following:

Player Hello 1000
NetObject Hello 1000

Do you see what happened? Torque found Player::hi() fi rst, but we also
wanted to execute the previous defi nition of hi(). To do this, we used
the Parent:: keyword. Of course, not fi nding a ShapeBase instance,

which is Player’s literal parent, Torque then searched up the hierarchy of
the chain until it came to the NetObject version.
 Lastly, we can force Torque to call a specifi c instance as follows.

NetObject::hi(1000);

gives us:

NetObject Hello 1000

and:

ShapeBase::hi(1000);

also gives us:

NetObject Hello 1000

since there is no ShapeBase instance of hi() defi ned.

4.3.8 Packages
Packages provide dynamic function polymorphism in TorqueScript. In short,
a function defi ned in a package will override the prior defi nition of a same
named function when the package is activated. Packages have the following
syntax.

package package_name() {
 function function_definition0() {
 [statements;]
 }
 ...

Defining sub-
sequent console
methods with the
same name as prior
console methods
overrides the previous
definition permanently,
unless the redefinition
is within a package
(see Section 4.3.8,
“Packages”).

 Introduction to TorqueScript Chapter 4

123

 function function_definitionN() {
 [statements;]
 }
};

Things to know:

• The same function can be defi ned in multiple packages.

• Only functions can be packaged.

• Datablocks (see Section 4.3.10) cannot be packaged.

Packages can be activated as follows.

 ActivatePackage(package_name);

Packages can be deactivated as follows.

De activatePackage(package_name);

Packages are managed on a stack. Each call to ActivatePackage(package_
name) pushes its argument onto the stack, and it is always the topmost pack-
age that will be active.
 The easiest way to get a feel for packages is with an example. The follow-
ing example is the most detailed we’ve looked at so far in this guide, but don’t
worry. It will make perfect sense when we’re done.
 The following code has been provided with the GPGT Lesson Kit. Sim-
ply start the Lesson Kit, open the console (~), and follow the instructions
below.

//test_packages(N); // N == 0, 1, or 2

// Define an initial function: demo()
//
function demo() {
 echo(“Demo definition 0”);
}

// Now define three packages, each implementing
// a new instance of: demo()
//
package DemoPackage1 {
 function demo() {
 echo(“Demo definition 1”);
 }
};

Part II Engine Overview

124

package DemoPackage2 {
 function demo() {
 echo(“Demo definition 2”);
 }
};

package DemoPackage3 {
 function demo() {
 echo(“Demo definition 3”);
 echo(“Prior demo definition was=>”);
 Parent::demo();
 }
};

function test_packages(%test_num) {
 switch(%test_num) {
 // Standard usage
 case 0:
 echo(“--”);
 echo(“A packaged function overrides a prior”);
 echo(“definition of the function, but allows”);
 echo(“the new definition to be \’popped\’ ”);
 echo(“off the stack.”);
 echo(“--”);
 demo();
 ActivatePackage(DemoPackage1);
 demo();
 ActivatePackage(DemoPackage2);
 demo();
 De activatePackage(DemoPackage2);
 demo();
 De activatePackage(DemoPackage1);
 demo();

 // Parents
 case 1:
 echo(“--”);
 echo(“The Parent for a packaged function is”);
 echo(“always the previously activated ”);
 echo(“packaged function.”);
 echo(“--”);
 demo();
 ActivatePackage(DemoPackage1);
 demo();
 ActivatePackage(DemoPackage3);

 Introduction to TorqueScript Chapter 4

125

 demo();
 De activatePackage(DemoPackage3);
 De activatePackage(DemoPackage1);
 echo(“--”);

 demo();
 ActivatePackage(DemoPackage1);
 demo();
 ActivatePackage(DemoPackage2);
 demo();
 ActivatePackage(DemoPackage3);
 demo();
 De activatePackage(DemoPackage3);
 De activatePackage(DemoPackage2);
 De activatePackage(DemoPackage1);

 // Stacking oddities
 case 2:
 echo(“--”);
 echo(“Deactivating a \’tween\’ package will”);
 echo(“deactivate all packages \’stacked\’ after”);
 echo(“it.”);
 echo(“--”);
 demo();
 ActivatePackage(DemoPackage1);
 demo();
 ActivatePackage(DemoPackage2);
 demo();
 De activatePackage(DemoPackage1);
 demo();
 }
}

The standard way to use a package is to defi ne a previously defi ned func-
tion inside the package, activate it as needed, and then deactivate it to
go back to the default case for the function. To see this in action, type:
test_packages(0);.
 TorqueScript provides a useful keyword, Parent::. By using the
Parent:: keyword in a packaged function, we can execute the function that
is being overridden. To see this in action, type: test_packages(1);.
 It is important to understand that packages are, essentially, stacked atop
each other. So, if you deactivate a package that was activated prior to other
packages, you are in effect automatically deactivating all packages that were
activated after it. To see this in action, type test_packages(2);.

Part II Engine Overview

126

 Things to know:

• Packages may defi ne new functions. Remember that when you deactivate
a package, these functions become undefi ned.

• The Parent:: keyword is not recursive, i.e., Parent::Parent::fun()
is illegal.

• Again, deactivating packages activated prior to other more recently acti-
vated packages deactivates all subsequently activated packages.

4.3.9 Namespaces
As previously mentioned, namespaces are provided in TorqueScript. The
way they work is quite simple. First, all objects belong to a namespace.
The namespace they belong to normally defaults to the same name as their
object’s class name. Players belong to the Player:: namespace, vehicles to
the Vehicle:: namespace, etc.

// Player class namespace
Player::

 Also as previously mentioned, these namespaces provide separation of
functionality, such that one may have functions with the same name but
belonging to separate namespaces. To use one of these functions, either you
must manually select the appropriate namespace, or in some cases this is
done automatically for you.
 It is important to understand that the :: is not magical in any way. In
fact, you can create functions with :: in their name. This doesn’t mean they
belong to a namespace. If the expression prefi xing the :: is not a valid class/
namespace name, in effect, all you have done is create a unique name.

// Not really namespaces
function Ver1::doIt() {
 ...
};

function Ver2::doIt() {
 ...
};

 Now, there is more to namespaces that you need to understand, but before
we can address that, we need to learn about some other topics. So, we will
revisit namespaces below in the appropriately titled Section 4.4, “Datablocks,
Objects, and Namespaces Revisited.”

 Introduction to TorqueScript Chapter 4

127

4.3.10 Datablocks
Of all the features in TorqueScript, datablocks are probably the most confus-
ing. To make things worse, they are central to the creation of most objects,
which means you need to understand them relatively early.

“Datablocks are special objects that are used to transmit static data from server to
client” (from engine.overview.txt).

 This defi nition, although true, doesn’t really tell us much. Some searching
turns up additional defi nitions.

“A datablock is an object that contains a set of characteristics which describe some
other type of object” (from Joel Baxter, in the GarageGames forums).

Better, but this is still a little blurry on the purpose and use of datablocks.

“A datablock is a(n) object that can be declared either in C++ engine code, or in
script code . . . Each declared datablock can then be used as a “template” to create
objects . . . ”(from Liquid Creations, Scripting Tutorial #2).

 Very good. So, datablocks are templates, and we use them to create new
objects with the attributes specifi ed by the template. But how do we do this?
Well, for the answer to that question, you’ll have to wait. First, we need to
discuss a few other important topics, and then we will revisit datablocks and
give them the thorough coverage that they deserve.

The Object-Datablock Connection

The Torque novice may stumble along for a bit, playing with the examples
that are provided with Torque. Eventually, the question arises, “Why are some
objects made with datablocks and others not?”
 The answer, from a practical standpoint, is because otherwise you won’t
have a working game; specifi cally, any GameBase object, or subclass of Game-
Base, must be made with a datablock, otherwise the script will not compile.
 To understand the philosophical reasons, we fi rst observe that objects
placed in the game world will fall into three broad categories.

• The object does not have much associated data and/or has few param-
eters.

• The object does have a lot of parameters, but these parameters are likely
to be unique, or must be allowed to be unique, between instances of the
object.

• The object has a lot of data or parameters, but it is OK for these data/
parameters to be shared between instances.

 The fi rst two categories fi t the class of objects that do not need and are
therefore not created from datablocks. Conversely, the third category fi ts the

Part II Engine Overview

128

class of objects that could benefi t from using datablocks. Why? How? Recall
that, unlike normal objects, you are only allowed to have a single instance of
any one datablock. Furthermore, objects that are created from datablocks all
share the same instance of that datablock.
 I can sense that some folks will be shaking their heads at this point, so
let’s look at Table 4.4, which should clarify the relationship.
 In the code snippets in Table 4.4, we make two physical zones, indepen-
dent of each other. For each, we needed to specify all fi eld values. We also
made two StaticShapes. Each StaticShape has unique attributes, but they both
share one datablock, which is used to describe the model they render and (as
we’ll see later) many more attributes.
 Now, let’s examine the creation of non–datablock-created objects in detail,
followed by datablock-created objects.

Table 4.4.

Comparison of non–datablock-based and datablock-based objects.

Non-Datablock-Based Object Datablock-Based Object

• Created directly from a C++ class in the console
• Contains fields
• May contain dynamic fields

• Created directly from a C++ class in the console
• Contains fields
• May contain dynamic fields
• Requires an additional datablock field, which is assigned

a previously defined datablock.

new PhysicalZone(firstPhysicalZone) {
 position = “371.851 322.83 218”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 velocityMod = “1”;
 gravityMod = “1”;
 appliedForce = “0 0 0”;
 polyhedron = “10 10 10 1 0 0 0 -1 0 0 0 1”;
};

new PhysicalZone(secondPhysicalZone) {
 position = “671.851 125.83 218”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 velocityMod = “1”;
 gravityMod = “1”;
 appliedForce = “0 0 0”;
 polyhedron = “10 10 10 1 0 0 0 -1 0 0 0 1”;
};

datablock StaticShapeData(SimpleTarget0) {
 category = “Targets”;
 shapeFile = “~/data/…/simpletarget.dts”;
};

new StaticShape(firstTarget) {
 dataBlock = “SimpleTarget0”;
 position = “360.17 325.775 219.906”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
};

new StaticShape(secondTarget) {
 dataBlock = “SimpleTarget0”;
 position = “460.17 325.775 219.906”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
};

 Introduction to TorqueScript Chapter 4

129

Creating Non–Datablock-Based Objects

I’ve provided the syntax for creating objects previously, but let’s go ahead
and create some variations of non-datablock objects to clarify the use of that
syntax. We will use physical zones (p-zones) in all our examples.

new PhysicalZone() {
};

The above example creates a p-zone but doesn’t specify a name or any
of the parameters; therefore, it will take the default value provided by the
C++ class’s constructor.

new PhysicalZone(SpeedupZone) {
 position = “0 0 0”;
 velocityMod = “2”;
};

The above example will create a p-zone named “SpeedupZone,” positioned
at <0,0,0>. This particular p-zone will multiply the player’s velocity by two
when the player enters the zone.

new PhysicalZone(SpeedupZone2 : SpeedupZone) {
 position = “10 10 10”;
};

The above example will create a p-zone named “SpeedupZone2,” positioned
at <10,10,10>. Aside from position, which has been redefi ned, it will inherit
(by copying) all the fi elds in the previous datablock defi nition, SpeedupZone.
However, the only fi eld that will be different from the default is position.
Thus, the above p-zone creation statement, using inheritance, is equivalent to
the following p-zone creation statement, not using inheritance.

new PhysicalZone(SpeedupZone2) {
 position = “10 10 10”;
 velocityMod = “2”;
};

 Creating Datablock-Based Objects

Like non–datablock-created objects, when we create new instances of data-
block-created objects, we can inherit (copy) fi elds from previously defi ned
datablock-created objects.

We will talk
about physical

Zones (p-zones) in
Chapter 8, “Mission
Objects,” but for now,
let me say that a p-
zone is a rectangular
object that can be
placed in the world
to change physical
characteristics in that
zone.

For example, a p-zone
can be used to change
the gravity and/or
apply a force and/or
modify an object’s
current velocity when
the object passes
into or through the
area encapsulated by
the physical zone’s
bounds.

Part II Engine Overview

130

 In essence, I’m saying that the syntax rules for object creation are univer-
sal. To assure you of this, I will show you two examples of datablock-created
objects, one normal and one with inheritance.

new StaticShape(TestTarget) {
 position = “0 0 0”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 dataBlock = “SimpleTarget0”;
};

The above example creates a StaticShape named “TestTarget.” It defi nes the
position, rotation, and the scale. Additionally, it tells the engine to use data-
block “SimpleTarget0” to initialize this object’s datablock. Subsequently, this
object will always be associated with the datablock “SimpleTarget0.”

new StaticShape(TestTarget2: TestTarget) {
 position = “0 10 0”;
};

The above example creates another StaticShape. This one is named “Test-
Target2.” It inherits all the fi elds of TestTarget and overrides the position. The
important thing to understand is that it shares datablock “SimpleTarget0” with
the other instance of StaticShape, “TestTarget”; i.e, we have two instances of
StaticShape that share one instance of the datablock “SimpleTarget0.”

 Declaring Datablocks

So far, we have clarifi ed the connection between objects and datablocks. We
have demonstrated that only a single instance of any datablock can be created
and shared between any number of datablock-using objects. We have shown
that the rules for creating objects are the same between those objects that use
datablocks and those that do not. The only thing remaining for us to discuss
is the declaration of datablocks. So, let’s get to it.
 We declare datablocks similarly to the way we create objects. Datablock
declaration syntax is as follows.

// In TorqueScript
datablock DataBlockType(Name [: CopySource]) {
 category = “CategoryName”;
 [datablock_field0 = Value0;]
 ...
 [datablock_fieldM = ValueM;]

 Introduction to TorqueScript Chapter 4

131

 [dynamic_field0 = Value0;]
 ...
 [dynamic_fieldN = ValueN;]
};

 As you can see, this is almost identical to the syntax used to create con-
sole objects. Let’s break it down bit-by-bit anyway in Table 4.5.

Syntax Element Description

datablock A keyword telling the engine that this is a datablock object.

DataBlockType Any datablock class declared in the engine that has been derived
from GameBaseData or a subclass of GameBaseData.

Name Any expression evaluating to a string, which will be used as the
datablock’s name.

: CopySource
(optional)

A previous datablock definition from which to inherit values.

category
A keyword that tells the engine where to place this object in the
World Editor Creator Tree (see Chapter 3, “Torque Tools”). If the
CategoryName does not exist in the tree, it will be created.

datablock_fieldM You may initialize any and all existing fields in the datablock.

dynamic_fieldN
As with objects, you may add fields to the datablock that are
not defined in the C++ version. Unlike objects, however, once
defined, these values are static.

 Now, let’s do a few examples.

datablock StaticShapeData(MyTargets) {
 category = “Targets”;
 shapeFile = “~/data/shapes/targets/simpletarget0.dts”;
};

The above example declares a datablock of the type StaticShapeData named
“MyTargets.” Additionally, we have specifi ed that this StaticShape should be
located in the “targets” folder in the World Editor Creator Tree. Lastly, it will be
drawn using the shape fi le located at “~/data/shapes/targets/simpletarget0.
dts.”

datablock StaticShapeData(SimpleTarget0 : MyTargets) {
 StartHidden = 1;
};

Table 4.5.

Definitions of datablock
declaration syntax
elements.

Part II Engine Overview

132

The above example creates declares a datablock of the type StaticShapeData
named “SimpleTarget0” that inherits all the data from MyTargets. In addition,
this declaration adds a new variable named “StartHidden” and sets it to 1.

 Accessing Datablock Fields

Remember that datablocks are SimObjects, and we can access (read) their
fi elds like any other object. However, changing a datablock fi eld after the
datablock is created and transmitted to all clients will have no effect on the
client copies of the fi eld(s) you have changed.
 You may only get useful results from changing datablock fi elds in a single-
player game, because both the client and the server are sharing the same

datablock. In all other scenarios, you should consider the datablock object
to be a read-only object.

Maze Runner Lesson #2 (90% Step)—Loading Datablocks

As we work on the Maze Runner game, we are going to need several data-
blocks and the accompanying scripts that were created for your use in this
game and in your future creations. So, let’s take the time now to get them
loading. From the accompanying disk, do the following.

1. Copy the “\Base\Scripts\GPGTBase” directory into “\MazeRunner\
prototype\server\scripts”.

2. Now, edit the function onServerCreated() in the fi le “\MazeRunner\
prototype\server\scripts\game.cs” to look like the following (bold lines are
new or modifi ed).

You might be using this guide in a classroom setting, or in another in-
structional venue. In that case, you might be using the console to load files

containing datablocks, scripts, etc. Later, when using the Lesson Kit on your
own, you might be surprised to find that the datablocks you were experimenting
with are suddenly gone.

The thing you must remember is that things that you do in the console are
transient and (generally) do not affect the setup of the kit. Thus, if you quit and
reload, any files you brought into context by loading via the console are now
not loaded.

So, to ensure that datablocks, scripts, etc. are loaded, you must modify the appro-
priate loader to bring them in.

For example, by default, the datablocks for a mission are loaded in the function
onServerCreated(), located in the file game.cs under the current game’s
“server” subdirectory (e.g. example/myGame/server/game.cs).

Simply add an exec statement to the list of others you see there to load your
datablock-containing file, and you’ll be back in business.

 Introduction to TorqueScript Chapter 4

133

 exec(“./marker.cs”);
exec(“./player.cs”);
 exec(“./GPGTBase/loadGPGTBaseClasses.cs”);

In the above script, we are loading all of the GPGT base datablocks (classes)
after all the other datablocks that FPS normally includes. We also add the data
fi les that go with the datablocks.
 To test for a successful load, simply start your prototype and load the
“MazeRunner” mission. Then run the Creator tool, and you should have
directories in the Creator as in Figure 4.2.

4.4 Datablocks, Objects, and Namespaces
 Revisited
For every SimObject in Torque, there is a namespace. Additionally, namespaces
are chained. This means that, when the engine starts to search for something
in the namespace, it begins at the entry point associated with the current
object and seeks upward through all the parents’ namespaces until it either
fi nds what it is looking for or fails out. “Yes, yes,” you say, “we’ve covered
this, but how do we use this feature?” To answer that question, we’ll look at
some examples, starting with the simple stuff.

4.4.1 Object Namespace Hierarchies
When we wish to create a new method for the namespace of an object, we do
something like the following.

function GameBase::DoIt(%this) {
 echo (“Calling StaticShape::DoIt() ==> on object” SPC %this);
}

The function DoIt is being declared in the GameBase namespace. This means
that we can call this function on any object created from the GameBase class
or its children. Here is an example.

//bt18(a);

%myTarget = new StaticShape(CoolTarget) {
 position = “0 0 0”;
 dataBlock = “BaseStaticShape”;
};

%myTarget.DoIt();

Figure 4.2

Creator directory.

Part II Engine Overview

134

Assuming the ID in %myTarget is 100, the above call would produce the fol-
lowing output in the console.

Calling StaticShape::DoIt() ==> on object 100

You’ll notice a couple of things.

1. When we called DoIt(), we did so without passing an argument explicitly,
but when the console message printed, it did in fact get an argument with
the value 100.

2. The one argument DoIt() does take is named %this.

Regarding number 1, because we used the handle to call the function
[%myTarget.DoIt()], the ID of this object gets passed implicitly to the func-
tion (see Expert Tip, page 120). That said, all of the following calls will pro-
duce the same result. Note that because this sample is in a function and
because we create a new object each time we run it, the ID of the object will
change for every run.

//bt18(b);

%myTarget.DoIt();
StaticShape::DoIt(%myTarget);
CoolTarget.DoIt();
“CoolTarget”.DoIt();
100.DoIt()
“100”.DoIt()
StaticShape::DoIt(100);

As you can see, there are various ways to call the same function, all of which
are useful in different scenarios. Please note that, in the cases where we use
the name of the object, the name will be passed as the ID. Torque automati-
cally does look-ups for names; thus, in most cases, names can be used inter-
changeably with IDs, as long as the names are unique.
 We’ve discussed the most basic use of namespaces. Now let’s talk about
datablock namespaces.

4.4.2 Simple Datablock Namespaces
As previously mentioned, datablocks are nothing more than objects them-
selves. They exist in the console alongside regular objects, and they too have
their own namespaces. For example, if we wish to create a new method for the
ItemData namespace, we can do something like the following.

 Introduction to TorqueScript Chapter 4

135

function ItemData:: GetFields(%ItemDbID) {
 echo (“Calling ItemData::GetFields () ==> on object” SPC %ItemDbID);
 echo (“ category =>” SPC %ItemDbID.category);
 echo (“ shapeFile =>” SPC %ItemDbID.shapeFile);
 echo (“ mass =>” SPC %ItemDbID.mass);
 echo (“ elasticity =>” SPC %ItemDbID.elasticity);
 echo (“ friction =>” SPC %ItemDbID.friction);
 echo (“ pickUpName =>” SPC %ItemDbID.pickUpName);
}

The function GetFields is being declared in the ItemData namespace.
BaseItem is an instance of ItemData.

// from GPGT Lesson Kit = Item.cs (edited)
datablock ItemData(BaseItem) {
 category = “TestShapes”;
 shapeFile = “~/data/GPGTBase/shapes/markers/dummy.dts”;
 mass = 10.0;
 elasticity = 0.05;
 friction = 0.7;
 pickUpName = “Default Item”;
};

We could call our new function on BaseItem as follows.

//bt19();

==>BaseItem. GetFields();

 Calling ItemData::GetFields () ==> on object BaseItem
 category => TestShapes
 shapeFile => gpgt/data/GPGTBase/shapes/markers/dummy.dts
 mass => 10
 elasticity => 0.0498534
 friction => 0.698925
 pickUpName => Default Item

Now, this may seem completely trivial, but it is important to understand that a
majority of the interesting methods that are called by the engine as a response
to user action, like onCollision(), on Add(), create(), etc., are not called
on instances of objects. They are called on the datablocks of instances of
objects that use datablocks. This is crucial, because we can do some very
special things with datablocks and their namespaces.

Part II Engine Overview

136

4.4.3 Inserting Datablock Namespaces (ClassName)
Datablocks provide a hook with which to manipulate the namespace calling
sequence. The hook is the className fi eld. It works as follows.

datablock ItemData(CrossbowAmmo) {
 ...
 className = “Ammo”;
 ...
};

When the engine calls a method that is scoped to a datablock, the engine will
always pass the datablock ID as the first argument and the object ID as the
second argument.

function CrossbowAmmo::doIt(%DB, %Obj) {
 echo(“DB: “ , %DB , “Obj: “ , %Obj);
}

Also, we can manually call console methods scoped to datablocks in three ways.

$ammo = new Item() {
 datablock = CrossbowAmmo;
}
// 1 – Direct call, must pass Datablock and Obj ID
// Output: DB: 123 Obj: 456.
Crossbowammo::doit(Crossbowammo , $ammo);
// 2 – Call on datablock name, must pass Obj ID
// Output: DB: Crossbowammo Obj: 456.
Crossbowammo.doit($ammo);
// 3 – Call on stored datablock ID, must pass Obj ID
// Output: 123 Obj: 456.
$DBID= $ammo.getDatablock();
$DBID.doit($ammo);

In the first case, we are using the syntax rules of TorqueScript to treat the
method-scoped function like a flat function. We call it directly and pass both the
datablock ID and the object ID.

In the second case, we refer to the datablock by name and pass the object ID.

In the third case, we acquire the ID of the datablock with another console
method getDatablock() and call the method on it, again passing the ID of

the object.

 Introduction to TorqueScript Chapter 4

137

What this is doing is adding a new namespace between CrossbowAmmo
and ItemData, so that the namespace calling sequence will look like this:
CrossbowAmmo → Ammo → ItemData → etc. We could defi ne two functions
as follows.

function Ammo::onPickup(%AmmoDB, %AmmoOBJ, %Picker, %Amount) {
 echo (“Calling Ammo::onPickup () ==> on ammo DB” SPC %AmmoDB);
 %AmmoDB.DoIt();
}

function Ammo::DoIt(%AmmoDB) {
 echo (“Calling Ammo::DoIt () ==> on ammo DB” SPC %AmmoDB);
}

Then we could collide with an ammo item. This would then automatically
call the onPickup() callback, and we would expect to see the following
message (assuming the datablock ID is 66).

Calling Ammo::onPickup () ==> on ammo DB 66
Calling Ammo::DoIt () ==> on ammo DB 66

This powerful feature allows us to insert a special namespace that we can use
for several different datablocks. In other words, we could defi ne two more
ItemData datablocks as follows.

datablock ItemData(FlamingCrossbowAmmo) {
 ...
 className = “Ammo”;
 ...
};

datablock ItemData(ExplodingCrossbowAmmo) {
 ...
 className = “Ammo”;
 ...
};

We would then have the structure shown in Figure 4.3.
 Later in our code, objects derived from the three different datablocks
CrossbowAmmo, FlamingCrossbowAmmo, and ExplodingCrossbowAmmo can
all use the same onPickup() and DoIt() functions as declared in the Ammo::
namespace. This cuts way down on the amount of code we need to write.

You cannot
legally specify a

className that is the
same as the current
datablock name.

Part II Engine Overview

138

4.4.4 Namespace Inheritance?
You might wonder at some time whether namespace hierarchies can be inher-
ited. The answer is no. If we do this:

datablock ItemData(CrossbowAmmo) {
 // ...
};

datablock ItemData(FlamingCrossbowAmmo : CrossbowAmmo) {
 // ...
};

the namespace calling sequence for CrossbowAmmo will be CrossbowAmmo
→ ItemData → etc., and for FlamingCrowssbowAmmo it will be Flaming-
CrossbowAmmo → ItemData → etc. (see Figures 4.4 and 4.5). If we want
Flaming CrossbowAmmo to use the CrossbowAmmo namespace, we have to
do the following.

datablock ItemData(CrossbowAmmo) {
 // ...
};

Figure 4.3.

Sharing namespace with
className keyword.

Figure 4.4.

CrossbowAmmo namespace not
inherited.

Figure 4.5.

CrossbowAmmo
namespace added.

Figure 4.6.

className inherited, then overridden.

 Introduction to TorqueScript Chapter 4

139

datablock ItemData(FlamingCrossbowAmmo) {
 // ...
 className = “CrossbowAmmo”;
 // ...
};

Please note that if you do defi ne a className fi eld in a datablock, subse-
quent children datablocks will copy that value to their own className fi eld
unless it is overridden in the child’s defi nition, as follows (see Figure 4.6).

datablock ItemData(CrossbowAmmo) {
 // ...
 className = “Ammo”;
 // ...
};

datablock ItemData(FlamingCrossbowAmmo : CrossbowAmmo) {
 // ...
 className = “someOtherAmmo”;
 //
};

4.4.5 A Parting Reminder (Datablock versus
 Object Namespaces)
Before closing this chapter, I want to take a moment to remind you that, when
you create new objects that use datablocks, the majority of the functions
that are called by the engine are called on the datablock of the object, not
the object itself. I’ve seen questions time and again in the forums that have
their root in confusion about this topic. So, save yourself a headache later and
make sure you get this idea down fi rmly!

4.4.6 Helping Yourself
The console supplies a few helpful functions and method that can be used
to get extra information about objects and the functions that are available to
you.

 dump() and tree()
If you have an object or a datablock and want to know what fi elds it has and
what methods are scoped to it, type the following in the console (assuming
the ID of the object or datablock is stored in $Obj).

$Obj. dump();

Part II Engine Overview

140

To see a listing (inspector) of all the objects that are currently loaded, type:

tree();

This will bring up a special debugging tool that functions much like the
Inspector.

4.5 Summary
It has been a long chapter, but you made it through. It is doubtful that anyone
could fully absorb all of the information presented in this chapter after just one
reading. So, while you work with Torque and encounter problems, use this
chapter as a resource, revisiting sections that were not clear on the initial pass.
 To recap, and as a reference, here is what we covered.

• First, we talked about what game-engine scripting languages are and why
they're useful. We talked about the features a good scripting language
should have and discovered that TorqueScript has all of them.

• With the introductory analysis out of the way, we dug into the meat of
TorqueScript, studying each of the features of the language in detail. We
talked about TorqueScript's variables at length—studying variable naming
and scoping and the numeric, string, Boolean, array, and vector datatypes.

• Continuing with the detailed overview of the language, we looked at
TorqueScript's operators, control statements, and functions.

• We then covered how to use objects in TorqueScript, looking at their
handles and names, fi elds and commands, dynamic fi elds, and console
methods.

• Next, we quickly introduced packages, namespaces, and datablocks. We
covered these sections briefl y at fi rst, needing to understand more about
the interaction between the engine and the script console before we could
go into further detail.

• After a detailed look at the engine-console interface mechanisms in Torque,
we came back to datablocks, objects, and namespaces. For datablocks in
particular, we found out how datablocks and objects are related to each
other and found out how to declare datablocks. Studying namespaces,
we learned that they can be tricky but discovered object namespace hier-
archies, learned how to create simple datablock namespaces, and then
became datablock namespace masters.

• We ended with a quick discussion of how to help yourself, covering a few
more features of Torque that enable debugging.

Game Elements Part III

143

Torque Core Classes

All right! We’ve fi nished going through the engine overview and now it is
time to jump into the guts of some important TGE classes. As was previ-
ously mentioned, at its core, TGE is an event-driven simulator. This simu-
lator has defi ned a hierarchy of classes, based on the aptly named class
SimObject.
 In this chapter, we will be inspecting the SimObject class, and some of
the other core classes. Each of these core classes is a major branch in the
SimObject hierarchy, off of which many other classes hang. We will discuss
those (hanging) classes in the subsequent chapters.
 The following specifi c classes are covered in this chapter.

• SimObject. The root class for all other SimObjects. Understanding this
class is fundamental to understanding how TGE classes interact.

• SimDataBlock. The base datablock class. We have already discussed this
class, but we will revisit it to ensure that we are ready to move on to sub-
sequent classes.

• SceneObject. The base class for almost all scene-placeable objects.

• GameBase and GameBaseData. These (otherwise minor) classes repre-
sent the fi rst object-datablock pairing and act as parents to all subsequent
classes with this kind of relationship.

5.1 SimObject

5.1.1 SimObject Features
SimObject has the following features.

• Identifi cation
• Object name (alphanumeric)
• Object ID (numeric)
• Group ownership

• Saving
• Save to fi le

Chapter 5

Part III Game Elements

144

• Self-Documentation
• Object information dumping

• Classifi cation
• Class Name
• Object Type (a bitmask)

• Destruction

5.1.2 SimObject Description
As one would expect of a root class, this class forms the basis for the organi-
zation and usage of all subsequent classes. Its major responsibility is to track
standard data about an object, such as the object’s name, ID, what SimGroup
it belongs to (if any), and what type of object it is. It also handles saving itself
to fi le, deleting itself, scheduling actions on itself, and dumping a list of con-
sole methods and fi elds associated with itself.

5.1.3 Name and ID, Please . . .
An object will always have a unique ID and may optionally have an alpha-
numeric name. Furthermore, objects may be referenced by name or by ID.
ID referencing is the preferred method because it is unambiguous. Multiple
objects may share the same name, and references by name always retrieve the
fi rst object found to have the specifi ed name.
 Examine the following code to see how using names instead of IDs can
lead to confusion.

//ts00();

// The following code demonstrates the issue that occurs
// when giving multiple objects the same name.

%obj0 = new SimObject(test); // a SimObject named ‘test’
%isSame = (%obj0 == test. getID());
 echo(“%obj0 == test. getID() => ”, %isSame);

%obj1 = new SimObject(test);
%isSame = (%obj0 == test. getID());
 echo(“%obj0 == test. getID() => ”, %isSame);

%isSame = (%obj1 == test. getID());
 echo(“%obj1 == test. getID() => ”, %isSame);

 Torque Core Classes Chapter 5

145

The following results for the above code show that the engine fi nds the last
instance of a named object when searching by name.

%obj0 == test. getID() => 1
%obj0 == test. getID() => 0
%obj1 == test. getID() => 1

5.1.4 Class Name and Type Information
Every object is created from a class, and every class has a unique class name.
This information can be retrieved via script and is useful for categorizing
objects. Additionally, every object stores information about its inheritance
structure, that is, its type.

//ts01();

%obj = new Player(SuperGuy) {
 datablock = BasePlayer;
};

// will echo ==> Player
 echo(%obj. getClassName());

// will echo ==> SuperGuy
echo(%obj. getName());

// will echo ==> PlayerData
echo (%obj. getDatablock(). getClassName());

// will echo ==> BasePlayer
echo (%obj. getDatablock(). getName());

What about type information? In TGE, each mission-placeable object derived
from SimObject has the ability to store and retrieve a mask value that shows
the object’s inheritance structure. For example, a WheeledVehicle, being far
down the chain, will have bits for WheeledVehicle, Vehicle, ShapeBase, and
GameBase set. Why are there no bits for the hierarchy between SceneOb-
ject and SimObject? It is implied. You cannot place an object that is not a
SceneObject, and SceneObject is a child of SimObject.
 The actual bit values are declared in objectTypes.h, but to make scripting
simpler, they are exposed as named variables (done in main.cc). The follow-
ing types are currently defi ned.

Part III Game Elements

146

$TypeMasks::StaticObjectType $TypeMasks::EnvironmentObjectType

$TypeMasks::TerrainObjectType $TypeMasks::InteriorObjectType

$TypeMasks::WaterObjectType $TypeMasks::TriggerObjectType

$TypeMasks::MarkerObjectType $TypeMasks::GameBaseObjectType

$TypeMasks::ShapeBaseObjectType $TypeMasks::CameraObjectType

$TypeMasks::StaticShapeObjectType $TypeMasks::PlayerObjectType

$TypeMasks::ItemObjectType $TypeMasks::VehicleObjectType

$TypeMasks::VehicleBlockerObjectType $TypeMasks::ProjectileObjectType

$TypeMasks::ExplosionObjectType

To check the type of an object, we use the getType() method and use bit-
wise operators to compare return value against the above masks.

//ts02();

%obj = new Vehicle() {
 datablock = BoxCar;
};

if(%obj. getType() & $TypeMasks::VehicleObjectType) {
 echo(“Yup, it’s a vehicle...”);
}
else {
 echo(“Sorry, but that is not a vehicle...”);
}

%obj. delete();

%obj = new Player() {
 datablock = BasePlayer;
};

if(%obj. getType() & $TypeMasks::VehicleObjectType) {
 echo(“Yup, it’s a vehicle...”);
}
else {
 echo(“Sorry, but that is not a vehicle...”);
}

%obj. delete();

 Torque Core Classes Chapter 5

147

Object type masks are used in a variety of other ways, so you might want to
bookmark this page.

5.1.5 Saving and Deleting
Removing an object from the world is as simple as telling that object to delete
itself.

%obj. delete(); // Ahh! I kill myself... ;)

Objects are able to clean up their own fi elds and otherwise cleanly remove
themselves from the world. However, as a general rule, objects do not auto-
matically delete other objects that they may logically own. Fortunately, there
are callbacks and SimGroups to help us out here. These are both topics for a
later chapter, so for now just read on.

5.1.6 Dumping Information
At the end of Chapter 4, we introduced the dump() function. This function is
introduced by the SimObject and can therefore be called by any child of this
class.
 The dump() function prints all the following information associated with
an object to the console:

• Engine-registered console methods. All methods registered as being asso-
ciated with the dumping object’s class or one of its parents.

• Console-registered console methods. All scripted methods associated
with the dumping object’s class or one of its parents.

• Member (nondynamic) fi elds. Fields permanently exposed for this class
(by the engine).

• Tagged (dynamic) fi elds (for this object). Fields created in the dumping
object during or subsequent to its creation.

 You will probably use this function quite a bit, so let’s give it a quick try
to get you started.

//ts03();

%obj = new SimObject();
%obj. dump();

5.1.7 Group Membership
We have not discussed them yet, but Torque has two (base) container classes,
SimSet and SimGroup. The latter has a special property, wherein any object

Part III Game Elements

148

Table 5.1

Summary of SimObject
methods.

stored in a SimGroup is guaranteed to only be stored in that SimGroup and no
other SimGroup. SimSets offer no such guarantee.
 We will discuss this in some detail later, but for now, let’s just remember
that an object can only be in any one SimGroup (container) at any one time.
Given this restriction, it is possible that we might want to know what Sim-
Group our object is in. If we have the name of an object, or if we have its ID,
we can simply “ask” the object what container it is in.

%obj. getGroup()

The above code will return either –1, or a nonnegative numeric value. If the
value –1 is returned, the object is not stored in a group; otherwise, the numeric
ID that is returned is the ID of the SimGroup container that currently “owns”
this object.

5.1.8 SimObject Methods
SimObjects have several useful built-in methods, described in Table 5.1.

Method Description

delete() Delete this object.

dump() Dump information about this object to the script console.

 getClassName() Return this object’s C++ class name.

getGroup() Get the ID of the group this object is stored in, or else return –1.

getID() Get this object’s numeric ID.

getName() Get this object’s alphanumeric name.

getType() Get this object’s type bitmask.

save(fileName) Save this object to the file specified in fileName.

schedule() Described later in Chapter 9, “Gameplay Scripting.”

setName(newName) Change the name of this object to value in newName.

5.2 SimDataBlock

5.2.1 SimDataBlock Features
SimDataBlock features include the following.

• Initialization

• Scoping

 Torque Core Classes Chapter 5

149

 SimDataBlock is the root class of all datablock classes. We have talked
about datablocks quite extensively already. However, I would like to quickly
revisit a few important datablock features, ending with a lead-in to the topic
of callbacks.

5.2.2 Datablock-Object Pairing
Remember that almost all GameBase-derived objects are paired with a like-
named SimDataBlock-derived class. Table 5.2 shows the current complete
(alphabetic) list of pairings.

Table 5.2

 Datablock-object pairings.

The className
keyword should
not be confused
with a class’s name
(from SimObject).
It serves a different
purpose and does not
affect the output of
 getClassName().

5.2.3 Namespace Rules

 Chaining and Building

All SimObject-derived classes have a namespace calling chain. SimDataBlock-
derived classes add to the namespace chain in two ways. First, they add the
name of the datablock to the chain. Second, they have a mechanism for add-
ing an additional namespace by using the className keyword.

Datablock Class Object Class

CameraData Camera

DebrisData Debris

ExplosionData Explosion

FlyingVehicleData FlyingVehicle

fxLightData fxLight

GameBaseData GameBase

HoverVehicleData HoverVehicle

ItemData Item

LightningData Lightning

MissionMarkerData MissionMarker

ParticleData - none -

ParticleEmitterData ParticleEmitter

 ParticleEmitterNodeData ParticleEmitterNode

Datablock Class Object Class

PathCameraData PathCamera

PathedInteriorData PathedInterior

PlayerData Player

PrecipitationData Precipitation

ProjectileData Projectile

ShapeBaseData ShapeBase

ShapeBaseImageData - none -

SimDataBlock - none -

SplashData Splash

StaticShapeData StaticShape

TriggerData Trigger

VehicleData Vehicle

WheeledVehicleData WheeledVehicle

Part III Game Elements

150

datablock PlayerData(myPlayerDatablock) {
 className = myPlayerDataBlockParent;
};

The above datablock produces a namespace chain like the following.

myPlayerDataBlock → myPlayerDataBlockParent → PlayerData → . . .

The class name above could have been any string not already in the chain. I
chose “myPlayerDataBlockParent” so that the hierarchy would be clear, but I
could just as well have called it “Freddie” and gotten the following chain.

myPlayerDataBlock → Freddie → PlayerData → . . .

We can later use this datablock to build an instance of the Player class as
follows.

%myPlayer = new Player(TorqueDude) {
 datablock = “myPlayerDatablock”;
};

 Noninheritable

In standard TGE, namespaces are noninheritable in the console. This means
that, if we create a new datablock myPlayerDatablock2 and inherit (copy) the
fi elds from myPlayerDatablock, as follows:

datablock PlayerData(myPlayerDatablock) {
 className = myPlayerDataBlockParent;
};

datablock PlayerData(myPlayerDatablock2 :
 myPlayerDatablock) {
 // Copies: className = myPlayerDataBlockParent;
 // from myPlayerDatablock
 // ...
};

the new datablock will not have the myPlayerDatablock name in its namespace.
Instead, its namespace will look like the following.

myPlayerDataBlock2 → myPlayerDataBlockParent → PlayerData → . . .

It does inherit the added namespace specifi ed by className, but the parent
datablock namespace is lost.

 Torque Core Classes Chapter 5

151

 Scoping

As a direct result of this namespace business and due to the way TGE is
designed, we can create console methods (functions scoped to a console
class) as follows.

function myPlayerDataBlockParent::DoIt(%theDB , %optionalArgs, ...) {
 // ..
};

As can be seen from this example, the function DoIt() has been scoped
to the myPlayerDataBlockParent namespace, using the namespace resolution
operator ::. Thus, we now refer to DoIt() as a console method (or method,
for short).
 This (noncallback) method takes a minimum of one argument and may
have as many additional arguments as we deem necessary. The required
argument is often named %this, but in our example it has been given the
more meaningful name %theDB. Why? Well, as you probably recall, when the
method is called (properly), the engine will pass, as the fi rst argument, the
ID of the datablock associated with the object that caused the method to be
fi red.
 We can certainly call methods directly, or on a datablock name/ID if we
want to, but most of these methods are called by the engine as the result of
some event. Recall (from earlier) that methods called as the result of some
event are called callbacks.

5.3 SceneObject

5.3.1 SceneObject Features
SceneObject features include the following:

• Transforms
• Position
• Rotation
• Scale
• Transform
• Forward vector

• Collision Detection

• Volumes
• Object box
• World box

Remember
that, when the

engine automatically
calls a method on a
datablock, the method
is referred to as a
callback. All callbacks
scoped to datablocks
receive two default
arguments, not the
single argument a
regular datablock
method gets. The first
argument is the ID of
the datablock, and
the second argument
is the ID of the object
that the callback
is being called for.
Torque implements
a great number of
callbacks. For the
most part, we do not
discuss them in this
guide. However, those
callbacks that will
affect our efforts to
write a single-player
game will be discussed.

Part III Game Elements

152

5.3.2 SceneObject Description
A SceneObject is an object capable of appearing in a scene. It can be rendered.
It may be moved, rotated, and scaled. It may be collided with, and it takes up
space within the game world.

5.3.3 Position, Rotation, and Scale
All SceneObject-derived objects provide three basic fi elds.

• Position. A three-element fl oating-point fi eld describing the object’s initial
placement position in the world.

• Rotation. A four-element fl oating-point fi eld specifying the shape’s rota-
tion as a quaternion.

• Scale. A three-element fl oating-point fi eld specifying the x-y-z scaling fac-
tors for a shape.

%obj = new Player(Blockman) {
 position = “0 0 0”; // start at world-zero
 rotation = “1 0 0 0”; // quaternion giving zero rotation
 scale = “1 1 2.5”; // 2.5 times as tall as standard version
};

These fi elds are used during the creation of an object to set the object’s initial
position, rotation, and scale. Not a big surprise.
 The real surprise comes later, if you try to modify these fi elds directly.
If you are using the Inspector to make these changes, they will always take
effect, but if you are using scripts, your results will vary. This is because
some objects regularly mark these fi elds as dirty and retransmit them to the
client ghosts while other classes never mark them as dirty so the changes go
unheeded.
 This is not a bug. You are not supposed to modify these variables directly,
but rather use access methods. These access methods are described in
Table 5.3.

Method Description

getPosition() Returns the object’s current position.

getScale() Returns the object’s current scale.

setScale(newScale) Sets the object’s scale to newScale.

 The access methods described might not seem like enough. This is because
the makers of the engine have combined the position and orientation informa-
tion into a composite vector called a transform.

Table 5.3.

Access methods.

 Torque Core Classes Chapter 5

153

5.3.4 The Transform
An object’s transform is a composite vector containing both position and rota-
tion information.

“posX poxY posZ rotX rotY rotZ rotTheta”

The access methods used to get and set transform are defi ned in Table 5.4.

Method Description

getTransform() Returns the object’s transform vector.

setTransform(newTransform) Sets the object’s transform to newTransform and
marks this information as dirty so that all ghosts
are updated.

 In the following example, we want to translate an object by 10 meters
along the world x-axis. Using a couple of string functions we extract the posi-
tion and rotation vectors as well as the rotation theta about the rotation vec-
tor. Then, we add “10 0 0” to the position vector. After re-assembling the
vector, we translate the object’s position by passing in the new transform
to a setTransform() call. Simple.

%myTransform = %obj. getTransform();
%myPosition = getWords(%myTransform, 0 , 2);
%myRotationVec = getWords(%myTransform, 3 , 5);
%myRotationTheta = getWord(%myTransform, 6);

// Move shape +10 in X direction
%myNewPosition = vector Add(%myPosition , “10 0 0”);
%obj. setTransform(%myNewPosition);

The methods getWords(), getWord(), and vector Add() will be
described in Chapter 9, “Gameplay Scripting”.

5.3.5 Collision Detection
This class introduces the ability to interact with the world via collisions.
SceneObjects can collide with other objects and can be collided with. Collision
detection and response is a complex and advanced topic, which we won’t be
able to cover in detail; however, as with callbacks, those collisions that we
need to discuss will be discussed briefl y prior to writing any of the required
code for our game.

Table 5.4.

Access methods to get and
set transform.

For some objects,
it is actually

possible to modify
the object’s position
field and then to
rescale the object to its
current scale. This will
cause the scale and
position to be marked
as dirty, allowing us
to move an object
that might otherwise
ignore even the
transform update. One
example of this is the
 ParticleEmitterNode
object, which we will
discuss in Chapter 8,
“Mission Objects.”

I don’t generally
encourage people to
use hacks, and this is
a hack, but this little
tip is really quite useful.

Part III Game Elements

154

5.3.6 Object Boxes and World Boxes
Every scene object has an object box and a world box. These two boxes serve
unique purposes.
 The object box is an object-oriented box whose coordinates are relative
to the object’s centroid. The extents of this box are the non-scaled <x y z>
bounds of the shape. The purpose of this box is to provide an unscaled basis
for bounding and scaling calculations done in script.
 The world box is a (world) axis-aligned bounding box. The coordinates
of the world box are real-world and do not need to be translated or scaled.
This box tells us (approximately) how much space a shape is taking up in
the world and where. It is useful for placement calculations and obstacle-
avoidance checks, among its many other uses.
 We can get these useful bits of data with these methods in Table 5.5.

Method Description

 getObjectBox() Returns the six-element floating-point vector representing
this object’s object box. The first three values represent the
lower left corner, and the latter three values represent the
upper right corner.

 getWorldBox() Returns the six-element floating-point vector representing
this object’s world box. The first three values represent the
lower left corner, and the latter three values represent the
upper right corner.

getWorldBoxCenter() Returns the three-element floating-point vector representing
the center of this object’s world box.

5.3.7 The Forward Vector
It is frequently important to know which direction a shape is facing. We can
retrieve this information by asking for the object’s forward vector.
 The forward vector is a normalized vector representing the orientation of
the shape’s y-axis relative to the world axes (in Torque, +z is up, +y is for-
ward, and +x is left). The getForwardVector() method provides a quick
means of retrieving this value.

%playerFacing = %player. getForwardVector();
 echo(“Player’s forward vector is:” SPC %playerFacing);

A frequently seen
beginner’s mistake
is to assume that the
forward vector and the
rotation vector from
the object’s transform
are the same.

They are not the same,
and you should not
treat them as such.
Each of them has a
separate purpose and
use.

Table 5.5.

Methods for getting
object- and world-box
data.

 Torque Core Classes Chapter 5

155

5.4 GameBase and GameBaseData

5.4.1 GameBase Features
GameBase features include the following:

• Ticking

• Datablocks

5.4.2 The Foundation Game Classes
All GameBase objects are built using datablocks; thus, it is not surprising that
the majority of what this class does is focus on datablock functions. It is also
the fi rst object to experience ticks. This is just something to put under your
hat for now, but it is important to know. Only GameBase objects and their
children are ticked.
 Datablocks are used to store static data as well as to scope many impor-
tant methods and callbacks. In order to allow us to access the data these
objects contain, we fi rst require a method of obtaining an object’s datablock.
Of course, Torque supplies us a method to do this. Given that we know the
object for which we want the datablock, we can get that object’s datablock as
follows.

%myDataBlock = %obj. getDatablock();

Additionally, we may change an object’s datablock at any time with a call like
the following.

%obj. setDatablock(Blockman2);

 What exactly does changing the datablock do for us though? Well, the
obvious thing it does is change the source of subsequent datablock data
retrievals; i.e., datablock values retrieved (by us and by the engine) in the
future will get their content from the newly specifi ed datablock. This is pretty
cool, but there is another more important (and more subtle) thing that this
does. By changing the datablock of an object, we are effectively changing that
object’s namespace (the console method calling chain). Consider the follow-
ing code.

function BlockMan::doit(%DB) {
 echo(“In BlockMan::doit(” SPC %DB SPC “)”);
}

Part III Game Elements

156

function BlockMan2::doit(%DB) {
 echo(“In BlockMan2::doit(” SPC %DB SPC “)”);
}
%obj = new Player(BlockMan) {
 // ...
};

%obj.doit(); // Calls BlockMan::doit

%obj. setDatablock(BlockMan2);

%obj.doit(); // Calls BlockMan2::doit

If you stop and think about it, this is an extremely powerful tool and can be
used for some heavy-duty coding. Note also that objects that render a shape
will render the new shape as defi ned by the new datablock, so this is a quick
way to change an object’s entire mesh.

5.5 Summary of Core Classes
This is a rather short chapter, but it is very important because these classes
form the basis for almost all scripting that we will do in the future. In almost
every gameplay-related script we write, we will touch at least one of these
classes’ features.

157

Basic Game Classes
Chapter 6

6.1 Shape and Interiors
In this chapter, we will discuss all of the fundamental classes that are used
to create models in our game world. Excluded from this discussion are any
classes that are normally used as avatars.
 Torque supplies a large set of classes used to display two fundamental
categories of models: shapes and interiors.

6.1.1 Shapes
In TGE, shapes are normally nonstructural objects. More exactly, shapes
should not be used to represent an object that must have both an interior
and an exterior that can be accessed via another shape. The reason for this is
simple: shapes have only exterior collision.
 Shapes are created and rendered either with the children of ShapeBase or
 ShapeBaseImageData, or with TSStatic.
 In this chapter, the two children of ShapeBase that we will be discussing
are the following.

• Item. Used to represent interactive items like coins, pickups, and power-
ups.

• StaticShape. Used to represent objects that are stationary or have limited
movement/interaction capabilities.

We will defer a discussion of the following ShapeBase children classes until
the next chapter because they are normally used as avatars and require special
attention.

• Player

• Vehicle, WheeledVehicle, HoverVehicle, and FlyingVehicle

Additionally, we will discuss the following high-level topics in the next
 chapter.

• GameView/POV. We discuss how the interactions of several classes com-
bine for our GameView and determine the point of view.

• Inventories. A nearly universal construct is the inventory. We will discuss
the basic elements of the one that is included with this guide.

Part III Game Elements

158

6.1.2 Interiors
Interiors are used to display models that represent any structural object,
including such things as buildings, bridges, walls, and other large structures.
The motivation for this name comes from the fact that these objects can have
an actual inside. This type of model supports arbitrary collision with both
inside surfaces and outside surfaces.
 The class used to represent interiors implements a standard BSP collision
scheme. Thus, it supports dividing models/meshes into n-dimensional convex
partitions that can be entered. Additionally, interiors can use portals to cull
hidden geometry.
 Some other features supported by interiors are self-shadowing, terrain
shadowing, and light maps. Interiors will self-shadow and, when the relight-

ing phase executes, the engine will back a shadow texture into the terrain
based on the location of each interior. Interior shadowing and lighting
are accomplished with the use of precalculated light maps. The basic

exporter produces pretty nice light maps. Additionally, there is a radiosity
exporter available for creating smoother lighting.
 Most of what you will need to know about interiors is art-based and
includes such things as placing portals correctly, creating BSP-acceptable
geometry, adding lights and textures, and preparing multiple level of detail
(LOD) versions of meshes.

6.2 ShapeBase/ ShapeBaseData
These are the root classes in the ShapeBase class hierarchy. The ShapeBase
class itself cannot be used to create objects in the world. It should be consid-
ered a “virtual” class. Instead, use the children classes. ShapeBaseData is the
datablock class associated with ShapeBase.

6.2.1 ShapeBase and ShapeBaseData Features
ShapeBase and ShapeBaseData have the features shown in Table 6.1. As can
be seen, these classes have a signifi cant burden for providing shape function-
ality. As a side effect, ShapeBase-derived objects have a signifi cant network
weight. Thus, if you do not need any of the features in Table 6.1 for a shape,
consider using TSStatic instead (see Section 6.5).

6.2.2 Rendering
In order to be rendered, a shape must provide a model (mesh). Additionally,
we might wish to allow a shape to be cloaked and/or to render an environ-
mental map. These features are provided by the ShapeBaseData datablock.

Interior lighting and
shadowing is pretty
nice, but if you wish to
have more control over
this, and if you want
these lights to affect
nonstatic objects like
the player, you should
pick up the Torque
Lighting Kit for TGE or
consider moving up to
the Torque Shader
Engine.

 Basic Game Classes Chapter 6

159

 In the following example, we are creating a StaticShapeData datablock
named “FadeEgg”:

// Fade Egg from Rendering
datablock StaticShapeData(FadeEgg)
{
 category = “LessonShapes”
 shapeFile =
 “~/data/Shapes/Lessons/GeneralLessonShapes/egg.dts”;
};

Category Features

Rendering • Environmental mapping
• Cloaking
• Fading
• Hiding
• Skinning

Damage • Damage level tracking
• Damage states
• Self-repairing
• Invincibility
• Damage flashes and whiteouts
• Explosions

Energy • Energy level tracking
• Recharging

Physical Parameters • Mass
• Density
• Drag
• Velocity
• Impulses

Eye Transforms

Camera Settings • Field of view
• Point of view
• Range and angle limits

Animations • Four threads

Sound • Four independent threads

Mounting • Shape-to-shape
• Image-to-shape

Table 6.1.

Part III Game Elements

160

Later, we can create an instance as follows.

%theEgg = new StaticShape {
 datablock = FadeEgg;
};

 Environmental Mapping

If we set the “emap” datablock parameter to true, the shape will use the envi-
ronmental mapping texture specifi ed for the sky object, if it was specifi ed.

 Cloaking

ShapeBase-derived shapes have the ability to cloak. When a shape is cloaked,
it is reskinned with the cloakTexture specifi ed in its datablock. Further-
more, this skin is rendered at a fi xed overall alpha (specifi ed in the engine).

The cloakTexture does not need an alpha channel for the cloak to suc-
ceed, however, if the fi xed alpha used by the engine is not low enough,

you can further reduce it by using a cloakTexture with an alpha chan-
nel. Shapes that are cloaked behave just like uncloaked shapes in all other

respects.
 In order to cloak an object, fi rst defi ne a datablock with a cloak texture,
as follows.

datablock StaticShapeData(CloakEgg) {
 category = “LessonShapes”;
 shapeFile =
 “~/data/Shapes/Lessons/GeneralLessonShapes/egg.dts”;
 cloakTexture =
 “~/data/Shapes/Lessons/GeneralLessonShapes/testskin.png”;
};

Then, having created an instance, enable cloaking as follows.

%theEgg. setCloaked(true);

Fading and Hiding

ShapeBase-derived shapes have the ability to fade in and out of view as well
as to be hidden. While a shape is fading in or out, its collision mesh is still
active. In fact, once a shape is completely faded out, its mesh is still active
and can still be collided with. You must hide an object to disable its collision
mesh.

If you choose
to not specify a
cloakTexture
and then you cloak
a shape, that shape
will get a default
white texture. This is
actually pretty nice
and gives a reasonable
cloaking effect. You
might consider trying
this before working
too hard on a special
texture for cloaking.

 Basic Game Classes Chapter 6

161

// Fade this egg from view, over a 1.5 second period,
// starting immediately
%theEgg. startFade(1500 , 0 , true);

// Schedule the egg to be ‘hidden’ in 1.6 seconds
// (disables collision mesh)
%theEgg. schedule(1600 , setHidden , true);

 Skins

ShapeBase-derived shapes are allowed to have multiple skins. In order to use
this feature, the skins to be used for a shape must follow some simple rules.
First, a texture (skin) is required to group the skins for this shape. It has a
name of the form base.setName.suffix.

• base. The engine looks for this special prefi x and uses it to ‘group’ textures
by setName.

• setName. This string identifi es the skins that are in this group.

• suffix. This is any acceptable TGE image format: PNG, JPG, etc. (see
Appendix for complete list).

Subsequently, any textures to be included in the set for multiskinning must
have names of the form skinName.setName.suffi x.

• skinName. This is the optional part of the skin name and is used in the
 setSkinName() method (see below). This name can be any arbitrary
string you wish to use. Skin names are stored as tags.

For example, if you wish to have a shape with three skins, you could use the
following textureNames.

base.skin.png // Apply this texture to the shape.
skin0.skin.png // First Skin
skin1.skin.png // Second Skin
skin2.skin.png // Third Skin

Subsequently, we could change the skin for a shape as follows:

%obj. setSkinName(“skin2”); // automatically converted to a tag

// OR

%obj. setSkinName(‘skin2’); // The tag itself.

 The question will arise, “Can I do this for multiple textures on the same
mesh?” Yes, you can have multiple texture groups on one mesh, but when you

Part III Game Elements

162

fl ip one texture, all the other textures will revert to their base texture. So, if
you need to change multiple textures, you might want to consider using IFLs
(image fi le lists) as an alternative to multiskinning. In fact, IFLs may be better
anyway if:

• you wish to animate a texture rapidly, and/or

• you wish to change the texture on only a small part of the shape, and

• you are willing to give up one animation slot (per playing IFL).

6.2.3 Damaging, Disabling, Destroying,
 and Exploding!
ShapeBase-derived objects can be damaged, disabled, and eventually
destroyed. Upon destruction, a shape may continue to render, or it may
explode and leave behind debris.

Damaging

To allow a shape to take damage, we must defi ne some key values in our
datablock:

datablock StaticShapeData(SelfHealingBlock) {
 // ...

 maxDamage = 100;
 disabledLevel = 80; // Disabled at 80 or greater points
 destroyedLevel = 100; // Destroyed at maxDamage
 repairRate = 0.05; // Repair @ 1.6 points per second
};

What we have said here is that this object can take up to 100 damage points
and that it should be considered disabled at 80 points and destroyed when it
hits 100. If we wished, we could set either of these values higher than max-
Damage, which is the same as saying “cannot be disabled” or “cannot be
destroyed,” respectively. The last value repairRate tells the engine to apply
0.05 points of “repair” every tick until damage equals zero.

Setting Up Repairs

This seems pretty simple so far, but a few things need to be clarifi ed. Although
we have specifi ed values for damage, our shape will not do anything auto-
matically. We are responsible for applying damage, changing the damage state
of the shape, and setting the repair rate. Until the repair rate is set by calling
setRepairRate(), a shape will not self-repair.

 Basic Game Classes Chapter 6

163

 Thus, when we create our object, we want to use setRepairRate()
to enable self-repair. An ideal place to do this is in the shape’s on Add()
callback:

function SelfHealingBlock::on Add(%DB , %theShape) {
 %theShape. setRepairRate(%DB.repairRate);
}

 Damaging

Later, we may wish to apply damage to our shape. To do so we would use
code similar to the following.

%theShape. applyDamage(%someDamage);

 Repairing Manually

In addition to a damage method, a method is supplied to repair a shape as
follows.

%theShape. applyRepair(%someRepair);

There is, however, a slight trick to making this work. If we have chosen to
allow our shape to self-repair (by calling setRepairRate() with a nonzero
value), we cannot apply repairs at a greater rate than the specifi ed rate.
 In other words, if you want to repair an object that is able to self-repair,
you will need to do the following.

// Turn off self-repair
%theShape. setRepairRate(0);

// Do the repair
%theShape. applyRepair(%someRepair);

// Turn self-repair back on
%theShape. setRepairRate(%theShape. getDatablock().repairRate);

 Of course, if a shape is not automatically repairing, then we simply call
 applyRepair(), and we’re good to go.

 Damage States

It is up to us (through the use of scripts) to take responsibility for tracking the
damage level of our shape and for setting its damage state. What is a damage
state, you ask?

Part III Game Elements

164

 A normal shape can be in any one of three (damage) states: enabled, dis-
abled, or destroyed. A sample method to deal with this might look like the

following:

function ShapeBase::determineDamageState(%theShape) {
 %curDamage = %theShape. getDamageLevel();
 %disabledDamage = %theShape. getDatablock().disabledLevel;
 %destroyedDamage = %theShape. getDatablock().destroyedLevel;

 if(%curDamage >= %destroyedDamage) {
 %theShape. setDamageState(Destroyed);
 }
 else if(%curDamage >= %disabledDamage) {
 %theShape. setDamageState(Disabled);
 }
 else {
 %theShape. setDamageState(Enabled);
 }
}

 Invincibility

It is possible to make a shape invincible, either permanently or temporarily. To
do so permanently, we use the isInvincible keyword in the datablock.

datablock StaticShapeData(InvincibleBlock :
 SelfHealingBlock) {
 // ...
 isInvincible = true;
};

If we only want this invincibility to be temporary, we can use the set-
InvincibleMode() method.

%theShape. setInvincibleMode(time , speed);

This method works as follows.

• The shape on which this is called will be invincible for a period of time
specifi ed by the fl oating-point value time, as measured in seconds.

• The screen will fl icker blue if it is the control object that has been made
invincible.

 The fl ickering effect is used to indicate to a player that his or her avatar
is invincible. Furthermore, this fl icker rate will change and the fl icker will
become increasingly translucent as the time elapses.

In addition to the
three standard
states, players
(which we have
not yet discussed)
can also be “dead,”
which is equivalent
to being disabled and
destroyed.

 Basic Game Classes Chapter 6

165

 The rate of this fl icker is controlled by the fl oating-point value speed.
apeed can be between 0 and 1. If it is set to 0, there is no fl ickering. If it is set
to 1, the fl ickering is very fast. Generally, lower values are nicer.

Postdestruction Rendering

This leads us to a fi nal damage topic, which is postdestruction rendering; that
is, does the shape render subsequent to destruction? This, too, is determined
by the datablock.

datablock StaticShapeData(ExplodeGears) {
 // ...
 renderWhenDestroyed = false;
};

In this instance, we have instructed the engine to stop rendering the shape
when it is in the “destroyed” state. Unfortunately, there is a catch. Even if
the engine stops rendering the shape, the collision box will remain active;
i.e. collisions will still happen. Therefore, if you wish to entirely remove the
object from interaction, you should either delete it subsequent to destruction
or hide it.

 Damage Flashes and Whiteouts

What are damage fl ashes? Well, in your game, the player may at some time
take damage or be blinded by a bright light. In order to express this concept to
the person playing your game, you can use the following console methods.

// Show red-haze to imply massive damage to player
% cam = %player.client.camera;
// We need the camera ID to do flashes
% cam. setDamageFlash(1.0);

// Show Whiteout to imply slight and temporary blinding.
% cam = %player.client.camera;
// We need the camera ID to do whiteout
% cam. setWhiteOut(0.5);

These two effects can be applied together.
 It is important to understand that these methods must be called on the
camera for the effect to be shown. Calling this on other shapes has no effect.
 Lastly, there is also a blackout function in the engine, but it is not hooked
up with a console method. However, if you have the source code, hooking this
up would be as easy as 1 . . . 2 . . . 3.

Part III Game Elements

166

 Explosions

If you have specifi ed an explosion datablock for your shape and the shape is
destroyed (setDamageState() is called with the argument Destroyed), the
shape will create an explosion object at the current location of the shape. The
explosion will then play and delete itself when fi nished. It is that simple.
 In addition to the explosion fi eld, there is an underwaterExplosion
fi eld. This fi eld is used to specify an alternate explosion that should be played
when the shape is destroyed underwater. If no underwaterExplosion is
specifi ed and the shape is underwater, then the normal explosion will be
played.

datablock StaticShapeData(ExplodeGears) {
 // ...
 explosion = “GearsExplosion”;
 underwaterExplosion = “GearsUnderwaterExplosion”;
};

Debris

As with explosion datablocks, if a debris datablock has been specifi ed for
your shape and the shape is destroyed, the shape will create a debris object at
the current location of the shape. Debris represents the refuse left behind by
a destroyed shape. Debris can behave in a wide variety of ways and therefore
merits its own discussion. If you are interested, please skip ahead to Chapter
11, “Special Effects.”

datablock StaticShapeData(ExplodeGears) {
 // ...
 debris = “GearsDebris”;
};

6.2.4 Energy
ShapeBase-derived objects can have energy. This energy can be used for vari-
ous purposes such as powered movement, weapons, vehicles, etc. Initially,
shapes start out de-energized (energy level == 0). We may choose to provide
an initial charge at creation time and/or to enable recharging. Before we can
do either of these, however, we must set up the datablock as follows.

datablock StaticShapeData(FireTube) {
 // ...
 maxEnergy = 20;
 rechargeRate = 0.05; // 1.6 points per second
};

 Basic Game Classes Chapter 6

167

The above datablock tells the shape that its maximum energy is 20 points and
that, when the energy is below maximum, it will recharge at a rate of 0.05
points per tick (about 1.6 points per second). As with self-repair, we need to
enable recharging with a method call.
 To give a shape an initial charge, and then to enable recharging, we can
do the following.

function FireTube::on Add(%DB , %theShape) {
 // Start with maxEnergy
 %theShape. setEnergyLevel(%DB.maxEnergy);

 // Enable recharging
 %theShape. setRechargeRate(%DB.rechargeRate);
}

6.2.5 Physical Parameters
Being in the world, most shapes will need the ability to interact. In real-world
terms, interactions are based on physics. As this is only a simulation of reality,
a minimal set of physical parameters is supplied for all shapes via a shape’s
datablock. All shapes have the concept of mass, density, and drag. These can
be considered unitless, but it is often nice to treat mass and density as metric
units (kilograms and kilograms per cubic meter, respectively).

datablock PlayerData(BlockManPlayer) {
 // ...
 mass = 90; // Kilos
 density = 10; // Kilos/cubic meter
 drag = 0; // Unitless ‘air’ resistance
};

 Velocity

At any time, a shape may be in motion. Thus, it is handy to have a means of
getting and setting the current velocity of a shape.

%obj. getVelocity();
%obj. setVelocity(velocity);

 Impulses

If we wish, we can apply an impulse to any shape with mass. An impulse is
an application of force, causing an instantaneous change in velocity.

Unlike with
self-repair and

manually applied
repairs, we may
manually add energy
to our shape even if it is
recharging.

Applying a velocity
to a StaticShape will
do you no good. It is
static and can only be
moved by using the
setTransform()

method.

Part III Game Elements

168

 Take a look at the following example to see how we apply an impulse:

// Give this player a whack (10x mass) straight up

%objectMass = %player. getDatablock().mass;

%impulseVector = vectorScale(“0 0 1” , %objectMass * 10);

%player. applyImpulse(%obj. getWorldBoxCenter() ,
 %impulseVector);

Varying Impulse Position

The astute reader will notice that the impulse method takes a position vector.
The question that arises in the curious mind is, “What happens if I apply
an impulse to a position that is not in the center of a shape?” The answer:

Results may vary.
 The reason to allow an off-center impulse is to allow us to spin an object.
However, only vehicles will spin. All other classes will ignore any offset and
treat the impulse as if it is applied to the shape’s centroid.

6.2.6 Eye Transforms and Vectors
In addition to the transform and the forward vector inherited from Scene-
Object, ShapeBase and children provide the following positions and vectors.

• Eye point. A point in three-space, representing the position of the shape's
eye.

• Eye vector. A vector representing the pointing direction of the shape's eye.

• Eye transform. A transform, not for the shape but for the shape's eye.

Each of the above quantities are available if the mesh used by the shape has
defi ned a skeletal node with the name “eye.” To acquire these quantities, we
use the following methods.

// Eye Point
 echo(%obj. getEyePoint());

// Eye Vector
echo(%obj. getEyeVector());

// Eye Transform
 echo(%obj. getEyeTransform());

Applying impulses
to StaticShapes
and to items with the
static parameter
set to true, will do
nothing. These shapes
cannot be moved by
impulses.

 Basic Game Classes Chapter 6

169

It is possible to call these methods on a shape without an eye node, as the
engine will use the shapes centroid as the eye in this case. Just be aware
that this is what is happening.

6.2.7 Camera Settings
The ShapeBase camera settings are part of a larger discussion that encom-
passes the GameView and the player’s point of view, so we will come back to
this class when we talk about those topics.

6.2.8 Animations
ShapeBase-derived shapes have the ability to run up to four simultaneous
animations. These animations can be any of the supported animations:

• nonblended (absolute) skeletal,

• blended skeletal,

• image fi le list, and

• visibility.

These animations are applied in the order of the threads they occupy, which
is important to keep in mind for blended skeletal animations.

 Cyclic Animations

TGE supports the concept of a cyclic animation. A cyclic animation is nothing
more than an animation that cycles. When an animation cycles, it progresses
as follows: frame 0, frame 1, . . . frame n, frame 0 . . . , ad infi nitum until
paused or stop.

 Playing

To play an animation, we must have the name of the animation and a free
thread to play it in.

%obj. playThread(0 , “someAnimation”);

In this sample, we’ve decided to play an animation named “someAnimation”
in thread 0. As soon as this statement is executed, the animation will begin
to play and will continue to play until it hits the end of its sequence. Upon
hitting the end of its sequence, an animation can do one of two things. If it is
noncyclic, it will stay in the “playing” state and hold on the last frame of the
animation. If it is cyclic, the animation will start over at the fi rst frame of
the animation.

We have not
talked about

POV yet, but if you
are at all familiar
with games, you will
already know that a
camera can be in 1st
POV (looking through
the eyes of the
player) or in 3rd POV
(somewhere external
to the player). The
above eye quantities
are all relative to a
1st POV viewpoint,
so if your game is
running in 3rd POV,
all three quantities
will be unchanged
by the movement of
the camera; i.e., the
eye will still be in its
1st POV position, and
the eye vector will not
track the camera. To
learn more about this
topic, see the camera
discussion in Chapter
7, “Gameplay Classes.”

If there were already
an animation present
in thread 0, the playing
script shown would
normally stop that
animation and start
the new animation.
For the exceptions,

see “Animation
Oddities”.

Part III Game Elements

170

 Direction

Animations have the concept of a direction. They can be played forward or
in reverse. All animations start playing in the forward direction. To change an
animation’s direction, we use the method below.

%obj. setThreadDir(0 , true); // Play thread 0 FORWARD

// OR

%obj. setThreadDir(0 , false); // Play thread 0 REVERSE

 Pausing and Stopping

So far, we know how to play and reverse a thread, but what if we need to
pause our thread or stop it entirely? Both of these options are available to
us. We can toggle pause; i.e., if the thread is playing it will pause, and if it is
paused it will start playing again.

%obj. pauseThread(0); // Toggle pause for thread 0

We can also stop an animation.

%obj. stopThread(0); // Stop the animation in thread 0

Animation Oddities

It is worth noting that, when using the animation methods to control ani-
mation threads, there is some latency involved. So, you may run into some
strange issues while playing threads.

Noncyclic Threads Remain in Play State at End of Sequence

When a noncyclic animation is played, it eventually completes. However, TGE
does not automatically stop the thread. Instead, the thread remains in the
“play” state. If you have a noncyclic thread that you wish to “re-play,” you
would think you could simply type:

%obj. playThread(0 , “someAnimation”);

 Unfortunately, this will not work. Nor will the following.

%obj. stopThread(0);
%obj. playThread(0 , “someAnimation”);

Stopping an
animation resets
the joints affected
by this animation to
their pre-animation
positions; i.e., the
animation transforms
are no longer applied.
You need to do this if
you want to re-pose a
noncyclic thread that
has reached its end.

 Basic Game Classes Chapter 6

171

 Instead you’ll need to do one of two things. You can schedule a stop after
starting the thread, as follows.

%obj. playThread(0 , “someAnimation”);
%obj. schedule(time , stopThread, 0);
// time > animation length in ms

Otherwise, you’ll have to delay the restart as follows.

%obj. stopThread(0);
%obj. schedule(100 , playThread, 0 , “someAnimation”);

 Damage Animations

All ShapeBase-derived objects will automatically play two different animation
sequences based on the shape’s damage state.

“Visibility” Sequence

The fi rst of the two sequences that is auto-played is the “Visibility” sequence.
This should be a blended animation. It will assume one of two positions; i.e.
it is either off or on and does not actually play an animation sequence. When
the shape’s damage state is not destroyed, the shape plays position zero (0)
of this sequence. When the shape is destroyed, it plays position one (1) of the
thread.

“Damage” Sequence

The second of the two sequences that is auto-played is the “Damage” sequence.
This sequence can be blended or nonblended. This thread plays as follows.

 If damageLevel >= destroyedLevel,

 If damageState == “Destroyed,” play “Damage” sequence position
zero (0).

 If damageState != “Destroyed,” play “Damage” sequence position one
(1).

 If damageLevel < destroyedLevel, play thread at position damageLevel
/ destroyedLevel.

In short, this sequence advances as damage is accumulated, until the shape is
destroyed. This thread/sequence is used to create a damage effect on shapes
and may involve IFLs, geometry animation, visibility animations, etc.

By now, you’ve
seen the method

 schedule() a
few times and have
probably begun
to wonder what
it is. Although we
will discuss this
in Chapter 10,
“Gameplay Scripting,”
let me summarize
what it is now. The
 schedule() method
is used to schedule
either a function or
a method call in the
future. The variety we
have used thus far
schedules methods.
In this example, we
scheduled a method
named stopThread
to execute in time
milliseconds. This
method will be called
on the object %obj
that scheduled it and
will be passed a 0.
That’s it.

Part III Game Elements

172

6.2.9 Sound
ShapeBase-derived objects have the ability to control up to four simultaneous
sound threads. Sounds themselves are declared using audio profi les (AP) and
audio descriptions (AD) (see Chapter 11, “Special Effects”). Playing a sound
declared with the audio profi le named “SomeAudioProfi le” is as simple as the
following.

%obj. playAudio(0 , SomeAudioProfile);

 How this sound plays is up to the AP and the AD. It may play forever or it
may play only once. However, if we wish to stop this sound from playing, we
can do so with the following code.

%obj. stopAudio(0);

6.2.10 Mounting
ShapeBase-derived shapes have the ability to mount other shapes and
ShapeBaseImages. In total, eight shapes, eight ShapeBaseImages, or any com-
bination of up to eight total can be mounted to any single shape.
 Mounting is tracked through the use of mount slots. Mount slots should
not be confused with mount nodes.

• Mount slots are the indices into the shape’s mount list.

• Mount nodes are positions on the shape corresponding to named joints/
nodes in the model. These names are mount0 . . . mount31 (TGE supports
a maximum of 32 mount nodes).

To clarify the difference between nodes and slots, let’s look at the images in
Figure 6.1 from one of my own game
prototypes. In the game, eight shields
are attached to this tower, all of them
attaching to the mount0 node (Figure
6.1a). In Figure 6.1b, you can see three
of the shields. In Figure 6.1c, three of the
shields have been attached to mount0.

Figure 6.1b.

Individual shields with
mountPoint node.

Figure 6.1a.

Tower with mount0 node.

 Basic Game Classes Chapter 6

173

 The important takeaway is that,
although all three shields are attached
to the same node (mount0), they are
each in their own slots. Assuming
they were mounted from innermost
to outermost shield, those slots would
be Slot 0—Inner Shield, Slot 1—Mid-
dle Shield, Slot 2—Outer Shield.

Things to Know

You should be aware of the following.

• Mounted shapes and images will translate and rotate with the node that
they are mounted to.

• If a mount node is animated, the shape/image mounted to that node will
follow the node through its animation.

• Multiple objects/images can be mounted to the same mount node but not
in the same slot.

• Images do not have collision meshes and will therefore not collide with
objects when the shape they are mounted to moves.

• Shapes that are mounted to other shapes retain their collision meshes.

There is a pretty hefty set of console methods dedicated to dealing with
mounting tasks. We will not be covering them all here, but never fear, they
are all listed in the “Console Fields and Methods” Section of Appendix A with
descriptions that should clarify their purposes. For now, we’ll do a simple
example showing what it takes to mount a shape to a shape, and then an
image to a shape.

Mounting Shape-to-Shape

In the following examples, we will be discussing two shapes, shapeA and sha-
peB. In all instances, shapeB will be mounted onto shapeA.
 For the mount to succeed, shapeA must have a numbered mount node
(i.e., mount0 . . . mount31) defi ned in the DTS fi le. Additionally, shapeB must
have a node named “mountPoint” (also defi ned in the DTS fi le). Given this,
mounting is as simple as the following.

%shapeA. mountObject(%shapeB , 10);

Once this code executes, %shapeB should now be attached to %shapeA at
mount node 10. However, if shapeA does not have a mount10 mount node,
or if shapeB does not have a node named “mountPoint,” then the mount will

Figure 6.1c.

Shields mounted to tower
at mount0.

Part III Game Elements

174

probably either be shapeB center to shapeA center or shapeB center to shapeA
foot (this happens with bad mounts to the player).
 Assuming that the mount worked, shapeB will now translate and rotate
with shapeA’s numbered mount node. This means that any translation or
rotation of the numbered mount node (including those caused by anima-
tions of the node) will rotate and translate shapeB. Additionally, shapeA’s
collision box remains active and will record collisions.
 Well, that’s all fi ne and dandy, but some time in the future, we may
wish to detach these two shapes from each other. To do this, simply use the
following code.

%shapeA.un mountObject(%shapeB);

Mounting Image-to-Shape

In the following examples, we will be discussing the mounting of a Shape-
BaseImageData datablock (Image) to a ShapeBase object (Shape). We will
refer to the Shape as shapeA and the Image as imageA. To be absolutely clear,
imageA is being mounted to shapeA.
 As with shape-to-shape, shapeA must defi ne a numbered mount node
(i.e., mount0 . . . mount31) in its DTS fi le, and imageA must defi ne a mount
node named “mountPoint.” As an additional requirement, the datablock defi -
nition for imageA must specify which numbered node in shapeA it will mount
to. In other words, every ShapeBaseImageData datablock predefi nes which
numbered mount node it can attach to.

datablock ShapeBaseImageData(imageA) {
 // ...
 mountPoint = 15; // ONLY mounts to mount mode 15
};

 Having properly made our DTS fi les and having declared a datablock
for imageA with a mountPoint fi eld, we mount the Image to the Shape as
 follows.

// Mount imageA to shapeA on mount mode 15,
// using slot 0 (of 8)
%shapeA. mountImage(%imageA , 0);

If you examine this code closely, you will notice three things.
 First, imageA is being mounted to shapeA.
 Second, when we called mountImage(), we passed it the name of the
Image datablock as the fi rst argument. Remember that Images are datablocks,
and datablocks each have a unique ID. Also, remember that TGE can use

 Basic Game Classes Chapter 6

175

either IDs or names. Thus, as long as the name is unique (as it is for all data-
blocks), you are guaranteed to get the proper object, which is in this case the
imageA datablock.
 Third, the second argument to the mountImage() method is 0. When
mounting an image to a shape, we must specify the slot that the mounting
will be recorded in. This is important because, if by some chance you mount
two images to the same shape and the second image uses the same slot as the
fi rst image, the fi rst image will be dismounted. Images can be mounted to the
same numbered node on a shape, but the mount information must be tracked
in different mount slots.
 Finally, to detach imageA from shapeA, we use the following code.

%shapeA.un mountImage(%imageA);

6.2.11 Miscellaneous— CRC and aiAvoidthis
ShapeBaseData provides a couple of miscellaneous fi elds. The fi rst is “com-
puteCRC.” This fi eld, if true, tells the engine to do some error checking when
loading this shape. If the error checking fails, we will get an error message
complaining that the shape could not be loaded, and the game will fail out to
the menu. Why do this? Well, for one thing, this ensures that the server and
all clients are using the same version of a shape. The CRC (cyclic redundancy
code) is calculated on the server, and thus if a client in a multiplayer scenario
has a nonmatching CRC, that client will fail out.
 The other miscellaneous fi eld is named aiAvoidthis and has no func-
tion at this point. You may use this in your scripts to indicate that an AI should
avoid the object. The only benefi t this has over using a server-side dynamic
fi eld is that this fi eld is networked, allowing clients to observe it, too.

6.3 Item and ItemData
These classes are used to represent items, specifi cally, items that the player
will interact with. These are things like weapons, power-ups, traps, mines,
etc. Item and ItemData have all the features of their parents, ShapeBase and
ShapeBaseData.

6.3.1 Item and ItemData Features
Item and ItemData add the following features to those inherited from Shape-
Base and ShapeBaseData.

• Rendering
• Light emission

Part III Game Elements

176

• Physics
• Stationary (Static) + nonstationary placement
• Auto-rotation (spinning animation)
• Elasticity
• Velocity limits
• Stickyness
• Friction
• Gravity modifi cation

• Collisions
• Collision timeouts

• Dynamic typing

Items are used to represent objects that are to be picked up or otherwise inter-
acted with. They are special in that they can be walked through but still signal
a collision event.

6.3.2 Item Rendering
Items add one new trick to the rendering feature set: dynamic lights!

Lights, Camera, . . . Action

Items can emit light in three ways: none, constant, and pulsing. In order to
create an item with a light, specify the datablock as follows.

datablock ItemData(ConstantLightEgg) {
 // ...
 lightColor = “1 0 0 1.0”;
 lightRadius = 6.0;
 lightType = “ ConstantLight”;
};

When an item is made from this datablock, it will emit a constant red light
with a radius of 6 world units.
 The three names for the light types are NoLight, ConstantLight, and
 PulsingLight.
 The lighting of an item can be further modifi ed such that, if the item is
nonstatic, it does not render a light.

datablock ItemData(ConstantLightEggStaticOnly) {
 // ...
 lightOnlyStatic = true;
};

 Basic Game Classes Chapter 6

177

6.3.3 Item Physics
A fun thing about items is that they display all kinds of interesting physical
attributes. They can be made to stay put or move around, to rotate, to bounce,
to slide, to fall and fl y at varying rates, or to fl oat away.

 Static Items

When we create an item, we can set the static fi eld in the object (not the
datablock) to true or false.

%theEgg = new ItemData() {
 datablock = “ConstantLightEgg”;
 static = false;
};

 Setting this fi eld to true tells the engine that this item will stay put once
it is placed. If we want to allow it to move after placement, we set static to
false. This parameter can be set in the create() method for ItemData, in
the on Add() callback for the datablock that is used to create the item, or as
we have done above, in the object creation statement.
 If we wish to change the static fi eld later, we can do so. We can also
check the current value as follows.

if(%theEgg. isStatic()) {
 echo(“This egg is static. It won’t move now.”);
}

 Rotating Items

Items are often used to represent objects that the player is meant to pick up. A
common hint that an object is meant to be picked up is that the object rotates.
This is often seen in arcade games and fi rst-person shooters. Thus, TGE pro-
vides the ability to cause an item to rotate. This is done by setting the rotate
fi eld in the object (not the datablock) to true.

%theEgg = new ItemData() {
 datablock = “ConstantLightEgg”;
 rotate = true;
};

The rotating state of an item can be modifi ed at any time, and we can check
it by using the following method:

if(%theEgg. isRotating()) {
 echo(“This egg is rotating.”);
}

Part III Game Elements

178

 Bouncy Items

As noted above, items can be made elastic, causing them to bounce when
dropped. The fi eld elasticity can take both positive and negative values.
A positive value of 1 is not guaranteed to be equal to 100 percent elasticity,
due to rounding errors. Also, if you choose to use a negative value, be aware
that, if you don’t limit the velocity (see maxVelocity below), eventually a
bouncing item will crash the engine when the instantaneous change in veloc-
ity becomes too high.

datablock ItemData(BouncyEgg) {
 // ...
 elasticity = 0.7;
};

The datablock above will produce an item that bounces for a while then
settles down.

Maximum Velocity (maxVelocity)

Because we have various ways of causing an item to move and perhaps to
increase its velocity, because the engine does not handle very high velocities
and accelerations well, and for practical playability reasons, we need a way to
limit the velocity an item can achieve. This is done quite simply as follows:

datablock ItemData(LimitedVelocityEgg) {
 // ...
 maxVelocity = 1000; // Limited to 1000 world units / s
};

 Sticky Items

It may be that sometimes we would like an item to stick when it hits the
ground. This can be achieved by making the item sticky.

datablock ItemData(StickyEgg) {
 // ...
 sticky = true;
};

An item made with the above datablock will stick to the terrain when it falls
to the ground. This overrides elasticity.
 When an object sticks to the terrain, we can get both the position of the
item and the normal at that point as follows.

 Basic Game Classes Chapter 6

179

%lastPos = %myItem.getLastStickPos();
%lastNormal = %myItem.getLastStickNormal();

if (100000 < vectorLen(%lastPos)) {
 echo(“This item did not stick yet.”);
} else {
 echo(“This item stuck at: ”, %lastPos,
 “ with a normal of: ”, %lastNormal);
}

hasStuck()

Before version 1.4 of the engine, it was hard to tell if an item had stuck yet.
However, with the offi cial release of 1.4, a new method has been provided:

%stuck = %stickyEgg.hasStuck();

This method will return true if the item has in fact stuck to something.

 Sliding Items

If some velocity has been imparted to an item, or if it has fallen to the ground
in a sloped area, we may wish for this item to eventually stop sliding. TGE
provides a friction fi eld which can be made either negative or positive.
Low values equal low friction, and high values equal high friction. A negative
value will actually cause the item to accelerate. Again, we need to use caution
with negative values; as with elasticity values greater than 1.0, a negative
friction will eventually cause the engine to crash.
 Interestingly, we can use a negative friction with a maxVelocity to
create an item that stays in perpetual motion at about the same velocity.

datablock ItemData(PerpetualMotionEgg) {
 // ...
 friction = -10; // Accelerate rapidly to our limit
 maxVelocity = 20; // Limited to 20 world units / s
};

Modifying Gravity (gravityMod)

Items have the ability to “experience” their own gravity; that is, we can modify
the way gravity affects individual items. This is done through their datablocks
as follows.

datablock ItemData(LowGravityEgg) {
 // ...
 gravityMod = 0.25;
};

Part III Game Elements

180

An item made with the above datablock will only experience one quarter the
 gravity normally experienced by an item.
 We can also make our gravityMod values negative. If you do so, be sure
to limit the velocity, or else the object will fl y away and eventually crash the
engine. Also, such an item should be moved back to a starting point or even-
tually destroyed, otherwise it will fl oat off and be of no use to the player.

6.3.4 Item Collisions
Items are intended to represent objects that the player interacts with in the
world, usually by running over them and picking them up.
 Consider that eventually we may wish to drop items that we have picked
up. We’ll cover this in all its gory detail in the “Inventories” section in Chap-
ter 7, but basically we create a new instance of the to-be-dropped object and
then drop it where the player is or toss it away from the player.
 Now, consider that, if we don’t have a way to disable the collision fea-
tures, we’ll just pick the object up again as soon as it is created. Thus, colli-
sion timeout for items exists.

 Collision Timeout

Individual items can be told to ignore collisions with one specifi c object for a
short period of time. We simply do the following.

%itemHandle. setCollisionTimeOut(%objectToIgnore);

In the above example, we’ve told the item represented by %itemHandle
to ignore collisions with %objectToIgnore. It will honor this request for
approximately a half second and then re-enable collisions with the to-be-
ignored object.

6.3.5 Items and dynamicType
A dynamicType fi eld is specifi ed for StaticShapeData and ItemData data-
blocks. In both cases, it provides the ability to further differentiate an object’s
type by providing a value that will be added to the result of getType() when
called on this object.
 If you’ll recall our earlier discussion of the getType() method (Section
5.1.4), you’ll remember that each mission-placeable object has an associated
bit-mask. We use these masks to differentiate objects when doing ray casts,
radius searches, etc. The proper way to deal with dynamicType is to specify
a new mask (in objectTypes.h) and export it to the console (in main.cc). Sub-
sequently, you can use this value in dynamicType, and then getType() for
these objects (and their children) will also have your new bit position set.

 Basic Game Classes Chapter 6

181

 Having said that, if your purpose is only to use this in scripts, you can
specify new $TypeMasks:: values in script and use them. However, the best
and safest way to do this is within the engine framework, where you will
benefi t from the checking your compiler does for you.

6.3.6 Maze Runner Lesson #3 (90 Percent Step)—
 Game Coins
In this lesson, we will examine the game coin’s datablock defi nition. Later, we
will implement scripts to pick up these coins, but for now, all we need to do
is talk about the coin’s geometry, the datablock defi nition, and the creation
script.

Copy Required Files

From the accompanying disk, please copy the fi le \MazeRunner\Lesson_003\
coins.cs into \MazeRunner\prototype\server\scripts\MazeRunner.
 Now, edit the function onServerCreated() in the fi le \MazeRunner\
prototype\server\game.cs to look like the following.

 exec(“./GPGTBase/loadGPGTBaseClasses.cs”); // MazeRunner
 exec(“./MazeRunner/coins.cs”); // MazeRunner

Please note that, until this step, the directory \MazeRunner\prototype\server\
scripts\MazeRunner did not exist, so you need to create it yourself.

Coin Geometry

The geometry for this coin is very simple and can be found in the fi le \Maze-
Runner\prototype\data\MazeRunner\Shapes\Items\coin.ms3d”, where we
copied it earlier. If you load the fi le in MilkShape 3D, you will see that it is
nothing more than a thin disk. It has one render mesh and no collision mesh.
Because this model is used for an item, a collision mesh will automatically be
generated by TGE.
 The skin was generated using Ultimate Unwrap 3D. It’s simple and does
the job. Now, all we need is a datablock and a creation script, on Add().

The Coin Datablock

The datablock for our coins is very simple. If we look at the fi le we just cop-
ied, we will see the following datablock defi nition.

datablock ItemData(Coin : BaseItem) {
 shapeFile = “~/data/MazeRunner/Shapes/items/coin.dts”;
 category = “GameItems”;

You may be
tempted to try

mounting an item
to some other shape.
If you try this, you
will discover that it
is not supported. In
fact, items cannot
be mounted to
other shapes, but
other shapes can be
mounted to items.

This is quite useful,
as such mounted
shapes can temporarily
shield an item from
contact and thus from
pickup.

Part III Game Elements

182

 sticky = true;
 lightType = NoLight;
 mass = 1.0;
 respawn = false;
};

The coin item has the following attributes.

• It is an instance of Item (just to be clear about this).

• It is derived from BaseItem (there are base datablocks for all of the classes
we discuss in this guide).

• We'll be able to fi nd this object under Shapes/GameItems in the Creator
menu.

• It is sticky and will stay put when it hits terrain or an interior.

• It does not emit light.

• As a rule, I never create a massless object. This avoids any future diffi cul-
ties should I choose to apply an impulse to the shape. So, this coin gets an
arbitrarily chosen mass of 1.

• When this coin is picked up we don't want it to be respawned. So, we set
the fi eld respawn to false. This won't mean anything to you yet, but
when we discuss the Simple Inventory sytem in Chapter 7, “Gameplay
Classes,” this will become clear.

The Coin on Add()
We have mentioned callbacks only briefl y thus far, and we will discuss them
in Chapter 9, “Gameplay Scripting.” For now, just know that all SimObject
instances and all instances of children of SimObject call the on Add() callback
after the object is created and initialized.
 Later, when we write the scripts to place objects, it will become clear that
we want objects to stay put when they are placed. Coins have the option of
being static (don’t move on their own), or nonstatic (affected by gravity and
other forces). Therefore, we need to force the coin to be static by making a
suitable on Add() callback. Find the following code at the end of the fi le we
just copied.

function Coin::on Add(%DB , %Obj) {
 Parent::on Add(%DB , %Obj);
 %Obj.static = true;
 %Obj.rotate = true;
}

The callback does the following.

 Basic Game Classes Chapter 6

183

• Calls the Parent:: version of this callback to allow it to do any work it
needs to do (optional and based on your design methodology).

• Sets the object as static. Now, it won't fall (due to gravity) or be affected by
impulses.

• Makes the coin rotate. Now the render code will rotate the coin. Please
note that this only rotates the render mesh, not the collision box that TGE
generates.

Testing

To verify that our changes worked, you can:

1. restart the prototype,

2. open the “Maze Runner” mission,

3. start the Creator,

4. look under Shapes and fi nd the folder GameItems, and

5. open the GameItems folder to fi nd a new placeable shape, Coin.

If this did not work, check your console for errors (typos, fi les not found,
etc.).

6.4 StaticShape and StaticShapeData
These classes are used to represent any world object that needs to allow mov-
ing objects to collide with it and needs at least some of the other features
provided by ShapeBase and ShapeBaseData. If you want to make a completely
stationary object that has a simple collision mesh and requires no interaction
features, use TSStatic instead (see Section 6.5).
 StaticShape and StaticShapeData do not provide many new features. In
fact, their main purpose is to act as a concrete instance of the ShapeBase
and ShapeBaseData classes. In other words, you can create instances of these
where you cannot create instances of ShapeBase.

6.4.1 StaticShape and StaticShapeData Features
StaticShape and StaticShapeData have all the features of their parents
ShapeBase and ShapeBaseData. Additionally, these classes provide the fol-
lowing new shape features.

• Powered state tracking

• Dynamic typing

Part III Game Elements

184

6.4.2 Powered State
StaticShape adds the concept of powered vs. nonpowered. In truth, this is just
a fl ag to be used by us in our scripts. The engine does nothing different based
on this information.
 Using two new console methods, we can set and get the powered state of
a StaticShape:

%myStaticShape. setPoweredState(true);
 // Shape is now ‘powered’

if(%myStaticShape. getPoweredState()) {
 echo(“This shape is powered!”);
} else {
 echo(“This shape is NOT powered!”);
}

6.4.3 dynamicType
This fi eld behaves exactly like the same named fi eld found in the Item class.
Please refer to Section 6.3.5, “Items and dynamicType,” for a description.

