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Preface

The objective of this text is to serve as a cornerstone for the learning of logic design, 

digital system design, and computer design by a broad audience of readers. This fifth 

edition marks the continued evolution of the text contents. Beginning as an adap-

tation of a previous book by the first author in 1997, it continues to offer a unique 

combination of logic design and computer design principles with a strong hardware 

emphasis. Over the years, the text has followed industry trends by adding new mater-

ial such as hardware description languages, removing or de-emphasizing material of 

declining importance, and revising material to track changes in computer technology 

and computer-aided design.

NEW TO THIS EDITION 
The fifth edition reflects changes in technology and design practice that require com-

puter system designers to work at higher levels of abstraction and manage larger 

ranges of complexity than they have in the past. The level of abstraction at which 

logic, digital systems, and computers are designed has moved well beyond the level 

at which these topics are typically taught. The goal in updating the text is to more 

effectively bridge the gap between existing pedagogy and practice in the design of 

computer systems, particularly at the logic level. At the same time, the new edition 

maintains an organization that should permit instructors to tailor the degree of tech-

nology coverage to suit both electrical and computer engineering and computer sci-

ence audiences. The primary changes to this edition include:

Chapter 1 has been updated to include a discussion of the layers of abstractions 

in computing systems and their role in digital design, as well as an overview of 

the digital design process. Chapter 1 also has new material on alphanumeric 

codes for internationalization.

The textbook introduces hardware description languages (HDLs) earlier, start-

ing in Chapter 2. HDL descriptions of circuits are presented alongside logic sche-

matics and state diagrams throughout the chapters on combinational and 

sequential logic design to indicate the growing importance of HDLs in contem-

porary digital system design practice. The material on propagation delay, which is 

a first-order design constraint in digital systems, has been moved into Chapter 2.

Chapter 3 combines the functional block material from the old Chapter 3 and 

the arithmetic blocks from the old Chapter 4 to present a set of commonly 
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occurring combinational logic functional blocks. HDL models of the func-

tional blocks are presented throughout the chapter. Chapter 3 introduces the 

concept of hierarchical design.

Sequential circuits appear in Chapter 4, which includes both the description of 

design processes from the old Chapter 5, and the material on sequential circuit 

timing, synchronization of inputs, and metastability from the old Chapter 6. 

The description of JK and T flip-flops has been removed from the textbook 

and moved to the online Companion Website.

Chapter 5 describes topics related to the implementation of digital hardware, 

including design of complementary metal-oxide (CMOS) gates and program-

mable logic. In addition to much of the material from the old Chapter 6, 

Chapter 5 now includes a brief discussion of the effect of testing and verifica-

tion on the cost of a design. Since many courses employing this text have lab 

exercises based upon field programmable gate arrays (FPGAs), the descrip-

tion of FPGAs has been expanded, using a simple, generic FPGA architecture 

to explain the basic programmable elements that appear in many commer-

cially available FPGA families.

The remaining chapters, which cover computer design, have been updated to 

reflect changes in the state-of-the art since the previous edition appeared. 

Notable changes include moving the material on high-impedance buffers from 

the old Chapter 2 to the bus transfer section of Chapter 6 and adding a discus-

sion of how procedure call and return instructions can be used to implement 

function calls in high level languages in Chapter 9.

Offering integrated coverage of both digital and computer design, this edition 

of Logic and Computer Design Fundamentals features a strong emphasis on fun-

damentals underlying contemporary design. Understanding of the material is sup-

ported by clear explanations and a progressive development of examples ranging 

from simple combinational applications to a CISC architecture built upon a RISC 

core. A thorough coverage of traditional topics is combined with attention to com-

puter-aided design, problem formulation, solution verification, and the building of 

problem-solving skills. Flexibility is provided for selective coverage of logic design, 

digital system design, and computer design topics, and for coverage of hardware 

description languages (none, VHDL, or Verilog®).

With these revisions, Chapters 1 through 4 of the book treat logic design, 

Chapters 5 through 7 deal with digital systems design, and Chapters 8 through 12 

focus on computer design. This arrangement provides solid digital system design 

fundamentals while accomplishing a gradual, bottom-up development of funda-

mentals for use in top-down computer design in later chapters. Summaries of the 

topics covered in each chapter follow.

Logic Design 

Chapter 1, Digital Systems and Information, introduces digital computers, com-

puter systems abstraction layers, embedded systems, and information representation 

including number systems, arithmetic, and codes.
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Chapter 2, Combinational Logic Circuits, deals with gate circuits and their 

types and basic ideas for their design and cost optimization. Concepts include 

Boolean algebra, algebraic and Karnaugh-map optimization, propagation delay, and 

gate-level hardware description language models using structural and dataflow mod-

els in both VHDL and Verilog.

Chapter 3, Combinational Logic Design, begins with an overview of a con-

temporary logic design process. The details of steps of the design process including 

problem formulation, logic optimization, technology mapping to NAND and NOR 

gates, and verification are covered for combinational logic design examples. In addi-

tion, the chapter covers the functions and building blocks of combinational design 

including enabling and input-fixing, decoding, encoding, code conversion, selecting, 

distributing, addition, subtraction, incrementing, decrementing, filling, extension and 

shifting, and their implementations. The chapter includes VHDL and Verilog models 

for many of the logic blocks.

Chapter 4, Sequential Circuits, covers sequential circuit analysis and design. 

Latches and edge-triggered flip-flops are covered with emphasis on the D type. 

Emphasis is placed on state machine diagram and state table formulation. A com-

plete design process for sequential circuits including specification, formulation, state 

assignment, flip-flop input and output equation determination, optimization, technol-

ogy mapping, and verification is developed. A graphical state machine diagram model 

that represents sequential circuits too complex to model with a conventional state 

diagram is presented and illustrated by two real world examples. The chapter includes 

VHDL and Verilog descriptions of a flip-flop and a sequential circuit, introducing 

procedural behavioral VHDL and Verilog language constructs as well as test benches 

for verification. The chapter concludes by presenting delay and timing for sequential 

circuits, as well as synchronization of asynchronous inputs and metastability.

Digital Systems Design 

Chapter 5, Digital Hardware Implementation, presents topics focusing on various 

aspects of underlying technology including the MOS transistor and CMOS circuits, 

and programmable logic technologies. Programmable logic covers read-only memo-

ries, programmable logic arrays, programmable array logic, and field programmable 

gate arrays (FPGAs). The chapter includes examples using a simple FPGA architec-

ture to illustrate many of the programmable elements that appear in more complex, 

commercially available FPGA hardware.

Chapter 6, Registers and Register Transfers, covers registers and their applica-

tions. Shift register and counter design are based on the combination of flip-flops 

with functions and implementations introduced in Chapters 3 and 4. Only the ripple 

counter is introduced as a totally new concept. Register transfers are considered 

for both parallel and serial designs and time–space trade-offs are discussed. A sec-

tion focuses on register cell design for multifunction registers that perform multiple 

operations. A process for the integrated design of datapaths and control units using 

register transfer statements and state machine diagrams is introduced and illustrated 

by two real world examples. Verilog and VHDL descriptions of selected register 

types are introduced.



Chapter 7, Memory Basics, introduces static random access memory (SRAM) 

and dynamic random access memory (DRAM), and basic memory systems. It also 

describes briefly various distinct types of DRAMs.

Computer design 

Chapter 8, Computer Design Basics, covers register files, function units, datapaths, 

and two simple computers: a single-cycle computer and a multiple-cycle computer. 

The focus is on datapath and control unit design formulation concepts applied to 

implementing specified instructions and instruction sets in single-cycle and multiple-

cycle designs.

Chapter 9, Instruction Set Architecture, introduces many facets of instruc-

tion set architecture. It deals with address count, addressing modes, architectures, 

and the types of instructions and presents floating-point number representation 

and operations. Program control architecture is presented including procedure 

calls and interrupts.

Chapter 10, RISC and CISC Processors, covers high-performance processor 

concepts including a pipelined RISC processor and a CISC processor. The CISC 

processor, by using microcoded hardware added to a modification of the RISC 

processor, permits execution of the CISC instruction set using the RISC pipeline, 

an approach used in contemporary CISC processors. Also, sections describe high-

performance CPU concepts and architecture innovations including two examples 

of multiple CPU microprocessors.

Chapter 11, Input–Output and Communication, deals with data transfer 

between the CPU and memory, input–output interfaces and peripheral devices. Dis-

cussions of a keyboard, a Liquid Crystal Display (LCD) screen, and a hard drive as 

peripherals are included, and a keyboard interface is illustrated. Other topics range 

from serial communication, including the Universal Serial Bus (USB), to interrupt 

system implementation.

Chapter 12, Memory Systems, focuses on memory hierarchies. The concept of 

locality of reference is introduced and illustrated by consideration of the cache/main 

memory and main memory/hard drive relationships. An overview of cache design 

parameters is provided. The treatment of memory management focuses on paging 

and a translation lookaside buffer supporting virtual memory.

In addition to the text itself, a Companion Website and an Instructor’s Manual 

are provided. Companion Website (www.pearsonglobaleditions.com/Mano) content 

includes the following: 1) reading supplements including material deleted from prior 

editions, 2) VHDL and Verilog source files for all examples, 3) links to computer-

aided design tools for FPGA design and HDL simulation, 4) solutions for about 

one-third of all text chapter problems, 5) errata, 6) PowerPoint® slides for Chapters 1  

through 8, 7) projection originals for complex figures and tables from the text, and 

8) site news sections for students and instructors pointing out new material, updates, 

and corrections. Instructors are encouraged to periodically check the instructor’s site 

news so that they are aware of site changes. Instructor’s Manual content includes 

suggestions for use of the book and all problem solutions. Online access to this man-

ual is available from Pearson to instructors at academic institutions who adopt the 
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book for classroom use. The suggestions for use provide important detailed informa-

tion for navigating the text to fit with various course syllabi.

Because of its broad coverage of both logic and computer design, this book 

serves several different objectives in sophomore through junior level courses. Chapters 

1 through 9 with selected sections omitted, provide an overview of hardware for com-

puter science, computer engineering, electrical engineering, or engineering students in 

general in a single semester course. Chapters 1 through 4 possibly with selected parts 

of 5 through 7 give a basic introduction to logic design, which can be completed in a 

single quarter for electrical and computer engineering students. Covering Chapters 

1 through 7 in a semester provides a stronger, more contemporary logic design treat-

ment. The entire book, covered in two quarters, provides the basics of logic and com-

puter design for computer engineering and science students. Coverage of the entire 

book with appropriate supplementary material or a laboratory component can fill a 

two-semester sequence in logic design and computer architecture. Due to its moder-

ately paced treatment of a wide range of topics, the book is ideal for self-study by engi-

neers and computer scientists. Finally, all of these various objectives can also benefit 

from use of reading supplements provided on the Companion Website.

The authors would like to acknowledge the instructors whose input contributed 

to the previous edition of the text and whose influence is still apparent in the current 

edition, particularly Professor Bharat Bhuva, Vanderbilt University; Professor Donald 

Hung, San Jose State University; and Professors Katherine Compton, Mikko Lipasti, 

Kewal Saluja, and Leon Shohet, and Faculty Associate Michael Morrow, ECE, Uni-

versity of Wisconsin, Madison. We appreciate corrections to the previous editions pro-

vided by both instructors and students, most notably, those from Professor Douglas 

De Boer of Dordt College. In getting ready to prepare to think about getting started 

to commence planning to begin working on the fifth edition, I received valuable feed-

back on the fourth edition from Patrick Schaumont and Cameron Patterson at Virginia 

Tech, and Mark Smith at the Royal Institute of Technology (KTH) in Stockholm, Swe-

den. I also benefited from many discussions with Kristie Cooper and Jason Thweatt 

at Virginia Tech about using the fourth edition in the updated version of our depart-

ment’s Introduction to Computer Engineering course. I would also like to express 

my appreciation to the folks at Pearson for their hard work on this new edition. In 

particular, I would like to thank Andrew Gilfillan for choosing me to be the new third 

author and for his help in planning the new edition; Julie Bai for her deft handling of 

the transition after Andrew moved to another job, and for her guidance, support, and 

invaluable feedback on the manuscript; Pavithra Jayapaul for her help in text produc-

tion and her patience in dealing with my delays (especially in writing this preface!); 

and Scott Disanno and Shylaja Gattupalli for their guidance and care in producing the 

text. Special thanks go to Morris Mano and Charles Kime for their efforts in writing 

the previous editions of this book. It is an honor and a privilege to have been chosen as 

their successor. Finally, I would like to thank Karen, Guthrie, and Eli for their patience 

and support while I was writing, especially for keeping our mutt Charley away from 

this laptop so that he didn’t eat the keys like he did with its short-lived predecessor.

Tom Martin

Blacksburg, Virginia

16          Preface



GLOBAL EDITION

The publishers would like to thank the following for their contribution to the Global 

Edition:

Contributors

Chiranjib Koley, Associate Professor, National Institute of Technology, Durgapur 

Lyla B. Das, Associate Professor, National Institute of Technology, Calicut

Reviewers

Debaprasad Das, Professor, Assam University
Moumita Mitra Manna, Lecturer of Computer Science and Applications at  Bangabasi 
College, University of Calcutta
Piyali Sengupta, Freelance

Preface      17



Processor

Graphics Adapter

Drive Controller
Bus Interface

Keyboard

RAM

External
Cache

Hard Drive

FPU
CPU MMU

Internal
Cache

LCD
Screen



          19

C H A P T E R

Digital Systems  
and Information

1

This book deals with logic circuits and digital computers. Early computers were used 

for computations with discrete numeric elements called digits (the Latin word for 

digital computer. The use of “digital” spread from the 

computer to logic circuits and other systems that use discrete elements of information, 

giving us the terms digital circuits and digital systems. The term logic is applied to circuits 

computers are based on logic circuits, they operate on patterns of elements from these 

two-valued sets, which are used to represent, among other things, the decimal digits. 

Today, the term “digital circuits” is viewed as synonymous with the term “logic circuits.”

The general-purpose digital computer is a digital system that can follow a stored 

sequence of instructions, called a program, that operates on data. The user can specify 

processing tasks, ranging over a very wide spectrum of applications. This makes the 

learning the concepts, methods, and tools of digital system design. To this end, we use 

generic computer and see how they relate to a block diagram commonly used to 

programming computers constructed using billions of transistors. Otherwise, the 

remainder of the chapter focuses on the digital systems in our daily lives and introduces 

approaches for representing information in digital circuits and systems.
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1-1 INFORMATION REPRESENTATION

Digital systems store, move, and process information. The information represents a 

broad range of phenomena from the physical and man-made world. The physical 

world is characterized by parameters such as weight, temperature, pressure, velocity, 

flow, and sound intensity and frequency. Most physical parameters are continuous, 

typically capable of taking on all possible values over a defined range. In contrast, in 

the man-made world, parameters can be discrete in nature, such as business records 

using words, quantities, and currencies, taking on values from an alphabet, the inte-

gers, or units of currency, respectively. In general, information systems must be able 

to represent both continuous and discrete information. Suppose that temperature, 

which is continuous, is measured by a sensor and converted to an electrical voltage, 

which is likewise continuous. We refer to such a continuous voltage as an analog  
signal, which is one possible way to represent temperature. But, it is also possible  

to represent temperature by an electrical voltage that takes on discrete values that 

occupy only a finite number of values over a range, for example, corresponding to 

integer degrees centigrade between -40 and +119. We refer to such a voltage as a 

digital signal. Alternatively, we can represent the discrete values by multiple voltage 

signals, each taking on a discrete value. At the extreme, each signal can be viewed as 

having only two discrete values, with multiple signals representing a large number of 

discrete values. For example, each of the 160 values just mentioned for temperature 

can be represented by a particular combination of eight two-valued signals. The sig-

nals in most present-day electronic digital systems use just two discrete values and 

are therefore said to be binary. The two discrete values used are often called 0 and 1, 

the digits for the binary number system.

We typically represent the two discrete values by ranges of voltage values 

called HIGH and LOW. Output and input voltage ranges are illustrated in  

Figure 1-1(a). The HIGH output voltage value ranges between 0.9 and 1.1 volts, and 

the LOW output voltage value between -0.1 and 0.1 volts. The high input range 

allows 0.6 to 1.1 volts to be recognized as a HIGH, and the low input range allows 
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 FIGURE 1-1 
Examples of Voltage Ranges and Waveforms for Binary Signals
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-0.1 to 0.4 volts to be recognized as a LOW. The fact that the input ranges are wider 

than the output ranges allows the circuits to function correctly in spite of variations 

in their behavior and undesirable “noise” voltages that may be added to or sub-

tracted from the outputs.

We give the output and input voltage ranges a number of different names. 

Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and 0. 

It is natural to associate the higher voltage ranges with HIGH or H, and the lower 

voltage ranges with LOW or L. For TRUE and 1 and FALSE and 0, however, there is 

a choice. TRUE and 1 can be associated with either the higher or lower voltage range 

and FALSE and 0 with the other range. Unless otherwise indicated, we assume that 

TRUE and 1 are associated with the higher of the voltage ranges, H, and the FALSE 

and 0 are associated with the lower of the voltage ranges, L. This particular conven-

tion is called positive logic.

It is interesting to note that the values of voltages for a digital circuit in 

Figure 1-1(a) are still continuous, ranging from -0.1 to +1.1 volts. Thus, the voltage 

is actually analog! The actual voltages values for the output of a very high-speed 

digital circuit are plotted versus time in Figure 1-1(b). Such a plot is referred to as a 

waveform. The interpretation of the voltage as binary is based on a model using 

voltage ranges to represent discrete values 0 and 1 on the inputs and the outputs. 

The application of such a model, which redefines all voltage above 0.5 V as 1 and 

below 0.5 V as 0 in Figure 1-1(b), gives the waveform in Figure 1-1(c). The output 

has now been interpreted as binary, having only discrete values 1 and 0, with the 

actual voltage values removed. We note that digital circuits, made up of electronic 

devices called transistors, are designed to cause the outputs to occupy the two dis-

tinct output voltage ranges for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs 

are not changing. In contrast, analog circuits are designed to have their outputs 

take on continuous values over their range, whether changing or not.

Since 0 and 1 are associated with the binary number system, they are the pre-

ferred names for the signal ranges. A binary digit is called a bit. Information is 

represented in digital computers by groups of bits. By using various coding tech-

niques, groups of bits can be made to represent not only binary numbers, but also 

other groups of discrete symbols. Groups of bits, properly arranged, can even  

specify to the computer the program instructions to be executed and the data to be 

processed.

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys-

tem with 10 values representing the decimal digits. In such a system, the voltages 

available—say, 0 to 1.0 volts—could be divided into 10 ranges, each of length  

0.1 volt. A circuit would provide an output voltage within each of these 10 ranges. 

An input of a circuit would need to determine in which of the 10 ranges an applied 

voltage lies. If we wish to allow for noise on the voltages, then output voltage 

might be permitted to range over less than 0.05 volt for a given digit representa-

tion, and boundaries between inputs could vary by less than 0.05 volt. This would 

require complex and costly electronic circuits, and the output still could be dis-

turbed by small “noise” voltages or small variations in the circuits occurring 

during their manufacture or use. As a consequence, the use of such multivalued 

circuits is very limited. Instead, binary circuits are used in which correct circuit 
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operation can be achieved with significant variations in values of the two output 

voltages and the two input ranges. The resulting transistor circuit with an output 

that is either HIGH or LOW is simple, easy to design, and extremely reliable. In 

addition, this use of binary values makes the results calculated repeatable in the 

sense that the same set of input values to a calculation always gives exactly the 

same set of outputs. This is not necessarily the case for multivalued or analog cir-

cuits, in which noise voltages and small variations due to manufacture or circuit 

aging can cause results to differ at different times.

The Digital Computer

A block diagram of a digital computer is shown in Figure 1-2. The memory stores 

programs as well as input, output, and intermediate data. The datapath performs 

arithmetic and other data-processing operations as specified by the program. The 

control unit supervises the flow of information between the various units. A data-

path, when combined with the control unit, forms a component referred to as a cen-
tral processing unit, or CPU.

The program and data prepared by the user are transferred into memory by 

means of an input device such as a keyboard. An output device, such as an LCD (liq-

uid crystal display), displays the results of the computations and presents them to the 

user. A digital computer can accommodate many different input and output devices, 

such as DVD drives, USB flash drives, scanners, and printers. These devices use digi-

tal logic circuits, but often include analog electronic circuits, optical sensors, LCDs, 

and electromechanical components.

The control unit in the CPU retrieves the instructions, one by one, from the 

program stored in the memory. For each instruction, the control unit manipulates the 

datapath to execute the operation specified by the instruction. Both program and 

data are stored in memory. A digital computer can perform arithmetic computations, 

manipulate strings of alphabetic characters, and be programmed to make decisions 

based on internal and external conditions.

Memory

Control
Unit Datapath

Input/Output

CPU

 FIGURE 1-2 
Block Diagram of a Digital Computer
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Beyond the Computer

In terms of world impact, computers, such as the PC, are not the end of the story. 

Smaller, often less powerful, single-chip computers called microcomputers or micro-
controllers, or special-purpose computers called digital signal processors (DSPs) 

 actually are more prevalent in our lives. These computers are parts of everyday prod-

ucts and their presence is often not apparent. As a consequence of being integral 

parts of other products and often enclosed within them, they are called embedded 
systems. A generic block diagram of an embedded system is shown in Figure 1-3. 

Central to the system is the microcomputer (or its equivalent). It has many of the 

characteristics of the PC, but differs in the sense that its software programs are often 

permanently stored to provide only the functions required for the product. This soft-

ware, which is critical to the operation of the product, is an integral part of the em-

bedded system and referred to as embedded software. Also, the human interface of 

the microcomputer can be very limited or nonexistent. The larger information- 

storage components such as a hard drive and compact disk or DVD drive frequently 

are not present. The microcomputer contains some memory; if additional memory is 

needed, it can be added externally.

With the exception of the external memory, the hardware connected to the 

embedded microcomputer in Figure 1-3 interfaces with the product and/or the out-

side world. The input devices transform inputs from the product or outside world 

into electrical signals, and the output devices transform electrical signals into out-

puts to the product or outside world. The input and output devices are of two types, 

those which use analog signals and those which use digital signals. Examples of digi-

tal input devices include a limit switch which is closed or open depending on whether 

a force is applied to it and a keypad having ten decimal integer buttons. Examples of 

Microcomputer,
Microcontroller,
or Digital Signal

Processor

A-to-D
Converters

D-to-A
Converters

Analog
Input Devices

and Signal
Conditioning

Digital
Input Devices

and Signal
Conditioning

External
Memory

Signal
Conditioning
and Digital

Output Devices

Signal
Conditioning
and Digital

Output Devices

 FIGURE 1-3 
Block Diagram of an Embedded System
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analog input devices include a thermistor which changes its electrical resistance in 

response to the temperature and a crystal which produces a charge (and a corre-

sponding voltage) in response to the pressure applied. Typically, electrical or elec-

tronic circuitry is required to “condition” the signal so that it can be read by the 

embedded system. Examples of digital output devices include relays (switches that 

are opened or closed by applied voltages), a stepper motor that responds to applied 

voltage pulses, or an LED digital display. Examples of analog output devices include 

a loudspeaker and a panel meter with a dial. The dial position is controlled by the 

interaction of the magnetic fields of a permanent magnet and an electromagnet 

driven by the voltage applied to the meter.

Next, we illustrate embedded systems by considering a temperature measure-

ment performed by using a wireless weather station. In addition, this example also 

illustrates analog and digital signals, including conversion between the signal types.

EXAMPLE 1-1 Temperature Measurement and Display

A wireless weather station measures a number of weather parameters at an outdoor 

site and transmits them for display to an indoor base station. Its operation can be 

 illustrated by considering the temperature measurement illustrated in Figure 1-4 

with reference to the block diagram in Figure 1-3. Two embedded microprocessors 

are used, one in the outdoor site and the other in the indoor base station.

The temperature at the outdoor site ranges continuously from -40°F to 

+115°F. Temperature values over one 24-hour period are plotted as a function of 

time in Figure 1-4(a). This temperature is measured by a sensor consisting of a therm-

istor (a resistance that varies with temperature) with a fixed current applied by an 

electronic circuit. This sensor provides an analog voltage that is proportional to the 

temperature. Using signal conditioning, this voltage is changed to a continuous volt-

age ranging between 0 and 15 volts, as shown in Figure 1-4(b).

The analog voltage is sampled at a rate of once per hour (a very slow sampling 

rate used just for illustration), as shown by the dots in Figure 1-4(b). Each value sam-

pled is applied to an analog-to-digital (A/D) converter, as in Figure 1-3, which replaces 

the value with a digital number written in binary and having decimal values between  

0 and 15, as shown in Figure 1-4(c). A binary number can be interpreted in decimal  

by multiplying the bits from left to right times the respective weights, 8, 4, 2, and 1,  

and adding the resulting values. For example, 0101 can be interpreted as 

0 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 5. In the process of conversion, the value of the 

temperature is quantized from an infinite number of values to just 16 values. 

Examining the correspondence between the temperature in Figure 1-4(a) and the volt-

age in Figure 1-4(b), we find that the typical digital value of temperature represents an 

actual temperature range up to 5 degrees above or below the digital value. For exam-

ple, the analog temperature range between -25 and -15 degrees is represented by the 

digital temperature value of -20 degrees. This discrepancy between the actual tem-

perature and the digital temperature is called the quantization error. In order to obtain 

greater precision, we would need to increase the number of bits beyond four in the 

output of the A/D converter. The hardware components for sensing, signal condition-

ing, and A/D conversion are shown in the upper left corner of Figure 1-3.
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Next, the digital value passes through the microcomputer to a wireless trans-

mitter as a digital output device in the lower right corner of Figure 1-3. The digital 

value is transmitted to a wireless receiver, which is a digital input device in the base 

station. The digital value enters the microcomputer at the base station, where calcu-

lations may be performed to adjust its value based on thermistor properties. The 

resulting value is to be displayed with an analog meter shown in Figure 1-4(f) as the 

output device. In order to support this display, the digital value is converted to an 

analog value by a digital-to-analog converter, giving the quantized, discrete voltage 

levels shown in Figure 1-4(d). Signal conditioning, such as processing of the output 

by a low-pass analog filter, is applied to give the continuous signal in Figure 1-4(e). 

This signal is applied to the analog voltage display, which has been labeled with the 

corresponding temperature values shown for five selected points over the 24-hour 

period in Figure 1-4(f). ■

You might ask: “How many embedded systems are there in my current living 

environment?” Do you have a cell phone? An iPod™? An Xbox™? A digital cam-

era? A microwave oven? An automobile? All of these are embedded systems. In 

fact, a late-model automobile can contain more than 50 microcontrollers, each con-

trolling a distinct embedded system, such as the engine control unit (ECU), auto-

matic braking system (ABS), and stability control unit (SCU). Further, a significant 

proportion of these embedded systems communicate with each other through a 

CAN (controller area network). A more recently developed automotive network, 

called FlexRay, provides high-speed, reliable communication for safety-critical tasks 

such as braking-by-wire and steering-by-wire, eliminating primary dependence on 

mechanical and hydraulic linkages and enhancing the potential for additional safety 

features such as collision avoidance. Table 1-1 lists examples of embedded systems 

classified by application area.

Considering the widespread use of personal computers and embedded sys-

tems, digital systems have a major impact on our lives, an impact that is not often 

fully appreciated. Digital systems play central roles in our medical diagnosis and 

treatment, in our educational institutions and workplaces, in moving from place to 

place, in our homes, in interacting with others, and in just having fun! The complexity 

of many of these systems requires considerable care at many levels of design abstrac-

tion to make the systems work. Thanks to the invention of the transistor and the 

integrated circuit and to the ingenuity and perseverance of millions of engineers and 

programmers, they indeed work and usually work well. In the remainder of this text, 

we take you on a journey that reveals how digital systems work and provide a 

detailed look at how to design digital systems and computers.

More on the Generic Computer

At this point, we will briefly discuss the generic computer and relate its various parts 

to the block diagram in Figure 1-2. At the lower left of the diagram at the beginning 

of this chapter is the heart of the computer, an integrated circuit called the processor. 

Modern processors such as this one are quite complex and consist of tens to hun-

dreds of millions of transistors. The processor contains four functional modules: the 

CPU, the FPU, the MMU, and the internal cache.
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We have already discussed the CPU. The FPU ( floating-point unit) is some-

what like the CPU, except that its datapath and control unit are specifically designed 

to perform floating-point operations. In essence, these operations process informa-

tion represented in the form of scientific notation (e.g., 1.234 * 107), permitting the 

generic computer to handle very large and very small numbers. The CPU and the 

FPU, in relation to Figure 1-2, each contain a datapath and a control unit.

The MMU is the memory management unit. The MMU plus the internal cache 

and the separate blocks near the bottom of the computer labeled “External Cache” 

and “RAM” (random-access memory) are all part of the memory in Figure 1-2. The 

two caches are special kinds of memory that allow the CPU and FPU to get at the 

data to be processed much faster than with RAM alone. RAM is what is most com-

monly referred to as memory. As its main function, the MMU causes the memory 

that appears to be available to the CPU to be much, much larger than the actual size 

of the RAM. This is accomplished by data transfers between the RAM and the hard 

drive shown at the top of the drawing of the generic computer. So the hard drive, 

which we discuss later as an input/output device, conceptually appears as a part of 

both the memory and input/output.

The connection paths shown between the processor, memory, and external 

cache are the pathways between integrated circuits. These are typically implemented 

 TABLE 1-1 
Embedded System Examples

Application Area Product

Banking, commerce and  

manufacturing

Copiers, FAX machines, UPC scanners, vending 

machines, automatic teller machines, automated 

warehouses, industrial robots, 3D printers

Communication Wireless access points, network routers, satellites

Games and toys Video games, handheld games, talking stuffed toys

Home appliances Digital alarm clocks, conventional and microwave 

ovens, dishwashers

Media CD players, DVD players, flat panel TVs, digital 

cameras, digital video cameras

Medical equipment Pacemakers, incubators, magnetic resonance 

imaging

Personal Digital watches, MP3 players, smart phones, 

wearable fitness trackers

Transportation and navigation Electronic engine controls, traffic light controllers, 

aircraft flight controls, global positioning systems
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as fine copper conductors on a printed circuit board. The connection paths below the 

bus interface are referred to as the processor bus. The connections above the bus 

interface are the input/output (I/O) bus. The processor bus and the I/O bus attached 

to the bus interface carry data having different numbers of bits and have different 

ways of controlling the movement of data. They may also operate at different speeds. 

The bus interface hardware handles these differences so that data can be communi-

cated between the two buses.

All of the remaining structures in the generic computer are considered part 

of I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate. 

In order to enter information into the computer, a keyboard is provided. In order 

to view output in the form of text or graphics, a graphics adapter card and LCD 

(liquid crystal display) screen are provided. The hard drive, discussed previously, is 

an electromechanical magnetic storage device. It stores large quantities of infor-

mation in the form of magnetic flux on spinning disks coated with magnetic mate-

rials. In order to control the hard drive and transfer information to and from it, a 

drive controller is used. The keyboard, graphics adapter card, and drive controller 

card are all attached to the I/O bus. This allows these devices to communicate 

through the bus interface with the CPU and other circuitry connected to the pro-

cessor buses.

1-2 ABSTRACTION LAYERS IN COMPUTER SYSTEMS DESIGN

As described by Moggridge, design is the process of understanding all the relevant 

constraints for a problem and arriving at a solution that balances those constraints. 

In computer systems, typical constraints include functionality, speed, cost, power, 

area, and reliability. At the time that this text is being written in 2014, leading edge 

integrated circuits have billions of transistors—designing such a circuit one  transistor 

at a time is impractical. To manage that complexity, computer systems design is 

 typically performed in a “top down” approach, where the system is specified at a high 

level and then the design is decomposed into successively smaller blocks until a 

block is simple enough that it can be implemented. These blocks are then connected 

together to make the full system. The generic computer described in the previous 

section is a good example of blocks connected together to make a full system. This 

book begins with smaller blocks and then moves toward putting them together into 

larger, more complex blocks.

A fundamental aspect of the computer systems design process is the concept of 

“layers of abstraction.” Computer systems such as the generic computer can be 

viewed at several layers of abstraction from circuits to algorithms, with each higher 

layer of abstraction hiding the details and complexity of the layer below. Abstraction 

removes unnecessary implementation details about a component in the system so 

that a designer can focus on the aspects of the component that matter for the prob-

lem being solved. For example, when we write a computer program to add two vari-

ables and store the result in a third variable, we focus on the programming language 

constructs used to declare the variables and describe the addition operation. But 

when the program executes, what really happens is that electrical charge is moved 

around by transistors and stored in capacitive layers to represent the bits of data and 
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control signals necessary to perform the addition and store the result. It would be 

difficult to write programs if we had to directly describe the flow of electricity for 

individual bits. Instead, the details of controlling them are managed by several layers 

of abstractions that transform the program into a series of more detailed representa-

tions that eventually control the flow of electrical charges that implement the 

computation.

Figure 1-5 shows the typical layers of abstraction in contemporary computing 

systems. At the top of the abstraction layers, algorithms describe a series of steps that 

lead to a solution. These algorithms are then implemented as a program in a high-

level programming language such as C++, Python, or Java. When the program is run-

ning, it shares computing resources with other programs under the control of an 

operating system. Both the operating system and the program are composed of 

sequences of instructions that are particular to the processor running them; the set of 

instructions and the registers (internal data memory) available to the programmer 

are known as the instruction set architecture. The processor hardware is a particular 

implementation of the instruction set architecture, referred to as the microarchitec-

ture; manufacturers very often make several different microarchitectures that exe-

cute the same instruction set. A microarchitecture can be described as underlying 

sequences of transfers of data between registers. These register transfers can be 

decomposed into logic operations on sets of bits performed by logic gates, which are 

electronic circuits implemented with transistors or other physical devices that con-

trol the flow of electrons.

An important feature of abstraction is that lower layers of abstraction can usu-

ally be modified without changing the layers above them. For example, a program 

written in C++ can be compiled on any computer system with a C++ compiler and 

then executed. As another example, an executable program for the Intel™ x86 

instruction set architecture can run on any microarchitecture (implementation) of 

that architecture, whether that implementation is from Intel™ or AMD. Consequently, 

abstraction allows us to continue to use solutions at higher layers of abstraction even 

when the underlying implementations have changed.

This book is mainly concerned with the layers of abstraction from logic gates 

up to operating systems, focusing on the design of the hardware up to the interface 

between the hardware and the software. By understanding the interactions of the 

Algorithms
Programming Languages

Operating Systems
Instruction Set Architecture

Microarchitecture
Register Transfers

Logic Gates
Transistor Circuits 

 FIGURE 1-5 
Typical Layers of Abstraction in Modern Computer Systems
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layers of abstraction, we can choose the proper layer of abstraction on which to con-

centrate for a given design, ignoring unnecessary details and optimizing the aspects 

of the system that are likely to have the most impact on achieving the proper balance 

of constraints for a successful design. Oftentimes, the higher layers of abstraction 

have the potential for much more improvement in the design than can be found at 

the lower layers. For example, it might be possible to re-design a hardware circuit for 

multiplying two numbers so that it runs 20–50% faster than the original, but it might 

be possible to have much bigger impact on the speed of the overall circuit if the algo-

rithm is modified to not use multiplication at all. As technology has progressed and 

computer systems have become more complex, the design effort has shifted to higher 

layers of abstraction and, at the lower layers, much of the design process has been 

automated. Effectively using the automated processes requires an understanding of 

the fundamentals of design at those layers of abstraction.

An Overview of the Digital Design Process

The design of a digital computer system starts from the specification of the problem 

and culminates in representation of the system that can be implemented. The design 

process typically involves repeatedly transforming a representation of the system at 

one layer of abstraction to a representation at the next lower level of abstraction, for 

example, transforming register transfers into logic gates, which are in turn trans-

formed into transistor circuits.

While the particular details of the design process depend upon the layer of 

abstraction, the procedure generally involves specifying the behavior of the system, 

generating an optimized solution, and then verifying that the solution meets the spec-

ification both in terms of functionality and in terms of design constraints such as speed 

and cost. As a concrete example of the procedure, the following steps are the design 

procedure for combinational digital circuits that Chapters 2 and 3 will introduce:

1. Specification: Write a specification for the behavior of the circuit, if one is not 

already available.

2. Formulation: Derive the truth table or initial Boolean equations that define 

the required logical relationships between inputs and outputs.

3. Optimization: Apply two-level and multiple-level optimization to minimize 

the number of logic gates required. Draw a logic diagram or provide a netlist 

for the resulting circuit using logic gates.

4. Technology Mapping: Transform the logic diagram or netlist to a new diagram 

or netlist using the available implementation technology.

5. Verification: Verify the correctness of the final design.

For digital circuits, the specification can take a variety of forms, such as text or a 

description in a hardware description language (HDL), and should include the respec-

tive symbols or names for the inputs and outputs. Formulation converts the specifica-

tion into forms that can be optimized. These forms are typically truth tables or Boolean 

expressions. It is important that verbal specifications be interpreted correctly when 

formulating truth tables or expressions. Often the specifications are incomplete, and 

any wrong interpretation may result in an incorrect truth table or expression.
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Optimization can be performed by any of a number available methods, such as 

algebraic manipulation, the Karnaugh map method, which will be introduced in 

Chapter 2, or computer-based optimization programs. In a particular application, 

specific criteria serve as a guide for choosing the optimization method. A practical 

design must consider constraints such as the cost of the gates used, maximum allow-

able propagation time of a signal through the circuit, and limitations on the fan-out 

of each gate. This is complicated by the fact that gate costs, gate delays, and fan-out 

limits are not known until the technology mapping stage. As a consequence, it is dif-

ficult to make a general statement about what constitutes an acceptable end result 

for optimization. It may be necessary to repeat optimization and technology map-

ping multiple times, repeatedly refining the circuit so that it has the specified behav-

ior while meeting the specified constraints.

This brief overview of the digital design process provides a road map for the 

remainder of the book. The generic computer consists mainly of an interconnection 

of digital modules. To understand the operation of each module, we need a basic 

knowledge of digital systems and their general behavior. Chapters 1 through 5 of this 

book deal with logic design of digital circuits in general. Chapters 4 and 6 discuss the 

primary components of a digital system, their operation, and their design. The opera-

tional characteristics of RAM are explained in Chapter 7. Datapath and control for 

simple computers are introduced in Chapter 8. Chapters 9 through 12 present the 

basics of computer design. Typical instructions employed in computer instruction-set 

architectures are presented in Chapter 9. The architecture and design of CPUs are 

examined in Chapter 10. Input and output devices and the various ways that a CPU 

can communicate with them are discussed in Chapter 11. Finally, memory hierarchy 

concepts related to the caches and MMU are introduced in Chapter 12.

To guide the reader through this material and to keep in mind the “forest” as 

we carefully examine many of the “trees,” accompanying discussion appears in a 

blue box at the beginning of each chapter. Each discussion introduces the topics in 

the chapter and ties them to the associated components in the generic computer dia-

gram at the start of this chapter. At the completion of our journey, we will have cov-

ered most of the various modules of the computer and will have gained an 

understanding of the fundamentals that underlie both its function and design.

1-3 NUMBER SYSTEMS

Earlier, we mentioned that a digital computer manipulates discrete elements of in-

formation and that all information in the computer is represented in binary form. 

Operands used for calculations may be expressed in the binary number system or in 

the decimal system by means of a binary code. The letters of the alphabet are also 

converted into a binary code. The remainder of this chapter introduces the binary 

number system, binary arithmetic, and selected binary codes as a basis for further 

study in the succeeding chapters. In relation to the generic computer, this material is 

very important and spans all of the components, excepting some in I/O that involve 

mechanical operations and analog (as contrasted with digital) electronics.

The decimal number system is employed in everyday arithmetic to represent 

numbers by strings of digits. Depending on its position in the string, each digit has an 

associated value of an integer raised to the power of 10. For example, the decimal 
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number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4 units plus 5 

tenths. The hundreds, tens, units, and tenths are powers of 10 implied by the position 

of the digits. The value of the number is computed as follows:

724.5 = 7 * 102 + 2 * 101 + 4 * 100 + 5 * 10-1

The convention is to write only the digits and infer the corresponding powers 

of 10 from their positions. In general, a decimal number with n digits to the left of the 

decimal point and m digits to the right of the decimal point is represented by a string 

of coefficients:

An - 1 An - 2 . . . A1 A0 .A-1 A-2 . . . A-m+1 A-m

Each coefficient Ai is one of 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The subscript value i 
gives the position of the coefficient and, hence, the weight 10i by which the coeffi-

cient must be multiplied.

The decimal number system is said to be of base or radix 10, because the coeffi-

cients are multiplied by powers of 10 and the system uses 10 distinct digits. In gen-

eral, a number in base r contains r digits, 0, 1, 2, . . ., r-1, and is expressed as a power 

series in r with the general form

An - 1 rn - 1  +   An - 2 rn - 2  +  . . . +  A1r
1 +   A0r

0

+  A-1 r-1 +  A-2 r-2  +   . . . +   A-m + 1  r-m + 1 +  A-m  r-m

When the number is expressed in positional notation, only the coefficients and the 

radix point are written down:

An - 1 An - 2  . . .  A1 A0 . A-1 A-2  . . . A-m + 1  A-m

In general, the “ . ” is called the radix point. An - 1 is referred to as the most signifi-
cant digit (msd) and A-m as the least significant digit (lsd) of the number. Note 

that if m = 0, the lsd is A-0 = A0. To distinguish between numbers of different 

bases, it is customary to enclose the coefficients in parentheses and place a sub-

script after the right parenthesis to indicate the base of the number. However, 

when the context makes the base obvious, it is not necessary to use parentheses. 

The following illustrates a base 5 number with n = 3 and m = 1 and its conver-

sion to decimal:

 (312.4)5 = 3 * 52 +  1 *  51 +  2 * 50 + 4 * 5-1    

 = 75 + 5 + 2 + 0.8 = (82.8)10

Note that for all the numbers without the base designated, the arithmetic is  

performed with decimal numbers. Note also that the base 5 system uses only five 

digits, and, therefore, the values of the coefficients in a number can be only 0, 1, 2, 3, 

and 4 when expressed in that system.

An alternative method for conversion to base 10 that reduces the number of 

operations is based on a factored form of the power series:

(. . .((An - 1r + An - 2)r + (An - 3)r + . . .+  A1)r + A0 

+ (A-1 + (A-2   + (A-3 + . . . .+  (A-m + 2 + (A-m + 1 + A-mr-1)r-1)r-1 . . .)r-1)r-1)r-1
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4K =  22 *  210 =  212 =  4096  and 16M =  24 * 220 = 224 = 16,777,216

For the example above,

 (312.4)5 = ((3 *  5 +  1) * 5) + 2 + 4 * 5-1 

   = 16 * 5 + 2 + 0.8 = (82.8)10

In addition to decimal, three number systems are used in computer work: 

binary, octal, and hexadecimal. These are base 2, base 8, and base 16 number systems, 

respectively.

Binary Numbers

The binary number system is a base 2 system with two digits: 0 and 1. A binary num-

ber such as 11010.11 is expressed with a string of 1s and 0s and, possibly, a binary 

point. The decimal equivalent of a binary number can be found by expanding the 

number into a power series with a base of 2. For example,

(11010)2 = 1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20 = (26)10

As noted earlier, the digits in a binary number are called bits. When a bit is equal 

to 0, it does not contribute to the sum during the conversion. Therefore, the conver-

sion to decimal can be obtained by adding the numbers with powers of two corre-

sponding to the bits that are equal to 1. For example,

(110101.11)2 = 32  + 16 + 4 + 1 + 0.5 + 0.25 = (53.75)10

The first 24 numbers obtained from 2 to the power of n are listed in Table 1-2. 

In digital systems, we refer to 210 as K (kilo), 220 as M (mega), 230 as G (giga), and 240 

as T (tera). Thus,

 TABLE 1-2 
Powers of Two

n 2n n 2n n 2n

0 1 8 256 16 65,536

1 2 9 512 17 131,072

2 4 10 1,024 18 262,144

3 8 11 2,048 19 524,288

4 16 12 4,096 20 1,048,576

5 32 13 8,192 21 2,097,152

6 64 14 16,384 22 4,194,304

7 128 15 32,768 23 8,388,608

This convention does not necessarily apply in all cases, with more conventional usage 

of K, M, G, and T as 103,  106,  109 and 1012, respectively, sometimes applied as well. So 

caution is necessary in interpreting and using this notation.

The conversion of a decimal number to binary can be easily achieved by a 

method that successively subtracts powers of two from the decimal number. To 
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convert the decimal number N to binary, first find the greatest number that is a 

power of two (see Table 1-2) and that, subtracted from N, produces a positive differ-

ence. Let the difference be designated N1. Now find the greatest number that is a 

power of two and that, subtracted from N1, produces a positive difference N2. 

Continue this procedure until the difference is zero. In this way, the decimal number 

is converted to its powers-of-two components. The equivalent binary number is 

obtained from the coefficients of a power series that forms the sum of the compo-

nents. 1s appear in the binary number in the positions for which terms appear in the 

power series, and 0s appear in all other positions. This method is demonstrated by 

the conversion of decimal 625 to binary as follows:

 625 - 512 =  113 =  N1  512 =  29 

 113 - 64 =  49 =  N2  64 =  26 

 49 - 32 =  17 =  N3  32 =  25 

 17 - 16 =  1 =  N4  16 =  24 

 1 - 1 =  0 =  N5     1 =  20 

(625)10 = 29 + 26 + 25 + 24 + 20 = (1001110001)2

Octal and Hexadecimal Numbers

As previously mentioned, all computers and digital systems use the binary represen-

tation. The octal (base 8) and hexadecimal (base 16) systems are useful for repre-

senting binary quantities indirectly because their bases are powers of two. Since 

23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each 

hexadecimal digit corresponds to four binary digits.

The more compact representation of binary numbers in either octal or 

hexadecimal is much more convenient for people than using bit strings in binary 

that are three or four times as long. Thus, most computer manuals use either 

octal or hexadecimal numbers to specify binary quantities. A group of 15 bits, for 

example, can be represented in the octal system with only five digits. A group of 

16 bits can be represented in hexadecimal with four digits. The choice between 

an octal and a hexadecimal representation of binary numbers is arbitrary, 

although hexadecimal tends to win out, since bits often appear in strings of size 

divisible by four.

The octal number system is the base 8 system with digits 0, 1, 2, 3, 4, 5, 6, and 7. 

An example of an octal number is 127.4. To determine its equivalent decimal value, 

we expand the number in a power series with a base of 8:

(127.4)8 = 1 * 82 + 2 * 81 + 7 * 80 + 4 * 8-1 = (87.5)10

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to use the first r digits from the decimal system, starting with 0, 

to represent the coefficients in a base r system when r is less than 10. The letters of 

the alphabet are used to supplement the digits when r is 10 or more. The hexadeci-

mal number system is a base 16 system with the first 10 digits borrowed from the 
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decimal system and the letters A, B, C, D, E, and F used for the values 10, 11, 12, 13, 

14, and 15, respectively. An example of a hexadecimal number is

(B65F)16 = 11 * 163 + 6 * 162 + 5 * 161 + 15 * 160 = (46687)10

The first 16 numbers in the decimal, binary, octal, and hexadecimal number 

systems are listed in Table 1-3. Note that the sequence of binary numbers follows a 

prescribed pattern. The least significant bit alternates between 0 and 1, the second 

significant bit between two 0s and two 1s, the third significant bit between four 0s 

and four 1s, and the most significant bit between eight 0s and eight 1s.

The conversion from binary to octal is easily accomplished by partitioning the 

binary number into groups of three bits each, starting from the binary point and pro-

ceeding to the left and to the right. The corresponding octal digit is then assigned to 

each group. The following example illustrates the procedure:

(010 110 001 101 011. 111 100 000 110)2 = (26153.7406)8

The corresponding octal digit for each group of three bits is obtained from the first 

eight entries in Table 1-3. To make the total count of bits a multiple of three, 0s can be 

added on the left of the string of bits to the left of the binary point. More importantly, 

0s must be added on the right of the string of bits to the right of the binary point to 

make the number of bits a multiple of three and obtain the correct octal result.

Conversion from binary to hexadecimal is similar, except that the binary num-

ber is divided into groups of four digits, starting at the binary point. The previous 

binary number is converted to hexadecimal as follows:

(0010 1100 0110 1011. 1111 0000 0110)2 = (2C6B.F06)16

 TABLE 1-3 
Numbers with Different Bases

Decimal 

(base 10)

Binary 

(base 2)

Octal 

(base 8)

Hexadecimal 

(base 16)

00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F
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The corresponding hexadecimal digit for each group of four bits is obtained by refer-

ence to Table 1-3.

Conversion from octal or hexadecimal to binary is done by reversing the pro-

cedure just performed. Each octal digit is converted to a 3-bit binary equivalent, and 

extra 0s are deleted. Similarly, each hexadecimal digit is converted to its 4-bit binary 

equivalent. This is illustrated in the following examples:

 (673.12)8 =  110  111  011.  001 010  =  (110111011.00101)2 

 (3A6.C)16 =  0011  1010   0110.  1100  =  (1110100110.11)2

Number Ranges

In digital computers, the range of numbers that can be represented is based on the 

number of bits available in the hardware structures that store and process informa-

tion. The number of bits in these structures is most frequently a power of two, such as 

8, 16, 32, and 64. Since the numbers of bits is fixed by the structures, the addition of 

leading or trailing zeros to represent numbers is necessary, and the range of numbers 

that can be represented is also fixed.

For example, for a computer processing 16-bit unsigned integers, the number 

537 is represented as 0000001000011001. The range of integers that can be handled 

by this representation is from 0 to 216 - 1, that is, from 0 to 65,535. If the same com-

puter is processing 16-bit unsigned fractions with the binary point to the left of the 

most significant digit, then the number 0.375 is represented by 0.0110000000000000. 

The range of fractions that can be represented is from 0 to (216 - 1)/216, or from 0.0 

to 0.9999847412.

In later chapters, we will deal with fixed-bit representations and ranges for 

binary signed numbers and floating-point numbers. In both of these cases, some bits 

are used to represent information other than simple integer or fraction values.

1-4 ARITHMETIC OPERATIONS

Arithmetic operations with numbers in base r follow the same rules as for decimal 

numbers. However, when a base other than the familiar base 10 is used, one must be 

careful to use only r allowable digits and perform all computations with base r digits. 

Examples of the addition of two binary numbers are as follows (note the names of 

the operands for addition):

Carries: 00000 101100

Augend: 01100 10110

Addend: +10001 +10111

Sum: 11101 101101

The sum of two binary numbers is calculated following the same rules as for decimal 

numbers, except that the sum digit in any position can be only 1 or 0. Also, a carry in 

binary occurs if the sum in any bit position is greater than 1. (A carry in decimal 
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occurs if the sum in any digit position is greater than 9.) Any carry obtained in a 

given position is added to the bits in the column one significant position higher. In 

the first example, since all of the carries are 0, the sum bits are simply the sum of the 

augend and addend bits. In the second example, the sum of the bits in the second 

column from the right is 2, giving a sum bit of 0 and a carry bit of 1 (2 = 2 + 0). The 

carry bit is added with the 1s in the third position, giving a sum of 3, which produces 

a sum bit of 1 and a carry of 1 (3 = 2 + 1).

The following are examples of the subtraction of two binary numbers; as with 

addition, note the names of the operands:

Borrows: 00000 00110 00110

Minuend: 10110 10110 10011 11110

Subtrahend: -10010 -10011 -11110 -10011

Difference: 00100 00011 -01011

The rules for subtraction are the same as in decimal, except that a borrow into 

a given column adds 2 to the minuend bit. (A borrow in the decimal system adds 10 

to the minuend digit.) In the first example shown, no borrows occur, so the differ-

ence bits are simply the minuend bits minus the subtrahend bits. In the second exam-

ple, in the right position, the subtrahend bit is 1 with the minuend bit 0, so it is 

necessary to borrow from the second position as shown. This gives a difference bit in 

the first position of 1 (2 + 0 - 1 = 1). In the second position, the borrow is sub-

tracted, so a borrow is again necessary. Recall that, in the event that the subtrahend 

is larger than the minuend, we subtract the minuend from the subtrahend and give 

the result a minus sign. This is the case in the third example, in which this interchange 

of the two operands is shown.

The final operation to be illustrated is binary multiplication, which is quite simple. 

The multiplier digits are always 1 or 0. Therefore, the partial products are equal either to 

the multiplicand or to 0. Multiplication is illustrated by the following example:

Multiplicand:     1011

Multiplier:          * 101

  1011

0000  

 1011    

Product:      110111

Arithmetic operations with octal, hexadecimal, or any other base r system will 

normally require the formulation of tables from which one obtains sums and prod-

ucts of two digits in that base. An easier alternative for adding two numbers in base r 

is to convert each pair of digits in a column to decimal, add the digits in decimal, and 

then convert the result to the corresponding sum and carry in the base r system. 

Since addition is done in decimal, we can rely on our memories for obtaining the 

entries from the familiar decimal addition table. The sequence of steps for adding 

the two hexadecimal numbers 59F and E46 is shown in Example 1-2.



38          CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION 

In general, the multiplication of two base r numbers can be accomplished by 

doing all the arithmetic operations in decimal and converting intermediate results 

one at a time. This is illustrated in the multiplication of two octal numbers shown in 

Example 1-3.

EXAMPLE 1-2 Hexadecimal Addition

Perform the addition 159F216 + 1E46216:

Hexadecimal     Equivalent Decimal Calculation 

           1        1

     5 9 F      5    Carry       9         15    Carry

      E 4 6     14         4      6 

    1 3 E 5     1 19 =  16 + 3  14 = E 21 = 16 + 5

The equivalent decimal calculation columns on the right show the mental reasoning 

that must be carried out to produce each digit of the hexadecimal sum. Instead of 

adding F + 6 in hexadecimal, we add the equivalent decimals, 15 + 6 = 21. We 

then convert back to hexadecimal by noting that 21 = 16 + 5. This gives a sum digit 

of 5 and a carry of 1 to the next higher-order column of digits. The other two columns 

are added in a similar fashion. ■

EXAMPLE 1-3 Octal Multiplication

Perform the multiplication (762)8 *  (45)8:

 Octal Octal Decimal Octal

 7 6 2 5 * 2   =  10 = 8 + 2  = 12

 4 5 5 * 6 + 1   =  31 = 24 + 7 = 37

 4 6 7 2 5 * 7 + 3   =  38 = 32 + 6 = 46

 3 7 1 0 4 * 2   =   8 =  8 + 0 = 10

 4 3 7 7 2 4 * 6 + 1   =  25 = 24 + 1 = 31

  4 * 7 + 3   =  31 = 24 + 7 = 37

Shown on the right are the mental calculations for each pair of octal digits. The octal 

digits 0 through 7 have the same value as their corresponding decimal digits. The 

multiplication of two octal digits plus a carry, derived from the calculation on  

the previous line, is done in decimal, and the result is then converted back to octal. 

The left digit of the two-digit octal result gives the carry that must be added to the 

digit product on the next line. The blue digits from the octal results of the decimal 

calculations are copied to the octal partial products on the left. For example, 

(5 * 2)8 = (12)8. The left digit, 1, is the carry to be added to the product (5 *  6)8, 

and the blue least significant digit, 2, is the corresponding digit of the octal partial 

product. When there is no digit product to which the carry can be added, the carry is 

written directly into the octal partial product, as in the case of the 4 in 46. ■
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Conversion from Decimal to Other Bases

We convert a number in base r to decimal by expanding it in a power series and add-

ing all the terms, as shown previously. We now present a general procedure for the 

operation of converting a decimal number to a number in base r that is the reverse of 

the alternative expansion to base 10 on page 32. If the number includes a radix point, 

we need to separate the number into an integer part and a fraction part, since the 

two parts must be converted differently. The conversion of a decimal integer to a 

number in base r is done by dividing the number and all successive quotients by r 

and accumulating the remainders. This procedure is best explained by example.

EXAMPLE 1-4 Conversion of Decimal Integers to Octal

Convert decimal 153 to octal:

The conversion is to base 8. First, 153 is divided by 8 to give a quotient of 19 and a 

remainder of 1, as shown in blue. Then 19 is divided by 8 to give a quotient of 2 and a 

remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of 2. 

The coefficients of the desired octal number are obtained from the remainders:

  153/8 = 19  +  1/8  Remainder =  1 Least significant digit

  19/8 = 2  + 3/8 =  3

  2/8 = 0  + 2/8  =  2 Most significant digit

  (153)10 = (231)8 ■

  41/2 = 20  +  1/2 Remainder =  1 Least significant digit

 20/2 = 10 =  0

 10/2 = 5 =  0 

  5/2 = 2  +  1/2 =  1

  2/2 = 1 =  0

  1/2 = 0  +  1/2 =  1 Most significant digit

  (41)10 = (101001)2

Note in Example 1-4 that the remainders are read from last to first, as indicated 

by the arrow, to obtain the converted number. The quotients are divided by r until 

the result is 0. We also can use this procedure to convert decimal integers to binary, 

as shown in Example 1-5. In this case, the base of the converted number is 2, and 

therefore, all the divisions must be done by 2.

EXAMPLE 1-5 Conversion of Decimal Integers to Binary

Convert decimal 41 to binary:

Of course, the decimal number could be converted by the sum of powers of two:

 (41)10 =  32 +  8 +  1 =  (101001)2 ■
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Example 1-6 Conversion of Decimal Fractions to Binary

Convert decimal 0.6875 to binary:

First, 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is mul-

tiplied by 2 to give a new integer and a new fraction. This process is continued until the 

fractional part equals 0 or until there are enough digits to give sufficient accuracy. The 

coefficients of the binary number are obtained from the integers as follows:

 0.6875 * 2 = 1.3750 Integer =  1 Most significant digit

 0.3750 * 2 = 0.7500 =  0

 0.7500 * 2 = 1.5000 =  1 

 0.5000 * 2 = 1.0000 =  1 Least significant digit

  (0.6875)10 = (0.1011)2 ■

 0.513 * 8 = 4.104 Integer =  4 Most significant digit

 0.104 * 8 = 0.832 =  0

 0.832 * 8 = 6.656 =  6 

 0.565 * 8 = 5.248 =  5 Least significant digit

The conversion of a decimal fraction to base r is accomplished by a method 

similar to that used for integers, except that multiplication by r is used instead of 

division, and integers are accumulated instead of remainders. Again, the method is 

best explained by example.

EXAMPLE 1-7 Conversion of Decimal Fractions to Octal

Convert decimal 0.513 to a three-digit octal fraction:

The answer, to three significant figures, is obtained from the integer digits. Note that 

the last integer digit, 5, is used for rounding in base 8 of the second-to-the-last digit, 6, 

to obtain

 (0.513)10 =  (0 .407)8 ■

The conversion of decimal numbers with both integer and fractional parts is 

done by converting each part separately and then combining the two answers. Using 

the results of Example 1-4 and Example 1-7, we obtain

(153.513)10 =  (231.407)8 

Note in the foregoing example that the integers are read from first to last, as 

indicated by the arrow, to obtain the converted number. In the example, a finite num-

ber of digits appear in the converted number. The process of multiplying fractions by 

r does not necessarily end with zero, so we must decide how many digits of the frac-

tion to use from the conversion. Also, remember that the multiplications are by num-

ber r. Therefore, to convert a decimal fraction to octal, we must multiply the fractions 

by 8, as shown in Example 1-7.
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1-5 DECIMAL CODES

The binary number system is the most natural one for a computer, but people are ac-

customed to the decimal system. One way to resolve this difference is to convert deci-

mal numbers to binary, perform all arithmetic calculations in binary, and then convert 

the binary results back to decimal. This method requires that we store the decimal 

numbers in the computer in such a way that they can be converted to binary. Since the 

computer can accept only binary values, we must represent the decimal digits by a 

code that contains 1s and 0s. It is also possible to perform the arithmetic operations 

directly with decimal numbers when they are stored in the computer in coded form.

An n-bit binary code is a group of n bits that assume up to 2n distinct combina-

tions of 1s and 0s, with each combination representing one element of the set being 

coded. A set of four elements can be coded with a 2-bit binary code, with each ele-

ment assigned one of the following bit combinations: 00, 01, 10, 11. A set of 8 elements 

requires a 3-bit code, and a set of 16 elements requires a 4-bit code. The bit combina-

tions of an n-bit code can be determined from the count in binary from 0 to 2n - 1. 

Each element must be assigned a unique binary bit combination, and no two ele-

ments can have the same value; otherwise, the code assignment is ambiguous.

A binary code will have some unassigned bit combinations if the number of 

elements in the set is not a power of 2. The ten decimal digits form such a set. A 

binary code that distinguishes among ten elements must contain at least four bits, 

but six out of the 16 possible combinations will remain unassigned. Numerous differ-

ent binary codes can be obtained by arranging four bits into 10 distinct combina-

tions. The code most commonly used for the decimal digits is the straightforward 

binary assignment listed in Table 1-4. This is called binary-coded decimal and is com-

monly referred to as BCD. Other decimal codes are possible but not commonly used.

Table 1-4 gives a 4-bit code for each decimal digit. A number with n decimal dig-

its will require 4n bits in BCD. Thus, decimal 396 is represented in BCD with 12 bits as

0011  1001  0110

with each group of four bits representing one decimal digit. A decimal number in 

BCD is the same as its equivalent binary number only when the number is between 

 TABLE 1-4 
Binary-Coded Decimal (BCD)

Decimal  

Symbol

BCD  

Digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001
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0 and 9, inclusive. A BCD number greater than 10 has a representation different 

from its equivalent binary number, even though both contain 1s and 0s. Moreover, 

the binary combinations 1010 through 1111 are not used and have no meaning in the 

BCD code.

Consider decimal 185 and its corresponding value in BCD and binary:

(185)10 =  (0001 1000 0101)BCD =  (10111001)2

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It is 

obvious that a BCD number needs more bits than its equivalent binary value. 

However, BCD representation of decimal numbers is still important, because com-

puter input and output data used by most people needs to be in the decimal system. 

BCD numbers are decimal numbers and not binary numbers, even though they are 

represented using bits. The only difference between a decimal and a BCD number is 

that decimals are written with the symbols 0, 1, 2, …, 9, and BCD numbers use the 

binary codes 0000, 0001, 0010, …, 1001.

1-6 ALPHANUMERIC CODES

Many applications of digital computers require the handling of data consisting not 

only of numbers, but also of letters. For instance, an insurance company with thou-

sands of policyholders uses a computer to process its files. To represent the names 

and other pertinent information, it is necessary to formulate a binary code for the 

letters of the alphabet. In addition, the same binary code must represent numerals 

and special characters such as $. Any alphanumeric character set for English is a set 

of elements that includes the ten decimal digits, the 26 letters of the alphabet, and 

several (more than three) special characters. If only capital letters are included, we 

need a binary code of at least six bits, and if both uppercase letters and lowercase 

letters are included, we need a binary code of at least seven bits. Binary codes play 

an important role in digital computers. The codes must be in binary because comput-

ers can handle only 1s and 0s. Note that binary encoding merely changes the sym-

bols, not the meaning of the elements of information being encoded.

ASCII Character Code

The standard binary code for the alphanumeric characters is called ASCII (Ameri-

can Standard Code for Information Interchange). It uses seven bits to code 128 char-

acters, as shown in Table 1-5. The seven bits of the code are designated by B
1
 through 

B
7
, with B

7
 being the most significant bit. Note that the most significant three bits of 

the code determine the column of the table and the least significant four bits the row 

of the table. The letter A, for example, is represented in ASCII as 1000001 (column 

100, row 0001). The ASCII code contains 94 characters that can be printed and 34 

nonprinting characters used for various control functions. The printing characters 

consist of the 26 uppercase letters, the 26 lowercase letters, the 10 numerals, and 32 

special printable characters such as %, @, and $.

The 34 control characters are designated in the ASCII table with abbreviated 

names. They are listed again below the table with their full functional names. The 

control characters are used for routing data and arranging the printed text into a 
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prescribed format. There are three types of control characters: format effectors, 

information separators, and communication control characters. Format effectors are 

characters that control the layout of printing. They include the familiar typewriter 

controls such as backspace (BS), horizontal tabulation (HT), and carriage return 

(CR). Information separators are used to separate the data into divisions—for  

example, paragraphs and pages. They include characters such as record separator 

 TABLE 1-5 
American Standard Code for Information Interchange (ASCII)

B
7
B

6
B

5

B
4
B

3
B

2
B

1
000 001 010 011 100 101 110 111

0000 NULL DLE SP 0 @ P ` p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 " 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ' 7 G W g w

1000 BS CAN ( 8 H X h x

1001 HT EM ) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [ k {

1100 FF FS , 6 L \ l |

1101 CR GS - = M ] m }

1110 SO RS . 7 N ^ n ˜
1111 SI US / ? O _ o DEL

Control Characters

NULL NULL DLE Data link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End of transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in US Unit separator

SP Space DEL Delete
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(RS) and file separator (FS). The communication control characters are used during 

the transmission of text from one location to the other. Examples of communication 

control characters are STX (start of text) and ETX (end of text), which are used to 

frame a text message transmitted via communication wires.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a 

single unit called a byte. Therefore, ASCII characters most often are stored one per 

byte, with the most significant bit set to 0. The extra bit is sometimes used for specific 

purposes, depending on the application. For example, some printers recognize an 

additional 128 8-bit characters, with the most significant bit set to 1. These characters 

enable the printer to produce additional symbols, such as those from the Greek 

alphabet or characters with accent marks as used in languages other than English.

Adapting computing systems to different world regions and languages is 

known as internationalization or localization. One of the major aspects of localiza-

tion is providing characters for the alphabets and scripts for various languages. 

ASCII was developed for the English alphabet but, even extending it to 8-bits, it is 

unable to support other alphabets and scripts that are commonly used around the 

world. Over the years, many different character sets were created to represent the 

scripts used in various languages, as well as special technical and mathematical sym-

bols used by various professions. These character sets were incompatible with each 

other, for example, by using the same number for different characters or by using 

different numbers for the same character.

Unicode was developed as an industry standard for providing a common repre-

sentation of symbols and ideographs for the most of the world’s languages. By provid-

ing a standard representation that covers characters from many different languages, 

Unicode removes the need to convert between different character sets and eliminates 

the conflicts that arise from using the same numbers for different character sets. 

Unicode provides a unique number called a code point for each character, as well as a 

unique name. A common notation for referring to a code point is the characters “U+” 

followed by the four to six hexadecimal digits of the code point. For example, U+0030 

is the character “0”, named Digit Zero. The first 128 code points of Unicode, from 

U+0000 to U+007F, correspond to the ASCII characters. Unicode currently sup-

ports over a million code points from a hundred scripts worldwide.

 There are several standard encodings of the code points that range from 8 to 

32 bits (1 to 4 bytes). For example, UTF-8 (UCS Transformation Format, where 

UCS stands for Universal Character Set) is a variable-length encoding that uses 

from 1 to 4 bytes for each code point, UTF-16 is a variable-length encoding that 

uses either 2 or 4 bytes for each code point, while UTF-32 is a fixed-length that 

uses 4 bytes for every code point. Table 1-6 shows the formats used by UTF-8. The 

x’s in the right column are the bits from the code point being encoded, with the 

least significant bit of the code point placed in the right-most bit of the UTF-8 

encoding. As shown in the table, the first 128 code points are encoded with a single 

byte, which provides compatibility between ASCII and UTF-8. Thus a file or char-

acter string that contains only ASCII characters will be the same in both ASCII 

and UTF-8.

In UTF-8, the number of bytes in a multi-byte sequence is indicated by the 

number of leading ones in the first byte. Valid encodings must use the least number 
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 TABLE 1-6 
UTF-8 Encoding for Unicode Code Points

Code point range (hexadecimal)

UTF-8 encoding (binary, where bit 

positions with x are the bits of the code 

point value)

U+0000 0000 to U+0000 007F 0xxxxxxx

U+0000 0080 to U+0000 07FF 110xxxxx 10xxxxxx

U+0000 0800 to U+0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+0001 0000 to U+0010 FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

of bytes necessary for a given code point. For example, any of the first 128 code 

points, which correspond to ASCII, must be encoded using only one byte rather 

using one of the longer sequences and padding the code point with 0s on the left. To 

illustrate the UTF-8 encoding, consider a couple of examples. The code point 

U+0054, Latin capital letter T, “T”, is in the range of U+0000 0000 to U+0000 007F, 

so it would be encoded with one byte with a value of (01010100)2. The code point 

U+00B1, plus-minus sign, “±”, is in the range of U+0000 0080 to U+0000 07FFF, 

so it would be encoded with two bytes with a value of (11000010 10110001)2.

Parity Bit

To detect errors in data communication and processing, an additional bit is some-

times added to a binary code word to define its parity. A parity bit is the extra bit in-

cluded to make the total number of 1s in the resulting code word either even or odd. 

Consider the following two characters and their even and odd parity:

With Even Parity With Odd Parity

1000001 01000001 11000001

1010100 11010100 01010100

In each case, we use the extra bit in the most significant position of the code to produce 

an even number of 1s in the code for even parity or an odd number of 1s in the code for 

odd parity. In general, one parity or the other is adopted, with even parity being more 

common. Parity may be used with binary numbers as well as with codes, including 

ASCII for characters, and the parity bit may be placed in any fixed position in the code.

EXAMPLE 1-8  Error Detection and Correction for ASCII Transmission

The parity bit is helpful in detecting errors during the transmission of information 

from one location to another. Assuming that even parity is used, the simplest case is 

handled as follows—An even (or odd) parity bit is generated at the sending end for 

all 7-bit ASCII characters—the 8-bit characters that include parity bits are transmit-

ted to their destination. The parity of each character is then checked at the receiving 

end; if the parity of the received character is not even (odd), it means that at least 



46          CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION 

1-7 GRAY CODES

As we count up or down using binary codes, the number of bits that change from one 

binary value to the next varies. This is illustrated by the binary code for the octal dig-

its on the left in Table 1-7. As we count from 000 up to 111 and “roll over” to 000, the 

number of bits that change between the binary values ranges from 1 to 3.

For many applications, multiple bit changes as the circuit counts is not a prob-

lem. There are applications, however, in which a change of more than one bit when 

counting up or down can cause serious problems. One such problem is illustrated by 

an optical shaft-angle encoder shown in Figure 1-6(a). The encoder is a disk attached 

to a rotating shaft for measurement of the rotational position of the shaft. The disk 

contains areas that are clear for binary 1 and opaque for binary 0. An illumination 

source is placed on one side of the disk, and optical sensors, one for each of the bits 

to be encoded, are placed on the other side of the disk. When a clear region lies 

 TABLE 1-7 
Gray Code

Binary 

Code

Bit 

Changes

Gray 

Code

Bit 

Changes

000
001
010
011
100
101
110
111
000

1
2
1
3
1
2
1
3

000
001
011
010
110
111
101
100
000

1
1
1
1
1
1
1
1

one bit has changed its value during the transmission. This method detects one, three, 

or any odd number of errors in each character transmitted. An even number of er-

rors is undetected. Other error-detection codes, some of which are based on addi-

tional parity bits, may be needed to take care of an even number of errors. What is 

done after an error is detected depends on the particular application. One possibility 

is to request retransmission of the message on the assumption that the error was ran-

dom and will not occur again. Thus, if the receiver detects a parity error, it sends back 

a NAK (negative acknowledge) control character consisting of the even-parity eight 

bits, 10010101, from Table 1-5 on page 43. If no error is detected, the receiver sends 

back an ACK (acknowledge) control character, 00000110. The sending end will 

 respond to a NAK by transmitting the message again, until the correct parity is 

 received. If, after a number of attempts, the transmission is still in error, an indication 

of a malfunction in the transmission path is given. ■
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B0

111

110

000

001

010

011100

101

B1

B2

(a) Binary code for positions 0 through 7

G0
G1

G2

111

101

100 000

001

011

010110
(b) Gray code for positions 0 through 7

 FIGURE 1-6 
Optical Shaft-Angle Encoder

between the source and a sensor, the sensor responds to the light with a binary 1 out-

put. When an opaque region lies between the source and the sensor, the sensor 

responds to the dark with a binary 0.

The rotating shaft, however, can be in any angular position. For example, sup-

pose that the shaft and disk are positioned so that the sensors lie right at the bound-

ary between 011 and 100. In this case, sensors in positions B2, B1, and B0 have the 

light partially blocked. In such a situation, it is unclear whether the three sensors will 

see light or dark. As a consequence, each sensor may produce either a 1 or a 0. Thus, 

the resulting encoded binary number for a value between 3 and 4 may be 000, 001, 

010, 011, 100, 101, 110, or 111. Either 011 or 100 will be satisfactory in this case, but 

the other six values are clearly erroneous!

To see the solution to this problem, notice that in those cases in which only a 

single bit changes when going from one value to the next or previous value, this 

problem cannot occur. For example, if the sensors lie on the boundary between 2 and 

3, the resulting code is either 010 or 011, either of which is satisfactory. If we change 

the encoding of the values 0 through 7 such that only one bit value changes as we 

count up or down (including rollover from 7 to 0), then the encoding will be satisfac-

tory for all positions. A code having the property that only one bit at a time changes 

between codes during counting is a Gray code named for Frank Gray, who patented 

its use for shaft encoders in 1953. There are multiple Gray codes for any set of n con-

secutive integers, with n even.

A specific Gray code for the octal digits, called a binary reflected Gray code, 

appears on the right in Table 1-7. Note that the counting order for binary codes is now 

000, 001, 011, 010, 110, 111, 101, 100, and 000. If we want binary codes for processing, 

then we can build a digital circuit or use software that converts these codes to binary 

before they are used in further processing of the information.

Figure 1-6(b) shows the optical shaft-angle encoder using the Gray code from 

Table 1-7. Note that any two segments on the disk adjacent to each other have only 

one region that is clear for one and opaque for the other.

The optical shaft encoder illustrates one use of the Gray code concept. There 

are many other similar uses in which a physical variable, such as position or voltage, 



48          CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION 

has a continuous range of values that is converted to a digital representation. A quite 

different use of Gray codes appears in low-power CMOS (Complementary Metal 

Oxide Semiconductor) logic circuits that count up or down. In CMOS, power is con-

sumed only when a bit changes. For the example codes given in Table 1-7 with contin-

uous counting (either up or down), there are 14 bit changes for binary counting for 

every eight bit changes for Gray code counting. Thus, the power consumed at the 

counter outputs for the Gray code counter is only 57 percent of that consumed at the 

binary counter outputs.

A Gray code for a counting sequence of n binary code words (n must be even) 

can be constructed by replacing each of the first n/2 numbers in the sequence with a 

code word consisting of 0 followed by the even parity for each bit of the binary code 

word and the bit to its left. For example, for the binary code word 0100, the Gray 

code word is 0, parity(0, 1), parity(1, 0), parity(0, 0)  =   0110. Next, take the 

sequence of numbers formed and copy it in reverse order with the leftmost 0 

replaced by a 1. This new sequence provides the Gray code words for the second n/2 

of the original n code words. For example, for BCD codes, the first five Gray code 

words are 0000, 0001, 0011, 0010, and 0110. Reversing the order of these codes and 

replacing the leftmost 0 with a 1, we obtain 1110, 1010, 1011, 1001, and 1000 for the 

last five Gray codes. For the special cases in which the original binary codes are 0 

through 2n - 1, each Gray code word may be formed directly from the correspond-

ing binary code word by copying its leftmost bit and then replacing each of the 

remaining bits with the even parity of the bit of the number and the bit to its left.

1-8 CHAPTER SUMMARY

In this chapter, we introduced digital systems and digital computers and showed why 

such systems use signals having only two values. We briefly introduced the structure 

of the stored-program digital computer and showed how computers can be applied 

to a broad range of specialized applications by using embedded systems. We then 

related the computer structure to a representative example of a personal computer 

(PC). We also described the concept of layers of abstraction for managing the com-

plexity of designing a computer system built from millions of transistors, as well as 

outlining the basic design procedure for digital circuits.

Number-system concepts, including base (radix) and radix point, were pre-

sented. Because of their correspondence to two-valued signals, binary numbers were 

discussed in detail. Octal (base 8) and hexadecimal (base 16) were also emphasized, 

since they are useful as shorthand notation for binary. Arithmetic operations in bases 

other than base 10 and the conversion of numbers from one base to another were 

covered. Because of the predominance of decimal in normal use, Binary-Coded 

Decimal (BCD) was treated. The representation of information in the form of char-

acters instead of numbers by means of the ASCII code for the English alphabet was 

presented. Unicode, a standard for providing characters for languages worldwide, 

was described. The parity bit was presented as a technique for error detection, and 

the Gray code, which is critical to selected applications, was defined.

In subsequent chapters, we treat the representation of signed numbers and 

floating-point numbers. Although these topics fit well with the topics in this chapter, 

they are difficult to motivate without associating them with the hardware used to 
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implement the operations performed on them. Thus, we delay their presentation 

until we examine the associated hardware.
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PROBLEMS 

The plus (+) indicates a more advanced problem, and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

 1-1. This problem concerns wind measurements made by the wireless weather 

station illustrated in Example 1-1. The wind-speed measurement uses a 

rotating anemometer connected by a shaft to an enclosed disk that is one-half 

clear and one-half black. There is a light above and a photodiode below the 

disk in the enclosure. The photodiode produces a 3 V signal when exposed to 

light and a 0 V signal when not exposed to light. (a) Sketch the relative 

appearance of voltage waveforms produced by this sensor (1) when the wind 

is calm, (2) when the wind is 10 mph, and (3) when the wind is 100 mph. 

(b)  Explain verbally what information the microcomputer must have 

available and the tasks it must perform to convert the voltage waveforms 

produced into a binary number representing wind speed in miles per hour.

 1-2. Using the scheme in Example 1-1, find the discrete, quantized value of voltage 

and the binary code for each of the following Fahrenheit temperatures: 

-34,  +31, +77, and +108.

 1-3. *List the binary, octal, and hexadecimal numbers from 16 to 31.

 1-4. Calculate the exact number of bits in a memory that contains (a) 8K bits,  
(b) 4M bits, and (c) 2G bytes?

 1-5. Calculate the exact number of bits in 2 Tb, with the help of following steps: 

use the formula of 220 = 1,000,000
10

 + d, where d is the difference between 220 

and 1,000,000
10

, to calculate exact number for 220; then expand the power 

equation for 1 Tb into a sum-of-products form; insert the value of d; and then 

find the sum for 1 Tb; thereafter, calculate the exact number of bits for 2 Tb.

 1-6. What is the decimal equivalent of the largest binary integer that can be 

obtained with (a) 11 bits and (b) 25 bits?
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 1-7. Convert the binary numbers into decimal numbers: 1011001, 1100111.001, 

and 10110010.10101.

 1-8. Convert the following decimal numbers to binary: 255, 452, 124.5, and 587.625.

 1-9. *Convert the following numbers from the given base to the other three bases 

listed in the table:

Decimal Binary Octal Hexadecimal

369.3125 ? ? ?

? 10111101.101 ? ?

? ? 326.5 ?

? ? ? F3C7.A

1-10. *Convert the following decimal numbers to the indicated bases, using the 

methods of Examples 1-4 on page 39 and 1-7 on page 40:

(a) 7562.45 to octal

(a) (673.6)8 to hexadecimal

(a) 100 *  1110

(b) 1938.257 to hexadecimal

(b) (E7C.B)16 to octal

(b) 1100 *  1011

(c) 175.175 to binary.

(c) (310.2)4 to octal

(c) 10100 *  11010

1-11. *Perform the following conversion by using base 2 instead of base 10 as the 

intermediate base for the conversion:

1-12. Perform multiplications of the following binary numbers:

1-13. +Division is composed of multiplications and subtractions. Perform the binary 

division 1010110 , 101 to obtain a quotient and remainder.

1-14. Assume a new number system has a base of 4. There are at most four integer 

digits. The weights of the digits are 43, 42, 41, and 40. Special names are given 

to the weights as follows: 4 = 1 C, 42 = 1 G, and 43 = 1 R.

(a) Convert the 6 R + 2 G + 2 C number into equivalent decimal number.

(b) Find the base 4 representations of a decimal number 854810.

1-15. Evidence shows that base 20 has historically been used for number systems. If 

the numbers are represented as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, 

then do the following:

(a) Convert 5618010 to base 20.

(b) Convert 9ABF20 to decimal numbers. 

(c) Convert D5HA.520 to decimal numbers.

1-16. *In each of the following cases, determine the radix r:

(a) (BEE)r = (2699)10  (b) (365)r = (194)10
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1-17. The following mathematical calculation is available in a written script of 

ancient age, wherein the base is unknown. The calculation indicates 

summation and multiplication of the unknown number system as presented 

below. Find the base of the number system.

(24 + 13) * 2 = 134

1-18. Find the binary representations for each of the following BCD numbers:

(a) 0010 1001 0111 0101 (b) 0001 1001 0010.0101 0100

1-19. *Represent the decimal numbers 715 and 354 in BCD.

1-20. *Internally in the computer, with few exceptions, all numerical computation 

is done using binary numbers. Input, however, often uses ASCII, which is 

formed by appending 011 to the left of a BCD code. Thus, an algorithm that 

directly converts a BCD integer to a binary integer is very useful. Here is one 

such algorithm:

1. Draw lines between the 4-bit decades in the BCD number.

2. Move the BCD number one bit to the right.

3. Subtract 0011 from each BCD decade containing a binary value > 0111.

4. Repeat steps 2 and 3 until the leftmost 1 in the BCD number has been 

moved out of the least significant decade position.

5. Read the binary result to the right of the least significant BCD decade.

(a) Execute the algorithm for the BCD number 0111 1000.

(b) Execute the algorithm for the BCD number 0011 1001 0111.

1-21. Internally in a computer, with few exceptions, all computation is done using 

binary numbers. Output, however, often uses ASCII, which is formed by 

appending 011 to the left of a BCD code. Thus, an algorithm that directly 

converts a binary integer to a BCD integer is very useful. Here is one such 

algorithm:

1. Draw lines to bound the expected BCD decades to the left of the binary 

number.

2. Move the binary number one bit to the left.

3. Add 0011 to each BCD decade containing a binary value > 0100.

4. Repeat steps 2 and 3 until the last bit in the binary number has been 

moved into the least significant BCD decade position.

5. Read the BCD result.

(a) Execute the algorithm for the binary number 1111000.

(b) Execute the algorithm for the binary number 01110010111.
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1-22. How many ASCII codes are possible and how many ASCII characters are 

used? How an upper-case letter can be converted into lower-case?

1-23. Find the characters representing the following ASCII codes: 1001110   

1101111  0101110   0110001   0101101. Represent the 8 bit binary codes for 

(a) even parity system and (b) odd parity system.

1-24. Represent the following sentence into ASCII code by maintaining the space 

and upper- and lower-case letters as given under double quotes: “Pro. No. 1-24”.

1-25. *Show the bit configuration that represents the decimal number 255 in: 

(a) binary, (b) BCD, (c) ASCII, and (d) ASCII with odd parity.

1-26. What is the use of Unicode code points? How the compatibility with ASCII 

characters is maintained in UTF-8 format? Encode the U+00C3 in UTF-8.

1-27. (a) List the 7-bit binary number equivalents for 64 through 69 with a parity bit 

added in the rightmost position, giving odd parity to the overall 7-bit 

numbers. (b) Repeat for even parity.

1-28. Using the procedure given in Section 1-7, find the hexadecimal Gray code.

1-29. This problem concerns wind measurements made by the wireless weather 

station in Example 1-1. The wind direction is to be measured with a disk 

encoder like the one shown in Figure 1-6(b). (a) Assuming that the code 000 

corresponds to N, list the Gray code values for each of the directions, S, E, W, 

NW, NE, SW, and SE. (b) Explain why the Gray code you have assigned 

avoids the reporting of major errors in wind direction.

1-30. Calculate the total number of bit changes in a one cycle of an 8-bit counter 

which is counting in binary number. If the counter is now used to count in 

Gray code, then what will be the total number of bit changes in one complete 

cycle? What is the advantage of lower number of bit changes?
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In this chapter, we will begin our study of logic and computer design by describing 

logic gates and various means of representing the input/output relationships of 

propagation delay, the amount of time that it takes for a change on the input of gate to 

combinational logic circuits and presents several methods for describing the input and 
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2-1 BINARY LOGIC AND GATES

Digital circuits are hardware components that manipulate binary information. The cir-

cuits are implemented using transistors and interconnections in complex  semi-  conductor 

devices called integrated circuits. Each basic circuit is referred to as a logic gate. For sim-

plicity in design, we model the  transistor-  based electronic circuits as logic gates. Thus, the 

designer need not be concerned with the internal electronics of the individual gates, but 

only with their external logic properties. Each gate performs a specific logical operation. 

The outputs of gates are applied to the inputs of other gates to form a digital circuit.

In order to describe the operational properties of digital circuits, we need to 

introduce a mathematical notation that specifies the operation of each gate and that 

can be used to analyze and design circuits. This binary logic system is one of a class of 

mathematical systems generally called Boolean algebras (after the English mathemati-

cian George Boole, who in 1854 published a book introducing the mathematical theory 

of logic). The specific Boolean algebra we will study is used to describe the interconnec-

tion of digital gates and to design logic circuits through the manipulation of Boolean 

expressions. We first introduce the concept of binary logic and show its relationship to 

digital gates and binary signals. We then present the properties of the Boolean algebra, 

together with other concepts and methods useful in designing logic circuits.

Binary Logic

Binary logic deals with binary variables, which take on two discrete values, and with 

the operations of mathematical logic applied to these variables. The two values the 

variables take may be called by different names, as mentioned in Section 1-1, but for 

our purpose, it is convenient to think in terms of binary values and assign 1 or 0 to 

each variable. In the first part of this book, variables are designated by letters of the 

alphabet, such as A, B, C, X, Y, and Z. Later this notation will be expanded to include 

strings of letters, numbers, and special characters. Associated with the binary vari-

ables are three basic logical operations called AND, OR, and NOT:

1. AND. This operation is represented by a dot or by the absence of an operator. 

For example, Z = X  #   Y or Z = XY is read “Z is equal to X AND Y.” The 

logical operation AND is interpreted to mean that Z = 1 if and only if X = 1 

and Y = 1—otherwise Z = 0. (Remember that X, Y, and Z are binary vari-

ables and can be equal to only 1 or 0.)

2. OR. This operation is represented by a plus symbol. For example, Z = X + Y 

is read “Z is equal to X OR Y,” meaning that Z = 1 if X = 1 or if Y = 1, or if 

both X = l and Y = 1.  Z = 0 if and only if X = 0 and Y = 0.

3. NOT.  This operation is represented by a bar over the variable. For example, 

Z = X is read “Z is equal to NOT X,” meaning that Z is what X is not. In other 

words, if X = 1, then Z = 0—but if X = 0, then Z = 1. The NOT operation is 

also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.
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Binary logic resembles binary arithmetic, and the operations AND and OR 

have similarities to multiplication and addition, respectively. This is why the symbols 

used for AND and OR are the same as those used for multiplication and addition. 

However, binary logic should not be confused with binary arithmetic. One should 

realize that an arithmetic variable designates a number that may consist of many 

digits, whereas a logic variable is always either a 1 or a 0. The following equations 

define the logical OR operation:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 1

These resemble binary addition, except for the last operation. In binary logic, we 

have 1 + 1 = 1 (read “one OR one is equal to one”), but in binary arithmetic, we 

have 1 + 1 = 10 (read “one plus one is equal to two”). To avoid ambiguity, the sym-

bol ¡  is sometimes used for the OR operation instead of the +  symbol. But as long 

as arithmetic and logic operations are not mixed, each can use the +  symbol with its 

own independent meaning.

The next equations define the logical AND operation:

 0 # 0 = 0

 0 # 1 = 0

 1 # 0 = 0

 1 # 1 = 1

This operation is identical to binary multiplication, provided that we use only a single 

bit. Alternative symbols to the · for AND and +  for OR, are symbols ¿  and ¡ , respec-

tively, that represent conjunctive and disjunctive operations in propositional calculus.

For each combination of the values of binary variables such as X and Y, there is 

a value of Z specified by the definition of the logical operation. The definitions may 

be listed in compact form in a truth table. A truth table for an operation is a table of 

combinations of the binary variables showing the relationship between the values 

that the variables take on and the values of the result of the operation. The truth 

tables for the operations AND, OR, and NOT are shown in Table 2-1. The tables list 

 TABLE 2-1
Truth Tables for the Three Basic Logical Operations

AND OR NOT

X Y Z = X  #   Y X Y Z = X + Y X Z = X

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1
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all possible combinations of values for two variables and the results of the operation. 

They clearly demonstrate the definition of the three operations.

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to pro-

duce an output signal. Electrical signals such as voltages or currents exist throughout 

a digital system in either of two recognizable values.  Voltage-  operated circuits re-

spond to two separate voltage ranges that represent a binary variable equal to logic 1 

or logic 0, as illustrated in Figure 2-1. The input terminals of logic gates accept binary 

signals within the allowable range and respond at the output terminals with binary 

signals that fall within a specified range. The intermediate regions between the 

allowed ranges in the figure are crossed only during changes from 1 to 0 or from 0 to 

1. These changes are called transitions, and the intermediate regions are called the 

transition regions.

The graphics symbols used to designate the three types of  gates—  AND, OR, 

and  NOT—  are shown in Figure 2-1(a). The gates are electronic circuits that produce 

the equivalents of  logic-  1 and  logic-  0 output signals in accordance with their respec-

tive truth tables if the equivalents of  logic-  1 and  logic-  0 input signals are applied. The 

two input signals X and Y to the AND and OR gates take on one of four possible 

combinations: 00, 01, 10, or 11. These input signals are shown as timing diagrams in 

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X � Y (AND) 0 0 0 1

(OR) X � Y 0 1 1 1

(NOT) X 1 1 0 0

(a) Graphic symbols

OR gate

X

Y

X

Y

AND gate

Z � X � Y Z � X � Y Z � XX

NOT gate or
inverter

X � Y (AND) 0 0 0 1

tG

(c) AND timing diagram with gate delay tG

 FIGURE 2-1
Digital Logic Gates
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Figure 2-1(b), together with the timing diagrams for the corresponding output signal 

for each type of gate. The horizontal axis of a timing diagram represents time, and 

the vertical axis shows a signal as it changes between the two possible voltage levels. 

The low level represents logic 0 and the high level represents logic 1. The AND gate 

responds with a  logic-  1 output signal when both input signals are logic 1. The OR 

gate responds with a  logic-  1 output signal if either input signal is logic 1. The NOT 

gate is more commonly referred to as an inverter. The reason for this name is appar-

ent from the response in the timing diagram. The output logic signal is an inverted 

version of input logic signal X.
In addition to its function, each gate has another very important property 

called gate delay, the length of time it takes for an input change to result in the corre-

sponding output change. Depending on the technology used to implement the gate, 

the length of time may depend on which of the inputs are changing. For example, for 

the AND gate shown in Figure 2-1(a), with both inputs equal to 1, the gate delay 

when input B changes to 0 may be longer than the gate delay when the input A 

changes to 0. Also, the gate delay when the output is changing from 0 to 1 may be 

longer than when the output is changing from 1 to 0, or vice versa. In the simplified 

model introduced here, these variations are ignored and the gate delay is assumed to 

have a single value, tG. This value may be different for each gate type, number of 

inputs, and the underlying technology and circuit design of the gate. In Figure 2-1(c), 

the output of the AND gate is shown taking into consideration the AND gate delay, 

tG. A change in the output waveform is shifted tG time units later compared to the 

change in input X or Y that causes it. When gates are attached together to form logic 

circuits, the delays down each path from an input to an output add together. In 

Section 2-7, we will revisit gate delay and consider a more accurate model.

AND and OR gates may have more than two inputs. An AND gate with three 

inputs and an OR gate with six inputs are shown in Figure 2-2. The  three-  input AND 

gate responds with a  logic-  l output if all three inputs are logic l. The output is logic 0 

if any input is logic 0. The  six-  input OR gate responds with a logic 1 if any input is 

logic 1; its output becomes a logic 0 only when all inputs are logic 0.

Since Boolean functions are expressed in terms of AND, OR, and NOT opera-

tions, it is a straightforward procedure to implement a Boolean function with AND, 

OR, and NOT gates. We find, however, that the possibility of considering gates with 

other logic operations is of considerable practical interest. Factors to be taken into 

consideration when constructing other types of gates are the feasibility and econ-

omy of implementing the gate with electronic components, the ability of the gate to 

implement Boolean functions alone or in conjunction with other gates, and the con-

venience of representing gate functions that are frequently used. In this section, we 

A
B
C

F � ABC

(a) Three-input AND gate (b) Six-input OR gate

A
B
C

G � A � B � C � D � E � F

D
E
F

 FIGURE 2-2
Gates with More than Two Inputs
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introduce these other gate types, which are used throughout the rest of the text. 

Specific techniques for incorporating these gate types in circuits are given in 

Section 3-2.

The graphics symbols and truth tables of the most commonly used  logic-  gate 

types are shown in Figure 2-3. Although the gates in Figure 2-3 are shown with just 

two binary input variables, X and Y, and one output binary variable, F, with the 

exception of the inverter, all may have more than two inputs. The distinctively shaped 

symbols shown, as well as rectangular symbols not shown, are specified in detail in 

the Institute of Electrical and Electronics Engineers’ (IEEE) Standard Graphic 
Symbols for Logic Functions (IEEE Standard 91–1984). The AND, OR, and NOT 

gates were defined previously. The NOT circuit inverts the logic sense of a binary 

signal to produce the complement operation. Recall that this circuit is typically 

called an inverter rather than a NOT gate. The small circle at the output of the 

graphic symbol of an inverter is formally called a negation indicator and designates 

the logical complement. We informally refer to the negation indicator as a “bubble.”

The NAND gate represents the complement of the AND operation, and the 

NOR gate represents the complement of the OR operation. Their respective names 

are abbreviations of  NOT-  AND and  NOT-  OR, respectively. The graphics symbols 

for the NAND gate and NOR gate consist of an AND symbol and an OR symbol, 

respectively, with a bubble on the output, denoting the complement operation. In 

contemporary integrated circuit technology, NAND and NOR gates are the natural 

primitive gate functions for the simplest and fastest electronic circuits. If we consider 

the inverter as a degenerate version of NAND and NOR gates with just one input, 

NAND gates alone or NOR gates alone can implement any Boolean function. Thus, 

these gate types are much more widely used than AND and OR gates in actual logic 

circuits. As a consequence, actual circuit implementations are often done in terms of 

these gate types.

A gate type that alone can be used to implement all possible Boolean func-

tions is called a universal gate and is said to be “functionally complete.” To show that 

the NAND gate is a universal gate, we need only show that the logical operations of 

AND, OR, and NOT can be obtained with NAND gates only. This is done in Figure 2-4. 

The complement operation obtained from a  one-  input NAND gate corresponds to a 

NOT gate. In fact, the  one-  input NAND is an invalid symbol and is replaced by the 

NOT symbol, as shown in the figure. The AND operation requires a NAND gate fol-

lowed by a NOT gate. The NOT inverts the output of the NAND, giving an AND 

operation as the result. The OR operation is achieved using a NAND gate with 

NOTs on each input. As will be detailed in Section 2-2, when DeMorgan’s theorem is 

applied, the inversions cancel, and an OR function results.

Two other gates that are commonly used are the  exclusive-  OR (XOR) and 

 exclusive-  NOR (XNOR) gates, which will be described in more detail in Section 2-6. 

The XOR gate shown in Figure 2-3 is similar to the OR gate, but excludes (has the 

value 0 for) the combination with both X and Y equal to 1. The graphics symbol for 

the XOR gate is similar to that for the OR gate, except for the additional curved line 

on the inputs. The  exclusive-  OR has the special symbol ⊕ to designate its operation. 

The  exclusive-  NOR is the complement of the  exclusive-  OR, as indicated by the 
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 FIGURE 2-3
Commonly Used Logic Gates
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bubble at the output of its graphics symbol. These gates indicate whether their two 

inputs are equal (XNOR) or not equal (XOR) to each other.

HDL Representations of Gates

While schematics using the basic logic gates are sufficient for describing small circuits, 

they are impractical for designing more complex digital systems. In contemporary 

computer systems design, HDL has become intrinsic to the design process. Conse-

quently, we introduce HDLs early in the text. Initially, we justify such languages by 

describing their uses. We will then briefly discuss VHDL and Verilog®, the most pop-

ular of these languages. At the end of this chapter and in Chapters 3 and 4, we will 

introduce them both in detail, although, in any given course, we expect that only one 

of them will be covered.

HDLs resemble programming languages, but are specifically oriented to 

describing hardware structures and behavior. They differ markedly from typical pro-

gramming languages in that they represent extensive parallel operation, whereas 

most programming languages represent serial operation. An obvious use for an 

HDL is to provide an alternative to schematics. When a language is used in this fash-

ion, it is referred to as a structural description, in which the language describes an 

interconnection of components. Such a structural description, referred to as a netlist, 
can be used as input to logic simulation just as a schematic is used. For this applica-

tion, models for each of the primitive blocks are required. If an HDL is used, then 

these models can also be written in the HDL, providing a more uniform, portable 

representation for simulation input. Our use of HDLs in this chapter will be mainly 

limited to structural models. But as we will show later in the book, HDLs can repre-

sent much more than  low-  level behavior. In contemporary digital design, HDL mod-

els at a high level of abstraction can be automatically synthesized into optimized, 

working hardware.

To provide an initial introduction to HDLs, we start with features aimed at rep-

resenting structural models. Table 2-2 shows the  built-  in Verilog primitives for the 

NOT XX X

Y

X

OR

X

Y

AND

X

XY � XY

 � X � YX Y

 FIGURE 2-4
Logical Operations with NAND Gates
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common logic gates from Figure 2-3. Each primitive declaration includes a list of 

signals that are its inputs and output. The first signal in the list is the output of the 

gate, and the remaining signals are the inputs. For the not gate, there can be only 

one input, but for the other gates, there can be two or more inputs. In Verilog, the 

gate primitives can be connected together to create structural models of logic cir-

cuits. VHDL does not have  built-  in logic gate primitives, but it does have logic oper-

ators that can be used to model the basic combinational gates, shown in Table 2-3. 

Verilog also has logic operators that can be used to model the basic combinational 

gates, shown in Table 2-4. Chapters 3 and 4 will show the necessary details to create 

fully  simulation-  ready models using these gate primitives and logic operators, but 

the reason for describing them at this point is to show that the HDLs provide an 

alternative for representing logic circuits. For small circuits, describing the input/out-

put relationships with logic functions, truth tables, or schematics might be clear and 

feasible, but for larger, more complex circuits, HDLs are often more appropriate.

2-2 BOOLEAN ALGEBRA

The Boolean algebra we present is an algebra dealing with binary variables and logic 

operations. The variables are designated by letters of the alphabet, and the three 

basic logic operations are AND, OR, and NOT (complementation). A Boolean expres-
sion is an algebraic expression formed by using binary variables, the constants 0 and 1, 

 TABLE 2-2
Verilog Primitives for Combinational Logic Gates

Gate primitive Example instance

and and (F, X, Y);

or or (F, X, Y);

not not (F, Y);

nand nand (F, X, Y);

nor nor (F, X, Y);

xor xor (F, X, Y);

xnor xnor (F, X, Y);

 TABLE 2-3
VHDL Predefined Logic Operators

VHDL logic operator Example

not F <= not X;

and F <= X and Y;

or F <= X or Y;

nand F <= X nand Y;

nor F <= X nor Y;

xor F <= X xor Y;

xnor F <= X xnor Y;
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the logic operation symbols, and parentheses. A Boolean function can be described 

by a Boolean equation consisting of a binary variable identifying the function fol-

lowed by an equals sign and a Boolean expression. Optionally, the function identifier 

is followed by parentheses enclosing a list of the function variables separated by com-

mas. A  single-  output Boolean function is a mapping from each of the possible combi-

nations of values 0 and 1 on the function variables to value 0 or 1. A  multiple-  output 
Boolean function is a mapping from each of the possible combinations of values 0 and 

1 on the function variables to combinations of 0 and 1 on the function outputs.

EXAMPLE 2-1 Boolean Function Example–Power Windows

Consider an example Boolean equation representing electrical or electronic logic 

for control of the lowering of the driver’s power window in a car.

L(D, X, A) = DX  +   A

The window is raised or lowered by a motor driving a lever mechanism connected to 

the window. The function L = 1 means that the window motor is powered up to turn 

in the direction that lowers the window. L = 0 means the window motor is not pow-

ered up to turn in this direction. D is an output produced by pushing a panel switch 

on the inside of the driver’s door. With D = 1, the lowering of the driver’s window is 

requested, and with D = 0, this action is not requested. X is the output of a mechan-

ical limit switch. X = 1 if the window is at a  limit—  in this case, in the fully down 

position. X = 0 if the window is not at its  limit—  i.e., not in the fully down position. 

A = 1 indicates automatic lowering of the window until it is in the fully down posi-

tion. A is a signal generated by timing logic from D and X. Whenever D has been 1 

for at least  one-  half second, A becomes 1 and remains at 1 until X = 1. If D = 1 for 

less than  one-  half second, A = 0. Thus, if the driver requests that the window be 

lowered for  one-  half second or longer, the window is to be lowered automatically to 

the fully down position.

The two parts of the expression, DX and A, are called terms of the expression 

for L. The function L is equal to 1 if term DX is equal to 1 or if term A is equal to 1. 

Otherwise, L is equal to 0. The complement operation dictates that if X = 1, then 

X = 0. Therefore, we can say that L = 1 if D = 1, and X = 0 or if A = 1. So what 

does the equation for L say if interpreted in words? It says that the window will be 

 TABLE 2-4
Verilog Bitwise Logic Operators

Verilog operator 

symbol Operator function Example

~ Bitwise not F = ~X;

& Bitwise and F = X & Y;

| Bitwise or F = X | Y;

^ Bitwise xor F = X ^ Y;

~^, ^~ Bitwise xnor F = X ~^ Y;



2-2 / Boolean Algebra      63

lowered if the window is not fully lowered (X = 0) and the switch D is being pushed 

(D = 1) or if the window is to be lowered automatically to fully down position 

(A = 1). ■

A Boolean equation expresses the logical relationship between binary vari-

ables. It is evaluated by determining the binary value of the expression for all 

possible combinations of values for the variables. A Boolean function can be repre-

sented by a truth table. A truth table for a function is a list of all combinations of 1s 

and 0s that can be assigned to the binary variables and a list that shows the value of 

the function for each binary combination. The truth tables for the logic operations 

given in Table 2-1 are special cases of truth tables for functions. The number of rows 

in a truth table is 2n, where n is the number of variables in the function. The binary 

combinations for the truth table are the  n-  bit binary numbers that correspond to 

counting in decimal from 0 through 2n - 1. Table 2-5 shows the truth table for the 

function L = DX + A. There are eight possible binary combinations that assign 

bits to the three variables D, X, and A. The column labeled L contains either 0 or 1 

for each of these combinations. The table shows that the function L is equal to 1 if 

D = 1 and X = 0 or if A = 1. Otherwise, the function L is equal to 0.

An algebraic expression for a Boolean function can be transformed into a cir-

cuit diagram composed of logic gates that implements the function. The logic circuit 

diagram for function L is shown in Figure 2-5, with the equivalent Verilog and VHDL 

models for the circuit shown in Figures 2-6 and 2-7. An inverter on input X generates 

the complement, X. An AND gate operates on X and D, and an OR gate combines 

DX and A. In logic circuit diagrams, the variables of the function F are taken as the 

inputs of the circuit, and the binary variable F is taken as the output of the circuit. If 

the circuit has a single output, F is a single output function. If the circuit has multiple 

 TABLE 2-5
Truth Table for the Function L = DX + A

D X A L

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

A

X

D

L

 FIGURE 2-5
Logic Circuit Diagram for L = DX + A
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    module fig2_5 (L, D, X, A);
        input D, X, A;
        output L;
        wire X_n, t2;
   

        not (X_n, X);
        and (t2, D, X_n);
        or (L, t2, A);
    endmodule

 FIGURE 2-6
Verilog Model for the Logic Circuit of Figure 2-5

library ieee, lcdf_vhdl; 
use ieee.std_logic_1164.all, 
lcdf_vhdl.func_prims.all; 
entity fig2_5 is 
  port (L: out std_logic; 
  D, X, A: in std_logic); 
end fig2_5; 

architecture structural of fig2_5 is 
 component NOT1
  port(in1: in std_logic; 
    out1: out std_logic); 
 end component; 
 component AND2
  port(in1, in2: in std_logic; 
   out1: out std_logic); 
 end component; 
 component OR2
  port(in1, in2: in std_logic; 
    out1: out std_logic); 
 end component; 
signal X_n, t2: std_logic;

begin 
    g0: NOT1 port map(X, X_n); 
    g1: AND2 port map(D, X_n, t2); 
    g3: OR2 port map(t2, A, L); 
end structural;

 FIGURE 2-7
VHDL Model for the Logic Circuit of Figure 2-5
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outputs, function F is a multiple output function with multiple variables and equa-

tions required to represent its outputs. Circuit gates are interconnected by wires that 

carry logic signals. Logic circuits of this type are called combinational logic circuits, 

since the variables are “combined” by the logical operations. This is in contrast to the 

sequential logic to be treated in Chapter 4, in which variables are stored over time as 

well as being combined.

There is only one way that a Boolean function can be represented in a truth 

table. However, when the function is in algebraic equation form, it can be expressed 

in a variety of ways. The particular expression used to represent the function dictates 

the interconnection of gates in the logic circuit diagram. By manipulating a Boolean 

expression according to Boolean algebraic rules, it is often possible to obtain a sim-

pler expression for the same function. This simpler expression reduces both the 

number of gates in the circuit and the numbers of inputs to the gates. To see how this 

is done, we must first study the basic rules of Boolean algebra.

Basic Identities of Boolean Algebra

Table 2-6 lists the most basic identities of Boolean algebra. The notation is simplified 

by omitting the symbol for AND whenever doing so does not lead to confusion. The 

first nine identities show the relationship between a single variable X, its comple-

ment X, and the binary constants 0 and 1. The next five identities, 10 through 14, have 

counterparts in ordinary algebra. The last three, 15 through 17, do not apply in ordi-

nary algebra, but are useful in manipulating Boolean expressions.

The basic rules listed in the table have been arranged into two columns that 

demonstrate the property of duality of Boolean algebra. The dual of an algebraic 

expression is obtained by interchanging OR and AND operations and replacing 1s 

by 0s and 0s by 1s. An equation in one column of the table can be obtained from the 

corresponding equation in the other column by taking the dual of the expressions on 

both sides of the equals sign. For example, relation 2 is the dual of relation 1 because 

the OR has been replaced by an AND and the 0 by 1. It is important to note that 

most of the time the dual of an expression is not equal to the original expression, so 

that an expression usually cannot be replaced by its dual.

 TABLE 2-6
Basic Identities of Boolean Algebra

  1. X + 0 = X 2. X  #   1 = X
 3. X + 1 = 1 4. X  #   0 = 0

 5. X + X = X 6. X  #   X = X
 7 . X + X = 1 8. X  #   X = 0
 9. X = X

10. X + Y = Y + X 11. XY = YX Commutative

12. X + (Y + Z) = (X + Y) + Z 13. X(YZ) = (XY)Z Associative

14. X(Y + Z) = XY + XZ 15. X + YZ = (X + Y)(X + Z) Distributive

16. X + Y = X # Y 17. X # Y = X + Y DeMorgan’s
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The nine identities involving a single variable can be easily verified by substi-

tuting each of the two possible values for X. For example, to show that X + 0 = X, 

let X = 0 to obtain 0 + 0 = 0, and then let X = 1 to obtain 1 + 0 = 1. Both equa-

tions are true according to the definition of the OR logic operation. Any expression 

can be substituted for the variable X in all the Boolean equations listed in the table. 

Thus, by identity 3 and with X = AB + C, we obtain

AB + C + 1 = 1

Note that identity 9 states that double complementation restores the variable to its 

original value. Thus, if X = 0, then X = 1   and  X = 0 = X.

Identities 10 and 11, the commutative laws, state that the order in which the 

variables are written will not affect the result when using the OR and AND opera-

tions. Identities 12 and 13, the associative laws, state that the result of applying an 

operation over three variables is independent of the order that is taken, and there-

fore, the parentheses can be removed altogether, as follows:

 X + (Y + Z) = (X + Y) + Z = X + Y + Z

 X(YZ) = (XY)Z = XYZ

These two laws and the first distributive law, identity 14, are well known from ordi-

nary algebra, so they should not pose any difficulty. The second distributive law, 

given by identity 15, is the dual of the ordinary distributive law and does not hold in 

ordinary algebra. As illustrated previously, each variable in an identity can be 

replaced by a Boolean expression, and the identity still holds. Thus, consider the 

expression (A + B) (A + CD). Letting X = A, Y = B,  and  Z = CD, and apply-

ing the second distributive law, we obtain

(A + B)(A + CD) = A + BCD

The last two identities in Table 2-6,

X + Y = X  #   Y  and  X # Y = X + Y

are referred to as DeMorgan’s theorem. This is a very important theorem and is used 

to obtain the complement of an expression and of the corresponding function. 

DeMorgan’s theorem can be illustrated by means of truth tables that assign all the 

possible binary values to X and Y. Table 2-7 shows two truth tables that verify the 

 TABLE 2-7
Truth Tables to Verify DeMorgan’s Theorem

(a) X Y X + Y X + Y (b) X Y X Y X # Y
0 0 0 1 0 0 1 1 1

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 0 1 0

1 1 1 0 1 1 0 0 0
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first part of DeMorgan’s theorem. In (a), we evaluate X + Y for all possible values 

of X and Y. This is done by first evaluating X + Y and then taking its complement. 

In (b), we evaluate X and Y and then AND them together. The result is the same for 

the four binary combinations of X and Y, which verifies the identity of the equation.

Note the order in which the operations are performed when evaluating an 

expression. In part (b) of the table, the complement over a single variable is evalu-

ated first, followed by the AND operation, just as in ordinary algebra with multipli-

cation and addition. In part (a), the OR operation is evaluated first. Then, noting that 

the complement over an expression such as X + Y is considered as specifying NOT 

(X + Y), we evaluate the expression within the parentheses and take the comple-

ment of the result. It is customary to exclude the parentheses when complementing 

an expression, since a bar over the entire expression joins it together. Thus, (X + Y) 

is expressed as X + Y when designating the complement of X + Y.
DeMorgan’s theorem can be extended to three or more variables. The general 

DeMorgan’s theorem can be expressed as

 X1 + X2 + c + Xn = X1X2 c Xn

 X1X2 c Xn = X1 + X2 + c + Xn

Observe that the logic operation changes from OR to AND or from AND to OR. In 

addition, the complement is removed from the entire expression and placed instead 

over each variable. For example,

A + B + C + D = A B C D

Algebraic Manipulation

Boolean algebra is a useful tool for simplifying digital circuits. Consider, for example, 

the Boolean function represented by

F = XYZ + XYZ + XZ

The implementation of this equation with logic gates is shown in Figure 2-8(a). Input 

variables X and Z are complemented with inverters to obtain X  and  Z. The three 

terms in the expression are implemented with three AND gates. The OR gate forms 

the logical OR of the terms. Now consider a simplification of the expression for F by 

applying some of the identities listed in Table 2-6:

 F = XYZ + XYZ + XZ

 = XY(Z + Z ) + XZ   by identity 14

 = XY # 1 + XZ      by identity 7

 = XY + XZ      by identity 2

The expression is reduced to only two terms and can be implemented with 

gates as shown in Figure 2-8(b). It is obvious that the circuit in (b) is simpler than the 

one in (a) yet, both implement the same function. It is possible to use a truth table to 

verify that the two implementations are equivalent. This is shown in Table 2-8. As 
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X

Y

Z

F

(a)  F � XYZ � XYZ � XZ

(b)  F � XY � XZ

X
Y

F

Z

 FIGURE 2-8
Implementation of Boolean Function with Gates

 TABLE 2-8
Truth Table for Boolean Function

X Y Z (a) F (b) F

0 0 0 0 0

0 0 1 0 0

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

expressed in Figure 2-8(a), the function is equal to 1 if X = 0,  Y = 1, and Z = 1; if 

X = 0,  Y = 1, and Z = 0; or if X and Z are both 1. This produces the four 1s for F in 

part (a) of the table. As expressed in Figure 2-8(b), the function is equal to 1 if X = 0 

and Y = 1 or if X = 1 and Z = 1. This produces the same four 1s in part (b) of the 

table. Since both expressions produce the same truth table, they are equivalent. 

Therefore, the two circuits have the same output for all possible binary combinations 

of the three input variables. Each circuit implements the same function, but the one 

with fewer gates and/or fewer gate inputs is preferable because it requires fewer 

components.

When a Boolean equation is implemented with logic gates, each term requires 

a gate, and each variable within the term designates an input to the gate. We define a 

literal as a single variable within a term that may or may not be complemented. The 
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expression for the function in Figure 2-8(a) has three terms and eight literals; the one 

in Figure 2-8(b) has two terms and four literals. By reducing the number of terms, the 

number of literals, or both in a Boolean expression, it is often possible to obtain a 

simpler circuit. Boolean algebra is applied to reduce an expression for the purpose 

of obtaining a simpler circuit. For highly complex functions, finding the best expres-

sion based on counts of terms and literals is very difficult, even by the use of com-

puter programs. Certain methods, however, for reducing expressions are often 

included in computer tools for synthesizing logic circuits. These methods can obtain 

good, if not the best, solutions. The only manual method for the general case is a  cut- 

 and-  try procedure employing the basic relations and other manipulations that 

become familiar with use. The following examples use identities from Table 2-6 to 

illustrate a few of the possibilities:

1. X + XY = X # 1 + XY = X(1 + Y) = X # 1 = X

2. XY + XY = X(Y + Y) = X # 1 = X

3. X + XY = (X + X)(X + Y) = 1 # (X + Y) = X + Y

Note that the intermediate steps X = X # 1  and  X # 1 = X are often omitted because 

of their rudimentary nature. The relationship 1 + Y = 1 is useful for eliminating 

redundant terms, as is done with the term XY in this same equation. The relation 

Y + Y = 1 is useful for combining two terms, as is done in equation 2. The two 

terms being combined must be identical except for one variable, and that variable 

must be complemented in one term and not complemented in the other. Equation 3 

is simplified by means of the second distributive law (identity 15 in Table 2-6). The 

following are three more examples of simplifying Boolean expressions:

4. X(X + Y) = X # X + X # Y = X + XY = X(1 + Y) = X # 1 = X

5. (X + Y)(X + Y) = X + YY = X + 0 = X

6. X(X + Y) = XX + XY = 0 + XY = XY

The six equalities represented by the initial and final expressions are theorems of 

Boolean algebra proved by the application of the identities from Table 2-6. These 

theorems can be used along with the identities in Table  2-6 to prove additional 

results and to assist in performing simplification.

Theorems 4 through 6 are the duals of equations 1 through 3. Remember that 

the dual of an expression is obtained by changing AND to OR and OR to AND 

throughout (and 1s to 0s and 0s to 1s if they appear in the expression). The duality 
principle of Boolean algebra states that a Boolean equation remains valid if we take 

the dual of the expressions on both sides of the equals sign. Therefore, equations 4, 5, 

and 6 can be obtained by taking the dual of equations 1, 2, and 3, respectively.

Along with the results just given in equations 1 through 6, the following con-
sensus theorem is useful when simplifying Boolean expressions:

XY + XZ + YZ = XY + XZ

The theorem shows that the third term, YZ, is redundant and can be eliminated. 

Note that Y and Z are associated with X and X in the first two terms and appear 
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together in the term that is eliminated. The proof of the consensus theorem is 

obtained by first ANDing YZ with (X  +   X) =  1 and proceeds as follows:

 XY + XZ + YZ = XY + XZ + YZ(X + X)

 = XY + XZ + XYZ + XYZ

 = XY + XYZ + XZ + XYZ

 = XY(1 + Z) + XZ(1 + Y)

 = XY + XZ

The dual of the consensus theorem is

(X + Y)(X + Z)(Y + Z) = (X + Y)(X + Z)

The following example shows how the consensus theorem can be applied in 

manipulating a Boolean expression:

 (A + B)(A + C) = AA  + AC + AB + BC

 = AC + AB + BC

 = AC + AB

Note that AA = 0 and 0 + AC = AC. The redundant term eliminated in the last 

step by the consensus theorem is BC.

Complement of a Function

The complement representation for a function F, F, is obtained from an interchange 

of 1s to 0s and 0s to 1s for the values of F in the truth table. The complement of a 

function can be derived algebraically by applying DeMorgan’s theorem. The gener-

alized form of this theorem states that the complement of an expression is obtained 

by interchanging AND and OR operations and complementing each variable and 

constant, as shown in Example 2-2.

EXAMPLE 2-2 Complementing Functions

Find the complement of each of the functions represented by the equations 

F1 = XYZ + X YZ and F2 = X(Y Z + YZ). Applying DeMorgan’s theorem as 

many times as necessary, we obtain the complements as follows:

 F1 = XYZ  +   X YZ  =   (XYZ)  #   (X YZ)

 = (X + Y + Z)(X + Y + Z)

 F2 = X(Y Z  +   YZ)  =   X + (Y Z + YZ) 

 = X + Y Z # YZ

 = X +   (Y + Z)(Y + Z)

A simpler method for deriving the complement of a function is to take the dual 

of the function equation and complement each literal. This method follows from the 
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generalization of DeMorgan’s theorem. Remember that the dual of an expression is 

obtained by interchanging AND and OR operations and 1s and 0s. To avoid confu-

sion in handling complex functions, adding parentheses around terms before taking 

the dual is helpful, as illustrated in the next example. ■

EXAMPLE 2-3 Complementing Functions by Using Duals

Find the complements of the functions in Example 2-2 by taking the duals of their 

equations and complementing each literal.

We begin with

F1  =   XYZ  +   X YZ  =   (XYZ) + (X YZ)

The dual of F1 is

(X + Y + Z)(X + Y + Z)

Complementing each literal, we have

(X + Y + Z)(X + Y + Z)  =   F1

Now,

F2  =   X(Y Z + YZ)  =   X((Y Z) + (YZ))

The dual of F2 is

X + (Y + Z)(Y + Z)

Complementing each literal yields

X + (Y + Z)(Y + Z)  =   F2

2-3 STANDARD FORMS

A Boolean function expressed algebraically can be written in a variety of ways. There 

are, however, specific ways of writing algebraic equations that are considered to 

be standard forms. The standard forms facilitate the simplification procedures for 

Boolean expressions and, in some cases, may result in more desirable expressions for 

implementing logic circuits.

The standard forms contain product terms and sum terms. An example of a 

product term is XYZ. This is a logical product consisting of an AND operation 

among three literals. An example of a sum term is X + Y + Z. This is a logical sum 

consisting of an OR operation among the literals. In Boolean algebra, the words 

“product” and “sum” do not imply arithmetic operations—instead, they specify the 

logical operations AND and OR, respectively.

Minterms and Maxterms

A truth table defines a Boolean function. An algebraic expression for the function 

can be derived from the table by finding a logical sum of product terms for which the 

function assumes the binary value 1. A product term in which all the variables appear 

 ■
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exactly once, either complemented or uncomplemented, is called a minterm. Its 

characteristic property is that it represents exactly one combination of binary 

variable values in the truth table. It has the value 1 for that combination and 0 for all 

others. There are 2n distinct minterms for n variables. The four minterms for the two 

variables X and Y are X Y,  XY,  XY, and XY. The eight minterms for the three vari-

ables X, Y, and Z are listed in Table 2-9. The binary numbers from 000 to 111 are 

listed under the variables. For each binary combination, there is a related minterm. 

Each minterm is a product term of exactly n literals, where n is the number of vari-

ables. In this example, n = 3. A literal is a complemented variable if the correspond-

ing bit of the related binary combination is 0 and is an uncomplemented variable if it 

is 1. A symbol mj for each minterm is also shown in the table, where the subscript j 
denotes the decimal equivalent of the binary combination corresponding to the min-

term. This list of minterms for any given n variables can be formed in a similar man-

ner from a list of the binary numbers from 0 through 2n -1. In addition, the truth 

table for each minterm is given in the right half of the table. These truth tables clear-

ly show that each minterm is 1 for the corresponding binary combination and 0 for 

all other combinations. Such truth tables will be helpful later in using minterms to 

form Boolean expressions.

A sum term that contains all the variables in complemented or uncomple-

mented form is called a maxterm. Again, it is possible to formulate 2n maxterms with 

n variables. The eight maxterms for three variables are listed in Table 2-10. Each 

maxterm is a logical sum of the three variables, with each variable being comple-

mented if the corresponding bit of the binary number is 1 and uncomplemented if it 

is 0. The symbol for a maxterm is Mj, where j denotes the decimal equivalent of the 

binary combination corresponding to the maxterm. In the right half of the table, 

the truth table for each maxterm is given. Note that the value of the maxterm is 0 for 

the corresponding combination and 1 for all other combinations. It is now clear 

where the terms “minterm” and “maxterm” come from: a minterm is a function, not 

equal to 0, having the minimum number of 1s in its truth table; a maxterm is a func-

tion, not equal to 1, having the maximum of 1s in its truth table. Note from Table 2-9 

 TABLE 2-9
Minterms for Three Variables

X Y Z

Product 

Term Symbol m
0

m
1

m
2

m
3

m
4

m
5

m
6

m
7

0 0 0 X Y Z m
0

1 0 0 0 0 0 0 0

0 0 1 X YZ m
1

0 1 0 0 0 0 0 0

0 1 0 XYZ m
2

0 0 1 0 0 0 0 0

0 1 1 XYZ m
3

0 0 0 1 0 0 0 0

1 0 0 XY Z m
4

0 0 0 0 1 0 0 0

1 0 1 XYZ m
5

0 0 0 0 0 1 0 0

1 1 0 XYZ m
6

0 0 0 0 0 0 1 0

1 1 1 XYZ m
7

0 0 0 0 0 0 0 1
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and Table 2-10 that a minterm and maxterm with the same subscript are the comple-

ments of each other; that is, Mj =   mj and mj =   Mj. For example, for j = 3, we have

M3  =   X + Y + Z + = XYZ   =   m3

A Boolean function can be represented algebraically from a given truth table 

by forming the logical sum of all the minterms that produce a 1 in the function. 

This expression is called a sum of minterms. Consider the Boolean function F in 

Table 2-11(a). The function is equal to 1 for each of the following binary combinations 

of the variables X, Y, and Z : 000, 010, 101 and 111. These combinations correspond 

to minterms 0, 2, 5, and 7. By examining Table 2-11 and the truth tables for these min-

terms in Table 2-9, it is evident that the function F can be expressed algebraically as 

the logical sum of the stated minterms:

F = X Y Z + XYZ + XYZ + XYZ = m0 + m2 + m5 + m7

This can be further abbreviated by listing only the decimal subscripts of the minterms:

F(X, Y, Z) = Σm(0, 2, 5, 7)

 TABLE 2-10
Maxterms for Three Variables

X Y Z Sum Term Symbol M0 M1 M2 M3 M4 M5 M6 M7

0 0 0 X + Y + Z M0 0 1 1 1 1 1 1 1

0 0 1 X + Y + Z M1 1 0 1 1 1 1 1 1

0 1 0 X + Y + Z M2 1 1 0 1 1 1 1 1

0 1 1 X + Y + Z M3 1 1 1 0 1 1 1 1

1 0 0 X + Y + Z M4 1 1 1 1 0 1 1 1

1 0 1 X + Y + Z M5 1 1 1 1 1 0 1 1

1 1 0 X + Y + Z M6 1 1 1 1 1 1 0 1
1 1 1 X + Y + Z M7 1 1 1 1 1 1 1 0

 TABLE 2-11
Boolean Functions of Three Variables

(a) X Y Z F F (b) X Y Z E

0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1

0 1 1 0 1 0 1 1 0

1 0 0 0 1 1 0 0 1

1 0 1 1 0 1 0 1 1

1 1 0 0 1 1 1 0 0

1 1 1 1 0 1 1 1 0
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The symbol Σ stands for the logical sum (Boolean OR) of the minterms. The num-

bers following it represent the minterms of the function. The letters in parentheses 

following F form a list of the variables in the order taken when the minterms are 

converted to product terms.

Now consider the complement of a Boolean function. The binary values of F in 

Table 2-11(a) are obtained by changing 1s to 0s and 0s to 1s in the values of F. Taking 

the logical sum of minterms of F, we obtain

F(X,Y,Z) = X YZ + XYZ + XY Z + XYZ = m1 + m3 + m4 + m6

or, in abbreviated form,

F(X, Y, Z) = Σm(1, 3, 4, 6)

Note that the minterm numbers for F are the ones missing from the list of the min-

term numbers of F. We now take the complement of F to obtain F:

 F = m1 + m3 + m4 + m6 = m1
# m3

# m4
# m6

 = M1
# M3

# M4
# M6  (since  mj  =   Mj)

 = (X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

This shows the procedure for expressing a Boolean function as a product of max-
terms. The abbreviated form for this product is

F(X, Y, Z) = wM(1, 3, 4, 6)

where the symbol ∑ denotes the logical product (Boolean AND) of the maxterms 

whose numbers are listed in parentheses. Note that the decimal numbers included in 

the product of maxterms will always be the same as the minterm list of the comple-

mented function, such as (1, 3, 4, 6) in the foregoing example. Maxterms are seldom 

used directly when dealing with Boolean functions, since we can always replace them 

with the minterm list of F.

The following is a summary of the most important properties of minterms:

1. There are 2n minterms for n Boolean variables. These minterms can be generat-

ed from the binary numbers from 0 to 2n - 1.

2. Any Boolean function can be expressed as a logical sum of minterms.

3. The complement of a function contains those minterms not included in the 

original function.

4. A function that includes all the 2n minterms is equal to logic 1.

A function that is not in the  sum-  of-  minterms form can be converted to that form by 

means of a truth table, since the truth table always specifies the minterms of the 

function. Consider, for example, the Boolean function

E = Y + X Z

The expression is not in  sum-  of-  minterms form, because each term does not contain all 

three variables X, Y, and Z. The truth table for this function is listed in Table 2-11(b). 
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From the table, we obtain the minterms of the function:

E(X, Y, Z) = Σm(0, 1, 2, 4, 5)

The minterms for the complement of E are given by

E(X, Y, Z)  = Σm(3, 6, 7)

Note that the total number of minterms in E and E is equal to eight, since the func-

tion has three variables, and three variables produce a total of eight minterms. With 

four variables, there will be a total of 16 minterms, and for two variables, there will be 

four minterms. An example of a function that includes all the minterms is

G(X, Y ) = Σm(0, 1, 2, 3) = 1

Since G is a function of two variables and contains all four minterms, it is always 

equal to logic 1.

Sum of Products

The  sum-  of-  minterms form is a standard algebraic expression that is obtained direct-

ly from a truth table. The expression so obtained contains the maximum number of 

literals in each term and usually has more product terms than necessary. This is be-

cause, by definition, each minterm must include all the variables of the function, 

complemented or uncomplemented. Once the sum of minterms is obtained from the 

truth table, the next step is to try to simplify the expression to see whether it is 

possible to reduce the number of product terms and the number of literals in the 

terms. The result is a simplified expression in  sum-  of-  products form. This is an alter-

native standard form of expression that contains product terms with up to n literals. 

An example of a Boolean function expressed as a sum of products is

F = Y + XYZ + XY

The expression has three product terms, the first with one literal, the second with 

three literals, and the third with two literals.

The logic diagram for a  sum-  of-  products form consists of a group of AND gates 

followed by a single OR gate, as shown in Figure 2-9. Each product term requires an 

AND gate, except for a term with a single literal. The logical sum is formed with an 

OR gate that has single literals and the outputs of the AND gates as inputs. Often, 

Y

X
Y

X
Y

F
Z

 FIGURE 2-9
 Sum-  of-  Products Implementation
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we assumed that the input variables are directly available in their complemented 

and uncomplemented forms, so inverters are not included in the diagram. The AND 

gates followed by the OR gate form a circuit configuration referred to as a  two-  level 
implementation or  two-  level circuit.

If an expression is not in  sum-  of-  products-  form, it can be converted to the stan-

dard form by means of the distributive laws. Consider the expression

F = AB + C(D + E)

This is not in  sum-  of-  products form, because the term D + E is part of a product, 

not a single literal. The expression can be converted to a sum of products by applying 

the appropriate distributive law as follows:

F = AB + C(D + E) = AB + CD + CE

The function F is implemented in a nonstandard form in Figure 2-10(a). This requires 

two AND gates and two OR gates. There are three levels of gating in the circuit. F is 

implemented in  sum-  of-  products form in Figure 2-10(b). This circuit requires three 

AND gates and an OR gate and uses two levels of gating. The decision as to whether 

to use a  two-  level or  multiple-  level (three levels or more) implementation is com-

plex. Among the issues involved are the number of gates, number of gate inputs, and 

the amount of delay between the time the input values are set and the time the 

resulting output values appear.  Two-  level implementations are the natural form for 

certain implementation technologies, as we will see in Chapter 5.

Product of Sums

Another standard form of expressing Boolean functions algebraically is the product 
of sums. This form is obtained by forming a logical product of sum terms. Each logi-

cal sum term may have any number of distinct literals. An example of a function ex-

pressed in  product-  of-  sums form is

F = X(Y + Z)(X + Y + Z)

This expression has sum terms of one, two, and three literals. The sum terms perform 

an OR operation, and the product is an AND operation.

(a)  AB � C(D � E)

A
B

C

D
E

(b)  AB � CD � CE

A

B

C

D

C

E

 FIGURE 2-10
 Three-  Level and  Two-  Level Implementation
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The gate structure of the  product-  of-  sums expression consists of a group of OR 

gates for the sum terms (except for a single literal term), followed by an AND gate. 

This is shown in Figure 2-11 for the preceding function F. As with the sum of prod-

ucts, this standard type of expression results in a  two-  level gating structure.

2-4  TWO-  LEVEL CIRCUIT OPTIMIZATION

The complexity of a logic circuit that implements a Boolean function is directly relat-

ed to the algebraic expression from which the function is implemented. Although the 

 truth-  table representation of a function is unique, when expressed algebraically, the 

function appears in many different forms. Boolean expressions may be simplified by 

algebraic manipulation, as discussed in Section 2-2. However, this procedure of sim-

plification is awkward, because it lacks specific rules to predict each succeeding step 

in the manipulative process and it is difficult to determine whether the simplest ex-

pression has been achieved. By contrast, the map method provides a straightforward 

procedure for optimizing Boolean functions of up to four variables. Maps for five and 

six variables can be drawn as well, but are more cumbersome to use. The map is also 

known as the Karnaugh map, or  K-  map. The map is a diagram made up of squares, 

with each square representing one row of a truth table, or correspondingly, one mint-

erm of a single output function. Since any Boolean function can be expressed as a 

sum of minterms, it follows that a Boolean function is recognized graphically in the 

map by those squares for which the function has value 1, or correspondingly, whose 

minterms are included in the function. From a more complex view, the map presents a 

visual diagram of all possible ways a function may be expressed in a standard form. 

Among these ways are the optimum  sum-  of-  products standard forms for the func-

tion. The optimized expressions produced by the map are always in  sum-  of-  products 

or  product-  of-  sums form. Thus, maps handle optimization for  two-  level implementa-

tions, but do not apply directly to possible simpler implementations for the general 

case with three or more levels. Initially, this section covers  sum-  of-  products optimiza-

tion and, later, applies it to performing  product-  of-  sums optimization.

Cost Criteria

In the prior section, counting literals and terms was mentioned as a way of measuring 

the simplicity of a logic circuit. We introduce two cost criteria to formalize this concept.

X

Z

X
Y
Z

Y
F

 FIGURE 2-11
 Product-  of-  Sums Implementation
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The first criterion is literal cost, the number of literal appearances in a Boolean 

expression corresponding exactly to the logic diagram. For example, for the circuits 

in Figure 2-10, the corresponding Boolean expressions are

F = AB + C(D + E)    and    F = AB + CD + CE

There are five literal appearances in the first equation and six in the second, so the 

first equation is the simplest in terms of literal cost. Literal cost has the advantage 

that it is very simple to evaluate by counting literal appearances. It does not, how-

ever, represent circuit complexity accurately in all cases, even for the comparison of 

different implementations of the same logic function. The following Boolean equa-

tions, both for function G, illustrate this situation:

G = ABCD + A B C D     and    G =   (A + B)(B + C)(C + D)(D + A)

The implementations represented by these equations both have a literal cost of 

eight. But, the first equation has two terms and the second has four. This suggests 

that the first equation has a lower cost than the second.

To capture the difference illustrated, we define  gate-  input cost as the number of 

inputs to the gates in the implementation corresponding exactly to the given equa-

tion or equations. This cost can be determined easily from the logic diagram by sim-

ply counting the total number of inputs to the gates in the logic diagram. For 

 sum-  of-  products or  product-  of-  sums equations, it can be found from the equation by 

finding the sum of

1. all literal appearances,

2. the number of terms excluding terms that consist only of a single literal, and, 

optionally,

3. the number of distinct complemented single literals.

In (1), all gate inputs from outside the circuit are represented. In (2), all gate inputs 

within the circuit, except for those to inverters, are represented and in (3), inverters 

needed to complement the input variables are counted in the event that comple-

mented input variables are not provided. For the two preceding equations, excluding 

the count from (3), the respective  gate-  input counts are 8 + 2 = 10 and 8 + 4 = 12. 

Including the count from (3), that of input inverters, the respective counts are 14 and 

16. So the first equation for G has a lower  gate-  input cost, even though the literal 

costs are equal.

 Gate-  input cost is currently a good measure for contemporary logic imple-

mentations, since it is proportional to the number of transistors and wires used in 

implementing a logic circuit. Representation of gate inputs becomes particularly 

important in measuring cost for circuits with more than two levels. Typically, as the 

number of levels increases, literal cost represents a smaller proportion of the actual 

circuit cost, since more and more gates have no inputs from outside the circuit itself. 

On the Companion Website, we introduce complex gate types for which evaluation 

of the  gate-  input cost from an equation is invalid, since the correspondence between 

the AND, OR, and NOT operations in the equation and the gates in the circuit can 

no longer be established. In such cases, as well as for equation forms more complex 
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than  sum-  of-  products and  product-  of-  sums, the  gate-  input count must be deter-

mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is 

not necessarily unique. It is sometimes possible to find two or more expressions that 

satisfy the cost criterion applied. In that case, either solution is satisfactory from the 

cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The 

number of squares in each map is equal to the number of minterms in the corre-

sponding function. In our discussion of minterms, we defined a minterm mi to go with 

the row of the truth table with i in binary as the variable values. This use of i to 
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 FIGURE 2-12
Map Structures
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 represent the minterm mi is carried over to the cells of the maps, each of which corre-

sponds to a minterm. For two, three, and four variables, there are 4, 8, and 16 squares, 

respectively. Each of the maps is labeled in two ways: 1) with variables at the upper 

left for the columns and the rows and with a binary combination of those variables for 

each column and each row, and 2) with single variable labels at the edges of the map 

applied by a bracket to single or double rows and columns. Each location of a variable 

label aligns with the region of the map for which the variable has value 1. The region 

for which the variable has value 0 is implicitly labeled with the complement of the 

variable. Only one of these two schemes is required to completely label a map, but 

both are shown to allow selection of the one that works best for a given user.

Beginning with the binary combination scheme, we note that the binary combi-

nations across the top and down the left side of a map take the form of a Gray code 

as introduced in Section 1-7. The use of the Gray code is appropriate because it rep-

resents the adjacency of binary combinations and of the corresponding minterms 

that is the foundation of  K-  maps. Two binary combinations are said to be adjacent if 
they differ in the value of exactly one variable. Two product terms (including min-

terms) are adjacent if they differ in one and only one literal which appears uncom-

plemented in one and complemented in the other. For example, the combinations 

(X, Y, Z) = 011 and 010 are adjacent, since they differ only in the value of 

variable  Z.  Further, the minterms XYZ   and   XYZ are adjacent, since they have 

identical literal appearances except for Z, which appears uncomplemented and com-

plemented. The reason for the use of a Gray code on  K-  maps is that any two squares 

which share a common edge correspond to a pair of adjacent binary combinations 

and adjacent minterms. This correspondence can be used to perform simplification 

of product terms for a given function on a  K-  map. This simplification is based on the 

Boolean algebraic theorem:

AB + AB = A

Applying this to the example with A = XY and B = Z,

(XY)Z + (XY)Z = XY

Looking at the  K-  map in Figure 2-12(c), we see that the two corresponding squares 

are located at (X, Y, Z) = 011 (3) and 010 (2), which are in row 0 and columns 11 

and 10, respectively. Note that these two squares are adjacent (share an edge) and 

can be combined, as indicated by the black rectangle in Figure 2-12(c). This rectangle 

on the  K-  map contains both 0 and 1 for Z, and so no longer depends on Z, and can be 

read off as XY. This demonstrates that whenever we have two squares sharing edges 

that are minterms of a function, these squares can be combined to form a product 

term with one less variable.

For the 3- and 4-variable  K-  maps, there is one more issue to be addressed with 

respect to the adjacency concept. For a 3-variable  K-  map, suppose we consider the 

minterms 0 and 2 in Figure 2-12(c). These two minterms do not share an edge, and 

hence do not appear to be adjacent. However, these two minterms are X Y Z and 

X Y Z, which by definition are adjacent. In order to recognize this adjacency on the 

 K-  map, we need to consider the left and right borders of the map to be a shared edge. 

Geometrically, this can be accomplished by forming a cylinder from the map so that 
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the squares touching the left and right borders actually have a shared edge! A view 

of this cylinder appears in Figure 2-12(d). Here minterms m
0
 and m

2
 share an edge 

and, from the  K-  map, are adjacent. Likewise, m
4
 and m

6
 share an edge on the  K-  map 

and are adjacent. The two rectangles resulting from these adjacencies are shown in 

Figure 2-12(c) and 2-12(d) in blue.

The 4-variable  K-  map in Figure 2-12(e) can likewise be formed into a cylinder. 

This demonstrates four adjacencies, m0 and m2,  m4 and m6,  m12 and m14, and m8 and 

m10. The minterms m0 and m8, W X Y Z   and   W X Y Z, are adjacent, suggesting that 

the top border of the map should be a shared edge with the bottom border. This can 

be accomplished by taking the cylinder formed from the map and bending it, joining 

these two borders. This results in the torus (doughnut shape) in Figure 2-12(f). The 

additional resulting adjacencies identifiable on the map are m
1
 and m

9
, m

3
 and m

11
, 

and m
2
 and m

10
.

Unfortunately, the cylinder and the torus are not convenient to use, but they 

can help us remember the locations of shared edges. These edges are at the left and 

right border pair for the flat 3-variable map and at the left and right border pair and 

the top and bottom border pair for 4-variable  K-  maps, respectively. The use of flat 

maps will require the use of pairs of split rectangles lying across the border pairs.

One final detail is the placing of a given function F on a map. Suppose that the 

function F is given as a truth table with the row designated by decimal i correspond-

ing to the binary input values equivalent to i. Based on the binary combinations on 

the left and top edges of the  K-  map combined in order, we can designate each cell 

of the map by the same i. This will permit easy transfer of the 0 and 1 values of F 
from the truth table onto the  K-  map. The values of i for this purpose are shown on the 

three maps in Figure 2-12. It is a good idea to determine how to fill in the values of i 
quickly by noting the order of the values of i in a row depends on the Gray code value 

order for the columns and the ordering of the rows of i values depends on the Gray code 

value order for the rows. For example, for the 4-variable map, the  rows-  of-  columns 

order of the i values is: 0, 1, 3, 2, 4, 5, 7, 6, 12, 13, 15, 14, 8, 9, 11, 10. The  rows-  of-  columns 

order of the i values for 2-variable and 3-variable maps are the first four values and 

the first eight values from this sequence. These values can also be used for sum of 

minterm expressions defined using the abbreviated Σ notation. Note that the posi-

tioning of the i values is dependent upon the placement of the variables in order 

from lower left side to middle right side to right top and middle bottom for a 

4-variable map. For 2- and 3-variable maps, the order is the same with the nonexis-

tent “middle” positions skipped. Any variation from this ordering will give a differ-

ent map structure.

 Two-  Variable Maps

There are four basic steps for using a  K-  map. Initially, we present each of these steps 

using a 2-variable function F(A, B) as an example.

The first step is to enter the function on the  K-  map. The function may be in 

the form of a truth table, the Σm shorthand notation for a sum of minterms, or a 

 sum-  of-  products expression. The truth table for F(A, B) is given in Table 2-12. For 

each row in which the function F has value 1, the values of A and B can be read to 
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determine where to place a 1 on the map. For example, the function has value 1 for 

the combination A = 0 and B = 0. Thus, a 1 is placed in the upper left square of 

the  K-  map in Figure 2-13(a) corresponding to A = 0 and B = 0. This operation is 

repeated for rows (0, 1) and (1, 1) in the truth table to complete the entry of F in the 

map.

If the decimal subscripts for the minterms have been added to the truth table 

and entered on the map as discussed previously, a much faster approach to entering 

the function on the map is available. The subscripts for the minterms of the function 

are those corresponding to the rows for which the function is a 1. So a 1 is simply 

entered in squares 0, 1, and 3 of the  K-  map. For these two entry methods, as well as 

others, we assume that each remaining square contains a 0, but do not actually enter 

0s in the  K-  map.

The Σm notation for F in the truth table is F(A, B) = Σm(0, 1, 3), which can 

be entered on the  K-  map simply by placing 1 in each of the squares 0, 1, and 3. 

Alternatively, a  sum-  of-  products expression such as F = A + AB can be given as a 

specification. This can be converted to minterms and entered on the  K-  map. More 

simply, the region of the  K-  map corresponding to each of the product terms can be 

identified and filled with 1s. Since AB is a minterm, we can simply place a 1 in square 

3. For A, we note that the region is that identified as “not” A on the  K-  map and con-

sists of squares 0 and 1. So A can be entered by placing a 1 in each of these two 

squares. In general, this last process becomes easier once we have mastered the con-

cept of rectangles on a  K-  map, as discussed next.

The second step is to identify collections of squares on the map representing 

product terms to be considered for the simplified expression. We call such objects 

rectangles, since their shape is that of a rectangle (including, of course, a square). 

 TABLE 2-12
 Two-  Variable Function F(A, B)

A B F

0 0 1
0 1 1
1 0 0
1 1 1

0

1 1

0 1
B

A
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2 3
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 FIGURE 2-13
 Two-  Variable  K-  Map Examples
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Rectangles that correspond to product terms are restricted to contain numbers of 

squares that are powers of 2, such as 1, 2, 4, and 8. Also, this implies that the length of 

a side of any rectangle is a power of 2. Our goal is to find the fewest such rectangles 

that include or cover all of the squares marked with 1s. This will give the fewest 

product terms and the least input cost for summing the product terms. Any rectangle 

we are planning to use should be as large as possible in order to include as many 1s 

as possible. Also, a larger rectangle gives a lower input cost for the corresponding 

product term.

For the example, there are two largest rectangles. One consists of squares 1 and 

0, the other of squares 3 and 1. Squares 1 and 0 correspond to minterms AB and A B, 

which can be combined to form rectangle A. Squares 3 and 1 correspond to min-

terms AB and AB, which can be combined to form rectangle B.
The third step is to determine if any of the rectangles we have generated is not 

needed to cover all of the 1s on the  K-  map. In the example, we can see that rectangle 

A is required to cover minterm 0 and rectangle B is required to cover minterm 3. In 

general, a rectangle is not required if it can be deleted and all of the 1s on the map 

are covered by the remaining rectangles. If there are choices as to which rectangle of 

two having unequal size to remove, the largest one should remain.

The final step is to read off the  sum-  of-  products expression, determining the 

corresponding product terms for the required rectangles in the map. In the example, 

we can read off the corresponding product terms by using the rectangles shown and 

the variable labels on the map boundary as A and B, respectively. This gives a  sum- 

 of-  products expression for F as:

F = A + B

EXAMPLE 2-4 Another 2-Variable Map Example

The function G(A, B) = Σm(1, 2) is shown on the 2-variable  K-  map in Figure  

2-13(b). Looking at the map, we find the two rectangles are simply the minterms 1 and 

2. From the map, ■

G(A, B) = AB + AB

From Figure  2-13(a) and 2-13(b), we find that 2-variable maps contain: 

(1) 1 * 1 rectangles which correspond to minterms and (2) 2 * 1 rectangles consist-

ing of a pair of adjacent minterms. A 1 * 1 rectangle can appear on any square of 

the map and a 2 * 1 rectangle can appear either horizontally or vertically on the 

map, each in one of two positions. Note that a 2 * 2 rectangle covers the entire map 

and corresponds to the function F = 1.

 Three-  Variable Maps

We introduce simplification on 3-variable maps by using two examples followed by a 

discussion of the new concepts involved beyond those required for 2-variable maps.
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EXAMPLE 2-5  Three-  Variable Map Simplification 1

Simplify the Boolean function

F(A, B, C) = Σm(0, 1, 2, 3, 4, 5)

This function has been entered on the  K-  map shown in Figure 2-14(a), where squares 

0 through 5 are marked with 1s. In the map, the two largest rectangles each enclose 

four squares containing 1s. Note that two squares, 0 and 1, lie in both of the rectan-

gles. Since these two rectangles include all of the 1s in the map and neither can be 

removed, the logical sum of the corresponding two product terms gives the opti-

mized expression for F:

F = A + B

To illustrate algebraically how a 4 * 4 rectangle such as B arises, consider the two 

adjacent black rectangles AB and A B connected by two pairs of adjacent minterms. 

These can be combined based on the theorem XY +  XY = X with X = B and 

Y = A to obtain B. ■

EXAMPLE 2-6  Three-  Variable Map Simplification 2

Simplify the Boolean function

G(A, B, C) = Σm(0, 2, 4, 5, 6)

This function has been entered on the  K-  map shown in Figure 2-14(b), where squares 

listed are marked with 1s. In some cases, two squares in the map are adjacent and 

form a rectangle of size two, even though they do not touch each other. For example, 

in Figure 2-14(b) and 2-12(d), m
0
 is adjacent to m

2
 because the minterms differ by 

one variable. This can be readily verified algebraically:

m0 + m2 = A B C + A B C = A C(B + B) = A C

This rectangle is represented in black in Figure 2-14(b) and in blue in Figure 2-12(d) 

on a cylinder where the adjacency relationship is apparent. Likewise, a rectangle is 

shown in both figures for squares 4 and 6 which corresponds to AC. From the prior 

example, it is apparent that these two rectangles can be combined to give a larger 

rectangle C which covers squares 0, 2, 4, and 6. An additional rectangle is required to 
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 FIGURE 2-14
 Three-  Variable  K-  Maps for Examples 2-5 through 2-7
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cover square 5. The largest such rectangle covers squares 4 and 5. It can be read from 

the  K-  map as AB. The resulting simplified function is

G(A, B) = AB + C

From Figures 2-14(a) and 2-14(b), we find that 3-variable maps can contain all 

of the rectangles contained in a 2-variable map plus: (1) 2 * 2 rectangles, (2) 1 * 4 

rectangles, (3) 2 * 1 “split rectangles” at the left and right edges, and a 2 * 2 split 

rectangle at the left and right edges. Note that a 2 * 4 rectangle covers the entire 

map and corresponds to the function G = 1. 

EXAMPLE 2-7  Three-  Variable Map Simplification 3

Simplify the Boolean function

H(A, B, C) = Σm(1, 3, 4, 5, 6)

This function has been entered on the  K-  map shown in Figure 2-14(c), where squares 

listed are marked with 1s. In this example, we intentionally set the goal of finding all 

of the largest rectangles in order to emphasize step 3 of simplification, which has not 

been a significant step in earlier examples. Progressing from the upper center, we 

find the rectangles corresponding to the following pairs of squares: (3, 1), (1, 5), (5, 4), 

(4, 6). Can any of these rectangles be removed and still have all squares covered? 

Since only (3, 1) covers 3, it cannot be removed. The same holds for (4, 6) which cov-

ers square 6. After these are included, the only square that remains uncovered is 5, 

which permits either (1, 5) or (5, 4), but not both, to be removed. Assuming that (5, 4) 

remains, the result can be read from the map as

H(A, B, C) = AC + AB + AC

EXAMPLE 2-8  Four-  Variable Map Simplification 1

Simplify the Boolean function

F(A, B, C, D) = Σm(0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13)

The minterms of the function are marked with 1s in the  K-  map shown in Figure 2-15. 

Eight squares in the two left columns are combined to form a rectangle for the one 

literal term, C. The remaining three 1s cannot be combined to give a single simplified 

product term—rather, they must be combined as two split 2 * 2 rectangles. The top 

two 1s on the right are combined with the top two 1s on the left to give the term A D. 

Note again that it is permissible to use the same square more than once. We are now 

left with a square marked with a 1 in the fourth row and fourth column (minterm 

1010). Instead of taking this square alone, which will give a term with four literals, we 

combine it with squares already used to form a rectangle of four squares on the four 

corners, giving the term B D. This rectangle is represented in Figure  2-15 and in 

Figure  2-12(e) on a torus, where the adjacency relationships between the four 

squares are apparent. The optimized expression is the logical sum of the three terms:

F = C + A D + B D

■

 ■

 ■
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EXAMPLE 2-9  Four-  Variable Map Simplification 2

Simplify the Boolean function

G(A, B, C, D) = A C D + A D + B C + C D + A B D

This function has four variables: A, B, C, and D. It is expressed in a fairly complex 

 sum-  of-  products form. In order to enter G on a  K-  map, we will actually enter the 

regions corresponding to the product terms onto the map, fill the regions with 1s, and 

then copy the 1s onto a new map for solution. The area in the map covered by the 

function is shown in Figure 2-16(a). A C D places 1s on squares 0 and 4. AD adds 1s 

to squares 1, 3, 5, and 7. BC adds new 1s to squares 2, 10, and 11. CD adds a new 1 to 

square 15 and A B D adds the final 1 to square 8. The resulting function

G(A, B, C, D) = Σm(0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 15)

is placed on the map in Figure 2-16(b). It is a good idea to check if the 4-corner rect-

angle B D is present and required. It is present, is required to cover square 8, and also 

covers squares 0, 2, and 10. With these squares covered, it is easy to see that just two 
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 Four-  Variable  K-  Map for Example 2-8
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2-5 / Map Manipulation      87

rectangles, A C and CD, cover all of the remaining uncovered squares. We can read 

off the resulting function as:

G = B D + A C + CD

Note that this function is much simpler than the original  sum-  of-  products given. ■

2-5 MAP MANIPULATION

When combining squares in a map, it is necessary to ensure that all the minterms of 

the function are included. At the same time, we need to minimize the number of 

terms in the optimized function by avoiding any redundant terms whose minterms 

are already included in other terms. In this section, we consider a procedure that as-

sists in the recognition of useful patterns in the map. Other topics to be covered are 

the optimization of products of sums and the optimization of incompletely specified 

functions.

Essential Prime Implicants

The procedure for combining squares in a map may be made more systematic if we 

introduce the terms “implicant,” “prime implicant,” and “essential prime implicant.” 

A product term is an implicant of a function if the function has the value 1 for all 

minterms of the product term. Clearly, all rectangles on a map made up of squares 

containing 1s correspond to implicants. If the removal of any literal from an impli-

cant P results in a product term that is not an implicant of the function, then P is a 

prime implicant. On a map for an  n-  variable function, the set of prime implicants 

corresponds to the set of all rectangles made up of 2m squares containing 1s 

(m = 0, 1, ...,  n), with each rectangle containing as many squares as possible.

If a minterm of a function is included in only one prime implicant, that prime 

implicant is said to be essential. Thus, if a square containing a 1 is in only one rectangle 

representing a prime implicant, then that prime implicant is essential. In Figure 2-14(c), 

the terms A C and A C are essential prime implicants, and the terms A B and B C are 

nonessential prime implicants.

The prime implicants of a function can be obtained from a map of the function 

as all possible maximum collections of 2m squares containing 1s (m = 0, 1, ...,  n) 

that constitute rectangles. This means that a single 1 on a map represents a prime 

implicant if it is not adjacent to any other 1s. Two adjacent 1s form a rectangle repre-

senting a prime implicant, provided that they are not within a rectangle of four or 

more squares containing 1s. Four 1s form a rectangle representing a prime implicant 

if they are not within a rectangle of eight or more squares containing 1s, and so on. 

Each essential prime implicant contains at least one square that is not contained in 

any other prime implicant.

The systematic procedure for finding the optimized expression from the map 

requires that we first determine all prime implicants. Then, the optimized expression 

is obtained from the logical sum of all the essential prime implicants, plus other 

prime implicants needed to include remaining minterms not included in the essen-

tial prime implicants. This procedure will be clarified by examples.
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EXAMPLE 2-10 Simplification Using Prime Implicants

Consider the map of Figure 2-17. There are three ways that we can combine four 

squares into rectangles. The product terms obtained from these combinations are the 

prime implicants of the function, A D,  B D and A B. The terms A D and B D are es-

sential prime implicants, but A B is not essential. This is because minterms 1 and 3 

are included only in the term A D, and minterms 12 and 14 are included only in the 

term B D. But minterms 4, 5, 6, and 7 are each included in two prime implicants, one 

of which is A B, so the term A B is not an essential prime implicant. In fact, once the 

essential prime implicants are chosen, the term A B is not needed, because all the 

minterms are already included in the two essential prime implicants. The optimized 

expression for the function of Figure 2-17 is

F = A D + B D

EXAMPLE 2-11 Simplification Via Essential and Nonessential Prime Implicants

A second example is shown in Figure 2-18. The function plotted in part (a) has seven 

minterms. If we try to combine squares, we will find that there are six prime impli-

 ■ 
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Prime Implicants for Example 2-10: A D, B D,   and   A B
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Simplification with Prime Implicants in Example 2-11
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cants. In order to obtain a minimum number of terms for the function, we must first 

determine the prime implicants that are essential. As shown in blue in part (b) of the 

figure, the function has four essential prime implicants. The product term A B C D is 

essential because it is the only prime implicant that includes minterm 0. Similarly, 

the product terms B C D, A B C, and A B C are essential prime implicants because 

they are the only ones that include minterms 5, 12, and 10, respectively. Minterm 15 is 

included in two nonessential prime implicants. The optimized expression for the 

function consists of the logical sum of the four essential prime implicants and one 

prime implicant that includes minterm 15:

F = A B C D + B C D + A B C + A B C + £A C D
    or

A B D

The identification of essential prime implicants in the map provides an additional 

tool which shows the terms that must absolutely appear in every  sum-  of-  products 

expression for a function and provides a partial structure for a more systematic 

method for choosing patterns of prime implicants.

Nonessential Prime Implicants

Beyond using all essential prime implicants, the following rule can be applied to in-

clude the remaining minterms of the function in nonessential prime implicants:

Selection Rule: Minimize the overlap among prime implicants as much as 

possible. In particular, in the final solution, make sure that each prime implicant 

selected includes at least one minterm not included in any other prime implicant 

selected.

In most cases, this results in a simplified, although not necessarily optimum, 

 sum-  of-  products expression. The use of the selection rule is illustrated in the next 

example.

EXAMPLE 2-12 Simplifying a Function Using the Selection Rule

Find a simplified  sum-  of-  products form for (0, 1, 2, 4, 5, 10, 11, 13, 15).

The map for F is given in Figure 2-19, with all prime implicants shown. A C is 

the only essential prime implicant. Using the preceding selection rule, we can choose 

the remaining prime implicants for the  sum-  of-  products form in the order indicated 

by the numbers. Note how the prime implicants 1 and 2 are selected in order to 

include minterms without overlapping. Prime implicant 3 (A B D) and prime impli-

cant B C D both include the one remaining minterm 0010, and prime implicant 3 is 

arbitrarily selected to include the minterm and complete the  sum-  of-  products 

expression:

F(A, B, C, D) = A C + A B D + A B C + A B D

The prime implicants not used are shown in black in Figure 2-19. ■

 ■ 
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 Product-  of-  Sums Optimization

The optimized Boolean functions derived from the maps in all of the previous exam-

ples were expressed in  sum-  of-  products form. With only minor modification, the 

 product-  of-  sums form can be obtained.

The procedure for obtaining an optimized expression in  product-  of-  sums form 

follows from the properties of Boolean functions. The 1s placed in the squares of the 

map represent the minterms of the function. The minterms not included in the func-

tion belong to the complement of the function. From this, we see that the comple-

ment of a function is represented in the map by the squares not marked by 1s. If we 

mark the empty squares with 0s and combine them into valid rectangles, we obtain 

an optimized expression of the complement of the function, F. We then take the 

complement of F to obtain F as a product of sums. This is done by taking the dual 

and complementing each literal, as in Example 2-13.

EXAMPLE 2-13 Simplifying a  Product-  of-  Sums Form

Simplify the following Boolean function in  product-  of-  sums form:

F(A, B, C, D) = Σm(0, 1, 2, 5, 8, 9, 10)

The 1s marked in the map of Figure 2-20 represent the minterms of the function. The 

squares marked with 0s represent the minterms not included in F and therefore 

denote the complement of F. Combining the squares marked with 0s, we obtain the 

optimized complemented function

F =   A B + C D + B D

Taking the dual and complementing each literal gives the complement of F. This is F 
in  product-  of-  sums form:

F = (A + B)(C + D)(B + D) ■
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Map for Example 2-12
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The previous example shows the procedure for obtaining the  product-  of-  sums 

optimization when the function is originally expressed as a sum of minterms. The 

procedure is also valid when the function is originally expressed as a product of max-

terms or a product of sums. Remember that the maxterm numbers are the same as 

the minterm numbers of the complemented function, so 0s are entered in the map 

for the maxterms or for the complement of the function. To enter a function 

expressed as a product of sums into the map, we take the complement of the func-

tion and, from it, find the squares to be marked with 0s. For example, the function

F = (A + B + C)(B + D)

can be plotted in the map by first obtaining its complement,

F =   ABC + B D

and then marking 0s in the squares representing the minterms of F. The remaining 

squares are marked with 1s. Then, combining the 1s gives the optimized expression 

in  sum-  of-  products form. Combining the 0s and then complementing gives the opti-

mized expression in  product-  of-  sums form. Thus, for any function plotted on the 

map, we can derive the optimized function in either one of the two standard forms.

Don’ t-  Care Conditions

The minterms of a Boolean function specify all combinations of variable values for 

which the function is equal to 1. The function is assumed to be equal to 0 for the rest of 

the minterms. This assumption, however, is not always valid, since there are applica-

tions in which the function is not specified for certain variable value combinations. 

There are two cases in which this occurs. In the first case, the input combinations never 

occur. As an example, the  four-  bit binary code for the decimal digits has six combina-

tions that are not used and not expected to occur. In the second case, the input combi-

nations are expected to occur, but we do not care what the outputs are in response to 

these combinations. In both cases, the outputs are said to be unspecified for the input 

combinations. Functions that have unspecified outputs for some input combinations 
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are called incompletely specified functions. In most applications, we simply do not care 

what value is assumed by the function for the unspecified minterms. For this reason, it 

is customary to call the unspecified minterms of a function don’ t-  care conditions. These 

conditions can be used on a map to provide further simplification of the function.

It should be realized that a don’ t-  care minterm cannot be marked with a 1 on 

the map, because that would require that the function always be a 1 for such a min-

term. Likewise, putting a 0 in the square requires the function to be 0. To distinguish 

the don’ t-  care condition from 1s and 0s, an X is used. Thus, an X inside a square in the 

map indicates that we do not care whether the value of 0 or 1 is assigned to the func-

tion for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’ t-  care 

minterms may be used. When simplifying function F using the 1s, we can choose to 

include those don’ t-  care minterms that give the simplest prime implicants 

for F. When simplifying function F using the 0s, we can choose to include those don’ t- 

 care minterms that give the simplest prime implicants for F, irrespective of those 

included in the prime implicants for F. In both cases, whether or not the don’ t-  care 

minterms are included in the terms in the final expression is irrelevant. The handling 

of don’ t-  care conditions is illustrated in the next example.

EXAMPLE 2-14 Simplification with Don’ t-  Care Conditions

To clarify the procedure for handling the don’ t-  care conditions, consider the follow-

ing incompletely specified function F that has three don’ t-  care minterms d:

 F(A, B, C, D) = Σm(1, 3, 7, 11, 15)

 d(A, B, C, D) = Σm(0, 2, 5)

The minterms of F are the variable combinations that make the function equal to 1. 

The minterms of d are the don’ t-  care minterms. The map optimization is shown in 

Figure 2-21. The minterms of F are marked by 1s, those of d are marked by Xs, and 

the remaining squares are filled with 0s. To get the simplified function in  sum-  of- 

 products form, we must include all five 1s in the map, but we may or may not include 

any of the Xs, depending on what yields the simplest expression for the function. The 

term CD includes the four minterms in the third column. The remaining minterm in 

square 0001 can be combined with square 0011 to give a  three-  literal term. However, 

by including one or two adjacent Xs, we can combine four squares into a rectangle to 

give a  two-  literal term. In part (a) of the figure, don’ t-  care minterms 0 and 2 are 

included with the 1s, which results in the simplified function

F = C D + A B

In part (b), don’ t-  care minterm 5 is included with the 1s, and the simplified function 

now is

F = C D + A D

The two expressions represent two functions that are algebraically unequal. Both 

include the specified minterms of the original incompletely specified function, but 
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each includes different don’ t-  care minterms. As far as the incompletely specified 

function is concerned, both expressions are acceptable. The only difference is in the 

value of F for the unspecified minterms.

It is also possible to obtain an optimized  product-  of-  sums expression for the 

function of Figure 2-21. In this case, the way to combine the 0s is to include don’ t-  care 

minterms 0 and 2 with the 0s, giving the optimized complemented function

F = D + A C

Taking the complement of F gives the optimized expression in  product-  of-  sums 

form:

F = D(A + C)

The foregoing example shows that the don’ t-  care minterms in the map are initially 

considered as representing both 0 and 1. The 0 or 1 value that is eventually assigned 

depends on the optimization process. Due to this process, the optimized function will 

have a 0 or 1 value for each minterm of the original function, including those that 

were initially don’t cares. Thus, although the outputs in the initial specification may 

contain Xs, the outputs in a particular implementation of the specification are only 0s 

and 1s.

MORE OPTIMIZATION This supplement gives a procedure for selecting prime im-

plicants that guarantees an optimum solution. In addition, it presents a symbolic 

method for performing  prime-  implicant generation and a tabular method for  prime- 

 implicant selection. The supplement also discusses how finding the true  two-  level 

optimum solution for large circuits is impractical due to the difficulty of generating 

all of the prime implicants and selecting from a large number of possible  prime- 

 implicant solutions. The supplement describes a computer algorithm that general-

ly achieves  near-  optimum  two-  level solutions for large circuits much more quickly 

than using the optimum approach.

■
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2-6  EXCLUSIVE-  OR OPERATOR AND GATES

In addition to the  exclusive-  OR gate shown in Figure 2-3, there is an  exclusive-  OR 

operator with its own algebraic identities. The  exclusive-  OR (XOR), denoted by ⊕ , 

is a logical operation that performs the function

X ⊕ Y = XY + XY

It is equal to 1 if exactly one input variable is equal to 1. The  exclusive-  NOR, also 

known as the equivalence, is the complement of the  exclusive-  OR and is expressed 

by the function

X ⊕ Y = XY + X Y

It is equal to 1 if both X and Y are equal to 1 or if both are equal to 0. The two func-

tions can be shown to be the complement of each other, either by means of a truth 

table or, as follows, by algebraic manipulation:

X ⊕ Y = XY + XY = (X + Y)(X + Y) = XY + X Y

The following identities apply to the  exclusive-  OR operation:

 X ⊕ 0 = X   X ⊕ 1 = X

 X ⊕ X = 0   X ⊕ X = 1

 X ⊕ Y = X ⊕ Y   X ⊕ Y = X ⊕ Y

Any of these identities can be verified by using a truth table or by replacing 

the ⊕ operation by its equivalent Boolean expression. It can also be shown that the 

 exclusive-  OR operation is both commutative and associative—that is,

 A ⊕ B = B ⊕ A

 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) = A ⊕ B ⊕ C

This means that the two inputs to an  exclusive-  OR gate can be interchanged without 

affecting the operation. It also means that we can evaluate a 3-variable  exclusive-  OR 

operation in any order, and for this reason,  exclusive-  ORs with three or more vari-

ables can be expressed without parentheses.

A  two-  input  exclusive-  OR function may be constructed with conventional 

gates. Two NOT gates, two AND gates, and an OR gate are used. The associativity of 

the  exclusive-  OR operator suggests the possibility of  exclusive-  OR gates with more 

than two inputs. The  exclusive-  OR concept for more than two variables, however, is 

replaced by the odd function to be discussed next. Thus, there is no symbol for 

 exclusive-  OR for more than two inputs. By duality, the  exclusive-  NOR is replaced 

by the even function and has no symbol for more than two inputs.

Odd Function

The  exclusive-  OR operation with three or more variables can be converted into an 

ordinary Boolean function by replacing the ⊕  symbol with its equivalent Boolean 
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expression. In particular, the 3-variable case can be converted to a Boolean expres-

sion as follows:

 X ⊕ Y ⊕ Z = (XY + XY)Z + (XY + X Y)Z

 = XY Z + XYZ + X YZ + XYZ

The Boolean expression clearly indicates that the 3-variable  exclusive-  OR is equal 

to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Hence, 

whereas in the 2-variable function only one variable need be equal to 1, with three or 

more variables an odd number of variables must be equal to 1. As a consequence, the 

 multiple-  variable  exclusive-  OR operation is defined as the odd function. In fact, 

strictly speaking, this is the correct name for the ⊕  operation with three or more 

variables; the name “ exclusive-  OR” is applicable to the case with only two variables.

The definition of the odd function can be clarified by plotting the function on a 

map. Figure 2-22(a) shows the map for the 3-variable odd function. The four min-

terms of the function differ from each other in at least two literals and hence cannot 

be adjacent on the map. These minterms are said to be distance two from each other. 

The odd function is identified from the four minterms whose binary values have an 

odd number of 1s. The 4-variable case is shown in Figure 2-22(b). The eight minterms 
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marked with 1s in the map constitute the odd function. Note the characteristic pat-

tern of the distance between the 1s in the map. It should be mentioned that the min-

terms not marked with 1s in the map have an even number of 1s and constitute the 

complement of the odd function, called the even function. The odd function is imple-

mented by means of  two-  input  exclusive-  OR gates, as shown in Figure  2-23. The 

even function is obtained by replacing the output gate with an  exclusive-  NOR gate.

2-7 GATE PROPAGATION DELAY

As mentioned in Section 2-1, an important property of logic gates is propagation 
delay. Propagation delay is the time required for a change in value of a signal to 

propagate from input to output. The operating speed of a circuit is inversely related 

to the longest propagation delays through the gates of the circuit. The operating 

speed of a circuit is usually a critical design constraint. In many cases, operating 

speed can be the most important design constraint.

The determination of propagation delay is illustrated in Figure  2-24. Three 

propagation delay parameters are defined. The  high-  to-  low propagation time t
PHL

 is 

the delay measured from the reference voltage on the input IN to the reference volt-

age on the output OUT, with the output voltage going from H to L. The reference 

voltage we are using is the 50 percent point, halfway between the minimum and the 

maximum values of the voltage signals; other reference voltages may be used, 

depending on the logic family. The  low-  to-  high propagation time t
PLH

 is the delay 

measured from the reference voltage on the input voltage IN to the reference volt-

age on the output voltage OUT, with the output voltage going from L to H. We 

define the propagation delay t
pd

 as the maximum of these two delays. The reason we 

have chosen the maximum value is that we will be most concerned with finding the 

longest time for a signal to propagate from inputs to outputs. Otherwise, the defini-

tions given for t
pd

 may be inconsistent, depending on the use of the data. 

Manufacturers usually specify the maximum and typical values for both t
PHL

 and t
PLH

 

or for t
pd

 for their products.

Two different models, transport delay and inertial delay, are employed in mod-

eling gates during simulation. For transport delay, the change in an output in response 

to the change of an input occurs after a specified propagation delay. Inertial delay is 

similar to transport delay, except that if the input changes cause the output to change 

twice in an interval less than the rejection time, then the first of the two output 

changes does not occur. The rejection time is a specified value no larger than the 

propagation delay and is often equal to the propagation delay. An AND gate mod-

eled with both a transport delay and an inertial delay is illustrated in Figure 2-25. To 

help visualize the delay behavior, we have also given the AND output with no delay. 

A colored bar on this waveform shows a 2 ns propagation delay time after each input 

change, and a smaller black bar shows a rejection time of 1 ns. The output modeled 

with the transport delay is identical to that for no delay, except that it is shifted to the 

right by 2 ns. For the inertial delay, the waveform is likewise shifted. To define the 

waveform for the delayed output, we will call each change in a waveform an edge. To 

determine whether a particular edge appears in the ID output, it must be determined 

whether a second edge occurs in the ND output before the end of the rejection time 
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for the edge in question, and whether the edge will result in a change in the ID out-

put. Since edge b occurs before the end of the rejection time for edge a in the ND 

output, edge a does not appear in the ID output. Since edge b does not change the 

state of ID, it is ignored. Since edge d occurs at the rejection time after edge c in the 

ND output, edge c does appear. Edge e, however, occurs within the rejection time 

after edge d, so edge d does not appear. Since edge c appeared and edge d did not 

appear, edge e does not cause a change.

Next, we want to consider further the components that make up the gate delay 

within a circuit environment. The gate itself has some fixed inherent delay. Because it 

represents capacitance driven, however, the actual  fan-  out of the gate, in terms of 

standard loads, discussed in Chapter 5, also affects the propagation delay of the gate. 

But depending upon the loading of the gate by the inputs of the logic attached to its 

output, the overall delay of the gate may be significantly larger than the inherent 

gate delay. Thus, a simple expression for propagation delay can be given by a formula 
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or table that considers a fixed delay plus a delay per standard load times the number 

of standard loads driven by the output as shown in the example that follows.

EXAMPLE 2-15 Calculation of Gate Delay Based on  Fan-  Out

A 4-input NAND gate output is attached to the inputs of the following gates with 

the given number of standard loads representing their inputs:

4-input NOR  gate—  0.80 standard load

3-input NAND  gate—  1.00 standard load, and

 inverter—  1.00 standard load.

The formula for the delay of the 4-input NAND gate is

tpd = 0.07 + 0.021 * SL  ns

where SL is the sum of the standard loads driven by the gate.

Ignoring the wiring delay, the delay projected for the NAND gate as loaded is

tpd = 0.07 + 0.021 * (0.80 + 1.00 + 1.00) = 0.129  ns

In modern  high-  speed circuits, the portion of the gate delay due to wiring capaci-

tance is often significant. While ignoring such delay is unwise, it is difficult to evalu-

ate, since it depends on the layout of the wires in the integrated circuit. Nevertheless, 

since we do not have this information or a method to obtain a good estimate of it, we 

ignore this delay component here. ■

2-8 HDLS OVERVIEW

Designing complex systems and integrated circuits would not be feasible without the 

use of  computer-  aided design (CAD) tools. Schematic capture tools support the 

drawing of blocks and interconnections at all levels of the hierarchy. At the level of 

primitives and functional blocks, libraries of graphics symbols are provided. Schematic 

capture tools support the construction of a hierarchy by permitting the generation of 

symbols for hierarchical blocks and the replication of symbols for reuse.

The primitive blocks and the functional block symbols from libraries have 

associated models that allow the behavior and the timing of the hierarchical blocks 

and the entire circuit to be verified. This verification is performed by applying inputs 

to the blocks or circuit and using a logic simulator to determine the outputs.

The primitive blocks from libraries can also have associated data, such as phys-

ical area information and delay parameters, that can be used by logic synthesizers to 

optimize designs being generated automatically from HDL specifications.

As we briefly described in Section 2-1, while schematics and Boolean equa-

tions are adequate for small circuits, HDLs have become crucial to the modern 

design process required for developing large, complex circuits. HDLs resemble soft-

ware programming languages, but they have particular features to describe hard-

ware structures and behavior. They differ from typical programming languages by 

representing the parallel operations performed by hardware, whereas most pro-

gramming languages represent serial operations.
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As we will show in the remainder of this chapter and in Chapters 3 and 4, the 

power of an HDL becomes more apparent when it is used to represent more than 

just schematic information. It can represent Boolean equations, truth tables, and 

complex operations such as arithmetic. Thus, in  top-  down design, a very  high-  level 

description of an entire system can be precisely specified using an HDL. As a part of 

the design process, this  high-  level description can then be refined and partitioned 

into  lower-  level descriptions. Ultimately, a final description in terms of primitive 

components and functional blocks can be obtained as the result of the design pro-

cess. Note that all of these descriptions can be simulated. Since they represent the 

same system in terms of function, but not necessarily timing, they should respond by 

giving the same logic values for the same applied inputs. This vital simulation prop-

erty supports design verification and is one of the principal reasons for the use of 

HDLs.

A final major reason for increased use of HDLs is logic synthesis. An HDL 

description of a system can be written at an intermediate level referred to as a regis-

ter transfer language (RTL) level. A logic synthesis tool with an accompanying 

library of components can convert such a description into an interconnection of 

primitive components that implements the circuit. This replacement of the manual 

logic design process makes the design of complex logic much more efficient. Logic 

synthesis transforms an RTL description of a circuit in an HDL into an optimized 

netlist representing storage elements and combinational logic. The optimizations 

involved are more complex than those presented previously in this chapter, but they 

share many of the same underlying concepts. Subsequent to logic optimization, this 

netlist may be transformed by using physical design tools into an actual integrated 

circuit layout or field programmable gate array (FPGA). The logic synthesis tool 

takes care of a large portion of the details of a design and allows designers to explore 

the  trade-  offs between design constraints that are essential to advanced designs.

Currently, VHDL and Verilog are widely used, standard hardware design lan-

guages. The language standards are defined, approved, and published by the Institute 

of Electrical and Electronics Engineers (IEEE). All implementations of these lan-

guages must obey their respective standard. This standardization gives HDLs 

another advantage over schematics. HDLs are portable across  computer-  aided 

design tools, whereas schematic capture tools are typically unique to a particular 

vendor. In addition to the standard languages, a number of major companies have 

their own internal languages, often developed long before the standard languages 

and incorporating features unique to their particular products.

Regardless of the HDL, a typical procedure is used in employing an HDL 

description as simulation input. The steps in the procedure are analysis, elaboration, 

and initialization, followed finally by the simulation. Analysis and elaboration are 

typically performed by a compiler similar to those for programming languages. 

Analysis checks the description for violations of the syntax and semantic rules for 

the HDL and produces an intermediate representation of the design. Elaboration 

traverses the design hierarchy represented by the description; in this process, the 

design hierarchy is flattened to an interconnection of modules that are described 

only by their behaviors. The end result of the analysis and elaboration performed by 

the compiler is a simulation model of the original HDL description. This model is 
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then passed to the simulator for execution. Initialization sets all of the variables in 

the simulation model to specified or default values. Simulation executes the simula-

tion model in either batch or interactive mode with inputs specified by the user.

Because fairly complex hardware can be described efficiently in an HDL, a 

special HDL structure called a testbench may be used. The testbench is a description 

that includes the design to be tested, typically referred to as the Device Under Test 

(DUT). The testbench describes a collection of hardware and software functions 

that apply inputs to the DUT and analyze the outputs for correctness. This approach 

bypasses the need to provide separate inputs to the simulator and to analyze, often 

manually, the simulator outputs. Construction of a testbench provides a uniform ver-

ification mechanism that can be used at multiple levels in the  top-  down design pro-

cess for verification of correct function of the design.

Logic Synthesis

As indicated earlier, the availability of logic synthesis tools is one of the driving forc-

es behind the growing use of HDLs. Logic synthesis transforms an RTL description 

of a circuit in an HDL into an optimized netlist representing storage elements and 

combinational logic. Subsequently, this netlist may be transformed by using physical 

design tools into an actual integrated circuit layout. This layout serves as the basis for 

integrated circuit manufacture. The logic synthesis tool takes care of a large portion 

of the details of a design and allows exploration of the cost/performance  trade-  offs 

essential to advanced designs.

Figure 2-26 shows a simple  high-  level flow of the steps involved in logic syn-

thesis. The user provides an HDL description of the circuit to be designed as well as 
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 FIGURE 2-26
 High-  Level Flow for Logic Synthesis Tool
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various constraints or bounds on the design. Electrical constraints include allow-

able gate  fan-  outs and output loading restrictions. Area and speed constraints direct 

the optimization steps of the synthesis. Area constraints typically give the maxi-

mum permissible area that a circuit is allowed to occupy within the integrated 

circuit.

Alternatively, a general directive may be given which specifies that area is to 

be minimized. Speed constraints are typically maximum allowable values for the 

delay on various paths in the circuit. Alternatively, a general directive may be 

given to maximize speed. Area and speed both translate into the cost of a circuit. 

A fast circuit will typically have larger area and thus cost more to manufacture. A 

circuit that need not operate fast can be optimized for area, and, relatively speak-

ing, costs less to manufacture. In some sophisticated synthesis tools, power con-

sumption can also be used as a constraint. Additional information used by a 

synthesis tool is a technology library that describes the primitive blocks available 

for use in the netlist as well as their physical parameters necessary for delay com-

putations. The latter information is essential in meeting constraints and perform-

ing optimization.

The first major step in the synthesis process in Figure 2-26 is a translation of the 

HDL description into an intermediate form. The translation result may be an inter-

connection of generic gates and storage elements, not taken from the technology 

library. It may also be in an alternate form that represents clusters of logic and the 

interconnections between the clusters.

The second major step in the synthesis process is optimization. A preoptimiza-

tion step may be used to simplify the intermediate form. For example, logic that is 

identical in the intermediate form may be shared. Next is the optimization, in which 

the intermediate form is processed to attempt to meet the constraints specified. 

Typically,  two-  level and  multiple-  level optimization are performed. Optimization is 

followed by technology mapping, which replaces AND gates, OR gates, and inverters 

with gates from the technology library. In order to evaluate area and speed parame-

ters associated with these gates, additional information from the technology library 

is used. In sophisticated synthesis tools, further optimization may be applied during 

technology mapping in order to improve the likelihood of meeting the constraints 

on the design. Optimization can be a very complex,  time-  consuming process for large 

circuits. Many optimization passes may be necessary to achieve the desired results or 

to demonstrate that constraints are difficult, if not impossible, to meet. The designer 

may need to modify the constraints or the HDL in order to achieve a satisfactory 

design. Modification of the HDL may include manual design of some portions of the 

logic in order to achieve the design goals.

The output of the optimization/technology mapping processes is typically a 

netlist corresponding to a schematic diagram made up of storage elements, gates, 

and other combinational logic functional blocks. This output serves as input to phys-

ical design tools that physically place the logic elements and route the interconnec-

tions between them to produce the layout of the circuit for manufacture. In the case 

of programmable parts, such as  field-  programmable gate arrays as discussed in 

Chapter 5, an analog to the physical design tools produces the binary information 

used to program the logic within the parts.
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2-9 HDL  REPRESENTATIONS—  VHDL
Since an HDL is used for describing and designing hardware, it is very important to 

keep the underlying hardware in mind as you write in the language. This is particularly 

critical if your language description is to be synthesized. For example, if you ignore the 

hardware that will be generated, it is very easy to specify a large complex gate structure 

by using an inefficient HDL description when a much simpler structure using only a few 

gates is all that is needed. For this reason, we initially emphasize description of detailed 

hardware with VHDL, and proceed to more abstract,  higher-  level descriptions later.

Selected examples in this chapter are useful for introducing VHDL as an alter-

native means for representing detailed digital circuits. Initially, we show structural 

VHDL descriptions that replace the schematic for the  two-  bit  greater-  than compar-

ator circuit given in Figure 2-27. This example illustrates many of the fundamental 

concepts of VHDL. We then present  higher-  level behavioral VHDL descriptions for 

these circuits that further illustrate fundamental VHDL concepts.

EXAMPLE 2-16 Structural VHDL for a  Two-  Bit  Greater-  Than Comparator 
Circuit

Figure 2-28 shows a VHDL description for the  two-  bit  greater-  than comparator cir-

cuit from Figure 2-27. This example will be used to demonstrate a number of general 

VHDL features as well as structural description of circuits.

The text between two dashes -- and the end of the line is interpreted as a com-
ment. So the description in Figure 2-28 begins with a  two-  line comment identifying 

the description and its relationship to Figure  2-27. To assist in discussion of this 

description, comments providing line numbers have been added on the right. As a 

language, VHDL has a syntax that describes precisely the valid constructs that can 

be used in the language. This example will illustrate many aspects of the syntax. In 

particular, note the use of semicolons, commas, and colons in the description.

Initially, we skip lines 3 and 4 of the description to focus on the overall structure. 

Line 6 begins the declaration of an entity, which is the fundamental unit of a VHDL 

design. In VHDL, just as for a symbol in a schematic, we need to give the design a 

name and to define its inputs and outputs. This is the function of the entity declaration. 

Entity and is are keywords in VHDL. Keywords, which we show in bold type, have 

a special meaning and cannot be used to name objects such as entities, inputs, outputs 

 FIGURE 2-27
Gate level schematic for a  two-  bit  greater-  than comparator circuit
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--   Two-  bit  greater-  than circuit : Structural VHDL Description     --  1

-- (See Figure 2-27 for logic diagram) --  2

library ieee, lcdf_vhdl; --  3

use ieee.std_logic_1164.all, lcdf_vhdl.func_pri ms.all; --  4

                                     --  5

entity comparator_greater_than_structural is --  6

  port (A: in std_logic_vector(1 downto 0); --  7

   B: in std_logic_vector(1  downto 0); --  8

   A_greater_than_B: out std_logic);                 --  9

end comparator_greater_than_structural;             -- 10

                                   -- 11

architecture structural of comparator_greater_than_structural is    -- 12

                                   -- 13

 component NOT1                            -- 14

  port(in1: in std_logic;                       -- 15

    out1: out std_logic);                      -- 16

 end component;                             -- 17

 component AND2                            -- 18

  port(in1, in2: in std_logic;                     -- 19

   out1: out std_logic);                       -- 20

 end component;                             -- 21

 component AND3                            -- 22

  port(in1, in2, in3: in std_logic;             -- 23

   out1: out std_logic);                  -- 24

 end component;                        -- 25

 component OR3                       -- 26

  port(in1, in2, in3 : in std_logic;             -- 27

    out1: out std_logic);                 -- 28

 end component;                       -- 29

 signal B1_n, B0_n, and0_out, and1_out, and2_out: std_logic;  -- 30

begin                             -- 31

 inv_0: NOT1 port map (in1 => B(0), out1 => B0_n);  -- 32

 inv_1: NOT1 port map (B(1), B1_n);             -- 33

  and_0: AND2 port map (A(1), B1_n, and0_out);     -- 34

  and_1: AND3 port map (A(1), A(0), B0_n, and1_out);     -- 35

  and_2: AND3 port map (A(0), B1_n, B0_n, and2_out);     -- 36

  or0: OR3 port map (and0_out,and1_out,and2_out, A_greater_than_B);   -- 37

end structural;                        -- 38

 FIGURE 2-28
Structural VHDL Description of  Two-  Bit  Greater-  Than Comparator Circuit
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or signals. Statement entity comparator_greater_than_structural is 

declares that a design exists with the name comparator_greater_than_struc-

tural. VHDL is case insensitive (i.e., names and keywords are not distinguished by 

the use of uppercase or lowercase letters). COMPARATOR_greater_than_

Structural is the  same as comparator_Greater_than_structural and 

comparator_greater_than_Structural.

Next, a port declaration in lines 7 through 9 is used to define the inputs and out-

puts just as we would do for a symbol in a schematic. For the example design, there are 

two input signals: A and B. The fact that these are inputs is denoted by the mode in. 

Likewise, A_greater_than_B is denoted as an output by the mode out. In VHDL is 

a strongly typed language, so the type of the inputs and output must be declared. In the 

case of the output, the type is std_logic, which represents standard logic. This type 

declaration specifies the values that may appear on the inputs and the outputs, as well as 

the operations that may be applied to the signals. Standard logic, among its nine values, 

includes the usual binary values 0 and 1 and two additional values X and U. X represents 

an unknown value, U an uninitalized value. We have chosen to use standard logic, which 

includes these values, since these values are used by typical simulation tools.

The inputs A and B illustrate another VHDL concept, std_logic_vectors. 

The inputs are each two bits wide, so they are specified as type std_logic_vector  

instead of individual std_logic signals. In specifying vectors, we use an index. Since 

A consists of two input signals numbered 0 and 1, with 1 being the most significant 

(leftmost) bit, the index for A is 1 down to 0. The components of this vector are A(1) 

and A(0). B likewise consists of two signals numbered 1 and 0, so its index is also 1 

down to 0. Beginning at line 32, note how the signals within std_logic_vectors  

are referred to by giving the signal name and the index in parentheses. Also, if one 

wishes to have the larger index for a vector appear last, VHDL uses a somewhat dif-

ferent notational approach. For example, signal N: std_logic_vector (0 

to 3) defines the first (leftmost) bit in signal N as N(0) and the last (rightmost) sig-

nal in N as N(3). It is also possible to refer to subvectors (e.g., N(1 to 2), which 

refers to N(1) and N(2), would be the center two signals in N).

In order to use the types std_logic and std_logic_vector, it is necessary 

to define the values and the operations. For convenience, a package consisting of pre-

compiled VHDL code is employed. Packages are usually stored in a directory referred 

to as a library, which is shared by some or all of the tool users. For std_logic, the 

basic package is ieee.std_logic_1164. This package defines the values and basic 

logic operators for types std_ulogic and std_logic. In order to use std_logic, 

we include line 3 to call up the library of packages called ieee and include line 4 

containing ieee.std_logic_1164.all to indicate we want to use all of the 

package std_logic_1164 from the ieee library. An additional library, lcdf_vhdl, 

contains a package called func_prims made up of basic logic gates, latches, and  flip- 

 flops described using VHDL, of which we use all. Library lcdf_vhdl is available in 

ASCII for copying from the Companion Website for the text. Note that the statements 

in lines 3 and 4 are tied to the entity that follows. If another entity is included in the 

same file, which also uses type std_logic and the elements from func_prims, the 

library and use statements must be repeated prior to that entity declaration.
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The entity declaration ends with keyword end followed by the entity name. Thus 

far, we have discussed the equivalent of a schematic symbol in VHDL for the circuit.

STRUCTURAL DESCRIPTION Next, we want to specify the function of the circuit. A par-

ticular representation of the function of an entity is called the architecture of the 

entity. Thus, the contents of line 12 declare a VHDL architecture named structural 

for the entity comparator_greater_than_structural to exist. The details of 

the architecture follow. In this case, we use a structural description that is equivalent 

to the schematic for the circuit given in Figure 2-27.

First, we declare the gate types we are going to use as components of our 

description in lines 15 through 29. Since we are building this architecture from gates, 

we declare an inverter called NOT1, a 2-input AND gate called AND2, a 3-input AND 

gate called AND3, and a 3-input OR gate called OR3 as components. These gate types 

are VHDL descriptions in package func_prims that contain the entity and archi-

tecture for each of the gates. The name and the port declaration for a component 

must be identical to those for the underlying entity. For NOT1, port gives the input 

name in1 and the output name out1. The component declaration for AND2 gives 

input names in1 and in2, and output name out1. Similarly, the component 

 declarations for AND3 and OR3 give input names in1, in2, and in3, and output 

name out1.

Next, before specifying the interconnection of the gates, which is equivalent to a 

circuit netlist, we must name all of the nets in the circuit. The inputs and outputs already 

have names. The internal nets are the outputs of the two inverters and of the three AND 

gates in Figure 2-27. These output nets are declared as signals of type std_logic. Not_B1 

and not_B0 are the signals for the two inverter outputs and and0_out, and1_out, 

and and2_out are the signals for the three AND gate outputs. Likewise, all of the 

inputs and outputs declared as ports are signals. In VHDL, there are both signals and 

variables. Variables are evaluated instantaneously. In contrast, signals are evaluated at 

some future point in time. This time may be physical time, such as 2 ns from the current 

time, or may be what is called delta time, in which a signal is evaluated one delta time 

from the current time. Delta time is viewed as an infinitesimal amount of time. Some 

time delay in evaluation of signals is essential to the internal operation of the typical 

digital simulator and, of course, based on the delay of gates, is realistic in performing 

simulations of circuits. For simplicity, we will typically be simulating circuits for correct 

function, not for performance or delay problems. For such functional simulation, it is 

easiest to let the delays default to delta times. Thus, no delay will be explicit in our 

VHDL descriptions of circuits, although delays may appear in  test   benches.

Following the declaration of the internal signals, the main body of the architec-

ture starts with the keyword begin. The circuit described consists of two inverters, 

one 2-input AND gate, two 3-input AND gates, and one 3-input OR gate. Line 32 

gives the label inv_0 to the first inverter and indicates that the inverter is compo-

nent NOT1. Next is a port map, which maps the input and output of the inverter to 

the signals to which they are connected. This particular form of port map uses => 

with the port of the gate on the left and the signal to which it is connected on the 

right. For example, the input of inverter inv_0 is B(0) and the output is not_B0.
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Lines 33 through 37 give the remaining five gates and the signals connected to 

their inputs and outputs. These five gates use an alternative method to specify the 

port maps for the logic gates. Instead of explicitly giving the component input and 

output names, we assume that these names are in the port map in the same order as 

given for the component. We can then implicitly specify the signals attached to these 

names by listing the signals in same order as the names. For example, in line 33, B(1) 

is connected to the input and not_B1 is connected to the output. The architecture is 

completed with the keyword end followed by its name structural. ■

DATAFLOW DESCRIPTION A dataflow description describes a circuit in terms of func-

tion rather than structure and is made up of concurrent assignment statements or 

their equivalent. Concurrent assignment statements are executed concurrently (i.e., 

in parallel) whenever one of the values on the  right-  hand side of the statement 

changes. For example, whenever a change occurs in a value on the  right-  hand side of 

a Boolean equation, the  left-  hand side is evaluated. The use of dataflow descriptions 

made up of Boolean equations is illustrated in Example 2-17.

EXAMPLE 2-17 Dataflow VHDL for a  Two-  Bit  Greater-  Than Comparator 
Circuit

Figure 2-29 shows a dataflow VHDL description for the  two-  bit  greater-  than com-

parator circuit from Figure 2-27.  This example will be used to demonstrate a dataflow 

description made up of Boolean equations. The library, use, and entity statements 

 FIGURE 2-29
Dataflow VHDL Description of  Two-  Bit  Greater-  Than Comparator Circuit

--   Two-  bit  greater-  than circuit : Dataflow VHDL  Description --  1

-- (See Figure 2-27 for logic diagram) --  2

library ieee; --  3

use ieee.std_logic_1164.all; --  4

 --  5

entity comparator_greater_than_dataflow is --  6

  port (A: in std_logic_vector(1 downto 0); --  7

   B: in std_logic_vector(1 downto 0); --  8

   A_greater_than_B: out std_logic); --  9

end comparator_greater_than_dataflow; -- 10

 -- 11

 architecture dataflow of comparator_greater_than_dataflow is -- 12

 signal B1_n, B0_n, and0_out, and1_out, and2_out: std_logic; -- 13

begin -- 14

 B1_n <= not B(1); -- 15

 B0_n <= not B(0); -- 16

 and0_out <= A(1) and B1_n; -- 17

 and1_out <= A(1) and A(0) and B0_n; -- 18

 and2_out <= A(0) and B1_n and B0_n; -- 19

  A_greater_than_B <= and0_out or and1_out or and2_out; -- 20

end dataflow;                        -- 21
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are  identical to those in Figure 2-28, so they are not repeated here. The dataflow 

 description begins in line 15. The signals B0_n and B1_n are defined by signal assign-

ments that apply the not operation to the input signal B(0) and B(1), respectively. 

In line 17, B1_n and A(1) are combined with an and operator to form and0_out. 

The  signals and1_out, and2_out, and A_greater_than_B are similarly defined 

in lines 18 through 20, with A_greater_than_B using the or operator. Note 

that  this dataflow description is much simpler than the structural description in 

Figure 2-28.

The order of execution of the assignment statements does not depend upon 

the order of their appearance in the model description, but rather on the order of 

changes of signals on the  right-  hand side of the assignment statements. Thus the 

description in Figure 2-29 would have exactly the same behavior even if the assign-

ment statements were listed in some other order, e.g., if line 15 and line 20 were 

interchanged. ■

BEHAVIORAL DESCRIPTION Dataflow models using concurrent assignments are con-

sidered to be behavioral descriptions, because they describe the function of the cir-

cuit without describing its structure. As will be shown in Chapter 4, VHDL also pro-

vides ways to describe behavior using statements that execute sequentially within 

a process, known as algorithmic modeling. But even with dataflow modeling using 

concurrent assignments, VHDL provides ways to describe circuits more abstractly 

than the logic level.

EXAMPLE 2-18 VHDL for a  Two-  Bit  Greater-  Than Comparator Using   
When-  Else

In Figure 2-30, instead of using Boolean  equation-  like statements in the architecture 

to describe the multiplexer, we use a  when-  else statement. This model of the circuit 

--   Two-  bit  greater-  than circuit : Conditional VHDL Description    --  1

--  using  when-  else(See Figure 2-27 for logic  diagram) --  2

library ieee; --  3

use ieee.std_logic_1164.all; --  4

 --  5

 entity comparator_greater_than_behavioral is  --  6

   port (A: in std_logic_vector(1 downto 0); --  7

   B: in std_logic_vector(1 downto 0); --  8

   A_greater_than_B: out std_logic); --  9

end comparator_greater_than_behavioral; -- 10

 -- 11

 architecture when_else of comparator_greater_than_behavioral is -- 12

begin -- 13

  A_greater_than_B <= '1' when (A > B) else -- 14

             '0';             -- 15

end when_else; -- 16

 FIGURE 2-30
Dataflow VHDL Description of  Two-  Bit Greater-Than Comparator Using  When-  Else
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describes the behavior of the circuit (i.e., the output is a 1 when A > B and 0 

 otherwise) using the desired mathematical operation of the circuit rather than Bool-

ean logic. Whenever either A or B changes, the when condition is  re-  evaluated and 

the value is assigned accordingly. ■

Example 2-19 VHDL for a  Two-  Bit  Greater-  Than Comparator Using  With-  Select

 With-  select is a variation on  when-  else as illustrated for the model shown in 

 Figure 2-31. The expression, the value of which is to be used for the decision, fol-

lows with and precedes select. The values for the expression that causes the 

alternative assignments then follow when with each of the  assignment-  value pairs 

separated by commas. In the example, A is the signal, the value of which deter-

mines the value selected for A_greater_than_B. For this example, A is used to 

select a function of B that represents the proper output. When A = “00,” 0 is as-

signed to the output because the function is 0 for all combinations of B. When 

--   Two-  bit  greater-  than circuit : Conditional VHDL  Description --  1

--  using  with-  select(See Figure 2-27 for logic  diagram) --  2

library ieee; --  3

 use ieee.std_logic_1164.all, ieee.std_logic_unsigned .all; --  4

                               --  5

 entity comparator_greater_than_behavioral2 is --  6

   port (A: in std_logic_vector(1 downto 0);          --  7

   B: in std_logic_vector(1 downto 0);            --  8

   A_greater_than_B: out std_logic);             --  9

end comparator_greater_than_behavioral2;            -- 10

                               -- 11

 architecture with_select of comparator_greater_than_behavioral2 is -- 12

begin                              -- 13

 with A select                         -- 14

 A_greater_than_B <= '0' when "00",             -- 15

           B(0) nor B(1) when "01",         -- 16

           not B(1) when "10",      -- 17

           B(0) nand B(1) when "11",         -- 18

           'X' when others;             -- 19

end with_select;                        -- 20

 FIGURE 2-31
Conditional Dataflow VHDL Description of  Two-  Bit  Greater-  Than Comparator Using 
 With-  Select
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A = “01,”   the output should only be 1 when B = “00,”   which is the NOR 

 function of the two bits of B. When A = “10,”   the output is a 1 when B(1) is 0 

and 0 when B(1) is 1, so the function assigned is the inverse of B(1). When 

A = “11,”  the output is a 1 except for when B = “11,”  which is the NAND func-

tion of the two bits of  B.  Finally, ‘X’ is assigned to the output when others, 

where others represents the standard logic combinations not already specified, 

i.e., when one of the bits of A is neither a 0 nor a 1, such as U.

This example is somewhat contrived for this particular circuit, resulting in a 

description that is less straightforward than the previous versions. However, this 

example illustrates an approach with the conditional operator that is often useful 

when a set of conditions is used to select between several functions. We will see 

examples of these types of selection circuits in later chapters, particularly in 

Chapter 3 with multiplexers and Chapter 6 with register transfers.

Note that  when-  else permits decisions on multiple distinct signals. For example, 

a model could have a first when conditioned on one signal, with another when in the 

else part that is conditioned on a different signal, and so on. In contrast, the  with- 
 select can depend on only a single Boolean condition (e.g., either the first signal or 

the second one, but not both). Also, for typical synthesis tools,  when-  else usually 

results in a more complex logical structure than  with-  select because  when-  else 

depends upon multiple conditions. ■

TESTBENCHES As briefly described in Section 2-8, a testbench is an HDL  model 

whose purpose is to test another model, often called the Device Under Test 

(DUT), by applying stimuli to the inputs. More complex testbenches will also 

 analyze the output of the DUT for correctness. Figure  2-32 shows a simple 

VHDL testbench for the structural  two-  bit  greater-  than comparator circuit. 