6.4.4 Maze Runner Lesson #4 (90 Percent Step)—
 Fade and Fireball Blocks
In our game, we are going to have two kinds of special maze blocks. The fi rst
one will be a block that can be faded in and out of view (Figure 6.2a), and the
second will be a block that shoots fi reballs (Figure 6.2b). Both of these blocks
require features from the ShapeBase hierarchy. The fade block uses the fading
and hiding features. The fi reball block uses the reskinning property.
 In this lesson, we will concentrate on the mesh properties and the data-
blocks that go with these two blocks. Later, we will write the scripts to fade
the fade blocks and to shoot fi reballs from the fi reball blocks.

Copy Required Files
From the accompanying disk, please copy:

1. the fi le \MazeRunner\Lesson_004\fadeblock.cs into \MazeRunner\
prototype\server\scripts\MazeRunner, and

2. the fi le \MazeRunner\Lesson_004\fireballs.cs into \MazeRunner\
prototype\server\scripts\MazeRunner.

Then, modify onServerCreated() in \MazeRunner\prototype\server\
scripts\game.cs to include these lines (bold lines are new):

Figure 6.2

a. Fade block.

b. Fireball block.

 Basic Game Classes Chapter 6

185

 exec(“./MazeRunner/coins.cs”); // MazeRunner
 exec(“./MazeRunner/fadeblocks.cs”); // MazeRunner
 exec(“./MazeRunner/fireball.cs”); // MazeRunner

Block Geometry

The blocks will both have the same geometry, namely a single render mesh and a
single collision mesh. To see this geometry, open the fi le \Maze Runner\prototype\
data\MazeRunner\Shapes\MazeBlock\blockA.ms3d using MilkShape. You will
see that this model has a render mesh named “block0” and a single collision
mesh named “ collision-1”.
 To enable reskinning, we need to do something special with the model’s
skin.

Reskinning

Still in MS3D, if you look at the material named “skin”, you will see that we
are using a texture named “base.skin.png”. (It only shows as “base” on the
MS3D button, but trust me, the fi le is named “base.skin.png”.) By using a skin
with this name, we will later be able to change the skin on this model.
 To clarify, the rules for reskinning are as follows.

1. Skin your mesh with a texture named “base.XYZ.png”, where XYZ can be
anything you choose. The important thing to notice is that “base” is at the
start of the skin. This tells TGE that this is a reskinnable mesh.

2. Create as many extra textures as you need, as long as they have the name
“LMN.XYZ.png”, where XYZ is the same name from step 1 and LMN is a
name to make your texture name unique.

3. Reskin a shape at any time by writing the following code.

%obj. setSkinName(“LMN”);

 The above code tells the mesh to use the texture “LMN.XYZ.png” instead
of “base.XYZ.png”.

Self-Illuminating

Because we are using a sort of cartoon/platform theme in our game, we will want
all of the blocks to self-illuminate. This means that they will not be affected by
the in-game lighting. To do this, we simply choose the self- illuminating option
when exporting (using the DTS-Plus exporter). Please see Figure 6.3.

Datablocks

All right, these base blocks are pretty much good to go. Let’s just create some
datablocks and we can move on.

Figure 6.3

Making material self-
illuminating.

Part III Game Elements

186

Fade Blocks Datablock

For the fade block, please open the fi le \MazeRunner\prototype\server\scripts\
MazeRunner\fadeblocks.cs. In this fi le, fi nd the following lines of script.

datablock StaticShapeData(FadeBlock) {
 category = “FadeBlocks”;
 shapeFile = “~/data/MazeRunner/Shapes/MazeBlock/blockA.dts”;
 isInvincible = true;
};

This datablock has the following attributes.

• These blocks will go in a special group (in the Creator tree) named Fade-
Blocks.

• It loads the mesh for the model we just discussed.

• It is invincible and thus takes no damage. We want this so that fi reballs
striking a fade block will not damage it.

Fireball Blocks Datablock

For the fi reball block, please open the fi le \MazeRunner\prototype\server\
scripts\MazeRunner\fi reball.cs. In this fi le, fi nd the following lines of script.

datablock StaticShapeData(FireBallBlock) {
 category = “FireBallBlocks”;
 shapeFile = “~/data/MazeRunner/Shapes/MazeBlock/blockA.dts”;
 isInvincible = true;
};

As you can see, this datablock is identical (except for the name) to our fade-
block datablock. The behavior differences are entirely script based, and the

Not shown, but present in the completed copy of this file (as written by
me), there is another bit of code at the top. It is a reloader. Reloaders are little

scripts that are used to reload the file, thus reloading the datablock definitions
and any scripts in the file. In single-player mode, I use reloaders to reload files
I have changed while the mission is still running. This way, I can make minor
tweaks to scripts, etc., and not have to reload the entire mission.

The reloader for the fadeblocks.cs file is as follows.

function rldfade() {
 exec(“./fadeblocks.cs”);
}

 Basic Game Classes Chapter 6

187

reason we need another datablock is because, later, we will want to associate
some methods with the fade block but not the fi reball block.

6.5 TSStatic
This class is not a child of the ShapeBase hierarchy and does not use a data-
block. It is used for any shape that will not be moved and will not need to be
animated or make sounds.

6.5.1 TSStatic Features
TSStatic has the following features.

• Basic rendering

• Simple collision

 TSStatic objects are very lightweight objects used to render meshes that
are used for scene fi lling and to render meshes that do not need any of the
features provided by the ShapeBase hierarchy.

6.5.2 Rendering
TSStatic will render a standard mesh (just like a ShapeBase derivative), but it
cannot play any animations, reskin, cloak, etc. It just renders.

6.5.3 Collision
If you wish for these shapes to be collideable, you must create a collision
mesh as part of the model. This gives you the freedom to choose which items
are collideable and which are not. The shape supports multiple collision
meshes.
 The TSStatic object will not register collisions, nor will it respond, but all
other active colliders (objects that can collide with other objects) will register
their own collision with a TSStatic object.

6.5.4 Creating TSStatic Shapes
Creating and placing a new TSStatic shape is simplicity itself:

%object = new TSStatic() {
 position = “0 0 0”
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 shapeName = “~/data/Shapes/Lessons/GeneralLessonShapes/egg.dts”;
};

Part III Game Elements

188

6.5.5 Moving and Scaling
The basic position, rotation, scale, and shapeName datablock fi elds
behave in the same way as they do for a ShapeBaseData-derived object.
Also, being a a child of SceneObject, the TSStatic class can be scaled using
 setScale() and moved/reoriented using setTransform().

6.5.6 Maze Runner Lesson #5 (90 Percent Step)—
 Maze Blocks
The primary geometry of our maze consists of blocks and groups of blocks.
Later, when we discuss the level-loading scripts (Section 9.5.10), we’ll talk
about how these blocks are placed. For now, we will restrict ourselves to the
creation of these blocks.
 The maze blocks share the same geometry and skin setup as the fade
blocks and fi reball blocks from Lesson #4 (Section 6.4.4). So, if you have not
completed that lesson, please do it fi rst.

Block Geometry

In addition to the single-block geometry we produced for the prior blocks, we
need several additional variations for the maze blocks. In theory, we could
build our entire level out of single blocks. However, I don’t advise this as we
do pay a penalty (network and processing) for each block in the scene. So,
knowing in advance that we will have various structures in our levels combin-
ing several blocks, we will make a few larger meshes. This way if we need an
area the size of say nine (3×3) blocks, we can place just one big block.
 If you look in the \MazeRunner\prototype\data\MazeRunner\Shapes\
MazeBlock directory we created earlier, you will see that there are blocks A
through J. The geometries of those shapes can be seen in Figure 6.4. There are
four square blocks and three each of the horizontally oriented and vertically
oriented linear blocks. It may not be apparent immediately, but with these

Figure 6.4.

Geometries of blocks A
through J.

 Basic Game Classes Chapter 6

189

blocks, we can create symmetrically laid out levels without needing to reori-
ent the blocks at placement time.

Placing Blocks

We aren’t writing the code to place these blocks yet, but when we do, it will
look something like this:

new TSStatic() {
 shapeName = “~/data/MazeRunner/Shapes/MazeBlock/block” @
 %blockType @ “.dts”;
 position = %actX SPC %actY SPC $CurrentElevation;
 scale = “1 1 1”;
};

This code snippet is actually from our level builder, and as you can see, we
will be dynamically selecting the mesh to use as well as calculating the posi-
tion as we place the block.

Examine the Blocks

This guide does not discuss modelling, nor does it cover the various modelling
tools. However, as the blocks have already been created for you, I suggest that
you examine a few to see how they are constructed. Pay particular attention
to blocks E through J.
 Don’t forget that all of the maze blocks have been copied over to our data
directory already at “\MazeRunner\prototype\data\MazeRunner\Shapes\
MazeBlock”. You can open any of the block models (*.ms3d) with a copy of
MilkShape 3D.

6.6 ShapeBaseImageData (Images)
ShapeBaseImageData objects (commonly referred to as just Images) are light-
weight objects that can only be attached to ShapeBase objects and are used
to render, animate, and script weapons, backpacks, fl ags, and other mounted
objects. These are used instead of ShapeBase objects because they require
much less network bandwidth to manage and transmit to clients. In addition,
they supply a unique set of capabilities.

6.6.1 ShapeBaseImageData Features
ShapeBaseImageData has the following features.

• Rendering
• Environmental mapping

Part III Game Elements

190

• Light emission
• POV dependent rendering
• Camera offsets

• Mounting
• Can mount to any ShapeBase class or child
• Engine-event transitions
• Timed transitions
• User-defi ned transitions
• Hooks for lighting, particle emission, sounds, and animations

• Scriptable state machines
• Up to 31 user-defi ned states
• Engine-event transitions
• Timed transitions
• User-defi ned transitions
• Hooks for lighting, particle emission, sounds, and animations

• Physical parameters
• Mass

• Collisions
• No collision box

6.6.2 Rendering Options

POV and Offsets

As noted above, ShapeBaseImage supplies some fi elds for manipulating how
an image is rendered.

• firstPerson. If true, this image is rendered in both 1st POV and 3rd POV.
It is sometimes useful to not render an image in 1st POV, and this fi eld
allows you to disable rendering if necessary.

• eyeOffset. When rendering an image in 1st POV, the image may not be
in what looks like the correct position. To remedy this for the player’s view
only, you can apply this offset to adjust the position of the weapon in the
player’s fi rst person view of the world. This does not affect third-person
rendering and is not seen by other players.

• eyeRotation. Similarly to position, when rendering an image in fi rst POV,
the image may not be in what looks like the correct orientation. To remedy
this for the player’s view only, you can apply this rotation to adjust the
rotation of the weapon in the player’s fi rst-person view of the world. This
does not affect third-person rendering and is not seen by other players.

 Basic Game Classes Chapter 6

191

 Lighting

When mounted, an image can emit no light, a constant, or a pulsing light. This
lighting feature is controlled by the following ShapeBaseImageData fi elds.

• lightType. This string specifi es what type of light the image emits:
 NoLight, ConstantLight, or PulsingLight.

• lightColor. This three-element fl oating-point vector determines the color
of the light. Individual elements must be in the range [0.0, 1.0] and represent
the red, green, and blue components of the light color in that order.

• lightRadius. This fl oating-point value specifi es the radius of the light
sphere.

• lightTime. For pulsing lights, this integer value specifi es the light’s period
in milliseconds.

6.6.3 Mounting
ShapeBaseImageData has three parameters affecting how the image is mounted.

• mountPoint. This fi eld is a numeric value in the range [0, 31] and corre-
sponds to a numbered mount point on the receiving shape. When an image
is mounted to a shape, it is the responsibility of the image mesh to supply
a specially named joint/node: mountPoint. When instructed to mount this
image to a shape, TGE will calculate a mount transform using the receiving
shape’s numbered mount point and the image’s named mountPoint.
• If the numbered mount point does not exist in the receiving shape’s

mesh, the receiving shape’s centroid will be used instead (in the
player, this further offsets to the foot position).

• If the image does not specify a mountPoint joint/node, its centroid
will be substituted for that part of the mounting transform calculation.

• offset. This fi eld is used to apply a position offset to the mount
transform.

• rotation. This fi eld is used to apply a rotation offset to the mount trans-
form. This is especially handy when a weapon mounts at the wrong angle.
This can easily happen if a player’s mount0 joint/node has gotten rotated
during the creation or animation/posing process. Instead of attempting to
resolve this problem in the mounting shape’s mesh/skeleton (which can be
tricky), just apply a rotation to the image’s mount transform.

6.6.4 Weapon-Related Features
We will not be dicussing weapons-related ShapeBaseImageData features here;
however, all fi elds and methods are listed and documented in the appendix
that comes with this guide.

You can only
mount one

instance of an
image to a shape.
More than one
instance of the same
ShapeBaseImageData,
mounted to the same
ShapeBase object,
violates the engine
mounting protocol.

Part III Game Elements

192

6.6.5 State Machines
The most powerful (and to some degree the most complicated) facet of
Shape BaseImageData-derived images is their state machines. Each image can
defi ne a unique state machine with up to 31 states. These state machines are
designed to be used with weapons but can be used for other purposes, too.
 Before proceeding, you should already understand what a state machine
is. However, if you do not, the following summary may help.
 A state machine, in the context of a game engine, is a mechanism by
which action-reaction events can be scripted or programmed. Essentially, an
object (in this case a weapon image) starts in a known state. Based on pre-
defi ned input events, the state machine may transfer to a new state. Each state
has a purpose, although the purposes may be varied and can include playing
an animation, playing a sound, running a script, etc. Additionally, each state
may defi ne multiple exit paths.

States

There are 30 fi elds associated with the various states, state transitions, state
triggers, state actions, etc., that the Image state machine handles. Because
most of these are associated with weapons, a complete discussion of these
states is not given here. For now, we will focus on how the basic state-machine
mechanism works.
 A listing of all the state fi elds appears in Table 6.2. A complete listing of
states with descriptions is provided in the Fields and Methods appendix.

stateAllowImageChange stateDirection stateEjectShell

 stateEmitter stateEmitterNode stateEmitterTime

stateEnergyDrain stateFire stateIgnoreLoadedForReady

stateLoadedFlag stateName stateRecoil

stateScript stateSequenceRandomFlash stateSequence

stateSound stateSpinThread stateTimeoutValue

stateTransitionOnNotLoaded stateTransitionOnTriggerDown stateTransitionOnTriggerUp

stateTransitionOnAmmo stateTransitionOnLoaded stateTransitionOnNoAmmo

stateTransitionOnNoTarget stateTransitionOnNotWet stateTransitionOnWet

stateTransitionTarget stateTransitionTimeout stateWaitForTimeout

Table 6.2.

State fields.

 Basic Game Classes Chapter 6

193

 Defining States

We can defi ne up to 31 states in our Image state machines. To do so, we sim-
ply name them as follows.

datablock ShapeBaseImageData(SimpleStates) {
 // ...
 stateName[0] = “Preactivate”;
 stateName[1] = “GreenLight”;
 stateName[2] = “YellowLight”;
 stateName[3] = “RedLight”;
};

This code produces four named states: Preactivate,
GreenLight, Yellow Light, and RedLight. So far, we
haven’t connected the states, so we don’t know how the
machine “fl ows.” Thus, our state picture would look some-
thing like Figure 6.5.

Required States?

If it isn’t obvious by the names of these states, we’ll be making a traffi c light
with this state machine. However, you may wonder at the choice of state zero
(Preactivate).
 Generally speaking, you must defi ne a state for the machine to start in.
Traditionally, that state is named Preactivate and is numbered zero. This
state will not execute scripts, animations, or sounds. The most it can do is give
TGE a place to start the machine and wait for a bit before transitioning to the
fi rst active state.

 Transitioning

There are several ways to transition from one state to another. In addition, we
can make multiple paths out of any one state. For now, we’ll focus on mak-
ing a single transition for each state. We want these transitions to look like
Figure 6.6.
 Furthermore, the transitions we would like to use for
our stoplight are timed transitions. It is possible to make
states timeout and then transition to a named state. For
example, if we wanted to create this sequence:

• Preactivate � GreenLight (immediate)
• GreenLight � YellowLight (3 seconds)
• YellowLight � RedLight (2 seconds)
• RedLight � GreenLight (3 seconds)
• repeat . . .

Figure 6.6.

Transitions for stoplight.

Figure 6.5.

Four named states.

Part III Game Elements

194

we would code our state machine as follows.

datablock ShapeBaseImageData(SimpleStates) {
 // ...
 stateName[0] = “Preactivate”;
 stateTransitionOnTimeout[0] = “GreenLight”;

 stateName[1] = “GreenLight”;
 stateTransitionOnTimeout[1] = “YellowLight”;
 stateWaitForTimeout[1] = true;
 stateTimeoutValue[1] = 3.0;

 stateName[2] = “YellowLight”;
 stateTransitionOnTimeout[2] = “RedLight”;
 stateWaitForTimeout[2] = true;
 stateTimeoutValue[2] = 2.0;

 stateName[3] = “RedLight”;
 stateTransitionOnTimeout[3] = “GreenLight”;
 stateWaitForTimeout[3] = true;
 stateTimeoutValue[3] = 3.0;
};

This produces the state machine in Figure 6.7.

 Making States Do Work

Great! Now, we have a state machine that will transition: Preactivate �
GreenLight � YellowLight � RedLight � GreenLight � . . . ad infi ni-
tum. Wait a second, though. It isn’t doing any work! Well, as with transitions,
state machine states can do lots of different kinds of work. They can run
scripts, play sounds, trigger particle emitters, etc. Pretty cool.
 Now, for our example we want the stoplight to change the light colors
repeatedly. How the heck are we going to do that? Here are some ideas.

• Run a script and change the image skin? Nope. Images don't support skin
switching.

• Run a script and replace the image itself? Naw. You could do this, but it’s
really messy.

• Use an IFL and switch animation states? Yeah. That’s what we’ll do.

 IFL is the acronym we use when talking about an image fi le list. A TGE
supported feature we have not yet talked about is animated textures. It is pos-
sible to create a model that takes a base image and then changes skins using

Figure 6.7.

Timed transitions for
stoplight.

 Basic Game Classes Chapter 6

195

an animation sequence. It is kind of like the ShapeBase skin-switching idea,
but it is more fl exible and can get higher frame rates than that method.

 Running Animations

So, we’ve chosen to run an animation to change the light. How do we do it?
Like this.

datablock ShapeBaseImageData(SimpleStates) {
 // ...
 stateName[0] = “Preactivate”;
 stateTransitionOnTimeout[0] = “GreenLight”;

 stateName[1] = “GreenLight”;
 stateTransitionOnTimeout[1] = “YellowLight”;
 stateTimeoutValue[1] = 3.0;
 stateSequence[1] = “GreenLightOn”;

 stateName[2] = “YellowLight”;
 stateTransitionOnTimeout[2] = “RedLight”;
 stateTimeoutValue[2] = 2.0;
 stateSequence[2] = “YellowLightOn”;

 stateName[3] = “RedLight”;
 stateTransitionOnTimeout[3] = “GreenLight”;
 stateTimeoutValue[3] = 3.0;
 stateSequence[3] = “RedLightOn”;
};

This example tells TGE to switch the animation sequence for this image to the
named states when the state machine transitions into the state. At this point,
our work is done. We have defi ned our state machine.

 Running Scripts

Because you might want to do more than just run an animation, I’ll get you
started on running scripts and then let you investigate the other states your-
self. To run a script when we transition into a state, we do the following.

datablock ShapeBaseImageData(SimpleStates) {
 // ...
 stateName[0] = “Preactivate”;
 stateTransitionOnTimeout[0] = “GreenLight”;

 stateName[1] = “GreenLight”;
 stateTransitionOnTimeout[1] = “YellowLight”;

Part III Game Elements

196

 stateTimeoutValue[1] = 3.0;
 stateScript[1] = “doSomething”;
 // ...
};

Then, we must be sure we’ve created a function doSomething() in the
namespace of our image.

function SimpleStates:doSomething(%this) {
 // ...
}

Physical Parameters

If tracking physical properties is important to your game, then it will be worth
noting that ShapeBaseImageData provides a mass fi eld to represent the mass
of a mounted shape. It can be extracted directly from the ShapeBaseImage
mass fi eld. There is no getMass() equivalent.
 Mass can be used for various purposes, ranging from calculating a play-
er’s cumulative mass (with weapons, etc.) to determining if a weapon is too
heavy for the player to carry or mount.

 Collisions

An interesting thing about ShapeBaseImageData images is that they do not
have a collision box. Therefore, no collisions occur. However, you may notice
that very large weapons will push back when they are mounted and the
weapon is pushed up against an interior or another object with a collision
mesh.
 This pushing back occurs if the mesh that the image uses defi nes a special
node named retractionPoint. The engine will see that retractionPoint
has collided with the boundary of a collision mesh and push the weapon back
to prevent it from penetrating walls and other objects. If you do not want this
behavior, simply do not create this node in your models.

 Image Animations

Images support multiple animations, mostly related to weapons, but there
is one animation sequence that is somewhat generic, namely the ambient
animation.

ambient Sequence

If you wish, you may defi ne a cyclic animation for images, named ambient.
This sequence will play continuously. It may be blended or nonblended
depending upon your needs.

 Basic Game Classes Chapter 6

197

6.6.6 InteriorInstance
This section of the chapter is mostly informational. Except for basic rendering
and placement, all features related to interiors require art skills not discussed
in this guide. However, I want you to know what features are available to
those who are interested in learning more about the “art” aspects of interiors.
You may skip this section if you are not interested in this kind of discussion.

Terrain Inside

When you create a new interior (that is, when you place one in the world), you
may set a special fi eld named showTerrainInside to true or to false.
 If this fi eld is set to true, terrain will show up inside the interior.
 If this fi eld is set to false, all rooms bounded by portals will turn off any
terrain that might normally poke throught the fl oor of the bounded room(s).
 Remember that, if there are no portals bounding a room, the show-
TerrainInside fi eld will have no effect.

 Activating and Deactivating Lights

TGE supports the ability to enable and disable individual lights in an interior.
To check for these triggerable lights, use the following method.

%myInterior. echoTriggerableLights();

Or, if you already know what your light names are, you can activate and deac-
tivate the lights as follows.

%myInterior. activateLight(lightName);
%myInterior.de activateLight(lightName);

 Using alarmMode
TGE supports another Interior lighting feature. This is a sort of hanger-on
from the days of Tribes. In Tribes 2, when a power supply got knocked out,
the lights in an interior would turn red. This was the alarmMode setting for
that light; i.e., you would have a normalMode and an alarmMode light in the
same spot, and alarmMode of the InteriorInstance would dictate which light
was on. The method to switch the alarmMode on and off is as follows.

%myInterior. setAlarmMode(“On”);
%myInterior. setAlarmMode(“Off”);

Notice that, instead of Booleans, this method takes the actual strings “On”
and “Off”.

Part III Game Elements

198

 Levels of Detail

In order to create an interior that supports multiple levels of detail (LOD), you
must make several instances of the same interior and manually modify them
to have less and less detail. Then, following the instructions for you particular
exporter, export these interiors together. TGE can then use this multiple LOD
interior. It will automatically modify the LOD for you.

Manual LOD

You may also manually set the LOD for an interior using scripts. First, you can
query the InteriorInstance for the number of levels it supports.

// Returns number of LOD levels in this DIF
%myInterior. getNumDetailLevels();

Then you may select one of those levels.

%myInteior. setDetailLevel(0); // Set LOD to 0

Selecting a nonexistent LOD will default to LOD 0.

Disabling LOD

You may wish to disable LOD changing for various reasons. To do so, simply
set the global variable $ pref::Interior::detailAdjust to false.

 Mirrors

A very cool feature supported by InteriorInstance is the mirror object. Using
the various BSP tools supported by Torque, simply drop a mirror entity into

your model and voilà!
 Yes, before you ask, mirrors will refl ect the outside world too, not just
the inside of an interior and its contents.

6.7 Summary
We started this chapter restating the fact that Torque has two broad categories
of model rendering objects, the shape and the interior. We spent a short time
discussing the general purpose of the shape category and then listing the vari-
ous shape classes as well as mentioning their primary uses. Next, we briefl y
discussed the purpose of the interior category.
 Having fi nished summarizing and bullet listing, we jumped into a dis-
cussion of shapes and the ShapeBase hierarachy. First on this stop were the
base classes ShapeBase and ShapeBaseData. We covered the primary features
supplied by these classes, giving detailed descriptions for rendering, damage,

I’ll mention it again
later, but if your player
shape is set to not
render while in 1st
POV, you will not be
able to see yourself
in mirrors while in 1st
POV. To fix this, simply
enable rendering of
the player shape
while in 1st POV.

 Basic Game Classes Chapter 6

199

energy, physical parameters (like mass and density), eye transforms, shape
animations, sounds attached to shapes, shape and image mounting, and the
deployment helper functions.
 Next up on the list of shapes were Item and ItemData. Again, a detailed
discussion of features followed. We covered the cool rendering, lighting, phys-
ics, and collision features, ending with a short discussion of dynamic typing.
Along the way we stopped and created some assets (coins) for our game.
 After Item and ItemData came a very short discussion of the simple
StaticShape and StaticShapeData classes, which are basically concrete imple-
mentations of the virtual ShapeBase and ShapeBaseData classes.
 TSStatic came next. We learned that this is not a derivative of ShapeBase
but rather a lightweight class used for rendering models that don’t need a lot
of features besides basic rendering and simple collisions. Here, we made two
new resources for our game, the fade block and the fi reball block.
 Really rolling now, we jumped into an introductory talk about the Shape-
BaseImageData class. We learned about its various features, including render-
ing, mounting, per-image state machines, physical parameters, and collisions
(the lack of them). As an introduction to the image state machine, we imple-
mented a simple stoplight using the image state-machine features.
 After images, we moved on to a short discussion of interiors. Here, we
learned about terrain interactions, lights and lighting, LOD, and mirrors.
 Overall, this was a fairly short chapter, but it still packed in a lot of useful
information that you may wish to refer to again. Additionally, to supplement
this information, there is a complete appendix that documents all of the con-
sole classes, including shapes and interiors. The descriptions in the appen-
dix are succinct but complete, covering all fi elds, methods, and callbacks for
every console class we discuss.

201

Gameplay Classes
Chapter 7

7.1 Gameplay?
Gameplay is probably one of the most nebulous terms (besides fun) used
when discussing games and game design. For the purpose of this chapter (and
subsequent chapters), we are less interested in the defi nition of gameplay
than we are interested in the elements of gameplay.
 One such element is interaction. In fact, it is safe to say that gameplay
cannot exist without interaction. Futhermore, I will propose that interaction is
in fact a major element of gameplay. To that end, this chapter focuses on the
primary classes that are used to enable and implement interaction within our
games.
 The following classes are discussed in this chapter.

• Camera. This provides us with our view on the world.

• Player. This class supports a variety of features and is intended to be used
to represent bipedal, multipedal, and other types of avatars.

• Vehicles. TGE provides three implementable vehicle classes: FlyingVehicle,
HoverVehicle, and WheeledVehicle. These, like the Player class, are meant
to be used as avatars or as transport for the avatar.

 This chapter also focuses on a topic that is not centered in any one class,
but operates on and with several classes to provide a very commonly found
interaction construct, the inventory. Inventories form the basis for common
game interactions, namely picking up, storing, using, and dropping objects.
 So, the last topic in this chapter is about an inventory system that is sup-
plied with the guide. It is a standalone inventory system that (unavoidably)
utilizes some scripting topics that we have not yet discussed. Thus, you may
wish to stop before reading that part of the chapter and quickly review Chap-
ter 9, “Game Setup Scripting” and Chapter 10, “Gameplay Scripting.” Then,
when you are properly briefed, return here and fi nish the chapter.

7.2 Camera and CameraData
Together and in cooperation with other gameplay classes, Camera and Cam-
eraData defi ne our game view.
 Game view is a generic term I am using to consolidate several view-related
topics. Some of these topics are listed in Table 7.1.

Part III Game Elements

202

Topic Description

Point of
View
(POV)

There are two basic POVs we are concerned with.
• First person, which is the case where the camera is looking out of the

player’s head or eye.
• Third person, which is the case where the camera is looking down on the

player from a distance.

Field of
View
(FOV)

Field of view is a camera term that has to do with the angle of coverage
(or angle of view). When we talk about FOV in TGE, we are measuring
an angle on either side of an imaginary vector coming straight out of the
camera and pointing into the world in the direction we are looking.
For an FOV of 45 degrees, our view angle is 90 degrees (45 degrees to
each side of the vector). If we think for a moment, we’ll come to the
conclusion that an FOV of 180 degrees would mean we can see all around
the point of viewing (360 degrees of coverage).
A standard FOV for first-person views is 90 degrees (180 degrees of
coverage) or less.

Control
Object

In Torque, there always has to be a control object, scoping our position in
the game world and thus allowing the engine to determine what is visible
to us. Any of the classes in this chapter are approriate control objects.

Free
Camera

In addition to having the camera tied to one of the other gameplay classes,
it is possible for the camera to roam freely, in effect taking over the role of
avatar (although without any visible representation, of course).

Zooming What we call zooming in TGE is actually a foreshortening of the FOV. That
is, as our FOV decreases, it seems visually as if our view is zooming in and
bringing far objects nearer. Likewise, as our FOV increases, objects seem to
move away.

7.2.1 Camera and CameraData Features
Camera and CameraData have the following features.

• Point of view
• Field of view
• Render scoping

The Camera class is really quite lightweight and derives almost all of its behav-
ior from the ShapeBase class. In fact, as you will soon discover, there are times
when a camera is not even required, and another ShapeBase-derived class can
handle the Camera class’s duties. However, let’s not get ahead of ourselves.
Instead, let’s fi rst learn more about the game view.

7.2.2 Parts of the Whole
In order to control the current game view, we will (at times) involve several
classes’ fi elds, methods, console functions, and console variables. Table 7.2
summarizes all TGE elements involved with game view.

Table 7.1.

Game view topics.

 Gameplay Classes Chapter 7

203

TGE Element Description

Engine Defined Console Functions

 setDefaultFov(defaultFOV) Sets default FOV to specified value if it is
between the current min/max.

 setFov(defaultFov) Sets current FOV to specified value if it is
between the current min/max.

 setZoomSpeed(speed) Sets the zoom speed (milliseconds per 90 degree
FOV delta).

Globals

$ cameraFov Global variable showing current camera’s current
FOV. Updated every frame.

$ camera:: movementSpeed Defines current speed of free camera in world
units per second. Set in scripts, used by engine.

$firstPerson A global variable used solely for tracking the
current first-person status of the camera.

GameConnection:: Console Methods

setFirstPerson(FirstPerson) Sets this game connection to first- or third-
person view based on the Boolean value of the
argument firstPerson.

Camera:: Console Methods

setFlyMode(); Sets camera to free-camera (fly) mode; i.e.,
camera is not attached to an object.

 setOrbitMode(orbitObject,
transform, minDistance,
maxDistance, curDistance,
ownClientObject);

Attaches camera to arbitrary ShapeBase object
and causes it to be in orbiting mode.

ShapeBaseData:: Fields

cameraDefaultFOV Defines default FOV for camera “viewing
through” this shape.

cameraMaxDist Defines max distance for camera “viewing
through” this shape.

cameraMaxFOV Defines max FOV for camera “viewing through”
this shape.

cameraMinDist Defines min distance for camera “viewing
through” this shape.

cameraMinFOV Defines min FOV for camera “viewing through”
this shape.

Table 7.2.

TGE elements involved
with game view.

Part III Game Elements

204

TGE Element Description

firstPersonOnly Declares that the camera attached to this shape
may only view in first person.

observeThroughObject Declares that the camera attached to this shape
should use the shape’s field parameters for FOV
and Distance.

useEyePoint This tells the camera to use the controlling
object’s camera transform.

ShapeBase:: Methods

set CameraFOV(fov); Set FOV to new value fov. Automatically
clamped to curent min/max. Does not take effect
immediately, only when camea switches modes.

get CameraFOV(); Returns current camera FOV for this shape,
which may or may not be the same as the
current FOV.

PlayerData:: Fields

maxFreeLookAngle Total radians of rotation (about player) allowed
when in “free look” mode.

maxLookAngle Maximum upward rotation of camera about
player in radians.
0.0 is straight forward. 1.57 is straight up.

minLookAngle Minimum downward rotation of camera about
player in radians.
0.0 is straight forward. –1.57 is straight down.

VehicleData:: Fields

cameraDecay Rate at which camera returns to default position
(post-lag). Measured in seconds (floating point).

cameraLag How much the camera lags a vehicle that is
accelerating.

cameraOffset Camera’s vertical offset from vehicle in world
units.

Model Nodes

 eye Location for first-person camera to attach to this
shape.

 cam Location for third-person camera to attach to this
shape.

Table 7.2 (continued).

 Gameplay Classes Chapter 7

205

 As can be seen by this list, setting up the game view can be somewhat
complicated. We will examine each of the TGE elements individually, in
the order listed in Table 7.2. Then, we will take these elements and com-
bine them (by example) into commonly encountered game views.

The Control Object (An Aside)

Before we can proceed, we have to briefl y discuss the control object. As pre-
viously noted, the client requires that there be (at all times) a control object.
This object is used to determine many things, but in the context of game view,
we only care whether the camera is the control object or another shape is the
control object. Changing the control object is as simple as a single function
call. For an example of this, let’s look at the camera-toggling command that
comes with both the TGE Demo and the GPGT Lesson Kits.

function serverCmdToggleCamera(%client) {
 if ($Server::ServerType $= “SinglePlayer”) {
 %control = %client. getControlObject();
 if (%control == %client.player) {
 %control = %client.camera;
 %control.mode = toggleCameraFly;
 }
 else {
 %control = %client.player;
 %control.mode = observerFly;
 }
 %client. setControlObject(%control);
 }
}

As can be seen, by simply passing the handle of a ShapeBase object (or a
camera) to the method setControlObject(), we can change the current
control object.
 The control object affects the game environment in several ways, but for
the most part these are advanced topics. For now, we will limit our discus-
sion to the differences between having a camera, a player, or a vehicle as the
control object.

 FOV and Zoom Console Functions

There are two FOV console functions and one zoom function. The
 setDefaultFOV() and setFOV() methods do basically the same thing.
They will change the current FOV to a new FOV. This change will occur either
immediately or over a short duration (based on the current zoom speed).

The sampler that
comes with this

guide has a lesson
that explores game
views by allowing you
to mix and match dif-
ferent player, vehicle,
and camera settings.
This lesson is named
“Game Views.”

Part III Game Elements

206

However, there is a slight difference in the way these two functions operate.
If the FOV is currently adjusting and we call setDefaultFOV(), it will be
ignored. On the other hand, calls to setFOV() are never ignored.
 The setZoomSpeed() function is used to set the time it takes to zoom
per 90 degrees of FOV. Here are some examples.

 setZoomSpeed(0); // Transition FOV’s immediately

setFOV(45); // Set FOV to 45 degrees (takes
 // network latency time only)

setZoomSpeed(4000); // Transition of 90 degrees FOV
 // requires 4 seconds

setFOV(90); // Set FOV to 90 degrees
 // (takes two seconds)

The Globals

There are three globals that may at times be involved in game-view decisions.
 The fi rst of these globals is $cameraFOV. It should be treated as a read-
only global used to refl ect the current FOV settings as the engine sees them.
 The second of these globals, $camera::movementSpeed, can be read and
modifi ed. It is used to adjust how fast the camera moves in free-fl y mode.
 The third and last of these globals, $firstPerson, can also be read
and modifi ed. However, it changed its behavior after version 1.3. In version
1.3, changes to this global change the POV between 1st and 3rd POV. Start-
ing in version 1.4, this global is used by scripts to track the current POV, but
changes to the value do not affect the behavior of the engine. Only calls to
 GameConnection::setFirstPerson() do this, as you will see shortly.

 GameConnection::setFirstPerson()
As I just mentioned, in versions 1.3 and earlier, the 1st and 3rd POV transition
is controlled by the global variable $firstPerson. In versions 1.4 and later,
this functionality is handled by the console method setFirstPerson(). For
either the TGE Demo or the GPGT Lesson kit, if you search the fi le “~/client/
scripts/default.bind.cs” you will fi nd the following code:

function toggleFirstPerson(%val) {
 if (%val) {
 $firstPerson = !$firstPerson;
 ServerConnection.setFirstPerson($firstPerson);
 }
}

 Gameplay Classes Chapter 7

207

This code now uses $firstPerson to track the current POV (1st or 3rd) and
tells the server to switch to whatever POV we have selected.

Camera Methods

When the camera is not attached to a shape (when it is the control object), it
can be in one of two modes.

• Free-fl y mode. Camera is free to fl y anywhere in the world.

• Orbiting mode. Camera is “tethered” to an object and follows the object if
it moves.

 To clarify these concepts, let’s look at some sample code.

%client. setControlObject(%camera);
%camera. setFlyMode();
$ camera:: movementSpeed = 25;
 // limit camera velocity to 25 world units/s

The above code makes the camera the control object, places the camera in
free-fl y mode, and then sets the camera’s current movement rate to 25 world
units per second, using the global $ camera:: movementSpeed.

%client. setControlObject(%camera);
%camera. setOrbitMode(%player , %player. getTransform() ,
 10.0 , 15.0 , 10.0);

The second piece of code makes the camera the control object and then teth-
ers it to the player, where it will be allowed to orbit. It is told to orbit the player
and use the camera’s current transform. Furthermore, the orbit “tether” is lim-
ited to a length of between 10 and 15 world units, starting at 10 world units.

ShapeBaseData Fields

ShapeBaseData has eight fi elds that contribute to our game view.

The FOV and Distance Fields

The fi rst fi ve ShapeBaseData fi elds are related to the FOV and viewing dis-
tance. We may specify a default FOV and constrain FOV within a minimum
and a maximum bound by specifying degree values (between –360.0 and
360.0) for cameraDefaultFOV, cameraMinFOV, and cameraMaxFOV,
respectively. We may also defi ne a minimum and maximum distance between
the “camera” and the current control object by setting cameraMinDist and
 cameraMaxDist, respectively.

Part III Game Elements

208

observeThroughObject

This fi eld is used to tell the engine which FOV and distance values to use
when a camera is in orbit mode. When the engine detects that the camera is
in orbit mode, it will query the object that the camera is orbiting and use that
object’s datablock for the observeThroughObject fi eld setting. If the fi eld
is set to true, the engine will place the camera directly behind the shape it
is orbiting and use that object’s datablock’s FOV and distance values. If the
fi eld is set to false, then the engine will use the FOV values in the camera’s
datablock and the distance value specifi ed in the setOrbit() call.

 firstPersonOnly

This fi eld is used to restrict the view (when a camera is attached to a shape)
to 1st POV only. This is done by setting the control object’s datablock fi eld
first PersonOnly to true. If this fi eld is false, the camera is allowed to
assume either 1st POV or 3rd POV.

 useEyePoint

Sometimes, the player will mount another shape, such as a vehicle. At times
like this, we may want the camera to now use the vehicle’s camera nodes (eye
and/or cam). By setting the useEyePoint fi eld to true, we are instructing
the engine to do this. If this fi eld is false, the engine will continue to use the
FOV and distance values it was already using (in the vehicle’s datablock).

ShapeBase Methods

There are two FOV methods scoped to the ShapeBase class. These are used for
setting and getting the current FOV of a shape. I suggest, however, that you
do not use the set cameraFOV() method. It almost always gets overridden
or ignored. The get CameraFOV() method is useful, though, because it is the
only way to get the current FOV for a non-camera object. Remember that, for
the current camera, you can just observe the global variable $ cameraFov.

 PlayerData Fields

When the camera is attached to a player and in 1st or 3rd POV, we can restrict
the angles (pitch and yaw) that the camera may assume.

 minLookAngle/maxLookAngle (Pitch)

By setting the minLookAngle and maxLookAngle fi elds, we can restrict the
up-down rotation (pitch) of the camera. These fi elds take values in radians.
In the following example, the camera can pitch all the way around in either
direction.

 Gameplay Classes Chapter 7

209

datablock PlayerData(testAvatar8: testAvatar2) {
 minLookAngle = -3.141593;
 maxLookAngle = 3.141593;
};

In the following example, the camera can pitch straight down to straight up.

datablock PlayerData(testAvatar8: testAvatar2) {
 minLookAngle = -1.57;
 maxLookAngle = 1.57;
};

 maxFreeLookAngle (Yaw)

In addition to pitch, we can limit the left-to-right (yaw) of the camera when it
is attached to a player. This is done by setting the maxFreeLookAngle fi eld.
Again, this fi eld takes values in radians. In this example, the camera can yaw
a complete 360 degrees in either direction (left or right).

datablock PlayerData(testAvatar8: testAvatar2) {
 maxFreelookAngle = 3.141593;
};

Notice the name of this fi eld: maxFreeLookAngle. The implication is that
this (also) controls the angle of free-looking.
 Free-looking is a special mode where the camera is in 3rd POV and it
rotates around the player without rotating the player’s body. The head may
rotate if an appropriate animation is provided (see Section 7.3, “Players”).
This free-looking is used for looking around without changing aim-point and
for other purposes.
 To get into free-look mode, the camera must be in 3rd POV, then we set
the global variable $ mvFreeLook to true. When this variable is false, the
camera and player will behave normally.

VehicleData Fields

Besides players, the camera can be attached to a vehicle. The vehicle data-
block adds a few more fi elds to make the camera behave nicely. For example,
when a vehicle accelerates, the camera can lag behind. Then, the camera can
catch back up. Also, we can choose the current distance between the camera
and the node on the vehicle it is currently attached to.
 Lagging and offset are controlled by three VehicleData fi elds.

Part III Game Elements

210

Lagging

To enable lagging, we set the VehicleData fi eld cameraLag to a positive value.
Likewise, we must set the cameraDecay value to a positive value.

datablock WheeledVehicleData(testVehicle) {
 // ...
 cameraLag = 0.1; // Lags by 10% of delta while accelerating
 cameraDecay = 0.75; // Recovers 75% of lag per second
};

Offset

We can force the camera to be vertically offset from the camera node it is
attached to by setting cameraOffset.

datablock WheeledVehicleData(testVehicle) {
 // ...
 cameraOffset = 1.5; // Vertical offset of 1.5 world units
};

Your Meshes and Special Nodes

We’ll touch on this again when we talk about players and vehicles, but if you
want the camera to attach properly to a model, the model must have two spe-
cially named nodes (joints): eye and cam.
 eye is the 1st POV camera mount, and cam is the 3rd POV camera
mount.
 If one or both of these is not present and the current POV needs it, the
default mounting point will be the centroid of the shape.

7.2.3 Basic Game Views Cookbook
At this point, you should have a pretty good idea of what is going on with
individual elements that affect game view. However, you might still be fuzzy
on the big picture, so I will provide some cookbook examples for the most
commonly used game views.

The recipes in this section only apply to version 1.4 and later. If you are
working with version 1.3 or earlier, you will either want to upgrade or

change all code referencing the setFirstPerson() method to statements
that change the value of the global $firstPerson instead. For example,
instead of ServerConnection.setFirstPerson(true), you would
have $firstPerson = 1.

 Gameplay Classes Chapter 7

211

1st POV Only—Standard (90-Degree) FOV

To force the engine to use only 1st POV, have the player use the following
datablock and make the player the control object.

datablock PlayerData(firstPOVOnly) {
 firstPersonOnly = true;
 observeThroughObject = true;

 cameraDefaultFOV = 90.0;
 cameraMinFOV = 90.0;
 cameraMaxFOV = 90.0;
};

Forcing 1st POV Only—Alternate Method

There is another way to force a 1st POV. First, disable the toggleFirst-
Person() function by unmapping it (from actionmap) or gutting it.

function toggleFirstPerson(%val) {
 // removed entire body of function
}

Now, in the fi le “~/server/scripts/clientConnection.cs” at the very end of the
function GameConnection::onConnect() add the following code.

ServerConnection.setFirstPerson(true);

Forcing 3rd POV Only

Follow the steps we used (above) to disable the toggleFirstPerson()
function and make sure that your player datablock has the following values.

datablock PlayerData(thirdPOVOnly) {
 firstPersonOnly = false;

 observeThroughObject = true;
 // ...
};

Now, in the fi le “~/server/scripts/clientConnection.cs” at the very end of the
function GameConnection::onConnect() add the following code.

ServerConnection.setFirstPerson(false);

Part III Game Elements

212

1st or 3rd POV Capable

To allow the game view to be either 1st or 3rd POV, have the player use the
following datablock and make the player the control object.

datablock PlayerData(firstOrThirdPOVOK) {
 firstPersonOnly = false;
 observeThroughObject = true;

 // average FOV freedom
 cameraDefaultFOV = 90.0;
 cameraMinFOV = 45.0;
 cameraMaxFOV = 120.0;

 // average looking freedom
 minLookAngle = -1.57; // straight down
 maxLookAngle = 1.57; // straight up
 maxFreelookAngle = 2.1; // 2/3 rotation
};

Enabling Orbit Mode

To enable orbit mode, the datablock for the object that the camera will be
tethered to should be confi gured similarly to the following example.

datablock PlayerData(useCameraSettings) {
 observeThroughObject = false;
 firstPersonOnly = false;

 // Average Looking Freedom
 minLookAngle = -1.57; // straight down
 maxLookAngle = 1.57; // straight up
 maxFreelookAngle = 2.1; // 2/3 rotation
};

Additionally, the camera should have a datablock defi nition that defi nes FOV
values.

datablock CameraData (fixedFOVDistanceCam) {
 // Standard FOV
 cameraDefaultFOV = 90.0;
 cameraMinFOV = 90.0;
 cameraMaxFOV = 90.0;
};

 Gameplay Classes Chapter 7

213

Use Vehicle’s Eye Node on Mount

To have the game view automatically use a vehicle’s eye and cam nodes when
a player mounts the vehicle, edit the vehicle’s datablock as follows.

datablock wheeledVehicleData(theVehicle) {
 // ...
 useEyePoint = true;
 // ...
};

One thing that people often forget is that the camera is derived from
SceneObject and therefore has all of its attributes. One of these attributes
is the transform. It is often nice to have a camera dropped into the game
in exactly a certain place with a specific orientation. One way to do this is to
move the camera to the place you want to spawn, orient it, and then grab the
camera’s transform.

$camTransform = %cameraID.getTransform();

With this information in hand, simply place a single spawn point in the game
and then force it to assume the saved transform.

$spawnPointID.setTransform($camTransform);

Last, save the mission. Now, the next time you load up and drop into the world,
your free-camera position and orientation will be exactly correct.

7.3 Player and PlayerData
The Player and PlayerData classes derive from ShapeBase and ShapeBaseData,
respectively. Therefore, they inherit all the features of those classes. Addition-
ally, they add the following features.

• Rendering
• First POV enable

• Forces and factors
• Max speeds
• Energy drain
• Delays
• Resistance factors
• Angle limits
• Step height

• Velocity parameters

Part III Game Elements

214

• Programmable pickup radius

• Look-angle limits

• Impacts (vs. collisions)

• Special effects
• Foot puffs
• Footprints
• Splashes
• Bubbles
• Sounds

• Standard animations

7.3.1 Player Rendering (POV)
As we’ve seen, when the camera is attached to a player, we can view our game
in either 1st POV or 3rd POV. In additon to the features restricting camera yaw
and pitch, there is one more fi eld of interest: renderFirstPerson.

renderFirstPerson
When we are viewing in 1st POV, it may be neccesary to disable rendering of
the player mesh (on the player’s client only); that is, we might not want the
player to be able to see his body in 1st POV. Rendering of the player’s body
(mesh) in 1st POV can be disabled using the renderFirstPerson fi eld, as
follows.

datablock PlayerData(doNotRenderin1stPOV) {
 // ...
 renderFirstPerson = false;
};

Please remember (from the Expert Tip in Section 6.6.6), if you have an inte-
rior with mirrors and you are playing in 1st POV with renderFirst Person
set to false, your player will not render in the mirror. To fi x this, set
render FirstPerson to true.

7.3.2 Player Special Effects
The player comes with a ton of special effects, including particle effects
and sound effects. For ease of consumption, these have been divided into
categories.

 Gameplay Classes Chapter 7

215

Foot Puffs and Footprints

The player can be made to emit particles representing foot puffs while walking
on terrain by specifying the following.

datablock PlayerData(makeFootPuffs) {
 // ...
 footPuffEmitter = “myDustPED”;
 footPuffEmitterNumParts = 15;
 footPuffRadius = 0.25;
 // ...
};

The above sample specifi es that “myDustPED” will be used by the player’s foot-
puff emitter. Furthermore, it will emit 15 particles. The location of the foot-puff
emitter is automatically determined by the engine.
 Besides foot puffs, we can have footprints. Footprints are rendered using
decals, so please see Chapter 11, “Special Effects,” for declaring decals. In
order to use a declared decal for a footprint, do the following.

datablock PlayerData(renderFootPrints) {
 // ...
 decalData = “PlayerFootprint”; // Decal Datablock
 decalOffset = 0.1; // Alternate decals left-right offset
};

Besides the decal datablock, an offset is specifi ed. This offset is the distance
from center (in world units) that alternating decals are rendered. In other
words, for the above code, the left-decal is rendered 0.1 world units to the left
of center, and the right is 0.1 world units to the right of center. This makes the
distance between the decals 0.2 world units.
 We could specify the PlayerFootprint datablock as follows.

datablock DecalData(PlayerFootprint) {
 sizeX = 0.25;
 sizeY = 0.25;
 textureName = “~/data/shapes/player/footprint”;
};

The PlayerFootprint specifi es that the footprint should be 0.25 by 0.25 world
units square and use the image in Figure 7.1. This image measures 32×32
pixels. It could be larger for greater detail, but changing the size of the image
fi le does not change the resultant footprint size.

Figure 7.1.

Player footprint.

Part III Game Elements

216

Splashes and Bubbles

When the player enters and/or moves through the water, the engine can
optionally produce splashes and bubbles. To create a splash when the player
enters the water (near) vertically, do the following.

datablock PlayerData(splashAndBubble) {
 // ...
 // 1 world unit/s or greater causes splash
 splashVelocity = 1.0;
 // Particle Emitter DB for splash
 splash = “splashPED”;
 // Angle of incidence <= 45 for splash
 splashAngle = 45.0
};

In this sample, if the player is moving at 1 world unit per second or greater
and the angle of incidence (entry angle) with the water is less than or equal
to 45 degrees, the splash PED will play. This means a splash requires a near
vertical drop to happen.
 To make the player emit splashes while moving through the water, do the
following.

datablock PlayerData(splashWhileMovingHorizontally) {
 // ...
 // Splash at 0.25 world unit/s or greater
 splashVelEpsilon = 0.25;
 // Splash Particle Emitter DB #0
 splashEmitter[0] = “splashPED0”;
 // Splash Particle Emitter DB #1
 splashEmitter[1] = “splashPED1”;
};

To produce bubbles for a period of time each time the player moves in water,
do the following.

datablock PlayerData(bubbleDuringAndAfterMoving) {
 // ...
 // Bubble Particle Emitter DB
 splashEmitter[2] = “bubblePED”;
 // Ticks to froth (bubble) for (1/3 sec)
 bubbleEmitTime = 10.0;
};

 Gameplay Classes Chapter 7

217

Sounds and Sound Modifiers

In addition to particle emission, the player can produce a series of sounds.
Here is an example.

datablock PlayerData(exitWaterSoundSample) {
 // ...
 // Make sound when exiting at 2+ world units/s
 exitSplashSoundVelocity = 2.0;
 exitingWater = “myExitSoundAudioProfile”;
};

In this sample, the trigger event is exiting water at a velocity greater than
exitSplashSoundVelocity. When this event occurs, the exitingWater
audio profi le is played.
 In addition to the above sound and its sound modifi er, there are many,
many more such pairs. Each of these pairs follows the same behavior as the
one we just examined. A sound will be played if an audio profi le for the sound
is specifi ed, and if the conditions of the sound’s modifi er are met. Please refer
to Appendix A.3, “Console Objects’ Fields and Methods Quick Reference,” for
a complete listing of the various player sound fi elds and their associated trig-
gers and/or modifi ers.

Property Maps

There is a fi le named “propertyMap.cs” located under the data subdirectory.
In this fi le, you’ll fi nd statements like the following.

 addMaterialMapping(“grass” , “sound: 0” , “color:
 0.46 0.36 0.26 0.4 0.0”);

This statement associates some data with a texture (material) named “grass”.
One of these bits of data is the sound number associated with this mate-
rial. You can add materials as suits your needs. The complete list of possible
sounds are in Table 7.3.

7.3.3 Player Physics
The Player class adds a new set of physical parameters on top of those inher-
ited from ShapeBase and ShapeBaseData.

 Forces and Factors

In this section, we’ll briefl y discuss the fi elds that limit player motion. Some-
what later (Section 7.4), we’ll talk about how the player is made to move.

Table 7.3.

Sound types.

Sound Sound Type

0 Soft

1 Hard

2 Metal

3 Snow

Part III Game Elements

218

These forces and factors are all relatively straightforward. We’ll discuss the
less obvious ones in Table 7.4. All velocities are in world units per second.

Force/Factor Purpose

Forward and Backward Motion

maxForwardSpeed Maximum forward velocity.

maxBackwardSpeed Maximum backward velocity.

Sideways Motion

maxSideSpeed Maximum sideways velocity.

General Horizontal Motion

horizMaxSpeed Maximum horizontal velocity on ground, in air, or
in water.

horizResistFactor Delta factor used to determine how much of
horizResistspeed is removed from current
velocity.

horizResistSpeed Velocity at which horizontal resistance kicks in.

Jumping

jumpDelay Forced delay between jumps (in ticks).

jumpForce Force applied to player on jump. Should be less
than 40,000 * mass.

jumpEnergyDrain Drain this many energy points for every jump.

jumpSurfaceAngle Cannot jump if surface angle equal to or greater
to this many degrees.

maxJumpSpeed Cannot jump if running faster than this.

minJumEnergy Cannot jump if energy lower than this.

Running

runEnergyDrain Drain this much energy per tick while running.

runForce Accelerate player by this much per tick as a
result of a move (command). Should be less than
40,000 * mass.

runSurfaceAngle Cannot accelerate if surface angle equal to or
greater to this many degrees.

Upward Motion

upMaxSpeed Maximum velocity allowed in the positive z
direction.

Table 7.4.

Forces and factors limiting
player motion.

 Gameplay Classes Chapter 7

219

if (ElapsedTimeSinceHardFall <= recoverDelay) {
 currentVelocity += currentAcceleration * recoveryRunForceScale;
}

Table 7.4 (continued).Force/Factor Purpose

upResistFactor Delta factor used to determine how much of
upResistSpeed is removed from current
velocity.

upResistSpeed Velocity at which vertical resistance kicks in.

Underwater Motion

maxUnderwaterForwardSpeed Maximum underwater forward velocity.

maxUnderwaterBackwardSpeed Maximum underwater backward velocity.

maxUnderwaterSideSpeed Maximum underwater sideways velocity.

Recovery

recoveryDelay Number of ticks to stay in recovery mode after
hard fall.

recoveryRunForceScale Scale factor to apply to horizontal motion while in
recovery mode.

Resist Factors

The resist factors in Table 7.4 may not be entirely clear at fi rst glance. TGE
provides resist factors for horizontal and upward vertical motion. These are in
addition to the drag fi eld provided by ShapeBaseData. The general equation
for these resist factors is as follows.

if (velocity > resistVelocity) {
currentVelocity -= resistVelocity * resistFactor * timeDelta;
}

In other words, once resist speed is achieved, resistance is applied by a factor
of that resist speed.

Recovery Delays

When the player falls from a great distance, the landing is considered to be
hard. TGE treats hard landings in a special way. As soon as a hard landing
occurs, the player switches into “recovery mode.” This recovery mode lasts
for recoverDelay ticks. During this time, the player’s run acceleration is
modifi ed by a factor of recoveryRunForceScale. The general equation for
this is as follows.

Part III Game Elements

220

 Impacts

The player can collide with objects just like any other ShapeBase-derived
object. In addition to this collision detection, a new kind of collision has been
added. These collisions are called impacts. There are two kinds of impacts,
those with the ground and those with other objects.

General Impacts

A velocity threshold can be set, above which a collision is determined to be
a general impact.

datablock PlayerData(generalImpact) {
 // ...
 // Collision is Impact at >= 10 world units/s
 minImpactSpeed = 10.0;
};

Impacts with the Ground

A velocity threshold can be set, above which a collision is determined to be
a ground impact.

datablock PlayerData(groundImpact) {
 // ...
 groundImpactMinSpeed = 8.0;
 groundImpactShakeAmp = “8.0 8.0 12.0”;
 groundImpactShakeDuration = 1.0;
 groundImpactShakeFalloff = 0.5;
 groundImpactShakeFreq = “10.0 10.0 10.0”;
};

In the above sample, any impact at over 8 world units per second is consid-
ered to be a ground impact and thus fi res the ground shake effect. The camera
is shook with the specifi ed amplitude and frequency, falling off by a factor of
50 percent per tick to nothing over 1 second.

Impacts and Recovery (Mode)

As with a hard fall, impacts will automatically cause the player to enter recov-
ery mode. If the player is squatting every once in a while for no particular
reason, it is probably because the impact velocity settings are too low.

Step Height

There is a factor named maxStepHeight that limits how great a positive
change in elevation must be before a player cannot step up. If the elevation

 Gameplay Classes Chapter 7

221

change in a particular direction is greater than this value, the player will not
be able to walk in that direction. The only way to get over this step is by try-
ing to jump over it.

7.4 Controlling The Player
So far, we’ve talked about how the motion of the player is limited and param-
eterized by fi elds in the PlayerData datablock. Now, let’s talk about how we
control our player’s translations and rotations in the world.

7.4.1 Movement Globals
TGE has a set of global variables that interact to determine if the control object
translates or rotates. Additionally, the translation factors are further modifi ed
by a common global while the rotation factors are modifi ed by the current
FOV (via script).

Translations

All translations are modifi ed (in script) by the global variable $ movementSpeed.
This value is a multiplier that affects the input value and is later multiplied
by the various speed factors discussed above to give a fi nal acceleration. The
general equation of how the translations are calculated in script is as follows.

// Result is clamped [0.0, 1.0]
$mvActionValue = %value * $ movementSpeed;

Later, inside the engine, our acceleration is calculated as follows.

acceleration = $mvActionValue * speedFactor * timeDelta

Subsequently, maximum velocity (ignoring drag and other factors) is as follows.

 maxVelocity = $mvActionValue * speedFactor

The specifi c global variables (named action values corresponding to
$mvActionValue in the fi rst equation) are as shown in Table 7.5. To see some

A frequently asked
question is, “Is there
a way to dynamically
scale my player’s
velocity?” I’ve seen
folks answer this with a
“no.” It should be clear
from this discussion
that that answer is
wrong. To scale your
player’s velocity, simply
scale the value in
$mvActionValue.
This value can be

between 0.0 and
1.0.

Action Value Description

$ mvLeftAction Move left.

$ mvRightAction Move right.

$ mvForwardAction Move forward.

$ mvBackwardAction Move backward.

$ mvUpAction Move upward.

$ mvDownAction Move downward.

Table 7.5.

Keyboard translation
global action values.

Part III Game Elements

222

examples of the variables in use, examine the fi le “default.bind.cs” in either the
TGE Demo or the GPGT Lesson Kit.

Keyboard Rotations

If we so choose, we can add key mappings to enable camera/player/vehicle
yawing and pitching via keyboard instead of mouse. Each of these actions is
modifi ed by the preference variable $ Pref::Input::KeyboardTurnSpeed.
The general equation showing how these rotations are calculated in script is
as follows.

$mvActionValue = %value * $ Pref::Input::KeyboardTurnSpeed;

The TGE Demo and GPGT Lesson Kit do not use these features, but they are easy
to hook up. Table 7.6 describes the global action values for keyboard rotations.

Action Value Description

$ mvYawRightSpeed Yaw right.

$ mvYawLeftSpeed Yaw left.

$ mvPitchDownSpeed Pitch down.

$ mvPitchUpSpeed Pitch up.

Mouse Rotations

All mouse rotations are modifi ed (in script) by a script (provided in the TGE
Demo and GPGT Lesson Kit) named getMouseAdjustAmount(). This is
done to keep mouse yawing and pitching consistent across FOVs.
 This function produces a multiplier that is used as follows.

$mvActionValue += getMouseAdjustAmount(%val);

 The specifi c yaw and pitch global variables (named action values) are
described in Table 7.7.

Action Value Description

$ mvYaw Yaw camera by this amount.

$ mvPitch Pitch camera by this amount.

7.4.2 The MoveMap
We’re doing pretty well so far. We know how to defi ne a player so that it has
the forces and factors we want, and we know how to tell TGE to translate/
rotate our character. Now, how do we attach that code to the keyboard and/or
mouse?

Table 7.7.

Yaw and pitch
global action values.

Table 7.6.

Keyboard rotation
global action values.

 Gameplay Classes Chapter 7

223

 In Chapter 9 we will discuss the ActionMap class, but to summarize its
purpose for now, the ActionMap is a class whose job it is to convert device
inputs into function calls. In both the TGE Demo and GPGT Lesson Kit, a
special action map has been defi ned. Its name is moveMap. moveMap is auto-
matically loaded when we start a mission. By default, it has been confi gured
to connect our keyboard actions to function calls which then calculate move-
ments using the global variables we discussed above. If you are curious about
this process, I suggest you skip ahead to Section 9.4, “Device Inputs and
Action Maps,” and then open the “default.bind.cs” fi le you will fi nd in either
the TGE Demo or the GPGT Lesson Kit.
 We’ve talked enough now about the Player and PlayerData classes to
jump into the actual creation of our test player. The accompanying disk con-
tains several player models, including the default Torque Orc and Blue Guy.
Additionally, it includes Simplest Player, which is a non-bipedal player with
no animations or other special features.

7.4.3 Maze Runner Lesson #6 (90 Percent Step)—
 Simplest Player
For our game, we will need to make a very simple player. This player is nothing
more than a ball with three nodes (joints): fl oor, eye, and cam (Figure 7.2).

Copy Required Files

From the accompanying disk, please copy the fi le “\MazeRunner\
Lesson_006\mazerunnerplayer.cs” into “\MazeRunner\prototype\server\scripts\
MazeRunner”.
 Now, edit the function onServerCreated() in the fi le “\MazeRunner\
prototype\server\game.cs” to look like this (bold lines are new or modifi ed):

 exec(“./MazeRunner/fireballs.cs”); // MazeRunner
 exec(“./MazeRunner/mazerunnerplayer.cs”); // MazeRunner

Simplest Player Skeleton

Because we’re not going to animate this player, it doesn’t need very many
nodes (joints) in its skeleton. In fact it only needs a root node and the two
camera mount points (see Table 7.8).

Node Description

floor The root node, specifying the physical bottom of the mesh.

 eye The 1st POV camera node.

 cam The 3rd POV camera node.

Figure 7.2.

Simplest Player.

Table 7.8.

Simplest Player nodes.

Part III Game Elements

224

Root Node

In this model, the root node is located at the bottom of the player, and the eye
and cam nodes are attached to it. This node defi nes the bottom of the player
and is where the mesh contacts the ground. The engine uses the lowest node
it fi nds in a mesh’s skeleton as the bottom of the shape; thus, if this node were
placed in the middle of the player, the player would sink into the ground.

 Eye and Cam Nodes

The next node is the eye node. It is located on the “forehead” just above and
between the eyes. This is where the 1st POV camera will be mounted.
 The last node is the cam node. This is located behind and above the
model. It doesn’t necessarily need to be here, but this model was designed
(in part) to show the difference between an eye mount and a cam mount. As
you’ve probably guessed, this is where the 3rd POV camera will mount.

Simplest Player Geometry

Visible Mesh

There isn’t much to say about this. It’s a ball. The player has one mesh and
one skin. We’re not using any IFLs or other fancy features.

Collision Mesh

We do not need to defi ne a collision mesh for instances of the Player class, as
the engine does this automatically.

Simplest Player Animations

Earlier I said that this player is not animated. I lied. OK, I didn’t exactly lie.
For any player to work, the root animation needs to be exported at a mini-
mum. Then, to get rid of some annoying warnings, you’ll need to export the
other animations (shown in Table 7.9). Since the player isn’t going to need
these animations, I’ve left them blank and just exported the same sequence
for each.
 The sequences for these animations are shown in Table 7.10, which
includes the following information.

• Animation. This is the (required) name for the animation sequence in
question.

• Start Key/End Key. These are the frames in which the named animation
begins and ends.

• FPS. This is the base frame rate at which the animation should be played.

• Cyclic. This indicates whether the animation should be played once or in
a cycle.

 Gameplay Classes Chapter 7

225

Table 7.10.

Sequences for animations.

• Blended. This indicates whether the sequence should be blended or not.

Finally, for each sequence there is a combined line something like “seq:
root=1-2, fps=1, cyclic.” This is what you would type in for the default
exporter, but since we’re using the DTS Plus exporter, you will enter the
values via that exporter’s dialog.

Table 7.9.

Animation descriptions.

Animation Description

 root A default animation that plays while the player is at rest.

 run Forward running animation.

 back Backwards running animation.

 side Sideways stepping animation.

 jump Moving jump animation.

standjump Stationary jump animation.

 fall Long falling animation, which starts about 1 second after fall starts.

 land Hard landing animation (played while in recovery-mode).

Animation Start Key End Key FPS Cyclic Blended

root
1 2 1 Y N

seq: root=1-2, fps=1, cyclic

run
1 2 1 Y N

seq: run=1-2, fps=1, cyclic

back
1 2 1 Y N

seq: back=1-2, fps=1, cyclic

side
1 2 1 Y N

seq: side=1-2, fps=1, cyclic

jump
1 2 1 N N

seq: jump=1-2, fps=1

standjump
1 2 1 N N

seq: standjump=1-2, fps=1

fall
1 2 1 N N

seq: fall=1-2, fps=1

land
1 2 1 N N

seq: land=1-2, fps=1

The default MS3D
exporter does not
support blending and
many of the other
cool special features
that DTS supports. So,
I suggest that you visit
the GarageGames site
and download the

“DTS Plus” exporter
(resource).

Part III Game Elements

226

Simplest Player’s Datablock

Because the datablock for this shape is a bit long, only the pertinent portions
are listed here.

datablock PlayerData(MazeRunner : BasePlayer) {
 shapeFile = “~/data/MazeRunner/Shapes/Players/MazeRunner.dts”;
 boundingBox = “1.6 1.6 2.3”;
 invincible = true;
 groundImpactMinSpeed = 1000;
 ImpactMinSpeed = 1000;
 renderFirstPerson = false;
 observeThroughObject = true;
 // ...
};

This player has the following notable attributes.

1. It derives (copies) from the BasePlayer datablock that comes with the GPGT
Lesson Kit.

2. As would be expected, the mesh we just built (or copied) is used.

3. The shape is a little bigger than the normal character, so we’ve increased
the dimensions of its bounding box from “1.2 1.2 2.3” to “1.6 1.6 2.3,” add-
ing an extra three-tenths of a world unit in the x and y dimensions.

4. The player is marked as invincible because we are not going to use damage
to determine if it is “dead.” Instead, we’ll kill it immediately if the mesh is
hit by a fi reball or if it falls in the lava.

5. Impacts are effectively disabled by setting the velocity factors to values
greater than any velocity the player will be able to achieve in this game.

6. renderFirstPerson is disabled, meaning the mesh will not render while
the game view is 1st POV.

7. The camera has been instructed to use the player’s camera settings
(observeThroughObject is true).

Loading the Datablock

Now, edit the “\MazeRunner\prototype\server\scripts\game.cs” fi le and update
onServerCreated() to contain the following code (new code is bold).

 exec(“./MazeRunner/fireball.cs”); // MazeRunner
 exec(“./MazeRunner/MazeRunnerPlayer.cs”); // MazeRunner

 Gameplay Classes Chapter 7

227

Using This Player

Now, to use this player instead of the Blue Guy we have been using thus far,
edit the “\MazeRunner\prototype\server\scripts\game.cs” fi le and modify
the highlighted code (below) in GameConnection::createPlayer() to
look like the following.

function GameConnection::createPlayer(%this, %spawnPoint) {
 //...

 // Create the player object
 %player = new Player() {
 dataBlock = MazeRunner; // Change this line
 client = %this;
 };

 //...
}

7.5 Vehicles
So far, we have talked about game view, cameras, and players (the fi rst cat-
egory of avatars). Now we will discuss vehicles, the second category of avatar.
TGE provides classes for making the following vehicle types.

• Wheeled vehicles. Ground vehicles with four, six, or eight tires.

• Hover vehicles. Ground vehicles with no tires.

• Flying vehicles. Science-fi ction–style air vehicles. We do not discuss
this vehicle type here (although a working sample is provided).

7.5.1 Vehicles Overview
Vehicles share many traits, and all three vehicle types derive from the same
base class. So, we’ll talk about vehicle geometries, nodes, particle emissions,
and animations as a group. We will follow this with a discussion of the base
classes VehicleData and Vehicle. Then, we’ll talk about mounting and dis-
mounting vehicles.

Vehicle Geometries (Meshes)

Just as the player must have some kind of geometry (mesh or meshes), so
must a vehicle. Each type of vehicle has a minimum set of required geom-
etries. These basic geometries are described in Table 7.11.
 Besides visual geometry and the one collision mesh, another kind of
geometry can be included in your models—a second type of collision mesh
named LOS (line of sight). See Table 7.12.

There are
working samples

of each type of
vehicle included in
the GPGT Lesson Kit,
and a full explanation
of how they were
created is included in
the appendices. All of
these vehicles were
created and animated
with MilkShape 3D, a
reasonably featured
and low-cost tool.

Part III Game Elements

228

 In practice, you may specify more than one collision mesh, but this is not
suggested. However, multiple LOS meshes are acceptable and quite normal to
encounter.

General Vehicle Nodes

Another part of a model’s construction is the set of nodes (or joints) to which
the mesh attaches. In TGE, the majority of these nodes are used by the engine
to attach particle effects, and the remaining two are used for attaching the
camera (Table 7.13).
 Not all nodes are used by all vehicles and not all vehicles have all nodes
(Table 7.14).
 As previously mentioned, some of the nodes are used to mount particle
emitters. Table 7.15 specifi es what particle-emitter fi eld (in a datablock) is
associated with what node.
 The emitters attached to a vehicle will activate at various times. Table
7.16 specifi es when the emitters will be activated (not all these emitters are
attached to nodes).

 Vehicle Animations

Vehicles can have several animations. In addition to the damage animations
that are inherited from the ShapeBase classes, vehicles have the new anima-
tions in Table 7.17.
 All of these animations are blended. Not all animations are available in
all vehicles. Table 7.18 specifi es which vehicles use which animations. Addi-
tional animations can be provided but must be activated from script.

Geometry Description

 Chassis The body of the vehicle. This can be complex or very simple.

 Collision-1
A simple nonconcave collision mesh. This is the primary collision
mesh used for the vehicle.
It is suggested that this mesh not have more than 20 vertices
because collision calculations are quite CPU-intensive and the time
required increases with the complexity of the mesh.

 Tire This is only required for the WheeledVehicle class.

Table 7.11.

Vehicle geometries.

Table 7.12.

Line-of-sight collision
mesh.

Geometry Description

 LOSCol-9 .. LOSCol-16 Line-of-sight collision meshes. These meshes are used for
registering the impact of projectiles and other line-of-sight–
dependent collisions like ray-casts.

 Gameplay Classes Chapter 7

229

Table 7.13.

Vehicle nodes.

Table 7.14.

Use of nodes by vehicle
type.

Although the cam and
 eye nodes are labeled
“optional,” you must have
at least one of them. If
neither is present, the
camera will mount to the
centroid of the vehicle.

Also, be aware that all
nodes can be animated,
including the cam and eye
nodes.

Table 7.15.

Particle-emitter fields
associated with nodes.

Node(s) Description

 cam Third-person camera position.

contrail0 .. contrail3 Particle-emitter mount. Simulates contrails.

 eye First-person camera position.

hub0 .. hub7 Helper nodes that specify the location of the tires.

JetNozzle0
 JetNozzle1

Particle-emitter mount. Simulates thrusters in rear of vehicle.

 JetNozzle2
 JetNozzle3

Particle-emitter mount. Simulates thrusters in front of vehicle.

JetNozzleX Particle-emitter mount. Simulates thruster on bottom of vehicle.

 mount0 .. mount31 General mount points that can be used for anything. However,
0 is normally the driver mount-point, and 1..10 are passengers,
gunners, turrets, etc.

Node Wheeled Hover Flying

 cam optional optional optional

contrail0 .. contrail3 — — optional

 eye optional optional optional

hub0 .. hub7 optional optional optional

JetNozzle0
 JetNozzle1

— optional optional

 JetNozzle2
 JetNozzle3

— optional optional

JetNozzleX — optional optional

 mount0 .. mount31 optional optional optional

Node Hover Flying

 contrail0 .. contrail3 — trailEmitter

 JetNozzle0
 JetNozzle1

 forwardJetEmitter forwardJetEmitter

 JetNozzle2
 JetNozzle3

 backwardJetEmitter backwardJetEmitter

 JetNozzleX downJetEmitter downJetEmitter

Part III Game Elements

230

Table 7.17.

Vehicle animations.

Table 7.16.

Activation of emitters.

Node Wheeled Hover Flying

 contrail0 ..
 contrail3

— — When velocity
exceeds

minTrailSpeed.

 JetNozzle0
 JetNozzle1

— On forward thrust. On forward thrust.

 JetNozzle2
 JetNozzle3

On backward thrust. On backward thrust.

 JetNozzleX — On upward thrust. On upward thrust.

 dust TrailEmitter — Velocity > 0 &&
Elevation <=

triggerTrailHeight
Emits from rear of vehicle.

—

 tireEmitter While moving
from tires.

 — —

 dustEmitter
When vehicle is within triggerDustHeight of ground.
Please note that this emitter uses colors specified for terrain in
propertyMap for that terrain texture, or all white if not found. Dust
rises from ground beneath vehicle to dustHeight.

damageEmitter[0]
 damageEmitter[1]
 damageEmitter[2]

If vehicle has sustained damage percentage greater than
damageLevelTolerance[n], then damageEmitter[n] is
activated for emitters 0 and 1. Emitter 2 is only activated if the
vehicle is damaged and underwater. Damage particles are emitted at
a random point at a distance of damageEmitterOffset from the
vehicle’s centroid. Additionally, numDmgEmitterAreas specifies if
we have 1 or 2 emitters specified.

Animation Description

 activateBack An animation that occurs when the vehicle is thrusting
(accelerating) forward.

activateBot An animation that occurs when the vehicle is thrusting
(accelerating) upward.

brakelight An animation to turn the brake lights on and off. Usually
implemented with an IFL.

 maintainBack An animation that occurs when the vehicle is gliding forward.

 maintainBot An animation that occurs when the vehicle is gliding upward.

spring0 .. spring7 Blended animations used to animate the suspension for
wheeled vehicles.

 steering Blended animation to turn the steering wheel when wheeled
vehicles turn.

 Gameplay Classes Chapter 7

231

7.5.2 Vehicle and VehicleData
These classes are virtual parents to the three concrete classes used for wheeled,
hover, and fl ying vehicles. The Vehicle class has no fi elds, variables, or meth-
ods. So, we only need to discuss the datablock.

Vehicle Physics

In general, vehicle physics can be quite diffi cult to understand and to manipu-
late. So, I’ll give a short description of the various fi elds and their purposes,
then I’ll supply sample vehicles with working values in the GPGT Lesson Kit.
After that, you’ll need to experiment.

Integration

The integration fi eld tells the engine how many times to try to resolve the
current motion. The value in this fi eld determines the time slice used. Larger
values equal smaller time slices and more iterations. Choosing a value for this
fi eld is a tradeoff of stability vs. time. Smaller time slices mean a more stable
evaluation, but we pay for these multiple updates in computing time.
 In short, a value of about 4 is good for hover and wheeled vehicles, but
you may need a higher value for fl ying vehicles or high-velocity vehicles.
Experimentation will tell.

Friction and Restitution

The bodyFriction fi eld determines how much velocity is lost to rubbing on
impact with a surface. This can have some odd side effects, however, so you
may want to make this value either very small or zero (in the case of fl ying
vehicles).
 The bodyRestitution tells us how much the vehicle will “bounce
back” when it hits something. This fi eld should be less than 1. A good value
is between 0.4 and 0.5.

Table 7.18.

Use of animations by
vehicle type.

Animation Wheeled Hover Flying

 activateBack — optional optional

activateBot — — optional

brakelight optional — —

 maintainBack — optional optional

 maintainBot — — optional

spring0 .. spring7 optional — —

 steering optional — —

Part III Game Elements

232

contactTol and collisionTol

The fi eld contactTol is compared to the result of a dot-product calculation
to determine if a collision occurred. Thus, if you want to cause collisions to be
largely ignored, this value should be near to 1.0. However, this value is nor-
mally about 0.1, which is an angle of incidence of about 6 degrees; i.e., any
contact at an angle betweeen about 6 and 90 degrees registers as a collision.
 The fi eld collisionTol is a value that specifi es the “don’t care” dis-
tance for a collision. If the possibly colliding points are farther apart than
collisionTol, the collision doesn’t happen. This, too, is usually set to 0.1
(world units).

massBox and massCenter

The mass of a vehicle is treated as if it is evenly distributed within a sphere.
The diameter of the sphere is normally equal to the distance between opposite
corners of the vehicle’s world bounding box. However, for wheeled vehicles,
if the massBox fi eld is greater than 0, this value is used instead. This way, we
can compact the mass or spread it out as meets our needs.
 The massCenter fi eld is a three-element fl oating-point vector specifying
an offset from the vehicle’s centroid. This is used to move the massBox away
from the vehicle’s centroid.

minDrag and maxDrag

In addition to the normal drag value provided by ShapeBaseData, we can
specify a minDrag and maxDrag. However, these values are only used for fl y-
ing vehicles. minDrag is the minimum drag that will always be applied to the
vehicle. maxDrag is now a dead variable and not used at all.

Steering

We can specify a maxSteeringAngle in radians for all vehicle types. This
will limit how quickly we can steer in a new direction. Smaller values equal
slower turns, and larger values equal faster turns.

Jetting

Interestingly, all vehicles can use a jetForce, which is a generic forward
thrust value (in the case of wheeled vehicles, applied in addition to frictional
forces).
 Jetting is activated when move trigger three is nonzero ($ mvTrigger-
Count3 > 0).
 In order to jet, the vehicle must have more energy than minJet Energy (by
default this is 1). Lastly, when jetting, jetEnergyDrain energy is removed
from the vehicle per tick. The default for jetEnergyDrain is 0.8.

 Gameplay Classes Chapter 7

233

Impacts and Impact Sounds

Like the player, vehicles can have impacts. Likewise, there are sounds associ-
ated with these impacts. Because I’ve talked about this concept in Section
7.3.2, I will not discuss it further and just refer you to Appendix A.3, “Console
Objects’ Fields and Methods Quick Reference,” for specifi cs.

The Camera

We have already discussed our ability to control the camera in Section 7.2:
the camera can lag the vehicle when it accelerates and will do so when we
set cameraLag to a positive value. This lag is recovered at a rate of camera-
Decay.
 The other thing we can do to the camera is offset it (vertically) by
cameraOffset world units from the 3rd POV mount point (cam).

collDamage fields

Neither the collDamageThresholdVel nor the collDamageMultiplier
fi eld is used by the engine. These are for scripting purposes only.

That is it for our discussion of the VehicleData class. Now, let’s discuss the
general topic of mounting and dismounting, as well as how to use a vehicle
as the player.

7.5.3 Vehicle Mounting
A vehicle can either be mounted (player sits on or in it) or it can substitute for
a player. Furthermore, any of the following actions can occur.

1. Player mounts vehicle on collision or in response to other action.

2. Player starts in the mounted position.

3. Player is replaced with vehicle on collision or in response to other action.

4. Player starts as vehicle.

Each of these cases requires a set of console methods and some dynamic
fi elds in the vehicles/players. Because there are innumerable correct ways
to handle these cases, it might seem a bit daunting the fi rst time you have to
solve this problem. So, sample fl ows and source code are provided with the
GPGT Lesson Kit to handle cases 1, 3, and 4. We won’t cover case 2 directly,
but it can be derived from the other cases.

Mounting Vehicles

In the GPGT Lesson Kit, when a collision occurs between a Player object
and a Vehicle, the engine will attempt to fi re the onCollision() callback

Part III Game Elements

234

for both datablocks. The playerData:: onCollision() method provided
with the Lesson Kit will then attempt to mount this player to the vehicle, if
the vehicle is mountable and if the player is not already mounted to another
vehicle (Figure 7.3).

• PlayerData:: onCollision(). Fires on a collision and calls the Player-
Data::doVehicleMount() if the collided object is a vehicle, it is mount-
able, and the player is not already mounted to a vehicle.

• PlayerData::doVehicleMount(). Handles the work of mounting
the player to the vehicle. This method also manually notifi es the vehicle
that an object (the player) is being mounted to it by calling the vehicle’s
onPlayerMount() method.

• VehicleData::onPlayerMount(). This method is called by do Vehicle-
Mount() in the case that a player gets mounted to the vehicle. The purpose
of this method is to do any special animations or other actions you might
require in the case of a mounting.

• PlayerData:: onMount(). This is automatically called by the engine as a
result of PlayerData::doVehicleMount() calling the engine mount()

Figure 7.3.

Mounting vehicles.

Table 7.19.

Dynamic fields for
mounting.

Player Object
Dynamic Field Name Description Range

canMount A Boolean value specifying whether the
player is allowed to mount a vehicle.

[true , false]

isMounted A Boolean value denoting whether the player
is already mounted to something.

[true , false]

Vehicle Datablock
Dynamic Field Name Description Range

isMountable A Boolean value determining if this vehicle
can be mounted.

[true , false]

 Gameplay Classes Chapter 7

235

console method to mount the player object to the vehicle. In this code, we
do some cleanup work on the player, like resetting the transform, placing
the player in the sitting pose, and setting the vehicle as the new control
object.

Mounting Dynamic Fields

In order to do the work of mounting or substituting, we require that there be
a few dynamic fi elds present in the player object and the vehicle’s datablock
(Table 7.19).

Dismounting Vehicles

Assuming that the player is mounted to a vehicle, we may wish to allow for
dismounting to occur. The GPGT Lesson Kit provides source code to handle
this as a result of a key press, but dismounting can easily be made to result
from other actions, too (Figure 7.4).

• User Action. The user requests a dismount via mouse click or button press.
(See the “Vehicle Action Maps” section below.)

• PlayerData:: doDismount(). Attempts to dismount from the current
mount point. This method manually calls the VehicleData::onPlayer-
Dismount() method to notify the vehicle that the dismount is occuring.

• VehicleData::onPlayerDismount(). This method is provided so that
the vehicle can play a special animation or do other work when the player
dismounts.

 Vehicle Action Maps

It is important to know that TGE has code that automatically checks to see if
a player is mounted to an object. When this is true and when a moveTrigger
two event ($mvTriggerCount2 > 0) is received, the engine will automati-
cally call the doDismount() callback. In both the TGE Demo and GPGT Les-
son Kit, the spacebar is tied to $mvTriggerCount2. So, you do not need to
modify or add an action map unless you wish to remap the trigger to some-
thing besides the spacebar.

Figure 7.4.

Vehicle dismounting flow.

Part III Game Elements

236

7.5.4 Wheeled Vehicles
Now that we’ve discussed general vehicle information, we’ll discuss the spe-
cifi c vehicle types supported by TGE. The fi rst of these is the wheeled vehicle.
Wheeled vehicles in TGE support 4, 6, and 8 tires. The chassis of the vehicle
is represented by the WheeledVehicleData and WheeledVehicle classes, the
tires by the WheeledVehicleTire class, and the suspension by the Wheeled-
VehicleSpring class. We’ll talk about each of these in turn.

 WheeledVehicleData and WheeledVehicle

These classes inherit all the fi elds in the VehicleData and Vehicle classes,
respectively. In addition, the WheeledVehicleData class brings some new
fi elds and features.

The Engine

A wheeled vehicle is moved by its engine. The power of this engine is defi ned
by the engineTorque fi eld. Also, the engine can be used to slow the vehicle.
That is, when the engine is not engaged in accelerating or maintaining the
vehicle’s current velocity, it can apply a braking force. Simply set engine-
Brake to a positive value, and the engine will slow the car by this factor.

Braking

In addition to engine braking, we can actually apply a braking force. The brake
force is set using the brakeTorque fi eld. It uses equivalent units (applied
oppositely) to engine torque.
 There is a small catch to braking. Braking is caused by $ mvTrigger-
Count2 being nonzero. This is the same trigger associated with player jump-
ing. So, braking will not work if the player is mounted to a vehicle.; i.e., only
vehicles used as the player will brake.

The Wheels

We need to specify a maximum angular velocity (rotational rate) for our tires.
This keeps them from over- or underrotating and is used to tune the look of
our tires. It does not affect how the vehicle drives. This effect is controlled by
the maxWheelSpeed fi eld.

Sounds

Our vehicles can make noises under various circumstances. When the engine
is engaged, TGE will try to play the engineSound audio profi le. When jetting
($ mvTriggerCount3 > 0), TGE will play the sound specifi ed by jetSound.
If the vehicle skids or the tires otherwise break friction, TGE will attempt to
play the sound specifi ed by squealSound.

 Gameplay Classes Chapter 7

237

 WheeledVehicleTire

A wheeled vehicle can specify a different tire datablock for each tire if we so
choose. The tire datablock is named “WheeledVehicleTire” and has the fol-
lowing features.

Friction

Tires exhibit both static and dynamic friction. If you have not studied dynam-
ics, this may mean nothing to you. In real life dynamics, there are two kinds of
friction: static and kinetic (some texts will say there are three: static, kinetic,
and breaking).
 Static friction is the friction found between two surfaces when both sur-
faces are stationary. Static friction is what keeps the objects stationary. When
a force is applied that overcomes static friction, the object to which the force
is applied will begin moving. This is named staticFriction in TGE.
 When an object is moving, it usually has a different friction. This friction
is known as kinetic friction, and is named kineticFriction in TGE. Nor-
mally (for most materials), static friction is higher than kinetic friction.
 So, what does this mean in TGE terms? Well, TGE simplifi es real-world
physics, but it does respect these two factors. While a tire is either stationary
or moving and has not yet slipped, staticFriction is applied. However,
when the torque applied by the engine results in a force higher than static-
Friction, the tire will begin to slip. At this point, TGE starts to use kinet-
icFriction in its calculations.
 In short, with a lower kineticFriction, a tire that is slipping will con-
tinue to slip until the applied force is reduced or removed.

Longitudinal Forces and Factors

A tire exhibits forces in two directions (springs handle the third for TGE). The
forward/backward force is known as longitudinal force (Figure 7.5, left). In
TGE, this force is defi ned by the longitudinalForce fi eld.
 There are two additional longitudinal factors that act in concert with
longitudinalForce. Their purpose is to produce a more realistic tire action.
Real tires are like springs and deform slightly when forces are applied to them.
However, they only deform so much before acting rigid (or exploding, which
they do not do in TGE). The springiness of a tire is set using longitudinal-
Damping. This damping is attenuated by a factor logitudinalRelaxation
(Yes, this fi eld is misspelled. It has been and will remain spelled this way to
prevent breaking people’s scripts).
 To make your tires behave like rubber, make longitudinalDamping
about 10 percent of the value of longitudinalForce, and you can adjust
this by making logitudinalRelaxation between 0.0 and 1.0.

Part III Game Elements

238

Lateral Forces and Factors

The next force tires produce is side-to-side or lateral force (Figure 7.5, right).
Lateral force is determined by the fi eld lateralForce. Similarly to longitudi-
nal forces, we have lateralDamping and lateralRelaxation factors.

Physical Parameters

Beyond forces, tires themselves have both a mass and a radius. The mass of
each tire contributes to the vehicle’s total mass. The radius fi eld is important
because it defi nes the bounding-box size for the tire. By default, the radius is
0.6 world units. So, if you make an abnormally large or small tire, be sure to
adjust this value.

Restitution

The restitution fi eld in tires is no longer used.

 WheeledVehicleSpring

The fi nal component in a wheeled vehicle is the suspension. The suspension is
defi ned by the WheeledVehicleSpring datablock. As with tires, each tire loca-
tion can have a unique spring. These springs have the following features.

Upward Force and Damping

To frame the discussion of this next force, think of the tire as being on the
ground. Then, the third force component is the force that pushes up on the
vehicle, keeping it off of the ground (Figure 7.6). This pushing force is defi ned
by the fi eld force in the spring datablock.
 By default, the spring will push with all its force when the spring is fully
compressed, and with no force when it is fully extended. The force varies
linearly between these two extensions.
 This spring force can be attenuated when the tire is traveling up and
down. If we specify a value for the damping fi eld, this force will be factored
into the spring force. A good ratio for damping is about 20 percent of force.

Figure 7.5.

Longitudinal and lateral
forces.

Longitudinal Forces
(top down view)

Lateral Forces
(top down view)

Figure 7.6.

Upward force and
damping.

 Gameplay Classes Chapter 7

239

The Anti-Sway Effect

An odd thing can occur when one tire hits a stone or some other obstacle. It
can temporarily cause that part of the car to be higher than the rest of the car;
i.e., the car is now off kilter. To compensate for this, TGE provides an anti-
sway factor (see Figure 7.7). The anti-sway force, specifi ed by the antiSway-
Force fi eld, is used to rebalance the vehicle (at least partially). In general,
if the anti-sway value is lower than the normal force (antiSwayForce <
force), the car will tilt away from the raised tire. If the values are equal, the
opposite spring will try to equalize the force, levelling the car. It can only do
so to the extent of the difference between the two springs’ extensions. The
anti-sway force equation is as follows.

antiSway = (oppositeWheelExtension – wheelExtension) *
 spring->antiSwayForce;

Length of Travel

Lastly, we can specify the length of our spring. This length limits the distance
the tire hub may travel from its topmost position to its bottommost position
(Figure 7.8). The length is specifi ed by the fi eld length and cannot be zero.

Powered Wheels

The motivational force, the force that moves your vehicle, comes from the
tires. By default, all wheels are enabled and thus produce motivational force
during the game, but at any time after the creation of a vehicle, we may
choose to disable or re-enable individual wheels. This will have an effect on
how the vehicle steers and drives in general. To set the power on a wheel,
simply use the following method.

// De-power left-front tire
%vehicle.setWheelPowered(0 , false);

Tires Are Even
No Anti-Sway

Tires Are Uneven
Anti-Sway Kicks In

Figure 7.7.

The anti-sway factor.

Figure 7.8.

Length of travel of hub.

The tire locations on
a wheeledVehicle are
numbered 0 through 7
and are ordered left-to-
right and front-to-back.
So, for a four-wheeled
vehicle, the tire
positions are: 0—left-
front, 1—right-front,

2—left-rear, and
3—right-rear.

Part III Game Elements

240

Remember, wheels are ordered front left, front right, second front, ..., left rear,
right rear. Also, trying to power or depower a wheel that does not exist will
cause an error, so be sure your script is aware of the tire count for the vehicle
it is modifying.

7.5.5 Hover Vehicles
The next category of vehicles is the hover vehicle. This vehicle is a ground vehi-
cle that remains a short way above the ground. It has no tires to move or turn
and instead uses “thrusters” for these maneuvers. There are only two classes
involved in making these vehicles: HoverVehicleData and HoverVehicle.

 HoverVehicleData and HoverVehicle

These classes inherit all the fi elds in the VehicleData and Vehicle classes,
respectively. In addition, the HoverVehicleData class brings some new fi elds
and features.

Horizontal Motion

The motion of the hover vehicle in the horizontal plane is controlled by three
forces: mainThrustForce, strafeThrustForce, and reverseThrust-
Force. The fi rst force is applied to forward motion, the second to left-right
motion, and the third to reverse motion.

Drag

There is a fi eld named dragForce that modifi es the maximum rate of the
hover vehicle. Setting this value too high will cause the vehicle to not move
at all. Experimentation is required, but a good starting value is 1, then move
upward.

vertFactor and FloatingThrustFactor

The fi rst of these two factors (vertFactor) is multiplied into the vertical
component of drag. It defaults to 0.15 but may be increased to produce more
drag in the vertical direction.
 The second factor (FloatingThrustFactor) is used to modify general
thrust strength depending on whether the vehicle is fl oating (not in contact
with water, terrain, or interior). If the vehicle is not fl oating, 100 percent of the
force is applied. However, if the vehicle is fl oating, the general force equation
becomes the following.

force = FloatingThrustFactor * force;

This factor can be between 0.0 and 1.0 and defaults to 0.25, meaning that
fl oating thrust is only one-quarter that of nonfl oating thrust. The purpose here

 Gameplay Classes Chapter 7

241

is to keep the vehicle reasonably powered while in the air, but to make the
thrust very strong while in contact with water, terrain, or an interior.

Floating Gravity

When a hover vehicle is not in contact with water, the terrain, or an interior,
the total amount of gravity applied to the vehicle will be as follows.

gravityForce = local gravity

However, once the vehicle contacts any of the aforementioned obstructions,
we can reduce the force of gravity by a factor of floatingGravMag (can be
between 0.0 and 1.0). This gives us the following gravity force equation.

gravityForce = local gravity * floatingGravMag

The purpose of this is to allow a nonfl oating vehicle to get back in the air
more easily.