The testbench has several aspects that are common to testbenches. First, the en-

tity declaration does not have any input or output ports (lines 5–6). Second, 

the architecture for the testbench declares the component for the DUT (lines 

11–15) and then instantiates the DUT (line 17). The architecture also declares 

the signals that will be connected to the inputs and outputs of the DUT (lines 

9–10). Finally, the architecture applies combinations of inputs to the DUT to 

test it under  various conditions (lines 18–29). The input values are applied us-

ing a process named tb, where a process is a block of statements that are ex-

ecuted sequentially. The tb process in this testbench starts at the beginning of 

the simulation, and assigns values to the inputs of the DUT, waiting 10 ns of 

simulation time between  assignments, and then halting by waiting forever. The 

process in this example uses only a few combinations of inputs for the sake of 

clarity, although it does test all three conditions for the relationship between A 

and B (A 6 B, A = B, and  A 7 B). Processes will be described in more detail 

in  Chapter 4, where a richer set of sequential statements that can be used in a 

process will be introduced.

This completes our introduction to VHDL for combinational circuits. We will 

continue with more on VHDL by presenting additional features of the language to 

describe more complex circuits in Chapters 3 and 4.
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2-10 HDL  REPRESENTATIONS—  VERILOG

Since an HDL is used for describing and designing hardware, it is very important 

to keep the underlying hardware in mind as you write in the language. This is par-

ticularly critical if your language description is to be synthesized. For example, if 

you ignore the hardware that will be generated, it is very easy to specify a large 

complex gate structure by using an inefficient HDL description, when a much 

simpler structure using only a few gates is all that is needed. For this reason, ini-

tially, we emphasize describing detailed hardware with Verilog, and finishing with 

more abstract,  higher-  level descriptions.

Selected examples in this chapter are useful for introducing Verilog as 

an alternative means for representing detailed digital circuits. First, we show a 

 structural Verilog description in Figure 2-33 that replaces the schematic for the 

-- Testbench for VHDL  two-  bit  greater-  than comparator   --  1

library ieee; --  2

 use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all;  --  3

  --  4

entity greater_testbench is  --  5

end greater_testbench;  --  6

  --  7

 architecture testbench of greater_testbench is --  8

 signal A, B: std_logic_vector (1 downto 0); --  9

signal struct_out: std_logic;  -- 10

 component comparator_greater_than_structural is -- 11

   port (A: in std_logic_vector(1 downto 0); -- 12

   B: in std_logic_vector(1 downto 0);  -- 13

   A_greater_than_B: out std_logic); -- 14

end component;  -- 15

begin -- 16

u1: comparator_greater_than_structural port map(A,B, struct_out); -- 17

tb: process -- 18

begin -- 19

 A <= "10";  -- 20

 B <= "00"; -- 21

 wait for 10 ns; -- 22

 B <= "01";  -- 23

 wait for 10 ns; -- 24

 B <= "10";  -- 25

 wait for 10 ns;  -- 26

 B <= "11";  -- 27

 wait; -- halt the process -- 28

end process; -- 29

end testbench;   -- 30

 FIGURE 2-32
Testbench for the Structural Model of the  Two-  Bit  Greater-  Than Comparator
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//  Two-  bit  greater-  than circuit: Verilog structural model    //  1

// See Figure 2-27 for logic diagram              //  2

 module comparator_greater_than_structural(A, B, A_ greater_than_B);    //  3
 input [1:0] A, B;                        //  4

 output A_greater_than_B;                    //  5

  wire B0_n, B1_n, and0_out, and1_out, and2_out; //  6

  not                              //  7

   inv0(B0_n,  B[0]),  inv1(B1_n,  B[1]);             //  8

  and                              //  9

   and0(and0_out,  A[1],  B1_n),                 // 10

   and1(and1_out,  A[1],  A[0],  B0_n),              // 11

   and2(and2_out,  A[0],  B1_n,  B0_n);              // 12

  or                              // 13

    or0(A_greater_than_B,  and0_out,  and1_out,  and2_out);    // 14

endmodule                             // 15

 FIGURE 2-33
Structural Verilog Description of  Two-  Bit  Greater-  Than Circuit

 two-  bit  greater-  than comparator. This example illustrates many of the funda-

mental concepts of Verilog. We then present  higher-  level  behavioral Verilog 

descriptions for these circuits that further illustrate Verilog concepts.

EXAMPLE 2-20 Structural Verilog for a  Two-  Bit  Greater-  Than Circuit

The Verilog description for the  two-  bit  greater-  than circuit from Figure 2-27 is given 

in Figure 2-33. This description will be used to introduce a number of general Verilog 

features, as well as to illustrate structural circuit description.

The text between two slashes / / and the end of a line as shown in lines 1 and 

2 of Figure 2-33 is interpreted as a comment. For multiline comments, there is an 

alternative notation using a / and *:

/*  Two-  bit  greater-  than circuit: Verilog structural model

 See  Figure 2-27  for logic diagram */

To assist in discussion of the Verilog description, comments providing line 

numbers have been added on the right. As a language, Verilog has a syntax that 

describes precisely the valid constructs that can be used in the language. This 

example will illustrate many aspects of the syntax. In particular, note the use of 

commas and colons in the description. Commas (,) are typically used to sepa-

rate elements of a list and semicolons (;) are used to terminate Verilog 

statements.

Line 3 begins the declaration of a module, which is the fundamental building 

block of a Verilog design. The remainder of the description defines the module, 
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ending in line 15 with endmodule. Note that there is no ; after endmodule. Just as 

for a symbol in a schematic, we need to give the design a name and to define its 

inputs and outputs. This is the function of the module statement in line 3 and the 

input and output declarations that follow. The words module, input, and output 

are keywords in Verilog. Keywords, which we show in bold type, have a special mean-

ing and cannot be used as names of objects such as modules, inputs, outputs, or wires. 

The statement module comparator_greater_than_structural declares 

that a design or design part exists with the name comparator_greater_than_

structural. Further, Verilog names are case sensitive (i.e., names are  distinguished 

by the use of uppercase or lowercase letters). COMPARATOR_greater_than_

Structural, Comparator_greater_than_structural, and comparator_

greater_than_Structural are all distinct names.

Just as we would do for a symbol in a schematic, we give the names of the 

decoder inputs and outputs in the module statement. Next, an input declaration is 

used to define which of the names in the module statement are inputs. For the 

example design, there are two input signals, A and B. The fact that these are inputs is 

denoted by the keyword input. Similarly, an output declaration is used to define the 

output. The signal A_greater_than_B is denoted as an output by the keyword 

output.

Inputs and outputs as well as other binary signal types in Verilog can take on 

one of four values. The two obvious values are 0 and 1. Added are x to represent 

unknown values and z to represent  high-  impedance values on the outputs of 3-state 

logic. Verilog also has strength values that, when combined with the four values 

given, provide 120 possible signal states. Strength values are used in electronic circuit 

modeling, however, so will not be considered here.

The inputs A and B also illustrate the Verilog concept of a vector. In line 4, 

instead of specifying A and B as single bit wires, they are specified as  multiple-  bit 

wires called vectors. The bits of a vector are named by a range of integers. This range 

is given by maximum and minimum values. By specifying these two values, we spec-

ify the width of the vector and the names of each of its bits. The line input [1:0] 
A, B indicates that A and B are each a vector with a width of two, with the most 

significant (leftmost) bit numbered 1 and least significant (rightmost) bit numbered 

0. The components of A are A[1] and A[0]. Once a vector has been declared, then 

the entire vector or its subcomponents can be referenced. For example, A refers to 

the two bits of A, and A[1] refers to the most significant bit of A. These types of 

 references are used in specifying the output and inputs in instances of the gates in 

lines 8 and lines 9 through 12. Also, Verilog permits the larger index for a vector to 

appear last. For example, input [0:3] N defines an input port N as a vector with 

four bits, where the most significant (leftmost) bit is numbered 0 and the least signif-

icant (rightmost) bit is numbered 3.



2-10 / HDL  Representations— Verilog      113

STRUCTURAL DESCRIPTION Next, we want to specify the function of the decoder. In 

this case, we use a structural description that is equivalent to the circuit schematic 

given in Figure 2-27. Note that the schematic is made up of gates. Verilog provides 14 

primitive gates as keywords. Of these, we are interested in eight for now: buf, not, 

and, or, nand, nor, xor, and xnor. buf and not have single inputs, and all other 

gate types may have from two to any integer number of inputs. buf is a buffer, which 

has the function z = x, with x as the input and z as the output. It is as an amplifier 

of electronic signals that can be used to provide greater  fan-  out or smaller delays. 

xor is the  exclusive-  OR gate and xnor is the  exclusive-  NOR gate, the complement 

of the  exclusive-  OR. In our example, we will use just three gate types, not, and, and 

or as shown in lines 7 through 14 of Figure 2-33.

Before specifying the interconnection of the gates, which is the same as a cir-

cuit netlist, we need to name all of the nets in the circuit. The inputs and outputs 

already have names. The internal nets are the outputs of the two inverters and of the 

three AND gates in Figure 2-27. In line 6, these nets are declared as wires by use of 

the keyword wire. Names B0_n and B1_n are used for the inverter outputs and 

and0_out, and1_out, and and2_out for the outputs of the AND gates. In Verilog, 

wire is the default net type. Notably, input and output ports have the default 

type wire.

Following the declaration of the internal signals, the circuit described contains 

two inverters, one 2-input AND gate, two 3-input AND gates, and one 3-input OR 

gate. A statement consists of a gate type followed by a list of instances of that gate 

type separated by commas. Each instance consists of a gate name and, enclosed in 

parentheses, the gate output and inputs separated by commas, with the output given 

first. The first statement begins on line 7 with the not gate type. Following is inverter 

inv0 with B0_n as the output and B0 as the input. To complete the statement, inv1 

is similarly described. Lines 9 through 14 give the remaining four gates and the sig-

nals connected to their outputs and inputs, respectively. For example, in line 12, an 

instance of a 3-input AND gate named and2 is defined. It has output and2_out and 

inputs A[0], B1_n, and B0_n. The module is completed with the keyword  

endmodule. ■

DATAFLOW DESCRIPTION A dataflow description describes a circuit in terms of func-

tion rather than structure and is made up of concurrent assignment statements or 

their equivalent. Concurrent assignment statements are executed concurrently (i.e., 

in parallel) whenever one of the values on the  right-  hand side of the statement 

changes. For example, whenever a change occurs in a value on the  right-  hand side of 

a Boolean equation, the  left-  hand side is evaluated. The use of dataflow descriptions 

made up of Boolean equations is illustrated in Example 2-21.
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EXAMPLE 2-21 Dataflow Verilog for a  Two-  Bit  Greater-  Than Comparator

In Figure 2-34, a dataflow Verilog description is given for the  two-  bit  greater-  than 

comparator. This particular dataflow description uses the assignment statement con-

sisting of the keyword assign followed, in this case, by a Boolean equation. In such 

equations, we use the bitwise Boolean operators given in Table 2-4. In line 7 of 

Figure 2-34, B1_n is assigned the inverse of B[1] using the ~ operator. In line 9, A[1] 

and B1_n are ANDed together with an & operator. This AND combination is as-

signed to the output and0_out. The wires and1_out and and2_out are similarly 

defined in lines 10 and 11. The output A_greater_than_B is assigned using the 

OR operator | on wires and0_out, and1_out, and and2_out on line 12.

The order of execution of the assignment statements does not depend upon 

the order of their appearance in the model description, but rather on the order of 

changes of signals on the  right-  hand side of the assignment statements. Thus the 

description in Figure 2-34 would have exactly the same behavior even if the assign-

ment statements were listed in some other order, e.g., if lines 7 and 12 were 

 interchanged. ■

BEHAVIORAL DESCRIPTION Dataflow models using concurrent assignments are consid-

ered to be behavioral descriptions, because they describe the function of the circuit 

without describing its structure. As will be shown in Chapter 4, Verilog also pro-

vides ways to describe behavior using statements that execute sequentially within 

a process, known as algorithmic modeling. But even with dataflow modeling using 

concurrent assignments, Verilog provides ways to describe circuits at levels higher 

than the logic level.

//  Two-  bit  greater-  than circuit: Dataflow model       //  1

// See Figure 2-27 for logic diagram           //  2

 module comparator_greater_than_dataflow(A, B, A_greater_than_B); //  3

 input [1:0] A, B; //  4

 output A_greater_than_B; //  5

  wire B1_n, B0_n, and0_out, and1_out, and2_out; //  6

 assign B1_n = ~B[1]; //  7

 assign B0_n = ~B[0]; //  8

 assign and0_out = A[1] & B1_n; //  9

  assign and1_out = A[1] & A[0] & B0_n; // 10

  assign and2_out = A[0] & B1_n & B0_n; // 11

  assign A_greater_than_B = and0_out | and1_out | and2_out;  // 12

endmodule                           // 13

 FIGURE 2-34
Dataflow Verilog Description of  Two-  Bit  Greater-  Than Comparator
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EXAMPLE 2-22 Verilog for a  Two-  Bit  Greater-  Than Comparator Using 
Conditional Operator

The description in Figure 2-35 implements the circuit’s function by using a condi-

tional operator ?: in line 6. If the logical value within the parentheses before the ? is 

true, then the value before the : is assigned to signal that is the target of the assign-

ment, in this case, A_greater_than_B. If the logical value is false, then the value 

after the : is assigned. The value 1’b1 represents a constant. The first 1 specifies that 

the constant contains one digit, ’b that the constant is given in binary, and 1 gives 

the constant value. In this case, if the condition A > B is true, then A_greater_

than_B is assigned the value 1’b1; otherwise, A_greater_than_B is assigned the 

value 1’b0. ■

//  Two-  bit  greater-  than circuit: Conditional model      // 1

// See Figure 2-27 for logic diagram // 2

 module comparator_greater_than_conditional2(A, B, A_greater_than_B); // 3

 input [1:0] A, B; // 4

 output A_greater_than_B; // 5

  assign A_greater_than_B = (A > B)? 1'b1 : // 6

      1'b0; // 7

endmodule // 8

 FIGURE 2-35
Conditional Dataflow Verilog Description of  Two-  Bit  Greater-  Than Circuit

EXAMPLE 2-23 Verilog for a  Two-  Bit  Greater-  Than Circuit Using  
Behavioral Model

As a more extended example of the conditional operator, another form of dataflow 

description using a conditional operator is shown in Figure 2-36. The logical equality 

operator is denoted by = . Suppose we consider condition A = 2’b00. 2’b00 

represents a constant. The 2 specifies that the constant contains two digits, b that the 

constant is given in binary, and 00 gives the constant value. Thus, the expression has 

value true if vector A is equal to 00; otherwise, it is false. If the expression is true, 

then 1’b0 is assigned to A_greater_than_B. If the expression is false, then the 

next expression containing a ? is evaluated, and so on. In this case, for a condition to 

be evaluated, all conditions preceding it must evaluate to false. If none of the deci-

sions evaluate to true, then the default value 1’bx is assigned to A_greater_

than_B. Recall that default value x represents unknown.

This example is somewhat contrived for this particular circuit, resulting in a 

description that is less straightforward than the previous versions. However, this 

example illustrates an approach with the conditional operator that is often useful 

when a set of conditions is used to select between several functions. We will see 
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//  Two-  bit  greater-  than circuit: Conditional model      //  1

// See Figure 2-27 for logic diagram //  2

 module comparator_greater_than_conditional(A, B, A_greater_than_B); //  3

 input [1:0] A, B; //  4

 output A_greater_than_B; //  5

  assign A_greater_than_B = (A == 2'b00)? 1'b0 : //  6

              (A == 2'b01)? ~(B[1]|B[0]): //  7

              (A == 2'b10)? ~B[1] : //  8

              (A == 2'b11)? ~(B[1]&B[0]): //  9

              1'bx; // 10

 endmodule                            // 11

 FIGURE 2-36
Conditional Dataflow Verilog Description of  Two-  Bit  Greater-  Than Circuit 
Using Combinations

//  Two-  bit  greater-  than circuit: Behavioral model       // 1

// See Figure 2-27 for logic diagram // 2

 module comparator_greater_than_behavioral(A, B, A_greater_than_B); // 3

 input [1:0] A, B; // 4

 output A_greater_than_B; // 5

 assign A_greater_than_B = A > B; // 6

endmodule                            // 7

 FIGURE 2-37
Behavioral Verilog Description of  Two-  Bit  Greater-  Than Circuit

examples of these types of selection circuits in later chapters, particularly in 

Chapter 3 with multiplexers and Chapter 6 with register transfers. ■

EXAMPLE 2-24 Verilog for a  Two-  Bit  Greater-  Than Circuit Using a Behavioral 
Description

As a final example of the  two-  bit  greater-  than circuit, Figure 2-37 is a description 

that describes the behavior of the circuit at a much higher level of abstraction than 

Boolean equations. This description simply uses single statement with the > mathe-

matical operator to implement the desired function. ■

TESTBENCHES As briefly described in Section  2-8, a testbench is an HDL model 

whose purpose is to test another model, often called the Device Under Test (DUT), 

by applying stimuli to the inputs. More complex testbenches will also analyze the out-

put of the DUT for correctness. Figure 2-38 shows a simple Verilog testbench for the 

structural  two-  bit  greater-  than comparator circuit. The testbench has several aspects 

that are common to testbenches. First, the module declaration does not have any 
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 input or output ports (line 2). Second, the testbench declares the registers (variables) 

and wires that will be connected to the inputs and outputs of the DUT (lines 3–4) and 

instantiates the DUT (line 5). Finally, the testbench applies combinations of inputs to 

the DUT to test it under various conditions (lines 6–16). The input values are applied 

using a process, which is a block of statements that are executed sequentially. Because 

the values for  A and B are assigned as variables in a process rather than with continuous 

assignments,  A and B must be declared as type reg rather than as type wire (line 3). 

The process in this testbench runs once at the beginning of the simulation because of 

the keyword initial (line 6), and assigns values to the inputs of the DUT, waiting 

10 time units of simulation time between assignments. In Verilog, delays are specified 

with a number sign (#) followed by a real number. The process in this example uses 

only a few combinations of inputs for the sake of clarity, although it does test all three 

conditions for the relationship between A and B (A 6 B,  A = B, and  A 7 B). Pro-

cesses will be described in more detail in Chapter 4, where a richer set of sequential 

statements that can be used in a process will be introduced.

This completes our introduction to Verilog for combinational circuits. We will 

continue with more on Verilog by presenting additional features of the language for 

describing more complex circuits in Chapters 3 and 4.

2-11 CHAPTER SUMMARY

The logic operations AND, OR, and NOT define the input/output relationships of logic 

components called gates, from which digital systems are implemented. A Boolean 

algebra defined in terms of these operations provides a tool for manipulating Boolean 

functions in designing digital logic circuits. Minterm and maxterm standard 

forms correspond directly to truth tables for functions. These standard forms can be 

manipulated into  sum-  of-  products and  product-  of-  sums forms, which correspond to 

 two-  level gate circuits. Two cost measures to be minimized in optimizing a circuit are 

//  Testbench for Verilog  two-  bit  greater-  than comparator //  1

module comparator_testbench_verilog(); //  2

 reg [1:0] A, B; //  3

 wire struct_out; //  4

  comparator_greater_than_structural U1(A, B, struct_out); //  5

 initial //  6

 begin  //  7

  A = 2'b10; //  8

  B = 2'b00; //  9

  #10; // 10

  B = 2'b01; // 11

  #10; // 12

  B = 2'b10; // 13

  #10; // 14

  B = 2'b11; // 15

 end // 16

endmodule // 17

 FIGURE 2-38
Testbench for the Structural Model of the  Two-  Bit  Greater-  Than Comparator
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the number of input literals to the circuit and the total number of inputs to the gates 

in the circuit.  K-  maps with two to four variables are an effective alternative to alge-

braic manipulation in optimizing small circuits. These maps can be used to optimize 

 sum-  of-  products forms,  product-  of-  sums forms, and incompletely specified functions 

with don’ t-  care conditions.

The primitive operations AND and OR are not directly implemented by prim-

itive logic elements in the most popular logic family. Thus, NAND and NOR primi-

tives that implement these families were introduced and used to implement circuits. 

A more complex primitive, the  exclusive-  OR, and its complement, the  exclusive- 

 NOR, were presented along with their mathematical properties.

Gate propagation delays were discussed. Propagation delay determines the 

speed of the overall digital circuit, and thus is a major design constraint.

Finally, the chapter provided a general introduction to HDLs and introduced 

two languages, VHDL and Verilog. Combinational circuits were used to illustrate 

structural and behavioral level descriptions for the two languages.
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PROBLEMS

The plus (+ ) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

 2-1.  *Demonstrate by means of truth tables the validity of the following identities:

(a) DeMorgan’s theorem for three variables: XYZ = X + Y + Z

(b) The second distributive law: X + YZ = (X + Y)(X + Z)

(c)   XY + YZ + XZ = XY + YZ + XZ
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 2-2.  *Prove the identity of each of the following Boolean equations, using 

algebraic manipulation:

(a) X Y + XY + XY = X + Y

(b) AB + B C + AB + BC = 1

(c) Y + XZ + XY = X + Y + Z

(d) X Y + YZ + XZ + XY + YZ = X Y + XZ + YZ

 2-3.  +Prove the identity of each of the following Boolean equations, using 

algebraic manipulation:

(a) ABC + BC D + BC + CD = B + CD

(b) WY + WYZ + WXZ + WXY = WY + WXZ + XYZ + XYZ

(c) AD + AB + CD + BC = (A + B + C + D)(A + B + C + D)

 2-4.  +Given that A  #   B = 0 and A + B =  1, use algebraic manipulation to 

prove that

(A + C)  #   (A + B)  #   (B + C) = B  #   C

 2-5.  +A specific Boolean algebra with just two elements 0 and 1 has been used in 

this chapter. Other Boolean algebras can be defined with more than two 

elements by using elements that correspond to binary strings. These algebras 

form the mathematical foundation for bitwise logical operations that we will 

study in Chapter 6. Suppose that the strings are each a nibble (half of a byte) 

of four bits. Then there are 24, or 16, elements in the algebra, where an 

element I is the  four-  bit nibble in binary corresponding to I in decimal. Based 

on bitwise application of the  two-  element Boolean algebra, define each of the 

following for the new algebra so that the Boolean identities hold:

(a) The OR operation A + B for any two elements A and B

(b) The AND operation A  #   B for any two elements A and B

(c)   The element that acts as the 0 for the algebra

(d) The element that acts as the 1 for the algebra

(e) For any element A, the element A.

 2-6.  Simplify the following Boolean expressions to expressions containing a 

minimum number of literals.

(a) WX Y + W Y + X Y Z + W X Y

(b) (W + X ) (W + Y + X )

(c)   X YZ + XYZ + X Y Z + X Z

(d) (W + X + Y )(X + Y )

(e) W X Y + X Y Z + XY + Y Z + W X Y

 2-7.  *Reduce the following Boolean expressions to the indicated number of literals:

(a) X Y + XYZ + XY to three literals

(b) X + Y(Z + X + Z) to two literals
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(c)   WX(Z + YZ) + X(W + WYZ) to one literal

(d) (AB + A B)(C D + CD) + AC to four literals

 2-8.  Apply DeMorgan’s theorem to express the function

F = X Y + WX + WY

(a) with only OR and complement operations.

(b) with only AND and complement operations.

(c)   with only NAND and complement operations.

 2-9.  *Find the complement of the following expressions:

(a) AB + AB

(b) (VW + X)Y + Z

(c)  WX(YZ + YZ) + W X(Y + Z)(Y + Z)

(d) (A + B + C)(A B + C)(A + B C)

2-10.  *Obtain the truth table of the following functions, and express each function 

in  sum-  of-  minterms and  product-  of-  maxterms form:

(a) (XY + Z)(Y + XZ)

(b) (A + B)(B + C)

(c)  WXY + WXZ + WXZ + YZ

2-11.  For the Boolean functions E and F, as given in the following truth table:

X Y Z F E

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 1

1 1 1 1 1

(a) List the minterms and maxterms of each function.

(b) List the maxterms of F  and E

(c)   List the minterms of E + F and E  #   F.

(d) Express E and F in sum-of-minterms algebraic form.

(e) Simplify E  #   F to expressions with a minimum of literals.

2-12.  *Convert the following expressions into  sum-  of-  products and  product-  of- 

 sums forms:

(a) (AB + C)(B + CD)

(b) X + X(X + Y)(Y + Z)

(c)  (A + BC + CD)(B + EF)



2-13.  Draw the logic diagram for the following Boolean expressions. The diagram 

should correspond exactly to the equation. Assume that the complements of 

the inputs are not available.

(a) A B C + AB + AC

(b) X(YZ + YZ) + W(Y + XZ)

(c)  AC(B + D) + AC(B + D) + BC(A + D)

2-14.  Optimize the following Boolean functions by means of a 3-variable map:

(a) F(A, B, C) = Σm(3, 4, 5, 6, 7)

(b) F(A, B, C) = Σm(1, 3, 6, 7)

(c)  F(A, B, C) = Σm(3, 6, 7)

(d) F(A, B, C) = Σm(1, 3, 4, 5, 6, 7)

2-15.  *Optimize the following Boolean expressions using a map:

(a) X Z + YZ + XYZ

(b) AB + BC + A B C

(c)  A B + AC + BC + ABC

2-16.  Optimize the following Boolean functions by means of a 4-variable map:

(a) F(A, B, C, D) = Σm(3, 4, 5, 6, 7, 12, 13)

(b) F(A, B, C, D) = Σm(4, 6, 7, 12, 13)

(c)  F(A, B, C, D) = Σm(0, 1, 4, 5,  6, 7, 12, 13)

(d) F(A, B, C, D) = Σm(1, 3, 4, 5, 6, 7)

2-17.  Optimize the following Boolean functions, using a map:

(a) F(A, B, C, D) = Σm(0, 1,  4,  5, 8,  9, 12, 13, 15)

(b) F(A, B, C, D) = Σm(4, 6, 7, 12, 13)

2-18.  *Find the minterms of the following expressions by first plotting each 

expression on a map:

(a) XY + XZ + XYZ

(b) XZ + WXY + WXY + WYZ + WYZ

(c)  B D + ABD + ABC

2-19.  *Find all the prime implicants for the following Boolean functions, and 

determine which are essential:

(a) F(W, X, Y, Z) = Σm (0, 2, 5, 7,  8, 10, 12, 13, 14, 15)

(b) F(A, B, C, D) = Σm (0, 2, 3, 5, 7,  8, 10, 11, 14, 15)

(c)  F(A, B, C, D) = Σm (1, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15)

2-20.  Optimize the following Boolean functions by finding all prime implicants and 

essential prime implicants and applying the selection rule:

(a) F(A, B, C, D) = Σm(0, 1, 5, 6, 7,  11, 12, 13, 15)

(b) F(A, B, C, D) = Σm(1, 3, 5, 7, 13, 15)

(c)  F(A, B, C, D) = Σm(0, 2, 4, 8, 10, 12, 13, 15)
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2-21.  Optimize the following Boolean functions in product-of-sums form:

(a) F(A, B, C, D) = Σm(1, 2, 3, 5, 6, 7, 13, 14, 15)

(b) F(A, B, C, D) = Σm(0, 1, 2, 3,  6, 8, 9, 10, 11, 14)

2-22.  *Optimize the following expressions in (1)  sum-  of-  products and (2)  product- 

 of-  sums forms:

(a) AC + BD + ACD + ABCD

(b) (A + B + D)(A + B + C)(A + B + D)(B + C + D)

(c)  (A + B + D)(A + D)(A + B + D)(A + B + C + D)

2-23.  Optimize the following functions that are given in maxterms into (1) product-

of-sums and (2) sum-of-products forms:

(a) F(A,  B,  C,  D) = Π M(2, 5, 6, 7,  8, 9, 10, 11, 14)

(b) F(A,  B,  C,  D) = Π M(5, 7, 9, 11)

2-24.  Optimize the following Boolean functions F together with the don’t-care 

conditions d in sum-of-products form:

(a) F (A,   B,   C, D) = Σm  (2, 3, 4, 6, 8, 10, 12, 13, 14), d(A, B, C, D) = Σm(0, 1, 15) 

(b) F (A, B, C, D) = ΠM (5, 7, 13, 15),  d(A, B, C, D) = Σm(9, 11)

(c)  F (A, B, C, D) = ΠM  (10, 13, 14, 15),  d(A, B, C, D) = Σm(0, 3, 4, 7, 12)

2-25.  *Optimize the following Boolean functions F together with the don’ t-  care 

conditions d. Find all prime implicants and essential prime implicants, and 

apply the selection rule.

(a) F(A, B, C) = Σm  (3, 5, 6),  d(A, B, C) = Σm  (0, 7)

(b) F(W, X, Y, Z) = Σm  (0, 2, 4, 5, 8, 14, 15),  d(W, X, Y, Z)=  Σm  (7, 10, 13)

(c)  F(A, B, C, D) = Σm  (4, 6, 7, 8, 12, 15),

d(A, B, C, D) = Σm  (2, 3, 5, 10, 11, 14)

2-26.  Optimize the following Boolean functions F together with the don’t-care 

conditions d in (1) product-of-sums and (2) sum-of-products forms.

(a)  F(A, B, C, D) = Σm(0, 1, 4, 5, 6, 11, 15),   

d(A, B, C, D)  = Σm(7, 8, 9, 12)

(b)  F(A, B, C, D) = Πm(2, 3, 7, 8, 10, 12),  

 d(A, B, C, D)  = Σm(0, 9, 13, 14)

2-27.  *Prove that the dual of the  exclusive-  OR is also its complement.

2-28.  Implement the following Boolean function with  exclusive-  OR and AND 

gates, using a minimum number of gate inputs:

F(A, B, C, D) = ABCD + AD + AD

2-29.  *The NOR gates in Figure 2-39 have propagation delay tpd = 0.073 ns and 

the inverter has a propagation delay tpd = 0.048 ns. What is the propagation 

delay of the longest path through the circuit?



2-30.  The waveform in Figure 2-40 is applied to an inverter. Find the output of the 

inverter, assuming that

(a) It has no delay.

(b) It has a transport delay of 0.06 ns.

(c)  It has an inertial delay of 0.06 ns with a rejection time of 0.04 ns.

2-31.  Assume that tpd is the average of tPHL and tPLH. Find the delay from each input 

to the output in Figure 2-41 by

(a) Finding tPHL and tPLH for each path, assuming tPHL = 0.20 ns and 

tPLH = 0.36 ns for each gate. From these values, find tpd for each path.

(b) Using tpd = 0.28 ns for each gate.

(c)  Compare your answers from parts (a) and (b) and discuss any 

differences.

2-32.  The rejection time for inertial delays is required to be less than or equal to the 

propagation delay. In terms of the discussion of the example in Figure 2-25, 

why is this condition necessary to determine the delayed output?
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 FIGURE 2-39
Circuit for Problem 2-29
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Waveform for Problem 2-30
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 FIGURE 2-41
Circuit for Problem 2-31
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2-33.  +For a given gate, tPHL = 0.05 ns and tPLH = 0.10 ns. Suppose that an inertial 

delay model is to be developed from this information for typical  gate-  delay 

behavior.

(a) Assuming a positive output pulse (LHL), what would the propagation 

delay and rejection time be?

(b) Discuss the applicability of the parameters in (a) assuming a negative 

output pulse (HLH).

All HDL files for circuits referred to in the remaining problems are available 

in ASCII form for simulation and editing on the Companion Website for the 

text. A VHDL or Verilog compiler/simulator is necessary for the problems or 

portions of problems requesting simulation. Descriptions can still be written, 

however, for many problems without using compilation or simulation.

-- Combinational Circuit 1: Structural VHDL Description 

library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;
  entity comb_ckt_1 is 
 port(x1, x2, x3, x4 : in std_logic;
 f : out std_logic);
end comb_ckt_1;

architecture structural_1 of comb_ckt_1 is 
  component NOT1
    port(in1: in std_logic;
         out1: out std_logic);
  end component;
  component AND2
    port(in1, in2 : in std_logic;
         out1: out std_logic);
  end component;
  component OR3
    port(in1, in2, in3 : in std_logic;
         out1: out std_logic);
  end component;
  signal n1, n2, n3, n4, n5, n6 : std_logic;
  begin 
    g0: NOT1 port map (in1 => x1, out1 => n1);
    g1: NOT1 port map (in1 => n3, out1 => n4);
    g2: AND2 port map (in1 => x2, in2 => n1,
                       out1 => n2);

    g3: AND2 port map (in1 => x2, in2 => x3,
                       out1 => n3);

    g4: AND2 port map (in1 => x3, in2 => x4,
                       out1 => n5);

    g5: AND2 port map (in1 => x1, in2 => n4,
                       out1 => n6);

    g6: OR3 port map (in1 => n2, in2 => n5,
                       in3 => n6, out1 => f);

end structural_1;

 FIGURE 2-42
VHDL for Problem 2-34



2-34.  *Find a logic diagram that corresponds to the VHDL structural description in 

Figure 2-42. Note that complemented inputs are not available.

2-35.  Using Figure 2-28 as a framework, write a structural VHDL description of the 

circuit in Figure  2-43. Replace X, Y, and Z with X (2:0). Consult package 

func_prims in library lcdf_vhdl for information on the various gate 

components. Compile func_prims and your VHDL model, and simulate 

your VHDL model for all eight possible input combinations to verify your 

description’s correctness.

X
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F

 FIGURE 2-43
Circuit for Problem 2-35, 2-38, 2-41, and 2-43
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 FIGURE 2-44
Circuit for Problems 2–36 and 2-40
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2-36.  Using Figure 2-28 as a framework, write a structural VHDL description of the 

circuit in Figure 2-44. Consult package func_prims in library lcdf_vhdl 

for information on the various gate components. Compile func_prims and 

your VHDL model, and simulate your VHDL model for all 16 possible input 

combinations to verify your description’s correctness.

2-37.  Find a logic diagram representing minimum  two-  level logic needed to 

implement the VHDL dataflow description in Figure  2-45. Note that 

complemented inputs are available.

2-38.  *Write a dataflow VHDL description for the circuit in Figure 2-43 by using 

the Boolean equation for the output F.

2-39.  *Find a logic diagram that corresponds to the Verilog structural description in 

Figure 2-46. Note that complemented inputs are not available.
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2-40.  Using Figure 2-33 as a framework, write a structural Verilog description of 

the circuit in Figure 2-44. Compile and simulate your Verilog model for all 16 

possible input combinations to verify your description’s correctness.

2-41.  Using Figure 2-46 as a framework, write a structural Verilog description of 

the circuit in Figure  2-43. Replace X, Y, and Z with input 
[2:0]  X. Compile and simulate your Verilog model for all eight possible 

input combinations to verify your description’s correctness.

-- Combinational Circuit 2: Dataflow VHDL Description

library ieee;
use ieee.std_logic_1164.all;
 entity comb_ckt_2 is 
 port(a, b, c, d, a_n, b_n, c_n, d_n: in std_logic;
 f, g : out std_logic);
-- a_n, b_n, . . . are complements of a, b, . . . , respectively.

end comb_ckt_2;
architecture dataflow_1 of comb_ckt_2 is 
begin 
     f <= b and (a or (a_n and c)) or (b_n and c and d_n);
     g <= b and (c or (a_n and c_n) or (c_n and d_n));
end dataflow_1;

 FIGURE 2-45
VHDL for Problem 2–37

// Combinational Circuit 1: Structural Verilog Description

module comb_ckt_1(x1, x2, x3, x4, f);
 input x1, x2, x3, x4;
 output f;

 wire n1, n2, n3, n4, n5, n6;

  not 
     go(n1, x1),

     g1(n4, n3);

 and 
     g2(n2, x2, n1),

     g3(n3, x2, x3),

     g4(n5, x3, x4),);

     g5(n6, x1, n4),);

 or 
     g6(f, n2, n5, n6),

endmodule

 FIGURE 2-46
Verilog for Problems 2–39 and 2-41
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// Combinational Circuit 2: Dataflow Verilog Description

module comb_ckt_1 (a, b, c, d, a_n, b_n, c_n, d_n, f, g);
// a_n, b_n, . . . are complements of a, b, . . . , respectively.

 input a, b, c, d, a_n, b_n, c_n, d_n;
 output f, g;

  assign f = b & (a |(a_n & c)) | (b_n & c & d_n);
 assign g = b & (c | (a_n & c_n) | (c_n & d_n));
endmodule

 FIGURE 2-47
Verilog for Problem 2–42

2-42.  Find a logic diagram representing minimum 2-level logic needed to 

implement the Verilog dataflow description in Figure  2-47. Note that 

complemented inputs are available.

2-43.  *Write a dataflow Verilog description for the circuit in Figure 2-43 by using 

the Boolean equation for the output F and using Figure 2-34 as a model.
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C H A P T E R

Combinational 
Logic Design

3

In this chapter, we continue our study of the design of combinational circuits. The 

chapter begins by describing a hierarchical approach to design, where the desired 

functionality is broken into smaller, less complex pieces that can be designed 

number of common functions and the corresponding fundamental circuits that are very 

useful in designing larger digital circuits. The fundamental, reusable circuits, which we 

call functional blocks, implement functions of a single variable, decoders, encoders, 

code converters, and multiplexers. The chapter then covers a special class of functional 

blocks that perform arithmetic operations. It introduces the concept of iterative circuits 

made up of arrays of combinational cells and describes blocks designed as iterative 

arrays for performing addition, covering both addition and subtraction. The simplicity of 

these arithmetic circuits comes from using complement representations for numbers 

us to design new functional blocks from existing ones. Contraction involves application 

These circuits perform operations such as incrementing a number, decrementing a 

number, or multiplying a number by a constant. Many of these new functional blocks will 

be used to construct sequential functional blocks in Chapter 6.

The various concepts in this chapter are pervasive in the design of the generic 

computer in the diagram at the beginning of Chapter 1. Combinational logic is a 

mainstay in all of the digital components. Multiplexers are very important for selecting 

data in the processor, in memory, and on I/O boards. Decoders are used for selecting 

boards attached to the input—output bus and to decode instructions to determine the 

operations performed in the processor. Encoders are used in a number of components, 

such as the keyboard. Functional blocks are widely used, so concepts from this chapter 

apply across all of the digital components of the generic computer, including memories. 

In the generic computer diagram at the beginning of Chapter 1, adders,  adder-subtractors, 
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3-1 BEGINNING HIERARCHICAL DESIGN

As briefly described in Chapter 1, the procedure for designing a digital system is to:

1. specify the desired behavior,

2. formulate the relationship between the inputs and outputs of the system, usu-

ally in terms of Boolean equations or a truth table,

3. optimize the representation of the logical behavior to minimize the number of 

logic gates required, as illustrated by the Karnaugh map procedure introduced 

in Chapter 2,

4. map the optimized logic to the available implementation technology, such as the 

logic gates from Chapter 2 or the functional blocks described in this chapter, and

5. verify the correctness of the final design in meeting the specifications.

The focus in this chapter is on the first four steps of the design procedure for com-

binational logic, from specifying the system to mapping the logic to the available imple-

mentation technology. But in actual design practice, the last step of verifying the 

correctness of the design typically is a considerable part of the effort creating the design. 

While an in-depth treatment of verification is beyond the scope of an introductory text 

such as this one, we should keep in mind that making sure that the design meets the 

specification is an important step that is often a bottleneck in the product design cycle. 

Small designs can be verified manually by finding the Boolean logic equations for the 

design and confirming that the truth table for them matches the specification. Larger 

designs are verified using simulation as well as more advanced techniques. If the circuit 

does not meet its specification, then it is incorrect. As a consequence, verification plays a 

vital role in preventing incorrect circuit designs from being manufactured and used.

For complex digital systems, rather than applying the design process above to the 

whole system, a typical method for designing them is to use a “divide-and-conquer” 

approach called hierarchical design. The resulting related symbols and schematics 

 constitute a hierarchy representing the circuit designed. In order to deal with circuit 

complexity, the circuit is broken up into pieces we call blocks, and the above design pro-

cedure is used to design the blocks. The blocks are then interconnected to form the cir-

cuit. The functions of these blocks and their interfaces are carefully defined, so that the 

circuit formed by interconnecting the blocks obeys the initial circuit specification. If a 

block is still too large and complex to be designed as a single entity, it can be broken into 

smaller blocks. This process can be repeated as necessary. Note that since we are work-

ing primarily with logic circuits, we use the term “circuit” in this discussion, but the ideas 

apply equally well to the “systems” covered in later chapters.

Example 3-1 illustrates a very simple use of hierarchical design to “divide and 

conquer” a circuit that has eight inputs. This number of inputs makes the truth table 

and other arithmetic circuits are used in the processor. Incrementers and decrementers 

are used widely in other components as well, so concepts from this chapter apply 

across most components of the generic computer.
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cumbersome and K-maps impossible. Thus, direct application of the basic combina-

tional design approach, as used in Chapter 2, is difficult.

EXAMPLE 3-1  Design of a 4-Bit Equality Comparator

SPECIFICATION:  An equality comparator is a circuit that compares two binary vectors 

to determine whether they are equal or not. The inputs to this specific circuit consist 

of two vectors: A(3:0) and B(3:0). Vector A consists of four bits, A(3), A(2), A(1), and 

A(0), with A(3) as the most significant bit. Vector B has a similar description with B 

replaced by A. The output of the circuit is a single-bit variable E. Output E is equal to 

1 if vectors A and B are equal and equal to 0 if vectors A and B are unequal.

FORMULATION:  The formulation attempts to bypass the use of a truth table due to 

its size. In order for A and B to be equal, the bit values in each of the respective 

positions, 3 down to 0, of A and B must be equal. If all of the bit positions for A and 

B contain equal values in every position, then E = 1—otherwise, E = 0. Intuitively, 

we can see from this formulation of the problem that the circuit can be developed as 

a simple 2-level hierarchy with the complete circuit at the top level and five circuits 

at the bottom level. Since comparison of a bit from A and the corresponding bit from 

B must be done in each of the bit positions, we can decompose the problem into four 

1-bit comparison circuits MX and an additional circuit ME that combines the four 

comparison-circuit outputs to obtain E. A logic diagram of the hierarchy showing 

the interconnection of the five blocks is shown in Figure 3-1(a).

(a)

A0 N0
MX

MX

MX

MX

ME

N1

N2

N3

E

B0

A1

B1

A2

B2

A3

B3

Ai

Ni

MX
Bi

N0
N1 E

ME
N2
N3

(b) (c)

 FIGURE 3-1
Hierarchical Diagram for a 4-Bit Equality Comparator
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OPTIMIZATION: For bit position i, we define the circuit output Ni to be 0 if Ai and Bi 

have the same values and Ni = 1 if Ai and Bi have different values. Thus, the MX 

circuit can be described by the equation

Ni = AiBi + AiBi

which has the circuit diagram shown in Figure 3-1(b). By using hierarchy, we can 

employ four copies of this circuit, one for each of the four bits of A and B. Output 

E = 1 only if all of the Ni values are 0. This can be described by the equation

E = N0 + N1 + N2 + N3

and has the diagram given in Figure 3-1(c). Both of the circuits given are optimum 

two-level circuits. These two circuit diagrams plus the block diagram in Figure 3-1(a) 

represent the hierarchical design of the circuit. The actual circuit is obtained by 

replacing the respective blocks in Figure 3-1(a) by copies of the two circuits shown in 

Figures 3-1(b) and (c).

The structure of the hierarchy for the 4-bit equality comparator can be repre-

sented without the interconnections by starting with the top block for the overall 

circuit and, below each block, connecting those blocks or primitives from which the 

block is constructed. Using this representation, the hierarchy for the 4-bit equality 

comparator circuit is shown in Figure 3-2(a). Note that the resulting structure has the 

form of a tree with the root at the top. The “leaves” of the tree are the gates, in this 

case 21 of them. In order to provide a more compact representation of the hierarchy, 

we can reuse blocks, as shown in Figure 3-2(b). This diagram corresponds to blocks 

used in Figure 3-1, with only one copy of each distinct block shown. These diagrams 

and the circuits in Figure 3-1 are helpful in illustrating a number of useful concepts 

associated with hierarchies and hierarchical blocks. .

First of all, a hierarchy reduces the complexity required to represent the sche-

matic diagram of a circuit. For example, in Figure 3-2(a), 21 gates appear. This means 

that if the circuit were designed directly in terms of gates, the schematic for the 

(a)

4-input 
equality comparator

MX MX MX MEMX

(b)

4-input 
equality comarator

MX ME

 FIGURE 3-2
Diagrams Representing the Structure of the Hierarchy for Figure 3-1
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circuit would consist of 21 interconnected gate symbols, in contrast to just 11 sym-

bols used to describe the circuit implementation as a hierarchy in Figure 3-1. Thus, a 

hierarchy gives a simplified representation of a complex circuit.

Second, the hierarchy ends at a set of “leaves” in Figure 3-2. In this case, the 

leaves consist of AND gates, OR gates, inverters, and a NOR gate. Since the gates 

are electronic circuits, and we are interested here only in designing the logic, these 

gates are commonly called primitive blocks. These are predefined rudimentary blocks 

that have a symbol, but no logic schematic. In general, more complex structures that 

likewise have symbols, but no logic schematics, are also predefined blocks. Instead of 

schematics, their function can be defined by a program or description that can serve 

as a model. For example, in the hierarchy depicted in Figure 3-1, the MX blocks 

could have been considered as predefined exclusive-OR gates consisting of elec-

tronic circuits. In such a case, the diagram describing the internal logic for MX exclu-

sive-OR blocks in Figure 3-1(b) would not be necessary. The hierarchical 

representations in Figure 3-1(b) and 3-2(a) would then end with the exclusive-OR 

blocks. In any hierarchy, the “leaves” consist of predefined blocks, some of which 

may be primitives.

A third very important property that results from hierarchical design is the 

reuse of blocks, as illustrated in Figures 3-2(a) and (b). In part (a), there are four 

 copies of the 2-input MX block. In part (b), there is only one copy of the 2-input MX 

block. This represents the fact that the designer has to design only one 2-input  

MX block and can use this design four times in the 4-bit equality comparator circuit. 

In general, suppose that at various levels of a hierarchy, the blocks used are carefully 

defined in such a manner that many of them are identical. A prerequisite for being 

able to achieve this goal is a fundamental property of the circuit called regularity. A 

regular circuit has a function that permits it to be constructed from copies of a rea-

sonably small set of distinct blocks. An irregular circuit has a function with no such 

property. Clearly the regularity for any given function is a matter of degree. For a 

given repeated block, only one design is necessary. This design can be used every-

where the block is required. The appearance of a block within a design is called an 

instance of the block and its use is called an instantiation. The block is reusable in the 

sense that it can be used in multiple places in the circuit design and, possibly, in 

the design of other circuits as well. This concept greatly reduces the design effort 

required for complex circuits. Note that, in the implementation of the actual circuit, 

separate hardware has to be provided for each instance of the block, as represented 

in Figure 3-2(a). The reuse, as represented in Figure 3-2(b), is confined to the sche-

matics that need to be designed, not to the actual hardware implementation. The 

ratio of the number of primitives in the final circuit to the total number of blocks in a 

hierarchical diagram including primitives is a measure of regularity. A larger ratio 

represents higher regularity; for example, for the 4-bit comparator as in Figure 3-1, 

this ratio is 21/11.

A complex digital system may contain millions of interconnected gates. A sin-

gle very-large-scale integrated (VLSI) processor circuit often contains hundreds of 

millions of gates. With such complexity, the interconnected gates appear to be an 

incomprehensible maze. Such complex systems or circuits are not designed manually 

simply by interconnecting gates one at a time.
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In this chapter we focus on predefined, reusable blocks that typically lie at the 

lower levels of logic design hierarchies. These are blocks of intermediate size that 

provide basic functions used in digital design. They allow designers to do much of 

the design process above the primitive block, i.e., gate level. We refer to these partic-

ular blocks as functional blocks. Thus, a functional block is a predefined collection of 

interconnected gates. Many of these functional blocks have been available for 

decades as medium-scale integrated (MSI) circuits that were interconnected to form 

larger circuits or systems. Similar blocks are now, in computer-aided design tool 

libraries, used for designing larger integrated circuits. These functional blocks pro-

vide a catalog of digital components that are widely used in the design and imple-

mentation of integrated circuits for computers and digital systems.

3-2 TECHNOLOGY MAPPING

Before we begin our discussion of functional blocks, it will be helpful if we first dis-

cuss technology mapping, where a logic diagram or netlist is transformed into a new 

diagram or netlist using available technology components. In this section, we intro-

duce NAND and NOR gate cells and consider mapping AND, OR, NOT descrip-

tions to one or the other of these two technologies. In currently available transistor 

technologies, NAND and NOR gates are smaller and faster than AND and OR 

gates. As we described in Chapter 2, the NAND and NOR functions are both func-

tionally complete, so any Boolean function can be implemented using only one or 

the other. Later in this chapter, we will show how to implement logic functions by 

mapping them onto more complex functional blocks. In Chapter 5, technology map-

ping to programmable implementation technologies is covered.

ADVANCED TECHNOLOGY MAPPING Technology mapping using collections of cell types 

including multiple gate types is covered in this supplement on the Companion Web 

Site for the text.

A NAND technology consists of a collection of cell types, each of which 

includes a NAND gate with a fixed number of inputs. The cells have numerous prop-

erties, as described in Chapter 5. Because of these properties, there may be more 

than one cell type with a given number of inputs n. For simplicity, we will assume that 

there are four cell types, based on the number of inputs, n, for n = 1,  2,  3, and 4. We 

will call these four cell types Inverter (n = 1), 2NAND, 3NAND, and 4NAND, 

respectively.

A convenient way to implement a Boolean function with NAND gates is to 

begin with the optimized logic diagram of the circuit consisting of AND and OR 

gates and inverters. Next, the function is converted to NAND logic by converting the 

logic diagram to NAND gates and inverters. The same conversion applies for NOR 

gate cells.

Given an optimized circuit that consists of AND gates, OR gates, and inverters, 

the following procedure produces a circuit using NAND (or NOR) gates with unre-

stricted gate fan-in:

1. Replace each AND and OR gate with the NAND (NOR) gate and inverter 

equivalent circuits shown in Figures 3-3(a) and (b).
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2. Cancel all inverter pairs.

3. Without changing the logic function, (a) “push” all inverters lying between 

(i) either a circuit input or a driving NAND (NOR) gate output and (ii) the 

driven NAND (NOR) gate inputs toward the driven NAND (NOR) gate in-

puts. Cancel pairs of inverters in series whenever possible during this step. 

(b) Replace inverters in parallel with a single inverter that drives all of the 

outputs of the parallel inverters. (c) Repeat (a) and (b) until there is at most 

one inverter between the circuit input or driving NAND (NOR) gate output 

and the attached NAND (NOR) gate inputs.

In Figure 3-3(c), the rule for pushing an inverter through a “dot” is illustrated. 

The inverter on the input line to the dot is replaced with inverters on each of the 

 FIGURE 3-3
Mapping of AND Gates, OR Gates, and Inverters to 
NAND Gates, NOR Gates, and Inverters

...
...

...
...

(a) Mapping to NAND gates

...

...
...

...

(b) Mapping to NOR gates

...
...

(c) Pushing an inverter through a “dot”

(d) Canceling inverter pairs
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output lines from the dot. The cancelation of pairs of inverters in Figure 3-3(d) is 

based on the Boolean algebraic identity

X = X

The next example illustrates this procedure for NAND gates.

EXAMPLE 3-2 Implementation with NAND Gates

Implement the following optimized function with NAND gates:

F = AB  + (AB)C + (AB)D + E

The AND, OR, inverter implementation is given in Figure 3-4(a). In Figure 3-4(b), 

step 1 of the procedure has been applied, replacing each AND gate and OR gate 

with its equivalent circuit using NAND gates and inverters from Figure 3-3(a). 

Labels appear on dots and inverters to assist in the explanation. In step 2, the inverter 

pairs (1, 2) and (3, 4), cancel, giving direct connections between the corresponding 

NAND gates in Figure 3-4(d). As shown in Figure 3-4(c), inverter 5 is pushed through 

X and cancels with inverters 6 and 7, respectively. This gives direct connections 

between the corresponding NAND gates in Figure 3-4(d). No further steps can be 

applied, since inverters 8 and 9 cannot be paired with other inverters and must 

remain in the final mapped circuit in Figure 3-4(d). The next example illustrates this 

procedure for NOR gates. 
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(c)

 FIGURE 3-4
Solution to Example 3-2 ■
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EXAMPLE 3-3 Implementation with NOR Gates

Implement the same optimized Boolean function used in Example 3-2 with NOR 

gates:

F = AB  + (AB)C + (AB)D + E

The AND, OR, inverter implementation is given in Figure 3-5(a). In Figure 3-5(b), 

step 1 of the procedure has been applied, replacing each AND gate and OR gate with 

its equivalent circuit using NOR gates and inverters from Figure 3-3(b). Labels appear 

on dots and inverters to assist in the explanation. In step 2, inverter 1 can be pushed 

through dot X to cancel with inverters 2 and 3, respectively. The pair of inverters on the 

D input line cancel as well. The single inverters on input lines A, B, and C and output 

line F must remain, giving the final mapped circuit that appears in Figure 3-5(c). 

A
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A
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F

(c)

F
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D
E

(b)

2

3

1

 FIGURE 3-5
Solution to Example 3-3 ■

In Example 3-2 the gate-input cost of the mapped circuit is 12, and in Example 

3-3 the gate-input cost is 14, so the NAND implementation is less costly. Also, the 

NAND implementation involves a maximum of three gates in series while the NOR 

implementation has a maximum of five gates in series. With equal gate delays 

assumed, the shorter series of gates in the NAND circuit gives a maximum delay 

from an input change to a corresponding output change about 0.6 times as long as 

that for the NOR circuit. So, in this particular case, the NAND circuit is superior to 

the NOR circuit in both cost and delay.
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The result of a technology mapping is clearly influenced by the initial circuit or 

equation forms prior to mapping. For example, mapping to NANDs for a circuit 

with an OR gate at the output produces a NAND gate at the output. Mapping to 

NORs for the same circuit produces an inverter driven by a NOR gate at the output. 

Because of these results, the sum of products is viewed as more natural for NANDs 

and the product of sums, which eliminates the output inverter, as more natural for 

NORs. Nevertheless, the choice should be based on which form gives the best over-

all implementation in terms of whatever optimization criteria are being applied. ■

3-3 COMBINATIONAL FUNCTIONAL BLOCKS

Earlier, we defined and illustrated combinational circuits and their design. In this 

 section, we define specific combinational functions and corresponding combinational 

circuits, referred to as functional blocks. In some cases, we will go through the design 

process for obtaining a circuit from the function, while in other cases, we will simply 

present the function and an implementation of it. These functions have special impor-

tance in digital design. In the past, the functional blocks were manufactured as small- 

and medium-scale integrated circuits. Today, in very-large-scale integrated (VLSI) 

 circuits, functional blocks are used to design circuits with many such blocks. Combina-

tional functions and their implementations are fundamental to the understanding of 

VLSI circuits. By using a hierarchy, we typically construct circuits as instances of these 

functions or the associated functional blocks as well as logic design at the gate level.

Large-scale and very-large-scale integrated circuits are almost always sequen-

tial circuits, as detailed beginning in Chapter 4. The functions and functional blocks 

discussed in this chapter are combinational. However, they are often combined with 

storage elements to form sequential circuits, as shown in Figure 3-6. Inputs to the 

combinational circuit can come from both the external environment and the storage 

elements. Outputs from the combinational circuit go to both the external environ-

ment and the storage elements. In later chapters, we use the combinational functions 

and blocks defined here, with storage elements to form sequential circuits that per-

form very useful functions. Further, the functions and blocks defined here serve as a 

basis for describing and understanding both combinational and sequential circuits 

using hardware description languages.

3-4 RUDIMENTARY LOGIC FUNCTIONS

Value fixing, transferring, inverting, and enabling are among the most elementary of 

combinational logic functions. The first two operations, value fixing and transferring, 

do not involve any Boolean operators. They use only variables and constants. As a 

Inputs
Combinational

circuit
Next
state Storage

elements

Outputs

Present
state

 FIGURE 3-6
Block Diagram of a Sequential Circuit



3-4 / Rudimentary Logic Functions      139

consequence, logic gates are not involved in the implementation of these operations. 

Inverting involves only one logic gate per variable, and enabling involves one or two 

logic gates per variable.

Value-Fixing, Transferring, and Inverting

If a single-bit function depends on a single variable X, four different functions are 

possible. Table 3-1 gives the truth tables for these functions. The first and last col-

umns of the table assign either constant value 0 or constant value 1 to the function, 

thus performing value fixing. In the second column, the function is simply the input 

variable X, thus transferring X from input to output. In the third column, the func-

tion is X, thus inverting input X to become output X.

The implementations for these four functions are given in Figure 3-7. Value fix-

ing is implemented by connecting a constant 0 or constant 1 to output F, as shown in 

Figure 3-7(a). Figure 3-7(b) shows alternative representations used in logic schemat-

ics. For the positive logic convention, constant 0 is represented by the electrical 

ground symbol and constant 1 by a power-supply voltage symbol. The latter symbol 

is labeled with either VCC or VDD. Transferring is implemented by a simple wire con-

necting X to F as in Figure 3-7(c). Finally, inverting is represented by an inverter 

which forms F = X from input X, as shown in Figure 3-7(d).

Multiple-Bit Functions

The functions defined so far can be applied to multiple bits on a bitwise basis. We can 

think of these multiple-bit functions as vectors of single-bit functions. For example, 

suppose that we have four functions, F
3
, F

2
, F

1
, and F

0
, that make up a four-bit func-

tion F. We can order the four functions with F
3
 as the most significant bit and F

0
 the 

 TABLE 3-1
Functions of One Variable

X F = 0 F = X F = X F = 1

0 0 0 1 1

1 0 1 0 1

0

1

(a)

V

F � 1

F � 0

F � 1

F � 0

F � X

F � X

CC or VDD

(b)

X

(c)

X

(d)

 FIGURE 3-7
Implementation of Functions of a Single Variable X
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least significant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists 

of rudimentary functions F3 = 0,  F2 = 1,  F1 = A, and F0 = A. Then we can write F 

as the vector (0, 1, A, A). For A = 0,  F = (0, 1, 0, 1) and for A = 1,  F = (0, 1, 1, 0). 

This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-

mented in Figure 3-8(a). For convenience in schematics, we often represent a set of 

multiple, related wires by using a single line of greater thickness with a slash, across 

the line. An integer giving the number of wires represented accompanies the slash as 

shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-

ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the 

process of transferring, we may wish to use only a subset of the elements in F—for 

example, F
2
 and F

1
. The notation for the bits of F can be used for this purpose, as 

shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of 

F
3
, F

1
, F

0
 at a destination. Note that since F

3
, F

1
, and F

0
 are not all together, we cannot 

use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-

nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-

tion used for vectors and subvectors varies among the schematic drawing tools or 

HDL tools available. Figure 3-8 illustrates just one approach. For a specific tool, the 

documentation should be consulted.

Value fixing, transferring, and inverting have a variety of applications in logic 

design. Value fixing involves replacing one or more variables with constant values 

1 and 0. Value fixing may be permanent or temporary. In permanent value fixing, 

the value can never be changed. In temporary value fixing, the values can be 

changed, often by mechanisms somewhat different from those employed in ordi-

nary logical operation. A major application of fixed and temporary value fixing is 

in programmable logic devices. Any logic function that is within the capacity of the 

programmable device can be implemented by fixing a set of values, as illustrated in 

the next example.

EXAMPLE 3-4  Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall 

specifies that the switches that control the normal lights be programmable. There are 

to be three different modes of operation for the two switches. Switch P is on the po-

dium in the front of the hall and switch R is adjacent to a door at the rear of the 

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F

(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions
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 lecture hall. H (house lights) is 1 for the house lights on and 0 for the house lights off. 

The light control for house lights can be programmed to be in one of three modes, 

M
0
, M

1
, or M

2
, defined as:

M
0
: Either switch P or switch R turns the house lights on and off.

M
1
: Only the podium switch P turns the house lights on and off.

M
2
: Only the rear switch R turns the house lights on and off.

The Solution: The truth tables for H(P, R) as a function of programming modes M
0
, 

M
1
, and M

2
 are given in Table 3-2. The functions for M

1
 and M

2
 are straightforward, 

but the function for M
0
 needs more thought. This function must permit the changing 

of one out of the two switches P or R to change the output. A parity function has this 

property, and the parity function for two inputs is the exclusive OR, the function en-

tered into Table 3-2 for M
0
. The goal is to find a circuit that will implement the three 

programming modes and provide the output H(P, R).

The circuit chosen for a value-fixing implementation is shown in Figure 3-9(a); 

later in this chapter, this standard circuit is referred to as a 4–to–1 multiplexer. A 

condensed truth table is given for this circuit in Figure 3-9(b). P and R are input vari-

ables, as are I
0
 through I

3
. Values 0 and 1 can be assigned to I

0
 through I

3
 depending 

upon the desired function for each mode. Note that H is actually a function of six 

variables, giving a fully expanded truth table containing 64 rows and seven columns. 

But, by putting I
0
 through I

3
 in the output column, we considerably reduce the size of 

the table. The equation for the output H for this truth table is

H(P, R, I0, I1, I2, I3) = P RI0 + PRI1 + PRI2 + PRI3

By fixing the values of I
0
 through I

3
, we can implement any function H(P, R). 

As shown in Table 3-2, we can implement the function for M
0
, H = PR + PR by 

using I0 = 0,  I1 = 1,  I2 = 1, and I3 = 0. We can implement the function for M
1
, 

H = P by using I0 = 0,  I1 = 0,  I2 = 1, and I3 = 1, and M2,  H = R by using 

I0 = 0,  I1 = 1,  I2 = 0, and I3 = 1. Any one of these functions can be implemented 

permanently, or all can be implemented temporarily by fixing I0 = 0, and using I
1
, I

2
, 

and I
3
 as variables with values as assigned above for each of the three modes. The 

final circuit with I0 = 0 and the programming table after I
0
 has been fixed at 0 are 

shown in Figures 3-9(c) and (d), respectively.

 TABLE 3-2
Function Implementation by Value Fixing

Mode: M0 M1 M2

P R H =  PR +  PR H = P H = R

0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1
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Enabling

In general, enabling permits an input signal to pass through to an output. In addition to 

replacing the input signal with the Hi-Z state, which will be discussed in Section 6-8, 

disabling also can replace the input signal with a fixed output value, either 0 or 1. The 

additional input signal, often called ENABLE or EN, is required to determine whether 

the output is enabled or not. For example, if EN is 1, the input X reaches the output 

(enabled), but if EN is 0, the output is fixed at 0 (disabled). For this case, with the dis-

abled value at 0, the input signal is ANDed with the EN signal, as shown in Figure 3-

10(a). If the disabled value is 1, then the input signal X is ORed with the complement of 

the EN signal, as shown in Figure 3-10(b). In this case, if EN = 1, a 0 is applied to the 

OR gate, and the input X on the other OR gate, input reaches the output, but if EN = 0

, a 1 is applied to the OR gate, which blocks the passage of input X to the output. It is 

also possible for each of the circuits in Figure 3-10 to be modified to invert the EN input, 

so that EN = 0 enables X to reach the output and EN = 1 blocks X.

I0

I1

I2

I3

P

R

H

(a)

P R H

0 0 I0

0 1 I1

1 0 I2

1 1 I3

(b)

M0

(d)

M1 M2

0

0 1

1
1
1

1
1
0

0

I2

I3

P

R

H

(c)

I1

I1

I2

I3

 FIGURE 3-9
Implementation of Three Functions by Using Value Fixing ■



3-4 / Rudimentary Logic Functions      143

EXAMPLE 3-5 Car Electrical Control Using Enabling

The Problem: In most automobiles, the lights, radio, and power windows operate 

only if the ignition switch is turned on. In this case, the ignition switch acts as an “en-

abling” signal. Suppose that we model this automotive subsystem using the follow-

ing variables and definitions:

Ignition switch IG: Value 0 if off and value 1 if on

Light switch LS: Value 0 if off and value 1 if on

Radio switch RS: Value 0 if off and value 1 if on

Power window switch WS: Value 0 if off and value 1 if on

Lights L: Value 0 if off and value 1 if on

Radio R: Value 0 if off and value 1 if on

Power windows W: Value 0 if off and value 1 if on

The Solution: Table 3-3 contains the condensed truth table for the operation 

of this automobile subsystem. Note that when the ignition switch IS is off (0), all of 

the controlled accessories are off (0) regardless of their switch settings. This is indi-

cated by the first row of the table. With the use of Xs, this condensed truth table 

with just nine rows represents the same information as the usual 16-row truth table. 

Whereas Xs in output columns represent don’t-care conditions, Xs in input 

X
F

EN

(a)

EN
X

F

(b)

 FIGURE 3-10
Enabling Circuits

  TABLE 3-3
Truth Table For Enabling Application

Input  

Switches

Accessory  

Control

IS LS RS WS L R W

0 X X X 0 0 0

1 0 0 0 0 0 0
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 1 0 0
1 1 0 1 1 0 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1
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columns are used to represent product terms that are not minterms. For example, 

0XXX represents the product term IS. Just as with minterms, each variable is com-

plemented if the corresponding bit in the input combination from the table is 0 and 

is not complemented if the bit is 1. If the corresponding bit in the input combina-

tion is an X, then the variable does not appear in the product term. When the igni-

tion switch IS is on (1), then the accessories are controlled by their respective 

switches. When IS is off (0), all accessories are off. So IS replaces the normal values 

of the outputs L, R, and W with a fixed value 0 and meets the definition of an 

ENABLE signal. The resulting circuit is given in Figure 3-11. ■

3-5 DECODING

In digital computers, discrete quantities of information are represented by binary 

codes. An n-bit binary code is capable of representing up to 2n distinct elements of 

coded information. Decoding is the conversion of an n-bit input code to an m-bit 

output code with n … m … 2n, such that each valid input code word produces a 

unique output code. Decoding is performed by a decoder, a combinational circuit 

with an n-bit binary code applied to its inputs and an m-bit binary code appearing 

at the outputs. The decoder may have unused bit combinations on its inputs for 

which no corresponding m-bit code appears at the outputs. Among all of the spe-

cialized functions defined here, decoding is the most important, since this function 

and the corresponding functional blocks are incorporated into many of the other 

functions and functional blocks defined here.

In this section, the functional blocks that implement decoding are called 

n–to–m-line decoders, where m … 2n. Their purpose is to generate the 2n (or fewer) 

minterms from the n input variables. For n = 1 and m = 2, we obtain the 1–to–2-line 

decoding function with input A and outputs D
0
 and D

1
. The truth table for this 

decoding function is given in Figure 3-12(a). If A = 0, then D0 = 1 and D1 = 0. 

If A = 1, then D0 = 0 and D1 = 1. From this truth table, D0 = A and D1 = A, 

giving the circuit shown in Figure 3-12(b).

A second decoding function for n = 2 and m = 4 with the truth table given in 

Figure 3-13(a) better illustrates the general nature of decoders. This table has 2-vari-

able minterms as its outputs, with each row containing one output value equal to 1 

and three output values equal to 0. Output Di is equal to 1 whenever the two input 

values on A
1
 and A

0
 are the binary code for the number i. As a consequence, the  

circuit implements the four possible minterms of two variables, one minterm for 

LS
L

IG

RS
R

WS
W

 FIGURE 3-11
Car Electrical Control Using Enabling
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each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by 

a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders, 

one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm 

function using a single AND gate with more inputs. Unfortunately, as decoders 

become larger, this approach gives a high gate-input cost. In this section, we give 

a  procedure that uses design hierarchy and collections of AND gates to con-

struct any decoder with n inputs and 2n outputs. The resulting decoder has the 

same or a lower gate-input cost than the one constructed by simply enlarging each 

AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder 

and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms. 

Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line 

decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting 

structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-

ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND 

A
D0 � A
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D1 � A

D1

0 1 0

1 0 1

(a) (b)

A

 FIGURE 3-12
A 1–to–2-Line Decoder
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 FIGURE 3-13
A 2–to–4-Line Decoder
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gates driven by a decoder of output size 2(k + 1)/2 and a decoder of output size 

2(k - 1)/2.

3. For each decoder resulting from step 2, repeat step 2 with k equal to the values 

obtained in step 2 until k = 1. For k = 1, use a 1–to–2 decoder.

EXAMPLE 3-6 6–to–64-Line Decoder

For a 6–to–64-line decoder (k = n = 6), in the first execution of step 2, 64 2-input 

AND gates are driven by two decoders of output size 23 = 8 (i.e., by two 3–to–8-

line decoders). In the second execution of step 2, k = 3. Since k is odd, the result 

is (k + 1)/2 = 2 and (k - 1)/2 = 1. Eight 2-input AND gates are driven by a 

decoder of output size 22 = 4 and by a decoder of output size 21 = 2 (i.e., by a 2–

to–4-line decoder and by a 1–to–2-line decoder, respectively). Finally, on the next 

execution of step 2, k = 2, giving four 2-input AND gates driven by two decoders 

with output size 2 (i.e., by two 1–to–2-line decoders). Since all decoders have been 

expanded, the algorithm terminates with step 3 at this point. The resulting struc-

ture is shown in Figure 3-15. This structure has a gate input cost of 

6 + 2 (2 * 4) + 2 (2 * 8) + 2 * 64 = 182. If a single AND gate for each minterm 

was used, the resulting gate-input cost would be 6 + (6 * 64) = 390, so a substan-

tial gate-input cost reduction has been achieved. ■

3-to-8-Line decoder

1-to-2-Line decoders

4 2-input ANDs 8 2-input ANDs

2-to-4-Line
decoder

D0
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D1

D2

D3

D4

D5

D6

D7

 FIGURE 3-14
A 3–to–8-Line Decoder
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As an alternative expansion situation, suppose that multiple decoders are 

needed and that the decoders have common input variables. In this case, instead of 

implementing separate decoders, parts of the decoders can be shared. For example, 

suppose that three decoders da, db, and dc are functions of input variables as follows:

da (A, B, C, D)

db (A, B, C, E)

dc (C, D, E, F)

A 3–to–8-line decoder for A, B, and C can be shared between da and db. A  

2–to–4-line decoder for C and D can be shared between da and dc. A 2–to–4-line 

decoder for C and E can be shared between db and dc. If we implemented all of this 

sharing, we would have C entering three different decoders and the circuit would be 

redundant. To use C just once in shared decoders larger than 1 to 2, we can consider 

the following distinct cases:

1. (A, B) shared by da and db, and (C, D) shared by da and dc,

2. (A, B) shared by da and db, and (C, E) shared by db and dc, or

3. (A, B, C) shared by da and db.

Since cases 1 and 2 will clearly have the same costs, we will compare the cost of 

cases 1 and 3. For case 1, the costs of functions da, db, and dc are reduced by the cost 

of two 2–to–4-line decoders (exclusive of inverters) or 16 gate inputs. For case 3, the 

A0 D0

D63

4 2-input ANDs

4 2-input ANDs

2-to-4-Line decoder

2-to-4-Line decoder

3-to-8-Line decoder

3-to-8-Line decoder
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8 2-input ANDs
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.

.
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 FIGURE 3-15
A 6–to–64-Line Decoder
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costs for functions da and db are reduced by one 3–to–8-line decoder (exclusive of 

inverters) or 24 gate inputs. So case 3 should be implemented. Formalization of this 

procedure into an algorithm is beyond our current scope, so only this illustration of 

the approach is given.

Decoder and Enabling Combinations

The function, n–to–m-line decoding with enabling, can be implemented by attaching m 

enabling circuits to the decoder outputs. Then, m copies of the enabling signal EN are 

attached to the enable control inputs of the enabling circuits. For n = 2 and m = 4, 

the resulting 2–to–4-line decoder with enable is shown in Figure 3-16, along with its 

truth table. For EN = 0, all of the outputs of the decoder are 0. For EN = 1, one of 

the outputs of the decode, determined by the value on (A
1
, A

0
), is 1 and all others are 0. 

If the decoder is controlling a set of lights, then with EN = 0, all lights are off, and with 

EN = 1, exactly one light is on, with the other three off. For large decoders (n Ú 4), 

the gate-input cost can be reduced by placing the enable circuits on the inputs to the 

decoder and their complements rather than on each of the decoder outputs.

In Section 3-7, selection using multiplexers will be covered. The inverse of selec-

tion is distribution, in which information received from a single line is transmitted to 

one of 2n possible output lines. The circuit which implements such distribution is called 

a demultiplexer. The specific output to which the input signal is transmitted is con-

trolled by the bit combination on n selection lines. The 2–to–4-line decoder with enable 

in Figure 3-16 is an implementation of a 1–to–4-line demultiplexer. For the demulti-

plexer, input EN provides the data, while the other inputs act as the selection variables. 

Although the two circuits have different applications, their logic diagrams are exactly 

the same. For this reason, a decoder with enable input is referred to as a decoder/

demultiplexer. The data input EN has a path to all four outputs, but the input informa-

tion is directed to only one of the outputs, as specified by the two selection lines A
1
 and 

A
0
. For example, if (A1, A0) = 10, output D

2
 has the value applied to input EN, while 

EN
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 FIGURE 3-16
A 2–to–4-Line Decoder with Enable
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all other outputs remain inactive at logic 0. If the decoder is controlling a set of four 

lights, with (A1, A0) = 10 and EN periodically changing between 1 and 0, the light con-

trolled by D
2
 flashes on and off and all other lights are off.

The next several examples illustrate using VHDL and Verilog to describe the 

behavior of decoders, providing additional instances of structural and dataflow model-

ing in each language with the language constructs initially introduced in Chapter 2.

EXAMPLE 3-7 VHDL Models for a 2–to–4-Line Decoder

Figure 3-17 shows a structural VHDL description for the 2–to–4-line decoder circuit 

from Figure 3-16. The model uses the library of basic gates lcdf_vhdl available from 

the Companion Website for the text as described in Chapter 2.

Figure 3-18 shows a dataflow VHDL description for the 2–to–4-line decoder 

circuit from Figure 3-16. Note that this dataflow description is much simpler  

than the structural description in Figure 3-17, which is often the case. The library, 

use, and entity statements are identical to those in Figure 3-16, so they are not 

repeated here. ■

–– 2-to-4-Line Decoder with Enable: Structural VHDL Description ––  1

–– (See Figure 3-16 for logic diagram) ––  2

library ieee, lcdf_vhdl; ––  3

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;  ––  4

entity decoder_2_to_4_w_enable is  ––  5

 port (EN, A0, A1: in std_logic; ––  6

       D0, D1, D2, D3: out std_logic); ––  7

end decoder_2_to_4_w_enable; ––  8

 ––  9

architecture structural_1 of decoder_2_to_4_w_enable is  –– 10

 component NOT1 –– 11

 port (in1: in std_logic; –– 12

          out1: out std_logic); –– 13

 end component;  –– 14

 component AND2 –– 15

 port (in1, in2: in std_logic; –– 16

          out1: out std_logic); –– 17

 end component;  –– 18

 signal A0_n, A1_n, N0, N1, N2, N3: std_logic; –– 19

 begin  –– 20

 g0: NOT1 port map (in1 => A0, out1 => A0_n); –– 21

 g1: NOT1 port map (in1 => A1, out1 => A1_n); –– 22

 g2: AND2 port map (in1 => A0_n, in2 => A1_n, out1 => N0); –– 23

 g3: AND2 port map (in1 => A0, in2 => A1_n, out1 => N1); –– 24

 g4: AND2 port map (in1 => A0_n, in2 => A1, out1 => N2); –– 25

 g5: AND2 port map (in1 => A0, in2 => A1, out1 => N3); –– 26

 g6: AND2 port map (in1 => EN, in2 => N0, out1 => D0); –– 27

 g7: AND2 port map (in1 => EN, in2 => N1, out1 => D1); –– 28

 g8: AND2 port map (in1 => EN, in2 => N2, out1 => D2); –– 29

 g9: AND2 port map (in1 => EN, in2 => N3, out1 => D3); –– 30

end structural_1; –– 31

 FIGURE 3-17
Structural VHDL Description of 2–to–4-Line Decoder
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EXAMPLE 3-8 Verilog Models for a 2–to–4-Line Decoder

A structural Verilog description for the 2-to-4-line decoder circuit from Figure 3-16 

is given in Figure 3-19. In Figure 3-20, a dataflow description is given for the  

2–to–4-line decoder. This particular dataflow description uses an assignment state-

ment followed by a Boolean equation. ■

 FIGURE 3-18
Dataflow VHDL Description of 2–to–4-Line Decoder

–– 2-to-4-Line Decoder: Dataflow VHDL Description ––  1

–– (See Figure 3-16 for logic diagram) ––  2

–– Use library, use, and entity entries from 2_to_4_decoder_st; ––  3

 ––  4

architecture dataflow_1 of decoder_2_to_4_w_enable is  ––  5

 ––  6

signal A0_n, A1_n: std_logic; ––  7

begin  ––  8

 A0_n <= not A0; ––  9

 A1_n <= not A1; –– 10

 D0 <= A0_n and A1_n and EN; –– 11

 D1 <= A0 and A1_n and EN; –– 12

 D2 <= A0_n and A1 and EN; –– 13

 D3 <= A0 and A1 and EN; –– 14

end dataflow_1; –– 15

 FIGURE 3-19
Structural Verilog Description of 2–to–4-Line Decoder

// 2-to-4-Line Decoder with Enable: Structural Verilog Desc. //  1

// (See Figure 3-16 for logic diagram) //  2

module decoder_2_to_4_st_v (EN, A0, A1, D0, D1, D2, D3); //  3

 input EN, A0, A1; //  4

 output D0, D1, D2, D3; //  5

 //  6

 wire A0_n, A1_n, N0, N1, N2, N3; //  7

 not  //  8

     g0(A0_n, A0), //  9

     g1(A1_n, A1); // 10

 and   // 11

     g3(N0, A0_n, A1_n), // 12

     g4(N1, A0, A1_n), // 13

     g5(N2, A0_n, A1), // 14

     g6(N3, A0, A1), // 15

     g7(D0, N0, EN), // 16

     g8(D1, N1, EN), // 17

     g9(D2, N2, EN), // 18

     g10(D3, N3, EN); // 19

endmodule  // 20
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Decoder-Based Combinational Circuits

A decoder provides the 2n minterms of n input variables. Since any Boolean function 

can be expressed as a sum of minterms, one can use a decoder to generate the mint-

erms and combine them with an external OR gate to form a sum-of-minterms imple-

mentation. In this way, any combinational circuit with n inputs and m outputs can be 

implemented with an n–to–2n-line decoder and m OR gates.

The procedure for implementing a combinational circuit by means of a decoder 

and OR gates requires that the Boolean functions be expressed as a sum of mint-

erms. This form can be obtained from the truth table or by plotting each function on 

a K-map. A decoder is chosen or designed that generates all the minterms of the 

input variables. The inputs to each OR gate are selected as the appropriate minterm 

outputs according to the list of minterms of each function. This process is shown in 

the next example.

EXAMPLE 3-9 Decoder and OR-Gate Implementation of a Binary Adder Bit

In Chapter 1, we considered binary addition. The sum bit output S and the carry bit 

output C for a bit position in the addition are given in terms of the two bits being 

added, X and Y, and the incoming carry from the right, Z, in Table 3-4.

From this truth table, we obtain the functions for the combinational circuit in 

sum-of-minterms form:

 S(X, Y, Z ) = Σm(1, 2, 4, 7)

 C(X, Y, Z ) = Σm(3, 5, 6, 7)

Since there are three inputs and a total of eight minterms, we need a 3–to–8-

line decoder. The implementation is shown in Figure 3-21. The decoder generates all 

eight minterms for inputs X, Y, and Z. The OR gate for output S forms the logical 

sum of minterms 1, 2, 4, and 7. The OR gate for output C forms the logical sum of 

minterms 3, 5, 6, and 7. Minterm 0 is not used. ■

 FIGURE 3-20
Dataflow Verilog Description of 2–to–4-Line Decoder

// 2-to-4-Line Decoder with Enable: Dataflow Verilog Desc. //  1

// (See Example 3-16 for logic diagram) //  2

module decoder_2_to_4_df_v(EN, A0, A1, D0, D1, D2, D3); //  3

 input EN, A0, A1; //  4

 output D0, D1, D2, D3; //  5

 //  6

 assign D0 = EN & ~A1 & ~A0; //  7

 assign D1 = EN & ~A1 & A0; //  8

 assign D2 = EN & A1 & ~A0; //  9

 assign D3 = EN & A1 & A0; // 10

 // 11

endmodule  // 12
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 TABLE 3-4
Truth Table for 1-Bit Binary Adder

X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Z

Y

X

3-to-8-line
Decoder

20

21

22

S

C

0

1
2
3

4

5
6
7

 FIGURE 3-21
Implementing a Binary Adder Using a Decoder

A function with a long list of minterms requires an OR gate with a large 

number of inputs. A function having a list of k minterms can be expressed in its 

complement form with 2n - k minterms. If the number of minterms in a function 

F is greater than F , then the complement of F, F , can be expressed with fewer 

minterms. In such a case, it is advantageous to use a NOR gate instead of an OR 

gate. The OR portion of the NOR gate produces the logical sum of the minterms 

of F. The output bubble of the NOR gate complements this sum and generates the 

normal output F.

The decoder method can be used to implement any combinational circuit. 

However, this implementation must be compared with other possible implemen-

tations to determine the best solution. The decoder method may provide the best 

solution,  particularly if the combinational circuit has many outputs based on the 

same inputs and each output function is expressed with a small number of 

minterms.
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3-6 ENCODING

An encoder is a digital function that performs the inverse operation of a decoder. An 

encoder has 2n (or fewer) input lines and n output lines. The output lines generate 

the binary code corresponding to the input value. An example of an encoder is the 

octal-to-binary encoder whose truth table is given in Table 3-5. This encoder has 

eight inputs, one for each of the octal digits, and three outputs that generate the cor-

responding binary number. It is assumed that only one input has a value of 1 at any 

given time, so that the table has only eight rows with specified output values. For the 

remaining 56 rows, all of the outputs are don’t cares.

From the truth table, we can observe that Ai is 1 for the columns in which Dj is 

1 only if subscript j has a binary representation with a 1 in the ith position. For exam-

ple, output A0 = 1 if the input is 1 or 3 or 5 or 7. Since all of these values are odd, they 

have a 1 in the 0 position of their binary representation. This approach can be used to 

find the truth table. From the table, the encoder can be implemented with n OR 

gates, one for each output variable Ai. Each OR gate combines the input variables 

Dj having a 1 in the rows for which Ai has value 1. For the 8–to–3-line encoder, the 

resulting output equations are

 A0 = D1 + D3 + D5 + D7

 A1 = D2 + D3 + D6 + D7

 A2 = D4 + D5 + D6 + D7

which can be implemented with three 4-input OR gates.

The encoder just defined has the limitation that only one input can be active at 

any given time: if two inputs are active simultaneously, the output produces an incorrect 

combination. For example, if D
3
 and D

6
 are 1 simultaneously, the output of the encoder 

will be 111, because all the three outputs are equal to 1. This represents neither a binary 

3 nor a binary 6. To resolve this ambiguity, some encoder circuits must establish an input 

priority to ensure that only one input is encoded. If we establish a higher priority for 

 TABLE 3-5
Truth Table for Octal-to-Binary Encoder

Inputs Outputs

D7 D6 D5 D4 D3 D2 D1 D0 A 2 A 1 A  0

0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1



154          CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

inputs with higher subscript numbers, and if both D
3
 and D

6
 are 1 at the same time, the 

output will be 110, because D
6
 has higher priority than D

3
. Another ambiguity in the 

octal-to-binary encoder is that an output of all 0s is generated when all the inputs are 0, 

but this output is the same as when D
0
 is equal to 1. This discrepancy can be resolved by 

providing a separate output to indicate that at least one input is equal to 1.

Priority Encoder

A priority encoder is a combinational circuit that implements a priority function. As 

mentioned in the preceding paragraph, the operation of the priority encoder is such 

that if two or more inputs are equal to 1 at the same time, the input having the high-

est priority takes precedence. The truth table for a four-input priority encoder is 

 given in Table 3-6. With the use of Xs, this condensed truth table with just five rows 

represents the same information as the usual 16-row truth table. Whereas Xs in out-

put columns represent don’t-care conditions, Xs in input columns are used to repre-

sent product terms that are not minterms. For example, 001X represents the product 

term D3 D2 D1. Just as with minterms, each variable is complemented if the corre-

sponding bit in the input combination from the table is 0 and is not complemented if 

the bit is 1. If the corresponding bit in the input combination is an X, then the vari-

able does not appear in the product term. Thus, for 001X, the variable D
0
, corre-

sponding to the position of the X, does not appear in D3 D2 D1 .
The number of rows of a full truth table represented by a row in the condensed 

table is 2p, where p is the number of Xs in the row. For example, in Table 3-6, 1XXX 

represents 23 = 8 truth-table rows, all having the same value for all outputs. In form-

ing a condensed truth table, we must include each minterm in at least one of the rows 

in the sense that the minterm can be obtained by filling in 1s and 0s for the Xs. Also, a 

minterm must never be included in more than one row such that the rows in which it 

appears have one or more conflicting output values.

We form Table 3-6 as follows: Input D
3
 has the highest priority; so, regardless of 

the values of the other inputs, when this input is 1, the output for A
1
 A

0
 is 11 (binary 3). 

From this we obtain the last row of the table. D
2
 has the next priority level. The out-

put is 10 if D2 = 1, provided that D3 = 0, regardless of the values of the lower- 

priority inputs. From this, we obtain the fourth row of the table. The output for D
1
 is 

generated only if all inputs with higher priority are 0, and so on down the priority 

levels. From this, we obtain the remaining rows of the table. The valid output desig-

nated by V is set to 1 only when one or more of the inputs are equal to 1. If all inputs 

 TABLE 3-6
Truth Table of Priority Encoder

Inputs Outputs

D 3 D 2 D 1 D 0 A 1 A 0 V

0 0 0 0 X X 0

0 0 0 1 0 0 1
0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1
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are 0, V is equal to 0, and the other two outputs of the circuit are not used and are 

specified as don’t-care conditions in the output part of the table.

The maps for simplifying outputs A
1
 and A

0
 are shown in Figure 3-22. The min-

terms for the two functions are derived from Table 3-6. The output values in the table 

can be transferred directly to the maps by placing them in the squares covered by the 

corresponding product term represented in the table. The optimized equation for 

each function is listed under the map for the function. The equation for output V is 

an OR function of all the input variables. The priority encoder is implemented in 

Figure 3-23 according to the following Boolean functions:

 A0 = D3 + D1D2

 A1 = D2 + D3

 V = D0 + D1 + D2 + D3

Encoder Expansion

Thus far, we have considered only small encoders. Encoders can be expanded to 

larger numbers of inputs by expanding OR gates. In the implementation of 

00
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D3
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1 1 1

1 1
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D
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1 1
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D1D0
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 FIGURE 3-22
Maps for Priority Encoder
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D2

D1

D0

A0

A1

V

 FIGURE 3-23
Logic Diagram of a 4-Input Priority Encoder
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 decoders, the use of multiple-level circuits with OR gates beyond the output lev-

els shared in implementing the more significant bits in the output codes reduces 

the gate input cost as n increases for n Ú 5. For n Ú 3, multiple-level circuits 

 result from technology mapping anyway, due to limited gate fan-in. Designing 

multiple-level circuits with shared gates reduces the cost of the encoders after 

technology mapping.

3-7 SELECTING

Selection of information to be used in a computer is a very important function, not 

only in communicating between the parts of the system, but also within the parts as 

well. Circuits that perform selection typically have a set of inputs from which selec-

tions are made, a single output, and a set of control lines for making the selection. 

First, we consider selection using multiplexers; then we briefly examine selection cir-

cuits implemented by using three-state drivers.

Multiplexers

A multiplexer is a combinational circuit that selects binary information from one 

of many input lines and directs the information to a single output line. The selec-

tion of a particular input line is controlled by a set of input variables, called selec-
tion inputs.

Normally, there are 2n input lines and n selection inputs whose bit combina-

tions determine which input is selected. We begin with n = 1, a 2–to–1-line multi-

plexer. This function has two information inputs, I
0
 and I

1
, and a single select input S. 

The truth table for the circuit is given in Table 3-7. Examining the table, if the select 

input S = 0, the output of the multiplexer takes on the values of I
0
, and, if input 

S = 1, the output of the multiplexer takes on the values of I
1
. Thus, S selects either 

input I
0
 or input I

1
 to appear at output Y. From this discussion, we can see that the 

equation for the 2–to–1-line multiplexer output Y is

Y = SI0 + SI1

 TABLE 3-7
Truth Table for 2–to–1-Line Multiplexer

S I 0 I 1 Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
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This same equation can be obtained by using a 3-variable K-map. As shown in 

Figure 3-24(a), the implementation of the preceding equation can be decomposed 

into a 1–to–2-line decoder, two enabling circuits, and a 2-input OR gate. A common 

symbol for a 2-to-1 multiplexer is shown in Figure 3-24(b), with a trapezoid signify-

ing the selection of the output on the short parallel side from among the 2n informa-

tion inputs on the long parallel side.

Suppose that we wish to design a 4–to–1-line multiplexer. In this case, the 

function Y depends on four inputs I
0
, I

1
, I

2
, and I

3
 and two select inputs S

1
 and S

0
. 

By placing the values of I
0
 through I

3
 in the Y column, we can form Table 3-8, a 

condensed truth table for this multiplexer. In this table, the information variables 

do not appear as input columns of the table but appear in the output column. 

Each row represents multiple rows of the full truth table. In Table 3-8, the row 00 

I
0
 represents all rows in which (S1, S0) = 00. For I0 = 1 it gives Y = 1, and for 

I0 = 0 it gives Y = 0. Since there are six variables, and only S
1
 and S

0
 are fixed, 

this single row represents 16 rows of the corresponding full truth table. From the 

table, we can write the equation for Y as

Y = S1S0 I0 + S1S0 I1 + S1S0 I2 + S1S0 I3

If this equation is implemented directly, two inverters, four 3-input AND gates, 

and a 4-input OR gate are required, giving a gate-input cost of 18. A different imple-

mentation can be obtained by factoring the AND terms to give

Y = (S1S0)I0 + (S1S0)I1 + (S1S0)I2 + (S1S0)I3

 FIGURE 3-24
(a) Single-Bit 2–to–1-Line Multiplexer; (b) common Symbol for a Multiplexer

 TABLE 3-8
Condensed Truth Table for 4-to-1-Line  
Multiplexer

S1 S0 Y

0 0 I 0
0 1 I 1
1 0 I 2
1 1 I 3

Y

Y

S

S

Decoder
Enabling
Circuits I0 0

1I1

I0

I1

(b)(a)
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This implementation can be constructed by combining a 2–to–4-line 

decoder, four AND gates used as enabling circuits, and a 4-input OR gate, as 

shown in Figure 3-25. We will refer to the combination of AND gates and OR 

gates as an m * 2 AND-OR, where m is the number of AND gates and 2 is the 

number of inputs to the AND gates. This resulting circuit has a gate input cost of 

22, which is more costly. Nevertheless, it provides a structural basis for construct-

ing larger n–to–2n-line multiplexers by expansion.

A multiplexer is also called a data selector, since it selects one of many infor-

mation inputs and steers the binary information to the output line. The term “multi-

plexer” is often abbreviated as “MUX.”

Multiplexers can be expanded by considering vectors of input bits for larger 

values of n. Expansion is based upon the circuit structure given in Figure 3-24(a), 

consisting of a decoder, enabling circuits, and an OR gate. Multiplexer design is illus-

trated in Examples 3-10 and 3-11.

EXAMPLE 3-10 64–to–1-Line Multiplexer

A multiplexer is to be designed for n = 6. This will require a 6–to–64-line decoder as 

given in Figure 3-15, and a 64 * 2 AND-OR gate. The resulting structure is shown in 

Figure 3-26. This structure has a gate-input cost of 182 + 128 + 64 = 374.

In contrast, if the decoder and the enabling circuit were replaced by invert-

ers plus 7-input AND gates, the gate-input cost would be 6 + 448 + 64 = 518. For 

single-bit multiplexers such as this one, combining the AND gate generating Di 
with the AND gate driven by Di into a single 3-input AND gate for every i = 0 

through 63 reduces the gate-input cost to 310. For multiple-bit multiplexers, this 

S1
Decoder

S0

I0

I1
Y

I2

I3

 FIGURE 3-25
A Single-Bit 4–to–1-Line Multiplexer
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reduction to 3-input ANDs cannot be performed without replicating the output 

ANDs of the decoders. As a result, in almost all cases, the original structure has a 

lower gate-input cost. The next example illustrates the expansion to a multiple-bit 

multiplexer. ■

EXAMPLE 3-11 4–to–1-Line Quad Multiplexer

A quad 4–to–1-line multiplexer, which has two selection inputs and each informa-

tion input replaced by a vector of four inputs, is to be designed. Since the informa-

tion inputs are a vector, the output Y also becomes a four-element vector. The 

implementation for this multiplexer requires a 2–to–4-line decoder, as given in 

Figure 3-13, and four 4 * 2 AND-OR gates. The resulting structure is shown in 

Figure 3-27. This structure has a gate-input cost of 10 + 32 + 16 = 58. In contrast, 

if four 4-input multiplexers implemented with 3-input gates were placed side by 

side, the gate-input cost would be 76. So, by sharing the decoder, we reduced the 

gate-input cost. 

A5

D63
I63

D0
I0

A4

A3

A2

A1

A0

6-to-64-Line decoder Y

.

.

..
.
.

 FIGURE 3-26
A 64–to–1-Line Multiplexer
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The next several examples illustrate using VHDL and Verilog to describe 

the behavior of multiplexers, providing additional instances of structural and 

dataflow modeling in each language with the language constructs initially intro-

duced in Chapter 2.

EXAMPLE 3-12 VHDL Models for a 4-to-1 Multiplexer

In Figure 3-28 shows a structural description of the 4–to–1-line multiplexer from  

Figure 3-25. This model illustrates two VHDL concepts introduced in Chapter 2: 

std_logic_vector and an alternative approach to mapping ports.

The architecture in Figure 3-29, instead of using Boolean equation-like state-

ments to describe the multiplexer, uses a when-else statement. This statement is a repre-

sentation of the function table given as Table 3-8. When S takes on a particular binary 

value, then a particular input I(i) is assigned to output Y. When the value on S is 00, 

then Y is assigned I (0). Otherwise, the else is invoked so that when the value on S is 

01, then Y is assigned I (1), and so on. In standard logic, each of the bits can take on 9 

different values. So the pair of bits for S can take on 81 possible values, only 4 of which 

have been specified so far. In order to define Y for the remaining 77 values, the final 

2-to-4-Line decoder

I0,0

I3,0

I0,1

I3,1

I0,2

I3,2
I0,3

I3,3
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Y2
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.
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.

 FIGURE 3-27
A Quad 4–to–1-Line Multiplexer ■
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else followed by X (unknown) is given. This assigns the value X to Y if any of these 77 

values occurs on S. However, this output value occurs only in simulation, since Y will 

always take on a 0 or 1 value in an actual circuit.

Figure 3-30 provides an alternative implementation using with-select for the  

4–to–1-line multiplexer. The expression, the value of which is to be used for the deci-

sion, follows with and precedes select. The values for the expression that causes 

the alternative assignments then follow when with each of the assignment-value 

 FIGURE 3-28
Structural VHDL Description of 4–to–1-Line Multiplexer

-- 4-to-1-Line Multiplexer: Structural VHDL Description -- 1

-- (See Figure 3-25 for logic diagram) -- 2

library ieee, lcdf_vhdl; -- 3

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;  -- 4

entity multiplexer_4_to_1_st is  -- 5

 port (S: in std_logic_vector(0 to 1); -- 6

 I: in std_logic_vector(0 to 3); -- 7

 Y: out std_logic); -- 8

end multiplexer_4_to_1_st; -- 9

 --10

architecture structural_2 of multiplexer_4_to_1_st is  --11

 component NOT1 --12

 port(in1: in std_logic; --13

 out1: out std_logic); --14

 end component;  --15

 component AND2 --16

 port(in1, in2: in std_logic; --17

 out1: out std_logic); --18

 end component;  --19

 component OR4 --20

 port(in1, in2, in3, in4: in std_logic; --21

 out1: out std_logic); --22

 end component;  --23

 signal S_n: std_logic_vector(0 to 1); --24

 signal D, N: std_logic_vector(0 to 3); --25

 begin  --26

 g0: NOT1 port map (S(0), S_n(0)); --27

 g1: NOT1 port map (S(1), S_n(1)); --28

 g2: AND2 port map (S_n(1), S_n(0), D(0)); --29

 g3: AND2 port map (S_n(1), S(0), D(1)); --30

 g4: AND2 port map (S(1), S_n(0), D(2)); --31

 g5: AND2 port map (S(1), S(0), D(3)); --32

 g6: AND2 port map (D(0), I(0), N(0)); --33

 g7: AND2 port map (D(1), I(1), N(1)); --34

 g8: AND2 port map (D(2), I(2), N(2)); --35

 g9: AND2 port map (D(3), I(3), N(3)); --36

 g10: OR4 port map (N(0), N(1), N(2), N(3), Y); --37

 end structural_2; --38
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pairs separated by commas. In the example, S is the signal, the value of which deter-

mines the value selected for Y. When S = "00", I(0) is assigned to Y. When S = 

"01", I(1) is assigned to Y and so on. 'X' is assigned to Y when others, where 

others represents the 77 standard logic combinations not already specified.