Hovering

There is a force called stabSpringConstant. This fi eld must be set to a
value equal to two times the mass of the vehicle or higher, or the vehicle
will sink to the ground. The fi eld stabDampingConstant acts to keep the
hover vehicle from bouncing around too much and can be higher than stab-
SpringConstant. In fact, the higher it gets, the less bounce there is when
hovering over terrain with abrupt elevation changes.

Jetting Around

If jetting is active ($ mvTriggerCount3 > 0), the turboFactor is applied.
The current calculated thrust is multiplied by the value in this fi eld if it is
nonzero.

Stabilizers

The hover vehicle has a nonvisible bounding box that is used to “stabilize” it.
This box grows as the velocity of the hover vehicle increases and shrinks as
the vehicle reduces speed. We can limit the bounds of this box by using the
two fi elds stabLenMin and stabLenMax.

Rolling and Pitching

When the hover vehicle rolls and pitches, it can optionally glide in the direc-
tion of the roll or pitch. Simply set the fi elds rollForce and pitchForce
respectively to some nonzero value and the vehicle will move toward the roll/
pitch until it rotates back to vertical.

Part III Game Elements

242

Keeping the Vehicle Upright

Because hover vehicles may travel over hilly and bumpy terrain, it is possible
that the vehicle may want to tip over. Therefore, the engine provides a force
for keeping the vehicle upright. This force is specifi ed using the normal-
Force fi eld. When a hover vehicle is tilted or canted, this force is applied to
right the vehicle so that it is parallel to the surface below it. It is not a strong
contributor, so keeping this high is a good idea.

Steering

There are two forces involved in steering our vehicle. The fi rst is named
steeringForce and is the value applied in the direction of our turn. The
second is gyroDrag. This is a resistive force that trys to stop the turn.

Stay Put!

When the vehicle is not thrusting and should be sitting still, it may still slide
about, especially if there is a slope. To prevent the vehicle from constantly
sliding away, we can set two fi elds to nonzero values. First, we set a threshold
velocity brakingActivationSpeed. When the vehicle is not thrusting,
autobraking will begin to activate as soon as the speed of the vehicle is lower
than this. Once braking is activated, the force brakingForce will be applied
until the vehicle comes to rest.

Special Effects

The hover vehicle supports three new sounds: jetSound, engineSound,
and floatSound. These sounds play while jetting, thrusting, and hovering,
respectively.

7.5.6 Alternate Mounting Positions
In our discussions, we have only talked about mounting to mount0, but it is
completely possible to mount to another mount node. We can blindly mount
our players to nodes, but the best way to handle multiple mountings is to
check to see if a node is available. To do this, you can use this piece of code
(slight modifi cation of script found in the forums):

function findEmptySeat(%vehicleObj , %mountPoints, %startNode) {
 if (0 >= %startNode)
 %count = 0 ;
 else
 %count = %startNode ;
 for (0 ; %count < %mountPoints ; %count++) {

 Gameplay Classes Chapter 7

243

 %node = %vehicleObj. getMountNodeObject(%i);
 if (%node == 0) {
 return %i;
 }
 }
 return -1;
}

This method iterates from 0 to %mountPoints and returns the number of
the fi rst mount point with no passenger. We can just mount our player to this
point, or we can go a step further and fi nd the closest node and mount to it.

function findNearestEmptySeat(%playerObj , %vehicleObj , %mountPoints) {
 %nearest = 1000;
 %mountNode = -1;
 for(%count = 0 ; %count < %mountPoints ; %count++) {
 %node = %vehicleObj. getMountNodeObject(%i);
 if (%node == 0) {
 %distVec = vectorSub(%player. getWorldBoxCenter() ,
 getWords(%vehicleObj. getSlotTransform(%node , 0 , 2)));
 %nodeDist = vectorLen(%distVec);
 if(%nodeDist < %nearest) {
 %nearest = %nodeDist;
 %mountNode = %node
 }
 }
 }
 return %mountNode;
}

This function behaves much in the same way as the prior seat fi nder, but it
will return the node number for the nearest empty passenger position. Please
note that, for this to work, your nodes must be numbered 0 through 7.

7.6 Inventories
It would be fair to say that most games implement some kind of inventory
system. The purpose of these systems is to provide a set of mechanisms for
storing game items and for later retrieving them. The functions of an inven-
tory are varied, but at their most basic, they must provide the following mini-
mal set of features.

• Must be able to store items. This seems obvious, but what does it mean?
It means that, when an inventory item is encountered in the world, the

Part III Game Elements

244

inventory system must provide a means of removing it from the world and
storing it for later retrieval.

• Must be able to retrieve items. Given that the system has stored an item,
we will likely need to retrieve the item some time later. The inventory
system must provide a mechanism for retrieving the item from storage and
placing it back into the game world.

In addition to these mandatory features, it is usually benefi cial to be able to
do the following.

• Use an item. What is the use of having an item in inventory if it can’t be
used for anything? The bulk of responsibility for using should rest with the
item itself, but the inventory system must provide a means of getting at the
item’s use methods.

• Flexibly handle different item types. The inventory system should be
fl exible. For example, it would be nice if the system could easily be pro-
grammed to do the following:

1. pick up a coin and store it;

2. when a health power-up is encountered, use it if it is needed and store
it if not;

3. automatically mount and prepare weapon items if the player doesn’t
have an active weapon.

• Limit item carrying. Lastly, an inventory system should be able to just say
no. That is, depending on the game genre, an inventory should not allow
certain items to be stored, or it should limit how many/much of an object
can be placed in it.

The TGE FPS Demo comes with a scripted inventory system that does some of
the above tasks as follows.

• Objects are stored in the player object (the control object).

• The responsibility for storing, retrieving, and using items is split between
the control object, the control object’s datablock, and the object being
stored/retrieved.

• Storable items must be predeclared. That is, the control object must be told
what inventory items it can store.

• Storable items are declared and accessed using datablocks as indices into
inventory arrays. This allows for item-specifi c behavior as well as a simple
way of referring to inventory slots.

• It doesn't use the same methodology, nor is it as easily expanded, but the
basic TGE FPS Kit inventory can also be maximum-count constrained.

Having summarized the TGE inventory system, we will not be discussing it
further. Instead, we will be discussing the Simple Inventory System.

 Gameplay Classes Chapter 7

245

7.7 The Simple Inventory System
 (SimpleInventory)
The Simple Inventory System (subsequently referred to as SimpleInventory) is
provided in a fully functional state with the guide, so you could skip this chap-
ter and just use it. However, you’ll learn a lot more if you continue reading.
 SimpleInventory has the following attributes.

• It is script-based and will work with any TGE game.

• It is implemented with ScriptObjects and can be placed in any object or
stand alone. In effect, this allows any object to have an inventory or inven-
tories, further compartmenting and structuring game interactions.

• It is a generalized inventory system, designed to store nonunique items
referenced by their datablock names.

• Items are stored and referenced by their datablock, and thus items with
unique properties can be stored, but their uniqueness will be lost.

• An inventory can store any number of any type of datablock-identifi ed
item.

• A maximum count limit can be set for any specifi c inventory item.

• All methods that operate on SimpleInventory are scoped under the
 SimpleInventory:: namespace.

• Inventory methods are provided for ShapeBaseData:: to enable a basic
set of SimpleInventory interactions:
• doPickup()—pick up one instance of an object,
• doThrow()—throw or drop one instance of an object from inventory,

and
• doUse()—use an object from inventory.

• Inventory methods are provided for ItemData:: and Item:: classes to
complete the inventory functionality.

7.7.1 Designing SimpleInventory
Over the course of the next few pages, we will succinctly discuss the design of
SimpleInventory. This will reinforce some scripting topics we have discussed
previously as well as give insight into the system such that changing it (if you
should choose to) will not be too tedious.

Inventory Builder

Generally, it is better to use a builder (constructor, for you C++ folks), than to
hand-build complicated objects. So, we will use one for our inventory system:

Part III Game Elements

246

newSimpleInventory(%name)

Creates a new simpleInventory object, with optional %name.
Prints error message(s)
Returns 0 if inventory failed to instantiate.

%myInventory = newSimpleInventory(“backpack”);

The inventory object returned by our inventory builder has the structure
shown in Figure 7.9.

• The inventory itself is a Script-
Object.

• It has an optional name (as
provided to the builder func-
tion).

• It contains a SimSet named
knownItemTracking. This Sim-
Set is used to contain the IDs
of all items (datablocks) ever
stored in the inventory (this is used to simplify content tracking).

Specifying Stored Objects

We have a way to create our inventory object, now we want a way to identify
an inventory (storable) item.
 As we said above, SimpleInventory should be able to store items speci-
fi ed/identifi ed by datablocks. This means we would like to be able to specify
our item datablocks something like the following.

datablock ItemData(bullet) {
 // specific internal fields not important (yet)
};

Simple. The above datablock is no different from any other ItemData data-
block we would normally specify. This is good because it means we don’t
need to change our content-creation fl ow or remember any special rules.

Initial Contents

Next, we need to add a method for initializing the contents of our inventory.

setInventoryCount(%theInventory , %objectName , %numObjects)

Set total number of %objectName objects in the inventory to
%numObjects.
Returns number of items succesfully set.

Figure 7.9.

Structure of inventory.

 Gameplay Classes Chapter 7

247

If you’re not examining the code as you read, now would be a good time to
open a browser and take a quick peek at the code for this method (found in
“SimpleInventoryGeneral.cs”). This code is fully commented and should be
easy to follow. Feel free to peruse this in depth at a later time. For now, please
take note of the following important points.

• In order to avoid painful bugs, the SimpleInventory system validates argu-
ments and enforces some rules. This is a good practice in general and spe-
cifi cally when dealing with datablocks.

• Since it will do the same check frequently, the validation code is separated
out into a method that does the following.
• Verifi es that %objectName (item to be inventoried) is both an object

(exists) and is an ItemData datablock. This inventory system will only
inventory ItemData-derived objects, so this is a safe restriction.

• Forces the %objectName into string format (vs. ID). Why? Recall that
datablock names are automatically converted to IDs in some cases.
Because we don't want to worry about this, during our day-to-day usage
of the inventory system, we'll just make sure that the system itself
watches for this and handles it. We need to be consistent when using
datablocks as indices. In this case, we're always going to use names
because they are easier to identify (than numbers) when using dump()
and because we generally use names when referring to datablocks in
script.

Limiting Inventory Counts

We said above that this inventory system allows limits to be placed on indi-
vidual inventory item counts. To do this we need another inventory method.

setInventoryMaxCount(%theInventory , %objectName , %maxObjects)

Limits storage of %objectName objects in the inventory to %maxObjects.
%maxObjects can be: “”, 0, or N > 0. A value of “” clears any prior limit.

The limiting methodology used by SimpleInventory is not elaborate. Basically,
a limit can be unspecifi ed (“” meaning no limit), zero (0), or some positive
value (N).

Remaining Basic Features

To this point, we have discussed how to create an instance of Simple Inventory,
how to specify an inventory (storable) item, how to initialize an inventory
instance, and how to limit inventory counts. What is left? Well, we still need
the following features.

Part III Game Elements

248

• A means of getting an inventory count for any specifi c object.

getInventoryCount(%theInventory , %objectName)

Purpose:
Get total number of %objectName objects in the inventory.
Returns 0 if none found.

• A means of adding new items to the inventory.

addObject(%theInventory , %objectName [, %numobjects])

Purpose:
Add one [or %numObjects] %objectName items(s) to the
inventory. Returns number of items succesfully added.

• A means of retrieving an item(s) from the inventory.

removeObject(%theInventory , %objectName [, %numobjects])

Purpose:
Remove [or %numObjects] %objectName item(s) from the
inventory. Returns number of items succesfully removed
(which may be less than requested count).

As can be seen, there really isn’t much to the design of a simple inventory
system. Next we’ll address how to use this inventory system.

7.7.2 Using SimpleInventory

SimpleInventory Callback Flows

TGE provides a set of callbacks that “fi re” in response to various game events.
These callbacks are nothing more than console methods that are scoped to a par-
ticular class’ datablock. One of these callbacks is the onCollision() method.
 onCollision() is called for all ShapeBase derivates and Projectiles when a colli-
sion occurs in the game. For now, we will limit our discussion to collisions between
ShapeBase-derived objects (Player objects specifi cally) and Item objects.

Picking Up Objects

When a collision occurs between a ShapeBase object and an Item object, the
engine will attempt to fi re the onCollision() callback for both objects’
datablocks. The SimpleInventory system uses the ShapeBaseData:: on-

 Gameplay Classes Chapter 7

249

Collision() callback to initiate pickups. Said pickups follow the fl ow
shown in Figure 7.10.

• ShapeBaseData:: onCollision(). Fires on a collision and calls the
ShapeBaseData::doPickup() if the collided object is an Item.

• ShapeBaseData::doPickup(). Checks to see if the owner object has an
inventory. If so, it calls the item’s ItemData::onPickup() method.

• ItemData::onPickup(). This method will try to place itself in the inven-
tory using the SimpleInventory::addObject() method. If the item
is successfully added to ShapeBase object’s inventory, onPickup() will
call Item::respawn() to temporarily remove (hide) the object from the
world.

• ItemData::onInventory(). Often it will be benefi cial to have a place
to do some extra processing after picking up an item. For example, when
picking up a weapon, we would like to use the default fl ow (to reduce
redundant code) but have a simple way of handling mounting, ammo load-
ing, etc. In theory this could be done in the onPickup() by overriding,
calling the Parent::, etc. However, this will quickly become an intrac-
table solution for large games. Better is to have an item-specifi c callback
that is executed every time the inventory count for that item is modifi ed.
The ItemData::onInventory() method fi lls this role.

• Item::respawn(). Depending on the game type we’re writing, objects
that are picked up should either be respawned or removed permanently
from the world. The simple inventory system handles both of these cases.
If the dynamic fi eld respawn is set to true in the item’s datablock, the
item is respawned. If not, the item is permanently removed from the world
if the pickup succeeds. The Item::respawn() method does the respawn-
ing work. Items will respawn (become visible again) in $Item::Respawn-
Time milliseconds.

Figure 7.10.

Flow of pickups after
collision.

Part III Game Elements

250

Throwing/Dropping Inventoried Objects

Assuming we have an item(s) in our inventory, we may at some time wish
to throw (drop) it. This kind of action can be accessed through a key press
(as well as a myriad of other ways). Key presses are handled by action maps.
When the action map dictates that a throw has been requested, it will use a
 commandToServer() call to call the shapeBaseData::doThrow() method
to start the throw fl ow (Figure 7.11).

• Throw requested. The user requests a throw via mouse click or button press.
The action map is programmed to convert this client action into a server
action via the commandToServer() function (see “InventoryLesson.cs”
and “ServerCommands.cs”).

lessonMap. bindCmd(keyboard, “t”, “”,
“ commandToServer(\’throw\’, InventoryItem. getID());”);

• ShapeBaseData::doThrow(). Checks to see if the owner object has an
inventory. If so, it calls the ItemData::onThrow() method. If the Item-
Data::onThrow() method returns a new object handle, the ShapeBase-
Data::throwObject() method is used to do the throwing.

• ItemData::onThrow(). This method will try to extract one instance
of the item from the owner’s inventory using the SimpleInventory::
removeObject() method. If an intstance is acquired, onThrow() will
instantiate (build) a new copy and pass the items handle back to the
doThrow() method.

• ShapeBaseData::schedule Pop(). As with the pick-up fl ow, if the
dynamic fi eld respawn is set to true in the item’s datablock, the item is
meant to be transient and so should be popped from existence after throw-
ing. The ShapeBaseData::schedule Pop() method does this work. The

Figure 7.11.

Flow after a throw request.

 Gameplay Classes Chapter 7

251

item will pop from existence in $Item::PopTime milliseconds after being
thrown (dropped).

• ItemData::onInventory(). See pickup fl ow above.

• ShapeBaseData::throwObject(). As noted above, this method actu-
ally “throws” the newly instatiated item object. This method handles both
1st POV (along eye vector) throws and 3rd POV (arc along forward vector)
throws. Throw force is defi ned in the owner object’s dynamic fi eld throw-
Force.

Using Inventoried Objects

Assuming we have an item in our inventory, we may at some time wish to
use it. This kind of action can be accessed through a key press (as well as a
myriad of other ways). Key presses are handled by action maps. When the
action map dictates that a use has been requested, it will use a commandTo-
Server() call to call the shapeBaseData::doUse() method to start the use
fl ow (Figure 7.12).

• Use requested. The user requests a use via mouse click or button press.
The action map is programmed to convert this client action into a server
action via the commandToServer() function (see “InventoryLesson.cs”
and “ServerCommands.cs”).

lessonMap. bindCmd(keyboard, “u”, “”,
 “ commandToServer(\’use\’, InventoryItem. getID());”);

• ShapeBaseData::doUse(). Checks to see if the owner object has an
inventory. If so, it calls the ItemData::onUse() method.

• ItemData::onUse(). The coding of this method is entirely dependent
upon what the use action means.

Figure 7.12.

Flow after a use request.

Part III Game Elements

252

Item-Specific Responses

For an inventory system to be useful, it has to be somewhat fl exible. Simple-
Inventory was written to be fl exible without being too complicated as a fi rst
inventory example. The fl exibility comes in several fl avors.

Pickup Substitutions

Sometimes the pickup object needs to be different from the object we collide
with. For example, we might decide to have grenades in our game. We’d like
these grenades to come in packages of three grenades. We’d like the following
to be true:

• grenade packs are used for onCollision() to start a grenade pickup fl ow,

• individual grenades are stored in the inventory, and

• individual grenades are thrown.

SimpleInventory allows this by adding an optional dynamic fi eld named
InventoryItem to datablocks that need to do a substitution.

datablock ItemData(Grenade) {
 // ...
};

datablock ItemData(GrenadePack) {
 InventoryItem = Grenade; // Store grenade, not grenade pack
 // ...
};

With the above datablock, we can place grenade packs in the world, but when
we pick them up, we get grenades. As noted, InventoryItem is optional,
and if not specifi ed, the datablock name is stored instead.
 The observant will notice one small fl aw. We haven’t specifi ed how many
grenades a grenade pack is worth. This leads to the next topic: variable pickup
values.

Variable Pickup Values

When we pick up objects, we sometimes want the pickup to be worth one
(1) instance, and other times we want it to be worth N instances, where N is
nonzero. SimpleInventory allows this by supporting an optional dynamic fi eld
named InventoryValue. When this fi eld is present in an item’s datablock
and that item is picked up, InventoryValue items will be stored. By default,
one item is stored.
 For example, the following code will use the trick we learned above in
combination with this new trick to store three grenades when picking up a
grenade pack.

 Gameplay Classes Chapter 7

253

datablock ItemData(GrenadePack) {
 InventoryItem = Grenade;
 // Store 3 grenades instead of 1 grenade pack
 InventoryValue = 3;
 // ...
};

Variations on onPickup()

The prior two variations were useful tricks, but what do we do when we
want the pickup fl ow to be completely different? Answer: we write a new
onPickup() method.
 Let’s say you have a coin item and a health power-up in your game.
For the coin, the default pickup is acceptable, but we would like the health
power-up to be automatically applied if the player needs it, and placed in the
inventory if not. In order to do this, a new onPickup() method will need to
be defi ned for the health power-up.

datablock ItemData (NormalHealthKit) {
 healValue = 20;
};

// New onPickup() for NormalHealthKit
function NormalHealthKit::onPickup(%pickupDB,%pickupObj,%ownerObj) {
 // Check if player needs healing and apply kit if necessary, else store kit.
}

 So, what about if we have multiple varieties of the health power-up? Is
there a way to program this functionality just once? The answer is an emphatic
yes. Recall that the className keyword can be used to add an additional level
to the namespace of a class. We can use this to create a generic namespace for
all health power-ups as follows.

datablock ItemData (NormalHealthKit) {
 className = “HealthKit”;
 healValue = 20;
};

datablock ItemData (MegaHealthKit) {
 className = “HealthKit”;
 healValue = 100;
};

// New onPickup() for all Health Kits
function HealthKit::onPickup(%pickupDB,%pickupObj,%ownerObj) {

Part III Game Elements

254

 // Check if player needs healing and apply kit if
 // necessary, else store kit.
}

Alternate to onPickup()

Recall that, in the fl ows, the onInventory() method was mentioned as a
place to put “extra” code. This is still true and is in fact often the place where
problems like the health kit above should be solved. It is up to you, but I sug-
gest deferring changes in the fl ows until after onPickup(), onThrow(), and
onUse(). In the end, this will keep your code cleaner and allow you to reuse
other fl ows.
 For example, we solved the health-kit problem above by writing a new
onPickup(). Alternatively, we could have added an onInventory() that
would then call the onUse() method if the player needed to heal. We would
already need to write the onUse(), so it would be better not to rewrite similar
code for healing in an onPickup(), too.

// New onInventory() for all Health Kits
function HealthKit::onInventory(%inventoryDB , %ownerObj,
 %amount) {
 // If the player needs healing, call the onUse() flow.
}

Non-Pickup Variations

We’ve discussed the pickup fl ow to death. What about the other two fl ows?
Both throw and use can be item specifi c, too. The key is to program variant
functionality in the namespace of the object that normally is responsible for
deciding what the action means. For throws, it is the ShapeBaseData class that
normally decides what a throw is. For uses, it is the ItemData class. There-
fore, normally variations of a throw will be programmed in the doThrow()
method, and variations on use will be programmed into onUse().
 Finally, any time the inventory count for an item changes, the
on Inventory() method is called, with the inventory DB (datablock), owner
ID, and amount (of change). Consider this as a possible place to do your
special coding.

Constraining SimpleInventory

As previously mentioned, SimpleInventory does not constrain object pickups.
Any item can be picked up, and any number of items can be stored. It is easy
to see that this is too simplistic for most uses, but it can quickly be improved
upon by adding any or all of the following constraints.

 Gameplay Classes Chapter 7

255

• Allowed Items. Add code to predeclare the types of items that can be
stored.

• Disallowed Items. Add code to predeclare the types of items that cannot
be stored.

• Item Count Limit. Add code to limit the maximum number of a specifi c
item that can be carried in the inventory.

• Total Count Limit. Add code to limit the maximum number of cumulative
items (of all types) that can be carried in the inventory.

• Mass Limit. Add code to track and limit the total mass for all items in
the inventory. Please remember that all ShapeBase-derived objects have a
mass indicator in their datablock.

• Bulk Limit. Add a new fi eld to the item’s datablock denoting how bulky an
item is. Then, add code to the inventory to limit total bulk.

 Even with these changes, the inventory system may be too restrictive,
as it relies on datablocks to index items. This means that only objects using
datablocks can be inventoried (not a big restriction), and all data in the object
instances themselves are lost (can be a big problem). If you are programming
a role-playing game (RPG) or similar game, it will be useful to allow object
instances to be unique; e.g., this is Bob’s sword, or these boots are dam-
aged. Therefore, it will be absolutely required that objects that are stored in
the inventory be faithfully re-created at a later date, and if you want to stick
with a script-only system, you must fi nd a way to determine the fi elds in an
object and then to store them. This will require coding an extension into the
engine.

7.7.3 General Inventory Tips and Gotchas
While coding up SimpleInventory, I ran into some issues. So, rather than let
you stumble on them, too, I’m supplying them here.

• Datablock names as indices and arguments. Remember that Simple-
Inventory uses datablock names both to index arrays of inventory items
and as arguments in all the functions. Also, remember that the engine
may automatically convert these names to ID numbers. This can cause a
mismatch in the inventory lookup. So, when in doubt, use the getName()
method. For an example of how this is used, see the SimpleInventory::
verifyArgs() method.

• Item Behaviors. Remember that inventory items are based on the Item
class. For items to work appropriately as an inventory item, they must be
properly confi gured.
• Item.static. If you intend to be able to throw an object, this must be

false; otherwise, the object will stay where it was spawned.

Part III Game Elements

256

• ItemData.sticky. If you want a thrown object to stop when it hits the
ground, set sticky to true.

• ItemData.friction. Setting friction to a value of about 0.7 will
cause a thrown object to arrest its motion quickly.

• ItemData.mass. If you intend to throw the object, it must have a posi-
tive mass. Using applyImpulse() on a ShapeBase object with zero
mass will crash the engine.

• Motivation for using ScriptObject. Perhaps this should have been explained
earlier, but as SimpleInventory uses script objects, they can be placed any-
where and in anything, including in other inventories. Also, why just have
one?

7.7.4 Inventory Validation
SimpleInventory comes with code to validate that the basic functions of
the inventory system are working properly. This code is located in “Simple-
InventoryValidation.cs” and is run every time the GPGT Lesson Kit is started.
This code may be disabled, but it is a short test and won’t affect anything
after running. To see if the system is working, search for the words “Validating
Simple Inventory System” and check for error messages.
 Also, if you do decide to edit the system, you can cause it to reload the
inventory system scripts and to rerun the validation scripts by typing the fol-
lowing in the console.

sris();

7.7.5 Maze Runner Lesson #7 (90 Percent Step)—
 Preparing Our Game Inventory
In this short lesson, we will examine the steps required to get our player
(MazeRunnerPlayer) to use the SimpleInventory system to pick up coins.

Loading the Inventory System

In order to use our inventory system, we must ensure that it is getting loaded.
In fact, we have already done this fi rst step. When we set up our “Maze-
Runner” directory and copied the Maze Runner prototype directory into it,
we modifi ed the fi le “\MazeRunner\prototype\main.cs”. We had it load the
inventory system’s main script fi le, as follows.

function onStart() // in main.cs {
 // MazeRunner
 exec(“./EGSystems/SimpleInventory/egs_SimpleInventory.cs”);

 Gameplay Classes Chapter 7

257

 // MazeRunner
 exec(“./EGSystems/SimpleTaskMgr/egs_SimpleTaskMgr.cs”);
 //..

This then loaded the other script fi les that comprise this system.

// in egs_SimpleInventory.cs
 exec(“./SimpleInventoryBuilder.cs”);
 exec(“./SimpleInventoryGeneral.cs”);
 exec(“./SimpleInventoryValidation.cs”);

Adding an Inventory

With the inventory system being loaded, we now have to hook it to any classes
that wish to “own” an inventory. The simplest way to do this is to have each
class add an inventory system to the object when the object’s on Add() call-
back is executed.
 Take a look in the fi le “\MazeRunner\prototype\server\scripts\GPGTBase\
Player\PlayerDataMethods.cs”. It contains the defi nitions for all of the impor-
tant callbacks used by a player class. All of these callbacks are scoped to
PlayerData::, ensuring that they will be called unless a new datablock,
deriving from PlayerData::, redefi nes the callbacks.
 We are already loading this script fi le, so we get the benefi t of all of these
callbacks already. One of these callbacks is PlayerData::on Add(), which,
among the other things that it does, creates an inventory and saves a reference
to it in the player object.

function PlayerData::on Add(%DB,%Obj) {
 // 1
 Parent::on Add(%DB,%Obj);

 // 2
 %Obj.enableMountVehicle = true;

 // 3.
 %Obj.myInventory = newSimpleInventory();

 %Obj.myInventory.setOwner(%Obj);
}

This means that we do not have any work to do. We do not have to imple-
ment a new version of on Add() scoped to MazeRunnerPlayer::, but if we
wanted to, we could write one like this:

Part III Game Elements

258

function MazeRunnerPlayer::on Add(%DB , %Obj) {
 // Usually called first
 Parent::on Add(%DB , %Obj);

 // Other statments here ...
}

Removing an Inventory

It is normal to destroy objects created in the on Add() callback when the
on Remove() callback is executed.
 Again, this is taken care of for us by the base code we are using from the
GPGT Lesson Kit. The following is the on Remove() callback from the same
fi le we just examined above.

function PlayerData::on Remove(%DB,%Obj) {
 // 1
 if(isObject(%Obj.myInventory)) %Obj.myInventory. delete();
 // 2
 Parent::on Remove(%DB,%Obj);
}

Easy as pie! Of course, we could again write a specialized version of the
on Remove() callback and just be sure to call the Parent:: version at some
point (normally last).

function MazeRunnerPlayer::on Remove(%DB , %Obj) {
 // Other statements here ...

 Parent::on Remove(%DB , %Obj); // Usually called last
}

What About Constraining?

In our game, we don’t want to constrain the inventory, but if we wanted, for
some reason, to prevent the player from picking up coins, we could simply
modify the on Add() callback to look like the following.

function MazeRunner::on Add(%DB , %Obj) {
 Parent::on Add(%DB , %Obj);

 // No coins for you!
 %obj.myInventory.setInventoryMaxCount(Coin , 0);
}

 Gameplay Classes Chapter 7

259

In Review

I know you’re disappointed that there was no work to do in this lesson. So,
let’s just summarize the steps instead. This way you will know what they are
when you are on your own.

1. Load inventory system scripts.

2. Ensure that the on Add() callback adds an inventory to the object when it
is created.

3. In your own on Add(), be sure to constrain the inventory system as is
required by your game. Use the contraint methods included with the inven-
tory system.

4. Make sure that the onRemove() callback deletes the inventory.

7.8 Gameplay Classes Summary
We started this chapter by discussing the idea of gameplay. I proposed that
interaction is a major element of gameplay, setting the stage for our discus-
sion of the gameplay classes (classes implementing player interaction with
the world). We closed the introductory material by summarizing the primary
gameplay classes: Camera, Player, and Vehicle.
 Our fi rst gameplay discussion was centered on the Camera and Camera-
Data classes but cast a wide net about other concepts which we generally
labeled game view (a combination of POV, FOV, control object, free camera,
and zooming). We talked about game view for a bit, observing the fact that
other classes interacted with the camera to defi ne the concept. We then dis-
cussed the individual game view components in detail, describing each of
them. We also discussed the side topic of render scoping and the fact that it
is controlled by the control object. Having warmed up properly, we looked
into class interactions in detail and closed our game view discussion with six
(cookbook) examples of game view control, including:

• two methods to force 1st POV (one with a limited FOV),

• forced 3rd POV,

• a method of enabling 1st or 3rd POV,

• the correct settings to allow a camera to use its own parameters instead of
those from the object it is attached to, and

• the way a camera can be made to switch to using a vehicle's view settings
(not the player's) upon player-to-vehicle mounting.

 Our next discussion included the Player and PlayerData classes. We
learned about all of the features provided by this important set of classes,
including rendering features, forces and factors (speeds, delays, resistance,

Part III Game Elements

260

etc.), pickup radius, looking angle limits (restrictions on view angles for cam-
eras attached to players), the difference between an impact and a collision,
special effects, and the standard player animations. We ended the discussion
by making a simple player for use in our game.
 After Players, we discussed the various Vehicle classes, and to start the
discussion off properly, we talked about general vehicle attributes.

• Geometries. Chassis, tires, and collision meshes.

• Nodes. Camera, tire, and special effect nodes.

• Animations. Back, bot, brakelight, spring, and steering.

 Once the most general discussion of vehicles was completed, we talked
about the base classes for all vehicles: Vehicle and VehicleData. We discussed
the features these classes brought to the table, including physics, steering, jet-
ting, impacts, camera features, and emitters. We ended with a general discus-
sion on mounting players to vehicles.
 Done with the general vehicle discussions, we talked about the Wheeled-
Vehicle and WheeledVehicleData classes. We learned about how to program
the basic engine and braking parameters as well as about controlling the look
of the wheel rotation animation.
 The WheeledVehicle class uses several datablocks, including the Wheeled-
VehicleTire and WheeledVehicleSpring datablocks. We discussed these in
order and learned about the following properties for each.

• WheeledVehicleTire. We learned that we can implement up to eight
tires per wheeled vehicle using this class to represent the tires. Also, we
saw that it is acceptable to mix tires on a vehicle.
• Friction. We learned that the tires provide all vehicle friction as long as

the chassis is not in contact with the ground.
• Motivational forces. We discussed the fact that tires provide both longitu-

dinal (forward-and-backward) and lateral (side-to-side) forces, which act
together to move our wheeled vehicles and to maintain their heading.

• Tire radius. We examined this attribute and saw that it is important that
it should match our tire model for correct visual behavior.

• WheeledVehicleSpring. We learned that this class represents the
“shocks” for our wheeled vehicles.
• Damping forces. We learned about how damping is used to control the

expansion and contraction rates for our springs and therefore the tires.
These forces allow us to create very soft to very hard springs with vary-
ing rates of recovery.

• Anti-sway. We learned how the anti-sway force in the springs helps keep
the vehicle’s chassis level relative to the surface below the vehicle.

 Gameplay Classes Chapter 7

261

• Length of travel. Here we learned how to reduce the distance a tire hub
may travel.

We closed our wheeled vehicle discussion by talking about powered wheels
and their effect on driving performance, followed by a set of examples show-
ing how to choose alternate mounting positions.
 Next up, we talked about hover vehicles. We learned how to control our
horizontal motion and how to implement a certain amount of drag in order to
slow a travelling hover vehicle. We then discussed some factors that affect the
vehicle when it comes into contact with the ground, water, or an interior ver-
sus when it is fl oating free of obstructions. We discussed hovering and jetting,
as well as how to stabilize the vehicle and ensure that it remains upright. We
talked about steering and ended with a discussion of how to keep our parked
hover vehicles from fl oating away down a hill (the same method applied to
stopping an unmanned vehicle).
 The fi nal section in this chapter took a sharp turn and talked about a
concept instead of a particular class. That concept is the inventory (or inven-
tory system). We talked about what an inventory system is and why it is
needed. Then we compared the features provided by the inventory system
that comes with this guide (SimpleInventory) against the one implemented in
the TGE FPS Demo. Once we were done with explanations and motivations,
we jumped into a review of the implementation and usage of SimpleInventory.
This discussion included detailed fl ows of pickups, throws/drops, and uses,
discussing the scripts and classes involved as well as laying out motivations
for the way the inventory behaves. To complete our discussion of inventories,
we talked about various means of modifying the standard fl ow and ways to
improve upon the system.
 This chapter contained no shortage of diffi cult to understand and even
harder to remember details about interaction. Unfortunately, to successfully
create your game, you need to undestand what we have discussed, so I sug-
gest rereading this chapter and reviewing the samples that come with the
GPGT Lesson Kit. When you are well educated in these topics, you will be a
long ways toward succesfully creating a game.

263

Mission Objects
Chapter 8

8.1 Mission Objects
This mega-chapter covers most of the objects that can be placed using the Mis-
sion Editor Creator. I call this a mega-chapter because it encapsulates a large
series of object descriptions as well as tips on using and/or scripting them.
 If you are reading this chapter fi rst, some of what you read here may not
make a great deal of sense due to some holes in your TGE education. Those
holes are fi lled in the prior chapters. So, if you do fi nd this material confusing,
please go back and read (or at least scan) the chapters that precede this one.
Be warned: some of the objects described in this chapter are not simple. You
will need to experiment with them to fully understand their capabilities, but
this chapter should get you started down the right path. The primary goal here
is to familiarize you with these objects and some of their attributes as well as
to help you with any peculiarities. I won’t necessarily cover every attribute of
these objects in this chapter. Instead, an appendix is supplied, giving details
on each object.
 Finally, it is assumed that you are familiar with the built-in tool set. If not,
go back and read Chapter 3, “Torque Tools.” When you are ready, come
back and check this chapter out.

Throughout this guide and therefore in this chapter, we have exclusively
used the term “world unit” instead of meter. However, in the GarageGames
forums and on the Torque IRC channel, you may see people refer to things in
terms of meters. Because some standard measurements such as acceleration due
to gravity are set at metric standard values (9.81 world units per second squared)
it is easy to fall into the belief that the system is actually metric and that distances
are measured in meters. In fact, the engine is unitless with respect to most
measurements excluding time. However, as the engine has been given metric-
like values for all important constants, this discussion of meters versus world
units becomes a question of semantics. Because I wanted to insure that this
guide would always be accurate with reference to measurements, I have chosen
to use world units instead of meters, but you should not be confused when you
see other sources of information on Torque reference meters.

8.2 Terrain
In Torque, terrain is represented by an infi nitely repeating heightmap. The
heightmap itself is usually represented by a 256×256 full-color (24-bit) PNG

Part III Game Elements

264

image. The engine uses this single image as a home tile, which is edge-blended
and infi nitely repeated in the world plane (Figure 8.1). The default real-world
measure of the home tile is 2048 world units on edge.

8.2.1 Terrain Features
Terrain has the following features.

• Detail texture. A texture used to give more detail to locally visible terrain.

• Bump mapping. The terrain supports emboss-style bump mapping, using
a single source texture.

• In-game editing. With the Terrain Editor and the Terrain Painter, you can
hand modify the shape and texturing of your terrain without leaving the
game. This is described in Chapter 3.

• Algorithmic generation. The Terraformer provides a tool-set of algorithms
for generating terrains. This is described in Chapter 3.

• Algorithmic painting. The Terrain Texture Editor provides a tool-set of algo-
rithms for applying textures to the terrain. This is described in Chapter 3.

• Alternate sizing. Although it is advisable, one does not need to stick to a
2048-world unit square home tile.

• No terrain. Finally, if not needed, the terrain can be removed entirely.

8.2.2 The Detail Texture
When you fi rst start working with the terrain, it is easy to be overwhelmed
and to miss an interesting yet important feature, namely the detail texture. If
you open up the Inspector and select the terrain, you will see that there is a
fi eld named detailTexture under the Media SimGroup. This fi eld provides
the path to a texture that will be used to add detail to the local terrain. This
additional texture is rendered once every world unit for n world units. Addi-
tionally, it is blended with the underlying textures with a ratio that falls off to
zero at about 64 world units from the camera. Look at the screen shots in Fig-
ure 8.2 to see the difference between terrain with and without a detail texture.
I think you’ll agree that the one with a detail texture is much nicer.
 Great, right? Well, yes and no. Yes, because the terrain defi nitely looks
better with a detail texture. No, because you can only have one per mission,
which means all terrain in any single mission will have a fundamental same-
ness to it. For the most part, this is not a big deal, and most players won’t
even notice. However, you need to realize that your choice of detail texture
can have a big impact on the visual quality of your terrain, and you should
probably count on having different textures for different levels/missions, as
this is a subtle way of creating distinct ambiences from level to level.

Figure 8.1.

Terrain repeating.

 Mission Objects Chapter 8

265

 Detail textures may be any size between 1×1 pixels and 512×512 pixels as
long as they follow the standard rules for textures used by Torque. See Appen-
dix D.1, “TGE Must-Know Facts,” for information on TGE’s texture rules.

8.2.3 Bump Mapping
This feature is controlled by four terrain parameters and a preference variable.
It is simplest to edit the terrain parameters using the Inspector (Figure 8.3).

• bumpTexture. Specifi es a texture
to use as the emboss map. Must
follow Torque scaling standards
for bitmaps, should be a mixture
of blacks and whites, and it should
tile. You must save the mission
and reload for this to take effect.
The engine uses this texture to cre-
ate the two textures required for
embossing. One is the original; the
second is the inverted original.

• bumpScale. Determines how
stretched the bump-map texture
is. In other words, small numbers cause the emboss map to cover a very
small area, giving a more fi nely detailed bump mapping.

• bumpOffset. Is the diagonal offset between the two textures that make up
the emboss bump-map effect.

• zeroBumpScale. Controls the bump-mapping radius. If you consider that
bump mapping is only enabled within this radius (centered about camera),
then it will be easy to understand that smaller values will cause the bump

Terrain with Detail Texture Terrain without Detail Texture

Figure 8.2.

Detail texture.

Figure 8.3.

Editing terrain parameters.

Part III Game Elements

266

Base Texture
(scaleTerrain.png)

Bump0
(bump0.png)

Bump1
(bump1.png)

bumpTexture – Bump0
bumpScale – 3

bumpOffset – 0.015
zeroBumpScale – 2

bumpTexture – Bump0
bumpScale – 8

bumpOffset – 0.015
zeroBumpScale – 2

bumpTexture – Bump1
bumpScale – 3

bumpOffset – 0.015
zeroBumpScale – 2

bumpTexture – Bump0
bumpScale – 3

bumpOffset – 0.04
zeroBumpScale – 2

bumpTexture – Bump0
bumpScale – 3

bumpOffset – (–0.04)
zeroBumpScale – 2

bumpTexture – Bump1
bumpScale – 3

bumpOffset – 0.04
zeroBumpScale – 2

bumpTexture – Bump0
bumpScale – 16

bumpOffset – 0.05
zeroBumpScale – 6

Camera Distance – 80

bumpTexture – Bump0
bumpScale – 16

bumpOffset – 0.05
zeroBumpScale – 6

Camera Distance – 95

bumpTexture – Bump0
bumpScale – 16

bumpOffset – 0.05
zeroBumpScale – 6

Camera Distance – 100

Figure 8.4.

Changing terrain
parameters.

mapping to cease nearer to the camera, while larger values will make it
stretch further into the visible distance.

As noted, there is one preference variable.

• pref::Terrain::enableEmbossBumps. Allows you to disable this fea-
ture, which could be necessary on a slow machine or an older video card.

Figure 8.4 illustrates the effects of these variables.

 Mission Objects Chapter 8

267

8.2.4 More about Terrain Painting
Although it might seem obvious, I’ll say explicitly that the textures used to
paint the terrain should be seamless. Why? Well, because the textures are
repeated every squaresize world units. This means that, with a default
 squaresize of 8, a painting texture repeats after only 8 world units. Regard-
less, if your textures are not seamless, it will be noticeable.

8.2.5 Alternate Terrain Sizing
Interestingly, when people start playing with Torque, they soon realize that
the terrain tiles. Then, after asking around, they realize that the map is “only”
2 km×2 km. A percentage of these people have in mind making some kind
of game that would require a much larger terrain, say a massively multiplayer
online role-playing game (MMORPG). They immediately focus on the prob-
lem of making the terrain bigger. In fact, if you are reading this, I imagine that
you might be one of those people.
 Now, I’m not going to say that you cannot scale the terrain, nor am I going
to say that you cannot expand the tiling feature to include multiple unique
tiles. You can do these things, but they are not trivial.
 I will provide two suggestions to the alternate terrain sizing problem and
then leave the hard work to you.

Modifying squaresize
The easiest means (although not very robust) of modifying the terrain size is
to change the terrain object’s squaresize parameter. This parameter can be
edited in the Inspector and can be found in the terrain’s Misc SimGroup.
 What does changing the value do? If you will recall, the terrain heightmap
is really nothing more than a two-dimensional array of values. Furthermore,
we normally represent height maps as a bitmap that (in Torque) is 256 pixels
on a side. squaresize is a multiplier that specifi es how many world units
apart the pixels are in the heightmap. Sounds simple, right? In a sense, it is.
Legal values for squaresize are between 2 and 64 and are not strictly limited
to multiples of two, meaning you can have the map sizes shown in Table 8.1.

 squaresize Map (Home Block) Dimensions

2 512 world units squared

4 1024 world units squared

8 (default) 2048 world units squared

9 2304 world units squared

… …

64 16,000 world units squared (this is 256 million square world units!)

Table 8.1.

Map sizes.

Part III Game Elements

268

 This seems good at fi rst, but once we start playing around with it, we start
to see problems. The one most people notice right away is “water holes.” At
nonstandard square sizes, water blocks will sometimes exhibit holes—that is,
a square region where there should be water, but no water is rendered. This
is very annoying. Another problem is collision. Terrain collision is affected
negatively by larger square sizes. This can be so serious that the player may
actually fall through the terrain in some places. Finally, we run into the more
subtle issues of memory usage and texture bandwidth. Varying squaresize
modifi es both memory usage and texture bandwidth associated with terrain
rendering. I have personally noticed that a squaresize of 2 severely reduces
frame rate.
 So, given all these bad things, should you use this method? Sure, but only
if you want to go up or down by a factor of 2. Then, this is a good partial solu-
tion. I say partial because there are ways of solving the problems noted above.
However, I’m going to leave this as an exercise for the reader.

 Atlas

OK, I admit it. Changing the squaresize is not that great an idea. Sure, it
works in limited cases, but what if you want to make that really big MMORPG?
Well, I must suggest that you move up to the Torque Shader Engine (TSE).
TSE is a child of TGE that encompasses several new sets of features. The fi rst,
and most obvious, of these is shaders, hence the name. Less well known is
the use of Atlas.
 Atlas is the terrain-engine manager for TSE. It can handle any size terrain,
and I mean any size. So, if you really, really, really must make a big terrain,
go ahead and try out TSE and Atlas.
 However, although I do encourage you to move up to TSE, I don’t neces-
sarily suggest that you start off making an MMORPG as a fi rst game. Read on
to understand my reasoning.

8.2.6 Big Terrains: Don’t Do It!
I want you to stop and consider this simple question: How are you going to
populate this very large world you wish to make? This might seem like a silly
question, but let me assure you that it is not.
 I once read something to the effect that the people who made Tribes 2
were a bit worried about the map size being a limitation but quickly realized
that it is very diffi cult to actually fi ll four square kiloworld units of space.
In fact, most missions in Tribes 2 are much smaller than the maximum map
size.
 OK, you may still be thinking something like: Yeah, but I can walk all the
way across the map in, like, no time fl at! In fact, traveling at top speed, it will

 Mission Objects Chapter 8

269

take you just shy of 2.5 minutes to walk from one side of the map to the other.
This would make the Torque character pretty darned fast. In fact, the default
maximum (unmodifi ed) speed for the character is 68 kiloworld units per hour.
Normal humans sprint at somewhere near 30 kiloworld units per hour maxi-
mum, but it just feels too slow to make the character walk and run at normal
human speeds.
 This information is important for the following reasons.

1. You are going to have a heck of a time populating 4 square kiloworld units,
which is equivalent to about 400 square city blocks (there is no offi cial
dimension for a city block, but they average between 100 to 200 world
units on end).

2. There are other solutions.

• Just use the tiled terrain. Who is going to notice that it repeats if it takes
2.5 minutes to run across it?

• Slow the character down and tighten up spacing on objects. This is
easier to do than increasing the size of the terrain. Guaranteed!

3. This is really going to hurt and you don’t want to do it. OK, I’m not exactly
telling the truth, but I can say that it is not simple to do this.

8.2.7 No Terrain?
If you wish to have a terrainless mission, it is entirely possible. However, you
may have to edit the mission fi le to do this.
 Trying to delete the terrain from the Inspector is a bit tricky. You have to
unlock the terrain (set dynamic fi eld locked to false), and then you have to
delete it.
 My suggestion is that you simply open your mission fi le in any handy text
editor, fi nd the block named TerrainBlock, and delete the entire thing.
 Oh, you might want to put something in the world for your player to stand
on, or the next time you open the mission, the player will fall forever.

8.3 Water (Blocks)
After terrain, water is another hot forum topic. Fortunately, water has gotten a
lot of attention from community members. However, this additional attention
has had the side effect of making water seem complicated to use. In reality,
most options are just that—optional. You can place and set up water in just
seconds, or if you want to go for a specifi c effect, you can spend hours tweak-
ing the parameters.
 For the sake of brevity, I will give the quick setup instructions fi rst, then
I’ll cover the advanced options.

Part III Game Elements

270

8.3.1 Basic Water (Quick Setup)
OK, get your stopwatch out. Start it. Now follow these instructions:

1. Start the GPGT Lesson Kit.

2. Open the World Editor training mission.

3. Start the Mission Editor.

4. Switch to the Creator tool.

5. Switch to free-camera mode and move the camera up a few world units.

6. Look somewhere near your character.

7. Insert a new water block (Mission Object � Environment � Water).

8. Just Click OK for the dialog that comes up.

9. Switch to the Inspector tool.

10. Click on the water block.

11. Click the Expand All button.

12. Change Media � SurfaceTexture to “gpgt/data/GPGTBase/water/
howwater0”.

13. Make sure Debugging � UseDepthMask is not checked.

14. Set Surface � surfaceOpacity to 1.0.

15. Set Surface � envMapIntensity to 0.0.

16. Click Apply.

Done! Depending on the speed of your machine, that should have taken about
60 seconds or less.

8.3.2 Water Features
Water has the following features.

• Discrete scaling. Because of the algorithmic nature of the water in Torque,
water blocks are scaled in fi xed increments. By default, this is 32 world
units.

• Discrete positioning. Again, as a byproduct of its algorithmic nature (and
due to a sometimes overlooked terrain relationship), water is positioned in
fi xed increments. By default, this is 8 world units, i.e., squaresize.

• Various texture-based effects.
• Basic surface texture. Plain-Jane base texture for water.
• Shore texture. An additional texture for shorelines.
• Over and under environmental maps. Static environmental refl ections

on the surface of water from above and below.
• Specular refl ections. Simulates perturbed specular refl ection from water

surface.

 Mission Objects Chapter 8

271

• Underwater fog. Torque provides a static fog for when the camera is
underwater.

• Underwater texturing. Under certain circumstances, up to two addi-
tional caustic textures will be rendered over the view.

• Waves. Torque supports sinusoidal waves.

• Viscosity and density. These two real-world characteristics affect the char-
acters and objects that encounter the water.

• Predefi ned water types. Torque provides several predefi ned types of water
that give you various ready-made effects.

• Flow. Torque can visually simulate fl owing water.

• Distortion. If the above visual effects are not enough, you can use distor-
tion parameters to make the water yet more realistic or unrealistic if you so
choose

• Multiple blocks. Last, you may have multiple independent blocks of
water.

8.3.3 Advanced Water
All right, unless you are just goofi ng around and learning the engine, it is
likely that you will want to make your water look a little more interesting. No
problem there. Water blocks can do some very cool things.

Position and Scale

Before we jump into the cool stuff, let’s briefl y discuss basic positioning and
scaling. Unlike most objects, you cannot position or scale water blocks arbi-
trarily. Instead, the x and y components of both position and scale are adjusted
in discrete steps. Position <x, y> is adjusted in steps of 8, and Scale <x, y>
is adjusted in steps of 32. For both position and scale, the z parameter can be
adjusted continuously.
 On a side note, if you have been reading this guide straight through, you
may recall that the default terrain squaresize is also 8. It is no coincidence
that both position and scale are adjusted in multiples of squaresize. If you
are going to play with nonstandard terrain sizes, or if you are going to make
modifi cations to the way water blocks work, you’ll have to remember that ter-
rain and water are closely related. Kissing cousins, you might say.
 It is very important to note that the z parameter should not be zero. Most
people make the mistake of not adjusting this parameter. Most of the time, this
will seem OK, but if the camera will ever be under the surface of the water,
then you must have a positive value for z. More accurately, you must adjust the
z parameter of a water block, such that the lower boundary of the water block
is below the lowest point in the terrain, for all points in the terrain covered by

Part III Game Elements

272

the block. Why? If you do not do this, you may encounter a strange bug where
the water fog disappears at certain viewing angles. This can destroy any sus-
pension of disbelief you have managed to accrue, and it is very distracting.

The Various Textures (Media)

The water block has progressed greatly since the day Torque was fi rst released.
With this progression has come a profusion of new parameters, including a
multitude of texture parameters. Fortunately, these parameters are simple to
understand.

• surfaceTexture. This texture is used to defi ne the base water layer(s).
This texture is rendered in two layers, with one layer reoriented at a 45-
degree angle (about z, of course). This makes the water more interesting.

• shoreTexture. We’ll talk more about shorelines in a moment, but Torque
has the ability to render shorelines differently. When it renders the shoreline,
it blends this texture with surfaceTexture, giving a nice visual effect.

• envMapOverTexture. If environmental mapping (see “Refl ections and
Specular Masks” below) is enabled, this texture is rendered when looking
down onto the water from above. This represents an environmental refl ec-
tion on the water’s surface.

• envMapUnderTexture. As with envMapOverTexture, this represents an
environmental refl ection, but this is the texture you will see if looking up
from beneath the water.

• submergeTexture0 and submergeTexture1. These two textures are
only used when liquidType is one of the lava types (Lava, HotLava,
or CrustyLava). These two textures are rendered perpendicular to the
viewing plane. Additionally, they are animated. A suggestion I was given,
which I’ll pass along, is to use two high-quality (say 512×512 instead of
the normal 256×256) grayscale caustics for these. Note: By making some
simple changes to the source code, you can colorize the resultant output to
the screen.

• specularMaskTex. This texture is used to make the surface of the water
look as if it is refl ecting light. Again, this should be some kind of caustic
grayscale. The engine does take into account the position and elevation of
the sun when rendering the specular effect.

Makin’ Waves

The water would not be very interesting if it were just a fl at plane. Fortunately,
Torque supports a wave feature. The bad part is that it is a simple sinusoidal
function. Nonetheless, it does a good job and looks good for most purposes. If
you wish to have waves, set the WaveMagnitude parameter to a nonzero value.
Bigger values equal bigger waves. Note that it is best not to attempt to place two
water blocks side by side if you are using waves. Because the algorithms for

 Mission Objects Chapter 8

273

each block are calculated separately, you will get visible seams and discontinui-
ties. Also note that there is one disappointing thing about waves. If your player
is fl oating in water (see “Sinking and Floating” below), the waves will not lift
the player; that is, the water motion does not affect the player’s vertical posi-
tion, nor will splash effects occur from water hitting a motionless player.

Sinking and Floating

You may be wondering about how to make a character fl oat, or perhaps you
would like to make the water more viscous, say like quicksand. Well, Torque
supports two water parameters for these effects:

• density. The default water density is 1. Meanwhile, the default character
density is 10. This means that the character will sink upon entering the
water. Therefore, if you want the character to be more buoyant, you can
adjust either or both parameters. Just remember the following rules:

water density < player density � Player sinks.

water density == player density � Player neither sinks nor fl oats.

water density > player density � Player fl oats.

• viscosity. In addition to choosing whether a character will fl oat or sink
in water, we can indirectly adjust how quickly this occurs by changing the
viscosity of the water. A thicker fl uid like, say, honey has a high viscosity,
whereas plain water will have a low viscosity. By increasing this value, you
create an effect where the player will require more time to fl oat or sink.

Liquid Types

The liquidType parameter was mentioned briefl y above. Out of the box,
Torque supports several water types. They are legacy types from the Tribes 2
days. Unfortunately, they are not all distinct any longer. Now you have three
basic categories.

• Basic water types. All these behave similarly: Water, OceanWater,
RiverWater, and StagnantWater.

• Lava types. These cause damage when the player enters the water block,
but not while the player is submerged. It is up to you to write scripts that
apply damage while the player is submerged. The reason for this is fl exibil-
ity. Instead of forcing a fi xed iterative damage on users, the creators of TGE
decided to leave subsequent iterative damage up to us. When the water type
is one of the three lavas, submergeTexture0 and submergeTexture1
will be rendered if you have specifi ed them.

• Lava. Damage parameter is $DamageLava.

• HotLava. Damage parameter is $DamageHotLava.

• CrustyLava. Damage parameter is $DamageCrustyLava.

By default, all three
lava types apply the
same damage, but
you can change this
by specifying your
own values in the
$DamageLava,
$DamageHotLava,
and $Damage-
CrustyLava
parameters. Please
note that your own
scripts will have to

use these settings to
apply damage.

This also affects the
player’s ability to walk
through water. If the
viscosity of the
water is high and
the player is hip-high
(model’s centroid is
submerged) or further
submerged, the player
will begin to slow

appreciably while
walking.

Part III Game Elements

274

• Quicksand. This behaves just like water, except that the underwater fog
does not render. Any other behaviors are up to us and our scripts.

For most purposes, a liquidType of either Water or Lava will suffi ce.

Underwater Fog

So, what is underwater fog? It is the effect of water coloration and dimming
that can be attributed to the physical effect of light passing through water.
 Until version 1.4, TGE employed a fi xed color for water fog, which could
not be adjusted via script. If you are still working with version 1.3 or prior,
I suggest exposing the parameter that affects fog color to the console. As of
this time, that code exists at about line 900 in “game.cc”. Just look for the
following code.

glColor4f(.2, .6, .6, .3);

 Fortunately, if you are using version 1.4 of the engine, a color vector is
now exposed under the name underwaterFog and can be modifi ed from the
Inspector and from scripts.

Water Flow

So far, we’ve talked about how to make waves, but what about horizontal
effects, like water fl ow? Torque supports this too. You can cause specifi c tex-
tures to translate over time, giving the illusion of water fl ow. The following
parameters are involved.

• FlowRate. If this value is nonzero, water fl ow will be enabled. The higher
the value, the more quickly textures will translate. The following textures
fl ow.
• nonoriented surfaceTexture.
• shoreTexture.

• FlowAngle. This parameter (in degrees) determines the direction of the
translation. The following values demonstrate the direction of fl ow based
on angle.
• 0˚. Textures will translate in the negative direction along the world x-

axis.
• 90˚. Textures will translate in the negative direction along the world y-

axis.

• SurfaceParallax. When FlowRate is non-zero, the fl ow rate of the
oriented surfaceTexture is controlled by this value as shown in Table
8.2.

 Mission Objects Chapter 8

275

SurfaceParallax surfaceTexture vs. oriented surfaceTexture

Magnitude greater than 1 Nonoriented surfaceTexture flows more slowly than
oriented surfaceTexture.

Magnitude equals 1 Nonoriented surfaceTexture and oriented
surfaceTexture flow at same rate.

Magnitude less than 1 Oriented surfaceTexture flows more slowly than
nonoriented surfaceTexture.

Magnitude equals 0 Oriented surfaceTexture remains stationary.

Negative values Oriented surfaceTexture counterflows.

Water Distortion

In addition to supporting waves and water fl ow, Torque supports a distortion
feature. It is diffi cult to classify this effect, because by varying the distortion
parameters, you can get wildly different effects. However, the basis for these
effects is simply the stretching and squeezing of the surfaceTexture’s and
shoreTexture’s uv coordinates across a defi ned grid. The following param-
eters are involved.

• DistortGridScale. You don’t normally need to vary this from its default
value unless you have scaled your water. This allows you to adjust distor-
tion such that the effect is the same between a large water block and a
small water block.

• DistortMag. If this value is nonzero, distortion is enabled. Generally, the
magnitude of this value should be less than 1 or the distortion behaves
strangely. Both positive and negative values are legal.

• DistortTime. As you might guess, this is the period of the distort func-
tion. It is inversely proportional to the distortion’s rate of change. In other
words, larger values mean slower distortions and smaller values mean
faster distortions. A value of zero is illegal and will cause the texture ren-
dering to fail gracefully.

Realistic Shoreline Rendering

We’ve mentioned the shoreTexture several times now but avoided discuss-
ing how and when it is used. TGE multitextures the shoreTexture with
the surfaceTexture based on the depth at that location and the following
parameters.

• ShoreDepth. Shore rendering is determined by a ray cast at distinct points
across the surface of the water block. The result of this ray cast returns the
distance between the top of the water and the terrain directly below that
point on the surface. If this value is greater than or equal to ShoreDepth,

Table 8.2.

Flow rate of
surfaceTexture.

Part III Game Elements

276

the engine is instructed to render the shoreTexture. If you choose to set
this value to zero, the shoreTexture will not render at all.

• MinAlpha/MaxAlpha. As might be intuited, these two parameters
determine the minimum and maximum alpha to use while rendering
shoreTexture. This directly affects the multitexturing equation involving
the surfaceTexture and shoreTexture.

• DepthGradient. Controls the slope between MinAlpha and MaxAlpha. In
older versions of the engine, this was implemented as a sigmoid function,
but since version 1.2, it has been implemented using the (more involved)
gamma-correction function. This gives us the depth versus alpha curves
shown in Figure 8.5.

 Reflections and Specular Masks

TGE doesn’t support real-time refl ections (out of the box), but it does sup-
port the next best thing, which is a static environment map. In fact, as noted
above, it supports two maps, one for above the water and the other for below.
In addition to being able to specify these two environment maps (using
envMapOverTexture and envMapUnderTexture, respectively), you deter-
mine how they blend by adjusting the envMapIntensity parameter. Legal
values are between 0 and 1.

Sigmoid (prior to version 1.2) 0 < DepthGradient < 1
Fast Fade Out, Slow Fade In

DepthGradient == 1 DepthGradient > 1
Slow Fade Out, Fast Fade In

Figure 8.5.

Depth versus alpha curves.

 Mission Objects Chapter 8

277

 In addition to environmental mapping, TGE supports specular masks to
simulate highlights. The specular mask is used to make the surface of the
water shiny, that is, to provide interesting looking highlights. When you use
a specular mask, the engine will render highlights, based on the texture you
provide (specularMaskTex), the position of the sun, the elevation and incli-
nation of the camera, and two additional specular parameters.

• specularPower. This determines how large an area is shiny. Lower val-
ues cause more of the specular map to be rendered; larger values will tend
to show just a spot of highlighting.

• specularColor. This can be used to change both the color of the resul-
tant highlight and its intensity. This parameter takes a 4-tuple fl oating-
point vector “r g b a.”

The specularMaskTex should be a grayscale caustic for a natural-looking
water highlight.

Texture Scaling

Two parameters have been provided to allow you to modify the scale of
the surfaceTexture and the shoreTexture rendering. These are named
TessSurface and TessShore, respectively. Low values result in the textures
covering large areas of water prior to repeating, whereas large values cause
the textures to repeat over shorter distances. Some caution is in order when
using these parameters. First, extremely small values can cause the textures
to become distorted. Second, extremely large values can cause texture alias-
ing even when the camera is very near the water. Just remember, if you cause
your graphics card to have to downscale the texture when the camera is near
the water, you are wasting your artists’ time.

Tying Up Loose Ends

In addition to the water-block parameters covered thus far, there are a few
additional ones. First, there may be several under the Dynamic SimGroup. You
can remove all of these. None of these parameters is hooked to anything in
Torque 1.2 and beyond. The remaining parameters are the following.

• rotation. Water blocks cannot be rotated.

• UseDepthMask. Caution is in order regarding this parameter. You may
crash the engine if you attempt to change this in the Inspector or from the
console. So, if you want to experiment, change the mission fi le directly.
Simply stated, if your value is false, only the envMapOverTexture will
be rendered on the top of the water. All other surface textures will be
disabled.

• surfaceOpacity. This affects how opaque the combination of surface-
Texture and shoreTexture is. A value of zero is not transparent, just

Part III Game Elements

278

very translucent. A value of one is quite opaque. You’ll have to adjust this
to meet your needs.

• removeWetEdge. Setting this value as true tells the engine to (attempt to)
clip the edges of water that protrude from beneath terrain features. Results
will vary when using this feature.

8.3.4 Maze Runner Lesson #8 (10 Percent Step)—
 Lava in the Cauldron
The game will have lava at the bottom of the cauldron. Falling into this lava
kills the avatar and causes it to be respawned in its original spawn position.
For now, we’re only worried about getting the visual part done (the lava).
We’ll handle the interactions later. Please do the following.

1. Start up your Maze Runner prototype, run the “Maze Runner” mission, and
start the Creator tool.

2. Create a water block (Mission
Objects � Environment � Water),
only providing the name “Maze-
RunnerWater” when the creator
dialog appears (Figure 8.6).

3. Using the Inspector, be sure that
the water has the settings shown
in Table 8.3.

OK, so it doesn’t look exactly like lava, but it gets the point across. You can
tweak this to your heart’s content after we get the game running. For now,
let’s move on.

Parameter Value

position < –256 –256 55 >

scale < 512 512 15 >

UseDepthMask true

surfaceTexture prototype/data/GPGTBase/water/lava.png

shoreTexture prototype/data/GPGTBase/water/lava.png

specularMaskTex prototype/data/GPGTBase/water/lavaspecmask.png

specularColor < 1 1 1 0.2 >

specularPower 12

All others Use defaults

Table 8.3.

Water settings for lava.

Figure 8.6.

Creating a water block.

 Mission Objects Chapter 8

279

8.4 Sky
In standard Torque, the sky object renders a sky box. In addition to the six
sides of the box, you may specify up to three textures for cloud layers and
three separate fog layers.

8.4.1 Sky Features
The sky has the following features.

• Confi gurable sky box. As noted above, the sky is represented by a sky box.
It offers such features as disabling the bottom texture and render bans.

• Three cloud layers. With the standard Torque sky, you can have up to
three cloud layers, each individually confi gured.

• General fog and three layers of fog. In addition to the generalized fog sup-
ported by the Sky object, you can defi ne three additional layers of fog.

• Visibility distance. The Sky object is the place you go when you want to
modify (the camera’s) maximum view distance.

• Wind. The Sky object owns and controls the wind vector, which is used by
other mission objects.

• Environmental map. It may seem strange, but when you are seeking the
environmental map that is used on characters and objects with environ-
mental mapping enabled, this is the place you go. It is part of the sky box’s
texture list.

8.4.2 The DML File
The DML fi le is the place you specify your skybox and cloud textures. The fi le
itself can be placed anywhere you wish below the game root directory, since
you can specify the relative path in the fi eld materialList. A sample fi le
would look something like the following.

gpgt_base1
gpgt_base2
gpgt_base3
gpgt_base4
gpgt_base5
gpgt_base6
env_map
layer0
layer1
layer2

 In this example, gpgt_base1 .. gpgt_base4 represent the side textures,
gpgt_base6 is the top of the box, and gpgt_base5 is the bottom of the box.

Part III Game Elements

280

The fi rst fi ve textures are required if useSkyTextures is true and render-
BottomTexture is false. The sixth texture is required if renderBottom-
Texture is true.
 The next texture in the DML fi le is env_map. This texture is used for any
environment mapping applied to shapes. This texture is optional if you are not
doing any environment mapping and do not intend to have clouds.
 Finally, the last three textures in the DML fi le specify texture names for
the cloud layers. The ordering of these textures has nothing to do with the
cloud height. Cloud height is controlled by cloudHeightPer[3]. We’ll talk
more about this in Section 8.4.4.
 Please note that I’ve stated above that this or that texture is optional
based on decisions you make. However, until you get rolling, I suggest that
you always specify six textures for the sky box and one additional texture for
the environment map. This way, you won’t run into any diffi culties. Note also
that the fi le is positional. Therefore, for example, if you want clouds, you must
have specifi ed the seven prior textures, even if they are dummy textures that
won’t be used.

8.4.3 The Sky Box and Render Bans

“When it [noRenderBans] is false, the engine will draw fog onto the sky box
[directly]. It does this so 3D objects that are fogged out (say all white) don’t stand
out against an unfogged background (the sky box). If the camera enters an area of
fog (a ‘band’) the skybox will be appropriately fogged too.”
 —Ben Garney, September 15, 2005

In general, by setting noRenderBans to false, we ensure that rendering
looks good with fog. Of course, we may not always want this behavior and
can thus enable render bans by setting the fi eld to true. To get a visual per-
spective on this, take a look at the two images in Figure 8.7. It should be noted
that the effect of this choice is especially evident from a height.

noRenderBans == true noRenderBans == false

Figure 8.7.

Use of render bans.

 Mission Objects Chapter 8

281

8.4.4 Clouds
As mentioned above, the cloud layers are specifi ed by textures eight, nine, and
ten in the DML fi le. All cloud layers are optional.

cloudHeightPer
Texture eight corresponds to cloudHeightPer[1], nine to cloudHeight-
Per[2], and ten to cloudHeightPer[3]. These parameters (cloudHeight-
Per) are used to control the central height of the cloud meshes. The cloud
meshes themselves are a nine-faced hemisphere. The cloudHeightPer
parameter specifi es the height of the upper plane of this hemisphere. Figure
8.8 has some sample images to demonstrate the cloudHeightPer parameter.
A value of 0.0 will cause the cloud mesh not to render, and values above 0.8
poke through the sky box causing visible artifacts.

Multiple Layers

In terms of viewing, Layer 2 is rendered fi rst, and Layer 0 is rendered last,
meaning that Layer 0 will look like it is in front of Layer 2 regardless of
cloudHeightPer.

Cloud Motion

Cloud motion is described by two parameters. All clouds move in the same
direction, specifi ed by the (misnamed) parameter windVelocity, which is
an x-y-z vector. The x and y components control the direction of the wind and
therefore the clouds. Putting a nonzero value in z breaks the cloud renderer,
so don’t do it. You can control the velocity of the fl ow with the cloudSpeed
parameter. Yes, velocities can be negative, so clouds can counterfl ow.

One Texture:
cloudHeightPer == 0.8

One Texture:
cloudHeightPer == 0.5

One Texture:
cloudHeightPer == 0.2

Figure 8.8.

Cloud textures.

Part III Game Elements

282

8.4.5 Fog
Clouds are cool, but sometimes you need fog in addition to, or instead of,
clouds. No problem. Fog is supported in Torque by a general fog, and by up
to three fog layers.

 General Fog

The fi rst type of fog affects visibility regardless of your location. The fi eld
fogDistance is used to determine this. Low values indicate low visibil-
ity, and high values indicate high visibility. Values greater than or equal to
visibleDistance are equivalent to 100 percent visibility (unless you have
noRenderBans unchecked).

Fog Layers

As noted above, there are three layers. Layer 1 is always the lowest, and Layer
3 is always the highest. Each layer has a fi eld fogVolumeN associated with
it. This fi eld takes three parameters: visible distance, bottom elevation, and
top elevation.
 The visible distance determines the distance from the camera at which
visibility is (near) zero. Bottom and top elevations determine where the layer
(or band) of fog begins and ends, respectively. To enable a band, visible dis-
tance must be greater than zero and top elevation must be greater than bot-
tom elevation. Also, do not forget that, if you are going to enable more than
one layer of fog, they must not overlap each other, or rendering will be messed
up. They may touch but not penetrate. Here are some sample settings.

fogVolume1 = “250 0 50”;
fogVolume2 = “350 50 150”;
fogVolume3 = “25 200 500”;

• The fi rst layer starts at 0 world units and stops at 50 world units, with a
visible distance of 250 world units.

• The second layer starts at 50 world units (touching layer one) and stops at
150 world units, with a visible distance of 350 world units.

• The third layer starts at 200 world units and stops at 500 world units, with
a visible distance of only 25 world units.

8.4.6 Visibility
We’ve seen that fog can affect our visibility, but how do we determine our
maximum view distance? This question is critical and can affect perfor-
mance as well as aesthetics; visibleDistance is the parameter we are
looking for. It measures in world units and can be set to just about any

 Mission Objects Chapter 8

283

value. A word of caution, though: extremely large distances can kill perfor-
mance big time.

8.4.7 Rendering Issues
If you are having rendering problems, you may wish to check the following.

1. Get the latest drivers for your video card.

2. Set quality settings to their highest values for D3D or OpenGL, depending
on which application programming interface (API) you are using.

3. Be sure that bit depth is 32 (both in your driver settings, and under Options
� Graphics � Bit Depth from the main menu).

If you still encounter issues, talk to someone on the Torque Internet Relay
Chat (IRC) channel (IRC server: irc.maxgaming.net; IRC port: 6667; channel:
#GarageGames), or post a descriptive thread (after searching the forums, of
course).

8.4.8 Sky Scripting

Storm Fog

Storm fog is a scripting feature used to fade a layer of fog in and out over
a period of time. In order to enable this features, the sky must have been
created with the fogStorm[1,3] checkboxes checked. You must have cor-
rectly defi ned the visible distance and low and high values for the fog layer.
For example, if we wished to fade in and out just one layer, we could defi ne
something like in Figure 8.9.
 Notice that fogStorm1 is selected.
Subsequently, we could fade layer 1 of
our fog to 50 percent over a 5 second
period, using the following code.

Sky. stormFog(0.5 , 5);

Or, we could turn it entirely off
instantly using the stormFogShow()
method.

Sky. stormFogShow(0);

Note that fog layers fade in layer by layer, starting with Layer 1 and ending
with Layer 3. They fade out in the opposite order.
 Please note that, if you enable fogStorm and the storm is inactive (or
deleted), your fog will disappear.

Figure 8.9.

Storm-fog definitions.

Part III Game Elements

284

 Storm Clouds

Storm clouds is a scripting feature similar to storm fog, except for the three
cloud layers. Because clouds are defi ned differently from fog, we can’t disable
the feature for certain layers, so all layers that are defi ned will be affected
when using the stormClouds method. That said, if we wanted to fade our
clouds out over a 10 second period, we would write the following code.

Sky. stormClouds(0 , 10);

8.4.9 Maze Runner Lesson #9 (10 Percent Step)—
 Starry Night
If you are building the Maze Runner game while you read this guide, the origi-
nal sky is a bit too bright for our game, so we will need to do the following to
create a starry night instead.

1. Start up your Maze Runner prototype, run the “Maze Runner” mission, and
start the Inspector tool.

2. Find the Sky object and change the DML fi le to one you will fi nd in /Maze-
Runner/prototype/data/GPGTBase/skies/starrynight/starry_sky. dml. This
fi le contains the following list of texture names.

stars0
stars1
stars2
stars3
stars4
stars5
stars6
cloud1

The textures used in this fi le are just a set of fi ve generated starfi elds, a place-
holder for the seventh texture, and a randomly (noise) generated translucent
cloud texture (Figure 8.10).

sky0 .. sky5 (similar) sky6 (placeholder) cloud1

Figure 8.10.

Sky textures.

 Mission Objects Chapter 8

285

3. Using the Inspector, be sure that the sky has the settings shown in Table
8.4.

8.5 Sun (Mission Lighting)
The Sun object has a simple job, namely to determine how the mission will
be lit. Initially, you may or may not fi nd this particular mission object simple
to use, but with a little help, this should be no big deal. Please note that this
object does not have a visible representation; that is, you can’t actually see
the Sun mission object. If you need a visual representation of your sun(s), use
the fxSunlight mission object.

8.5.1 Sun Features
A sun has the following features.

• Confi gurable light source. Using the Sky mission object, you may confi g-
ure the position of the light source and coloration (both direct and ambi-
ent) of the light it emits.

• Object shading. Objects are darker on the side opposite the sun’s position.

• Shadows. Shadows are supported, but there are issues. See Section 8.5.2,
“Shadows and Sun Direction.”

• No sun and multiple suns. You can have 0, 1, 2 … well, you get the idea.

Parameter Value

materialList prototype/data/GPGTBase/skies/starrynight/starry_sky. dml

cloudHeightPer[0] 0.5

cloudHeightPer[1] 0

cloudHeightPer[2] 0

cloudSpeed1 0.0005

cloudSpeed2 0

cloudSpeed3 0

visibleDistance 1000

fogDistance 2000

fogVolume1 < 550 0 300 >

fogVolume2 < 0 0 0 >

fogVolume3 < 0 0 0 >

All others Use defaults

Table 8.4.

Sky settings for starry
night.

Part III Game Elements

286

8.5.2 Shadows and Sun Direction
Torque supports shadows and pseudo–self-shadowing. When I say pseudo–
self-shadowing, I mean that objects are darker on the side facing away from
the sun. This is done correctly for the terrain, shapes, and interiors. Unfor-
tunately, shadows cast by objects onto other objects are a little buggy. Both
terrain and interiors properly cast shadows onto other objects, but shapes do
not. What do I mean by properly? Well, shadows should be calculated based
on the azimuth and elevation parameters. If I say a shadow is cast correctly, I
mean it adjusts based on these parameters. Table 8.5 should clarify things.

Mission Object Shadows? Self-Shadows?

Terrain • Does adjust based on sun parameters.
• Does affect other mission objects.
• Self-shadowing is baked.

Yes

Interiors (.dif) • Do adjust based on sun parameters.
• Do affect other mission objects.
• Are baked into terrain.

Yes

Shapes (.dts) • Adjust orientation and length based on
sun parameters.

• Do affect other mission objects.
• Are dynamic.

Yes

Baked shadows are calculated once during the lighting phase of a mission
load and are static until/unless the mission is relit.

Better Lighting

Although lighting in the base version of TGE is good, it cannot compare to
the extended ranges and other features provided by the Torque Lighting Kit.
Neither can it compare to the almost unlimited set of effects you can get by
using the Torque Shader Engine. So, if you’re looking for more intense or

dazzling lighting effects, remember that you have options that keep you in
the Torque family and thus retain all of the other great features Torque
provides.

Azimuth and Elevation

Once you grasp the concept of azimuth and elevation, they are quite easy
to work with, but describing them directly is a bit of a chore. I’m sure there
is a succinct mathematical way of describing these terms, but not being a
mathematician, and wanting to be clear to those similarly handicapped, I will
instead describe them simplistically.

Table 8.5.

Shadowing and self-
shadowing.

Please note that, while
you are reading this
chapter, it is likely that
you are using the
demo version of TGE.
In order to show the
engine’s best face, the
demo includes some
features from the
Torque Lighting Kit
(TLK). While this is nice,
it may cause some con-
fusion if a feature that
I describe here does
not match the demo.
So, instead of trying to
document both TGE
and TLK here, I will be
describing the stan-
dard version of the
Torque Software
Development Kit
(SDK). This way,
you will know exactly
what you are getting
when you buy the SDK
while also knowing
(from the demo) what
TLK can do for you.

 Mission Objects Chapter 8

287

 Imagine, if you will, that we have a magic arrow (yes, a vector). The
base of this arrow is stuck to the world axis. Magically, the head of the arrow
always points at the sun. Given this, our magic arrow will behave as shown in
Table 8.6.

Azimuth (degrees) Elevation (degrees) The Arrow

0 0 Points down the y-axis and lies in the
x-y plane.

45 0 Makes a 45-degree angle between x
and y and lies in the x-y plane.

90 45 Points down the x-axis, making a 45-
degree angle between x and z.

In all cases above, x, y, and z are the world axes.
 Both azimuth and elevation can theoretically take any value between 0
and 360, but in practice, there are certain values that do not work well.

Azimuth

• Legal range: [0, 360).

• At 90 and 180 degrees, shadows stop rendering.

Elevation

• Legal range: [0, 360).

• Suggested range: [0, 90).

• Engine will crash if this is set to 90 degrees.

• Values greater than 180 are below the terrain and may produce odd effects.

8.5.3 Color and Ambient Parameters
OK, enough about where the sun is, but what about the color and ambient
parameters? First, both of these parameters affect the scene lighting in dif-
ferent ways. Briefl y, color is the part of the light that is cast directly onto
shapes, interiors, and the terrain. It accounts for the shadows that interiors
and terrain features cast. The ambient parameter is the portion of the light
that is scattered by the environment and appears to come from all directions.
Both parameters account for the total lighting of the terrain, the character,
and interiors. Changes to the ambient portion of lighting are most easily
noticed, but you should experiment with both factors (ambient and color)
to achieve the results you need.
 Both parameters take four arguments, <r g b i>, where i is the intensity.
Currently, intensity has no effect for either parameter.

Table 8.6.

Azimuth and elevation
following the sun.

Part III Game Elements

288

8.5.4 Multiple Suns?
You may have more than one sun, but be aware that the following is true.

• Mission lighting will take signifi cantly longer.

• Lighting is cumulative and clamped, meaning you can saturate your
lighting.

• Shadows do not behave as you would expect with two or more light sources;
instead, you’ll likely end up mauling your shadows.

The number one reason for adding multiple light sources is to get cool shad-
owing effects. Since this doesn’t really work as expected, you are probably
better off just sticking with one sun.

8.5.5 No Sun?
This has been an on-again, off-again feature. Currently, you must specify a sun
or your game will crash (TLK handles this case without crashing). However, if
you want a totally dark mission, you can achieve this with a sun present. Just
set the two color parameters (color and ambient) to “0 0 0 0”. In the end,
this is safer than removing the sun, even if it does work for you now.

8.5.6 Maze Runner Lesson #10 (10 Percent Step)—
 Low Lighting
If you are building the Maze Runner game while you read this guide, the origi-
nal sun (lighting) is a bit too bright for our game, so we will need to do the
following to match our night sky.

1. Using the Inspector, lower the lighting values for the Sun object to the val-
ues in Table 8.7.

2. Now, relight the scene (ALT+L) to see the values take effect.

Fields Values

elevation 90

azimuth 90

color < 0.5 0.3 0.3 1 >

ambient < 0.2 0.2 0.2 1 >

8.6 Precipitation and Lightning
A couple of nice effects to be able to add at will are precipitation (i.e., rain,
snow, hail, etc.) and lightning. These are actually separate mission objects

Table 8.7.

Lighting values for low
lighting.

 Mission Objects Chapter 8

289

(one for precipitation, and two possibilities for lightning), but I’ll address
them together because they are relatively small and have at least a tangential
relationship.

8.6.1 Precipitation Features
Precipitation has the following features.

• Variable density. You can choose between a light shower and a downpour.
Additionally, the density of rainfall varies randomly over time to give it a
more organic feel.

• Variable velocity. Since real raindrops do not all fall at the same rate,
Torque supports the ability to randomly vary the velocity of individual
drops.

• Drop coloration. For an additional degree of realism, you can modify the
coloration of individual drops by providing up to three colors.

• Multiple textures. Because having just one texture for the drop would be
boring, Torque supports 16.

8.6.2 Lightning Features
There are two different objects that can be used for lightning. First, there is the
Lightning object, which supplies the following features.

• Generated lightning. Based on LightningData fi elds you set, the engine
generates jagged lightning bolts.

• Targetable strikes. You can, to some degree, target where lightning begins
and where it will strike.

• Fade color. You can choose what fade color is used for the bolts. The fade
color is used to simulate the effect of seeing a lightning strike.

• Fogging. You can enable fogging features to make the lightning extra
impressive, but this feature requires hardware support.

• Thunder. You can supply a sound datablock to provide thunder with the
lightning.

Second, there is a recent addition, WeatherLightning, which supplies the fol-
lowing features.

• Textured lightning. Based on WeatherLightningData fi elds you set, the
engine renders your supplied lightning textures.

• SkyFlash and fuzzing effects. Based on WeatherLightningData fi elds you
set, the engine renders fl ashes in the sky and an afterimage for each bolt.

• Thunder. You can supply a sound datablock to provide thunder with the
lightning.

Part III Game Elements

290

8.6.3 Let There Be Rain
Setting up a precipitation object requires that we consider several facets of the
rain storm’s behavior, including the density of the storm, the speed at which
individual drops fall, drop coloration, and the images that should be used for
our raindrops. As you will see, all of this is quite straightforward.

Precipitation Density

Precipitation density is a measure of how many raindrops we have in a cer-
tain area. We can vary the precipitation density by varying maxRadius,
maxNumDrop, and percentage. Together, maxNumDrops * percentage
determines the current number of drops falling. We can spread these drops
out by selecting various values for maxRadius. A low value of, say, 30 will
cause drops to fall within 30 world units of the camera, and a value of 125 will
cause them to fall as far away as 125 world units.

Precipitation Velocity

In order for our precipitation to look more realistic, we’ll want it to fall at vary-
ing rates. To do this, simply set minVelocity to a nonzero value lower than
 maxVelocity. Now, drops will fall at some random speed between min Velocity
and maxVelocity. Additionally, setting offsetSpeed to a nonzero value
adds a bit of horizontal velocity to the drops. Don’t overdo it on this parameter,
though, as high values can make the precipitation look a bit unnatural.

Varying Drop Colors

The base color of your drops is determined by the texture(s) you use for
your precipitation (see below), but you can modify this with the color[3:1]
parameters. As far as I can tell, 33 percent of the drops are either color1,
color2, or color3. So, setting the <r g b> portion of these to something
other than <1 1 1> will cause the textures to be shaded that color. Note that
the alpha channel (fourth value) does nothing.

Precipitation Media

By default, any individual drop is a billboard.1 For the sake of this discussion,
think of a billboard as a polygon that automatically orients itself to be facing a
specifi c direction. These billboards are textured using 1/16th of a texture sup-
plied in the PrecipitationData fi eld dropTexture. That is, you supply the rela-
tive path to a PNG fi le in PrecipitationData.dropTexture. This texture
should be a 4×4 grid containing a raindrop image in each of the sixteen result-
ing grid blocks (see Figure 8.11). When the engine gets ready to produce a new
drop, it will randomly select one of the 16 subtextures and use it as the precipi-

1 If you want to learn all about
billboards, pick up a good
book like Akenine-Möller
and Haines, Real-Time
Rendering, Second Edition
(A K Peters, Ltd., 2002).

 Mission Objects Chapter 8

291

tation billboard. You may use JPG or PNG fi les for precipitation, but I suggest
using PNG, as JPG does not support the transparency that you will likely need.

8.6.4 It Was a Dark and Stormy Night . . .
What would a storm be without a little lightning and thunder? Well, fortu-
nately you don’t need to fi nd out, because Torque comes with two different
classes that each display different styles of lightning and play thunder sounds,
too. We will discuss both in this section, starting with a discussion of Light-
ning and then segue into a discussion about WeatherLightning.
 Lightning (and WeatherLightning) objects are blocks like water. This
means that you can place multiple blocks of lightning throughout your mis-
sion, or if you choose, you can have just one big block covering the whole
mission. Blocks may overlap. You can freely scale the lightning block using
the Inspector and the mouse.

8.6.5 Lightning Strikes!
First, it is important to understand what a strike is. When the engine gets
ready to draw the lightning, it decides whether it is going to strike the ground,
the highest local object, or if there will be a miss.
 When there is a miss, the lightning is drawn at an angle, sometimes even
parallel to the ground. These misses give the lightning a more realistic look.
So, how does the engine determine if there will be a miss or a strike, and when
there is a strike, how is it determined if an object or the ground will be hit?
 First, the zone where anything can be hit is determined by the location
of the lightning box as well as the strikeRadius. Bolts will strike objects
or the ground within strikeRadius of the lightning object. To determine if
an object will be hit, or if the ground will be struck, the engine grabs a list
of all damageable objects in the strike zone and does a sort, looking for the
highest object. It can randomly choose an object that is not the highest, but
it prefers the highest object (as does real lightning). Finally, the engine rolls
the dice, so to speak, and if the value it gets back is less than or equal to
chance ToHit (remember those good old AD&D days?), that object is hit. If
the value is higher than chanceToHit, then the bolt hits a random location
on the ground.
 We can control the number of lightning strikes (this includes misses) per
minute with the parameter strikesPerMin. This is not the inverse of the
strike period but instead a rough number of strikes per minute. Increasing
this value increases the number of strikes in any period, but strikes can hap-
pen very rapidly or with short pauses between them. This just gives it a more
random feel. You can’t predict a lightning strike.

Figure 8.11.

Precipitation texture (a
4 × 4 grid of subtextures).

Part III Game Elements

292

 So, what about strikeWidth? Well, this determines the width of the bolt
on a strike. Bolts all have a default width for misses, but for strikes, you can
control the width. Do you want a fat strike or a narrow one?

Lightning Color

The textures you choose for your lightning are used as a mask, but the color-
ation comes from the color and fadeColor parameters. The bolts are drawn
fi rst, using color, and then over a short period, they are faded out. While
this fade occurs, the bolts are colored fadeColor. This gives a nice heated
plasma effect and mimics the behavior of the eye when it sees a lightning bolt.
When you see an actual lightning strike or any focused bright light, most of
the receptors in the eyeball fi re for the area where the bolt is focused by your
eye’s lens. This temporarily uses up all the available chemicals that make
sight possible. In other words, those receptors are temporarily turned off by
the overload. The effect is a phantom bolt that fades over a short time.

Leaning Lightning?

In addition to controlling the strike zone, we can control where the lightning
bolts start. If we set boltRadius to zero, then all bolts will radiate from the
topmost center position of the lightning box. We can also set the value to
something big, like 500. Now, all the bolts will seem to be coming from far
away and angling towards the strike zone (assuming a small strike zone).

Ooh . . . Pretty Lightning!

Finally, if you set useFog to true and if the user’s graphics card supports
both multitexturing and fog-coordinate extensions (a pretty good bet for cards
two or fewer years old), the engine will do a nice bit of texturing with local
fog (i.e., fog around the camera).

Two Ways to Create Lightning

The engine supplies two means of making lightning. The fi rst type is gener-
ated (Lightning object) and uses no textures. The second way uses textures
instead of generation (WeatherLightning object) for more spectacular effects.

Generated Lightning (Lightning Objects)

In order to create generated lightning, we must still create a datablock for our
lightning.

datablock LightningData(LightningExample) {
 // Play this sound when lightning strikes!
 strikeSound = LightningStrikeSound;

 Mission Objects Chapter 8

293

 // Up to eight thunder sounds can be defined
 thunderSounds[0] = ThunderSound0;
 thunderSounds[1] = ThunderSound1;
};

This datablock specifi es zero textures, a strike sound, and two of the eight
possible thunder sounds.
 Now, we can place a lightning object in our mission using this datablock
or create one via script.

new Lightning() {
 position = “0 0 180;
 scale = “100 100 500”;
 dataBlock = “LightningExample”;
 strikesPerMinute = “90”;
 strikeWidth = “0.25”;
 chanceToHitTarget = “100”;
 strikeRadius = “25”;
 boltStartRadius = “100”;
 color = “1.000000 1.000000 1.000000 1.000000”;
 fadeColor = “0.100000 0.100000 1.000000 1.000000”;
};

This sample will produce a lightning storm centered at an <x y> of “0 0”
and starting at an elevation of 180 world units. Up to 90 bolts will strike per
minute, all of which will be fairly narrow and striking within a radius of 25
world units of “0 0”, but starting at a radius of 100 world units; that is, these
lightning bolts will lean in. Finally, the bolts will start off completely white
and fade to a dark blue.

Textured Lightning (WeatherLightning Objects)

Alternatively, we could use the WeatherLightning object and specify a
 WeatherLightning datablock as follows.

datablock WeatherLightningData(TexturedLightningExample) {
 strikeTextures[0] = “./data/lightning1frame1”;
 strikeTextures[1] = “./data/lightning1Frame2”;
 strikeTextures[2] = “./data/lightning1Frame3”;

 flashTextures[0] = “./data/flash”;

 fuzzyTextures[0] = “./data/lightningFuzzframe1”;
 fuzzyTextures[1] = “./data/lightningFuzzFrame2”;
 fuzzyTextures[2] = “./data/lightningFuzzFrame3”;

Part III Game Elements

294

 strikeSound = LightningStrikeSound;

 thunderSounds[0] = ThunderSound0;
 thunderSounds[1] = ThunderSound1;
};

This datablock uses three textures for lightning bolts, one texture for a bolt-
origin fl ash (in the sky), and three textures for after-bolt fade images. In each
case, we could have specifi ed up to eight textures for the three effects. In addi-
tion to these visual effects, like Lightning, WeatherLightning can play a strike
sound and up to eight thunder sounds (although we only specifi ed two).
 At this point, you might be a little confused about what you get with
Lightning objects and what you get with WeatherLightning objects, so let’s
summarize their features.

Lightning Features Revisited

In summary, the Lightning object is used to create generated lightning effects.
It gives us various controls over how that lightning is generated, including the
width of the bolt, the starting location of the bolt, the ending location of the
bolt, its initial color and ending color, and fi nally the number of bolts per min-
ute. In addition to these Lightning fi eld controlled features, the LightningData
datablock has the fi elds and features shown in Table 8.8.

WeatherLightning Features Revisited

In summary, the WeatherLightning object is used to create textured lightning
effects. It gives us fewer controls over the bolts than the Lighting object. In
fact, we can only control the number of bolts per minute, using the strikes-
PerMin fi eld. However, this object does have the benefi t of producing very
nice bolt effects. These effects are specifi ed using the WeatherLightningData
datablock and supplies the features shown in Table 8.9.

8.6.6 Maze Runner Lesson #11 (10 Percent Step)—
 Stormy Weather
If you are building the Maze Runner game while you read this guide, we are
now going to add some rain, lightning, and thunder to our scene. The game is
meant to have a “cartoon spooky” theme, and these elements will add to that.

Adding the Rain
1. Start up your Maze Runner prototype, run the “Maze Runner” mission, and

start the Creator tool.

 Mission Objects Chapter 8

295

Table 8.10.

Settings for rain.

Parameter Value

minSpeed 1

maxSpeed 1.5

rotateWithCameraVel true

numDrops 2000

boxWidth 200

boxHeight 100

doCollision 0

All others Use defaults

Figure 8.12.

Adding rain.

Figure 8.13.

Adding lightning.

Table 8.9.

Fields in WeatherLightning
datablocks.

Field Name Description

strikeTextures[8] Eight texture slots for relative paths and names of lightning
texture files.

flashTextures[8] Eight texture slots for relative paths and names of lightning
origin-flash texture files.

fuzzyTextures[8] Eight texture slots for relative paths and names of lightning
fade textures.

strikeSound An audio profile to use for the strike noise. Should be 3D audio
profile created with datablock keyword.

thunderSounds[8] Eight audio profile slots for thunder/lightning strike sounds.
Should be 2D audio profile created with datablock keyword.

Table 8.8.

Fields in Lightning
datablocks.

Field Name Description

strikeSound An audio profile to use for the strike noise. Should be 3D audio
profile created with datablock keyword.

thunderSounds[8] Eight audio profile slots for thunder/lightning strike sounds.
Should be 2D audio profile created with datablock keyword.

Part III Game Elements

296

2. Select a precipitation object (Mission Objects � Environment � Precipita-
tion), giving it the object name “MazeRunnerRain” and choosing the data-
block BaseRain (Figure 8.12).

3. Open the Inspector and give the new rain object the settings in Table 8.10.

Adding Lightning

1. Go back into the Creator tool.
2. Select a lightning object (Mission Objects � Environment � Lightning),

giving it the object name “MazeRunnerLightning” and choosing the data-
block BaseLightning (Figure 8.13).

3. Open the Inspector and give the new lightning object the settings in Table
8.11.

8.7 Audio Emitters
So far, we’ve focused on visible environmental objects. What about sounds?
Audio emitters are objects that you can use for placing positional sounds.
Audio emitters have the ability to turn themselves on and off based on a trig-
ger. This trigger can be modifi ed in size and shape to meet your needs. Let’s
take a look, or perhaps I should say, let’s have a listen?

8.7.1 Audio Emitter Features
Audio emitters have the following features.

• 2D sound. This is sound with no apparent source. In other words, it is
neither directional nor positional.