 FIGURE 3-29
Conditional Dataflow VHDL Description of 4–to–1-Line Multiplexer Using When-Else

-- 4-to-1-Line Mux: Conditional Dataflow VHDL Description --  1

-- Using When-Else (See Table 3-8 for function table) --  2

library ieee; --  3

use ieee.std_logic_1164.all; --  4

entity multiplexer_4_to_1_we is  --  5

 port (S : in std_logic_vector(1 downto 0); --  6

 I : in std_logic_vector(3 downto 0); --  7

 Y : out std_logic); --  8

end multiplexer_4_to_1_we; --  9

 -- 10

architecture function_table of multiplexer_4_to_1_we is  -- 11

begin  -- 12

 Y <= I(0) when S = "00" else  -- 13

 I(1) when S = "01" else  -- 14

 I(2) when S = "10" else  -- 15

 I(3) when S = "11" else  -- 16

 'X'; -- 17

end function_table; -- 18

 FIGURE 3-30
Conditional Dataflow VHDL Description of 4–to–1-Line Multiplexer Using With-Select

--4-to-1-Line Mux: Conditional Dataflow VHDL Description --  1

Using with Select (See Table 3-8 for function table) --  2

library ieee; --  3

use ieee.std_logic_1164.all; --  4 

entity  multiplexer_4_to_1_ws is --  5

 port (S : in std_logic_vector(1 downto 0); --  6

 I : in std_logic_vector(3 downto 0); --  7

 Y : out std_logic); --  8

end multiplexer_4_to_1_ws; --  9

 -- 10

architecture function_table_ws of multiplexer_4_to_1_ws is  -- 11

begin  -- 12

 with S select  -- 13

 Y <= I(0) when "00", -- 14

 I(1) when "01", -- 15

 I(2) when "10", -- 16

 I(3) when "11", -- 17

 'X'when others;  -- 18

end function_table_ws; -- 19
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These last two models provide examples of the difference between when-else 

and with-select that was noted in Chapter 2: when-else permits decisions on multiple 

distinct signals, while with-select can depend on only one signal. For example, for the 

demultiplexer in Figure 3-16, the first when can be conditioned on input EN with the 

subsequent when’s conditioned on input S. In contrast, the with-select can depend on 

only a single Boolean condition (e.g., either EN or S, but not both). Also, as noted 

previously in Chapter 2, for typical synthesis tools, when-else usually results in a 

more complex logical structure, since each of the decisions depends not only on the 

condition currently being evaluated, but also on all prior decisions as well. As a con-

sequence, the structure that is synthesized takes into account this priority order, 

replacing the 4 * 2 AND-OR by a chain of four 2-to-1 multiplexers. In contrast, 

there is no direct dependency between the decisions made in with-select. With-select 

produces a decoder and the 4 * 2 AND-OR gate. ■

EXAMPLE 3-13 Verilog Models for a 4–to–1-Line Multiplexer

In Figure 3-31, the structural description of the 4–to–1-line multiplexer from  Figure 3-25 

illustrates the Verilog concept of a vector that was introduced in Chapter 2. Rather than 

 FIGURE 3-31
Structural Verilog Description of 4–to–1-Line Multiplexer

// 4-to-1-Line Multiplexer: Structural Verilog Description //  1

// (See Figure 3-25 for logic diagram) //  2

module multiplexer_4_to_1_st_v(S, I, Y); //  3

 input [1:0] S; //  4

 input [3:0] I; //  5

 output Y; //  6

 //  7

 wire [1:0] not_S; //  8

 wire [0:3] D, N; //  9

 // 10

not  // 11

 gn0(not_S[0], S[0]), // 12

 gn1(not_S[1], S[1]); // 13

 // 14

and  // 15

 g0(D[0], not_S[1], not_S[0]), // 16

 g1(D[1], not_S[1], S[0]), // 17

 g2(D[2], S[1], not_S[0]), // 18

 g3(D[3], S[1], S[0]); // 19

 g0(N[0], D[0], I[0]), // 20

 g1(N[1], D[1], I[1]), // 21

 g2(N[2], D[2], I[2]), // 22

 g3(N[3], D[3], I[3]); // 23

 // 24

or go(Y, N[0], N[1], N[2], N[3]); // 25

 // 26

endmodule  // 27
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specifying each wire as a single bit, the wires are specified as multiple-bit vectors where 

each individual wire can be accessed using the vector name and the number of the indi-

vidual wire within the vector range.

Figure 3-32 shows a Verilog dataflow model using single Boolean equation 

for Y to describe the multiplexer. This equation is in sum-of-products form with & 

for AND and | for OR. Components of the S and I vectors are used as its 

variables.

The Verilog model in Figure 3-33 resembles the function table given as 

Table 3-8 by using a conditional operator on binary combinations. If the logical 

value within the parentheses is true, then the value before the : is assigned to the 

independent variable, in this case, Y. If the logical value is false, then the value 

after the: is assigned. Suppose we consider condition S == 2'b00, where == is the 

logical equality operator. As introduced in Chapter 2, 2'b00 is Verilog’s represen-

tation of a constant, representing a two-bit binary constant with a value of 00. 

 FIGURE 3-33
Conditional Dataflow Verilog Description of 4–to–1-Line 
Multiplexer Using Combinations

// 4-to-1 Line Multiplexer: Dataflow Verilog Description

// (See Table 3-8 for function table)

module  multiplexer_4_to_1_cf_v(S, I, Y);
 input [1:0] S;
 input [3:0] I;
 output Y;

 assign Y = (S == 2'b00) ? I[0] :

 (S == 2'b01) ? I[1] :

 (S == 2'b10) ? I[2] :

 (S == 2'b11) ? I[3] : 1'bx ;

endmodule

 FIGURE 3-32
Dataflow Verilog Description of 4–to–1-Line Multiplexer Using a Boolean Equation

// 4-to-1-Line Multiplexer: Dataflow Verilog Description

// (See Figure 3-25 for logic diagram)

module multiplexer_4_to_1_df_v(S, I, Y);
 input [1:0] S;
 input [3:0] I;
 output Y;

 assign Y = (~ S[1] & ~ S[0] & I[0])| (~ S[1] & S[0] & I[1])
 | (S[1] & ~ S[0] & I[2]) | (S[1] & S[0] & I[3]);

endmodule
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Thus, the expression has value true if vector S is equal to 00; otherwise, it is false. 

If the expression is true, then I[0] is assigned to Y. If the expression is false, then 

the next expression containing a ? is evaluated, and so on. In this example, for a 

condition to be evaluated, all conditions preceding it must evaluate to false. If 

none of the conditions evaluate to true, then the default value 1'bx (unknown) is 

assigned to Y.

The final form of a Verilog dataflow description for the multiplexer is shown in 

Figure 3-34. It is based on conditional operators used to form a decision tree, which 

corresponds to a factored Boolean expression. In this case, if S[1] is 1, then S[0] is 

evaluated to determine whether Y is assigned I[3] or assigned I[2]. If S[1] is 0, 

then S[0] is evaluated to determine whether Y is assigned I[1] or I[0]. For a regu-

lar structure such as a multiplexer, this approach, based on two-way (binary) deci-

sions, gives a simple dataflow expression. ■

EXAMPLE 3-14  Security System Sensor Selection using Multiplexers

The Problem: A home security system has 15 sensors that detect open doors and win-

dows. Each sensor produces a digital signal 0 when the window or door is closed and 1 

when the window or door is open. The control for the security system is a microcon-

troller with eight digital input/output bits available. Each bit can be  programmed to be 

either an input or an output. Design a logic circuit that  repeatedly checks each of the 

15 sensor values by connecting the sensor output to a microcontroller input/output 

that is programmed to be an input. The parts list for the design consists of the following 

multiplexer parts: 1) a single 8–to–1-line multiplexer, 2) a dual 4–to–1-line multiplexer, 

and 3) a quad 2–to–1-line multiplexer. Any number of each part is available. The design 

is to minimize the number of parts and also minimize the number of microcontroller 

input/outputs used. Microcontroller input/outputs programmed as outputs are to be 

used to control the select inputs on the multiplexers.

The Solution: Some of the sensors can be connected to multiplexer inputs and 

some directly to microcontroller inputs. One possible solution that minimizes the num-

ber of multiplexers is to use two 8–to–1 multiplexers, each connected to a 

 FIGURE 3-34
Conditional Dataflow Verilog Description of 4–to–1-Line 
Multiplexer Using Binary Decisions

// 4-to-1-Line Multiplexer: Dataflow Verilog Description

// (See Table 3-8 for function table)

module multiplexer_4_to_1_tf_v(S, I, Y);
 input [1:0] S;
 input [3:0] I;
 output Y;

 assign Y = S[1] ? (S[0] ? I[3] : I[2]) :
 (S[0] ? I[1] : I[0]);

endmodule
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microcontroller input. The two multiplexers handle 16 sensors and require three micro-

controller outputs as selection inputs. Since there are 15 sensor outputs, the unused 16th 

multiplexer input can be attached to 0. The number of microcontroller input/outputs 

used is 3 + 2 = 5. Use of any of the other multiplexer types will increase the number 

of microcontroller inputs used and decrease the number of microcontroller outputs 

used. The increase in inputs, however, is always greater than the decrease in outputs. So 

the initial solution is best in terms of microcontroller input/outputs used. ■

Multiplexer-Based Combinational Circuits

Earlier in this section, we learned that a decoder combined with an m * 2 AND-OR 

gate implements a multiplexer. The decoder in the multiplexer generates the min-

terms of the selection inputs. The AND-OR gate provides enabling circuits that de-

termine whether the minterms are “attached” to the OR gate with the information 

inputs (Ii) used as the enabling signals. If the Ii input is a 1, then minterm mi is at-

tached to the OR gate, and, if the Ii input is a 0, then minterm mi is replaced by a 0. 

Value fixing applied to the I inputs provides a method for implementing a Boolean 

function of n variables with a multiplexer having n selection inputs and 2n data in-

puts, one for each minterm. Further, an m-output function can be implemented by 

using value fixing on a multiplexer with m-bit information vectors instead of the in-

dividual I bits, as illustrated by the next example.

EXAMPLE 3-15 Multiplexer Implementation of a Binary-Adder Bit

The values for S and C from the 1-bit binary adder truth table given in Table 3-4 

can be generated by using value fixing on the information inputs of a multiplexer. 

Dual
8-to-1
MUX

S2
S1
S0
I0,0
I0,1
I1,0
I1,1
I2,0
I2,1
I3,0 Y0

Y1
I3,1
I4,0
I4,1
I5,0
I5,1
I6,0
I6,1
I7,0
I7,1

S
C

X
Y
Z
0
0
1
0
1
0
0
1
1
0
0
1
0
1
1
1

 FIGURE 3-35
Implementing a 1-Bit Binary Adder with a Dual 8–to–1-Line Multiplexer
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Since there are three selection inputs and a total of eight minterms, we need a 

dual 8–to–1-line multiplexer for implementing the two outputs, S and C. The im-

plementation based on the truth table is shown in Figure 3-35. Each pair of values, 

such as (0, 1) on (I
1,1

,  I
1,0

), is taken directly from the corresponding row of the last 

two truth-table columns. ■

A more efficient method implements a Boolean function of n variables with 

a multiplexer that has only n - 1 selection inputs. The first n - 1 variables of the 

function are connected to the selection inputs of the multiplexer. The remaining 

variable of the function is used for the information inputs. If the final variable is 

Z, each data input of the multiplexer will be either Z, Z, 1 ,  or 0. The function can 

be implemented by attaching implementations of the four rudimentary functions 

from Table 3-1 to the information inputs to the multiplexer. The next example 

demonstrates this procedure.

EXAMPLE 3-16 Alternative Multiplexer Implementation of a Binary 
Adder Bit

This function can be implemented with a dual 4–to–1-line multiplexer, as shown 

in Figure 3-36. The design procedure can be illustrated by considering the sum S. 

The two variables X and Y are applied to the selection lines in that order; X is 

connected to the S
1
 input, and Y is connected to the S

0
 input. The values for the 

data input lines are determined from the truth table of the function. When 

(X, Y) = 00, the output S is equal to Z, because S = 0 when Z = 0 and S = 1 

when Z = 1. This requires that the variable Z be applied to information input I
00

. 

The operation of the multiplexer is such that, when (X, Y) = 0 0 , information in-

put I
00

 has a path to the output that makes S equal to Z. In a similar fashion, we 

can determine the required input to lines I
10

, I
20

, and I
30

 from the value of S when 

(X, Y) = 01, 10, and 11, respectively. A similar approach can be used to determine 

the values for I
01

, I
11

, I
21

, and I
31

. ■

 FIGURE 3-36
Implementing a 1-Bit Binary Adder with a Dual 4–to–1-Line Multiplexer 

S1
S0

I0,0

I0,1

I1,0
I1,1

I2,0
I2,1
I3,0

I3,1

X
Y

Y0

Y1

Z
0
Z
Z

Z
Z
1

Dual
4-to-1
MUX

S
C

Z
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The general procedure for implementing any Boolean function of n variables 

with a multiplexer with n - 1 selection inputs and 2n - 1 data inputs follows from the 

preceding example. The Boolean function is first listed in a truth table. The first 

n - 1 variables in the table are applied to the selection inputs of the multiplexer. For 

each combination of the selection variables, we evaluate the output as a function of 

the last variable. This function can be 0, 1, the variable, or the complement of the 

variable. These values are then applied to the appropriate data inputs. This process is 

illustrated in the next example.

EXAMPLE 3-17 Multiplexer Implementation of 4-Variable Function

As a second example, consider the implementation of the following Boolean function:

F (A, B, C, D) = Σm(1, 3, 4, 11, 12, 13, 14, 15)

This function is implemented with an 8 * 1 multiplexer as shown in Figure 3-37. 

To obtain a correct result, the variables in the truth table are connected to selection 

inputs S
2
, S

1
, and S

0
 in the order in which they appear in the table (i.e., such that A is 

connected to S
2
, B is connected to S

1
, and C is connected to S

0
, respectively). The val-

ues for the data inputs are determined from the truth table. The information line 

number is determined from the binary combination of A, B, and C. For example, 

A

0

0

0

0

0
0

0
0

1
1

1

1

1

1

1

1

B

0

0

0

0

1
1

1
1

0
0

0

0

1

1

1

1

C

0

0

1

1

0
0

1
1

0
0

1

1

0

0

1

1

D

0

1

0

1

0
1

0
1

0
1

0

1

0

1

0

1

F

0

1

0

1

1
0

0
0

0
0

0

1

1

1

1

1

C

B

A

D

0

1

0

1
2

3

4

5

6

7

S0

F

S1

S2

 FIGURE 3-37
Implementing a Four-Input Function with a Multiplexer
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when (A, B, C ) = 1 0 1 , the truth table shows that F = D, so the input variable D is 

applied to information input I
5
. The binary constants 0 and 1 correspond to two fixed 

signal values. Recall from Section 3-6 that, in a logic schematic, these constant values 

are replaced by the ground and power symbols, as shown in Figure 3-7. ■

The next example provides a comparison between implementing a combina-

tional circuit using logic gates, decoders, or multiplexers.

EXAMPLE 3-18  Design of a BCD–to–Seven-Segment Decoder

SPECIFICATION: Digital readouts found in many consumer electronic products such 

as alarm clocks often use light-emitting diodes (LEDs). Each digit of the readout 

is formed from seven LED segments, each of which can be illuminated by a digital 

signal. A BCD–to–seven-segment decoder is a combinational circuit that accepts 

a decimal digit in BCD and generates the appropriate outputs for the segments of 

the display for that decimal digit. The seven outputs of the decoder (a, b, c, d, e, f, g) 

select the corresponding segments in the display, as shown in Figure 3-38(a). The nu-

meric designations chosen to represent the decimal digits are shown in Figure 3-38(b). 

The BCD–to–seven-segment decoder has four inputs, A, B, C, and D, for the BCD 

digit and seven outputs, a through g, for controlling the segments.

FORMULATION:  The truth table of the combinational circuit is listed in Table 3-9. 

On the basis of Figure 3-38(b), each BCD digit illuminates the proper segments 

for the decimal display. For example, BCD 0011 corresponds to decimal 3, which 

is displayed as segments a, b, c, d, and g. The truth table assumes that a logic 1 

signal illuminates the segment and a logic 0 signal turns the segment off. Some 

seven-segment displays operate in reverse fashion and are illuminated by a logic 

0 signal. For these displays, the seven outputs must be complemented. The six bi-

nary combinations 1010 through 1111 have no meaning in BCD. In the previous 

example, we assigned these combinations to don’t-care conditions. If we do the 

same here, the design will most likely produce some arbitrary and meaningless 

displays for the unused combinations. As long as these combinations do not oc-

cur, we can use that approach to reduce the complexity of the converter. A safer 

choice, turning off all the segments when any one of the unused input combina-

tions occurs, avoids any spurious displays if any of the combinations occurs, but 

increases the converter complexity. This choice can be accomplished by assigning 

all 0s to minterms 10 through 15.

(a) Segment designation

a

bf

e cg

d
(b) Numeric designation for display

 FIGURE 3-38
Seven-Segment Display



170          CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

OPTIMIZATION:  For implementing the function using logic gates, the information 

from the truth table can be transferred into seven K-maps, from which the initial 

optimized output functions can be derived. The plotting of the seven functions in 

map form is left as an exercise. One possible way of simplifying the seven functions 

results in the following Boolean functions:

 a = AC + ABD + B C D + AB C

 b = A B + A C D + ACD + AB C

 c = AB + AD + B C D + AB C

 d = ACD + A BC + B C D + AB C + ABCD

 e = ACD + B C D

 f = ABC + A C D + ABD + AB C

 g = ACD + A BC + ABC + AB C

Independent implementation of these seven functions requires 27 AND gates and 7 

OR gates. However, by sharing the six product terms common to the different output 

expressions, the number of AND gates can be reduced to 14 along with a substantial 

savings in gate-input cost. For example, the term B C D occurs in a, c, d, and e. The 

output of the AND gate that implements this product term goes directly to the inputs 

of the OR gates in all four functions. For this function, we stop optimization with the 

two-level circuit and shared AND gates, realizing that it might be possible to reduce 

the gate-input cost even further by applying multiple-level optimization. 

In general, the total number of gates can be reduced in a multiple-output com-

binational circuit by using common terms of the output functions. The maps of the 

 TABLE 3-9
Truth Table for BCD–to–Seven-Segment  
Decoder

BCD Input Seven-Segment Decoder

A B C D a b c d e f g

0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1
All other inputs 0 0 0 0 0 0 0
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output functions may help us find the common terms by finding identical implicants 

from two or more maps. Some of the common terms may not be prime implicants of 

the individual functions. The designer must be inventive and combine squares in the 

maps in such a way as to create common terms. This can be done more formally by 

using a procedure for simplifying multiple-output functions. The prime implicants 

are defined not only for each individual function, but also for all possible combina-

tions of the output functions. These prime implicants are formed by using the AND 

operator on every possible nonempty subset of the output functions and finding the 

prime implicants of each of the results. Using this entire set of prime implicants, we 

can employ a formal selection process to find the optimum two-level multiple-out-

put circuit. Such a procedure is implemented in various forms in logic optimization 

software and is used to obtain the equations.

The circuit can also be implemented using a decoder or multiplexers rather 

than only logic gates. One 4-to-16 decoder along with seven OR gates (one for 

each function for the segments on the display) is all that is required—however, in 

practice, OR gates with more than four inputs are not practical, so more gates 

would be required. In sum-of-minterms form, the inputs to each of the seven OR 

gates would be:

 a(A, B, C, D) = Σm(0, 2, 3, 5, 6, 7, 8, 9)

 b(A, B, C, D) = Σm(0, 1, 2, 3, 4, 7, 8, 9)

 c(A, B, C, D) = Σm(0, 1, 3, 4, 5, 6, 7, 8, 9)

 d(A, B, C, D) = Σm(0 ,2, 3, 5, 6, 8, 9)

 e(A, B, C, D) = Σm(0, 2, 6, 8)

 f(A, B, C, D) = Σm(0, 4, 5, 6, 8, 9)

 g(A, B, C, D) = Σm(2, 3, 4, 5, 6, 8, 9)

For a multiplexer implementation, seven 8-to-1 multiplexers are required, one 

for each function for the segments on the display. Alternatively, a 7-bit wide 8-to-1 

multiplexer could be used. With the select inputs S
2 
connected to A, S

1
 connected to 

B, and S
0
 connected to C, then the data inputs to the seven multiplexers would be as 

shown in Table 3-10. ■

3-8 ITERATIVE COMBINATIONAL CIRCUITS

The remainder of this chapter focuses on functional blocks for arithmetic. The 

arithmetic functional blocks are typically designed to operate on binary input 

vectors and produce binary output vectors. Further, the function implemented of-

ten requires that the same subfunction be applied to each bit position. Thus, a 

functional block can be designed for the subfunction and then used repetitively 

for each bit position of the overall arithmetic block being designed. There will of-

ten be one or more connections to pass values between adjacent bit positions. 

These internal variables are inputs or outputs of the subfunctions, but are not 
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 accessible outside the overall arithmetic block. The subfunction blocks are re-

ferred to as cells and the overall implementation is an array of cells. The cells in 

the array are often, but not always, identical. Due to the repetitive nature of the 

circuit and the association of a vector index with each of the circuit cells, the over-

all functional block is referred to as an iterative array. Iterative arrays, a special 

case of hierarchical circuits, are useful in handling vectors of bits—for example, a 

circuit that adds two 32-bit binary integers. At a minimum, such a circuit has 64 

inputs and 32 outputs. As a consequence, beginning with truth tables and writing 

equations for the entire circuit is out of the question. Since iterative circuits are 

based on repetitive cells, the design process is considerably simplified by a basic 

structure that guides the design.

A block diagram for an iterative circuit that operates on two n-input vectors 

and produces an n-output vector is shown in Figure 3-39. In this case, there are two 

lateral connections between each pair of cells in the array, one from left to right and 

the other from right to left. Also, optional connections, indicated by dashed lines, 

exist at the right and left ends of the array. An arbitrary array employs as many lat-

eral connections as needed for a particular design. The definition of the functions 

associated with such connections is very important in the design of the array and its 

Cell n � 1

An�1 n�1B

n�1

Xn�1

Yn�1

C

Xn

Yn
Cell 1

X1

Y1

A1

C1

Cell 0
X0

Y0

B0

C0

X2

Y2

A0B1

 FIGURE 3-39
Block Diagram of an Iterative Circuit

 TABLE 3-10
Inputs to Multiplexers to Implement Seven-Segment-Display decoder

Select 

Inputs Multiplexer Data Inputs for Each Output Function

S2S1S0 a b c d e f g

000 D 1 1 D D D 0

001 1 1 D 1 D 0 1

010 D D 1 D 0 1 1

011 1 D 1 D D D D
100 1 1 1 1 D 1 1

101 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0
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cell. In particular, the number of connections used and their functions can affect 

both the cost and speed of an iterative circuit.

In the next section, we will define cells for performing addition in individual bit 

positions and then define a binary adder as an iterative array of cells.

3-9 BINARY ADDERS

An arithmetic circuit is a combinational circuit that performs arithmetic operations 

such as addition, subtraction, multiplication, and division with binary numbers or with 

decimal numbers in a binary code. We will develop arithmetic circuits by means of hi-

erarchical, iterative design. We begin at the lowest level by finding a circuit that per-

forms the addition of two binary digits. This simple addition consists of four possible 

elementary operations: 0 + 0 = 0,  0 + 1 = 1,  1 + 0 = 1, and 1 + 1 = 10 The first 

three operations produce a sum requiring a one-bit representation, but when both the 

augend and addend are equal to 1, the binary sum requires two bits. Because of this 

case, the result is always represented by two bits, the carry and the sum. The carry ob-

tained from the addition of two bits is added to the next-higher-order pair of signifi-

cant bits. A combinational circuit that performs the addition of two bits is called a half 
adder. One that performs the addition of three bits (two significant bits and a previous 

carry) is called a full adder. The names of the circuits stem from the fact that two half 

adders can be employed to implement a full adder. The half adder and the full adder 

are basic arithmetic blocks with which other arithmetic circuits are designed.

Half Adder

A half adder is an arithmetic circuit that generates the sum of two binary digits. The 

circuit has two inputs and two outputs. The input variables are the augend and ad-

dend bits to be added, and the output variables produce the sum and carry. We assign 

the symbols X and Y to the two inputs and S (for “sum”) and C (for “carry”) to the 

outputs. The truth table for the half adder is listed in Table 3-11. The C output is 1 only 

when both inputs are 1. The S output represents the least significant bit of the sum. 

The Boolean functions for the two outputs, easily obtained from the truth table, are

S = XY + XY = X ⊕ Y

C = XY

 TABLE 3-11
Truth Table of Half Adder

Inputs Outputs

X Y C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
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The half adder can be implemented with one exclusive-OR gate and one AND 

gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input 

bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted 

by X and Y, represent the two significant bits to be added. The third input, Z, rep-

resents the carry from the previous lower significant position. Two outputs are neces-

sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary 

2 and 3 need two digits for their representation. Again, the two outputs are designat-

ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value 

of the bit of the sum, and the binary variable C gives the output carry. The truth table 

of the full adder is listed in Table 3-12. The values for the outputs are determined 

from the arithmetic sum of the three input bits. When all the input bits are 0, the out-

puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all 

three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are 

equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41. 

The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates. 

However, the map for output S is recognized as an odd function, as discussed in 

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Section 2-6. Furthermore, the C output function can be manipulated to include the 

exclusive-OR of X and Y. The Boolean functions for the full adder in terms of exclu-

sive-OR operations can then be expressed as

 S = (X ⊕ Y) ⊕ Z

 C = XY + Z(X ⊕ Y)

The logic diagram for this multiple-level implementation is shown in Figure 3-42. 

It consists of two half adders and an OR gate.

Binary Ripple Carry Adder

A parallel binary adder is a digital circuit that produces the arithmetic sum of two 

binary numbers using only combinational logic. The parallel adder uses n full adders 

in parallel, with all input bits applied simultaneously to produce the sum.

The full adders are connected in cascade, with the carry output from one full 

adder connected to the carry input of the next full adder. Since a 1 carry may appear 

near the least significant bit of the adder and yet propagate through many full 
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 FIGURE 3-41
Maps for Full Adder
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 FIGURE 3-42
Logic Diagram of Full Adder
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adders to the most significant bit, just as a wave ripples outward from a pebble 

dropped in a pond, the parallel adder is referred to as a ripple carry adder. Figure 

3-43 shows the interconnection of four full-adder blocks to form a 4-bit ripple carry 

adder. The augend bits of A and the addend bits of B are designated by subscripts 

in increasing order from right to left, with subscript 0 denoting the least significant 

bit. The carries are connected in a chain through the full adders. The input carry to 

the parallel adder is C
0
, and the output carry is C

4
. An n-bit ripple carry adder 

requires n full adders, with each output carry connected to the input carry of the 

next-higher-order full adder. For example, consider the two binary numbers 

A = 1011 and B = 0011. Their sum, S = 1110, is formed with a 4-bit ripple carry 

adder as follows:

Input carry 0 1 1 0
Augend A 1 0 1 1
Addend B 0 0 1 1
Sum S 1 1 1 0
Output carry 0 0 1 1

The input carry in the least significant position is 0. Each full adder receives the cor-

responding bits of A and B and the input carry, and generates the sum bit for S and 

the output carry. The output carry in each position is the input carry of the next-high-

er-order position, as indicated by the blue lines.

The 4-bit adder is a typical example of a digital component that can be used as 

a building block. It can be used in many applications involving arithmetic operations. 

Observe that the design of this circuit by the usual method would require a truth 

table with 512 entries, since there are nine inputs to the circuit. By cascading the four 

instances of the known full adders, it is possible to obtain a simple and straightfor-

ward implementation without directly solving this larger problem. This is an exam-

ple of the power of iterative circuits and circuit reuse in design.

B3 A3
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B2 A2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A1
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B0 A0
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 FIGURE 3-43
4-Bit Ripple Carry Adder
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3-10 BINARY SUBTRACTION

In Chapter 1, we briefly examined the subtraction of unsigned binary numbers. 

Although beginning texts cover only signed-number addition and subtraction, to the 

complete exclusion of the unsigned alternative, unsigned-number arithmetic plays an im-

portant role in computation and computer hardware design. It is used in floating-point 

units, in signed-magnitude addition and subtraction algorithms, and in extending the 

precision of fixed-point numbers. For these reasons, we will treat unsigned-number  

addition and subtraction here. We also, however, choose to treat it first so that we can 

clearly justify, in terms of hardware cost, an approach that otherwise appears bizarre and 

often is accepted on faith, namely, the use of complement representations in arithmetic.

In Section 1-3, subtraction is performed by comparing the subtrahend with the 

minuend and subtracting the smaller from the larger. The use of a method containing 

this comparison operation results in inefficient and costly circuitry. As an alternative, 

we can simply subtract the subtrahend from the minuend. Using the same numbers 

as in a subtraction example from Section 1-3, we have

 Borrows into:                   11100

 Minuend:                           10011

 Subtrahend:              -1100110

 Difference:                        10101

 Correct Difference: - 01011

If no borrow occurs into the most significant position, then we know that the 

subtrahend is not larger than the minuend and that the result is positive and correct. 

If a borrow does occur into the most significant position, as indicated in blue, then 

we know that the subtrahend is larger than the minuend. The result must then be 

negative, and so we need to correct its magnitude. We can do this by examining the 

result of the calculation when a borrow occurs:

M - N + 2n

Note that the added 2n represents the value of the borrow into the most signifi-

cant position. Instead of this result, the desired magnitude is N - M. This can be 

obtained by subtracting the preceding formula from 2n:

2n - (M - N + 2n) = N - M

In the previous example, 100000 - 10101 = 01011, which is the correct magnitude.

In general, the subtraction of two n-digit numbers, M - N, in base 2 can be 

done as follows:

1. Subtract the subtrahend N from the minuend M.

2. If no end borrow occurs, then M Ú N, and the result is nonnegative and correct.

3. If an end borrow occurs, then N 7 M, and the difference, M - N + 2n, is  

subtracted from 2n, and a minus sign is appended to the result.
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Subtraction of a binary number from 2n to obtain an n-digit result is called tak-

ing the 2s complement of the number. So in step 3, we are taking the 2s complement 

of the difference M - N + 2n. Use of the 2s complement in subtraction is illustrated 

by the following example.

EXAMPLE 3-19 Unsigned Binary Subtraction by 2s Complement Subtract

Perform the binary subtraction 01100100 - 10010110. We have

Borrows into:            10011110

Minuend:                   01100100

Subtrahend:          -10010110

Initial Result:            11001110

The end borrow of 1 implies correction:

28                                                      100000000

-Initial Result :        -11001110

 Final Result:          -  00110010 ■

To perform subtraction using this method requires a subtractor for the initial sub-

traction. In addition, when necessary, either the subtractor must be used a second time 

to perform the correction, or a separate 2s complementer circuit must be provided. So, 

thus far, we require a subtractor, an adder, and possibly a 2s complementer to perform 

both addition and subtraction. The block diagram for a 4-bit adder–subtractor using 

these functional blocks is shown in Figure 3-44. The inputs are applied to both the adder 

and the subtractor, so both operations are performed in parallel. If an end borrow value 

of 1 occurs in the subtraction, then the selective 2s complementer receives a value of 1 

on its complement input. This circuit then takes the 2s complement of the output of the 

subtractor. If the end borrow has value of 0, the selective 2s complementer passes the 

output of the subtractor through unchanged. If subtraction is the operation, then a 1 is 

applied to S of the multiplexer that selects the output of the complementer. If addition 

is the operation, then a 0 is applied to S, thereby selecting the output of the adder.

As we will see, this circuit is more complex than necessary. To reduce the amount 

of hardware, we would like to share logic between the adder and the subtractor. This 

can also be done using the notion of the complement. So before considering the com-

bined adder–subtractor further, we will take a more careful look at complements.

Complements

There are two types of complements for each base-r system: the radix complement, 
which we saw earlier for base 2, and the diminished radix complement. The first is 

referred to as the r’s complement and the second as the (r - 1)   ’s complement. When 

the value of the base r is substituted in the names, the two types are referred to as the 
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2s and 1s complements for binary numbers and the 10s and 9s complements for  

decimal numbers, respectively. Since our interest for the present is in binary numbers 

and operations, we will deal with only 1s and 2s complements.

Given a number N in binary having n digits, the 1s complement of N is defined as 

(2n - 1) - N. 2n is represented by a binary number that consists of a 1 followed by n 

0s. 2n - 1 is a binary number represented by n 1s. For example, if n = 4, we have 

24 = (10000)2 and 24 - 1 = (1111)2. Thus, the 1s complement of a binary number is 

obtained by subtracting each digit from 1. When subtracting binary digits from 1, we can 

have either 1 - 0 = 1 or 1 - 1 = 0, which causes the original bit to change from 0 to 

1 or from 1 to 0, respectively. Therefore, the 1s complement of a binary number is 

formed by changing all 1s to 0s and all 0s to 1s—that is, applying the NOT or comple-

ment operation to each of the bits. Following are two numerical examples:

The 1s complement of 1011001 is 0100110.

The 1s complement of 0001111 is 1110000.

In similar fashion, the 9s complement of a decimal number, the 7s complement 

of an octal number, and the 15s complement of a hexadecimal number are obtained 

by subtracting each digit from 9, 7, and F (decimal 15), respectively.

Given an n-digit number N in binary, the 2s complement of N is defined as 

2n - N for N ≠  0 and 0 for N = 0. The reason for the special case of N = 0 is that 

the result must have n bits, and subtraction of 0 from 2n gives an (n + 1)-bit result, 

100 . . . 0. This special case is achieved by using only an n-bit subtractor or otherwise 

dropping the 1 in the extra position. Comparing with the 1s complement, we note 

that the 2s complement can be obtained by adding 1 to the 1s complement, since  

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

 FIGURE 3-44
Block Diagram of Binary Adder–Subtractor
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2n -  N = {[(2n - 1) -  N] +  1}. For example, the 2s complement of binary 101100 is 

010011 + 1 = 010100 and is obtained by adding 1 to the 1s complement value. 

Again, for N = 0, the result of this addition is 0, achieved by ignoring the carry out 

of the most significant position of the addition. These concepts hold for other bases 

as well. As we will see later, they are very useful in simplifying 2s complement and 

subtraction hardware.

Also, the 2s complement can be formed by leaving all least significant 0s and 

the first 1 unchanged and then replacing 1s with 0s and 0s with 1s in all other higher 

significant bits. Thus, the 2s complement of 1101100 is 0010100 and is obtained by 

leaving the two low-order 0s and the first 1 unchanged and then replacing 1s with 0s 

and 0s with 1s in the other four most significant bits. In other bases, the first nonzero 

digit is subtracted from the base r, and the remaining digits to the left are replaced 

with r - 1 minus their values.

It is also worth mentioning that the complement of the complement restores 

the number to its original value. To see this, note that the 2s complement of N is 

2n - N, and the complement of the complement is 2n - (2n - N) = N, giving back 

the original number.

Subtraction Using 2s Complement

Earlier, we expressed a desire to simplify hardware by sharing adder and subtrac-

tor logic. Armed with complements, we are prepared to define a binary subtrac-

tion procedure that uses addition and the corresponding complement logic. The 

subtraction of two n-digit unsigned numbers, M - N, in binary can be done as 

follows:

1. Add the 2s complement of the subtrahend N to the minuend M. This performs 

M + (2n - N) = M - N + 2n.

2. If M Ú  N, the sum produces an end carry, 2n. Discard the end carry, leaving 

result M - N.

3. If M 6 N, the sum does not produce an end carry, since it is equal  

to 2n - (N - M), the 2s complement of N - M. Perform a correction, taking 

the 2s complement of the sum and placing a minus sign in front to obtain the 

result -  (N - M).

The examples that follow further illustrate the foregoing procedure. Note that, 

although we are dealing with unsigned numbers, there is no way to get an unsigned 

result for the case in step 3. When working with paper and pencil, we recognize, by 

the absence of the end carry, that the answer must be changed to a negative number. 

If the minus sign for the result is to be preserved, it must be stored separately from 

the corrected n-bit result.

EXAMPLE 3-20 Unsigned Binary Subtraction by 2s Complement Addition

Given the two binary numbers X = 1010100 and Y =  1000011, perform the sub-

traction X - Y and Y - X using 2s complement operations. We have
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           X =   1010100

  2s complement of Y =         0111101

       Sum =   10010001

 Discard end carry 27 =   -  10000000

  Answer: X -  Y =   0010001

         Y =   1000011

2s complement of X =             0101100

       Sum  =   1101111

There is no end carry.

Answer: Y - X =  - (2s complement of 1101111) = -  0010001. ■

While subtraction of unsigned numbers also can be done by means of the 1s 

complement, it is little used in modern designs, so will not be covered here.

3-11 BINARY ADDER-SUBTRACTORS

Using the 2s complement, we have eliminated the subtraction operation and need 

only the complementer and an adder. When performing a subtraction we comple-

ment the subtrahend N, and when performing an addition we do not complement N. 

These operations can be accomplished by using a selective complementer and adder 

interconnected to form an adder–subtractor. We have used 2s complement, since it is 

most prevalent in modern systems. The 2s complement can be obtained by taking the 

1s complement and adding 1 to the least significant bit. The 1s complement can be 

implemented easily with inverter circuits, and we can add 1 to the sum by making the 

input carry of the parallel adder equal to 1. Thus, by using 1s complement and an un-

used adder input, the 2s complement is obtained inexpensively. In 2s complement 

subtraction, as a correction step after adding, we complement the result and append 

a minus sign if an end carry does not occur. The correction operation is performed by 

using either the adder–subtractor a second time with M = 0 or a selective comple-

menter as in Figure 3-44.

The circuit for subtracting A - B consists of a parallel adder as shown in 

Figure 3-43, with inverters placed between each B terminal and the corresponding 

full-adder input. The input carry C
0
 must be equal to 1. The operation that is per-

formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the 2s 

complement of B. For unsigned numbers, it gives A - B if A Ú B or the 2s comple-

ment of B - A if A 6 B.

The addition and subtraction operations can be combined into one circuit with 

one common binary adder. This is done by including an exclusive-OR gate with each 
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full adder. A 4-bit adder–subtractor circuit is shown in Figure 3-45. Input S controls 

the operation. When S = 0 the circuit is an adder, and when S = 1 the circuit 

becomes a subtractor. Each exclusive-OR gate receives input S and one of the inputs 

of B, Bi. When S = 0, we have Bi ⊕ 0. If the full adders receive the value of B, and 

the input carry is 0, the circuit performs A plus B. When S = 1, we have Bi ⊕ 1 = Bi 

and C0 = 1. In this case, the circuit performs the operation A plus the 2s comple-

ment of B.

Signed Binary Numbers

In the previous section, we dealt with the addition and subtraction of unsigned num-

bers. We will now extend this approach to signed numbers, including a further use of 

complements that eliminates the correction step.

Positive integers and the number zero can be represented as unsigned num-

bers. To represent negative integers, we need a notation for negative values. In ordi-

nary arithmetic, a negative number is indicated by a minus sign and a positive 

number by a plus sign. Because of hardware limitations, computers must represent 

everything with 1s and 0s, including the sign of a number. As a consequence, it is cus-

tomary to represent the sign with a bit placed in the most significant position of an 

n-bit number. The convention is to make the sign bit 0 for positive numbers and 1 for 

negative numbers.

It is important to realize that both signed and unsigned binary numbers consist 

of a string of bits when represented in a computer. The user determines whether the 

number is signed or unsigned. If the binary number is signed, then the leftmost bit 

represents the sign and the rest of the bits represent the number. If the binary num-

ber is assumed to be unsigned, then the leftmost bit is the most significant bit of the 

number. For example, the string of bits 01001 can be considered as 9 (unsigned 

binary) or +  9 (signed binary), because the leftmost bit is 0. Similarly, the string of 

bits 11001 represents the binary equivalent of 25 when considered as an unsigned 
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 FIGURE 3-45
Adder-Subtractor Circuit
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number or -9 when considered as a signed number. The latter is because the 1 in the 

leftmost position designates a minus sign and the remaining four bits represent 

binary 9. Usually, there is no confusion in identifying the bits because the type of 

number representation is known in advance. The representation of signed numbers 

just discussed is referred to as the signed-magnitude system. In this system, the num-

ber consists of a magnitude and a symbol (+   or  -) or a bit (0 or 1) indicating the 

sign. This is the representation of signed numbers used in ordinary arithmetic.

In implementing signed-magnitude addition and subtraction for n-bit num-

bers, the single sign bit in the leftmost position and the n - 1 magnitude bits are 

processed separately. The magnitude bits are processed as unsigned binary numbers. 

Thus, subtraction involves the correction step. To avoid this step, we use a different 

system for representing negative numbers, referred to as a signed-complement  
system. In this system, a negative number is represented by its complement. While 

the signed-magnitude system negates a number by changing its sign, the signed- 

complement system negates a number by taking its complement. Since positive 

numbers always start with 0 (representing a plus sign) in the leftmost position, their 

complements will always start with a 1, indicating a negative number. The 

signed-complement system can use either the 1s or the 2s complement, but the latter 

is the most common. As an example, consider the number 9, represented in binary 

with eight bits. +9 is represented with a sign bit of 0 in the leftmost position, followed 

by the binary equivalent of 9, to give 00001001. Note that all eight bits must have a 

value, and therefore, 0s are inserted between the sign bit and the first 1. Although 

there is only one way to represent +9, we have two different ways to represent -9 

using eight bits:

In signed-magnitude representation: 10001001

In signed 2s complement representation: 11110111

In signed magnitude, -9 is obtained from +9 by changing the sign bit in the 

leftmost position from 0 to 1. The signed 2s complement representation of -9 is 

obtained by taking the 2s complement of the positive number, including the 0 sign 

bit.

Table 3-13 lists all possible 4-bit signed binary numbers in two representations. 

The equivalent decimal number is also shown. Note that the positive numbers in 

both representations are identical and have 0 in the leftmost position. The signed 2s 

complement system has only one representation for 0, which is always positive. The 

signed-magnitude system has a positive 0 and a negative 0, which is something not 

encountered in ordinary arithmetic. Note that both negative numbers have a 1 in the 

leftmost bit position; this is the way we distinguish them from positive numbers. With 

four bits, we can represent 16 binary numbers. In the signed-magnitude representa-

tion, there are seven positive numbers and seven negative numbers, and two signed 

zeros. In the 2s complement representation, there are seven positive numbers, one 

zero, and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward 

when employed in computer arithmetic due to the separate handling of the sign and 

the correction step required for subtraction. Therefore, the signed complement is 

normally used. The following discussion of signed binary arithmetic deals exclusively 
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with the signed 2s complement representation of negative numbers, because it pre-

vails in actual use.

Signed Binary Addition and Subtraction

The addition of two numbers, M + N, in the signed-magnitude system follows the 

rules of ordinary arithmetic: If the signs are the same, we add the two magnitudes 

and give the sum the sign of M. If the signs are different, we subtract the magnitude 

of N from the magnitude of M. The absence or presence of an end borrow then de-

termines the sign of the result, based on the sign of M, and determines whether or 

not a 2s complement correction is performed. For example, since the signs are differ-

ent, (0 0011001) + (1 0100101) causes 0100101 to be subtracted from 0011001. The 

result is 1110100, and an end borrow of 1 occurs. The end borrow indicates that the 

magnitude of M is smaller than that of N. So the sign of the result is opposite to that 

of M and is therefore a minus. The end borrow indicates that the magnitude of the 

result, 1110100, must be corrected by taking its 2s complement. Combining the sign 

and the corrected magnitude of the result, we obtain 1 0001100.

In contrast to this signed-magnitude case, the rule for adding numbers in the 

signed 2s complement system does not require comparison or subtraction, but only 

addition. The procedure is simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers repre-

sented in signed 2s complement form is obtained from the addition of the 

two numbers, including their sign bits. A carry out of the sign bit position is 

discarded.

 TABLE 3-13
Signed Binary Numbers

Decimal Signed 2s Complement Signed Magnitude

+ 7 0111 0111

+ 6 0110 0110

+ 5 0101 0101

+ 4 0100 0100

+ 3 0011 0011

+ 2 0010 0010

+ 1 0001 0001

+ 0 0000 0000

- 0 — 1000

- 1 1111 1001

- 2 1110 1010

- 3 1101 1011

- 4 1100 1100

- 5 1011 1101

- 6 1010 1110

- 7 1001 1111

- 8 1000 —
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Numerical examples of signed binary addition are given in Example 3-21. Note 

that negative numbers will already be in 2s complement form and that the sum 

obtained after the addition, if negative, is left in that same form.

EXAMPLE 3-21 Signed Binary Addition Using 2s Complement

   +  6       00000110             -  6      11111010     +  6    00000110     -  6    11111010    

 +13      00001101    +13      00001101    -13     11110011  -13      11110011

 +  19      00010011       +7       00000111      -7    11111001  -19     11101101

In each of the four cases, the operation performed is addition, including the sign bits. 

Any carry out of the sign bit position is discarded, and negative results are automati-

cally in 2s complement form. ■

The complement form for representing negative numbers is unfamiliar to peo-

ple accustomed to the signed-magnitude system. To determine the value of a nega-

tive number in signed 2s complement, it is necessary to convert the number to a 

positive number in order to put it in a more familiar form. For example, the signed 

binary number 11111001 is negative, because the leftmost bit is 1. Its 2s complement 

is 00000111, which is the binary equivalent of +7. We therefore recognize the origi-

nal number to be equal to -7.

The subtraction of two signed binary numbers when negative numbers are in 

2s complement form is very simple and can be stated as follows:

Take the 2s complement of the subtrahend (including the sign bit) and add it 

to the minuend (including the sign bit). A carry out of the sign bit position is 

discarded.

This procedure stems from the fact that a subtraction operation can be changed 

to an addition operation if the sign of the subtrahend is changed. That is,

 (±A) - (+B) = (±A) + (-B)

 (±A) - (-B) = (±A) + (+B)

But changing a positive number to a negative number is easily done by taking 

its 2s complement. The reverse is also true, because the complement of a negative 

number that is already in complement form produces the corresponding positive 

number. Numerical examples are shown in Example 3-22.

EXAMPLE 3-22 Signed Binary Subtraction Using 2s Complement

 6 11111010 11111010  6 00000110  00000110
 ( 13)  11110011  00001101  (–13)   11110011  00001101

 7 00000111  19 00010011

The end carry is discarded. ■
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It is worth noting that binary numbers in the signed-complement system are 

added and subtracted by the same basic addition and subtraction rules as are 

unsigned numbers. Therefore, computers need only one common hardware circuit to 

handle both types of arithmetic. The user or programmer must interpret the results 

of such addition or subtraction differently, depending on whether it is assumed that 

the numbers are signed or unsigned. Thus, the same adder–subtractor designed for 

unsigned numbers can be used for signed numbers. If the signed numbers are in 2s 

complement representation, then the circuit in Figure 3-45 can be used.

EXAMPLE 3-23  Electronic Scale Feature

Often goods or materials must be placed in a container to be weighed. These three 

definitions apply to the use of a container in weighing:

Gross Weight—Weight of the container plus its contents.

Tare Weight—Weight of the empty container.

Net Weight—Weight of the contents only.

The Problem: For a particular electronic scale, a feature that permits the net 

weight to be displayed is activated by the following sequence of actions:

1) Place the empty container on the scale.

2) Press the TARE button to indicate that the current weight is the weight of the 

empty container.

3) Add the contents to be weighed to the container (measure the gross weight).

4) Read the net weight from the scale indicator.

Assuming that the container weight (tare weight) is stored by the scale,

(a) What arithmetic logic is required?

(b) How many bits are required for the operands, assuming the gross weight 

capacity of the scale is 2200 grams with one gram as the smallest unit?

The Solution: (a) The scale is measuring the gross weight. The displayed result 

is the net weight. So a subtractor is needed to form:

Net Weight =  Gross Weight -  (stored) Tare Weight

Since the container plus its contents always weighs at least as much as the con-

tainer only, for this application the result must always be nonnegative. If, on the 

other hand, the user makes use of this feature to find the differences in the weight of 

two objects, then a negative result is possible. In the design of the actual scale, this 

negative result is properly taken into account in the display logic.

(b) Assuming that the weights and the subtraction are in binary, 12 bits are 

required to represent 2200 grams. If the weights and the subtraction are represented 

in BCD, then 2 + 3 * 4 = 1 4  bits are required. ■

To obtain a correct answer when adding and subtracting, we must ensure that the 

result has a sufficient number of bits to accommodate the sum. If we start with 
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two n-bit numbers, and the sum occupies n + 1  bits, we say that an overflow 

 occurs. This is true for binary or decimal numbers, whether signed or unsigned. 

When one performs addition with paper and pencil, an overflow is not a problem, 

since we are not limited by the width of the page. We just add another 0 to a posi-

tive number and another 1 to a negative number, in the most significant position, 

to extend them to n + 1  bits and then perform the addition. Overflow is a prob-

lem in computers because the number of bits that hold a number is fixed, and a 

result that exceeds the number of bits cannot be accommodated. For this reason, 

computers detect and can signal the occurrence of an overflow. The overflow 

 condition may be handled automatically by interrupting the execution of the pro-

gram and taking special action. An alternative is to monitor for overflow condi-

tions using software.

The detection of an overflow after the addition of two binary numbers depends 

on whether the numbers are considered to be signed or unsigned. When two 

unsigned numbers are added, an overflow is detected from the end carry out of the 

most significant position. In unsigned subtraction, the magnitude of the result is 

always equal to or smaller than the larger of the original numbers, making overflow 

impossible. In the case of signed 2s complement numbers, the most significant bit 

always represents the sign. When two signed numbers are added, the sign bit is 

treated as a part of the number, and an end carry of 1 does not necessarily indicate 

an overflow.

With signed numbers, an overflow cannot occur for an addition if one number 

is positive and the other is negative: Adding a positive number to a negative number 

produces a result whose magnitude is equal to or smaller than the larger of the origi-

nal numbers. An overflow may occur if the two numbers added are both positive or 

both negative. To see how this can happen, consider the following 2s complement 

example: Two signed numbers, +70 and +80, are stored in two 8-bit registers. The 

range of binary numbers, expressed in decimal, that each register can accommodate 

is from +127 to -128. Since the sum of the two stored numbers is +150, it exceeds 

the capacity of an 8-bit register. This is also true for -70 and -80. These two addi-

tions, together with the two most significant carry bit values, are as follows:

Carries: 01 Carries: 10

 

+70 01000110 -70 10111010

    +80 01010000     -80 10110000

+150 10010110 -150 01101010

Note that the 8-bit result that should have been positive has a negative sign bit and 

that the 8-bit result that should have been negative has a positive sign bit. If, how-

ever, the carry out of the sign bit position is taken as the sign bit of the result, then 

the 9-bit answer so obtained will be correct. But since there is no position in the 

result for the ninth bit, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit 

position and the carry out of the sign bit position. If these two carries are not equal, 

an overflow has occurred. This is indicated in the 2s complement example just com-

pleted, where the two carries are explicitly shown. If the two carries are applied to an 
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exclusive-OR gate, an overflow is detected when the output of the gate is equal to 1. 

For this method to work correctly for 2s complement, it is necessary either to apply 

the 1s complement of the subtrahend to the adder and add 1 or to have overflow 

detection on the circuit that forms the 2s complement as well as on the adder. This 

condition is due to overflow when complementing the maximum negative number.

Simple logic that provides overflow detection is shown in Figure 3-46. If the 

numbers are considered unsigned, then the C output being equal to 1 detects a carry 

(an overflow) for an addition and indicates that no correction step is required for a 

subtraction. C being equal to 0 detects no carry (no overflow) for an addition and 

indicates that a correction step is required for a subtraction.

If the numbers are considered signed, then the output V is used to detect an 

overflow. If V = 0 after a signed addition or subtraction, it indicates that no over-

flow has occurred and the result is correct. If V = 1, then the result of the operation 

contains n + 1 bits, but only the rightmost n of those bits fit in the n-bit result, so an 

overflow has occurred. The (n + 1)th bit is the actual sign, but it cannot occupy the 

sign bit position in the result.

MULTIPLIERS AND DIVIDERS A supplement that discusses the design of multipliers and 

dividers is available on the Companion Website for the text.

HDL Models of Adders

Thus far, all of the HDL descriptions used have contained only a single entity (VHDL) 

or module (Verilog). Descriptions that represent circuits using hierarchies have multi-

ple entities, one for each distinct element of the hierarchy, as shown in the next example.

EXAMPLE 3-24 Hierarchical VHDL for a 4-Bit Ripple Carry Adder

The example in Figures 3-47 and 3-48 uses three entities to build a hierarchical de-

scription of a 4-bit ripple carry adder. The style used for the architectures will be a 

mix of structural and dataflow description. The three entities are a half adder, a full 

adder that uses half adders, and the 4-bit adder itself. The architecture of half_ 

adder consists of two dataflow assignments, one for s and one for c. The architecture 

of full_adder uses half_adder as a component. In addition, three internal signals, 

 FIGURE 3-46
Overflow Detection Logic for Addition and 
Subtraction

Cn

Cn�1

C

V

n-bit Adder/Subtractor
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 FIGURE 3-47
Hierarchical Structural/Dataflow Description of 4-Bit Full Adder

-- 4-bit Adder: Hierarchical Dataflow/Structural

-- (See Figures 3-42 and 3-43 for logic diagrams)

library ieee;
use ieee.std_logic_1164.all;
entity half_adder is 
 port (x, y : in std_logic;
 s, c : out std_logic);
end half_adder;

architecture dataflow_3 of half_adder is 
 begin 
 s <= x xor y;
 c <= x and y;
end dataflow_3;

library ieee;
use ieee.std_logic_1164.all;
entity full_adder is 
 port (x, y, z : in std_logic;
 s, c : out std_logic);
end full_adder;

architecture struc_dataflow_3 of full_adder is 
 component half_adder
 port (x, y : in std_logic;
 s, c : out std_logic);
 end component;
 signal hs, hc, tc: std_logic;
 begin 
 HA1: half_adder

       port map  (x, y, hs, hc);
 HA2: half_adder

       port map (hs, z, s, tc);
 c <= tc or hc;
end struc_dataflow_3;

library ieee;
use ieee.std_logic_1164.all;
entity adder_4 is
 port(B, A : in std_logic_vector(3 downto 0);
 C0 : in std_logic;
 S : out std_logic_vector(3 downto 0);
 C4: out std_logic);
end adder_4;
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hs, hc, and tc, are declared. These signals are applied to two half adders and are also 

used in one dataflow assignment to construct the full adder in Figure 3-42. In the 

adder_4 entity, four full-adder components are simply connected together using the 

signals given in Figure 3-43.

Note that C0 and C4 are an input and an output, respectively, but C(0) through 

C(4) are internal signals (i.e., neither inputs nor outputs). C(0) is assigned C0 and C4 

is assigned C(4). The use of C(0) and C(4) separately from C0 and C4 is not essential 

here, but is useful to illustrate a VHDL constraint. Suppose we wanted to add over-

flow detection to the adder as shown in Figure 3-46. If C(4) is not defined separately, 

then one might attempt to write

v 6 = C(3)  xor  C4

In VHDL, this is incorrect. An output cannot be used as an internal signal. Thus, it 

is necessary to define an internal signal to use in place of C4 (e.g., C(4)) giving

 v 6 = C(3)  xor  C(4) ■

Behavioral Description

The 4-bit adder provides an opportunity to illustrate description of circuits at levels 

higher than the logic level. Such levels of description are referred to as the behavior-

al level or the register transfer level. We will specifically study register transfers in 

Chapter 6. Without studying register transfers, however, we can still show a behav-

ioral-level description.

 FIGURE 3-48
Hierarchical Structural/Dataflow Description of 4-Bit Full 
Adder (continued)

architecture structural_4 of adder_4 is 
 component full_adder
 port(x, y, z : in std_logic;
 s, c: out std_logic);
 end component;
 signal C: std_logic_vector (4 downto 0);
 begin 
 Bit0: full_adder

      port map (B(0), A(0), C(0), S(0), C(1));
 Bit1: full_adder

      port map (B(1), A(1), C(1), S(1), C(2));
 Bit2: full_adder

      port map (B(2), A(2), C(2), S(2), C(3));
 Bit3: full_adder

      port map (B(3), A(3), C(3), S(3), C(4));
 C(0) <= C0;

 C4 <= C(4);

end structural 4;
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EXAMPLE 3-25 Behavioral VHDL for a 4-Bit Ripple Carry Adder

A behavioral description for the 4-bit adder is given in Figure 3-49. In the architec-

ture of the entity adder_4_b, the addition logic is described by a single statement 

using +  and &. The +  represents addition and the & represents an operation 

called concatenation. A concatenation operator combines two signals into a single 

signal having its number of bits equal to the sum of the number of bits in the original 

signals. In the example, '0' & A represents the signal vector

'0'A(3)A(2)A(1)A(0)

with 1 + 4 = 5 signals. Note that '0', which appears on the left in the concatena-

tion expression, appears on the left in the signal listing. The inputs to the addition are 

all converted to 5-bit quantities for consistency, since the output including C4 is five 

bits. This conversion is not essential, but is a safe approach.

Since +  cannot be performed on the std_logic type, we need an addi-

tional package to define addition for the std_logic type. In this case, we are 

using std_logic_arith, a package present in the ieee library. Further, we wish 

to specifically define the addition to be unsigned, so we use the unsigned exten-

sion. Also, concatenation in VHDL cannot be used on the left side of an assign-

ment statement. To obtain C4 and S as the result of the addition, a 5-bit signal sum 

is declared. The signal sum is assigned the result of the addition including the 

carry out. Following are two additional assignment statements which split sum 

into outputs C4 and S. 

 FIGURE 3-49
Behavioral Description of 4-Bit Adder ■

-- 4-bit Adder: Behavioral Description

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adder_4_b is 
 port(B, A : in std_logic_vector(3 downto 0);
 C0 : in std_logic;
 S : out std_logic_vector(3 downto 0);
 C4: out std_logic);
end adder_4_b;

architecture behavioral of adder_4_b is 
signal sum: std_logic_vector (4 downto 0);
begin 
 sum <= ('0' & A) + ('0' & B) + ("0000" & C0);

 C4 <= sum(4);

 S <= sum(3 downto 0);
end behavioral;
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EXAMPLE 3-26 Hierarchical Verilog for a 4-Bit Ripple Carry Adder

The description in Figure 3-50 uses three modules to represent a hierarchical design 

for a 4-bit ripple carry adder. The style used for the modules will be a mix of  structural 

and dataflow description. The three modules are a half adder, a full adder built 

around half adders, and the 4-bit adder itself.

The half_adder module consists of two dataflow assignments, one for s and 

one for c. The full_adder module uses the half_adder as a component as in 

Figure 3-42. In the full_adder, three internal wires, hs, hc, and tc, are declared. 

Inputs, outputs, and these wire names are applied to the two half adders, and tc 

and hc are ORed to form carry c. Note that the same names can be used on 

 FIGURE 3-50
Hierarchical Dataflow/Structural Verilog Description of 4-Bit Adder

// 4-bit Adder: Hierarchical Dataflow/Structural

// (See Figures 3-42 and 3–43 for logic diagrams)

module half_adder_v(x, y, s, c);
 input x, y;
 output s, c;

 assign s = x ^ y;
 assign c = x & y;

endmodule 

module full_adder_v(x, y, z, s, c);
 input x, y, z;
 output s, c;

 wire hs, hc, tc;

 half_adder_v HA1(x, y, hs, hc),

 HA2(hs, z, s, tc);

 assign c = tc | hc;

endmodule 

module adder_4_v(B, A, C0, S, C4);
 input [3:0] B, A;
 input C0;
 output [3:0] S;
 output C4;

 wire [3:1] C;

 full_adder_v Bit0(B[0], A[0], C0, S[0], C[1]),

 Bit1(B[1], A[1], C[1], S[1], C[2]),

 Bit2(B[2], A[2], C[2], S[2], C[3]),

 Bit3(B[3], A[3], C[3], S[3], C4);

endmodule
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different modules (e.g., x, y, s, and c are used in both the half_adder and 

full_adder).

In the adder_4 module, four full adders are simply connected together using 

the signals given in Figure 3-43. Note that C0 and C4 are an input and an output, 

respectively, but C(3) through C(1) are internal signals (i.e., neither inputs nor 

 outputs). ■

EXAMPLE 3-27 Behavioral Verilog for a 4-Bit Ripple Carry Adder

Figure 3-51 shows the Verilog description for the 4-bit adder. In module ad-

der_4_b_v, the addition logic is described by a single statement using +  and {}. 

The +   represents addition and the {} represents an operation called concatenation. 

The operation +  performed on wire data types is unsigned. Concatenation com-

bines two  signals into a single signal having its number of bits equal to the sum of the 

 number of bits in the original signals. In the example, {C4,S} represents the signal 

vector

C4 S[3] S[2] S[1] S[0]

with 1 + 4 = 5 signals. Note that C4, which appears on the left in the concatenation 

expression, appears on the left in the signal listing. ■

 FIGURE 3-51
Behavioral Description of Four-Bit Full Adder Using Verilog

// 4-bit Adder: Behavioral Verilog Description

module adder_4_b_v(A, B, C0, S, C4);
 input[3:0] A, B;
 input C0;
 output[3:0] S;
 output C4;

 assign {C4, S} = A + B + C0;
endmodule

3-12 OTHER ARITHMETIC FUNCTIONS

Other arithmetic functions beyond + , - , *  and , , are quite important. Among 

these are incrementing, decrementing, multiplication and division by a constant, 

greater-than comparison, and less-than comparison. Each can be implemented 

for multiple-bit operands by using an iterative array of 1-bit cells. Instead of using 

these basic approaches, a combination of rudimentary functions and a new tech-

nique called contraction is used. Contraction begins with a circuit such as a  binary 

adder or a binary multiplier. This approach simplifies design by converting 

 existing circuits into useful, less complicated ones instead of designing the latter 

circuits directly.
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Contraction

Value fixing, transferring, and inverting on inputs can be combined with function blocks 

to implement new functions. We can implement new functions by using similar tech-

niques on a given circuit or on its equations and then contracting it for a specific appli-

cation to a simpler circuit. We will call the procedure contraction. The goal of contrac-

tion is to accomplish the design of a logic circuit or functional block by using results 

from past designs. It can be applied by the designer in designing a target circuit or can 

be applied by logic synthesis tools to simplify an initial circuit with value fixing, transfer-

ring, and inverting on its inputs in order to obtain a target circuit. In both cases, contrac-

tion can also be applied to circuit outputs that are unused, to simplify a source circuit to 

a target circuit. First, we illustrate contraction by using Boolean equations.

EXAMPLE 3-28 Contraction of Full-Adder Equations

The circuit Add1 to be designed is to form the sum Si and carry Ci+1  for the single bit 

addition Ai + 1 + Ci. This addition is a special case with Bi = 1 of the addition  

performed by a full adder, Ai + Bi + Ci. Thus, equations for the new circuit can be 

obtained by taking the full-adder equations,

 Si = Ai ⊕ Bi ⊕ Ci

 Ci+ 1 = AiBi + AiCi + BiCi

setting Bi = 1, and simplifying the results, to obtain

 Si = Ai ⊕ 1 ⊕ Ci = Ai ⊕ Ci

 Ci+ 1 = Ai
# 1 + AiCi + 1 # Ci = Ai + Ci

Suppose that this Add1 circuit is used in place of each of the four full adders in 

a 4-bit ripple carry adder. Instead of S = A + B + C0, the computation being per-

formed is S = A + 1111 + C0. In 2s complement, this computation is 

S = A - 1 + C0. If C0 = 0, this implements the decrement operation S = A - 1, 

using considerably less logic than for a 4-bit addition or subtraction. ■

Contraction can be applied to equations, as done here, or directly on circuit 

diagrams with rudimentary functions applied to function-block inputs. In order to 

successfully apply contraction, the desired function must obtainable from the initial 

circuit by application of rudimentary functions on its inputs. Next we consider con-

traction based on unused outputs.

Placing an unknown value, X, on the output of a circuit means that output will 

not be used. Thus, the output gate and any other gates that drive only that output 

gate can be removed. The rules for contracting equations with Xs on one or more 

outputs are as follows:

1. Delete all equations with Xs on the circuit outputs.

2. If an intermediate variable does not appear in any remaining equation, delete 

its equation.
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3. If an input variable does not appear in any remaining equation, delete it.

4. Repeat 2 and 3 until no new deletions are possible.

The rules for contracting a logic diagram with Xs on one or more outputs are as 

follows:

1. Beginning at the outputs, delete all gates with Xs on their outputs and place Xs 

on their input wires.

2. If all input wires driven by a gate are labeled with Xs, delete the gate and place 

Xs on its inputs.

3. If all input wires driven by an external input are labeled with Xs, delete the in-

put.

4. Repeat steps 2 and 3 until no new deletions are possible.

In the next subsection, contraction of a logic diagram is illustrated for the 

increment operation.

Incrementing

Incrementing means adding a fixed value to an arithmetic variable, most often a fixed 

value of 1. An n-bit incrementer that performs the operation A + 1 can be obtained 

by using a binary adder that performs the operation A + B with B = 0c 01. The 

use of n = 3 is large enough to determine the incrementer logic to construct the cir-

cuit needed for an n-bit incrementer.

Figure 3-52 (a) shows a 3-bit adder with the inputs fixed to represent the com-

putation A + 1 and with the output from the most significant carry bit C
3
 fixed at 

value X. Operand B = 001 and the incoming carry C0 = 0, so that A + 001 + 0 is 

computed. Alternatively, B = 000 and incoming carry C0 = 1 could have been used.

 FIGURE 3-52
Contraction of Adder to Incrementer
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Based on value fixing, there are three distinct contraction cases for the cells in 

the adder:

1. The least significant cell on the right with B0 = 1 and C0 = 0,

2. The typical cell in the middle with B1 = 0, and

3. The most significant cell on the left with B2 = 0 and C3 = X.

For the right cell, the output of gate 1 becomes A0, so it can be replaced by an 

inverter. The output of gate 2 becomes A
0
, so it can be replaced by a wire connected 

to A
0
. Applying A0 and 0 to gate 3, it can be replaced by a wire, connecting A

0
 to the 

output S
0
. The output of gate 4 is 0, so it can be replaced with a 0 value. Applying this 

0 and A
0
 from gate 2 to gate 5, gate 5 can be replaced by a wire connecting A

0
 to C

1
. 

The resulting circuit is shown as the right cell in Figure 3-52(b).

Applying the same technique to the typical cell with B1 = 0 yields

 S1 = A1 ⊕ C1

 C2 = A1C1

giving the circuit shown as the middle cell in Figure 3-52(b).

For the left cell with B2 = 0 and C3 = X, the effects of X are propagated first 

to save effort. Since gate E has X on its output, it is removed and Xs are placed on its 

two inputs. Since all gates driven by gates B and C have Xs on their inputs, they can 

be removed and Xs placed on their inputs. Gates A and D cannot be removed, since 

each is driving a gate without an X on its input. Gate A, however, becomes a wire, 

since X ⊕ 0 = X. The resulting circuit is shown as the left cell in Figure 3-52(b).

For an incrementer with n 7  3 bits, the least significant incrementer cell is 

used in position 0, the typical cell in positions 1 through n - 2, and the most signifi-

cant cell in position n - 1. In this example, the rightmost cell in position 1 is con-

tracted, but, if desired, it could be replaced with the cell in position 2 with B0 = 0 

and C0 = 1. Likewise, the output C
3
 could be generated, but not used. In both cases, 

logic cost and power efficiency are sacrificed to make all of the cells identical.

Decrementing

Decrementing is the addition of a fixed negative value to an arithmetic variable—

most often, a fixed value of -1. A decrementer has already been designed in  

Example 3-28. Alternatively, a decrementer could be designed by using an adder–

subtractor as a starting circuit and applying B = 0c 01, and selecting the subtrac-

tion operation by setting S to 1. Beginning with an adder–subtractor, we can also use 

contraction to design a circuit that increments for S = 0 and decrements for S = 1 

by applying B = 0c 01, and letting S remain a variable. In this case, the result is a 

cell of the complexity of a full adder in the typical bit positions.

 Multiplication by Constants

In Figure 3-53(a), a multiplier with a 3-bit multiplier and a 4-bit multiplicand is shown 

with constant values applied to the multiplier. (The design of this multiplier is ex-

plained in the supplement Multipliers and Dividers on the Companion  Website.) 
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 Constants applied to the multiplier inputs have the following effects. If the multiplier 

value for a particular bit position is 1, than the multiplicand will be applied to an adder. 

If the value for a particular bit position is 0, then 0 will be applied to an adder and the 

adder will be reduced by contraction to wires producing its right inputs plus a carry of 

0 on its outputs. In both cases, the AND gates will be removed. In  Figure 3-53(a), the 

 FIGURE 3-53
Contractions of Multiplier: (a) for 101 * B, (b) for 100 * B, and (c) 
for B , 100
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multiplier has been set to 101. The end result of the contraction of this circuit is a circuit 

that conveys the two least significant bits of B to the outputs C
1
 and C

0
. The circuit adds 

the two most significant bits of B to B, with the result shifted two positions to the left 

applied to product outputs C
6
 through C

2
.

An important special case occurs when the constant equals 2i (i.e., for multi-

plication 2i * B). In this case, only one 1 appears in the multiplier and all logic is 

eliminated from the circuit, resulting in only wires. In this case, for the 1 in position 

i, the result is B followed by i 0s. The functional block that results is simply a com-

bination of skewed transfers and value fixing to 0. The function of this block is 

called a left shift by i bit positions with zero fill. Zero fill refers to the addition of 0s 

to the right of (or to the left of) an operand such as B. Shifting is a very important 

operation applied to both numerical and nonnumerical data. The contraction 

resulting from a multiplication by 22 (i.e., a left shift of two bit positions) is shown 

in Figure 3-53(b).

Division by Constants

Our discussion of division by constants will be restricted to division by powers of 

2 (i.e., by 2i in binary). Since multiplication by 2i results in addition of i 0s to the 

right of the multiplicand, by analogy, division by 2i results in removal of the i least 

significant bits of the dividend. The remaining bits are the quotient, and the bits 

discarded are the remainder. The function of this block is called a right shift by i 
bit positions. Just as for left shifting, right shifting is likewise a very important op-

eration. The function block for division by 22 (i.e., right shifting by two bit posi-

tions) is shown in Figure 3-53(c).

Zero Fill and Extension

Zero fill, as defined previously for multiplication by a constant, can also be used 

to increase the number of bits in an operand. For example, suppose that a byte 

01101011 is to be used as an input to a circuit that requires an input of 16 bits. One 

possible way of producing the 16-bit input is to zero-fill with eight 0s on the left to 

produce 0000000001101011. Another is to zero-fill on the right to produce 

0110101100000000. The former approach would be appropriate for operations 

such as addition or subtraction. The latter approach could be used to produce a 

low-precision 16-bit multiplication result in which the byte represents the most 

significant eight bits of the actual product with the lower byte of the product dis-

carded.

In contrast to zero fill, sign extension is used to increase the number of bits in 

an operand represented by using a complement representation for signed numbers. 

If the operand is positive, then bits can be added on the left by extending the sign of 

the number (0 for positive and 1 for negative). Byte 01101011, which represents 107 

in decimal, extended to 16 bits becomes 0000000001101011. Byte 10010101, which 

in 2s complement represents -107, extended to 16 bits becomes 1111111110010101. 

The reason for using sign extension is to preserve the complement representation 



for signed numbers. For example, if 10010101 were extended with 0s, the magnitude 

represented would be very large, and further, the leftmost bit, which should be a 1 for 

a minus sign, would be incorrect in the 2s complement representation.

DECIMAL ARITHMETIC The supplement that discusses decimal arithmetic functions 

and circuit implementations is available on the Companion Website for the text.

3-13 CHAPTER SUMMARY

This chapter dealt with functional blocks, combinational circuits that are frequently 

used to design larger circuits. Rudimentary circuits that implement functions of a 

single variable were introduced. The design of decoders that activate one of a num-

ber of output lines in response to an input code was covered. Encoders, the inverse 

of decoders, generated a code associated with the active line from a set of lines. The 

design of multiplexers that select from data applied at the inputs and present it at the 

output was illustrated.

The design of combinational logic circuits using decoders and multiplexers, 

was covered. In combination with OR gates, decoders provide a simple min 

term-based approach to implementing combinational circuits. Procedures were 

given for using an n–to–1-line multiplexer or a single inverter and an (n – 1)–to–1-

line multiplexer to implement any n-input Boolean function.

This chapter also introduced common combinational circuits for performing 

arithmetic functions. The implementation of binary adders was treated in detail. The 

subtraction of unsigned binary numbers using 2s complement was presented, as was 

the representation of signed binary numbers and their addition and subtraction. The 

adder–subtractor, developed for unsigned binary, was found to apply directly to the 

addition and subtraction of signed 2s complement numbers as well.
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PROBLEMS
 The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the text website.

 3-1.  A majority function has an output value of 1 if there are more 1s than 0s on its 

inputs. The output is 0 otherwise. Design a four-input majority function.

 3-2.  *Find a function to detect an error in the representation of a decimal digit in 

BCD. In other words, write an equation with value 1 when the inputs are any 

one of the six unused bit combinations in the BCD code, and value 0 

otherwise.

 3-3.  Design a binary code–to–BCD code converter that gives output code 1111 

for all invalid input combinations. Assume that the binary code sequence for 

decimal numbers 0 through 9 is 0000, 0001, 0010, 0011, 0100, 0101, 0110, 

0111, 1000, and 1001. All other input combinations should be considered to 

be invalid.

 3-4.  A simple well-known game, tic-tac-toe, is played on a three-by-three grid of 

squares by two players. The players alternate turns. Each player chooses a 

square and places a mark in a square. (One player uses X and the other O.) 

The first player with three marks in a row, in a column, or on a diagonal wins 

the game. A logic circuit is to be designed for an electronic tic-tac-toe that 

indicates the presence of a winning pattern. The circuit output W is a 1 if a 

winning pattern is present and a 0 if a winning pattern is not present. For each 

of the nine squares, there are two signals, Xi and Oi . Two copies of the circuit 

are used, one for Xs and one for Os. Hint: Form a condensed truth table for 

W(X1, X2,c , X9).

(a) Design the X circuit for the following pattern of signals for the squares:

X1 X2 X3

X4 X5 X6

X7 X8 X9

(b) Minimize the W output for the X circuit as much as possible, using 

Boolean algebra.

3-5.  Repeat Problem 3-4 for 4 * 4 tic-tac-toe, which is played on a four-by-four 

grid. Assume that the numbering pattern is left to right and top to bottom, as 

in Problem 3-4.

3-6.  A low-voltage lighting system is to use a binary logic control for a particular 

light. This light lies at the intersection point of a T-shaped hallway. There is a 

switch for this light at each of the three endpoints of the T. These switches 

have binary outputs 0 and 1 depending on their position and are named X
1
, 

X
2
, and X

3
. The light is controlled by a buffer driving a thyristor, an electronic 

part that can switch power-circuit current. When Z, the input to the buffer, is 

1, the light is ON, and when Z is 0, the light is OFF. You are to find a function 
Z = F(X1, X2, X3) so that if any one of the switches is changed, the value of 

Z changes, turning the light ON or OFF.
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3-7.  +A traffic light control at a simple intersection uses a binary counter to 

produce the following sequence of combinations on lines A, B, C, and D: 0000, 

0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 

1001, 1000. After 1000, the sequence repeats, beginning again with 0000, 

forever. Each combination is present for 5 seconds before the next one 

appears. These lines drive combinational logic with outputs to lamps RNS 

(red—north/south), YNS (yellow—north/south), GNS (green—north/south), 

REW (red—east/west), YEW (yellow—east/west), and GEW (green—east/

west). The lamp controlled by each output is ON for a 1 applied and OFF for a 

0 applied. For a given direction, assume that green is on for 30 seconds, yellow 

for 5 seconds, and red for 45 seconds. (The red intervals overlap for 5 seconds.) 

Divide the 80 seconds available for the cycle through the 16 combinations into 

16 intervals and determine which lamps should be lit in each interval based on 

expected driver behavior. Assume that, for interval 0000, a change has just 

occurred and that GNS = 1,  REW = 1, and all other outputs are 0. Design 

the logic to produce the six outputs using AND and OR gates and inverters.

 3-8.  Design a combinational circuit that accepts a 3-bit number and generates a 

4-bit binary number output equal to double of the input number.

 3-9.  +Design a combinational circuit that accepts a 4-bit number and generates a 

3-bit binary number output that approximates the square root of the number. 

For example, if the square root is 3.5 or larger, give a result of 4. If the square 

root is 6 3.5 and Ú 2.5, give a result of 3.

3-10.  Design a circuit with a 3-bit input A, B, and C, in the form of Gray code, that 

produces a 3-bit output 0
0
,
 
0

1
, and 0

2
 in binary form. For example, if the Gray 

code inputs are 001 and 011, then the circuit will produce 001 and 010, 

respectively.

  3-11.  A traffic metering system for controlling the release of traffic from an 

entrance ramp onto a superhighway has the following specifications for a part 

of its controller. There are three parallel metering lanes, each with its own 

stop (red)–go (green) light. One of these lanes, the car pool lane, is given 

priority for a green light over the other two lanes. Otherwise, a “round robin” 

scheme in which the green lights alternate is used for the other two (left and 

right) lanes. The part of the controller that determines which light is to be 

green (rather than red) is to be designed. The specifications for the controller 

follow:

Inputs
PS  Car pool lane sensor (car present—1; car absent—0)

LS  Left lane sensor (car present—1; car absent—0)

RS     Right lane sensor (car present—1; car absent—0)

RR   Round robin signal (select left—1; select right—0)

Outputs
PL  Car pool lane light (green—1; red—0)

LL  Left lane light (green—1; red—0)

RL     Right lane light (green—1; red—0)
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Operation

1. If there is a car in the car pool lane, PL is 1.

2. If there are no cars in the car pool lane and the right lane, and there 

is a car in the left lane, LL is 1.

3. If there are no cars in the car pool lane and in the left lane, and there 

is a car in the right lane, RL is 1.

4. If there is no car in the car pool lane, there are cars in both the left 

and right lanes, and RR is 1, then LL = 1.

5. If there is no car in the car pool lane, there are cars in both the left 

and right lanes, and RR is 0, then RL = 1.

6. If any PL, LL, or RL is not specified to be 1 above, then it has value 0.

(a) Find the truth table for the controller part.

(b) Find a minimum multiple-level gate implementation with minimum 

gate-input cost using AND gates, OR gates, and inverters.

3-12.  Complete the design of the BCD–to–seven-segment decoder by performing 

the following steps:

(a) Plot the seven maps for each of the outputs for the BCD–to–seven-

segment decoder specified in Table 3-9.

(b) Simplify the seven output functions in sum-of-products form, and 

determine the total number of gate inputs that will be needed to 

implement the decoder.

(c)  Verify that the seven output functions listed in the text give a valid 

simplification. Compare the number of gate inputs with that obtained in 

part (b) and explain the difference.

3-13.  Design a circuit to implement the following pair of Boolean equations:

 F0 = Z (X Y + Y X + Z(X Y + X Y )

 F1 = W (X Y + X Y ) + W (X Y + Y X )

To simplify drawing the schematic, the circuit is to use a hierarchy based 

on the factoring shown in the equation. Three instances (copies) of a single 

hierarchical circuit component made up of two AND gates, an OR gate, and 

an inverter are to be used. Draw the logic diagram for the hierarchical com-

ponent and for the overall circuit diagram using a symbol for the hierarchi-

cal component.

3-14.  A hierarchical component with the function is to be used along with inverters 

to implement the following equation:

 F0 = Z (X Y + X Y ) + Z (X Y + X Y )

 F1 = X (W Z + Z W ) + X (W Z + W Z )
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The overall circuit can be obtained by using Shannon’s expansion theorem,

F = X # F0(X ) + X # F1(X  )

where F0 is F evaluated with variable X = 0 and F0 is F evaluated with 

variable X = 1. This expansion F can be implemented with function H by 

letting Y = F0 and Z = F1. The expansion theorem can then be applied to 

each of F
0
 and F

1
 using a variable in each, preferably one that appears in 

both true and complemented form. The process can then be repeated until 

all Fi ’s are single literals or constants. For F
1
, use X = A to find G

0
 and G

1
 

and then use X = B for F
1
 and F

1
. Draw the top-level diagram for G using 

H as a hierarchical component.

3-15.  +A NAND gate with eight inputs is required. For each of the following cases, 

minimize the number of gates used in the multiple-level result:

(a) Design the 8-input NAND gate using 2-input NAND gates and NOT 

gates.

(b) Design the 8-input NAND gate using 2-input NAND gates, 2-input NOR 

gates, and NOT gates only if needed.

(c)  Compare the number of gates used in (a) and (b).

3-16.  Perform technology mapping to NAND gates for the circuit in Figure 3-54. 

Use cell types selected from: Inverter (n = 1), 2NAND, 3NAND, and 

4NAND, as defined at the beginning of Section 3-2.

3-17.  Repeat Problem 3-16, using NOR gate cell types selected from: Inverter 

(n = 1), 2NOR, 3NOR, and 4NOR, each defined in the same manner as the 

corresponding four NAND cell types at the beginning of Section 3-2.

 FIGURE 3-55
Circuit for Problem 3-20

X

Y

F

 FIGURE 3-54
Circuit for Problems 3-16 and 3-17

A
B

C
D
E G
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3-18.  (a)  Repeat Problem 3-16 for the Boolean equations for the segments a and c 

of the BCD to seven-segment decoder from Example 3-18. Share 

common terms where possible.

(b) Repeat part (a) using only Inverter (n = 1) and 2NAND cell types.

3-19.  (a)  Repeat Problem 3-18, mapping to NOR gate cell types as in Problem 3-17. 

Share common terms where possible.

(b) Repeat part (a) using only Inverter (n = 1) and 2NOR cell types.

3-20.  By using manual methods, verify that the circuit of Figure 3-55 generates the 

exclusive-NOR function.

3-21.  The logic diagram for a 74HC138 MSI CMOS circuit is given in Figure 3-56. 

Find the Boolean function for each of the outputs. Describe the circuit 

function carefully.

3-22.  Do Problem 3-21 by using logic simulation to find the output waveforms of  

the circuit or a partial truth-table listing, rather than finding Boolean functions.

3-23.  (a)  Use logic simulation to verify that the circuits described in Example 3-18 

implement the BCD–to–seven-segment converter correctly.

 FIGURE 3-56
Circuit for Problems 3-21 and 3-22
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(b) Design the converter assuming that the unused input combinations 

(minterms 10–15) can be don’t cares rather than 0s. Simulate your design 

and compare it to your simulation from part (a).

3-24.  *(a)  Draw an implementation diagram for a constant vector function 

F = (F7, F6, F5, F4, F3, F2, F1, F0) = (1, 0, 0, 1, 0, 1, 1, 0) using the ground 

and power symbols in Figure 3-7(b).

(b) Draw an implementation diagram for a rudimentary vector function 

G = (G7, G6, G5, G4, G3, G2, G1, G0) = (A, A, 0, 1, A, A, 1, 1) using inputs 

1, 0, A, and A.

3-25.  (a)  Draw an implementation diagram for rudimentary vector function 

F = (F7, F6, F5, F4, F3, F2, F1, F0) = (A, A, 1, A, A, 0, 1, A), using the ground 

and power symbols in Figure 3-7(b) and the wire and inverter in Figures 3-

7(c) and (d).

(b) Draw an implementation diagram for rudimentary vector function 

G = (G7, G6, G5, G4, G3, G2, G1, G0) = (F0, F1, F3, F2, 1, 0, 0, 1), using the 

ground and power symbols and components of vector F.

3-26.  (a)  Draw an implementation diagram for the vector G = (G0 , G1 , G2 , G3 , G4 , 
G5 , G6 , G7) = (F4 , F5 , F6 , F7 , F0 , F2, F1, F3)

(b) Draw a simple implementation for the rudimentary vector H = (H7 , H6 , 
H5 , H4 , H3 , H2 , H1 , H0) = (F0 , F1 , G3 , G2 , G1 , G0 , F3 , F4)

  3-27.  A home security system has a master switch that is used to enable an alarm, 

lights, video cameras, and a call to local police in the event one or more of six 

sets of sensors detects an intrusion. In addition there are separate switches to 

enable and disable the alarm, lights, and the call to local police. The inputs, 

outputs, and operation of the enabling logic are specified as follows:

Inputs
Si, i = 0,  1,  2,  3,  4,  5  : signals from six sensor sets (0 = intrusion de-

tected, 1 = no intrusion detected)

M: master switch (0 = security system enabled, 1 = security system 

disabled)

A: alarm switch (0 = alarm disabled, 1 = alarm enabled)

L: light switch (0 = lights disabled, 1 = lights enabled)

P: police switch (0 = police call disabled, 1 = police call enabled)

Outputs
A: alarm (0 = alarm on, 1 = alarm off)

L: lights (0 = lights on, 1 = lights off)

V: video cameras (0 = video cameras off, 1 = video cameras on)

C: call to police (0 =  call off, 1 = call on)

Operation
If one or more of the sets of sensors detect an intrusion and the secu-

rity system is enabled, then outputs activate based on the outputs of 

the remaining switches. Otherwise, all outputs are disabled.
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Find a minimum-gate-input cost realization of the enabling logic using AND 

and OR gates and inverters.

3-28.  Design a 3–to–8-line decoder using two 2–to–4-line decoders and eight 

2-input AND gates.

3-29.  Design a 4–to–16-line decoder with enable using two 3–to–8-line decoders 

with enable and two AND gates and one OR gate.

3-30.  *Design a 5–to–32-line decoder using a 3–to–8-line decoder, a 2–to–4-line 

decoder, and 32 2-input AND gates.

3-31.  A special –16-line decoder is to be designed. The input codes used are in 

BCD format, i.e., from 000 to 1001. For a given code applied, the output Di, 

with i equal to the decimal equivalent of the code, is 1 and all other outputs 

are 0. Design the decoder with a 3–to–8-line decoder, using AND gates and a 

NOT gate.

  3-32.  An electronic game uses an array of seven LEDs (light-emitting diodes) to 

display the results of a random roll of a die. A decoder is to be designed to 

illuminate the appropriate diodes for the display of each of the six die values. 

The desired display patterns are shown in Figure 3-57.

(a) Use a 3–to–8-line decoder and OR gates to map the 3-bit combinations 

on inputs X
2
, X

1
, and X

0
 for values 1 through 6 to the outputs a through g. 

Input combinations 000 and 111 are don’t-cares.

(b) Note that for the six die sides, only certain combinations of dots occur. 

For example, dot pattern A = 5d 6  and dot pattern B = 5a,   g 6  can be 

used for representing input values 1, 2, and 3 as {A}, {B}, and {A, B}. 

Define four dot patterns A, B, C, and D, sets of which can provide all six 

output patterns. Design a minimized custom decoder that has inputs X
2
, 

X
1
, and X

0
 and outputs A, B, C, and D, and compare its gate-input cost to 

that of the 3-to-8 decoder and OR gates in part (a).

3-33.  Draw the detailed logic diagram of a 2–to–4-line decoder using only NAND 

gates. Include an enable input.

  3-34.  To provide uphill running and walking, an exercise treadmill has a grade 

feature that can be set from 0.0% to 15.0% in increments of 0.1%. (The grade 

in percent is the slope expressed as a percentage. For example, a slope of 0.10 

is a grade of 10%.) The treadmill has a 10 high by 20 wide LCD dot array 

showing a plot of the grade versus time. This problem concerns only the 

vertical dimension of the display.

FIGURE 3-57
Patterns for Dice for Problem 3-32

a b
c d e
f g

1 2 3 4 5 6
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To define the vertical position of the LCD dot to be illuminated for the 

current grade, the 151 different grade values (0.0 to 15.0) need to be trans-

lated into ten different dot positions, P0 to P9. The translation of intervals 

of inputs to output values is represented as follows: [(0.0,1.4),0], [(1.5,2.9),1], 

[(3.0,4.4),2], [(4.5,5.9),3], [(6.0,7.4),4], [(7.5,8.9),5], [(9.0,10.4),6], [(10.5,11.9),7], 

[(12.0,13.4),8], and [(13.5,15.0),9]. The grade values are represented by a pair 

of values consisting of a 4-bit binary value 0 through 15 followed by a 4-bit 

BCD value 0 through 9. For example, 10.6 is represented by (10, 6) [1010, 0110].

Design a special decoder with eight inputs and ten outputs to perform this 

translation. Hint: Use two subcircuits, a 4–to–16-line decoder with the binary 

value as inputs and D0 through D15 as outputs, and a circuit which deter-

mines whether the BCD input value is greater than or equal to 5 (0101) with 

output GE5. Add additional logic to form outputs P0 through P9 from D0 

through D15 and GE5. For example:

 P4 = D6 + D7
# GE5 and

 P5 = D7
# GE5 + D8

  3-35.  *Design a 4-input priority encoder with inputs and outputs as in Table 3-6, 

but with the truth table representing the case in which input D
0
 has the 

highest priority and input D
3
 the lowest priority.

  3-36.  Derive the truth table of a decimal-to-binary priority encoder. There are 10 

inputs I
1
 through I

9
 and outputs A

3
 through A

0
 and V. Input I

9
 has the highest 

priority.

3-37.  (a)  Design a 4–to–1-line multiplexer using a 2–to–4-line decoder and a four 

2-input AND gates and one 4-input OR gate.

(b) Repeat part (a) using three 2–to–1-line multiplexers.

3-38.  Design an 8–to–1-line multiplexer using a 3–to–8-line decoder and an 8 3 2 

AND gate and one OR gate.

3-39.  Design a dual 8–to–1-line multiplexer using a 3–to–8-line decoder and a 2-to-1 

line multiplexer with a line selection input.

3-40.  Construct a 10–to–1-line multiplexer with two 3–to–8-line decoders, a 2–to–1-

line multiplexer, and a 2-input AND-OR-NOT gate for the BCD input from 

0000 to 1001.

3-41.  Construct a 32–to–1-line multiplexer with two 3–to–8 decoders and one 4-to-1 

line single multiplexer along with two input AND-OR gates. The decoders 

should be connected and inputs labeled so that the selection codes 00000 

through 11111 can be applied.

3-42.  *Construct a 15–to–1-line multiplexer with two 8–to–1-line multiplexers. 

Interconnect the two multiplexers and label the inputs such that any added 

logic required to have selection codes 0000 through 1110 is minimized.
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3-43.  Rearrange the condensed truth table for the circuit of Figure 3-16, and verify 

that the circuit can function as a demultiplexer.

3-44.  A combinational circuit is defined by the following three Boolean functions:

 F1 = X YZ + XY Z + X Y Z

 F2 = XYZ + YZ

 F3 = YZ + XY

 F4 = X Y + X Y Z

Design the circuit with a decoder and external OR gates.

  3-45.  The rear lights of a car are to be controlled by digital logic. There is a single 

lamp in each of the rear lights.

Inputs
LT    left turn switch—causes blinking of left side lamp

RT   right turn switch—causes blinking of right side lamp

EM     emergency flasher switch—causes blinking of both lamps

BR  brake applied switch—causes both lamps to be on

BL   blinking signal with 1 Hz frequency

Outputs
LR  power control for left rear lamp

RR     power control for right rear lamp

(a) Write the equations for LR and RR. Assume that BR overrides EM and 

that LT and RT override BR.

(b) Implement each function LR (BL, BR, EM, LT) and RR (BL, BR, EM, 

RT) with a 4–to–16-line decoder and external OR gates.

3-46.  Implement the following Boolean function with an 8–to–1-line multiplexer 

and a single inverter with variable D as its input:

F(A, B, C, D) = Σm(0, 2, 3, 5, 6, 9, 10, 13)

3-47.  *Implement the Boolean function

F(A, B, C, D) = Σm(1, 3, 4, 11, 12, 13, 14, 15)

with a 4–to–1-line multiplexer and external gates. Connect inputs A and B 

to the selection lines. The input requirements for the four data lines will 

be a function of the variables C and D. The values of these variables are  

obtained by expressing F as a function of C and D for each of the four cases 

when AB = 0 0 ,  0 1 ,  1 0 , and 11. These functions must be implemented with 

external gates.

3-48.  Solve Problem 3-47 using two 3–to–8-line decoders with enables, an inverter, 

and OR gates with a maximum fan-in of 4.

3-49.  Design a combinational circuit that forms the 2-bit binary sum S
1
S

0
 of two 

2-bit numbers X
1
X

0
 and Y

1
Y

0
 and can produce a carry output C. Design the 
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entire circuit with the help of three half adder circuit implementing each of 

the three outputs with XOR-AND and OR gates.

3-50.  *The logic diagram of the first stage of a 4-bit adder, as implemented in 

integrated circuit type 74283, is shown in Figure 3-58. Verify that the circuit 

implements a full adder.

3-51.  *Obtain the 1s and 2s complements of the following unsigned binary 

numbers: 10011100, 10011101, 10101000, 00000000, and 10000000.

3-52.  Perform the indicated subtraction with the following unsigned binary 

numbers by taking the 2s complement of the subtrahend:

(a) 11010 - 10001

(b) 11110 - 1110

(c)  1111110 - 1111110

(d) 101001 - 101

3-53.  Repeat Problem 3-52, assuming the numbers are 2s complement signed 

numbers. Use extension to equalize the length of the operands. Indicate 

whether overflow occurs during the complement operations for any of the 

given subtrahends. Indicate whether overflow occurs overall for any of 

the given subtractions. When an overflow does occur, repeat the operation 

with the minimum number of bits required to perform the operation without 

overflow.

3-54.  *Perform the arithmetic operations (+36) + (-24) and (-35) - (-24) in 

binary using signed 2s complement representation for negative numbers.

 FIGURE 3-58
Circuit for Problems 3-50, 3-65, and 3-69
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3-55.  The following binary numbers have a sign in the leftmost position and, if 

negative, are in 2s complement form. Perform the indicated arithmetic 

operations and verify the answers.

(a) 110001 + 011101

(b) 0110111 + 0101111

(c)  0000 0111 - 1111 0100

(d) 0110111 - 0101111

Indicate whether overflow occurs for each computation.

3-56.  +Design two versions of the combinational circuit whose input is a 4-bit 

number and whose output is the 2s complement of the input number, for each 

of the following cases using AND, OR, and NOT gates:

(a) The circuit is a simplified two-level circuit, plus inverters as needed for 

the input variables.

(b) The circuit is made up of four identical two-input, two-output cells, one 

for each bit. The cells are connected in cascade, with lines similar to a 

carry between them. The value applied to the rightmost carry bit is 1.

(c)  Calculate the gate input costs for the designs in (a) and (b) and 

determine which is the better design in terms of gate-input cost.

3-57.  Use contraction beginning with a 4-bit adder with carry out to design a 4-bit 

increment circuit with carry out that is incremented by 0011. The function to 

be implemented is S = A 1 0011. Design the circuit with AND-OR-XOR 

gates.

3-58.  Use contraction beginning with a 4-bit adder–subtractor with carry in, to 

design a 4-bit circuit with carry out that increments its input by 0010 for input 

S = 0 and decrements its input by 0010 for input S = 1. Perform the design by 

designing the distinct 1-bit full adder cells needed and indicating the type of 

cell use in each of the four bit positions.

3-59.  Design a combinational circuit that compares two 4-bit unsigned numbers A 

and B to see whether B is greater than A. The circuit has one output X, so that 

X = 1 if A 6  B and X = 0 if A Ú B.

3-60.  +Repeat Problem 3-59 by using three-input, one-output circuits, one for each 

of the four bits. The four circuits are connected together in cascade by carry-

like signals. One of the inputs to each cell is a carry input, and the single 

output is a carry output.

3-61.  Repeat Problem 3-59 by applying contraction to a 4-bit subtractor and using 

the borrow out as X.

3-62.  Design a combinational circuit that compares 4-bit unsigned numbers A and 

B to see whether A = B or A 7 B. Use an iterative circuit as in Problem 3-60.

3-63.  +Design a 5-bit signed-magnitude adder–subtractor. Divide the circuit for 

design into (1) sign generation and add–subtract control logic, (2) an 
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unsigned number adder–subtractor using 2s complement of the minuend for 

subtraction, and (3) selective 2s complement result correction logic.

3-64.  *The adder–subtractor circuit of Figure 3-45 has the following values for 

input select S and data inputs A and B:

S A B

(a) 0 0111 0111

(b) 1 0100 0111

(c) 1 1101 1010

(d) 0 0111 1010

(e) 1 0001 1000

Determine, in each case, the values of the outputs S
3
, S

2
, S

1
, S

0
, and C

4
.

3-65.  Using Figure 3-28 as a guide, write a structural VHDL description for the 

full-adder circuit in Figure 3-58. Compile and simulate your description. 

Apply all eight input combinations to check the correction function of 

your description.

3-66.  Compile and simulate the 4-bit adder in Figures 3-47 and 3-48. Apply 

combinations that check out the rightmost full adder for all eight  

input combinations; this also serves as a check for the other full adders. Also, 

apply combinations that check the carry chain connections between all full 

adders by demonstrating that a 0 and a 1 can be propagated from C0 to C4.

3-67.  *Compile and simulate the behavioral description of the 4-bit adder in Figure 

3-49. Assuming a ripple carry implementation, apply combinations that check 

out the rightmost full adder for all eight input combinations. Also apply 

combinations that check the carry chain connections between all full adders 

by demonstrating that a 0 and a 1 can be propagated from C0 to C4.

3-68.  +  Using Figure 3-49 as a guide and a “when-else” on S from Figure 3-29, write 

a high-level behavior VHDL description for the adder–subtractor in Figure 

3-46 (see Figure 3-45 for details). Compile and simulate your description. 

Assuming a ripple carry implementation, apply combinations that check out 

one of the full adder–subtractor stages for all 16 possible input combinations. 

Also, apply combinations to check the carry chain connections in between 

the full adders by demonstrating that a 0 and a 1 can be propagated from C0 

to C4. Check the overflow signals as well.

3-69.  Using Figure 3-31 as a guide, write a structural Verilog description for the full-

adder circuit in Figure 3-58. Compile and simulate your description. Apply all 

eight input combinations to check the correction function of your description.

3-70.  Compile and simulate the 4-bit adder in Figure 3-50. Apply combinations that 

check out the rightmost full adder for all eight input combinations; this also 

serves as a check for the other full adders. Also, apply combinations that 
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check the carry chain connections between all full adders by demonstrating 

that a 0 and a 1 can be propagated from C0 to C4.

3-71.  *Compile and simulate the behavioral description of the 4-bit adder in 

Figure 3-51. Assuming a ripple carry implementation, apply all eight input 

combinations to check out the rightmost full adder. Also, apply 

combinations to check the carry chain connections between all full adders 

by demonstrating that a 0 and a 1 can be propagated from C0 to C4.

3-72.  Using Figure 3-51 as a guide and a “binary decision” on S from Figure 3-34, 

write a high-level behavior Verilog description for the adder–subtractor in 

Figure 3-46 (see Figure 3-45 for details). Compile and simulate your description. 

Assuming a ripple carry implementation, apply input combinations to your 

design that will (1) cause all 16 possible input combinations to be applied to 

the full adder–subtractor stage for bit 2, and (2) simultaneously cause the 

carry output of bit 2 to appear at one of your design’s outputs. Also, apply 

combinations that check the carry chain connections between all full adders 

by demonstrating that a 0 and a 1 can be propagated from C0 to C4.
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C H A P T E R

 Sequential Circuits

4

To this point, we have studied only combinational logic. Although such logic is 

capable of interesting operations, such as addition and subtraction, the 

performance of useful sequences of operations using combinational logic alone 

requires cascading many structures together. The hardware to do this is very costly and 

able to construct circuits that can store information between the operations. Such 

circuits are called sequential circuits. This chapter begins with an introduction to 

sequential circuits, describing the difference between synchronous sequential circuits, 

which have a clock signal to synchronize changes in the state of the circuit at discrete 

points in time, and asynchronous sequential circuits, which can change state at any 

time in response to changes in inputs. This introduction is followed by a study of the 

state diagrams provide a means for describing the behavior of sequential circuits. 

Subsequent sections of the chapter develop the techniques for designing sequential 

description language representations for storage elements and for the type of sequential 

the timing characteristics are related to the frequency of the clock for sequential circuits. 

circuits having multiple clock domains, focusing on the important topic of synchronization 

of signals entering a clocked circuit domain. The discussion of delay and timing 

concludes with the issue of synchronization failure due to a physical phenomenon 

called metastability.

circuits, since large portions of memory are designed as electronic circuits rather than 
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4-1 SEQUENTIAL CIRCUIT DEFINITIONS

The digital circuits considered thus far have been combinational. Although every 

digital system is likely to include a combinational circuit, most systems encountered 

in practice also include storage elements, requiring that the systems be described as 

sequential circuits.

Figure 4-1(a) is block diagram of a sequential circuit, formed by interconnect-

ing a combinational circuit and storage elements. The storage elements are circuits 

that are capable of storing binary information. The binary information stored in 

these elements at any given time defines the state of the sequential circuit at that 

time. The sequential circuit receives binary information from its environment via the 

inputs. These inputs, together with the present state of the storage elements, deter-

mine the binary value of the outputs. They also determine the values used to specify 

the next state of the storage elements. The block diagram demonstrates that the out-

puts in a sequential circuit are a function not only of the inputs, but also of the pres-

ent state of the storage elements. The next state of the storage elements is also a 

function of the inputs and the present state. Thus, a sequential circuit is specified by a 

time sequence of inputs, internal states, and outputs.

There are two main types of sequential circuits, and their classification depends 

on the times at which their inputs are observed and their internal state changes. The 

behavior of a synchronous sequential circuit can be defined from the knowledge of 

its signals at discrete instants of time. The behavior of an asynchronous sequential 
circuit depends upon the inputs at any instant of time and the order in continuous 

time in which the inputs change.

Information is stored in digital systems in many ways, including the use of logic 

circuits. Figure 4-2(a) shows a buffer. This buffer has a gate delay t
G
. Since informa-

tion present at the buffer input at time t appears at the buffer output at time t + t
G
, 

the information has effectively been stored for time t
G
. But, in general, we wish to 

store information for an indefinite time that is typically much longer than the time 

delay of one or even many gates. This stored value is to be changed at arbitrary times 

based on the inputs applied to the circuit and the duration of storage of a value 

should be longer than the specific time delay of a gate.

Inputs
Combinational

circuit
Next
state Storage

elements

Outputs

Present
state

 FIGURE 4-1
Block Diagram of a Sequential Circuit

systems and how they are designed.
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Suppose that the output of the buffer in Figure 4-2(a) is connected to its input 

as shown in Figures 4-2(b) and (c). Suppose further that the value on the input to the 

buffer in part (b) has been 0 for at least time t
G
, the delay of the buffer. Then the out-

put produced by the buffer will be 0 at time t + t
G
. This output is applied to the input 

so that the output will also be 0 at time t + 2tG. This relationship between input and 

output holds for all t, so the 0 will be stored indefinitely. The same argument can be 

made for storing a 1 in the circuit in Figure 4-2(c).

The example of the buffer illustrates that storage can be constructed from logic 

with delay connected in a closed loop. Any loop that produces such storage must also 

have a property possessed by the buffer, namely, that there must be no inversion of 

the signal around the loop. A buffer is usually implemented by using two inverters, as 

shown in Figure 4-2(d). The signal is inverted twice, that is,

X = X

giving no net inversion of the signal around the loop. In fact, this example illustrates one 

of the most popular methods of implementing storage in computer memories. (See 

Chapter 7.) However, although the circuits in Figures 4-2(b) through (d) are able to 

store information, there is no way for the information to be changed without providing 

additional inputs to override with stored values. If the inverters are replaced with NOR 

or NAND gates, the information can be changed. Asynchronous storage circuits called 

latches are made in this manner and are discussed in the next section.

In general, more complex asynchronous circuits are difficult to design, since 

their behavior is highly dependent on the delays of the gates and on the timing of the 

input changes. Thus, circuits that fit the synchronous model are the choice of most 

designers. Nevertheless, some asynchronous design is necessary. A very important 

case is the use of asynchronous latches as blocks to build storage elements, called 

 flip-  flops, that store information in synchronous circuits.

A synchronous sequential circuit employs signals that affect the storage ele-

ments only at discrete instants of time. Synchronization is achieved by a timing 

device called a clock generator which produces a periodic train of clock pulses. The 

pulses are distributed throughout the system in such a way that synchronous storage 

elements are affected only in some specified relationship to every pulse. In practice, 

1 1
tG

(c)

0 0
tG

(b)tG

(a) (d)

tG
1
2

tG
1
2

 FIGURE 4-2
Logic Structures for Storing Information



216          CHAPTER 4 /  SEQUENTIAL CIRCUITS

the clock pulses are applied with other signals that specify the required change in the 

storage elements. The outputs of storage elements can change their value only in the 

presence of clock pulses. Synchronous sequential circuits that use clock pulses as 

inputs for storage elements are called clocked sequential circuits. These are the types 

of circuits most frequently encountered in practice, since they operate correctly in 

spite of wide differences in circuit delays and are relatively easy to design.

The storage elements used in the simplest form of clocked sequential circuits 

are called  flip-  flops. For simplicity, assume circuits with a single clock signal. A 

 flip-  flop is a binary storage device capable of storing one bit of information and hav-

ing timing characteristics to be defined in Section 4-9. The block diagram of a syn-

chronous clocked sequential circuit is shown in Figure 4-3. The  flip-  flops receive their 

inputs from the combinational circuit and also from a clock signal with pulses that 

occur at fixed intervals of time, as shown in the timing diagram. The  flip-  flops can 

change state only in response to a clock pulse. For a synchronous operation, when a 

clock pulse is absent, the  flip-  flop outputs cannot change even if the outputs of the 

combinational circuit driving their inputs change in value. Thus, the feedback loops 

shown in the figure between the combinational logic and the  flip-  flops are broken. 

As a result, a transition from one state to the other occurs only at fixed time intervals 

dictated by the clock pulses, giving synchronous operation. The sequential circuit 

outputs are shown as outputs of the combinational circuit. This is valid even when 

some sequential circuit outputs are actually the  flip-  flop outputs. In this case, the 

combinational circuit part between the  flip-  flop outputs and the sequential circuit 

outputs consists of connections only.

A  flip-  flop has one or two outputs, one for the normal value of the bit stored 

and an optional one for the complemented value of the bit stored. Binary informa-

tion can enter a  flip-  flop in a variety of ways, a fact that gives rise to different types of 

 flip-  flops. Our focus will be on the most prevalent type used today, the D  flip-  flop. 

Other  flip-  flop types, such as the JK and T  flip-  flops, are described in the online mate-

rial available at the Companion Website. In preparation for studying  flip-  flops and 

their operation, necessary groundwork is presented in the next section on latches, 

from which the  flip-  flops are constructed.

(b) Timing diagram of clock pulses 

(a) Block diagram

Inputs Combinational
circuit

Clock pulses

Outputs

Flip-flops

 FIGURE 4-3
Synchronous Clocked Sequential Circuit
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4-2 LATCHES

A storage element can maintain a binary state indefinitely (as long as power is deliv-

ered to the circuit), until directed by an input signal to switch states. The major dif-

ferences among the various types of latches and  flip-  flops are the number of inputs 

they possess and the manner in which the inputs affect the binary state. The most 

basic storage elements are latches, from which  flip-  flops are usually constructed. Al-

though latches are most often used within  flip-  flops, they can also be used with more 

complex clocking methods to implement sequential circuits directly. The design of 

such circuits is, however, beyond the scope of the basic treatment given here. In this 

section, the focus is on latches as basic primitives for constructing storage elements.

SR and S R Latches

The SR latch is a circuit constructed from two  cross-  coupled NOR gates. It is derived 

from the  single-  loop storage element in Figure 4-2(d) by simply replacing the invert-

ers with NOR gates, as shown in Figure 4-4(a). This replacement allows the stored 

value in the latch to be changed. The latch has two inputs, labeled S for set and R for 

reset, and two useful states. When output Q = 1 and Q = 0, the latch is said to be in 

the set state. When Q = 0 and Q = 1, it is in the reset state. Outputs Q and Q are 

normally the complements of each other. When both inputs are equal to 1 at the 

same time, an undefined state with both outputs equal to 0 occurs.

Under normal conditions, both inputs of the latch remain at 0 unless the state is 

to be changed. The application of a 1 to the S input causes the latch to go to the set 

(1) state. The S input must go back to 0 before R is changed to 1 to avoid occurrence 

of the undefined state. As shown in the function table in Figure 4-4(b), two input 

conditions cause the circuit to be in the set state. The initial condition is S = 1, 

R = 0, to bring the circuit to the set state. Applying a 0 to S with R = 0 leaves the 

circuit in the same state. After both inputs return to 0, it is possible to enter the reset 

state by applying a 1 to the R input. The 1 can then be removed from R, and the cir-

cuit remains in the reset state. Thus, when both inputs are equal to 0, the latch can be 

in either the set or the reset state, depending on which input was most recently a 1.

If a 1 is applied to both the inputs of the latch, both outputs go to 0. This produces 

an undefined state, because it violates the requirement that the outputs be the 

(b) Function table

S

1

R

1

Q

0

Q

1
0

0
0

1
1

0
0

0
0

1
0

0
0

1
1

0

Set state

Reset state

Undefined

(a) Logic diagram

R (Reset)
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 FIGURE 4-4
SR Latch with NOR Gates
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complements of each other. It also results in an indeterminate or unpredictable next 

state when both inputs return to 0 simultaneously. In normal operation, these  problems 

are avoided by making sure that 1s are not applied to both inputs simultaneously.

The behavior of the SR latch described in the preceding paragraph is illustrated 

by the ModelSim® logic simulator waveforms shown in Figure 4-5. Initially, the inputs 

and the state of the latch are unknown, as indicated by a logic level halfway between 0 

and 1. When R becomes 1 with S at 0, the latch is reset, with Q first becoming 0 and, in 

response, Q_b (which represents Q) becoming 1. Next, when R becomes 0, the latch 

remains reset, storing the 0 value present on Q. When S becomes 1 with R at 0, the 

latch is set, with Q_b going to 0 first and, in response, Q going to 1 next. The delays in 

the changes of Q and Q_b after an input changes are directly related to the delays of 

the two NOR gates used in the latch implementation. When S returns to 0, the latch 

remains set, storing the 1 value present on Q. When R becomes 1 with S equal to 0, 

the latch is reset, with Q changing to 0 and Q_b responding by changing to 1. The latch 

remains reset when R returns to 0. When S and R both become 1, both Q and Q_b 
become 0. When S and R simultaneously return to 0, both Q and Q_b take on 

unknown values. This form of indeterminate state behavior for the (S, R) sequence of 

inputs (1, 1), (0, 0) results from assuming simultaneous input changes and equal gate 

delays. The actual indeterminate behavior that occurs depends on circuit delays and 

slight differences in the times at which S and R change in the actual circuit. Regardless 

of the simulation results, these indeterminate behaviors are viewed as undesirable, 

and the input combination (1, 1) is avoided. In general, the latch state changes only in 

response to input changes and remains unchanged otherwise.

The S R latch with two  cross-  coupled NAND gates is shown in Figure 4-6. It 

operates with both inputs normally at 1, unless the state of the latch has to be changed. 

The application of a 0 to the S input causes output Q to go to 1, putting the latch in the 

set state. When the S input goes back to 1, the circuit remains in the set state. With 

both inputs at 1, the state of the latch is changed by placing a 0 on the R input. This 

causes the circuit to go to the reset state and stay there, even after both inputs return 

to 1. The condition that is undefined for this NAND latch is when both inputs are 

equal to 0 at the same time, an input combination that should be avoided.

Comparing the NAND latch with the NOR latch, note that the input signals 

for the NAND require the complement of those values used for the NOR. Because 

0 20 ns 40 ns 60 ns 80 ns

SR Latch

S

R

Q

Q_b

 FIGURE 4-5
Logic Simulation of SR Latch Behavior
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the NAND latch requires a 0 signal to change its state, it is referred to as an S  R latch. 

The bar above the letters designates the fact that the inputs must be in their comple-

ment form in order to act upon the circuit state.

The operation of the basic NOR and NAND latches can be modified by pro-

viding an additional control input that determines when the state of the latch can be 

changed. An SR latch with a control input is shown in Figure 4-7. It consists of the 

basic NAND latch and two additional NAND gates. The control input C acts as an 

enable signal for the other two inputs. The output of the NAND gates stays at the 

 logic-  1 level as long as the control input remains at 0. This is the quiescent condition 

for the S  R latch composed of two NAND gates. When the control input goes to 1, 

information from the S and R inputs is allowed to affect the S  R latch. The set state is 

reached with S = 1,  R = 0, and C = 1. To change to the reset state, the inputs must 

be S = 0,  R = 1, and C = 1. In either case, when C returns to 0, the circuit remains 

in its current state. Control input C = 0 disables the circuit so that the state of the 

output does not change, regardless of the values of S and R. Moreover, when C = 1 

and both the S and R inputs are equal to 0, the state of the circuit does not change. 

These conditions are listed in the function table accompanying the diagram.

An undefined state occurs when all three inputs are equal to 1. This condition 

places 0s on both inputs of the basic S  R latch, giving an undefined state. When the 

S (Set)
Q

(b) Function table
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0
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(a) Logic diagram
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 FIGURE 4-6
S  R Latch with NAND Gates

(a) Logic diagram (b) Function table
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 FIGURE 4-7
SR Latch with Control Input
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control input goes back to 0, one cannot conclusively determine the next state, since 

the S  R latch sees inputs (0, 0) followed by (1, 1). The SR latch with control input is 

an important circuit, because other latches and  flip-  flops are constructed from it. 

Sometimes the SR latch with control input is referred to as an SR (or RS)  flip-  flop—

however, according to our terminology, it does not qualify as a  flip-  flop, since the 

circuit does not fulfill the  flip-  flop requirements presented in the next section.

D Latch

One way to eliminate the undesirable undefined state in the SR latch is to ensure 

that inputs S and R are never equal to 1 at the same time. This is done in the D latch, 

shown in Figure 4-8. This latch has only two inputs: D (data) and C (control). The 

complement of the D input goes directly to the S input, and D is applied to the R in-

put. As long as the control input is 0, the S  R latch has both inputs at the 1 level, and 

the circuit cannot change state regardless of the value of D. The D input is sampled 

when C = 1. If D is 1, the Q output goes to 1, placing the circuit in the set state. If D 
is 0, output Q goes to 0, placing the circuit in the reset state.

The D latch receives its designation from its ability to hold data in its internal stor-

age. The binary information present at the data input of the D latch is transferred to the 

Q output when the control input is enabled (1). The output follows changes in the data 

input, as long as the control input is enabled. When the control input is disabled (0), the 

binary information that was present at the data input at the time the transition in C 
occurred is retained at the Q output until the control input C is enabled again.

4-3  FLIP-  FLOPS

A change in value on the control input allows the state of a latch in a  flip-  flop to 

switch. This change is called a trigger, and it enables, or triggers, the  flip-  flop. The D 

(b) Function table
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Next state of Q
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 FIGURE 4-8
D Latch
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latch with clock pulses on its control input is triggered every time a pulse to the 

 logic-  l level occurs. As long as the pulse remains at the active (1) level, any changes 

in the data input will change the state of the latch. In this sense, the latch is transpar-
ent, since its input value can be seen from the outputs while the control input is 1.

As the block diagram of Figure 4-3 shows, a sequential circuit has a feedback 

path from the outputs of the  flip-  flops to the combination circuit. As a consequence, 

the data inputs of the  flip-  flops are derived in part from the outputs of the same and 

other  flip-  flops. When latches are used for the storage elements, a serious difficulty 

arises. The state transitions of the latches start as soon as the clock pulse changes to the 

 logic-  1 level. The new state of a latch may appear at its output while the pulse is still 

active. This output is connected to the inputs of some of the latches through a combi-

national circuit. If the inputs applied to the latches change while the clock pulse is still 

in the  logic-  1 level, the latches will respond to new state values of other latches instead 

of the original state values, and a succession of changes of state instead of a single one 

may occur. The result is an unpredictable situation, since the state may keep changing 

and continue to change until the clock returns to 0. The final state depends on how 

long the clock pulse stays at the  logic-  1 level. Because of this unreliable operation, the 

output of a latch cannot be applied directly or through combinational logic to the input 

of the same or another latch when all the latches are triggered by a single clock signal.

 Flip-  flop circuits are constructed in such a way as to make them operate prop-

erly when they are part of a sequential circuit that employs a single clock. Note that 

the problem with the latch is that it is transparent: As soon as an input changes, 

shortly thereafter the corresponding output changes to match it. This transparency is 

what allows a change on a latch output to produce additional changes at other latch 

outputs while the clock pulse is at logic 1. The key to the proper operation of  flip-  flops 

is to prevent them from being transparent. In a  flip-  flop, before an output can change, 

the path from its inputs to its outputs is broken. So a  flip-  flop cannot “see” the change 

of its output or of the outputs of other, similar  flip-  flops at its input during the same 

clock pulse. Thus, the new state of a  flip-  flop depends only on the immediately pre-

ceding state, and the  flip-  flops do not go through multiple changes of state.

A common way to create a  flip-  flop is to connect two latches as shown in 

Figure 4-9, which is often referred to as a  master–  slave  flip-  flop. The left latch, the 

master, changes its value based upon the input while the clock is high. That value is 
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 FIGURE 4-9
Negative-  Edge-  Triggered D  Flip-  Flop
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then transferred to the right latch, the slave, when the clock changes to low. 

Depending upon the type of latch that is used to construct the  master–  slave  flip-  flop, 

there are two possible ways that the  flip-  flop can respond to changes in the clock. 

One way is to combine two latches such that (1) the inputs presented to the  flip-  flop 

when a clock pulse is present control its state and (2) the state of the  flip-  flop changes 

only when a clock pulse is not present. Such a circuit is called a  pulse-  triggered 
 flip-  flop. A  master–  slave  flip-  flop constructed with SR latches is a  pulse-  triggered 

 flip-  flop, because changes on either the S or R inputs of the master during the clock 

pulse can change the master’s output value. Thus a  master–  slave SR  flip-  flop depends 

on the input values throughout the entire high clock pulse.

In contrast, another way is to produce a  flip-  flop that triggers only during a sig-

nal transition from 0 to 1 (or from 1 to 0) on the clock and that is disabled at all other 

times, including for the duration of the clock pulse. Such a circuit is said to be an 

 edge-  triggered  flip-  flop.  Edge-  triggered  flip-  flops tend to be faster and have easier 

design constraints than  pulse-  triggered  flip-  flops, so they are much more commonly 

used. It is necessary to consider the SR  flip-  flop to illustrate the  pulse-  triggering 

approach, which is presented in the online Companion Website due to its lesser 

prevalence in contemporary design. The  edge-  triggered D  flip-  flop is currently the 

most common  flip-  flop, so its implementation is presented next.

 Edge-  Triggered  Flip-  Flop

An  edge-  triggered  flip-  flop ignores the clock pulse while it is at a constant level and 

triggers only during a transition of the clock signal. Some  edge-  triggered  flip-  flops 

trigger on the positive edge (0- to-  1 transition), whereas others trigger on the nega-

tive edge (1- to-  0 transition). The logic diagram of a  negative-  edge-  triggered D 

 flip-  flop is shown in Figure 4-9. The logic diagram of a  D-  type  positive-  edge-  triggered 

 flip-  flop to be analyzed in detail here appears in Figure  4-10. This  flip-  flop is a 

 master-  slave  flip-  flop, with the master a D latch and the slave an SR latch or a D 

latch. Also, an inverter is added to the clock input. Because the master latch is a D 
latch, the  flip-  flop exhibits  edge-  triggered rather than  pulse-  triggered behavior. For 

the clock input equal to 0, the master latch is enabled and transparent and follows 

the D input value. The slave latch is disabled and holds the state of the  flip-  flop fixed. 
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 FIGURE 4-10
Positive-  Edge-  Triggered D  Flip-  Flop
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When the positive edge occurs, the clock input changes to 1. This disables the master 

latch so that its value is fixed and enables the slave latch so that it copies the state of 

the master latch. The state of the master latch to be copied is the state that is present 

at the positive edge of the clock. Thus, the behavior appears to be edge triggered. 

With the clock input equal to 1, the master latch is disabled and cannot change, so 

the state of both the master and the slave remain unchanged. Finally, when the clock 

input changes from 1 to 0, the master is enabled and begins following the D value. 

But during the 1- to-  0 transition, the slave is disabled before any change in the master 

can reach it. Thus, the value stored in the slave remains unchanged during this 

 transition. An alternative implementation that requires fewer gates is given in 

 Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and  flip-  flops are 

shown in Figure 4-11. A  flip-  flop or latch is designated by a rectangular block with 
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 FIGURE 4-11
Standard Graphics Symbols for Latches and  Flip-  Flop
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inputs on the left and outputs on the right. One output designates the normal state of 

the  flip-  flop, and the other, with a bubble, designates the complement output. The 

graphics symbol for the SR latch or SR  flip-  flop has inputs S and R indicated inside 

the block. In the case of the S R latch, bubbles are added to the inputs to indicate that 

setting and resetting occur for 0-level inputs. The graphics symbol for the D latch or 

D  flip-  flop has inputs D and C indicated inside the block.

Below each symbol, a descriptive title, which is not part of the symbol, is given. 

In the titles,  denotes a positive pulse,  a negative pulse,  a positive edge, and  

a negative edge.

Triggering by the 0 level rather than the 1 level is denoted on the latch symbols 

by adding a bubble at the triggering input. The  pulse-  triggered  flip-  flop is indicated 

as such with a  right-  angle symbol called a postponed output indicator in front of the 

outputs. This symbol shows that the output signal changes at the end of the pulse. To 

denote that the  master–  slave  flip-  flop will respond to a negative pulse (i.e., a pulse to 

0 with the inactive clock value at 1), a bubble is placed on the C input. To denote that 

the  edge-  triggered  flip-  flop responds to an edge, an  arrowhead-  like symbol in front 

of the letter C designates a dynamic input. This dynamic indicator symbol denotes 

the fact that the  flip-  flop responds to edge transitions of the input clock pulses. A 

bubble outside the block adjacent to the dynamic indicator designates a 

 negative-  edge transition for triggering the circuit. The absence of a bubble desig-

nates a  positive-  edge transition for triggering.

In contemporary practice,  positive-   or  negative-  edge-  triggered D  flip-  flops are 

the most commonly used  flip-  flops; the symbols for  pulse-  triggered  flip-  flops are 

included for completeness but are not likely to be encountered outside of a 

textbook.

Often, all of the  flip-  flops used in a circuit are of the same triggering type, such 

as  positive-  edge triggered. All of the  flip-  flops will then change in relation to the 

same clocking event. When using  flip-  flops having different triggering in the same 

sequential circuit, one may still wish to have all of the  flip-  flop outputs change rela-

tive to the same clocking event. Those  flip-  flops that behave in a manner opposite 

from the adopted polarity transition can be changed by the addition of inverters to 

their clock inputs. The inverters unfortunately cause the clock signal to these 

 flip-  flops to be delayed with respect to the clocks to the other  flip-  flops. A preferred 

procedure is to provide both positive and negative pulses from the master clock 

 generator that are carefully aligned. We apply positive pulses to positive-pulse- 

triggered and negative-edge-triggered flip-flops and negative pulses to negative- 

pulse-triggered and  positive-  edge-  triggered  flip-  flops. In this way, all  flip-  flop outputs 

will change at the same time. Finally, to prevent specific timing problems, some 

designers use  flip-  flops having different triggering (i.e., both positive and negative 

 edge-  triggered  flip-  flops) with a single clock. In these cases,  flip-  flop outputs are pur-

posely made to change at different times.

In the remainder of this text, it is assumed that all  flip-  flops are of the 

 positive-  edge-  triggered type, unless otherwise indicated. This provides a uniform 

graphics symbol for the  flip-  flops and consistent timing diagrams.

Note that there is no input to the D  flip-  flop that produces a “ no-  change” con-

dition. This condition can be accomplished either by disabling the clock pulses on 
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the C input or by leaving the clock pulses undisturbed and connecting the output 

back into the D input using a multiplexer when the state of the  flip-  flop must remain 

the same. The technique that disables clock pulses is referred to as clock gating. This 

technique typically uses fewer gates and saves power, but is often avoided because 

the gated clock pulses into the  flip-  flops are delayed. The delay, called clock skew, 

causes gated clock and  non-  gated clock  flip-  flops to change at different times. This 

can make the circuit unreliable without careful design, since the outputs of some 

 flip-  flops may reach others while their inputs are still affecting their state. To avoid 

this problem, delays must be inserted in the clock circuitry to align inverted and 

 non-  inverted clocks. If possible, this situation should be avoided entirely by using 

 flip-  flops that trigger on the same edge.

Direct Inputs

 Flip-  flops often provide special inputs for setting and resetting them asynchronously 

(i.e., independently of the clock input C). The inputs that asynchronously set the 

 flip-  flop are called direct set or preset. The inputs that asynchronously reset the 

 flip-  flop are called direct reset or clear. Application of a logic 1 (or a logic 0 if a bubble 

is present) to these inputs affects the  flip-  flop output without the use of the clock. 

When power is turned on in a digital system, the states of its  flip-  flops can be any-

thing. The direct inputs are useful for bringing  flip-  flops in a digital system to an ini-

tial state prior to the normal clocked operation.

The IEEE standard graphics symbol for a  positive-  edge-  triggered D  flip-  flop 

with direct set and direct reset is shown in Figure 4-12(a). The notations C1 and 1D 
illustrate control dependency. An input labeled Cn, where n is any number, con-

trols all the other inputs starting with the number n. In the figure, C1 controls input 

1D. S and R have no 1 in front of them, and therefore they are not controlled by 

the clock at C1. The S and R inputs have circles on the input lines to indicate that 

they are active at the  logic-  0 level (i.e., a 0 applied will result in the set or reset 

action).

The function table in Figure 4-12(b) specifies the operation of the circuit. The 

first three rows in the table specify the operation of the direct inputs S and R. These 

inputs behave like NAND S R latch inputs (see Figure 4-6), operating independently 

(b) Function table

R DS C

0
Undefined

1

0

Q

1

1

0

1

Q

01 X0 X

0 X1 X

0 X0 X

1 01

1 11

(c) Simplified symbol

D

C
R

S

S

1D

C1

R

Q

Q

(a) Graphic symbol

 FIGURE 4-12
D  Flip-  Flop with Direct Set and Reset
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of the clock, and are therefore asynchronous inputs. The last two rows in the function 

table specify the clocked operation for values of D. The clock at C is shown with an 

upward arrow to indicate that the  flip-  flop is a  positive-  edge-  triggered type. The D 
input effects are controlled by the clock in the usual manner.

Figure  4-12(c) shows a less formal symbol for the  positive-  edge-  triggered 

 flip-  flop with direct set and reset. The positioning of S and R at the top and bottom of 

the symbol rather than on the left edge implies that resulting output changes are not 

controlled by the clock C.

 FLIP-  FLOP TIMING  Flip-  flop timing is covered in Section 4-9.

4-4 SEQUENTIAL CIRCUIT ANALYSIS

The behavior of a sequential circuit is determined from the inputs, outputs, and pres-

ent state of the circuit. The outputs and the next state are a function of the inputs and 

the present state. The analysis of a sequential circuit consists of obtaining a suitable 

description that demonstrates the time sequence of inputs, outputs, and states.

A logic diagram is recognized as a synchronous sequential circuit if it includes 

 flip-  flops with the clock inputs driven directly or indirectly by a clock signal and if 

the direct sets and resets are unused during the normal functioning of the circuit. The 

 flip-  flops may be of any type, and the logic diagram may or may not include combi-

national gates. In this section, an algebraic representation for specifying the logic 

diagram of a sequential circuit is given. A state table and a state diagram are pre-

sented that describe the behavior of the circuit. Specific examples will be used 

throughout the discussion to illustrate the various procedures.

Input Equations

The logic diagram of a sequential circuit consists of  flip-  flops and, usually, combina-

tional gates. The knowledge of the type of  flip-  flops used and a list of Boolean func-

tions for the combinational circuit provide all the information needed to draw the 

logic diagram of the sequential circuit. The part of the combinational circuit that 

generates the signals for the inputs of  flip-  flops can be described by a set of Boolean 

functions called  flip-  flop input equations. We adopt the convention of denoting the 

dependent variable in the  flip-  flop input equation by the  flip-  flop input symbol with 

the name of the  flip-  flop output as the subscript for the variable, e.g., D
A
. A  flip-  flop 

input equation is a Boolean expression for a combinational circuit. The output of 

this combinational circuit is connected to the input of a  flip-  flop—  thus the name 

“ flip-  flop input equation.”

The  flip-  flop input equations constitute a convenient algebraic expression for 

specifying the logic diagram of a sequential circuit. They imply the type of  flip-  flop 

from the letter symbol, and they fully specify the combinational circuit that drives 

the  flip-  flops. Time is not included explicitly in these equations, but is implied from 

the clock at the C input of the  flip-  flops. An example of a sequential circuit is given in 

Figure 4-13. The circuit has two  D-  type  flip-  flops, an input X, and an output Y. It can 

be specified by the following equations:
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 DA = AX + BX

 DB = AX

 Y = (A + B)X

The first two equations are for  flip-  flop inputs, and the third specifies the out-

put Y. Note that the input equations use the symbol D, which is the same as the input 

symbol of the  flip-  flops. The subscripts A and B designate the outputs of the respec-

tive  flip-  flops.

State Table

The functional relationships among the inputs, outputs, and  flip-  flop states of a se-

quential circuit can be enumerated in a state table. The state table for the circuit of 

Figure 4-13 is shown in Table 4-1. It consists of four sections, labeled present state, in-
put, next state, and output. The  present-  state section shows the states of  flip-  flops A 
and B at any given time t. The input section gives each value of X for each possible 

present state. Note that for each possible input combination, each of the present 

states is repeated. The  next-  state section shows the states of the  flip-  flops one clock 

period later, at time t + 1. The output section gives the value of output Y at time t 
for each combination of present state and input.

D

C

A

A

D

C

B

B

X

Clock

Y

 FIGURE 4-13
Example of a Sequential Circuit
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The derivation of a state table consists of first listing all possible binary combi-

nations of present state and inputs. In Table 4-1, there are eight binary combinations, 

from 000 to 111. The  next-  state values are then determined from the logic diagram or 

from the  flip-  flop input equations. For a D  flip-  flop, the relationship A(t + 1) = DA(t) 

holds. This means that the next state of  flip-  flop A is equal to the present value of its 

input D. The value of the D input is specified in the  flip-  flop input equation as a func-

tion of the present state of A and B and input X. Therefore, the next state of  flip-  flop 

A must satisfy the equation

A(t + 1) = DA = AX + BX

The  next-  state section in the state table under column A has three 1s, where the pres-

ent state and input value satisfy the conditions (A, X) = 11 or (B, X) = 11. 

Similarly, the next state of  flip-  flop B is derived from the input equation

B(t + 1) = DB = AX

and is equal to 1 when the present state of A is 0 and input X is equal to 1. The output 

column is derived from the output equation

Y = AX + BX

The state table of any sequential circuit with  D-  type  flip-  flops is obtained in 

this way. In general, a sequential circuit with m  flip-  flops and n inputs needs 2m+n rows 

in the state table. The binary numbers from 0 through 2m+n − 1 are listed in the com-

bined  present-  state and input columns. The  next-  state section has m columns, one for 

each  flip-  flop. The binary values for the next state are derived directly from the D 
 flip-  flop input equations. The output section has as many columns as there are output 

variables. Its binary values are derived from the circuit or from the Boolean func-

tions in the same manner as in a truth table.

Table 4-1 is  one-  dimensional in the sense that the present state and input com-

binations are combined into a single column of combinations. A  two-  dimensional 

 TABLE 4-1
State Table for Circuit of Figure 4-13

Present State Input Next State Output

A B X A B Y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0
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state table having the present state tabulated in the left column and the inputs tabu-

lated across the top row is also frequently used. The  next-  state entries are made in 

each cell of the table for the  present-  state and input combination corresponding to 

the location of the cell. A similar  two-  dimensional table is used for the outputs if 

they depend upon the inputs. Such a state table is shown in Table 4-2. Sequential cir-

cuits in which the outputs depend on the inputs, as well as on the states, are referred 

to as Mealy model circuits. Otherwise, if the outputs depend only on the states, then a 

 one-  dimensional column suffices. In this case, the circuits are referred to as Moore 
model circuits. Each model is named after its originator.

As an example of a Moore model circuit, suppose we want to obtain the logic 

diagram and state table of a sequential circuit that is specified by the  flip-  flop input 

equation

DA = A ⊕ X ⊕ Y

and output equation

Z = A

The DA symbol implies a  D-  type  flip-  flop with output designated by the letter A. The 

X and Y variables are taken as inputs and Z as the output. The logic diagram and 

state table for this circuit are shown in Figure 4-14. The state table has one column 

for the present state and one column for the inputs. The next state and output are 

also in single columns. The next state is derived from the  flip-  flop input equation, 

which specifies an odd function. (See Section 2-6.) The output column is simply a 

copy of the column for the  present-  state variable A.

State Diagram

The information available in a state table may be represented graphically in the form 

of a state diagram. A state is represented by a circle, and transitions between states 

are indicated by directed lines connecting the circles. Examples of state diagrams are 

given in Figure 4-15. Figure 4-15(a) shows the state diagram for the sequential circuit 

in Figure 4-13 and its state table in Table 4-1. The state diagram provides the same 

 TABLE 4-2
Two-  Dimensional State Table for the Circuit in Figure 4-13

Present  

State

Next State Output

X = 0 X = 1 X = 0 X = 1

A B A B A B Y Y

0 0 0 0 0 1 0 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 1 0

1 1 0 0 1 0 1 0
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information as the state table and is obtained directly from it. The binary number in-

side each circle identifies the state of the  flip-  flops. For Mealy model circuits, the di-

rected lines are labeled with two binary numbers separated by a slash. The input 

value during the present state precedes the slash, and the value following the slash 

gives the output value during the present state with the given input applied. For 

(b) State table
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0
0
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1
1
1

Output
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0
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(a) Logic diagram
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 FIGURE 4-14
Logic Diagram and State Table for DA = A ⊕ X ⊕ Y
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 FIGURE 4-15
State Diagrams
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example, the directed line from state 00 to state 01 is labeled 1/0, meaning that when 

the sequential circuit is in the present state 00 and the input is 1, the output is 0. After 

the next clock transition, the circuit goes to the next state, 01. If the input changes to 

0, then the output becomes 1, but if the input remains at 1, the output stays at 0. This 

information is obtained from the state diagram along the two directed lines emanat-

ing from the circle with state 01. A directed line connecting a circle with itself indi-

cates that no change of state occurs.

The state diagram of Figure 4-15(b) is for the sequential circuit of Figure 4-14. 

Here, only one  flip-  flop with two states is needed. There are two binary inputs, and 

the output depends only on the state of the  flip-  flop. For such a Moore model circuit, 

the slash on the directed lines is not included, since the outputs depend only on the 

state and not on the input values. Instead, the output is included inside the state 

circle, indicated here with a slash. There are two input conditions for each state tran-

sition in the diagram, and they are separated by a comma. When there are two input 

variables, each state may have up to four directed lines coming out of the corre-

sponding circle, depending upon the number of states and the next state for each 

binary combination of the input values.

There is no difference between a state table and a state diagram, except for 

their manner of representation. The state table is easier to derive from a given logic 

diagram and input equations. The state diagram follows directly from the state table. 

The state diagram gives a pictorial view of state transitions and is the form more 

suitable for human interpretation of the operation of the circuit. For example, the 

state diagram of Figure 4-15(a) clearly shows that, starting at state 00, the output is 0 

as long as the input stays at 1. The first 0 input after a string of 1s gives an output of 1 

and sends the circuit back to the initial state of 00. The state diagram of Figure 4-15(b) 

shows that the circuit stays at a given state as long as the two inputs have the same 

value (00 or 11). There is a state transition between the two states only when the two 

inputs are different (01 or 10).

The state diagram in Figure 4-15(a) is useful for illustrating two concepts: 

(1) the reduction of the number of states required by using the concept of equiva-

lent states, and (2) the mixing of Mealy and Moore types of outputs in a single 

description. Two states are equivalent if the response for each possible input 

sequence is an identical output sequence. This definition can be recast in terms of 

states and outputs. Two states are equivalent if the output produced for each input 

symbol is identical and the next states for each input symbol are the same or 

equivalent.

EXAMPLE 4-1  Equivalent State Illustration

In the state diagram in Figure 4-15(a), consider states 10 and 11. Under input 0, both 

states produce output 1, and, under input 1, both states produce output 0. Under in-

put 0, both states have the same state 00 as their next state. Under input 1, both 

states have state 10 as their next state. By the second definition above, states 11 and 

10 are equivalent. These equivalent states can be merged into a single state entered 

from state 01 under input 1, with a transition under input 0 to state 00 with an output 

of 1, and a transition back to itself under input 1 with an output of 0. In the original 
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diagram, consider states 01 and 11. These states satisfy the output conditions for 

 being equivalent. Under 0, they both go to next state 00, and under 1, they go to next 

states 11 and 10, which have just been shown to be equivalent. So, states 01 and 11 

are equivalent. Since state 11 is equivalent to state 10, all three of these states are 

equivalent. Merging these three states, states 11 and 10 can be deleted and state 01 

can be modified to have the transition under 1 with output 0 back to state 01. If the 

circuit in Figure 4-13 was analyzed for redesign, the new design has two states and 

one  flip-  flop instead of four states and two  flip-  flops. ■

State reduction through state equivalence may or may not result in reduced 

cost, since cost is dependent on combinational circuit cost as well as  flip-  flop cost. 

Nevertheless, combining equivalent states has inherent advantages in the design, 

verification, and testing processes.

Ordinarily, the Mealy and Moore output types are not mixed in a given sequen-

tial circuit representation. In doing real designs, however, such mixing may be 

convenient.

EXAMPLE 4-2  Mixed Mealy and Moore Outputs

The state diagram in Figure 4-15(a) can also be used to illustrate a mixed output 

model that uses both Mealy and Moore type outputs. For state 00, all input values 

produce the same output value 0 on Z. As a consequence, the output depends only 

on the state 00 and satisfies the definition of a Moore type output. If desired, the out-

put value 0 can be moved from the outgoing transitions on state 00 to within the 

circle for state 00. For the remaining states, however, the outputs for the two input 

values on X differ, so the output values are the Mealy type and must remain on the 

state transitions. ■

Unfortunately, this representation does not translate well to the two- 

dimensional state tables. It can be translated to a modified  one-  dimensional state 

table with rows that contain the state and the Moore output value without the out-

put conditions, and rows that contain the state, an output condition, and the Mealy 

value output.

SEQUENTIAL CIRCUIT CLOCKS AND TIMING The details of sequential circuit clocks and 

timing are discussed in Section 4-10.

Sequential Circuit Simulation

Simulation of sequential circuit involves issues not present in combinational circuits. 

First of all, rather than a set of input patterns for which the order of application is 

immaterial, the patterns must be applied in a sequence. This sequence includes time-

ly application of input patterns as well as clock pulses. Second, there must be some 

means to place the circuit in a known state. Realistically, initialization to a known 

state is accomplished by application of an initialization subsequence at the  beginning 
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of the simulation. In the simplest case, this subsequence is a reset signal. For  flip-  flops 

lacking a circuit reset (or set), a longer sequence typically consisting of an initial re-

set followed by a sequence of normal input patterns is required. A simulator may 

also have a means of setting the initial state, which is useful to avoid long sequences 

that may be needed to get to an initial state. Aside from getting to an initial state, a 

third issue is observing the state to verify correctness. In some circuits, application of 

an additional sequence of inputs is required to determine the state of the circuit at a 

given point. The simplest alternative is to set up the simulation so that the state of 

the circuit can be observed directly; the approach to doing this varies depending on 

the simulator and whether or not the circuit contains hierarchy. A crude approach 

that works with all simulators is to add a circuit output with a path from each state 

variable signal.

A final issue to be dealt with in more detail is the timing of application of inputs 

and observation of outputs relative to the active clock edge. Initially, we discuss the 

timing for functional simulation having as its objective determination or verification 

of the function of the circuit. In functional simulation, components of the circuit 

have no delay or a very small delay. Much more complex is timing simulation, in 

which the circuit elements have realistic delays and verification of the proper opera-

tion of the circuit in terms of timing is the simulation objective.

Some simulators, by default, use a very small component delay for functional 

simulation so that the order of changes in signals can be observed, provided that the 

time range used for display is small enough. Suppose that the component delays for 

gates and the delays associated with  flip-  flops are all 0.1 ns for such a simulation and 

that the longest delay through a path from positive clock edge to positive clock edge 

is 1.2 ns in your circuit. If you happen to use a clock period of 1.0 ns for your simula-

tion, when the result depends on the longest delay, the simulation results will be in 

error! So for functional simulation with such a simulator, either a longer clock period 

should be chosen for the simulation or the default delay needs to be changed by the 

user to a smaller value.

In addition to the clock period, the time of application of inputs relative to the 

positive clock edge is important. For functional simulation, to allow for any small, 

default component delays, the inputs for a given clock cycle should be changed well 

before the positive clock edge, preferably early in the clock cycle while the clock is 

still at a 1 value. This is also an appropriate time to change the reset signal values to 

insure that the reset signal is controlling the state rather than the clock edge or a 

meaningless combination of clock and reset.

A final issue is the time at which to examine a simulation result in functional 

simulation. At the very latest, the  state-  variable values and outputs should be at their 

final values just before the positive clock edge. Although it may be possible to 

observe the values at other locations, this location provides a foolproof observation 

time for functional simulation.

The ideas just presented are summarized in Figure 4-16. Input changes in Reset 

and Input, encircled in blue, occur at about the 25 percent point in the clock cycle. 

Signal values on State and Output, as well as on Input and Reset, all encircled in blue 

and listed, are observed just before the 100 percent point in the clock cycle.
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4-5 SEQUENTIAL CIRCUIT DESIGN

The design of clocked sequential circuits starts from a set of specifications and culmi-

nates in a logic diagram or a list of Boolean functions from which the logic diagram 

can be obtained. In contrast to a combinational circuit, which is fully specified by a 

truth table, a sequential circuit requires a state table for its specification. Thus, the 

first step in the design of a sequential circuit is to obtain a state table or an equivalent 

representation such as a state diagram.

A synchronous sequential circuit is made up of  flip-  flops and combinational 

gates. The design of the circuit consists of choosing the  flip-  flops and finding a combi-

national circuit structure which, together with the  flip-  flops, produces a circuit that 

fulfills the stated specifications. The minimum number of  flip-  flops is determined by 

the number of states in the circuit; n  flip-  flops can represent up to 2n binary states. 

The combinational circuit is derived from the state table by finding the  flip-  flop input 

equations and output equations. In fact, once the type and the number of  flip-  flops 

are determined and binary combinations are assigned to the states, the design pro-

cess transforms a sequential circuit problem into a combinational circuit problem. In 

this way, the techniques of combinational circuit design can be applied.

Design Procedure

The following procedure for the design of sequential circuits is similar to the proce-

dure for combinational circuits that was introduced in Chapters 1 through 3, but the 

procedure for sequential circuits has some additional steps:

1. Specification: Write a specification for the circuit, if not already available.

2. Formulation: Obtain either a state diagram or a state table from the statement 

of the problem.

3. State Assignment: If only a state diagram is available from step 1, obtain the 

state table. Assign binary codes to the states in the table.

Clock

Reset

Input

State

Output

0

0

1

1

 FIGURE 4-16
Simulation Timing
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4.  Flip-  Flop Input Equation Determination:  Select the  flip-  flop type or types. 

Derive the  flip-  flop input equations from the  next-  state entries in the encoded 

state table.

5. Output Equation Determination:  Derive output equations from the output 

entries in the state table.

6. Optimization:  Optimize the  flip-  flop input equations and output equations.

7. Technology Mapping:  Draw a logic diagram of the circuit using  flip-  flops, 

ANDs, ORs, and inverters. Transform the logic diagram to a new diagram us-

ing the available  flip-  flop and gate technology.

8. Verification:  Verify the correctness of the final design.

For convenience, we often omit the technology mapping in step 7, since it does not 

contribute to our understanding once it is understood. Also, for more complex cir-

cuits, we may skip the use of either the state table or state diagram.

Finding State Diagrams and State Tables

The specification for a circuit is often in the form of a verbal description of the be-

havior of the circuit. This description needs to be interpreted in order to find a state 

diagram or state table in the formulation step of the design procedure. This is often 

the most creative part of the design procedure, with many of the subsequent steps 

performed automatically by  computer-  based tools.

Fundamental to the formulation of state diagrams and tables is an intuitive 

understanding of the concept of a state. A state is used to “remember” something 

about the history of input combinations applied to the circuit either at triggering 

clock edges or during triggering pulses. In some cases, the states may literally store 

input values, retaining a complete history of the sequence appearing on the inputs. In 

most cases, however, a state is an abstraction of the sequence of input combinations 

at the triggering points. For example, a given state S
1
 may represent the fact that 

among the sequence of values applied to a single bit input X, “the value 1 has 

appeared on X for the last three consecutive clock edges.” Thus, the circuit would be 

in state S
1
 after sequences ... 00111 or ... 0101111, but would not be in state S

1
 after 

sequences ... 00011 or ... 011100. A state S
2
 might represent the fact that the sequence 

of 2-bit input combinations applied are “in order 00, 01, 11, 10 with any number of 

consecutive repetitions of each combination permitted and 10 as the most recently 

applied combination.” The circuit would be in state S
2
 for the following example 

sequences: 00, 00, 01, 01, 01, 11, 10, 10 or 00, 01, 11, 11, 11, 10. The circuit would not 

be in state S
2
 for sequences: 00, 11, 10, 10 or 00, 00, 01, 01, 11, 11. In formulating a 

state diagram or state table it is useful to write down the abstraction represented by 

each state. In some cases, it may be easier to describe the abstraction by referring to 

values that have occurred on the outputs as well as on the inputs. For example, state 

S
3
 might represent the abstraction that “the output bit Z

2
 is 1, and the input combina-

tion has bit X
2
 at 0.” In this case, Z

2
 equal to 1 might uniquely represent a complex 

set of past sequences of input combinations that would be more difficult to describe 

in detail.
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As one formulates a state table or state diagram, new states are added. There is 

potential for the set of states to become unnecessarily large or potentially even 

infinite in size! Instead of adding a new state for every current state and possible 

applied input combination, it is essential that states be reused as next states to pre-

vent uncontrolled state growth as outlined above. The mechanism for doing this is a 

knowledge of the abstraction that each state represents. To illustrate, consider state 

S
1
 defined previously as an abstraction: “the value 1 has appeared at the last three 

consecutive clock edges.” If S
1
 has been entered due to the sequence ... 00111 and the 

next input is a 1, giving sequence ... 001111, is a new state needed or can the next 

state be S
1
? By examining the new sequence, we see that the last three input values 

are 1s, which matches the abstraction defined for state S
1
. So, state S

1
 can be used as 

the next state for current state S
1
 and input value 1, avoiding the definition of a new 

state. This careful process of avoiding equivalent states is in lieu of applying a 

 state-  minimization procedure to combine equivalent states.

When the power in a digital system is first turned on, the state of the  flip-  flops 

is unknown. It is possible to apply an input sequence with the circuit in an unknown 

state, but that sequence must be able to bring a portion of the circuit to a known 

state before meaningful outputs can be expected. In fact, many of the larger sequen-

tial circuits we design in subsequent chapters will be of this type. In this chapter, 

however, the circuits that we design must have a known initial state, and further, a 

hardware mechanism must be provided to get the circuit from any unknown 

state into this state. This mechanism is a reset or master reset signal. Regardless of all 

other inputs applied to the circuit, the reset places the circuit in its initial state. In 

fact, the initial state is often called the reset state. The reset signal is usually activated 

automatically when the circuit is powered up. In addition, it may be activated elec-

tronically or by pushing a reset button.

The reset may be asynchronous, taking place without clock triggering. In this 

case, the reset is applied to the direct inputs on the circuit  flip-  flops. as shown in 

Figure 4-17(a). This design assigns 00...0 to the initial state of the  flip-  flops to be reset. 

If an initial state with a different code is desired, then the Reset signal can be selec-

tively connected to direct set inputs instead of direct reset inputs. It is important to 

note that these inputs should not be used in the normal synchronous circuit design 

process. Instead, they are reserved only for an asynchronous reset that returns the 

system, of which the circuit is a component, to an initial state. Using these direct 

(a) Asynchronous Reset

Y

C

D

C

Reset

R

(b) Synchronous Reset

Y

C

Reset
D

C

 FIGURE 4-17
Asynchronous and Synchronous Reset for D  Flip-  flops
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inputs as a part of the synchronous circuit design violates the fundamental synchro-

nous circuit definition, since it permits a  flip-  flop state to change asynchronously 

within direct clock triggering.

Alternatively, the reset may be synchronous and require a  clock-  triggering 

event to occur. The reset must be incorporated into the synchronous design of the 

circuit. A simple approach to synchronous reset for D  flip-  flops, without formally 

including the reset bit in the input combinations, is to add the AND gate shown in 

Figure 4-17(b) after doing the normal circuit design. This design also assigns 00 ... 0 

to the initial state. If a different initial state code is desired, then OR gates with Reset 
as an input can selectively replace the AND gates with inverted Reset.

To illustrate the formulation process, two examples follow, each resulting in a 

different style of state diagram.

EXAMPLE 4-3  Finding a State Diagram for a Sequence Recognizer

The first example is a circuit that recognizes the occurrence of a particular sequence 

of bits, regardless of where it occurs in a longer sequence. This “sequence recognizer” 

has one input X and one output Z. It has Reset applied to the direct reset inputs on 

its  flip-  flops to initialize the state of the circuit to all zeros. The circuit is to recognize 

the occurrence of the sequence of bits 1101 on X by making Z equal to 1 when the 

previous three inputs to the circuit were 110 and current input is a 1. Otherwise, Z 
equals 0.

The first step in the formulation process is to determine whether the state dia-

gram or table must be a Mealy model or Moore model circuit. The portion of the 

preceding specification that says “... making Z equal to 1 when the previous three 

inputs to the circuit are 110 and the current input is a 1” implies that the output is 

determined from not only the current state, but also the current input. As a conse-

quence, a Mealy model circuit with the output dependent on both state and inputs is 

required.

Recall that a key factor in the formulation of any state diagram is to recognize 

that states are used to “remember” something about the history of the inputs. For 

example, for the sequence 1101 to be able to produce the output value 1 coincident 

with the final 1 in the sequence, the circuit must be in a state that “remembers” that 

the previous three inputs were 110. With this concept in mind, we begin to formulate 

the state diagram by defining an arbitrary initial state A as the reset state, and the 

state in which “none of the sequence to be recognized has occurred.” If a 1 occurs on 

the input, since 1 is the first bit in the sequence, this event must be “remembered,” 

and the state after the clock pulse cannot be A. So a second state, B, is established to 

represent the occurrence of the first 1 in the sequence. Further, to represent the 

occurrence of the first 1 in the sequence, a transition is placed from A to B and 

labeled with a 1. Since this is not the final 1 in the sequence 1101, its output is a 0. This 

initial portion of the state diagram is given in Figure 4-18(a).

The next bit of the sequence is a 1. When this 1 occurs in state B, a new state is 

needed to represent the occurrence of two 1s in a row on the  input—  that is, the 

occurrence of an additional 1 while in state B. So a state C and the associated transi-

tion are added, as shown in Figure 4-18(b). The next bit of the sequence is a 0. When 
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this 0 occurs in state C, a state is needed to represent the occurrence of the two 1s in 

a row followed by a 0. So the additional state D with a transition having a 0 input and 

0 output is added. Since state D represents the occurrence of 110 as the previous 

three input bit values on X, the occurrence of a 1 in state D completes the sequence 

to be recognized, so the transition for the input value 1 from state D has an output 

value of 1. The resulting partial state diagram, which completely represents the 

occurrence of the sequence to be recognized, is shown in Figure 4-18(c).

Note in Figure 4-18(c) that, for each state, a transition is specified for only one of 

the two possible input values. Also, the state that is the destination of the transition 

from D for input 1 is not yet defined. The remaining transitions must be based on the 

idea that the recognizer is to identify the sequence 1101, regardless of where it occurs in 

a longer sequence. Suppose that an initial part of the sequence 1101 is represented by a 

state in the diagram. Then, the transition from that state for an input value that rep-

resents the next input value in the sequence must enter a state such that the 1 output 

occurs if the remaining bits of the sequence are applied. For example, state C represents 

the first two bits, 11, of sequence 1101. If the next input value is 0, then the state that is 

entered, in this case, D, gives a 1 output if the remaining bit of the sequence, 1, is applied.

Next, evaluate where the transition for the 1 input from the D state is to go. 

Since the transition input is a 1, it could be the first or second bit in the sequence to 

be recognized. But because the circuit is in state D, it is evident that the prior input 

was a 0. So this 1 input is the first 1 in the sequence, since it cannot be preceded by a 

1. The state that represents the occurrence of a first 1 in the sequence is B, so the 

transition with input 1 from state D is to state B. This transition is shown in the 

(a)

1/0
A B

(b)

1/0 1/0
A CB

(c)

1/0 1/0 0/0 1/1
A C DB

(d)

1/0 1/0 0/0

1/0

1/1

0/0

0/0
0/0

A C DB

 FIGURE 4-18
Construction of a State Diagram for Example 4-3
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 diagram in Figure 4-18(d). Examining state C, we can trace back through states B 
and A to see that the occurrence of a 1 input in C is at least the second 1 in the 

sequence. The state representing the occurrence of two 1s in sequence is C, so the 

new transition is to state C. Since the combination of two 1s is not the sequence to be 

recognized, the output for the transition is 0. Repeating this same analysis for miss-

ing transitions from states B and A, the final state diagram in Figure  4-18(d) is 

obtained. The resulting state table is given in  two-  dimensional form in Table 4-3. ■

One issue that arises in the formulation of any state diagram is whether, in 

spite of best designer efforts, excess states have been used. This is not the case in the 

preceding example, since each state represents input history that is essential for rec-

ognition of the stated sequence. If, however, excess states are present, then it may be 

desirable to combine states into the fewest needed. This can be done using ad hoc 

methods as in Example  4-1 or formal  state-  minimization procedures. Due to the 

complexity of the latter, particularly in the case in which don’ t-  care entries appear in 

the state table, formal procedures are not covered here. For the interested student, 

 state-  minimization procedures are found in Reference 8 at the end of the chapter as 

well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states by 

recognizing potential state equivalence during the design process.

EXAMPLE 4-4  Finding a State Diagram for a  BCD–  to–  Excess-  3 Decoder

The  excess-  3 code for a decimal digit is the binary combination corresponding to the 

decimal digit plus 3. For example, the  excess-  3 code for decimal digit 5 is the binary 

combination for 5 + 3 = 8, which is 1000. The  excess-  3 code has desirable proper-

ties with respect to implementing decimal subtraction. In this example, the function 

of the circuit is similar to that of the combinational decoders in Chapter 3 except 

that the inputs, rather than being presented to the circuit simultaneously, are pre-

sented serially in successive clock cycles, least significant bit first. In Table 4-4(a), the 

input sequences and corresponding output sequences are listed with the least signifi-

cant bit first. For example, during four successive clock cycles, if 1010 is applied to 

the input, the output will be 0001. In order to produce each output bit in the same 

clock cycle as the corresponding input bit, the output depends on the present input 

 TABLE 4-3
State Table for State Diagram in Figure 4-18

Present  

State

Next State Output Z

X = 0 X = 1 X = 0 X = 1

A A B 0 0

B A C 0 0

C D C 0 0

D A B 0 1
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value as well as the state. The specifications also state that the circuit must be ready 

to receive a new 4-bit sequence as soon as the prior sequence has completed. The 

input to this circuit is labeled X and the output is labeled Z. In order to focus on the 

patterns for past inputs, the rows of Table 4-4(a) are sorted according to the first bit 

value, the second bit value, and the third bit value of the input sequences. 

Table 4-4(b) results.

The state diagram begins with an initial state, as shown in Figure  4-19(a). 

Examining the first column of bits in Table 4-4(b) reveals that a 0 produces a 1 out-

put and a 1 produces a 0 output. Next, we ask, “Do we need to remember the value of 

the first bit?” In Table 4-4(b), when the first bit is a 0, a 0 in the second bit results in 

an output of 1 and a 1 in the second bit gives an output of 0. In contrast, if the first bit 

is a 1, a 0 in the second bit causes an output of 0, and a 1 in the second bit gives out-

put 1. It is clear that we cannot determine the output for the second bit without 

“remembering” the value of the first bit. Thus, the first input equal to 0 and the first 

input equal to 1 must give different states, as shown in Figure 4-19(a), which also 

shows the input/output values for the arcs to the new states.

Next, it must be determined whether the inputs following the two new states need 

to have two states to remember the second bit value. In the first two columns of inputs 

in Table 4-4(b), sequence 00 produces outputs for the third bit that are 0 for input 0 and 

1 for input 1. On the other hand, for sequence 01, the outputs for the third bit are 1 for 

input 0 and 0 for input 1. Since these are different for the same input values in the third 

bit, separate states are necessary, as shown in Figure 4-19(b). A similar analysis for input 

sequences 10 and 11, which examines the outputs for both the third and fourth bits, 

shows that the value of the second bit has no effect on the output values. Thus, in 

Figure 4-19(b), there is only a single next state for state B1 = 1.

 TABLE 4-4
Sequence Tables for  Code-  Converter Example

 (a)  Sequences in Order of  

Digits Represented

 (b) Sequences in Order of  

BCD Input Excess-  3 Output BCD Input  Excess-  3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0

1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0

0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1

1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0

0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1

1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1

0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0

1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1
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At this point, six potential new states might result from the three states just 

added. Note, however, that these states are needed only to define the outputs for the 

fourth input bit, since it is known that the next state thereafter will be Init in prepara-

tion for applying the next input sequence of four bits. How many states does one 

need to specify the different possibilities for the output value in the last bit? Looking 

at the final column, a 1 input always produces a 1 output and a 0 may produce either 

a 0 or a 1 output. Thus, at most two states are necessary, one that has a 0 output to a 0 

and one that has a 1 output to a 0. The output for a 1 input is the same for both states. 

In Figure  4-19(c), we have added these two states. For the circuit to be ready to 

receive the next sequence, the next state for these new states is Init.
Remaining is the determination of the blue arcs shown in Figure 4-19(d). The 

arcs from each of the bit B2 states can be defined based on the third bit in the input/

output sequences. The next state can be chosen based on the response to input 0 in 

the fourth bit of the sequence. The B2 state reaches the B3 state on the left with 

B3 = 0 or B3 = 1 as indicated by B3 = X on the upper half of the B3 state. The 

other two B2 states reach this same state with B3 = 1, as indicated on the lower half 

of the state. These same two B2 states reach the B3 state on the right with B3 = 0, as 

indicated by the label on the state. ■

0/1

Init

1/0

(a) (b)

0/0 or 1/1

0/1

Init

1/0

0/1 1/0

(d)

0/1

Init

1/0

0/1 1/0 0/0 or 1/1

0/0 or 1/1

0/1 or 1/1

0/0 or 1/1
0/1 1/0

1/0

0/1

(c)

0/1

Init

1/0

0/1 1/0 0/0 or 1/1

0/0 or 1/1

0/1 or 1/1

 FIGURE 4-19
Construction of a State Diagram for Example 4-4
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State Assignment

In contrast to the states in the analysis examples, the states in the diagrams con-

structed have been assigned symbolic names rather than binary codes. It is necessary 

to replace these symbolic names with binary codes in order to proceed with the de-

sign. In general, if there are m states, then the codes must contain at least n bits, 

where 2n ≥ m, and each state must be assigned a unique code. So, for the circuit in 

Table 4-3 with four states, the codes assigned to the states require two bits. Note that 

minimizing the number of bits in the state code does not always minimize the cost of 

the overall sequential circuit. The combinational logic may have become more costly 

in spite of the gains achieved by having fewer  flip-  flops.

The first state assignment method we will consider is to assign codes with n bits 

(2n ≥ m > 2n-1) such that the code words are assigned in counting order. For example, 

for states A, B, C, and D, the codes 00, 01, 10, and 11 are assigned to A, B, C, and D, 

respectively. An alternative that is attractive, particularly if  K-  maps are being used 

for optimization, is to assign the codes in Gray code order, with codes 00, 01, 11, and 

10 assigned to A, B, C, and D, respectively.

More systematic assignment of codes attempts to reduce the cost of the 

sequential circuit combinational logic. A number of methods based on heuristics 

are available for targeting minimum  two-  level and minimum multilevel combina-

tional logic. The problem is difficult and the solutions are too complex for treatment 

here.

There are a number of specialized state assignment methods, some of which 

are based on efficient structures for implementing at least a portion of the transi-

tions. The most popular of these methods is the one  flip-  flop per state or  one-  hot 
assignment. This assignment uses a distinct  flip-  flop for each of the m states, so it 

generates codes that are m bits long. The sequential circuit is in a state when the 

 flip-  flop corresponding to that state contains a 1. By definition, all  flip-  flops corre-

sponding to the other states must contain 0. Thus, each valid state code contains m 
bits, with one bit equal to 1 and all other m − 1 bits equal to 0. This code has the prop-

erty that going from one state to another can be thought of as passing a token, the 

single 1, from the source state to the destination state. Since each state is represented 

by a single 1, before combinational optimization, the logic for entering a particular 

state is totally separate from the logic for entering other states. This is in contrast to 

the mixing of the logic that occurs when multiple 1s are present in the destination 

and source state codes. This separation can often result in simpler, faster logic, and in 

logic that is simpler to debug and analyze. On the other hand, the  flip-  flop cost may 

be overriding. Finally, while the state codes listed have values for m variables, when 

equations are written, only the variable which is 1 is listed. For example, for 

ABCD =  0100, instead of writing ABC D, we can simply write B. This is because 

all of the remaining 2m − m codes never occur and as a consequence produce don’t 

cares.

The use of a sequentially assigned Gray code and of a  one-  hot code for the 

sequence recognizer design is illustrated in the following example. In the next sub-

section, the designs will be completed and the costs of these two assignments 

compared.
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EXAMPLE 4-5  State Assignments for the Sequence Recognizer

The Gray code is selected in this case simply because it makes it easier for the 

 next-  state and output functions to be placed on a Karnaugh map. The state table de-

rived from Table 4-3 with codes assigned is shown in Table 4-5. States A, B, C, and D 

are replaced in the present state column by their respective codes, 00, 01, 11, and 10. 

Next, each of the next states is replaced by its respective code. This 2-bit code uses a 

minimum number of bits.

A  one-  hot code assignment is illustrated in Table 4-6. States A, B, C, and D are 

replaced in the Present State column by their respective codes, 1000, 0100, 0010, and 

0001. Next, each of the next states is replaced by its respective code. Since there are 

four states, a 4-bit code is required, with one state variable for each state. ■

 TABLE 4-5
Table 4-3 with Names Replaced by a 2-Bit Binary Gray Code

Present State Next State Output Z

AB X = 0 X = 1 X = 0 X = 1

00 00 01 0 0

01 00 11 0 0

11 10 11 0 0

10 00 01 0 1

 TABLE 4-6
 Table 4-3 with Names Replaced by a 4-Bit  One-  Hot Code

Present State Next State Output Z

ABCD X = 0 X = 1 X = 0 X = 1

1000 1000 0100 0 0

0100 1000 0010 0 0

0010 0001 0010 0 0

0001 1000 0100 0 1

Designing with D  Flip-  Flops

The remainder of the sequential circuit design procedure will be illustrated by 

the next two examples. We wish to design two clocked sequential circuits for the 

sequence recognizer, one that operates according to the  Gray-  coded state table 

given in Table 4-5 and the other according to the  one-  hot coded table given in 

Table 4-6.
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EXAMPLE 4-6  Gray Code Design for the Sequence Recognizer

For the  Gray-  coded design, two  flip-  flops are needed to represent the four states. 

Note that the two state variables are labeled with letters A and B.

Steps 1 through 3 of the design procedure have been completed for this circuit. 

Beginning step 4, D  flip-  flops are chosen. To complete step 4, the  flip-  flop input equa-

tions are obtained from the  next-  state values listed in the table. For step 5, the output 

equation is obtained from the values of Z in the table. The  flip-  flop input equations 

and output equation can be expressed as a sum of minterms of the  present-  state vari-

ables A and B and the input variable X:

 A(t + 1) = DA(A,  B, X) = Σm (3,  6,  7)

 B(t + 1) = DB(A,  B, X) = Σm (1,  3,  5,  7)

 Z(A,  B, X) = Σm (5)

In the case of this table with the Gray code on the left margin and a trivial Gray 

code at the top of the table, the adjacencies of the cells of the state table match the 

adjacencies of a  K-  map. This permits the values for the two next state variables 

A(t + 1) and B(t = 1) and output Z to be transferred directly to the three  K-  maps 

in Figure 4-20, bypassing the  sum-  of-  minterms equations. The three Boolean func-

tions, simplified by using the  K-  maps, are:

 DA = AB + BX

 DB = X

 Z = ABX

The logic diagram of the sequential circuit is shown in Figure 4-21. The  gate-  input 

cost of the combinational logic is 9. A rough estimate for the  gate-  input cost for a 

 flip-  flop is 14. Thus the overall  gate-  input cost for this circuit is 37. ■
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 FIGURE 4-20
K-  Maps for the  Gray-  Coded Sequential Circuit with D  Flip-  Flops
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EXAMPLE 4-7   One-  Hot Code Design for the Sequence Recognizer

For the  one-  hot coded design in Table 4-6, four  flip-  flops are needed to represent the 

four states. Note that the four state variables are labeled A, B, C, and D. As is often 

the case, the state variables have names that are the same as those of the correspond-

ing states.

Just as for the  Gray-  coded case, steps 1 through 3 of the design procedure have 

been completed and D  flip-  flops have been chosen. To complete step 4, the  flip-  flop 

input equations are obtained from the  next-  state values. Although the state codes 

listed have values for four variables, recall that when equations from a  one-  hot code 

are written, only the variable with value 1 is included. Also, recall that each term of 

the excitation equation for state variable Y is based on a 1 value for variable Y in a 

 next-  state code entry and the sum of these terms is taken over all such 1s in the 

 next-  state code entries. For example, a 1 appears for  next-  state variable B for present 

state 1000 (A) and input value X = 1, and for present state 0001 (D) and input 

value X = 1. This gives B(t + 1) = AX + DX. For step 5, the output equation is 

obtained from the locations of the 1 values of Z in the output table. The resulting 

 flip-  flop input equations and output equation are:

 A(t + 1) = DA = AX + BX + DX = (A + B + D)X

 B(t + 1) = DB = AX + DX = (A + D)X

 C(t + 1) = DC = BX + CX = (B + C)X

 D(t + 1) = DD = CX

 Z = DX

The logic diagram of the sequential circuit is shown in Figure 4-22. The  gate-  input 

cost of the combinational logic is 19 and the cost of four  flip-  flops using the estimate 
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 FIGURE 4-21
Logic Diagram for the  Gray-  Coded Sequence Recognizer with D  Flip-  Flops
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from Example 4-5 is 56, giving a total gate input cost of 74, almost twice that of the 

Gray code design. This result supports the view that the  one-  hot design tends to be 

more costly, but, in general, there may be reasons for its use with respect to other 

factors such as performance, reliability, and ease of design and verification. ■

Designing with Unused States

A circuit with n  flip-  flops has 2n binary states. The state table from which the circuit 

was originally derived, however, may have any number of states, m ≤ 2n. States that 

are not used in specifying the sequential circuit are not listed in the state table. In 

simplifying the input equations, the unused states can be treated as don’ t-  care condi-

tions. The state table in Table 4-7 defines three  flip-  flops, A, B, and C, and one in-

put, X. There is no output column, which means that the  flip-  flops serve as outputs of 

the circuit. With three  flip-  flops, it is possible to specify eight states, but the state 

table lists only five. Thus, there are three unused states that are not included in the 

table: 000, 110, and 111. When an input of 0 or 1 is included with the unused 

 present-  state values, six unused combinations are obtained for the  present-  state and 

input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations are 

not listed in the state table and hence may be treated as don’ t-  care minterms.
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 FIGURE 4-22
Logic Diagram for the  One-  Hot Coded Sequence Recognizer with D  Flip-  Flops



4-5 / Sequential Circuit Design      247

The three input equations for the D  flip-  flops are derived from the  next-  state 

values and are simplified in the maps of Figure 4-23. Each map has six don’ t-  care 

minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-

mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be 

drawn here.

It is possible that outside interference or a malfunction will cause the circuit to 

enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least 

 TABLE 4-7
State Table for Designing with Unused States

Present State Input Next State

A B C X A B C

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 1 1

0 1 0 1 1 0 0

0 1 1 0 0 0 1

0 1 1 1 1 0 0

1 0 0 0 1 0 1

1 0 0 1 1 0 0

1 0 1 0 0 0 1

1 0 1 1 1 0 0

00

01

00 01
CX

AB 11 10

11

10

X

C

X
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B

X

1 1

X XX X

1 11
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 FIGURE 4-23
Maps for Optimizing Input Equations
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partially, the  next-  state values or the output values for the unused states. Depending on 

the function and application of the circuit, a number of ideas may be applied. First, the 

outputs for the unused states may be specified so that any actions that result from entry 

into and transitions between the unused states are not harmful. Second, an additional 

output may be provided or an unused output code employed which indicates that the 

circuit has entered an incorrect state. Third, to ensure that a return to normal operation 

is possible without resetting the entire system, the  next-  state behavior for the unused 

states may be specified. Typically, next states are selected such that one of the normally 

occurring states is reached within a few clock cycles, regardless of the input values. The 

decision as to which of the three options to apply, either individually or in combination, 

is based on the application of the circuit or the policies of a particular design group.

Sequential circuits can be verified by showing that the circuit produces the original state 

diagram or state table. In the simplest cases, all possible input combinations are applied 

with the circuit in each of the states, and the state variables and outputs are observed. 

For small circuits, the actual verification can be performed manually. More generally, 

simulation is used. In manual simulation, it is straightforward to apply each of the  state– 

 input combinations and verify that the output and the next state are correct.

Verification with simulation is less tedious, but typically requires a sequence of 

input combinations and applied clocks. In order to check out a  state–  input combina-

tion, it is first necessary to apply a sequence of input combinations to place the cir-

cuit in the desired state. It is most efficient to find a single sequence to test all the 

 state–  input combinations. The state diagram is ideal for generating and optimizing 

such a sequence. A sequence must be generated to apply each input combination in 

each state while observing the output and next state that appear after the positive 

clock edge. The sequence length can be optimized by using the state diagram. The 

reset signal can be used as an input during this sequence. In particular, it is used at 

the beginning to reset the circuit to its initial state.

In Example 4-8, both manual and  simulation-  based verification are illustrated.

EXAMPLE 4-8  Verifying the Sequence Recognizer

The state diagram for the sequence recognizer appears in Figure 4-18(d) and the log-

ic diagram in Figure 4-21. There are four states and two input combinations, giving a 

total of eight  state–  input combinations to verify. The next state can be observed as 

the state on the  flip-  flop outputs after the positive clock edge. For D  flip-  flops, the 

next state is the same as the D input just before the clock edge. For other types of 

 flip-  flops, the  flip-  flop inputs just before the clock edge are used to determine the 

next state of the  flip-  flop. Initially, beginning with the circuit in an unknown state, we 

apply a 1 to the Reset input. This input goes to the direct reset input on the two 

 flip-  flops in Figure 4-21. Since there is no bubble on these inputs, the 1 value resets 

both  flip-  flops to 0, giving state A (0, 0). Next, we apply input 0, and manually simu-

late the circuit in Figure 4-21 to find that the output is 0 and the next state is A (0, 0), 

which agrees with the transition for input 0 while in state A. Next, simulating state A 
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with input 1, next state B (0, 1) and output 0 result. For state B, input 0 gives output 0 

and next state A (0, 0), and input 1 gives output 0 and next state C (1, 1). This same 

process can be continued for each of the two input combinations for states C and D.

For verification by simulation, an input sequence that applies all  state–  input 

combination pairs is to be generated accompanied by the output sequence and state 

sequence for checking output and  next-  state values. Optimization requires that the 

number of clock periods used exceed the number of  state–  input combination pairs 

by as few periods as possible (i.e., the repetition of  state–  input combination 

pairs  should be minimized). This can be interpreted as drawing the shortest path 

through the state diagram that passes through each  state–  input combination pair at 

least once.

In Figure 4-24(a), for convenience, the codes for the states are shown and the 

path through the diagram is denoted by a sequence of blue integers beginning with 1. 

These integers correspond to the positive clock edge numbers in Figure  4-24(b), 

where the verification sequence is to be developed. The values shown for the clock 

edge numbers are those present just before the positive edge of the clock (i.e., during 

the setup time interval). Clock edge 0 is at t = 0 in the simulation and gives unknown 

values for all signals. We begin with value 1 applied to Reset (1) to place the circuit in 

state A. Input value 0 is applied first (2) so that the state remains A, followed by 1 (3) 

checking the second input combination for state A. Now in state B, we can either 

move forward to state C or go back to state A. It is not apparent which choice is best, 

so we arbitrarily apply 1 (4) and go to state C. In state C, 1 is applied (5) so the state 

remains C. Next, a 0 is applied to check the final input for state C. Now in state D, we 

have an arbitrary choice to return to state A or to state B. If we return to state B by 

A B
1/0

C
1/0

D
0/0

1/0

1/1

0/0

0/0
0/0

1

2

3, 9 4, 10

5

6, 11

78

12

0, 0 0,1 1, 1 1, 0

(a)

Reset

 FIGURE 4-24
Test Sequence Generation for Simulation in Example 4-3

Clock Edge: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Input R: X 1 0 0 0 0 0 0 0 0 0 0 0

Input X: X 0 0 1 1 1 0 1 0 1 1 0 0

State (A, B): X, X 0, 0* 0, 0 0, 0 0, 1 1, 1 1, 1 1, 0 0, 1 0, 0 0, 1 1, 1 1, 0 0, 0

Output Z: X 0 0 0 0 0 0 1 0 0 0 0 0

(b)
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applying 1 (7), then we can check the transition from B to A for input 0 (8). Then, the 

only remaining transition to check is state D for input 0. To reach state D from state 

A, we must apply the sequence 1, 1, 0 (9) (10) (11) and then apply 0 (12) to check the 

transition from D to A. We have checked eight transitions with a sequence consisting 

of reset plus 11 inputs. Although this test sequence is of optimum length, optimality 

is not guaranteed by the procedure used. However, it usually produces an efficient 

sequence.

In order to simulate the circuit, we enter the schematic in Figure 4-21 using the 

Xilinx ISE 4.2 Schematic Editor and enter the sequence from Figure 4-24(b) as a 

waveform using the Xilinx ISE 4.2 HDL Bencher. While entering the waveform, it is 

important that the input X changes well before the clock edge. This insures that there 

is time available to display the current output and to permit input changes to propa-

gate to the  flip-  flop inputs before the setup time begins. This is illustrated by the 

INPUT waveforms in Figure 4-25, in which X changes shortly after the positive clock 

edge, providing a good portion of the clock period for the change to propagate to the 

 flip-  flops. The circuit is simulated with the MTI  Model   Sim simulator. We can then 

compare the values just before the positive clock edge on the STATE and OUTPUT 

waveforms in Figure 4-25 with the values shown on the state diagram for each clock 

period in Figure 4-24. In this case, the comparison verifies that the circuit operation 

is correct. ■

4-6  STATE-  MACHINE DIAGRAMS AND APPLICATIONS

Thus far, we have used a traditional notation for state diagrams and tables, a nota-

tion illustrated by a Mealy model state diagram in Figure  4-26(a). Although this 

model serves well for very small designs, it often becomes cumbersome or unwork-

able for large designs. For example, all 2n combinations of n input variables must be 

represented on the transitions from each of the states even though the next state or 

output may be affected by only one of the n input variables. Also, for a large number 

Clock
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X
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B

OUTPUT

Z

0 100 ns 200 ns 300 ns

 FIGURE 4-25
Simulation for Example 4-8
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 FIGURE 4-26
Traditional State and  State-  Machine Diagram Representations
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of output variables, for each state or input combination label, up to 2m output 

 combinations must be specified even though only one among the m output variables 

is  affected by the state and input values. Also, the Mealy model is very inefficient in 

specifying outputs because of the need to combine transition and output control 

functions together. To illustrate, the use of Moore outputs, in addition to Mealy, can 

greatly simplify output specification when applicable. Also, the use of Mealy outputs 

that are dependent upon input values, but not dependent on transition labels, can be 

useful.

These arguments suggest that for pragmatic design, a modified state diagram 

notation is critical. We call this modified state diagram a  state-  machine diagram. This 

term is also applied to the traditional state diagram representations, although here 

we use it primarily to identify departures in notation from that used for traditional 

diagrams. The main targets of the notation changes are to replace enumeration of 

input and output combinations with the use of Boolean expressions and equations 

to describe input combinations, and the expansion of the options for describing out-

put functions beyond those permitted by the traditional model.

 State-  Machine Diagram Model

The development of this model is based on input conditions, transitions, and out-

put actions. For a given state, an input condition can be described by a Boolean 

expression or equation in terms of input variables. An input condition as an ex-

pression is either equal to 1 or 0. As an equation, it is equal to 1 if it is satisfied, and 

equal to 0 if it is not. An input condition on a transition arc is called a transition 
condition (TC), and causes a transition to occur if it is equal to 1. An input condi-

tion that, if equal to 1, causes an output action to occur is an output condition (OC). 

In a Moore model  state-  machine diagram, only transition conditions appear. Out-

put actions are a function of the state only and therefore are unconditional, i.e., 

with an implicit output condition equal to 1. In a traditional Mealy model, when a 

condition appears on an arc, by definition, it is both a transition condition and an 

output condition. Multiple transition and output conditions may appear on a given 

transition arc. In our model, we modify the Mealy model in two ways. First of all, 

we permit output conditions to appear on the state, not just on transitions. Second, 

we permit output conditions that depend on, but are not transition conditions on 

the arcs. This provides more modeling flexibility in the formulation of correspond-

ing state tables and HDL descriptions. For this more flexible model, a generic state 

and one of its transitions and the various possible condition situations are shown 

in Figure 4-26(b).

For a given state, if a transition condition is equal to 1, then the corresponding 

transition represented by the arc occurs. For a given state and transition, if all transi-

tion conditions are 0, then the corresponding transition does not occur. An uncondi-
tional transition always occurs on the next clock regardless of input values and can 

be thought of as having an implicit transition condition equal to 1. In Figure 4-26(c), 

which has exactly the same function as the traditional state diagram given in 

Figure 4-26(a), transition concepts are illustrated. For example, for state S
0
 the tran-

sition to state S
1
 is unconditional. For state S

3
 and input combination 11, transition 
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condition AB equal to 1 causes a transition to state S
0
. The effectiveness of this 

approach in simplifying input condition representation is illustrated well by transi-

tion conditions A in state S
1
 and A + B in state S

2
. A is 1 for input combinations 00 

and 01, and A + B is 1 for input combinations 01, 10, and 11, causing the respective 

transitions from S
1
 to S

0
 and S

2
 to S

0
.

Outputs are handled by listing output conditions and output actions. The vari-

ous forms of specifying the control of output actions by state and output conditions 

are shown in Figure 4-26(b). For convenience, output conditions (if any) followed 

by a slash and corresponding output actions are placed at the end of a straight or 

curved line from either the state or from a transition condition TC. Multiple output 

condition/output action pairs are separated by commas. We classify output actions 

based on the conditions that cause them into four types as shown in Figure 4-26(b). 

Moore output actions depend only on the state, i.e., they are unconditional. 

Transition- condition independent (TCI) Mealy outputs are preceded by their respec-

tive output condition and a slash. These two types of output actions are attached by 

a line to the state boundary as shown in Figure 4-26(b).  Transition-  condition depen-
dent (TCD) Mealy output actions depend on both the state and a transition condi-

tion, thereby making the transition condition an output condition as well. Transition 
and  output-  condition dependent (TOCD) output actions depend on the state, a tran-

sition condition, and an output condition and are preceded by their respective out-

put condition OC and a slash. These two types of output actions are attached by a 

line to the transition condition TC upon which they depend as shown in 

Figure 4-26(b).

In a given state, an output action occurs if: (a) it is unconditional (Moore), 

(b)  TCI and its output condition OC = 1, (c) TCD and its transition condition 

TD = 1, and (d) TOCD and its transition condition TC and output condition OC 
are both equal to 1, i.e, TC·OC = 1. Note that Moore and TCI output actions 

attached to a state, apply to all transitions from the state as well.

An output action may simply be an output variable. The output variable has 

value 1 for a given state present and its corresponding input conditions attached to 

the state or transition all equal to 1, and value 0 otherwise. For any state or  state– 

 input condition pair without an output action on a variable, that variable takes on a 

default value noting again the exception that Moore and TCI output actions attached 

to a state, apply to all transitions from the state. Ordinarily, we explicitly list default 

output actions for reference as shown in Figure 4-26(c).

It is also possible to have variables that are vectors with values assigned. For 

vectors, a specific default value may be assigned. Otherwise, for a vector, the implicit 

assignment to 0 used for scalar variables does not apply. Finally, in Chapter 6, regis-

ter transfer statements are listed as output actions. All of the modifications described 

permit description of a complete system using complex input conditions and output 

actions. Note that many of these modifications relate somewhat to the algorithmic 

state machines previously used in this text.

Figure 4-26(c) can be used to illustrate the power of this notation. State S
3
 has 

variables Y and Z as Moore output actions, so Y = 1 and Z = 1 when in state S
3
. 

State S
0
 has a TCI output condition and action B/Y which specifies that when in 

state S
0
, Y = 1 whenever B = 0. State S

1
 has a TCI output condition and action 
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(A + B)/Z. In all these cases, repetitive occurrences of the output actions are 

avoided on the transitions. For state S
0
 with the use of a TCI output action, the prob-

lem of specifying the transition as unconditional and the output condition B on the 

transition is avoided. Also, for state S
1
 with the use of a TOCD output action, the 

transition condition A combined with output condition B is easily provided.

In this example, Figure  4-26(a) provided the information for deriving 

Figure 4-26(c). Transition and output conditions for each state were obtained by 

examining the binary input and output combinations in Figure 4-26(a) and deter-

mining the simplest way to describe an output action and then finding the simplest 

Boolean expression for the corresponding output condition. Likewise, the simplest 

transition condition can be found for each transition. This approach constitutes a 

transformation from the traditional state diagram to an equivalent  state-  machine 

diagram. It should be noted, however, that our principal goal is not this transfor-

mation, but instead, direct formulation of  state-  machine diagrams from 

specifications.

A final element that can appear on a state diagram is the binary code assigned 

to a state. This binary code appears in parentheses below the state name or at the 

end of a line drawn out from the state.

Constraints on Input Conditions

In formulating transition and output conditions, it is necessary to perform checks to 

make sure that invalid next state and output specifications do not arise. For all 

possible input conditions, each state must have exactly one next state and have every 

 single-  bit output variable with exactly one value, e.g., either 0 or 1, but not both. 

These conditions are described in terms of constraints.

For each state, there are two constraints on transition conditions:

1. The transition conditions from a given state Si must be mutually exclusive, i.e., 

all possible pair of conditions (Tij, Tik) on distinct transition arcs from a given 

state have no identical input values, i.e.,

Tij  .  Tik = 0,

2. The transition conditions from a given state must cover all possible combina-

tions of input values, i.e.,

ΣTij = 1

in which Σ represents OR. If there are don’ t-  care next states for state Si, the transi-

tion conditions for these states must be included in the OR operation. Also, in apply-

ing these constraints, recall that an unconditional transition has an implicit transition 

condition of 1.

In the formulation of a  state-  machine diagram, transition conditions must be 

checked for each state and its set of transitions. If constraint 1 does not hold, then the 

next state for the current state is specified as two or more states. If constraint 2 does 

not hold, then there are cases with no specified next state for one or more transitions 

where one is expected to be specified. Both of these situations are invalid.
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For each state, there are two similar constraints on output conditions:

1. For every output action in state Si or on its transitions having coincident output 

variables with differing values, the corresponding pair of output conditions (Oij, 

Oik) must be mutually exclusive, i.e., satisfy

Oij . Oik =   0

2. For every output variable, the output conditions for state Si or its transitions 

must cover all possible combinations of input values that can occur, i.e.,

ΣOij = 1

If there are don’ t-  care outputs for state Si, the output conditions for the don’ t-  care 

outputs must be included in the OR operation. In applying these constraints, recall 

that an unconditional output action on a state or an arc has an implicit output condi-

tion of 1. Note that default output actions must be considered in this analysis.

EXAMPLE 4-9  Checking Constraints

In this example, transition and output constraints are checked for the  state-  machine 

diagrams in Figure 4-26(c) and selected invalid cases in parts (d) and (e) of Figure 4-26. 

Beginning with Figure 4-26(c), the results for constraint 1 checks on transition condi-

tions are:

S
0
:   The constraint is satisfied by default since there are no pairs of transition 

conditions on distinct transition arcs.

S
1
:  There is one pair of TCs to check: A # A = 0.

S
2
:  There is one pair of TCs to check: (A + B) ·A B = 0.

S
3
:   There are three pairs of TCs to check: AB # A = 0, AB # AB = 0, and 

A # AB = 0.

Since all of the results are 0, constraint 1 is satisfied. Next, checking constraint 2:

S
0
:  The transition is unconditional and has an implicit transition condition of 1.

S
1
:  A + A = 1

S
2
:  (A + B) + A B = 1

S
3
:  A + AB + AB = 1

Since the results for all states are 1, constraint 2 is satisfied. Next, checking constraint 

1 on output conditions:

S
0
:   There is only one output condition, B on output action Y, so the constraint 

is satisfied by default.

S
1
:   The first coincident output variable is Y and its values are 1 where Y appears 

for TOC A # B, and 0 by default where Y does not appear for input condi-

tions A and AB. Note that if B is interpreted without ANDing with transition 

condition A, then check A  . B  ≠   0 incorrectly fails! The second coincident 

output variable is Z, with value 1 for A  +   B and 0 by default for input con-

dition AB. In general, it is impossible for an invalid case to occur due to a 

default output action. So the constraint is satisfied.
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S
2
:   The first coincident output variable is Y and the second is Z. Y has value 1 

for output condition A + B, and by default value 0 for A B. Z has value 1 

for output condition A B and 0 by default for A + B. Due to the use of a 

default value, the constraint is satisfied.

S
3
:   There is no coincident output variable with differing output values, so the 

output constraint is satisfied by default.

Since the output constraint is satisfied for all four states, it is satisfied for the 

 state-  machine diagram as are the other two constraints. Next, checking constraint 2 

on output conditions:

S
0
:   There is a single output condition B for which Y = 1. By default, Y = 0 

for the output condition for complement of B = B. ORing the conditions, 

B + B = 1. In general, with a default output specified, this will be the case 

since the default covers all input combinations not covered by specified 

output conditions, so the constraint is satisfied.

S
1
 through S

3
: Because of the default output action for variables Y and Z, as for S

0
, 

the constraint is also satisfied.

Parts (d) and (e) of Figure 4-26 are examples that are used to demonstrate 

selected invalid cases for  state-  machine diagrams. For part (d), A  #  B =   A B , so the 

transition constraint 1 is not satisfied. For part (e), variable Z appears as an output 

with distinct values 1 in state S and 0 on the transition for AB. Output condition con-

straint 1 gives 1 # AB  ≠   0. So the constraint is not satisfied. Actually, this occurs 

only because the designer failed to realize that Z = 1 was already specified on the 

transition because of its specification on the state S. ■

Design Applications Using  State-  Machine Diagrams

Two examples will be used to illustrate design using  state-  machine diagrams. In addi-

tion to design formulation, the effects of the use of a  state-  machine diagram formu-

lation on the structure for state tables will be illustrated. These examples also illus-

trate that good solutions are possible for problems with larger numbers of inputs and 

states, in particular problems for which traditional state diagrams, traditional state 

tables, and  K-  maps are all impractical.

EXAMPLE 4-10    State-  Machine Design for a Batch Mixing System Control

A mixing system for large batches of liquids is designed to add up to three ingredi-

ents to a large circular mixing tank, mix the ingredients, and then empty the mixed 

liquid from the tank. There are three inlets for ingredients, each with an  on–  off valve. 

There are three movable fluid sensors in the tank that can be set to turn off the re-

spective valves at the level required for the first ingredient alone, for the first and 

second ingredients, and for all three ingredients. A switch is used to select either a 

two or three ingredient operation. There is a button for starting the operation and a 

second button for stopping the operation at any time. There is a timer for timing the 

mixing cycle. The length of the mixing cycle is specified by a manually operated dial 
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that provides a starting value to a timer. The timer counts downward to zero to time 

the mixing. After mixing, the output valve is opened to remove the mixed liquid 

from the tank.

A sequential circuit is to be designed to control the batch mixing operation. 

The inputs and outputs for the circuit are given in Table 4-8. Before starting the oper-

ation of the mixing system, the operator places the fluid sensor L1, L2, and L3 in the 

proper locations. Next, the operator selects either two or three ingredients with 

switch NI and sets dial D to the mixing time. Then, the operator pushes the START 
to begin the mixing operation which proceeds automatically unless the STOP button 

is pushed. Valve V1 is opened and remains open until L1 indicates ingredient level 1 

has been reached. Valve 1 closes and valve 2 opens and remains open until L2 indi-

cates level 1 plus 2 has been reached. Valve 2 closes, and, if switch NI = 1, valve 3 

opens and remains open until L3 indicates level 1, 2 plus 3 has been reached. If 

NI = 0, the value on dial D is then read into the timer, the mixing begins, and the 

timer starts counting down. In the case where NI = 1, these actions all occur when 

L3 indicates that the level for all three ingredients has been reached. When the timer 

reaches 0 as indicated by the signal TZ, the mixing stops. Next, the Output valve is 

opened and remains open until sensor L0 indicates the tank is empty. If STOP is 

pushed at any time, addition of ingredients stops, mixing stops, and the output valve 

closes.

The first step in the design is to develop the  state-  machine diagram. During this 

development, the input and status signals from Table 4-8 are used, and the diagram 

 TABLE 4-8
Input and Output Variables for the Batch Mixing System

  Input Meaning for Value 1 Meaning for Value 0

NI

Start

Stop

L0

L1

L2

L3

TZ

Three ingredients

Start a batch cycle

Stop an  on-  going batch cycle

Tank empty

Tank filled to level 1

Tank filled to level 2

Tank filled to level 3

Timer at value 0

Two ingredients

No action

No action

Tank not empty

Tank not filled to level 1

Tank not filled to level 2

Tank not filled to level 3

Timer not at value 0

  Output Meaning for Value 1 Meaning for Value 0

MX

PST

TM

V1

V2

V3

VE

Mixer on

Load timer with value from D

Timer on

Valve open for ingredient 1

Valve open for ingredient 2

Valve open for ingredient 3

Output valve open

Mixer off

No action

Timer off

Valve closed for ingredient 1

Valve closed for ingredient 2

Valve closed for ingredient 3

Output valve closed
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development can be traced in Figure 4-27.  We begin with an initial state Init, which is 

the reset state. As long as START is 0 or STOP is 1, the state is to remain Init. When 

START is 1 with STOP at 0, a new state is required in which the addition of ingredi-

ent 1 is performed. State Fill_1 with output V1 is added to perform this operation. In 

state Fill_1, if the operator pushes STOP, then the state is to return to Init with the 

fill operation ceasing as indicated on the diagram. If STOP is not pushed and L1 is 

still 0, then the filling must continue with the state remaining Fill_1 as indicated by 

the transition back to Fill_1 labeled L1 # STOP. The filling continues until L1 = 1 

because the fill level for ingredient 1 has been reached. When L1 = 1 with 

STOP = 0, a new state, Fill_2 is added. For the input condition, L1 # STOP, applied 

in state Fill_1, V1 goes to 0, turning off valve 1, and the state becomes Fill_2 with 

output V2, turning on valve 2. The loop on Fill_2 specifies that the state remains 

Fill_2 until L2 becomes 1. When L2 = 1 with STOP = 0, for NI = 1 the state Fill_3 

is added for the  three-  ingredient case, and for NI = 0 state Mix is added for the 

 two-  ingredient case and output PST is added to present the timer to the mixing time 

on dial D. Fill_3 has transitions the same as for state Fill_1 except that L1 is replaced 

by L3. For L3 # STOP, filling is complete, so state Mix is entered for mixing. Also, a 

Mealy output PST is added for L3 # STOP to preset the timer to the mixing time. In 

state Mix, the output MX is used to activate the mixing. In addition, as long as 

TZ = 0 and Stop = 0, the state remains Mix and the timer is turned on by Mealy 

output TM, causing the timer to count downward. State Empty is added for the case 

where TZ = 1, since the timer has reached 0. With the mixing complete, the fluid 

can be emptied from the tank by opening the output valve with  VE.  The state 

remains Empty as long as L0 = 0 and Stop = 0 as indicated by the loop to Empty 
with input condition L0 # STOP. If at any time, L0 or STOP becomes 1, the state 

returns to Init, turning off the output valve by changing to VE = 0. This completes 

the development of the  state-  machine diagram. The necessary analysis to verify the 

transition and output condition constraints is left to the reader in Problem 4-37(a).

Although the  state-  machine diagram is similar to a state diagram, it is diffi-

cult to form a standard state table since there are eight inputs, giving 256 columns. 

Instead, a table can be formed that enumerates rows for each the following: 

(1) each state with its unconditional next state and its TCI output actions and out-

put conditions, (2) each transition condition for each state with the corresponding 

next state, and (3) corresponding TCD and TCOD output actions, the latter with 

output conditions. The results of this process for the  state-  machine diagram in 

Figure 4-27 are shown in Table 4-9. In this table, note that the entries in  Non-  Zero 

Outputs are either Moore outputs or TCD outputs. For the TCD outputs, Boolean 

expressions can be shared in the excitation and output equations. To this end, we 

define the following intermediate variables for use in excitation equations and 

output equations:

 X = Fill_2 #   L2 #  NI # STOP

 Y = Fill_3 #  L3 #   STOP

 Z = Mix  #   TZ  #    STOP
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Using the  one-  hot state assignment listed in the table assuming that each state 

variable is named with the state for which it is 1, the excitation and output equations 

are:

 Init(t + 1) = Init #   START + STOP + Empty #   L0

 Fill_1(t + 1) = Init #   START #   STOP + Fill_1  #   L1  #   STOP

 Fill_2 = Fill_1  #   L1  #   STOP + Fill_2  #   L2  #   STOP

 Fill_3 = L2   #   NI  #   STOP + Fill_3  #   L3  #   STOP

 Mix = X + Y + Z

Default: MX = 0, PST = 0,
TM = 0, V1 = 0, V2 = 0, V3 = 0,
VE = 0

Init

V1

Reset

Fill_1

  START·STOP

  START + STOP

L1·STOP

V2

Fill_2

V3

Fill_3

L2·NI·STOP

L2·NI·STOP

  MX

  Mix

TZ·STOP

L3·STOP

VE

  Empty
L0 + STOP

L0·STOP

STOP

STOP

L2·STOP

L3·STOP

TZ·STOP

L1·STOP

STOP
PST

PST

TM

 FIGURE 4-27
State-  Machine Diagram for Batch Mixing System
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 Empty(t + 1) = Mix  #   TZ  #   STOP + Empty  #   LO  #   STOP

 V1 = Fill_1

 V2 = Fill_2

 V3 = Fill_3

 PST = X + Y

 MX = Mix

 TM = Z

In the equation for Init (t + 1), since all six states return to state Init for input Stop, 

there is no need to specify any states with STOP. It is interesting to note that indeed, 

X, Y, and Z are shared between next state and output equations. With the  one-  hot 

state assignment, the formulation of the equations is very straightforward using 

either the state table or  state-  machine diagram. ■

 TABLE 4-9
State Table for the Batch Mixing System

State

State  

Code

Transition  

Condition

Next  

State

State  

Code

 Non-  Zero Outputs 

Including Mealy 

Outputs Using TCs*

Init 100000 START + STOP

START·STOP

Init

Fill_1

100000

010000
Fill_1 010000 V1

STOP

L1 # STOP

L1 # STOP

Init

Fill_1

Fill_2

100000

010000

001000
Fill_2 001000 V2

STOP

L2 # STOP

L2 # NI # STOP

L2 # NI # STOP

Init

Fill_2

Mix

Fill_3

100000

001000

000010

000100

PST*

Fill_3 000100 V3
STOP

L3 # STOP

L3 # STOP

Init

Fill_3

Mix

100000

000100

000010 PST*
Mix 000010 MX

STOP

TZ # STOP

TZ # STOP

Init

Mix

Empty

100000

000010

000001

TM*

Empty 000001 VE

LO # STOP

LO +  STOP

Empty

Init

000001

100000
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EXAMPLE 4-11    State-  Machine Design of a Sliding Door Control

Automatic sliding entrance doors are widely used in retail stores. In this example, we 

consider the design of the sequential logic for controlling a sliding door. The  one-  way 

door opens in response to three sensors PA (Approach Sensor), PP (Presence Sen-

sor), DR (Door Resistance Sensor), and to a pushbutton MO (Manual Open). PA 
senses a person or object approaching the door, and PP senses the presence of a 

person or object within the doorframe. DR senses a resistance to the door closing 

that is at least 15 pounds indicating that the door is pushing on a person or obstacle. 

MO is a manual pushbutton on the door control box that opens the door without 

dependence on the automatic control. The door control box also has a keyed lock 

LK for locking the door closed using an  electrically-  operated bolt BT to prevent en-

trance when the store is closed. In addition to these inputs to the door logic, there are 

two limit switches CL (close limit) and OL (open limit) that determine when the 

door mechanism has closed the door completely or opened the door completely, re-

spectively. The control mechanism has just three outputs, BT (bolt), CD (close door), 

and OD (open door). All of the inputs or outputs are described along with the mean-

ing of value 1 and value 0 for each of them in Table 4-10.

Using the description just given and additional constraints on the design, we will 

develop the  state-  machine diagram as the first step in the design of the sequential cir-

cuit. We begin by defining the initial state to which the circuit will be reset, Closed. After 

reset, the door will open for the first time from this state. What is the transition condi-

tion for opening the door? First of all, the door must be unlocked, denoted by LK. 

Second, there must be a person approaching the door, a person within the door, or man-

ual opening of the door requested by the pushbutton, denoted by PA + PP + MO. 

Ordinarily, one would not expect the opening operation to be initiated by PP since this 

 TABLE 4-10
Input and Output Variables for the Sliding Door Control

Input  

Symbol Name Meaning for Value 1 Meaning for Value 0

LK

DR

PA

PP

MO

CL

OL

Lock with Key

Door Resistance Sensor

Approach Sensor

Presence Sensor

Manual Open PB

Close Limit Switch

Open Limit Switch

Locked

Door resistance Ú 15 lb

Person/object approach

Person/object in door

Manual open

Door fully closed

Door fully open

Unlocked

Door resistance < 15 lb

No person/object approach

No person/object in door

No manual open

Door not fully closed

Door not fully open

Output 

Symbol

 

Name

 

Meaning for Value 1

 

Meaning for Value 0

BT

CD

OD

Bolt

Close Door

Open Door

Bolt closed

Close door

Close door

Bolt open

Null action

Null action
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indicates that a person is within the doorframe. But this is included to cause the door to 

open in case of a PA failure. Both the lock and sensor conditions must be present for 

the door to open, so they are ANDed together to give the transition condition on the 

arrow from state Closed to state Open, the state in which the opening of the door occurs. 