Parameter Value

position < 0 0 300 >

scale < 256 256 250 >

strikesPerMinute 6

strikeWidth 1.5

strikeRadius 128

color < 0.89 0.8 0.42 1 >

fadeColor < 0.5 0.9 0.9 1 >

chanceToHitTarget 0

boltStartRadius 32

All others Use defaults

Table 8.11.

Settings for lightning.

 Mission Objects Chapter 8

297

• 3D sound. This is sound with a specifi c source. Furthermore, this type of
sound is modulated by distance from and facing angle to the sound source.

• Looping and nonlooping sounds. Emitters can be programmed to loop a
variable number of times or as one-time emitters.

• Triggers. 3D sound emitters have the ability to turn themselves on and off
based on a cut-off distance.

8.7.2 2D Sound
2D sound is very simple. All 2D sound emitters are turned on at the earliest
opportunity (shortly after they are created). If looping is enabled, audio emit-
ters will not stop playing until all loops have been exhausted; otherwise, they
will play once and then stop.
 You can specify a 2D audio emitter with the following settings.

• Media
• description. Set this to the relative directory+fi lename for the sound

fi le. Either WAV or OGG fi les are acceptable formats.
• type. A value between 1 and 8, corresponding to the audio group this

emitter should belong to (see “2D Gain” below).

• Sound
• volume. Between 0.0 (0 percent gain) and 1.0 (100 percent gain).
• outsideAmbient. Should be checked.

• Looping. Set looping parameters based on your requirements (see "Loop-
ing" below).

• Advanced
• is3D. Should be unchecked.

2D Gain

Gain determines how loudly your sound will play. The gain equation for 2D
emitters is as follows.

2D gain == game master volume * audio group gain * emitter gain

 Game master volume is controlled from the main menu under Options �
Audio. Audio group gain is controlled by the fi eld Media � type.

• Valid values for type are 1..31. By default, only 1..8 are set up.
• 0. Is reserved.
• 1. GUI audio type (Options � Audio � Shell Volume)
• 2. Sim audio type (Options � Audio � Sim Volume)
• 3..8. Set to 0.8 (search for channelVolume in scripts).

Part III Game Elements

298

• The purpose of this gain is to allow you to adjust the gain for a group of
emitters in one step.

 Emitter gain is controlled by the fi eld Sound � volume parameter.

Looping

If you haven’t already guessed, the looping parameters allow you make an
emitter (2D or 3D) play the sound fi le between one and infi nite times. To
enable looping, make sure Looping � isLooping is checked. Then, set your
loop count. Loop counts work as follows.

• loopCount == –1. Loop infi nitely.
• loopCount == 0. Loop once and only once.
• loopCount == 1. Loop once, possibly twice.
• loopCount == (n > 1). Loop n times.

On rare occasions, a value of 1 will cause two loops. So, if you really want
only one loop, use a loopCount setting of 0.

Loop Gaps

The loop gap parameters control the delay between subsequent loops.
minLoopGap, as you would imagine, defi nes the lower boundary for delays
and maxLoopGap the upper. Torque randomly chooses a value between these
two. Loop gaps are approximately equal to 2n milliseconds, where n is the
LoopGap value selected. Please note that loop gaps can be used to do some
interesting things (see Table 8.12).

minLoopGap maxLoopGap Action

0 0 Sound turns on, but won’t turn off (2D and 3D)

0 1 Sound turns on immediately and turns off at end of
loop or upon exiting 3D region (see below).

1 0 Sound does not turn on, ever.

N > 1 N > 1 Normal behavior.

 By using the settings minLoopGap = 1 and maxLoopGap = 0, you can
tell the emitter to not play at load time. Once the load is completed, you can
have a script set the gap values to whatever delay you need, or you can hook
the sound up to a trigger.

2D Visual Feedback

Visual feedback in 2D mode is simple. While editing, you can see the emitter
as a small cube. The cube will be black while not playing and green while
playing (Figure 8.14).

Table 8.12.

Use of loop gaps.

 Mission Objects Chapter 8

299

Figure 8.15.

Sound cones.

8.7.3 3D Sound
In real life, sound radiates from a source to a listener. Additionally, sound is
attenuated by several factors, including distance, angle, occlusion, etc. Torque
simulates the behavior of real-world sound with OpenAL’s 3D sound features.
3D audio emitters support distance and angular attenuation. How they sup-
port these features can be a little confusing, so we will treat this topic like a
puzzle and examine each puzzle piece individually to see how it fi ts into the
complete picture.

Sound Zones and Sound Cones

In practice, audio emitters support four
zones of sound (Table 8.13 and Figure
8.15).

Zone A—Inner Cone

As noted above, gain in the inner cone i s
a function of distance from the emitter
(source). To determine the physical volume
of the inner cone, we must specify the fol-
lowing.

Figure 8.14.

Audio visual feedback.

Table 8.13.

Four zones of sound.

Audio emitter off Audio emitter on (playing)

Zone Description Gain attenuation

A Listener in inner cone. Gain is a function of linear distance from source.

B Listener in outer cone. Gain is a function of linear distance from source
and angular distance from inner cone edge.

C Listener in area outside
outer cone.

Gain is a constant value determined by outside
volume.

D Listener beyond maximum
distance from source.

Emitter is deactivated.

Part III Game Elements

300

• is3D must be checked to enable 3D sound.

• position specifi es the tip of the cone and the base of the cone Vector.

• rotation specifi es the direction in which coneVector points.

• maxDistance specifi es the base of the cone. coneVector is a unit vector,
but you can image a line passing through the vector, starting at position
and ending at position + coneVector * maxDistance, and this is the
position of the cone base.

• coneInsideAngle specifi es the inner cone sweep.

To specify the gain of the inner cone, we must specify the following.

• volume. Emitter gain.

• referenceDistance. This specifi es the distance (from the emitter) at
which 3D gain == 0.5.

Inner cone gain works as shown in Table 8.14.

Zone B—Outer Cone

Gain in the outer cone is a function of inner-cone gain and the angle from the
outer edge of the inner cone. To determine the physical volume of the outer
cone, we must specify the following.

• inner cone.

• coneOutsideAngle, which specifi es the outer cone sweep.

The outer cone shares all the parameters of the inner cone including the axis. To
specify the gain of the inner cone, we must specify one additional parameter.

• coneOutsideVolume, which is the gain at and beyond the outer edge of
the outer cone. Important! If this value is 0, the outer cone will be disabled
and there will be no sound except inside the inner cone.

Outer-cone gain works as shown in Table 8.15.

Zone C—Outside Volume

If coneOutsideVolume is nonzero, the area outside of the outer cone has a
gain between coneOutsideVolume and zero, based on the distance from the
emitter. Outer-volume (zone) gain works as shown in Table 8.15.

Zone D—Beyond maxDistance

The maximumDistance can be used to draw an imaginary sphere around the
emitter. If the camera enters that sphere, the emitter is told to load its sound.
Additionally, if the camera is inside an enabled sound zone, the emitter is told
to play the sound. Conversely, if the camera moves from within the sphere to
outside the sphere, the sound is told to stop playing.

 Mission Objects Chapter 8

301

3D Visual Feedback

Before we jump into examples, let’s discuss the visual feedback associated
with 3D audio emitters. Because there are more audio concepts to express,
the visual feedback is a little more complex than for 2D emitters, but only
marginally (Figure 8.16 and Table 8.17). You can specify a 3D audio emitter
as follows:

• Media
• description. Relative directory

+ fi lename for the sound fi le.
Only WAV format is supported.
Mono and stereo formats OK.

• type. 1 through 8 (see “2D
Gain” above).

• Sound
• volume. Between 0.0 (0% gain)

and 1.0 (100% gain).
• outsideAmbient. Should be

checked.

• Looping. Set looping parameters based on your requirements (see “Loop-
ing” above).

Table 8.15.

Outer cone gain.

Table 8.16.

Outer volume gain.

Figure 8.16.

Visual feedback for 3D
audio.

Table 8.14.

Inner cone gain.

Listener Position Emitter Gain

P < R 0.5 * P/R where
P = | listener position – emitter position |
R = referenceDistance
M = maxDistance

P == R 0.5

M > P > R ~ R/P

Listener Position Emitter Gain

Ca == Ia Ig where
Ig = inner cone gain at current distance from

emitter
Ca = (coneOutsideAngle – Current Angle) / 2
Ia = coneInsideAngle / 2
Oa = coneOutsideAngle / 2
Ov = coneOutsideVolume

Ca < Ia < Oa Ig � Ov
(as a function of

angle)

Ca == Oa Ov

Listener Position Emitter Gain

P coneOutsideVolume � 0
(as a function of distance)

where P = | listener position – emitter position |

Part III Game Elements

302

• Advanced
• enableVisualFeedback. Should be checked. Please note that, even

if this is not checked, visual feedback renders when a 3D emitter is
selected.

• is3D. Should be checked.
• coneInsideAngle. Set to your preference.
• coneOutsideAngle. Set to your preference. 0 to disable.
• coneOutsideVolume. Set to your preference. 0 to disable all but inner

cone.
• coneVector. Don’t touch this. It is set automatically when you adjust

rotation. Typed changes will be overridden.

Audio Descriptions and Profiles

Audio descriptions and profi les are an alternate way of (pre-) specifying the
specifi cs of an audio emitter. These will be discussed in Chapter 11, “Special
Effects.” For now, it is perfectly suitable to defi ne the parameters for an audio
emitter using the Inspector.

8.7.4 3D Emitter Examples
Figure 8.17 gives examples of 3D audio emitters.

8.8 Particle Emitter Nodes
One of the more time-consuming mission objects to place is the particle emit-
ter—not because it is particularly hard to understand, but because it offers a
venerable cornucopia of features. Moreover, it is just plain fun to play with!
In fact, if you don’t approach it knowing the basics of how to use it and
with a good idea of the result you want, you could burn several hours goof-
ing around. While I can’t help you focus on a particular idea, I can help you
understand the basics of using it.
 I must warn you before we start: we are going to depart from using the
mission editor alone. In order to build emitters, we need to write some script
datablocks. For now, you can just use my examples directly, and you should not
get into too much trouble. Later, you may experiment and write your own.

Inner cone Red fading to black. Fade starts at referenceDistance.

Outer cone Pinkish-purple.

Outside volume Blue.

On/Off indicator Same as 2D (not visible in Figure 8.16).

Table 8.17.

Audio emitter—3D visual
feedback.

 Mission Objects Chapter 8

303

8.8.1 What Is a Particle Emitter Node?
Particle emitter nodes (PENs) are static objects (that is, they don’t normally
move) that can be used to provide special effects such as smoke, fi re, water-
falls, fi refl ies . . . you name it. They do this by emitting—you guessed it—par-
ticles. As is commonly2 the case in 3D systems, these particles are billboards.
In the case of particles, these billboards are usually textured with a partially
opaque and partially translucent texture and are usually facing the camera.
What this means is that, when you look at any particular particle, it will nor-
mally be facing you, and you will likely be able to see through parts of it.
 So, what do we have so far? In Torque, particles are billboards, and they
are shot out of PENs. However, particles don’t just shoot out of PENs. In fact,

Figure 8.17.

3D audio emitters.

2 Some common particles are
billboards, pixels, and lines.

A
coneInnerAngle: 90
coneOuterAngle: 0

coneOutsideVolume: 0

B
coneInnerAngle: 360
coneOuterAngle: 0

coneOutsideVolume: 0

C
coneInnerAngle: 270
coneOuterAngle: 360

coneOutsideVolume: > 0

D
coneInnerAngle: 180
coneOuterAngle: 360

coneOutsideVolume: > 0

Part III Game Elements

304

we (the game designers) choose how many particles there are, what kinds of
visual effects they have, how fast they shoot, whether they are affected by
wind, gravity, etc. All these factors make PENs useful. Most important of all,
we can create some awesome effects at a low cost.3

8.8.2 Particle Emitter Data Blocks
As I mentioned above, we need to build a few datablocks before we can play
with particle emitters. Specifi cally, we will need a minimum of three data-
blocks.

• ParticleEmitterNodeData (PEND). Think of this as the base for the emit-
ter. It controls one aspect of the particle emitter—time.

• ParticleEmitterData (PED). This is used to describe the behavior of the
PEN itself. It controls how many particles are emitted, how fast, and in
what position/direction.

• ParticleData (PD). This describes individual particles. It controls color-
ation, fade, spin, drag, velocity, acceleration, and whether gravity, particle
life, and a few other things affect a particle.

The GPGT Lesson Kit (and the prototype content on the accompanying disk)
comes with several predefi ned particle datablocks, including the following.

• baseSmokePD0. A ParticleData datablock used to represent smoke.

• baseSmokePD1. A ParticleData datablock used to represent smoke. Uses
same parameters as baseSmokePD0 with new texture.

• baseFirePD0. A ParticleData datablock used to represent simple fi re.

• baseFirePD1. A ParticleData datablock used to represent a nicely ani-
mated fi re.

• baseSparkPD0. A ParticleData datablock used to represent sparks.

• baseBubblePD0. A ParticleData datablock used to represent bubbles.

• baseDustPD0. A ParticleData datablock used to represent dust.

• basePED. A ParticleEmitterData datablock using baseSmokePD0.

• basePEND. A (default) ParticleEmitterNodeData datablock.

If we wanted to use some of the above datablocks in script, we could do the
following:

new ParticleEmitterNode(PEN_Test0) {
 position = “0 0 0”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 dataBlock = “basePEND”;
 emitter = “basePED”;

3 Done right, particles do not
consume a lot of resources
(memory, CPU time,
geometry budget, etc.).

 Mission Objects Chapter 8

305

 velocity = “1”;
};

8.8.3 ParticleEmitterNodeData (PEND)
 Datablock Parameters
The PEND datablock specifi es a time multiplier for an individual PEN (Table
8.18). This time is used subsequently in certain calculations, which we’ll
cover in Section 8.8.7.

8.8.4 ParticleEmitterData (PED) Datablock
 Parameters
The PED datablock specifi es the behavior of a PEN, including what particles
it emits, at what rate, in what direction, with how much velocity, and for how
long (Table 8.19). It also describes how particles will be oriented.

8.8.5 ParticleData (PD) Datablock Parameters
The PD datablock describes an individual particle, including how things
like wind, drag, gravity, and an acceleration factor affect it (Table 8.20). It
also describes physical parameters of the particle including color, size, spin,
and lifetime. Lastly, it describes advanced features, like alpha inversion and
animation.

8.8.6 PEN Parameters
In order to specify a PEN in your mission, you can add it with the World Edi-
tor (WE) (F11� F4; Mission Objects � environment � particleEmitter), or
by hand-editing your mission fi le. In order to do this, we need to specify the
parameters in Table 8.21.

8.8.7 PEN Equations
As promised, I’ll describe some important equations below. Armed with these
and the subsequent descriptions of theta and phi, orientation, and anima-
tion, you should be able to prespecify approximate values before you start to
experiment and tune, which should save lots of time.

Table 8.18.

PEND datablock
parameters.

Parameter Range Description

timeMultiple [0.01 , 100.0] Time multiplier, used to increase or decrease
elapsed time by a ratio. Affects ejection period,
ejection position calculation.

Part III Game Elements

306

Table 8.19.

PED datablock parameters.

Parameter Range Default Description

ejectionPeriodMS [1 , inf) 100 Milliseconds between last and next particle ejection.

periodVarianceMS (0, ejectionPeriodMS] 0 Amount to vary ejection period by.

ejectionVelocity [0 , inf) 2.0 Initial velocity imparted to particles.

velocityVariance [0 , ejectionVelocity] 1.0 Amount to vary initial velocity by.

ejectionOffset [0 , inf] 0.0 Particle ejections begin at ejectionOffset distance
from emitter.

thetaMax [0 , 180]
[thetaMin , 180]

90.0 Modifies emitter ejection up and down. This modifies
the PEN up vector.
0 = fully up, 180 = fully down

thetaMin [0 , 180]
[0 , thetaMax]

0.0 Modifies emitter ejection up and down. This modifies
the PEN up vector.
0 = fully up, 180 = fully down

phiReferenceVel [0 , 360] 0.0 Causes emission point to rotate clockwise
phiReferenceVel degrees per second about the
PEN UP vector.

phiVariance [0 , 360] 360.0 Separate from phiReferenceVal, this parameters
enables a random ejection between 0 degrees and
phiVariance.

overrideAdvance false Always false (legacy code).

orientParticles [true , false] false If true, face emission direction.
If false, face camera.

orientOnVelocity [true , false] true If true and if orientParticles == true, face
direction of motion.
If false, use orientParticles setting.

particles PD name(s) List of PD datablocks to use/emit.

lifetimeMS [0 , inf) 0 Length of time to eject particles before stopping (in
milliseconds).
lifetimeMS == 0: Always on
lifetimeMS > 0: lifetimeMS milliseconds

lifetimeVariance [0 , lifetimeMS) 0 Amount to vary lifetimeMS by.

useEmitterSizes false Not used for PENs. These apply to particle emitters
attached to a particle emitter object.

 useEmitterColors false

 Mission Objects Chapter 8

307

Parameter Range Default Description

dragCoefficient (0.0 , 1.0) 0.0 Factor determining velocity subtracted per second.

windCoefficient [0.0 , 1.0] 1.0 Percentage of wind vector added to particle vector.

gravityCoefficient (-inf , inf) 0.0 Gravitational acceleration for particle.
Negative values cause particles to rise.

inheritedVelFactor [0.0 , inf) 0.0 Multiplier determining how much of the PED
ejectionVelocity is added to the initial velocity
of the particle.

constantAcceleration (-inf , inf) 0.0 Incremental velocity added to particle velocity on a
per-second basis.

lifetimeMS (100 , inf) 1000.0 Particle life in milliseconds. At the end of its life, the
particle is deleted.

lifetimeVarianceMS (100 , lifetimeMS) 0.0 Amount to vary lifetimeMS by.

spinSpeed (-10000 , 10000) 0.0 Speed at which particle rotates about its facing
vector.
Only valid when PED orientParticles ==
false.

spinRandomMin (-10000 , 10000) 0.0 Minimum random value added to spinSpeed.

spinRandomMax (-10000 , 10000) 0.0 Maximum random value added to spinSpeed.

useInvAlpha true or false false Inverts interpretation of texture alpha.

animateTexture true or false false Sequence between additional textures, specified in
animTexName[50].

framesPerSec (1 , 200) 1 Frame frequency for animated textures.

textureName “Path + File Name” “” Texture path and filename (PNG only).
Must be <= 255 characters long.

animTexName[50] “Path + File Name” “” Additional texture path and filenames (PNG only).
Used when animateTexture == true.
animTexName[0] same as textureName.

colors[4] “r g b i” “1.0 1.0
1.0 1.0”

Color interpolation values.
Please note that only these values determine particle
color. The texture is used as an alpha map, not for
coloration.

sizes[4] [0 , inf) 1 Size interpolation values.

times[4] [0 , 1] 0.0, 1.0,
1.0, 1.0

Key frames. These affect interpolation rates over life
of particle.

Table 8.20.

PD datablock parameters.

Part III Game Elements

308

 Some of the datablocks below produce vectors. Those vectors are calcu-
lated from a series of vectors and scalars (from the datablocks and internally
from the engine). In order to be clear, I will italicize vectors and bold scalars.
Velocities are in world units per second, and unless otherwise specifi ed, input
vectors are unit vectors.

Particle Initial Velocity

Each particle is given an initial velocity vector at ejection time. The velocity
vector is determined as follows:

emitAxis * PEN.velocity * ejectionAxis * (
PED.ejectionVelocity + PED.velocityVariance * 2.0 *
rand[0.0,1.0] - PED.velocityVariance).

emitAxis is always <0, 0, 1> (in practice you can ignore this factor).
ejection Axis depends on orientation, theta, and phi. rand[0.0,1.0] pro-
duces a random value between 0 and 1.0.

Particle Post-Ejection Velocity Changes

After being ejected, a particle may or may not have its velocity modifi ed.

NextVelocity == CurrentVelocity *
 ((PD.constantAcceleration * InitialVelocity) –
 (CurrentVelocity * PD.dragCoefficient) –
 (WindVelocity * PD.windCoefficient) +
 (<0.0, -9.81> * PD.gravityCoefficient))

Please note that there is a time delta component not shown.

Table 8.21.

PEN parameters.

Group Field Name Description

Transform position Used to set location of PEN.

rotation Values have no effect.

scale Values have no effect.

Misc nameTag Not used by engine.

dataBlock PEND datablock name.

emitter (Particle data in WE) PED datablock name.

velocity Initial ejection velocity for this emitter.

 Mission Objects Chapter 8

309

Particle Lifetime

Particle lifetimes are a simple concept. If a particle is created at time n, at
time n + lifetime, the particle will be deleted. Lifetimes affect interpolation,
which will describe next. The PD.lifetimeVarianceMS allows us to ran-
domly vary individual lifetimes, which makes things seem less artifi cial when
viewed. Lifetimes are in milliseconds.

PD.lifetimeMS + (rand[-1,1] * PD.lifetimeVarianceMS)

8.8.8 Particle Interpolations
Particles are subject to two types of interpolation: color and size. Color inter-
polation is the ability to modify the particle color over its lifetime. Similarly,
size interpolation is the ability to modify the particle size over its lifetime.
 Interpolation is controlled by key frames (PD.times[4]), of which
Torque allows up to four. The minimum value for a key frame is 0.0, and the
maximum value is 1.0. Key frames should be used in order, and unused key
frames should be set to 1.0.
 This is probably all still sounding rather mysterious, so I’ll give some
examples and explain what they do.

PD.color[0] = “1.0 1.0 1.0 1.0”;
PD.color[1] = “1.0 1.0 1.0 0.0”;
PD.color[2] = “1.0 1.0 1.0 0.0”;
PD.color[3] = “1.0 1.0 1.0 0.0”;

PD.size[0] = 1.0;
PD.size[1] = 1.0;
PD.size[2] = 1.0;
PD.size[3] = 1.0;

PD.time[0] = 0.0;
PD.time[1] = 1.0;
PD.time[2] = 1.0; // Unused
PD.time[3] = 1.0; // Unused

The above example tells the particle to remain at size 1.0 for its entire lifetime
and to fade smoothly from bright white to transparent.

PD.color[0] = “1.0 0.2 0.2 1.0”;
PD.color[1] = “0.2 1.0 0.2 1.0”;
PD.color[2] = “0.0 0.2 1.0 1.0”;
PD.color[3] = “0.0 0.2 1.0 1.0”;

Part III Game Elements

310

PD.size[0] = 0.5;
PD.size[1] = 1.0;
PD.size[2] = 1.5;
PD.size[3] = 2.0;

PD.time[0] = 0.0;
// 1/3 time here framed by time[0] and time[1]
PD.time[1] = 0.33;
// 1/3 time here framed by time[1] and time[2]
PD.time[2] = 0.66;
// 1/3 time here framed by time[2] and time[3]
PD.time[3] = 1.0;

The above example causes the particle to smoothly increase from a size
of 0.5 to 2.0 over the particle’s lifetime. Additionally, the particle’s color is
interpolated from a shade of red, to green, then to blue, where it stays for the
last one-third of its lifetime.
 Interpolation takes some practice getting used to, but it’s a nice touch that
gives us some cool variations on particles.

8.8.9 PEN Lifetimes
Just as particles have lifetimes, so can particle emitter nodes. A PEN can be
told to emit particles forever or for a fi xed duration.

// Emit forever after being created
PED.lifetimeMS = 0;

// Emit for five seconds plus or minus 1.5 seconds
// after being created
PED.lifetimeMS = 5000;
PED.lifetimeVarianceMS = 1500;

8.8.10 PEN Particle Ejection Frequency
The PEND and PED datablocks give us three parameters in total to adjust the
rate at which particles are emitted.

• PEND.timeMultiple. This changes the simulation time versus real time
ratio. All events occur in simulation time. With the addition of this param-
eter, the particle emitter will view time as passing at the rate of PEND.
timeMultiple * real time. This feature allows us to use the same PED in
two (or more) different emitters and vary the rate of emission. It also gives
us a nice way to tune the overall rate of our effects.

 Mission Objects Chapter 8

311

• PED.periodMS. This is the base time between particle ejections.

• PED.periodvarianceMS. This is the amount to vary the base time
between ejections.

Given these three parameters, the particle emitter will eject particles at ran-
dom intervals, where the time between ejections is (1/PEND.timeMultiple)
* (PED.periodMS – PED.periodVarianceMS) and (PEND.timeMultiple)
* (PED.periodMS+PED.periodVarianceMS). To clarify this, let’s look at
some examples.

// Emit a new particle every 200 milliseconds with no variation
PEND.timeMultiple = 1.0;
PED.periodMS = 200;
PED.periodVarianceMS = 0.0;

In the above example, the particle emitter will see time passing at the normal
rate, so that one second of real time is equal to one second of simulation
time.

// Emit a new particle every 400 milliseconds with no variation
PEND.timeMultiple = 0.5;
PED.periodMS = 200;
PED.periodVarianceMS = 0.0;

In the above example, the particle emitter will see time passing at half the
normal rate, so that two seconds of real time are equal to one second of simu-
lation time.

// Emit a new particle every 100 milliseconds +/- 25 ms
PEND.timeMultiple = 2.0;
PED.periodMS = 200;
PED.periodVarianceMS = 50;

In the above example, the particle emitter will see time passing at twice the
normal rate, so that one second of real time is equal to two seconds of simula-
tion time.

8.8.11 Theta and Phi Explained
ParticleEmitterData has four fi elds: thetaMin, thetaMax, phiReference-
Vel, and phiVariance. Together, they control the direction in which our
emitter ejects particles. Although they have scary-sounding names, these
fi elds are really quite easy to use. To show this, let’s start with the theta fi elds,
and then we’ll discus the phi fi elds.

Part III Game Elements

312

Figure 8.19.

Phi ejection vectors.

thetaMin and thetaMax
Theta controls the up and down of the emitter’s ejection vector. Imagine, if
you will, that you are standing to the side of an emitter. If we play with the
theta parameters, we can make the emitter eject particles anywhere straight
up and straight down (Figure 8.18).
 Torque supplies the two parameters PED.thetaMin and PED.thetaMax.
These act as boundaries. We point the emitter in a specifi c direction such as
90 degrees (straight out) by setting PED.thetaMin to 90 and PED.thetaMax
to 90. Alternatively, if we wish to spread our particles out, we can set PED.
thetaMin to 0 and PED.thetaMax to 90. Now, particles will be randomly
ejected with an ejection vector pointing between straight up and straight out.

phiReferenceVel and phiVariance
Since theta was so simple, you might jump to the conclusion that phi controls
the left and right. If you did, you would be both right and wrong. The phi
parameters do control the ejection vector’s left to right pointing, but not like
the theta parameters. Whereas PED.thetaMin and PED.thetaMax were used
to set the minimum and maximum up-down ejection angles, our minimum

phi angle is always zero degrees and PED.phiVariance controls the
upper angle. This means we cannot point our phi in the same way we
can theta. (See Figure 8.19.)
 So, what about PED.phiReferenceVel? This strange param-
eter causes the emitter to spin clockwise about its up vector.
PED.phiReferenceVel is measured in degrees per second.
 OK, let’s summarize what the theta and phi parameters do for
us. PED.thetaMin and PED.thetaMax allow us to control the up-
down pointing of our ejection vector. Furthermore, we can specify a
range of up-down positions between which the ejection vector will
randomly vary. Next, PED.phiVariance allows us to change the

right-left pointing of our ejection vector, but we can only adjust the right
direction of the ejection vector. Left is always stuck at 0 degrees. Finally, PED.
phiReferenceVel can be used to cause the emitter to spin clockwise about
its up vector at phiReferenceVel degrees per second.

8.8.12 Orientation Explained
We’ve covered orienting the ejection vector, but what about the particle itself?
First, remember that the particle is actually a billboard. Initially, I said that
these billboards would normally face the camera. The PED orientation param-
eters give us the ability to choose between various billboard orientations.
Table 8.22 summarizes particle orientation options.

Figure 8.18.

Theta ejection vectors.

 Mission Objects Chapter 8

313

PED.orientParticles PED.orientOnVelocity Resulting Orientation

false don’t care Screen oriented.
Particle always faces screen
(camera).

true false Face ejection.
Face along ejection vector.

true true Face motion.
Face along trajectory.

8.8.13 Animated Textures
Among the other cool features supported by Torque’s particle emitter is the
ability to animate a particle via multiple textures. In Torque, you can specify
up to 50 separate textures.4 Then, while the particle is being displayed, Torque
will cycle through these images.
 It’s really quite simple to do this. Take a look at the following example.

PD.animTexName[0] = “~/path_to_texture/texture0”;
PD.animTexName[1] = “~/path_to_texture/texture1”;
...
PD.animTexName[49] = “~/path_to_texture/texture49”;
PD.framesPerSec = 1; // Play one frame per second

In the above example, we’ve specifi ed 50 distinct textures for use in our sequence.
Then, we specifi ed that they must be played one (frame) per second. When the
sequence gets to the end, it will begin to repeat. It’s really that simple.

8.8.14 Multiple Particles?
You might recall that we could specify more than one particle for the
PED.particles parameter. If you specify multiple particles for an emitter’s
PED, the emitter will eject the particles in order and then repeat. The follow-
ing reasonable questions arise.

1. How do I specify more than one PD?

2. How many can I specify?

Here are three examples of the syntax for specifying three particles for a PED.

particles = PD_Name0 TAB PD_Name1 TAB PD_Name2;
// OR
particles = PD_Name0 SPC PD_Name1 SPC PD_Name2;
// OR
particles = “PD_Name0 PD_Name1 PD_Name2”;

Table 8.22.

Particle orientation
options.

4 If you’re willing to edit the
engine, you can set this
value to anything you want
(within reason).

Part III Game Elements

314

Basically, PED.particles needs to be a whitespace-separated string of PD
names. You may specify as many particles as you need.

8.8.15 Holy Popping Particles!
An interesting problem I initially had while playing with particles was a dis-
turbing popping effect when the particles’ PD.lifetimeMS limit was hit. This
can have several sources, but if you study the effect, it should be apparent
that the cause is simply the fact that a very visible object is suddenly popping
out of existence.
 To make this transition subtler, just use the particle interpolation param-
eters. Here are some suggestions:

• Be sure your interpolations are smooth; i.e., don’t use values like 0.1, 0.5,
0.6, 1.0 unless you are looking for a shuddering effect.

• Fade particles by lowering the fourth PD.colors parameter (which repre-
sents intensity or alpha) over the lifetime of the particle.

• Shrink particles in the latter part of their life.

8.8.16 Can I Mount Emitters?
A common question in the forums is, “Can I attach an emitter to my XYZ?”
Unfortunately, you may not attach a particle emitter to an arbitrary shape or
node in a shape. Many shapes provide specialized nodes for particular emitter
effects, but TGE does not support arbitrary mounting of particle emitters.

8.8.17 Can I Move Emitters?
Another question I often see is, “Can I move an emitter after I place it?” Often,
the answer I see given to this questions is, “No.” However, this is not true.
There is a way to move particle emitters. If you want to move a particle emit-
ter after it is placed in the world, do the following.

1. Store the ID of the emitter you want to move in a global variable or in
another appropriate location.

2. In script, modify the position fi eld of the particle emitter node. Yes,
modify the position fi eld.

3. Last, to move the PEN, simply rescale the PEN, using its current scale.

$myPEN = // ... create the PEN and store its ID
$myPEN.position = “10 10 10”;
 // We want to move to < 10 10 10 >
$myPEN. setScale($myPEN. getScale());

Sure, it’s a bit of a hack, but it gets the job done.

 Mission Objects Chapter 8

315

8.8.18 Maze Runner Lesson #12 (90 Percent
 Step)— Teleport Station Effect
If you are building the Maze Runner game while you read this guide, we are
now going to create the datablocks for a set of particle emitters that will be
used later to mark the position of our teleport stations.
 We will need three distinct versions of this emitter. So, our strategy will
be to create a base ParticleData datablock and a base ParticleEmitterData
datablock using the previous ParticleData datablock. Then, we will use the
inheritance feature of TorqueScript to create two copies of each datablock
with minor modifi cations. This will give us a total of six datablocks. For the
 ParticleEmitterNodeData datablock, we’ll just use the basePEND datablock
that comes with this guide.

Copy Required Files

From the accompanying disk, please copy the fi le “\MazeRunner\Lesson_012\
teleporters.cs” into the directory “\MazeRunner\prototype\server\scripts\
MazeRunner”.
 Now, edit the function onServerCreated() in the fi le “\MazeRunner\
prototype\server\game.cs” to look like the following (bold lines are new or
modifi ed).

 exec(“./MazeRunner/mazerunnerplayer.cs”); // MazeRunner
 exec(“./MazeRunner/teleporters.cs”); // MazeRunner

ParticleData (TeleportStation_PD0)

We want our particles to be nebulous particles of medium size with a red,
green, or blue coloration.

datablock ParticleData(TeleportStation_PD0) {
 dragCoefficient = 0.0;
 gravityCoefficient = -0.50;
 inheritedVelFactor = 0.0;
 constantAcceleration = 0.0;
 lifetimeMS = 400;
 lifetimeVarianceMS = 100;
 useInvAlpha = false;
 textureName = “~/data/GPGTBase/particletextures/smoke”;
 colors[0] = “0.7 0.1 0.1 0.8”;
 colors[1] = “0.7 0.1 0.1 0.4”;
 colors[2] = “0.7 0.1 0.1 0.0”;
 sizes[0] = 0.1;
 sizes[1] = 0.3;

You may have noticed
that the Teleport-
Station_PD0 datablock
definition only supplied
array elements 0, 1,
and 2 for of each of
the colors[], sizes[],
and times[] arrays.
You may wonder
why I did not specify
array index three for
each of these arrays.
The reason for this is
simple. Interpolation
occurs between times
0.0 and 1.0, and since
times[2] is defined as
1.0, the interpolation
will automatically
stop when it gets to
colors[2], sizes[2], and
times[2]. This is not
to say that we could
make times[3] less
than 1.0 and add more
entries, but rather
that we don’t need to

use all of the array
elements.

Part III Game Elements

316

 sizes[2] = 0.3;
 times[0] = 0.0;
 times[1] = 0.5;
 times[2] = 1.0;
};

As can be seen,

• this particle will fl oat upward since it has a negative gravity coeffi cient;

• it has a short lifetime between 300 and 500 milliseconds;

• the particle it uses is nebulous (see negative image in Figure 8.20);

• it fades from medium red to dark red evenly; and

• it starts off small and triples in size over time.

ParticleEmitterData (TeleportStation_PED0)
datablock ParticleEmitterData(TeleportStation_PED0) {
 ejectionPeriodMS = 1;
 periodVarianceMS = 0;
 ejectionVelocity = 2.0;
 ejectionOffset = 0.5;
 velocityVariance = 0.5;
 thetaMin = 0;
 thetaMax = 80;
 phiReferenceVel = 0;
 phiVariance = 360;
 overrideAdvance = false;
 particles = “TeleportStation_PD0”;
};

As can be seen,

• this particle emitter ejects a new particle every millisecond, meaning we'll
have up to 500 particles alive at any time (per emitter);

• it ejects particles at 1.5 to 2.5 world units per second starting at the center
to 0.5 world units out;

• the ejection vector will be anywhere about the center and starts from
slightly upward to straight up; and

• of course, it uses the particle we just made.

Duplicate Datablocks

The last step before trying these emitters out is to duplicate them so we have
three sets. As you can see when looking at the code, we have taken advantage
of TGE’s datablock inheritance:

Figure 8.20.

Smoke particle

 Mission Objects Chapter 8

317

datablock ParticleData(TeleportStation_PD1 : TeleportStation_PD0) {
 colors[0] = “0.1 0.7 0.1 0.8”;
 colors[1] = “0.1 0.7 0.1 0.4”;
 colors[2] = “0.1 0.7 0.1 0.0”;
};

datablock ParticleEmitterData(TeleportStation_PED1 : TeleportStation_PED0) {
 particles = “TeleportStation_PD1”;
};

datablock ParticleData(TeleportStation_PD2 : TeleportStation_PD0) {
 colors[0] = “0.1 0.1 0.7 0.8”;
 colors[1] = “0.1 0.1 0.7 0.4”;
 colors[2] = “0.1 0.1 0.7 0.0”;
};

datablock ParticleEmitterData(TeleportStation_PED2 : TeleportStation_PED0) {
 particles = “TeleportStation_PD2”;
};

Figure 8.21.

Testing the emitters.

We only needed to change the particle colors and to use the correct particle
in our new emitters.

Testing the Emitters

We’re not ready to use these emitters in our game, but we should test them.
Do the following.

1. Start up your Maze Runner prototype.

2. Load the “Maze Runner” mission.

3. Use the Creator to place a particle emitter (Mission Objects � Environment
� ParticleEmitter).

4. Give the emitter (node) any name you like.

5. Use the basePEND ParticleEmitterNodeData datablock.

6. Select one of the three ParticleEmitterData datablocks we just examined
(Figure 8.21).

 ParticleEmitter Dialog Settings Resultant Emitters

Part III Game Elements

318

8.9 fxShapeReplicator & fxFoliageReplicator
These two replicators are birds of a feather and are both created by Melvin
May. Their purposes are multifold:

• allowing multiple objects to be placed automatically and randomly within
specifi ed bounds,

• allowing this to be done in such a way as to make the scene look more
organic (i.e., not artifi cial), and

• reducing the network transmission cost of multiple related objects to that
of a single object plus a few additional parameters.

Melvin May has managed to do this quite successfully, very much to the
appreciation of Torque users. Furthermore, his fx objects are, for the most
part, easy to understand and use.
 Before we get into the usage of these two replicators, I’ll give a succinct list
of all parameters for both the fxShapeReplicator and the fxFoliage Replicator.
To save space and due to the common nature of these replicators, I’ll combine
their parameters into one list, indicating when a parameter exists in the shape
replicator but not the foliage replicator, or vice versa.

8.9.1 Replicator Features
The replicators have the following features:

• Directed random placement. Using a tricky inner- and outer-ellipse affor-
dance, you can direct Torque to replicate a specifi c number of objects in
random locations within a clearly defi ned area.

• Multiple toggleable placement restrictions. Because random placement
wouldn’t be any good if you couldn’t specify rules for where to place and
not to place, the replicator mission objects both have a slew of toggleable
tests for placing objects.

• Dimension and orientation controls. In order to make a scene more
organic, you can provide metrics that will allow objects to be randomly
sized and oriented within set bounds.

• Advanced culling. The foliage replicator provides the ability to tune the
culling algorithm. The culling algorithm is responsible for choosing when
to render objects and directly affects frame rate. The ability to fi ne tune this
is a real plus.

• Animation and lighting. Foliage can be both animated and lit (or self-lit).
You have direct control over how this is done.

8.9.2 Placing Replicators
Replicators are placed much like any other item in the world. You just drag
them and drop them where you wish them to be. The location of the replicator

 Mission Objects Chapter 8

319

can be the center of a placement target. The size and shape of this target are
controlled by the inner and outer radius parameters. These parameters can be
used to create two ellipsoidal areas. If we ignore restrictions for a moment,
placement rules simply become those shown in Table 8.23.

8.9.3 Replicator Visual Feedback
Melvin May has supplied a nice visual feedback mechanism for seeing where
the shapes will and will not be placed.
 Examining the image in Figure 8.22, we can see two ellipses that were
created with the following settings.

• InnerRadiusX == 5, OuterRadiusX == 25
• InnerRadiusY == 15, OuterRadiusY == 20

If you look closely, you will see that objects are randomly placed in the area
outside inner ellipse and inside outer ellipse.

8.9.4 Seeds
A very important aspect of replicators is that they will produce the same result
each time they are used as long as they are given the same Seed. The Seed
is used as an input to a random number generator. This generator is used to
produce and place all objects associated with the replicator.

8.9.5 Replicant Count
You may select how many objects you wish to replicate using either the
ShapeCount or the FoliageCount parameter, depending upon which rep-
licator you are using. It is important to understand that this is a theoretical
maximum, not the guaranteed number of objects you will get.

8.9.6 Placement Restrictions (Restraints)
Besides the ellipses and the position, what else controls placement? There
is a nice set of “knobs” with which we can tune placement rules. These are
called restrictions or restraints in the foliage and shape replicators, respec-
tively. Their names are pretty self-explanatory, but just in case, I’ll explicitly
spell out their use in Table 8.24 and show an example in Figure 8.23.

Figure 8.22.

Visual feedback of
replicator.

Position Can Place Here?

Inside area defined by InnerRadiusX and InnerRadiusY? No

Inside area defined by OuterRadiusX and OuterRadiusY, and
outside area defined by InnerRadiusX and InnerRadiusY?

Yes

Outside area defined by OuterRadiusX and OuterRadiusY? No

Table 8.23.

Replicator placement rules.

Part III Game Elements

320

 In addition to the restraints listed in Table 8.24, fxShape-
Replicators offer three additional parameters. AlignToTerrain
causes shapes that are placed on terrain to align to the terrain’s up
vector. Furthermore, you can adjust how this alignment occurs by
adjusting the parameter TerrainAlignment, which is a 3-value
vector. Lastly, you can enable or disable shape collision boxes by
setting Interactions to true or false, respectively.

Interactions Must Be True for Collisions

We just covered this, but I must restate it nonetheless. If you have the
Interactions fi eld set to false, collisions for fxShapes are turned off. A
lot of new users have this problem and complain about it vociferously in
the forums. I’m here to save you the embarrassment of being told, “Set the
Interactions fi eld to true. Duh.” Hey, nobody is perfect.

8.9.7 Retries
Well, with all these rules determining whether an object can be placed, you must
wonder what the replicator does if it fi nds it can’t place an object. Well, just like
you or me, it tries again. You can control the number of attempts the replicator

Table 8.24.

Restrictions and restraints.

Figure 8.23.

Stacked shapes
(AllowOnStatics ==
true).

Restriction / Restraint Result

AllowOnTerrain If this is set to true, objects can be placed on terrain if
present.

AllowOnInteriors If this is set to true, objects can be placed on interiors
(buildings, etc) if present.

AllowOnStatics If this is set to true, objects can be placed on other
shapes if present. This means that if you are using the
fxShapeReplicator, it is possible to have objects get stacked
on top of each other by a replicator. See Figure 8.23.

AllowedTerrainSlope When objects are placed on terrain, they will not be placed
on areas with a slope greater than or equal to this value.

AllowOnWater AllowWaterSurface AllowOnTerrain Result

false - - Objects cannot be
placed in areas with
water.

true true - Objects can be placed
on surface of water.

true false true Objects can be placed
on terrain below water.

 Mission Objects Chapter 8

321

will make per object with the FoliageRetries or Shape Retries parameter.
Why not just try until an object can be successfully placed, you ask? Consider
the case in which there is no legal place left to put an object. In this case, without
a retry limit, the replicator would attempt to place objects forever.

8.9.8 Foliage Dimensions
We’ve fi nished talking about the common attributes between the fxFoliage-
Replicator and the fxShapeReplicator. Now let’s jump into some of the addi-
tional features offered by the fxFoliage Replicator. Because we’re going to be
using the same image over and over to simulate some kind of foliage fea-
ture, we’d like an inexpensive way to make these images seem different. The
dimension parameters give us this. For example, let’s say we choose the fol-
lowing settings.

FixSizeToMax == false MinWidth == 0.5 MaxWidth == 1.5
FixAspectRatio == false MinHeight == 0.5 MaxHeight = 2.0
RandomFlip == true

What we would get are billboards that are randomly between 0.5 and 1.5
times their default width and 0.5 and 2.0 times their default height. Addition-
ally, the image may be randomly fl ipped around its vertical axis (i.e., fl ipped
horizontally). This fl ipping will be useful if we have a nonsymmetric image.
So, what about that aspect ratio business? Well, if you are familiar with tex-
ture mapping, you will understand that without maintaining the proper aspect
ratio, images may look stretched. The FixAspectRatio parameter forces the
randomly selected height/width to be a fi xed multiple of the original. Some
example images in Figure 8.24 show what I’m talking about.

Figure 8.24.

Maintaining the aspect ratio.

128×128 PNG Same PNG 2X Height
FixAspectRatio == false

Same PNG 2X Height
FixAspectRatio == true

Part III Game Elements

322

 Lastly, let’s discuss OffsetZ. This is helpful to fi x little issues you run
into where the texture may be slightly embedded or slightly above a surface.
If this happens, just increase or decrease OffsetZ slightly until the problem
is fi xed.

8.9.9 Shape Dimensions and Rotation
fxShapeReplicators allow you to adjust the dimension and rotation of shapes
with the parameters in the Object Transforms group. You can allow random
scaling by setting ShapeScaleMin and ShapeScaleMax accordingly. Addi-
tionally, you can allow for random rotation by setting ShapeRotationMin
and ShapeRotationMax to nonzero values. Values are chosen between the
minimum and the maximum on a per-axis basis. Finally, OffsetZ is offered
under the group for fxShapeReplicators and has the same purpose as noted
above.

8.9.10 Foliage Culling
Of all the attributes in the fxFoliageReplicator, the culling parameters were the
least intuitive to me. So, before we jump into them, perhaps a quick descrip-
tion of view culling is in order.

View Culling

If you think about it for a moment, it will be apparent that it would be highly
ineffi cient to render all objects in a mission, when only a small fraction of
them are in a position to be visible. In reality, the objects in front of the
camera are the only objects that we really need to render. This set of objects
is called the potentially visible set (PVS). There are many ways to build a
PVS. In the case of fxFoliageReplicators, when the useCulling parameter is
false, each billboard is individually tested for visibility. In the case of a small
set of billboards, this is probably the most effi cient way to cull. However, once
you have a large number of objects, this method quickly begins to consume
too much CPU time.

Quadculling

At this point, you should consider turning on culling by setting use Culling
to true. Now, culling is tested against a set of quads instead of individual
billboards. A quad is a rectangular area (usually a square) with a fi xed dimen-
sion. In the case of quadculling, a specifi ed area is subdivided into multiple
quads. Each object that is within an area defi ned by a quad is algorithmi-
cally associated with that quad. Objects that cross borders between quads are
assigned to each quad they touch. Finally, if a quad is deemed to be visible,

 Mission Objects Chapter 8

323

all objects associated with that quad are marked as visible and subsequently
rendered. The images in Figure 8.25 are taken from an in-game shot to dem-
onstrate what the visible feedback for quadculling looks like. They demon-
strate the discussion thus far.

 Configuring (Quad) Culling

I’m sure that this is all just fascinating, but it still leaves us with the dilemma
of how to choose whether to cull, and then if we choose to cull, how to set
up our culling. Unfortunately, the number of factors involved turns this more
into an art than a science, and the fi nal test is always going to be frame rate.
However, I’ll supply some rules of thumb to help you out in your choice.

To Cull or Not to Cull
• Do not use culling for small sets (1–100) of billboards.

• Generally, it is better to use culling if the total billboards number at least
two to three times the number of quads (accounts for overhead associated
with algorithm).

• For a large number of objects (hundreds to thousands) spread over a large
area (one quarter of map or more), it is best to use culling.

• Culling will not help much if your objects are not evenly distributed
between the quads.

Selecting a CullResolution
• Select your CullResolution such that the number of objects comes out

to at least two to three times the number of quads.

• Select your CullResolution such that it can evenly divide Outer RadiusX
and OuterRadiusY. You may need to adjust these slightly to assist this
process. Powers of two are nicest, if possible.

Figure 8.25.

Visible feedback for
culling.

Part III Game Elements

324

Testing Efficiency of Culling

As noted above, the best way to test the effi ciency of your culling is to check
your average frame rate. An easy (if possibly slightly inaccurate) way of doing
this is the following.

1. Get out of Mission Editor Mode.

2. Start the console (~).

3. Type: metrics(fps);.

4. Exit the console (~).

5. Walk/fl y around your scene and observe your frame rate. Look for hot
spots where it dips.

The metrics(fps); command will create a GUI in the upper left corner of
the screen, showing frame rate and mspf (milliseconds per frame). This GUI
will be shut off when you start the Mission Editor and does not render prop-
erly while it is running.
 Additionally, after hitting Apply (when setting your culling parameters),
you can get additional data from the console (~). Each time you hit Apply,
something like the following is printed in the console.

fxFoliageReplicator – Lev: 3 PotNodes: 85 Used: 58
 Objs: 656 Time: 0.0016s
fxFoliageReplicator – Approx 0.06Mb allocated.

From this, we can see that the culling level is 3, which means it is a 23×23
(8×8) set of quads. The quads are approximately 58/85, or 68 percent, uti-
lized (i.e., billboards are in 68 percent of the testable nodes). There are a total
of 656 objects (500 billboards and 156 phantom objects due to retries). It takes
about 16 milliseconds to build and render the fxObject. And fi nally, the entire
fxObject takes up about 0.06 MB.

Other Culling Features

In addition to quadculling, there are some other features in the culling param-
eters section, specifi cally the view, fade, and alpha parameters. These param-
eters are not affected by the useCull parameter and are always on.
 ViewDistance and FadeInRegion work together to determine when an
object begins to fade into view and when it is fully faded in. These two param-
eters form concentric spheres around the camera, where View Distance
defi nes the radius of the inner sphere and FadeInRegion + ViewDistance
defi nes the radius of the outer sphere. When an object is at the perimeter of
the outer sphere, it will begin to become visible, fading completely in at the
perimeter of the inner sphere. If you wish your objects to stop rendering at an

 Mission Objects Chapter 8

325

alpha greater than 0.0, you can cause this to happen by setting AlphaCutoff
to the desired alpha, between 0.0 and 1.0. See Table 8.25 and Figure 8.26.
 ViewClosest and FadeOutRegion also work together, but their effect
is the opposite of ViewDistance and FadeInRegion. Conversely, these two
parameters are used to determine when an object begins to fade out of view
and then become fully transparent or not rendered. Again, these two parame-
ters form concentric spheres around the camera, where ViewClosest defi nes
the radius of the inner sphere and FadeOutRegion + ViewClosest defi nes
the radius of the outer sphere. When an object is at the perimeter of the outer
sphere it will begin to fade, fading completely out at the perimeter of the inner
sphere. See Table 8.26 and Figure 8.27.

Billboard’s Distance to Camera Render?

Distance > ViewDistance + FadeInRegion no

ViewDistance < Distance < ViewDistance +
FadeInRegion

yes (if alpha >
AlphaCutoff)

ViewDistance < Distance yes

Figure 8.26.

ViewDistance and FadeInRegion.

Table 8.26.

Using ViewClosest and
FadeOutRegion.

Figure 8.27.

ViewClosest and FadeOutRegion.

Billboard’s Distance to Camera Render?

Distance > ViewClosest + FadeOutRegion yes

ViewClosest < Distance < ViewClosest +
FadeOutRegion

yes (if alpha >
AlphaCutoff)

ViewClosest < Distance no

Table 8.25.

Using ViewDistance
and FadeInRegion.

Part III Game Elements

326

 You may wonder why you would want to do this. Consider the case where
you are in a vehicle. Fading out will keep objects from suddenly being inside
the vehicle.
 Last, I’ll mention GroundAlpha. This parameter can be used to force the
bottom of billboards to have a lower alpha value. This can be used to mod-
erate the harsh intersection between billboards and the ground, giving the
transition a cleaner look. Just set it to a value lower than 1.0 to see its effect.
Adjust it until you are pleased with the end result.

8.9.11 Foliage Animation
Foliage animation is a feature that allows us to make a more interesting and
convincing scene. Consider the case where your foliage is long grass and
fronds. Wouldn’t it be more realistic if the grass and fronds blew in the wind?
Yes, of course it would be, but how do we achieve this look? With foliage
animation, of course!
 Setting SwayOn to true will enable the animation. You may cause your
billboards to sway side-to-side or and front-to-back using the SwayMagSide
and SwayMagFront parameters, respectively. Furthermore, you can add
a little spice to the swaying by allowing the sway times to vary between
MinSwayTime and MaxSwayTime. Last, you may choose to enable SwaySync,
where all objects will sway together in the same way, or you may disable it
and all objects will sway on their own pattern.
 One word of caution. If billboards sway so much that they touch each
other, you will get rendering artifacts.

8.9.12 Foliage Lighting
Foliage lighting is the last parameter group we will discuss. It is another group
that is used to make the scene look more interesting. With these parameters,
you may enable self-lighting (LightOn). Furthermore, if you set LightSync
to false and give different values for MinLuminance and MaxLuminance,
each billboard will be self-lit with its own randomly selected level of light.
 Please note that this lighting can be animated. If all of the above lighting
parameters are set as noted and then you set lightTime to a nonzero value,
each billboard’s lighting will vary over time. lightTime is the time for a fade
in one direction. So, to fade from MaxLuminance to MinLuminance back to
MaxLuminance will require (lightTime * 2) seconds.

8.10 fxSunlight
As previously mentioned, the Sun object controls scene lighting and fxSunlight
provides the ability to have a visible sun(s) in the sky. Upon fi rst inspection,

 Mission Objects Chapter 8

327

this mission object may seem a bit daunting, with its myriad parameters (lerps,
animations, etc), but it is really quite easy to use. You’ve got to hand it to
Melvin May, though. He hardly makes a resource without a “few” options.

8.10.1 fxSunlight Features
fxSunlight has the following features.

• Local fl are. A bitmap representing the lens fl are of a camera.

• Remote fl are. A bitmap representing the sun itself.

• Position/orientation parameters. To make life easy, the fxSunlight param-
eters that control its position are similarly named to those found in the Sun
mission object: namely, azimuth and altitude.

• Animations. Just about every characteristic of the fxSunlight object can be
animated. Furthermore, the animation system is a very fl exible key-based
animation system.

8.10.2 Adding a New fxSunlight
1. Start the Creator.

2. Find and click Mission Objects � environment � fxSunlight.

3. Enter a name for this Sun in the pop-up box. (e.g., "Smiley").

4. Click OK.

At this point, if you look around, you should see the default fxSunlight. Now,
do the following.

5. Switch to the Inspector.

6. Locate your new sun (“Smiley”).

7. Select it.

8.10.3 Changing the Sun Images
fxSunlight has two texture parameters.

• Media � LocalFlareBitmap
• This texture represents a lens-fl are effect.
• If you do not wish to have this effect, just clear this parameter.
• This texture will render if it is in line of sight. If it is blocked by terrain

or an object, it stops rendering.
• It is best to use a texture with an alpha layer.

• Media � RemoteFlareBitmap
• This texture represents the sun itself.
• It, too, can be disabled, just by clearing this parameter.

Part III Game Elements

328

• Unlike the local fl are, this texture renders all the time, although the ter-
rain and objects can occlude it.

• Again, it is best to use a texture with an alpha layer.

Note that you should make both textures the same way; that is, if one has an
alpha layer, the second one should too.

8.10.4 Positioning the Sun (Render Position)
Unlike most mission objects, the standard position, rotation, and scale are
meaningless and do not control where the fxSunlight object is rendered. How-
ever, there is a marker at Transform � position. I would just select a value
for this such that the marker does not get in your way while editing.
 Render position, when it is not being animated, is based on the same two
concepts as those used for the Sun object, azimuth and elevation. If you do
not understand these concepts, I suggest you quickly reread the Sun object
description in Section 8.5.

• SunOrbit � SunAzimuth
• This controls the horizontal angle of the fxSunlight effect’s bearing about

the z-axis.
• Legal values: [0, 360).
• Make this the same as Sun � Misc � azimuth.

• SunOrbit � SunElevation
• In simple terms, this controls the elevation, but in reality, this is a polar

angle. Again, if you don’t understand this, see the Sun object description
in Section 8.5.

• Legal values: [–90, 90].
• Make this the same as Sun � Misc � elevation.

8.10.5 Changing Lens Flare Effects
You can modify various effects, such as the following.

• LensFlare � FlareTP. If this is not checked, the lens fl are will not ren-
der in 3rd POV.

• LensFlare � Colour (r g b i)
• If you fi nd a white lens fl are boring, you can give it a different fi xed

color with this parameter.
• Each individual value can be between 0.0 and 1.0.
• Intensity has no effect.

 Mission Objects Chapter 8

329

• LensFlare � Brightness
• You can set a fi xed brightness with this parameter.
• Legal values: [0.0, 1.0].

• LensFlare � FlareSize
• This parameter can be used to scale the fl are size to your preference.
• This modifi es the size of the sun, too.
• Legal values: (0.0, inf).

• LensFlare � FadeTime
• This parameter determines how long it takes the lens fl are to fade away

when it is occluded. Remember, occlusion turns it off.
• Legal values: [0.0, inf).

• LensFlare � BlendMode. Understand that the fl are is rendered, meaning
it needs to be blended with the prior contents of the frame buffer. To accom-
modate various effects, fxSunlight supports three blending modes [0 .. 2].
• 0. glBlendFunc(GL_SRC_ALPHA, GL_ONE)

Flare <r g b a> replaces frame buffer <r g b a>.
• 1. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

Flare <r g b a> is linearly blended with the frame buffer <r g b a>.
• 2. glBlendFunc(GL_ONE, GL_ONE)

Flare <r g b a> is added to frame buffer <r g b a>.

 If you stopped right now, you would know 90 percent of what you need
to know about the fxSunlight object. However, if you want to do some really
cool things, like animate the color, brightness, and size, or if you want it to
rotate and to move around over time, then continue reading.

8.10.6 Animating the Sun and Lens Flare
Now that we have an fxSunlight object set up, we can make it more interest-
ing by animating some of the sun and lens fl are effects. However, before we
take a brief tour of the fxSunlight animations, let’s discuss some common
animation parameters.

Animation Overview

The fxSunlight animations are all similar in nature. So, we’ll discuss how they
work in general and then limit our discussion to specifi cs for each in the fol-
lowing pages.
 Animations provide the parameters in Table 8.27. Tables 8.28–8.33 list
the specifi c parameters for color, brightness, rotation, size, azimuth, and
elevation, respectively.

Part III Game Elements

330

Generic Parameter Purpose

Enable Option The names of these fields vary, but they all have the same
purpose. They are Boolean values enabling or disabling
animation for this fxSunlight feature.

LERP Enable The LERP enables are Boolean values, enabling linearly
interpolated (smooth) vs. noninterpolated (stepped) transitions.

Single Key Enable Only color animation supports this feature. If this Boolean field
is set to true, the colour animation will use its corresponding
RedKey for all colour animations.

Min and Max Values
(Extents)

These values define the outer limits of the animation range for
this particular feature. Their types are feature-specific.

Key String(s) Each animation has at least one key string, and some may have
more. These keys are used for determining how the animation
transitions occur.
Key strings contain the letters a through z, where a is the
beginning of a sequence and z is the end.

Animation Time This floating-point value is used to define how long the
animation takes to play in seconds and fractions of a second.
This time is the round-trip time, i.e., Begin � End � Begin.

Generic Parameter Specific Parameter

Enable Option AnimColour

LERP Enable LerpColour

Single Key Enable SingleColourKeys

Min and Max Values (Extents) MinColour, MaxColour
(four-element floating-point vector)

Key String(s) RedKeys, BlueKeys, GreenKeys

Animation Time ColourTime

Generic Parameter Specific Parameter

Enable Option AnimBrightness

LERP Enable LerpBrightness

Min and Max Values (Extents) MinBrightness, MaxBrightness (floating-point)

Key String(s) BrightnessKeys

Animation Time BrightnessTime

Table 8.27.

Animation parameters.

Table 8.28.

Color animation.

Table 8.29.

Brightness animation.

 Mission Objects Chapter 8

331

Generic Parameter Specific Parameter

Enable Option AnimRotation

LERP Enable LerpRotation

Min and Max Values (Extents) MinRotation, MaxRotation (floating-point)

Key String(s) RotationKeys

Animation Time RotationTime

Generic Parameter Specific Parameter

Enable Option AnimSize

LERP Enable LerpSize

Min and Max Values (Extents) MinSize, MaxSize (floating-point)

Key String(s) SizeKeys

Animation Time SizeTime

Generic Parameter Specific Parameter

Enable Option AnimAzimuth

LERP Enable LerpAzimuth

Min and Max Values (Extents) MinAzimuth, MaxAzimuth (floating-point)

Key String(s) AzimuthKeys

Animation Time AzimuthTime

Generic Parameter Specific Parameter

Enable Option AnimElevation

LERP Enable LerpElevation

Min and Max Values (Extents) MinElevation, MaxElevation (floating-point)

Key String(s) ElevationKeys

Animation Time ElevationTime

Table 8.30.

Rotation animation.

Table 8.31.

Size animation.

Table 8.32.

Azimuth animation.

Table 8.33.

Elevation animation.

Part III Game Elements

332

8.10.7 Maze Runner Lesson #13 (10 Percent
 Step)— Celestial Bodies
If you are building the Maze Runner game while you read this guide, we
are now going to create some celestial bodies to go with our game. I have to
apologize, but the celestial bodies we will implement are just too darn big (in
terms of code) to show in the book. Instead, I will summarize their behaviors
here and allow you to look at the scripts yourself.

Loading the Celestial Bodies

The celestial bodies example as been created for you. To add it to the Maze
Runner mission, follow these steps:

1. Open the fi le “\MazeRunner\prototype\data\missions\mazerunner.mis”.

2. Open the fi le “\MazeRunner\Lesson_013\CelestialBodies.cs” and copy the
contents into your copy buffer (like you are doing a copy-paste operation).

3. Paste the data you just copied into the “mazerunner.mis” fi le before the
following lines:

};
//--- OBJECT WRITE END ---

Now, you can restart your Maze Runner prototype, load the Maze Runner mis-
sion, and you should see three celestial bodies in the sky.

Dying Star

The fi rst celestial body is the “Dying Star.” This celestial body is designed to
represent a sun in our game-world solar system. This sun is approaching the
end of its life and has shifted from yellow to red. To create the effect of a sun
with moving sunspots, I have animated the brightness, the coloration, the
size, and the rotation. Together with the image we are using for the sun, it
may give the illusion of an active sun surface.

Far Planet

The next celestial body is the “Far Planet.” This celestial body is designed to
represent a distant planet in our game-world solar system. It is stationary rela-
tive to the planet we are on.

Near Moon

The last celestial body is the “Near Moon.” This celestial body is designed to
represent a moon rotating about our planet. Its azimuth changes slowly over
time; during this transition, it rises and falls in the sky.

 Mission Objects Chapter 8

333

8.11 Physical Zones (P-zones)
Physical zones are one of those simple, “Gee whiz, ain’t that cool” kinds of
constructs. In fact, of all the standard Torque mission objects, these are prob-
ably my favorite. Physical Zones, or p-zones for short, allow you to defi ne
areas in your game with modifi ed gravity and/or velocity modifi ers and/or an
applied force. First, we will cover the very few parameters p-zones have, and
then we’ll leap right in.

8.11.1 velocityMod
The velocityMod attribute does pretty much what it sounds like it will do.
Let’s say we have a p-zone with a velocityMod of 2. If the player enters the
p-zone with a velocity of 10.0 world units per
second, that player will leave the zone with a
velocity of 20.0 world units per second. Actu-
ally, the velocity modifi cation is instantaneous,
occurring directly after entering the p-zone (Fig-
ure 8.28). It should be noted that there are some
issues with extraordinarily high velocityMod values. If the multiplier is too
high, the engine can freeze for long periods or even crash. So, my suggestion
is to keep the values low while you experiment. The upper bounds of [-40.0,
40.0] are really too high for most practical uses.

8.11.2 gravityMod
The gravityMod attribute specifi es a local (area inside p-zone) gravity multi-
plier. In other words, if gravityMod is –2 and the game gravity is set to 1.0,
then when the player enters the p-zone, the player will fl oat upward (Figure
8.29). If the player has enough forward velocity upon entering the p-zone, the
player will end up “skipping” across the p-zone until the player falls off the
end or encounters an obstacle. Be careful with 0 or negative gravity zones. If
the player gets stuck with his feet off the ground, he will be unable to move.
Again, high values can cause problems for the engine. Caution is the word.

Figure 8.29.

Example of gravityMod.

Figure 8.28.

Example of
velocityMod.

Part III Game Elements

334

8.11.3 appliedForce
Finally, we have the appliedForce vector. This attribute allows you to create
an area where an invisible force will be applied to the character. This force can
point in an arbitrary direction with a variable strength (Figure 8.30).
 Table 8.34 shows values and their effects on the character while on a fl at
surface.

0–99 100–399 400–1999 5000 40000

Practically no
movement.

Sorta slides
along.

Forced walk Forced run Can you say
cannon?

8.11.4 Maze Runner Lesson #14 (90 Percent
 Step)— Teleport Stopper

When the player runs into a teleport station, we’d like the avatar to be
stopped. To do this, we can use a p-zone set up as follows.

%pzone = new PhysicalZone() {
 position = vector Add(“1 -1 0” , %Obj. getPosition());
 rotation = “1 0 0 0”;
 scale = “2 2 4”;
 velocityMod = “0”;
 gravityMod = “1”;
 appliedForce = “0 0 0”;
 polyhedron = “0 0 0 1 0 0 0 -1 0 0 0 1”;

};

As can be seen, this code is meant to be script-driven; that is, we’ll be substi-
tuting values in for position when we drop the object into the world.
 The key things to notice are the following.

1. The position is offset by a vector (we haven’t discussed vector Add()
yet, but it adds two vectors and returns the result). The reason for this is
that the polygon used to defi ne the polyhedron fi eld is offset. Its corner is
at the origin, and therefore the cube is not centered. This can be corrected
either by changing the polyhedron values or by offsetting while placing.
I chose the latter.

2. velocityMod is set to zero. This means that shapes entering the p-zone
should stop moving.

That is pretty much all for now. Later (Lesson #15, “Teleport Triggers”), we’ll
use this code in our teleporter-building scripts.

Table 8.34

Effects of appliedForce
values.

Figure 8.30.

Example of
appliedForce.

 Mission Objects Chapter 8

335

8.12 fxLight
This is another one of those fun mission objects provided by Melvin May. It is
similar to the fxSunlight object, but instead of representing a sun, it is used to
represent in-game lights. Unlike fxSunlight, this object casts light in the scene.
It renders a representation of the light-source fl are and casts light on terrain
and other objects.
 One major difference between fxLight and fxSunlight is that the fxLight
object requires a datablock.

8.12.1 fxLight New Features
fxLight has the following features.

• Offset. fxLight objects can animate their position along a vector. This vec-
tor is relative to the fxLight’s placement position.

• Radius. fxLight objects light the area around them in a sphere. The radius
parameters control the size of this sphere.

• Size. fxLight objects, like fxSunlight objects, have a fl are. However, because
the distance of fxLights is near, versus the nearly infi nite distance of fxSun-
light objects, it is more realistic for their fl are sizes to vary based on dis-
tance. The size fi elds enable this effect.

8.12.2 fxLight Sample
The sample below can be used to produce a simple light that varies between
dark purple and light purple over a three-second period. The light from this
object will extend up to fi ve world units from the center. To mark the location
of the light center, the fl are is enabled and uses the fi le “corona.png” found
with the GPGT Lesson Kit (Figure 8.31).

datablock fxLightData(TestfxLight0) {
 FlareOn = true;
 FlareBitmap = “~/data/GPGTBase/particletextures/corona”;
 LightRadius = “5”;
 AnimColour = true;
 MinColour = “0.25 0.0 0.25”;
 MaxColour = “1.0 0.5 1.0”;
 ColourTime = 3.0;
};

Figure 8.31.

Flare texture “corona.png.”

Part III Game Elements

336

8.13 Paths and Markers
Path mission objects are used to constrain the motion of objects, such as AI
players, cameras, and shapes. They may contain a limited number of markers
(more on this below). As their name would imply, markers mark a point on a
path. Additionally, they supply some information that may or may not be used
by objects that follow the path.

8.13.1 Path Object
The Path object is a simple container, derived from the SimGroup class. The
only new features added to Path, which are accessible from script, are the
isLooping fi eld and the getPathID() method.

isLooping
This fi eld is an indicator used by PathCamera objects to determine if a path is a
closed loop (isLooping = true) or open (isLooping = false). This affects
the way the PathCamera’s internal algorithms consume (follow) the path.

 getPathID()
In TGE, interiors (buildings, etc.) can be created with paths embedded in
them. These special interiors (pathedInterior) need a means of tracking their
paths. Thus, beyond having a unique sim ID, a path may have a path ID. Nor-
mal paths, those we put in the world, do not have this.

Limited Number Of Markers?

I noted above that there may be a limit on the number of markers a path can
contain. This is not a limit imposed by the path but by the objects that use
the path. Due to they way these objects transmit their data across the network
(between server and client), paths containing 40 or more markers may cause
issues—specifi cally an overrun in the number of bits a packet may contain. I
only mention this here so those who are experimenting with pathedCameras,
or the PathShape GG resource (qid=4849) be aware that you may hit a snag
using 40 or more markers in any one path.
 Beyond this, you should feel free to use as many markers as you want.

8.13.2 Marker Object
The Marker object is the little beastie that does most of the work defi ning how
our paths will behave. The fi elds of a marker defi ne the following.

• position. Position of this marker.

 Mission Objects Chapter 8

337

• rotation. Rotation of this marker.

• scale. Not used.

• seqNum. Sequence in path this marker represents. Valid sequence numbers
are 0 .. NumMarkers – 1.

• type (Normal, Position Only, Kink)
• Normal. The object hits this point with both position and rotation.
• Position. The object only uses the position information during interpola-

tion and retains its current rotation.
• Kink. This point in the path is discontinuous.

• msToNext. Time to next point in path.

• SmoothingType

• Linear. Changes in path direction are abrupt (straight line).
• Spline. Changes in path direction are smooth (curved).

• Position of next “target” on path. This is determined by the position of the
marker, and its seqNum (sequence number).
• seqNum. These values must start at 0 and continue to NumMarkers –

1.

Wow! All that sounds pretty techy and cool. Unfortunately, most of this infor-
mation is just a hint. The camera is the only object that cares
about all those parameters. If you want to have an AI charac-
ter care about how smooth a path is, you’ll have to write the
appropriate scripts and examine the contents of these fi elds
yourself. For most simplistic pathing purposes (an AI player
following a path, or a shape following a path), a SimGroup of
markers will be suffi cient. You need not specify the remaining information,
unless you actually care to use it in your scripts.

Proper Creation of Path

We’re not going to be doing any work with paths in this book since paths are
mainly used for camera pathing and AI pathing, which we don’t discuss here.
However, we’ll talk briefl y about placing a path.
 Placing a path might seem a bit confusing at fi rst, but just follow these
simple steps.

1. Add a Path object. When you add a path object, it will show up in the
Inspector tree, but not in the world. Don’t worry; it’s just a container (Fig-
ure 8.32).

2. Select our new path marker as the instant group (Figure 8.33).

3. Add as many path markers as you need (Figure 8.34).

Figure 8.32.

Figure 8.33.

Figure 8.34.

Part III Game Elements

338

In Figure 8.35, I added four nodes. The fi rst image shows the path with all
nodes using the spline smoothing type. The second shows the same path
using linear smoothing type. Notice (in the second image) how the turn points
are sharp and the lines between nodes are straight.

8.14 Triggers
TGE Trigger objects are rectangular regions of space that react to the presence
of other objects within that space. In versions prior to 1.4, only players and
vehicles tripped a trigger. Now, items do also.
 Triggers track three basic events:

• Enter. Something entered the trigger.

• Exit. Something exited the trigger.

• Inside. Something is inside the trigger region.

8.14.1 Placing a Trigger
To place a trigger, we simply open
the mission we want to contain this
trigger, move to the right location,
and start the Creator. Then, fi nd the
trigger object under Mission Objects
� Mission � Trigger and select it.
The object builder dialog will pop
up and offer us some choices (Fig-
ure 8.36).

Spline Smoothing Linear Smoothing

Figure 8.35.

Path with four nodes.

Figure 8.36.

Object builder dialog.

 Mission Objects Chapter 8

339

 I usually just give it a name and press OK, but if you are using a custom
datablock or if you wish to specify the Polyhedron dimensions numerically,
this is your opportunity. I will normally resize, rotate, and translate the trigger
manually.

8.14.2 Trigger Scripting
As noted above, the behavior of triggers is controlled by scripts. The triggers
themselves require a datablock to be built, and subsequently, if we want to
interact with them, we must provide callbacks.

Trigger Datablocks

The trigger datablock specifi es exactly one fi eld: tickPeriodMS. This param-
eter tells the trigger how many times to wake up and check for objects inside
the trigger region.

datablock TriggerData(defaultTrigger) {
 tickPeriodMS = 100; // Wake up ~ten times per second
};

Trigger Callbacks

Once we’ve created our datablock, we need to specify what the trigger does
when triggered. As we discussed above, a trigger has three basic triggering
actions.

• Enter. Something entered the trigger. When this happens, the trigger’s
 onEnterTrigger() callback is called.

function TriggerData:: onEnterTrigger(%TriggerDB ,
 %Trigger , %EnterObj) {
 // Do something
};

• Exit. Something exited the trigger. When this happens, the trigger’s
 onLeave Trigger() callback is called

function TriggerData:: onLeaveTrigger(%TriggerDB ,
 %Trigger , %LeaveObj) {
 // Do something
};

• Inside. Something is inside the trigger region. Every tickPeriodMS, the
trigger will wake up and check to see if there is something in this region. If
something is inside the trigger, the onTickTrigger() callback is called.

Part III Game Elements

340

function TriggerData:: onTickTrigger(%TriggerDB ,
 %Trigger , %InsideObj) {
 // Do something
};

 Group Triggers

Group triggering is a method whereby we associate objects with a trigger and
these objects are triggered when the trigger is activated (triggered). For this to
work, two conditions must be satisfi ed.

1. Any objects to be group triggered and the trigger that triggers them must
be contained within the same SimGroup/SimSet; i.e., if we looked at the
Inspector, our object tree would look something like Figure 8.37.

2. Each object that is to be triggered must specify an onTrigger() and/or an
 onTriggerTick() callback.

function ShapeBaseData:: onTrigger(%DB , %Obj ,
 %TriggerState) {
 // Do something
};
function ShapeBaseData:: onTriggerTick(%DB , %Obj) {
 // Do something
};

Now, each object in the SimGroup/SimSet will get an onTrigger() event
when a player or vehicle enters or exits the trigger and an onTriggerTick()
event every tickPeriodMS while a player or vehicle is inside the trigger.

8.14.3 Maze Runner Lesson #15 (90 Percent
 Step)— Teleport Triggers
In this lesson, we will examine the scripts needed to teleport the player from
one teleport station to another. We will also look at the code that combines
the prior parts of the teleport trigger components.

Trigger Datablocks

We could in theory use the DefaultTrigger datablock that comes with the kit,
but it would be better to defi ne a new one so we can guarantee that we have
a unique namespace with which to scope our methods and callbacks. So, we
will defi ne our datablock as follows.

datablock TriggerData(TeleportTrigger) {
 tickPeriodMS = 100;
};

Figure 8.37.

Trigger and shapes stored
In same SimGroup.

 Mission Objects Chapter 8

341

Teleport Scripts

Later, when we are writing our level-building scripts (Lesson #17 (Section
9.5.10)), it will be nice if we already have a method for attaching the particle
effects and the physical zone to our teleporter triggers. With a little preplan-
ning, this won’t be that hard to do.

Teleport Trigger Planning

We haven’t discussed it much yet, but the user (and we) will be able to defi ne
new levels by creating simple text fi les. These fi les will have “maps” of the
level in them made up of various numbers and letters, representing the posi-
tions of level pieces like blocks, coins, and teleporters.
 Knowing that our teleporters will be associated with letters in this fi le, we
can plan on the teleporter trigger being a sort of parent. We will read the level
fi le, create a trigger where it tells us to, and store information in the trigger
that tells the trigger which of the three types of teleporters it is. Recall (assum-
ing you jumped ahead to Chapter 14) that there are three types of teleporters
(all of them function the same, but this allows us to have distinct sets that are
connected to each other).
 So, let’s just assume that the letters used to represent teleporters are going
to be x, y, and z. Furthermore, let’s assume that the trigger is created fi rst and
then the type is stored in a fi eld named type. Lastly, we will assume that the
level loader will then call our teleport-builder script to add a particle emitter
node and a p-zone in the same position as the trigger.

Teleport Trigger Implementation

All of that planning and assuming gets us some code like the following.

function Trigger::AttachEffect(%Obj) {
 echo(“\c5 Added Teleport Trigger”);

 %emitter[X] = “TeleportStation_PED0”;
 %emitter[Y] = “TeleportStation_PED1”;
 %emitter[Z] = “TeleportStation_PED2”;

 %effect = new ParticleEmitterNode() {
 position = vectorSub(%Obj. getWorldBoxCenter(), “0 0 2”);
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 dataBlock = “basePEND”;
 emitter = %emitter[%Obj.type];
 //emitter = “TeleportStation_PED0”;
 velocity = “1”;
 };

Part III Game Elements

342

 %Obj.myEffect = %effect;

 %Pzone = new PhysicalZone() {
 position = vector Add(“1 -1 0” , %Obj. getPosition());
 rotation = “1 0 0 0”;
 scale = “2 2 4”;
 velocityMod = “0”;
 gravityMod = “1”;
 appliedForce = “0 0 0”;
 polyhedron = “0.0000000 0.0000000 0.0000000 1.0000000
 0.0000000 0.0000000 0.0000000 -1.0000000
 0.0000000 0.0000000 0.0000000 1.0000000”;
 };
 %Obj.myPzone = %Pzone;
}

Basically, this function creates an array of particle emitter datablock names
indexed by x, y, and z. Then, it creates a particle emitter in the position of
the trigger (ID passed as argument to this function) and looks at the stored
type to dereference the datablock array, getting the correct datablock name to
match the type.
 Next, the function creates a p-zone (remembering to offset it a little) in
the same position as the trigger.
 After this function is fi nished executing, there will be a trigger, a particle
emitter node, and a p-zone all in the same location. Voilà! A teleporter station.
 So, how do we make the teleporter “go”? Let’s do that next.

Trigger Callbacks

To make the teleporters do work for us, we need to implement the onEnter-
Trigger() and onLeaveTrigger() callbacks.
 Instead of showing you the code (which you can just load and examine),
I will present the methodology used to teleport correctly.

 onEnterTrigger()

This callback has the lion’s share of the work. Initially, all triggers will start
off active. When the avatar runs into a teleporter trigger, that trigger executes
the following steps.

1. Check to see if it is disabled. If so, the callback aborts.

2. Enable the p-zone it owns (to be sure the avatar gets stopped).

3. Check for the existence of other triggers. When we create triggers in our
level-building scripts, all triggers are added to one of three trigger groups

 Mission Objects Chapter 8

343

based on their type. Then, if we recall that all SimObject children can deter-
mine what group (if any) they are stored in, it will become clear that each
trigger can get the group it belongs in and choose a trigger from that group
until it fi nds one that is not itself.

4. Disable the p-zone on the target trigger (so player is not stopped on exiting
that trigger).

5. Disable the target trigger (to prevent teleport loops).

6. Do some fading effects and schedule a setTransform() call, moving the
avatar to the location of the target trigger.

Once the avatar arrives at the target trigger, it has to leave that trigger to
reactivate it. Also note that the setTransform() call moves the avatar and
causes the current trigger to call its own onLeaveTrigger() callback, thus
reactivating it.

 onLeaveTrigger()

This callback has very little to do. Basically, when the avatar leaves the trigger
area, the trigger will be told to re-enable the trigger and to reactivate()
the p-zone.

Tricky Bits

While examining the scripts, you may notice a couple of bits of code that we
have not yet discussed. The fi rst of these is a call to getRandomObject().
It is being called on a SimGroup. This is a method I have provided in the
included “systems” script fi les (loaded when we set up our environment).
This method simply iterates over a SimSet (or child) and randomly selects an
entry from the set, returning the ID of the selection.

... %Trigger. getGroup().getRandomObject() ...

 The second bit involves the use of the function getWords(). In this line
of code, we’re replacing the position part of the player’s transform with a new
position while retaining the player’s orientation information. This is done by
getting the “words” representing the orientation. As you will learn later, a
word is any string, and words are separated by spaces. Thus, we can look at
the transform as a string containing seven words. Using getWords(), we sim-
ply get the top four words and then paste them onto a new position matrix,
making a new transform.

%newTransform = %newPos SPC getWords(%oldTransform, 3 , 6);

Part III Game Elements

344

Trigger Cleanup

It is also worth mentioning that, when the trigger is destroyed, it will call its
on Remove() callback, which will delete the effects attached to this trigger.
Nice and clean.

function TeleportTrigger::on Remove(%DB, %Obj) {
 if(isObject(%Obj.myEffect))
 %Obj.myEffect. delete();

 if(isObject(%Obj.myP-zone))
 %Obj.myPzone. delete();
}

8.15 Mission Objects Summary
In this mega-chapter, we have completely examined 14 major mission-
placeable objects.

• Terrains. We learned about how the terrain is a 2 kiloworld unit×2 kilo-
world unit square that tiles infi nitely in the world plane.

• Water Blocks. We learned how to represent liquid bodies using this object
and how to interpret the myriad features and special effects it provides.

• Sky. We learned how this object is responsible for the sky box, clouds,
general fog, up to three fog bands, and general visible distance limits.

• Sun. We learned that this object controls the scene lighting. We learned to
control the source of the scene lighting through azimuth and elevation
and the coloration and intensity of scene lighting through the color and
ambient fi elds.

• Precipitation. We learned to create a “rain box” that can be used for a
whole lot more than just rain.

• Lightning. We learned about both generated lightning and textured light-
ning.

• Audio Emitters. This meaty topic took a while to cover, but we came to
understand that the versatile audio emitter object can be placed in the
scene to produce 2D and 3D sounds. We learned all about general gain
equations, looping and loop gaps, the 3D sounds zones (inner cone, outer
cone, and outside volume), 3D gain distances (reference distance and max
distance), and how to interpret the visual feedback this object provides
while in debug mode.

• Particle Emitters. Following one meaty topic with another, we jumped into
a discussion of the particle system and learned to differentiate a Particle-
EmitterNodeData (PEND) from a ParticleEmitterData (PED) from a Particle-
Data (PD), as well as about the features each of these classes provide.

 Mission Objects Chapter 8

345

• fxShapeReplicators and fxFoliageReplicators. We had fun discussing
placement rules, the concepts of seeds and counts, how to select restric-
tions and restraints, how to enable or disable shape interactions, and how
to set up the best culling for our needs.

• fxSunlight. We learned that this object provides the ability to render celes-
tial bodies and supports a humongous set of features.

• Physical Zones. We saw that a lot of fun can be had combining the
velocity Mod, gravityMod, and appliedForce fi elds of these objects.

• fxLight. We covered this dynamic light object briefl y.

• Paths and Markers. Here we examined how to create proper paths with
these two classes and what their individual features mean and do.

• Triggers. Lastly, we discussed one of the most important mission objects,
the trigger, which enables a wide variety of interactions with its individual
and group triggering features.

347

Game Setup Scripting
Chapter 9

There are several scripting tasks that we will deal with in just about every
game we make. This chapter gives an overview of the tasks related to setting
up and maintaining a game. It will familiarize you with the fundamental Sim
scripting classes and then examine I/O scripting. The following specifi c topics
are covered in this chapter.

• SimSet and SimGroup. These are two container classes acting as base
classes to the GuiControls and to the ScriptObject and ScriptGroup classes,
respectively.

• ScriptObject and ScriptGroup. These two classes are used to create
scripted classes. These special classes give us the ability to associate fi elds
and methods with scripted classes, thus allowing us to neatly compartmen-
talize our scripts.

• Device Inputs and Action Maps. We will discuss how to build and use
action maps to capture and redirect device inputs.

• File I/O. Here we will review the use of the fi le I/O classes.

• Compiling and Executing Files. At some time, we’ll want to compile and
execute scripts from fi les, so we’ll talk about this briefl y.

9.1 SimSet
SimSet is the root class in a hierarchy of SimObject containers. It is respon-
sible for providing the base functionality and structure for all subsequent
SimObject containers. It (and its children) should be treated as a traditional
queue.
 A SimSet is designed to hold a list of handles to SimObjects (or children
of SimObjects). The SimObject is a fundamental class upon which all other
objects that we will deal with are based.
 Any one SimSet may contain only one instance of a handle to an existing
SimObject, but a SimObject may be tracked by any number of SimSets; that
is, no matter how many times we add() a handle to a SimSet, it is only stored
there once, but we can add the handle to as many SimSets as we like.

//ts04(a);
%S0 = new SimObject();
%Set0 = new SimSet();
%Set1 = new SimSet();

Remember, when you
see a code snippet
with a statement like:
\\ts04(a);, this
means you can run
the GPGT Lesson Kit,
start either of the
included missions, and
then in the console
(~) you may type:
\\ts04(a); to run

the sample.

Part III Game Elements

348

%Set0. add(%S0);
%Set0. add(%S0);
 echo(“Set 0 contains ”, %Set0. getCount() , “ objects.”);
%Set1. add(%S0);
%Set1. add(%Set0);
 echo(“Set 1 contains ”, %Set1. getCount() , “ objects.”);

The above code produces the following output.

Set 0 contains 1 objects.
Set 1 contains 2 objects.

 SimSet containers do not assume responsibility for their contents; that is,
if we delete a SimSet, the handles and therefore the objects they represent are
not deleted. However, when an object is deleted, it is automatically removed
from all SimSets.

//ts04(b);
%Set1. delete(); // Self delete
 echo(“Set 0 contains “, %Set0. getCount() , “ objects.”);

Set1 is now deleted, but S0 and Set0 still exist, so the above code produces
the following output.

Set 0 contains 1 objects.

 Because SimSets behave like queues, they have a front and a back. Objects
added to a queue are added to the back of the queue. Furthermore, the front of
the queue is index 0, and the back of the queue is index getCount() – 1.

//ts04(c);
%S1 = new SimObject();
%S2 = new SimObject();
%Set2 = new SimSet();
%Set2. add(%S1);
%Set2. add(%S2);
 echo(“The ID of S1 is: ”, %S1. getID());
 echo(“The ID of S2 is: ”, %S2. getID());
 echo(“Object at front of Set 2 is ”, %Set2. getObject(0));
 echo(“Object at back of Set 2 is ”, %Set2. getObject(1));

The above code produces the following output (IDs may vary).

 Game Setup Scripting Chapter 9

349

The ID of S1 is: 2391
The ID of S2 is: 2392
Object at front of Set 2 is 2391
Object at back of Set 2 is 2392

 We can manipulate the position of objects directly as long as we have a
handle to the SimSet and the object.

//ts04(d);
 echo(“The ID of S1 is: ”, %S1. getID());
 echo(“The ID of S2 is: ”, %S2. getID());
%Set2. bringToFront(%S2);
 echo(“Object at front of Set 2 is ”, %Set2. getObject(0));
 echo(“Object at back of Set 2 is ”, %Set2. getObject(1));
%Set2. pushToBack(%S2);
 echo(“Object at front of Set 2 is ”, %Set2. getObject(0));
 echo(“Object at back of Set 2 is ”, %Set2. getObject(1));

The above code produces the following output (IDs may vary).

The ID of S1 is: 2409
The ID of S2 is: 2410
Object at front of Set 2 is 2410
Object at back of Set 2 is 2409
Object at front of Set 2 is 2409
Object at back of Set 2 is 2410

 We can remove objects from our list at any time. This does not delete
them.

//ts04(e);
%Set0. remove(%S0); // Take %S0 our of SimSet 1
 echo(“Set 0 contains ”, %Set0. getCount() , “ objects.”);

The above code produces the following output.

Set 0 contains 0 objects.

 We can also empty a SimSet in one fell swoop.

//ts04(f);
 echo(“Set 2 contains ”, %Set2. getCount() , “ objects.”);

Part III Game Elements

350

%Set2. clear(); // Remove all objects from SimSet 2
 echo(“Set 2 contains ”, %Set2. getCount() , “ objects.”);

The above code produces the following output.

Set 2 contains 2 objects.
Set 2 contains 0 objects.

 Lastly, for debug purposes, a function is provided to dump the contents of
a SimSet to the console:

//ts04(g);
%S3 = new SimObject();
%S4 = new SimObject();
 echo(“The ID of S3 is: ”, %S3. getID());
 echo(“The ID of S4 is: ”, %S4. getID());
%Set3 = new SimSet();
%Set3. add(%S3);
%Set3. add(%S4);
%Set3. listObjects();

The above code produces this output (object IDs may be different):

The ID of S3 is: 2418
The ID of S4 is: 2419
 2418: SimObject
 2419: SimObject

 A SimSet cannot hold a reference to itself. The reason for that is explained
in the next section.

9.2 SimGroup
A SimGroup is similar to a SimSet with a few exceptions. Any one SimObject
may only be tracked in one SimGroup at a time. It can simultaneously be in
any number of SimSets, but if we add a SimObject to a SimGroup when it is
already present in another SimGroup, the reference to the SimObject will be
removed from the prior SimGroup automatically.

//ts05(a);
%S0 = new SimObject();
%Group0 = new SimGroup();
%Group1 = new SimGroup();
%Set0 = new SimSet();

 Game Setup Scripting Chapter 9

351

%Set0. add(%S0);
%Group0. add(%S0);
 echo(“Set 0 contains ”, %Set0. getCount() , “ objects.”);
 echo(“Group 0 contains ”, %Group0. getCount() , “ objects.”);
 echo(“Group 1 contains ”, %Group1. getCount() , “ objects.”);
%Group1. add(%S0);
 echo(“Set 0 contains ”, %Set0. getCount() , “ objects.”);
 echo(“Group 0 contains ”, %Group0. getCount() , “ objects.”);
 echo(“Group 1 contains ”, %Group1. getCount() , “ objects.”);

S0 can only be in one SimGroup at a time, but it can be in both a SimSet and
a SimGroup at the same time, as the following output shows.

Set 0 contains 1 objects.
Group 0 contains 1 objects.
Group 1 contains 0 objects.
Set 0 contains 1 objects.
Group 0 contains 0 objects.
Group 1 contains 1 objects.

 Second, and of great importance, if we delete a SimGroup, this causes the
automatic deletion of all objects in the SimGroup. This is the reason SimSets
may not reference themselves (SimGroup is a child of SimSet).

//ts05(b);
 echo(“Set 0 contains ”, %Set0. getCount() , “ objects.”);
%Group1. delete();
 // Self deletes, and automatically deletes %S0
 echo(“Set 0 contains ”, %Set0. getCount() , “ objects.”);

By deleting Group1, which contained S0, we have also deleted S0, thus
removing it from Set0, as can be shown by the following output.

Set 0 contains 1 objects.
Set 0 contains 0 objects.

9.3 ScriptObjects and ScriptGroups
When I fi rst ran across these two classes, I was a bit puzzled and didn’t see
the value of having a class dedicated to scripting. I mean, hey, we have vari-
ables and functions. We’ve got packages. What else do we need? Then, little
by little, I experimented and soon found that these two classes are practically
indispensable.

Part III Game Elements

352

9.3.1 ScriptObject
The ScriptObject is a noncontainer class provided to allow the creation of
TorqueScript-only classes. It is derived from the SimObject (not SimSet) class.
This class provides the ability to group data fi elds and to associate the class with
one or more namespaces. The general syntax of a ScriptObject is as follows.

// In TorqueScript
%handle = new ScriptObject([Name]) {
 [class = AClassName;]
 [superClass = AnotherClassName;]

 [dynamic_field0 = InitialValue0;]
 ...
 [dynamic_fieldN = InitialValueN;]
};

This syntax is simpler than it looks. Let’s break it down in Table 9.1.

Syntax Element Description

%handle The variable where the object’s handle will be stored.

Name
(optional)

Any expression evaluating to a string, which will be used as the
object’s name.

class
 (optional)

A special field that tells the Torque engine to insert AClassName
into the namespace calling sequence for this object between Name
and ScriptObject.

superClass
(optional)

A special field that tells the Torque engine to insert
AnotherClassName into the namespace calling sequence for
this object between Name and ScriptObject.

dynamic_fieldN
(optional)

As with any other object created in script, you may add as many
dynamic fields as you wish.

Note that, if you use both class and superClass, the object’s calling
sequence will be the following.

Name � AClassName � AnotherClassName � ScriptObject � SimObject

9.3.2 ScriptGroup
The ScriptGroup class is a container class that provides all the same features as
a ScriptObject with one minor difference—it is derived from SimGroup instead
of SimObject. Thus, objects created from this class have all the behaviors of a
ScriptObject while also having the behaviors of a SimGroup container.

Table 9.1

ScriptObject syntax.

 Game Setup Scripting Chapter 9

353

It’s an Object

Instances of ScriptObject and ScriptGroup classes are objects. This means they
can have fi elds associated with them.

%obj = new ScriptObject(Square) {
 width = 10.0;
 height = 5.0;
};

 Now, we can write little functions to manipulate them.

 The namespace chain for this object looks like the following.

Name � AClassName � AnotherClassName � ScriptGroup � SimGroup � SimObject

//ts06();

function printAreaOfSquare (%Square) {
 echo(“The area of this square is: ”, %Square.width * %Square.height);
}

 To run this, we would have to type printAreaOfSquare(%obj);,
producing:

The area of this square is: 50

They Support Namespaces

In truth, it wouldn’t be great if we had to write a named function for each
case we wanted to handle; better would be to use namespaces and overload
a single method name.
 Because ScriptObjects and ScriptGroups support namespaces, we can do
the following.

//ts07();

%obj0 = new ScriptObject(Square) {
 width = 10.0;
 height = 5.0;
};

%obj1 = new ScriptObject(Circle) {
 radius = 10.0;
};

Part III Game Elements

354

function Square::printArea(%this) {
 echo(“The area of this square is: ”,
 %this.width * %this.height);
}
function Circle::printArea(%this) {
 echo(“The area of this circle is: ”,
 %this.radius * %this.radius * 3.1415927);
}
Square.printArea();
%obj1.printArea();

The above code would give us the following output.