If LK is 1 or all of PA, PP, and MO are 0, then the door is to remain closed. This gives 

the transition conditions LK + PA·PP·MO for remaining in state Closed. LK is also 

the output condition for BT. Because of this, two transition conditions are needed, LK 
and PA·PP·MO . CD is to be activated for PA·PP·MO,  CL and for BT not activated, 

i.e., for LK. This can be realized by the existing transition condition PA·PP·MO plus 

output condition LK·CL as shown in Figure 4-28. The state remains Open and OD is 1 

as long as the door is not fully open as indicated by limit switch value OL. When this 

input condition changes to OL, the door is fully open and the new state is Opened. Note 

that there is no monitoring of the sensor inputs other than OL in Open since it is 

assumed that the door will fully open regardless of whether the person or object 

remains within sensor view. If at least one of the inputs that opened the door is 1, then 

the door will be held open by remaining in state Opened. The expression representing 

this condition is PA + PP + MO. To insure that the door is held open, the limit switch 

value OL which indicates the door is not fully open is ANDed with PA + PP + MO 

to produce an output condition that activates door opening output OD. If all of the 

input values that opened the door are 0, then the door is to be closed. This transition 

condition is represented by PA·PP·MO which causes a transition from Opened to new 

Default: BT = 0, CD = 0, OD = 0

Closed

OD

Reset

  Open

  Opened

  CD
  Close

LK·(PA + PP + MO)

OL

OL 

PA + PP + MO + DR

PA·PP·MO

PA + PP + MO

CL·PA·PP·MO·DR

CL·PA·PP·MO·DR

LK,
PA·PP·MO 

BT

OL/OD 

LK· CL/CD

 FIGURE 4-28
State-  Machine Diagram for the Automatic Sliding Door
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state Close with output CD. In state Close, if any of the four sensors PA, PP, MO, or DR 
have value 1, represented by PA + PP + MO +  DR, the door must reopen and the 

next state becomes Open. In state Close, because the door is closing, DR needs to be 

included here to indicate that the door may be blocked by a person or object. The form 

of the input conditions for the Close state differs from those for the Open state since 

door closure is to halt even if only partially completed when PA, PP, MO, and DR have 

value 1. In a similar manner to the use of the OL sensor for the Open state, we add the 

transition to the Closed state for transition condition CL # PA·PP·MO·DR. A value of 

0 on CL and on all of the sensor signals causing opening is represented by the transition 

condition CL·PA·PP·MO·DR that causes the Close state to remain unchanged. This 

completes the development of the diagram. The necessary analysis to verify the transi-

tion and output condition constraints is left to the reader in Problem 4-37(b). Note that 

all of the output conditions for OD and CD to be 0 are implicit and not shown, a fact 

that must be taken into account when verifying the output constraints.

The state table derived from the  state-  machine diagram is shown in Table 4-11. 

The next step in the design is to make the state assignment. Since there are just four 

states, we choose a  two-  bit code, the Gray code. The state code information has been 

added to the  state-  machine table in Table 4-11. With the state assignment in place, we 

can now write the next state and output equations for the circuit. Because of the 

number of input variables, map optimization is not feasible, but some multilevel 

optimization can be applied to obtain efficient realizations. The equations to be writ-

ten from Table 4-11 are based on the 1 values for the next state variables. For exci-

tation equations, products are formed from the state and input condition 

combinations for each 1 present with the state combinations replaced by state 

variable products, e.g., 01 becomes Y1
# Y2. The product term for the third row of the 

table is Y1·Y2·(LK  (PA + PP + MO). The product terms for each of the 1 values 

 TABLE 4-11
Modified State Table for the Automatic Sliding Door

State

State  

Code Input Condition

Next  

State

State  

Code

 Non-  Zero Outputs 

(Including TCD and TOCD 

Output Actions and Output 

Conditions*)

Closed 00 LK Closed 00 BT*
00

00
PA·PP·MO

LK #  (PA + PP + MO)

Closed

Open

00

01
LK·CL/CD*

Open 01 OD
01

01
OL

OL

Open

Opened

01

11
Opened 11 PA +  PP +  MO Opened 11 OL/OD*

11 PA·PP·MO Close 10
Close 10 CD

10

10

10

CL·PA·PP·MO·DR

CL·PA·PP·MO·DR

PA +  PP +  MO +  DR

Close

Closed

Open

10

00

01
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can then be ORed together to form an excitation equation. The expression 

PA + PP + MO and its complement PA·PP·MO are transition conditions for 

TOCD output actions and appear frequently as factors in other transition condi-

tions. As useful factors, these expressions will be denoted by X and X, respectively. 

The excitation equations are:

 X = PA + PP + MO

 Y1(t + 1) = Y1 #   Y2 #   OL + Y1 #   Y2 + Y1 #   Y2 #   CL #   X  #   DR

 Y2(t + 1) = Y1 #   Y2 #   LK  #    X + Y1 #   Y2 + Y1 #   Y2 #   X + Y1 #   Y2 #   (X + DR)

For the output equations, products are formed from the state combinations 

and state  combination-  Mealy output conditions for each output listed. As for the 

excitation equations, state combinations are replaced by state variable products. The 

products are ORed for each of the output variables. The resulting output equations 

with multilevel optimization applied are:

 BT = Y1 #   Y2 #   LK

 CD = Y1  #   Y2 + Y1 #   Y2 #   LK #   CL  #   X

 = (Y1 + LK  #   CL  #   X)  #   Y2

 OD = Y1 #   Y2 + Y1  #   Y2 #   OL  #   X

 = (Y1 +  OL #    X)  #   Y2

By using these six equations, the final circuit can be construction from the combina-

tional logic represented along with the two  flip-  flops for Y
1
 and Y

2
 with their resets 

connected. ■

Our introduction to design based on  state-  machine diagrams and  state-  machine 

tables is now complete. In Chapter 6, we will use these tools to describe systems 

including register transfers. This will lead to methods for designing datapaths made 

up of register transfer hardware and  state-  based controls.

ASYNCHRONOUS INTERFACES, SYNCHRONIZATION, AND SYNCHRONOUS CIRCUIT PITFALLS In 

this section, we have applied signals such as those coming from sensors, buttons, and 

switches that are not synchronized with the clock to synchronous sequential circuits. 

This is a practice that can cause catastrophic failure because of timing problems. 

These issues and problems are addressed in Sections 4-11, 4-12, and 4-13.

4-7 HDL REPRESENTATION FOR SEQUENTIAL  
 CIRCUITS—  VHDL
In Chapters 2 and 3, VHDL was used to describe combinational circuits. Likewise, 

VHDL can describe storage elements and sequential circuits. In this section, descrip-

tions of a  positive-  edge-  triggered D  flip-  flop and a sequence recognizer circuit 

 illustrate such uses of VHDL. These descriptions involve new VHDL concepts, the 
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most important of which is the process. Thus far, concurrent statements have de-

scribed combinations of conditions and actions in VHDL. A concurrent statement, 

however, is limited in the complexity that can be represented. Typically, the sequen-

tial circuits to be described are complex enough that description within a concurrent 

statement is very difficult. A process can be viewed as a replacement for a concurrent 

statement that permits considerably greater descriptive power. Multiple processes 

may execute concurrently, and a process may execute concurrently with concurrent 

statements.

The body of a process typically implements a sequential program. Signal val-

ues, however, which are assigned during the process, change only when the process is 

completed. If the portion of a process executed is

B <= A;

C <= B;

then, at the completion of the process, B will contain the original contents of A, and C 

will contain the original contents of B. In contrast, after execution of these two state-

ments in a program, C would contain the original contents of  A.  To achieve 

 program-  like behavior, VHDL uses another construct called a variable. In contrast 

to a signal which evaluates after some delay, a variable evaluates immediately. Thus, 

if B is a variable in the execution of

B := A;

C := B;

B will instantaneously evaluate to the contents of A, and C will evaluate to the 

new contents of B, so that C finally contains the original contents of A. Variables 

 appear only within processes. Note the use of := instead of <= for variable 

 assignment.

EXAMPLE 4-12  VHDL for  Positive-  Edge-  Triggered D  Flip-  Flop with Reset

The basic process structure is illustrated by an example process describing the archi-

tecture of a  positive-  edge-  triggered D  flip-  flop in Figure 4-29. The process begins 

with the keyword process. Optionally, process can be preceded by a process 

name followed by a colon. Following in parentheses are two signals, CLK and RE-

SET. This is the sensitivity list for the process. If either CLK or RESET changes, then 

the process is executed. In general, a process is executed whenever a signal or 

variable in its sensitivity list changes. It is important to note that the sensitivity list is 

not a parameter list containing all inputs and outputs. For example, D does not ap-

pear, since a change in its value cannot initiate a possible change in the value 

of Q. Following the sensitivity list at the beginning of the process is the keyword be-
gin, and at the end of the process the keyword end appears. The word process 

following end is optional.

Within the body of the process, additional VHDL conditional structures can 

appear. Notable in the Figure 4-29 example is  if-  then-  else. The general struc-

ture of an  if-  then-  else in VHDL is
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if condition then  
  sequence of statements

{elsif condition then  
  sequence of statements}

else  
  sequence of statements

end if;

The statements within braces {} can appear from zero to any number of times. The 

 if-  then-  else within a process is similar in effect to the when else concurrent 

assignment statement. Illustrating, we have

if A = '1' then  
  Q <= X;

elsif B = '0' then  
  Q <= Y;

else  
  Q <= Z;

end if;

If A is 1, then  flip-  flop Q is loaded with the contents of X. If A is 0 and B is 0, then 

 flip-  flop Q is loaded with the contents of Y. Otherwise, Q is loaded with the contents 

of Z. The end result for the four combination of values on A and B is

 FIGURE 4-29
VHDL Process Description of  Positive-  Edge-  Triggered  Flip-  Flop with Reset

--  Positive-  Edge-  Triggered D  Flip-  Flop with Reset:

-- VHDL Process Description

library ieee;
use ieee.std_logic_1164.all;
entity dff is

port(CLK, RESET, D : in std_logic;
     Q : out std_logic);

end dff;

architecture pet_pr of dff is 
-- Implements  positive-  edge-  triggered bit state storage

-- with asynchronous reset.

begin
process (CLK, RESET)

begin
if (RESET = '1') then 

Q <= '0';

elsif (CLK'event and CLK = '1') then 
Q <= D;

        end if;
end if;

end process;
end;
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A = 0, B = 0    Q <= Y

A = 0, B = 1    Q <= Z

A = 1, B = 0    Q <= X

A = 1, B = 1    Q <= X

More complex conditional execution of statements can be achieved by nesting 

 if-  then-  else structures, as in the following code:

if A = '1' then
  if C = '0' then
    Q <= W;

  else
    Q <= X;

  end if;
elsif B = '0' then
  Q <= Y;

else
  Q <= Z;

end if;

The end result for the eight combinations of values on A, B, and C is

A = 0, B = 0, C = 0   Q <= Y

A = 0, B = 0, C = 1   Q <= Y

A = 0, B = 1, C = 0   Q <= Z

A = 0, B = 1, C = 1   Q <= Z

A = 1, B = 0, C = 0   Q <= W

A = 1, B = 0, C = 1   Q <= X

A = 1, B = 1, C = 0   Q <= W

A = 1, B = 1, C = 1   Q <= X

With the information introduced thus far, the  positive-  edge-  triggered D 
 flip-  flop in Figure 4-29 can now be studied. The sensitivity list for the process includes 

CLK and RESET, so the process is executed if either CLK or RESET or both change 

value. If D changes value, the value of Q is not to change for an  edge-  triggered 

 flip-  flop, so D does not appear on the sensitivity list. Based on the  if-  then-  else, if 

RESET is 1, the  flip-  flop output Q is reset to 0. Otherwise, if the clock value changes, 

which is represented by appending 'event to CLK, and the new clock value is 1, 

which is represented by CLK = '1', a positive edge has occurred on CLK. The result 

of the  positive-  edge occurrence is the loading of the value on D into the  flip-  flop so 

that it appears on output Q. Note that, due to the structure of the  if-  then-  else, 

RESET equal to 1 dominates the clocked behavior of the D  flip-  flop, causing the out-

put Q to go to 0. Similar simple descriptions can be used to represent other  flip-  flop 

types and triggering approaches. ■

EXAMPLE 4-13  VHDL for the Sequence Recognizer

A more complex example in Figures 4-30 and 4-31 represents the  sequence-  recognizer 

state diagram in Figure 4-18(d). The architecture in this description consists of three 
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-- Sequence Recognizer: VHDL Process Description

-- (See Figure 4-18(d) for state diagram)

library ieee;
use ieee.std_logic_1164.all;
entity seq_rec is

port(CLK, RESET, X: in std_logic;
Z: out std_logic);

end seq_rec;

architecture process_3 of seq_rec is
type state_type is (A, B, C, D);
signal state, next_state : state_type;

begin 

-- Process 1 - state_register: implements  positive-  edge-  triggered

-- state storage with asynchronous reset.

state_register: process (CLK, RESET)
begin

if (RESET = '1') then 
state <= A;

elsif (CLK’event and CLK = '1') then 
state <= next_state;

end if;
end process;

-- Process 2 - next_state_function: implements next state as

-- a function of input X and state.

next_state_func: process (X, state)
begin

case state is
when A =>

if X = '1' then 
next_state <= B;

else 
next_state <= A;

end if;
when B =>

if X = '1' then 
next_state <= C;

else 
next_state <= A;

end if;

 FIGURE 4-30
VHDL Process Description of a Sequence Recognizer
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distinct processes, which can execute simultaneously and interact via shared signal 

values. New concepts included are type declarations for defining new types and case 

statements for handling conditions.

The type declaration permits us to define new types analogous to existing types 

such as std_logic. A type declaration begins with the keyword type followed by 

the name of the new type, the keyword is, and, within parentheses, the list of values 

for signals of the new type. Using the example from Figure 4-30, we have

type state_type is (A, B, C, D);

The name of the new type is state_type and the values in this case are the names 

of the states in Figure 4-18(d). Once a type has been declared, it can be used for 

declaring signals or variables. From the example in Figure 4-30,

-- Sequence Recognizer: VHDL Process Description (continued)

when C =>
if X = '1' then 

next_state <= C;

else 
next_state <= D;

end if;
when D =>

if X = '1' then 
next_state <= B;

else 
next_state <= A;

end if;
end case;

end process;

-- Process 3 - output_function: implements output as function

-- of input X and state.

output_func: process (X, state)
begin

case state is
when A =>

Z <= '0';

when B =>
Z <= '0';

when C =>
Z <= '0';

when D =>
if X = '1' then 

Z <= '1';

else 
Z <= '0';

end if;
end case;

end process;
end;

 FIGURE 4-31
VHDL Process Description of a Sequence Recognizer (continued)
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signal state, next_state : state_type;

indicates that state and next_state are signals that are of the type state_

type. Thus, state and next state can have values A, B, C, and D.

The basic  if-  then-  else (without using the elsif) makes a  two-  way decision 

based on whether a condition is TRUE or FALSE. In contrast, the case statement can 

make a multiway decision based on which of a number of statements is TRUE.

A simplified form for the generic case statement is

case expression is 
  {when choices =>
    sequence of statements;}

end case;

The choices must be values that can be taken on by a signal of the type used in the 

expression. The case statement has an effect similar to the  with-  select concur-

rent assignment statement.

In the example in Figures 4-30 and 4-31, Process 2 uses a case statement to 

define the  next-  state function for the sequence recognizer. The case statement makes 

a multiway decision based on the current state of the circuit, A, B, C, or D.  If-  then-  else 

statements are used for each of the state alternatives to make a binary decision based 

on whether input X is 1 or 0. Concurrent assignment statements are then used to assign 

the next state based on the eight possible combinations of state value and input value. 

For example, consider the state alternative when B. If X equals 1, then the next state 

will be C; if X equals 0, then the next state will be A. This corresponds to the two transi-

tions out of state B in Figure 4-18(d). For more complex circuits, case statements can 

also be used for handing the input conditions.

With this brief introduction to the case statement, the overall sequence recog-

nizer can now be studied. Each of the three processes has a distinct function, but the 

processes interact to provide the overall sequence recognizer. Process 1 describes 

the storage of the state. Note that the description is like that of the 

 positive-  edge-  triggered  flip-  flop. There are two differences, however. First, the sig-

nals involved are of type state_type instead of type std_logic. Second, the 

state that results from applying RESET is state A rather than state 0. Also, since we 

are using state names such as A, B, and C, the number of state variables (i.e., the num-

ber of  flip-  flops) is unspecified and the state codes are unknown. Process 1 is the 

only one of the three processes that contains storage.

Process 2 describes the  next-  state function, as discussed earlier. The sensi-

tivity list in this case contains signals X and state. In general, for describing combi-

national logic, all inputs must appear in the sensitivity list, since, whenever an input 

changes, the process must be executed.

Process 3 describes the output function. The same case statement framework 

as in Process 2 with state as the expression is used. Instead of assigning state names 

to next state, values 0 and 1 are assigned to Z. If the value assigned is the same for both 

values 0 and 1 on X, no  if-  then-  else is needed, so an  if-  then-  else appears only 
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-- Testbench for sequence recognizer example

library ieee;
use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all;

entity seq_rec_testbench is
end seq_rec_testbench;

architecture testbench of seq_rec_testbench is
signal clock, X, reset, Z: std_logic;
signal test_sequence : std_logic_vector(0 to 10)

:= "01110101100"; 

constant PERIOD : time := 100 ns; 

component seq_rec is
port(CLK, RESET, X: in std_logic; 

Z: out std_logic);
end component;

begin 
u1: seq_rec port map(clock, reset, X, Z); 

-- This process applies reset and 

-- then applies the test sequence to input X 

apply_inputs: process
begin 

reset <= '1'; 
X <='0'; 
-- ensure that inputs are applied

-- away from the active clock edge

wait for 5*PERIOD/4; 
reset <= '0';
for i in 0 to 10 loop 

X <= test_sequence(i);
wait for PERIOD;

end loop;
wait;   --wait forever 

end process; 

-- This process provides the clock pulses

generate_clock: process
begin 

clock <= '1';
wait for PERIOD/2; 
clock <= '0';

wait for PERIOD/2;
end process; 

end  testbench;

 FIGURE 4-32
 Testbench for VHDL Sequence Recognizer Model
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for state D. If there are multiple input variables, more complex  if-  then-  else combi-

nations or a case statement, as illustrated earlier, can be used to represent the condi-

tioning of the outputs on the inputs. This example is a Mealy state machine in which the 

output is a function of the circuit inputs. If it were a Moore state machine, with the out-

put dependent only on the state, input X would not appear on the sensitivity list, and 

there would be no  if-  then-  else structures in the case statement.

Figure 4-32 shows a testbench for verifying the VHDL sequence recognizer. 

As with the testbenches in earlier chapters, the entity has no ports and the archi-

tecture declares the device under test, the signals to be connected to it, and then 

instantiates it. But in contrast to earlier testbenches, this testbench uses more than 

one process to provide stimulus to the inputs of the sequence recognizer. The 

apply_inputs process applies the RESET and X inputs, while the generate_

clock process provides a periodic clock signal. The apply_inputs process uses 

the test sequence that was described in Example 4-8, which is stored in the std_

logic_vector test_sequence. At the beginning of simulation, the process 

activates RESET to put the state machine in a known state. After deactivating 

RESET, the process applies the X input values stored in the test_sequence 

array using a for loop statement. The input values are applied shortly after the 

positive edge of the clock to ensure that there is sufficient time before the next 

positive edge that the timing conditions for storage elements are met, which will 

be described later in this chapter.

This testbench provides a template for verifying VHDL models of simple finite 

state machines: using multiple processes to generate a clock signal and to apply reset 

and other inputs. For more complex circuits, testbenches may read inputs from a file 

and compare the outputs of the device under test to known good outputs, automati-

cally flagging erroneous outputs. The language constructs for supporting the file 

read/write and user input/output necessary for such behavior are beyond the scope 

of this introductory text, but interested readers will easily find them in one of the 

many fine books dedicated to the VHDL language. ■

A common pitfall is present whenever an  if-  then-  else or case statement 

is employed. During synthesis, unexpected storage elements in the form of latches or 

 flip-  flops appear. For the simple  if-  then-  else used in Figure 4-29, using this pit-

fall gives a specification that synthesizes to a  flip-  flop. In addition to the two input 

signals, RESET and CLK, the signal CLK'event is produced by applying the pre-

defined attribute 'event to the CLK signal. CLK'event is TRUE if the value of CLK 

changes. All possible combinations of values are represented in Table 4-12. Whenever 

RESET is 0 and the CLK is fixed at 0 or 1 or has a negative edge, no action is specified. 

In VHDL, it is assumed that, for any combinations of conditions that have unspeci-

fied actions in  if-  then-  else or case statements, the  left-  hand side of an assign-

ment statement remains unchanged. This is equivalent to Q <= Q, causing storage to 

occur. Thus, all combinations of conditions must have the resulting action specified 

when no storage is intended. If this is not a natural situation, an others can be used 

in the  if-  then else or case. If binary values are used in the case statement, just 

as in Section 2-9, an others must also be used to handle combinations including the 

seven values other than 0 and 1 permitted for std_logic.
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Together, the three processes used for the sequence recognizer describe the state 

storage, the  next-  state function, and the output function for a sequential circuit. Since 

these are all of the components of a sequential circuit at the  state-  diagram level, the 

description is complete. The use of three distinct processes is only one methodology for 

sequential circuit description. Pairs of processes or all three processes can be combined 

for more elegant descriptions. Nevertheless, the  three-  process description is the easiest 

for new users of VHDL and also works well with synthesis tools.

To synthesize the circuit into actual logic, a state assignment is needed, in addi-

tion to a technology library. Many synthesis tools will make the state assignment 

independently or based on a directive from the user. It is also possible for the user to 

specify explicitly the state assignment. This can be done in VHDL by using an enu-

meration type. The encoding for the state machine in Figures 4-30 and 4-31 can be 

specified by adding the following after the type state_type declaration:

attribute  enum_encoding: string;
attribute  enum_encoding  of  state_type:
type is    "00, 01, 10, 11";

This is not a standard VHDL construct, but it is recognized by many synthesis tools. 

Another option is not to use a type declaration for the states, but to declare the state 

variables as signals and use the actual codes for the states. In this case, if states appear 

in the simulation output, they will appear as the encoded state values.

4-8 HDL REPRESENTATION FOR SEQUENTIAL   
CIRCUITS—  VERILOG

In Chapters 2 and 3, Verilog was used to describe combinational circuits. Likewise, 

Verilog can describe storage elements and sequential circuits. In this section, de-

scriptions of a  positive-  edge-  triggered D  flip-  flop and a  sequence-  recognizer circuit 

illustrate such uses of Verilog. These descriptions will involve new Verilog concepts, 

the most important of which are the process and the register type for nets.

 TABLE 4-12
 Illustration of Generation of Storage in VHDL

Inputs Action

RESET = 1 CLK = 1 CLK’ event

FALSE FALSE FALSE Unspecified

FALSE FALSE TRUE Unspecified

FALSE TRUE FALSE Unspecified

FALSE TRUE TRUE Q 6 =  D

TRUE — — Q 6 =  '0'
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Thus far, continuous assignment statements have been used to describe combi-

nations of conditions and actions in Verilog. A continuous assignment statement is 

limited in what can be described, however. A process can be viewed as a replacement 

for a continuous assignment statement that permits considerably greater descriptive 

power. Multiple processes may execute concurrently and a process may execute con-

currently with continuous assignment statements.

Within a process, procedural assignment statements, which are not continuous 

assignments, are used. Because of this, the assigned values need to be retained over 

time. This retention of information can be achieved by using the register type rather 

than the wire type for nets. The keyword for the register type is reg. Note that just 

because a net is of type reg does not mean that an actual register is associated with 

its implementation. Additional conditions need to be present to cause an actual reg-

ister to exist. The type reg is intended for storing values in variables, which may 

represent either combinational or sequential logic when implemented in hardware.

There are two basic types of processes, the initial process and the always 

process. The initial process executes only once, beginning at t = 0. The always 

process also executes at t = 0, but executes repeatedly thereafter. To prevent ram-

pant, uncontrolled execution, some timing control is needed in the form of delay or 

 event-  based waiting. The # operator followed by an integer can be used to specify 

delay. The @ operator can be viewed as “wait for event.” @ is followed by an expres-

sion that describes the event or events, the occurrence of which will cause the pro-

cess to execute.

The body of a process is like a sequential program. The process begins with 

the keyword begin and ends with the keyword end. Procedural assignment 

statements make up the body of the process. These assignment statements are 

classified as blocking or nonblocking. Blocking assignments use = as the assign-

ment operator and nonblocking assignments use <= as the operator. Blocking 
assignments are executed sequentially, much like a program in a procedural lan-

guage such as C. Nonblocking assignments evaluate the  right-  hand side, but do 

not make the assignment until all  right-  hand sides have been evaluated. Blocking 

assignments can be illustrated by the following process body, in which A, B, and C 

are of type reg:

begin
B = A;

C = B;

end

The first statement transfers the contents of A into B. The second statement then 

transfers the new contents of B into C. At process completion, C contains the original 

contents of A.

Suppose that the same process body uses nonblocking assignments:

begin
B <= A;

C <= B;

end
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The first statement transfers the original contents of A into B and the second state-

ment transfers the original contents of B into C. At process completion, C contains 

the original contents of B, not those of A. Effectively, the two statements have exe-

cuted concurrently instead of in sequence. For reasons that are beyond the scope of 

this introductory text, when developing Verilog models that are meant to be synthe-

sized, the following guidelines should be used to ensure that the synthesized hard-

ware behaves in the same way as simulation:

Blocking assignments should be used for statements that are meant to create 

combinational logic.

Nonblocking assignments should be used for statements that are meant to cre-

ate sequential logic.

Blocking and nonblocking assignments should not be used in the same always 

block.

Assignments to a particular variable (type reg) should be made in only one 

always block.

As a result of these guidelines, synthesizable Verilog models of finite state machines 

are generally arranged as two or three always blocks: One always block for the 

sequential logic (state registers) using nonblocking assignments, and one or two 

always blocks for the combinational logic (next state and output signals) using 

blocking assignments. Depending upon the complexity of the state machine, the next 

state and output combinational logic may be combined into one always block if they 

are simple, or described in separate blocks if they are more complex.

EXAMPLE 4-14  Verilog for  Positive-  Edge-  Triggered D  Flip-  Flop with Reset

These new concepts can now be applied to the Verilog description of a 

 positive-  edge-  triggered D  flip-  flop given in Figure 4-33. The module and its inputs 

and outputs are declared. Q is declared as of type reg, since it will store information. 

The process begins with the keyword always. Following is @(posedge CLK or 
posedge RESET). This is the event control statement for the process that initiates 

process execution if an event (i.e., a specified change in a specified signal) occurs. For 

the D  flip-  flop, if either CLK or RESET changes to 1, then the process is executed. It is 

important to note that the event control statement is not a parameter list containing 

all inputs. For example, D does not appear, since a change in its value cannot initiate 

a possible change in the value of Q. Following the event control statement at the be-

ginning of the process is the keyword begin, and at the end of the process the key-

word end appears.

Within the body of the process, additional Verilog conditional structures can 

appear. Notable in the Figure 4-33 example is  if-  else. The general structure of an 

 if-  else in Verilog is

if  (condition)
  begin  procedural statements  end 
{else if  (condition)
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  begin procedural statements end}
{else
  begin procedural statements end}

If there is a single procedural statement, then begin and end are unnecessary:

if(A == 1)
   Q <= X;

else if (B == 0)
   Q <= Y;

else 
   Q <= Z;

Note that a double equals signs is used in conditions. If A is 1, then  flip-  flop Q is 

loaded with the contents of X. If A is 0 and B is 0, then  flip-  flop Q is loaded with the 

contents of Y. Otherwise, Q is loaded with the contents of Z. The end result for the 

four combination of values on A and B is

A = 0, B = 0    Q <= Y

A = 0, B = 1    Q <= Z

A = 1, B = 0    Q <= X

A = 1, B = 1    Q <= X

The  if-  else within a process is similar in effect to the conditional operator in 

a continuous assignment statement introduced earlier. The conditional operator can 

be used within a process, but the  if-  else cannot be used in a continuous assign-

ment statement.

More complex conditional execution of statements can be achieved by nesting 

 if-  else structures. For example, we might have

//  Positive-  Edge-  Triggered D  Flip-  Flop with Reset:

// Verilog Process Description

module dff_v(CLK, RESET, D, Q);
input CLK, RESET, D;
output Q;
reg Q;

always @(posedge CLK or posedge RESET)
begin

if (RESET)
Q <= 0;

else 
Q <= D;

end
endmodule

 FIGURE 4-33
 Verilog Process Description of  Positive-  Edge-  Triggered  Flip-  Flop with Reset



4-8 / HDL Representation for Sequential  Circuits— Verilog       277

if(A == 1)
  if(C == 0)
    Q <= W;

  else 
    Q <= X;

else if (B == 0)
  Q <= Y;

  else 
  Q <= Z;

In this type of structure, an else is associated with the closest if preceding it that 

does not already have an else. The end result for the eight combinations of values 

on A, B, and C is

A = 0, B = 0, C = 0     Q <= Y

A = 0, B = 0, C = 1     Q <= Y

A = 0, B = 1, C = 0     Q <= Z

A = 0, B = 1, C = 1     Q <= Z

A = 1, B = 0, C = 0     Q <= W

A = 1, B = 0, C = 1     Q <= X

A = 1, B = 1, C = 0     Q <= W

A = 1, B = 1, C = 1     Q <= X

Returning to the  if-  else in the  positive-  edge-  triggered D  flip-  flop shown in 

Figure 4-33, assuming that a positive edge has occurred on either CLK or RESET, if 

RESET is 1, the  flip-  flop output Q is reset to 0. Otherwise, the value on D is stored in 

the  flip-  flop so that Q equals D. Due to the structure of the  if-  else, RESET equal 

to 1 dominates the clocked behavior of the D  flip-  flop, causing the output Q to go to 

0. Similar simple descriptions can be used to represent other  flip-  flop types and trig-

gering approaches. ■

EXAMPLE 4-15  Verilog for the Sequence Recognizer

A more complex example in Figure 4-34 represents the  sequence-  recognizer state 

diagram in Figure 4-18(d). The architecture in this description consists of three dis-

tinct processes that can execute simultaneously and interact via shared signal values. 

New concepts included are state encoding and case statements for handling 

 conditions.

In Figure 4-34, the module seq_rec_v and input and output variables CLK, 

RESET, X, and Z are declared. Next, registers are declared for state and next_

state. Note that since next_state need not be stored, it could also be declared as 

a wire, but, since it is assigned within an always block, it must be declared as a reg. 

Both registers are two bits, with the most significant bit (MSB) numbered 1 and the 

least significant bit (LSB) numbered 0.

Next, a name is given to each of the states taken on by state and next_

state, and binary codes are assigned to them. This can be done using a parameter 

statement or a compiler directive define. We will use the parameter statement, since 

the compiler directive requires a somewhat inconvenient ' before each state 
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// Sequence Recognizer: Verilog Process Description

// (See Figure 4-18(d) for state diagram)

module seq_rec_v(CLK, RESET, X, Z);
input CLK, RESET, X;
output Z;
reg [1:0] state, next_state;
parameter A = 2'b00, B = 2'b01, C = 2'b10, D = 2'b11;
reg Z; 

// state register: implements positive  edge-  triggered

// state storage with asynchronous reset.

always @(posedge CLK or posedge RESET)
begin

if (RESET) 
state <= A;

else 
state <= next_state;

end 
//.te function: implements next state as function

// of X and state

always @(X or state)
begin

case (state) 
A: next_state = X ? B : A;
B: next_state = X ? C : A;
C: next_state = X ? C : D;
D: next_state = X ? B : A;

endcase
end 

// output function: implements output as function

// of X and state

always @(X or state)
begin

case (state) 
A: Z = 1'b0; 
B: Z = 1'b0; 
C: Z = 1'b0; 
D: Z = X ? 1'b1 : 1'b0;

endcase
end
endmodule

 FIGURE 4-34
 Verilog Process Description of a Sequence Recognizer



4-8 / HDL Representation for Sequential  Circuits— Verilog       279

throughout the description. From the diagram in Figure 4-18(d), the states are A, B, C, 

and D. In addition, the parameter statements give the state codes assigned to each of 

these states. The notation used to define the state codes is 2'b followed by the binary 

code. The 2 denotes that there are two bits in the code and the 'b denotes that the 

base of the code given is binary.

The  if-  else (without using the else if) makes a  two-  way decision based 

on whether a condition is TRUE or FALSE. In contrast, the case statement can 

make a multiway decision based on which one of a number of statements is TRUE. A 

simplified form for the generic case statement is

case  expression
 {case expression : statements}

endcase

in which the braces { } represent one or more such entries.

The case expression must have values that can be taken on by a signal of the 

type used in expression. Typically, there are sequences of multiple statements. In the 

example in Figure 4-34, the case statement for the  next-  state function makes a mul-

tiway decision based on the current state of the circuit, A, B, C, or D. For each of the 

case expressions, conditional statements of various types are used to make a binary 

decision based on whether input X is 1 or 0. Blocking assignment statements are then 

used to assign the next state based on the eight possible combinations of state value 

and input value. For example, consider the expression B. If X equals 1, then the next 

state will be C; if X equals 0, then the next state will be A. This corresponds to the two 

transitions out of state B in Figure 4-18(d).

With this brief introduction to the case statement, the overall sequence recog-

nizer can now be understood. Each of the three processes has a distinct function, but 

the processes interact to provide the overall sequence recognizer. The first process 

describes the state register for storing the  sequence-  recognizer state. Note that the 

description resembles that of the  positive-  edge-  triggered  flip-  flop. There are two dif-

ferences, however. First, there are two bits in the state register. Second, the state that 

results from applying RESET is state A rather than state 0. The first process is the only 

one of the three processes that has storage (sequential logic) associated with it. 

Following the coding guidelines provided earlier in this section, this always block 

uses nonblocking assignments.

The second process describes the  next-  state function as discussed earlier. The 

event control statement contains signals X and state. In general, for describing 

combinational logic, all inputs must appear in the event control statement, since, 

whenever an input changes, the process must be executed. Since the next state logic 

is combinational, this process uses blocking assignments.

The final process describes the output function and uses the same case state-

ment framework as in the  next-  state function process, again using blocking assignments 

because the process describes combinational logic. Instead of assigning state names, 

values 0 and 1 are assigned to Z. If the value assigned is the same for both values 0 and 1 

on X, no conditional statement is needed, so a conditional statement appears only for 

state D. If there are multiple input variables, more complex  if-  else combinations, as 

illustrated earlier, can be used to represent the conditioning of the outputs on the inputs. 
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This example is a Mealy state machine in which the output is a function of the circuit 

inputs. If it were a Moore state machine, with the output dependent only on the state, 

input X would not appear on the event control statement and there would be no condi-

tional structures within the case statement.

Figure 4-35 shows a testbench for verifying the Verilog sequence recognizer. 

As with the testbenches in earlier chapters, the module has no ports, and the 

// Testbench for Verilog sequence recognizer

module seq_req_v_testbench();
wire Z;
reg clock, X, reset; 

reg [0:10] test_sequence = 11'b011_1010_1100;
integer i;
parameter PERIOD = 100; 

seq_rec_v DUT(clock, reset, X, Z); 

// This initial block initializes the clock, applies reset,

// and then applies the test sequence to input X. 

initial
begin 

reset = 1'b1; 
X = 1'b0; 
// Ensure that inputs are applied 

// away from the active clock edge

#(5*PERIOD/4); 
reset = 1'b0;
for (i = 0; i < 11; i = i+1)
begin 

X = test_sequence[i];
#PERIOD;

end 
// Stop the simulation after all the inputs 

// in the sequence have been applied 

$stop;
end 

// This always block provides the clock pulses 

always
begin 

clock = 1'b1;
#(PERIOD/2); 
clock = 1'b0;
#(PERIOD/2);

end
endmodule

 FIGURE 4-35
 Testbench for Verilog Sequence Recognizer Model
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 TABLE 4-13
 Illustration of Generation of Storage in Verilog

Inputs Action

posedge RESET 

 and RESET = 1 posedge CLK

FALSE FALSE Unspecified

FALSE TRUE Q 6 =  D

TRUE FALSE Q 6 =  0

TRUE TRUE Q 6 =  0

module declares the device under test, the wire and regs to be connected to it, 

and then instantiates it. But in contrast to earlier testbenches, this testbench uses 

more than one process to provide stimulus to the inputs of the sequence recog-

nizer. The first process applies the reset and X inputs, while second process pro-

vides a periodic clock signal. The first process uses the test sequence that was 

described in Example 4-8, which is stored in the reg array test_sequence. At 

the beginning of simulation, the process activates reset to put the state machine 

in a known state. After deactivating reset, the process applies the X input values 

stored in the test_sequence array using a for loop statement. The input val-

ues are applied shortly after the positive edge of the clock to ensure that there is 

sufficient time before the next positive edge that the timing conditions for storage 

elements are met, which will be described later in this chapter.

This testbench provides a template for verifying Verilog models of simple finite 

state machines: using multiple processes to generate a clock signal and to apply reset 

and other inputs. For more complex circuits, testbenches may read inputs from a file 

and compare the outputs of the device under test to known good outputs, automati-

cally flagging erroneous outputs. The language constructs for supporting the file 

read/write and user input/output necessary for such behavior are beyond the scope 

of this introductory text, but interested readers will easily find them in one of the 

many fine books dedicated to the Verilog language. ■

A common pitfall is present whenever an  if-  else or case statement is 

employed. During synthesis, unexpected storage elements in the form of latches or 

 flip-  flops appear. For the very simple  if-  else used in Figure  4-33, this pitfall is 

employed to give a specification that synthesizes to a  flip-  flop. In addition to the two 

input signals, RESET and CLK, events posedge CLK and posedge RESET are pro-

duced, which are TRUE if the value of the respective signal changes from 0 to 1. Selected 

combinations of values for RESET and the two events are shown in Table  4-13. 

Whenever RESET has no positive edge, or RESET is 0 and CLK is fixed at 0 or 1 or has a 

negative edge, no action is specified. In Verilog, the assumption is that, for any 
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combination of conditions with unspecified actions in  if-  else or case statements, 

the  left-  hand side of an assignment statement will remain unchanged. This is equiva-

lent to Q <= Q, causing storage to occur. Thus, all combinations of conditions must 

have the resulting action specified when no storage is intended. To prevent undesir-

able latches and  flip-  flops from occurring, for  if-  else structures, care must be 

taken to include else in all cases if storage is not desired. In a case statement, a 

default statement which defines what happens for all choices not specified should 

be added. Within the default statement, a specific next state can be specified, 

which in the example could be state A.

Together, the three processes used for the sequence recognizer describe the 

state storage, the  next-  state function, and the output function for the sequential cir-

cuit. Since these are all of the components of a sequential circuit at the  state-  diagram 

level, the description is complete. The use of three distinct processes is only one 

methodology for sequential circuit description. For example, the  next-  state and out-

put processes could be easily combined. Nevertheless, the  three-  process description 

is the easiest for new users of Verilog and also works well with synthesis tools.

4-9  FLIP-  FLOP TIMING

Timing parameters are associated with the operation of both  pulse-  triggered ( master– 

 slave) and  edge-  triggered  flip-  flops. These parameters are illustrated for a master–  slave 

SR  flip-  flop and for a  negative-  edge-  triggered D  flip-  flop in Figure 4-36. The parame-

ters for the  positive-  edge-  triggered D  flip-  flop are the same, except that they are 

 referenced to the positive rather than the negative clock edge.

The timing of the response of a  flip-  flop to its inputs and clock C must be taken 

into account when using the  flip-  flops. For both  flip-  flops, there is a minimum time called 

the setup time, ts, for which the S and R or D inputs must be maintained at a constant 

value prior to the occurrence of the clock transition that causes the output to change. 

Otherwise, the master could be changed erroneously in the case of the  master–  slave 

 flip-  flop or be at an intermediate value at the time the slave copies it in the case of the 

 edge-  triggered  flip-  flop. Similarly, there is a minimum time called the hold time, th, for 

which the S and R or D inputs must not change after the application of the clock transi-

tion that causes the output to change. Otherwise, the master might respond to the input 

change and be changing at the time the slave latch copies it. In addition, there is a mini-

mum clock pulse width tw, to insure that the master has time enough to capture the 

input values correctly. Among these parameters, the one that differs most between the 

 pulse-  triggered and  edge-  triggered  flip-  flops is the setup time, as shown in Figure 4-36. 

The  pulse-  triggered  flip-  flop has its setup time equal to the clock pulse width, whereas 

the setup time for the  edge-  triggered  flip-  flop can be much smaller than the clock pulse 

width. As a consequence, edge triggering tends to provide faster designs, since the 

 flip-  flop inputs can change later with respect to the upcoming triggering clock edge.

The propagation delay times, t
PHL

, t
PLH

, or t
pd

, of the  flip-  flops are defined as the 

interval between the triggering clock edge and the stabilization of the output to a 

new value. These times are defined in the same fashion as those for an inverter, 

except that the values are measured from the triggering clock edge rather than the 

inverter input. In Figure 4-36, all of these parameters are denoted by  t
p-

   and are given 
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minimum and maximum values. Since the changes of the  flip-  flop outputs are to be 

separated from the control by the  flip-  flop inputs, the minimum propagation delay 

time should be longer than the hold time for correct operation. These and other 

parameters are specified in manufacturers’ data books for specific integrated circuit 

products.

Similar timing parameters can be defined for latches and direct inputs, with 

additional propagation delays needed to model the transparent behavior of latches.

4-10 SEQUENTIAL CIRCUIT TIMING

In addition to analyzing the function of a circuit, it is also important to analyze its 

performance in terms of the maximum  input-  to-  output delay and the maximum clock 
frequency, f

max
, at which it can operate. First of all, the clock frequency is just the in-

verse of the clock period t
p
 shown in Figure 4-37. So, the maximum allowable clock 

frequency corresponds to the minimum allowable clock period t
p
. To determine how 

small we can make the clock period, we need to determine the longest delay from 

the triggering edge of the clock to the next triggering edge of the clock. These delays 

are measured on all such paths in the circuit down which changing signals propagate. 

ts th

tp-,min

tp-,max

C

D

Q

(b) Edge-triggered (negative edge)

thts

tp-,min

tp-,max

C

Q

S/R

(a) Pulse-triggered (positive pulse)

twH � twH,min

twH � twH,min

twL � twL,min

twL � twL,min

 FIGURE 4-36
  Flip-  Flop Timing Parameters
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Each of these path delays has three components: (1) a  flip-  flop propagation delay, 

t
pd, FF

, (2) a combinational logic delay through the chain of gates along the path,  

t
pd, COMB

, and (3) a  flip-  flop setup time, t
s
. As a signal change propagates down the path, 

it is delayed successively by an amount equal to each of these delays. Note that we 

have used t
pd

, instead of the more detailed values, t
PLH

 and t
PHL

, for both the  flip-  flops 

and combinational logic gates to simplify the delay calculations. Figure 4-37 summa-

rizes the delay picture for both the  edge-  triggered and  pulse-  triggered  flip-  flops.

After a positive edge on a clock, if a  flip-  flop is to change, its output changes 

at time t
pd,FF

 after the clock edge. This change enters the combinational logic path 

and must propagate down the path to a  flip-  flop input. This requires an additional 

time, t
pd,COMB

, for the signal change to reach the second  flip-  flop. Finally, before the 

next positive clock edge, this change must be held on the  flip-  flop input for setup 

time t
s
. This path, P

FF,FF
 and other possible paths are illustrated in Figure 4-38. For 

paths P
IN,FF

 driven by primary inputs, t
pd,FF

 is replaced by t
i
, which is the latest time 

that the input changes after the positive clock edge. For a path P
FF,OUT

 driving pri-

mary outputs, t
s
 is replaced by t

o
, which is the latest time that the output is permit-

ted to change prior to the next clock edge. Finally, in a Mealy model circuit, 

combinational paths from input to output, P
IN,OUT

, that use both t
i
 and t

o
 can 

appear. Each path has a slack time, t
slack

, the extra time allowed in the clock period 

beyond that required by the path. From Figure 4-38, the following equation for a 

path of type P
FF,FF

 results:

tp = tslack + (tpd,FF + tpd,COMB + ts)

In order to guarantee that a changing value is captured by the receiving  flip-  flop, t
slack

 

must be greater than or equal to zero for all of the paths. This requires that

tp Ú max  (tpd,FF + tCOMB + ts) = tp,min

where the maximum is taken over all paths down which signals propagate from  flip-  flop 

to  flip-  flop. The next example presents representative calculations for paths P
FF,FF

.

(a) Edge-triggered (positive edge)

tp

tpd,FF tCOMB tslackts

C

(b) Pulse-triggered (negative edge)

tp

tpd,FF tCOMB tslack ts

C

 FIGURE 4-37
 Sequential Circuit Timing Parameters
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EXAMPLE 4-16  Clock Period and Frequency Calculations

Suppose that all  flip-  flops used are the same and have tpd = 0.2 ns (nanosecond  =  

10-9seconds) and ts = 0.1 ns. Then the longest path beginning and ending with a 

 flip-  flop will be the path with the largest t
pd

,
COMB

. Further, suppose that the largest  

t
pd,COMB

 is 1.3 ns and that t
p 
has been set to 1.5 ns. From the previous equation for t

p
, 

we can write  

1.5 ns = tslack + 0.2 + 1.3 + 0.1 = tslack + 1.6 ns

Solving, we have tslack = -0.1 ns, so this value of t
p
 is too small. In order for t

slack
 

to be greater than or equal to zero for the longest path, tp Ú tp,min  =   1 .6 ns . The 

maximum frequency fmax = 1/1.6 ns = 625 MHz (megahertz =  106 cycles per 

second). We note that, if t
p
 is too large to meet the circuit specifications, we must 

either employ faster logic cells or change the circuit design to reduce the problem-

atic path delays through the circuit while still performing the desired function. ■

It is interesting to note that the hold time for a  flip-  flop, t
h
, does not appear in 

the  clock-  period equation. It relates to another  timing-  constraint equation dealing 

with one or both of two specific situations. In one case, output changes arrive at the 

inputs of one or more  flip-  flops too soon. In the other case, the clock signals reaching 

one or more  flip-  flops are somehow delayed, a condition referred to as clock skew. 

Clock skew also can affect the maximum clock frequency.

Combinational
logic

tpd, COMB

tpd, COMB

tpd, COMB

tpd, COMB

tpd, FF

ts

toti

Flip-flops

Clock

Q D

C

PIN,OUT

PIN,FF

PFF,OUT

PFF,FF

 FIGURE 4-38
 Sequential Circuit Timing Paths
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4-11 ASYNCHRONOUS INTERACTIONS

The synchronous circuits studied thus far have their  state-  variable changes synchro-

nized by a special input signal called a clock. An asynchronous circuit has one or 

more  state-  variable changes that occur without being directly synchronized by the 

special clock input. Instead, an asynchronous circuit may change state in response to 

any of its inputs. Here we briefly study some aspects of the interactions between 

asynchronous and synchronous circuits. In addition, we study interactions between 

two synchronous circuits having clocks that are unrelated to each other, i.e. have no 

specified timing relationships to each other. In this sense, these synchronous circuits 

are asynchronous with respect to each other due to the lack of a defined relationship 

between their respective clocks.

Philosophically, every  flip-  flop or latch we have considered can be modeled as an 

asynchronous circuit if the clock is regarded as just another input rather than a special 

clock input for synchronization. In fact, asynchronous circuit design can be used to 

design latches and  flip-  flops. The presentation here, however, does not dwell upon the 

details of asynchronous circuit design. Our reason for avoiding asynchronous design as 

it is presented in most textbooks is that it is very difficult to insure correct operation 

and, therefore, is to be avoided. The correct operation of such circuits is heavily depen-

dent upon a myriad of timing relationships and timing constraints on changing of 

inputs, requiring delay control of the designed circuits. The use of clocks in synchro-

nous circuits, however, is troublesome in terms of both speed of operation and power 

consumption. In response to this, more contemporary methods for asynchronous cir-

cuit design are being explored in a number of research and advanced development 

projects. These methods use significantly different design approaches that more easily 

insure correct operation compared to typical textbook approaches.

We focus here on solving problems that arise for the synchronous circuit 

designer in dealing with asynchronous circuits or asynchronous interfaces. The inter-

faces to be considered are shown in Figure 4-39.

The problems of driving an asynchronous circuit with the outputs of a synchro-

nous circuit as in Figure 4-39(a) are due primarily to combinational circuit hazards. 

This is important because we deal with asynchronous circuits as components, partic-

ularly in the memory and  input–  output regions of systems. Because of space limita-

tion, however, this problem is treated in a Companion Website supplement.

COMBINATIONAL HAZARDS A supplement entitled Combinational Hazards is avail-

able on the text Companion Website.

We next consider the problem of an asynchronous circuit, driving a synchro-

nous circuit as shown in Figure 4-39(b). The asynchronous circuit can be as simple as 

a latch that deals with a phenomenon called contact bounce generated by manually 

operated pushbuttons or switches. It is obvious that signals originating from a push-

button are not synchronized with an internal electronic clock and can occur at any 

time. The same problem can also come from a synchronous circuit having a clock 

signal X unrelated to the clock Y of the circuit being driven as in Figure 4-39(c). In 

such a case, the signals entering the driven circuit are asynchronous with respect to 
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clock Y. Both of these cases can cause circuit malfunction, so we offer the synchro-

nizing of such signals as a solution. In line with the perverse nature of asynchronous 

behavior, this solution isn’t perfect, but suffers from a troublesome phenomenon 

referred to as metastability, a topic treated briefly here.

Our final topic that affects the synchronous circuit designer, but not in an inter-

face problem, is “I thought this was a synchronous circuit; after all, it does have a 

clock controlling state changes.” Here we illustrate how a circuit designer can easily 

fall into the pitfall of unknowingly producing an asynchronous design, bringing into 

play  timing-  dependent factors controlling correct or incorrect operation.

4-12 SYNCHRONIZATION AND METASTABILITY

We now turn our attention to asynchronous signals driving synchronous circuits, the 

case shown in Figures 4-39(b) and (c). Initially, we look at the problem that occurs if 

an asynchronous signal is applied directly to the synchronous circuit without special 

treatment. Then we offer a solution but find that there is an additional problem with 

the solution, which we also attempt to remedy.

The circuit in Figure 4-40 can illustrate erroneous behavior due to an input sig-

nal not synchronized with the clock. The circuit is initialized by using the Reset sig-

nal which sets the state of the circuit to S0 (y0, y1, y2 = 1, 0, 0). As long as RDY = 1, 

the circuit cycles through the states S0 (1, 0, 0) and S1 (0, 1, 0) and S2(0, 0, 1). If 

Synchronous
circuit

Asynchronous
circuit

Asynchronous
circuit

Synchronous
circuit

Synchronous
circuit

Synchronous
circuit

(a) Synchronous to asynchronous

Asynchronous signals

Clock X Clock Y

(b) Asynchronous to synchronous

(c) Synchronous circuits with unrelated clocks

Asynchronous signals

 FIGURE 4-39
 Examples of Synchronous/Asynchronous Interfaces



288          CHAPTER 4 /  SEQUENTIAL CIRCUITS

RDY = 0, then the circuit waits in state S0 until RDY = 1 causes it to go to state S1. 

Also, the state can change from S1 to S2 and from S2 to S0 with RDY = 0. All other 

combinations of state variables are invalid during the normal operation of the 

circuit.

Now suppose that RDY is asynchronous with respect to Clock. This means that 

it can change any time during the clock period. In Figure 4-41(a), the signal RDY 
changes well away from the positive clock edge, so that the setup and hold times for 

 flip-  flops y0 and y1 are easily met. The circuit operates normally. When RDY goes to 

0 and the circuit reaches state S0, it waits in state S0 until RDY goes to 1. At the next 

positive clock edge, the stage changes to S1. The circuit then proceeds to state S2 and 

back to S0.

In Figures 4-41(b) and (c), the change in signal RDY from 0 to 1 reaches two 

 flip-  flops. The change arrives at the  flip-  flop inputs very near the positive clock edge 

within the  setup-  time,  hold-  time interval. This violates the specified operating condi-

tions of the  flip-  flops. Instead of responding as if they correctly saw opposite values 

at their D inputs, the  flip-  flops may respond as if they saw the same inputs yielding 

circuit states (0, 0, 0) or (1, 1, 0).

In Figure 4-41(b), y0 resets to 0, but y1 fails to set to 1, giving state (0, 0, 0). 

Since there is no 1 to circulate among the  flip-  flops, the state remains at (0, 0, 0). The 

circuit is locked in this state and has failed.

In Figure 4-41(c), y1 sets and y0 fails to reset, giving state (1, 1, 0). There are 

now two 1s circulating among the  flip-  flops, giving state sequence 110, 011, 101. These 

(a) State diagram

(b) Logic diagram

Reset

Clock

RDY
Z

S
D

C

y0
D

C
R R

y1
D

C

y2

RDY � 0, 1
S2/0

RDY � 0

RDY � 1

RDY � 0, 1

S0/1 S1/0

 FIGURE 4-40
 Example Circuit for Illustration of Synchronization
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are all invalid states and give an incorrect output sequence. Thus, the circuit has again 

failed. Whether or not these failures occur depends upon circuit delays, the setup 

and hold times, and the detailed behavior of the  flip-  flops. Since none of these can be 

tightly controlled, we need a solution to prevent these failures that is independent of 

these parameters. Such a solution is the use of a synchronizing  flip-  flop.

SYNCHRONIZING  FLIP-  FLOP In Figure  4-42(a), a D  flip-  flop has been added to the 

example circuit. The asynchronous signal RDY enters the D  flip-  flop and RDY_S, 

its output, is synchronous with signal Clock in the sense that RDY_Schanges one 

 flip-  flop delay after the positive edge. Since the asynchronous signal RDY enters the 

circuit through this single synchronizing  flip-  flop, the behavior exhibited when RDY 
reached two  flip-  flops is avoided. RDY_S cannot cause such behavior, since it does 

not change during the  setup-  time,  hold-  time interval for the normal circuit  flip-  flops.

Clock

RDY

y0

(a) Correct circuit response to RDY

(b) Incorrect circuit response to RDY: invalid state (0, 0, 0) results.

y0 resets

y1 fails to set

y0 fails to reset

y1 sets

(c) Incorrect circuit response to RDY: invalid state (1, 1, 0), (0, 1, 1) and (1, 0, 1) results.

y1

y2

Clock

RDY

y0

y1

y2

Clock

RDY

y0

y1

y2

 FIGURE 4-41
 Behavior of Example Circuit
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A remaining question is, how does the synchronizing  flip-  flop behave when 

RDY changes during the  setup-  time,  hold-  time interval. Basically, either the  flip-  flop 

sees the change or it doesn’t. If it doesn’t see it, then the change is seen at the next 

positive clock edge, one clock period later. Note that this can happen only if the 

changes in the asynchronous signal are separated by a  minimum-  interval. It is the 

designer’s responsibility to insure that this minimum interval specification is met by 

the asynchronous input. The behavior discussed in this paragraph is illustrated in 

Figure  4-43. The case in which the change in RDY is immediately sensed by the 

 flip-  flop and the case in which RDY is not sensed until the next positive clock edge 

are shown. In the latter case, the response to the change in RDY is delayed by an 

extra clock period. Since RDY is asynchronous, the fact that the times at which state 

changes occur due to changes in RDY may vary by a clock period should be of no 

consequence. If it is critical, then the circuit specifications may not be realizable.

METASTABILITY At this point, it seems as if we have a solution that deals with the 

 asynchronous-  input-  signal problem. Unfortunately, our solution is imperfect. Latch-

es used to construct  flip-  flops actually have three potential states: stable 1, stable 

0, and metastable. These states can best be described by the mechanical analogy in 

Figure 4-44. The state of the latch is represented by the position of a ball on a hilly 

surface. If the ball is in the left valley, then the state is a 0. If the ball is in the right val-

ley, then the state is a 1. In order to move the ball between the valleys, say from state 

0 to state 1, it is necessary to push the ball up the hill and over the top. This requires a 

certain amount of energy expenditure. If the energy runs out with the ball in position 

M, it just stays there, halfway between 0 and 1. In fact, however, it will eventually, at 

some nondeterministic time, go on to 1 or back to 0, due to some mechanical “noise” 

such as wind, a minor earthquake, or disturbance by some creature. The analogy 

of this situation in a latch is as follows. When an input to the  cross-  coupled pair of 

latch gates changes in just the right timing relationship with the clock edge, a narrow 

pulse can be generated. The pulse may have just enough energy to change the latch 

Reset
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C
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R
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C
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 FIGURE 4-42
 Example Circuit with Synchronizing D  Flip-  flop Added
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state to the metastable point where both gates have equal output values with volt-

ages between 1 and 0. Like the mechanical system, the latch and hence the  flip-  flop 

containing it will eventually go to either 0 or 1 due to a tiny electronic “noise” distur-

bance. The length of time it remains in the metastable state is nondeterministic. The 

interval during which a change in the input will cause metastable behavior is very 

narrow, of the order of a few tens of picoseconds. Thus the behavior is unlikely, but 

it can happen. When it does, it is unknown how long the metastable state will persist. 

Clock

RDY

RDY_S

y0

(a) Circuit response to RDY with sensing at the Clock edge where RDY changes

(b) Circuit response to RDY with sensing at the next Clock edge where RDY changes

y1

y2

Clock

RDY

RDY_S

y0

y1

y2

 FIGURE 4-43
 Behavior of Example Circuit with Synchronizing  Flip-  flop on RDY

M

0 1

 FIGURE 4-44
 Mechanical Analogy for Latch States.
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If it does persist for a clock period, then the two  flip-  flops in our example will see a 

value on the synchronizing  flip-  flop output RDY_S that is between 0 and 1. Response 

by the two  flip-  flops to such a value is unpredictable, so there is a good chance that 

the circuit will fail.

This phenomenon was discovered by two electrical engineering faculty mem-

bers at Washington University in St. Louis. In the late 1960s, the second author of 

this text attended a presentation they made at Wisconsin. They had pictures of oscil-

loscope traces showing the metastable behavior. At about the same time, a commer-

cial computer manufacturer was experiencing infrequent, unexplained failures in 

their new, faster computers. You can probably guess the cause! The nature of meta-

stable behavior for a particular CMOS D  flip-  flop used as a synchronizing  flip-  flop is 

shown in Figure 4-45; this data was gathered over 30 minutes. The normal delay from 

the Clock to Q is 13 ns as indicated by the dotted line. But by carefully controlling 

the timing of the changes in D and the Clock, the  flip-  flop is forced into its metasta-

ble region. In that region, the best  flip-  flop delay seen is 30 ns and the worst is 45 ns. 

Thus, if the clock period is less than 45 ns, a metastable event that can adversely 

affect the behavior of two or more  flip-  flops within the circuit being driven by the 

synchronizing  flip-  flop occurs many times in 30 minutes. Actually, although not 

shown in the figure, the changes in Q closer to 30 ns are much more frequent than 

those close to 45 ns. So the shorter the clock period, the worse the problem gets. If 

the sampling interval were 50 hours instead of 30 minutes, there would be only a few 

events appearing as late as 55 ns. The value between 1 and 0 that occurs for a time 

D

Clock

Q

13 ns

45 ns

30 ns

 FIGURE 4-45
 Metastable Behavior
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inside the  flip-  flop in this experiment is converted to a longer delay by the output 

buffer of the  flip-  flop and so is not visible at the output.

So what can be done about this problem? Many solutions have been proposed, 

some of them ineffective. A simple one is to use a series of synchronizing  flip-  flops, 

i.e., a small shift register. The likelihood of the second  flip-  flop in the series going 

metastable because the first one applies a metastable or delayed input to it is less 

than that of the first  flip-  flop going metastable, and so on. Some commercial designs 

have used as many as six  flip-  flops in series to deal with this problem. More common 

is the use of three or so  flip-  flops in series. The more  flip-  flops, the more the circuit 

response to a change is delayed and the less likely the circuit is to fail due to metasta-

bility. But the probability never goes to zero. Some degree of uncertainty for incor-

rect operation always remains, however small. For a much more detailed discussion 

of metastability, see Wakerly’s Digital Design: Principles and Practices, 4th ed., 2006.

4-13 SYNCHRONOUS CIRCUIT PITFALLS

Just because there is a clock does not mean that a circuit is synchronous. For example, 

in a ripple counter, such as in Figure 6-12, the clock drives at most one  flip-  flop clock 

input directly. All other clock inputs driving the  flip-  flops are actually state variables. 

So the changes in the state variables that are the outputs of these  flip-  flops are not 

synchronous with the clock. For a 16-bit ripple counter, in the worst case where all 

 flip-  flops change state, the most significant bit changes 16  flip-  flop delays after the 

clock edge on the first  flip-  flop.

Also, consider the synchronous counter in Figure 4-46. The 4-bit synchronous 

binary counter counts up by 1 whenever a positive edge occurs on Clock. When the 

count reaches 1111, the count up results in 0000. The binary counter also has an 

Asynchronous reset with drives the four asynchronous reset inputs to the internal 

 flip-  flops. When the reset shown becomes 0, it clears all four  flip-  flops to 0 with only 

the inherent time delays, i.e., independent of the positive clock edge. Due to the 

attached NAND gate and its connections, when the count become 0110 (6) in 

response to a positive edge, the NAND produces a 0, causing the four  flip-  flops to be 

cleared, giving 0000 (0). So the counter is supposed to count 0, 1, 2, 3, 4, 5, 0, .... But 

suppose that A2 goes to 0 a bit earlier than A1. Then the output of the NAND can go 

Clock
1

A3 A2 A1 A0

Binary counterCount
Asynchronous
reset

 FIGURE 4-46
 Example of an Asynchronous Circuit
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to a 1 before all  flip-  flops in the counter have been reliably reset. If  flip-  flop A1 is 

slow enough and A2 fast enough, the state 0010 could result instead of 0000. We 

have actually seen this type of incorrect behavior in the laboratory. Because this 

counter “kills itself” back to value zero, it is called a suicide counter. Unfortunately, 

using it is more like committing “job suicide.”

The suicide counter is just one example of a sneaky class of asynchronous cir-

cuits posing as synchronous ones. If you use the direct inputs, clear or preset, to a 

 flip-  flop for anything other than  power-  up reset and overall system reset, you have 

designed an asynchronous circuit, because  flip-  flop state changes are no longer occur-

ring just in response to the clock signal present at the  flip-  flop clock input. Further, 

with the complexity of  flip-  flops plus whatever logic you may have added, you have 

no idea what sort of hazard problems or other timing problems you may have.

In summary, there are certainly situations where you must use asynchronous 

circuits to get the desired behavior. But these situations are far fewer than the cases 

where someone thinks they need an asynchronous circuit or a synchronous circuit 

that is really asynchronous. So try to avoid them whenever you can.

As for synchronizing  flip-  flops, their use is essential in making the transition 

from asynchronous signals to a synchronous circuit. Care must be taken to deal with 

metastability. There is a lot more to synchronization than we have presented here. 

For example, if the timing of a set of asynchronous signals is known relative to 

another particular asynchronous signal, only the latter signal may need to be 

synchronized.

4-14 CHAPTER SUMMARY

Sequential circuits are the foundation upon which most digital design is based. 

 Flip-  flops are the basic storage elements for synchronous sequential circuits. Flip- 

flops are constructed of more fundamental elements called latches. By themselves, 

latches are transparent and, as a consequence, are very difficult to use in synchro-

nous sequential circuits using a single clock. When latches are combined to form 

 flip-  flops, nontransparent storage elements very convenient for use in such circuits 

are formed. Two triggering methods are used for  flip-  flops: pulse and edge triggering. 

In addition, there are a number of  flip-  flop types, including D, SR, JK, and T.

Sequential circuits are formed using these  flip-  flops and combinational logic. 

Sequential circuits can be analyzed to find state tables and state diagrams that repre-

sent the behavior of the circuits. Also, analysis can be performed by using logic 

simulation.

These same state diagrams and state tables can be formulated from verbal 

specifications of digital circuits. By assigning binary codes to the states and finding 

 flip-  flop input equations, sequential circuits can be designed. The design process also 

includes issues such as finding logic for the circuit outputs, resetting the state at 

 power-  up, and controlling the behavior of the circuit when it enters states unused in 

the original specification. Finally, logic simulation plays an important role in verify-

ing that the circuit designed meets the original specification.

In order to deal with more complex, realistic designs,  state-  machine diagrams 

and state tables are introduced. The goal of this notation is to minimize the 
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complexity of descriptions, maximize the flexibility of representation, permit the use 

of default conditions, and provide a model that facilitates modeling of pragmatic 

designs. In addition, this model builds toward the use of hardware description lan-

guages to model sequential circuits.

As an alternative to the use of logic diagrams, state diagrams, and state tables, 

sequential circuits can be defined in VHDL or Verilog descriptions. These descrip-

tions provide a powerful, flexible approach to sequential circuit specification for 

both simulation and automatic circuit synthesis. These representations involve pro-

cesses that provide added descriptive power beyond the concurrent assignment 

statements of VHDL and the continuous assignment statement of Verilog. The pro-

cesses, which permit  program-  like coding and use  if-  then-  else and case conditional 

statements, can also be used to efficiently describe combinational logic.

Finally, the timing parameters associated with  flip-  flops were presented, and 

the relationship between path delay in sequential circuits and clock frequency was 

established. Following this description, the important topics of synchronization of 

asynchronous signals, and metastability in synchronizing circuits were covered.
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PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

4-1.  Perform a manual or  computer-  based logic simulation similar to that given in 

Figure 4-5 for the S R latch shown in Figure 4-6. Construct the input sequence, 

keeping in mind that changes in state for this type of latch occur in response 

to 0 rather than 1.

 4-2.  Perform a manual or  computer-  based logic simulation similar to that given in 

Figure 4-5 for the SR latch with control input C in Figure 4-7. In particular, 

examine the behavior of the circuit when S and R are changed while C has the 

value 1.

 4-3.  A popular alternative design for a  positive-  edge-  triggered D  flip-  flop is 

shown in Figure  4-47. Manually or automatically simulate the circuit to 

determine whether its functional behavior is identical to that of the circuit in 

Figure 4-10.

C

D

S

R

Q

Q

 FIGURE 4-47
 Circuit for Problem 4-3
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 4-4.  Clock and D waveforms, a D latch and an  edge-  triggered D  flip-  flop are 

shown in Figure 4-48. For both the latch and the  flip-  flop, carefully sketch the 

output waveform, Qi, obtained in response to the input waveforms. Assume 

that the propagation delay of the storage elements is negligible. Initially, all 

storage elements store 0.

 4-5.  A sequential circuit with a  D flip-  flop A, two inputs X and Y, and one output  

Z is specified by the following input equations:

Z = AY + X YA, + AX

(a) Draw the logic diagram of the circuit.

(b) Derive the state table.

(c)  Derive the state diagram.

(d) Is this a Mealy or a Moore machine?

 4-6.  A sequential circuit with two D  flip-  flops A and B and input X and output Y is 

specified by the following input equations:

Y = A + B, DA = X + B, DB = X # A

(a) Draw the logic diagram of the circuit.

(b) Derive the state table.

(c)  Derive the state diagram.

(d) Is this a Mealy or a Moore machine?

 4-7.  *A sequential circuit has three D  flip-  flops A, B, and C, and one input X. The 

circuit is described by the following input equations:

D

C

Triggered D

D

C

D with 1 Control

Q1

Q2

D

C

 FIGURE 4-48
 Waveforms and Storage Element for Problem 4-4
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 DA = (BC + BC)X + (BC + B C)X

 DB = A

 DC = B

(a) Derive the state table for the circuit.

(b) Draw two state diagrams, one for X = 0 and the other for X = 1.

 4-8.  A sequential circuit has one  flip-  flop Q, two inputs X and Y, and one output S. 

The circuit consists of a D flip-flop with S as its output and logic 

implementing the function

D = S ⊕(X + Y)

with D as the input to the D  flip-  flop. Derive the state table and state dia-

gram of the sequential circuit.

 4-9.  Starting from state 00 in the state diagram of Figure 4-15(a), determine the 

state transitions and output sequence that will be generated when an input 

sequence of 10011011110 is applied.

 4-10.  Draw the state diagram of the sequential circuit specified by the state table in 

Table 4-14.

 TABLE 4-14
 State Table for Circuit of Problem 4-10

Present State  Inputs Next State Output

A B  X Y A B Z

0 0 0 0 1 0 0
0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 0 1 1 1 1 1

0 1 0 0 0 1 1

0 1 0 1 0 0 0

0 1 1 0 0 0 1

0 1 1 1 0 0 0

1 0 0 0 1 1 1

1 0 0 1 0 1 1

1 0 1 0 0 1 0

1 0 1 1 1 0 0

1 1 0 0 0 0 0

1 1 0 1 0 1 0

1 1 1 0 1 0 1

1 1 1 1 1 1 1



 4-11.  A sequential circuit has two D  flip-  flops, one input X, and one output Y. The 

logic diagram of the circuit is shown in Figure 4-49. Derive the state table and 

state diagram of the circuit.

 4-12.  A sequential circuit is given in Figure 4-13.

(a) Add the necessary logic and/or connections to the circuit to provide an 

asynchronous reset to state A = 1,  B = 0 for signal Reset = 0.

(b) Add the necessary logic and/or connections to the circuit to provide a 

synchronous reset to state A = 0,  B = 0 for signal Reset = 1.

 4-13.  *Design a sequential circuit with two D  flip-  flops A and B and one 

input X. When X = 0, the state of the circuit remains the same. When X = 1, 

the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 

00, and then repeats.

 4-14.  The state diagram for a sequential circuit appears in Figure 4-50.

 FIGURE 4-49
Circuit for Problem 4-11, Problem 4-40, Problem 4-41, Problem 4-49, Problem 4-50, and 
Problem 4-59

00/0, 11/0
01/0, 10/1

00/0, 01/0

00/1,01/0 01/1, 10/0

10/1, 11/0

00/1, 11/1

10/1, 11/1

A B

C D

Reset

X1X2/Z

 FIGURE 4-50
 State Diagram for Problem 4-14
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(a) Find the state table for the circuit.

(b) Make a state assignment for the circuit using 2-bit codes and find the 

encoded state table.

(c)  Find an optimized circuit implementation using D  flip-  flops, NAND 

gates, and inverters.

(d) Repeat parts (b) and (c) using  one-  hot encoding for the state assignment.

 4-15.  The state diagram for a sequential circuit appears in Figure 4-51.

(a) Find the state table for the circuit.

(b) Make a state assignment for the circuit using 3-bit codes for the six states; 

make one of the code bits equal to the output to save logic, and find the 

encoded state table. The next states and outputs are don’t cares for the 

two unused state codes.

(c)   Find an optimized circuit implementation using D  flip-  flops, NAND 

gates, and inverters.

(d) Repeat parts (b) and (c) using  one-  hot encoding for the state assignment.

 4-16.  The circuit given in Figure 4-52 is to be redesigned to cut its cost.

(a) Find the state table for the circuit and replace the state codes with 

 single-  letter identifiers. States 100 and 111 were unused in the original 

design.

(b) Check for and combine equivalent states.

(c)  Make a state assignment such that the output is one of the state variables.

(d) Find the  gate-  input costs of the original circuit and your circuit, assuming 

that the  gate-  input cost of a D  flip-  flop is 14. Is the cost of the new circuit 

reduced?
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 FIGURE 4-51
 State Diagram for Problem 4-15



   4-17.  A sequential circuit for a luggage lock has ten pushbuttons labeled 0, 1, 2, 3, 4, 5, 

6, 7, 8, and 9. Each pushbutton 0 through 9 produces a 1 on Xi, i = 0 through 9, 

respectively, with all other values on variable Xj, j ≠ i, equal to 0. Also, these 

ten pushbuttons produce a positive pulse on the clock C for clocking the 

 flip-  flops in the circuit. The circuitry that produces the Xi signals and the clock 

C has already been designed. The lock opens in response to a sequence of 

four Xi values, i = 0, . . . , 9, set by the user. The logic for connecting the four 

selected Xi values to variables X
a
, X

b
, X

c
, and X

d
 has also been designed. The 

circuit is locked and reset to its initial state by pushing pushbutton Lock, 

which provides L, the asynchronous reset signal for the circuit. The lock is to 

unlock in response to the sequence X
a
, X

b
, X

c
, X

d
, regardless of all past inputs 

applied to it since it was reset. The circuit has a single Moore type output U 
which is 1 to unlock the lock, and 0 otherwise. Design the circuit with inputs 

X
a
, X

b
, X

c
, and X

d
, reset L, clock C, and output U. Use a  one-  hot code for the 

state assignment. Implement the circuit with D  flip-  flops and AND gates, OR 

gates, and inverters.

 4-18.  *A serial 2s complementer is to be designed. A binary integer of arbitrary 

length is presented to the serial 2s complementer, least significant bit first, on 

input X. When a given bit is presented on input X, the corresponding output 

bit is to appear during the same clock cycle on output Z. To indicate that a 

sequence is complete and that the circuit is to be initialized to receive another 

sequence, input Y becomes 1 for one clock cycle. Otherwise, Y is 0.

Clock
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C
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D

C
R

D

C
R
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Y2

Y2

Y3

Y1

Y3

Y2
Y3

Y3

 FIGURE 4-52
 Circuit for Problem 4-16
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(a) Find the state diagram for the serial 2s complementer.

(b) Find the state table for the serial 2s complementer.

(c)  Write an HDL description for the state machine for the  

 using Example 4-13 (VHDL) or Example 4-15 (Verilog) 

as a template.

 4-19.  A serial odd parity generator is to be designed. A binary sequence of 

arbitrary length is presented to the parity generator on input X. When a given 

bit is presented on input X, the corresponding odd parity bit for the binary 

sequence is to appear during the same clock cycle on output Z. To indicate 

that a sequence is complete and that the circuit is to be initialized to receive 

another sequence, input Y becomes 1 for one clock cycle. Otherwise, Y is 0.

(a) Find the state diagram for the serial odd parity generator.

(b) Find the state table for the serial odd parity generator.

(c)  Write an HDL description for the state machine for the odd parity 

generator using Example 4-13 (VHDL) or Example 4-15 (Verilog) as a 

template.

   4-20.  A Universal Serial Bus (USB) communication link requires a circuit that 

produces the sequence 00000001. You are to design a synchronous sequential 

circuit that starts producing this sequence for input E = 1. Once the 

sequence starts, it completes. If E = 1, during the last output in the sequence, 

the sequence repeats. Otherwise, if E = 0, the output remains constant at 1.

(a) Draw the Moore state diagram for the circuit.

(b) Find the state table and make a state assignment.

(c)  Design the circuit using D  flip-  flops and logic gates. A reset should be 

included to place the circuit in the appropriate initial state at which 

E is examined to determine if the sequence of constant 1s is to be 

produced.

 4-21.  Repeat Problem 4-20 for the sequence 01111110 that is used in a different 

communication network protocol.

   4-22.  +The sequence in Problem 4-21 is a flag used in a communication network 

that represents the beginning of a message. This flag must be unique. As a 

consequence, at most five 1s in sequence may appear anywhere else in the 

message. Since this is unrealistic for normal message content, a trick called 

zero insertion is used. The normal message, which can contain strings of 1s 

longer than 5, enters input X of a sequential  zero-  insertion circuit. The circuit 

has two outputs, Z and S. When a fifth 1 in sequence appears on X, a 0 is 

inserted in the stream of outputs appearing on Z and the output S = 1, 

indicating to the circuit supplying the  zero-  insertion circuit with inputs that it 

must stall and not apply a new input for one clock cycle. This is necessary 

because the insertion of 0s in the output sequence causes it to be longer than 

the input sequence without the stall. Zero insertion is illustrated by the 

following example sequences:



Sequence on X without any stalls: 01111100111111100001011110101

Sequence on X with stalls: 0111111001111111100001011110101

Sequence on Z: 0111110001111101100001011110101

Sequence on S: 0000001000000010000000000000000

(a) Find the state diagram for the circuit.

(b) Find the state table for the circuit and make a state assignment.

(c)  Find an implementation of the circuit using D  flip-  flops and logic gates.

   4-23.  In many communication and networking systems, the signal transmitted on 

the communication line uses a  non-  return-  to-  zero (NRZ) format. USB uses a 

specific version referred to as  non-  return-  to-  zero inverted (NRZI). A circuit 

that converts any message sequence of 0s and 1s to a sequence in the NRZI 

format is to be designed. The mapping for such a circuit is as follows:

(a) If the message bit is a 0, then the NRZI format message contains an 

immediate change from 1 to 0 or from 0 to 1, depending on the current 

NRZI value.

(b) If the message bit is a 1, then the NRZI format message remains fixed at 

0 or 1, depending on the current NRZI value.

This transformation is illustrated by the following example, which assumes 

that the initial value of the NRZI message is 1:

Message: 10001110011010

NRZI Message: 10100001000110

(a) Find the Mealy model state diagram for the circuit.

(b) Find the state table for the circuit and make a state assignment.

(c)  Find an implementation of the circuit using D  flip-  flops and logic gates.

   4-24.  +Repeat Problem 4-23, designing a sequential circuit that transforms an 

NRZI message into a normal message. The mapping for such a circuit is as 

follows:

(a) If a change from 0 to 1 or from 1 to 0 occurs between adjacent bits in the 

NRZI message, then the message bit is a 0.

(b) If no change occurs between adjacent bits in the NRZI message, then the 

message bit is a 1.

 4-25.  A pair of signals Request (R) and Acknowledge (A) is used to coordinate 

transactions between a CPU and its I/O system. The interaction of these signals 

is often referred to as a “handshake.” These signals are synchronous with the 

clock and, for a transaction, are to have their transitions always appear in the 

order shown in Figure 4-53. A handshake checker is to be designed that will 

verify the transition order. The checker has inputs, R and A, asynchronous reset 

signal, RESET, and output, Error (E). If the transitions in a handshake are in 

order, E = 0. If the transitions are out of order, then E becomes 1 and 

remains at 1 until the asynchronous reset signal (RESET =  1) is applied to 

the CPU.
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(a) Find the state diagram for the handshake checker.

(b) Find the state table for the handshake checker.

 4-26.  A serial sequence detector is to be designed for some serial communication 

line that is able to detect a bit pattern of three consecutive 1s. The circuit is 

connected with serial communication line and has output Z and input X. 

When the input has three consecutive 1s, then the output Z = 0; in all other 

case, it will be zero. Once the output Z = 1, it will remain in 1 state until some 

zero comes. Whenever X = 0, the circuit reset. The circuit always remains in 0 

states in all other bit sequence condition. Say after a bit sequence of 0110, the 

circuit will go to initial state at the end of the last zero, i.e., whenever it detects 

some zero.

(a) Find the state diagram for the serial leading-1s detector.

(b) Is this a Mealy or a Moore machine.

 4-27.  *A sequential circuit has two  flip-  flops A and B, one input X, and one 

output Y. The state diagram is shown in Figure 4-54. Design the circuit with D 
 flip-  flops using a  one-  hot state assignment.
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 FIGURE 4-53
 Signals for Problem 4–25
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 FIGURE 4-54
 State Diagram for Problem 4–27



 4-28.  Repeat Problem 4-27 with D  flip-  flops using a  Gray-  code assignment.

 4-29.  +The state table for a 3-bit twisted ring counter is given in Table 4-15. This 

circuit has no inputs, and its outputs are the uncomplemented outputs of the 

 flip-  flops. Since it has no inputs, it simply goes from state to state whenever a 

clock pulse occurs. It has an asynchronous reset that initializes it to state 000.

(a) Design the circuit using D  flip-  flops and assuming that the unspecified 

next states are don’ t-  care conditions.

(b) Add the necessary logic to the circuit to initialize it to state 000 on 

 power-  up master reset.

(c)  In the subsection “Designing with Unused States” of Section 4-5, three 

techniques for dealing with situations in which a circuit accidentally 

enters an unused state are discussed. If the circuit you designed in parts 

(a) and (b) is used in a child’s toy, which of the three techniques given 

would you apply? Justify your decision.

(d) Based on your decision in part (c), redesign the circuit if necessary.

(e) Repeat part (c) for the case in which the circuit is used to control engines 

on a commercial airliner. Justify your decision.

(f) Repeat part (d) based on your decision in part (e).

 4-30.  Do an automatic logic  simulation-  based verification of your design in 

Problem 4-14. The input sequence used in the simulation should include all 

transitions in Figure 4-50. The simulation output should include the input X 
and the state variables A, B, and output Z.

 4-31.  *Generate a verification sequence for the circuit described by the state table 

in Table 4-14. To reduce the length of the simulation sequence, assume that 

the simulator can handle X inputs and use X’s whenever possible. Assume 

that a Reset input is available to initialize the state to A = 0,  B = 0  and that 

all transitions in the state diagram must be exercised.

 TABLE 4-15
 State Table for Problem 4-29

Present State Next State

ABC ABC

000 100
100 110

110 111

111 011

011 001

001 000
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 4-32.  Design the circuit specified by Table 4-14 and use the sequence from Problem 

4-31 (either yours or the one posted on the text website) to perform an 

automatic logic  simulation-  based verification of your design.

 4-33.  The state table for a sequential circuit is given in Table 4-16.

(a) Draw the state diagram for the circuit.

(b) Implement the circuit using D  flip-  flops and minimal input functions for 

each  flip-  flop. Reset is asynchronous and active low (RESET =  0), and 

initializes the state to A = 0,  B = 0.

 4-34.  Design a negative-edge-triggered flip-flop. The flip flop has three inputs; these 

are Data, Clock, and Enable. If, at the negative edge of the clock, the enable 

input equals to 0, then the state at Data input is stored in the flip-flop. If, at the 

negative edge of clock, Enable is in 1 state, then the current stored value in 

the flip-flop is held. Design the flip-flop using only SR latches, AND gates, and 

NOT gates.

 4-35.  Find a  state-  machine diagram that is equivalent to the state diagram in 

Figure 4-55. Reduce the complexity of the transition conditions as much as 

possible. Attempt to make outputs unconditional by changing Mealy outputs 

to Moore outputs. Make a state assignment to your  state-  machine diagram 

 TABLE 4-16
 State Table for Problem 4-33

Present State  Input Next State Output

A B Y A B Z

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 1

1 1 1 1 0 1

Reset
Input X, Y
Output Z A B DC

01/1, 10/1
00/1, 10/0

10/0, 11/1

00/0, 01/0
00/1, 11/1

00/0,01/101/1, 11/010/0, 11/0

 FIGURE 4-55
 State Diagram for Problem 4–35



and find an implementation for the corresponding sequential circuit using D 
 flop-  flops, AND gates, OR gates, and inverters.

 4-36.  Design the sequential circuit for the  state-  machine diagram from Problem 

4-35. Use a  one-  hot state assignment, D  flip-  flops and AND gates, OR gates, 

and inverters.

 4-37.  (a) Verify that the transitions in the  state-  machine diagram in Figure  4-27 

obey the two transition conditions for state diagrams. (b) Repeat part (a) for 

the state-machine diagram in Figure 4-28.

   4-38.  *You are to find the  state-  machine diagram for the following electronic 

vending-machine specification. The vending machine sells jawbreaker candy, one 

jawbreaker for 25¢. The machine accepts N (nickels = 5¢), D (dimes = 10¢), and 

Q (quarters = 25¢). When the sum of the coins inserted in sequence is 25¢ or 

more, the machine dispenses one jawbreaker by making DJ equal to 1 and 

returns to its initial state. No change is returned DJ equals 0 for all other states. 

If anything less than 25¢ is inserted and the CR (Coin Return) pushbutton is 

pushed, then the coins deposited are returned through the coin return slot by 

making RC equal to 1, after which the machine returns to its initial state. RC 
equals 0 in all other states. Use Moore outputs for your design.

   4-39.  You are to find the  state-  machine diagram for the following electronic 

 vending-  machine specification. The vending machine sells soda for $1.50 per 

bottle. The machine accepts only D ($1 bills) and Q (quarters = 25¢). When 

the sum of money is greater than $1.50, i.e., two $1 bills, the machine returns 

change in the coin return (two quarters). When $1.50 has been paid, the 

machine lights an LED to indicate that a soda flavor may be selected. The 

choices by pushbutton are C (Cola), L (Lemon soda), O (Orange soda), and 

R (Root Beer). When one pushbutton is pushed, the selected soda is 

dispensed and the machine returns to its initial state. One other feature is that 

an LED comes on to warn the user that two quarters are not available for 

change, so if a second $1 bill is inserted, no change will be given.

(a) Find the  state-  machine diagram for the soda vending machine as 

specified.

(b) The specification as given is not very user friendly. Rewrite it to provide a 

remedy for every possible situation that the user might encounter in 

using the machine.

All files referred to in the remaining problems are available in ASCII form 

for simulation and editing on the Companion Website for the text. A VHDL 

or Verilog compiler/simulator is necessary for the problems or portions of 

problems requesting simulation. Descriptions can still be written, however, 

for many of the problems without using compilation or simulation.

 4-40.  Write a  gate-  level structural VHDL description for the circuit from Problem 

4-11. Use the VHDL model for a D  flip-  flop from Figure  4-29. Use the 

package func_prims in library lcdf_vhdl for the logic gate components.
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 4-41.  Write a behavioral VHDL description for the circuit from Problem 4-11 using 

a process to describe the state diagram.

 4-42.  *Although this chapter has introduced VHDL processes to describe 

sequential circuits, combinational circuits can also be described using 

processes. Write a VHDL description for the multiplexer in Figure 3-25 by 

using a process containing a case statement rather than the continuous 

assignment statements as shown in Section 3-7.

 4-43.  Repeat Problem 4-42 by using a VHDL process containing  if-  then-  else 

statements.

 4-44.  +Write a VHDL description for the sequential circuit with the state diagram 

given by Figure 4-19(d). Include an asynchronous RESET signal to initialize 

the circuit to state Init. Compile your description, apply an input sequence 

to pass through every transition of the state diagram at least once, and verify 

the correctness of the state and output sequence by comparing them to the 

state diagram.

 4-45.  Write a VHDL description for the circuit specified in Problem 4-14.

 4-46.  Write a VHDL description for the circuit specified in Problem 4-15.

   4-47.  Write a VHDL description for the  state-  machine diagram for the batch 

mixing system derived in Example 4-10.

   4-48.  Write a VHDL description for the  state-  machine diagram for the jawbreaker 

vending machine described in Problem 4-38. You may obtain the 

 state-  machine diagram by either solving Problem 4-38 or finding its solution 

on the textbook website.

 4-49.  Write a  gate-  level structural Verilog description for the circuit from Problem 

4-11. Use the Verilog model for a D  flip-  flop from Figure 4-33.

 4-50.  Write a behavioral Verilog description for the circuit from Problem 4-11 using 

a process to describe the state diagram.

 4-51.  Although this chapter has introduced Verilog processes to describe 

sequential circuits, combinational circuits can also be described using 

processes. Write a Verilog description for the multiplexer in Figure 3-25 by 

using a process containing a case statement rather than the continuous 

assignment statements as shown in Section 3-7.

 4-52.  *Repeat Problem 4-51 by using a Verilog process containing  if-  else 

statements.

 4-53.  +Write a Verilog description for the sequential circuit given by the state 

diagram in Figure  4-19(d). Include an asynchronous RESET signal to 

initialize the circuit to state Init. Compile your description, apply an input 

sequence to pass through every arc of the state diagram at least once, and 

verify the correctness of the state and output sequence by comparing them to 

the state diagram.



 4-54.  Write a Verilog description for the circuit specified in Problem 4-14.

 4-55.  Write a Verilog description for the circuit specified in Problem 4-15.

   4-56.  Write a Verilog description for the  state-  machine diagram for the batch 

mixing system derived in Example 4-10.

   4-57.  Write a Verilog description for the  state-  machine diagram for the jawbreaker 

vending machine derived in Problem 4-38. You may obtain the  state-  machine 

diagram by either solving Problem 4-38 or finding its solution on the textbook 

website. In the parameter statement use a  one-  hot state assignment.

 4-58.  A set of waveforms applied to two D  flip-  flops is shown in Figure 4-56. These 

waveforms are applied to the  flip-  flops shown along with the values of their 

timing parameters.

(a) List the time(s) at which there are timing violations in signal D1 for 

 flip-  flop 2.

(b) List the time(s) at which there are timing violations in signal D2 for 

 flip-  flop 2.

 4-59.  *A sequential circuit is shown in Figure 4-49. The timing parameters for the 

gates and  flip-  flops are as follows:

Inverter: tpd = 0.01 ns

XOR gate: tpd = 0.04 ns

 Flip-  flop: tpd =  0 .08 ns,  ts =  0 .02 ns,  and  th =  0 .01 ns

(a) Find the longest path delay from an external circuit input passing 

through gates only to an external circuit output.

0 4 8 12 16 20 24 28 32 t(ns)

Clock

D1

D2

ts � 1.0 ns
th � 0.5 ns

ts � 1.0 ns
th � 0.5 ns

D

C

D1

Clock

D

C

D2

Clock

 FIGURE 4-56
 Circuit for Problem 4-58.
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(b) Find the longest path delay in the circuit from an external input to 

positive clock edge.

(c)  Find the longest path delay from positive clock edge to output.

(d) Find the longest path delay from positive clock edge to positive clock 

edge.

(e) Determine the maximum frequency of operation of the circuit in 

megahertz (MHz).

 4-60.  Repeat Problem 4-59, assuming that the circuit consists of two copies of the 

circuit in Figure 4-49 with input X of the second circuit copy driven by output 

Y of the first circuit copy.

 4-61.  Write a  gate-  level HDL description of the circuit from Problem 4-59 

including delays for each component. Show that the circuit operates 

incorrectly when operated at a frequency greater than the maximum 

frequency you found as your answer for Problem 4-59.
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Digital Hardware 
Implementation

5

5-1 THE DESIGN SPACE

For a given design, there is typically a target implementation technology that speci-

fies the primitive elements available and their properties. The design space describes 

the target technologies and the parameters used to characterize them.

Integrated Circuits

Digital circuits are constructed with integrated circuits. An integrated circuit (abbre-

viated IC) is a silicon semiconductor crystal, informally called a chip, containing the 

To this point, we have studied the basics of design of combinational and sequential 

understanding of contemporary design. It begins by characterizing logic gates 

and circuits with a particular focus on complementary metal oxide semiconductor 

(CMOS) technology. Then basic programmable logic device (PLD) technologies are 

covered. This coverage includes  read-  only memories (ROMs), programmable logic 

arrays (PLAs), programmable array logic (PAL®), and Field Programmable Gate Array 

(FPGA) devices.

forms the foundation for realization of most of the integrated circuits. Finally, 

feature is updating of the operating system (OS) stored in programmable ROM in smart 

phones and other embedded devices, and the BIOS (Basic Input Output System) in a 

laptop computer.
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electronic components for the digital gates and storage elements. The various com-

ponents are interconnected on the chip. The chip is mounted in a ceramic or plastic 

container, and connections are welded from the chip to the external pins to form 

the integrated circuit. The number of pins may range from 14 on a small IC package 

to several hundred on a large package. Each IC has an alphanumeric designation 

printed on the surface of the package for identification. Each vendor publishes 

datasheets or a catalog containing the description and all the necessary information 

about the ICs that it manufactures. Typically, this information is available on vendor 

websites.

LEVELS OF INTEGRATION As IC technology has improved, the number of gates present 

in a single silicon chip has increased considerably. Customary reference to a pack-

age as being either a  small-,  medium-,  large-, or  very-  large-  scale integrated device 

is used to differentiate between chips with just a few internal gates and those with 

thousands to hundreds of millions of gates.

 Small-  scale integrated (SSI) devices contain several independent primitive 

gates in a single package. The inputs and outputs of the gates are connected directly 

to the pins in the package. The number of gates is usually less than 10 and is limited 

by the number of pins available on the IC.

 Medium-  scale integrated (MSI) devices have approximately 10 to 100 gates in a 

single package. They usually perform specific elementary digital functions, such as 

the addition of four bits. MSI digital functions are similar to the functional blocks 

described in Chapter 3.

 Large-  scale integrated (LSI) devices contain between 100 and a few thousand 

gates in a single package. They include digital systems such as small processors, small 

memories, and programmable modules.

 Very-  large-  scale integrated (VLSI) devices contain several thousand to hun-

dreds of millions of gates in a single package. Examples are complex microprocessor 

and digital  signal-  processing chips. Because of their small transistor dimensions, high 

density, and comparatively low cost, VLSI devices have revolutionized digital system 

and computer design. VLSI technology enables designers to create complex struc-

tures that previously were not economical to manufacture.

CMOS Circuit Technology

Digital integrated circuits are classified not only by their function, but also by their 

specific implementation technology. Each technology has its own basic electronic 

device and circuit structures upon which more complex digital circuits and functions 

are developed. The specific electronic devices used in the construction of the basic 

circuits provide the name for the technology. Currently,  silicon-  based complementa-

ry metal oxide semiconductor (CMOS) technology dominates due to its high circuit 

density, high performance, and low power consumption. Some manufacturers are 

now using SOI (silicon on insulator) technology, which is a variant of CMOS in 

which an insulating material (silicon dioxide) isolates the transistors from the base 

silicon wafer. Alternative technologies based on gallium arsenide (GaAs) and sili-

con germanium (SiGe) are also used selectively for very  high-  speed circuits.
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So far we have dealt largely with implementing logic circuits in terms of gates. 

Here we diverge briefly into electronic circuits made of electronic devices called 

transistors that implement the gates. For very  high-  performance logic or logic with 

specialized properties, CMOS  electronic-  circuit-  level design is important, since to 

achieve the very highest performance, it is sometimes necessary to design directly 

from the Boolean equations to the circuit level, bypassing the  logic-  gate level. Also, 

it is important to realize that there is a circuit design process that is critical to pro-

duction of the logic gates used in design.

CMOS TRANSISTOR The foundation for CMOS technology is the MOS ( metal-  oxide 

semiconductor) transistor. Transistors and the interconnections between them are 

fabricated as elements of an integrated circuit die, less formally referred to as a chip. 

Each rectangular die is cut from a very thin slice of crystalline silicon called a wafer. 

In the most modern fabrication facilities for making integrated circuits, wafers are 

typically 300 mm (about one foot) in diameter.

A sketch of a transistor is shown in Figure 5-1(a). In this sketch, the transistor 

has been sliced on a vertical plane through the integrated circuit chip on which it lies. 

In addition, the fabrication steps that form the interconnections between transistors 

and the protective covering over the chip have not yet occurred, leaving the transis-

tor exposed. The substrate is the basic wafer material. The fabrication process has 

modified the substrate to be highly conductive in the source and the drain regions of 

the transistor. The conductive polysilicon gate has been deposited on top of a very 

thin insulating layer of silicon dioxide. The resulting structure consists of two identi-

cal conductive regions, the source and the drain, with a gap in between that lies under 

the gate. This gap is referred to as the channel. To give a sense of the size of the tran-

sistor, the channel length in Intel’s most recent technology is 14 nanometers 

(14 * 10-9 meters), with 10 nanometer technology expected to be available in the 

near future. This ranges from approximately 1/1200 to 1/13000 of the diameter of a 

human hair, depending on the variability of the hair size.

In the normal operation of an  n-  channel MOS transistor, the drain is by defini-

tion at a higher voltage than the source. When the gate voltage is at least the thresh-

old voltage of the transistor above the source voltage, and the drain voltage is 

sufficiently above the source voltage, a thin layer of the substrate just below the thin 

gate insulation becomes a conducting layer between the source and the drain. This 

permits a current to flow between the source and the drain. In this case, the transistor 

is said to be ON. If the  gate-  to-  source voltage is less than the threshold voltage, the 

channel will be absent, blocking significant current flow. Under this condition, the 

transistor is said to be OFF. The use of ON and OFF refers to the present or absence 

of current flow between the source and the drain, respectively. Use of this terminol-

ogy brings to mind the ON/OFF behavior of a switch. As a consequence, a switchlike 

behavior is a good  first-  order model for an MOS transistor.

CMOS TRANSISTOR MODELS The behavior of the MOS transistor model depends on 

the transistor type. CMOS technology employs two types of transistor:  n-  channel and 

 p-  channel. The behavior described in the preceding paragraph is that of an  n-  channel 

transistor. The two transistor types differ in the characteristics of the  semiconductor 
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 FIGURE 5-1 
MOS Transistor, Symbols, and Switch Models

materials used in their implementation and in the mechanism governing the conduc-

tion of a current through them. Most important to us, however, is their difference in 

behavior. We will model this behavior using switches controlled by voltages corre-

sponding to logic 0 and logic 1. Such a model ignores the complexity of electronic 

devices and captures only logical behavior.

The symbol for an  n-  channel transistor is shown in Figure 5-1(b). The transistor 

has three terminals: the gate (G), the source (S), and the drain (D), as shown. Here 

we make the usual assumption that a 1 represents the H voltage range and a 0 rep-

resents the L voltage range. The notion of whether a path for current to flow exists is 

easily modeled by a switch, as shown in Figure 5-1(c). The switch consists of two 

fixed terminals corresponding to the S and D terminals of the transistor. In addition, 

there is a movable contact that, depending on its position, determines whether the 

switch is open or closed. The position of the contact is controlled by the voltage 
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applied to the gate terminal G. Since we are looking at logic behavior, this control 

voltage is represented on the symbol by the input variable X on the gate terminal. 

For an  n-  channel transistor, the contact is open (no path exists) for the input variable 

X equal to 0 and closed (a path exists) for the input variable X equal to 1. Such a con-

tact is traditionally referred to as being normally open, that is, open without a posi-

tive voltage applied to activate or close it. Figure 5-1(d) shows a shorthand notation 

for the  n-  channel switch model with the variable X applied. This notation represents 

the fact that a path between S and D exists for X equal to 1 and does not exist for X 
equal to 0.

The symbol for a  p-  channel transistor is shown in Figure 5-1(e). The positions 

of the source S and drain D are seen to be interchanged relative to their positions in 

the  n-  channel transistor. The voltage applied between the gate G and the source S 

determines whether a path exists between the drain and source. Note that the nega-

tion indicator or bubble appears as a part of the symbol. This is because, in contrast 

to the behavior of an  n-  channel transistor, a path exists between S and D in the  

 p-  channel transistor for input variable X equal to 0 (at value L) and does not exist for 

input variable X equal to 1 (at value H). This behavior is represented by the model in 

Figure 5-1(f), which has a normally closed contact through which a path exists for X 
equal to 0. No path exists through the contact for X equal to 1. In addition, the short-

hand notation of the  p-  channel switch model with variable X applied is given in 

Figure 5-1(g). Since a 0 on input X causes a path to exist through the switch and a 1 on 

X produces no path, the literal shown on the switch is X instead of X.

CIRCUITS OF SWITCHES A circuit made up of switches that model transistors can be 

used to design CMOS logic. The circuit implements a function F if there is a path 

through the circuit for F equal to 1 and no path through the circuit for F equal to 0. 

A simple circuit of  p-  channel transistor switch models is shown in Figure 5-2(a). The 

function G
1
 implemented by this circuit can be determined by finding the input com-

binations for which a path exists through the circuit. In order for the path to ex-

ist through G1, both switches must be closed—that is, the path exists for X and Y 

both 1. This implies that X = 0 and Y = 0. Thus, the function G1 of the circuit is 

X # Y = X + Y—in other words, the NOR function. In Figure 5-2(b), for function G2,  

a path exists through the  n-  channel switch model circuit if either switch is  closed— 

 that is, for X = 1 or Y = 1. Thus, the function G2 is X + Y.

X: X

(a)

Y: Y

X: X Y: Y

G2G1

(b)

 FIGURE 5-2 
Example of Switch Model Circuits
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In general, switches in series give an AND function and switches in parallel an 

OR function. (The function for the preceding circuit that models  p-  channel transis-

tors is a NOR function because of the complementation of the variables and the 

application of DeMorgan’s law.) By using these circuit functions to produce paths in 

a circuit that attach logic 1 (H) or logic 0 (L) to an output, we can implement a logic 

function on the output, as discussed next.

FULLY COMPLEMENTARY CMOS CIRCUITS The subfamily of CMOS circuits that we will 

now consider has the general structure shown in Figure 5-3(a). Except during transi-

tions, there is a path to the output of the circuit F either from the power supply +V 

(logic 1) or from ground (logic 0). Such a circuit is called static CMOS. In order to 

have a static circuit, the transistors must implement circuits of switches for both 

function F and function F. In other words, both the 0s and the 1s of the function F 
must be implemented with paths through circuits. The switch circuit implementing F 
is constructed using  p-  channel transistors and connects the circuit output to logic 1. 

We use  p-  channel transistors because they conduct  logic-  1 values better than  logic- 

 0 values. The switch circuit implementing F is constructed using  n-  channel transis-

tors and connects the circuit output to logic 0. Here  n-  channel transistors are used 

 because they conduct  logic-  0 values better than  logic-  1 values. Note that the same 

input variables enter both the  p-  channel and  n-  channel switch circuits.

To illustrate a fully complementary circuit, we use transistors corresponding to 

the circuits G1 and G2 from Figure 5-2(a) and (b) as the  p-  channel implementation 

of G and the  n-  channel implementation of G, respectively, in Figure 5-3(b). A path 

exists through G1 for X + Y = 1, which means that a path exists in Figure 5-3(b) 

from logic 1 to the circuit output, making G = 1 for X + Y = 1. This provides the 

1s on the output for the function  G.  A path exists through G2 for X + Y = 1, 

which  means that a path exists in Figure  5-3(b) from logic 0 to the output for 

X + Y = X + Y = 1. This path makes G = 0 for the complement of X + Y. Thus, 

the  n-  channel circuit implements G. This provides the 0s on the output for func-

tion G. Since both the 1s and 0s are provided for G, we can say that the circuit output 

G = X + Y, which is a NOR gate. This is the standard static CMOS implementation 

for a NOR.

Since the NAND is just the dual of the NOR, we can implement the CMOS 

NAND by simply replacing the +  by · in the equations for G1 and G2. In terms of 

the switch circuit, the dual of switches in series is switches in parallel and vice versa. 

This duality applies to the transistors that are modeled as well, giving the NAND 

implementation in Figure 5-3(c). The final gate in Figure 5-3(d) is the implementa-

tion of the NOT.

Note that all of the circuits in Figure 5-3 implement inverting functions under 

DeMorgan’s laws. This inversion property is characteristic of CMOS gates. In fact, as 

we look at a general design procedure, we assume that functions are implemented 

using F = F. This avoids working directly with  p-  channel switches, which involve 

complementing variables. Thus, we will design the  n-  channel circuit for F and take 

the dual to get the  p-  channel circuit for F. For functions more complex than NAND, 

NOR, and NOT, the resulting circuits are called complex gates.
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Design of complex gates, using a general design procedure, and transmission gates 

and their applications are covered in the supplement entitled More CMOS  Circuit- 
 Level Design appearing on the text Companion Website.

Technology Parameters

For each specific implementation technology, there are details that differ in their 

electronic circuit design and circuit parameters. The most important parameters 

used to characterize an implementation technology follow:

 Fan-  in specifies the number of inputs available on a gate.

 Fan-  out specifies the number of standard loads driven by a gate output. Maxi-
mum  fan-  out for an output specifies the  fan-  out that the output can drive with-

out impairing gate performance. Standard loads may be defined in a variety of 

ways depending upon the technology.

Noise margin is the maximum external noise voltage superimposed on a nor-

mal input value that will not cause an undesirable change in the circuit output.

Cost for a gate specifies a measure of its contribution to the cost of the inte-

grated circuit containing it.

Propagation delay is the time required for a change in value of a signal to prop-

agate from input to output. The operating speed of a circuit is inversely related 

to the longest propagation delays through the gates of the circuit.

Power consumption (dissipation) is the power drawn from the power supply 

and consumed by the gate. The power consumed is dissipated as heat, so the 

power dissipation must be considered in relation to the operating temperature 

and cooling requirements of the chip. For  battery-  powered systems such as 

smart phones, the power consumption of the integrated circuits will determine 

the battery life of the system.

Although all of these parameters are important to the designer, further details on 

only selected parameters are provided here. Because of their major importance to 

the design process, propagation delay and circuit timing have already been discussed 

in Chapters 2 and 4.

 FAN-  IN For  high-  speed technologies,  fan-  in, the number of inputs to a gate, is of-

ten  restricted on gate primitives to no more than four or five. This is primarily due 

to electronic considerations related to gate speed. To build gates with large  fan-  in, 

interconnected gates with lower  fan-  in are used during technology mapping. A map-

ping for a 7-input NAND gate illustrated in Figure 5-4 is made up of two 4-input 

NANDs and an inverter.

 FIGURE 5-4 
Implementation of a 7-Input NAND Gate Using 
NAND Gates with Four or Fewer Inputs
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 FAN-  OUT One approach to measuring  fan-  out is the use of a standard load. Each 

input on a driven gate provides a load on the output of the driving gate which is 

measured in standard load units. For example, the input to a specific inverter can 

have a load equal to 1.0 standard load. If a gate drives six such inverters, then the 

 fan-  out is equal to 6.0 standard loads. In addition, the output of a gate has a max-

imum load that it can drive, called its maximum  fan-  out. The determination of the 

maximum  fan-  out is a function of the particular logic family. Our discussion will 

be restricted to CMOS, currently the most popular logic family. For CMOS gates, 

the loading of a gate output by the integrated circuit wiring and the inputs of other 

gates is modeled as a capacitance. This capacitive loading has no effect on the logic 

levels, as loading often does for other families. Instead, the load on the output of a 

gate determines the time required for the output of the gate to change from L to 

H and from H to L. If the load on the output is increased, then this time, called the 

transition time, increases. Thus, the maximum  fan-  out for a gate is the number of 

standard loads of capacitance that can be driven with the transition time no greater 

than its maximum allowable value. For example, a gate with a maximum  fan-  out of 

8 standard loads could drive up to 8 inverters that present 1.0 standard load on each 

of their inputs.

Both  fan-  in and  fan-  out must be dealt with in the  technology-  mapping step of 

the design process. Gates with  fan-  ins larger than those available for technology 

mapping can be implemented with multiple gates. Gates with  fan-  outs that either 

exceed their maximum allowable  fan-  out or produce too high a delay need to be 

replaced with multiple gates in parallel or have buffers added at their outputs.

COST For integrated circuits, the cost of a primitive gate is usually based on the 

area occupied by the layout cell for the circuit. The  layout-  cell area is proportional to 

the size of the transistors and the wiring in the gate layout. Ignoring the wiring area, 

the area of the gate is proportional to the number of transistors in the gate, which in 

turn is usually proportional to the  gate-  input cost. If the actual area of the layout is 

known, then a normalized value of this area provides a more accurate estimation of 

cost than  gate-  input cost.

From a system standpoint, as important as the manufacturing cost per primi-

tive logic gate is the overall cost to design, verify, and test the integrated circuit. 

Designing an integrated circuit with millions of transistors and bringing it to market 

requires a large team of engineers and considerable  non-  recurring engineering 

(NRE) costs,  one-  time costs that will be incurred no matter how many units of the 

product are manufactured. In contrast to NRE costs, production costs are those costs 

that are incurred for each unit of the product that is built, based upon the labor, 

materials, and energy required to manufacture the unit. The NRE costs are  amortized 

over the product volume, which is the total number of units that are manufactured. 

For a low volume product, the NRE costs of designing the integrated circuit can be 

much larger than the  per-  unit production costs. As an alternative to a custom inte-

grated circuit, low volume products are often based on programmable logic devices, 

described in Section 5-2. The NRE costs for the programmable devices are much 

lower than for custom integrated circuits, as is the time required to bring the device 

to market. The disadvantages of programmable devices relative to custom integrated 

circuits include larger propagation delays (lower performance) and higher  per-  unit 
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cost. Consequently, choosing between a fully custom integrated circuit and a pro-

grammable device requires understanding the required performance and the esti-

mated product volume in order to design a product that will be profitable.

5-2 PROGRAMMABLE IMPLEMENTATION TECHNOLOGIES

Thus far, we have introduced implementation technologies that are fixed in the sense 

that they are fabricated as integrated circuits or by connecting together integrated 

circuits. In contrast, programmable logic devices (PLDs) are fabricated with struc-

tures that implement logic functions and structures that are used to control connec-

tions or to store information specifying the actual logic functions implemented. 

These latter structures require programming, a hardware procedure that determines 

which functions are implemented. The next four subsections deal with four types of 

basic programmable logic devices (PLDs): the  read-  only memory (ROM), the pro-

grammable logic array (PLA), the programmable array logic (PAL®) device, and the 

field programmable gate array (FPGA).

Before treating PLDs, we deal with the supporting programming technologies. 

The oldest of the programming technologies include fuses and  anti-  fuses. Fuses 

which are initially CLOSED are selectively “blown out” by a higher than normal 

voltage to established OPEN connections. The pattern of OPEN and CLOSED fuses 

establishes the connections defining the logic.  Anti-  fuses, the opposite of fuses, con-

tain a material that is initially nonconducting (OPEN).  Anti-  fuses are selectively 

CLOSED by applying a  higher-  than-  normal voltage to provide a pattern of OPEN 

and CLOSED  anti-  fuses to define the logic.

A third programming technology for controlling connections is mask program-
ming, which is done by the semiconductor manufacturer during the last steps of the 

chip fabrication process. Connections are made or not made in the metal layers serv-

ing as conductors in the chip. Depending on the desired function for the chip, the 

structure of these layers is determined by the fabrication process.

All three of the preceding connection technologies are permanent. The devices 

cannot be reprogrammed, because irreversible physical changes have occurred as a 

result of device programming. Thus, if the programming is incorrect or needs to be 

changed, the device must be discarded.

The fourth programming technology which is very popular in large VLSI PLDs 

is a  single-  bit storage element driving the gate of an MOS  n-  channel transistor at the 

programming point. If the stored bit value is a 1, then the transistor is turned ON, 

and the connection between its source and drain forms a CLOSED path. For the 

stored bit value equal to 0, the transistor is OFF, and the connection between its 

source and drain is an OPEN path. Since storage element content can be changed 

electronically, the device can be easily reprogrammed. But in order to store values, 

the power supply must be available. Thus, the storage element technology is volatile— 

that is, the programmed logic is lost in the absence of the  power-  supply voltage.

The fifth and final programming technology we are considering is control of 

transistor switching. This popular technology is based on storing charge on a floating 

gate. The latter is located below the regular gate within an MOS transistor and is com-

pletely isolated by an insulating dielectric. Stored negative charge on the floating gate 
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makes the transistor impossible to turn ON. The absence of stored negative charge 

makes it possible for the transistor to turn ON if a HIGH is applied to its regular gate. 

Since it is possible to add or remove the stored charge, these technologies can permit 

erasure and reprogramming.

Two approaches using control of transistor switching are called erasable and 

electrically erasable. Programming applies combinations of voltage  higher-  than- 

 normal  power-  supply voltages to the transistor. Erasure uses exposure to a strong 

ultraviolet light source for a specified amount of time. Once this type of chip has been 

erased, it can be reprogrammed. An electrically erasable device can be erased by a 

process somewhat similar to the programming process, using voltages higher than the 

normal  power-  supply value. A third approach is flash technology, which is very widely 

used in flash memories. Flash technology is a form of electrically erasable technology 

that has a variety of erase options, including the erase of stored charge from individ-

ual floating gates, all of the floating gates, or specific subsets of floating gates.

Some, but not all,  programmable-  logic technologies have high  fan-  in gates. In 

order to show the internal logic diagram for such technologies in a concise form, we 

use a special gate symbology applicable to array logic. Figure 5-5 shows the conven-

tional and array logic symbols for a  multiple-  input OR gate. Instead of having multiple 

input lines to the gate, we draw a single line to the gate. The input lines are drawn per-

pendicular to this line and are selectively connected to the gate. If an x is present at the 

intersection of two lines, there is a connection (CLOSED). If an x is not present, then 

there is no connection (OPEN). In a similar fashion, we can draw the array logic for an 

AND gate.

We next consider three distinct programmable device structures. We will 

describe each and indicate which of the technologies is typically used in its imple-

mentation. These types of PLDs differ in the placement of programmable connec-

tions in the  AND-  OR array. Figure 5-6 shows the locations of the connections for the 

three types. Programmable  read-  only memory (PROM) as well as flash memory has 

a fixed AND array constructed as a decoder and programmable connections for the 

output OR gates. This forms what appears to be a structure for implementing  sum- 

 of-  minterm equations for the outputs. It also can be thought of as implementing 

a truth table (connections to OR gates for 1s and no connections to an OR gates 

for 0s). Also the ROM can be viewed as a memory in which the outputs provide 

words of binary data that are selected by the inputs applied to the decoder. The pro-

grammable array logic (PAL®) device has a programmable connection AND array 

and a fixed OR array. The AND gates are programmed to provide the product terms 

for the Boolean functions, which are logically summed in each OR gate. The most 

flexible of the three types of PLD is the programmable logic array (PLA), which has 

programmable connections for both AND and OR arrays. The product terms in the 

(b) Array logic symbol(a) Conventional symbol

 FIGURE 5-5 
Conventional and Array Logic Symbols for OR Gate
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AND array may be shared by any OR gates to provide the required  sum-  of-  products 

implementations. The names PLA and PAL® emerged for devices from different 

vendors during the development of PLDs.

 Read-  Only Memory

A  read-  only memory (ROM) is essentially a device in which “permanent” binary 

information is stored. The information must be specified by the designer and is then 

embedded into the ROM to form the required interconnection or electronic device 

pattern. Once the pattern is established, it stays within the ROM even when power is 

turned off and on again—that is, ROM is nonvolatile.

A block diagram of a ROM device is shown in Figure 5-7(a). There are k inputs 

and n outputs. The inputs provide the address for the memory, and the outputs give 

the data bits of the stored word that is selected by the address. The number of words 

in a ROM device is determined from the fact that k address input lines can specify 2k 

words. Note that ROM does not have data inputs, because it does not have a write 

operation. Integrated circuit ROM chips have one or more enable inputs and come 

with  three-  state outputs to facilitate the construction of large arrays of ROM. 

Permanent and reprogrammable ROMs are also included in VLSI circuits including 

processors.

Consider, for example, a 32 * 8 ROM. The unit consists of 32 words of 8 bits 

each. There are five input lines that form the binary numbers from 0 through 31 for 

the address. Figure 5-7(b) shows the internal logic construction of this ROM. The 

five inputs are decoded into 32 distinct outputs by means of a 5– to–  32-line decoder. 

(a) Programmable read-only memory (PROM)

Inputs
Fixed

AND array
(decoder)

Programmable
OR array

Outputs
Programmable

Connections

(b) Programmable array logic (PAL) device

Inputs Programmable
AND array

Fixed
OR array

Outputs
Programmable

Connections

(c) Programmable logic array (PLA) device

Inputs Programmable
OR array

Outputs
Programmable
Connections

Programmable
Connections

Programmable
AND array

 FIGURE 5-6 
Basic Configuration of Three PLDs
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Each output of the decoder represents a memory address. The 32 outputs are con-

nected through programmable connections to each of the eight OR gates. The dia-

gram uses the array logic convention used in complex circuits. (See Figure 5-5.) Each 

OR gate must be considered as having 32 inputs. Each output of the decoder is con-

nected by a programming technology to one of the inputs of each OR gate. The 

ROM in Figure 5-7(b) is programmed with the word 10010011 in memory address 1. 

Since each OR gate has 32 internal programmable connections, and since there are 

eight OR gates, the ROM contains 32 * 8 = 256 programmable connections. In 

general, a 2k * n ROM will have an internal  k–  to–  2 k–  line decoder and n OR gates. 

Each OR gate has 2k inputs, which are connected through programmable connec-

tions to each of the outputs of the decoder.

Depending on the programming technology and approaches,  read-  only memo-

ries have different names:

1.  ROM—  mask programmed,

2.  PROM—  fuse or  anti-  fuse programmed,

3.  EPROM—  erasable floating gate programmed,

k inputs (address) n outputs (data)2k x n ROM
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3

28
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 FIGURE 5-7 
Block Diagram and Internal Logic of a ROM
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4. EEPROM or E2  PROM—  electrically erasable floating gate programmed, and

5. FLASH  Memory—  electrically erasable floating gate with multiple erasure 

and programming modes.

The choice of programming technology depends on many factors, including the num-

ber of identical ROMs to be produced, the desired permanence of the programming, 

the desire for reprogrammability, and the desired performance in terms of delay.

ROM programming typically uses programming software that isolates the user 

from the details. A ROM stores computer programs, in which case the binary code 

produced by the usual programming tools such as compilers and assemblers is placed 

in the ROM. Otherwise, it can be programmed by tools that accept input, such as 

truth tables, Boolean equations, and hardware description languages. It can also, as 

in the case of FLASH memory, accept binary patterns representing, for example, 

photographs taken by a digital camera. In all of these cases, the input is transformed 

to a pattern of OPEN and CLOSED connections to the OR gates needed by the 

programming technology.

Programmable Logic Array

The programmable logic array (PLA) is similar in concept to the ROM, except that 

the PLA does not provide full decoding of the variables and does not generate all 

the minterms. The decoder is replaced by an array of AND gates that can be pro-

grammed to generate product terms of the input variables. The product terms are 

then selectively connected to OR gates to provide the sum of products for the 

 required Boolean functions.

The internal logic of a PLA with three inputs and two outputs is shown in 

Figure 5-8. Such a circuit is too small to be cost effective but is presented here to 

demonstrate the typical logic configuration of a PLA. The diagram uses the array 

logic graphics symbols for complex circuits. Each input goes through a buffer and an 

inverter, represented in the diagram by a composite graphics symbol that has both 

the true and the complement outputs. Programmable connections run from each 

input and its complement to the inputs of each AND gate, as indicated by the inter-

sections between the vertical and horizontal lines. The outputs of the AND gates 

have programmable connections to the inputs of each OR gate. The output of the 

OR gate goes to an XOR gate, where the other input can be programmed to receive 

a signal equal to either logic 1 or logic 0. The output is inverted when the XOR input 

is connected to 1 (since X ⊕ 1 = X). The output does not change when the XOR 

input is connected to 0 (since X ⊕ 0 = X). The particular Boolean functions imple-

mented in the PLA of the figure are

 F1 = AB + AC + ABC

 F2 = AC + BC

The product term is determined by the CLOSED connections from the input or 

their complements to the AND gates. The output of an OR gate gives the logic 

sum of the selected product terms as determined by the CLOSED connections 
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from the AND gate outputs to the OR gate inputs. The output may be comple-

mented or left in its true form, depending on the programming of the connection 

associated with the XOR gate. Due to this structure, the PLA implements  sum-  of- 

 products or complemented  sum-  of-  products functions. Product terms can be 

shared between the functions, since the same AND gate can be connected to 

multiple OR gates.

The size of a PLA is specified by the number of inputs, the number of product 

terms, and the number of outputs. For n inputs, k product terms, and m outputs, the 

internal logic of the PLA consists of n  buffer-  inverter gates, k AND gates, m OR 

gates, and m XOR gates. There are 2n * k programmable connections between the 

inputs and the AND array, k * m programmable connections between the AND 

and OR arrays, and m programmable connections associated with the XOR gates.

The information needed to program a PLA are the CLOSED connections 

from true or complemented inputs, the CLOSED connections between AND gates 

and OR gates, and whether or not the sum of products form is inverted or not. As 

with the ROM, a variety of input forms may be acceptable to the tools that generate 

this information. Here we focus on implementing logic, so we consider only inverted 

or noninverted  sum-  of-  products equations as the user input.
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 FIGURE 5-8 
PLA with Three Inputs, Four Product Terms, and Two Outputs
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COMBINATIONAL CIRCUIT IMPLEMENTATION USING A PLA A careful investigation must be 

undertaken in order to reduce the number of distinct product terms, so that the size 

of the PLA can be minimized. Fewer product terms can be achieved by simplifying 

the Boolean function to a minimum number of terms. The number of literals in a 

term is less important, since all the input variables are available to each term anyway. 

It is wise, however, to avoid extra literals, as these may cause problems in testing the 

circuit and may reduce the speed of the circuit. An important factor in obtaining 

a minimum number of product terms is the sharing of terms between the outputs. 

Both the true and complement forms of each function should be simplified to see 

which one can be expressed with fewer product terms and which one provides prod-

uct terms that are common to other functions. So, in terms of preparing equations 

to be implemented in a PLA,  multiple-  output,  two-  level function optimization is the 

approach needed and often incorporated in PLA design software. While we have not 

covered this process formally, we can informally illustrate it by using  K-  maps. This 

process is illustrated in Example 5-1.

EXAMPLE 5-1  Implementing a Combinational Circuit Using a PLA

Implement the following two Boolean functions with a PLA:

 F1(A, B, C) = Σm(3, 5, 6, 7)

 F2(A, B, C) = Σm(1, 2, 3, 7)

In Figure 5-9, using  K-  maps,  two-  level  single-  output optimization is applied to 

functions F1 and F2 with the resulting prime implicants used appearing in black. The 

resulting equations appear directly below the two maps. Product term BC can be 

shared between the two functions, so a total of five product terms are required. By 

considering the complement of F1 and the true form of F2, one discovers that there 

are two nonprime implicants, shown as blue squares, that can be used in both func-

tions. The solutions that share these terms are given on the next line below the maps. 

Using the implicants in blue, the solution obtained is:

 F1 = A BC + ABC + B C

 F2 = A BC + ABC + BC
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 FIGURE 5-9 
 K-  Maps and Expressions for PLA Example 5-1
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Because of the bar over all of F1, a 1 must be applied to the control input of the 

output XOR gate. This solution requires only four AND gates. It requires both 

the  use of an output inversion and  multiple-  output,  two-  level optimization to 

achieve this  minimum-  cost solution. The two implicants that are shared would nor-

mally result from the process of generating prime implicants for  multiple-  output 

optimization. ■

Programmable Array Logic Devices

The programmable array logic (PAL®) device is a PLD with a fixed OR array and a 

programmable AND array. Because only the AND gates are programmable and 

cannot be shared by multiple functions, design for the PAL device is easier, but is not 

as flexible as that for the PLA. Figure 5-10 presents the logic configuration of a typi-

cal programmable array logic device. The particular device shown has four inputs 

and four outputs. Each input has a  buffer-  inverter gate, and each output is generated 

by a fixed OR gate. The device has four sections, each composed of a  three-  wide 

 AND-  OR array, meaning that there are three programmable AND gates in each 

section. Each AND gate has ten programmable input connections, indicated in the 

diagram by ten vertical lines intersecting each horizontal line. The horizontal line 

symbolizes the  multiple-  input configuration of an AND gate. One of the outputs 

shown is connected to a  buffer-  inverter gate and then fed back into the inputs of the 

AND gates through programmed connections. This is often done with all device out-

puts. Since the number of AND terms is not large, these paths permit the output of a 

PAL  AND-  OR circuit to be used as inputs to other PAL  AND-  OR circuits. This pro-

vides the capability to implement a limited variety of  multiple-  level circuits, which 

among other advantages increases the number of AND gates available for a given 

function.

Commercial PAL devices contain more gates than the one shown in Figure  

5-10. A small PAL integrated circuit may have up to eight inputs, eight outputs, 

and eight sections, each consisting of an  eight-  wide  AND-  OR array. Each PAL 

device output is driven by a  three-  state buffer and also serves as an input. 

These input/outputs can be programmed to be an input only, an output only, or 

bidirectional with a variable signal driving the  three-  state buffer enable signal. 

 Flip-  flops are often included in a PAL device between the array and the  three- 

 state buffer at the outputs. Since each output is fed back as an input through a 

 buffer-  inverter gate into the AND programmed array, a sequential circuit can be 

easily implemented.

COMBINATIONAL CIRCUIT IMPLEMENTATION WITH A PAL DEVICE In designing with a PAL 

device, because of the inability to share AND gates within a basic circuit,  single- 

 output,  two-  level optimization applies. But because of the connections from out-

puts to inputs, multilevel functions are easy to implement, so limited multilevel 

optimization and the sharing of  sum-  of-  products forms and the complement of  sum-   

of-  products forms applies also. Unlike the arrangement in the PLA, a product term 

cannot be shared among two or more OR gates. Manual execution of optimization 

for a PAL device is illustrated in Example 5-2.
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 FIGURE 5-10 
PAL Device Structure with Connection Map for 
PAL® Device for Example 5-2

EXAMPLE 5-2  Implementing a Combinational Circuit Using a PAL

As an example of a PAL device incorporated into the design of a combinational cir-

cuit, consider the following Boolean functions, given in  sum-  of-  minterms form:

 W(A, B, C, D) = gm(2, 12, 13)

 X(A, B, C, D) = gm(7, 8, 9, 10, 11, 12, 13, 14, 15)

   Y(A, B, C, D) = gm(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)

  Z(A, B, C, D) = gm(1, 2, 8, 12, 13)

Simplifying the four functions to a minimum number of terms results in the follow-

ing Boolean functions:

 W = ABC + A BCD

 X = A + BCD
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 Y = AB + CD + B D

 Z = ABC + A BCD + A C D + A B CD

 = W + A C D + A B C D

Note that the all four equations are the result of  two-  level optimization. But the 

function for Z has four product terms. The logical sum of two of these terms is equal 

to W. Thus, by using W, it is possible to reduce the number of terms for Z from four 

to three, so that the equations above can fit into the PAL device in Figure 5-10. Even 

if W were not present as an output, the PAL device structure would permit the factor 

W to be designed and used to implement Z. In this case, however, the output at W 
would not be useful for implementing any other function but W. ■

Field Programmable Gate Array

The most common form of programmable logic device currently available is the field 

programmable gate array (FPGA). While FPGA devices from different manufactur-

ers have a wide variety of features, most FPGA devices have three programmable 

elements in common: programmable logic blocks, programmable interconnect, and 

programmable input/output pins, as illustrated in Figure 5-11. In addition to these 

three common elements, many FPGAs have specialized blocks of dedicated logic 

such as memories, arithmetic components, and even microprocessors. This section 

focuses on the basic features of FPGAs, which should provide sufficient background 

 FIGURE 5-11 
The Three Programmable Features of Most FPGA Devices:  
Logic Blocks, Interconnect, and Input/Output
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for readers who are interested in a particular FPGA to understand the data manuals 

from the manufacturer.

The advantage of the FPGA relative to other programmable logic families is 

the availability of configurable combinational logic and  flip-  flops, and ease of  

  re-  configuration. Most FPGA families are configured using static random access 

memory (SRAM), which will be more fully explained in Chapter 7. Other technolo-

gies for configuring FPGAs include Flash memory and  anti-  fuses (similar to the 

PROM described earlier in this section). FPGAs that use SRAM for their configura-

tion are volatile, meaning that they lose their configuration when power is removed 

and the configuration must be loaded whenever power is  re-  applied. Regardless of 

the configuration technology, each configuration bit in the FPGA controls the behav-

ior of a programmable element. Configuring the FPGA requires setting all of the 

configuration bits for the programmable logic blocks, routing, and I/O.

The first programmable feature common to many FPGAs that we will describe 

is the programmable logic block. A programmable logic block contains combina-

tional and sequential logic that can be configured to implement many different func-

tions. Many FPGA families have programmable logic blocks based upon a  look-  up 

table (LUT) to implement combinational functions. A  look-  up table is a 2k * 1 

memory that implements the truth table for a function of k variables, referred to as a 

 k-  LUT. Figure 5-12(a) illustrates a 2-input LUT. Any of the sixteen possible Boolean 

functions of two variables can be implemented by setting the SRAM configuration 

bits in the figure to the truth table for the desired function of a and b, as described 

in  Section  3-7. To implement functions of more than k variables, several  k-  LUTs 

can be connected together with multiplexers, as shown in Figure 5-12(b). Combining 

the smaller LUTs with a multiplexer uses Shannon’s expansion theorem, which 

states that any Boolean function f (x1, x2, x3, c , xk) can be expressed as

f (x1, x2, x3, c , xk) = xk
# f (x1, x2, x3, c , 1) + xk

# f (x1, x2, x3, c , 0)

(a) (b)
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 FIGURE 5-12 
(a) A 2-Input  Look-  Up Table, (b) Implementing a 3-Input Function with Two 2-LUTs 
and a Multiplexer
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In Figure 5-12(b), the Boolean function f (a,b,c) has been implemented using the 

variable c on the select line of the multiplexer to choose between the two functions 

f (a,b,0) and f (a,b,1). Example 5-3 illustrates implementing a combinational func-

tion using a LUT and Shannon’s expansion theorem.

EXAMPLE 5-3  Implementing a Combinational Circuit Using a  Look-  Up Table

Implement the following Boolean function with the  look-  up table circuit shown in 

Figure 5-12(b):

F(A, B, C) = gm(3, 5, 6, 7)

The minterms of the function where C = 1 are m3,  m5, and m7, so 

F(A, B, 1) = AB + AB + AB = A + B. The minterms of the function where C = 0 

is m6, so F(A, B, 0) = AB. The truth tables for each of these two functions would then 

be stored into configuration bits of the appropriate 2-LUT of the circuit in the figure. ■

In addition to LUTs, programmable logic block typically have multiplexers,  flip- 

 flops and other logic to provide the ability to configure the block to implement a wide 

variety of functions. Figure 5-13 shows an example of a programmable logic block. The 

logic block has five major features: 1) A pair of 2-LUTs to implement combinational 

functions, 2) a D  flip-  flop for sequential functions, 3) addition logic that allows the block 

to implement a 1-bit full adder, 4) a set of multiplexers for selecting which functionality 

appears at the output, and 5) a set of SRAM configuration bits that control the behav-

ior of the LUTs and multiplexers, denoted by squares numbered from 0 to 10.
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 FIGURE 5-13 
An Example of a Programmable Logic Block
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In Figure 5-13, the multiplexer labeled MUX1, in combination with the pair of 

2-LUTs, enables the logic block to implement any Boolean function of up to three 

variables, as was illustrated in Figure 5-12. Multiplexer MUX2 selects whether the 

third of the three variables is the logic block’s c input or the  flip-  flop output. 

Multiplexer MUX3 selects between the output of the LUT logic or the addition logic 

for the input of the  flip-  flop and MUX4. Finally, MUX4 selects whether the logic 

block’s output is the output of the  flip-  flop or combinational (the output of MUX3).

The three gates of the addition logic allow the efficient implementation of 

common digital functions based upon arithmetic. While it would be possible to 

implement an adder without having the addition logic included in the logic block, 

doing so would require two logic blocks to implement each bit of addition: one block 

for the sum and one block for the carry since the logic block would have only one 

output. But by including the three gates of the addition logic, one logic block can 

implement a  one-  bit full adder by configuring the upper 2-LUT to be the function 

f (a,b) = a ⊕ b and the lower 2-LUT to be the function f (a, b) = ab. Then the sum 

signal is equal to a ⊕ b ⊕ carry_in and the carry_out signal is equal to 

ab + carry_in(a ⊕ b). Consequently, an  n-  bit ripple carry adder could be imple-

mented with n logic blocks, whereas without the addition logic the adder would 

require 2n logic blocks. Similarly, in many of the commercially available FPGA fam-

ilies, the programmable logic block contains dedicated logic for implementing com-

mon arithmetic functions while requiring fewer logic resources and often with higher 

performance than would be possible without the dedicated logic. Rather than using 

a ripple carry adder as in this simple logic block, commercially available FPGAs 

use  more complex, higher performance techniques for arithmetic such as carry 

 lookahead addition that are beyond the scope of this introductory text.

Configuring the programmable logic block requires setting the eleven configu-

ration bits to achieve the desired functionality. Configuration bits 0 through 7 set the 

truth tables to be implemented by the LUTs, bit 8 selects between the input c or the 

 flip-  flop output controlling the LUT output, bit 9 selects whether or not the addition 

logic is used, and bit 10 selects the output of the  flip-  flop or the combinational output 

of the LUTs or addition logic. The overall behavior of the logic block depends upon 

the settings of all of the configuration bits. For example, returning to the discussion 

of addition in the previous paragraph, implementing a full adder requires both 

selecting the sum output with MUX3 (configuration bit 9) and setting the 2-LUTs to 

the proper functions of inputs a and b (configuration bits 0–7). As another example, if 

MUX3 (configuration bit 9) is set to select the output of MUX1, depending upon the 

settings of MUX2 and MUX4 (configuration bits 8 and 10), the output signal can be 

either a combinational function of a, b, and c; a Moore machine; or a Mealy machine. 

While the reset logic for the D  flip-  flop is omitted from this example for simplicity, in 

most commercial FPGAs, the  flip-  flop’s set/reset behavior is also configurable.

The functionality included in the programmable logic block is a  trade-  off 

between the number of logic blocks required to implement a given function and the 

propagation delay through the logic block. As the functionality increases, the num-

ber of logic blocks required to implement a given function (and the number of logic 

blocks on the critical path) tends to decrease. But as the functionality increases, the 

propagation delay through an individual logic block also increases. The overall delay 
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is a function of both the delay through the individual logic blocks as well as the delay 

through the connections between the logic blocks.

The connections between the logic blocks are the second programmable feature 

common to FPGAs. A programmable interconnection network provides the wiring 

between the logic blocks to create circuits that are too large to fit into a single logic 

block. The programmable interconnection network is made up of a set of wires and pro-

grammable switches. A programmable switch usually consists of a single  n-  channel 

MOS transistor as described in the programming technology discussion at the begin-

ning of this section. As with the programmable logic blocks, the gate of this transistor is 

controlled using a configuration bit. The programmable interconnection must allow the 

FPGA to implement a wide range of circuit types, and thus must provide connections 

between logic blocks that are physically close as well as those that are physically distant. 

Furthermore, the interconnection network must allow the circuit’s desired functionality 

to be implemented while meeting design goals for propagation delay, power, and cost.

To meet these constraints, most FPGAs provide a hierarchical set of interconnec-

tions. Although approaches to designing the interconnections vary across manufacturers, 

typically the programmable interconnection network provides a large number of short 

connections between physically close logic blocks, with a smaller number of longer con-

nections to distant logic blocks. Because of the electrical properties of the programmable 

switch, two wires connected by a switch have a larger propagation delay than one longer 

wire of the same total length. FPGA manufacturers have designed the set of program-

mable interconnections to reduce the average number of switches through which signals 

must travel between logic blocks for most designs. The  computer-  aided design tools for 

programming the FPGAs are also designed to place the design on the available pro-

grammable logic blocks in such a way that interconnection delays are reduced.

In addition to the programmable interconnection network, there are usually 

dedicated wiring resources for clock and reset signals that are shared globally 

throughout the circuit. The dedicated wiring resources are designed to minimize the 

propagation delay and skew, which can create synchronization issues for sequential 

circuits, as described in Chapter 4. In addition to the global signals, dedicated wires 

are provided locally between adjacent logic blocks for connecting the dedicated 

arithmetic logic such as the carry chains in the example programmable logic block of 

Figure  5-13. This local wiring improves the speed of the dedicated logic circuitry 

while reducing the demands on the programmable interconnections.

The third programmable feature common to FPGAs is a set of programmable 

input/output (I/O) pins. The FPGA must be connected with the outside world. In 

particular, an FPGA must be capable of providing a broad range in the number of 

inputs and outputs depending upon the circuit that is to be implemented, and the 

FPGA must be compatible with the speed and voltage requirements of the other 

electrical components to which it will be connected. As a consequence of these two 

requirements, most FPGAs provide a large number of pins that can be configured to 

be either inputs or outputs, and that can be configured to support a number of differ-

ent electrical interface standards. The electrical interface standards have require-

ments with respect to the voltages considered to be a logical 0 or 1, the electrical 

current sourced or sunk, the speed with which a signal can change, and many other 

electrical properties of the I/O signal. The FPGAs may also provide capabilities for 
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synchronizing an input signal with the internal clock to deal with the metastability 

issues described in Chapter 4. The manufacturer’s choice of which electrical stan-

dards to support depends largely upon the intended application market.

5-3 CHAPTER SUMMARY

This chapter presented a number of topics, all important to the designer. First, the 

CMOS transistor was introduced. Switch models for CMOS were provided and 

 employed in modeling electronic circuits for gates. Various parameters for character-

izing gate technology were introduced. Important technology parameters discussed 

including,  fan-  in,  fan-  out, noise margin, power dissipation, and propagation delays. 

Finally, a discussion of fundamentals of basic programmable implementation technol-

ogies was provided. This discussion included ROMs, PLAs, PAL and FPGA devices.
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PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the text website.

5-1.  *Find the Boolean function that corresponds to the closed paths through 

each of the given switch model networks in Figure 5-14.

5-2.  Find the CMOS switch model networks for the following functions:
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(a) 2-input AND gate.

(b) 2-input OR gate.

5-3.  An integrated circuit logic family has AND gates with a fan-out of 12 

standard loads and buffers with a fan-out of 20 standard loads. Sketch a 

schematic showing how the output signal of a single AND gate can be applied 

to 88 other gate inputs, using as few buffers as possible. Assume that each 

input is one standard load.

5-4.  (a)  Given a 1024 3 8 ROM chip with an enable input, show the external 

connections necessary to construct a 4K 3 32 ROM with eight chips and a 

decoder.

(b)  How many 4K 3 8 ROM chips would be required to construct a 32K 3 64 

ROM?

5-5.  *A * 8 ROM converts a 6-bit binary number to its corresponding  two- 

 digit BCD number. For example, binary 100001 converts to BCD 0011 0011 

(decimal 33). Specify the truth table for the ROM.

5-6.  Specify the size of a ROM (number of words and number of bits per word) 

that will accommodate the truth table for the following combinational circuit 

components:

(a) An 8-bit ripple carry adder with Cin and Cout.

(b) A 16-bit adder–subtractor with Cin and Cout.

(c)  A code converter from a 5-digit BCD number to a binary number.

(d) An 8 * 8 multiplier.

5-7.  Tabulate the truth table for an 8 * 3 ROM that implements the following four 

Boolean functions:

 A(X, Y, Z) = gm(0, 6, 7)

 B(X, Y, Z) = gm(1, 2, 3, 4, 5)

(a) (b)

C: C D: DC: C

D: D

A: A B: B A: A B: B

 FIGURE 5-14 
Switch Networks for Problem 5-1
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 C(X, Y, Z) = gm(1, 5)

 D(X, Y, Z) = gm(0, 1, 2, 3, 5, 6)

5-8.  Obtain the PLA equations for programming the four Boolean functions 

listed in Problem 5–7. Minimize the number of product terms. Be sure to 

attempt to share product terms between functions that are not prime 

implicants of individual functions and to consider the use of complemented 

outputs.

5-9.  Derive the PLA equations for the combinational circuit that convert one 

digit BCD number to 4-bit Gray code. Minimize the number terms. Find the 

optimize equations with minimum number of terms. If possible share product 

terms between functions that are not prime implicants of individual functions 

and consider the use of complemented outputs.

5-10.  List the PLA equations for programming a  BCD–  to–  excess-  3 code converter. 

If necessary to reduce product terms, share product terms between functions 

that are not prime implicants of individual functions and consider the use of 

complemented outputs.

5-11.  *Repeat Problem 5-10, using a PAL device.

5-12.  The following is the truth table of a  three-  input,  four-  output combinational 

circuit. Obtain the equations for programming the PAL device shown in 

Figure 5-10.

Inputs Outputs

X Y Z A B C D

0 0 0 0 1 0 0

0 0 1 1 1 1 1

0 1 0 1 0 1 1

0 1 1 0 1 0 1

1 0 0 1 0 1 0

1 0 1 0 0 0 1

1 1 0 1 1 1 0

1 1 1 0 1 1 1

5-13.  The following equations are to be implemented in the PAL device shown in 

Figure 5-10. Find the equations for programming the PAL.

 F = AB + CD + ABCD + ABC + ABCD

 G = AB + BCD + BCD + ABC



5-14.  Use Shannon’s expansion theorem to express the following functions in terms 

of C and C.

(a) F(A, B, C) = A B + BC + AC

(b) F(A, B, C) = gm(0, 2, 3, 5, 6)

5-15.  (a) Design a 4-to-1 multiplexer using two 4-LUTs.

 (b)  Implement the following function in 4-input LUT form with 16-to-1 

multiplexer.

  F = AB + AC + CD

5-16.  For the programmable logic block shown in Figure 5-13, show the necessary 

configuration settings to implement each of the following types of circuits. 

You can assume that the upper data input of each multiplexer is chosen with 

a select input of 0.

(a) A combinational function of inputs a, b, and c.

(b) A Moore machine

(c)  A Mealy machine

5-17.  For the programmable logic block shown in Figure  5-13, what functions 

should be entered into the 2-LUTs to implement a 1-bit 2s complement 

subtractor performing the operation a - b?

5-18.  Implement the Moore state machine described by the following state table 

using the programmable logic block shown in Figure  5-13. Your answer 

should include the configuration bits for the logic block.

Present State

Inputs

Next State Output Zin1 in2

State0 0 0 State1 0

State0 0 1 State0 0

State0 1 0 State0 0

State0 1 1 State1 0

State1 0 0 State0 1

State1 0 1 State0 1

State1 1 0 State1 1

State1 1 1 State1 1
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C H A P T E R

Registers and 
Register Transfers

6

In Chapter 3, we studied combinational functional blocks, and in Chapter 4 we examined 

sequential circuits. Now, we bring the two ideas together and present sequential 

functional blocks, generally referred to as registers and counters. In Chapter 4, the 

circuits that were analyzed or designed did not have any particular structure, and 

structure, with multiple stages or cells that are identical or close to identical, making 

expansion very simple. Registers are particularly useful for storing information during the 

processing of data, and counters assist in sequencing the processing.

In a digital system, a datapath and a control unit are frequently present at the upper 

levels of the design hierarchy. A datapath consists of processing logic and a collection of 

registers that performs data processing. A control unit is made up of logic that determines 

microoperations. 

Register transfers move information between registers, between registers and memory, 

and through processing logic. Dedicated transfer hardware using multiplexers and shared 

transfer hardware called buses implement these movements of data. The design of the 

control unit for controlling register transfers is also covered in this chapter. A design 

procedure for digital systems as combinations of register transfer logic and control logic 

brings together much of what we have studied thus far.

In the generic computer at the beginning of Chapter 1, registers are used 

extensively for temporary storage of data in areas aside from memory. Registers of this 

kind are often large, with at least 32 bits. Overall, sequential functional blocks are used 

widely in the generic computer. In particular, the CPU and FPU parts of the processor 

each contain large numbers of registers that are involved in register transfers and 

execution of microoperations. It is in the CPU and the FPU that data transfers, additions, 

subtractions, and other microoperations take place. Finally, the connections shown 

between various electronic parts of the computer are buses, which we discuss for the 
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6-1 REGISTERS AND LOAD ENABLE

A register includes a set of flip-flops. Since each flip-flop is capable of storing one bit 

of information, an n-bit register, composed of n flip-flops, is capable of storing n bits 

of binary information. By the broadest definition, a register consists of a set of flip-

flops, together with gates that implement their state transitions. This broad definition 

includes the various sequential circuits considered in Chapter 4. More commonly, 

the term register is applied to a set of flip-flops, possibly with added combinational 

gates, that perform data-processing tasks. The flip-flops hold data, and the gates 

determine the new or transformed data to be transferred into the flip-flops.

A counter is a register that goes through a predetermined sequence of states 

upon the application of clock pulses. The gates in the counter are connected in a way 

that produces the prescribed sequence of binary states. Although counters are a spe-

cial type of registers, it is common to differentiate them from registers.

Registers and counters are sequential functional blocks that are used exten-

sively in the design of digital systems in general and in digital computers in particu-

lar. Registers are useful for storing and manipulating information; counters are 

employed in circuits that sequence and control operations in a digital system.

The simplest register is one that consists of only flip-flops without external 

gates. Figure 6-1(a) shows such a register constructed from four D-type flip-flops. 

The common Clock input triggers all flip-flops on the rising edge of each pulse, and 

the binary information available at the four D inputs is transferred into the 4-bit reg-

ister. The four Q outputs can be sampled to obtain the binary information stored in 

the register. The Clear input goes to the R inputs of all four flip-flops and is used to 

clear the register to all 0s prior to its clocked operation. This input is labeled Clear 

rather than Clear, since a 0 must be applied to reset the flip-flops asynchronously. 

Activation of the asynchronous R inputs to flip-flops during normal clocked opera-

tion can lead to circuit designs that are highly delay dependent and that can, there-

fore, malfunction. Thus, we maintain Clear at logic 1 during normal clocked 

operation, allowing it to be logic 0 only when a system reset is desired. We note that 

the ability to clear a register to all 0s is optional; whether a clear operation is pro-

vided depends upon the use of the register in the system.

The transfer of new information into a register is referred to as loading the reg-

ister. If all the bits of the register are loaded simultaneously with a common clock 

pulse, we say that the loading is done in parallel. A positive clock transition applied 

to the Clock input of the register of Figure 6-1(a) loads all four D inputs into the flip-

flops in parallel.

Figure 6-1(b) shows a symbol for the register in Figure 6-1(a). This symbol 

permits the use of the register in a design hierarchy. It has all inputs to the logic 

circuit on its left and all outputs from the circuit on the right. The inputs include 

the clock input with the dynamic indicator to represent positive-edge triggering 

of the flip-flops. We note that the name Clear appears inside the symbol, with a 

bubble in the signal line on the outside of the symbol. This notation indicates that 

application of a logic 0 to the signal line activates the clear operation on the flip-

flops in the register. If the signal line were labeled outside the symbol, the label 

would be Clear.
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Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train 

of clock pulses. The pulses are applied to all flip-flops and registers in the system. In 

effect, the master clock acts like a heart that supplies a constant beat to all parts of 

the system. For the design in Figure 6-1(a), the clock can be prevented from reaching 

the clock input to the circuit if the contents of the register are to be left unchanged. 

Thus, a separate control signal is used to control the clock cycles during which clock 

pulses are to have an effect on the register. The clock pulses are prevented from 

reaching the register when its content is not to be changed. This approach can be 

implemented with a load control input Load combined with the clock, as shown in 

(d) Timing diagram 

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register
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Figure 6-1(c). The output of the OR gate is applied to the C inputs of the register flip-

flops. The equation for the logic shown is

C  inputs = Load + Clock

When the Load signal is 1, C inputs = Clock, so the register is clocked normally, and 

new information is transferred into the register on the positive transitions of the clock. 

When the Load signal is 0, C inputs = 1. With this constant input applied, there are no 

positive transitions on C inputs, so the contents of the register remain unchanged. The 

effect of the Load signal on the signal C inputs is shown in Figure 6-1(d). Note that the 

clock pulses that appear on C inputs are pulses to 0, which end with the positive edge 

that triggers the flip-flops. These pulses and edges appear when Load is 1 and are 

replaced by a constant 1 when Load is 0. In order for this circuit to work correctly, 

Load must be constant at the correct value, either 0 or 1, throughout the interval when 

Clock is 0. One situation in which this occurs is if Load comes from a flip-flop that is 

triggered on a positive edge of Clock, a normal circumstance if all flip-flops in the sys-

tem are positive-edge triggered. Since the clock is turned on and off at the register C 

inputs by the use of a logic gate, the technique is referred to as clock gating.

Inserting gates in the clock pulse path produces different propagation delays 

between Clock and the inputs of flip-flops with and without clock gating. If the clock 

signals arrive at different flip-flops or registers at different times, clock skew is said to 

exist. But to have a truly synchronous system, we must ensure that all clock pulses 

arrive simultaneously throughout the system so that all flip-flops trigger at the same 

time. For this reason, in routine designs, control of the operation of the register with-

out using clock gating is advisable. Otherwise, delays must be controlled to drive the 

clock skew as close to zero as possible. This is applicable in aggressive low-power or 

high-speed designs.

A 4-bit register with a control input Load that is directed through gates 

into  the D inputs of the flip-flops, instead of through the C inputs, is shown in 

Figure 6-2(c). This register is based on a bit cell shown in Figure 6-2(a) consisting 

of a 2-to-1 multiplexer and a D flip-flop. The signal EN selects between the data bit 

D entering the cell and the value Q at the output of the cell. For EN = 1, D is 

selected and the cell is loaded. For EN = 0, Q is selected and the output is loaded 

back into the flip-flop, preserving its current state. The feedback connection from 

output to input of the flip-flop is necessary because the D flip-flop, unlike other 

flip-flop types, does not have a “no change” input condition: With each clock pulse, 

the D input determines the next state of the output. To leave the output unchanged, 

it is necessary to make the D input equal to the present value of the output. The 

logic in Figure 6-2(a) can be viewed as a new type of D flip-flop, a D flip-flop with 
enable, having the symbol shown in Figure 6-2(b).

The register is implemented by placing four D flip-flops with enables in par-

allel and connecting the Load input to the EN inputs. When Load is 1, the data on 

the four inputs is transferred into the register with the next positive clock edge. 

When Load is 0, the current value remains in the register at the next positive clock 

edge. Note that the clock pulses are applied continuously to the C inputs. Load 

determines whether the next pulse accepts new information or leaves the informa-

tion in the register intact. The transfer of information from inputs to register is 
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done simultaneously for all four bits during a single positive pulse transition. This 

method of transfer is traditionally preferred over clock gating, since it avoids clock 

skew and the potential for malfunctions of the circuit.

6-2 REGISTER TRANSFERS

A digital system is a sequential circuit made up of interconnected flip-flops and gates. 

In Chapter 4, we learned that sequential circuits can be specified by means of state 

tables. To specify a large digital system with state tables is very difficult, if not impos-

sible, because the number of states is prohibitively large. To overcome this difficulty, 

digital systems are designed using a modular, hierarchical approach. The system is 

partitioned into subsystems or modules, each of which performs some functional 

task. The modules are constructed hierarchically from functional blocks such as reg-

isters, counters, decoders, multiplexers, buses, arithmetic elements, flip-flops, and 

primitive gates. The various subsystems communicate with data and control signals 

to form a digital system.

In most digital system designs, we partition the system into two types of mod-

ules: a datapath, which performs data-processing operations, and a control unit, 

D

C
EN

(b)(a)

D

C
D Flip-flop with enable

EN
D
C

Q

(c)

D

C
EN

D

C
EN

D

C
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D

C
EN

Q0

Q1

Q2D2

D1

D0

Q3D3

Load
Clock

 FIGURE 6-2
4-Bit Register with Parallel Load
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which determines the sequence of those operations. Figure 6-3 shows the general 

relationship between a datapath and a control unit. Control signals are binary signals 

that activate the various data-processing operations. To activate a sequence of such 

operations, the control unit sends the proper sequence of control signals to the data-

path. The control unit, in turn, receives status bits from the datapath. These status 

bits describe aspects of the state of the datapath. The status bits are used by the con-

trol unit in defining the specific sequence of the operations to be performed. Note 

that the datapath and control unit may also interact with other parts of a digital sys-

tem, such as memory and input–output logic, through the paths labeled data inputs, 

data outputs, control inputs, and control outputs.

Datapaths are defined by their registers and the operations performed on 

binary data stored in the registers. Examples of register operations are load, clear, 

shift, and count. The registers are assumed to be basic components of the digital sys-

tem. The movement of the data stored in registers and the processing performed on 

the data are referred to as register transfer operations. The register transfer opera-

tions of digital systems are specified by the following three basic components:

1. the set of registers in the system,

2. the operations that are performed on the data stored in the registers, and

3. the control that supervises the sequence of operations in the system.

A register has the capability to perform one or more elementary operations 

such as load, count, add, subtract, and shift. For example, a right-shift register is a 

register that can shift data to the right. A counter is a register that increments a num-

ber by one. A single flip-flop is a 1-bit register that can be set or cleared. In fact, by 

this definition, the flip-flops and closely associated gates of any sequential circuit can 

be called registers.

An elementary operation performed on data stored in registers is called a 

microoperation. Examples of microoperations are loading the contents of one reg-

ister into another, adding the contents of two registers, and incrementing the con-

tents of a register. A microoperation is usually, but not always, performed in 

parallel on a vector of bits during one clock cycle. The result of the microoperation 

may replace the previous binary data in the register. Alternatively, the result may 

be transferred to another register, leaving the previous data unchanged. The 

Control
inputs

Data
inputs

Data
outputs

Datapath

Control
outputs

Control signals

Status signalsControl
unit

 FIGURE 6-3
Interaction Between Datapath and Control Unit
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sequential functional blocks introduced in this chapter are registers that imple-

ment one or more microoperations.

The control unit provides signals that sequence the microoperations in a pre-

scribed manner. The results of a current microoperation may determine both the 

sequence of control signals and the sequence of future microoperations to be executed. 

Note that the term “microoperation,” as used here, does not refer to any particular way 

of producing the control signals: specifically, it does not imply that the control signals 

are generated by a control unit based on a technique called microprogramming.

This chapter introduces registers, their implementations and register transfers 

using a simple register transfer language (RTL) to represent registers and specify the 

operations on their contents. The register transfer language uses a set of expressions 

and statements that resemble statements used in HDLs and programming languages. 

This notation can concisely specify part or all of a complex digital system such as a com-

puter. The specification then serves as a basis for a more detailed design of the system.

6-3 REGISTER TRANSFER OPERATIONS

We denote the registers in a digital system by uppercase letters (sometimes followed 

by numerals) that indicate the function of the register. For example, a register that 

holds an address for the memory unit is usually called an address register and can be 

designated by the name AR. Other designations for registers are PC for program 

counter, IR for instruction register, and R2 for register 2. The individual flip-flops in 

an n-bit register are typically numbered in sequence from 0 to n - 1, starting with 0 

in the least significant (often the rightmost) position and increasing toward the most 

significant position. Since the 0 bit is on the right, this order can be referred to as 

 little-endian. The reverse order, with bit 0 on the left, is referred to as big-endian.

Figure 6-4 shows representations of registers in block-diagram form. The most 

common way to represent a register is by a rectangular box with the name of the reg-

ister inside, as in part (a) of the figure. The individual bits can be identified as in part 

(b). The numbering of bits represented by just the leftmost and rightmost values at 

the top of a register box is illustrated by a 16-bit register R2 in part (c). A 16-bit pro-

gram counter, PC, is partitioned into two sections in part (d) of the figure. In this 

case, bits 0 through 7 are assigned the symbol L (for low-order byte), and bits 8 

through 15 are assigned the symbol H (for high-order byte). The label PC(L), which 

R

(a) Register R

R2

(c) Numbering of 16-bit register

15 0

(b) Individual bits of 8-bit register

01234567

PC (H)

(d) Two-part 16-bit register

15 08 7

PC (L)

 FIGURE 6-4
Block Diagrams of Registers
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may also be written PC(7:0), refers to the low-order byte of the register, and PC(H) 

or PC(15:8) refers to the high-order byte.

Data transfer from one register to another is designated in symbolic form by 

means of the replacement operator ( d ). Thus, the statement

R2 d R1

denotes a transfer of the contents of register R1 into register R2. Specifically, the 

statement designates the copying of the contents of R1 into R2. The register R1 is 

referred to as the source of the transfer and the register R2 as the destination. By 

definition, the contents of the source register do not change as a result of the transfer— 

only the contents of the destination register, R2, change.

A statement that specifies a register transfer implies that datapath circuits are 

available from the outputs of the source register to the inputs of the destination reg-

ister and that the destination register has a parallel load capability. Normally, we 

want a given transfer to occur not for every clock pulse, but only for specific values 

of the control signals. This can be specified by a conditional statement, symbolized by 

the if-then form

if (K1 = 1)  then  (R2 d R1)

where K
1
 is a control signal generated in the control unit. In fact, K

1
 can be any 

Boolean function that evaluates to 0 or 1. A more concise way of writing the if-then 

form is

K1:  R2 d R1

This control condition, terminated with a colon, symbolizes the requirement that the 

transfer operation be executed by the hardware only if K1 = 1.

Every statement written in register-transfer notation presupposes a hardware 

construct for implementing the transfer. Figure 6-5 shows a block diagram that 

depicts the transfer from R1 to R2. The n outputs of register R1 are connected to the 

n inputs of register R2. The letter n is used to indicate the number of bits in the regis-

ter-transfer path from R1 to R2. When the width of the path is known, n is replaced 

by an actual number. Register R2 has a load control input that is activated by the 

control signal K
1
. It is assumed that the signal is synchronized with the same clock as 

the one applied to the register. The flip-flops are assumed to be positive-edge 

K1

Clock

Transfer occurs here

t

K1

Clock

R1 R2

Load

n

 FIGURE 6-5
Transfer from R1 to R2 when K1 = 1
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triggered by this clock. As shown in the timing diagram, K
1
 is set to 1 on the rising 

edge of a clock pulse at time t. The next positive transition of the clock at time t + 1 

finds K1 = 1, and the inputs of R2 are loaded into the register in parallel. In this case, 

K
1
 returns to 0 on the positive clock transition at time t + 1, so that only a single 

transfer from R1 to R2 occurs.

Note that the clock is not included as a variable in the register-transfer state-

ments. It is assumed that all transfers occur in response to a clock transition. Even 

though the control condition K
1
 becomes active at time t, the actual transfer does not 

occur until the register is triggered by the next positive transition of the clock, at 

time t + 1.

The basic symbols we use in register-transfer notation are listed in Table 6-1. 

Registers are denoted by an uppercase letter, possibly followed by one or more 

uppercase letters and numerals. Parentheses are used to denote a part of a register 

by specifying the range of bits in the register or by giving a symbolic name to a por-

tion of the register. The left-pointing arrow denotes a transfer of data and the direc-

tion of transfer. A comma is used to separate two or more register transfers that are 

executed at the same time. For example, the statement

K3: R2 d R1,  R1 d R2

denotes an operation that exchanges the contents of two registers simultaneously for a 

positive clock edge at which K3 = 1. Such an exchange is possible with registers made 

of flip-flops but presents a difficult timing problem with registers made of latches. 

Square brackets are used in conjunction with a memory transfer. The letter M desig-

nates a memory word, and the register enclosed inside the square brackets provides the 

address of the word in memory. This is explained in more detail in Chapter 8.

6-4 REGISTER TRANSFERS IN VHDL AND VERILOG

Although there are some similarities, the register-transfer language used here dif-

fers from both VHDL and Verilog. In particular, different notation is used in each 

of the three languages. Table 6-2 compares the notation for many identical or simi-

lar register-transfer operations in the three languages. As you study this chapter 

and others to follow, this table will assist you in relating descriptions in the text 

RTL to the corresponding descriptions in VHDL or Verilog.

 TABLE 6-1
Basic Symbols for Register Transfers

Symbol Description Examples

Letters (and numerals) Denotes a register AR, R2, DR, IR

Parentheses Denotes a part of a register R2(1), R2(7:0), AR(L)

Arrow Denotes transfer of data R1 d R2

Comma Separates simultaneous transfers R1 d R2,  R2 d R1

Square brackets Specifies an address for memory DR d M[AR]
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6-5 MICROOPERATIONS

A microoperation is an elementary operation performed on data stored in registers 

or in memory. The microoperations most often encountered in digital systems are of 

four types:

1. Transfer microoperations, which transfer binary data from one register to an-

other.

2. Arithmetic microoperations, which perform arithmetic operations on data in 

registers.

3. Logic microoperations, which perform bit manipulation on data in registers.

4. Shift microoperations, which shift data in registers.

A given microoperation may be of more than one type. For example, a 1s comple-

ment operation is both an arithmetic microoperation and a logic microoperation.

Transfer microoperations were introduced in the previous section. This type 

of microoperation does not change the binary data bits as they move from the 

source register to the destination register. The other three types of microopera-

tions can produce new binary data and, hence, new information. In digital systems, 

basic sets of operations are used to form sequences that implement more compli-

cated operations. In this section, we define a basic set of microoperations, sym-

bolic notation for these microoperations, and descriptions of the digital hardware 

that implements them.

 TABLE 6-2
Textbook RTL, VHDL, and Verilog Symbols for Register Transfers

Operation Text RTL VHDL Verilog

Combinational 

assignment

= 6 =  (concurrent) assign =  (nonblocking)

Register transfer d 6 =  (concurrent) 6 =  (nonblocking)

Addition + + +
Subtraction - - -
Bitwise AND ¿ and &

Bitwise OR ¡ or |

Bitwise XOR ⊕ xor ^

Bitwise NOT – (overline) not ∼
Shift left (logical) Sl sll <<

Shift right (logical) Sr srl >>

Vectors/registers A(3:0) A(3 down to 0) A[3:0]

Concatenation || & { , }
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Arithmetic Microoperations

We define the basic arithmetic microoperations as add, subtract, increment, decre-

ment, and complement. The statement

R0 d R1 + R2

specifies an add operation. It states that the contents of register R2 are to be added 

to the contents of register R1 and the sum transferred to register R0. To implement 

this statement with hardware, we need three registers and a combinational compo-

nent that performs the addition, such as a parallel adder. The other basic arithmetic 

operations are listed in Table 6-3. Subtraction is most often implemented through 

complementation and addition. Instead of using the minus operator, we can specify 

2s complement subtraction by the statement

R0 d R1 + R2 + 1

where R2 specifies the 1s complement of R2. Adding 1 to R2 gives the 2s comple-

ment of R2. Finally, adding the 2s complement of R2 to the contents of R1 is equiva-

lent to R1 - R2.

The increment and decrement microoperations are symbolized by a plus-one 

and minus-one operation, respectively. These operations are implemented by using a 

special combinational circuit, an adder–subtractor, or a binary up–down counter 

with parallel load.

Multiplication and division are not listed in Table 6-3. Multiplication can be 

represented by the symbol * and division by /. These two operations are not 

included in the basic set of arithmetic microoperations because they are assumed 

to be implemented by sequences of basic microoperations. However, multiplica-

tion can be considered as a microoperation if implemented by a combinational 

circuit. In such a case, the result is transferred into a destination register at the 

clock edge after all signals have propagated through the entire combinational 

circuit.

 TABLE 6-3
Arithmetic Microoperations

Symbolic Designation Description

R0 d R1 + R2 Contents of R1 plus R2 transferred to R0

R2 d R2 Complement of the contents of R2 (1s complement)

R2 d R2 + 1 2s complement of the contents of R2

R0 d R1 + R2 + 1 R1 plus 2s complement of R2 transferred to R0 (subtraction)

R1 d R1 + 1 Increment the contents of R1 (count up)

R1 d R1 - 1 Decrement the contents of R1 (count down)
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There is a direct relationship between the statements written in register-transfer 

notation and the registers and digital functions required for their implementation. To 

illustrate, consider the following two statements:

 XK1: R1 d R1 + R2

 XK1: R1 d R1 + R2 + 1

Control variable K
1
 activates an operation to add or subtract. If, at the same time, 

control variable X is equal to 0, then XK1 = 1,and the contents of R2 are added to 

the contents of R1. If X is equal to 1, then XK1 = 1, and the contents of R2 are sub-

tracted from the contents of R1. Note that the two control conditions are Boolean 

functions and reduce to 0 when K1 = 0, a condition that inhibits the execution of 

both operations simultaneously.

A block diagram, showing the implementation of the preceding two state-

ments, is given in Figure 6-6. An n-bit adder–subtractor, similar to the one shown in 

Figure 3-45, receives its input data from registers R1 and R2. The sum or difference is 

applied to the inputs of R1. The Select input S of the adder–subtractor selects the 

operation in the circuit. When S = 0, the two inputs are added, and when S = 1, R2 

is subtracted from R1. Applying the control variable X to the S input activates the 

required operation. The output of the adder–subtractor is loaded into R1 on any pos-

itive clock edge at which XK1 = 1 or XK1 = 1. We can simplify this to just K
1
, since

XK1 + XK1 = (X + X)K1 = K1

Thus, the control variable X selects the operation, and the control variable K
1
 loads 

the result into R1.

X

R2

Adder–Subtractor
Select (S)

Cn–1

Cn

V K1

n
n

n

R1C Load

 FIGURE 6-6
Implementation of Add and Subtract Microoperations



6-5 / Microoperations      351

Based on the discussion of overflow in Section 3-11, the overflow output is 

transferred to flip-flop V, and the output carry from the most significant bit of the 

adder–subtractor is transferred to flip-flop C, as shown in Figure 6-6. These transfers 

occur when K1 = 1 and are not represented in the register-transfer statements;—if 

desired, we could show them as additional simultaneous transfers.

Logic Microoperations

Logic microoperations are useful in manipulating the bits stored in a register. These 

operations consider each bit in the register separately and treat it as a binary vari-

able. The symbols for the four basic logic operations are shown in Table 6-4. The 

NOT microoperation, represented by a bar over the source register name, comple-

ments all bits and thus is the same as the 1s complement. The symbol ¿  is used to 

denote the AND microoperation and the symbol ¡  to denote the OR microopera-

tion. By using these special symbols, we can distinguish between the add microoper-

ation represented by a +  and the OR microoperation. Although the +  symbol 

has two meanings, we can distinguish between them by noting where the symbol 

occurs. If the +  occurs in a microoperation, it denotes addition. If the +  occurs in 

a control or Boolean function, it denotes OR. The OR microoperation will always 

use the ¡  symbol. For example, in the statement

(K1 + K2): R1 d R2 + R3,   R4 d R5 ¡ R6

the +  between K
1
 and K

2
 is an OR operation between two variables in a control con-

dition. The +  between R2 and R3 specifies an add microoperation. The OR microop-

eration is designated by the symbol ¡  between registers R5 and R6. The logic 

microoperations can be easily implemented with a group of gates, one for each bit 

position. The NOT of a register of n bits is obtained with n NOT gates in parallel. The 

AND microoperation is obtained using a group of n AND gates, each receiving a pair 

of corresponding inputs from the two source registers. The outputs of the AND gates 

are applied to the corresponding inputs of the destination register. The OR and exclu-

sive-OR microoperations require a similar arrangement of gates.

The logic microoperations can change bit values, clear a group of bits, or insert 

new bit values into a register. The following examples show how the bits stored in the 

16-bit register R1 can be selectively changed by using a logic microoperation and a 

logic operand stored in the 16-bit register R2.

 TABLE 6-4
Logic Microoperations

Symbolic  

Designation Description

R0 d R1 Logical bitwise NOT (1s complement)

R0 d R1 ¿ R2 Logical bitwise AND (clears bits)

R0 d R1 ¡ R2 Logical bitwise OR (sets bits)

R0 d R1 ⊕ R2 Logical bitwise XOR (complements bits)
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The AND microoperation can be used for clearing one or more bits in a regis-

ter to 0. The Boolean equations X #  0 = 0 and X #  1 = X dictate that, when ANDed 

with 0, a binary variable X produces a 0, but when ANDed with 1, the variable 

remains unchanged. A given bit or group of bits in a register can be cleared to 0 if 

ANDed with 0. Consider the following example:

10101101 10101011 R1 (data)

00000000 11111111 R2 (mask)

00000000 10101011 R1 d R1 ¿ R2

The 16-bit logic operand in R2 has 0s in the high-order byte and 1s in the low- 

order byte. By ANDing the contents of R2 with the contents of R1, it is possible 

to  clear the high-order byte of R1 and leave the bits in the low-order byte 

unchanged. Thus, the AND operation can be used to selectively clear bits of a reg-

ister. This operation is sometimes called masking out the bits, because it masks or 

deletes all 1s in the data in R1, based on bit positions that are 0 in the mask 

 provided in R2.

The OR microoperation is used to set one or more bits in a register. The 

Boolean equations X + 1 = 1 and X + 0 = X dictate that, when ORed with 1, the 

binary variable X produces a 1, but when ORed with 0, the variable remains 

unchanged. A given bit or group of bits in a register can be set to 1 if ORed with 1. 

Consider the following example:

10101101 10101011 R1 (data)

11111111 00000000 R2 (mask)

11111111 10101011 R1 d R1 ¡ R2

The high-order byte of R1 is set to all 1s by ORing it with all 1s in the R2 oper-

and. The low-order byte remains unchanged because it is ORed with 0s.

The XOR (exclusive-OR) microoperation can be used to complement one 

or more bits in a register. The Boolean equations X ⊕ 1 = X  and X ⊕ 0 = X 

dictate that, when a binary variable X is XORed with 1, it is complemented, but 

when XORed with 0, the variable remains unchanged. By XORing a bit or group 

of bits in register R1 with 1s in selected positions in R2, it is possible to comple-

ment the bits in the selected positions in R1. Consider the following example:

10101101 10101011 R1 (data)

11111111 00000000 R2 (mask)

01010010 10101011 R1 d R1 ⊕ R2

The high-order byte in R1 is complemented after the XOR operation with R2, and 

the low-order byte is unchanged.
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Shift Microoperations

Shift microoperations are used for lateral movement of data. The contents of a 

source register can be shifted either right or left. A left shift is toward the most 

significant bit, and a right shift is toward the least significant bit. Shift microopera-

tions are used in the serial transfer of data. They are also used for manipulating 

the contents of registers in arithmetic, logical, and control operations. The desti-

nation register for a shift microoperation may be the same as or different from the 

source register. We use strings of letters to represent the shift microoperations 

defined in Table 6-5. For example,

R0 d sr  R0,    R1 d sl  R2

are two microoperations that respectively specify a one-bit shift to the right of the 

contents of register R0 and a transfer of the contents of R2 shifted one bit to the left 

into register R1. The contents of R2 are not changed by this shift.

For a left-shift microoperation, we call the rightmost bit of the destination 

register the incoming bit. For a right-shift microoperation, we define the leftmost 

bit of the destination register as the incoming bit. The incoming bit may have dif-

ferent values, depending upon the type of shift microoperation. Here we assume 

that, for sr and sl, the incoming bit is 0, as shown in the examples in Table 6-5. The 

outgoing bit is the leftmost bit of the source register for the left-shift operation 

and the rightmost bit of the source register for the right-shift operation. For the 

left and right shifts shown, the outgoing bit value is simply discarded. In Chapter 

9, we will explore other types of shifts that treat incoming and outgoing bits 

differently.

6-6 MICROOPERATIONS ON A SINGLE REGISTER

This section covers the implementation of one or more microoperations with a 

single register as the destination of all primary results. The single register may 

also serve as a source of an operand for binary and unary operations. Due to the 

close ties between a single set of storage elements and the microoperations, the 

 TABLE 6-5
Examples of Shifts

Eight-Bit Examples

Type

Symbolic  

Designation Source R2

After Shift: 

Destination R1

Shift left R1 d sl  R2 10011110 00111100

Shift right R1 d sr  R2 11100101 01110010
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combinational logic implementing the microoperations is assumed to be a part of 

the register and is called dedicated logic of the register. This is in contrast to logic 

which is shared by multiple destination registers. In this case, the combinational 

logic implementing the microoperations is called shared logic for the set of desti-

nation registers.

The combinational logic implementing the microoperations described in the 

previous section can use one or more functional blocks from Chapter 3 or can be 

designed specifically for the register. Initially, functional blocks will be used in 

combination with D flip-flops or D flip-flops with enable. A simple technique 

using multiplexers for selection is introduced to allow multiple microoperations 

on a single register. Next, single- and multiple-function registers that perform 

shifting and counting are designed.

Multiplexer-Based Transfers

There are occasions when a register receives data from two or more different 

sources at different times. Consider the following conditional statement having an 

if-then-else form:

if  (K1 = 1)  then  (R0 d R1)  else if  (K2 = 1)  then  (R0 d R2)

The value in register R1 is transferred to register R0 when control signal K
1
 equals 1. 

When K1 = 0, the value in register R2 is transferred to R0 when K
2
 equals 1. 

Otherwise, the contents of R0 remains unchanged. The conditional statement may 

be broken into two parts using the following control conditions:

K1: R0 d R1,     K1K2: R0 d R2

This specifies hardware connections from two registers, R1 and R2, to one common 

destination register R0. In addition, making a selection between two source registers 

must be based on values of the control variables K
1
 and K

2
.

The block diagram for a circuit with 4-bit registers that implements the condi-

tional register-transfer statements using a multiplexer is shown in Figure 6-7(a). The 

quad 2-to-1 multiplexer selects between the two source registers. For K1 = 1, R1 is 

loaded into R0, irrespective of the value of K
2
. For K1 = 0 and K2 = 1, R2 is loaded 

into R0. When both K
1
 and K

2
 are equal to 0, the multiplexer selects R2 as the input 

to R0, but, because the control function, K2 + K1, connected to the LOAD input of 

R0 equals 0, the contents of R0 remain unchanged.

The detailed logic diagram for the hardware implementation is shown in 

Figure 6-7(b). The diagram uses functional block symbols based upon detailed 

logic for the registers in Figure 6-2 and for a quad 2-to-1 multiplexer from 

Chapter 3. Note that since this diagram represents just a part of a system, there 

are inputs and outputs that are not yet connected. Also, the clock is not shown in 

the block diagram, but is shown in the detailed diagram. It is important to relate 

the information given in a block diagram such as Figure 6-7(a) with the detailed 
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wiring connections in the corresponding logic diagram in Figure 6-7(b). In order 

to save space, we often omit the detailed logic diagrams in designs. However, it is 

possible to obtain a logic diagram with detailed wiring from the corresponding 

block diagram and a library of functional blocks. In fact, such a procedure is per-

formed by computer programs used for automated logic synthesis.
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 FIGURE 6-7
Use of Multiplexers to Select Between Two Registers
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The preceding example can be generalized by allowing the multiplexer to 

have n sources and these sources to be register outputs or combinational logic 

implementing microoperations. This generalization results in the block diagram 

shown in Figure 6-8. The diagram assumes that each source is either the outputs of 

a register or of combinational logic implementing one or more microinstructions. 

In those cases in which the microoperations are dedicated to the register, the cor-

responding dedicated logic is included as a part of the register. In Figure 6-8, the 

first k sources are dedicated logic and the last n - k sources are either registers or 

shared logic. The control signals that select a given source are either a single con-

trol variable or the OR of all control signals corresponding to the microoperations 

associated with the source. To force R0 to load for a microoperation, these control 

signals are ORed together to form the Load signal. Since it is assumed that only 

one of the control signals is 1 at any time, these signals must be encoded to provide 

the selection codes for the multiplexer. Two  modifications to the given structure 

are possible. The control signals could be applied directly to a 2 * n AND-OR cir-

cuit (i.e., a multiplexer with the decoder deleted). Alternatively, the control signals 

could already be encoded, omitting the use of the all-zero code, so that the OR 

gate still forms the Load signal correctly.

Shift Registers

A register capable of shifting its stored bits laterally in one or both directions is 

called a shift register. The logical configuration of a shift register consists of a 

chain of flip-flops, with the output of one flip-flop connected to the input of 
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Generalization of Multiplexer Selection for n Sources
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the next flip-flop. All flip-flops have a common clock-pulse input that activates 

the shift.

The simplest possible shift register uses only flip-flops, as shown in Figure 6-9(a). 

The output of a given flip-flop is connected to the D input of the flip-flop at its right. 

The clock is common to all flip-flops. The serial input SI is the input to the leftmost flip-

flop. The serial output SO is taken from the output of the rightmost flip-flop. A symbol 

for the shift register is given in Figure 6-9(b).

Sometimes it is necessary to control the register so that it shifts only on select 

positive clock edges. For the shift register in Figure 6-9, the shift can be controlled by 

connecting the clock through the logic shown in Figure 6-1(c), with Shift replacing 

Load. Again, due to clock skew, this is usually not the most desirable approach. Thus, 

we learn next that the shift operation can be controlled through the D inputs of the 

flip-flops rather than through the clock inputs C.

SHIFT REGISTER WITH PARALLEL LOAD If all flip-flop outputs of a shift register are 

accessible, then information entered serially by shifting can be taken out in parallel 

from the flip-flop outputs. If a parallel load capability is also added to a shift register, 

then data entered in parallel can be shifted out serially. Thus, a shift register with 

accessible flip-flop outputs and parallel load can be used for converting incoming 

parallel data to outgoing serial data and vice versa.

The logic diagram for a 4-bit shift register with parallel load and the symbol for 

this register are shown in Figure 6-10. There are two control inputs, one for the shift 

and the other for the load. Each stage of the register consists of a D flip-flop, an OR 

gate, and three AND gates. The first AND gate enables the shift operation. The sec-

ond AND gate enables the input data. The third AND gate restores the contents of 

the register when no operation is required.

(b) Symbol
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SRG 4
Clock
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(a) Logic diagram
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 FIGURE 6-9
4-Bit Shift Register
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The operation of this register is specified in Table 6-6 and is also given by the 

register transfers:

 Shift: Q d sl Q

Shift #  Load: Q d D

D
C

D

C

D

C

D

C

(b) Symbol
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Q3
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Serial
input

D0
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Clock

Q0

Q1

Q2

Q3

 FIGURE 6-10
Shift Register with Parallel Load

 TABLE 6-6
Function Table for the Register of Figure 6-10

Shift Load Operation

0 0 No change (Hold)

0 1 Load parallel data

1 * Shift left (down) from Q
0
 to Q

3
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The “No change” operation, also called “Hold”, is implicit if neither of the condi-

tions for transfers is satisfied. When both the shift and load control inputs are 0, the 

third AND gate in each stage is enabled, and the output of each flip-flop is applied 

to its own D input. A positive transition of the clock restores the contents to the 

register, and the output is unchanged. When the shift input is 0 and the load input 

is 1, the second AND gate in each stage is enabled, and the input Di is applied to 

the D input of the corresponding flip-flop. The next positive clock transition trans-

fers the parallel input data into the register. When the shift input is equal to 1, the 

first AND gate in each stage is enabled and the other two are disabled. Since the 

Load input is disabled by the Shift input on the second AND gate, we mark it with 

a don’t-care condition in the Shift row of the table. When a positive edge occurs on 

the clock, the shift operation causes the data from the serial input SI to be trans-

ferred to flip-flop Q
0
, the output of Q

0
 to be transferred to flip-flop Q

1
, and so on 

down the line. Note that because of the way the circuit is drawn, the shift occurs in 

the downward direction. If we rotate the page a quarter-turn clockwise, the regis-

ter shifts from right to left.

Shift registers are often used to interface digital systems that are distant from 

each other. For example, suppose it is necessary to transmit an n-bit quantity between 

two points. If the distance is large, it is expensive to use n lines to transmit the n bits 

in parallel. It may be more economical to use a single line and transmit the informa-

tion serially, one bit at a time. The transmitter loads the n-bit data in parallel into 

a  shift register and then transmits the data serially along the common line. The 

receiver accepts the data serially into a shift register. When all n bits are accumu-

lated, they can be taken in parallel from the outputs of the register. Thus, the transmitter 

performs a parallel-to-serial conversion of data, and the receiver does a serial- 

to-parallel conversion.

BIDIRECTIONAL SHIFT REGISTER A register capable of shifting in only one direction is 

called a unidirectional shift register. A register that can shift in both directions is a 

bidirectional shift register. It is possible to modify the circuit of Figure 6-10, by adding 

a fourth AND gate in each stage, for shifting the data in the upward direction. An 

investigation of the resultant circuit will reveal that the four AND gates, together 

with the OR gate in each stage, constitute a multiplexer with the selection inputs 

controlling the operation of the register.

One stage of a bidirectional shift register with parallel load is shown in 

Figure 6-11(a). Each stage consists of a D flip-flop and a 4–to–1-line multiplexer. 

The two selection inputs S
1
 and S

0
 select one of the multiplexer inputs to apply to 

the D flip-flop. The selection lines control the mode of operation of the register 

according to Table 6-7 and the register transfers:

  S1 #  S0:   Q d sl Q

 S1 #  S0:   Q d sr Q

 S1 #  S0:   Q d D
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The “No Change” operation is implicit if none of the conditions for transfers is 

satisfied. When the mode control S1S0 = 00, input 0 of the multiplexer is selected. 

This forms a path from the output of each flip-flop into its own input. The next 

clock transition transfers the current stored value back into each flip-flop, and no 

change of state occurs. When S1S0 = 01, the terminal marked 1 on the multiplexer 

 TABLE 6-7
Function Table for the Register of Figure 6-11

Mode Control
Register  

Operation
S

1
S

0

0 0 No change (Hold)

0 1 Shift left

1 0 Shift right

1 1 Parallel load

(b) Symbol
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Bidirectional Shift Register with Parallel Load
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has a path to the D input of each flip-flop. These paths cause a shift-left operation, 

with the bits being moved toward the most significant bit (down in the figure). The 

serial input is transferred into the first stage, and the content of each stage, Qi - 1, 

is transferred into stage Qi. When S1S0 = 10, a shift-right operation results in a 

second serial input that enters the last stage. In addition, the value in each stage 

Qi+1 is transferred into stage Qi (up in the figure). Finally, when S1S0 = 11, the 

binary information on each  parallel input line is transferred into the correspond-

ing flip-flop, resulting in a parallel load.

Figure 6-11(b) shows a symbol for the bidirectional shift register from 

Figure 6-11(a). Note that both a left serial input (LSI) and a right serial input 

(RSI) are provided. If serial outputs are desired, Q
3
 is used for left shift and Q

0
 

for right shift.

Ripple Counter

A register that goes through a prescribed sequence of distinct states upon the 

application of a sequence of input pulses is called a counter. The input pulses may 

be clock pulses or may originate from some other source, and they may occur at 

regular or irregular intervals of time. In our discussion of counters, we assume 

clock pulses, but other signals can be substituted for the clock. The sequence of 

states may follow the binary number sequence or any other prescribed sequence 

of states. A counter that follows the binary number sequence is called a binary 
counter. An n-bit binary counter consists of n flip-flops and can count in binary 

from 0 through 2n - 1.

Counters are available in two categories: ripple counters and synchronous 

counters. In a ripple counter, the flip-flop output transitions serve as the sources for 

triggering the changes in other flip-flops. In other words, the C inputs of some of the 

flip-flops are triggered not by the common clock pulse, but rather by the transitions 

that occur on other flip-flop outputs. In a synchronous counter, the C inputs of all 

flip-flops receive the common clock pulse, and the change of state is determined 

from the present state of the counter. Synchronous counters are discussed in the next 

two subsections. Here we present the binary ripple counter and explain its 

operation.

The logic diagram of a 4-bit binary ripple counter is shown in Figure 6-12. 

The counter is constructed from D flip-flops connected such that the applica-

tion  of a positive edge to the C input of each flip-flop causes the flip-flop to 

 complement its state. The complemented output of each flip-flop is connected to 

the C input of the next most significant flip-flop. The flip-flop holding the 

least   significant bit receives the incoming clock pulses. Positive-edge triggering 

makes each flip-flop complement its value when the signal on its C input goes 

through a positive transition. The positive transition occurs when the comple-

mented  output of the previous flip-flop, to which C is connected, goes from 0 to 1. 

A 1-level signal on Reset driving the R inputs clears the register to all zeros 

asynchronously.
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 FIGURE 6-12
4-Bit Ripple Counter

To understand the operation of a binary ripple counter, let us examine the 

upward counting sequence given in the left half of Table 6-8. The count starts at 

binary 0 and increments by one with each count pulse. After the count of 15, the 

counter goes back to 0 to repeat the count. The least significant bit (Q
0
) is comple-

mented by each count pulse. Every time that Q
0
 goes from 1 to 0, Q0 goes from 0 to 1, 

complementing Q
1
. Every time that Q

1
 goes from 1 to 0, it complements Q

2
. Every 

time that Q
2
 goes from 1 to 0, it complements Q

3
, and so on for any higher-order bits 

in the ripple counter. For example, consider the transition from count 0011 to 0100. 

Q
0
 is complemented with the count pulse positive edge. Since Q

0
 goes from 1 to 0, it 

triggers Q
1
 and complements it. As a result, Q

1
, goes from 1 to 0, which complements 

Q
2
, changing it from 0 to 1. Q

2
 does not trigger Q

3
, because Q2 produces a negative 

transition, and the flip-flops respond only to positive transitions. Thus, the count from 

0011 to 0100 is achieved by changing the bits one at a time. The counter goes from 

0011 to 0010 (Q
0
 from 1 to 0), then to 0000 (Q

1
 from 1 to 0), and finally to 0100 (Q

2
 

from 0 to 1). The flip-flops change one at a time in quick succession as the signal 

propagates through the counter in a ripple fashion from one stage to the next.

A ripple counter that counts downward gives the sequence in the right half of 

Table 6-8. Downward counting can be accomplished by connecting the true output 

of each flip-flop to the C input of the next flip-flop.

The advantage of ripple counters is their simple hardware. Unfortunately, they 

are asynchronous circuits and, with added logic, can become circuits with delay 
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dependence and unreliable operation. This is particularly true for logic that provides 

feedback paths from counter outputs back to counter inputs. Also, due to the length 

of time required for the ripple to finish, large ripple counters can be slow circuits. As 

a consequence, synchronous binary counters are favored in all but low-power 

designs, where ripple counters have an advantage. (See Problem 6-9.)

Synchronous Binary Counters

Synchronous counters, in contrast to ripple counters, have the clock applied to the C 

inputs of all flip-flops. Thus, the common clock pulse triggers all flip-flops simultane-

ously rather than one at a time, as in a ripple counter. A synchronous binary counter 

that counts up by 1 can be constructed from the incrementer in Figure 3-52 and D 

flip-flops, as shown in Figure 6-13(a). The carry output CO is added by not placing an 

X value on the C
4
 output before the contraction of an adder to the incrementer in 

Figure 3-52. Output CO is used to extend the counter to more stages.

Note that the flip-flops trigger on the positive-edge transition of the clock. The 

polarity of the clock is not essential here, as it was for the ripple counter. The syn-

chronous counter can be designed to trigger with either the positive or the negative 

clock transition.

SERIAL AND PARALLEL COUNTERS We will use the synchronous counter in Figure 6-13 

to demonstrate two alternative designs for binary counters. In Figure 6-13(a), a chain 

of 2-input AND gates is used to provide information to each stage about the state of 

the prior stages in the counter. This is analogous to the carry logic in the ripple carry 

adder. A counter that uses such logic is said to have serial gating and is referred to 

 TABLE 6-8
Counting Sequence of Binary Counter

Upward Counting Sequence Downward Counting Sequence

Q
3

Q
2

Q
1

Q
0

Q
3

Q
2

Q
1

Q
0

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
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as a serial counter. The analogy to the ripple carry adder suggests that there might 

be counter logic analogous to the carry lookahead adder. Such logic can be derived 

by contracting a carry lookahead adder, with the result shown in Figure 6-13(b). This 

logic can simply replace that in the blue box in Figure 6-13(a) to produce a counter 

with parallel gating, called a parallel counter. The advantage of parallel gating logic is 

that, in going from state 1111 to state 0000, only one AND-gate delay occurs instead 

of the four AND-gate delays that occur for the serial counter. This reduction in delay 

allows the counter to operate much faster.

If we connect two 4-bit parallel counters together by connecting the CO output 

of one to the EN input of the other, the result is an 8-bit serial-parallel counter. This 

counter has two 4-bit parallel parts connected in series with each other. The idea can 

be extended to counters of any length. Again, employing the analogy to carry looka-

head adders, additional levels of gating logic can be introduced to replace the serial 

(c) Symbol

CTR 4

EN
Q1
Q2
Q3

CO

Q0

(a) Logic diagram—serial gating

D
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C
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output CO

Q0

Q1

Q2

Q3

(b) Logic diagram—parallel gating
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Q1
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Q2

C2

C3
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 FIGURE 6-13
4-Bit Synchronous Binary Counter
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connections between the 4-bit segments. The added reduction in delay that results is 

useful for constructing large, fast counters.

The symbol for the 4-bit counter using positive-edge triggering is shown in 

Figure 6-13(c).

UP–DOWN BINARY COUNTER A synchronous count-down binary counter goes through 

the binary states in reverse order from 1111 to 0000 and back to 1111 to repeat the 

count. The logic diagram of a synchronous count-down binary counter is similar to 

the circuit for the binary up-counter, except that a decrementer is used instead of 

an incrementer. The two operations can be combined to form a counter that can 

count both up and down, which is referred to as an up–down binary counter. Such 

a counter can be designed by contracting the adder–subtractor in Figure 3-45 into 

an incrementer–decrementer and adding the D flip-flops. The counter counts up for 

S = 0 and down for S = 1.

Alternatively, an up–down counter with ENABLE can be designed directly 

from counter behavior. It needs a mode input to select between the two operations. 

We designate this mode select input by S, with S = 0 for up-counting and S = 1 for 

down-counting. Let variable EN be a count enable input, with EN = 1 for normal 

up- or down-counting and EN = 0 for disabling both counts. A 4-bit up–down 

binary counter can be described by the following flip-flop input equations:

 DA0 = Q0 ⊕ EN

 DA1 = Q1 ⊕ ((Q0
# S + Q0

# S) # EN)

 DA2 = Q2 ⊕ ((Q0
# Q1

# S + Q0
# Q1

# S) # EN)

 DA3 = Q3 ⊕ ((Q0
# Q1

# Q2
# S + Q0

# Q1
# Q2

# S) # EN)

The logic diagram of the circuit can be easily obtained from the input equations but 

is not included here. It should be noted that the equations, as written, provide paral-

lel gating using distinct carry logic for up-counting and down-counting. It is also 

possible to use two distinct serial gating chains. In contrast, the counter derived 

using the incrementer–decrementer uses only a single carry chain. Overall, the logic 

cost is similar.

BINARY COUNTER WITH PARALLEL LOAD Counters employed in digital systems quite 

often require a parallel-load capability for transferring an initial binary number into 

the counter prior to the count operation. Two inputs control the operation, Load and 

Count. These inputs can take on four combinations, but only three operations are 

provided: Load (10), Count (01), and Hold (00). The effect of the remaining input 

combination (11) will be considered shortly. The implementation uses an increment-

er plus 2n + 1 ENABLEs, a NOT gate, and n 2-input OR gates as shown in Figure 

6-14. The first n ENABLEs with enable input Load are used to enable and disable 

the parallel load of input data, D. The second n ENABLEs with enable input Load 

on the incrementer outputs are used to disable both the count and hold operations 

when Load = 1. When Load = 0, both count and hold are enabled. Without the ad-

ditional ENABLE, Count = 1, causes counting, and Count = 0, the hold operation 
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occurs. What about the (11) combination? Counting is disabled by the Load signal 

and loading is enabled by Load. But what about the output CO? With Count = 1, 

the carry chain for the incrementer is active and can produce CO equal to 1. But CO 

should not be active outside of the counting operation. To deal with this problem, 

Count is enabled using Load. With Load = 1, then Load = 0, which disables Count 
from going into the carry chain and forces CO to 0. Thus, for (11), a load occurs. This 

is sometimes described as Load overriding Count. When 4-bit counters are concat-

enated to form 4n-bit counters, for the first state, a count control input is attached 

to Count in the least significant stage. For all other stages, CO from the prior state is 

attached to Count. Counters with parallel load are very useful in the design of digital 

computers. In subsequent chapters, we often refer to them as registers with load and 

increment operations.

D0 D

C

Q0

D1 D

C

Q1

D2 D

C

Q2

D3 D

C

Q3

Load

Count

Clock

Carry
Output CO

 FIGURE 6-14
4-Bit Binary Counter with Parallel Load
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The binary counter with parallel load can be converted into a synchronous 

BCD counter (without load input) by connecting an external AND gate to it, as 

shown in Figure 6-15. The counter starts with an all-zero output, and the count input 

is always active. As long as the output of the AND gate is 0, each positive clock edge 

increments the counter by 1. When the output reaches the count of 1001, both Q
0
 

and Q
3
 become 1, making the output of the AND gate equal to 1. This condition 

makes Load active—so on the next clock transition, the counter does not count, but 

is loaded from its four inputs. Since all four inputs are connected to logic 0, 0000 is 

loaded into the counter following the count of 1001. Thus, the circuit counts from 

0000 through 1001, followed by 0000, as required for a BCD counter.

Other Counters

Counters can be designed to generate any desired number of states in sequence. A 

divide-by-N counter (also known as a modulo-N counter) is a counter that goes 

through a repeated sequence of N states. The sequence may follow the binary count 

or may be any other arbitrary sequence. In either case, the design of the counter fol-

lows the procedure presented in Chapter 4 for the design of synchronous sequential 

circuits. To demonstrate this procedure, we present the design of two counters: a 

BCD counter and a counter with an arbitrary sequence of states.

BCD COUNTER As shown in the previous section, a BCD counter can be obtained 

from a binary counter with parallel load. It is also possible to design a BCD count-

er directly using individual flip-flops and gates. Assuming D-type flip-flops for the 

counter, we list the present states and corresponding next states in Table 6-9. An 

output Y is included in the table. This output is equal to 1 when the present state is 

1001. In this way, CO can enable the count of the next decade while its own decade 

switches from 1001 to 0000.

The flip-flop input equations for D are obtained from the next-state values 

listed in the table and can be simplified by means of K-maps. The unused states for 

CTR 4 

Load

Count
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D2

D3

Q0

Q1

Q2

Q3
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Clock

1

(Logic 0)
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Q3

 FIGURE 6-15
BCD Counter
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minterms 1010 through 1111 are used as don't-care conditions. The simplified input 

equations for the BCD counter are

 D1 = Q1

 D2 = Q2 ⊕ Q1Q8

 D4 = Q4 ⊕ Q1Q2

 D8 = Q8 ⊕ (Q1Q8 + Q1Q2Q4)

 CO = Q1Q8

Synchronous BCD counters can be cascaded to form counters for decimal 

numbers of any length. The cascading is done by replacing D
1
 with D1 = Q1 ⊕ CI, 

where CI is an input driven by CO from the next lower BCD counter. Also, CI needs 

to be ANDed with the product terms to the right of each of the XOR symbols in 

each of the equations for D
2
 through D

8
.

ARBITRARY COUNT SEQUENCE Suppose we wish to design a counter that has a repeated 

sequence of six states, as listed in Table 6-10. In this sequence, flip-flops B and C repeat 

the binary count 00, 01, 10, while flip-flop A alternates between 0 and 1 every three 

counts. Thus, the count sequence for the counter is not straight binary, and two states, 

011 and 111, are not included in the count. The D flip-flop input equations can be sim-

plified using minterms 3 and 7 as don’t-care conditions. The simplified functions are

 DA = A ⊕ B

 DB = C

 DC = B C

 TABLE 6-9
State Table and Flip-Flop Inputs for BCD Counter

Present State Next State Output

D8 = D4 = D2 = D1 =
Q8 Q4 Q2 Q1 Q8(t + 1) Q4(t + 1) Q2(t + 1) Q1(t + 1) Y

0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0

0 0 1 0 0 0 1 1 0

0 0 1 1 0 1 0 0 0

0 1 0 0 0 1 0 1 0

0 1 0 1 0 1 1 0 0

0 1 1 0 0 1 1 1 0

0 1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 1 0

1 0 0 1 0 0 0 0 1
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The logic diagram of the counter is shown in Figure 6-16(a). Since there are 

two unused states, we analyze the circuit to determine their effect. The state diagram 

obtained is drawn in Figure 6-16(b). This diagram indicates that if the circuit ever 

goes to one of the unused states, the next count pulse transfers it to one of the valid 

states, and the circuit then continues to count correctly.

(b)
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Reset

110 001

111101 010
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(a)

A

Clock

D

C

D

C

D

C

B

C

Reset

 FIGURE 6-16
Counter with Arbitrary Count

 TABLE 6-10
State Table and Flip-Flop Inputs for Counter

Present State Next State

DA = DB = DC =
A B C A(t + 1) B(t + 1) C(t + 1)

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 0 0 0
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6-7 REGISTER-CELL DESIGN

In Section 3-8, we discussed iterative combinational circuits. In this chapter, we con-

nect such circuits to flip-flops to form sequential circuits. A single-bit cell of an itera-

tive combinational circuit, connected to a flip-flop that provides the output, forms a 

two-state sequential circuit called a register cell. We can design an n-bit register with 

one or more associated microoperations by designing a register cell and making n 

copies of it. Depending on whether the output of the flip-flop is an input to the itera-

tive circuit cell, the register cell may have its next state dependent on its present state 

and inputs or on its inputs only. If the dependency is only on inputs, then cell design 

for the iterative combinational circuit and attachment of the iterative circuit to flip-

flops is appropriate. If, however, the state of the flip-flop is fed back to the inputs of 

the iterative circuit cell, sequential design methods can also be applied. The next 

example illustrates simple register-cell design in such a case.

EXAMPLE 6-1 Register-Cell Design

A register A is to implement the following register transfers:

AND: A d A ¿ B
EXOR: A d A ⊕ B
OR: A d A ¡ B

Unless specified otherwise, we assume that

1. Only one of AND, EXOR, and OR is equal to 1, and

2. For all of AND, EXOR, and OR equal to 0, the content of A remains unchanged.

A simple design approach for a register cell with conditions 1 and 2 uses a reg-

ister with parallel load constructed from D flip-flops with Enable (EN = LOAD) 

from Figure 6-2. For this approach, the expression for LOAD is the OR of all control 

signals that cause a transfer to occur. The expression for Di consists of an OR of the 

AND of each control signal with the operation on the right-hand side of the corre-

sponding transition.

For this example, the resulting equations for LOAD and Di are

LOAD =  AND +  EXOR +  OR

Di = A(t + 1 )i = AND # AiBi + EXOR # (AiBi + AiBi) + OR # (Ai + Bi)

The equation for Di has an implementation similar to that used for the selection part 

of a multiplexer in which a set of ENABLE blocks drive an OR gate. AND, EXOR, 

and OR are enabling signals, and the remaining part of the respective terms in Di 

consists of the function enabled.

A more complex approach is to design directly for D flip-flops using a sequen-

tial circuit design approach rather than the ad hoc approach based on parallel load 

flip-flops.