The area of this square is: 50
The area of this circle is: 314.16

 This is better, but now it seems we have to name all of our circles “Circle”
if we want this to work. That kind of kills the ability to use names in addi-
tion to IDs to reference objects. Fortunately, there are two key words that
we can use to add generic namespaces to the objects we create—class and
superClass.

//ts08();

%obj = new ScriptObject(Square0) {
 class = “Square”;
 width = 10.0;
 height = 5.0;
};

%obj = new ScriptObject(Square1) {
 class = “Square”;
 width = 10.0;
 height = 50.0;
};

Square0.printArea();
Square1.printArea();

The above code would give us the following output.

The area of this square is: 50
The area of this square is: 500

 Game Setup Scripting Chapter 9

355

 So, class seems pretty useful, but what is this superClass business? It
allows us to use yet another class name in the chain, below the one added by
the class keyword.

//ts09();

function Doberman::printMessage(%this) {
 echo(“A ”, %this. getName(), “ is a ...”);
 Parent::printMesage(%this);
}

function Canine::printMessage(%this) {
 echo(“... ”, %this.class, “ which is a ...”);
 Parent::printMesage(%this);
}

function Animal::printMessage(%this) {
 echo(“... ”, %this.superClass, “.”);
}

%obj = new ScriptObject(Doberman) {
 class = “Canine”;
 superClass = “Animal”;
};

%obj.printMessage();

The code above produces the following interesting output.

A Doberman is a ...
... Canine which is a ...
... Animal.

 Callbacks, Too?

ScriptObjects and ScriptGroups support the ::on Add() and ::on Remove()
callbacks. This means that we can have them do initialization and cleanup
work when we create/delete them, just like when we create other mission
objects.
 If this is not very clear, please continue reading. In Section 10.4, I will give
an overview of the callback concept and discuss a few important standard
callbacks.

Part III Game Elements

356

 Not Networked

Just like dynamic fi elds, neither ScriptObject nor ScriptGroup are networked;
that is, instances of these classes created by the server will be visible only to
the server (except for the single-player and listen-server cases (see Section
2.1.15), where the client is local).
 If you want information shared with the clients from either of these
classes, you will have to write networking scripts to do so.

9.4 Device Inputs and Action Maps
When we speak of inputs in the context of TGE, we are talking about user
inputs from keyboards, mice, joysticks, and other devices. Although other
types of inputs are possible, the only ones we are interested in are those that
are used to control gameplay. That said, inputs fl ow into and through TGE as
follows (Figure 9.1).

1. The OS processes inputs and passes them to the TGE platform layer.

2. The TGE Platform identifi es and categorizes the inputs and passes them on
to the game.

3. The game processes the input if it can or ignores it if there is no defi ned
action for the input.

 The game input processing is the part we are interested in. As can be seen
from Figure 9.1, the input is processed within the game as follows.

1. The GlobalActionMap gets fi rst dibs on the inputs. If it has no mapping for
the input, the input is passed on to the GUI, more specifi cally the Canvas.

2. The Canvas attempts to process the input, but passes the input on if it has
no GUI controls programmed to use it.

3. The input is passed to any active action maps for processing. If none of
the currently stacked action maps is coded to use the input, the input is
dropped.

Figure 9.1

Flow of inputs for TGE.

 Game Setup Scripting Chapter 9

357

 ActionMap is a special class designed to capture and redirect inputs.
There are two kinds of ActionMap: the GlobalActionMap and the normal
ActionMap. The main differences between these are as follows.

• GlobalActionMap. This is the daddy of input processors and supersedes all
other processing methods. This action map should not be popped from the
processing stack.

• ActionMap. This is a generic action map. It takes lower priority than all
other processing methods. These action maps can be pushed and popped
from the processing stack as the game’s requirements change.

9.4.1 Defining Action Maps
To create a new (blank) action map, we use the following syntax (explained
in Table 9.2).

new ActionMap(ActionMapName);

Table 9.2.

Creating a new action
map.

Syntax Element Description

new A keyword instructing TGE to create a new instance of the following
console class. Returns a handle to the new ActionMap.

ActionMap Console class name for action maps.

ActionMapName The name for the new action map.

ActionMapName. bind(device , action , [modifier spec , ...] , command);

 This fi rst binding method, bind, is used to bind a single command to an
action (Table 9.3). It has the further ability to modify the behavior of pointing
devices via special modifi ers. The command (a function) bound to this action
will be automatically passed a value (as the fi rst and only argument to the func-
tion) corresponding to whether the device is in the on or off (pressed or released)
state. A function that is used for binding should have the following form.

Binding Inputs to Actions

Subsequent to creating a blank action map, we must bind inputs to actions (or
responses). This binding associates a specifi c input with a specifi c function or
scripted response.
 To add new mappings, use one of the following two functions.

Part III Game Elements

358

// Assume this is bound to a mouse button
function aBindFunction(%val) {
 if(%val) {
 echo(“Mouse button was pressed.”);
 }
 else {
 echo(“Mouse button was released.”);
 }
}

 The second binding function is the following.

ActionMapName. bindCmd(device, action, makeCmd, breakCmd);

This second binding method, bindCmd, will bind one function to the on
(break) event and one function to the off (break) event (Table 9.4). Both func-
tions are optional, but at least one should be specifi ed. A function used for
this kind of binding takes no arguments at all.
 Tables 9.5–9.7 are provided for your reference and describe the most com-
monly used devices, actions, and modifi ers. For a full listing, please see the
appendices.

Table 9.4.

Adding new mappings
using bindCmd.

Syntax Element Description

ActionMapName Previously defined action map

bindCmd Console method used to add a new action for the specified key.

device Device name (see Table 9.5).

action Device action (see Table 9.6).

makeCmd Command to execute on key press.

breakCmd Command to execute on key release.

Table 9.3.

Adding new mappings
using bind.

Syntax Element Description

ActionMapName Previously defined action map.

bind Console method used to add a new action for the specified key.

device Device name (see Table 9.5).

action Device action (see Table 9.6).

modifier spec Special modifiers (see Table 9.7).

command Command to execute when this binding triggers.

 Game Setup Scripting Chapter 9

359

Table 9.5.

Devices.

Table 9.6.

Actions.

Device Description

keyboardN This is the Nth keyboard hooked up to the system. For the first keyboard,
either keyboard or keyboard0 is acceptable.

mouseN This is the Nth mouse hooked up to the system. For the first mouse,
either mouse or mouse0 is acceptable.

joystickN This is the Nth joystick or gamepad hooked up to the system.

unknownN This is the Nth unknown device hooked up to the system. In other
words, some device has been sampled, but TGE doesn’t know what it is.

Action Description

button0,
button1,
 ... ,

button31

This is a mouse, joystick, or gamepad button press.
For the mouse, buttons 0, 1, and 2 are left, right, and middle
buttons, respectively. See the appendix for other button
mappings.

a..z
A..Z
0..9

F1..F12
etc.

These are keyboard inputs. Because this list is so long and in
order to accommodate possible variances for special keyboards
and other devices, a GUI has been provided with the GPGT
Lesson Kit that displays the current action, be it keyboard, mouse,
joystick/gamepad, or other device. Simply start the GPGT Lesson
Kit and click GUIsSampler � guiInputCtrl. Follow the instructions
provided in the sample.

shift
ctrl
alt

These are modifiers and are not used standalone, but they are
included in the action string; for example, shift p is the
SHIFT key and the P key pressed at the same time.

lshift, rshift,
 lctrl, rctrl,
lalt, ralt

These are special modifier actions.

Action Modifiers Description

D %x %y Has dead zone. This is used to add a dead zone for the mouse.
Motions in this zone will not be recorded. This can be used to
remove the jitter caused by a “nervous hand.”

S %s Has scale. This is used to scale the mouse motion (by a multiple).

I Inverted. This is used to invert the mouse.

R %s Has scale. Same as S.

Table 9.7.

Special modifiers used to
modify mouse inputs.

Part III Game Elements

360

Bind Samples

Before going any further, let’s look at a few binding examples and break them down.

moveMap. bind(keyboard , “alt c” , toggleCamera);

 In the above binding, we have bound the toggleCamera() function
to the alt c event. As soon as the ALT and C keys are pressed (together),
toggleCamera() will be executed on that client. When the toggle Camera()
method is called, the engine will pass a 1 or a 0 as the fi rst argument to the
function. A 1 represents a make (key-press) event, while the 0 represents a
break (key-release) event. So, remember that the function will be called twice
per key press, not once.

moveMap. bindCmd(keyboard , “n” ,
 “NetGraph::toggleNetGraph();” , “”);

 In the above binding, we have bound the NetGraph::toggle NetGraph()
method to the n make event. As soon as the N key is depressed, NetGraph::
toggleNetGraph() will be executed on that client. Nothing is scheduled to
occur on the key-break (release) event.

moveMap. bindCmd(keyboard , “n” , “” ,
 “NetGraph::toggleNetGraph();”);

 In the above binding, we have bound the NetGraph::toggleNet-
Graph() method to the n break event. As soon as the N key is released,
NetGraph::toggleNetGraph() will be executed on that client. Nothing is
scheduled to occur on the make (key-press) event.

Multiple Binds

It should be noted that binding more than one key to the same action (using
the same action map) is not allowed. TGE will do its best to preempt this
kind of assignment. Normally, if one attempts to bind two inputs to the same
response, the second binding will silently fail. However, this behavior is not
consistent. So, it is best to be aware of this and to check your action maps for
duplicate assignments.
 To be clear, the following is a multiple bind.

moveMap. bindCmd(keyboard , “n” , “” ,
 “NetGraph::toggleNetGraph();”);
moveMap. bindCmd(keyboard , “m” , “” ,
 “NetGraph::toggleNetGraph();”);

 Game Setup Scripting Chapter 9

361

This will only bind the toggleNetGraph function to the N key.

Overriding Binds

Overriding binds is a different story. You may override a bind at any time you
wish. Simply specify the bind with a new set of functions.

moveMap. bindCmd(keyboard , “n” , “” ,
 “NetGraph::toggleNetGraph();”);
moveMap. bindCmd(keyboard , “n” , “” , “nukeEM();”);

The above example rebinds the N key. It will now call the function nukeEm()
on a break (key-release) event.

 Unbinding

There will be cases where we want to undo a binding. To do this, we use the
following syntax (explained in Table 9.8).

ActionMapName.un bind(device, action);
moveMap.un bind(keyboard , “n”);

Saving Binds

We will also fi nd it useful to save our binds on occasion. The ActionMap class
provides this ability as follows (Table 9.9).

ActionMapName. save([filename] , [append]);
moveMap. save(“~/client/myActionmaps/movemap.cs” , false);

Table 9.9.

Saving binds.

Syntax Element Description

ActionMapName Previously defined action map.

save Console method used to save/dump an action from an action map.

filename
(optional)

 A valid filename to dump the action map to. If no filename is
specified, the action map is dumped to the console.

append
(optional)

A Boolean value specifying whether to append to the file or
overwrite it. The default (false) is to overwrite.

Table 9.8.

Undoing a binding.

Syntax Element Description

ActionMapName Previously defined action map.

unbind Console method used to remove an action from an action map.

device Device name (see Table 9.5).

action Device action (see Table 9.6).

Part III Game Elements

362

Activating Action Maps

Once an action map has been created and the bindings have been assigned, it
must be activated in order to be used. To activate a nonglobal action map, we
use the following syntax (Table 9.10).

ActionMapName. push();

 Subsequently, an active nonglobal action map can be deactivated using
the following syntax (explained in Table 9.11).

ActionMapName. pop();

Please note that popping only removes the specifi ed action map from the non-
global action map stack. All other action maps stay in place.

Deactivating the GlobalActionMap

It should also be noted that the GlobalActionMap does support both the
 push() and the pop() console methods. However, it is not suggested that
you use these methods on the GlobalActionMap. That said, you may use the
 pop() console method to temporarily disable the GlobalActionMap and the
 push() console method to reactivate it at a later time.

Nonglobal Action Map Stack

We have alluded to the concept of stacking but have not clearly stated what
this means in the context of action maps.
 The concept of stacking only applies to normal action maps as no stack-
ing order will allow them to take precedence over either the GlobalAction-
Map or the Canvas. An action map is placed on the top of a virtual stack of

Table 9.10.

Activating a nonglobal
action map.

Syntax Element Description

ActionMapName Previously defined and bound action map.

push Console method used to activate the action map and
place it on the top of the nonglobal action map stack.

Syntax Element Description

ActionMapName Previously defined, bound, and activated action map.

pop Console method used to deactivate an action map
and remove it from nonglobal action map stack.

Table 9.11.

Deactivating a nonglobal
action map.

 Game Setup Scripting Chapter 9

363

nonglobal action maps when it is activated (pushed). Action maps higher
in the nonglobal action map stack will be fi rst to process any inputs which
have made it past the Canvas. Therefore, if an action map redefi nes a binding
defi ned by an action map lower in the stack, the binding of the higher action
map will take precedence. Stacking action maps is a nice way of compositing
action bindings based on current context.

9.4.2 Maze Runner Lesson #16 (90 Percent Step)—
 MoveMap
In this short lesson, we will examine the action map that is included with the
prototype content and discuss some small changes to it and other scripts that
will ensure the behavior we are expecting from our game.

Required Behavior

In our game, we want the following key mappings.

 W Move forward.

 A Move left.

 S Move backward.

 D Move right.

 SPACEBAR Jump.

 Mouse Move Camera yaw and pitch.

 TAB Switch 1st and 3rd POV.

We would specifi cally like to disable (eventually) the following key mapping.

 ALT+C Free camera mode.

We don’t want people using free-camera mode to cheat and fi nd coins without
risking their avatar’s life.

MoveMap

The prototype content we copied into our “\MazeRunner” directory con-
tains two fi les that defi ne an action map already implementing the above
mappings as well as many others. The name of this action map is MoveMap.
 One of the things that new users fi nd confusing is the fact that MoveMap
is created in two places. It is created in the fi le “\MazeRunner\prototype\cli-
ent\scripts\default.bind.cs” and in the fi le “\MazeRunner\prototype\client\
confi g.cs”.
 So, where do we go if we want to modify this action map? Well, if we
look in the function initClient() in the fi le “\MazeRunner\prototype\
client\init.cs”, we will see the following code.

The MoveMap defined
in the prototype
content used for
MazeRunner is
standard and matches
the one provided
with all TGE samples,
including the free
Demo and the FPS

starter kit that comes
with the full SDK.

Part III Game Elements

364

// Default player key bindings
 exec(“./scripts/default.bind.cs”);
 exec(“./config.cs”);

The fi rst fi le, “default.bind.cs”, is the correct location to defi ne new bindings
for the moveMap action map. However, if you do decide to modify or add
bindings, be sure to delete the “confi g.cs” fi le fi rst. Otherwise, it will wipe out
the changes you made in “default.bind.cs”. The “confi g.cs” fi le is automati-
cally stored by the scripts that come with the prototype and is meant to refl ect
any changes we might make using the options dialog. However, adding new
bindings and/or functions needs to be done by hand, so remember to always
stop the engine, delete the “confi g.cs” fi le, and (only) then add your new
bindings to “default.bind.cs”.

Making Our Changes

In our game, we are happy with the current mappings, except that we wish
to eventually disable free-camera mode. So, when we want to do this, simply
remove the following line from “default.bind.cs”.

moveMap. bind(keyboard, “alt c”, toggleCamera);

For now, I suggest leaving this in, but when we get ready to release our game
to the public, this line needs to be removed. Additionally, we might want to
remove the following code from “default.bind.cs”.

function toggleCamera(%val) {
 if (%val)
 commandToServer(‘ToggleCamera’);
}

9.5 File I/O
Torque has a fi le manager that maintains a working list of all the fi les found
in the game directory and all subdirectories. This list is created on start-up.
Additionally, TGE 1.4 is capable of fi nding fi les added to one of the mod paths
after the game has started.

9.5.1 Locating Files
In order to locate fi les listed by the fi le manager, we use two functions pro-

vided by TGE: findFirstFile() and findNextFile(). These func-
tions are meant to be used together.

If you are having
trouble finding newly
added files, you may
at any time do the
following to refresh
the file manager.

$oldModPath =
getModPaths();

setModpaths(“”);

setModpaths(
$oldModPath);

 Game Setup Scripting Chapter 9

365

 findFirstFile()
This function will locate the fi rst instance of a specifi ed fi le or fi lename pat-
tern in the fi le manager’s list. It then marks the location of this fi le in the list
and returns the fi lename. The pattern supplied to this function may contain
wildcards.

 findFirstFile(pattern);

 Try the following example.

//ts11();
 echo(findFirstFile(“*.cs”));

 Please note that subsequent calls will return the same value. It is impor-
tant to understand that each time this function is used, it sets the location of
firstMatch. Thus, having two functions calling this function in an overlap-
ping fashion will have undesirable results.

 findNextFile()
Having found the fi rst instance of a fi lename or fi lename pattern, we may
wish to fi nd subsequent instances. This function does that for us. It will return
one new match each time we call it until it fi nds no more matches, at which
time it will return the null string (“”).

 findNextFile(pattern);

 Try the following example.

//ts12();
 echo(findNextFile(“*.cs”));

If we specify a pattern that does not match that of our call to findFirst-
File(), results will be indeterminate.
 The following function lists all fi les found matching a specifi ed pattern.

When using the file finding functions, remember that file names consist of a
path, a name, and an extension. You must add the appropriate wildcards when
searching for files down a path.

echo(findFirstFile(“*/specialPrefix_*.cs”));

Part III Game Elements

366

//ts13();
function listAllFiles(%pattern) {
 %filename = findFirstFile(%pattern);
 while(“” !$= %filename) {
 echo(%filename);
 %filename = findNextFile(%pattern);
 }
}
listAllFiles(“*gui*”);

9.5.2 Wildcards
It was mentioned above that we can use wildcards in our fi le patterns. Table
9.12 shows the wildcards that TGE supports.

Wildcard Meaning Sample

* The standard “matches all” wildcard. “*.cs”

~ This equates to the mod directory. For example, when
using the GPGT Lesson Kit, “~/*.cs” is the same as
“gpgt/*.cs”.

“~/main.cs”

.
This file location relative wildcard can be interpreted as
“current directory of this file,” i.e., this equates to the
current directory of the script file it is used in.

“./test.cs”

9.5.3 Counting Files
We can count the number of fi les matching a specifi ed pattern using the fol-
lowing function.

 getFileCount(pattern);

9.5.4 Calculating File CRC
A CRC (cyclic redundancy code) is a useful thing to have if you need to ensure
that users are using the correct version of a fi le prior to starting the game.
Thus, TGE provides a function for calculating the CRC of a fi le:

 getFileCRC(filename);

In a multiplayer scenario, the server and the client can compare CRCs, and if
a client has a fi le with the same name but a different CRC, then that client’s
fi le is either corrupted, modifi ed, or of a different version than that found on
the server.

Table 9.12.

Wildcards supported by
TGE.

 Game Setup Scripting Chapter 9

367

9.5.5 Filename Expansion
Frequently, it is useful to skip a lookup on a fi le and do a direct expansion of
the fi le from a fi lename using wildcards. This can be accomplished with the
following function.

 expand FileName(filename);

 The Slash (/) versus the Dot (.) versus the Tilde (~)

There are three special fi le path prefi xes used in TorqueScript. The fi rst of these
is the the slash (/), the second is the dot (.), and the third is the tilde (~).
 A slash as the fi rst part of a path tells the engine to start searching in the
root directory. The root directory for a TGE game is the directory in which the
fi rst “main.cs” fi le is found.
 A dot means to start looking in the current directory. That is, look in the
directory where the fi le that contains this script was found.
 A tilde means to look in the mod paths. In our scripts, we can build up the
mod path by calling setModPath() and passing a path or semicolon-speci-
fi ed paths. All mod paths are children of root.

9.5.6 Filename Subelements
The fi le fi nding/expanding functions return strings that may contain a path, a
fi le prefi x, and a fi le suffi x. It is often necessary to examine just one of these
fi lename subelements. Fortunately, the authors of Torque foresaw this need.

 Extracting File Path

To extract a fi le path from a fi lename, use the following method.

 filePath(filename);

If the fi lename contains no path or is not valid, this function will return a null
string.

 Extracting File Name

A fi le “name” is considered to be everything but the path; i.e., the prefi x +
suffi x. To extract a fi le name from a fi lename, use the following method.

 fileName(filename);

This will remove the path, if one exists, and return the remainder of the string.

Filename
expansion is

context-based. So,
do not make the
mistake of trying to
use this function from
the console. For this
function and other
functions like it to
work, the function
requires context. A
file provides context
to the console while
it is parsing that file,
but when we open
the console and type
commands in the
command line, we are
working in a context-
less environment. Thus,
this function cannot
expand a filename to
match the context.

Part III Game Elements

368

 Extracting Prefix

The prefi x of a fi lename is the last part of a fi le’s name, before the dot (.).
For example, the prefi x of the fi lename “test.png” would be “test”. File paths
are not part of a fi le’s prefi x. To extract a fi le prefi x from a fi lename, use the
following method.

 fileBase(filename);

 Extracting Suffix

The suffi x of a fi lename is the last part of a fi le’s name, including and after the
dot (.). For example the suffi x of the fi lename “test.png” would be “.png”. To
extract a fi le suffi x from a fi lename, use the following method.

 fileExt(filename);

9.5.7 Before Reading or Writing
We’re almost ready to start discussing the actual reading and writing of fi les,
but before we do, let’s discuss two more functions.

Is It a Valid File?

Before attempting to read or write a fi le, we should always verify that it exists
or is valid. TGE provides the following Boolean-returning function for this
purpose.

 isFile(filename);

This function will return true if the fi le is a valid member of the fi le manag-
er’s list and false otherwise. Of course, writing to a fi le that does not exist
will create that fi le, including any subdirectories that may be required as part
of the fi lename’s full path.

Can I Write to It?

If we want to write to a fi le, we’d better check that it is writeable.

isWriteable FileName(filename);

Please note that this will return false if the fi le does not exist; thus, for
writes, we can be lazy and just check this, skipping the isFile() check.

 Game Setup Scripting Chapter 9

369

9.5.8 Reading Files
So, we’ve talked about how to fi nd our fi les and get some information about
them, but how do we read them? TGE provides a class called FileObject. We
can use this class in our scripts to both read and write fi les.
 In order to read a fi le, we must do the following.

1. Open the fi le for reading.

2. Read a line from the fi le.

3. Repeat step 2 until we reach the end of the fi le or have completed our task.

4. Close the fi le.

 The following function was extracted from a post and modifi ed slightly.

//ts14();
function readFile(%filename){
 %file = new FileObject();
 if(%file. openForRead(%filename)) {
 while(!%file. isEOF()) {
 %input = %file. readLine();
 echo(%input);
 }
 } else {
 %file. delete();
 return false;
 }
 %file. close();
 %file. delete();
 return true;
}
readFile(expand Filename(“~/prefs.cs”));

 In this example, we create a new instance of a FileObject and then use it
to open and to read the fi le. When we are done, we use it to close the fi le, and
then we delete the object. The key methods used are the following.

• openForRead(fileName). This method will attempt to open the fi les
specifi ed by the string fileName for reading. If it is not successful, it will
return false.

• readLine(). This methods returns the next full line (terminated by a new
line) in the fi le. If no lines remain, a null string will be returned.

• isEOF(). This method checks to see if the end of the fi le has been reached
and returns true if it has.

Part III Game Elements

370

• close(). This method closes the fi le. Do not forget to do this.

That is pretty much it. Very simple.

9.5.9 Writing Files
Writing fi les is only slightly more complicated than reading them. Before we
write to a fi le, we must answer one very important question: do we want to
overwrite the fi le or append it?

 Overwriting Files

To overwrite a fi le, we do the following.

1. Open the fi le for writing.

2. Write to it.

3. Repeat step 2 until we are done.

4. Close the fi le.

function writeFile(%filename , %data) {
 %file = new FileObject();
 if(! %file. openforWrite(%filename)) {
 %file. delete();
 return false;
 }
 %file. writeLine(%data);
 %file. close();
 %file. delete();
 return true;
}

 In this example, we create a new instance of a FileObject and then use it
to open and to write the fi le. When we are done, we use it to close the fi le,
and then we delete the object.
 The key methods used are the following.

• openForWrite(fileName). This method will attempt to open the
fi le specifi ed by the string fileName for writing. If the specifi ed fi le does
not exist, it is created, but not yet added to the fi le manager list. If the fi le
already exists, it is cleared, and we start writing at the front of the fi le. If
the open fails, this method will return false.

• writeLine(). This method writes a string to the fi le and appends a new-
line character.

• close(). This method closes the fi le, just as it did for reading, but with
one exception. If we opened a new fi le, at this time the fi lename is added
to the fi le manager’s list. Only now can we read it.

 Game Setup Scripting Chapter 9

371

 Appending to Files

To append to an existing fi le, we do the following.

1. Open the fi le for appending.

2. Write to it.

3. Repeat step 2 until we are done.

4. Close the fi le.

function appendToFile(%filename , %data) {
 %file = new FileObject();
 if(! %file. openforAppend(%filename)) {
 %file. delete();
 return false;
 }
 %file. writeLine(%data);
 %file. close();
 %file. delete();
 return true;
}

 In this example, we create a new instance of a FileObject and then use it
to open and to append to a fi le. When we are done, we use it to close the fi le,
and then we delete the object.
 The key methods used are the following.

• openForAppend(fileName). This method will attempt to open the fi le
specifi ed by the string fileName for appending. If the specifi ed fi le does
not exist, it is created but not yet added to the fi le manager list. If the fi le
already exists, it is opened, and we start writing at the end of the fi le. If the
open fails, this method will return false.

• writeLine(). This method writes a string to the fi le and appends a new-
line character.

• close(). This method closes the fi le, just as it did for reading, but with
one exception. If we opened a new fi le, at this time, the fi lename is added
to the fi le manager’s list. Only now can we read it.

9.5.10 Maze Runner Lesson #17 (90 Percent
 Step)— Level Loader
In this lesson, we will discuss the level-loader code. We will not be listing all
of the code here, as it is rather lengthy. Instead, we will describe how it works
and how the code is structured.
 Please note that the level loader is responsible for loading and starting all
elements of the level. This includes the fi reball-shooting block, which we have

Part III Game Elements

372

not completely covered yet. Specifi cally, we have not discussed the fi reballs
themselves, nor have we spoken of the code that fi res them. If you wish, you
may skip ahead to Lesson #20 (Section 11.4.3) to see how they work. Not
doing so will not affect the current lesson, but until we complete that lesson,
the level loader won’t start the fi reball blocks correctly.

Copy Required Files

From the accompanying disk, please copy the fi le “\MazeRunner\Lesson_017\
levelloader.cs” into “\MazeRunner\prototype\server\scripts\MazeRunner”.
 Now, edit the function onServerCreated() in the fi le “\MazeRunner\
prototype\server\game.cs” to look like the following (bold lines are new or
modifi ed).

 exec(“./MazeRunner/teleporters.cs”); // MazeRunner
 exec(“./MazeRunner/levelloader.cs”); // MazeRunner

Levels versus Layers

In the following description, we will be using the words level and layer. A
level is comprised of one or more layers of game elements. A level may have
any number of layers.

Level Files

The premise of this level loader is quite simple. Our goal is to load a single
mission and then, at any time we wish, load the components that make up a
level. By using a level map and a level loader, we may defi ne as many levels
as we want without needing to hand-create an entire mission and then load
the mission (which is generally slower than placing items by script for single-
player games).
 The fi rst thing we need to do is defi ne the parts of a level fi le.

Level File Format

We want to be able to make levels with multiple elements and multiple layers.
To do this, the level fi le cannot be constrained to a fi xed length. Instead, it
must be dynamic.
 After some thought, I came up with the syntax for this fi le shown in Table
9.13.
 That is it for the syntax. Now, let’s designate what letters mean in the
actual layer defi nitions (those 16 lines).

 Game Setup Scripting Chapter 9

373

Tokens

Each layer defi nition is composed of 16 lines of 16 characters, meaning that
each layer defi nition may have up to 256 elements in it. Because we have a
multitude of things to place (and because we want to leave room for expan-
sion), we will be reusing letters (tokens) between layer types. Table 9.14 lists
what individual tokens mean in the various layer contexts.

Layer Type Token Meaning

BLOCKS
A-J These designate one of the level blocks we discussed in

Lesson #5 (Section 6.5.6).

0-9 These are the fade blocks. The number specifies the
number of seconds until the block fades. We will discuss
how this fading works in Lesson #18 (Section 10.3.7).

OBSTACLES
X, Y, Z One of these will produce a teleport station.

0-9 These are the fireball blocks, where each number is
a block firing in a specified direction. For example:
0—North, 1—NorthEast, ..., 7—East , 8—NorthEast, and
9 is random.

PICKUPS C A coin.

PLAYERDROPS P A player drop point. The player is dropped at the first
point found.

Table 9.13.

Level-file elements.

Line/Element Meaning

Line 0 This line is used to store the numeric ID of the level that follows this one.

LAYER_UP This will increment the current elevation at which blocks and other
elements are being placed by 4 world units.

LAYER_DOWN This will decrement the current elevation at which blocks and other
elements are being placed by 4 world units.

LAYER_DEFINE This indicates to the level loader that the next line in the file will
specify a layer type.

BLOCKS This indicates to the level loader that the next 16 lines will contain a
map that designates where blocks are placed.

OBSTACLES This indicates to the level loader that the next 16 lines will contain a
map that designates where obstacles (teleport stations and fireball
blocks) are placed.

PICKUPS This indicates to the level loader that the next 16 lines will contain a
map that designates where pickups (coins) are placed.

PLAYERDROPS This indicates to the level loader that the next 16 lines will contain
a map that designates where the player will be dropped at the
beginning of the mission.

Table 9.14.

Definitions of tokens.

Part III Game Elements

374

Level-Loader Mechanics

The mechanics of the loader are pretty straightforward. It will consume what-
ever fi le it has been told to load until it has placed all of the contents or until
it hits some kind of error in the level fi le.

Level-Loader Definition

So, we have some rules upon which to base our level building, and thus we
have rules upon which to base the design of the loader. Furthermore, we
know the loader must read the fi le until it is consumed, regardless of how
many layers are defi ned in the fi le. Let’s get started.
 Go ahead and load up the “levelloader.cs” fi le in your favorite browser
and then follow along as we discuss it here.

Elevations and Level Increments

The fi rst thing we do in our loader is defi ne some global variables for tracking.

• $BaseElevation. Beginning elevation for every new level (not layer).
• $LevelIncrement. Level up/down step size.
• $CurrentElevation. Current elevation we are building at (current layer).

Classifying Tokens

We are dealing with a lot of different tokens. We will need to categorize these
tokens into groups to minimize our code size. Because we don’t want to waste
time doing multiple comparisons to determine if any one token is a teleporter,
a fi reball block, etc., we need a way to reduce the effort required to catego-
rize tokens. The trick is to create an array where the index of the array is the
expected token and the value in the array gives us the information we need.
For example:

$BLOCKCLASS[A] = NORMAL;
$BLOCKCLASS[B] = NORMAL;
$BLOCKCLASS[C] = NORMAL;
// ...
$BLOCKCLASS[0] = FADE;
$BLOCKCLASS[1] = FADE;
$BLOCKCLASS[2] = FADE;
// ...

In the above code, we’re saying that any token A..C will correspond to a nor-
mal block while 0..2 will be a fade block.
 So, we don’t want to write the code like the following.

if((%token $= A) || (%token $= B) || (%token $= C)) {
 // Normal Block Code Here

 Game Setup Scripting Chapter 9

375

}
else if ((%token $= 0) || (%token $= 1) || (%token $= 2)) {
 // Fade Block Code Here
}

Instead, we can write it like the following.

switch$($BLOCKCLASS[%token]) {
case NORMAL:
 // Normal Block Code Here
case FADE:
 // Fade Block Code Here
}

 As you can see, this code is not only more elegant but also signifi cantly
faster than the multiple comparison case before (and that was with only 6 of
the 20 possible block cases shown).

buildLevel()

We’ve prepared the globals and helper variables we’ll need; now let’s write
the loader function.
 The buildLevel() function takes a single argument containing the
numeric ID of the level to load. The function assumes that all level fi les are
stored in the directory “\MazeRunner\prototype\data\Missions\LevelMaps”.
Given the number 0, the loader will attempt to open a fi le named “\Maze-
Runner\prototype\data\Missions\LevelMaps\levelNum0.txt”. If the level loader
successfully opens this fi le, the fi rst thing it will do is read the fi rst line, which
contains the numeric ID of the level that follows this one. If no next level is
defi ned, the loader fails out.
 So far, nothing mysterious has been done, but the next bit of code may
seem strange. For several lines, you will see bits of code like the following.

if(isObject(gameLevelGroup))
 gameLevelGroup. delete();
MissionCleanup. add(new SimGroup(gameLevelGroup));

gameLevelGroup. add(new SimGroup(mazeBlocksGroup));
gameLevelGroup. add(new SimGroup(fadeGroup));
gameLevelGroup. add(new SimGroup(FireBallMarkersGroup));
gameLevelGroup. add(new SimGroup(TeleportStationGroupX));
gameLevelGroup. add(new SimGroup(TeleportStationGroupY));
gameLevelGroup. add(new SimGroup(TeleportStationGroupZ));
gameLevelGroup. add(new SimGroup(TeleportStationEffectsGroup));
gameLevelGroup. add(new SimGroup(CoinsGroup));

Part III Game Elements

376

 Remember that we are building our levels dynamically. As part of this
effort, we are destroying the prior level if it exists. Also, to make our lives
simple, we will be tracking all of our objects in named SimGroups. This is
ideal because much of the processing our game does is of an iterative nature,
and it is easy to iterate over a SimGroup.
 So, the above statement and the remainder like it in the function are
merely removing the last level’s SimGroups (if they exist) and then creating
the following named SimGroups.

• gameLevelGroup. This is the big daddy of all level SimGroups. It will
contain all of our subsequent SimGroups for this level. Thus, deleting just
this group kills all the child groups and their contents.

• mazeBlocksGroup. All normal blocks are stored in this group.

• fadeGroup. All fadable blocks are stored here. Later, we will iterate over
this group to maintain the fadeblocks’ behaviors.

• fireBallMarkersGroup. All fi reball blocks are stored here. Like the
fadeGroup, we iterate over this group to keep the fi reball blocks fi ring.

• TeleportStationX..TeleportStationZ. These three sets are used to
store the three types of teleporter. Teleport stations stored in the same
group will target each other.

• TeleportStationEffectsGroup. Although we have an on Remove()
method that deletes the p-zone and particle emitter node attached to a trig-
ger when the trigger is deleted, I prefer to store the IDs of these effects in a
SimGroup, too. That way, there is no question that they will get deleted on
level load (or on mission exit).

• CoinsGroup. This last group stores all coins (that have not been picked
up). We will use this later to determine when the level is complete and it is
time to load the next one.

Next, we will see the beginning of the level-loader’s main processing loop.

while(!%file. isEOF()) {

From this point on, the level loader will read in lines from the fi le until the fi le
is empty or an error occurs.
 Upon fi rst entering this loop, the function reads a line and checks to see
what task it represents: LAYER_UP, LAYER_DOWN, or LAYER_DEFINE. For a
LAYER_UP or a LAYER_DOWN, we increment/decrement and then go back to
the top of the loop (by using continue) to get the next task. If the task does
not match any known task type, the function aborts.
 Eventually, the task we get will be a LAYER_DEFINE. This tells the loader
that the next line will be a LAYER_TYPE. So, the level loader reads the next

 Game Setup Scripting Chapter 9

377

line and decides which layer type it is: BLOCKS, OBSTACLES, PICKUPS, or
PLAYERDROPS. If it is none of these, the function fails out.
 Assuming the function read a valid layer type, it will use another of
those system scripts supplied with the kit and load the next 16 lines into an
array Object (a scripted class I created so that we may create arrays that can be
passed between functions and methods).
 After reading in the next 16 lines (into our arrayObject), the level loader
will then pass this array to a specialized function that does the layout for that
level type.

• layOutBlocks(). This lays out normal blocks and fade blocks.

• layOutObstacles(). This lays out fi reball blocks and teleport stations.

• layOutPickups(). This lays out coins.

• playerDrop(). This will drop the player into the level at a specifi ed
point.

After the current layout pass, the loader goes back to the top of the fi le-reading
loop and continues until the end of the fi le (or error).
 Eventually, the fi le will be empty, and we will drop out of the loop. At this
point in the code, you will see a function (in two places) that may not yet be
familiar to you.

if(fadeGroup. getCount())
 fadeGroup. schedule(5000 , fadePass);

if(FireBallMarkersGroup. getCount())
 FireBallMarkersGroup. schedule(5000 , firePass);

In both of the above statements, the script is telling the engine to schedule
an event to occur in 5000 milliseconds. The fi rst event is the calling of the
method fadePass(). It will be called as follows.

fadeGroup.fadePass();

The second event is the calling of the method firePass(). It will be called
as follows.

FireBallMarkersGroup.firePass();

Each of these statements will cause a special function (not yet covered) to
iterate over the specifi ed SimGroup and to “do something” to each entry. We
will cover this in Lesson #18 (Section 10.3.7).

Part III Game Elements

378

layOutBlocks()

We will talk about the fi rst of the four layout functions, and then I will leave
you to examine the other three on your own.
 This function has the responsibility for creating content in the world based
on the values in the arrayObject it has been passed.
 To do its jobs, the function uses a nested loop and reads every token of
every line and parses these tokens by category (using the trick we discussed
at the beginning of this lesson) and then by specifi c type.
 It is assumed that every token represents a world space of “4 4 4”. Thus,
the current position is incremented by “4 4 0” to keep us on the current
layer.
 When a token is found that matches a known category, an object in that
category is created. Being smart, we named our fi les and datablocks in such
a way that we can merely append the token to a generic version of the fi le-
name or datablock name when loading a fi le or building an object from a
datablock.
 Once this function has consumed all of the lines in the arrayObject, it
deletes the object.

Temporary Spawn Point

One side effect of destroying a level is that the player will fall into the lava
because there is no place to stand. So, to solve this problem, while the level
loads, we should create a place for the player to stand temporarily. This can
be accomplished by editing the fi le

“\MazeRunner\prototype\data\Missions\mazerunner.mis”

and adding the following to the end of the mission fi le (bold lines are new).

new TSStatic() {
 position = “0 0 295”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 shapeName = “~/data/MazeRunner/Shapes/MazeBlock/blockA.dts”;
 };
};
//--- OBJECT WRITE END ---

Additionally, to get the spawn to work properly, we need to move the spawn
point. So, in the same fi le, locate our spawn point and change the position to
the following.

 Game Setup Scripting Chapter 9

379

new SimGroup(PlayerDropPoints) {
 new SpawnSphere() {
 position = “0 0 300”;
 rotation = “1 0 0 0”;
 scale = “1 1 1”;
 dataBlock = “SpawnSphereMarker”;
 radius = “1”;
 sphereWeight = “100”;
 indoorWeight = “100”;
 outdoorWeight = “100”;
 locked = “False”;
 lockCount = “0”;
 homingCount = “0”;
 };
};

Now, when we start the mission, the player will be high above the cauldron,
and on subsequent loads the avatar will be moved here temporarily.

Testing the Level Loader

At this point, you should be able to test the level loader. Simply start the GPGT
Lesson Kit, open the “Maze Runner” mission, open the console, and type
buildLevel(0);. Your player should be moved to the extra block we just
inserted for a few seconds, and then it should drop onto a new level.

9.6 Compiling and Executing Files
Any fi le containing a valid script can be compiled and/or executed. We have
the freedom to only compile a fi le, but executing a fi le implies that it will be
compiled if we have not already done so.

9.6.1 Compiling
We can compile a fi le without reloading it. This way we don’t override func-
tionality accidentally or in some other way corrupt our environment. A suc-
cessful recompile produces a new fi le with the same name plus the extension
“.dso” appended.
 In order to compile a fi le, we use the following syntax (Table 9.15).

 compile(filename);

Please note that compile() will always return 1 if the fi le is of nonzero
length and it exists. Thus, at this time, the return value is not very useful.

Part III Game Elements

380

9.6.2 Executing
As was noted above, executing a fi le implies that we will recompile it (if nec-
essary) and then reload it. Reloading basically runs the contents of the fi le,
replaces any redefi ned functions with the new ones, and creates any data-
blocks defi ned in the fi le. The following syntax is described in Table 9.16.

 exec(filename [, noCalls [, journalScript]]);

Please note that it is illegal to exec() zero-length (empty) fi les. So, if you
need one as a placeholder, put the following statement in the fi le.

return;

Syntax Element Description

exec This is the function name.

filename This is a string containing a complete or partial path and the name
of the file to be compiled. exec() can expand relative paths.

noCalls
If this Boolean value is true, it instructs the engine not to execute
any code found in the file. Only packages and functions are
reloaded. All functional code is skipped.

journalScript Boolean value specifying whether this is a journal file or not.

9.7 Game Setup Scripting Summary
In this chapter, we learned about some of the classes and features that Torque
provides for setting up and maintaining a game.
 We learned about the SimSet and SimGroup containers.
 We then discussed how to create scripted objects using the ScriptObject
and ScriptGroup classes. We also learned how these special classes provide
namespace scoping and callbacks.
 We learned about action maps and how to connect user inputs to game
actions and reactions.

Table 9.15.

Compiling a file.

Syntax Element Description

compile This is the function name.

filename This is a string containing a complete or partial path and the name of
the file to be compiled. compile() can expand relative paths.

Table 9.16.

Executing a file.

 Game Setup Scripting Chapter 9

381

 Next, we discussed how the fi le subsystem operates (from the scripted
viewpoint) as well as how to locate fi les and to parse the components of a fi le
path and fi lename. We closed by learning how to read from, create, and write
to new fi les, as well as how to append to existing fi les.
 Last, we discussed how to compile and execute script fi les.

383

Gameplay Scripting
Chapter 10

This chapter gives an overview of the scripting tasks that are related to imple-
menting gameplay. It will familiarize you with the following specifi c topics.

• Callbacks. We need to understand what they are and what a small set of
them do in order to discuss some larger topics later.

• Event scheduling. As an event-driven simulation, our games often require
events to occur at some time in the future. The event-scheduling features
of TGE make this possible.

• Manipulating strings. TorqueScript deals with all data as strings (before
these strings are converted to their proper types). Here, we talk about the
many ways we can manipulate this string data.

• Scripted math. Another big part of making games is math. We’ll take a
little time to review the math features available via scripting.

• Dynamic scripting. We’ll discuss how to write dynamic code; that is, we’ll
talk about how to assemble and execute scripts at run-time.

• Basic client-server communication. We’ll briefl y discuss how basic client-
server communications are achieved.

10.4 Callbacks
For the purpose of this guide, a callback is any console method that is auto-
matically (or directly) called by the engine (or scripts) in response to some
event. These callbacks are part of what drives a game; that is, game events are
processed by the engine, fi ring callbacks, which subsequently trigger chains
of scripted events.
 Having defi ned what a callback is, we are not going to carry on about why
we have them or how they work. Instead, we will discuss a few signifi cant
callbacks and then move on. There is also an appendix that documents all of
the default TGE callbacks (see Appendix A).

10.1.1 on Add() and on Remove()
For now, you need only be familiar with eight callbacks. The fi rst two of these
callbacks are the on Add() and the on Remove() callbacks.
 The on Add() callback is called just after an object is instantiated. The
on Remove() callback is called just prior to the object being deleted.

Part III Game Elements

384

 The calling sequence may still be a bit foggy, so see the following code.

//ts10();

function myTestDatablock::on Add(%theDB, %theObj) {
 echo(“A new object: \cp\c2”, %theObj. getName(),
 “\c0 was created with the datablock: \c2”,
%theDB. getName()) ;
}
function myTestDatablock::on Remove(%theDB, %theObj) {
 echo(“Deleting: \cp\c2”, %theObj. getName(),
 “\c0 created with the datablock: \cp\c2”,
%theDB. getName()) ;
}
datablock StaticShapeData(myTestDatablock) {
 category = “LessonShapes”;
};
%obj = new StaticShape(testObject) {
 datablock = “myTestDatablock”;
};
%obj. delete();

Running this sample produces the following output.

A new object: testObject was created with the datablock:
 myTestDatablock
Deleting: testObject created with the datablock:
 myTestDatablock

So, what happened? The (nearly) exact sequence is as follows.

1. An instance of StaticShape is created using the myTestDatablock datablock
and named testObject.

2. on Add() is automatically called with two arguments, the ID of myTest-
Datablock and the ID of the newly created StaticShape.

3. The method delete() is called on the instance of StaticShape named
 testObject.

4. Before the deletion occurs, the on Remove() callback is automatically
called with two arguments, the ID of myTestDatablock and the ID of the
to-be-deleted StaticShape.

This was mentioned
before, but it is
very important to
remember that both
the datablock ID and
the object ID are
passed automatically
to callbacks when
they are called by the
engine, but if you call
them manually, you
may be responsible
for passing one or
both of these values
yourself. Reread the
sections on objects and
datablocks in Chapter
4, “Introduction to
Torque Script,” if this
is fuzzy.

 Gameplay Scripting Chapter 10

385

10.1.2 onCollision()
The next callback you need to know about is the onCollision() callback.
This callback is called whenever a collision between objects is registered by
the engine. The onCollision() callback takes several arguments, and an
instance of this callback could be defi ned as follows.

function PlayerData:: onCollision(%colliderDB ,
 %colliderObj ,
 %collidedObj ,
 %vec ,
 %speed) {
 //...
}

Describing the exact details of how and when this callback is called is beyond
the scope of this volume. For now we’ll just restate that it is called when there
is a collision, and then we’ll describe the arguments in Table 10.1.

Argument Description

%colliderDB This argument contains the datablock ID of the object that did the
colliding.

%colliderObj This argument contains the ID of the object that did the colliding.

%collidedObj This argument contains the ID of the object that was collided with.

%vec This argument contains a three-element floating point vector
describing the direction and magnitude of the collision.

%speed This last argument is provided to ease our coding work. It contains
the magnitude of the prior vector, i.e., the velocity (or speed) of the
collision.

10.1.3 onWake() and onSleep()
These two callbacks are associated with GUI controls. The onWake() callback
is called when a GUI control or its parent is made the current content of the
canvas. The onSleep() callback is called when the GUI control or its parent
is removed from the canvas. Alternately for dialogs, onWake() is called when
the dialog is pushed, and onSleep() is called when the dialog is popped.
This may not mean a great deal to you yet, but it will make more sense when
we get to Chapter 12, “Standard TGE GUI Controls.”

Table 10.1.

Arguments for
 onCollision().

Part III Game Elements

386

10.1.4 create()
There are some who would argue that this is not a callback, and I would
almost be willing to concede that point, except that this method is called as
the result of a scripted action. That script is part of the standard TGE release. It
is the World Editor scripts that call the create() method automatically when
we attempt to create a new instance of a class in the world.
 Some folks may argue with me yet, because this “callback” is scoped to
object class names, not to datablocks.
 This is not a valid argument, however. Yes, almost all callbacks are scoped
to datablocks, but there are some callbacks that are scoped to object instances
instead. This is one of those exceptions to the rule.
 I repeat: this special method is needed for any GameBase child if we wish
to be able to add an instance of it from the World Editor Creator. The GPGT
Lesson Kit fully defi nes all the create() methods. If you would like to see
how they are written, do a search for the string “::create”.

10.1.5 onEnterTrigger() and
 onLeaveTrigger()
We already discussed these callbacks in Chapter 8, “Mission Objects,” but just
to refresh your memory:

• onEnterTrigger() is called when a shape enters the bounds of a trigger,
and

• onLeaveTrigger() is called when a shape leaves the bounds of a
 trigger.

In Chapter 8, we did discuss other callbacks associated with the trigger, but
we won’t be using them in the prototype for our game.

10.2 Event Scheduling
We have discussed callbacks, and thus we understand the concept of a method
being called due to an engine event, such as a collision, an object creation or
deletion, etc. However, what if we want to create our own event sequences? Is
there a way to do this? Yes; read on.

10.2.1 Motivation and Concepts
There will be times when we would like to schedule “something” to happen
at a future time. Furthermore, we might only want this something to occur if
a specifi c object exists. We might also want this something to execute stand-

 Gameplay Scripting Chapter 10

387

alone like a function, or on an object (like a callback). Thinking ahead, we
might also want to be able to check if the event has executed or if it is still
pending. Knowing that it is pending, we may choose to cancel an event(s) we
previously issued. All of this we can do.

10.2.2 Scheduling Our Own Events
TGE provides both a function schedule() and a method schedule() for
scheduling events, allowing us to schedule standalone events (using the func-
tion) or events that execute on an object (using the method).

The schedule() Function

This form of schedule() is used to call a function at some future time. It has
the following syntax (Table 10.2).

%eventID = schedule(timeInMS , objID || 0 , functionName,
 arg0, ... , argN);

Syntax
Element Description

eventID Upon successfully scheduling an event, the schedule() function
returns a unique ID for the event.

timeInMS Time in milliseconds until this event will be executed.

objID For this argument, we can supply a handle to an object or we can
pass 0. If an object handle is passed and the object associated with
the handle is deleted prior to timeInMS, the event will automatically
be canceled.

functionName This is the unadorned name of the function to execute, e.g. “echo”

arg0, ... ,
argN

Optionally, we may supply extra arguments to the event. These
arguments may be constants or strings.

We use this function as follows.

//ts15();
schedule(1000 , 0 , echo, “Hello world!”);

After 1 second passes ...

Hello World!

Alternately, we could attach our event to an object.

Table 10.2.

The schedule()
method.

Part III Game Elements

388

//ts16();
%obj = new ScriptObject(test);
 schedule(1000 , %obj , echo, “Hello world!”);
%obj. delete();

After 1 second passes . . . nothing happens, because the delete canceled the
event.

 The schedule() Method

This form of schedule() is used to call a function at some future time. It has
the following syntax (Table 10.3).

%eventID = objID. schedule(timeInMS , functionName,
 arg0, ... , argN);

Syntax Element Description

eventID Upon successfully scheduling an event, the schedule() method
returns a unique ID for the event.

objID Because this version of schedule() is a console method, it must
be executed on a object, thus we use any acceptable form of an
object handle.

timeInMS Time in milliseconds until this event will be executed.

functionName This is the unadorned name of the function to execute, e.g. “echo”.

arg0, ... ,
argN

Optionally, we may supply extra arguments to the event. These
arguments may be constants or strings.

We use this function as follows.

//ts17();

%obj = new ScriptObject(test);

function test::doit(%this , %val) {
 echo(%this. getName(), “ says ”, %val);
}

%obj. schedule(1000 , doit , “Hello world!”);

After 1 second passes, we see the following.

test says Hello World!

Table 10.3.

The schedule()
function.

 Gameplay Scripting Chapter 10

389

As with the function version, which watches an object handle, if we were to
delete the object, the event would be canceled.

//ts18();

%obj = new ScriptObject(test);
%obj. schedule(1000 , doit , “Hello world!”);
%obj. delete();

After 1 second passes . . . once again nothing happens because the delete can-
celed the event.

10.2.3 Checking For and Cancelling
 Pending Events
So far, we know how to schedule an event, but it can often happen that we
need to check if an event has executed prior to doing something new. Or, if
the event is pending, we may need to cancel it.

isEventPending ()
TGE provides a function to check for pending events. This function checks to
see if an event is still queued in the event queue. It returns true if the event
is found and false if not. The syntax is as follows (Table 10.4).

%pending = isEventPending(eventID);

Syntax Element Description

%pending As noted, this method returns a Boolean value indicating true (the
event is pending) or false (the event is not pending).

eventID This is an ID previously returned from either the schedule()
function or method.

 Event Times

If an event is in fact still pending, we can gather additional data about it,
including the time since it started (in milliseconds).

%sinceStartedMS = getTimeSinceStart(eventID);

We can also fi nd out the time left until it executes (in milliseconds).

%remainingMS = getEventTimeLeft(eventID);

Table 10.4.

Checking for pending
events.

Part III Game Elements

390

And we can fi nd out the total duration for the schedule.

%durationMS = getScheduleDuration(eventID);

The syntax element eventID is an ID previously returned from either the
 schedule() function or method.

 cancel ()
Events dependent on an object are automatically canceled if the object is
deleted; thus, if we know our event is tied to an object, we can just delete the
object. However, this may not always be suitable, and in fact often it is not.
Thus, TGE provides a cancel() function with the following syntax:

 cancel(eventID);

The syntax element eventID is an ID previously returned from either the
 schedule() function or method.

10.2.4 Event Scheduling and Accuracy
It is important to step back for a moment and ask the following question:
“Just how accurate is my event timing going to be, and do I care?” Regardless
of when an event is scheduled, it will not be executed until there is a tick.
Additionally, there are other factors that can affect timing, including engine
internals, network latency, etc. So the answer for the fi rst part of the question
would be, “Not entirely accurate.” In fact, you may experience a small amount
of drift (positive or negative) in the actual time before an event occurs. This
is signifi cant for very short-order events (less than 32 milliseconds), and very
long-order events that are cascaded (i.e., event A schedules event B, . . .).
Thus, you must consider the second part of the question carefully. Overall, the
accuracy of the event-scheduling system is usually suffi cient to handle most of
our needs, but you will sometimes fi nd it is not. At that point, you may need
to write engine code instead of relying on event-driven scripts.
 The following code demonstrates the timing variances that can occur for
scheduled events.

function accuracyCheck(%scheduledTime, %time , %repeats) {
 %actualTime = getRealTime() - %scheduledTime;

 echo(“Requested Execution Time: ” , %time ,
 “ :: Actual Execution Time: ” , %actualTime ,
 “ :: Difference (ms): ” , %actualTime - %time);

 Gameplay Scripting Chapter 10

391

 if(%repeats) {
 %repeats = %repeats - 1;
 testscheduleAccuracy (%time ,%repeats);
 }
}

function testScheduleAccuracy(%time , %repeats) {
 schedule(%time , 0 , accuracyCheck , getRealTime() , %time , %repeats);
}

Here is some sample output from a call to testScheduleAccuracy().

//ts19();
testScheduleAccuracy(1 , 10);
Requested Execution Time: 1 :: Actual Execution Time: -3
 :: Difference (ms): -4
Requested Execution Time: 1 :: Actual Execution Time: -3
 :: Difference (ms): -4
Requested Execution Time: 1 :: Actual Execution Time: -3
 :: Difference (ms): -4
Requested Execution Time: 1 :: Actual Execution Time: -3
 :: Difference (ms): -4
Requested Execution Time: 1 :: Actual Execution Time: -3
 :: Difference (ms): -4
Requested Execution Time: 1 :: Actual Execution Time: -3
 :: Difference (ms): -4
Requested Execution Time: 1 :: Actual Execution Time: 13
 :: Difference (ms): 12
Requested Execution Time: 1 :: Actual Execution Time: 13
 :: Difference (ms): 12
Requested Execution Time: 1 :: Actual Execution Time: 13
 :: Difference (ms): 12
Requested Execution Time: 1 :: Actual Execution Time: 13
 :: Difference (ms): 12
Requested Execution Time: 1 :: Actual Execution Time: 13
 :: Difference (ms): 12

Rerun this a few times. Your results should vary.

 Repeating an Event

It may not be obvious at fi rst, but if you want to create an event that repeats,
you must reschedule that event. The simplest way to do this is by putting a
call to schedule() in the function that you are scheduling, or in a function
that the scheduled function calls. Here is a simple example.

Part III Game Elements

392

function repeatForever() {
 // do something
 schedule(1000, 0 , repeatForever) ;
}

In this example, we could either schedule repeatForever() or call it
directly, and it would continue to be rescheduled every 1000 milliseconds

until the engine stopped.

10.3 Manipulating Strings
As noted in Chapter 4, “Introduction to TorqueScript,” all operands in Torque-
Script are treated as strings. Therefore, it would be good for us if there were
facilities for parsing and otherwise manipulating these strings.
 TGE provides a good-sized list of console functions dedicated to string
manipulations ranging from the mundane to the complex. I’ll list them all
here and demonstrate the more tricky functions/concepts.

10.3.1 Words
In TorqueScript, every whitespace-separated element in a string is called a
word. For example, in the string “Torque Is Cool”, we have three words: word
0 is “Torque”, word 1 is “Is”, and word 2 is “Cool”. Table 10.5 shows the func-
tions for manipulating words.

Function Description

firstWord(text) Returns first word in string text.

getWord(text , index) Returns word at index in string text.
index 0 is first word and so on.

getWordCount(text) Returns count of all words in string text.

getWords(text , index
[, endindex])

Returns all words in string text between
index and (optional) endindex. If
endindex is not supplied, end of string
is assumed.

removeWord(text , index) Removes the word at index in string
text. Also removes the whitespace
following the word located at index.

restWords(text) Returns all words in string text
excluding first word.

setWord(text , index , replace) Replaces the word in string text at
index with the string in replace.

It is generally
safer to tie
scheduled events
to the existence of an
object. Otherwise, it is
easy to get runaway
schedules occurring in
the background. Over
time, these may eat a
lot of CPU time.

Table 10.5.

Manipulating words.

 Gameplay Scripting Chapter 10

393

//ts20();
%test = “Torque cool!”;
 echo(%test , “ has ” , getWordCount(%test) , “ words.”);
%test = setWord(%test , 0 , “Torque is is”);
 echo(%test , “ has ” , getWordCount(%test) , “ words.”);
%test = removeWord(%test, 1);
 echo(%test , “ has ” , getWordCount(%test) , “ words.”);
while (“” !$= %test) {
 echo(firstWord(%test));
 %test = restWords(%test) ;
}

10.3.2 Tokens
Frequently when we parse fi les, we will read in strings that are actually a
series of tokens separated by some delimiter. Some common delimiters are:

“ ; : , | ” .

 TGE supplies a single function that can be used to pull these tokens out
of a string in an iterative fashion. The way this function works seems a little
mysterious at fi rst, but is actually pretty straightforward. So, let’s defi ne it,
then use it (Table 10.6).

Function Description

nextToken (str ,
tokenVar , delim)

This function returns a truncated version of the passed-in
string str, where the part that has been truncated is equal
to the first token along with the first instance of delim.
Furthermore, the function places the removed token into the
named variable tokenVar. Note that tokenVar does not
include the delimiter.

//ts21();
function printTokens(%tokenString) {
 %tmpTokens = %tokenString;
 while(“” !$= %tmpTokens) {
 %tmpTokens = nextToken(%tmpTokens , “myToken” , “;”);
 echo(%myToken);
 }
}
printTokens(“This;is;a;sample;string;of;tokens;.”);

In this example, we’ve take a string of tokens separated by semicolons and
iteratively stripped them out of the string from left to right. The nextToken()

Table 10.6.

Pulling out tokens using
delimiters.

Part III Game Elements

394

method places each token in a variable, which we specify, named %myToken.
After stripping out a token, the remainder of the string is returned by the
method. Because we’re actually manipulating the string as part of our pro-
cessing loop, it is a good idea to work with a copy of the string.
 There is one more thing you need to know. We actually named the tem-
porary token variable “myToken”, and TGE was smart enough to know that
that means %myToken. However, TGE did this because nextToken() was
called from within a function. If you use nextToken() in a fi le that is being
executed outside the scope of a function, or if you use it directly in the console,
“myToken” will become the global variable $myToken. Pretty smart, eh?

10.3.3 Records
So far, we have words and tokens. The next data-organizing methodology to
understand is records. A record is nothing more than a string that ends in a
newline character. Thus, if we have a string containing elements separated by
newlines, each element is considered to be a record. Records can have multi-
ple words and/or tokens. In fact, this is really a kind of special case where the
delimiter in our token string can only be the newline character “\n” (same as
the operator “NL”). Table 10.7 explains the functions used with records.

Function Description

getRecord(text , index) Returns the record in string text at
index.

getRecordCount(text) Returns the number of records in string
text.

getRecords(text , index [,
endIndex])

Returns the records in string text
between index and endIndex (or end
of string if endIndex is not specified).

 removeRecord(text , index) Removes the record in string text
located at index. Also removes newline
character following the record located at
index.

setRecord(text , index ,
replace)

Replaces the record in string text at
index with the string replace.

//ts33();
function testRecords(%recordString) {
 %tmpRecord = %recordString;
 echo(%tmpRecord, “\n”);
 for(%count = 0; %count < getRecordCount(%tmpRecord);
 %count++) {

Table 10.7.

Working with records.

 Gameplay Scripting Chapter 10

395

 %theRecord = getRecord(%tmpRecord , %count);
 echo(“Current record: “, %theRecord);

 if (%theRecord $= “test”) {
 echo(“\c3Replacing records...”);
 %tmpRecord = setRecord(%tmpRecord , %count ,
 %theRecord NL “of” NL “records.”);
 }
 }

 while (getRecordCount(%tmpRecord)) {
 %concatRecordString = %concatRecordString SPC
 getRecord(%tmpRecord , 0);
 %tmpRecord = removeRecord(%tmpRecord , 0);
 }
 echo(“\n”, %concatRecordString);
}
testRecords(“This” NL “is” NL “a” NL “test”);

10.3.4 Fields
The fi nal data-organizing methodology to understand is fi elds. A fi eld is noth-
ing more than a string that ends in a newline character or a TAB character.
Table 10.8 explains the functions used with fi elds.

Function Description

getField(text , index) Returns the field in string text at index.

 getFieldCount(text) Returns the number of fields in string
text.

getFields(text , index [,
endIndex])

Returns the fields in string text
between index and endIndex (or end
of string if endIndex is not specified).

removeField(text , index) Removes the field in string text
located at index. Also removes newline
character or TAB character following the
field located at index.

setField(text , index , replace) Replaces the field in string text at
index with the string replace.

 It would be wasteful to show the whole sample routine, so an abbreviated
version is shown below. It is nearly identical to the above records test with the
few exceptions shown.

Table 10.8.

Working with fields.

Part III Game Elements

396

//ts34();

function testFields(%fieldString) {
// ... Same as testRecords() except using field functions ...
 echo(“\c3Replacing fields...”);
 %tmpField = setField (%tmpField , %count , %theField
 NL “of” TAB “fields.”);
// ... Same as testRecords() except using field functions ...
}
testFields(“This” TAB “is” NL “a” TAB “test”);

10.3.5 Conversion

Function Description

strlwr(string) Converts all alpha characters in string to lowercase.

strupr(string) Converts all alpha characters in string to uppercase.

Alphabetic characters in a string can be converted from uppercase to lower-
case and vice versa (Table 10.9).

//ts35();
 echo(strlwr(“YEAH these ARE”) SPC strupr(“pretty OBVIOUS.”));

10.3.6 Metrics
The function strlen(string) returns the length of a string.

10.3.7 Searching and Replacing
TGE provides a few standard ways of searching for strings and characters
within strings. These searches are all case sensitive.

Function Description

 getSubStr(string , start ,
 numChars)

Returns a string composed of all the
characters in string beginning at start
and continuing for numChars or until the
end of the string, whichever comes first.

strchr(string , char) Returns a string composed of all the
characters in string beginning at the first
instance of char and continuing until the
end of the string. Returns null string if char
not found (case sensitive).

Table 10.9.

Converting characters.

Table 10.10.

Searching for strings and
characters.

 Gameplay Scripting Chapter 10

397

Function Description

 strpos(source , target [,
offset])

Returns the location of the first instance
of string target in string source.
Optionally, a starting offset may be
provided, telling the function to ignore all
characters before that point. If no match is
found, – 1 is returned.

strreplace(string , from , to) Replaces all occurrences of the string from
with the string to in string and returns
this new string (case sensitive).

strstr(string , substr) Returns position of first occurrence of
substr in string. Returns – 1 if not
found.

//ts36();

%testString = “TGE is cool. TGE is fun. TGE Rocks. Use TGE to make a game!”;

 echo(%testString, “\n”);

// Get string length
%len = strlen(%testString);
 echo(“\c3This string is ”, %len , “ characters long.”, “\n”);

// Count instances of TGE
%lastTGE = -1;
while(%foundAt >= 0) {
 %foundAt = strpos(%testString , “TGE” , %lastTGE + 1);
 if (%foundAt > -1) {
 %lastTGE = %foundAt;
 %count++;
 }
}
 echo(“\c3It contains ”, %count, “ instances of the substring TGE.”, “\n”);

// Replace all instances of TGE
 echo(“\c3Replacing all instances of TGE...”, “\n”);
%testString2 = strReplace(%testString , “TGE”, “Torque Game Engine”);
 echo(%testString2, “\n”);

// Only replace last instance of TGE
echo(“\c3Replacing last instance of TGE...”, “\n”);
%testString3 = getSubStr(%testString , 0 , %lastTGE) “the Torque Game Engine” @
 getSubStr(%testString , %lastTGE + 3 , %len);

Table 10.10 (continued).

Part III Game Elements

398

 echo(%testString3, “\n”);

// Modify and print the last sentence.
 echo(“\c3Modifying and printing last sentence only...”, “\n”);
%testString4 = strchr(%testString , “U”) ;
%testString4 = strReplace(%testString4 , “a game” ,
 “\cp\c3games\co that Rock”);
 echo(%testString4, “\n”);

10.3.8 Comparisons
We have a means of comparing arithmetic values (1, 2, 3, ...), and we have
the string comparison operator $=, but there are no string operators corre-
sponding to the arithmetic operators > and <. Thus, TGE provides two func-
tions to accomplish this work. The fi rst is case sensitive, while the second is
not (see Table 10.11).

Function Description

 strcmp(string1 ,
 string2)

Does case-sensitive lexicographic comparison of string1
and string2.
Returns the following.
–1 if string1 comes before string2 in alphabetical order.
0 if string1 is equivalent to string2.
1 if string1 comes after string2 in alphabetical order.

 stricmp(string1 ,
 string2)

Does case-insensitive lexicographic comparison of string1
and string2.
Returns the following.
–1 if string1 comes before string2 in alphabetical order.
0 if string1 is equivalent to string2.
1 if string1 comes after string2 in alphabetical order.

//ts37();

 echo(“\c3Lexicographic comparisons are not the same as
 arithmetic comparisons...”);
 echo(“100 - 10 == 90, but strcmp(\”100\” , \”10\”) == ” ,
 strcmp(“100” , “10”));
 echo(“\n”, “\c3Don\’t forget about case-sensitivity...”);
 echo(“ strcmp(\”ABC\” , \”abc\”) == ” , strcmp(“ABC” ,
 “abc”) , “, but ”);
 echo(“ stricmp(\”ABC\” , \”abc\”) == ” , stricmp(“ABC” ,
 “abc”));

Table 10.11.

Making lexicographic
comparisons.

 Gameplay Scripting Chapter 10

399

10.3.9 Trimming and Stripping
It will often be necessary to clean up strings before displaying or storing them. To
enable this task, TGE supplies some standard utility functions (Table 10.12).

Function Description

l trim(string) Returns string with all leading whitespace
removed.

r trim(string) Returns string with all trailing whitespace
removed.

stripChars(string , chars) Returns string with all characters in string
chars removed.

 stripMLControlChars(string) Returns string with all TorqueML
characters removed.

stripTrailingSpaces(string) Returns string with all trailing spaces and
underscores removed.

 trim(string) Returns string with both trailing and
leading whitespace removed.

//ts38();
%toClean = “<tab:60> I’m,<spush><font: arial: 8> ” @
 “all, clean,____ <spop>”;
 echo(“\c3Cleaning up an ugly string...”);
 echo(%toClean);

 echo(“\n”, “\c3Remove Mark-up language...”);
%toClean = stripMLControlChars(%toClean);
 echo(%toClean);

 echo(“\n”, “\c3Remove leading and trailing spaces...”);
%toClean = trim(%toClean);
 echo(%toClean);

 echo(“\n”, “\c3Remove commas...”);
%toClean = stripChars(%toClean , “,”);
 echo(%toClean);

echo(“\n”, “\c3Get rid of underscores...”);
%toClean = stripTrailingSpaces(%toClean);
 echo(%toClean);

Table 10.12.

Cleaning up strings.

Part III Game Elements

400

10.4 Scripted Math
TGE provides a rich set of console math functions. The majority of these func-
tions are centered around 3D mathematics, but there are a few other catego-
ries as well. All of these functions are documented in the “Console Functions”
appendix. However, we will take a brief tour of these functions so you know
what is available to you.

10.4.1 Floating-Point Arithmetic
All the arithmetic functions take fl oating-point values and return fl oating-point
results, but they can be used for integer mathematics, too (Table 10.13).

//ts39();

 echo(“|-5| == ”, mAbs(-5), “\n”);
 echo(“Next greatest integer from 4.3 == ”, mCeil(4.3),
 “\n”);
 echo(“Next smallest integer from 4.3 == ”, mFloor(4.3),
 “\n”);
 echo(“2 raised to the power of 3.14159 == ”, mPow(2 ,
 3.14159), “\n”);
 echo(“Square root of 2 == ”, mSqrt(2), “\n”);

10.4.2 Trigonometric Functions
We use trigonometric functions frequently to solve problems in the realm of
3D games; thus, TGE has provided a complete set of these functions to be
used in TorqueScript (Table 10.14).

10.4.3 Vectors
In addition to trigonometric calculations, we will frequently be calculating
vector results to move game objects, check for intersections, and various other
tasks. A good set of vector functions simplifi es this work (Table 10.15).

10.4.4 Matrices
Hopefully, you won’t fi nd yourself needing to do too many matrix calcula-
tions, but if you do, TGE provides some functions (Table 10.16).
 Most of these have obvious uses, but MatrixMulPoint() may seem a
bit mysterious. This can be used to translate a point by a transform. Having
this operation available makes it possible to check for collision between an
object’s scaled objectBox and other objects like the terrain. In fact, this exact

 Gameplay Scripting Chapter 10

401

problem was solved in Tribes 2 using MatrixMulPoint(). The gist of the
solution went something like the following.

// Pseudocode for scaled objectBox vs. terrain penetration
// 1. Obtain objectBox for shape and scale both vectors
// appropriately to match object’s scale.
%objBox = %obj. getObjectBox();
// ... do scaling here ...

// 2. Create array of eight points containing untranslated
// position of objectBox bounds.
%transform = %obj. getTransform();

// 3. Acquire object’s transform. Iterate over array and use
// ‘ MatrixMulPoint()’ to calculate translated position of vertices.
for(%count = 0; %count < 8; %count++) {
 %newBoundPos[%count] = matrixMulPoint(%transform,
 %oldBoundPos[%count]);
}

// 4. Iterate over new bounds points using rayCast to check
// for collision between bounds and terrain.
%collision = 0;
for(%count = 0; %count < 7; %count ++) {
 %obj = containerRayCast(
 %oldBoundPos[%count] ,
 %newBoundPos[%count] ,
 $TypeMasks::TerrainObjectType ,
 0);
 %collision |= %obj;
}

// 5. If %collision is not zero, a collision occurred.
if (%collision)
 echo (“Oops, got a collision!”);

10.4.5 Quadratics and Cubics
If you’re not a mathematician, these functions may sound a bit spooky, but if
you dredge up your old algebra and calculus notes, you’ll recall that they are
simply the following.

• Quadratic. Second-order polynomial of the form: ax2+bx+c = 0. Warning:
This function produces the inverse of the solution (see example below).

• Cubic. Third-order polynomial of the form: ax3+bx2+cx+d = 0. This
function works as expected.

Part III Game Elements

402

Function Description

mAcos(operand) Returns the inverse cosine of operand.

mAsin(operand) Returns the inverse sine of operand.

mAtan(operand) Returns the inverse tangent of operand.

mCos(operand) Returns the cosine of operand.

mDegToRad(operand) Converts operand from degrees to radians.

mRadToDeg(operand) Converts operand from radians to degrees.

 mSin(operand) Returns the sine of operand.

mTan(operand) Returns the tangent of operand.

Table 10.14.

Trigonometric functions.

Table 10.15.

Vector functions.

Function Description

Vector Add(vect1 , vect2) Adds vect1 and vect2.

VectorCross(vect1 , vect2) Calculates cross product of vect1 and vect2.

VectorDist(vect1 , vect2) Calculates distance between points specified by
vect1 and vect2.

VectorDot(vect1 , vect2) Returns scalar dot product of vect1 and vect2.

VectorLen(vect) Returns length of vector vect.

VectorNormalize(vect) Returns unit-length version of vect.

 VectorOrthoBasis(“x y z
 angle”)

Returns a 3 × 3 matrix containing the
orthogonal basis of the vector described by the
axis-angle representation <x y z> angle.

VectorScale(vect , scalar) Scales the vector vect by the amount scalar.

VectorSub(vect1 , vect2) Subtracts vect2 from vect1.

Function Description

 mAbs(operand) Returns the absolute (nonnegative) value of operand.

mCeil (operand) Returns the next greatest integer (as a float) starting at
operand and rounding up: mCeil(4.5) returns 5.0.

mFloor(operand) Returns the next smallest integer (as a float) starting at
operand and rounding down: mFloor(4.5) returns 4.0.

mLog(operand) Returns the natural log of operand.

mPow(operandA ,
operandB)

Returns the value operandA ^ operandB; i.e.,
operandA raised to the power of operandB.

mSqrt(operand) Returns the square root of operand.

Table 10.13.

Arithmetic functions.

 Gameplay Scripting Chapter 10

403

The functions in Table 10.17 return a vector of values in the form “sol x0
x1 ... xn”, where sol is the number of solutions and x0 ... xn are the
values of those solutions.
 The number of solutions, sol, should be 2 for a quadratic and 3 for a
cubic or else the calculation has failed. A failure will occur (sol == 0) if
there is no solution to the equation you are trying to solve. This always means
that you have entered factors for an equation of the form ax2+bx+ c ≠ 0 or
ax3+bx2+cx+d! ≠ 0. These functions can only solve for equations that result
in 0. x0 and x1 are the factored values for x. See the examples below for
clarifi cation.

// All samples below drawn from 1728 Software Systems
// Sample Calculations: http://www.1728.com/.
// Cool calculators and converters; check it out.

// Quadratic Test -
// (x + 2)(x + 3) = 0 => x^2 + 5x + 6 = 0
echo(“Solutions: “, mSolveQuadratic(1 , 5 , 6));
// Produces: 2 2 3 meaning there are two solutions,
// 2 and 3, but it is easy to see that we should have
// received 2 -2 -3. Be aware of this bug.

Table 10.17.

Quadratic and cubic
functions.

Table 10.16.

Matrix functions.

Function Description

MatrixCreate(Pos , Rot) Creates a 3 × 3 matrix from the three-element
floating-point position vector Pos and the four-
element floating-point axis-angle vector Rot.

MatrixCreateFromEuler (“Ax
Ay Az”)

Creates a matrix from the Euler angles “Ax
Ay Az”.

MatrixMulPoint(transform ,
point)

Multiplies the three-element floating-point
point vector by the standard seven-element
floating-point transform.

 MatrixMultiply(Left , Right) Multiplies the 3 × 3 matrices Left and Right.

Function Description

mSolveQuadratic(a , b , c) Solve for x0, x1 in second-order polynomial
equation with factors a, b, c.
Warning: x0 and x1 are inverted.

mSolveCubic(a , b , c , d) Solve for x0, x1, x2 in third-order polynomial
equation with factors a, b, c, d.

Part III Game Elements

404

echo (“X == “ , mSolveQuadratic(2 , 10 , -100));

// Cubic Test:
// (x - 4) (x + 3) (x – 1) = 0 => 2x^3 - 4x^2 - 22x + 24 = 0
echo (“Solutions: “, mSolveCubic(2 , -4 , -22 , 24));
// Produces: 3 -3 1 4 which matches the factored solution
// to the cubic above.

10.4.6 Miscellaneous

 Centroids

A concept we deal with frequently is that of the center, or centroid, of an
object or a space. It will often occur that we know the bounds of a space and
want the exact center of that space. The method getBoxCenter(Box) does
that for us. It takes a single string containing two three-element fl oating-point
vectors representing the outer bounds of a (possibly irregular) rectangular
solid region and returns a three-element fl oating-point vector representing the
center of that rectangular solid.

//ts22();

%cube = “-1.0 -1.0 -1.0 1.0 1.0 1.0”;
 echo(getBoxCenter(%cube));

 Random Numbers

You will, almost invariably, need random numbers at some time in the design
of your game. Knowing this, the authors of TGE have provided some methods
to produce them.

Initializing the Random Number Generator

You don’t necessarily need to initialize the random number generator, but if
you want to be able to repeat your random results (e.g. you’re doing some
debugging and want the same random sequence every time), simply set the
seed to the same value before starting the sequence (Table 10.18).
 You can also retrieve the seed value, prior to your sequence, in case you
need to plug it in later.

Getting Random Values

There is only one function supplied for getting random values, but it can be
called in a variety of ways (Table 10.19).

 Gameplay Scripting Chapter 10

405

//ts23();

%seed = getRandomSeed();
for (%count = 0 ; %count < 100 ; %count++) {
 %x[%count] = getRandom(%count);
}

 setRandomSeed(%seed);
for (%count = 0 ; %count < 100 ; %count++) {
 %y[%count] = getRandom(%count);
}

%mismatches = 0;

for (%count = 0 ; %count < 100 ; %count++) {
 if(%x[%count] != %y[%count]) {
 error(“Failed to reproduce same sequence of random numbers!”);
 error(“Seed:” SPC %seed);
 error(“Count:” SPC %count);
 error(%x[%count] SPC “!=” SPC %y[%count]);
 %mismatches++;
 }
}
 echo(“There were ”, %mismatches, “ mismatches.”);

Table 10.19.

Getting random numbers.

Table 10.18.

Initializing the random
number generator.

Function Description

setRandomSeed(seed) Sets random seed to seed.

getRandomSeed() Returns current seed.

Function Description

getRandom() Returns a random value in the range [0.0 , 1.0].

getRandom(max) Returns a random value in the range [0.0 , max].

getRandom(min , max) Returns a random value in the range [min , max].

 Floating-Point Manipulation

On occasion, when you’re doing a fl oating-point calculation, it would be nice
if you could force the result to have a fi xed number of decimal places. TGE
provides the function mFloatLength(operand, numDecimals) that
forces a fl oating-point value to have a specifi ed number of decimal places.

Part III Game Elements

406

Furthermore, TGE will round the last place up if the actual value extends
beyond the specifi ed range and if the next decimal place is greater than or
equal to 5.

//ts24();
 echo(mFloatLength(1.196 , 2));
 echo(mFloatLength(1.196 , 10));

10.4.7 Maze Runner Lesson #18 (90 Percent
 Step)— Game Events
In this lesson, we will examine the scripts used to fade blocks in and out, and
we will examine the functions used to shoot fi reballs on a regular basis. Now
that we have covered callbacks, scheduling, string manipulation, and scripted
math, we should be ready to examine how these gameplay scripts work.
 Please note: This lesson depends on Lesson #4 (Section 6.4.4).

Fade Blocks

There are three blocks of code we are interested in for the fade blocks.
The fi rst of these is in the fi le “\MazeRunner\starter.fps\server\scripts\
MazeRunner\levelloader.cs”.
 At the end of the function BuildLevel(), there is a little snippet of code
that checks to see if there are any fade blocks in the fadeGroup SimGroup. If
there are, the loader schedules a fadePass() in 5000 milliseconds.

if(fadeGroup. getCount())
 fadeGroup. schedule(5000 , fadePass);

fadePass()

This function has the task of coming back every $stepTime (1000) millisec-
onds and updating all of the fade blocks. The motivation for updating all the

blocks simultaneously is that it gives us greater control over the behavior
of the blocks than if each block scheduled its own maintenance. Also, by

maintaining a single entry and exit point, we only use one schedule, thus
reducing overhead.

function SimSet::fadePass(%theSet) {
 %theSet.forEach(fadeStep , true);
 %theSet. schedule($stepTime , fadePass);
}

As can be seen, this function merely iterates over the blocks in the set and
runs fadeStep() on each of them.

In the code on this
page, you will see a
call to forEach().
This is not a standard
function, but rather
one of several utility
functions that has
been provided
with the GPGT
Lesson Kit as well as
separately on the
accompanying disk.
Please see Appendix
A.7, “Scripted Systems
Quick Reference,”
under “GPGT Utilities”
to learn more about
this utility method and
the others that have
been supplied with
this book.

 Gameplay Scripting Chapter 10

407

fadeStep()

This function has the responsibility for advancing the fade status of an indi-
vidual fade block by one time period. A fade block can be in one of three
states.

• waitToFadeOut. The block is waiting to begin a fade.

• waitToFadeIn. The block is faded out and waiting to begin fading in.

• wait. The block is in a dead cycle waiting for all other blocks to complete
the current fade cycle.

A fade cycle is always 10 seconds long (as implemented in “fadeblocks.cs”).
During a single fade cycle, every single fade block will fade out, fade in, and
wait for its peers to fi nish their fade cycle.
 By using this method instead of allowing blocks to fade in, fade out, fade
in, ad infi nitum, without synchronizing, we avoid chaos. The game would be
no fun if the blocks faded in and out chaotically. But, because we can rely on
a cycle always taking 10 seconds and then repeating itself, the player can plan
ahead after observing a cycle or two.
 Enough talking. Let’s look at the code.

function StaticShape::fadeStep(%theBlock) {
 %theBlock.timer = %theBlock.timer - $stepTime;

 // Check for flip-time
 if(%theBlock.timer <= 0) {
 switch$(%theBlock.action) {
 case “waitToFadeOut”:
 %theBlock.timer = $basePauseTime;
 %theBlock. startFade($fadeTime , 0 , true);
 %theBlock. schedule($fadeTime , setHidden , true);
 %theBlock.action = “waitToFadeIn”;

 case “waitToFadeIn”:
 %theBlock.timer = $basePauseTime;
 %theBlock. setHidden(false);
 %theBlock. startFade($fadeTime , 0 , false);
 %theBlock.action = “wait”;

 case “wait”:
 %theBlock.timer = %Obj.maxTime;
 %theBlock.action = “waitToFadeOut”;
 }
 }
}

Part III Game Elements

408

As we can see, individual blocks have an internal timer containing some pre-
defi ned value. When that timer gets down to (or below) zero, it is time to
change the block’s state and do some work.
 Initially, all blocks will have the following values.

• timer. This value will be between 1000 and 10,000 milliseconds.

• maxTime. This value will be the same as timer. The value in this fi eld is
never changed after the block is implemented.

• action. All blocks start out executing the action waitToFadeOut.

Now, if we restrict our discussion to just one block and assume that the block
has a timer and maxTime of 1000 milliseconds, over time, we will see the
behavior described in Table 10.19.

Time (ms) Action(s)

0 • timer = timer – 1000 (0 <= 0 continue executing) (block is visible).
• action == waitToFadeOut.
• Block starts to fade out.
• Block schedules a hide.
• action = waitToFadeIn.
• timer = 10000.

1000 • timer = timer – 1000 (9000 > 0 skip) (block is invisible).

2000 • timer = timer – 1000 (8000 > 0 skip) (block is invisible).

3000 • timer = timer – 1000 (7000 > 0 skip) (block is invisible).

4000 • timer = timer – 1000 (6000 > 0 skip) (block is invisible).

5000 • timer = timer – 1000 (5000 > 0 skip) (block is invisible).

6000 • timer = timer – 1000 (4000 > 0 skip) (block is invisible).

7000 • timer = timer – 1000 (3000 > 0 skip) (block is invisible).

8000 • timer = timer – 1000 (2000 > 0 skip) (block is invisible).

9000 • timer = timer – 1000 (1000 > 0 skip) (block is invisible).

10000 • timer = timer – 1000 (0 <= 0 continue executing) (block is invisible).
• action == waitToFadeIn.
• Block unhides.
• Block starts to fade in.
• action = wait.
• timer = 1000.

11000 • timer = timer – 1000 (0 <= 0 continue executing) (block is visible).
• action == wait.
• timer = 1000.

. . . Sequence repeats.

Table 10.19.

Fade behavior of one
block.

 Gameplay Scripting Chapter 10

409

 The important thing to note about this behavior is that the fade blocks
support up to ten blocks with incrementing (by 1000 milliseconds) fade times
to be placed in order. Subsequently, these blocks will fade out in order. Then,
one second after the last block fades out, the fi rst block will start to fade back
in. Thus, the fade in and out is deterministic and cyclic, allowing a player to
observe a pattern and to memorize it.

Fireballs

There are three blocks of code we are interested in for the fi reball blocks.
The fi rst of these is in the fi le “\MazeRunner\starter.fps\server\scripts\Maze-
Runner\levelloader.cs”.
 At the end of the function BuildLevel(), there is a little snippet of
code that checks to see if there are any fi reball blocks in the FireBallMarkers-
Group SimGroup. If there are, the loader schedules a firePass() in 1500
milliseconds.

if(FireBallMarkersGroup. getCount())
 FireBallMarkersGroup. schedule(1500 , firePass);

firePass()

This function has the task of coming back every $stepTime (1000) millisec-
onds and checking each fi reball block to see if that fi reball block should fi re a
new fi reball. Again, controlling fi reballs this way (as with fade blocks) allows
us to use a single schedule() event to handle all of our fi reball blocks. This
is easy to understand and effi cient.

function SimSet::firePass(%theSet) {
 %theSet.forEach(doFire , true);
 %theSet. schedule($fireTime , doFire);
}

doFire()

Again, we have created a function that will operate on individual blocks to
enact each block’s action if it is time to do so. Here is a summarized listing
of the function.

function StaticShape::doFire(%marker) {
 if(isObject(%marker.bullet)) return;

 // Handle random fire marker case
 %firePath = (%marker.type == 9) ? getRandom(0 , 9) :
 %marker.type ;

Part III Game Elements

410

 switch(%firePath) {
 //
 // NORTH
 //
 case 0:
 %marker.shootFireBall(FireBallProjectile , “0 1 0” , 20);

 // ... similar code for case 1 .. 7

 //
 // DOWN
 //
 case 8:
 %marker.shootFireBall(FireBallProjectile , “0 0 -1” , 20);
 }
}

We have not examined the shootFireBall() method, but when this method
executes, it will create a projectile and store the ID of that projectile in the
block’s bullet fi eld. When a projectile strikes an object, the projectile will
explode and then self-delete.
 So, our doFire() method fi rst checks to see if this block has a bullet by
seeing if the value in the bullet fi eld is still an object. If it is, then we do not
yet need to fi re another bullet, and the method exits.
 If there is no current bullet, the method will next check to see if this is a
random block. In the case that this block shoots in a random direction, it will
get a random value between 0 and 8 and then continue.
 Having selected a fi ring direction (or going with the fi xed direction)
we now enter a long case statement that shoots a new fi reball by calling
shootFireBall() and passing in the following information (in this order).

• Projectile datablock. This is the projectile to shoot.

• Direction. This is the direction to shoot in.

• Velocity. This is the velocity we want the fi reball to move with.

Please note, we will examine the method shootFireball() in Lesson #20
(Section 11.4.3).

10.5 Dynamic Scripting
This topic isn’t a real mind blower, but it is something to remember that you
have in your arsenal of TorqueScript options.

 Gameplay Scripting Chapter 10

411

 First, remember that we are working within an interpreter. Furthermore,
you should understand that code is evaluated during execution—not before-
hand like in C or Java. This means that we can use certain parts of Torque-
Script’s syntax to build up powerful and fl exible scripts that morph over time.
 I call this dynamic scripting.

10.5.1 Square Brackets []
In Chapter 4, “Introduction to TorqueScript,” we discussed the fact that Torque
uses [] to build up strings as follows.

//ts25();

%var[0] = 10;
 echo(%var[0]);

// same as
 echo(%var0);

The interpreter evaluates statements with square brackets, removing the brack-
ets and replacing our original string with a more compact form. In essence, the
square brackets are concatenation operators. Using them, we can concatenate
two (or more) strings on the fl y, building up a new variable name. Recall that,
in the case of multi-dimensional arrays, not only are the elements inbetween
the brackets concatenated, but all commas (,) are replaced with underscores
(_). Consider the following code snippets.

$a=l;
$b=m;
$c=n;
$x[$a,$b,$c] = 10;
 echo($xl_m_n); // Prints 10

In this example, we constructed a new name from the composite of the con-
tents of several variables. Notice that the engine inserts “_” for the comma (,)
separators.
 Next, let’s try including the dot (.) operator.

$x.[$a,$b,$c] = 10; // Gives syntax error

In this example, we try to combine both the dot (.) operator and square brack-
ets, but TGE does not allow square brackets to follow a dot (.) directly.
 Let’s get a bit more creative.

Part III Game Elements

412

$x._[$a,$b,$c] = 10; // works, but gets ‘lost’ somehow
 echo($x._[$a,$b,$c]); // hmmm... nothing
 echo($x._l_m_n); // darn! nothing again

OK, that looked like it should work, but when we tried to print our values using
the exact copy and what should have been an equivalent, neither worked.
Why? Well, the dot operator only works on objects. We fooled TGE into think-
ing we had an object, but when it did not fi nd an ID in $x, the remainder of
the operation went into the wastebasket.
 Fine, so let’s try this with an object.

$x = new simObject();
$x._[$a,$b,$c] = 10; // works and is retained
 echo($x._[$a,$b,$c]); // Yeah!
 echo($x._l_m_n); // Sweet!

Excellent. Now, we know some ways of creating compound names dynami-
cally on both variables and objects. So, how do we put this to use?

10.5.2 Precedence Operators ()
Square brackets alone can’t do it all. Sometimes, we need to use the prece-
dence operators to force the engine to build our variables fi rst. In particular,
we are not allowed to follow a closing square bracket with an open curly
bracket. Consider the following code.

//ts27();
%anObject = “ScriptObject”;
%obj = new %anObject();
if(isObject(%obj))
 echo(“It is an object. Congratulations!”);
else
 echo(“It is NOT an object. Try again...”);

This just won’t work. The interpreter doesn’t know that it needs to expand the
contents of %anObject fi rst. So what about the following?

//ts28();
%anObject = “ScriptObject”;
%obj = new [%anObject]();
if(isObject(%obj))
 echo(“It is an object. Congratulations!”);

 Gameplay Scripting Chapter 10

413

else
 echo(“It is NOT an object. Try again...”);

This doesn’t work either. It violates the syntax rules for the interpreter. The
actual solution is to use the precedence operators.

//ts29();
%anObject = “ScriptObject”;
%obj = new (%anObject)();
if(isObject(%obj))
 echo(“It is an object. Congratulations!”);
else
 echo(“It is NOT an object. Try again...”);

Another useful example occurs when we want to dynamically build an object’s
name. For example if we had three GUI controls named tile_top, tile_
middle, and tile_bottom, we could access fi elds or methods of these con-
trols as follows.

%name[2] = “top”;
%name[1] = “middle”;
%name[0] = “bottom”;
for(%count = 0; %count < 3; %count ++) {
 %id = (tile @ “_” @ %name[%count]). getID();
 echo(“Tile ”, %name[%count], “ has ID ”, %id);
}

10.5.3 eval()
We still haven’t dealt with creating function names on the fl y. You may recall
in our discussion of ScriptObjects (Section 9.3.2) when I said it is nice to
be able to use regularly formatted (versus specialized) names for our func-
tions; i.e., it’s better to always call printArea() vs. printCircleArea(),
printSquareArea(), etc. The reason we like this is because it reasonably
leads us in the direction of building our function names on the fl y from known,
regular parts.
 So, to solve the fi nal part of this puzzle, we need to use a special func-
tion provided by TGE: eval(). The function eval(scriptString) will
execute any valid script contained in the string scriptString.
 This function will execute a string as if it were a script. With the use of
TorqueScript’s various string-building tools, we can build any function name,
variable name, or string of script we please. Then we simply eval() it.

Part III Game Elements

414

//ts30();

%test = 10;
%printTest = “ echo(\“” @ %test @ “\”);”;
 echo(“ eval(“, %printTest, “) produces -->”);
 eval(%printTest);

 eval() can be used to create and modify both local and global variables:

//ts31();

%makeVarTest = “%newVar = 100;”;
 echo(“evaluating script --> “, %makeVarTest);
 eval(%makeVarTest);
 echo(“%newVar == “, %newVar);

10.5.4 call()
There is one more way of executing functions dynamically in script. This only
supports function-style calling, not method-style calling. It isn’t as much fun as
 eval(), but it is very straightforward and useful in a great number of cases.
TGE provides a function named call(). call (funcname, [arg0, ...,
argN]) executes the function named in the string funcName and passes the
function any arguments provided in arg0, ..., argN.

//ts32();

%tmpVal = 100;
 call(“echo” , “$”, %tmpVal , “ for TGE is a good price,
 Yes?”);

10.6 Basic Client-Server Communications
Although you can, in practice, ignore the client-server divide in the design of a
single-player game, if you do and if you try to take that game to a multiplayer
environment, you may fi nd yourself reworking great gobs of code.
 For example, it is easy in a single-player game to write scripts called by
the action maps that manipulate server objects and variables. In the follow-
ing example, we use the key stroke CTRL+W to make the current player
play a hand-waving animation. All of this “bad” code might be placed in the
“default.bind.cs” fi le.

 Gameplay Scripting Chapter 10

415

// Bad Implementation of a Wave!!!
moveMap. bind(keyboard, “ctrl w”, celebrationWave);
// ...
function celebrationWave(%val) {
 if(%val)
 $Game::Player. setActionThread(“celWave”);
}

So, why is the above code bad? Let’s break it down.

• The code uses a variable $Game::Player which we are assuming has the
server ID of the player in it. This has the following problems.

• Action maps are in the client space, so no server variables should be
visible, or at least should not be touched, in this scope.

• The implication of this variable is that there is only one player, which
breaks down as soon as there is another player in the game.

• There is a function celebrationWave() associated with CTRL+W. In
and of itself, this is correct. The problem is that this function directly modi-
fi es a server object. This is wrong for the same reasons as listed above.

So, how do we solve this? Well, before we solve this specifi c problem, let’s
fi rst talk in general about how client-server communications work.

Client � Server Commands

Clients communicate with the server by requesting that the server execute a
named command. The syntax of this request is as follows.

 commandToServer(commandTag [, arg0, ... , argN]);

Calling this command (on the client) tells TGE to request that the server exe-
cute a console function with the name serverCmd + commandTag, using the
arguments (if any) that were passed to commandToServer(). Regarding the
commandTag, this can be a string (“xyz”) or a tag (‘xyz’), but tags are gener-
ally preferred.
 A concrete example of this would look like the following.

// This method would be defined in one of the script
// files that is loaded by the server:
function Player::Doit() {
 // do something
}

Tags are a feature
that Torque uses
to save networking
bandwidth. Basically,
a tagged string is
stored locally (by the
first sender) and given
a unique numeric ID.
Then, the first time
the sender transmits
this string to a new
receiver, it informs
the receiver that the
string is a tagged string
and tells the receiver
what that tag ID is.
Subsequently, when
the sender wants the
same receiver to use
this ‘tagged’ string, it
only needs to inform
the receiver that it is
sending a tag and
then transmit the tag
ID. In general, tags are
much shorter than the
strings they identify.
Thus, using tags for
often transmitted
strings can produce
significant benefits in
terms of networking

bandwidth savings.

Part III Game Elements

416

// This method (likely in a separate file) would also be
// defined in one of the script files that is loaded by
// the server:
function serverCmdDoit(%client) {
 %client.player.Doit();
}

// This command would be executed in function or method
// defined in a script file loaded by the client:
commandToServer(‘Doit’);

When commandToServer(‘Doit’); is called, TGE will instruct the server
to call serverCmdDoit() and will pass in the ID of the calling client.
 I repeat: the engine automatically passes in the ID of the calling client.
Therefore, all server commands (serverCmd*) must take the client ID as their
fi rst argument.
 Subsequently, the server will execute the function, and the player method
doit() will be executed for the player associated with that client.
 Please understand that the implication is that the player ID is stored in a
fi eld named player in the client connection object (%client.player). We do
this in the “game.cs” fi le (take a look).

Server � Client Commands

The server uses a similar method for executing commands on the client. The
syntax of this request is as follows.

 commandToClient(clientID, commandTag [, arg0, ... , argN]);

Calling this command (on the server) tells TGE to request that the numbered
client execute a console function with the name clientCmd + commandTag,
using the arguments (if any) that were passed to commandToClient().
Regarding the commandTag, this can be a string (“xyz”) or a tag (‘xyz’), but
tags are generally preferred.
 A concrete example of using commandToClient() would look like the
following.

// This method would be defined in one of the script files
// that is loaded by the client:
function PlayGUI::DoSomething(%ID, %x, %y) {
 // do something
}

 Gameplay Scripting Chapter 10

417

// This method (likely in a separate file) would also be
// defined in one of the script files that is loaded by
// the client:
function clientCmdTellPlayGUIDoSomething(%x, %y) {
 PlayGUI.DoSomething(%x , %y);
}

// This sample executes the same function on all clients
// connected to the server:
for(%clientIndex = 0; %clientIndex <
 ClientGroup. getCount(); %clientIndex++) {
 %someClient = ClientGroup. getObject(%clientIndex);
 commandToClient(%someClient , ‘TellPlayGUIDoSomething’
 %x , %y);
}

The above example iterates over each client (from the server side) and tells the
client to do something with its PlayGUI at the coordinates x, y. In turn, each cli-
ent executes the method PlayGUI.DoSomething() with those coordinates.

10.6.3 The Takeaway
So, we talked briefl y about client-server communication here, but what should
you take away from our discussion? Mainly, if you are going be using key-
strokes (via action maps) to execute server commands or manipulate server
variables, be sure to use the presented methodology. This way, if you decide to
make your singleplayer game a multiplayer game in the future, you won’t have
to go back and fi x all of the cases where you violated the client-server divide.

10.6.4 Waving Sample Solution
Below is the solution to our original “waving” problem from above.

// Server-Side Functions:
function serverCmdPlayCel(%client,%anim) {
 if (isObject(%client.player))
 %client.player.playCelAnimation(%anim);
}

function Player::playCelAnimation(%this,%anim) {
 if (%this. getState() !$= “Dead”)
 %this. setActionThread(“cel”@%anim);
}

Part III Game Elements

418

// Client-Side Functions:
function celebrationWave(%val) {
 if(%val)
 commandToServer(‘playCel’, “wave”);
}

// MoveMap (client-side) Mapping
moveMap. bind(keyboard, “ctrl w”, celebrationWave);

10.7 Summary
In this chapter, we discussed the features and classes that Torque provides for
enabling gameplay and interaction from scripts.
 We introduced the idea of callbacks and discussed the most signifi cant (in
the context of this guide) callbacks, including when they are called and how
they are used.
 We next learned about the very important feature of event scheduling. We
came to understand that we can schedule functions to execute, and console
methods to execute upon specifi c instances of objects. We learned how to
track the progress of an event, how to cancel it, and how to repeat it.
 Next, we talked about string manipulation and fi lled our heads with the
concepts of words, records, fi elds, tokens, etc. Furthermore, we explored the
purpose and usage of each of these concepts and the functions that Torque
supplies to work with them.
 Math is a big part of game writing, and so we discussed scripted math in
great depth, discussing all of the most basic and most advanced math features
and functions supplied by Torque and available in TorqueScript.
 Our second-to-last discussion in this chapter explored the edges of script-
ing and taught us about some tricks and techniques that, if used properly, can
create evolutionary and highly functional scripts.
 Lastly, we dipped into the client-server aspect of the Torque Game Engine.
We learned some dos and don’ts when it comes to trading data between cli-
ent and server. Then, we learned how to send commands from clients to the
server and from the server to clients.

419

Special Effects
Chapter 11

Special effects, in the context of this chapter, are those effects that are for the
most part visual. We’re talking about such things as explosions, debris, particle
emitters, splashes, etc. Because each of these objects is unique in some sense,
yet similar to each other or used by other effects classes, I thought it best to
gather them here. So, there is some logic, even if you do consider it madness
to refer to projectiles as special effects.
 Please note that there is no direct path to discussing these due to their
interconnectedness (try drawing the relationship tree some time); thus, this
chapter will be alphabetically organized.

11.1 Debris
Debris objects are used to represent the refuse left behind by an exploding or
destroyed object. However, this object is versatile enough to be used for vari-
ous purposes, including a rockfall that blocks the road, the remains of a fallen
building, etc.

11.1.1 Debris and DebrisData Features
Debris and DebrisData have the following features.

• Rendering
• 2D debris (particle)
• 3D debris (shape)

• Physics
• Bouncing
• Sliding
• Falling
• Velocity limiters
• Spinning
• Limited lifetimes

• Behavior modifi ers
• Subexplosions
• Bounce off water
• Replace debris with StaticShape

Part III Game Elements

420

• Modify resting orientation
• Particle emission
• Fading away

11.1.2 Rendering
Debris can be rendered as a 2D or 3D object, depending on our needs.

2D Debris (Particle)

If we are viewing debris from a distance, it will probably be suffi cient to use a
billboard instead of a shape, which has a higher rendering penalty. In order to
create debris using just a billboard (a single texture), we specify our datablock
as follows.

datablock DebrisData(2D_Debris) {
 render2D = true;
 texture = “path to texture file”;
 // ...
};

3D Debris (Shape)

Of course, if 2D would always cut it, we wouldn’t be using a 3D engine, would
we? So, for those cases in which an object is needed, we specify a 3D debris
datablock as follows.

datablock DebrisData(3D_Debris) {
 render2D = false;
 shapeFile = “path to DTS file”;
 // ...
};

11.1.3 Physical Properties
Debris can exhibit various random physical properties to give its behavior
realism or a required effect.

Starting Radius

One of the fi rst questions to answer is, “How far from the explosion point will
the debris start?” As you will see in Section 11.3, most explosions take place
in the centroid of the shape, and for big shapes, it might be expected that the
debris starts some distance away from that point. By default, our debris will
start 0.2 world units from this point, but the distance can be greater if neces-
sary.

 Special Effects Chapter 11

421

Bouncing

It may make sense for the debris from an explosion to bounce a few times. To
accomplish this, we need to set a few parameters in our datablock.

datablock DebrisData(bouncyDebris) {
 // ...
 elasticity = 0.5; // A little bouncy, but not super-bouncy
 numBounces = 5; // Bounce between: 3 and 7 times
 bounceVariance = 2; // (numBounces +/- bounceVariance)
 // ...
};

Note that elasticity can only be between 0.0 and 0.99. In addition to bouncing
off of solid objects, we can cause debris to bounce off of water. Here, we are
telling the engine to add the water type to our collision list.

datablock DebrisData(bounceOffWaterDebris) {
 // ...
 ignoreWater = false; // Bounce when we hit water too
 // ...
};

Sliding

It might also be useful for our debris to slide a bit or, alternatively, to arrest
quickly.

datablock DebrisData(slidingDebris) {
 // ...
 friction = 0.1; // Slide for a long while before arresting
 // ...
};

datablock DebrisData(quickArrestDebris) {
 // ...
 friction = 1.0; // Stop sliding quickly
 // ...
};

datablock DebrisData(startingRadiusDebris) {
 // ...
 useRadiusMass = true; // Use defined radius if > 0.2 world units
 baseRadius = 4.0; // Start 4.0 world units from centroid
 // ...
};

Part III Game Elements

422

Velocity and Falling

Now having solved where the debris will start and how it will behave when it
fi rst hits something, we need to give it some oomph! We need to determine at
what rate it is initially moving and decide how gravity will affect it.

datablock DebrisData(highSpeedDebris) {
 // ...
 velocity = 20.0; // Debris starting velocity of:
 // 19.5 - 20.5 world units/second
 velocityVariance = 0.5; // velocity +/- velocityVariance
 terminalVelocity = 30.0 // maximum velocity of
 // 30 world units/second
 // ...
};

The above datablock will produce a quickly moving debris effect, whereas
the one below will create a slowly moving effect. Additionally, we’ve set the
gravModifier to a negative value, meaning that the debris will fl oat up
instead of falling down.

datablock DebrisData(lowSpeedFloatUpDebris) {
 // ...
 velocity = 2.0; // Debris starts with velocity of:
 // 1.5 - 2.5 world units/second
 velocityVariance = 0.5; // velocity +/- velocityVariance
 gravModifier = -1.0; // Debris floats UP
 terminalVelocity = 3.0; // Prevent debris from
 // accelerating past 3
 // world units/second
 // ...
};

Spinning

Debris that maintains the same orientation would be a bit boring, so TGE pro-
vides a means of spinning the debris. The spin magnitude can be limited to
a specifi c range of degrees per second, and TGE will randomly select a value
in this range.

datablock DebrisData(slowSpinDebris) {
 // ...
 minSpinSpeed = -60;
 maxSpinSpeed = 60;
 // ...
};

 Special Effects Chapter 11

423

Lifetime

Well, we’ve gotten to the end of the physical properties list. Now, we have one
more decision to make. How long will this debris last? In total, TGE will not
allow debris to exist longer than 1000 seconds, but that should be suffi cient
for most needs.

datablock DebrisData(twoMinuteDebris) {
 // ...
 lifetime = 240.0; // This debris lasts exactly two minutes
 lifetimeVariance = 0.0; // lifetime +/- lifetimeVariance
 // ...
};

11.1.4 Additional Behaviors
Beyond the physical properties, there are a few things we can modify to make
our debris really work for us. We can instruct debris to exhibit several behav-
iors during its lifetime, on last bounce, or at the end of its life.

Explosions

We can cause debris to explode when it achieves maxBounce. And yes, this
explosion can make more debris; just be sure not to use the same datablock or
you could cause a cyclic explosion that will eventually crash the engine.

datablock DebrisData(explodingDebris) {
 // ...
 explodeOnMaxBounce = true; // Blow up on last bounce
 explosion = “an explosion datablock”;
 // ...
};

Replace Debris with StaticShape

Sometimes we don’t want our debris to disappear. Perhaps, for our gameplay,
we need this debris to build up and remain for the remainder of the mission.
Well, this can easily be accomplished.

datablock DebrisData(staticDebris) {
 // ...
 staticOnMaxBounce = true; // Do not delete this shape
 // ...
};

Because there are
several endings for
any particular debris,
combining other
endings with this one,
such as explode or
fade, may not give
you the results you
are looking for. Also,
accumulating too
much debris can kill
your frame rates, so
you may want to limit

debris in some way.

Part III Game Elements

424

Fixing Orientation

In addition to causing debris to remain in the world, either permanently as a
static or by giving it a long lifetime, we may wish for it to be oriented to the
surface below it when it comes to rest. Thus, there is a way to tell the engine
to correct the orientation of our debris when it achieves maxBounce.

datablock DebrisData(reOrientedDebris) {
 // ...
 snapOnMaxBounce = true; // Snap to surface below me
 // ...
};

Fireballs, Particle Trails, Etc.

Having just survived an explosion, the fundamental components of this
destroyed shape (the debris) may be on fi re and/or trailing smoke or dust. We
need a way to simulate this. Fortunately, each debris can have up to two par-
ticle emitters attached to it. Thus, if we so choose, we can specify two PEDs.

datablock DebrisData(flamingDebris) {
 // ...
 emitters[0] = “FireBall”; // A PED simulating a fireball.
 emitters[1] = “SmokeTrail”; // A PED simulating smoke.
 // ...
};

Fading Away

Perhaps appropriately, the last effect we can control for debris is fade. Specifi -
cally, if we so choose, we can specify that debris will fade out of sight over the
last second of its lifetime.

datablock DebrisData(fadeoutDebris) {
 // ...
 fade = true; // Fade out in last second of lifetime.
 // ...
};

datablock DebrisData(poppingDebris) {
 // ...
 fade = false; // Don’t fade, just pop out of existence
 // suddenly
 // ...
};

 Special Effects Chapter 11

425

11.1.5 Using Debris
Debris is used by a number of classes and can also be used standalone; i.e., it
is possible to create a standalone debris object.

Used-by Classes

Debris is used by the following classes.

• ShapeBaseData. Created when shape transitions to “Destroyed.”

• ShapeBaseImageData. Used to represent ejected shell casings.

• ExplosionData. Used to represent explosion debris.

Standalone

To create a standalone instance of debris is as easy as the following.

datablock DebrisData(standaloneDebris) {
 // Fill in parameters to suit your needs.
};

%myDebris = new Debris() {
 datablock = standaloneDebris;
 position = “a position vector”;
};

Alternatively, if you don’t wish to specify position and you would like to give
this debris an initial velocity (prior to internally applied velocities), you could
use the following code.

%myDebris = new Debris() {
 datablock = standaloneDebris;
};

%myDebris. init(“a position vector” , “a velocity vector”);

11.2 Decals
Decals in the context of TGE are temporarily rendered textures that are applied
to objects to represent things like footprints, bullet holes, other types of dam-
age, etc. Most properties of decals are controlled by the objects that use them,
but there are a few things we can control.

Part III Game Elements

426

11.2.1 DecalManager and DecalData Features
DecalManager and DecalData have the following features.

• Variable timeout

• Total decal caps

• Global enable

11.2.2 Decal Properties
For the decals themselves, we can only specify a minimal set of information
via the datablock. Specifi cally, we can specify the size of the decal and the
texture it uses.

datablock DecalData (sampleDecal) {
 sizeX = 0.25 ; // 1/4 world unit ‘wide’
 sizeY = 0.50 ; // 1/2 world unit ‘tall’
 textureName = “Path to texture file”;
};

That is about it. Table 11.1 shows a few other global parameters that are used
by the decal manager.

Variable Name Description Sample or
Range

$ pref::Decal::decalTimeout This is the time a decal
lives before self-deleting. It
is specified in milliseconds.

[0 , inf)
(default is 5

seconds)

$ pref::Decal::maxNumDecals This is the limit on how
many decals may exist at
any one time. Once this
limit is passed, old decals
are immediately deleted to
allow for new decals.

256
(default)

$ pref::decalsOn This is a global toggle to
enable/disable decals.

[true , false]
(true by default)

11.2.3 Using Decals
Decals are used by two classes, ProjectileData and PlayerData. They cannot
be created standalone.

Table 11.1.

Variables used by
DecalManager.

 Special Effects Chapter 11

427

Used-by Classes

Decals are used by the following classes.

• ProjectileData. Used to specify a 'bullet' mark on collision.

• PlayerData. Used for footprint(s).

See Section 7.3.2, “Player Special Effects,” for an example of decals in use.

11.3 Explosions
The concept of explosions hardly needs to be introduced, but a review of
the myriad features TGE provides to implement them would be worthwhile.
Explosions can be thought of as a composite object and include the following
subcomponents: particles, shapes, debris, and lighting.
 Additionally, the following may be associated with an explosion.

• Camera shake. A nearby explosion can be programmed to shake the client's
camera.

• Sound. A sound can be associated with each explosion.

• More explosions. Explosions can spawn subexplosions.

11.3.1 Building up an Explosion

General Control

Ignoring all the components and focusing on the explosion as if it were a
single entity, we can control the following elements.

Post-Creation Play Start Time
datablock ExplosionData(delayedFuseExplosion) {
 // ...
 delayMS = 4000; // Play explosion between 3 and 5
 // seconds after
 delayVariance = 1000; // creation. delayMS +/-
 // delayVariance
 // ...
};

In effect, we can delay the beginning of an explosion for a maximum of about
65.5 seconds (65,536, or 216, milliseconds) after the actual explosion object
has been created. The question that arises is, “Why do this?”

Part III Game Elements

428

 To answer that question, we fi rst have to explain how explosions play out.
The gross steps an explosion takes are the following.

1. Object created.

2. Explosion event starts.

3. Subexplosion objects created.

4. Main explosion event plays.

5. Explosion ends.

The key thing to notice is that subexplosions are spawned at the same time
the main explosion starts to play. So, if we did not have this delay mechanism,
all of our explosions would overlap, and that would not be much fun.

Explosion End Time and Play Speed

In addition to specifying a starting time, we can specify how long the event
lasts. TGE provides a knob for “scaling” the event.

datablock ExplosionData(longExplosion) {
 // ...
 lifetimeMS = 20000; // Play explosion for 19 to 21 seconds.
 lifetimeVariance = 1000; // lifetimeMS +/- lifetimeVariance
 // ...
};

So, what about this scaling business? What use is it if we can control the
lifetime? Well, besides being nice for quick tuning, it is also nice to adjust
an inherited explosion where the only thing we want to change is the rate it
plays at.

datablock ExplosionData(halfAsLongExplosion :
 longExplosion) {
 // ...
 playSpeed = 2.0; // Voila, scaled to play twice as fast!
 // ...
};

Initial and Subsequent Scaling

Not all explosions are made equal, and over time, the size of an explosion
normally evolves. Thus, TGE provides two sets of features. One is for initial
scaling.

datablock ExplosionData(humongousExplosion) {
 // ...

 Special Effects Chapter 11

429

 explosionScale = 5.0; // Explosion fills a 5-world units cube
 // ...
};

A second feature is for scaling over time. By the way, if you have already
looked at the particle emitters description in Chapter 8, “Mission Objects,” the
following should look familiar.

datablock ExplosionData(resizingExplosion) {
 // ...
 explosionScale = 5.0;
 sizes[0] = “1.0 1.0 1.0”;
 sizes[1] = “1.0 1.0 1.5”;
 sizes[2] = “1.0 1.0 2.0”;
 sizes[3] = “0.1 0.1 0.1”;
 times[0] = 0.0;
 times[1] = 0.33;
 times[2] = 0.66;
 times[3] = 1.0
 // ...
};

The above explosion starts out fi lling a 5-world units cube. It smoothly
increases in height until it hits 10 world units (5.0 x 2.0 world units) at two-
thirds of the way through its lifetime. Scaling then reverses direction and in
the remaining third of its life it shrinks to a 0.5-world units cube. Poof!

Facing

Depending on the effect we are trying to achieve, an explosion should or
should not rotate to face the viewer. Please note that this rotation is the entire
explosion object and not related to the settings applied to the particles.

datablock ExplosionData(faceMeWhenYouExplode) {
 // ...
 faceViewer = true; // This explosion rotates to face the camera
 // ...
};

Initial Offset

The last of the basic explosion control mechanisms controls the initial posi-
tion of the explosion center. Because it would be boring to have subexplosions
always forming in the same location, TGE provides a feature wherein we can

Part III Game Elements

430

specify an offset, which is then multiplied by a unit-length vector with a ran-
dom facing. The tip of the resultant vector will be the explosion’s center.

datablock ExplosionData(formWithinTwoMeterRadiusExplosion
) {
 // ...
 offset = 2.0; // Explosion will form at a random point
 // two world units from creation position
 // ...
};

11.3.2 Particles
Now that we’ve got the basic parameters of our explosion set, we need to
choose our particles. TGE explosions support up to fi ve independent parti-
cle emitters. Furthermore, one of these emitters is standalone and four are
played together. The single emitter is not treated the same as the four other
emitters.

Standalone Emitter

The standalone emitter has two knobs not available for the other four generic
emitters. We can control the radius within which this emitter forms from the
explosion center, which is similar to the offset principle for the emitter itself.
Also, we can select a particle density for this emitter in addition to the con-
trols provided by the emitter defi nition itself.

datablock ExplosionData(uniEmitterExplosion) {
 // ...
 particleEmitter = “Some PED”;
 particleDensity = 0.6;
 particleRadius = 1.2;
 // ...
};

The above explosion uses some particle emitter to randomly produce particles
whose origin is somewhere within a sphere having a radius of 1.2 world units.
This emitter will move continuously over the life of the explosion and has a
density of 60 percent.

Those Other Emitters

The other emitters can optionally be used to specify up to four additional
emitters whose position is the center of our explosion.

 Special Effects Chapter 11

431

datablock ExplosionData(fourEmitterExplosion) {
 // ...
 emitter[0] = “Some PED 0”;
 emitter[1] = “Some PED 1”;
 emitter[2] = “Some PED 2”;
 emitter[3] = “Some PED 3”;
 // ...
};

11.3.3 Explosion Shape
Alternately, or in addition to particles, we may choose to represent our explo-
sion with a mesh. Furthermore, this shape can be animated. If we so choose,
we can create an animation named ambient, which TGE will automatically
start when the explosion starts.

datablock ExplosionData(shapeExplosion) {
 // ...
 explosionShape = “Path to a DTS file”;
 // ...
};

11.3.4 Debris
Now that we know what our explosion is composed of, we can choose to add
some debris to liven things up. Our debris is emitted in much the same fash-
ion as particles from a particle emitter. Therefore, these parameters should
mostly look familiar.

datablock ExplosionData(explosionWithDebris) {
 // ...
 debris = “Some Debris datablock name”;
 debrisNum = 1000; // Between 800 and 1200 debris ejected
 debrisNumVariance = 200; // debrisNum +/- debrisNumVariance
 debrisThetaMin = 0.0; // Straight up, to
 debrisThetaMax = 180.0; // Straight down
 debrisPhiMin = 0.0; // Straight down Y, to
 debrisPhiMax = 360.0; // All the way around (full rotation)
 debrisVelocity = 20.0; // Eject @ between 20 and 30 world units/second
 debrisVelocityVariance = 10.0; // debrisVelocity +/- debrisVelocityVariance
 // ...
};

Part III Game Elements

432

Actually, these controls are a little nicer than particle controls in a way because
both phi (left-right) and theta (up-down) can be varied within a range, and
the randomness is free.

11.3.5 Lighting Effects
So, what if we want our explosion to emit light? Can we do it? Heck yes. In
fact, we can emit a light that changes both color and radius over the lifetime
of the explosion.

datablock ExplosionData(lightedExplosion) {
 // ...
 lightStartColor = “1.0 1.0 0.8”; // Start off light yellow
 lightEndColor = “0.6 0.0 0.0”; // End a deep maroon
 lightStartRadius = 5.0; // Start with a 5-world units radius
 lightEndRadius = 15.0 // End with a 15-world units radius
 // ...
};

11.3.6 Camera Shake
Finally, we’ve completed the list of things we’ll be seeing. Now let’s look into
a physical effect. Normally, if a viewer is near enough to an explosion and
there is enough energy involved, you would expect the view to shake for a bit
as a result. TGE allows us to do this, too.

datablock ExplosionData(rockMeExplosion) {
 // ...
 shakeCamera = true;
 camShakeRadius = 20.0;
 camShakeAmp = “1.0 1.0 1.5”;
 camShakeFreq = “8.0 10.0 8.0”
 camShakeFalloff = 2.0;
 camShakeDuration = 3.5;
 // ...
};

The above explosion will cause all cameras within a radius of 20 world units
to shake. The amplitude of this shaking will be moderate, though slightly
stronger in the up-down direction. The oscillation for the shaking will be
somewhat weak to normal in the y (front-back) direction. What this means
is the shaking is stronger up-down but happens faster back-and-forth. Yes, it
is weird, but it’s an example! Finally, the strength of the shaking will fall off
to half its strength at the outer limits and then fall off to zero abruptly. This

 Special Effects Chapter 11

433

shaking will last for about 3.5 seconds from the start of the explosion. Boom!
Rumble . . . rumble

11.3.7 Sound
I know, you may be thinking, “What good is an explosion without sound?”
Good, but not great by any means. Fortunately, we won’t have to fi nd out. We
can specify a sound to accompany our explosion. This sound should probably
be a 3D sound, but 2D works for some cases, too.

datablock ExplosionData(soundMeExplosion) {
 // ...
 soundProfile = “A sound profile name”;
 // ...
};

11.3.8 Subexplosions
That’s it, right? I’m thinking, “Why have one of a good thing when you can
have more than one?” And so were those canny GarageGames programmers.
Each explosion can spawn up to fi ve more subexplosions, which can each
spawn fi ve more, and so on. Well, don’t get carried away, OK?

datablock ExplosionData(MamaExplosion) {
 // ...
 subExplosion[0] = “BabyExplosion0”; // An explosion datablock name
 subExplosion[1] = “BabyExplosion1”; // An explosion datablock name
 subExplosion[2] = “BabyExplosion2”; // An explosion datablock name
 subExplosion[3] = “BabyExplosion3”; // An explosion datablock name
 subExplosion[4] = “BabyExplosion4”; // An explosion datablock name
 // ...
};

11.3.9 Thinking about Damage
It would be a very strange explosion that did not have some kind of effect, be
it damage or something else. Therefore, TGE supplies a nice console function
to calculate how much an object is affected by the explosion. The name is a
bit misleading, but basically, the function returns a value telling us how cov-
ered by the explosion this shape is. A requirement for this to work is that we
specify which shapes can be affected.

%boom = new Explosion() {
 // ...
};

Part III Game Elements

434

// Check to see if player got hit
%coverage = calcExplosionCoverage(%boom. getPosition() ,
 %player,
 $TypeMasks::PlayerObjectType);
if (%coverage > 0.0) echo(“Ouch! ouch! ouch!”);

11.3.10 Using Explosions
Explosions are spawned in a number of ways and by a number of classes.
Nicely, they can be made standalone, too.

Used-By Classes

Explosions are used by the following classes.

• ShapeBaseData. Created when shape transitions to “Destroyed.”

• SplashData. Created on precipitation impact.

• ProjectileData. Yeah, it’s pretty obvious. Sure, an explosion would be good
for this.

• DebrisData. Gee. Explosions spawn debris; debris can spawn explosions.
It’s a vicious circle.

• ExplosionData. Woohoo! Let’s blow it up reeeaaal gooood.

Standalone

To create a standalone instance of an explosion is as easy as the following.

datablock ExplosionData(MyExplosion) {
 // Fill in paramters to suit your needs.
};

%myDebris = new Explosion() {
 dataBlock = MyExplosion;
 position = “a position vector”;
};

11.3.11 Maze Runner Lesson #19 (10 Percent
 Step)— FireBall Explosion
In this lesson, we will examine three datablocks that are supplied with the
MazeRunner prototype code. These datablocks are used to implement the
explosion that occurs when a projectile (see Lesson #20) explodes.
 If you look in fi le “\MazeRunner\prototype\server\scripts\MazeRunner\
FireBall.cs”, you will fi nd the following three datablocks.

 Special Effects Chapter 11

435

• FireBallExplosionParticle. This datablock defi nes the particles that are
used in the explosion.

• FireBallExplosionEmitter. This datablock defi nes the pattern for the explo-
sion emission.

• FireBallExplosion. This datablock defi nes the way in which the emitter is
played and the effects that the explosion has on the surroundings.

FireBallExplosionParticle

Let’s look at the code for this emitter.

Table 11.2.

Fields being adjusted.

datablock ParticleData(FireBallExplosionParticle : baseSmokePD0) {
 lifetimeMS = 750;
 lifetimeVarianceMS = 200;
 colors[0] = “1 0.2 0.2 1.0”;
 colors[1] = “1.0 0.6 0.2 0.0”;
 sizes[0] = 1.5;
 sizes[1] = 3.5;
};

We will fi rst notice that it is inheriting from datablock baseSmokePD0. This is
very important for the following reasons.

1. A large variety of effects can be created using a small set of particle textures.

2. The GPGT Lesson Kit comes with a variety of predefi ned particle datablocks
as well as emitters. You should use these as the base (through inheritance
or good old cut-copy-paste) for your own particle effects and tweak just the
parts that you need.

3. A large variety of effects can be created using a small set of particle tex-
tures. Yes, I just said this, but I want to drive the point home. You don’t
need to go crazy and create a ton of textures. Instead, tweak the datablock
fi elds, and you will be surprised at the number of effects you can achieve.

In this case, we are inheriting a basic smoke particle and then adjusting the
fi elds in Table 11.2.

Fields Purpose of Change

lifeTimeMS
lifeTimeVarianceMS

The base particle has a rather long life, but we want our
explosion particles to live for a shorter time.

colors[0]
colors[1]

We’re trying to get a reddish explosion that fades to a dark
orange.

sizes[0]
sizes[1]

The particle should start off fairly big and rapidly grow to a
little more than double its original size.

Part III Game Elements

436

FireBallExplosionEmitter

Next, we must defi ne an emitter. In this case, our emitter is new and does not
inherit from a base emitter.

datablock ParticleEmitterData(FireBallExplosionEmitter) {
 ejectionPeriodMS = 7;
 periodVarianceMS = 0;
 ejectionVelocity = 1;
 velocityVariance = 1;
 ejectionOffset = 0;
 thetaMin = 0;
 thetaMax = 60;
 phiReferenceVel = 0;
 phiVariance = 360;
 overrideAdvances = false;
 particles = “FireBallExplosionParticle”;
};

The above datablock will produce an emitter that will create a large number
of particles in a short period. These particles will be ejected at between 1
and 2 world units per second with no offset. The direction of the emitter will
vary from straight up to just above horizontal. Additionally, particles will be
ejected in a complete circle about the up vector at the point of explosion.
Lastly, this emitter uses the particle we just defi ned.

FireBallExplosion

This last datablock uses the prior two to defi ne the actual explosion.

datablock ExplosionData(FireBallExplosion) {
 lifeTimeMS = 2000;
 particleEmitter = FireBallExplosionEmitter;
 particleDensity = 50;
 particleRadius = 0.2;
 faceViewer = true;

 // Dynamic light
 lightStartRadius = 0;
 lightEndRadius = 6;
 lightStartColor = “1 0.2 1”;
 lightEndColor = “1 0.6 0.2”;
};

This explosion will live for 2 seconds, emitting particles the entire time. It
uses the emitter we just defi ned and limits the number of simultaneous par-

 Special Effects Chapter 11

437

ticles to just 50 at any one time. It varies the point of ejection randomly by
up to 0.2 world units about the point of explosion. The particles are made
to face the viewer at all times, thus making sure that the clouds of particles
are always nice and uniform. The explosion will produce light in a radius of
6 world units that starts off reddish and ends a dark orange. Please note that,
because the blocks are self-illuminating, this effect will not be very visible.
You may wish to re-export the blocks without self-illumination enabled to see
if the effect is more pleasing this way.

11.4 Projectiles
Although the concept of a particle has a very strong tie to weapons, in truth,
these objects do not have to be associated with any weapon. Their real value
is that they represent an object that can be put into motion and will eventu-
ally collide with another object and do something. Yes, it’s vague, but that is
the point. Projectiles are a versatile object and can be used for many kinds of
interactions, not just to represent arrows, bullets, and balls of plasma.

11.4.1 Designing a Projectile

The Beginning

As noted above, a projectile is an object “in” the world. It has a starting posi-
tion, an ending position, and may interact with objects between those two
points. Our fi rst focus is on understanding how to get this particle into the
world at its starting point.

%bullet = new Projectile() {
 dataBlock = %projectile;
 initialVelocity = %muzzleVelocity;
 initialPosition = %ownerObj. getMuzzlePoint(%mountSlot);
 sourceObject = %ownerObj;
 sourceSlot = %mountSlot;
};

This sample is a snippet of code taken from some example code that comes
with the GPGT Lesson Kit. As can be seen, it is completed parameterized. The
important things to note are the following.

• dataBlock. Initialized with some known datablock defi nition. Quite
standard.

• initialVelocity. The projectile is told its initial velocity on creation.
The implication here is that we can choose any velocity and direction for

Part III Game Elements

438

this projectile that we want, when we create it. It isn’t magically deter-
mined by some engine code related to weapons or some such.

• initialPosition. Normally, we specify a position for objects when we
create them, but a new fi eld was added to reduce interdependency, and
thus we have initialPosition. This is where our bullet starts, and it,
too, can be anywhere we want it to be.

• sourceObject. As a rule, this should be the player or other entity that is
responsible for the creation of this projectile. The main purpose of this fi eld
is to give a rendering priority hint to the engine. If the projectile “belongs”
to the client’s camera, it will get processing priority there. If there is no
source object (i.e., this is created standalone), set this to 0.

• sourceSlot. This should match the slot the fi ring weapon is mounted to.
If this projectile is not associated with a weapon/slot, it should be set to
–1.

That is it. We’ve created a projectile and set it on its way. Not very hard and
not really interesting. As is often the case, the interesting stuff is embedded in
the object’s datablock.

The Datablock

Projectiles are fairly fl exible, exhibiting a signifi cant set of traits, all of which
are confi gured via the datablock.

Projectile Representation

It is not strictly required, but if we want, the projectile can have an associated
shape.

datablock ProjectileData(HumongoProjectile) {
 projectileShapeName = “Some DTS file”;
 scale “20.0 20.0 20.0”;
 // ...
};

In this datablock, we have specifi ed some mesh to represent the projectile and
have scaled it 20 times in each dimension.

Shape Animations

If we have chosen to use a shape, we can additionally supply two animations
named activate and maintain. The activate thread will play immedi-
ately after the shape is created. We can specify this to be a cyclic or a non-
cyclic animation. If the activate thread is noncyclic, and if we have speci-

 Special Effects Chapter 11

439

fi ed a maintain thread, the maintain thread will begin playing as soon as
the activate thread fi nishes. The maintain thread can also be cyclic or
noncyclic.

Ballistics and Gravity

A projectile may choose to ignore gravity and to follow a nonballistic trajec-
tory, or to add some challenge to aiming, we can play with the way gravity
affects our ballistic projectile.

datablock ProjectileData(NonBallisticProjectile) {
 // ...
 isBallistic = false; // Not affected by gravity
 // ...
};

dataBlock ProjectileData(steepArcProjectile) {
 // ...
 isBallistic = true; // Is affected by gravity, and ...
 gravityMod = 3.5; // gravity affects this 3.5x more than normal objects
 // ...
};

Bouncing Around and Arming Delays

It may not always be appropriate for a projectile to do damage right away. It
might be nice to create a weapon that can bounce its projectiles off of obsta-
cles for a certain amount of time prior to doing damage. We can accomplish
this by making the projectile bouncy and by delaying its activation.

dataBlock ProjectileData(delayedBouncingProjectile) {
 // ...
 armingDelay = 16; // Delay arming for ~1/2 second (16 ticks)
 bounceElasticity = 1.0; // I’m pretty bouncy
 bounceFriction = 0.5; // Reduce projectile velocity by this factor and
 // a multiple of the tangent to impact.
 isBallistic = true; // Only ballistic projectiles can bounce.
 // ...
};

If a projectile is not yet armed, it will only bounce if it is ballistic. Nonballistic
projectiles penetrate, instead.

Part III Game Elements

440

Particles

Projectiles have the ability to attach up to two emitters to them. However,
these emitters play at different times. The rules for their activation are simple.
The emitter specifi ed by particleEmitter always plays when the projectile
is not underwater. The emitter specifi ed by particleWaterEmitter plays
when the projectile is underwater. Neither plays when the projectile is enter-
ing or leaving the water. That is a job for the splash object. Having clarifi ed
that, the following is how we specify them.

datablock ProjectileData(DualEmitterProjectile) {
 // ...
 particleEmitter = “Some PED for above water ONLY”;
 particleWaterEmitter = “Some PED for below water ONLY”;
 // ...
};

Lit Projectiles

Our projectile can emit a light for the duration of its life. Additionally, we can
specify whether the light should be emitted when the projectile is under water
and what the color should be for each case (below water or above water).
Both cases share the same light radius.

datablock ProjectileData(LitProjectile) {
 // ...
 hasLight = true;
 lightColor = “0.8 0.8 1.0”;
 hasWaterLight = true;
 waterLightColor = “0.8 0.8 1.0”;
 lightRadius = 4.5;
 // ...
};

Explosions

Many times, we will want some kind of explosion effect when our projectile is
armed and strikes something. Explosions will not happen until the particle is
armed. As with particles and light, we have the ability to specify above- and
below-water behaviors. However, the relationship for these two explosions
are a little different than the prior two effects. Table 11.3 is supplied to clarify
which explosion we get based on what explosions are specifi ed and if the
projectile is currently underwater or not.

 Special Effects Chapter 11

441

Explosion
Specified

Water Explosion
Specified Under Water? Playing

Emitter

N Y N - none -

N Y Y waterExplosion

Y N N explosion

Y N Y explosion

Y Y N explosion

Y Y Y waterExplosion

Specifying our explosion datablocks works as follows.

datablock ProjectileData(NormalExplodingProjectile) {
 // ...
 explosion = “An Explosion Datablock”;
 waterExplosion = “An Explosion Datablock”;
 // ...
};

Splashes

It was mentioned above that a projectile entering or leaving the water will try
to render a splash, and this is true, as long as one is specifi ed.

datablock ProjectileData(SplashOnWaterStrikeProjectile) {
 // ...
 splash = “A Splash Datablock”;
 // ...
};

Bullet Holes

It may be the case that we would like the projectile to leave a mark when it
explodes. Currently, TGE allows us to make these marks using decals, but only
for explosions that happen on interiors or the terrain. Because TGE shapes
use simplifi ed collision-detection meshes, it isn’t very easy to apply decals to
shapes. It can be done but will require some coding.
 As a bonus, TGE allows us to specify up to six different decals, one of
which will randomly be applied to the interior or terrain when the projectile
explodes.

Table 11.3.

Explosions above and
below water.

Part III Game Elements

442

datablock ProjectileData(MultiDecalProjectile) {
 // ...
 decals[0] = “Decal Datablock 0”;
 decals[1] = “Decal Datablock 1”;
 decals[2] = “Decal Datablock 2”;
 decals[3] = “Decal Datablock 3”;
 decals[4] = “Decal Datablock 4”;
 decals[5] = “Decal Datablock 5”;
 // ...
};

Sound

Although some projectiles are noiseless, it is often nice to have a sound asso-
ciated with our projectile. Furthermore, if the sound is 3D and the projectile
is not too fast, we can get a nice “just missed” effect with a good sound sys-
tem. Simply specify an audio profi le to use, and the projectile will play the
sound starting when the projectile is created and ending when the projectile
explodes or fades away.

datablock ProjectileData(NoisyProjectile) {
 // ...
 sound = “An Audio Profile”;
 // ...
};

Lifetime and Fading Away

Consider what would happen if all misses kept traveling forever and never got
removed. Eventually, the game could have tens of thousands of objects con-
suming CPU time. Thus, TGE imposes a maximum life for each projectile of
128 seconds (just over two minutes). The lifetime of a projectile is in ticks
(1/32 of one second). Here is a particle that will live for one minute.

datablock ProjectileData(OneMinuteProjectile) {
 // ...
 lifetime = 32 * 60; // Live for one minute
 // ...
};

Also, because slow-moving projectiles should not just pop out of existence,
TGE has a feature that allows us to start fading the particle out of sight after
a number of ticks.

 Special Effects Chapter 11

443

datablock ProjectileData(SlowFadeProjectile) {
 // ...
 lifeTime = 32 * 5; // Lives for 5 seconds
 fadeDelay = 32 * 1; // Starts fading at 1 second (i.e. 4 second fade)
 // ...
};

Inherited and Muzzle Velocities

Recall when I said we (our scripts) are responsible for imparting actual veloci-
ties to the projectile? Well, the smart GarageGames programmers provided a
couple of standard fi elds that we can use in our scripts. To specify the projec-
tile’s initial (muzzle) velocity, use the following.

datablock ProjectileData(SupaFastProjectile) {
 // ...
 // Tell scripts to set velocity @ 8000 world units/second !!!
 muzzleVelocity = 8000.0;
 // ...
};

To specify the velocity that the projectile should inherit from any object it is
attached to, use the following.

datablock ProjectileData(FallBehindProjectile) {
 // ...
 velInheritFactor = 0.5; // Only inherit half of velocity
 // ...
};

11.4.2 Using Projectiles
Only one class has a fi eld for projectiles, and that is only so that TGE can
optimize for state-machine transitions. That class is the ShapeBaseImageData
class. You don’t need to specify a projectile, but if you are using one, it is a good
idea, as this will help avoid rendering hiccups while the weapon is fi red.

Standalone

Because projectiles are always created by scripts, it is our responsibility to
initialize all pertinent parameters for them. If you fi nd this confusing, you
should refer to the code for the GPGT Lesson Kit’s Projectiles Lesson. Because
I know you’re just dying to see some code, here is a truncated version of the
code from the GPGT Lesson Kit for a standard projectile weapon (this code
was derived from the standard TGE SDK crossbow script).

Part III Game Elements

444

function EGWeaponImage::onFire(%imageDB , %ownerObj ,
 %mountSlot) {
 %projectile = %imageDB.projectile;

 // Determine initial projectile velocity based on the
 // gun’s muzzle point and the object’s current velocity
 %muzzleVector = %ownerObj. getMuzzleVector(%mountSlot);
 %objectVelocity = %ownerObj. getVelocity();
 %muzzleVelocity = Vector Add(
 VectorScale(%muzzleVector, %projectile.muzzleVelocity),
 VectorScale(%objectVelocity, %projectile.velInheritFactor));

 // Create the projectile object
 %bullet = new Projectile() {
 dataBlock = %projectile;
 initialVelocity = %muzzleVelocity;
 initialPosition = %ownerObj. getMuzzlePoint(%mountSlot);
 sourceObject = %ownerObj;
 sourceSlot = %mountSlot;
 client = %ownerObj.client;
 };

 MissionCleanup. add(%bullet);
 return %bullet;
}

11.4.3 Maze Runner Lesson #20 (90 Percent
 Step)— The FireBall
In this lesson, we will examine three of the six datablocks that are supplied
with the MazeRunner prototype. These datablocks are used to implement the
projectile representing the fi reball.
 If you look in the fi le “\MazeRunner\prototype\server\scripts\MazeRunner\
FireBall.cs”, you will fi nd three datablocks.

• FireBallParticle. This datablock defi nes the particles that are used for the
projectile’s trail.

• FireBallEmitter. This datablock defi nes the pattern for the trail.

• FireBallProjectile. This datablock defi nes the projectile itself and uses the
above two datablocks as well as the three we discussed in Lesson #19
(Section 11.3.11) (FireBallExplosionParticle, FireBallExplosionEmitter, and
FireBallExplosion), which are used for the explosion.

 Special Effects Chapter 11

445

FireBallParticle

Again, we have chosen to implement our particle datablock by using inheri-
tance, but this time many parameters have been modifi ed.

datablock ParticleData(FireBallParticle : baseSmokePD0) {
 dragCoeffiecient = 0.0;
 gravityCoefficient = 0.0;
 inheritedVelFactor = 0.0;

 lifetimeMS = 350;
 lifetimeVarianceMS = 50;

 spinRandomMin = -30.0;
 spinRandomMax = 30.0;

 colors[0] = “1 0.7 0.7 1.0”;
 colors[1] = “1 0.7 0.7 1.0”;
 colors[2] = “1 0.7 0.7 0”;
 sizes[0] = 0.5;
 sizes[1] = 0.7;
 sizes[2] = 1.0;
 times[0] = 0.0;
 times[1] = 0.3;
 times[2] = 1.0;
};

The particles this produces will not be affected by drag or by gravity, nor
will they inherit any velocity from the emitter. This means that they will just
hang in the air where they are produced. They have a pretty long lifetime,
between 300 and 400 milliseconds. As they hang in the air, they will spin back
and forth between minus 30 and 30 degrees. Lastly, the smoke will start as
medium sized off-white puffs and end as large gauzy white puffs.

FireBallEmitter

The emitter datablock is fairly short because it doesn’t have a lot to do for
smoke trails.

datablock ParticleEmitterData(FireBallEmitter) {
 ejectionPeriodMS = 20;
 periodVarianceMS = 5;
 ejectionVelocity = 0.25;
 velocityVariance = 0.10;
 thetaMin = 0.0;

Part III Game Elements

446

 thetaMax = 180.0;
 particles = FireBallParticle;
};

This emitter will produce a new particle every 15 to 25 milliseconds, meaning
that the trail may be a little spotty (the projectile is moving at 20 world units
per second if you will recall from Lesson #18 (Section 10.3.7)).
 The particles themselves have very little velocity when ejected, and they
are all ejected between straight up and straight down (we could make this
range smaller to create a more narrow trail).
 Lastly, the emitter uses the particle datablock we just discussed.

FireBallProjectile

This datablock brings all of the work in the prior lesson and this one together
to create the fi reball.

datablock ProjectileData(FireBallProjectile) {
 projectileShapeName =
 “~/data/MazeRunner/Shapes/Projectiles/projectile.dts”;
 explosion = FireBallExplosion;
 particleEmitter = FireBallEmitter;
 armingDelay = 0;
 lifetime = 5000;
 fadeDelay = 4800;
 isBallistic = false;
};

This particle uses a mesh that is provided with the GPGT Lesson Kit. It is noth-
ing more than a very small elongated pyramid with a simple texture applied
(Figure 11.1). It uses the explosion datablock and the (smoke trail) emitter
defi ned above.
 There is no arming delay, so the
projectile will explode as soon as it
strikes an object.
 The projectile will live for 5 sec-
onds and begin to fade at 4.8 seconds.
At the end of its lifetime, it will auto-
matically be deleted if it has not already impacted upon something.
 It is nonballisitic and will travel in a straight line along the path on which
it is fi red.

Figure 11.1.

Fireball projectile.

 Special Effects Chapter 11

447

shootFireBall()
We deferred our discussion of the fi reball-shooting method until this chapter
so we would have the proper context. The main thing to understand is that,
when we create a projectile and put it into the world, it starts with an instan-
taneous velocity and direction (as specifi ed at creation time).

function StaticShape::shootFireBall(%marker, %projectile ,
 %pointingVector , %velocity) {
 %bullet = new Projectile() {
 dataBlock = %projectile;

 initialVelocity = vectorScale(vectorNormalize(%pointingVector) ,
 %velocity);
 initialPosition = %marker. getWorldBoxCenter();

 sourceObject = -1;
 sourceSlot = -1;
 theMarker = %marker;
 };

 %marker.bullet = %bullet;
 MissionCleanup. add(%bullet);
}

The most important things to see in the above code are the following.

1. The initial velocity is a combination of a direction and a magnitude.

2. The projectile can have any initialPosition, and we are choosing the
centroid of the fi reball block. This is important, because it demonstrates
that collision detection only occurs for penetrations of a collision mesh, not
for objects or rays leaving the mesh, as is the case with this projectile.

11.5 Sounds
TGE supports both 2D and 3D sounds. Standard TGE uses OpenAL for sound
support, but resources have been written on how to use other libraries like
FMOD. Sound is an area in TGE that, at fi rst, may seem diffi cult, but in the
end turns out to be simple and well organized. All TGE sound is supported
via three mechanisms.

• Audio descriptions (ADs)

• Audio profi les (APs)

• Console functions

Part III Game Elements

448

Additionally, there are two defunct features (which could be made to work
with some love).

• AudioSampleEnvironment

• AudioEnvironment

11.5.1 Sound Dimension
For simplicity, sounds are often described as being either 2D or 3D. Now, both
2D and 3D sounds are 3D in the sense that, when they are played, the user’s
gaming setup will attenuate and otherwise modify them. The actual distinc-
tion being made here is how the sounds will be calculated and treated prior to
being sent to the speaker(s).

2D Sounds

These are sounds that have no apparent source. Their gain is not attenuated
by position or orientation. Some sounds with this dimension are:

• menu and interface feedback sounds,

• intro music,

• background music, and

• global environmental sounds (wind, thunder, rain, etc.).

3D Sounds

These are sounds with a specifi c source. Therefore, their gain is attenuated by
position or orientation as related to the listener. Furthermore, if advanced fea-
tures are enabled, 3D sounds can be attenuated and modifi ed by the environ-
ment, occlusion, etc. A small sampling of sounds with this dimension are:

• player footfalls,

• vehicle noises,

• weapon noises, and

• local environmental sounds (waterfalls, rivers, surf, birds in a stand of
trees, etc.)

11.5.2 AudioDescription and AudioProfile
Throughout the scripts, you will fi nd datablock fi elds and other bits of code
that take either an AudioProfi le and/or an AudioDescription. The purpose
of each of these is to encapsulate sound-specifi c data so it doesn’t have to
be explicitly stated later. In other words, by using the AP/AD (AudioProfi le/
AudioDescription) mechanism, we simplify our life just like when we use
datablocks.

 Special Effects Chapter 11

449

AudioDescription

The job of the AudioDescription datablock is to defi ne how a sound plays. It
answers the following questions.

• Is the sound 2D (it doesn’t attenuate), or is it 3D?

• If the sound is 3D, what kind of sound cones does it have? (See Section 8.7,
“Audio Emitters.")

• Does the sound loop?

• If it loops, how many times does it loop and at what intervals does it
repeat?

• What is the maximum gain for this sound?

• What channel does it play on?

AudioProfile

The job of the AudioProfi le datablock is to defi ne what sound is played. It
answers the following questions.

• What sound (fi le) is used for this sound?

• Should this sound be preloaded? Preloading is useful for sounds that would
take a long time to load from disk or otherwise might cause a discernible
listening gap if not already in memory.

• What AudioDescription does this sound use?

11.5.3 Sound Channels
All TGE demos and kits come with certain sound channels dedicated to cer-
tain tasks. It is best and easiest to not change the ones that exist, but instead
to add a new channel if needed. The TGE channels are as follows.

• $DefaultAudioType. Channel 0.

• $GuiAudioType. Channel 1 (dedicated to GUI sounds).

• $SimAudioType. Channel 2.

11.5.4 Using Sound
Because the AudioEmitter mission object uses all the same concepts, we will
not be reviewing the parameters for either ADs or APs in depth. Instead, a
summary is provided in the appendix, and if this is insuffi cient, a review of
Section 8.7, “Audio Emitters,” should clarify things. For now we’ll restrict
ourselves to discussing standalone usage.
 TGE provides a complete set of OpenAL functions for playing and manip-
ulating our sounds.

Part III Game Elements

450

11.5.5 new versus datablock for
 Profiles/Descriptions
Sometimes, when looking at the examples, you will see audio profi les and
descriptions created using the new keyword, and other times using the data-
block keyword. This may seem arbitrary at fi rst, but it is not.
 An AudioProfi le or an AudioDescription object created with the new key-
word is nonnetworkable. In other words, these objects cannot be used to play
sounds on remote clients.
 An AudioProfi le or an AudioDescription object created with the data-
block keyword is networkable. In other words, the server can play sounds
using these on remote clients.
 Our focus in this guide is on the single-player usage of Torque, but because
the new vs. datablock distinction is important to understand early, we will
take the time now to look at some examples. In fact, why don’t we use a lesson
to clear up any confusion on the distinction between new versus datablock.

11.5.6 Maze Runner Lesson #21 (10 Percent
 Step)—Game Sounds
In this lesson, we will examine the different methods available to create
AudioDescription and AudioProfi le objects. This work will subsequently be
used in Section 14.7, “Finishing the Prototype,” to add sound to our game
interfaces and game world.
 For our game, we will need AudioDescriptions and AudioProfi les to play
the following sounds.

• Splash screen music. We’d like to add some music to our splash screen
when it is shown. This is a nonnetworked nonlooping 2D sound.

• Button-over and button press sounds for main menu. We want our but-
tons to provide feedback when the mouse hovers over them and when we
click on them. These are both nonnetworked nonlooping 2D sounds.

• In-game music. We’d like some background music while playing our game,
preferably an ambient loop of some sort. This is a nonnetworked looping
2D sound.

• Fireball fi ring and explosion sound. It doesn’t make much sense for our
fi reball blocks to shoot a fi reball silently, and the explosion when the fi re-
ball collides with something should not be silent, either. These are both
networked nonlooping 3D sounds.

The Audio Descriptions

In order to create audio profi les, we need to create audio descriptions fi rst.
Why? Because, the AudioProfi le object uses the AudioDescription object.

 Special Effects Chapter 11

451

 In our list (above), we have three nonnetworked nonlooping 2D sounds, one
nonnetworked looping 2D sound, and two networked nonlooping 3D sounds.
In total, this equates to a requirement for three different audio descriptions.

Nonnetworked Nonlooping 2D Audio Description
new AudioDescription(MazeRunnerNonLooping2DADObj) {
 volume = 1.0;
 isLooping = false;
 is3D = false;
 type = $GuiAudioType;
};

Using the new keyword, we have created an instance of AudioDescription
descriptively named MazeRunnerNonLooping2DADObj. An audio profi le
using this description has the following attributes.

• Is nonnetworked. It is a normal object, not a datablock.
• Plays at full volume for the channel the sound is using.
• Is nonlooping.
• Is not 3D.
• Is assigned to the $GUIAudioType channel and will thus be attenuated by

changes to that channel.

Nonnetworked Looping 2D Audio Description
new AudioDescription(MazeRunnerLooping2DADObj) {
 volume = 1.0;
 isLooping = true;
 loopCount = -1;
 is3D = false;
 type = $GuiAudioType;
};

Using the new keyword, we have created an instance of AudioDescription
descriptively named MazeRunnerLooping2DADObj. An audio profi le using
this description has the following attributes.

• Is nonnetworked. It is a normal object, not a datablock.
• Plays at full volume for the channel the sound is using.
• Is looping.
• Loops infi nitely (we assigned –1 to loopCount, but we could have left it

unspecifi ed, as well, since the default value is –1).
• Is not 3D.
• Is assigned to the $GUIAudioType channel and will thus be attenuated by

changes to that channel.

Part III Game Elements

452

Networked Nonlooping 3D Audio Description
datablock AudioDescription(MazeRunnerNonLooping3DADDB) {
 volume = 1.0;
 isLooping = false;
 is3D = true;
 ReferenceDistance = 2.0;
 MaxDistance = 20.0;
 type = $SimAudioType;
};

Using the datablock keyword, we have created an instance of Audio Description
descriptively named MazeRunnerNonLooping3DADDB. An audio profi le using
this description has the following attributes.

• Is networked. It is a datablock.

• Plays at full volume for the channel the sound is using.

• Is nonlooping.

• Is 3D.

• Plays at max volume between 0 and 2 world units and attenuates to nearly
zero at a distance of 20 world units from the source position of the 3D sound.

• Is assigned to the $SimAudioType channel and will thus be attenuated by
changes to that channel.

The Audio Profiles

Now that we have our three audio descriptions, we can create our audio pro-
fi les. In this case, we need one each for the sounds, but since several of these
sounds, are similar execept for the sound fi le played, we will only examine
one from each category.

The Nonlooping GUI Sounds (Splash Screen and Buttons)
new AudioProfile(MazeRunnerGGSplashScreen) {
 filename = “~/data/GPGTBase/sound/gui/GGstartup.ogg”;
 description = MazeRunnerNonLooping2DADObj;
};

Using the new keyword, we have created an instance of AudioProfi le named
MazeRunnerGGSplashScreen. This audio profi le will be used when the
GarageGames splash screen is shown and has the following attributes.

• It plays the GarageGames startup sound from the demo kit. (This sound fi le
was renamed to GGStartup.ogg from startup.ogg and included with GPGT
base data for your use).

 Special Effects Chapter 11

453

• It uses our nonlooping 2D AudioDescription object MazeRunnerNon-
Looping 2DADObj.

The Looping GUI Sound (In-Game Music)
new AudioProfile(MazeRunnerLevelLoop) {
 filename = “~/data/GPGTBase/sound/gui/levelLoop.ogg”;
 description = MazeRunnerLooping2DADObj;
};

Using the new keyword, we have created an instance of AudioProfi le descrip-
tively named MazeRunnerLevelLoop. This audio profi le will be used for
in-game music and has the following attributes.

• It plays a short ambient loop provided on the accompanying disk.

• It uses our looping 2D AudioDescription object MazeRunnerLooping2DADObj.

The Networked Sounds (Fireball Firing and Explosion)
datablock AudioProfile(MazeRunnerFireballExplosionSound) {
 filename = “~/data/GPGTBase/sound/GenericExplosionSound.ogg”;
 description = MazeRunnerNonLooping3DADDB;
};

Using the datablock keyword, we have created an instance of AudioProfi le
descriptively named MazeRunnerFireballExplosionSound. This audio
profi le will be used for the sound effect attached to a fi reball explosion and
has the following attributes.

• It plays a generic explosion sound that is included on the accompanying disk
for your use. This sound is derived from the fi le “Crossbow_explosion.ogg”
found in the TGE Demo.

• It uses our nonlooping 3D AudioDescription datablock MazeRunner Non-
Looping3DADDB.

Using The Audio Profiles

All of the above audio descriptions and audio profi les are provided on the
accompanying disk. We will be using them later when we follow the instruc-
tions in Section 14.7, “Finishing the Prototype.” However, the question of use
should at least be addressed. How does one use these new sounds?
 The sounds we created are used in three ways.

1. Attached to a GUI control. The button-over and button-press sounds above
will be used by a GUI button control. As you will see in Chapter 12, this
attachment is achieved using GUI profi les.

Part III Game Elements

454

2. Attached to a special effect. Our explosion sound is used by the explo-
sion object. As we saw in Section 11.3, “Explosions,” we can assign an
AudioProfi le datablock to the ExplosionData soundProfile fi eld. When
an explosion is created with this datablock, it will automatically play the
sound specifi ed by our AudioProfi le datablock.

datablock ExplosionData(FireballExplosion) {
 // ...
 soundProfile = MazeRunnerFireballExplosionSound;
 // ...
};

3. Played manually. Lastly, we can play sounds manually. We simply call
alxPlay() and pass it the name or ID of a nonnetworked 2D sound
AudioProfi le.

// Play the GG Splash Screen Sound
alxPlay(MazeRunnerGGSplashScreen);

11.6 Special Effects Summary
This short chapter was dedicated to discussing a set of classes that have no
true home but by their nature defi ne or enable a variety of special effects.
These classes included the following.

• Debris. The detritus left over by an explosion.

• Decals. Textures applied to surfaces to give the impression of bullet holes,
scorch marks, footprints, etc.

• Explosions. A special effect dedicated to pyrotechnic displays and interac-
tions with the camera that provide a convincing effect.

• Projectiles. A shape not only used to represent the output of weapons, but
that can be used for a variety of other effects.

• Sounds. AudioProfi les and AudioDescriptions, used for networked vs. non-
networked sound.

In each discussion, we summarized the features provided by the individual
class, how to use the class alone if possible, and how the class interacts with
other TGE special effects or other classes.

455

• Windows, containers, and panes
• GuiControl
• GuiFrameSetCtrl
• GuiScrollCtrl
• GuiStackControl
• GuiPaneControl
• GuiTabBookCtrl
• GuiTabPageCtrl
• GuiWindowCtrl

• Backgrounds and borders
• GuiBitmapBorderCtrl
• GuiBitmapCtrl
• GuiChunkedBitmapCtrl
• GuiFadeInBitmapCtrl

• Text
• GuiMessageVectorCtrl
• GuiMLTextCtrl
• GuiMLTextEditCtrl
• GuiTextCtrl
• GuiTextEditCtrl
• GuiTextListCtrl

• Buttons
• GuiButtonBaseCtrl
• GuiBitmapButtonCtrl
• GuiButtonCtrl
• GuiCheckBoxCtrl
• GuiRadioCtrl

• Menus
• GuiMenuBar
• GuiPopupMenuCtrl

• Sliders and Scales
• GuiFilterCtrl
• GuiSliderCtrl
• GuiTextEditSliderCtrl

• Miscellaneous
• GuiCursor
• GuiDirectoryFileListCtrl
• GuiDirectoryTreeCtrl
• GuiInputCtrl
• GuiMouseEventCtrl
• GuiTreeViewCtrl

Standard TGE GUI Controls
Chapter 12

12.1 Standard GUIs
In this chapter, we will take a look at what is required to make use of several
standard TGE GUI controls. We will not discuss the usage of every GUI control
provided in TGE but will instead restrict ourselves to discussing the com-
monly used ones. Specifi cally, we will discuss the following controls.

However, before we leap into the examples, let’s take some time to familiarize
ourselves with some GUI basics.

Part III Game Elements

456

12.1.1 Interfaces versus GUIs
For the sake of clarity, I will be using four terms while discussing GUIs. The
fi rst term is interface. When I use the term interface, I mean an entire game
interface, such as a main menu, a help dialog, etc. An interface is composed
of one or more GUI elements. The other three terms I will use are GUI, control,
and GUI element(s). I will use each of these interchangeably to keep the dis-
cussion from being too dry. Each of these terms refer to any single GUI class
which may or may not contain other controls. For example, a GuiBitmap, a
GuiButtonCtrl, and a GuiScrollCtrl are all GUI elements, whereas an interface
might be composed of all three of these, plus additional GUI elements.

12.1.2 The Canvas
Since days of old, when working with user interfaces, it has been common to
refer to the base interface’s layer as the canvas. All GUI controls are stacked
(placed in) the canvas. Torque supports a single canvas named, intuitively,
Canvas. The canvas can display two generalized categories of interfaces:

1. Dialogs.

2. Everything else.

In most respects, a dialog is not different from other controls, but it is treated
differently. We will discuss the why and the how of this shortly.

Current Canvas Content

All nondialog interfaces are only displayed if they are the current content of
the canvas. Furthermore, the canvas only has one content at a time. In order
to set an interface as the contents of the canvas, we write a statement like the
following.

Canvas. setContent(myCoolInterface);

 In this example, we are making an interface named myCoolInterface the
new (and thus the current) content of the canvas. This unloads the current
content and replaces it with myCoolInterface.

Dialogues and Layers

Most of the time, exchanging the current canvas content is what we want. How-
ever, occasionally, we would like to retain the current canvas content while we
temporarily display another interface over the current one. What we’re talking
about is a dialog. In order to display a dialog, we do the following.

 Standard TGE GUI Controls Chapter 12

457

Canvas. pushDialog(myCoolDialog , 1);

 In this example, we are pushing an interface named myCoolDialog onto
Layer 1 of the canvas. The current content of the canvas is retained, as well as
any interfaces already pushed onto any canvas layers. This method allows us
to have as many interfaces open as we need. Note that, if no layer is provided
as the second argument to pushDialog(), the dialog is pushed onto the
default layer, Layer 0.
 Later, we can pop a dialog in three ways.

Canvas. popDialog();
// or
Canvas. popDialog(myCoolDialog);
// or
Canvas. popDialog(1);

The fi rst popDialog() will pop the last interface that was pushed, which in
this case would be myCoolDialog. The second popDialog() will do a lookup
on myCoolDialog and pop it if it is found. The third and last popDialog()
will pop all interfaces in Layer 1. I repeat, all interfaces in Layer 1. This is a
nice way to pop multiple stacked dialogs at the same time.

Canvas Extent vs. Screen Size

The canvas is in effect a boundless entity that extends beyond the visible
screen. The “0 0” coordinate of the canvas is merely a refl ection of the “start-
ing” position of the screen (upper-left corner), and the extent is a refl ection
of the width and height of the screen. It is completely legal to position GUI
elements outside the visible bounds of the screen. In fact, this is true of all
controls, not just for the canvas. All controls will clip the parts of their chil-
dren that are outside the control’s own visible bounds.

12.1.3 The Structure of a .gui File
Each interface that we make the content of the canvas and each interface that
we push onto the canvas is a separate entity. For instance, we may have any of
the following interfaces: splash screen, main menu, credits, settings dialog(s),
help dialog(s), play GUI, etc. Each of these interfaces exists individually as a
hierarchy of GUI controls, stored in a separate .gui fi le. The .gui fi les can be
created by hand, by script, or with the GUI editor. The Torque standard is to
have one interface defi nition per .gui fi le, and the general organization of such
a fi le is as follows.

Replacing the
current content of

the canvas does not
affect dialogs. Dialogs
are content that float
over the canvas’s
current contents.

Part III Game Elements

458

1. An optional block of code.

2. The defi nition of the interface between two comment lines.

//--- OBJECT WRITE BEGIN ---
//--- OBJECT WRITE END ---

3. A second optional block of code.

 A GUI fi le with just the sections delimited would look like this:

// Optional code block #1
//--- OBJECT WRITE BEGIN ---
// Interface definition
//--- OBJECT WRITE END ---
// Optional code block #2

The lines in bold are optional.

Optional Code Block #1

This optional block of code can be added by hand after generating and saving
an interface fi le, using the GUI editor. Normal bits of code that go here are:

• GUI profi le(s) used in subsequent GUI defi nitions,

• on Add() callback defi nitions for subsequent GUI elements, and

• miscellaneous code and global variables.

Interface Definition

This required block is generated by the GUI editor or by hand. If generated by
the GUI editor, it will be delimited by two (optional) comment lines and look
something like the following.

//--- OBJECT WRITE BEGIN ---
new GuiChunkedBitmapCtrl(parentGUI) {
 horizSizing = “width”;
 vertSizing = “height”;
 position = “0 0”;
 extent = “640 480”;

 new GuiControl(childGUI) {
 // ...

 new GuiTextCtrl(grandChildGUI) {
 // ...
 };

 Standard TGE GUI Controls Chapter 12

459

 // ...

 };
 // ...
};
//--- OBJECT WRITE END ---

The comment lines (highlighted) allow the GUI editor to fi nd the interface
defi nition and preserve the optional codeblocks surrounding it in the case that
we later reload our GUI with the editor and edit it. Yes, both code blocks will
be preserved.
 If we look at the above example skeleton, we will see that there is one
parentGUI (named this way for the sake of the example) which can then have
child GUIs, grandchild GUIs, etc., inside it. We’ll talk more about the design of
the GUI defi nition shortly, but let’s fi rst address the second code block.

Optional Code Block #2

We can optionally-hand edit the fi le and add a second block of code after the
interface defi nition. Normal bits of code that go here are:

• onWake(), onSleep(), and on Remove() callback defi nitions as well as
any other callbacks that might be associated with the prior GUI elements,
and

• miscellaneous code.

 OK, we’re doing well. We know a little bit about the canvas, and we
understand the structure of a .gui fi le. Now, let’s talk about the general struc-
ture of an interface.

General Design of Interfaces

When building an interface, I suggest using the following steps.

1. Select a control to be the base container for this interface. Good choices are
GuiControl, GuiBitmapCtrl, or GuiChunkedBitmapCtrl (among others).

2. Position the base GUI at “0 0” and make the extent equal to that of the
canvas.

3. Use a horizSizing of “width” and a vertSizing of “height”. This
last step is very important because we want our base GUI to cover the
entire visible screen. The extent is not so important as the horizSizing
and the vertSizing. (The GUI editor will automatically do this and the
prior step for you when you create a new interface: File � New GUI).

4. Now, add all other GUI elements you wish to have into your selected base
GUI.

Part III Game Elements

460

new GuiChunkedBitmapCtrl(MyCoolInterface) {
 // ...
 horizSizing = “width”;
 vertSizing = “height”;
 position = “0 0”;
 extent = “640 480”;
 // ...

 new GuiWindowCtrl() {
 // ...
 };

 // ...

 new GuiWindowCtrl() {
 // ...
 };
};

 Well, we’ve gone on for a bit now, and I haven’t told you what makes
a nondialog different from a dialog. The short answer is nothing. Yes, that’s
right. In theory, there is no difference between a nondialog and a dialog except
the way we choose to display them. In practice, however, there is usually one
more important difference—how they capture inputs. To understand this, we
need to explore how GUIs capture inputs in general.
 In order to understand how inputs are captured by GUI elements, we
need to explore the following concepts: layers, fi rst responders, focus, and
modality.

How a GUI Captures Inputs

Layers

Unfortunately, the term layers has been and is used regarding dialogs. We are
not currently discussing dialog layers. Instead, we are discussing the more
general concept of layering.
 The canvas can be considered to be the bottom layer of the control stack.
Each visible control is stacked onto this canvas, making a “layer.” Those controls
on the bottom are rendered fi rst, and those on the top are rendered last. Thus, at
the end of any rendering cycle, the topmost GUI controls will have rendered over
all other elements below them, properly occluding and masking them.
 Now, recall our discussion from Section 9.5 regarding I/O processing
order. Input events are passed from the operating system to the Torque plat-
form code layer, which then passes the inputs to:

 Standard TGE GUI Controls Chapter 12

461

1. the GlobalActionMap, then to

2. the Canvas, then to

3. any active (nonglobal) ActionMaps.

Imagine that the the mouse input events (the ones not captured by the GlobalAc-
tionMap) are like marbles falling onto our interface. Each marble will fall from
the location of the cursor and hit the fi rst GUI it encounters. This is the fi rst GUI
that will be given an opportunity to capture and to use the mouse event.
 If a control does nothing with the event, it can either allow the marble
to “fall through” until a GUI lower in the stack fi nally uses the event, or the
event can immediately be sent to the ActionMap stack.
 For a modeless control (we will defi ne modality below), the event con-
tinues to fall through. For a modal control, the uncaptured event is passed
directly to the ActionMap stack. Notice that I did not say modal interface.
 Generally, you can consider an interface to be modal if any GUI in the
interface is modal, but in practice the best way to do this is to make the base
layer of the interface modal and to allow all the higher layers to behave nor-
mally (i.e., be modeless).
 Keyboard events are a little more tricky. Because there is no parallel to the
“mouse pointer location” idea, we need to discuss a new concept.

First Responders

Because a keystroke comes from no specifi c physical location, there needs
to be a mechanism that tells TGE which GUI to send the keystroke to. This
concept is called fi rst responder.
 Some controls will automatically become fi rst responder, but sometimes a
control needs a little help (or discouragement). For example, in the case where
there are two controls that are on the same layer and both want to be the fi rst
responder, the question arises, “Which of these will be fi rst responder?”
 The fi rst responder will be:

1. the control that was fi rst responder on the last processing pass, or

2. the control that is made fi rst responder by the method makeFirst-
Responder(), or

3. the control that is made fi rst responder as the result of a mouse-click or
TAB transition.

Note that some controls will take back the fi rst-responder role even when
another control has been clicked.

Focus

A GUI can have what is called focus. This term implies that the control is
visible and active. However, the main thing to know about focus is that the

If you are using
version 1.4 or later

of the engine, this
discussion does not
apply. The concept
of first responder has
been deprecated in
lieu of a more standard
focus-based system.
So, if you are not using
version 1.3 or prior,
skip ahead to “Focus.”

Part III Game Elements

462

control that has focus and is fi rst responder will be the one to receive key-
board inputs.
 Mouse movements and clicks can change the current focus, so how do we
force a GUI to retain focus regardless of the mouse position/action?

Modality

The fourth and fi nal concept we need to wrangle with is modality. Modality
is usually discussed in the same breath as dialogs, but it is a term that can

be applied to any control. Namely, a control can be modeless, or it can
be modal. Furthermore, a modeless GUI does not attempt to hold onto

the focus. It will freely give up the focus to whatever other GUI wishes to
take it. The modal GUI is less friendly, however, and once it has the focus,

it does not relinquish it until its purpose is served and it chooses to release
focus. All controls are modeless by default, although some do actively seek to
attain fi rst-responder status (GuiTextEditCtrl, for one), which is not the same
as being modal.
 We can retain focus either by:

1. making our GUI modal (not very friendly and not suggested unless truly
necessary),

2. covering all other GUIs such that they do not have the possibility of getting
focus (we can easily do this by placing the GUI control that we want to
have the focus in a GUI control that covers the entire canvas), or

3. forcing fi rst-responder status by using the makeFirstResponder()
method call.

Please note that sometimes you need to make a control be fi rst responder, and
sometimes you need to force a control to not be fi rst responder.
 Wow! We have come a long way. We now have at least a passing under-
standing of some GUI concepts. Still, we have a way to go before discussing
individual GUI elements. Now, let’s talk about some more advanced topics.

12.2 GUI Profiles
Similar to the concept of datablocks for shapes, we have GUI control profi les
(GuiControlProfi le) for GUIs. These are unique objects that are instantiated on
the client and used repeatedly in the creation, initialization, and use of GUIs.
They save us having to constantly redefi ne common attributes on a GUI-by-
GUI basis. Like datablocks, they provide a single location from which to draw
common attributes, but this space is not static (like a datablock).

If you are using
version 1.4 or later
of the engine, this
discussion does not
apply. The concept
of modality has been
deprecated in lieu
of a more standard
focus-based system.
So, if you are not using
version 1.3 or prior,
skip this.

 Standard TGE GUI Controls Chapter 12

463

 The syntax for a GuiControlProfi le is as follows.

new GuiControlProfile (GuiProfileName [: parentProfile]) {
 field_0 = value;
...
 field_N = value;
...
 [dynamic_field_N = value;]
};

Like datablocks, each GuiControlProfi le is expected to be unique; thus, creat-
ing a second profi le with the same name as a prior one will in effect override
it. However, to be safe, always delete a profi le if you are going to redefi ne
it. Also, do not delete a profi le that is currently in use, or you will crash the
engine.
 Like datablocks, we can inherit (copy) from a previously defi ned profi le if
we so choose.
 Not all fi elds that can be defi ned in a GuiControlProfi le are used by every
GUI control, nor are they all used in the same way. We are, of course, free to
add our own dynamic fi elds to any profi le at any time.

12.2.1 Visual Attributes of GUI Control Profiles
As you would expect, the majority of the fi elds in GUI control profi les are for
enabling and/or modifying visual aspects of a GUI. It should be said once
more that not all of these values are treated equally between GUIs, and experi-
mentation will be necessary for controls not documented here. However, after
reading the remainder of this chapter, you should have a reasonable idea of
what to expect when you use these fi elds.

 Bitmap

There are several controls that use a bitmap. Thus, it makes sense that the bit-
map should be specifi ed here. This simplifi es GUI creation and easily allows
us to have controls in different places all using the same graphics fi le.
 Unlike bitmaps used elsewhere in Torque, GUI bitmaps may have any
reasonable dimension and need not be sized as a power of two.

new GuiControlProfile (usesABitmapProfile) {
 // No need to specify suffix
 bitmap = “./some_path/somebitmapname”;
};

Part III Game Elements

464

 Borders

All controls can have a border. The border parameters in a GuiControlProfi le
are as follows.

• border. This integer value specifi es the control-specifi c border type, of
which there are up to fi ve possibilities:
• 0—disabled, and
• 1, 2, 3, 4—control-specifi c implementation.

• borderColor. A three-value integer vector containing the RGB colors for
a normal border.

• borderColorHL. A three-value integer vector containing the RGB colors
for an “is highlighted” border.

• borderColorNA. A three-value integer vector containing the RGB colors
for a “not active” border.

• borderThickness. This integer fi eld determines the thickness of a border
in pixels.

new GuiControlProfile (aintGotNoBorderProfile) {
 // Never rely on defaults, turn it off yourself!
 border = false;
};

new GuiControlProfile (pencilThinBorderProfile) {
 border = true;
 borderColor = “0 0 0”;
 borderColorHL = “0 0 0”;
 borderColorNA = “0 0 0”;
 borderThicknes = 1;
};

new GuiControlProfile (rainbowBorderProfile) {
 border = true;
 borderColor = “255 0 0”;
 borderColorHL = “0 255 0”;
 borderColorNA = “0 0 255”;
 borderThicknes = 2;
};

 Cursors

What is a cursor, you ask? What we’re talking about here is that little blinky
thing that shows up in text boxes and the like. We can colorize it with the
cursorColor fi eld.

 Standard TGE GUI Controls Chapter 12

465

new GuiControlProfile (angryRedBlinkyThingProfile) {
 cursorColor = “153 0 0”;
};

 Background/Fill Colors and Opacity

If we’re not using a bitmap as our background, we will need to decide what
color it should be. Thus, TGE has provided the following fi elds.

• fillColor. This contains the four-element integer vector containing the
RGBA values for a control's background.

• fillColorHL. This contains the four-element integer vector containing
the RGBA values for a control's background when it is highlighted.

• fillColorNA. This contains the four-element integer vector containing
the RGBA values for a control's background when it is inactive.

Notice that the background color vectors have four elements, not three.
This means you can defi ne an alpha channel and make an element trans-
lucent or even transparent.

You may completely
disable backfill by
setting the opaque
field to false. If this
field is set to true,
then the backfill
will be rendered

with the specified
translucency.

new GuiControlProfile (aTranslucentPurplishWindowProfile) {
 opaque = false; // Enable translucency/transparency
 fillColor = “153 102 255 128”; // 50% translucent
 fillColorHL = “153 102 255 200”; // 22% translucent
 fillColorNA = “153 102 255 64”; // 75% translucent (almost transparent)
};

 Fonts

Images can do a lot for transmitting ideas, but we will often have to break
down and actually write something. That is, we’ll have to use words to make
ourselves clear. Because nobody likes to be boring, it makes sense to have
some way to make our text a little more interesting than the default Arial font.
TGE supplies myriad fi elds to enable text coloring. Please be aware that some
of these fi eld names are aliased, so the last defi nition is the defi nition that will
be used for both (Table 12.1).
 For convenience, I have included the color codes in Table 12.1. Why?
Well, if you recall from earlier when we discussed the console in TorqueScript,
I mentioned that you can use escape sequences to color text. This colorization
applies to the console and many of the text controls.
 So we’ve learned to colorize our text, but can we select a typeface and
point size, too? You bet! We can select our font typeface with the fontType
fi eld and determine the point size of the font with the fontSize fi eld.

Part III Game Elements

466

fontType (An Aside)

I know that when I fi rst picked up TGE, it was not at all clear what my choices
were for fonts. I poked around for a bit and found some fi les with a GFT suffi x
(see “~\common\ui\cache\”). The strange thing was that, when I ran TGE
on different platforms, I found different fi les in this directory.
 Huh? Well, a little more research and reading showed that the GFT fi les
are a side effect of a successful font build; i.e, as I specifi ed new fonts, if the
build was successful, I would fi nd a new GFT fi le with a matching name.
 Because I know it is nice to have a reference, I have supplied a list of com-
monly installed fonts. Select a font from the following list of 47 common fonts
and try it.

field alias Color Code Purpose

colors[0] fontColor \c0 Three-element integer vector
defining default text color.

colors[1] fontColorHL \c1 Three-element integer vector
defining highlighted text color.

colors[2] fontColorNA \c2 Three-element integer vector
defining inactive text color.

colors[3] fontColorSEL \c3 Three-element integer vector
defining selected text color.

colors[4] fontColorLink \c4 Three-element integer vector
defining hyperlink text color.

colors[5] fontColorLinkHL \c5 Three-element integer vector
defining selected hyperlink text
color.

colors[6] -- \c6 Three-element integer vector
defining user-defined text color.

colors[7] -- \c7 Three-element integer vector
defining user-defined text color.

colors[8] -- \c8 Three-element integer vector
defining user-defined text color.

colors[9] -- \c9 Three-element integer vector
defining user-defined text color.

Table 12.1.

Fields for text coloring.

If you are working
with a version of TGE
prior to 1.4, the UFT
extension is GFT,
instead. Also, versions
prior to 1.4 do not
support Unicode. In
either case, you may
install custom fonts in
your game by doing
the following.

1. Be sure the font is
installed on your
system.

2. Create a
GuiControlProfile
specifying the font
you want to use at
the type size you
want to use it.

3. Create a control
using this profile.

4. Run your game.

At this point, if the
font shows up, you
are done. Now, just
be sure not to delete
the UFT/GFT file, and
you can use this font
on any system, even if
the user doesn’t have it
installed. TGE will use
the generated one.

 Standard TGE GUI Controls Chapter 12

467

Arial
Arial Black
Arial Bold
Arial Bold Italic
Arial Italic
Comic Sans MS
Comic Sans MS Bold
Courier
Courier New
Courier New Bold
Courier New Bold Italic
Courier New Italic
Franklin Gothic Medium
Gautami
Georgia
Georgia Bold

For example, let’s try one of my favorites, Tahoma Bold, at 10 points.

new GuiControlProfile (sweetTahomaBoldProfile) {
 fontType = “Tahoma Bold”;
 fontSize = 10;
}

If this works, the fi rst time we try to use this profi le, a new UFT fi le named
“Tahoma Bold_10.uft”, will appear in our font cache directory. If the font
failed to get constructed, TGE will try to use Arial instead.
 You know, Tahoma Bold isn’t really all that legible on the screen at only
10 points. In fact, it may not be legible at all on a Macintosh, which brings up
the concept of target platforms and their variances.

Platform Variances

The folks who designed TGE had it all together the day they designed the text-
formatting features. Someone realized that different platforms have different
standard screens with different aspect ratios and different “expected” fonts.
Thus, a way was needed to target profi les to platforms. That targeting is pro-
vided with the $platform variable. This global variable is set by the engine if
it can determine the current platform type. It can take the following values.

• macos. It's a Macintosh, or at least it's running OSX or OS9.

• windows. Some version of Windows.

Georgia Bold Italic
Georgia Italic
Impact
Impact Italic
Lucida Console
Lucida Sans Unicode
Microsoft Sans Serif
Modern
Palatino Linotype
Palatino Linotype Bold
Palatino Linotype Bold Italic
Palatino Linotype Italic
Roman
Script
Small Fonts

Tahoma
Tahoma Bold
Times New Roman
Times New Roman Bold
Times New Roman Bold Italic
Times New Roman Italic
Trebuchet MS
Trebuchet MS Bold
Trebuchet MS Bold Italic
Trebuchet MS Italic
Tunga
Verdana
Verdana Bold
Verdana Bold Italic
Verdana Italic

Part III Game Elements

468

• X86UNIX. Unix.

• Linux. Linux.

• OpenBSD. OpenBSD.

• Unknown. This means that TGE could not identify the OS.

Honestly, I’m sure that the $platform variable wasn’t created with only fonts
in mind. In fact, the only time we really care about this for fonts is when we’re
dealing with the Macintosh. Those guys just have to be different; or perhaps
it’s the PC guys who are different? Whatever the case, fonts on the Mac are
quite different from those on PCs, due to several factors, which include strange
aspect ratios and, more importantly, expectations. OSX (and OS9 before it)
uses a different font set from those found under Windows.
 So, how do we make our fonts Mac and PC friendly? Like this.

new GuiControlProfile (makeAMACGuyHappyProfile) {
 fontType = ($platform $= “macos”) ? “Courier New” :
 “Lucida Console”;
 fontSize = ($platform $= “macos”) ? 14 : 12;
};

Font Not Found?

In case you missed it above, if TGE cannot build your font, it will subsitute
Arial at the point size you selected. Failing that, the engine will fail out, com-
plaining about Arial fonts needing to be on the system. Sheesh! Really though,
I’ve never seen it happen yet.

 Unicode

Versions 1.4 and later support Unicode fonts, as well. Unicode is a method of
encoding keyboard keys to corresponding numeric values. ASCII is the old-
fashioned way of doing this, but with the world rapidly growing smaller and
with a number of non–Latin-based alphabets being used on keyboards today,
a new encoding was and is required. Thus Unicode was born.
 In short, if you want to penetrate a foreign market, one of the things you
must be able to do is match that market’s keyboard scheme. TGE is ready.

 Text Formatting

We’re doing pretty well so far. We’ve done a lot to get our GUIs looking nice
and our fonts looking interesting. However, what happens if we try to use
some text and it doesn’t align nicely in the control. Using spaces to justify/
space our text isn’t a very appealing solution. Does TGE help us out? Yes, it
does. There are two fi elds that deal with how text is formatted.

 Standard TGE GUI Controls Chapter 12

469

 The fi rst is the justify fi eld, which can take the following values:

• left—left justifi ed,

• right—right justifi ed, and

• center—centered.

 Then, for those cases where it isn’t the justifi cation we care about so
much as the fact that the text rides too close to the edge, we can adjust our
offset with the textOffset fi eld, which takes a two-element vector defi ning
the x-y offset of the upper-left corner of the fi rst text character in pixels.

new GuiControlProfile (centerMyTextProfile) {
 justify = center;
};

new GuiControlProfile (slightOffsetTextProfile) {
 // Offset 4 pixels from left and 6 pixels from top
 textOffset = “4 6”;
};

We’ve talked about how GUI control profi les contribute to the look of a GUI;
now let’s talk about how they affect behavior.

 Autosizing

There are a few controls that may need to resize either their heights or widths
to fi t their parent control. Among these are the GUITextCtrl, GuiTextList-
Ctrl, and GuiMLTextEditCtrl. To declare this functionality, TGE provides two
Boolean fi elds.

• autoSizeHeight. Allows the control to resize its height to accommodate
multi-line/row contents.

• autoSizeWidth. Allows the control to resize its height to accommodate
multi-character/column contents.

 Key and Mouse Attributes

There are a few key and mouse attributes that I should at least touch upon.

• mouseOverSelected. If this is set to true, the control will be selected
when the mouse hovers over it.

• returnTab. If this is specifi ed, the control will generate a tab event when
it is in focus and the ENTER key is pressed.

• canKeyFocus. If true, this control can be given keyboard focus.

Just setting these
values to true does
not guarantee the
behavior. These fields
only work if the control
can behave in this
way. For example,
setting these on a
label (GuiTextCtrl)
would do nothing,
but setting them on
a text edit control

(GuiTextEditCtrl)
would work.

Part III Game Elements

470

Modality

Again, if you are using version 1.4 or later, this concept is deprecated. The
following only applies to versions 1.3 and prior.
 We discussed modality above. Here is where we learn how to enable
it. Simply set the Boolean fi eld modal to true, and your control should be
modal. My suggestion is that most controls have this set to false unless it
really makes sense to force the user to deal with a GUI explicitly and fi rst.

Input Restrictions

Besides the often onerous restriction of a modal GUI, what other restrictions
are there? Well, just one. We can restrict text-entry fi elds to allow only numeric
input by setting the Boolean fi eld numbersOnly to true.

Audio Attributes

Because it would be a real bummer to have to defi ne the sound for each
and every button, TGE supplies two fi elds to do so in a GUI control profi le
instead.

• soundButtonOver. Play the sound represented by this AudioProfi le when
the mouse moves over this button.

• soundButtonDown. Play the sound represented by this AudioProfi le when
the button is pressed.

12.3 GuiControl—the Root GUI Class
GuiControl is the root class to all GUI controls and thus provides many fi elds and
console methods. When it is used at all, it is normally used as a container for other
controls, as it has very few rendering features and does nothing with inputs.

12.3.1 Profiles
Nearly all controls require a profi le. Furthermore, every time a control wakes
up, it looks for its profi le. If for some reason no profi le is specifi ed, the control
will do its best to fi nd one, using the following rules.

1. Use the profi le specifi ed by the user unless it is equal to the null string, “”.

2. Try to fi nd a profi le whose name is the fi rst part of the control class name
+ the word profi le (e.g., GuiButtonCtrl would look for GuiButtonProfi le).

3. Use GuiDefaultProfi le (a profi le with this name must always be created,
and always before other profi les are created).

 Interestingly, profi les can be changed at any time. Also, the contents of a
profi le (i.e., the fi elds) can be modifi ed from script.

 Standard TGE GUI Controls Chapter 12

471

 In order to set the original profi le, assign a value to the profi le fi eld. This
value can be the null string. If it is, the engine will search for a profi le and
replace the null string with the name of the fi rst matching profi le found.
 To change a profi le after a control is created, call the setProfile()
console method. The control’s profile fi eld can generally be updated using
direct assignment, but caution and plenty of verifi cation are in order if you
intend to use this method.

// Creation ...
new GuiControl(myTestControl) {
 profile = someProfile;
};

// Changing by console method
myTestControl. setProfile(someOtherProfile);

// Changing by assignment (not suggested)
myTestControl.profile = someOtherProfile;

12.3.2 Extents and Position
All controls have two extents, extent and minExtent. The former is a two-
 element integer vector defi ning the control’s initial width and height. The
 latter (not actually used in all controls) is also a two-element integer vec-
tor that specifi es the minimum width and height dimensions the control can
assume. If we did not have minExtent, a control could be scaled down to
a point where it was too small to use or view, either because the parent
was resized, or because we resized the control ourselves using the mouse.
minExtent prevents either of these cases.
 position, also a two-element integer vector, is the initial x and y coordi-
nate of the upper-left corner of the control.

new GuiControl(myTestControl2) {
 position = “10 20”; // start at < 10 , 20 >
 extent = “100 200”; // Start 100 pixels wide, 200 pixels high
 minExtent = “80 80”; // Do not allow to shrink below 80x80 pixels
};

12.3.3 Position and Sizing
Because the canvas may have various dimensions (as a result of user-selected
resolution changes and/or GUI editor resizing), several ways are supplied to
modify/maintain the sizing of a control. There are two fi elds, horiz Sizing
and vertSizing. The settings and behavior of both of these fi elds are

Part III Game Elements

472

thoroughly covered in Section 3.14, “The GUI Editor.” Please refer there for
how these two fi elds interact and control the sizing of a control.
 To retrieve the current position of the control, we can use the
 getPosition() method, which returns a two-element integer vector con-
taining the current position of the control’s upper-left corner. Then, to mod-
ify the position and/or the size of this control, we can use the re size()
method.

// Move this control down 10, left 10, and resize it to
// “100 100”
$position = $test. getPosition();
$newX = getWord($position , 0) + 10;
$newY = getWord($position , 1) + 10;
$test. re size($newX , $newY , 100 , 100);

12.3.4 Initial Visibility
If we so choose, we can cause a control to start off invisible (not rendered).
Just set the Boolean fi eld visible to false. By default, it is set to true.

12.3.5 Accelerators
Often, it is nice to be able to activate a control via some combination of
key presses. To facilitate this, TGE GUIs support accelerators. By setting the
accelerator fi eld to some combination of modifi er(s) + key, we can enable
access to buttons and many other controls from the keyboard.

new GuiButtonCtrl(myAcceleratedTestButton) {
 // Ctrl+Alt+X activates this button
 accelerator = “Ctrl Alt X”;
};

Modifiers

Modifi ers can be CTRL, SHIFT, or ALT.

Keys

Keys include the following: F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, A,
B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z.

12.3.6 Commands and $thisControl
Many controls will wish to execute a command when activated, and a smaller
set may need an alternate (secondary) command for other events. These com-

 Standard TGE GUI Controls Chapter 12

473

mands can be small scripts or just calls to functions. They are declared as
follows.

new GuiButtonCtrl(myTestButton) {
 command = “doSomething();”;
 altCommand = “doSomethingElse();”;
};

Be aware that any control that executes a command will fi rst set the global
variable $thisControl to the ID of the calling control. For example, when a
button is clicked, it will do the following.

1. Set $thisControl to the ID of the button.

2. Execute the script specifi ed by command.

Only the following controls use altCommand.

• GuiSliderCtrl

• GuiTextCtrl

• GuiTextEditCtrl

• GuiTreeviewCtrl

12.3.7 Variables
Interestingly, each control can have a variable associated with it. How it uses
this variable is up to the control, but normally the variable contains the cur-
rent value of this control.

$test = new GuiButtonCtrl(testButton) {
 variable = “testButtonValue”;
};

// Access this variable like this:
 echo(“testButtonValue == ”, $testButtonValue);

12.3.8 Becoming First Responder
There will be times when we want a control to capture keyboard inputs. To have
a control start catching the input, we must call the makeFirst Responder()
method with a Boolean value of true. To make it stop, simply call this method
with a value of false. Also, don’t forget that this concept only applies to ver-
sion of TGE prior to 1.4.

// Capture keyboard inputs
testButton. makeFirstResponder(true);

Part III Game Elements

474

12.3.9 Current and Subsequent Visibility
We know how to tell the control whether it should start off visible, but what
if we want to change this? Use the setVisible() method and pass it either
true or false based on our needs.

testButton. setVisible(false); // Hide the button

We can also check for visibility with the isVisible() method.

 echo(“This button is”, (testButton. isVisible() ? “ ” :
 “ not ”), “visible”);

12.3.10 Awake and Active?
A control can be awake or asleep, active or inactive. These modes can be
interpreted as follows.

• (isAwake() == true). Self or parent is current content of canvas or
canvas layer.

• (isAwake() == false). Self or parent is not current content of canvas
or canvas layer.

• (isActive() == true). Currently enabled.

• (isActive() == false). Currently disabled.

 In addition to checking the status of active, we can set it with the
 set Active() method.

testButton. setActive(false); // Disable this button

12.4 GUI Console Methods, Callbacks,
 and Scoping
GUIs and GuiControlProfi les, like all TGE objects, support console methods
and callbacks.

12.4.1 Console Methods for GuiControl
 and Children
You may not fi nd much use for this, but just in case, I want you to know that
you can in fact defi ne console methods on GuiControleProfi le objects. How-
ever, you can only defi ne console methods for GuiControlProfi le objects in
either the namespace GuiControlProfi le:

 Standard TGE GUI Controls Chapter 12

475

$profileA = new GUIControlProfile(testProfileA) {
 \\...
};

function GUIControlProfile::testit(%this) {
 echo(“GUIControlProfile::testit(”,%this, “)”);
}

$profileA.testit();

or in the SimObject namespace (GuiControlProfi le’s parent is SimObject):

function simObject::testit2(%this) {
 echo(“simObject::testit(2”,%this,“)”);
}

$profileA.testit2();

The class, className, and superClass keywords are not recognized and
cannot be used to extend the namespace of GuiControlProfi le objects.

12.4.2 Console Methods for GuiControlProfile
 and Children
More useful to us than console methods for GuiControlProfi le are console
methods for GuiControl and all its children. GUIs have a lot of callbacks and
you’ll fi nd it very useful to be able to scope console methods to specifi c object
instances. Fortunately, the normal scoping rules and methods apply to GUI
controls. In other words, we can scope methods to GuiControl and its parent
classes, and we can scope to the object’s name.

new GuiBitmapButtonCtrl(LessonsButton) {
 // ...
};

function LessonsButton::test(%this) {
 echo(“LessonsButton::test(” @ %this @ “)”);
}

Thus, typing

LessonsButton.test();

Part III Game Elements

476

will print the following in the console.

LessonsButton::test(LessonsButton)

 If you need a review of the scoping rules, go back to Chapter 4, “Introduc-
tion to TorqueScript.” If you want to know what the callbacks are for different
GUI controls, take a peek at Appendix A.4, “GUI Controls Quick Reference.” I’ll
be giving some code samples below to handle certain useful GUI callbacks.

12.5 GUI Skinning
Several controls offer the additional ability to “skin.” In effect, we can create
a graphic image or array of images that will then be used to cover the con-
trol. This offers us a simple means of giving our game GUIs their own fl avor.
However, this power does come at a price. Specifi cally, we need to understand
how this skinning graphic is laid out and how we create it. Don’t worry; it’s
not that hard.

12.5.1 Bitmap Arrays
Almost every skin we will use is a single graphic fi le that has been laid out
in some sort of an array (skin elements organized in rows and columns). The
purpose of the rows and columns is determined on a per-control basis, but all
of these arrays follow the same rules.

General Rules

These are the general rules to be followed.

• The format of the graphic fi le must be nonlossy and support an alpha
channel (in theory you can do some controls with a 24-bit BMP (no alpha-
 channel) or a JPG (lossy), but it is likely this won't work well). PNG is the
preferred format.

• The graphic fi le does not need to be sized as a power of two. Any (reason-
able) ratio will do.

• All elements must be separated by one pixel at their nearest point.

• The fi rst pixel row of the graphic contains no elements, just a single color.
This color becomes the “array-divider color.” The array-divider color is
used by Torque to identify rows and columns.

• All arrays of subelements are arranged left-to-right and top-to-bottom;
i.e, if there is some element numbering implied, the upper-left element is
zero and the lower-right element is N – 1, where N is the total number of
elements.

 Standard TGE GUI Controls Chapter 12

477

Column Rules

These are the rules to be followed for columns.

• The fi rst column of elements must align with the left edge of the array.

• Elements in a column (excluding the fi rst column) do not need to left-align
with those elements in the rows above or below them.

Row Rules

These are the rules to be followed for rows.

• The fi rst row of elements starts one pixel from the top of the graphic.

• All elements in a row must top-align with all other elements in that row.

• All elements in a row must be one pixel apart at their nearest point in the
row; i.e., shapes may be irregular, but the extents of elements must be one
pixel apart.

• The rightmost element in a row does not need to align to the edge of the
graphic; i.e., there can be empty space on the right of a row.

• The bottommost row does not need to align with the bottom of the graphic.
Again, there can be buffer space.

Now, it may seem like this is a lot to remember, but it really isn’t that bad,
and you’ll have examples to follow. Figure 12.1 shows a simple example and
a more complicated one.
 Most of the diffi culty in creating a skin comes from following the prior
rules and in knowing the layout requirements for the current control. I will
give a layout for each skinnable control below so you know what you’re look-
ing at when you make your own, but here I’d like to stress some points that
will make your life easier.

• Always use PNG fi les if you can. These support alpha channels, are reason-
ably sized, and you don’t have to worry about artifacts.

• Make the subelements separately, then assemble the array as layers. It will
be much harder to make your elements if you try to make them all in one
graphic layer.

• Make the subelements at the maximum resolution you expect them to be
displayed, unless they require a specifi c sizing (the bitmaps for GuiBitmap-
BorderCtrl and GuiWindowCtrl are sensitive to scaling).

• Use pure red (255 0 0) as your array-divider color if you can, or use another
color that is not present in the element. You can use a tool to analyze the
color mix of your subelements. Then, just pick a color that is not in the
controls already. This is not a strict rule, but it makes designing skins easier
if you follow it.

Figure 12.1.

Examples of bitmap arrays.

a. Check box array (so
simple . . .).

b. Scroll array (Ewww . . .).

Part III Game Elements

478

• Do not use transparency as your array-divider color unless you absolutely
have to. No bitmap arrays require this.

• Never use translucency (alpha lower than 1.0 and higher than 0.0) as your
array-divider color, period. I mean it.

• More? Sure, but I'm sure that many people reading this are more artistically
inclined than I am, so I'll stop here.

12.5.3 Enabling Skinning
In order to enable skinning for controls, we use two fi elds in the GuiControl-
Profi le.

• hasBitmapArray (deprecated in version 1.4+). Boolean value enabling
skinning.

• bitmap. Path to the bitmap skin to use to theme this control.

new GuiControlProfile (usesBitmapArray) {
 hasBitmapArray = true;
 bitmap = “path to bitmap array file”;
};

Now, fi nally, let’s talk about the specifi c GUI controls.

12.6 Container Controls
This fi rst category of controls contains the standard container-type controls.
Don’t forget, though, that all controls can act as containers to other controls.

12.6.1 GuiFrameSetCtrl
This control is used to automatically or manually frame any number of child
controls, in regular row-column format.
 The fi rst time you try to use it, it may seem a little odd, but once you
understand the rules by which it operates, you’ll be using it for all kinds of
tasks.

Setting Up Rows and Columns

To use this control, simply place it and give it an initial extent. Then, to divide
the control into rows and columns, simply specify the starting position of each
column in the columns fi eld and each row in the rows fi eld. For example,
we could make a 3×3 matrix of cells where each cell is 100 by 100 pixels, by
using the fi eld settings shown in Table 12.2.
 Now, we need to add some children.

Many controls require
the presence of a
bitmap in their profile.
If you use a profile
that does not have a
bitmap for a control
that requires one, the
engine will not render
the control. Be sure
to include bitmaps in
control profiles that
require them. You
were warned.

Table 12.2.

Setting up rows and
columns.

Field Value(s)

position “100 100”

extent “300 300”

columns “0 100 200”

rows “0 100 200”

 Standard TGE GUI Controls Chapter 12

479

Inserting Controls

In this example, we’ll just use nine buttons. To add these buttons, simply
select your new GuiFrameSetCtrl and add nine GuiButtonCtrl controls as chil-
dren. If you pay attention, you will see that the controls are added left-to-right
and top-to-bottom; that is, the buttons are (automatically) added in the fol-
lowing order:

• button 0 � < Column 0 , Row 0 >

• button 1 � < Column 1 , Row 0 >

• button 2 � < Column 2 , Row 0 >

• button 3 � < Column 0 , Row 1 >

• ...

• button 8 � < Column 2 , Row 2 >

So, what happens if we remove a control?

Removing Controls

If we remove a child control, all of the children will shift as required to fi ll
the empty slot. Furthermore, newly added controls will go at the end of the
list. Just keep this in mind if you are making and destroying these controls
dynamically.

How Borders Work

This control will allow you to specify dragable borders between the rows and
column. In order to do this, specify these fi elds shown in Table 12.3.

Field Meaning

borderWidth Width of borders in pixels.

borderColor Color and opacity of borders.

borderEnable Enable border color rendering. Can be “alwaysOn”,
“alwaysOff”, or “dynamic”.

borderMoveable Enable border dragging. Can be “alwaysOn”, “alwaysOff”, or
“dynamic”.

Please note that, if you disable border color rendering, dragging the border
will also be disabled.

Fudge?

There is an odd fi eld named fudgeFactor. When set to a positive number,
this value is subtracted from every border, making them each that many pixels
shorter on each end. This does not affect the ability to grab a border.

Table 12.3.

Using borders.

Part III Game Elements

480

Autobalancing

So, what if we would rather maintain balanced cells? We can enable the autobal-
ancing feature by setting autobalance to true. Now, the control will automati-
cally attempt to make all of the cells the same size the next time it wakes up.

Scripting the GuiFrameSetCtrl

It is possible to manipulate this control from script. Table 12.4 shows all the
things we are allowed to do to this control from within a script.

Method Purpose

 addColumn() Add a new column to the control. All contents will
shift.

removeColumn() Remove a column from the right side of the control.
Contents will shift but will not be deleted.

addRow() Add a new row to the control. All contents will shift.

removeRow() Remove a row from the bottom of the control.
Contents will shift but will not be deleted.

getColumnCount() Return the current number of columns in the
frame.

get RowCount() Return the current number of rows in the frame.

getRowOffset(row) Return the beginning pixel offset for row.

getColumnOffset(column) Return the beginning pixel offset for column.

setRowOffset(row ,
offset)

Set the beginning pixel offset for row.

setColumnOffset(column ,
offset)

Set the beginning pixel offset for column.

12.6.2 GuiScrollCtrl
This control is used to contain a resizeable control. These resizeable controls
are made children of the GuiScrollCtrl, which then allows the user to use
scroll bars to move to a specifi c location within the child control.
 GuiScrollCtrl can be programmed to supply a vertical and/or a horizontal
scroll bar. These scroll bars will be enabled (based on fi eld settings) always,
never, or when the child content expands beyond the vertical or horizontal
bounds of the view area.
 This control also provides a confi gurable margin and control over the
thumb affordance (the little slidey thing on the scroll bars).
 Lastly, from script we can force the control to scroll to the top or bottom
of the child.

Table 12.4.

Manipulating the
GuiFrameSetCtrl.

In order to create
empty blocks in a
GuiFrameSet, simply
add a GuiControl as an
element for each cell
you wish to be blank.

 Standard TGE GUI Controls Chapter 12

481

Configuring GuiScrollCtrl

 As noted above, this control provides a few confi guration options.

Scroll Bars

We can control when or if either the vertical and/or horizontal scroll bars will
be rendered by using the hScrollBar and vScrollBar fi elds. These fi elds
can be given the following values.

• alwaysOn. Scrollbar always renders.

• alwaysOff. Scrollbar never renders.

• dynamic. Scrollbar renders based on size of child.

Additionally, if we’ve chosen to render the scroll bars, we can select either
scaling or nonscaling thumbs. The thumb is the little box on the scroll bar that
allows us to scroll by dragging. Normally, this thumb scales relative to how
“full” the scroll dimension (vertical or horizontal) is. However, for really big
children or really small scrolls, this behavior can cause the thumb to scale to
a very tiny size, making it diffi cult to grab with the mouse. Thus, we can force
the thumbs to maintain a fi xed size, using the constantThumbHeight fi eld.

new GuiScrollCtrl() {
 hScrollBar = “dynamic”; // Render horizontal scrollbar as needed
 vScrollBar = “alwaysOn”; // Always render vertical scrollbar
 constantThumbHeight = false; // Scale thumb dynamically
};

 Margins

We can make minor adjustments to the margins of a scroll area; that is, we
can set a fi xed margin that will cause the child to fi t within a box defi ned by
the childMargin fi eld. This fi eld takes a two-element integer vector. The fi rst
value in the vector is the left-right margin, and the second value is the top-
bottom margin. Both margins are in pixels. The GuiScrollCtrl already provides
a margin for its children, but this allows us to further expand that margin, to
account for various cases where the content may be occluded by a parent of
the GuiScrollCtrl.

new GuiScrollCtrl() {
 childMargin = “10 10”;
};

Ignoring First Responder

We can control whether this control will be allowed to become fi rst responder.
The setting of fi rst responder state is still controlled by the GuiControl method

Part III Game Elements

482

 makeFirstResponder(), but we can force this GUI to ignore this request
by setting the willFirstRespond fi eld to false. Also, don’t forget that this
concept only applies to versions of TGE prior to 1.4.

new GuiScrollCtrl() {
 // Do not become firstResponder...ever
 willFirstRespond = false;
};

Scripting GuiScrollCtrl

GuiScrollCtrl provides two console methods that allow us to scroll the con-
tents from script.

• scrollToBottom(). Scroll all the way to the bottom of the child.

• scrollToTop(). Scroll all the way to the top of the child.

No scripting control is provided for horizontal scrolling.

 GuiScrollCtrl Skin

This control has what is probably the most complicated (looking) skin. The
bitmap array is organized as shown in Table 12.5.

12.6.3 GuiStackControl
This very simple container is used to hold any other control in a fi xed-width
stack. To use this control, simply place it and then start adding other controls
to it as children. These controls will stack up on each other. You may control
the direction of this stacking by setting the stackFromBottom fi eld to true
or false. If it is true, the controls will stack bottom to top; otherwise, they
will stack from top to bottom (the default). The control can be resized hori-
zontally but not vertically.
 If it isn’t clear, the purpose of this control is to allow us to dynamically
place other controls and to be guaranteed that they will all take on the same
width and that they will stack perfectly against their mates. See the images in
Figure 12.2 for clarifi cation.
 Please note that, if you do not want the controls to be right next to each
other, you may add some space by setting the padding fi eld to a positive value.

12.6.4 GuiPaneControl
Here is another simple but useful container control. This control is designed to
provide us with a simple dropdown area that can contain any other control(s).
The user can simply hide/show the pane by clicking on the caption bar at the

 Standard TGE GUI Controls Chapter 12

483

Table 12.5.

Bitmap array for GuiScrollCtrl skin.

Sample Array
Image Column 0 Column 1 Column 2

Up-Scroll Normal Up-Scroll Depressed Up-Scroll Inactive

Down-Scroll Normal Down-Scroll Depressed Down-Scroll Inactive

Top of Vertical Thumb Normal Top of Vertical Thumb Depressed Top of Vertical Thumb Inactive

Middle of Vertical Thumb
Normal

Middle of Vertical Thumb
Depressed

Middle of Vertical Thumb
Inactive

Bottom of Vertical Thumb
Normal

Bottom of Vertical Thumb
Depressed

Bottom of Vertical Thumb
Inactive

Vertical Bar Normal Vertical Bar Depressed Vertical Bar Inactive

Right-Scroll Normal Right-Scroll Depressed Right-Scroll Inactive

Left-Scroll Normal Left-Scroll Depressed Left-Scroll Inactive

Left of Horizontal Thumb
Normal

Left of Horizontal Thumb
Depressed

Left of Horizontal Thumb
Inactive

Middle of Horizontal Thumb
Normal

Middle of Horizontal Thumb
Depressed

Middle of Horizontal Thumb
Inactive

Right of Horizontal Thumb
Normal

Right of Horizontal Thumb
Depressed

Right of Horizontal Thumb
Inactive

Horizontal Bar Normal Horizontal Bar Depressed Horizontal Bar Inactive

Lower-Right Affordance
Normal

Lower-Right Affordance
Depressed

Lower-Right Affordance
Inactive

Figure 12.2.

Using GuiStackControl.

stackFromBottom == false stackFromBottom == true Delete Button 1
(adjusts after sleep/wake)

Part III Game Elements

484

top. An example of this control that you should be familiar with is the console
script error pane (see Figure 12.3).
 Please note that normally this control will be populated with a single scroll
control, which will then contain a self-expanding control like GuiMLTextCtrl
or GuiTextListCtrl.

GuiPaneControl Skin

This control uses a very simple skin which is ordered as shown in Table 12.6.

Sample
Array Image Column 0 Column 1 Column 2

Pane Open Button -- --

Pane Close Button -- --

Caption Bar Begin Caption Bar Caption Bar End +
Pane Toggle Button

Please note that you may make all of these buttons and bars the same if
you like. In the end, clicking anywhere on the bar will open or close it.

The variances in the bar graphic merely supply a recognizable affordance.

Caption Text

The caption bar may display a short (255 or fewer characters) text string. Fur-
thermore, this text may be rendered in front of or behind the caption bar.
 To specify the text, set the caption fi eld to the text you want. To specify
the render order, set the barBehindText to true or false. Setting it to true
will render the text in front of the bar; setting it to false will render the bar
in front of the text (Figure 12.4).

Script Error Pane—Closed

Script Error Pane—Open

Figure 12.3.

Console script error pane.

Table 12.6.

Bitmap array of
GuiPaneControl skin.

This control will
decide how tall to
make the caption bar
based on the height of
the first row in the skin
bitmap. So, if you need
the caption bar to be
taller or shorter, adjust
the skin.

 Standard TGE GUI Controls Chapter 12

485

Disabling Collapses

Although the control is really meant to be opened and closed, we may tell the con-
trol that it cannot be collapsed. Simply set the collapsable fi eld to false.
 Please note that, if the control is collapsed when we set this fi eld, it will
not open when the caption is clicked. So, in effect, setting this fi eld to false
locks the pane.

Scripting the Control

There isn’t much we can script on this control, but it is possible to toggle
the pane open and closed using the method setCollapsed(collapse),
which will collapse if collapse is true, otherwise it will be open. Be aware
that, if the pane collapsing is disabled, this method will do nothing.

12.6.5 GuiTabBookCtrl and GuiTabPageCtrl
A tab book is something that many of us have come to take for granted. It
is a control that contains an unspecifi ed number of tabbed panes. By click-
ing on any of the tabs, the pane that is associated with the tab is brought
to the front and made vis-
ible. It’s like an index fi le,
except it is completely 2D
(Figure 12.5).

Configuring GuiTabBookCtrl

To use this control, we must fi rst place it and size it to our liking. Once that is
done, we need to decide where the tabs should be as well as how large they
should be. Right now, tabs can be on top or on the bottom of the tab pages
and can be any size we wish. In the future, the engine may also support tabs
on the right and left.
 To specify the tab positions and sizes, set the fi elds as shown in Table 12.7.

Field Description

tabPosition May be “Top” or “Bottom”.

tabHeight Height of tabs in pixels.

tabWidth Width of tabs in pixels.

Figure 12.4.

Caption bar.

Figure 12.5

Tabbed panes.

Table 12.7

Setting tab positions and
sizes.

Part III Game Elements

486

Wow, that was pretty simple! Now, let’s add some tab pages.

Adding Tab Pages

The fi rst thing you must know about adding content to a tab book is that the
GuiTabBookCtrl may only contain GuiTabPageCtrl controls. If you try to place
any other kind of control in a tab book, the new control will either drop into
the fi rst tab page the engine fi nds (owned by this book), or the control will
drop onto the book’s parent.
 To add pages (and therefore tabs), simply select the book we just created
as the instant group and start adding GuiTabPageCtrl controls until you have
enough pages.
 We can add text to a page’s tab by setting the text fi eld of the GuiTab-
PageCtrl we just added.
 After we add our pages, we will need to put content in the pages.

Editing Tab Pages

Editing pages is a breeze. Simply click on the tab for the page you wish to
modify and start dropping controls into the page. We can tab through pages
while in the editor, making it exceptionally easy to modify our tab book.

Dynamic Page Creation/Destruction

We can add and remove pages from our tab books from script by calling the
two methods in Table 12.8.

Method Description

 addpage([pageName]) Add a new page to the GuiTabBookCtrl and return
the ID of the GuiTabPageCtrl that was added. You
may optionally specify the text for the page’s tab by
passing a value in pageName.

removePage(index) Remove the page at index (left to right) position.

More Scripting

Aside from dynamically adding and removing pages, we can also specify two
callbacks for a GuiTabBookCtrl (Table 12.9).

Callback Description

 onClearSelected() Called when right mouse is clicked in a page and the
mouse is over a valid control (besides the page itself).

onTabSelected(tabText) This callback is called when a tab is clicked and prior
to the page associated with that tab being
(re-)displayed. It is passed the text in the page’s tab.

Table 12.8.

Adding and removing
pages.

Table 12.9.

Two callbacks for
GuiTabBookCtrl.

 Standard TGE GUI Controls Chapter 12

487

12.6.6 GuiWindowCtrl
This control provides the familiar window metaphor. This is a completely
skinnable control. By default, TGE comes with the graphics required to skin
this as a standard Windows- or OSX-style window (Figure 12.6). These win-
dows provide standard window behaviors through the following fi elds.

• canClose. Boolean value enabling close icon and ability to close window.

• canMaximize. Boolean value enabling maximize icon and ability to maxi-
mize window.

• canMinimize. Boolean value enabling minimize icon and ability to mini-
mize window.

• canMove. Boolean value enabling dragging. If true, the window can be
dragged by the upper bar.

• closeCommand. This script is executed when the window is closed.

• minSize. A two-integer vector describing the minimum size this window
can take when drag-resized. This does not affect minimized size, which is
always just the drag-bar and buttons.

• resizeHeight. Boolean value enabling height drag-resizing, i.e., the win-
dow can be height-resized by dragging a corner or edge.

• resizeWidth. Boolean value enabling width drag-resizing, i.e., the win-
dow can be width-resized by dragging a corner or edge.

new GuiWindowCtrl() {
 //...
 resizeWidth = “1”;
 resizeHeight = “1”;
 canMove = “1”;
 canClose = “1”;
 canMinimize = “1”;
 canMaximize = “1”;
 minSize = “50 50”;
};

The sample GuiWindowCtrl defi nition above creates an unnamed window
that can be resized in both height and width, and can be moved, closed, mini-
mized, and maximized. It also has a minimum drag size of 50×50 pixels.

 GuiWindowCtrl Skin

As noted above, this is a fully skinnable control. This skinning is controlled by
two GuiControlProfi le fi elds and a bitmap.

• hasBitmapArray. Boolean value enabling skinning.

• bitmap. Path to the bitmap skin.

Figure 12.6.

Window skins.

a. Windows theme.

b. OSX theme.

Part III Game Elements

488

The bitmap array is organized as shown in Table 12.10.

Making Your Own GuiWindowCtrl Skin

Sometimes it isn’t enough just to see a fi nished example, so let’s make a
simple window skin together and then improve on it a bit.
 As a rule, I like to start simple then work my way up. Thus, we will make
a simple GuiWindowCtrl bitmap array together.

Setting up.

1. Open your graphics program of choice.

2. Create a blank 300×300 image with a red (255 0 0) background.

3. Enable a viewable grid and adjust it to 1×1 pixels.

4. Zoom in on the upper-left corner of your image until the grid is at one-pixel
scale.

Button blanks.

1. Select a foreground color of (64 64 64).

Table 12.10.

Bitmap array for GuiWindowCtrl skin.

Sample Array
Image Column 0 Column 1 Column 2 Column 3 Column 4

Close Button
Normal

Close Button
Depressed

Close Button
Inactive

— —

Maximize Button
Normal

Maximize Button
Depressed

Maximize Button
Inactive

— —

Revert Button
Normal

Revert Button
Depressed

Revert Button
Inactive

— —

Minimize Button
Normal

Minimize Button
Depressed

Minimize Button
Inactive

— —

Title Bar
Left Edge

Title Bar
Right Edge

Title Bar
Middle

— —

Title Bar
Left Edge
Inactive

Title Bar
Right Edge

Inactive

Title Bar
Middle

Inactive

— —

Left Edge Right Edge Lower Left
Corner

Bottom Edge Lower Right
Corner

 Standard TGE GUI Controls Chapter 12

489

2. Create a new transparent layer and rename it “Button Blanks.”

3. In this new layer, using a rectangular selection tool starting at X:0 Y:1,
select a 17×14 pixel area.

4. Flood fi ll the selection.

5. Copy the selection and paste it to this layer as a new selection, placing
it at X:10 Y:1.

6. Paste another selection in this row, maintaining the one-pixel distance.

7. Make three more rows, and you should have an image like the one in
Figure 12.7.

Upper bars normal.

1. Create a new transparent layer and name it “Top Bar Normal.”

2. Select a new fi ll color of (128 128 128).

3. Create two 5×23 rectangles and one 38×23 rectangle, again maintain-
ing one pixel between this new row and those above, as well as one
pixel between each element in the row (Figure 12.8).

Upper bars inactive.

1. Create a new transparent layer.

2. Copy the bars we just made (Figure 12.8) and paste them into our new
layer.

Edges and bottom.

1. Create a last layer and name it “Edges + Bottom.”

2. Create the following parts: 3×9, 3×9, 3×3, 7×3, and a last 3×3.

3. Our fi nal image should look like Figure 12.9.

That is it! We now have a very simple GuiWindowCtrl bitmap array. Go
ahead and save it, duplicate it, and then save the duplicate as a PNG. Use
this PNG in a test window, and it should look like Figure 12.10.

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Our new GuiWindowCtrl skin in use.

Part III Game Elements

490

12.7 Backgrounds and Borders
The controls in this category are normally used as backgrounds to other con-
trols, but they are quite versatile and can be used for a number of more
advanced effects. I’ll give you a hint. Think in terms of layers and what you
could do by enabling and disabling these layers. Combine this with the con-
cept of masking and, well . . .

12.7.1 GuiBitmapCtrl
This control is used to display any reasonably sized image. In TGE versions
prior to 1.3, this control could only accept a bitmap with a maximum size of
256×256 pixels. For larger images, the GuiChunkedBitmapCtrl was used. This
limitation is no longer in place.

The Bitmap

The initial bitmap is specifi ed as a fi eld in the control.

new GuiBitmapCtrl(myTestBitmap) {
 bitmap = “./someImage”;
}

Subsequently, this can be changed using the setBitmap() method and a
complete path to a new image.

myTestBitmap. setBitmap(expand Filename(“./someImage2.png”));

In the above example, it is implied that there is an image fi le with the name
“someImage2.png” in the same directory as the script.

Wrapping and Offset

When creating a GuiBitmapCtrl, we can specify the wrap fi eld as either true or
false. If wrap is set to false and the image is larger than the Gui BitmapCtrl
extent, the image will be scaled down. Vice versa, if the extent is larger than
the image, it will be scaled up. However, if wrap is true, no scaling will
occur. The image may be clipped or repeated based on size versus extent.
 In addition to wrapping, we can offset an image using the setValue()
method.

function TestBitmap2::scrollMe(%this) {
 if(! %this.isScrolling) return;
 %this.curX += 2;

 Standard TGE GUI Controls Chapter 12

491

 %this.curY += 2;

 if(%this.curX >= 256) {
 %this.curX = 0;
 %this.curY = 0;
 }

 %this. setValue(%this.curX , %this.curY);
 %this. schedule(32 , scrollMe);
}

The code above comes right from the GPGT Lesson Kit. It is used to scroll the
sample image. Note that positive values cause the image to be offset up and
left, whereas negative values cause it to be offset down and right. All values
are in pixels.

12.7.2 GuiChunkedBitmapCtrl
This control is the big brother to GuiBitmapCtrl and serves basically the same
purpose. It was used in days of old to render images larger than 256×256.
It did this by cutting up the image and storing it appropriately on the video
card/memory. Today’s hardware has made this control pretty much obsolete,
but there are a few variances in its behavior, so we’ll discuss it briefl y.

The Bitmap

As with GuiBitmapCtrl, the initial bitmap is specifi ed using the bitmap fi eld.
Also like GuiBitmapCtrl, this control does support changing the bitmap after
creation using the setBitmap() method.

Tiling

Whereas GuiBitmapCtrl had a wrapping functionality, GuiChunkedBitmapCtrl
has tiling. Tiling is controlled by the Boolean tile fi eld and behaves pretty
much the same as wrapping, but not quite as reliably.

The useVariable
A signifi cant difference between GuiBitmapCtrl and GuiChunkedBitmapCtrl
is the useVariable fi eld. If this fi eld is set to true, we can specify a vari-
able name in the bitmap string instead of a path. Then, when this control is
rendered, it will look at the contents of the named variable for the path to its
image fi le. This fi eld is only checked when the onWake() callback is called.
So, you may only change a bitmap using this fi eld between wakes.

Part III Game Elements

492

 In the following example, we’ve chosen to use a named variable to specify
our path instead of doing so directly.

new GuiChunkedBitmapCtrl() {
 // ...
 useVariable = true;
 variable = “MyBitmap”;
 bitmap = “”;
};

Of course, for this to work, we must have defi ned $MyBitmap.

$MyBitmap = expand FileName(“.\some\path\to\some\image”);

12.7.3 GuiBitmapBorderCtrl
This skinnable control is used to adorn other controls with a frame (or
border).

GuiBitmapBorderCtrl Skin

The bitmap array for this control is organized as shown in in Figure 12.11.

Column 0 Column 1 Column 2 Column 3 Column 4

Upper-left border Upper-right border Top border --

Left border Right Border Lower-left
border

Lower
border

Lower-right
border

 Making Your Own GUIBitmapBorderCtrl Skin

Learning to make skins for the border control is a step-by-step process. In this
section, I will provide you with the basic steps needed to make a plain bor-
der. Once you have mastered this process, you should feel free to create more
advanced borders using the same rules.

Setting up.

1. Open your graphics program of choice.

Figure 12.11.

Bitmap array for
GuiBitmapBorderCtrl skin.

 Standard TGE GUI Controls Chapter 12

493

2. Create a blank 300×300 image with a red (255 0 0) back-
ground.

3. Enable a viewable grid and adjust it to 1×1 pixels.

4. Zoom in on the upper-left corner of your image until the grid
is at one-pixel scale.

Top of bitmap border.

1. Create the three components of the upper bar: upper-left,
lower-right, and middle. In this example, they are purple,
blue, and cyan, respectively (Figure 12.12).

Sides and bottom.

1. Create the two sides and the bottom components: left, right,
lower-left, bottom, and lower-right. In this example, they are
green, yellow, pink, pale-yellow, and red-brown, respectively
(Figure 12.12).

End result.

1. Our end result would look something like the image in Fig-
ure 12.13.

12.7.4 GuiFadeInBitmapCtrl
This control is used to display an image by fading it in, waiting, and then fad-
ing it out over specifi ed times. There is no good way to make this cycle repeat.
In fact, the only way to cause the fading cycle to start over is to put the control
to sleep and then wake it up again.

Setting Up the Fade

Setting up the GuiFadeInBitmapCtrl is relatively simple. There are three fi elds
that specify the fade timing.

Figure 12.13

Figure 12.12

new GuiFadeInBitmapCtrl(myFadeInBitmap) {
 fadeInTime = 1000; // Fade in over one second
 waitTime = 2000; // Stay visible (without fading) for two seconds
 fadeOutTime = 500; // Fade out over a half-second
};

The mechanics of this control are quite simple. Upon waking, the control will
start to fade in a bitmap over a period of time fadeInTime. Once the fade in
is complete, the image will stay faded in for waitTime. Finally, the image will
fade out for fadeOutTime.
 When the whole process is complete, the engine will set the fi eld done to
true. Please remember that the engine never sets this to false. So, if you are

Part III Game Elements

494

relying on this value, be sure to clear it when you put the control to sleep and be
double sure that it is saved as false or set to false in the on Add() method.
 Interestingly, fadeInTime and waitTime can both be set to zero, but
setting fadeOutTime to zero will cause the bitmap to display forever at full
alpha, i.e., it won’t fade out.

Sensing Clicks

This control is often used to display a splash image when starting a game or
as an interlude between missions, etc. Users will frequently want to bypass
these screens (once they’ve seen them enough times to stop being impressed

with the artwork).
 As a game player, you probably will recall that the most frequently
used way to bypass these screens is either an ESC key press, a SPACEBAR

key press, or a left mouse click.
 TGE has supplied the ability to sense a left mouse click via the click()
callback. If the user presses the left mouse button while the cursor is over
this control, the click() method will fi re (if specifi ed). If you want the
other mentioned inputs to be sensed, you’ll need to use a GuiInputCtrl (see
Section 12.12.3).

function myFadeInBitmap:: click(%this) {
 echo(“myFadeInBitmap:: click() => User clicked the left
 mouse button.”);
};

To stop this control from being displayed, simply remove it from the canvas.

12.8 Text Controls
This section discusses the various controls whose purpose it is to store, dis-
play, or take as input, text values.

12.8.1 GuiMessageVectorCtrl
This control is normally used to build a chat HUD, but it can be used for a
number of other purposes as well. In order to use this control, a Message-
Vector object must also be used (see “The MessageVector” below).
 Since the actual data to be displayed is stored in the MessageVector and
not this control, we can remove and add GuiMessageVectorCtrl controls at will
and not corrupt message data.
 This control is capable of displaying colorized text.

If you wish
to capture
key presses on a
GUIFadeInBitmapCtrl
GUI or any other GUI
that does not normally
catch them, simply
add a 1×1 button
positioned at <0 0>, set
the accelerator
field of the button to
the key you want to
catch, and use the
command field to
execute the task you
need. Repeat this for
every key you need
to catch. This is a lot
better than using an
ActionMap for these
special cases.

 Standard TGE GUI Controls Chapter 12

495

Child Only

This control is not allowed to exist standalone. It must instead be made a child
of a control that allows for expansion of the child. Thus, if you wish to use it,
you must make this control the child of a GuiScrollCtrl. If you do not do this,
you’ll crash the engine when you try to attach the GuiMessageVectorCtrl to a
nonempty MessageVector or when you attempt to add text to a MessageVector
that is already attached to it.
 A suitable defi nition of a GuiMessageVector Ctrl would look something
like the following.

new GuiScrollCtrl() {
 // ...
 new GuiMessageVectorCtrl(testMessageVectorCtrl) {
 // ...
 };
};

The MessageVector

So, what is this business about MessageVectors? Well, as noted above, the
GuiMessageVectorCtrl only has one job. That job is to display the contents of
a MessageVector. The MessageVector is a standalone class that can contain
a variable amount of text. MessageVectors don’t have any special fi elds, and
thus creating one is as simple as the following.

$myMsgVector = new MessageVector();

 Once the MessageVector has been created, text can be added to the front
or to the back of what is basically a text queue, as follows.

$myMsgVector. pushFrontLine(“some string”); // Put text at front of queue
$myMsgVector. pushBackLine(“some string”); // Put text at back of queue

We can also insert text in the middle of the queue using the insertLine()
method.

$myMsgVector. insertLine(5 , “some text”);

Later, we can peek at a line of text in the MessageVector using the
 getLineText() method.

 echo(“Line 10 => “, $myMsgVector. getLineText(10));

Part III Game Elements

496

 At any time, we can remove lines using the popFrontLine(), popBack-
Line(), or deleteLine() methods.

$myMsgVector. popFrontLine();
$myMsgVector. popBackLine();
$myMsgVector. deleteLine(5);

Interestingly, we can also save the contents of a MessageVector to a fi le.

$myMsgVector. dump(“~/chat.log” , “My Chat Log”);

The above example would create a fi le named “chat.log” in the current mod
directory, make the fi rst line of this fi le equal to “My Chat Log”, and then
dump the contents of $myMsgVector to the fi le. The fi le is automatically
closed at the end of the dump.

MessageVector and Tags

MessageVectors support one more interesting feature—tags. When we add
lines of text to a MessageVector, we are allowed to supply a unique inte-
ger value (greater than 0) as a tag. Later, we can use these tags to do
searches.
 For a complete treatment of MessageVector syntax, please see Appendix
A.4, “GUI Controls Quick Reference.”

Attaching a MessageVector

OK, so far we’ve talked a lot about the place we store our text (the Message-
Vector), but not the control that displays the text (the GuiMessageVectorCtrl).
To display the text from a MessageVector, we simply attach it to any currently
active GuiMessageVectorCtrl.

testMessageVectorCtrl. attach($myMsgVector);

In the above example, we are attaching our previously defi ned MessageVector
$myMsgVector to the GuiMessageVectorCtrl we declared at the start of this
discussion (testMessageVectorCtrl).
 That’s it! If we’ve done everything correctly, the text will now be dis-
played in our chat HUD (or whatever it is being used as).
 At a later time, we can disconnect the MessageVector using the detach()
method.

testMessageVectorCtrl. detach();

 Standard TGE GUI Controls Chapter 12

497

Note that multiple detaches are allowed, but if a GuiMessageVectorCtrl is
not attached to a MessageVector, it will print a warning when the detach()
method is called.
 Also note that a single MessageVector can be attached to multiple
 GuiMessageVectorCtrl controls.

12.8.2 GuiMLTextCtrl
This control is a markup-language–supporting text control (ML = markup
language). In addition to printing multi-line text, this control will accept TGE
Markup Language (TorqueML) formatted text, allowing us to make changes
to the font, font weight, color, etc. A complete listing of the TorqueML tokens
and the syntax for using them is supplied in Appendix A.4, “GUI Controls
Quick Reference.” This control also supports onURL() and on Re size() call-
backs. To use one of these controls, do the following.

1. Open the GUI that will contain our new GuiMLTextCtrl using the GUI
editor.

2. Select appropriate control as “add-parent” for the GuiMLTextCtrl (can be
embedded in any control).

3. Add GuiMLTextCtrl.

4. Position, size, and confi gure GuiMLTextCtrl.

5. Add your text.

6. Refl ow the GuiMLTextCtrl.

Configuring GuiMLTextCtrl

The GuiMLTextCtrl only has a few new fi elds.

• allowColorChars. This enables colors defi ned in the selected profi le to
take effect. I suggest setting this to false and using TorqueML instead.

• deniedSound. This is a reference to an audio profi le that should be
played when an attempt is made to place more text than maxChars in this
control.

• lineSpacing. An integer value specifying the number of pixels between
lines.

• maxChars. This integer value can be used to place a cap on the number
of characters this control will display. All characters are counted, including
formatting characters. Set this to –1 for no limit.

• text. This string is the initial contents of the control. This is most useful
for making ML labels. Note that the GUI editor will clip this at 255 char-
acters, so it is usually best to use the setText() method instead of static
assignment.

Part III Game Elements

498

Scripting GuiMLTextCtrl

This control can be scripted in the following ways.

Adding, Setting, and Clearing Text

There are two means of adding text to this control.

// Add text without reformatting
%control. addText(“Add this text”, false);

%control. setText(“Make the text equal to this”);

 The fi rst method adds text to the end of the control without optionally
reformatting the displayed text. The second method sets all text in the control
to the passed content. This method can also be used to clear the control. Sim-
ply pass a null string, “”.

Formatting and Reflowing

As noted, when adding text we have the option of causing the control to refor-
mat. This basically causes the control to reevaluate the contents and to be
sure that everything is displayed correctly. However, forcing a reformat every
time we add a line of text might be wasteful if we are adding many lines at
once. Thus, we can wait until we are done and then refl ow the control at the
end.

%control. forceReflow();

This will reformat the control just once. It is worth mentioning that, if you add
text and don’t reformat or refl ow, the text will not be displayed.

Scrolling and Tags

If we have embedded our GuiMLTextCtrl in a GuiScrollCtrl, we can force the
contents to scroll to the top.

%control. scrollToTop();

We can also force the contents to scroll to an embedded tag.

%control. scrollToTag(10); // Scroll to tag ID #10

Tags are special (nonprinting) TorqueML content that can be embedded in our
text. This is useful for making context-sensitive help pages.

 Standard TGE GUI Controls Chapter 12

499

 TorqueML

The TGE Markup Language, TorqueML, is pretty extensive and can do many
of the things that HTML can do. A complete listing of the TorqueML tags is
provided in Appendix A.4, “GUI Controls Quick Reference,” but I’ll cover a
few concepts and highlights here to help speed you on your way.

Syntax Closure

Unlike modern HTML, TorqueML does not require closure for most of its
formatting characters. In other words, once an effect is applied, it stays in
effect. The exceptions to this are clipping and hyperlinks, both of which have
a closure tag.

Attribute Stacking

Instead of the standard closure mechanisms, TorqueML supplies the concept
of an attribute stack. Thus, we can push the current formatting attributes to
the attribute stack, apply some changes, print some text, and then pop our old
formatting attributes back off the stack.

<font:arial:10>
This text is in Arial-10.
<spush>
<font:arial:14>
This text is in Arial-14.
<spop>
This text is in Arial-10.

Tables and Tabs

TorqueML doesn’t really support tables, but it does support a formatting fea-
ture that allows us to easily columnize our text in a table-like format. For
example, to make a two-column table, do the following.

<tab:60>
Torque Rocks

GPGT Makes Learning Easier

This line will be too long

This statement has told TGE to make the fi rst column 60 pixels wide. Subse-
quently, the fi rst TAB in every line will cause the text following the TAB to move
over to pixel 61. Thus, our sample would print out something like the following.

Torque Rocks
GPGT Makes Learning Easier
This line will be toolong

Part III Game Elements

500

As can be seen, the formatting is somewhat lacking. It would be better to
make the fi rst column of the third line clip instead.

Clipping

Fortunately for us, TorqueML supplies a method of clipping text to a specifi c
pixel width.

<tab:60>
Torque Rocks

GPGT Makes Learning Easier

<clip:58>This line will be too</clip> long

The fi rst column on the third line has been instructed to clip its contents to 58
pixels. Now, when displayed, we get something like the following.

Torque Rocks
GPGT Makes Learning Easier
This line ... long

This may seem a bit strange, but consider the case where you are printing data
via a scripted formatting system. In cases like this, you have no good way to
know in advance if the data will be too wide for your column, thus, you must
clip it to maintain formatting.

Tags

We touched on tags above, but for completeness, we’ll discuss them here.
Tags are nonprinting TorqueML elements that are used to mark a line for later
searching and locating. To add a tag, simply specify it as follows.

<tag:100>

Later, we can scroll to the line marked with this tag using the scrollToTag()
method. It’s that simple. The only rule to remember is that tags must be
unique integer values greater than zero.

12.8.3 GuiMLTextEditCtrl
This control is a TorqueML-formatted text entry. Nearly all of its functionality
derives from its parent GuiMLTextCtrl. Its purpose is to provide a “nicely for-
matted” text entry fi eld. The simplest way to use this control is to pre-specify
the font, margins, etc. in the text fi eld. Subsequent text typed into the con-
trol will now follow these formatting rules.

 Standard TGE GUI Controls Chapter 12

501

new GuiMLTextEditCtrl (TorqueMLFormattedTextEntry) {
 text = “<font:Tahoma Bold:22 >”;
};

Text that is typed into our example control (above) will now be formatted as
Tahoma Bold at 22 points.

Escaping

This control provides a special fi eld named escapeCommand where we can
specify a command to execute when the ESC key is pressed while this control
is in focus.

new GuiMLTextEditCtrl (TorqueMLFormattedTextEntry) {
 escapeCommand = “doit();”; // Run doit() when ESC is pressed
};

12.8.4 GuiTextCtrl
This is a label, plain and simple. It displays a fi xed (256 characters or fewer)
amount of text on one line. It can be updated dynamically from script if
needed, but beyond that it isn’t very fl exible.

new GuiTextCtrl(ourLabel) {
 maxLength = 12;
 text = “Torque Rocks!”;
};

When displayed, the above example will print “Torque Rocks”, without the
exclamation point because we have limited the text length to 12 characters.

Changing Labels

Subsequently, we can update the contents of the control using the setText()
method.

ourLabel. setText(“Torque is Cool”);

Again, our text will be clipped because the text we have specifi ed is too
long.

altCommand
Interestingly, this control provides an altCommand action. That is, if the fi eld
altCommand is specifi ed, the function specifi ed there will be called when this

Part III Game Elements

502

control is active and the ENTER key is pressed. This only applies to the chil-
dren of GuiTextCtrl, which we will talk about next.

12.8.5 GuiTextEditCtrl
This is a simple single-line text entry control. It is a child of GuiTextCtrl and
is thus limited to a maximum of 256 characters and can be limited with the
same mechanisms provided by its parent. This control can also recall prior
entries (a history) and allows them to be recalled via the up and down arrows
on the keyboard.

escapeCommand and altCommand
Remember that GuiTextCtrl allowed us to specify an altCommand? Well, as
the child of that control, GuiTextEditCtrl will evaluate the script specifi ed in
altCommand when the ENTER key is pressed. Additionally, we can specify a
script for the ESC key in the suitably named fi eld escapeCommand.

Passwords

If we are using this text entry as a password fi eld, we can tell TGE to print
asterisks instead of characters as the user types by setting the password fi eld
to true.

Numeric Only

Recall that we can set the profi le fi eld numbersOnly to true. Doing so causes
this control to only accept numeric inputs.

I’m Full!

Because this control has a limit on the amount of data it can accept, we need
a way to provide feedback to the user when they attempt to exceed that limit.
This can be done by specifying an audio profi le for the deniedSound fi eld.
Then, when the size limit is reached and an attempt is made to add more
characters, the deniedSound will play.

Your History?

This control has the nice feature of retaining a history of prior values. They
can be recalled using the up and down arrow keys. We, as the designers, can
specify a limit on the number of history lines by setting the fi eld historySize
to any integer value of zero or greater, zero being no history.

 Standard TGE GUI Controls Chapter 12

503

Tab Completion

In addition to the commands fi red by ENTER and ESC, we can specify that the
TAB key will fi re a callback. To do this, set the fi eld tabComplete to true
and provide a callback defi nition.

function GuiTextEditCtrl:: onTabComplete(%this) {
 // Do something
}

Validation

As if all the scripts that get called were not enough, we can specify one more.
If we specify a script or function name in the validate fi eld, it will be called
every time this control loses focus.

Moving the Cursor

Lastly, it will occasionally be useful to either know or set the position of the
cursor in the control. Thus, two functions are provided for this purpose.

%control. getCursorPos()

%control. setCursorPos(20); // Move cursor after character 20

12.8.6 GuiTextListCtrl
This control is a multiline list of selectable entries. Alone, it can be used to
display data, but in concert with other controls (buttons), it can be used as a
selection control. Furthermore, this can be made the child of a GuiScrollCtrl
to allow for long lists.

Configuring GuiTextListCtrl

This child of GuiTextCtrl adds three new fi elds.

• clipColumnText. If we are implementing columns, setting this fi eld to
true tells TGE to clip the contents of a column if it is too wide.

• columns. Again, if we are implementing columns, we must specify a list of
integer widths for each column using this multi-entry integer vector.

• fitParentWidth. When this fi eld is set to true, the GuiTextListCtrl will
expand to fi t the width of the parent and no further. This means that, if the
control is embedded in a GuiScrollCtrl, its horizontal bar will not be acti-
vated. In short, if our text is wider than the scroll area, it will be clipped. If
we don’t want our rows to be clipped, we need to set this fi eld to false.

Part III Game Elements

504

Now the GuiTextListCtrl will expand to the size of the widest line of text,
possibly activating a parent scroll control’s horizontal scroll bar.

Rows and Columns

If we so choose, we can cause text to be formatted into columns. Columns are
separated by the TAB character.
 So, if we have specifi ed a value “50 100 150” in the columns fi eld, we
could add some text to our control and expect that the fi rst column should
start at pixel offset 50, the second (TAB-separated) column should start at
pixel 100, and the third column should start at pixel 150.
 Don’t be confused by the slight variance between this behavior and that
of GuiMLTextCtrl. For GuiMLTextCtrl, the fi rst value specifi es the start location
of the second column. For this control, it specifi es the location of the fi rst
column.

Scripting GuiTextListCtrl

This control can be scripted in the following ways.

Adding Rows

Text can be added to the GuiTextListCtrl using the addRow() method.

%control. addRow(0 , “Some text”, 1);

This example specifi ed that we want the string “Some text” to be added at row
1 and given an ID of 0. The row argument is optional, and if not specifi ed,
new text is added to the end of the list. However, we always need to specify
an ID, but these IDs do not need to be unique and can be zero if you don’t
intend to use them for any purpose.

Changing and Removing Rows

It is possible to change the text in an entry at a later time, but to do so, we
must have specifi ed a unique ID for the row. Then we can do the following.

%control. setRowByID(0 , “Some new text”);

Here, we have changed the text in the row with ID 0 to “Some new text”. If
multiple rows have the same ID, the fi rst row with this ID will be the one
changed.
 We can also remove a row if we choose. In the case below, we will remove
a numbered row (2). Please remember that row numbering starts at 0.

%control. removeRow(2); // Removes row 2

 Standard TGE GUI Controls Chapter 12

505

 If we have specifi ed a unique ID for a row, we can use that ID to fi nd and
remove the row.

%control. removeRowByID(3);

Again, if multiple rows have the same ID, the fi rst row with this ID is the one
affected.

Clearing the List

We can clear a list at any time as follows.

%control. clear();

Getting Row Attributes

As most of the time we are accessing rows for selection purposes, there are
myriad methods for getting row attributes. We can get the fi rst row number
with a specifi ed ID.

%control. getRowNumByID(2); // Return number of row with ID 2

We can get the ID of a specifi c row.

%control. getRowID(4); // Get ID of row 4

We can get the text in a row.

%control. getRowText(15); // Get text in row 15

We can get the text in the fi rst row with a specifi c ID.

%control. getRowTextByID(12); // Get text of first row with ID 12

Finally, we can get the ID of the currently selected row.

%control. getSelectedID();

If no row is selected, the above call will return –1.

Row Count

We can count how many rows there are with the rowCount() method.

 echo(“This GUITextListCtrl has” SPC %control. rowCount() SPC “rows.”);

Part III Game Elements

506

Navigating

Thus far, we’ve worried about the contents of rows, but how do we navigate
our list? First, we can search for a row with a specifi c text value, like this.

%control. findTextIndex(“this text”);

The above code will return the fi rst row encountered that has the exact string
“this text”. If no match is found, the method returns –1.
 As the user is expected to select an entry from this list, we might also be
expected to be able to fi nd it. If a row is selected, we can retrieve its ID using
the getSelectedID() method. Sometimes, though, we would like to force
an entry to be selected. We can do this in two ways, either by ID or directly by
row number.

%control. setSelectedByID(43); // Select first row with ID 43

%control. setSelectedRow(14); // Select row 14

In either of these cases, if the ID or the row does not exist, no row will be
selected.

Scrolling

Sometimes when we are selecting a default row, that row may not be guaran-
teed to be in the visible set of rows (i.e., it is off screen in the scroll list). We
can force this line to show itself as follows.

%control. scrollVisible(10); // Make sure row 10 is visible

There is no guarantee on the exact location of the line on our screen, but it
will be visible.

(De-)Activating Rows

It will on occasion be necessary to (de-)activate a row, say an option is (not)
meaningful or available in the current context. Thus, we can toggle whether
a row is active.

%control. setRowActive(10 , false); // Deactivate row 10

We can check to see if a row is active, too.

if (%control. isRowActive(10)) {
 echo(“Row 10 is active!”);

 Standard TGE GUI Controls Chapter 12

507

} else {
 echo(“Row 10 is not active!”);
}

We would, of course, expect the above code to print: Row 10 is not
active!

Sorting

Last to mention but not least in importance is the fact that we can sort our
lists. This comes in handy for those of use who are too lazy to be sure entries
are in the right order or in cases where it is out of our hands. We can sort
alphabetically on a specifi c column or numerically (again, by column).

%control. sort(2 , true); // Increasing sort on column 2

%control.sortByNumerical(0 , false); // Decreasing numeric sort on column 0

12.9 Buttons
This section describes the controls used for buttons.

12.9.1 GuiButtonBaseCtrl
This is the base class to all other buttons and should not be used to make but-
tons. Its only job is to provide common fi elds and methods for the Gui Bitmap-
ButtonCtrl, GuiButtonCtrl, GuiCheckBoxCtrl, and GuiRadioCtrl controls.
 This control supports three styles of buttons (selected through the
buttonType fi eld).

• Push buttons (buttonType == PushButton). This is your standard but-
ton. It depresses when clicked and goes back to its normal state when the
mouse is moved or the mouse button is released.

• Toggle buttons (buttonType == ToggleButton). This is like a push button
except that it retains the current state when the mouse button is released.

• Radio buttons (buttonType == RadioButton). This is like a toggle but-
ton, but this button is also grouped with other buttons. Within the group,
only one button may be “on,” while all others are “off.” Selecting a new
button as the “on” button changes all other buttons in the group to “off.”

All buttons are allowed to have some text in them. This text is set in the
button’s text fi eld. Not all button types will display the text; GuiBitmap-
Button specifi cally does not, although, in the case of a GuiBitmapButton, if
the graphic is not available, a default button will be displayed instead and it
will display the text. This is a nice debug/design feature.

Active rows are
still rendered and

still selectable. The
ability to mark rows as
in/active is provided to
allow us to modify our
script behaviors based
on the settings of a
particular line.

Part III Game Elements

508

Grouping Radio Buttons

So, we can group radio buttons, but how do we do it? First, all radio buttons
that are going to be grouped need to be at the same level; that is, they should
have the same parent. Second, to group them, set every grouped radio button’s
groupNum fi eld to the same nonnegative value. It is perfectly acceptable for
different groups with different parents to have the same groupNum. However,
only radio buttons with the same parent and the same groupNum will com-
municate with each other and act like a radio-button group. All other radio
buttons will be treated separately.
 Note that, by default, all radio buttons in a group start off unselected, so
you may wish to preselect a button when the interface fi rst wakes up. See
below for how this can be done.

Getting and Setting Button Data

Now that we have our buttons, we need some ways to get and set their values.
It may sometimes be desirable to be able to check the text value of a button
or to change it. For these purposes, there are two methods.

$buttonText = %button. getText();

%button. setText(“New button text”);

As mentioned in “Grouping Radio Buttons” above, we may at some time wish
to select a button from script. To do this, simply use the perform Click()
method.

%button. perform Click(); // Send click event to this button

Button Scripts

Lastly, how do we program the button to do something when clicked? Recall
that all children of GuiControl provide a fi eld named command. In this case,
command should be a small script or a function call of some sort. This com-
mand will be called when the user clicks the button and releases the mouse
button, not before.

12.9.2 GuiBitmapButtonCtrl
This control is a skinnable button. Unlike other skinned controls, this control
takes a maximum of four normal (nonarray) graphics. Graphics fi les for this
control use the following naming convention.

prefix_tag.suffix

• prefix. Any name for the image fi le.

 Standard TGE GUI Controls Chapter 12

509

• _tag. One each of the following (based on button state).
• _n. Normal.
• _h. Highlighted.
• _d. Depressed.
• _i. Inactive.

• suffix. png, jpg, bmp, etc.

 For example, we could provide the four images in Figure 12.14.

gglogo_n.png
 (normal)

gglogo_h.png
(highligted)

gglogo_d.png
(depressed)

gglogo_i.png
(inactive)

To use these images, we set the bitmap fi eld to “path+prefi x”. In other words,
we specify the relative or absolute path and the prefi x of the fi lename. The
control is smart enough to load all four images based on this information.
Specifi cally, bitmap would be set to “./gglogo”.
 If an image fi le is not provided for one or more of the states highlighted,
depressed, or invalid, the normal image will be substituted. Sensibly, the nor-
mal image is always required.
 A nice shortcut for setting up these buttons is to set the extent to “0 0” in
the GUI inspector and then to press Apply. This will cause the GUI to expand
to the size of the image fi le. Nice, eh?
 Interestingly, the four different images need not be the same size; how-
ever, results may vary based on what choices you make here.
 We can change the bitmap at a later time using the setBitmap()
method.

myButton. setBitmap(“full path + prefix”);

12.9.3 GuiButtonCtrl
This is a standard button. It defaults to a buttonType of PushButton. All
functionality comes from its parent, GuiBaseButtonCtrl.

12.9.4 GuiCheckBoxCtrl
This skinnable control displays the perennial checkbox. By default, this con-
trol toggles between on and off.

Figure 12.14.

Using
GuiBitmapButtonCtrl.

Part III Game Elements

510

Skinning
• Defi ne a profi le with the following settings.

new GuiControlProfile (aProfileName) {
 // ...
 hasBitmapArray = true;
 bitmap = “path to bitmap array graphic”;
};

• Provide an image fi le with the structure in Table 12.11.

12.9.5 GuiRadioCtrl
This is a skinnable radio-button control. It is used when a group of buttons
must have only one button set at any one time.

Skinning
• Defi ne a profi le with the following settings.

new GuiControlProfile (aProfileName) {
 // ...
 hasBitmapArray = true;
 bitmap = “path to bitmap array graphic”;
};

• Provide an image fi le with the structure in Table 12.12.

In order for the radio control to behave properly, the buttons all need to have
the same parent and groupNum. In the following example, either “Radio 0” or
“Radio 1” can be selected, but not both.

Table 12.11.

 Sample image of checkboxes.

Sample Array
Image Row Column 0

0
Unchecked

Normal

1
Checked
Normal

2
Unchecked

Inactive

3
Checked
Inactive

Table 12.12.

 Sample image of radio buttons.

Sample Array
Image Row Column 0

0
Unchecked

Normal

1
Checked
Normal

2
Unchecked

Inactive

3
Checked
Inactive

 Standard TGE GUI Controls Chapter 12

511

new guiControl() {
 new GuiRadioCtrl() {
 profile = “GuiRadioProfile”;
 //..
 text = “Radio 0”;
 groupNum = “1”;
 buttonType = “RadioButton”;
 };
 new GuiRadioCtrl() {
 profile = “GuiRadioProfile”;
 //..
 text = “Radio 1”;
 groupNum = “1”;
 buttonType = “RadioButton”;
 };
};

12.10 Menus
This section describes the controls used for menus.

12.10.1 GuiMenuBar
This semi-skinnable control displays the familiar menu-bar metaphor. By
semi-skinnable, I mean that graphic icons can be embedded in menu items,
but the bar and the dropdowns themselves are not skinned.

Creating a GuiMenuBar

GuiMenuBar does not provide any new fi elds. Also, a GuiMenuBar is normally
placed at the top of its parent, but in theory it can be placed in any position.
A simple defi nition would look something like the following.

new GuiMenuBar(myMenuBar) {
 position = “0 0”;
 horizSizing = “width”;
 vertSizing = “bottom”;
 // ...
};

Menu Item Icon Arrays
• Defi ne a profi le with the following settings:

new GuiControlProfile (aProfileName) {
 // ...

Part III Game Elements

512

 hasBitmapArray = true;
 bitmap = “path to bitmap array graphic”;
};

• Provide an image fi le with the structure in Table 12.13.

Sample Array Image Row Column 0
(normal)

Column 1
(selected)

Column 2
(inactive)

0
Checked

Mark
Not-Checked

Mark
Inactive

Checked Mark

1
Optional
Icon 0

Optional
Icon 0

Optional
Icon 0

.

N
Optional
Icon N

Optional
Icon N

Optional
Icon N

In effect, a GuiMenuBar can have any number of icon rows, but the fi rst (0) row
is normally reserved for the “checked” icons. You can of course use any icon for
“checking” that you wish, and you can use those icons elsewhere, too.

GuiMenuBar Guidelines/Rules

The following guidelines/rules apply when building menus.

1. Place and size the initial menu bar using the GUI editor.

2. Open the .gui fi le (or use a separate .cs) and write code to populate the
menu.

3. Text values for menus and menu items should not start with a digit.

4. Menu items may optionally have accelerators.

5. Menus and menu items may be enabled and disabled from script.

6. Menu items may have separator lines (-) between them.

7. Text for menus and menu items can be dynamically changed from
scripts.

8. Menu items can be hidden.

9. Menu items can have checkbox behavior and radio behaviors, including
the display of a currently checked image in the menu.

10. Menus and menu items can be identifi ed or referred to either by their text
or ID.

11. Hierarchical (cascading) menus are not supported.

12. Menus do not support accelerators (only menu items support this).

Table 12.13.

 Sample image of menu
icons.

 Standard TGE GUI Controls Chapter 12

513

Menus and Menu Items

GuiMenuBar supports only one level of menu; i.e., it does not support cascad-
ing menus, just dropdowns. The parent items in the main bar are referred to
as menus, whereas the dropdowns are referred to as menu items. In order to
use the GuiMenuBar, it must have menu items to select. To add menu items,
we need menus. So, let’s learn how to add menus fi rst.

Adding, Removing, and Clearing Menus

The normal order of operations for adding menus to the GuiMenuBar is as
follows.

// 1 – Clear all menus from menu bar
myMenuBar. clearMenus();

// 2 – Add a new menu
myMenuBar. addMenu(“Test0” , 0); // Add menu ‘Test’ as menu ID 0

//.. repeat step 2

Later, we can clear the menu again if we wish, destroying all contents, or we
can remove just one menu.

myMenuBar. removeMenu(“Test0”); // Can use name or ID of menu

Adding, Removing, and Clearing Menu Items

Now that we have menus in place, we can add our menu items.

// Add new menu items to “Test 0” menu
myMenuBar.addMenuItem(“Test0” , “SubMenu0”, 0);
myMenuBar.addMenuItem(0 , “SubMenu1”, 1);
// ..
//.. repeat for other menus

In the above example, we have added two menu items to menu “Test0”. When
adding these menu items, we can refer to menu “Test0” by name or by its
numeric ID (0, in this case). Be aware that each menu item has a per-menu
unique ID, not a completely unique ID; that is, menu items in different menus
may have the same IDs, but menu items in the same menu may not.
 As with menus, we can both clear menu items (this removes all menu
items from a single menu), or we can remove a specifi c menu item.

myMenuBar. clearMenuItems(“Test0”); // Can use name or ID of menu

myMenuBar.removeMenuItem(“Test0” , “SubMenu0”); // Can use names or IDs

Part III Game Elements

514

Adding Bitmaps and Dividers

In addition to adding normal text to our menu items, we can add dividers.

// This adds a divider as item 2
myMenuBar.addMenuItem(“Test0” , “-”, 2);

We can also add bitmaps.

// Use row 4 bitmaps
myMenuBar. setMenuItemBitmap(“Test0”, “SubMenu1” , 4);

The above statement says to display one of the bitmaps found in row 4 of the
bitmap array specifi ed in this GuiMenuBar’s profi le. Rows start at 0 and have
three columns—normal, selected, and inactive. Accordingly, menu-item states
determine which bitmap in the row is used.
 Bitmaps can be changed or removed at any time. To remove a bitmap, sim-
ply pass an index of –1 as the row number to the above method as follows.

// Remove bitmaps
myMenuBar. setMenuItemBitmap(“Test0”, “SubMenu1” , -1);

Accelerators and Check Groups

Like buttons, menu items can be accelerated. Also, if we want to add a radio-
button list to a menu, we can. The addMenuItem() method comes with two
optional arguments. Thus, to add an accelerated menu item, we would do the
following.

// Add an accelerated menu item that will activate
// if CTRL + H are pressed
myMenuBar.addMenuItem(“Test0” , “Help”, 3, “CTRL H”);

If we wanted to make items part of a radio group, we could do this:

// Make a three choice radio group
myMenuBar.addMenuItem(“Test1” , “Option 0”, 0, “”, 0);
myMenuBar.addMenuItem(“Test1” , “Option 1”, 1, “”, 0);
myMenuBar.addMenuItem(“Test1” , “Option 2”, 2, “”, 0);

In the above example, we have three nonaccelerated items that are all part of
the same check group, which is zero. Check groups must be unique within
any menu but may be reused between different menus.
 It is acceptable to use a check group of –1. This means that the checked
item will behave like a checkbox instead of a radio control.

 Standard TGE GUI Controls Chapter 12

515

Hiding Menus and Menu Items

GuiMenuBar is designed with context sensitivity in mind. Thus, we may want
to hide menus or to deactivate them based on our current context. A menu
can be (de)activated as follows.

myMenuBar.setMenuEnable(“Test0”, false); // deactivate

This will make the menu unselectable. Also, the menu text will now display
in the profi le-specifi ed inactive color (fontColorNA). If it is not enough to
enable/disable the menu, we can also (un)hide it.

myMenuBar. setMenuVisible(“Test0”, false); // hide this menu

Similar features are provided for menu items.

// deactivate
myMenuBar. setMenuItemEnable(“Test0”, “SubMenu1” , false);

// hide SubMenu1
myMenuBar. setMenuItemVisible(“Test0”, “SubMenu1” , false);

Remember that, when a menu item is inactive, the inactive version of the
bitmap will be displayed if a bitmap is used for this item.

Modifying Menu and Menu-Item Text

Also in line with context sensitivity is the idea of changing menu and menu-
item text. This can be done as follows.

myMenuBar. setMenuText(“Test0”, “TestMenu0”);

myMenuBar. setMenuItemText(“TestMenu0”, “SubMenu0”, “TestSubMenu0”);

Script Check Selection

We can force a checkable item to be (un)checked from script by using the
setMenuItemChecked() method.

// check item 1
myMenuBar. setMenuItemChecked(“Test1”, “Choice 1”, true);

onMenuSelect()
When a menu is selected, the engine will fi rst attempt to execute the callback
onMenuSelect(). Then, it will open the dropdown menu containing the

Part III Game Elements

516

menu’s menu items. This ordering allows us to modify the menu’s contents
prior to its display. The onMenu Select() callback is documented in Appen-
dix A.4, “GUI Controls Quick Reference.”

onMenuItemSelect()
Lastly, we need a callback to tell us when an menu item has been selected.
It is the onMenuItem Select() callback that does this for us. This callback
is called after the menu item is selected and the mouse button is released. It,
too, is documented in Appendix A.4, “GUI Controls Quick Reference.”

12.10.2 GuiPopupMenuCtrl
This is a traditional pop-up menu. When a left mouse click is applied to this
control, a list will pop up. This list will either be above or below the control
depending on its placement, how many entries are in the list, and the near-
ness of the bottom of the screen (not parent). In the case that the list is taller
than the height of the screen or maxPopupHeight, it will scroll automatically.
Additionally, each text entry can be themed with a coloring scheme.

Creating a GuiPopupMenuCtrl

The GuiPopupMenuCtrl has only one new fi eld. Its purpose is to control the
height of the pop-up menu. With it, we tell the control the maximum number
of entries it may display.

new GuiMenuBar(myPopupMenu) {
 maxPopupHeight = 4; // Show only 4 entries at a time
 // ...
};

Scheming

No, this is not how we turn the pop-up menu into some kind of evil con-
trol with nefarious purposes. Instead, think in terms of font formatting. The
 GuiPopupMenuCtrl gives us the ability to create font-formatting schemes. We
can scheme individual entries. With a scheme, we can specify the font colors
for the standard states—enabled, selected, inactive.

myPopupMenu. addScheme(1 , “0 0 0”, “255 0 0”, “64 64 64”);

Here, we have create a numbered scheme (1), with an enabled color of black,
a selected color of red, and a disabled/inactive color of dark gray. Scheme 0 is
reserved for the values provided in the profi le.

 Standard TGE GUI Controls Chapter 12

517

Skinning

This control is partially skinnable and uses the same skin as the GuiScroll Ctrl.

Adding Entries

Adding entries to the pop-up menu is simplicity itself. Below, we add two
entries to our pop-up menu. The fi rst uses the default scheme, and the second
uses the scheme we created above.

myPopupMenu. add(“Entry 1”, 0 , 0); // Entry Text, ID, Scheme
myPopupMenu. add(“Entry 2”, 1 , 1); // Entry Text, ID, Scheme

Modifying Entries and Current Button Text

When a menu entry is selected, the text in that entry replaces whatever text
was previously displayed on the pull-down menu button. Subsequently, we
can modify this value using the setText() method.

myPopupMenu. setText(“New Text”); // Display “New Text” on button.

Additionally, once we’ve selected an entry, we can change the text of that
entry.

myPopupMenu. replaceText(“Yo”); // Change selected entry text to “Yo”

Navigating

We will on occasion wish to navigate our pull-down menu from script. TGE
provides the ability to fi nd an entry by text:

myPopupMenu. findText(“Yo”); // Return entry number of first “Yo”

text by ID:

// %entryText now contains “Entry 2”
%entryText = myPopupMenu. getTextByID(1);

ID of currently selected:

// Return ID of current selection (-1 for none)
myPopupMenu. getSelected();

and text of currently selected:

// Return text of current selection (“” for none)
myPopupMenu. getText();

Part III Game Elements

518

Lastly, we can set the current selection from script.

myPopupMenu.setSelection(1); // Select entry with ID 1

Starting Over

Although this control is not as confi gurable as a GuiMenuBar, it can be cleared
using the clear() method. This will remove all entries and all schemes,
allowing us to start from scratch.

Sorting

This control can be sorted alphabetically using the sort() method.

Callbacks

The order of calls may be a little tricky if you don’t understand it. There are
three entry points to the callback stream for this control.

1. If the user opens the menu and clicks on an entry, the order of events is as
follows.

• Menu closes on click (not button release).

• If valid selection, on Select() is called, else on Cancel() is called.

• If command fi eld was specifi ed, specifi ed script is executed.

2. If a script chooses the selection via the setSelection() method:

• if valid selection, on Select() is called, else

• on Cancel() is called followed by command script if it was specifi ed.

3. If a script forces the onAction() callback via the force OnAction()
method:

• if command fi eld was specifi ed, specifi ed script is executed.

myPopupMenu. force OnAction();

12.11 Sliders and Scales
This section describes the controls used for sliders and scales.

12.11.1 GuiFilterCtrl
This odd control allows us to specify a multi-knotted spline-like GUI that can
be used to create a vector of fl oating-point values (one per knot), where each
value is between 0.0 and 1.0. The control can be used both as an input device
and as a feedback device (we can set the position of each knot from script).

 Standard TGE GUI Controls Chapter 12

519

Creating a GuiFilterCtrl

When creating this control, we need to specify an initial number of knots (two
at a minimum). We can also specify the initial values for these knots.

new GuiFilterCtrl(myFilter) {
 controlPoints = 3;
 filter = “0.0 0.5 1.0”; // Initial positions left-to-right
 // ...
};

It is perfectly legal to change the number of control points a fi lter has at a later
date by simple assignment.

myFilter.controlPoints = 4;

Using for Input

This control is normally used for input. The user can click on a point and drag
it up or down. At any time, we can retrieve the current positions of the knots
from script as follows.

myFilter. getValue();

The knot values are returned in a vector of space-separated fl oating-point
values, where the fi rst entry is knot 0 (left), and the last is entry is knot N – 1
(right), where N is the total number of knots.

Using for Output

This control can be updated from script and used as a feedback mechanism.
The update is accomplished by passing a new vector of knot values to the
control.

myFilter. setValue(“ 0.25 0.33 0.66 1.0”);

If you intend to use a fi lter as an output-only control, you should fully cover
the “face” of the fi lter with another control to block mouse inputs.

Identity Crisis!

OK, the control doesn’t experience mental breakdowns, but we may want to
“straighten” it out on occasion. By calling the identity() method, we can
force the control to align its knots on a 45-degree line from 0.0 on the left to
1.0 on the right.

Part III Game Elements

520

12.11.2 GuiSliderCtrl
This is a numeric slider control. It allows a value between a lower and upper
range to be selected using a sliding interface.

Creating a GuiSliderCtrl

When creating this control, we need to specify an initial number of ticks, ini-
tial ranges, and the initial value.

new GuiSliderCtrl(mySlider) {
 // 5 inner ticks and two outer ticks == 7 total ticks
 ticks = 5;

 // Range: [-1.0, 1.0] inclusive
 range = “-1.0 1.0”;

 // Start at 0.0
 value = 0.0;
 // ...
};

Like the fi lter control, we can adjust these values later in script by simply
assigning them:

mySlider.ticks = 3;
mySlider.range = “0.0 1.0”;
mySlider.value = 0.25;

Getting Data

We can peek directly at the value, or we can call the method getValue().
The method is provided to enable consistent coding.

if(mySlider.value == mySlider. getValue()) {
 echo(“This is always true”);
}

altCommand
This control executes the script specifi ed with the command fi eld when the
slider is released, and if we specify a script in altCommand, that script is
executed every sim tick while this control is “active” and selected.

 Standard TGE GUI Controls Chapter 12

521

12.11.3 GuiTextEditSliderCtrl
This is another fl oating-point slider control, but it uses up-down buttons
instead of a left-right slider. This control is a bit more fl exible in terms of its
output, as it uses a standard-C printf-style formatting string.

Creating a GuiTextEditSliderCtrl

When creating this control, we need to specify an initial format, initial ranges,
and the step increment:

new GuiTextEditSliderCtrl(mySlider) {
 format = “%5.5f”; // Standard-C sprintf formatting is used
 range = “-5.0 20.0” // Range: [-5.0, 20.0] inclusive
 increment = 0.25; // In-/De-crement in steps of 0.25
 // ...
};

This may be sounding repetitive by now, but these values can be changed by
assignment at any time.

12.12 Miscellaneous Controls
This section describes various other controls you might wish to use.

12.12.1 GuiCursor
TGE allows us to defi ne our own cursors, using a simple image fi le and some
information defi ning the location of the cursor’s hot spot. In order to use a
custom cursor, tell the canvas to activate it using the Canvas. setCursor()
method.

new GuiCursor(HOWCrosshair) {
 hotSpot = “30 30”;
 bitmapName = “./cursorImages/HOWCrosshair”;
};

12.12.2 GuiDirectoryTreeCtrl and
 GuiDirectoryFileListCtrl
Torque comes with two controls that are designed to be used in tandem but
that can be used separately. I will be describing them together, but once we
are done discussing them, you should not fi nd it too challenging to separate
them.

Part III Game Elements

522

 The fi rst of these controls is GuiDirectoryTreeCtrl. It is used to display the
folder structure of a specifi ed directory and subdirectory in our game’s “mod
path” (directories that our game can see).
 The second control is GuiDirectoryFileListCtrl. It is used to display a list of
fi les. At fi rst, this might seem redundant to the GuiTextListCtrl. However, the
GuiDirectoryFileListCtrl is able to auto-populate once we specify a directory
to look in, making it nicer to work with for this case.

Creating These Controls

Both of these controls must be created as children of their own GuiScrollCtrl.
If we do not do this, the controls will not expand correctly and will generally
look bad. Beyond that, there isn’t much involved with setting up the default
version of each control.
 If you are customizing your controls, you are allowed to modify the skin
texture for the GuiDirectoryTreeCtrl. So, let’s talk about that next.

Skinning GuiDirectoryTreeCtrl
• Defi ne a profi le with the following settings.

new GuiControlProfile (aProfileName) {
 // ...
 hasBitmapArray = true;
 bitmap = “path to bitmap array graphic”;
};

• Provide an image fi le with the structure in Table 12.14. I have shown the
image map twice, both uncut (left) and cut (right). If you are modifying
this to match your own art or theme, be very careful to maintain the pixel
ratios of the original bitmap array.

• Provide an open-folder and a closed-folder icon. These icons must be
located as follows:

• Open-folder image must be named “/common/ui/folder.png”.

• Closed-folder image must be named “/common/ui/folder_closed.png”.

• Provide a leaf-node icon image named “/common/ui/default.png”.

Scripting GuiDirectoryTreeCtrl

This control is a child of the GuiTreeViewCtrl (see Section 12.12.15), so it
inherits all of that control’s functionality. Additionally, it adds two new meth-
ods and a callback (Table 12.15).

 Standard TGE GUI Controls Chapter 12

523

Table 12.14.

Skin texture for directory
tree.

Uncut Cut Meaning

Branch back.

Branch to file/folder.

Branch to folder.

Root branch close button (single-branch).

Root branch close button (multi-branch).

Final folder close button.

Middle branch close button.

Root branch open button (single-branch).

Root branch open button (multi-branch).

Bottom branch open button.

Middle branch open button.

Down branch connector.

No branches button (empty tree).

Part III Game Elements

524

Method Description

setSelectedPath(path) Set the path (which will be traversable) to path.

getSelectedPath() Return the path that is actually selected (if any).

Callback Description

onSelectPath(path) This is called when the users clicks on a directory
in the tree and passes the full path to that
directory.

Please be aware that, although the methods in Table 12.15 sound similar, one
is being used to initialize the tree and the other is returning a selection (if
any), which is not exactly the same.

Scripting GuiDirectoryFileListCtrl

This control is also a child of the GuiTextListCtrl, so it inherits all of that
control’s functionality. Additionally, it adds two new methods (Table 12.16).

Method Description

setPath(path [, filter]) Display all files in the specified path optionally
matching the specified filter.

getSelectedFile() Returns the currently selected file name, if any.

It is very important to remember that this control inherits the click behavior
of its parent and thus will execute any script that has been specifi ed in its
command fi eld when the user clicks on a valid line in the control.

Filtering

Filtering uses the same string-matching rules that we discussed earlier when
we learned about Torque’s string-manipulation functions in Chapter 10,
“Gameplay Scripting.” The important thing to remember is that fi lenames
have the path stripped off before the comparison happens, so we can use the
fi lter to exclude fl at fi le names only. For example, to display all GUI fi les, our
fi lter would be “*.gui”.

12.12.3 GuiInputCtrl
This control is used to capture all input events. Input events in this case are
such things as mouse clicks and/or keystrokes. For every input event, a single
callback is fi red.

Table 12.15.

Methods and callbacks for
GuiDirectoryTreeCtrl.

Table 12.16.

Method for
GuiDirectoryFileListCtrl.

 Standard TGE GUI Controls Chapter 12

525

Getting It All

Understand that, if you use this control any place in the current interface, it
will capture all inputs, period. This control can be a rather nasty one, but it
serves its purpose, and we can remove it when we don’t need it any longer.

Creating

To create one of these, we could use this snippet:

new GuiInputCtrl(gsTestInputCtrl) {
 profile = “GuiInputCtrlProfile”;
};

All Your Base Are Belong to Us

OK, I don’t really mean all your base(s); I mean all your inputs. Once created,
this control sinks all device inputs. For every input, the following callback is
called.

 onInputEvent(%this, %deviceString, %actionString, %makeOrBreak)

This callback takes the following arguments.

• %deviceString. A string specifying the device name: keyboard, mouse0, etc.

• %actionString. A string specifying the action: a, b, tab, button0, etc.

• %makeOrBreak. Only applies to release of special device buttons and mod-
ifi er keys, false for all others.

Because it would be sheer madness to try to cover all the inputs and what they
mean, a GuiInputCtrl sampler has been provided to allow you to see what the
inputs are. You will fi nd it in the GUI Sampler part of the kit. To see it, run the
GPGT Lesson Kit and select GUIs Sampler � GuiInputCtrl.

12.12.4 GuiMouseEventCtrl
This control is used to capture a large variety of mouse inputs. The design-
ers of TGE decided to limit each control to only capture and react to inputs
that were normally pertinent to that control. However, they knew that special
cases would arise in which the user might want to capture a large variety of
inputs. Thus, the GuiMouseEventCtrl was born. It captures all of the follow-
ing events.

Left Mouse Button Press Left Mouse Release Left Mouse Drag
Right Mouse Button Press Right Mouse Release Right Mouse Drag
Mouse Move Mouse Enter Mouse Exit

Part III Game Elements

526

Additionally, it handles the following modifi ers.

Left Shift Right Shift Either Shift
Left Control Right Control Either Control
Left Alt Right Alt Either Alt

Please note that a drag is mouse motion with a button pressed, entering
means to enter the bounds of the control, and exiting means to leave the
bounds of the control. Mouse moving is like dragging but without the but-
ton pressed.

Configuring

There isn’t much involved in setting up one of these controls. Simply place it
as a child of any other control and be sure it covers the hot area where you
want events to be recorded. You can even make a GuiMouseEventCtrl a child
of another GuiMouseEventCtrl if you need to.

GuiMouseEventCtrl Callbacks

To acquire information from this control, write a set of general callbacks
scoped to GuiMouseEventCtrl or specifi c ones scoped to the name of your
control with the following form.

function myMouseEventCtrl::EVENT_NAME(%theControl ,
 %modifiers ,
 %point ,
 %clicks) {
 // ...
}

This callback will respond to an event EVENT_NAME and will receive

• any modifi ers (SHIFT, CTRL, ALT keys that are pressed at time of the
event),

• the location of the mouse relative to the <0, 0> in the canvas (not the
GuiMouseEventCtrl control), and

• the number of clicks that were recorded within the last half-second (0—no
clicks, 1—single click, 2—double click, etc.).

EVENT_NAME

The possibilities for EVENT_NAME are shown in Table 12.15.

 Standard TGE GUI Controls Chapter 12

527

EVENT_NAME Captures

onMouseDown Left mouse button pressed.

onMouseUp Left mouse button released.

onRightMouseDown Right mouse button pressed.

onRightMouseUp Right mouse button released.

onMouseMove Mouse moved while no button is pressed.

onMouseDrag Mouse moved while left mouse button is pressed.

onRightMouseDragged Mouse moved while right mouse button is pressed.

onMouseEnter Mouse entered control region.

onMouseLeave Mouse exited control region.

%modifi ers

The %modifiers argument is a bitmask that can be logically compared
against the values in these global variables:

$EventModifier::LSHIFT $EventModifier::RSHIFT
$EventModifier::SHIFT

Table 12.15

GuiMouseEventCtrl
callbacks.

$EventModifier::LCTRL $EventModifier::RCTRL $EventModifier::CTRL
$EventModifier::LALT $EventModifier::RALT $EventModifier::ALT

Note that the unadorned version of SHIFT, CTRL, and ALT will compare
true if any key of this variety is pressed.
 The code to check for a specifi c modifi er or set of combined modifi ers
looks like the following.

if(%modifier & ($EventModifier::LSHIFT | $EventModifier::ALT) ==
 ($EventModifier::LSHIFT | $EventModifier::ALT)) {
 echo(“The LEFT shift key is pressed and one of
 the ALT keys is pressed.”);
}

%point

The fi rst time you use this control, you may be disappointed to fi nd that the
click point that is passed into the callback is always relative to <0,0> in the
canvas. Don’t worry, though. If you need to calculate the position of the click
relative to the upper-left corner of the control that captured it, simply use a
script like the following.

function myMouseEventCtrl::onMouseDown(%theControl , %modifiers ,
 %point , %clicks) {

Part III Game Elements

528

 %tmpControl = %theControl. getGroup();
 %Offset = %point;
 while(isObject(%tmpControl))
 {
 %Offset = vectorSub(%Offset , %tmpControl.position);
 %tmpControl = %tmpControl. getGroup();
 }
 // ...
}

This code iterates upward through each parent until we get to the root con-
trol, and along each iteration it subtracts the position of that control relative
to its parent from the original click point. By the end of this loop, the variable
%Offset contains the position of the click relative to the <0, 0> coordinates
of the control myMouseEventCtrl.

%clicks

The last argument is the click count. When we click in this control, the control
will increment an internal click counter to 1. Then, it will add any subsequent
clicks to this counter for the next half-second. After that time, the counter
goes back to 0, then 1, and accumulates for another period, ad infi nitum. The
purpose of this mechanism is to allow us to differentiate clicking styles—i.e.,
single click, double click, triple click, etc.

12.12.5 GuiTreeViewCtrl
This control is used to display a left-aligned tree. We are accustomed to seeing
these used for displaying directories and data where there is some hierarchy
and/or inheritance associated with the data.
 Although this control can be used to make simple and elaborate trees
(Figure 12.15), I will only be discussing how to make simple trees. Why?
Because the elaborate tree mechanism was added to enable the creation of
a more detailed Inspector tool. Therefore, the only icons available are those
used by the Inspector.
 I’ll list the syntax for the elaborate tree, but you will have to dig into the
engine if you want to try to use it for your projects. By that time, you would
likely be expanding the icon list anyway, so further discussions between us on
this topic would be a wash.

Creating a GuiTreeViewCtrl

To create a tree view, simply create a GuiScrollCtrl and then add an instance of
GuiTreeViewCtrl as a child. The tree view relies on the scroll control to handle
resizing and, as you might imagine, scrolling.

Figure 12.15.

Left-aligned tree views.

a. Simple tree.

b. Elaborate tree
(inspector-specific).

 Standard TGE GUI Controls Chapter 12

529

Configuring GuiTreeViewCtrl

Depending on how we want to use this tree, there is either very little to do or
a great deal to do. We will start off talking about the basics and then move on
to the harder stuff.
 To set up the tree, we must specify a few fi elds. Those fi elds have the
functions and effects shown in Table 12.16.

Field Function/Effect

tabSize This is the pixel size used to indent subtree items.

textOffset This is the pixel offset between the end of the tree image
and the text describing a level in the tree.

fullRowSelect If this value is true, a row may be selected anywhere
parallel to the item; otherwise, the user will be required to
click directly on the text or icon to select it.

itemHeight Not adjustable, but specifies the height of a line and is
based on the tallest item in the line.

destroyTreeOnSleep If set to true, the tree is reset every time it goes to sleep.

mouseDragging You may ignore this field.

multipleSelections Allows the user to highlight multiple entries in the tree.

Skins and Icons for GuiTreeViewCtrl

This control uses the same bitmap array, folder open/closed icons, and leaf
node icon as are used for the GuiDirectoryTreeCtrl (Section 12.12.2). Please
refer to the skinning directions for that control to learn more about the basic
skin and icons used here.

Elaborate Icons

This control may also display a limited set of predefi ned icons. Please note
again that the purpose of this feature is to support the new Inspector, which
has nice icons depicting various object types.
 If you want to start digging and modifying this feature to use in your own
creations, one of the fi rst things you will have to do is build a library of icons.
 A GuiTreeViewCtrl will try to build an icon library every time it wakes
up by calling the callback onDefineIcons(). If you want to include icons
in your tree, you should create the icons and store them in a fi xed location.
Then, use a callback to build the control’s icons library as follows.

function GuiTreeeViewCtrl::onDefineIcons(%theControl) {
 %icons = “path/icon_file_name0” @ “:” @

Table 12.16.

Fields for setting up a tree
view.

Part III Game Elements

530

 “path/icon_file_name1” @ “:” @
 “path/icon_file_name2” @ “:” @
 “path/icon_file_name3” @ “:” ;
 %theControl. buildIconTable(%icons);
}

Adding Items to a Tree

We may populate a tree in one of two ways. We can either manually add new
items (lines of text) to a tree, or we can use the tree to open a SimSet. Let’s
discuss the manual method fi rst.
 To manually add an item to an existing tree, we simply write some code
like the following

%myTree.insertItem(0 , “Item Text”);

This statement will insert a new item into the tree and attach it to root (entry
0). This item will display the string “Item Text” in the tree.

Parent Indexes

When manually adding elements to a tree, each item added to the tree is
assigned an index. Later, when we want to add a new item into the tree, we
must remember this index and add our new element to the index. Please note
that indexes are never reused for any individual tree.
 For example, the following script will produce a tree like Figure 12.16.

// Creates index 1 attached to root (0)
%myTree.insertItem(0 , “entry 1”);

// Creates index 2 attached to 1
%myTree.insertItem(1 , “entry 2”);

// Creates index 3 attached to root (0)
%myTree.insertItem(0 , “entry 3”);

// Creates index 4 attached to 3
%myTree.insertItem(3 , “entry 4”);

// Creates index 5 attached to 2
%myTree.insertItem(2 , “entry 5”);

 You should note that the insertItem() method returns the index for the
element it just inserted, so you don’t have to count or anything heinous like
that. Instead, just save the return values if you need them at all.

Figure 12.16.

Newly inserted entries.

 Standard TGE GUI Controls Chapter 12

531

Assigning a Value

It is possible to give each entry a value in addition to text. This value can later
be retrieved and can be any valid string. To create an item with a value, do
the following.

%myTree.insertItem(0 , “entry 10”, “oops”);

If we called this on the tree we just created, the tree would have a new folder
with the text “entry 10”, and it would have a value of “oops” stored at that
entry (not visible). (See Figure 12.17.)
 If we recall the above discussion of “Parent Indexes,” it will also be clear
that the ID of this item is 6, as in the sixth item we have added.

Inserting Icons

In order to use icons in your image (instead of the default folders), use the
insertItem() method.

%myTree.insertItem(0 , “some text”, “Sun”);

This code will produce a tree entry with the “Sun” icon. The full syntax of
insertItem() is as follows.

insertItem(parent_id , text [, value , iconString ,
 normalImage , expandedImage]);

Opening a SimSet

The second way to populate a tree is to have it open a SimSet. To do so, simply
use the method described in Table 12.17.

Method Description

 open(setID [, editable]) This will populate a tree with the contents of
a SimSet identified by setID. This set will be
traversed, and all sets within will be traversed,
until all branches have been followed to a
leaf. Optionally, we enable or lock the SimSet
by passing true or false in the position of
editable. If the set is locked, we won’t be
able to use tree methods to modify it.

A sample open looks like the following.

// Open a SimSet and lock it (not modifiable)
%myTree. open(%mySimSet , false);

Figure 12.17.

Entry inserted at end of list.

Table 12.17.

Opening a SimSet.

Part III Game Elements

532

Clearing Trees

We can empty a tree from script as follows.

%myTree. clear();

This will empty the tree of items, but it will not modify any SimSet that may
have been loaded.

Counting Items

It is possible to count the number of items currently in a tree as follows.

echo (“myTree has ”, %myTree.countItems() , “ items in it.”);

For our current tree, the above code would produce the following.

myTree has 6 items in it.

Finding Items

Once we have a tree, we can search for items in the tree by name as follows.

%item = %myTree. findItemByName(“entry 10”); // Returns 6

If this were called on the tree we created above, the variable %item would
contain the value 6.

Querying Items Directly

Once we have an item ID, we can get information about the item’s text and
value as follows.

%text = %myTree. getItemText(%item); // %item contains 6
%value = %myTree. getItemValue(%item); // %item contains 6
 echo(“Tree entry: ”, %item , “ has text label: ” ,
 %text , “, value: ”, %value);

Assuming we are writing these sample snippets in order, the above code will
produce the following.

Tree entry: 6 has text label: entry 10, value: oops

Editing Items

It is possible to manipulate the contents of an item after we add it like this,
resulting in the new tree shown in Figure 12.18.

 Standard TGE GUI Controls Chapter 12

533

%myTree.editItem(%item , “entry 6” , “fixed”);

Now, if we reran our prior query code, we would get the following.

Tree entry: 6 has text label: entry 6, value: fixed

Don’t forget that, if we opened a SimSet in the locked state, this will not
work—i.e., no changes will be allowed.

(De)selecting items

The user may select and deselect an item from the tree using a mouse, key-
board, or other device, but sometimes we will want to modify selection states
from script.
 To select an item in our list we do the following.

%myTree. addSelection(%item); // “entry 6” now selected

Or we can set the selection/deselection status of an item as follows.

%myTree.selectItem(%item , false); // “entry 6” is deselected

It should be noted that addSelection() does not return a value, but
selectItem() will return true or false to indicate success or failure (bad
item or unable to modify).
 On the fl ip side, we can deselect the previously selected item (as we just
did with select Item()).

%myTree. clearSelection();

Or we can target a deselect.

// De-select “entry 6” (already not selected)
%myTree.re moveSelection(%item);

Neither of these two methods returns a value.

Querying Selected Items

Once an item is selected, it is possible to query that item as follows.

%item = %myTree.getSelectedItem(); // Will be 0

Figure 12.18.

Editing an entry (item).

Part III Game Elements

534

It should be noted that, in the case of multiple selections, this will only ever
return the ID of the last selected item, and if no items are selected, it will
return 0.

Expanding Items

Another manipulation that we might want to do from script is the expansion
and collapse of the tree or a branch of the tree. This can be achieved as fol-
lows, producing the results shown in Figure 12.19.

%myTree.expandItem(1 , false); // Collapses branch 1
%myTree.expandItem(3 , false); // Collapses branch 3
%myTree.expandItem(4 , true); // Expands 3 and then 4

 . . . collapses expands . . .

Removing Items

So, what about removing items? Easy. We can remove an item using its index.

%myTree.removeItem(6); // Remove item that we labelled “entry 6”

Or we can remove the current selection.

%myTree. addSelection(1);
%myTree. deleteSelection();

In either of these cases, if we had instead opened a SimSet, and if we had
locked it, no deletions would be allowed.

String Operations

There is a cool feature that is often used to create paths and other constructs:

%myString = %myTree.getTextRoot(4 , “/”);
echo(%myString);

This code will produce the following output.

Figure 12.19.

Collapsing and expanding
folders.

 Standard TGE GUI Controls Chapter 12

535

/entry 3/entry 4

Please note, the second argument in the above call to getTextRoot() is an
optional delimiter and can be a string.

Tree Relationships

To round out the GuiTreeViewCtrl’s set of methods is a short list of meth-
ods used for getting item IDs based on an item’s position in the tree
(Table 12.18).

Method Description

getChild(item) Returns the ID of the first child of this item, or 0 if
item has no children.

getParent(item) Returns the ID of the parent of this item, or 0 if item
is root.

getNextSibling(item) Returns the ID of next entry in same branch as item
(below item), or 0 if no such entry exists.

getPrevSibling(item) Returns the ID of prior entry in same branch as item
(above item), or 0 if no such entry exists.

GuiTreeViewCtrl Callbacks

No control would be complete without adding a few callbacks. GuiTreeViewCtrl
is no exception and adds the callbacks shown in Table 12.19.

Callback Called when...

on AddSelection(ID) . . . a new item is added to a SimSet tree.

on DeleteSelection() . . . an item is deleted.

 onInspect(id) Same as on Select() except only called on leaf
nodes.

onRe moveSelection(item) . . . item is deselected.

onRightMouseDown(x , y ,
 id)

. . . mouse is clicked over a SimSet object item.
Passes in <x,y> position of click and object ID.

 onRightMouseDown(x , y) Same as above for non-SimSet trees.

on Select(id) ... an item is selected in the tree. id will contain
the node’s text for a normal list, the field name for
SimSets when the selection is not an object, and
the ID of an object if the selection is an object.

onUn select(id) Reverse of on Select().

Table 12.18.

Getting item IDs.

Table 12.19.

Callbacks for
GuiTreeViewCtrl.

Part III Game Elements

536

12.13 Summary
In this chapter, we covered a massive load of TGE standard GUI topics. This
chapter was structured to teach about GUIs in general and then to lead you
through the various techniques for using the 35 most commonly needed and
used controls (the canvas is a control, too). It is also structured to act as a
reference. In addition, a complete appendix (Appendix A.4, “GUI Controls
Quick Reference”) is supplied that contains almost all of the information in
this chapter (in a more succinct form) and completely documents all fi elds,
methods, and callbacks (some of which are not mentioned at all in this
chapter).
 In the beginning, we discussed the fundamental concept of the canvas.
We learned about the two categories of controls it contains: dialogs and every-
thing else. We then learned the difference between the canvas’s current con-
tent and the pushing and popping of dialogs which fl oat above that content.
We also learned that all interfaces are constructed by stacking controls on top
of controls, and that stacked controls are the children of the parents they stack
upon.
 Our next topic was input capture. We explored the concept of mouse
inputs to GUI layers using the falling marble analogy. Then we examined the
fi rst-responder concept, which is used in older versions of the engine (prior
to version 1.4) to help sort out input rules between controls on the same level
in a layer. Next, we looked at focus and came to understand that focus can
be attained by clicking in a control or by tabbing to it from another control.
Lastly, we looked at modality (also not used after version 1.3), which is used
to force layers to take ownership, or conversely to allow it to be taken away.
 Done with general topics (for now), we jumped into a discussion of the
GUI profi le. We came to understand that these are templates containing infor-
mation about bitmaps, borders, fi ll details, fonts, text formatting, and input
behavior, which are specifi ed and then used by subsequent controls to defi ne
basic behavior and presentation.
 Finally, we got to our fi rst placeable control, the root class to all controls,
GuiControl. We spent time examining its use of profi les. Then we looked at
how to specify and modify extents, position, and sizing. Next we learned that
any GuiControl or child can be visible or not visible. After that, we talked
about the use of accelerators to tie controls to keyboard and other events.
Then we examined the serious topic of command and altCommand, two fi elds
that can contain scripts that will be executed at specifi c times based on the
type of control they are specifi ed for. We also examined the $thiscontrol
variable, which is set prior to any and all callback/command/altCommand
calls. Lastly, we talked about this control being awake, asleep, active, and
inactive, as well as how this affects its and its children’s behaviors.

 Standard TGE GUI Controls Chapter 12

537

 Before continuing in our discussion on individual controls, we swung
back and talked about a general topic: skinning. We learned that many con-
trols can be skinned. This led to a discussion of bitmap arrays, the rules for
organizing them, and a walk-through creating one.
 For the remainder of the chapter, we blazed our way through control after
control in the following categories.

• Container controls. Frames, scrolls, stacks, panes, tab books, and windows.

• Backgrounds and borders. Bitmap borders, bitmaps versus chunked bit-
maps, and the fade-in bitmaps.

• Text controls. Message vectors, Torque Markup Language text displayers
and edit areas, labels, single-line text edits, and the very useful text list
control.

• Buttons. Skinned buttons, plain push buttons, and specialized skinned
check boxes and radio buttons.

• Menus. Menu bars and pop-up menus.

• Sliders and scales. The specialized spline (fi lter) control, a horizontal
slider, and a text slider.

• The grab bag (miscellaneous controls). Cursors, directory viewers, an
input capturing control, a mouse capture control, and the generic tree
viewer.

 If you have examined the samples that come in the GPGT Lesson Kit GUIs
Sampler (start the GPGT Lesson Kit and click the “GUIs Sampler” button to
see these), you will be well on your way to making use of each of these con-
trols to make your own interfaces. To help accelerate this learning, we will
examine the creation of several interfaces as the topic of our next chapter.

539

Game Interfaces
Chapter 13

13.1 Game Interfaces
As we established earlier, all games have some minimum set of interfaces.
In this chapter, we will design two sets of interfaces that we can later use
when we make games. The purpose of these interfaces is twofold. First, they
are learning aids. We will learn how to make simple interfaces, combining
several basic GUI controls. Second, they can be used over and over for demo
games and prototypes. In the future, we can skip right to working on game
content without needing to deal with the mundane items like menus, splash
screens, etc.
 The interfaces we will be designing in this chapter are as follows.

• Splash screens. Splash screens are those GUIs that get displayed when
the game starts or during interludes. Games may have multiple splash
screens, each providing some information such as game title (screen),
company logos, copyright information, etc. For this sample, there will be
just one splash screen. It will be used to display a hypothetical company
logo.

• Menus. As with splash screens, games may have many menus. We’ll keep
our lives simple and provide a single (main) menu.

• Credits. Because we don’t want to forget to thank those who have helped
us to create our wonderful game, we’ll need a credits screen. This is like
a splash screen except that it will list our credits information and is usu-
ally not displayed until the end of the game, or on demand from the main
menu. We’ll choose the latter.

At the end of this chapter, we will have made two versions of each of the
above interfaces: one set in a “Toon” theme, which we will make together,
and the second set in a “Tech” theme, which you should make to practice.
 After we have created these basic GUIs, we will work together and make
some common HUD interfaces, including the following.

• Counters. We will make some generic counters that can be used to track
any numeric information in the game.

• Vertical feedback bars. We will make some generic vertical feedback bars
that graphically display the values in the range 0.0 to 1.0.

• Strip compass. Although a good compass should be made in C++, we’ll
make one using just standard GUI controls and scripts to prove that you
can in fact prototype just about anything in TorqueScript.

All of the
interfaces we

will discuss in this
chapter are provided
in a completed and
working state in the
GPGT Lesson Kit. You
may view any of them
at any time by running
the GPGT Lesson Kit,
clicking the “Interface
Sampler” button,
and then clicking the
button that has the
name of the interface
you wish to examine.
Additionally, you may
add new interfaces to
this kit. Simply follow
the direction supplied
in Appendix B, “GPGT
Lesson Kit Docs.”

Part III Game Elements

540

 At any time, you may look at the fi nished product of all interfaces by running
the GPGT Lesson Kit and clicking on “Game Interfaces” from the main menu.
 Please note that it is best to create the following examples in order because
I will only give detailed explanations the fi rst time we see something new.
Subsequently, I may gloss over the same topic. Therefore, unless you have
seen the prior explanations, some discussions may be confusing.

13.1.1 Before We Start
Let’s discuss our design method. You can make new interfaces in two basic
ways.

1. You can use the GUI editor and create a new interface. If you’re comfort-
able with this method, please feel free to use it. If you don’t know how to
do this, please go back and review Section 3.14, “The GUI Editor.”

2. I prefer to make my interfaces from a blank template. That is, I’ll take an
interface I already have, copy the .gui fi le to a new directory, cut out the
fat, and then make sure the new fi le gets loaded by the client. Once I’ve
done this, I can just pick my new interface out of the named list of current
interfaces and edit it.

 In the following pages, we will be making these interfaces and HUDs
using the second method. Unless otherwise specifi ed, the starting .gui fi les
will all contain the following code.

//--- OBJECT WRITE BEGIN ---
new GuiControl(useAUniqueNameHere) {
 profile = “GuiDefaultProfile”;
 horizSizing = “width”;
 vertSizing = “height”;
 position = “0 0”;
 extent = “800 600”;
 minExtent = “8 2”;
 visible = “1”;
};
//--- OBJECT WRITE END ---

For each GUI to be created, take the above code and do the following:

1. Create a directory somewhere under “~\client\ui\”. For example, in the
GPGT Lesson Kit, the Splash (Toon) interface is located under the directory
“~\client\ui\200_GameGUIs\ggsSplashToon\”.

2. Copy the above code into an appropriately named fi le. Splash (Toon) is in
the fi le “ggsSplashToon.gui”.

 Game Interfaces Chapter 13

541

3. Make sure the fi le is executed from the initClient() function (usually)
located in “~\client\init.cs”.

Now, when we (re)start the GPGT Lesson Kit and start the GUI editor, we’ll
fi nd our newly loaded interface in the existing interfaces list. If you don’t fi nd
it, check the log for errors. I always mistype something; maybe you did, too.

13.2 Toon-Themed Interfaces
Our fi rst set of GUIs will be designed using a sort of carefree cartoon theme.
Yes, I know, the art in Figure 13.1 isn’t that much like a cartoon, but please
bear with me. The thing to concentrate on is consistency in our theme.

Splash Screen Main Menu Credits Screen

13.2.1 Splash (Toon)
Our fi rst interface is very simple. We can make a splash screen with just a
few GUI controls. For this example, we just want our made-up company logo
to be splashed for a few seconds, and then we want to automatically pro-
ceed to the main menu. The perfect GUI control for this kind of screen is a
GuiFadeInBitmap Ctrl. Let’s look at how to create this interface.

The Splash Interface
• Make a graphics fi le in your favor-

ite editor that looks something like
Figure 13.2. The image should be
the highest resolution you expect
the user to play at, or perhaps one
scale larger. Ours is a 1024 x 768
24-bit color image, saved as a JPEG
fi le. Copy your fi le, or the one from
the GPGT Lesson Kit, to the direc-
tory where your .gui fi le is.

• Start the GPGT Lesson Kit.

Figure 13.2.

Splash screen.

Figure 13.1.

Cartoon-themed screens.

Part III Game Elements

542

• Now, using the GUI editor, open the splash screen interface and add a
 GuiFadeinBitmapCtrl control with the following parameters.

new GuiFadeInBitmapCtrl(ggsSplashToonFadeinBitmap) {
 profile = “GuiDefaultProfile”;
 horizSizing = “width”;
 vertSizing = “height”;
 position = “0 0”;
 extent = “800 600”;
 minExtent = “8 2”;
 visible = “1”;
 bitmap = “./splash”;
 wrap = “0”;
 fadeinTime = “1000”;
 waitTime = “2000”;
 fadeoutTime = “1000”;
 done = “0”;
};

 You’ll want to use your own name for the GUI, but it does need a name
because we’re going to write some code for it. The important things to note
are the following.
• horizSizing and vertSizing use “width” and “height”, respec-

tively. This GUI will always resize itself to the extents of its parent.
• wrap is set to false.
• The control will fade in over one second, wait for two seconds, and fade

out over one second.

The Splash Interface Code

Now, we have to make some code to go with this interface. Why? For a few
reasons.

1. We need to set the done parameter to false every time this interface is
added, just to be safe. Otherwise, we could accidentally save the interface
and it would later skip right to done.

2. Once the GUI is done fading out, it won’t actually do anything else automati-
cally. We need to check for the done state and move on to the main menu.

3. We want to allow the user to skip this screen by clicking the mouse, and
this requires a little code.

Setting done to false is easy, but writing code to patrol for done—although
simple—is not a one-liner. In these GUIs, we’ll be using the event-manager code
that is provided with the GPGT Lesson Kit, and separately on the CD (“Base\
Scripts\EGSystems”). If you’re not familiar with it, the event manager is a set of

 Game Interfaces Chapter 13

543

scriptObject classes that manage various kinds of events and sequences. Appen-
dix A.6, “Scripted Systems Quick Reference,” outlines how this code works. In
case this is your fi rst time seeing it, I’ll explain what the code does below.

on Add() and on Remove()

It will be the job of on Add() to set done to false and to create our task
manager. on Remove() will be responsible for destroying the task manager
when the GUI is removed.

function ggsSplashToonFadeinBitmap::on Add(%this) {
 %this.done = false;

 %this.taskMgr = newTaskManager();
 %this.taskMgr.setTar get(%this);

 %this.taskMgr.setDefaultTaskDelay(100);
 // add a repeating task to the task manager and start it running
 %this.taskMgr.addTask(“checkIsDone();”, -1);
}

This on Add() console method does the following.

• It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

• It sets the done fi eld to false.

• It creates a new task manager using the newTaskManager() helper
function.
• Because we want this task manager to call all functions it executes in

the scope of this GUI (“ggsSplashToonFadeinBitmap”), we'll tell the task
manager to target %this (the handle of our GUI).

• Also, this task manager will loop continuously, and we want it to use a
default value of 100 milliseconds for the loop.

• Lastly, it adds one task (checkIsDone();) and tells the task manager
that this task is always rescheduled (i.e., it repeats forever).

function ggsSplashToonFadeinBitmap::on Remove(%this) {
 %this.taskMgr.stopSelfExecution();
 %this.taskMgr.clearTasks();
 %this.taskMgr. delete();
}

This on Remove() console method does the following.

• It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

• It assumes the task manager is running and stops it.

Part III Game Elements

544

• It deletes all outstanding tasks in the task manager.

• It tells the task manager to delete itself (the prior two steps were included
to show that they exist, but be aware that deleting a task manager will stop
execution of outstanding tasks, and clear the task list automatically).

 onWake() and onSleep()

Now that we’re ready to go, the onWake() method will be responsible for
starting the task manager polling, and onSleep() will be responsible for
stopping it.

function ggsSplashToonFadeinBitmap:: onWake(%this) {
 // Need to clear this as it only gets set to true
 // by the control
 %this.done = false;

 %this.taskMgr.selfExecuteTasks(true);
}

This onWake() console method does the following.

• It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

• It sets done to false again. This is a bit of overkill, but it is the safest
way to deal with this. Now, the GUI is guaranteed to replay every time it
wakes.

• It tells the task manager to start polling (self-executing). The argument
true is telling the task manager to ignore any times specifi ed for tasks and
to instead use the task manager's default value, which we earlier set to 100
milliseconds.

function ggsSplashToonFadeinBitmap:: onSleep(%this) {
 %this.taskMgr.stopSelfExecution();
}

This onSleep() console method does the following.

• It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

• It tells the task manager to stop.

 click()

If you recall, we want the user to be able to click the mouse at any time to
skip this splash screen. The GuiFadeinBitmapCtrl control provides a callback
named click() that is called when the control is awake and the mouse is
clicked. We’ll create an instance of this scoped to our GUI and make it do
some work.

 Game Interfaces Chapter 13

545

function ggsSplashToonFadeinBitmap:: click(%this) {
 %this.done = true;
}

This click() callback does the following.

• It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

• It sets done to true (we let the checkIsDone() task do all the real work).

The checkIsDone() Task

OK, we’re almost done. The last bit of code is the console method that is sup-
posed to check for done. When done is true, the splash screen will load the
main menu.

function ggsSplashToonFadeinBitmap::checkIsDone(%this) {
 if(%this.done) {
 %this.taskMgr.stopSelfExecution();
 Canvas. setContent(ggsMainMenuTech);
 }
}

This checkIsDone() console method does the following:

• It is scoped to our (named) GUI ggsSplashToonFadeinBitmap.

• It checks for done equals true, and if it is true,
• it stops the task manager, and
• it sets the canvas content to the main menu (which we haven't made yet).

13.2.2 Main Menu (Toon)
We now have one working interface. Now, let’s make the main menu
 interface.
 Before you start, make sure you’ve got a template .gui fi le (like we
described at the beginning of this chapter) in a directory where your main
menu will be located and be sure that it is getting executed.
 For this interface, you should use a template like the following (use your
own name for the GUI).

new GuiChunkedBitmapCtrl(ggsMainMenuToon) {
 profile = “GuiDefaultProfile”;
 horizSizing = “width”;
 vertSizing = “height”;
 position = “0 0”;
 extent = “800 600”;

Part III Game Elements

546

 minExtent = “8 2”;
 visible = “1”;
 bitmap = “./back”; // This is the image we’re about to make.
 useVariable = “0”;
 tile = “0”;
}

The Main Menu Interface

Make up a graphics fi le in your favor-
ite editor that looks something like
that in Figure 13.3. The image should
be the same as our splash interface
with a few differences. First, there is
no label on this one. Second, it is a
grayscale image. Third, I’ve made it a
bit dark so it provides good contrast
for our buttons (Figure 13.4). Copy
your fi le (named “back.jpg”) or the

one from the GPGT Lesson Kit to the directory where your .gui fi le is.
 For this menu, we’re going to have three buttons: Play, Credits, and Quit.
For each of these buttons, let’s make graphics.
 The graphics are going to be used by a bitmap button, so when we make
them, we’ll want to make four versions of each. The versions will be for the
four states: normal, highlighted, depressed, and inactive. For example, our
four Play button images can be seen in Figure 13.4.

play_n.png play_h.png

play_d.png play_i.png

The images are all 24-bit PNG fi les measuring 640×480. Notice that
“play_i.png” is the same as “play_n.png”. We could in fact just create the
normal, depressed, and highlighted versions of the button and not supply
the inactive one since we don’t need it. However, although the engine will
automatically use the normal image for our missing inactive image if the need
arises, it will print a warning message. I personally don’t like warning mes-
sages, so I always supply a button for all four cases.We could just as easily use
a 1×1 transparent PNG for the inactive button.

Figure 13.3.

Graphic for main menu.

Figure 13.4.

Four Play button images.

 Game Interfaces Chapter 13

547

• Now, start the GPGT Lesson Kit.

• Using the GUI editor, open the main
menu interface. At this point, your
interface should look just like the
fi rst image we made (“back.jpg”).

• Add three GuiBitmapButtonCtrl but-
tons to the GUI and arrange them
so that they line up down the cen-
ter. When you're done, the screen
should look like Figure 13.5.

The Main-Menu Interface Code

There is no separate code fi le for our main menu. All the code we need to
write is embedded in the command fi eld for each of the three buttons:

//Play Button =>
command = “ quit();”;

//Credits Button =>
command = “Canvas. setContent(ggsCreditsToon);”;

//Quit Button =>
command = “ quit();”;

Currently, the Play button will quit (or in the case of the GPGT Lesson Kit ver-
sion, it will go back to the “Game GUIs” menu). We’ll change this to a play
interface later when we fi nish our game.
 The Credits button will load our credits interface as the contents of the
canvas, and the Quit button quits.

13.2.3 Credits (Toon)
The next interface we’ll make is the credits interface. This interface is quite
similar to our main menu. In fact, it will use the very same template (obvi-
ously, in a new directory and with a new name). We use the very same JPEG
image as we used for the main menu.
 The credits interface is going to load and display the contents of a text fi le
in an attractive manner. We’re using an external source for the text content,
because this makes it easy to edit and correct mistakes.

The Credits Interface
• Copy your template and the graphics fi le to a new directory and be sure

that "init.cs" is executing them.

Figure 13.5.

Completed main menu.

Part III Game Elements

548

• Start the GPGT Lesson Kit.

• Using the GUI editor, open the credits interface. It should look just like our
main menu did when we started working on it (see Figure 13.3).

• We're going to use a GuiMLTextCtrl to display our credits. To do this,
we'll need a GuiScrollCtrl as the parent. So, using the GUI editor, add a
 Gui ScrollCtrl to our credits interface and then make a GuiMLTextCtrl the
child. When you're done, you should have something like the following.

new GuiScrollCtrl() {
 profile = “GuiScrollProfile”;
 horizSizing = “center”;
 vertSizing = “relative”;
 position = “150 50”;
 extent = “500 500”;
 minExtent = “8 2”;
 visible = “1”;
 willFirstRespond = “1”;
 hScrollBar = “alwaysOff”;
 vScrollBar = “alwaysOff”;
 constantThumbHeight = “0”;
 childMargin = “4 4”;
 new GuiMLTextCtrl(ggsCreditsToonMLText) {
 profile = “GuiDefaultProfile”;
 horizSizing = “width”;
 vertSizing = “bottom”;
 position = “6 6”;
 extent = “500 500”;
 minExtent = “8 2”;
 visible = “1”;
 lineSpacing = “2”;
 allowColorChars = “0”;
 maxChars = “-1”;
 };
};

 You’ll want to use your own name for the GuiMLTextCtrl, but it does need
a name because we’re going to write some code for it.

• Note that the GuiScrollCtrl uses the following settings.
• It uses the default profile. We'll want to change this soon.
• horizSizing and vertSizing of “center” and “relative” respec-

tively. This means that the control will resize to take up all of the space
of its parent from top to bottom and maintain an aspect ratio with its
parent horizontally while staying centered.

• The scroll bars are both turned off all the time.

 Game Interfaces Chapter 13

549

• There is a small child margin.

• Note also that the GuiMLTextCtrl has the following settings.
• It uses the default profi le. We'll want to change this soon.
• It resizes to fi t the width and height of its parent.

 Before we move on to the credits GUI code, let’s do one more thing. We
want the user to be able to press ESC in order to return to the main menu.
The easiest way to do this is to create a button that uses the ESC key as an
accelerator and then have it positioned off screen. This way, it won’t render,
but it will still respond to an ESC button press. The (abbreviated) code for this
button would look like the following.

new GuiButtonCtrl() {
 // ...
 position = “-1 -1”;
 extent = “1 1”;
 command = “Canvas. setContent(ggsMainMenuToon);”;
 accelerator = “escape”;
};

Notice that the button is 1×1 pixel positioned at <–1, –1>, thus putting it off
screen. The command this button executes sets the main menu as the contents
of the canvas.
 Simply make this button a child of the credits interface, and it will work.

The Credits Interface Code

OK, at this point we have the GUI controls in place, but the GuiScrollCtrl
and the GuiMLTextCtrl will be using default profi les. So, the current credits
interface will look something like the image on the left in Figure 13.6, when
we would rather it look more like the image on the right. To fi x this problem,
we’ll need to write our own GuiControlProfi le for the GuiScrollCtrl and for the
GuiMLTextCtrl.

Figure 13.6.

Credits interface.

Part III Game Elements

550

Custom Profiles

By default, the scroll profi le uses either a Windows or OSX theme (based on
your platform). Both themes use a completely white and opaque background
and have a white border. Also, they both use a graphic for the scroll bars,
arrow buttons, and the scroll thumb. Our needs are a little different, though.
First, we want our background to be transparent (our image is dark enough
to act as a background to our ML text). Second, we don’t want to display any
graphics.
 We could make a completely new profi le to meet our needs, but to make our
lives easy, we’ll make a profi le that derives from the default GuiScroll Profi le.

if(! isObject(gsToonCreditsScrollProfile))
 new GuiControlProfile (gsToonCreditsScrollProfile :
 GuiScrollProfile) {
 border = 0;
 opaque = false;
 };

This profi le disables the border and sets the control to translucent (not
opaque). The hidden benefi t of inheriting from GuiControlProfi le is that we
can use its graphics array (which is required by the control), but since we’re
not rendering it, we don’t really care what it is. That is, we don’t have to cre-
ate and specify a new bitmap array.
 So, what about the GuiMLTextCtrl? We’ll inherit again, but the only thing
we need to change is the opacity of the control.

if(! isObject(gsToonCreditsMLTextProfile))
 new GuiControlProfile (gsToonCreditsMLTextProfile) {
 opaque = false;
 };

 Great! Now we have the two profi les, but we need to decide where to
put them. We could put them at the top of the .gui fi le, but I prefer to put my
profi les in a separate .cs fi le. Then, I load the .gui fi le from the .cs fi le. This
way, I can have profi les and console methods in one place and have that be
separate from my interface defi nition. Please be sure that you load the .gui
fi le after the profi le defi nitions, or else the control will fail to be defi ned (they
have to be defi ned to be used).

Filling the GuiMLTextCtrl

At this point, the only thing we have left to do is write some code to put text in
the GuiMLTextCtrl, and then to write that text. To fi ll the GuiMLTextCtrl, we’ll

 Game Interfaces Chapter 13

551

need two pieces of code. First, we’ll need some code to read a fi le and dump
the contents to the control.

// 1. Clear all content.
// 2. Open the file gsMLTextContent.txt (abort if not found)
// 3. Read the file and push the contents into this GuiMLTextCtrl

function gsToonCreditsMLTextProfile:: reload(%this) {
 %this. setValue(“”); // Clear it
 %file = new FileObject();
 %fileName = expand FileName(“./gsMLTextContent.txt”);
 echo(“Attempt to open ” , %fileName);
 %fileIsOpen = %file. openForRead(%fileName);
 echo(“Open for read ” , (%fileIsOpen ? “succeeded” : “failed”));

 if(%fileIsOpen) {
 while(!%file. isEOF()) {
 %currentLine = %file. readLine();
 echo(%currentLine);
 %this. addText(%currentLine, true);
 }
 }
 %this. forceReflow();

 %file. close();
 %file. delete();
}

This gsToonCreditsMLTextProfile:: reload() console method does the
following.

• It is scoped to our (named) ML text GUI gsToonCreditsMLTextProfi le.

• It opens the fi le “.\gsMLTextContent.txt”.

• It reads the fi le line by line until the end of the fi le and then closes it.

• It dumps every read line to the GuiMLTextCtrl using the addText() con-
sole method.

• After reading the contents of the fi le, it forces a refl ow on the GuiMLText Ctrl.

• Lastly, it closes the fi le and deletes the fi le object.

 In order to use our new fi le-reading code, we need to have the onWake()
method call it.

Part III Game Elements

552

function gsToonCreditsMLTextProfile:: onWake(%this) {
 %this. reload();
}

Finally, we make a new fi le named “./gsMLTextContent.txt” and put the fol-
lowing text in it:

<just:center>
<color:FFFFFF><spush><just:center>

<font:Comic Sans:40><color:b10028><shadowcolor:001a69>
 <shadow:1:1>My Big Game<spop>

<font:Palatino LinoType:36>Playground Productions

<tab: 300, 300>
<just:left>
<spush><font:Arial Bold:18> Written by:
 Edward F. Maurina III
<color:b09100><shadowcolor:dddddd><shadow:1:1>
 Hall Of Worlds, LLC

<spop>

<just:left>
<spush><font:Arial Bold:18> Brought to you by:
 GG Press (tm)
<color:b09100><shadowcolor:cccccc><shadow:1:1>
 Garage Games

<spop>

<font:Arial Bold:16>
<spush>
<lmargin%:1>I just want to thank...

<tab: 150, 300>
My Wife Teresa...

The Staff at Garage Games, and...and...sniff

You the customer...for making this possible... :)

<spush><just:center>(Escape for Main Menu)<spop>
<spop>

We’ve gotten to the end of our Toon series. Now, you should do it all again,
except use new graphics from the Tech series.

 Game Interfaces Chapter 13

553

13.3 Tech-Themed Interfaces
If you’re skipping ahead, please go back to the start of the Toon-themed series.
If not, please take a look at the images in Figure 13.7. Now that you’ve seen
the differences, please follow the steps outlined for the Toon series, but use
new art for a sort of Tech theme (or choose your own theme). Please note that
the Tech-themed menu adds a new button. You may add this if you wish, or
add only the original three, skipping the Options button.

Splash Screen Main Menu Credits Screen

 Please feel free to use the images provided with the GPGT Lesson Kit. If
you’re copying my art, I expect that the second time through should only take
about an hour or less to achieve. If you’re making your own art, then most of
your time will likely be spent making the art. That is, once you’ve got a work-
ing set of interfaces, it is quite easy to re-theme them: add a few extra touches
here and there, and then you’re done!
 Now that you’re feeling pretty good and you’ve become a bit of an expert
at making GUIs, let’s go make some HUDs.

13.4 Common HUDs
The last set of set of interfaces we will make in this book will be some common
HUDs. The most common set of HUDs you’ll fi nd in video games are the following.

• Counters. Almost all video games use some kind of numeric feedback
to give score, ammo count, health status, etc (see Figure 13.8a). Thus,
we’ll take the time to make a simple set of customizable counters that can
handle up to nine digits.

• Feedback bars. If a game doesn’t use numeric feedback, it will almost
surely use some kind of graph instead (see Figure 13.8b). Often both are
present. Thus, we’ll make a vertical bar to supplement the horizontal bar
that comes with TGE.

• Strip compass. OK, not all games have compasses, but I see requests for this
kind of thing a lot, and the compasses that folks have submitted as resources
are always popular. Problem is, all the compasses that folks have submitted
are C++-based, and new users may not want to mess with the code. Thus,
this strip compass is entirely TorqueScript based (see Figure 13.8c).

Figure 13.7.

Tech-themed screens.

Part III Game Elements

554

13.4.1 Counter HUDs
A counter HUD should be fl exible enough that the digits can be placed in any
position, and also allow different styles of digits. We’ll make a simple set of
counters that use bitmap images for the digits. Additionally, we’ll write scripts
that handle up to nine digits (or actually a max count). This can be expanded
if you need, but nine is usually enough. These counters will come with and
without frames.

Counter HUD Images

Before we start, we’ll need to make some graphics fi les for our counters. You
can make your own graphics, or use the ones from the GPGT Lesson Kit.

• Digits. The GPGT Lesson Kit contains digital and comic-style digits in blue,
green, and yellow. Additionally, gray digits are provided as templates so
you can simply adjust the color and perhaps add other effects as you wish.
All digits are 50×50 pixels.

• Frames. Optionally, you can create frames for the digits. The GPGT Lesson
Kit includes several frame variations (corroded (not shown) and non-
corroded).

Figure 13.8.

Some common HUDS.

a. Counters. b. Feedback bars. c. Strip compass.

 Game Interfaces Chapter 13

555

Counter HUD GUI Controls

Depending on how you choose to implement your counter, you’ll have either
two or three sets of GUI controls involved. All counters will have a GuiControl
as a container for the digits, an optional GuiBitmapCtrl for the frame, and up
to nine GuiBitmapCtrl controls for the digits (I count this as one set).
 In order to build your HUD, follow these steps.

1. Add and position a GuiControl as a child of the interface that should con-
tain this HUD.

2. Add the GuiBitmapCtrl controls that will be the digits as children of the
GuiControl we just added.

3. Optionally, add the frame GuiBitmapControl as a child of the GuiControl.

These HUD controls need to have certain names.

1. The GuiControl container can have any name, but it needs some name for
scoping our console methods.

2. The GuiBitmapCtrl digits need unique names of the form aDigit0, aDigit1,
etc. Notice that they all have the same prefi x but different numeric values.

3. The (optional) GuiBitmapCtrl for the frame does not need to be named.

Now that we’ve named the controls, we need to add some dynamic fi elds to
the GuiControl container.

• numDigits. This should be between 1 and 9 (or greater if you modify the
scripts to handle more digits).

• digitTileName. This should be the same as the prefi x we used when
naming the GuiBitmapCtrl controls used for the digits. In this example, the
value would be “aDigit”.

• digitPath. This fi eld tells the scripts where to fi nd the digit bitmap. This
path can be relative or nonrelative and should be of the form “.\counters\
blueDigits\digi”. Notice that there is no ending slash.

OK, now we’re ready to write the scripts!

Part III Game Elements

556

Count HUD Scripts

We need a minimum of three methods to use these counters: (1) a method
to initialize the counter, (2) a getCounterValue() method, and (3) a
setCounterValue() method.

initializeBitmaps()

The fi rst method we need is the initializeBitmaps() method. This
method is responsible for setting up the bitmaps.

function GuiControl::initializeBitmaps(%this) {
 if(“” $= %this.digitPath) return false;
 for(%count = 0; %count < 10 ; %count++) {
 %this.digitBitmap[%count] =
 expand Filename(%this.digitPath @ %count);
 }
}

This method basically expands the digitPath we supplied into a list of ten
images, one per possible digit (0..9).

setCounterValue()

The main method we need is the setCounterValue() method. This method
is responsible for actually displaying a numeric value.

function GuiControl::setCounterValue(%this , %newCount) {
 // Check to be sure that the required fields have been set:
 //
 // numDigits - Number of digits in this counter
 // digitTileName - Prefix for tile names used in this
 // counter (i.e. names of the controls)
 // digitPath - Path to tiles used in this counter
 //
 if(“” $= %this.numDigits) return false;
 if(“” $= %this.digitTileName) return false;
 if(“” $= %this.digitPath) return false;

 // Store the currentCount
 %this.currentCount = %newCount;
 %newCountDigits = strlen(%newCount);

 if (%newCountDigits > %this.numDigits) { // Overflow
 for(%count = 0 ; %count < %this.numDigits ; %count++) {
 %tmpDigit[%count] = 9;
 }
 }

 Game Interfaces Chapter 13

557

 else {
 // Pad with zeros so our ‘newCount’ string is exactly
 // %this.numDigits wide
 %tmpNewCount = “”;
 for(%count = %this.numDigits - %newCountDigits ;
 %count > 0 ; %count--) {
 %tmpNewCount = %tmpNewCount @ “0”;
 }

 %tmpNewCount = %tmpNewCount @ %NewCount;

 // Get digits in reverse order and store them
 for(%count = 0 ; %count < %this.numDigits ; %count++) {
 %tmpDigit[%count] = getSubStr(%tmpNewCount ,
 %this.numDigits - 1 - %count , 1);
 }
 }
 // Change the bitmaps for each digit in the display
 for(%count = 0 ; %count < %this.numDigits ; %count++) {
 (%this.digitTileName @ %count). setBitmap(
 %this.digitBitmap[%tmpDigit[%count]]);
 }
 return true;
}

This method does the following.

• Checks that the required fi elds are present and ditches if they are not.

• Stores the new count value as the current count.

• Checks to see if the count that was passed is too large. If it is, all the digits
are set to nine, and the counter ditches. This is an overfl ow case.

• If the basic checks are passed, the routine iterates over each count value
and extracts the digit. Then it uses the extracted digit to assign a bitmap
digit to the correct tile. By default, unset tiles are set to 0.

getCounterValue()

Because it is good to create symmetric functionality for game objects, we’ll
create a getCounterValue() method, too.

function guiControl::getCounterValue(%this) {
 return %this.currentCount;
}

Part III Game Elements

558

This function simply returns the currentCount value we stored in
 set Counter Value().
 As was previously mentioned, these scripts can be expanded to handle
as many digits as you like. Also, as an exercise, you might try adding non-
numeric handling code.

13.4.2 Vertical Feedback Bar HUDs
As mentioned above, an alternate to the digit counter is a feedback bar of
some type. TGE comes with a horizontal bar, but I often wish to use a verti-
cal (or other) style bar. TGE does come with a specialized vertical bar for
the player’s health/energy, but I prefer to use this scripted one. This HUD is
used to represent a value between 0.0 and 1.0 in steps of 0.1. In this sample,
the HUD is arranged as a vertical bar, but this code will handle having the
indicator tiles in any confi guration. However, helper code has been provided
to make the design of a vertical bar easier. You’ll have to write your own
 re size() method for other arrangements.

Vertical Feedback Bar HUD Images

The vertical feedback bar has one image: the frame for the HUD. Some sam-
ple frames are included in the GPGT Lesson Kit so you can use this right
away. The templates for these frames are provided so you can modify them.
The design of these vertical frames is important. If they are not designed
properly, you will not be able to (successfully) use the provided re size()
method. This method makes tile placement a cinch. So, let’s discuss the
design of this frame.
 The provided frames all have the same properties (see Figure 13.9).

• There are eleven cells, and the top cell is a graphic indicating the type of
indicator (damage or energy). You can put any graphic you like here by
editing the provided templates. The bottom cells are for separating our
feedback indicators.

• The top indicator cell starts at <0, 50>, and each cell after that is set at a
delta of <0, 45> pixels.

• The complete image is 50 pixels wide and 500 pixels tall.

Overall, the frames included in the GPGT Lesson Kit have a kind of known sym-
metry and regularity; i.e., the cells that represent the indicators are not oddly
shaped and do not exist at irregular spacings. We’ll see why in a moment.

Vertical Feedback Bar HUD GUI Controls

As with the counters, the vertical feedback HUDs are composed of three sets
of GUI controls. First, a GuiControl is used as the container for our HUD.

Figure 13.9.

Vertical feedback
bar.

 Game Interfaces Chapter 13

559

Second, a GuiBitmapCtrl is used as the frame for the HUD. Third, a set of
 GuiControl controls are used as the indicators. To make this last set of controls
act as controls, we make custom profi les for them. We’ll address this in the
scripts section below. For now, let’s assemble our HUD.
 In order to build your HUD, follow these steps.

1. Add and position a GuiControl as a child of the interface that should con-
tain this HUD.

2. Add the GuiControl controls that will be the indicators as children of the
GuiControl we just added. Just make ten and place them at <0, 0> for
now.

3. Add the frame GuiBitmapControl as a child of the GuiControl container.

4. Resize the container and the frame to have the same dimensions and be
sure that the frame is above (in front of) the GuiControl indicators.

These HUD controls need to have certain names.

1. The GuiControl container can have any name, but it needs some name for
scoping our console methods.

2. The GuiControl indicators need unique names of the form DamageBar0-
Indicator0, DamageBar0Indicator1, etc. Notice that they all have the same
prefi x but different numeric values. The “Indicator” portion of the name is
required.

3. The GuiBitmapCtrl for the frame needs to have a name of the form Damage-
Bar0IndicatorFrame. Notice that the prefi x is the same as that for the
 indicators.

Now that we’ve named the controls, we need to add a dynamic fi eld to the
GuiControl container: feedbackBarPrefix. This should be a string contain-
ing the prefi x you used for the indicators and frame. In this example, this fi eld
would contain DamageBar0.
 OK, now we’re ready to write the scripts!

Vertical Feedback Bar HUD Scripts

We have two kinds of scripting to do. First, we need to make some custom
profi les for our GuiControl controls. Second, we have to make scripts update
the bars. As an added bonus, we’ll do an (optional) fi nal script that will make
positioning and creating these counters a cinch.

Custom Profiles

Our indicators are made from the GuiControl control. To make this work,
we need a custom profi le that will make these controls opaque with a pre-
defi ned background color. Additionally, we may wish to make the container

Part III Game Elements

560

Gui Control opaque with a different background color. These profi les will look
like the following.

// A container profile
new GuiControlProfile (feedbackBarBackColorProfile0) {
 opaque = true;
 fillColor = “20 20 20 255”;
};

// An indicator profile
new GuiControlProfile (feedbackBarIndicatorColorProfile0) {
 opaque = true;
 fillColor = “255 255 255 255”;
};

The fi rst profi le is a gray color and used for the container. The second profi le
is a fully white color and used for the indicators. Please understand that, if
it pleases you to do so, each indicator tile can have its own profi le, and each
can be a different color. Once you’ve created custom profi les, be sure they get
loaded before the .gui fi le and then use them as the profi le for your controls.

Feedback Scripts

The guts of this HUD are the scripts that update the display. I’m providing two
methods, and as an exercise, you should modify them a bit and add a third.
The two provided methods are setFeedbackGUIValue(), which sets the
indicators based on a passed value, and flashIndicatorBar(), which is
used to cause the changed indicator cells to fl ash (optionally, of course).

function GuiControl::setFeedbackGUIValue(%this , %value) {
 // Check for the required indicator prefix field
 if(“” $= %this.feedbackBarPrefix) return;

 // Generate an ‘index’ from %value
 if (“” $= %value) %value = 0;

 if(%value > 1.0)
 %value = 1;
 else if(%value < 0.0)
 %value = 0;
 else
 %value = %value;

 %this.curIndex = mFloor(10 * %value);

 Game Interfaces Chapter 13

561

 for(%count = 1; %count <= 10; %count ++) {
 %toggleCheck =
 (%this.feedbackBarPrefix @ “Indicator” @ %count). isVisible();
 (%this.feedbackBarPrefix @ “Indicator” @ %count). setVisible(
 %this.curIndex >= %count);
 if(%toggleCheck !=
 (%this.feedbackBarPrefix @ “Indicator” @ %count). isVisible()) {
 if(%this.flashTime > 0) {
 (%this.feedbackBarPrefix @ “Indicator” @
 %count).flashIndicatorBar(%this.flashTime);
 }
 }
 }

 %this.prevIndex = %this.curIndex;
 %this.currentValue = %value;
}

This method does the following.

• Checks that the required fi eld is present, and ditches if it is not.

• Checks that the count is between 0.0 and 1.0 and, if not, adjusts it so that
it is.

• Because this method uses values between 0 and 10, it multiplies and fur-
ther massages the value so that it meets our requirements.

• The method loops over each tile and decides whether it should be visible
or not visible. If a tile is changed from visible to not visible, or vice versa,
the flashIndicatorBar() method is called.

• The method fi nishes by saving the current index and actual values.

So, what about this fl ashing? It is a pretty common thing to have indica-
tors fl ash when they change. So, as part of the fun, we’re going to add this
functionality.

function GuiControl::flashIndicatorBar(%this , %flashTime) {
 %flashPeriod = %flashTime / 3;
 %isVisible = %this. isVisible();
 %this. schedule(%flashPeriod * 1 , “setVisible”,
 ! %isVisible);
 %this. schedule(%flashPeriod * 2 , “setVisible”, %isVisible);
}

This method does the following.

• Divides the fl ash time into three parts.

Part III Game Elements

562

• Toggles the indicator visibility.

• Schedules the indicator visibility to toggle again in one fl ash period, and
then once more in two fl ash periods, for a total of three toggles.

 Flashing is optional. I didn’t mention it earlier, but if you want the indica-
tor to fl ash when it changes, you’ll need to add one more dynamic fi eld to the
frame: flashTime. This fi eld should be the number of milliseconds you want
the indicator to fl ash.

Design Helper Method

At this point, we’ve written all the required code. However, when designing this
tutorial, I noticed that it was a real hassle to position the tiles. Thus, I’ve added
another piece of code. This code is used to resize the frame and pre-position the
indicator tiles. This version of the method only works for vertical bars.

function GuiControl::resizeVBAR(%this) {
 // Check for the required indicator prefix field
 if(“” $= %this.feedbackBarPrefix) return;
 if(“” $= %this.originalframeDimensions) return;
 if(“” $= %this.firstIndicatorY) return;
 if(“” $= %this.IndicatorHeight) return;

 // Resize and reposition the frame first
 %ContainerWidth = getWord(%this. getExtent() , 0);
 %ContainerHeight = getWord(%this. getExtent() , 1);
 (%this.feedbackBarPrefix @ “Frame”). re size(
 0 , 0 , %ContainerWidth , %ContainerHeight);

 // Resize and reposition the indicators
 %originalFrameWidth = getWord(
 %this.originalframeDimensions , 0);
 %originalFrameHeight = getWord(
 %this.originalframeDimensions , 1);
 %resizdFirstIndicatorY = (
 %this.firstIndicatorY / %originalFrameHeight)
 * %ContainerHeight;
 %indicatorHeightDelta = (
 %this.IndicatorHeight / %originalFrameHeight)
 * %ContainerHeight;
 %indicatorY = %resizdFirstIndicatorY;
 for(%count = 10; %count >= 1; %count --) {
 (%this.feedbackBarPrefix @ “Indicator” @ %count).
 re size(0 , %indicatorY , %ContainerWidth ,
 %indicatorHeightDelta);

 Game Interfaces Chapter 13

563

 %indicatorY = %indicatorY + %indicatorHeightDelta;
 }
}

This method relies on the presence of some new dynamic fi elds:

• originalFrameDimensions. This two-element integer vector contains
the width and height of the original frame graphic. In the samples this is
“50 500”.

• firstIndicatorY. This is an integer value that denotes top-to-bottom
y-offset of where the fi rst indicator should be. In our sample, this is would
be at pixel “50”.

• IndicatorHeight. This is an integer value specifying the full-size height
of each indicator cell.

Knowing what these value are, the method does the following.

• Checks that the required fi elds are present, and ditches if they are not.

• Calculates the new size of the container.

• Grabs the original frame width and height.

• Calculates the new resized height for the fi rst cell.

• Repositions and resizes the frame.

• Calculates the delta height for each indicator cell.

• Loops over the indicator cells and repositions and resizes each.

 Why is this even necessary? Well, as I mentioned, when you move the
frame around and resize the elements, it becomes a real hassle to keep every-
thing properly aligned. This is compounded by the fact that, when we open
and close the editor to edit and test the GUI, the GUI controls are often resized
and repositioned.

13.4.3 Strip Compass HUD
Our last HUD is a compass displayed as a strip. I call this a strip compass,
but you can call it whatever you like. Basically, the challenge here is to make
a 2D representation of what is fundamentally a 3D object, and to do so in
script. This compass is designed to take a pointing vector and translate that to
a compass direction. It is assumed that +y is north and +x is east (as is the
case in the TGE world model).

Strip Compass HUD Images

The strip compass has two image fi les: (1) the frame and (2) the strip
(Figure 13.10). As you can see, the frame is fairly simple. It has an outer strip,

Part III Game Elements

564

a center marker, and a screen. This screen is mostly translucent and the whole
thing is designed to overlay the strip.

 The strip may seem odd at fi rst. It seems to be a lot larger than what it
needs to be. In fact, because we want to make it possible to display any point
on the compass by shifting our strip leftward, it needs to be wide enough and
contain enough elements to show all compass points along its leftward travel.
This means we need twelve points on the compass, versus the standard eight.
Four are repeated.
 The provided strip is 1200 pixels wide and 50 pixels tall. The frame is 400
pixels wide and 50 pixels tall.

Strip Compass HUD GUI Controls

The strip compass has three GUI controls that are used to represent it: (1) a
GuiControl used as a container, (2) a GuiBitmapCtrl used as the strip, and (3)
a GuiBitmapCtrl used as the frame.
 When we place our controls, they are placed as follows.

1. The container control is placed as a child of some GUI (i.e., whatever inter-
face contains the compass). The dimensions of this control are “400 50”.
This control should be named.

2. The strip is placed as a child of the container at “0 0”. The dimensions of
this control are “1200 50”. This control must be named.

3. The frame is placed as a child of the container (covering the strip) at “0 0”.
The dimensions of this control are “400 50”.

For scripting purpose, the container control needs two dynamic fi elds.

• stripName. This fi eld contains the name of our strip control.

• stripWidth. This fi eld contains the pixel width of the original graphics
fi le used for the strip.

 Please note that if you require the strip and frame to be of a different
dimension, you may resize them prior to saving your work, but—and this is a
big but—please be sure that you maintain the same ratio between the frame
width and the strip width. In addition, be sure that the stripWidth dynamic
fi eld matches the width you’ve chosen for the control; i.e., if you choose to
shrink the control by half, the dimensions and fi elds would be as follows.

Figure 13.10.

A strip compass.

 Game Interfaces Chapter 13

565

• Container = "200 25"

• Strip = "600 25"

• Frame = "200 25"

• container.StripWidth (dynamic fi eld) = 600

Strip Compass HUD Scripts

If you don’t have a good grasp of 3D graphics mathematics, you should prob-
ably stop at this point and go bone up by reading the appendix in Akenine-
Möller and Haines’s Real-Time Rendering, Second Edition (A K Peters, Ltd.,
2002) or whatever book(s) you use as reference. Once you are properly girded,
carry on.
 It is a well-known fact that we can convert a two-dimensional vector (i.e.,
in a plane) into a 360-degree angular value theta, where theta is the rotation
about a vector perpendicular to the plane and represents the rotation from
some arbitrary location. In other words, we’re going to use the dot-product
and some things we know about the TGE world to calculate an angle.

function GuiControl::updateCompass(%this , %facingVector) {
 // Check for the required fields stripName and stripWidth.
 if (“” $= %this.stripName) return;
 if (“” $= %this.stripWidth) return;
 // Normalize the facing vector (just in case)
 %facingVector = vectorNormalize(%facingVector);

 // We can use the dot product and some tricks to figure out
 // what part of how we should position our strip to properly
 // indicate our facing direction.
 %leftFacing = (vectorDot(“1 0 0” , %facingVector) < 0) ? true : false;

 // remember 0 1 0 is forward, and that we can get the angle
 // between X and Y in radians using the DOT product:
 %forwardTheta = vectorDot(“0 1 0” , %facingVector);

 // Now, knowing our facing and theta, we can calculate
 // our right-hand rotation about Z in degrees:
 if(%leftFacing) {
 %rotationDegrees = 360 - (mACos(%forwardTheta) *
 180.0 / 3.1415927);
 }
 else {
 %rotationDegrees = mACos(%forwardTheta) *
 180.0 / 3.1415927;
 }

Part III Game Elements

566

 // We’ve created a strip that is three times as wide as
 // the frame, giving it 12 compass points vs. the normal 8.
 //
 // If we calculate our rotation as a percentage, account
 // the ratio 8/12, and scale based on our current extent
 // vs. the pre-scaled width of the image, we can
 // calculate the exact position to place the strip at:
 %curPosY = getWord(%this.stripName. getPosition() , 1);
 %curExtX = getWord(%this.stripName. getExtent() , 0);
 %curExtY = getWord(%this.stripName. getExtent() , 1);

 %percentageRot = %rotationDegrees / 360.0;
 %extentRatio = %curExtX / %this.stripWidth;

 // recall this is a left-shift
 %newPosX = -1 * (8 / 12 * %percentageRot * %extentRatio
 * %this.stripWidth);
 %this.stripName. re size(%newPosX, %curPosY, %curExtX,
 %curExtY);
}

This method does the following.

• Checks that the required fi elds are present, and ditches if they are not.

• Normalizes the facing vector to make it nicer to work with.

• Checks to see if we are left- or right-facing. The dot-product only provides
the angle between two vectors, up to 180 degrees. Thus, we need to deter-
mine which half of the circle this is to get the whole picture.

• Calculates the right-hand rotation about a vector "0 0 1", which is the TGE
world up vector.

• Calculates the linear offset for the strip based on some known quantities,
including the current angle of rotation, strip width, and the ratio of the
normal points (8) to actual points (12) on the strip.

• Repositions and resizes the strip.

13.5 Summary
In this chapter, we examined several GUI controls working in tandem to pro-
duce new and useful results.
 We discussed the following standard interfaces.

• Splash screens. This is a basic screen, of which most games have at least
one and often several. They are used to display many different kinds of

 Game Interfaces Chapter 13

567

information, including the game title, company logos, and even interlevel
art.

• Main menus. This interface really needs no introduction, but we did learn
about how to implement it and then to hook other interfaces to it.

• Credits screens. This is another common interface, used to thank the folks
who worked hard on your game, to provide additional information, etc.

As part of the above effort, we produced two variations of each interface
(Toon and Tech themes) for a grand total of six interfaces.
 Having completed the more serious discussion, we then launched into a dis-
cussion of HUDs and learned how to make the following three useful HUDs.

• Counters. The counter HUD is seen in almost every game in some form or
another, making it worthwhile to explore one means of creating one.

• Vertical feedback bars. Another prevalent HUD is the feedback bar. Since
Torque already supports a horizontal bar, we worked together to create a
vertical version using only scripts and GUI controls.

• Strip compasses. Lastly, to show that C++ is nice but not necessary for
creating HUDs with complicated behaviors, we made a strip compass. This
HUD represents a 3D compass that rotates. We produced the same effect
in 2D using a little bit of math knowledge and the powerful and useful
TorqueScript language.

Making the Game Part IV

571

Putting It All Together
Chapter 14

14.1 Maze Runner: A Simple Single-Player Game
Maze Runner is a simple platform game brought into the 3D realm. It isn’t
based on a specifi c game, but it is inspired by games I have played. My purpose
for this game was not to create a new blockbuster but rather to provide an
easy-to-understand game idea upon which we could hang examples as we
worked through the guide.
 A 60-second summary of this game would read something like the following.

In this game, you run around a maze and pick up coins. Your goal is to pick up all the
coins while avoiding various obstacles. Mazes will vary in size and in scope. They may
run along one level, or have multiple levels. Along the way, as you hunt for all of the
coins, you will need to avoid disappearing bridges that may drop you to a lower level
or into a fiery cauldron below. You will be blocked by fireballs and impassable chasms.
To get around these obstacles, you will have to use your ingenuity and the occasional
teleport station. Timing, awareness of your surroundings, agility, and a little luck are
all required for winning. You will start with three lives and gain a new life for each
level you complete. To continue the game, pick up all of the coins and move on to the
next level. Get the highest score and win the admiration of your peers! Good luck.

14.2 Game Elements
Let’s stop for a moment and defi ne the term game element. This is a term that
I am using to describe any and all of the pieces that are used to create a game.
For example, all of the following listed items are game elements:

• The game view. This general term incorporates point of view, fi eld of view,
and other view-related concepts and describes the end view of our game.
We discuss this in Chapter 7, “Gameplay Classes.”

• Interfaces and HUDs. However much we might wish to ignore it, all
games require some GUI work and will have a variety of interfaces (splash
screens, main menus, play GUIs, etc.) and some HUDs (counters, indicator
bars, etc.).

• Players and opponents. Although we could certainly have a game with
no directly identifi able players or opponents, 3D games generally do have
at least one model representing the player and other models opposing this
player in some fashion.

• Weapons. This seems pretty straightforward, but what I really mean here is
weapons and weapon analogues. The analogue, in this case, is something
that functions like a weapon but may not necessarily do damage.

Part IV Making the Game

572

• The world. This is a rather large game element and is in fact composed of a
multitude of subelements, including terrain, water, the sky, environmental
objects (trees, rocks, grass, etc.), environmental effects (rain, wind, light-
ning, the sun(s) and planets, etc.), structures (buildings, fences, bridges,
etc.), sounds, and so on.

• Power-ups and pickups. These are items that are often at the core of a
game and are meant to be interacted with. Sample items in this category
would be coins, gems, weapons, ammunition, health packs, etc.

• Special effects. Here we are talking about eye and ear candy. These do
have a place in gameplay, but they are often not directly tied to interaction,
which is where we should focus our attention fi rst.

• Miscellaneous elements. This last category is a grab bag for elements that
don’t fi t anywhere specifi cally. Some examples are inventory systems, col-
lision detection and response, damage and energy, and general scripting
tasks.

Now, armed with an idea of what a game element is, let’s list the game ele-
ments in our game.

14.2.1 Maze Runner: Game Elements
The fi nished game has the following elements and attributes.

• Interfaces. Splash screen GUI, main menu GUI, credits GUI, and play GUI.

• Game view. The game can be played in 3rd POV only.

• Player. The initial player will be the Blue Guy that comes with the FPS
Starter Kit. We will later design our own player. This player will be an
example of the simplest possible player that can be used in a game.

• Opponents. There are no opponents in this game, but some suggestions will
be provided for adding them if you wish to expand on this game later.

• The world. The game world is a simple cauldron-shaped pit. This pit will
contain a lake of lava. Our maze will consist of individual shapes that we
place using scripts and level-defi nition fi les. We will place some environ-
mental objects to spruce the place up. Additionally, there will be a sky
box, celestial bodies, clouds, wind, rain, and even lightning. We’re going
all out on special effects to show how to use as many Torque features as is
 reasonable.

• Obstacles. There are two types of active obstacles and three static obsta-
cles. The active obstacles include level blocks (individual and grouped)
that fade, disappear, and reappear over time. There are also blocks that
shoot fi reballs in any of eight fi xed compass directions (N, NE, E, SE, S,
SW, W, NW), or down, or any of the prior directions, but randomly. The
static obstacles are open horizontal spaces between blocks, vertical spaces
between blocks, and blocks themselves.

 Putting It All Together Chapter 14

573

• Getting around. To get around the maze, the player will run and jump.
Also, there can be up to three distinct teleport stations; that is, teleport sta-
tions can be grouped in sets, and there can be up to three distinct sets of
teleport stations in a level. Additionally, if any set contains more than two
stations, entering one station will randomly send the player to any one of
the other stations in the set.

• Pickups and power-ups. The only pickup in the game is the coin. Picking
up all coins is the primary goal. A HUD will show the total coins picked up
and the number of coins remaining for the level.

• Inventory system. We will use the “Simple Inventory” system that comes
with this guide and is described in Chapter 7, “Gameplay Classes.” It will
provide all the mechanics necessary to pick up coins and remove them
from the game world.

• Miscellaneous “glue” scripts. We will end up writing quite a few scripts
to tie the game together, to track the score and our lives count, as well as
to load the levels.

14.3 Game Goals, Rules, and Mechanics
Great! Now we know generally what the game is about and what elements
it has. The last thing we need to do is describe how the individual game ele-
ments interact.
 The goal of this game is very simple: score as high as possible by fi nishing
as many levels as possible before losing all of your lives.
 The rules and mechanics for this game are as follows.

• Pick up all the coins. Picking up all coins on a level ends the level and
takes the player to the next level.

• Stay alive. Falling into the lava below or getting hit by a fi reball kills the
player.

• Gain lives. To gain more lives, simply complete a level. One new life is
gained for each level completed.

• Teleporting. We can place up to three sets of teleport stations. Each set
may have two or more stations. If there are only two stations in a set, the
stations will teleport back and forth between each other. If a set has three
or more stations, the spawn point will be randomly selected. Teleporting
occurs by running over a station. The destination station will be temporar-
ily disabled to avoid infi nite teleport loops. It will not operate again until
you walk off the station. Teleporting is not instantaneous, so be careful
about fi reballs that cross stations, as you are temporarily unable to move
when teleporting.

• Respawning. When the player is killed, it will respawn in the location
where it was fi rst dropped into the game.

Part IV Making the Game

574

• Level loading. To make this game easily maintainable, tunable, and modi-
fi able by players, all level loading is controlled by a text fi le (the level fi le).
Players can add new levels and redefi ne levels to their hearts’ content.

14.4 Setting Up Our Workspace
Before we can work on any lessons, we must fi rst set up a work area. Every-
thing that you need to do this is supplied on the CD that comes with this
guide. If you examine the CD, you will fi nd the following directories.

• “\Appendices”. This directory contains the GPGT appendices.

• “\Base”. This directory contains data and scripts that are used in the lessons
and can also be used later to make new games. Please see the “Lesson Kit
Assets” appendix for additional information about the contents of this direc-
tory.

• “\GPGT LessonKit”. This directory contains the GPGT lesson kit. For more
information about it, please read the “Lesson Kit User’s Guide” appendix.

• “\MazeRunner”. Excluding the data and scripts in “\Base” and some con-
tent we will copy from the TGE demo that you should install using one of the
installers found in “\TorqueDemoInstallers”, this directory contains all of the
unique resources and scripts required to build the MazeRunner proto type.

• “\MazeRunnerAdvanced”. This directory contains a completed version of
MazeRunner with several additional features as suggested in Section 14.10,
“Improving The Game”.

• “\TorqueDemoInstallers”. This directory contains installers for TGE.

At this time, if you do not have the demo installed on your machine, please
do so by running the appropriate installer (based on your computer and

operating system type). Once you have fi nished, please continue reading.

14.4.1 Starting from Torque Demo
First, be sure to install a copy of the TGE demo using one of the install-
ers found in “\TorqueDemoInstallers”. Feel free to install this anywhere you
please. While writing our game, we will be copying fi les out of the installed
demo to a working directory.
 Second, let’s make a new (working) directory named “MazeRunner” and
place it on a drive with at least 100 MB of free space. We’ll want some elbow
room while we work. Please note, while we are writing our game (reading
the numbered lessons), this is the directory we will be working in. We will
be copying materials from the CD to this directory and editing them in some
places. Do not confuse this with the GPGT Lesson Kit which is also included
on the CD. The GPGT Lesson Kit is a separate application containing several

If you are a Linux user,
I must apologize. At
the time this book
went to print, version
1.4 of TGE for Linux
was still being worked
on. Please check the
GarageGames website
to see if it is ready and,
if so, download the
demo kit. Otherwise,
I suggest using one
of the other versions
of the engine in the
interim.

 Putting It All Together Chapter 14

575

mini-tools and samplers. To learn more about this application you should read
Appendix B, “GPGT Lesson Kit Docs.”
 Third, now that we have a place to work, let’s copy the entire contents of
the TGE demo directory (from wherever we installed it in step one) into our
new directory “MazeRunner”.

14.4.2 Write Cleanup Scripts
It is a good idea to have the ability to remove temporary fi les from a work-
ing directory. If we remove all compiled scripts (DSOs) before rerunning the
engine, we are insuring that only new script content will be used. Addition-
ally, it is a good idea to occasionally remove terrain lighting fi les (ML). To
accomplish these two tasks, we will write some scripts.
 The fi rst script (if you are running Windows) will be a batch fi le called
“DELDSO.bat”. It is used to delete all compiled script fi les (DSO cleaning) and
contains the following simple line of script.

del /S /F *dso

In UNIX/Linux/OSX, the fi le would be “deldso”, and the content of the fi le is
the following.

rm -rf *dso

The second fi le (if you are running Windows) will be called “DELML.bat”. It
is used to delete all terrain lighting fi les (ML cleaning) and contains the fol-
lowing simple line of script.

del /S /F *ml

In UNIX/Linux/OSX, the fi le would be “delml”, and the content of the fi le is
the following.

rm -rf *ml

We’ll run the DSO cleaner each time we modify our scripts, and occasionally
we’ll run the ML cleaner to get rid of stale lighting fi les.

14.4.3 Copy Mod Directory
Although it is possible to modify the demo to create MazeRunner, it will
be far simpler to start with a blank slate instead. To that end, a bare-bones
mod has been provided. To start with this mod, please copy “\MazeRunner\
A_SettingUp\prototype” from the accompanying disk into “\MazeRunner”.

The demo kit
may include a set

of cleanup scripts.
Regardless, please read
this section so you
understand the reason
for creating them.

Part IV Making the Game

576

14.4.4 Modify “main.cs”
Next, edit “main.cs” and change line 6 from this:

$defaultGame = “demo”;

to this:

$defaultGame = “prototype”;

This will use our new “prototype” mod instead of the demo mod.

14.4.5 Add Systems Scripts
The accompanying disk comes with a number of scripts that are provided
to simplify your game-writing endeavors. We discuss some of these scripts
in the guide, and those we do not discuss are documented in the “Scripted
Systems” appendix.
 From the accompanying disk, please copy the “\Base\Scripts\EGSystems”
directory into “\MazeRunner\prototype”.
 Then, edit the onStart() function in “\MazeRunner\prototype\main.cs”
so it looks like the following (bold lines are new code).

function onStart() {
 // Maze Runner Changes Begin -->
 exec(“./EGSystems/SimpleInventory/egs_SimpleInventory.cs”);
 exec(“./EGSystems/SimpleTaskManager/egs_SimpleTaskManager.cs”);
 exec(“./EGSystems/Utilities/egs_ArrayObject.cs”);
 exec(“./EGSystems/Utilities/egs_Misc.cs”);
 exec(“./EGSystems/Utilities/egs_Networking.cs”);
 exec(“./EGSystems/Utilities/egs_SimSet.cs”);
 exec(“./EGSystems/Utilities/egs_String.cs”);
 // <-- Maze Runner Changes End
 //.. leave remaining code alone

14.4.6 Add Maze Runner Data
You are not expected to create your own content for this game. I have included
all of the models, textures, and sounds you will need.
 From the accompanying disk, please copy the following directories.

1. “\Base\Data\GPGTBase” directory into “\MazeRunner\prototype\data”,
and

2. “\MazeRunner\A_SettingUp\MazeRunner” directory into “\MazeRunner\
prototype\data”.

 Putting It All Together Chapter 14

577

14.4.7 Create Maze Runner Scripts Directory
Although we will not be placing anything in it yet, in preparation for our lessons,
let’s create the directory “\MazeRunner\prototype\server\scripts\MazeRunner”.

14.4.8 Test Run
After saving the modifi ed “main.cs” and “prototype\main.cs”, run the execut-
able you placed in “MazeRunner”, and the prototype should start up. If it does
not, please retrace your steps and see if you missed something.

Windows Users

On Windows platforms, some users will get a warning about a missing or
wrong sound setup. If, and only if, you get this message, copy the “\Maze-
Runner\A_SettingUp\OpenAL32.dll” fi le (found on the accompanying disk)
into your “MazeRunner” directory and try again.
 If that does not work, read through the “Getting Help” section in Chapter
1 of this guide.

14.4.8 Ready To Start
OK, if you got the executable to run, you’re ready to start.

14.5 90 Percent or 10 Percent?
If we ignore the iterative nature of game creation, we can roughly divide game
development into two parts: the fi rst 90 percent and the last 10 percent.
 I know, that probably sounds like a bunch of tripe, but bear with me for
a moment.
 The fi rst 90 percent should be all about planning and implementing. The
last 10 percent should be about polishing. If you are doing the polishing fi rst
or spending too much time creating polished content, you are simply wasting
your time.
 The above percentages do not have anything to do with the duration of
tasks but rather with the amount of effort that you should put into these two
parts when making your prototype.
 You may have the goal of making games for fun or making them for profi t
(hopefully for both). In the end, either goal will only be accomplished by
focusing on getting your game from the idea state to a playable state as fast as
you can.
 Without a doubt, nice art, clean interfaces, and special effects are very
important to a game and to its ability to sell, but in order to have something
to sell, you must fi rst have something to play. Some special effects and artistic

Part IV Making the Game

578

elements are critical to the playability of a game, but most are not (this does
not negate their value in the fi nal version of a game).
 To fi nd out if a game is fun, you must be able to play it. Thus, the only goal
you should have is to get the game you are working on to a playable stage.
 Often, when you play with your game prototype, you will fi nd that an idea
that seemed great doesn’t really work or just isn’t really fun. Just as often, you
may be surprised to fi nd that things you didn’t plan on doing turned out to be
really fun and/or cool. In either case, you’ll never know until you play your
game.
 In this guide, we do lessons that can be considered either part of the 90
percent or part of the 10 percent. To help you, those lessons that are related
to game playability have been marked as “Maze Runner Lesson (90 Percent
Step),” and those that are important to the look and feel of the game have
been marked as “Maze Runner Lesson (10 Percent Step).” You can safely skip
the latter lessons and the game will still be playable.
 As a parting note, just remember this when you are tempted to work on
10 percent stuff fi rst:

While a 90 percent is probably a B, 10 percent is definitely an F.

14.6 Returning to Chapter 2?
You may be reading this as a result of having been directed here from the end
of Chapter 1. If so, you should now return to Chapter 2, “Torque from 10,000
Feet,” and continue from there. Otherwise, feel free to continue here.

14.7 Finishing the Prototype
Thus far, you have probably been working your way through the guide, learn-
ing about various features of the Torque Game Engine. Along the way, we
have stopped to do little lessons that created one or more game elements to
be used in the game.
 At this point, we don’t really have a playable game. We have just a short
distance to go before our game reaches the playable prototype stage. To get
our game ready for play testing we must do the following two things.

1. Finish gameplay code. At this point, we can start the Maze Runner mis-
sion and then manually load a level, but our player doesn’t get moved to
the right spot on the level, and there is pretty much no interaction. We
need to change this. Specifi cally, we need to make the levels load automati-
cally, have the player die when struck by a fi reball or after falling into the
lava, load the next level when all the coins are collected, and award our
player with a new life on a successful level completion.

 Putting It All Together Chapter 14

579

2. Improve feedback. With the fi nal mechanics in place, we need to provide
just a little more feedback to the player. Specifi cally, we need to update the
play GUI to show how many lives we have, how many coins we’ve collected
(score), and how many coins are left for a level. Also, while we are about
this, we will add sounds for the fi reball fi ring and explosions and then add
some GUI sounds and music to make if feel like a completed package.

14.8 Finish Gameplay Code
By this point, you should be feeling pretty comfortable with TorqueScript and
with navigating the prototype directory structure. So, the kid gloves are com-
ing off. In the next few pages, we will run through some terse discussions. We
will examine newly added scripts and modifi cations to scripts we discussed
in prior lessons.

14.8.1 Copy Required Files
Before we continue, please do the following.

1. Copy “\MazeRunner\MazeRunner_Post_Finishing_the_Prototype\prototype2”
into “\MazeRunner\”.

2. Copy “\MazeRunner\MazeRunner_Post_Finishing_the_Prototype\main.cs”
into “\MazeRunner\”.

The new “main.cs” fi le points to the newly added “prototype2” mod directory.
The directory “prototype2” contains all of the changes we are about to discuss
and is ready to play, if you would like to try it before continuing.

14.8.2 Breaking the Law
The fi rst thing we will do is break the law. OK, we’re not breaking the law, but
we are doing something that I warned you not to do earlier. Namely, we are
going to make a global variable for tracking the ID of the player. Then, we are
going to use it to implement gameplay scripts and later to keep our interfaces
up to date.
 We are, in effect, ignoring the client-server divide. This is both good and
bad. It is good because it makes writing the scripts for our single-player game
simple. It is bad because it ties us to a single-player game only. If later we
decide to make this game support multiple players, we will experience at least
some pain modifying our scripts to handle this new mode.
 So, why are we doing this? Well, fi rst, I know that in this book we will
only ever play this game in single-player mode. Second, the game is simple
enough that later, if you do convert this to multiplayer, the pain won’t be too
bad and it will serve as an excellent object lesson in making good decisions.

Part IV Making the Game

580

 Excuses and reason aside, we must implement this change. To do so, I have
modifi ed the method GameConnection::createPlayer() in “game.cs” to
look like the following (bold lines are new code):

function GameConnection::createPlayer(%this, %spawnPoint) {
 // Create the player object
 %player = new Player() {
 dataBlock = MazeRunner; // Change this line
 client = %this;
 };
 MissionCleanup. add(%player);
 $Game::Player = %player; // MazeRunner

Now, whenever we want the player’s ID, we can just reference the global
$Game::Player.

14.8.3 Automatic Startup
To this point, we have been manually loading missions by typing
buildLevel(0);. That is just fi ne for testing purposes, but we really need
the game to load when the mission is loading.

Experiments in Loading

If we examine the “game.cs” fi le closely, we will see that it has a variety of
functions and methods. Among these are some promising-sounding places to
put a script for automatically loading our fi rst level.

• onMissionLoaded(). Hmmm... this sounds good. The mission is loaded,
so we should be good to go.

• startGame(). This sounds good, too. I mean, we do want to start the
game, right?

• GameConnection::createPlayer(). OK, maybe you wouldn’t think of
this one. This is a hint, actually.

Great, we have some possible places to do the level loading, but what are the
steps we need to follow in order to load our level?
 Can we simply put a buildLevel() call in one of these? Why don’t we
try it? Add the following code to the end of onMissionLoaded() (bold lines
are new code).

 startGame();
 buildLevel(0);
 }

After restarting the game and reloading the mission, this may work, or it may
work partially, or the game may hang. It depends.

 Putting It All Together Chapter 14

581

 At this point in the game startup process, there is some ambiguity in tim-
ing due to latencies that can vary from run to run. This means that any of the
following actions can occur.

1. The game starts correctly, and the player is on the correct spawn point.
This is what we want. Unfortunately, this doesn’t always happen.

2. The level loads and the player gets dropped on the safe spawn point—end
of story. Now we’re stuck.

3. If timing conspires against you, all the resources that need to have been
loaded won’t be ready, and the loading code will just hang. This is the
worst possibility.

So, what is happening here? Well, the mission was loaded, but the player had
not been created yet, so our scripts for moving the player can’t work. They
have no object to move. (If you’re curious, you can see the player-moving
script by looking at the playerDrop() function in “levelloader.cs”.)
 Since putting buildLevel() after startGame() didn’t work, that pretty
much rules out our placing the function call in startGame(), too. What
about GameConnection::createPlayer(), then? Let’s try that next.

 %this.player = %player;
 %this. setControlObject(%player);

 BuildLevel(0); //MazeRunner
}

Perfect! This is guaranteed to work properly every time. The level is always
loaded after the player is created, so the scripts have valid object IDs to work
with.

14.8.4 Dying
Another problem with our prior revision of this game was that we didn’t get
killed by the lava or fi reballs. Let’s remedy that now.

KillZone

To be killed by the lava, we need some way to know we’re in it. Now, we
could make our water block into a lava block by changing the water type.
However, as part of our game design, we chose to make the player invincible,
so this won’t really help. I mean, we could in theory make our player have
a very low damage level, make it damageable, and then maybe, just maybe,
falling in the lava would kill him.
 The thing is, we don’t really want the player object to be destroyed. We
just want to decrement a life and move to the spawn point. When a player

Part IV Making the Game

582

object is in the destroyed/dead state (getState() returns “dead”), the player
will no longer move or take move commands until it is replaced with a new
instance. This is by design and is not what we want in this instance.
 So, long story short, we get creative. Let’s create a really big trig-
ger (named KillZone) and place it in the lava. Then, we can just write an
 onEnter Trigger() callback that will take away a life and move us to the
spawn point. Perfect!

datablock TriggerData(KillZoneTrigger) {
 tickPeriodMS = 100;
};

function KillZoneTrigger:: onEnterTrigger(%DB , %Trigger ,
 %Obj) {
 %Obj.loseALife();
}

The above code defi nes the datablock for this trigger, and the callback calls
the method loseALife() (described below) on the object entering the trig-
ger. But what about placement? The following code will do the placement.

function buildKillZone() {
 new Trigger(KillZone) {
 position = “-256 256 40”;
 rotation = “1 0 0 0”;
 scale = “512 512 25”;
 dataBlock = “KillZoneTrigger”;
 polyhedron = “0.0000000 0.0000000 0.0000000 1.0000000
 0.0000000 0.0000000 0.0000000 -1.0000000
 0.0000000 0.0000000 0.0000000 1.0000000”;
 };
 MissionGroup. add(KillZone);
}

Then we can add a call to this code in onMissionLoaded() to do the cre-
ation (bold lines are new code):

function onMissionLoaded() {
 buildKillZone(); // MazeRunner
 startGame();
}

So, what about that loseALife() thing?

 Putting It All Together Chapter 14

583

Player::loseALife()
The easiest way to handle removing lives is to make a method scoped to the
Player class (so it can be called on the Player object) that handles all of the
bookkeeping. This simplifi es things greatly. Yes, right now only two things
can kill the player, but later you might add more, and having killing code all
over the place would be very bad.
 Here is the code (located in “mazerunnerplayer.cs”).

function Player::loseALife(%player) {
 // 1
 %player.lives--;

 // 2
 if(%player.lives <= 0) {
 schedule(0 , 0 , endGame);
 return;
 }

 // 3
 %player. setVelocity(“0 0 0”);
 %player. setTransform(%player.spawnPointTransform);
}

This code does the following.

1. It decrements the player’s life counter. (Yes, we haven’t talked about this
yet. It’s coming up soon.)

2. It checks to see if all of our lives are gone and then schedules a call to
endGame() (in “game.cs”) to unload the mission, destroy the player, dis-
connect the client from the server, and get us back into the main menu.

Why not call endGame() directly?
You may wonder why we schedule a call to endGame() instead of calling it
directly.

The reason we do this is that, when we call endGame(), we indirectly cause the
player to be deleted.

However, the player is the object that the loseALife() method was called
on, so when the engine tries to return from the call to endGame(), it will not
have anywhere to return to. This will crash the engine.

The lesson here is to never delete the current object in a method that is called on
that object. Always defer that deletion by using a call to schedule().

Calling schedule() with a time of 0 milliseconds tells the engine to run the
function as soon as possible after returning from all nested function calls. In
practice, this will always be on the next processing cycle or later.

Part IV Making the Game

584

3. If the game is not over, the player is moved back to its last spawn point.
This information is stored in the player by playerDrop() in the fi le
“levelloader.cs”:

$Game::Player.spawnPointTransform = (%actX SPC %actY SPC
 $CurrentElevation);

Initial Lives

In order to take away lives, we must have lives to take. The best place to add
initial lives to the player is either in its on Add() method or at the location
where we create it. I chose the on Add() method (in “mazerunnerplayer.cs”;
bold lines are new code):

function MazeRunner::on Add(%DB , %Obj) {
 Parent::on Add(%DB , %Obj);
 %Obj.lives = 3;
}

Fireballs

OK, we got a little off topic there, but we’re back now. The next question is:
how do fi reballs kill?
 The projectile object has an onCollision() callback that is called for
collisions with any world object. So, if we write a version of this callback in
the namespace of our projectile, we can have that callback check to see if the
player was hit and call loseALife().

function FireBallProjectile:: onCollision(%projectileDB ,
 %projectileObj ,
 %collidedObj ,
 %fade , %vec ,
 %speed) {
 if (%collidedObj. getClassName() $= “Player”) {
 %collidedObj.loseALife();
 }
}

In the above callback (located in “fi reballs.cs”), the engine is asked to get the
class name for the collided-with object. It then compares this to “Player”.
If the comparison returns true, loseALife() is called on the collided-with
object.

 Putting It All Together Chapter 14

585

Alternate Solution #1

There is an alternate way to write this code that would actually work in more
cases (i.e., for Player and aiPlayer).

// Alternate implementation
function FireBallProjectile:: onCollision(%projectileDB ,
 %projectileObj , %collidedObj ,
 %fade , %vec , %speed) {
 if (%collidedObj. getType() $= $TypeMasks::PlayerObjectType) {
 %collidedObj.loseALife();
 }
}

This alternate implementation uses the getType() method to get a bitmask
for the collided-with object. The bitmask contains bit settings for all classes
from which the object is derived as well as for the class itself. So, as I alluded
to, if the collision occurred against an aiPlayer (which is derived from Player),
this comparison would still work, whereas the prior code would not. In this
game, we don’t have that worry, so let’s leave it as is.

Alternate Solution #2

Originally, as I wrote this code for the book, I was using a bleeding-edge
version of the engine (version 1.4 before release), and I ran into a bug (that
has since been fi xed) where %collidedObj was always getting “1”. For a
moment, I thought I was stuck. Then, it occurred to me that there are other
ways to solve the identifi cation problem, and I wrote the following code.

%Offset = vectorSub(%vec , $Game::Player. getWorldBoxCenter());
%Len = vectorLen(%offset);
if(%len < 1.7) {
 $Game::Player.loseALife();
}

This code uses the position of the projectile’s collision and then compares it to
the position of the player’s centroid. If the distance between them is small (1.7
world units or less), in all likelihood the object that was hit is the player, and I
call loseALife(). This solved my temporary problem, and in the occasional
instance when the player wasn’t hit but was just close to the collision point,
the difference was not noticeable.
 The lesson here is that TGE is very fl exible, and you can often solve the
same problem in many ways. So, don’t let one problem stop you.

Part IV Making the Game

586

Out of Lives

At some time, after all this losing of lives, the player will be out of lives.
According to our initial rules list, this means the game is up, time to go home.
As we have already seen (above) the loseALife() method handles this case
and ends the game for us.

14.8.5 Moving On
The last things we need to fi x with regard to gameplay are moving on to the
next level and getting our extra life.

Last Coin

Our design rules stated that, when the last coin is picked up, the current level
should be unloaded and the next level should be loaded. So, how do we do
this?
 If you recall, the inventory system has a callback called onPickup().
When we discussed this callback, I said that you might want to override it to
implement special behaviors. This is one of those times.
 If you will look in “coins.cs”, you will fi nd the following implementation
of onPickup().

function Coin::onPickup(%pickupDB , %pickupObj ,
 %ownerObj) {
 // 1
 %status = Parent::onPickup(%pickupDB , %pickupObj ,
 %ownerObj);

 // 2
 if (CoinsGroup. getCount() == 0) {
 buildLevel($Game::NextLevelMap);
 $Game::Player.lives++;
 }

 // 3
 return %status;
}

This callback does the following.

1. It takes advantage of the prewritten pickup code by calling the Parent::
 version.

2. It then checks to see if the SimGroup CoinsGroup is empty. In the case that
it is empty, buildLevel() is called with the stored numeric ID of the next
level, and a new life is added to our player.

 Putting It All Together Chapter 14

587

3. Last, but not least, it returns the return status from the Parent call. This
is important because the method/callback that called onPickup() in the
fi rst place might care if the pickup was successful or not.

14.8.6 Gameplay Scripting Completed
We are offi cially done with the gameplay scripting now. The game is now in
a playable state, and we could defi ne some levels and ship it off to our testers
at this point. If this were a business venture, that would be the plan, but since
we’re learning about Torque and not running a gaming business, let’s continue.

14.9 Improve Feedback
To make the game easier to play, we should provide some information to the
player about how many lives are remaining, what the score is, and how many
coins are left on a level. Also, adding sounds to the fi reballs will make them a
little easier to detect. Lastly, if we add some sounds and music, we will have
a nicely rounded prototype.

14.9.1 Copy Required Files
Before we continue, please do the following.

1. Copy “\MazeRunner\MazeRunner_Post_Improve_Feedback\prototype3”
into “\MazeRunner\”.

2. Copy “\MazeRunner\MazeRunner_Post_Improve_Feedback\main.cs” into
“\MazeRunner\”.

The new “main.cs” fi le points to the newly added “prototype3” mod directory.
The directory “prototype3” contains all of the changes we are about to discuss
and is ready to play, if you would like to try it before continuing.

14.9.2 New playGUI HUDs
If you start the game and run the “Maze Runner” mission, you will see that
the new and improved playGUI has three HUDS at the top of the screen (Fig-
ure 14.1.) The three HUDs are the following.

• Lives counter (upper-left). Shows number of lives the player has left.

• Score (upper-middle). Shows number of coins thus far recovered.

• Remaining coins for level (upper-right). Shows coins left till end of level.

These HUDS should look quite familiar. They are the same counters we dis-
cussed in Chapter 13, “Game Interfaces,” being put to good use in our proto-
type game.

Part IV Making the Game

588

 To make your life easier, I have created a completely new playGUI con-
taining these HUDS and placed it and all the scripts and content associated
with it in “~\client\ui\PlayGUIs\”. To get this new playGUI interface loaded
instead of the old one, I changed the initClient() function in “~\client\
init.cs” as follows.

function initClient() {
 // ...
 //exec(“./ui/PlayGui.gui”); // Prior to Maze Runner
 exec(“./ui/PlayGUIs/PlayGui.cs”); // MazeRunner (Load My GUI)
 // ...
 //exec(“./scripts/playGui.cs”); // Prior to Maze Runner
 // ...
}

This change simply tells the function NOT to load the old “PlayGUI.gui” and
“PlayGUI.cs” and to load my “PlayGUIs/PlayGui.cs” intstead. This new script
will automatically load the remainder of the scripts required to build the new
playGUI.
 Now, let’s talk about how these HUDs are hooked up.

Figure 14.1

New HUDs.

 Putting It All Together Chapter 14

589

Hooking up the Lives HUD

The lives counter is initialized in the MazeRunner::on Add() callback, from
the fi le “mazerunnerplayer.cs” (bold lines are new code):

function MazeRunner::on Add(%DB , %Obj) {
 Parent::on Add(%DB , %Obj);
 %Obj.lives = 3;
 livescounter.setCounterValue(%Obj.lives);
}

It is decremented in Player::loseALife(), from “mazerunnerplayer.cs”
(bold lines are new code).

function Player::loseALife(%player) {
 // 1
 %player.lives--;
 livescounter.setCounterValue(%player.lives);

 // ...
}

It is incremented in Coin::onPickup(), from “coins.cs” (bold lines are new
code).

function Coin::onPickup(%pickupDB , %pickupObj , %ownerObj) {
 // ...
 if (CoinsGroup. getCount() == 0) {
 // ...
 livescounter.setCounterValue($Game::Player.lives);
 }
 // ...
}

Hooking up the Score HUD

The score counter is initialized in GameConnection::createPlayer(),
from “~\server\scripts\game.cs” (bold lines are new code).

function GameConnection::createPlayer(%this, %spawnPoint) {
 // ...
 BuildLevel(0);
 scorecounter.setCounterValue(0);
}

Part IV Making the Game

590

It is incremented in Coin::onPickup(), from “coins.cs” (bold lines are new
code).

function Coin::onPickup(%pickupDB , %pickupObj , %ownerObj) {
 // ...
 scorecounter.setCounterValue(
 scorecounter.getCounterValue() + 1);
 // ...
}

Hooking up the Remaining Coins HUD

The coins counter is initialized at the very end of BuildLevel(), from
“levelloader.cs” (bold lines are new code).

function BuildLevel(%levelNum) {
 // ...
 coincounter.setCounterValue(CoinsGroup. getCount());
}

It is decremented in Coin::onPickup(), from “coins.cs” (bold lines are new
code):

function Coin::onPickup(%pickupDB , %pickupObj , %ownerObj) {
 // ...
 coincounter.setCounterValue(CoinsGroup. getCount());
 // ...
}

14.9.3 Adding Sounds
To give the game a little more pizzazz and to make it feel more fi nished, we
need to add a few sounds. As you will recall, in Chapter 11, “Special Effects,”
we made several audio descriptions and audio profi les. I have included all of
these and a few others in two separate places.
 The 2D sound descriptions and profi les have been added to a new fi le named
“~\client\scripts\MazeRunnerGUISounds.cs”. This includes the following.

• MazeRunnerNonLooping2DADObj. A non-looping 2D AudioDescription
object for use with AudioProfi le objects.

• MazeRunnerLooping2DADObj. A looping 2D AudioDescription object for
use with AudioProfi le objects.

• MazeRunnerGGSplashScreen. An AudioProfi le object to play music when
the GarageGames splash screen is displayed.

 Putting It All Together Chapter 14

591

• MazeRunnerButtonOver and MazeRunnerButtonPress. Two AudioProfi le
objects used to play button over and press sounds.

• MazeRunnerLevelLoop. An AudioProfi le object used to play an ambient
loop during game play.

This fi le is loaded by “~\client\init.cs” using the following code.

/// Load client-side Audio Profiles/Descriptions
 exec(“./scripts/audioProfiles.cs”);
 exec(“./scripts/MazeRunnerGUISounds.cs”); // Maze Runner

The 3D sound descriptions and profi les have been added to the existing
“fi reballs.cs” fi le at the top and include the following.

• MazeRunnerNonLooping3DADDB. A nonlooping 3D AudioDescription
datablock for use with AudioProfi le datablocks.

• MazeRunnerFireballExplosionSound. An AudioProfi le datablock that is
played for each fi reball when it is shot.

• MazeRunnerFireballExplosionSound. An AudioProfi le datablock that is
used by the FireBallExplosion datablock to play an explosion sound.

These sounds will now be loaded when “fi reballs.cs” is executed.
 Now, let’s briefl y discuss how each of our new sounds is used.

Adding Sound To Splash Screen

The simplest way to add a sound to the GarageGames splash screen is to
play the sound when the splash screen is displayed. If we look in the fi le
“~\client\ui\StartupGui.gui”, we will fi nd a method named loadStartup().
This method is used to display the splash screen. To have the game play a
sound when the splash screen is displayed, I made these changes.

function loadStartup() {
 // ...
 //alxPlay(AudioStartup); // Before Maze Runner
 alxPlay(MazeRunnerGGSplashScreen); // Maze Runner
}

Adding Sound to Buttons

To have the menu buttons play a sound when the mouse passes over a but-
ton and when a button is clicked, I needed to defi ne a new GuiControlProfi le
object and fi ll in the proper fi elds.

if(!isObject(MainMenuButtonProfile))
 new GuiControlProfile (MainMenuButtonProfile) {

alxPlay()
And Other

Sound Functions
We did not explicitly
discuss the alx*()
functions in the
guide, but they are
all documented in
the accompanying
“Console Functions
Quick Reference” that
is part of Appendix A
on the accompanying
disk.

Part IV Making the Game

592

 // ...
 soundButtonOver = “MazeRunnerButtonOver”;
 soundButtonDown = “MazeRunnerButtonPress”;
 };

I then made sure that each button in the main menu (“~\client\ui\
mainMenuGui.gui”) used this new profi le.

 // ...
 new GuiButtonCtrl() {
 profile = “MainMenuButtonProfile”;
 // ...

Adding Ambient Loop to Game

To add the ambient loop to our game, I simply added an alxPlay() state-
ment to the onWake() callback and a reciprocal alxStop() statement to the
onSleep() callback for the new playGUI. Both of these callbacks are located
in “~\client\ui\playGUIs\playGUI.cs” and now look like this.

function PlayGui::onWake(%this) {
 $enableDirectInput = “1”;
 activateDirectInput();
 // Activate the game’s action map
 moveMap.push();
 // Maze Runner
 %this.levelLoop = alxPlay(MazeRunnerLevelLoop);
}

function PlayGui::onSleep(%this) {
 // Pop the keymap
 moveMap.pop();

 if(isObject (%this.levelLoop))
 alxStop(%this.levelLoop); // Maze Runner
}

 Notice that I simply store the handle returned from alxPlay() into an
aptly named dynamic fi eld levelLoop created on the fl y in the playGUI con-
trol object. Later, I check to see if the handle represents a valid handle and
stop playing the sound associated with it using alxStop().

 Putting It All Together Chapter 14

593

Playing Sounds When Fireballs Are Fired

To play the fi ring sound, we will again use the playAudio() ShapeBase
method. Although we don’t care in this single-player game, by doing this, we
insure that every client will hear the sound with no extra effort on our part. To
do this, I modifi ed the StaticShape::shootFireBall() console method
to include the following code.

function StaticShape::shootFireBall(%marker,
 %projectile ,
 %pointingVector ,
 %velocity) {
 // ...
 %marker.playAudio(0 , MazeRunnerFireballFiringSound);
}

If you recall, all fi reballs are fi red from the center position of a fi reball block’s
world box. Thus, we can approximate the correct location for the fi ring sound
by simply playing the fi ring sound using the block that marks the origin of the
shot itself. In this case I merely called playAudio() and played the Maze-
RunnerFireballFiringSound AudioProfi le datablock in sound slot 0.

Adding Explosion Sounds to An Explosion Datablock

The last sound that was added is the explosion sound. This was accomplished
by assigning the new MazeRunnerFireballExplosionSound AudioProfi le
datablock to the existing FireBallExplosion datablock’s soundProfile
fi eld.

datablock ExplosionData(FireBallExplosion) {
 // ...
 soundProfile = “MazeRunnerFireballExplosionSound”;
 // ...
};

 That’s it. We now have a working prototype that we can distribute for
testing. What’s next?

14.10 Improving the Game
At this point, the game is working and completely playable. However, it is a
long way from being a completed, or perhaps even fun, product. This short
section is about getting the game from sort-of-boring prototype to fun-to-play
fi nished product.

Part IV Making the Game

594

 Also, to show some of the things that can be done to improve this game,
an improved version of the game has been supplied on the accompanying disk
titled “MazeRunnerAdvanced”.

14.10.1 Add More Features
Before you jump into adding new features, I suggest that you play with your
fi nal prototype and study the scripts that make it run. Make some sample lev-
els and play them. Then, once you feel confi dent enough, write down a list of
new features and start adding them.
 To help your muse, here is a short list of suggested features.

• Rewrite the level loader.

• Get rid of the manual level-editing process and add a visual editor.

• Write a new level loader to load the fi les generated by the level editor.

• Add new gameplay elements.

• Gravity chutes.

• Flaming pipes.

• Falling blocks.

• Blocks that disappear (permanently) on contact.

• Opponents that block the path and kill the player on contact.

14.10.2 Use Missions Instead
As an exercise, consider changing the scripts to dynamically create a mission
fi le then load the mission fi le instead of generating the level on the fl y.

14.10.3 Fix Safe Block
Currently, the player is sent to a “safe” block during level tear-down and
build-up. This is kind of weird and not all that pleasant to look at. Come up
with a better idea, like the following.

• Overlay the screen with a “loading” GUI while building.

• Fade the screen to black while building.

14.10.4 Cleanup
There are a tremendous number of scripts and assets going unused in the
game. Get rid of these to give the game a smaller disk footprint.

 Putting It All Together Chapter 14

595

14.10.5 Maximize Networking Performance
As a single-player game, you might not think networking code would mat-
ter much, but it still does. By default, the networking settings are a bit low.
Because our connection is local, we can maximize these settings. This will
help decrease the time it takes to build our levels (since all dynamically gen-
erated objects are being ghosted on the fl y from the local server to the local
client). So put the following settings in “game.cs” at the top.

• $ pref::Net::PacketRateToServer = 32;

• $ pref::Net::PacketSize = 450;

• $ pref::Net::PacketRateToClient = 32;

14.10.6 Experiment with Art and Special Effects
Improve the artwork, add more special effects, and tune the ones that are
there. Try using blocks that do not self-illuminate.

14.10.7 Features Added To Maze Runner
 Advanced
Several new features were added and many old features were changed in
Maze Runner Advanced.

New Art

The fi rst thing that was changed in Maze Runner Advanced was the art. I had
a professional artist replace my ugly programmer art with something that had
a lot more style (Figure 14.2).

Figure 14.2

New art.

Part IV Making the Game

596

Added More Splash Screens

Although this is technically new art, too, I want to point out that I needed to
allow this product to properly represent all the parties involved, so I added
a splash screen for Hall Of Worlds, LLC (my company), and a title screen for
the game (Figure 14.3).

Visual Level Editor

Because I realized early on that the method for adding levels was diffi cult at
best and heinously frustrating at worst, I added a visual editor. This editor
uses modifi cations to the old programmer art and some tricky use of data-
blocks to supply a greatly simplifi ed level editor (Figure 14.4).

Credits and Help Dialog

I added a credits page and a help dialog containing instructions on using the
game, editor instructions, a description of the game, etc. (Figure 14.5.)

Figure 14.3

New splash screens.

Figure 14.4

Visual editor and resulting
level.

 Putting It All Together Chapter 14

597

Figure 14.5

Credits and help.

14.11 Summary
In this chapter, we quickly tied up the loose ends for our gameplay scripts by
enabling auto-loading of the mission, scripts to kill the player, more scripts to
reward the player with extra lives, and scripts moving us on to the next level
or ending the game based on coin and life counts, respectively.
 We learned that there are multiple solutions for each problem we face,
and we examined a concrete example of a case where a bug (originally) pre-
vented me from writing the game the way I wanted to.
 Lastly, we discussed the fact that this game is far from done, and then we
brainstormed some ideas for improving it and looked at what some of those
improvements entailed.
 At this point, you should feel fairly confi dent that you can in fact make a
game, and that the Torque Game Engine will have the power and the features
to make that game a reality.
 With that said, I wish you good luck and happy Torqueing!

	Front Cover
	Table of Contents
	Frontmatter
	Body
	Part I. Introduction
	Chapter 1. Introduction
	Part II. Engine Overview
	Chapter 2. Torque from 10,000 Feet
	Chapter 3. Torque Tools
	Chapter 4. Introduction to TorqueScript
	Part III. Game Elements
	Chapter 5. Torque Core Classes
	Chapter 6. Basic Game Classes
	Chapter 7. Gameplay Classes
	Chapter 8. Mission Objects
	Chapter 9. Game Setup Scripting
	Chapter 10. Gameplay Scripting
	Chapter 11. Special Effects
	Chapter 12. Standard TGE GUI Controls
	Chapter 13. Game Interfaces
	Part IV. Making the Game
	Chapter 14. Putting It All Together
	Back Cover