We find a coded state table with A as the state variable and output, and AND, 

EXOR, OR, and B as inputs, as shown in Table 6-11. The assumption that at most one 
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of the three control variables AND, EXOR, and OR is 1 is instrumental in defining 

the column headings. From the table, the equation for Di can be written as:

Di = A(t + 1)i = AND # Ai
# Bi + EXOR # (AiBi + AiBi) + OR # (Ai + Bi)

                                           + AND # EXOR # OR # Ai

In attempting to simplify this equation, it is important to note that factors involving 

only the control variables can be shared between register cells since they are the 

same for each cell. On the other hand, factors including variables A
i
 or B

i
 are imple-

mented in each cell, so the gate-input cost is multiplied by n, the number of cells. In 

order to easily separate out the factors involving condition variables only, we rewrite 

D
i
 in terms of minterms of variables A

i
 and B

i
:

Di = (AND + OR + AND # EXOR # OR)(AiBi) + (EXOR + OR
             + AND # EXOR # OR)(AiBi) + (EXOR + OR)(AiBi)

        =   (AND + OR + EXOR)(AiBi) + (EXOR + OR
             + AND)(AiBi) + (EXOR + OR)(AiBi)

The terms OR + AND +  EXOR, EXOR + OR, and (EXOR + OR) +  AND do 

not depend on the values Ai and Bi associated with any of the cells. The logic for 

these terms can be shared by all of the register cells. Using C
1
, C

2
, and C

3
 as interme-

diate variables, the following set of equations results:

 C1 =  OR +  AND +  EXOR
 C2 =  OR +  EXOR
 C3 =  C2 +  AND
 Di =  C1AiBi +  C3AiBi + C2AiBi

The logic shared by all of the cells and the logic for register cell i are given in Figure 

6-17. Before comparing these results with those from the simple approach, we can 

apply similar simplification and logic sharing to the results of the simple approach:

 C1 =  OR +  AND

 C2 =  OR +  EXOR

 TABLE 6-11
State Table and Flip-Flop Inputs for Example 6-1

Present 

State A Next State A(t + 1)

(AND = 0) 

(EXOR = 0) 

(OR = 0)

(OR = 1) 

(B = 0)

(OR = 1) 

(B = 1)

(EXOR = 1) 

(B = 0)

(EXOR = 1) 

(B = 1)

(AND = 1) 

(B = 0)

(AND = 1) 

(B = 1)

0 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1
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 Di = C1AiBi + C2AiBi + C2AiBi

 LOAD = C1 + C2

 Di,FF =  LOAD # Di + LOAD # Ai

If these equations are used directly the cost of the simple approach for a 16-cell 

design is about 40% higher. So by designing a custom register cell using a D flip-flop 

rather than finding input logic for a D flip-flop with enable, the cost can be reduced. 

Further, with the decrease in the number of levels of logic, the delay may also be 

reduced. ■

In the preceding example, there are no lateral connections between adjacent 

cells. Among the operations requiring lateral connections are shifts, arithmetic 

operations, and comparisons. One approach to the design of these structures is to 

combine combinational designs given in Chapter 3 with selection logic and flip-

flops. A generic approach for multifunctional registers using flip-flops with parallel 

load is shown in Figure 6-8. This simple approach bypasses register-cell design but, if 

directly implemented, can result in excessive logic and too many lateral connec-

tions. The alternative is to do a custom register-cell design. In such designs, a critical 

factor is the definition of the lateral connection(s) needed. Also, different opera-

tions can be defined by controlling input to the least significant cell of the cell 

OR

EXOR

AND

Shared Logic

C1

C2

C3

Bi

AiD

CClock

Cell i

C1 C3 C2

 FIGURE 6-17
Logic Diagram—Register-Cell Design Example 6-1
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cascade. The custom design approach is illustrated in the next example by the design 

of a multifunctional register cell.

EXAMPLE 6-2 Register-Cell Design

A register A is to implement the following register transfers:

SHL: A d sl  A
EXOR: A d A ⊕ B
ADD: A d A + B

Unless specified otherwise, we assume that

1. Only one of SHL, EXOR, and ADD is equal to 1, and

2. For all of SHL, EXOR, and ADD equal to 0, the content of A remains un-

changed.

A simple approach to designing a register cell with conditions 1 and 2 is to use 

a parallel load with enable EN equal to LOAD. For this approach, the expression for 

LOAD is the OR of all control signals that cause a transfer to occur. The implemen-

tation for Di consists of an AND-OR, with each AND having a control signal and the 

logic for the operation on the right-hand side as its inputs.

For this example, the resulting equations for LOAD and Di are

 LOAD = SHL + EXOR + ADD

 Di = A(t + 1)i = SHL # Ai- 1 + EXOR # (Ai ⊕ Bi) + ADD # ((Ai ⊕ Bi) ⊕ Ci)

 Ci+ 1 = (Ai ⊕ Bi)Ci + AiBi

These equations can be used without modification or can be optimized.

Now, suppose, that we do a custom design assuming that all of the register cells 

are identical. This means that the least and most significant cells will be the same as 

those internal to the cell chain. Because of this, the value of C
0
 must be specified and 

the use, if any, of Cn must be determined for each of the three operations. For the left 

shift, a zero fill of the vacated rightmost bit is assumed, giving C0 = 0. Since C
0
 is not 

involved in the EXOR operation, it can be assumed to be a don’t-care. Finally, for the 

addition, C
0
 either can be assumed to be 0 or can be left as a variable to permit a 

carry from a previous addition to be injected. We assume that C
0
 equals 0 for addi-

tion, since no additional carry-in is specified by the register transfer statement.

Our first formulation goal is to minimize lateral connections between cells. 

Two of the three operations, left shift and addition, require a lateral connection to 

the left (i.e., toward the most significant end of the cell chain). Our goal is to use one 

signal for both operations, say, C
i
. It already exists for the addition but must be rede-

fined to handle both the addition and the left shift. Also in our custom design, the 

parallel load flip-flop will be replaced by a D flip-flop. We can now formulate the 

state table for the register cell shown in Table 6-12:

 Di = A(t + 1 )i = SHL # EXOR # ADD # Ai + SHL # Ci + EXOR # (Ai ⊕Bi)

+ ADD # (Ai ⊕Bi ⊕Ci)

 Ci+ 1 = SHL # Ai + ADD # ((Ai ⊕ Bi)Ci +AiBi)
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The term A
i
 ⊕  B

i
 appears in both the EXOR and ADD terms. In fact, if Ci = 0 

during the EXOR operation, then the functions for the sum in ADD and for EXOR 

can be identical. In the Ci+ 1 equation, since SHL and ADD are both 0 when EXOR 

is 1, Ci is 0 for all cells in the cascade except the least significant one. For the least 

significant cell, the specification states that C0 = 0. Thus, input values Ci are 0 for all 

cells in register A. So we can combine the ADD and EXOR operations as follows:

EXOR
ADD

SHL

Shared Logic

E1

E2

ADD

Cell i

D

CClock

SHLE1Bi

Ci

Ai

E2

 FIGURE 6-18
Logic Diagram—Register-Cell Design Example 6-2

 TABLE 6-12
State Table and Flip-Flop Inputs for Register-Cell Design in Example 6-2

Present  

State A
i

Inputs Next State Ai(t + 1)/Output Ci+1

 SHL = 0

 EXOR = 0

 ADD = 0

 SHL = 1  1  1  1

 Bi = 0  0  1  1

 Ci = 0  1  0  1

 EXOR = 1  1

 Bi = 0  1

 ADD = 1  1  1  1

 Bi = 0  0  1  1

 Ci = 0  1  0  1

0 0/X 0/0  1/0  0/0  1/0 0/X  1/X 0/0  1/0  1/0  0/1

1 1/X 0/1  1/1  0/1  1/1 1/X  0/X 1/0  0/1  0/1  1/1
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Di = A(t + 1 )i = SHL # EXOR # ADD # Ai + SHL # Ci

+ (EXOR + ADD) # ((Ai ⊕Bi)⊕Ci)

The expressions SHL # EXOR # ADD and EXOR + ADD, which are independent 

of A
i
, B

i
, and C

i
, can be shared by all cells. The resulting equations are

 E1 = EXOR + ADD

 E2 = E1 + SHL

 Di = E2
# Ai + SHL # Ci + E1

# ((Ai ⊕ Bi) ⊕ Ci)

 Ci+ 1 = SHL # Ai + ADD # ((Ai ⊕ Bi)Ci + AiBi)

The resulting register cell appears in Figure 6-18. Comparing this result with the reg-

ister cell for the simple design, we note the following two differences:

1. Only one lateral connection between cells exists instead of two.

2. Logic has been very efficiently shared by the addition and the EXOR operation.

The custom cell design has produced connection and logic savings not present in the 

block-level design with or without optimization. ■

6-8  MULTIPLEXER AND BUS-BASED TRANSFERS  
FOR MULTIPLE REGISTERS

A typical digital system has many registers. Paths must be provided to transfer data 

from one register to another. The amount of logic and the number of interconnec-

tions may be excessive if each register has its own dedicated set of multiplexers. A 

more efficient scheme for transferring data between registers is a system that uses a 

shared transfer path called a bus. A bus is characterized by a set of common lines, 

with each line driven by selection logic. Control signals for the logic select a single 

source and one or more destinations on any clock cycle for which a transfer occurs.

In Section 6-4, we saw that multiplexers and parallel load registers can be used 

to implement dedicated transfers from multiple sources. A block diagram for such 

transfers between three registers is shown in Figure 6-19(a). There are three n-bit 

2-to-1 multiplexers, each with its own select signal. Each register has its own load 

signal. The same system based on a bus can be implemented by using a single n-bit 

3-to-1 multiplexer and parallel load registers. If a set of multiplexer outputs is shared 

as a common path, these output lines are a bus. Such a system with a single bus for 

transfers between three registers is shown in Figure 6-19(b). The control input pair, 

Select, determines the contents of the single source register that will appear on the 

multiplexer outputs (i.e., on the bus). The Load inputs determine the destination 

register or registers to be loaded with the bus data.

In Table 6-13, transfers using the single-bus implementation of Figure 6-19(b) 

are illustrated. The first transfer is from R2 to R0. Select equals 10, selecting input R2 

to the multiplexer. Load signal L0 for register R0 is 1, with all other loads at 0, caus-

ing the contents of R2 on the bus to be loaded into R0 on the next positive clock 

transition. The second transfer in the table illustrates the loading of the contents of 

R1 into both R0 and R2. The source R1 is selected because Select is equal to 01. In 
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this case, L2 and L0 are both 1, causing the contents of R1 on the bus to be loaded 

into registers R0 and R2. The third transfer, an exchange between R0 and R1, is 

impossible in a single clock cycle, since it requires two simultaneous sources, R0 and 

R1, on the single bus. Thus, this transfer requires at least two buses or a bus combined 

with a dedicated path from one of the registers to the other. Note that such a transfer 

can be executed on the dedicated multiplexers in Figure 6-19(a). So, for a single-bus 

system, simultaneous transfers with different sources in a single clock cycle are 

(a) Dedicated multiplexers (b) Single bus
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 FIGURE 6-19
Single Bus versus Dedicated Multiplexers

 TABLE 6-13
Examples of Register Transfers Using the Single Bus 
in Figure 6-19(b)

Select Load

Register Transfer S1 S0 L2 L1 L0

R0 d R2 1 0 0 0 1

R0 d R1, R2 d R1 0 1 1 0 1

R0 d R1, R1 d R0 Impossible
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impossible, whereas for the dedicated multiplexers, any combination of transfers is 

possible. Hence, the reduction in hardware that occurs for a single bus in place of 

dedicated multiplexers results in limitations on simultaneous transfers.

If we assume that only single-source transfers are needed, then we can use 

Figure 6-19 to compare the complexity of the hardware in dedicated versus bus-

based systems. First of all, assume a multiplexer design, as in Figure 3-27. In Figure 6-

19(a), there are 2n AND gates and n OR gates per multiplexer (not counting 

inverters), for a total of 9n gates. In contrast, in Figure 6-19(b), the bus multiplexer 

requires only 3n AND gates and n OR gates, for a total of 4n gates. Also, the data 

input connections to the multiplexers are reduced from 6n to 3n. Thus, the cost of the 

selection hardware is reduced by about half.

High-Impedance Outputs

Another method for constructing a bus involves a type of gate called a three-state buf-
fer. Thus far, we have considered gates that have only output values logic 0 and logic 1. 

In this section, we introduce an important structure, the three-state buffer, that pro-

vides a third output value referred to as the high-impedance state and denoted by Hi-Z 

or just plain Z or z. The Hi-Z value behaves as an open circuit, which means that, look-

ing back into the circuit, we find that the output appears to be disconnected internally. 

Thus, the output appears not to be there at all and, thus, is incapable of driving any 

attached inputs. Gates with Hi-Z output capability have two very useful properties. 

First of all, Hi-Z outputs can be connected together, provided that no two or more 

gates drive the line at the same time to opposite 0 and 1 values. In contrast, gates with 

only logic 0 and logic 1 outputs cannot have their outputs connected together. Second, 

an output in the Hi-Z states, since it appears as an open circuit, can have an input 

attached to it internally, so that the Hi-Z output can act as both an output and an input. 

This is referred to as a bidirectional input/output. Instead of carrying signals in just one 

direction, interconnections between Hi-Z outputs can carry information in both direc-

tions. This feature reduces significantly the number of interconnections required.

High-impedance outputs may appear on any gate, but here we restrict consid-

eration to a primitive gate structure with a single data input, a three-state buffer. As 

the name implies, a three-state logic output exhibits three distinct states. Two of the 

“states” are the logic 1 and logic 0 of conventional logic. The third “state” is the Hi-Z 

value, which, for three-state logic, is referred to as the Hi-Z state.

The graphic symbol and truth table for a 3-state buffer are given in Figure 6-20(a). 

The symbol in Figure 6-20(a) is distinguished from the symbol for a normal buffer by 

the enable input, EN, entering the bottom of the buffer symbol. From the truth table in 

(b) Truth table

EN IN OUT

0
1
1

X
0
1

Hi-Z
0
1

(a) Logic symbol

IN

EN

OUT

 FIGURE 6-20
Three-State Buffer
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Figure 6-20(b), if EN = 1, OUT is equal to IN, behaving like a normal buffer. But for 

EN = 0, the output value is high impedance (Hi-Z), regardless of the value of IN.

Three-state buffer outputs can be connected together to form a multiplexed 

output line. Figure 6-21(a) shows two 3-state buffers with their outputs connected to 

form output line OL. We are interested in the output of this structure in terms of the 

four inputs EN1, EN0, IN1, and IN0. The output behavior is given by the truth table 

in Figure 6-21(b). For EN1 and EN0 equal to 0, both buffer outputs are Hi-Z. Since 

both appear as open circuits, OL is also an open circuit, represented by a Hi-Z value. 

For EN1 = 0 and EN0 = 1, the output of the top buffer is IN0 and the output of 

bottom buffer is Hi-Z. Since the value of IN0 combined with an open circuit is just 

IN0, OL has value IN0, giving the second and third rows of the truth table. A corre-

sponding, but opposite, case occurs for EN1 = 1 and EN0 = 0, so OL has value 

IN1, giving the fourth and fifth rows of the truth table. For EN1 and EN0 both 1, the 

situation is more complicated. If IN1 = IN0, then their mutual value appears at OL. 

But if IN1 ≠ IN0, then their values conflict at the output. The conflict results in an 

electrical current flowing from the buffer output that is at 1 into the buffer output 

that is at 0. This current is often large enough to cause heating and may even destroy 

the circuit, as symbolized by the “smoke” icons in the truth table. Clearly, such a situ-

ation must be avoided. The designer must ensure that EN0 and EN1 never equal 1 at 

the same time. In the general case, for n 3-state buffers attached to a bus line, EN can 

equal 1 for only one of the buffers and must be 0 for the rest. One way to ensure this 
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 FIGURE 6-21
Three-State Buffers Forming a Multiplexed Line OL



6-8 / Multiplexer and Bus-Based Transfers for Multiple Registers       379

is to use a decoder to generate the EN signals. For the two-buffer case, the decoder is 

just an inverter with select input S, as shown in dotted lines in Figure 6-21(a). It is 

interesting to examine the truth table with the inverter in place. It consists of the 

shaded area of the table in Figure 6-21(b). Clearly, the value on S selects between 

inputs IN0 and IN1. Further, the circuit output OL is never in the Hi-Z state.

Three-State Bus

A bus can be constructed with the three-state buffers introduced above instead of 

multiplexers. This has the potential for additional reductions in the number of con-

nections. But why use three-state buffers instead of a multiplexer, particularly for 

 implementing buses? The reason is that many three-state buffer outputs can be con-

nected together to form a bit line of a bus, and this bus is implemented using only 

one level of logic gates. On the other hand, in a multiplexer, such a large number of 

sources means a high fan-in OR, which requires multiple levels of OR gates, intro-

ducing more logic and increasing delay. In contrast, three-state buffers provide a 

practical way to construct fast buses with many sources, so they are often preferred 

in such cases. More important, however, is the fact that signals can travel in two 

directions on a three-state bus. Thus, the three-state bus can use the same intercon-

nection to carry signals into and out of a logic circuit. This feature, which is most 

important when crossing chip boundaries, is illustrated in Figure 6-22(a). The figure 

(c) Three-state bus using
registers with bidirectional
lines

Bus

Load
L2 L1 L0
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 FIGURE 6-22
Three-State Bus versus Multiplexer Bus
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shows a register with n lines that serve as both inputs and outputs lying across the 

boundary of the shaded area. If the three-state buffers are enabled, then the lines are 

outputs; if the three-state buffers are disabled, then the lines can be inputs. The sym-

bol for this structure is also given in the figure. Note that the bidirectional bus lines 

are represented by a two-headed arrow. Also, a small inverted triangle denotes the 

three-state outputs of the register.

Figures 6-22(b) and (c) show a multiplexer-implemented bus and a three-state 

bus, respectively, for comparison. The symbol from Figure 6-22(a) for a register with 

bidirectional input–output lines is used in Figure 6-22(c). In contrast to the situation 

in Figure 6-19, where dedicated multiplexers were replaced by a bus, these two imple-

mentations are identical in terms of their register–transfer capability. Note that, in 

the three-state bus, there are only three data connections to the set of register blocks 

for each bit of the bus. The multiplexer-implemented bus has six data connections 

per bit to the set of register blocks. This reduction in the number of data connections 

by half, along with the ability to easily construct a bus with many sources, makes the 

three-state bus an attractive alternative. The use of such bidirectional input–output 

lines is particularly effective between logic circuits in different physical packages.

6-9 SERIAL TRANSFER AND MICROOPERATIONS

A digital system is said to operate in a serial mode when information in the system is 

transferred or manipulated one bit at a time. Information is transferred one bit at a 

time by shifting the bits out of one register and into a second register. This transfer 

method is in contrast to parallel transfer, in which all the bits of the register are trans-

ferred at the same time.

The serial transfer of information from register A to register B is done with shift 

registers, as shown in the block diagram of Figure 6-23(a). The serial output of register 

A is connected to the serial input of register B. The serial input of register A receives 0s 

while its data is transferred to register B. It is also possible for register A to receive 

(b) Timing diagram

T1 T2 T3 T4

Clock

Shift
C inputs

Register B 
SRG 4

Register A 
SRG 4

(a) Block diagram

SI

C

SO0 SI

C

SO

Shift
Clock

 FIGURE 6-23
Serial Transfer
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other binary information, or if we want to maintain the data in register A, we can con-

nect its serial output to its serial input so that the information is circulated back into 

the register. The initial content of register B is shifted out through its serial output and 

is lost unless it is transferred back into register A, to a third shift register, or to other 

storage. The shift control input Shift determines when and how many times the regis-

ters are shifted. The registers using Shift are controlled by means of the logic from 

Figure 6-23(a), which allows the clock pulses to pass to the shift register clock inputs 

only when Shift has the value logic 1.

In Figure 6-23, each shift register has four stages. The logic that supervises the 

transfer must be designed to enable the shift registers, through the Shift signal, for a 

fixed time of four clock pulses. Shift register enabling is shown in the timing diagram 

for the clock gating logic in Figure 6-23(b). Four pulses find Shift in the active state, 

so that the output of the logic connected to the clock inputs of the registers produces 

four pulses: T
1
, T

2
, T

3
, and T

4
. Each positive transition of these pulses causes a shift in 

both registers. After the fourth pulse, Shift changes back to 0 and the shift registers 

are disabled. We note again that, for positive-edge triggering, the pulses on the clock 

inputs are 0, and the inactive level when no pulses are present is a 1 rather than a 0.

Now suppose that the binary content of register A before the shift is 1011, that 

of register B is 0010, and the SI of register A is logic 0. Then the serial transfer from 

A to B occurs in four steps, as shown in Table 6-14. With the first pulse T
1
, the right-

most bit of A is shifted into the leftmost bit of B, the leftmost bit of A receives a 0 

from the serial input, and at the same time, all other bits of A and B are shifted one 

position to the right. The next three pulses perform identical operations, shifting the 

bits of A into B one at a time while transferring 0s to A. After the fourth shift, the 

logic supervising the transfer changes the Shift signal to 0 and the shifts stop. Register 

B contains 1011, which is the previous value of A. Register A contains all 0s.

The difference between serial and parallel modes of operation should be 

apparent from this example. In the parallel mode, information is available from all 

bits of a register, and all bits can be transferred simultaneously during one clock 

pulse. In the serial mode, the registers have a single serial input and a single serial 

output, and information is transferred one bit at a time.

Serial Addition

Operations in digital computers are usually done in parallel because of the faster 

speed attainable. Serial operations are slower, but have the advantage of requiring 

 TABLE 6-14
Example of Serial Transfer

Timing Pulse Shift Register A Shift Register B

Initial value 1 0 1 1 0 0 1 0

After T
1

0 1 0 1 1 0 0 1

After T
2

0 0 1 0 1 1 0 0

After T
3

0 0 0 1 0 1 1 0

After T
4

0 0 0 0 1 0 1 1
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less hardware. To demonstrate the serial mode of operation, we will show the opera-

tion of a serial adder. Also, we compare the serial adder to the parallel counterpart 

presented in Section 3-9 to illustrate the time–space trade-off in design.

The two binary numbers to be added serially are stored in two shift registers. 

Bits are added, one pair at a time, through a single full-adder (FA) circuit, as shown 

in Figure 6-24. The carry out of the full adder is transferred into a D flip-flop. The 

output of this carry flip-flop is then used as the carry input for the next pair of signif-

icant bits. The sum bit on the S output of the full adder could be transferred into a 

third shift register, but we have chosen to transfer the sum bits into register A as the 

contents of the register are shifted out. The serial input of register B can receive a 

new binary number as its contents are shifted out during the addition.

The operation of the serial adder is as follows: Register A holds the augend, 

register B holds the addend, and the carry flip-flop has been reset to 0. The serial 

outputs of A and B provide a pair of significant bits for the full adder at X and Y. The 

output of the carry flip-flop provides the carry input at Z. When Shift is set to 1, the 

OR gate enables the clock for both registers and the flip-flop. Each clock pulse shifts 

both registers once to the right, transfers the sum bit from S into the leftmost flip-

flop of A, and transfers the carry output into the carry flip-flop. Shift control logic 

enables the registers for as many clock pulses as there are bits in the registers (four 

pulses in this example). For each pulse, a new sum bit is transferred to A, a new carry 

is transferred to the flip-flop, and both registers are shifted once to the right. This 

process continues until the shift control logic changes Shift to 0. Thus, the addition is 

accomplished by passing each pair of bits and the previous carry through a single 

full-adder circuit and transferring the sum, one bit at a time, back into register A.

Reset
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Full Adder
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Initially, we can reset register A, register B, and the Carry flip-flop to 0. Then 

we shift the first number into B. Next, the first number from B is added to the 0 in A. 

While B is being shifted through the full adder, we can transfer a second number to it 

through its serial input. The second number can be added to the contents of register 

A at the same time that a third number is transferred serially into register B. Serial 

addition may be repeated to form the addition of two, three, or more numbers, with 

their sum accumulated in register A.

A comparison of the serial adder with the parallel adder described in Section 

3-9 provides an example of space–time trade-off. The parallel adder has n full adders 

for n-bit operands, whereas the serial adder requires only one full adder. Excluding 

the registers from both, the parallel adder is a combinational circuit, whereas the 

serial adder is a sequential circuit because it includes the carry flip-flop. The serial 

circuit also takes n clock cycles to complete an addition. Identical circuits, such as the 

n full adders in the parallel adder, connected together in a chain constitute an exam-

ple of an iterative logic array. If the values on the carries between the full adders are 

regarded as state variables, then the states from the least significant end to the most 

significant end are the same as the states appearing in sequence on the flip-flop out-

put in the serial adder. Note that in the iterative logic array the states appear in 

space, but in the sequential circuit the states appear in time. By converting from one 

of these implementations to the other, one can make a space–time trade-off. The 

parallel adder in space is n times larger than the serial adder (ignoring the area of the 

carry flip-flop), but it is n times faster. The serial adder, although it is n times slower, 

is n times smaller in space. This gives the designer a significant choice in emphasizing 

speed or area, where more area translates into more cost.

6-10 CONTROL OF REGISTER TRANSFERS

In Section 6-2, we divided a digital system into two major components, a datapath 

and a control unit. Likewise, the binary information stored in a digital computer can 

be classified as either data or control information. As we saw earlier in this chapter, 

data is manipulated in a datapath by using microoperations implemented with regis-

ter transfers. These operations are implemented with adder–subtractors, shifters, reg-

isters, multiplexers, and buses. The control unit provides signals that activate the 

 various microoperations within the datapath to perform the specified processing 

tasks. The control unit also determines the sequence in which the various actions are 

performed. This separation of a system into two components and separation of the 

tasks performed carries over to the design process. The datapath and control unit are 

usually designed separately, but in close coordination with each other.

Generally, the timing of all registers in a synchronous digital system is con-

trolled by a master clock generator. The clock pulses are applied to all flip-flops and 

registers in the system, including those in the control unit. To prevent clock pulses 

from changing the state of all registers on every clock cycle, some registers have a 

load control signal that enables and disables the loading of new data into the register. 

The binary variables that control the selection inputs of multiplexers, buses, and pro-

cessing logic and the load control inputs of registers are generated by the control unit.

The control unit that generates the signals for sequencing the microoperations 

is a sequential circuit with states that dictate the control signals for the system. At 
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any given time, the state of the sequential circuit activates a prescribed set of micro-

operations. Using status conditions and control inputs, the sequential control unit 

determines the next state. The digital circuit that acts as the control unit provides a 

sequence of signals for activating the microoperations and also determines its own 

next state.

Based on the overall system design, there are two distinct types of control units 

used in digital systems, one for a programmable system and the other for a nonpro-

grammable system.

In a programmable system, a portion of the input to the processor consists of 

a sequence of instructions. Each instruction specifies the operation that the sys-

tem is to perform, which operands to use, where to place the results of the opera-

tion, and, in some cases, which instruction to execute next. For programmable 

systems, the instructions are usually stored in memory, either in RAM or in ROM. 

To execute the instructions in sequence, it is necessary to provide the memory 

address of the instruction to be executed. This address comes from a register 

called the program counter (PC). As the name implies, the PC has logic that per-

mits it to count. In addition, in order to change the sequence of operations using 

decisions based on status information from the datapath, the PC needs parallel 

load capability. So, in the case of a programmable system, the control unit con-

tains a PC and associated decision logic, as well as the necessary logic to interpret 

the instruction. Executing an instruction means activating the necessary sequence 

of microoperations in the datapath required to perform the operation specified by 

the instruction.

For a nonprogrammable system, the control unit is not responsible for obtain-

ing instructions from memory, nor is it responsible for sequencing the execution of 

those instructions. There is no PC or similar register in such a system. Instead, the 

control unit determines the operations to be performed and the sequence of those 

operations, based on its inputs and the status bits from the datapath.

This section focuses on nonprogrammable system design. It illustrates the use 

of state machine diagrams for control unit design. Programmable systems are cov-

ered in Chapters 8 and 10.

Design Procedure

There are many possible design procedures for designing a datapath and control 

unit. Here, we will take an approach in which the actions of both the datapath and 

the control unit are described in a combined fashion using a state machine dia-

gram or a combination of a state machine diagram with a register transfer table. 

Also, this procedure assumes that there may be some register transfer hardware 

in the control unit. Examples of such hardware are an iteration counter for imple-

mentation of an iterative algorithm, a program counter for a computer, or a set of 

register transfers to reduce the number of states in a state machine diagram. Here 

we use the term system to describe the target of the design; this term can be 

replaced with circuit if desired. This procedure assumes only one state machine 

diagram in the control unit. If desired, VHDL or Verilog can be used for any steps 

of the procedure.
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REGISTER-TRANSFER SYSTEM DESIGN PROCEDURE

1. Write a detailed system specification.

2. Define all external data and control input signals, all external data, control, 

and status output signals, and the registers of the datapath and control unit.

3. Find a state machine diagram for the system including the register transfers in 

the datapath and in the control unit.

4. Define internal control and status signals. Use these signals to separate output 

conditions and actions, including register transfers, from the state diagram flow 

and represent them in tabular form.

5. Draw a block diagram of the datapath including all control and status inputs 

and outputs. Draw a block diagram of the control unit if it includes register 

transfer hardware.

6. Design any specialized register transfer logic in both the control and datapath.

7. Design the control unit logic.

8. Verify the correct operation of the combined datapath and control logic. If 

verification fails, debug the system and reverify it.

The next two examples provide the details of register-transfer system design. 

The concepts illustrated are very central to contemporary system design. These 

examples will cover the first seven of the eight steps, then step 8 will be briefly 

discussed.

EXAMPLE 6-3  DashWatch

The DashWatch is a very inexpensive stopwatch, intended only for runners in very 

short races referred to as dashes, e.g., the 100-yard dash.

1. The DashWatch times intervals less than or equal to 99.99 seconds. In addition 

to the stopwatch action, it also has a feature which permits the best performance 

(least time) to be stored in a register. The front of the stopwatch is shown in 

 Figure 6-25(a). The primary stopwatch inputs are START and STOP. The START 

button causes a timer to reset to 0 and then starts the timer, and the STOP button 

stops the timer. After pressing STOP, the latest dash time is displayed on the 

4-digit LCD (liquid crystal display). In addition, the CSS (compare and store 

shortest) pushbutton causes: (1) the last dash value to be compared with the 

stored minimum dash value so far in this session, (2) the least value to be stored 

as the minimum dash value, and (3) the minimum dash value to be displayed. 

The RESET button initializes the storage register to 10011001.10011001, the 

maximum possible value, and the BCD equivalent of 99.99. These reset actions 

also occur in response to turning the power on with a switch on the back of the 

DashWatch. The output is displayed in BCD on a seven-segment LCD which 

displays four digits, B
1
, B

0
, B

–1
, B

–2
, each of which has seven bits a, b, c, d, e, f, and 

g, for the seven segments. There is also an input to the display DP which is con-

nected to the power supply. It provides the decimal point between B
0
 and B

–1
, 

and also acts as a power-on indicator.
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2. The external control input signals, external data output signals, and registers 

are listed Table 6-15. The first four signals, provided through signal condition-

ing logic from pushbuttons on the face of the DashWatch, are 1 if the button is 

pushed and 0 if it is not pushed. The remaining signals are the 6-segment LCD 

display inputs for the four digits from left to right and the decimal point DP. 

DP is always 1 when the power is on. These five vectors are combined into the 

29-bit vector B that drives the LCD. By looking at the specification in 1, we 

can conclude that two registers are needed. One is a timer, TM, that times the 

current dash, and the other SD, that stores the value of the shortest dash. The 

timer register needs to count up every 0.01 seconds, the period of the circuit 

clock. There are two choices for an up-counter: 1) a binary counter with a suf-

ficient number of bits to be accurate to 0.01 seconds in decimal, or 2) a 4-digit 

BCD counter that counts in 0.01-second intervals. In this case, we have chosen 

the BCD counter to save on hardware required to convert from binary to BCD 

for the output display. The SD register has to be initialized to (99.99)
BCD

 and to 

be loaded with the contents of TM. Thus a 4-digit (16-bit) parallel load register 

is required. The registers are shown in Figure 6-25(b).

3. The state machine diagram is given in Figure 6-26. In the formulation of this 

diagram, Moore model outputs were chosen, so all outputs are functions of state. 

Just after power-up or manual RESET, the DashWatch circuit is in state S1 in 

START

STOP

CSS RESET

(a)

(b)

4-Digit BCD Counter

16-Bit Parallel
Load Register

TM

SD

 FIGURE 6-25
(a) External Appearance and (b) Register Requirements for DashWatch
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which the register SD is synchronously reset to 0. The circuit proceeds to S2 

to wait for START = 1. As long as START = 0, as indicated by START on 

a self-loop in state S2, the state remains S2. In state S2, TM is reset to 0 using 

a synchronous reset signal. If we use an asynchronous flip-flop input to change 

the state of one or more flip-flops buried in the midst of a synchronous design, 

we are violating the synchronous assumption that all state changes in normal 

operation must be synchronized with the clock at the flip-flop inputs. Under this 

assumption, asynchronous inputs are to be used only for power-up reset and 

master reset of the system to its required initial state.

By using an asynchronous input on the flip-flops to change flip-flop states, 

a designer might be caught by a timing problem that causes circuit failure, but 

is not easily detected during design and manufacturing.

START = 1 causes a transition to state S3 in which TM is enabled to 

count upward once every 0.01 seconds (the clock frequency is 100 Hz). The 

counting continues and is displayed (DIS = TM) while STOP = 0. When 

STOP becomes 1, the state becomes S4, and the dash time stored in TM is 

displayed.

In state S4, the user can choose to time a new dash (CSS # START = 1), 

returning the state to S2, or to compare the dash time to the stored smallest dash 

time (CSS = 1), advancing the state to S5. Until one of these input events occurs, 

the state remains S4 due to CSS # START. Note that instead of just START as a 

transition condition, CSS # START is used. This is to meet the mutually exclusive 

constraint, constraint 1 of the two transition constraint conditions for a state ma-

chine diagram.

In state S5, TM is compared to SD. If TM is less than SD, then the value 

in SD is replaced by TM. This operation occurs in state S6, after which the next 

 TABLE 6-15
Inputs, Outputs, and Registers of the DashWatch

Symbol Function Type

START

STOP

CSS

RESET

B1

B0

DP

B-1

B-2

B

Initialize timer to 0 and start timer

Stop timer and display timer

Compare, store, and display shortest dash time

Set shortest value to 10011001

Digit 1 data vector a, b, c, d, e, f, g to display

Digit 0 data vector a, b, c, d, e, f, g to display

Decimal point to display (=  1)

Digit -1 data vector a, b, c, d, e, f, g to display

Digit -2 data vector a, b, c, d, e, f, g to display

The 29-bit display input vector (B1,  B0,  DP,  B-1,  B-2)

Control input

Control input

Control input

Control input

Data output vector

Data output vector

Data output

Data output vector

Data output vector

Data output vector

TM

SD

4-Digit BCD counter

Parallel load register

16-Bit register

16-Bit register
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state becomes S7. If TM is greater than or equal to SD, then SD is unchanged, 

and the state becomes S7. In state S7, the smallest dash time stored in SD is 

displayed until START is pushed to cause the state to change to S2, beginning 

the timing of another dash.

4. The next step is the separation of the datapath from the control, including the 

definition of the control and status signals that connect them together. The 

datapath actions can be read from the state machine diagram. The actions are 

grouped based on the destinations represented by the left-hand side of transfer 

statements ( d ) or connection statements (=). Also, notation indicating status 

generation in the datapath needs to be interpreted and status signals named. 

The end results of these groupings are shown in Table 6-16 in the left column. 

For the two register transfers into SD, the variable UPDATE is assigned to 

select the source of the transfers, and LSR is assigned to control the loading 

of SD. For TM, RSTM is assigned as the synchronous reset signal for zeroing 

the register contents, and ENTM (which will drive the carry C0 into the least 

significant digit of the BCD counter) is used to govern whether the count is up 

by 1 or 0. Signal DS has been assigned to select the register to be displayed. 

Finally, ALTB is assigned as the status signal to indicate whether or not TM is 

less than SD. The variable names in true and complement form from Table 6-16 

SD      TM

TM      (0000)BCD

SD      (9999)BCD

RESET

S1

S3

S4

S5

S6

S2

S7

TM      (TM � 1)BCD, DIS � TM

DIS = TM

DIS � SD

START

START

STOP

STOP

CSS

CSS�START

TM � SDTM � SD

START

START

CSS�START

 FIGURE 6-26
State Machine Diagram for DashWatch
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replace the output actions and status-based input conditions in Figure 6-26 to 

form the state diagram in Figure 6-27(b).

5. Next, we develop the block diagram of the datapath given in Figure 6-27(a). The 

two registers defined earlier appear in the diagram with their control terminals 

and signals from the control unit added. RSTM is the synchronous input for the 

zeroing of TM, and ENTM is applied to the carry input C
0
. In order to supply 

the status signal ALTB, an A < B comparator is required with the TM output as 

its A input and the SD output as its B input. The loading of SD needs selection 

hardware to select from either TM or 1001100110011001 as its input. A 16-bit 

2-to-1 multiplexer with input S driven by UPDATE is used. In order to deliver the 

information to the LCD for display, it is necessary to select between TM and SD 

as the source. A 16-bit 2-to-1 multiplexer with select signal DS is used to produce 

the 16-bit signal DIS. Finally, this signal must be converted to the four vectors of 

variables a, b, c, d, e, f, g to control the LCD segments for the four digits. These 

vectors were previously labeled as B
1
, B

0
, B

–1
, and B

–2
 data outputs. Placing the 

decimal point DP in between B
0
 and B

–1
, and combining all 29 bits, we obtain the 

output B that drives the LCD.

6. A number of components of the block diagram developed are already avail-

able to us. The BCD counter digit was already developed in Section 6-6. The 

4-digit BCD counter can be constructed by connecting four of the digit count-

ers together. A modification is required to provide the synchronous reset func-

tion for the counter. A 2-input AND gate is placed between the logic for each 

bit and the D input to the corresponding flip-flop. The second input on the 

AND gate is connected to RSTM. When RSTM is 0, the circuit is normal. When 

 TABLE 6-16
Datapath Output Actions and Status Generation with Control and Status Signals

Action or Status

Control  

or  

Status  

Signals Meaning for Values 1 and 0

TM d (0000)BCD RSTM 1: Reset TM to 0 (synchronous reset)

0: No reset of TM

TM d (TM + 1)BCD ENTM 1: BCD count up TM by 1, 0: hold TM value

SD d (9999)BCD UPDATE 0: Select 1001100110011001 for loading SD

LSR 1: Enable load SD, 0: disable load SD

SD d TM UPDATE 1: Select TM for loading SD

LSR Same as above

DIS = TM DS 0: Select TM for DIS

DIS =  SD 1: Select SD for DIS

TM 6 SD ALTB 1: TM less than SD

TM Ú SD 0: TM greater than or equal to SD
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(a)

4-Digit BCD Counter
SRST

A < B Comparator

Storage Register

16-Bit 2-to-1 MUX

ALTB

C0

LOAD

RESET

UPDATE

ENTM

RSTM

LSR

RESET

1001100110011001Contracted

16-Bit 2-to-1 MUX
D1 D0

D1 D0S

DS S

4-Digit BCD-to-7
Segment Converter

4-Digit LCD Display
DP 1

TM

SD

DIS
D

RESET

S4

S5

S6

S3

S7

START

START

STOP

STOP

CSS

ALTB

START

(b)

START

S1

S2

LSR

RSTM

ENTM

UPDATE, LSR

DS

Defaults: All outputs = 0

 FIGURE 6-27
(a) Datapath Block Diagram and (b) Control State-Machine Diagram for DashWatch
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RSTM is 1, all inputs to the flip-flops are 0, and the flip-flops are reset to all 0s 

on the next clock.

The parallel load register is a 16-bit version of the register in Figure 6-2.  

The A 6 B comparator can be designed easily as an iterative logic circuit. 

Assuming a carry that goes from right to left, the equation for each cell is 

Ci = AiBi + (Ai + Bi)Ci- 1 and the incoming carry C0 = 1. This represents 

the carries in an unsigned binary 2s complement subtractor using the circuit 

shown in Figure 3-45 with S = 1 to perform A - B. For this circuit, the result 

A - B = A + (2n - 1 - B) + 1 = 2n + (A - B). If A - B   Ú    0, then the 

results is greater than or equal to 2n, and Cn (the carry out of the MSB) is 1. If 

A - B 6 0, then the result is less than 2n, and Cn = 0. Thus for A 6 B,Cn = 0 

and ALTB = Cn.

The multiplexer for loading SD is constructed based on the concept used 

for the quad 4-to-1 multiplexer in Figure 3-27. It uses one 1–to–2-line decod-

er driven by the S input and 16 pairs of enable circuits for handling the two  

16-bit data vectors. The same multiplexer can be used for the formation of the 

16-bit DIS data vector. The final circuit is the 4-digit BCD–to–7-segment code 

converter which can be constructed of four copies of the 1-digit BCD–to–7-

segment code converter designed in Example 3-18.

Aside from one issue, this completes the design of the datapath. Because 

its input data vector on D
0
 is a constant, the 16-bit 2-to-1 multiplexer for select-

ing the input to SD can be substantially reduced by applying contraction from 

Chapter 3. Doing this, for a bit with a data value of 0,

Yi = (S # D0i + S # D1i) 	D0i=0 = S # D1i

For a bit with a data value of 1,

Yi  =   (S  #   D0i  +   S  #   D1i) 	D0i  =   1  =   S  +   D 1i

The design of the datapath is now complete. There is no register transfer hard-

ware to be designed for the control unit.

7. The next step is to design the control-unit hardware. For simplicity of design, 

we select a one-hot state assignment. For the state diagram in Figure 6-27, this 

assignment permits each of the states Si to be represented by a single state 

variable Si which is 1 when in the state Si and 0 otherwise. The next state func-

tions (flip-flop input equations) are:

 DS1  =   S1(t + 1) = 0

 DS2  =   S2(t + 1) = S1 + S2 # START + S4 # CSS # START + S7 # START

 DS3  =   S3(t + 1) = S2 # START + S3 # STOP

 DS4  =   S4(t + 1) = S3 # STOP + S4 # CSS # START

 DS5  =   S5(t + 1) = S4 # CSS

 DS6  =   S5 # ALTB

 DS7  =   S7(t + 1) = S5 # ALTB + S6 + S7 # START
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The output functions (output equations) are:

 LSR = S1 + S6

 RSTM = S2

 ENTM = S3

 UPDATE = S6

 DS = S7

Note that DS1 = 0. The reason is that this state is entered only by power-up or 

master reset. It is never entered synchronously. As a consequence, there is no 

need for any value to be loaded into the flip-flop. It is, however, necessary to have 

this flip-flop reset to a state (output) having a 1 value due to the one-hot code 

used. If this is not possible with the inputs and outputs provided, this can be done 

with just an asynchronous reset R and an inverter added to the flip-flop output in 

this application.

With the one-hot state assignment, there are 128 - 7 = 121 unused state 

codes that were treated as don’t-cares. In the event of a failure that causes one of 

these states to occur, the circuit behavior is unknown. Is this a critical issue? This 

is an inexpensive consumer product bordering on a toy. For such a device, an 

infrequent failure is not particularly damaging. So this situation will be ignored. 

For more critical applications, the behavior in these states would need to be 

 investigated.  ■

EXAMPLE 6-4  Handheld Game: PIG

The goal of this example is to design a handheld game implementing a one-die ver-

sion of the Game of PIG. The eight design steps are provided next for this simple 

game with a not-so-simple design.

1. PIG is a dice game that is used as a learning tool for instruction in probabil-

ity. In contrast to the most prevalent versions that use two dice, this version 

of PIG is played with a single die that has 1 to 6 dots on its six faces (see 

Figure 3-57). During each turn, the player rolls the die one or more times 

until a) a 1 is rolled or b) the player chooses to hold. For each roll, the value 

rolled, except for a 1, is added to a subtotal for the current turn. If a 1 is 

rolled, the subtotal becomes 0, and the player’s turn is ended. At the end 

of each turn, the subtotal is added to the player’s overall total, and the play 

passes to the other player. The first player to reach or exceed 100 wins. On-

line versions of PIG can be found by searching the web for: Game of PIG.

The exterior view of the game is shown in Figure 6-28(a). There are 

three 2-digit decimal LCDs. The displays from left to right are driven by 

signal vectors TP1, ST, and TP2, respectively. TP1 controls the total score 

display for player 1 and TP2 controls the total score display for player 2. 

During a turn, ST controls the subtotal display for the active player. There 

are four pushbuttons, ROLL, HOLD, NEW_GAME, and RESET, which 

produce conditioned signals with the same names. There is an LED array 
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displaying the die value controlled by DDIS and two LEDs that indicate 

the active player. The left LED is controlled by signal P1 and the right one 

by P2. When it is a player’s turn, the LED for the player turns on and re-

mains on for the remainder of the turn. When a player wins, the LED for the 

player flashes. When ROLL is pushed, the die begins rolling. When ROLL 

is released, the die stops rolling, and the rolled value is added to the current 

subtotal. If a 1 is rolled, ST becomes 0, 0 is added to the player’s total, and 

the LED for the other player lights. When HOLD is pushed, the player’s 

subtotal is added to the player’s total, and the LED for the other player 

lights. When a player’s total equals or exceeds 100, the player’s LED flashes. 

A new game may be started at any time by pushing NEW_GAME. As long 

as the power remains on and RESET is not pushed, the new game will begin 

with the opposite player from the one starting the prior game. If the power 

has been off, Player 1 will be first. The external inputs and outputs for the 

game are shown in Table 6-17.

2. Next, we give consideration to the registers required in the PIG datapath. 

The die is represented by a 3-bit register DIE which counts from 1 to 6 

repeatedly. This register must have an enable input, and is reset to 001 using 

RESET. It generates a “random number” depending on an arbitrary initial 

state and the time that ROLL is held down. The two totals and the subtotal 

(b)

ROLL HOLD

 NEW
GAME

RESET

Player 1 Player 2
TurnTotal

(a)

3-Bit 1-to-6
Counter

DIE

7-Bit Parallel
LoadRegister

SUR

7-Bit Parallel
LoadRegister

TR1

7-Bit Parallel
LoadRegister

TR2

Datapath Registers Control Registers

FF

FF

FP

CP

 FIGURE 6-28
PIG: (a) Exterior View of PIG, (b) PIG Registers
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each require a 7-bit register. These registers will be named TR1, TR2, and 

SR. Each of these three registers must have a synchronous reset and a load 

enable.

In addition to the datapath registers, a 2-bit control register stores 1) 

the first player in the current game, FP, and 2) the current player in the 

game, CP. The goal of separately storing this information is significant sim-

plification of the control state machine. Otherwise, states would need to be 

duplicated for each player. The datapath and control registers for PIG are 

shown in Table 6-17.

3. The state machine diagram for PIG appears in Figure 6-29. In contrast with 

the prior example, Mealy outputs that depend on both state and input are per-

mitted. It is helpful before developing the diagram to consider a number of 

situations that will exist in order to help define the states:

a. A power-up or manual RESET has occurred.

b. A new game is requested.

 TABLE 6-17
Inputs, Outputs, and Registers of PIG

Symbol Name/Function Type

ROLL

HOLD

NEW_GAME

RESET

DDIS

SUB

TP1

TP2

P1

P2

1: Starts die rolling, 0: Stops die rolling

1: Ends player turn, 0: Continues player turn.

1: Starts new game, 0: Continues current game

1: Resets game to INIT state, 0: No action

7-Bit LED die display array

14-Bit 7-segment pair (a, b, c, d, e, f, g) to Turn Total display

14-Bit 7-segment pair (a, b, c, d, e, f, g) to Player 1 display

14-Bit 7-segment pair (a, b, c, d, e, f, g) to Player 2 display

1: Player 1 LED on, 0: Player 1 LED off

1: Player 2 LED on, 0: Player 2 LED off

Control input

Control input

Control input

Control input

Data output 

vector

Data output 

vector

Data output 

vector

Data output 

vector

Data output

Data output

DIE

SUR

TR1

TR2

FP

CP

Die value—specialized counter to count 1,...,6,1,...

Subtotal for active player—parallel load register

Total for Player 1—parallel load register

Total for Player 2—parallel load register

First player—flip-flop 0: Player 1, 1: Player 2

Current player—flip-flop 0: Player 1, 1: Player 2

3-Bit data register

7-Bit data register

7-Bit data register

7-Bit data register

1-Bit control 

register

1-Bit control 

register
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c. One of the players is active and begins playing.

d. The active player may roll a 1.

e. The active player may select between ROLL and HOLD.

f. The active player needs to have the HOLD result tested for a win.

g. The active player has won.

Each of these situations may require a state and certain outputs. For situ-

ation a, we need to establish what must be reset by the RESET and estab-

lish the state that results from a RESET. In Figure 6-29, for starting out, we 

initialize DIE to 000, determine who plays first by initializing FP to 0, and 

choose a name of the reset state (INIT). Situation b, the start of a new game, 

whether the first game or a subsequent game, requires that registers TP1 

and TP1 be reset. SUR needs to be set upon the change of players, so it can 

RESET

INIT

WIN

ROLL

ROLL

DIE = 1

NEW_GAME

NEW_GAME

TR1     0, TR2      0, CP      FP

ROLL ROL

ROLL

DIE = 1

BEGIN

ONE

ROLL

TEST

ROH

SUR     0

DIE     000, FP      0 

FP      FP 

CP      CP

CP      CP

 FIGURE 6-29
State Machine Diagram for PIG
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wait. Since these resets must occur for subsequent games, they should not be 

asynchronous, but be done synchronously in INIT. Also, we need to inform 

the player who is to become the active player, so CP is loaded with FP. At 

this point, a play turn can begin, so the state becomes BEGIN, representing 

the beginning of situation c. Since the active player is ready to begin accu-

mulating points, SUR is synchronously reset to 0. The state remains BEGIN 

and the reset of SUR repeats, but this is not harmful. When a player pushes 

ROLL, the state becomes ROL, and addition of 1 to DIE is repeated as 

long as ROLL is 1. When ROLL becomes 0, DIE stops incrementing. Per 

situation d, a check on whether or not the player rolled a 1 is needed. So 

ROLL = 0 changes the state to ONE where this test occurs. If DIE = 1, 

then the player’s turn is over, the other player becomes the active player 

(CP d CP), and the state returns to BEGIN. If DIE ≠ 1, DIE is added to 

SUR, and the state becomes ROH (Roll or Hold). Then the player may roll 

the die again by selecting ROLL, returning to ROL. Otherwise, the player 

may select HOLD, which causes SUR to be added to TR1 or TR2, depending 

on the value of CP. (Note that in order to satisfy the mutual exclusion part of 

the transition condition constraints, ROLL has been ANDed with HOLD.) 

The next state becomes TEST, in which a test is performed on TR1 or TR2, 

again depending on the value of CP, to determine whether or not the player 

has won. If the player has not won, then the other player becomes active and 

the state becomes BEGIN. If the player has won, the state becomes WIN. In 

state WIN the player’s LED, as selected by CP, blinks due to the alternating 

BLINK signal. The state remains WIN until NEW_GAME is pushed, sending 

the play back to state INIT, with FP inverted to select the player not first in 

this game to be first in the new game.

4. In this step, we separate the datapath from the control and define the control 

and status signals that connect them together. The datapath actions can be 

read from the state machine diagram. The actions are grouped based on the 

destinations represented by the left-hand side of transfer statements ( d ) or 

connection statements (=). Also, notation indicating status generation in the 

datapath needs to be interpreted and status signals generated. The end result 

of the groupings is shown in Table 6-18 in the left column. Synchronous resets 

are used for all registers except for DIE and FP, which have asynchronous 

resets. For the additions, the control signal is simply a load of the correspond-

ing register, since aside from asynchronous reset, there are no other transfers 

on the involved registers. For P1 and P2, note that the stated default values are 

used for the 0 inputs. Other default values are implicitly 0, hold stored values, 

or no action. Beginning with DIE = 1, the remainder of the table is for status 

conditions. Note how CP is used to select the total register TRi for the active 

player in determining a win. The variable names in true and complement form 
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 TABLE 6-18
Datapath Output Actions and Control and Status Signals for PIG

Action or Status

Control or  

Status Signals Meaning for Values 1 and 0

TR1 d 0

TR1 d TR1 + SUR

RST1

LDT1

1: Reset TR1 (synchronous reset), 0: No action

1: Add SUR to TR1, 0: No action

TR2 d 0

TR2 d TR2 + SUR

RST2

LDT2

1: Reset TR2 (synchronous reset), 0: No action

1: Add SUR to TR2, 0: No action

SUR d 0

SUR d SUR + DIE

RSSU

LDSU

1: Reset SUR (synchronous reset), 0: No action

1: Add DIE to SUR, 0: No action

DIE d 000

if (DIE = 110)

DIE d 001

else DIE d DIE + 1

RESET

ENDI

1: Reset DIE to 000 (asynchronous reset)

1: Enable DIE to increment, 0: Hold DIE value

P1 =  BLINK BP1 1: Connect P1 to BLINK, 0: Connect P1 to 1

P2 =  BLINK BP2 1: Connect P2 to BLINK, 0: Connect P2 to 1

CP d FP

CP d CP

CPFI

LDCP

CPFI

LDCP

1: Select FP for CP

1: Load CP, 0: No action

0: Select CP for CP

1: Load CP, 0: No action

FP d 0

FP d FP

RESET

FPI

Asynchronous reset

1: Invert FP, 0: Hold FP

DIE = 1

DIE ≠ 1

DIE1 1: DIE equal to 1

0: DIE not equal to 1

TR1 Ú 1100100 CP

WN
0: Select TR1 for Ú 1100100

1: The selected TRi Ú 1100100

0: The selected TRi 6 1100100

TR2 Ú 1100100 CP

WN
1: Select TR2 for Ú 1100100

1: The selected TRi Ú 1100100

0: The selected TRi 6 1100100
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from Table 6-18 replace the output actions and status-based input conditions in 

Figure 6-29 to form the state diagram in Figure 6-30.

5. The information in Table 6-18 also serves as a basis for developing the block dia-

gram of the datapath given in Figure 6-31. The datapath registers shown in Table 

6-17 anchor the datapath design. In addition to being added to SUR, DIE drives 

the Die Dot Display through a specialized decoder and must be tested for the 

value 001. The registers SUR, TR1, and TR2 are all identical with a signal for 

enabling loading and a synchronous reset. These three registers load from 7-bit 

ripple carry adders. The outputs from these registers each drive a 7-bit binary-

to-BCD converter and a 2-digit BCD–to–7-segment converter in order to drive 

the corresponding 2-digit LCD display. In order to detect a win, a 7-bit 2-to-1 

multiplexer selects the output of TR1 or TR2 as input to a circuit which detects 

whether the value is greater than or equal to 1100100 (decimal 100).

RESET

INIT

WIN

ROLL

ROLL

NEW_GAME

NEW_GAME

RST1, RST2, CPFI, LDCP

ROLL ROL

ROLL

BEGIN

CP/BP1, CP/BP2

ONE

ROLL
CP/LDT1, CP/LDT2

TEST

ROH

RSSU

ENDI

LDSU

LDCP

DIE1

DIE1

WN

WN

LDFP

LDCP

 FIGURE 6-30
Control State-Machine Diagram for PIG
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3-bit 1-to-6
Counter

D = 1 Comparator

Parallel Load Reg
with Sync Reset

EN

EN

R

ENDI

7-Bit 2-to-1 MUX
D1D0

S

DIE

SUR
D

7-bit Ripple
Carry Adder

2-Digit BCD-to-7
Segment Converter

2-Digit LCD Display

Binary-to-BCD
Code Converter

Binary-to-LED
Die Dots Decoder

2-Digit BCD-to-7
Segment Converter

2-Digit LCD Display

Binary-to-BCD
Code Converter

D

Die Dot Display

Parallel Load Reg
with Sync Reset

EN

R

TR1

2-Digit BCD-to-7
Segment Converter

2-Digit LCD Display

Binary-to-BCD
Code Converter

EN

R

TR2

RST1

LDT1

RST2

LDT2

CP

D
WN

DIE1

D

7-bit Ripple
Carry Adder

7-bit Ripple
Carry Adder

D
Parallel Load Reg
with Sync Reset

R

EN
EN

0

MUX
1

FP
CP

FP CP

D
D

S

CPFI

LDFP

LDCP

Control Registers

RSSU

LDSU

0000

RESET

R RESET

 FIGURE 6-31
Datapath and Control Registers for PIG
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The remainder of the diagram is the logic for controlling the contents of FP and 

CP in the control unit. FP is reset asynchronously with RESET and  enabled 

for load of FP by LDFP. CP is initialized by loading from FP through the mul-

tiplexer with CPF = 1 and LDCP = 1. When CPF = 0 and LDCP = 1, CP 

is loaded with CP.

6. The detailed logic for the control transfers on FP and CP has already been 

designed, and most of the datapath logic consists of components for which 

designs are already available. Logic in the form of AND gates with an 

inverted R on the second input needs to be added at the inputs to the D 

flip-flops in the parallel load register design in this chapter to implement the 

synchronous reset. The designs of DIE, the D = 1 comparator, the binary-

to-BCD code converters, and the D ≥ 1100100 comparator designs are given 

as problems in this chapter. The binary-to-LED die dots decoder is given as 

a problem in Chapter 3 and the BCD-to-7-segment converter is designed in 

Chapter 3.

7. The detailed design of the control unit is given as a problem at the end of the 

chapter.  ■

Omitted in these examples, verification in step 8 has only been touched upon 

so far for simple circuits. The complexity of thoroughly verifying even the small sys-

tems given in the previous two examples is much more difficult and beyond the 

scope of what we can cover here. Rudimentary testing can be done by functional 

testing to see if the circuit performs its function correctly. This involves applying 

input sequences and using simulation to observe the outputs. The question now 

becomes, “What test sequence should be applied to make sure that the verification is 

thorough enough to place high confidence in the correctness of the circuit?” To illus-

trate the difficulty of answering this question, the average designer spends 40 per-

cent or more of the design time doing verification.

6-11 HDL REPRESENTATION FOR SHIFT REGISTERS 
AND COUNTERS—VHDL
Examples of shift register and a binary counter illustrate the use of VHDL in repre-

senting registers and operations on register content.

EXAMPLE 6-5 VHDL for a 4-Bit Shift Register

The VHDL code in Figure 6-32 describes a 4-bit left shift register at the behavioral 

level. A RESET input is present that directly resets the register contents to zero. The 

shift register contains flip-flops and so has a process description resembling that of a 

D flip-flop. The four flip-flops are represented by the signal shift, of type std_

logic_vector of size four. Q cannot be used to represent the flip-flops, since it is an 

output and the flip-flop outputs must be used internally. The left shift is achieved by 

applying the concatenation operator & to the right three bits of shift and to shift 

input SI. This quantity is transferred to shift, moving the contents one bit to the 
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left and loading the value of SI into the rightmost bit. Following the process that 

performs the shift are two statements, one which assigns the value in shift to out-

put Q and the other which defines the shift out signal SO as the contents of the left-

most bit of shift.  ■

EXAMPLE 6-6 VHDL for a 4-Bit Counter

The VHDL code in Figure 6-33 describes a 4-bit counter at the behavioral level. A 

RESET input is present that directly resets the counter contents to zero. The counter 

contains flip-flops and, therefore, has a process description resembling that of a D 

flip-flop. The four flip-flops are represented by the signal count, of type std_logic_

vector and of size four. Q cannot be used to represent the flip-flops, since it is an 

output and the flip-flop outputs must be used internally. Counting up is achieved by 

adding 1 in the form of "0001" to count. Since addition is not a normal operation on 

type std_logic_vector, it is necessary to use an additional package from the ieee 

library, std_logic_unsigned.all, which defines unsigned number operations on 

type std_logic. Following the process that performs reset and counting are two 

statements, one which assigns the value in count to output Q and the other which 

// 4-Bit Left Shift Register with Reset

library ieee;
use ieee.std_logic_1164.all;

entity srg_4_r is
 port(CLK, RESET, SI : in std_logic;
 Q : out std_logic_vector(3 downto 0);
 SO :˙ out std_logic);
end srg_4_r;

architecture behavioral of srg_4_r is  
signal shift : std_logic_vector(3 downto 0);
begin 
process (RESET, CLK)
begin 
 if (RESET = '1') then
 shift <= "0000";

 elsif (CLK’event and (CLK = '1')) then
 shift <= shift(2 downto 0) & SI;
 end if;
end process;
 Q <= shift;

 SO <= shift(3);

end behavioral;

 FIGURE 6-32
Behavioral VHDL Description of 4-Bit Left Shift Register with Direct Reset
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defines the count out signal CO. A when-else statement is used in which CO is set to 1 

only for the maximum count with EN equal to 1.  ■

6-12 HDL REPRESENTATION FOR SHIFT REGISTERS 
AND COUNTERS—VERILOG

Examples of a shift register and a binary counter illustrate the use of Verilog in rep-

resenting registers and operations on register content.

EXAMPLE 6-7 Verilog Code for a Shift Register

The Verilog description in Figure 6-34 describes a left shift register at the behavioral 

level. A RESET input is present that directly resets the register contents to zero. The shift 

register contains flip-flops, so has a process description beginning with always resem-

bling that of a D flip-flop. The four flip-flops are represented by the vector Q, of type reg 

with bits numbered 3 down to 0. The left shift is achieved by applying { } to concate-

nate the right three bits of Q and shift input SI. This quantity is transferred to Q, moving 

the contents one bit to the left and loading the value of SI into the rightmost bit. Just 

// 4-bit Binary Counter with Reset

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity count_4_r is 
 port(CLK, RESET, EN : in std_logic;
 Q : out std_logic_vector(3 downto 0);
 CO : out std_logic);
end count_4_r;

architecture behavioral of count_4_r is 
signal count : std_logic_vector(3 downto 0);
begin
process (RESET, CLK)
begin
 if (RESET = '1') then 
     count <= "0000";

 elsif (CLK'event and (CLK = '1') and (EN = '1')) then
 count <= count + "0001";

 end if;
end process;
Q <= count;

CO <= '1' when count = "1111" and EN = '1' else '0';
end behavioral;

 FIGURE 6-33
Behavioral VHDL Description of 4-Bit Binary Counter with Direct Reset
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prior to the process that performs the shift is a continuous assignment statement that 

assigns the contents of the leftmost bit of Q to the shift output signal SO.  ■

EXAMPLE 6-8 Verilog Code for a Counter

The Verilog description in Figure 6-35 describes a 4-bit binary counter at the behav-

ioral level. A RESET input is present that directly resets the register contents to zero. 

 // 4-bit Left Shift Register with Reset

module srg_4_r_v (CLK, RESET, SI, Q,SO);
 input CLK, RESET, SI;
 output [3:0] Q;
 output SO;

reg [3:0] Q;

 assign SO = Q[3];

always @(posedge CLK or posedge RESET)
begin 
 if (RESET)
     Q <= 4'b0000;

 else 
     Q <= {Q[2:0], SI};

end 
endmodule

 FIGURE 6-34
Behavioral Verilog Description of 4-Bit Left Shift Register with Direct Reset

// 4-bit Binary Counter with Reset

module count_4_r_v (CLK, RESET, EN, Q, CO);
 input CLK, RESET, EN;

 output [3:0] Q;

 output CO;

reg [3:0] Q;

assign CO = (count == 4'b1111 && EN == 1’b1) ? 1 : 0;
always @(posedge CLK or posedge RESET)
 begin 
 if RESET)
 Q <= 4'b0000;

 else if (EN)
 Q <= Q + 4'b0001;

 end 
endmodule

 FIGURE 6-35
Behavioral Verilog Description of 4-Bit Binary Counter with Direct Reset
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The counter contains flip-flops and, therefore, the description contains a process 

resembling that for a D flip-flop. The four flip-flops are represented by the signal Q of 

type reg and size four. Counting up is achieved by adding 1 to Q. Prior to the process 

that performs reset and counting is a conditional continuous assignment statement 

that defines the count out signal CO. CO is set to 1 only for the maximum count and EN 

equal to 1. Note that logical AND is denoted by &&.  ■

6-13 MICROPROGRAMMED CONTROL

A control unit with its binary control values stored as a group of bits, which are 

referred to as words, in memory is called a microprogrammed control. Each word in 

the control memory contains a microinstruction that specifies one or more microoper-

ations for the system. A sequence of microinstructions constitutes a microprogram. 

The microprogram is usually fixed at the system design time and so is stored in ROM. 

Microprogramming involves placing representations for combinations of values of 

control variables in words of ROM. These representations are accessed via successive 

read operations for use by the rest of the control logic. The contents of a word in ROM 

at a given address specify the microoperations to be performed for both the datapath 

and the control unit. A microprogram can also be stored in RAM. In this case, it is 

loaded at system startup from some form of nonvolatile storage, such as a magnetic 

disk. With either ROM or RAM, the memory in the control unit is called control 
 memory. If RAM is used, the memory is referred to as writable control memory.

Figure 6-36 shows the general configuration of a microprogrammed control. 

The control memory is assumed to be a ROM within which all control micropro-

grams are permanently stored. The control address register (CAR) specifies the 

address of the microinstruction. The control data register (CDR), which is optional, 

may hold the microinstruction currently being executed by the datapath and the 

control unit. One function of the control word is to determine the address of the next 

microinstruction to be executed. This microinstruction may be the next one in 

sequence, or it may be located somewhere else in the control memory. Therefore, 

one or more bits that specify the method for determining the address of the next 

microinstruction are present in the current microinstruction. The next address may 

also be a function of status and external control inputs. When a microinstruction is 

executed, the next-address generator produces the next address. This address is trans-

ferred to the CAR on the next clock pulse and is used to read the next microinstruc-

tion to be executed from ROM. Thus, the microinstructions contain bits for activating 

microoperations in the datapath and bits that specify the sequence of microinstruc-

tions executed.

The next-address generator, in combination with the CAR, is sometimes 

called a microprogram sequencer, since it determines the sequence of instructions 

read from control memory. The address of the next microinstruction can be speci-

fied in several ways, depending on the sequencer inputs. Typical functions of a 

microprogram sequencer are incrementing the CAR by one and loading the CAR. 

Possible sources for the load operation include an address from control memory, 

an externally provided address, and an initial address to start control-unit 

operation.
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The CDR holds the present microinstruction while the next address is com-

puted and the next microinstruction is read from memory. The CDR breaks up the 

long combinational delay paths through the control memory followed by the dat-

apath. Its presence allows the system to use a higher clock frequency and process 

information faster. The inclusion of a CDR in a system, however, complicates the 

sequencing of microinstructions, particularly when decisions are made based on 

status bits. For simplicity in our brief discussion, we omit the CDR and take the 

microinstructions directly from the ROM outputs. The ROM operates as a combi-

national circuit, with the address as the input and the corresponding microinstruc-

tion as the output. The contents of the specified word in ROM remain on the 

output lines as long as the address value is applied to the inputs. No read/write 

signal is needed, as it is with RAM. Each clock pulse executes the microopera-

tions specified by the microinstruction and also transfers a new address to the 

CAR. In this case, the CAR is the only component in the control that receives 

clock pulses and stores state information. The next-address generator and the 

control memory are combinational circuits. Thus, the state of the control unit is 

given by the contents of the CAR.

Sequencer

Control address

Control 
inputs Status signals from datapath

Next-address 
generator

Control address 
register

Address

Control 
memory 
(ROM)

Data

Control data register 
(optional)

Next-address 
information

Control 
outputs

Control signals 
to datapath

Microinstruction

 FIGURE 6-36
Microprogrammed Control Unit Organization
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Microprogrammed control has been a very popular alternative implemen-

tation technique for control units for both programmable and nonprogrammable 

systems. However, as systems have become more complex and performance specifi-

cations have increased the need for concurrent parallel sequences of activities, the 

lockstep nature of microprogramming has become less attractive for control-unit 

implementation. Further, a large ROM or RAM tends to be much slower than the 

corresponding combinational logic. Finally, HDLs and synthesis tools facilitate the 

design of complex control units without the need for a lockstep programmable 

design approach. Overall, microprogrammed control for the design of control units, 

particularly direct datapath control in CPUs, has declined significantly. However, a 

new flavor of microprogrammed control has emerged, for implementing legacy com-

puter architectures. These architectures have instruction sets that do not follow con-

temporary architecture principles. Nevertheless, such architectures must be 

implemented due to massive investments in software that uses them. Further, con-

temporary architecture principles must be used in the implementations to meet per-

formance goals. The control for these systems is hierarchical, with microprogrammed 

control selectively used at the top level for complex instruction implementation and 

hardwired control at the lower level for implementing simple instructions and steps 

of complex instructions at a very rapid rate. This flavor of microprogramming is cov-

ered for a complex instruction set computer (CISC) in Chapter 10.

Information on the more traditional flavor of microprogrammed control, derived 

from past editions of this text, is available in a supplement, Microprogrammed 
Control, on the Companion Website for the text.

6-14 CHAPTER SUMMARY

Registers are sets of flip-flops, or interconnected sets of flip-flops, and combinational 

logic. The simplest registers are flip-flops that are loaded with new contents from 

their inputs on every clock cycle. More complex are registers in which the flip-flops 

can be loaded with new contents under the control of a signal on only selected clock 

cycles. Register transfers are a means of representing and specifying elementary pro-

cessing operations. Register transfers can be related to corresponding digital system 

hardware, both at the block-diagram level and at the detailed logic level. Microoper-

ations are elementary operations performed on data stored in registers. Arithmetic 

microoperations include addition and subtraction, which are described as register 

transfers and are implemented with corresponding hardware. Logic microopera-

tions—that is, the bitwise application of logic primitives such as AND, OR, and 

XOR, combined with a binary word—provide masking and selective complement-

ing on other binary words. Left- and right-shift microoperations move data laterally 

one or more bit positions at a time. Shift registers, counters, and buses implement 

particular register transfers that are widely used in digital systems.

In this chapter, the control of register transfers provided the final major compo-

nent of digital systems design. Finally, all of the background material was present to 

define a procedure for designing register-transfer systems, one of the most general 

classes of digital systems. The details for the design procedure were illustrated by two 

extensive examples that are key to understanding the foundation of digital design.
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PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

6-1. Assume that registers R1 and R2 in Figure 6-6 hold two unsigned numbers. 

When select input X is equal to 1, the adder–subtractor circuit performs the 

arithmetic operation “R1 + 2s complement of R2.” This sum and the output 

carry Cn are transferred into R1 and C when K1 = 1 and a positive edge 

occurs on the clock.

(a) Show that if C = 1, then the value transferred to R1 is equal to R1 - R2, 

but if C = 0, the value transferred to R1 is the 2s complement of R2 - R1.

(b) Indicate how the value in the C bit can be used to detect a borrow after 

the subtraction of two unsigned numbers.

(c)  How does the behavior of the C bit change if R1 and R2 hold signed 2s 

complement numbers?

6-2.  *Perform the bitwise logic AND, OR, and XOR of the two 8-bit operands 

10011001 and 11000011.

6-3.  Find suitable operand and logical micro-operations for the 8-bit operand 

1101 0100 (assume bit positions are 7 through 0 from left to right.)

(a) to complement left most 4 bits.

(b) to clear the left most bit. 

(c)  to set left most 4 bits to 1.

6-4.  *Starting from the 8-bit operand 11001010, show the values obtained after 

applying each shift microoperation given in Table 6-5.
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6-5.  *Modify the register of Figure 6-11 so that it will operate according to the 

following function table, using mode selection inputs S
1
 and S

0
:

S
1

S
0

Register Operation

0 0 No change

0 1 Load parallel data

1 0 Shift left (down)

1 1 Clear register to 0

6-6.  *A ring counter is a shift register, as in Figure 6-9, with the serial output 

connected to the serial input.

(a) Starting from an initial state of 1000, list the sequence of states of the four 

flip-flops after each shift.

(b) Beginning in state 10…0, how many states are there in the count sequence 

of an n-bit ring counter?

6-7.  A switch-tail counter (also called twisted ring counter, Johnson counter) uses 

the complement of the serial output of a right shift register as its serial input.

(a) Starting from an initial state of 000, list the sequence of states after each 

shift until the register returns to 000.

(b) Beginning in state 00…0, how many states are there in the count sequence 

of an n-bit switch-tail counter?

(c)  Design a decoder to be driven by the counter that produces a one-hot code 

output for each of the states. Make use of the don’t-care states in your design.

6-8.  How many flip-flop values are complemented in a 4-bit binary ripple down 

counter to reach the next count value after:

(a) 0011?     (b) 1000?     (c) 0000?

6-9.  + For the CMOS logic family, the power consumption is proportional to the 

sum of the changes from 1-to-0 and 0-to-1 on all gate inputs and outputs in 

the circuit. When designing counters in very low-power circuits, ripple 

counters are preferred over regular synchronous binary counters. 

Carefully count the numbers of changing inputs and outputs, including 

those related to the clock for a complete cycle of values in a 4-bit ripple 

counter versus a regular synchronous counter of the same length. Based on 

this examination, explain why the ripple counter is superior in terms of 

power consumption.

6-10.  (a)  Construct a 4-bit ripple down counter that uses a binary code counting 

sequence.

(b) Count the number of state (1-to-0 and 0-to-1) changes on all gate input 

and output, for the binary ripple down counter and for a 4-bit regular 

synchronous binary counter. 



6-11.  Construct a 16-bit serial-parallel counter, using two 8-bit parallel counters. 

Suppose that all added logic is AND gates and that serial connections are 

employed between the two counters. What is the maximum number of AND 

gates in a chain that a signal must propagate through in the 16-bit counter?

6-12. (a)  Using the synchronous binary counter of Figure 6-14 and an AND gate, 

construct a counter that counts from 0000 through 1010.

(b) Repeat for a count from 0000 to 1110. Minimize the number of inputs to 

the AND gate.

6-13.  Using two binary counters of the type shown in Figure 6-14 and logic gates, 

construct a binary counter that counts from decimal 11 through decimal 233. 

Also, add an additional input and logic to the counter to initialize it 

synchronously to 11 when the signal INIT is 1.

6-14.  *Verify the flip-flop input equations of the synchronous BCD counter 

specified in Table 6-9. Draw the logic diagram of the BCD counter with a 

count enable input.

6-15.  *Use D flip-flops and gates to design a binary counter with each of the 

following repeated binary sequences:

(a) 0, 1, 2     (b) 0, 1, 2, 3, 4, 5

6-16.  Use D-type flip-flops and gates to design a counter with the following 

repeated binary sequence: 0, 2, 4, 6, 8, 10, 12, and 14.

6-17.  Draw the logic diagram of a 4-bit register with mode selection inputs S
1
 and 

S
0
. The register is to be operated according to the function table below.

S
1

S
0

Register Operation

0 0 No change

0 1 Parallel load

1 0 Shift left

1 1 Clear register to 0

6-18.  Represent the following conditional control statement by two register 

transfer statements with control functions:

If (A = 1) then (R0 d R1) else if (B = 1) then (R0 d  R2) else if (C = 1) 

then (R0 d  R1 ¿  R 2)  

6-19.  *Show the diagram of the hardware that implements the register transfer 

statement

C3: R2 d R1,  R1 d R2
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6-20.  The outputs of registers R0 and R1 are connected through a 4-to-1 

multiplexer to the inputs of a third register, R2. Each register is 8 bits long. 

The required transfers, as dictated by four control variables, are:

 C0: R2 d R2

 C1: R2 d R0

 C2: R2 d R1

 C3: R2 d R1

The control variables are mutually exclusive (i.e., only one variable can be 

equal to 1 at any time) while the other three are equal to 0. Also, no transfer 

into R4 is to occur for all control variables equal to 0. Using registers and a 

multiplexer, draw a detailed logic diagram of the hardware that implements a 

single bit of these register transfers. Also draw a logic diagram of the simple 

logic that maps the control variables as inputs to three outputs: the two select 

variables for the multiplexer and the load signal for the register R2.

6-21.  Construct a digital circuit that can implement the following operations under 

the control of only two multiplexer select inputs, using two 4-bit registers R0 

and R1, three 2-to-1 multiplexers, and logic gates. Show diagram for one bit of 

operation. 

 S1  #   S0:  R0 d  R0 ¿   R1 

 S1  #   S0:  R0 d  R0 ¡   R1

 S1  #   S0:  R0 d  R0 ¡   R1

 S1  #   S0:  R0 d  R0 ¿   R1

6-22.  *Using two 4-bit registers R1 and R2, and AND gates, OR gates, and 

inverters, draw one bit slice of the logic diagram that implements all of the 

following statements:

  C0: R2 d 0               Clear  R2 synchronously with the clock

  C1: R2 d R2          Complement  R2

 C2: R2 d R1          Transfer  R1 to  R2

The control variables are mutually exclusive (i.e., only one variable can be 

equal to 1 at any time) while the other two are equal to 0. Also, no transfer 

into R2 is to occur for all control variables equal to 0.



6-23.  A register cell is to be designed for an 8-bit register A that has the following 

register transfer functions:

 C0:  A d A ¿ B

 C1:  A d A ¡ B

Find optimum logic using AND, OR, and NOT gates for the D input to the D 

flip-flop in the cell.

6-24.  A register cell is to be designed for 8-bit registers R0 and R1
 
that has the 

following register transfer functions. Use add-sub block and show diagram 

for one bit of operation. 

 S1  #   S0:  R1 d  R0 + R1 

 S1  #   S0:  R0 d  R0 +  R1

  S1  #    S0:  R1 d  R0 -  R1 

 S1 #   S0:  R0 d   R0 - R1

6-25.  A register cell is to be designed with registers R0 and R1 that has the 

following register transfers:

 S1  #   S0:  R1 d  R0 + R1,     S1  #   S0:  R0 d  R0 + 1

 S1  #   S0:  R1 d  R0 -  R1,   S1 #   S0:  R0 d   R0 - 1

Use AND, OR, NOT gates and adder-subtract for the operation.

6-26.  Logic to implement transfers among three registers, R0, R1, and R2, is to be 

implemented. Use the control variable assumptions given in Problem 6–20. 

The register transfers are as follows:

  CA:  R1 d R0

 CB:  R0 d R1,  R2 d R0

  CC:  R1 d R2,  R0 d   R2

Using registers and dedicated multiplexers, draw a detailed logic diagram of 

the hardware that implements a single bit of these register transfers.

Draw a logic diagram of simple logic that converts the control variables 

CA, CB, and CC as inputs to outputs that are the SELECT inputs for the 

multiplexers and LOAD signals for the registers.

6-27.  *Two register transfer statements are given (otherwise, R1 is unchanged):

 C1:  R1 d R1 + R2     Add R2 to R1

 C1 C2:  R1 d R1 + 1     Increment R1
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(a) Using a 4-bit counter with parallel load as in Figure 6-14 and a 4-bit 

adder as in Figure 4-5, draw the logic diagram that implements these 

register transfers.

(b) Repeat part (a) using a 4-bit adder as in Figure 3-43 plus external gates as 

needed. Compare with the implementation in part (a).

6-28.  Repeat Problem 6-26 using one multiplexer-based bus and one direct 

connection from one register to another instead of dedicated multiplexers.

6-29. (a)  Construct an AND gate by interconnecting two three-state buffers and 

one inverters.

(b)  Implement function H = WZX + WYZ + WV using four three-state 

buffers and two inverters.

6-30.  Draw a logic diagram of a circuit similar to the one shown in Figure 6-7, but 

use three-state buffers and a decoder instead of the multiplexers.

6-31.  *A system is to have the following set of register transfers, implemented 

using buses:

  Ca:  R0 d R1

  Cb:  R3 d R1,  R1 d R4,  R4 d R0

 Cc:  R2 d R3,  R0 d R2

 Cd:  R2 d R4,  R4 d R2

(a) For each destination register, list all of the source registers.

(b) For each source register, list all of the destination registers.

(c)  With consideration for which of the transfers must occur simultaneously, 

what is the minimum number of buses that can be used to implement 

the set of transfers? Assume that each register will have a single bus as 

its input.

(d) Draw a block diagram of the system, showing the registers and buses and 

the connections between them.

6-32.  The following register transfers are to be executed in, with minimum clock 

cycles:

 S1  #   S0:  R3 d  R0, R1 d R2 

 S1  #   S0:  R2 d  R0, R1 d R3 

 S1  #   S0:  R3 d  R1, R0 d R2 

 S1  #   S0:  R2 d  R1, R0 d R3 



(a) What is the minimum number of buses required? Construct the register 

transfer operations so that the transfers can occur in one clock indicate 

the individual load line for each of the registers.

(b) Draw a block diagram connecting registers and multiplexers to implement 

the transfers.

6-33.  Construct a registar transfer system, with one 4-to-1 multiplexer, and one bus 

and minimum number of clock cycles to perform the following set of register 

transfers:

 R3 d R0,                  R5 d R0

 R1 d R2,                 R6 d R4

 R3 d R7,                 R5 d R4

Assume that only one bus can be attached to a register input and that any net 

connected to a register input is counted as a bus.

6-34.  *The content of a 4-bit register is initially 0101. The register is shifted eight 

times to the right, with the sequence 10110001 as the serial input. The 

leftmost bit of the sequence is applied first. What is the content of the register 

after each shift?

6-35.  *The serial adder of Figure 6-24 uses two 4-bit registers. Register A holds the 

binary number 0111 and register B holds 0101. The carry flip-flop is initially 

reset to 0. List the binary values in register A and the carry flip-flop after each 

of four shifts.

6-36.  *A state diagram of a sequential circuit is given in Figure 6-37. Find the 

corresponding state machine diagram using a minimum amount of notation. 

The inputs to the circuit are X1 and X2, and the outputs are Z1 and Z2.

S0 
00

S1 
01

S2 
10

10, 11 01, 10

00, 01

01, 10, 11

00, 11

00

 FIGURE 6-37
State Diagram for Problem 6-36
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6-37.  *Find the response for the state machine diagram in Figure 6-38 to the 

following sequence of inputs (assume that the initial state is STA):

W: 0 1 1 0 1 1 0 1

X: 1 1 0 1 0 1 0 1

Y: 0 1 0 1 0 1 0 1

State: STA

Z:

6-38.  A state machine diagram is given in Figure 6-38. Find the state table for the 

corresponding sequential circuit.

6-39.  Find the state machine diagram corresponding to the following description: 

There are three states A, B, and C, two inputs X and Y, and an output Z. If in 

state A and X = 1, then the next state is A. If in state A and X = 0, then the 

next state is B. If in state B, Y = 0, then the next state is B. If in state B, Y = 1, 

then the next is C. If in state C and input X = 0, then the next state is C. If in 

state C and input Y = 0, then next the state is A. At state C, Z = 1.

  6-40.  *Find the state machine diagram for a circuit that detects a difference in value 

in an input signal X at two successive positive clock edges. If X has different 

values at two successive positive clock edges, then output Z is equal to 1 for 

the next clock cycle. Otherwise, output Z is 0.

  6-41.  + The state machine diagram for a synchronous circuit with clock CK for a 

washing machine is to be developed. The circuit has three external inputs, 

START, FULL, and EMPTY (which are 1 for at most a single clock cycle and 

are mutually exclusive), and external outputs, HOT, COLD, DRAIN, and 

TURN. The datapath for the control consists of a down-counter, which has 

three inputs, RESET, DEC, and LOAD. This counter synchronously 

decrements once each minute for DEC = 1, but can be loaded or 

synchronously reset on any cycle of clock CK. It has a single output, ZERO, 

which is 1 whenever the counter contains value zero and is 0 otherwise.

RESET

STA

STC

STB

Z

W

W

X, X Y

X Y

Default: Z = 0

Z

 FIGURE 6-38
State Machine Diagram for Problems 6-37, 6-38, 6-43, 6-57, and 6-58



In its operation, the circuit goes through four distinct cycles, WASH, SPIN, 

RINSE, and SPIN, which are detailed as follows:

WASH: Assume that the circuit is in its power-up state IDLE. If START is 1 

for a clock cycle, HOT becomes 1 and remains 1 until FULL = 1, filling the 

washer with hot water. Next, using LOAD, the down-counter is loaded with a 

value from a panel dial which indicates how many minutes the wash cycle is to 

last. DEC and TURN then become 1 and the washer washes its contents. When 

ZERO becomes 1, the wash is complete, and TURN and DEC become 0.

SPIN: Next, DRAIN becomes 1, draining the wash water. When EMPTY be-

comes 1, the down-counter is loaded with 7. DEC and TURN then become 

1 and the remaining wash water is wrung from the contents. When ZERO 

becomes 1, DRAIN, DEC, and TURN return to 0.

RINSE: Next, COLD becomes 1 and remains 1 until FULL = 1, filling the 

washer with cold rinse water. Next, using LOAD, the down-counter is loaded 

with value 10. DEC and TURN then become 1 and the washer rinses its con-

tents. When ZERO becomes 1, the rinse is complete, and TURN and DEC 

become 0.

SPIN: Next, DRAIN becomes 1, draining the rinse water. When EMPTY be-

comes 1, the down-counter is loaded with 8. DEC and TURN then become 1 and 

the remaining rinse water is wrung from the contents. When ZERO becomes 

1, DRAIN, DEC, and TURN return to 0 and the circuit returns to state IDLE.

(a) Find the state machine diagram for the washer circuit.

(b) Modify your design in part (a) assuming that there are two more inputs, 

PAUSE and STOP. PAUSE causes the circuit, including the counter, to 

halt and all outputs to go to 0. When START is pushed, the washer 

resumes operation at the point it paused. When STOP is pushed, all 

outputs are reset to 0 except for DRAIN, which is set to 1. When EMPTY 

becomes 1, the state returns to IDLE.

  6-42.  Find a state machine diagram for a traffic light controller that works as 

follows: A timing signal T is the input to the controller. T defines the yellow 

light interval, as well as the changes of the red and green lights. The outputs to 

the signals are defined by the following table:

Output Light Controlled

GN Green Light, North/South Signal

YN Yellow Light, North/South Signal

RN Red Light, North/South Signal

GE Green Light, East/West Signal

YE Yellow Light, East/West Signal

RE Red Light, East/West Signal

Problems      415
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While T = 0, the green light is on for one signal and the red light for the 

other. With T = 1, the yellow light is on for the signal that was previously 

green, and the signal that was previously red remains red. When T becomes 

0, the signal that was previously yellow becomes red, and the signal that was 

previously red becomes green. This pattern of alternating changes in color 

continues. Assume that the controller is synchronous with a clock that chang-

es much more frequently than input T.

6-43.  *Implement the state machine diagram in Figure 6-38 by using one flip-flop 

per state assignment.

6-44.  Implement the state machine diagram derived in Problem 6-40 by using a 

Gray-code state assignment.

  6-45.  Do two designs for the DIE circuit for the Game of PIG and compare the 

gate-input costs of your two designs using information from Figure 6-14. Note 

that the register transfer description of DIE is:

                                      if (Reset) DIE d 000 else

 if (END1) (if (DIE =  110) DIE d 001 else DIE d DIE +  1)

(a) Perform the design by using the technique given for the BCD counter 

design in Figure 6-15.

(b) Perform the design by using a state diagram and doing a custom circuit 

design with the next state for state 111 a don’t-care state.

  6-46.  Design the following combinational circuits for the Game of PIG datapath 

given in Figure 6-31:

(a) D = 1 comparator.

(b) D Ú 1100100 comparator.

Use AND gates, OR gates, and inverters. Assume the maximum gate fan-in 

is four.

  6-47.  Design the 2-digit binary-to-BCD code converter in the datapath for the 

Game of PIG. Design the least significant digit as a function of (B
3
, B

2
, B

1
, B

0
) 

without an incoming carry C
0
. The outputs are to be C

4
, D

3
, D

2
, D

1
, D

0
. Design 

the same circuit with an incoming carry C
0
 fixed to 1. For the most significant 

digit combine the results of these two designs to handle the actual case in 

which the incoming carry C
0
 can be both 0 and 1. Minimize the combined 

result for the most significant digit.

6-48.  (a)  Show the details of a check of the constraints given on transition 

conditions as applied to Figure 6-30.

(b) Implement the state machine diagram for the Game of PIG in Figure 6-30 

using a one-hot state assignment D flip-flops, and gates.

  6-49.  + Find the state machine diagram in the form of Figure 6-29 for a Game of 

PIG using two dice. Also, add the following rule: If a pair of 1s is rolled, then 



the player’s total score becomes 0. The two dice create an interesting 

problem: How do you make sure that the values rolled on the two dice are not 

correlated with each other? The current scheme of having the die roll for the 

interval of time between the pushing and release will cause the values on the 

two dice to advance the same amount so that the values will be correlated 

from turn to turn. This will give only six of the 36 possible pairs of rolls of the 

two dice! You will need to devise a scheme to insure that all of the pairs are 

equally likely. Include a well-justified scheme in your solution.

6-50.  *Design a digital system with three 16-bit registers AR, BR, and CR and 16-

bit data input IN to perform the following operations, assuming a 2s 

complement representation and ignoring overflow:

(a) Transfer two 16-bit signed numbers to AR and BR on successive clock 

cycles after a go signal G becomes 1.

(b) If the number in AR is positive but nonzero, multiply the contents of BR 

by two and transfer the result to register CR.

(c)  If the number in AR is negative, multiply the contents of AR by two and 

transfer the result to register CR.

(d) If the number in AR is zero, reset register CR to 0.

All files referred to in the remaining problems are available in ASCII form for sim-

ulation and editing on the Companion Website for the text. A VHDL or Verilog 

compiler/simulator is necessary for the problems or portions of problems requesting 

simulation. Descriptions can still be written, however, for many problems without 

using compilation or simulation.

6-51.  Write a Verilog description for the 4-bit binary counter in Figure 6-13(a) 

using a register for the D flip-flops and Boolean equations for the logic. 

Compile and simulate your description to demonstrate correctness.

6-52.  *Write a behavioral VHDL description for the 4-bit register in Figure 6-1(a). 

Compile and simulate your description to demonstrate correctness.

6-53.  Repeat Problem 6-52 for the 4-bit register with parallel load in Figure 6-2.

6-54.  Write a VHDL description for the 4-bit binary counter in Figure 6-13(a), 

using a register for the D flip-flops and Boolean equations for the logic. 

Compile and simulate your description to demonstrate correctness.

6-55.  *Write a behavioral Verilog description for the 4-bit register in Figure 6-1(a). 

Compile and simulate your description to demonstrate correctness.

6-56.  Repeat Problem 6-55 for the 4-bit register with parallel load in Figure 6-2.

6-57.  *Write, compile, and simulate a VHDL description for the state machine 

diagram shown in Figure 6-38. Use a simulation input that passes through 

all paths in the state machine diagram, and include both the state and 

output Z as simulation outputs. Correct and resimulate your design if 

necessary.
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6-58.  *Write, compile, and simulate a Verilog description for the state machine 

diagram in Figure 6-38. Use code 00 for state STA, 01 for state STB, and 10 

for state STC. Use a simulation input that passes through all paths in the 

state-machine diagram and include both the state and Z as simulation 

outputs. Correct and resimulate your design if necessary.
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C H A P T E R

Memory Basics

7

7-1 MEMORY DEFINITIONS

In digital systems, memory is a collection of cells capable of storing binary informa-

tion. In addition to these cells, memory contains electronic circuits for storing and 

retrieving the information. As indicated in the discussion of the generic computer, 

memory is used in many different parts of a modern computer, providing temporary 

or permanent storage for substantial amounts of binary information. In order for 

Memory is a major component of a digital computer and is present in a large 

proportion of all digital systems. Random-access memory (RAM) stores data 

temporarily, and read-only memory (ROM) stores data permanently. ROM is 

one form of a variety of components called programmable logic devices (PLDs) that 

Our study of RAM begins by looking at it in terms of a model with inputs, outputs, 

and signal timing. We then use equivalent logical models to understand the internal 

workings of RAM chips. Both static RAM and dynamic RAM are considered. The 

various types of dynamic RAM used for movement of data at high speeds between the 

CPU and memory are surveyed. Finally, we put RAM chips together to build simple 

RAM systems.

In many of the previous chapters, the concepts presented were broad, pertaining 

to much of the generic computer at the beginning of Chapter 1. In this chapter, for the 

components. Beginning with the processor, the internal cache is very fast static RAM. 

Outside the CPU, the external cache is fast static RAM. The RAM subsystem, by its 

information about the screen image in the video adapter. RAM appears in disk cache in 

the disk controller, to speed up disk access. Aside from the highly central role of the 

in most subsystems of the generic computer.
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this information to be processed, it is sent from the memory to processing hardware 

consisting of registers and combinational logic. The processed information is then 

returned to the same or to a different memory. Input and output devices also interact 

with memory. Information from an input device is placed in memory so that it can be 

used in processing. Output information from processing is placed in memory, and 

from there it is sent to an output device.

Two types of memories are used in various parts of a computer: random-access 
memory (RAM) and read-only memory (ROM). RAM accepts new information for 

storage to be available later for use. The process of storing new information in mem-

ory is referred to as a memory write operation. The process of transferring the stored 

information out of memory is referred to as a memory read operation. RAM can 

perform both the write and the read operations, whereas ROM, as introduced in 

Section 6-8, performs only read operations. RAM sizes may range from hundreds to 

billions of bits.

7-2 RANDOM-ACCESS MEMORY

Memory is a collection of binary storage cells together with associated circuits 

needed to transfer information into and out of the cells. Memory cells can be 

accessed to transfer information to or from any desired location, with the access tak-

ing the same time regardless of the location, hence the name random-access mem-
ory. In contrast, serial memory, such as is exhibited by a hard drive, takes different 

lengths of time to access information, depending on where the desired location is 

relative to the current physical position of the disk.

Binary information is stored in memory in groups of bits, each group of which 

is called a word. A word is an entity of bits that moves in and out of memory as a 

unit—a group of 1s and 0s that represents a number, an instruction, one or more 

alphanumeric characters, or other binary-coded information. A group of eight bits is 

called a byte. Most computer memories use words that are multiples of eight bits in 

length. Thus, a 16-bit word contains two bytes, and a 32-bit word is made up of four 

bytes. The capacity of a memory unit is usually stated as the total number of bytes 

that it can store. Communication between a memory and its environment is achieved 

through data input and output lines, address selection lines, and control lines that 

specify the direction of transfer of information. A block diagram of a memory is 

shown in Figure 7-1. The n data input lines provide the information to be stored in 

memory, and the n data output lines supply the information coming out of memory. 

The k address lines specify the particular word chosen among the many available. 

The two control inputs specify the direction of transfer desired: the Write input 

causes binary data to be transferred into memory, and the Read input causes binary 

data to be transferred out of memory.

The memory unit is specified by the number of words it contains and the num-

ber of bits in each word. The address lines select one particular word. Each word in 

memory is assigned an identification number called an address. Addresses range 

from 0 to 2k - 1, where k is the number of address lines. The selection of a specific 

word inside memory is done by applying the k-bit binary address to the address lines. 

A decoder accepts this address and opens the paths needed to select the word 
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specified. Computer memory varies greatly in size. It is customary to refer to the 

number of words (or bytes) in memory with one of the letters K (kilo), M (mega), or 

G (giga). K is equal to 210, M to 220, and G to 230. Thus, 64K = 216, 2M = 221, and 

4G = 232.

Consider, for example, a memory with a capacity of 1K words of 16 bits each. 

Since 1K = 1024 = 210, and 16 bits constitute two bytes, we can say that the mem-

ory can accommodate 2048, or 2K, bytes. Figure 7-2 shows the possible contents of 

the first three and the last three words of this size of memory. Each word contains 16 

bits that can be divided into two bytes. The words are recognized by their decimal 

addresses from 0 to 1023. An equivalent binary address consists of 10 bits. The first 

address is specified using ten 0s, and the last address is specified with ten 1s. This is 

because 1023 in binary is equal to 1111111111. A word in memory is selected by its 

binary address. When a word is read or written, the memory operates on all 16 bits as 

a single unit.

The 1K * 16 memory of the figure has 10 bits in the address and 16 bits in each 

word. The number of address bits needed in memory is dependent on the total 

k address lines

Read

Memory unit

2k words

n bits per word

n data input lines

n data output lines

Write

 FIGURE 7-1
Block Diagram of Memory

Memory Address

Binary

0000000000
0000000001
0000000010

1111111101
1111111110
1111111111

Memory Contents

10110101 01011100
10101011 10001001
00001101 01000110

10011101 00010101
00001101 00011110
11011110 00100100

.

.
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.

.
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0
1
2
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1023

.

.

.

.

.

 FIGURE 7-2
Contents of a 1024 * 16 Memory
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number of words that can be stored and is independent of the number of bits in each 

word. The number of bits in the address for a word is determined from the relation-

ship 2k Ú m, where m is the total number of words and k is the minimum number of 

address bits satisfying the relationship.

Write and Read Operations

The two operations that a random-access memory can perform are write and read. 

A write is a transfer into memory of a new word to be stored. A read is a transfer 

of a copy of a stored word out of memory. A Write signal specifies the transfer-in 

operation, and a Read signal specifies the transfer-out operation. On accepting 

one of these control signals, the internal circuits inside memory provide the 

desired function.

The steps that must be taken for a write are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Apply the data bits that must be stored in memory to the data input lines.

3. Activate the Write input.

The memory unit will then take the bits from the data input lines and store them in 

the word specified by the address lines.

The steps that must be taken for a read are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Activate the Read input.

The memory will then take the bits from the word that has been selected by the 

address and apply them to the data output lines. The contents of the selected word 

are not changed by reading them.

Memory is made up of RAM integrated circuits (chips), plus additional logic cir-

cuits. RAM chips usually provide the two control inputs for the read and write opera-

tions in a somewhat different configuration from that just described. Instead of having 

separate Read and Write inputs to control the two operations, most integrated circuits 

provide at least a Chip Select that selects the chip to be read from or written to, and a 

Read/Write that determines the particular operation. The memory operations that 

result from these control inputs are shown in Table 7-1.

 TABLE 7-1
Control Inputs to a Memory Chip

Chip Select  

CS

Read/Write 

R/W Memory Operation

0 * None

1 0 Write to selected word

1 1 Read from selected word
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The Chip Select is used to enable the particular RAM chip or chips containing 

the word to be accessed. When Chip Select is inactive, the memory chip or chips are 

not selected, and no operation is performed. When Chip Select is active, the 

Read/Write input determines the operation to be performed. While Chip Select 

accesses chips, a signal is also provided that accesses the entire memory. We will call 

this signal the Memory Enable.

Timing Waveforms

The operation of the memory unit is controlled by an external device, such as a CPU. 

The CPU is synchronized by its own clock pulses. The memory, however, does not 

employ the CPU clock. Instead, its read and write operations are timed by changes 

in values on the control inputs. The access time of a memory read operation is the 

maximum time from the application of the address to the appearance of the data at 

the Data Output. Similarly, the write cycle time is the maximum time from the appli-

cation of the address to the completion of all internal memory operations required 

to store a word. Memory writes may be performed one after the other at the inter-

vals of the cycle time. The CPU must provide the memory control signals in such a 

way as to synchronize its own internal clocked operations with the read and write 

operations of memory. This means that the access time and the write cycle time of 

the memory must be related within the CPU to a period equal to a fixed number of 

CPU clock periods.

Assume, as an example, that a CPU operates with a clock frequency of 50 MHz, 

giving a period of 20 ns (1 ns =  10- 9 s) for one clock pulse. Suppose now that the 

CPU communicates with a memory with an access time of 65 ns and a write cycle 

time of 75 ns. The number of clock pulses required for a memory request is the inte-

ger value greater than or equal to the larger of the access time and the write cycle 

time, divided by the clock period. Since the period of the CPU clock is 20 ns, and the 

larger of the access time and write cycle time is 75 ns, it will be necessary to devote at 

least four clock pulses to each memory request.

The memory cycle timing shown in Figure 7-3 is for a CPU with a 50 MHz 

clock and memory with a 75 ns write cycle time and a 65 ns access time. The write 

cycle in part (a) shows four pulses T1, T2, T3, and T4 with a cycle of 20 ns. For a 

write operation, the CPU must provide the address and input data to the memory. 

The address is applied, and Memory Enable is set to the high level at the positive 

edge of the T1 pulse. The data, needed somewhat later in the write cycle, is applied 

at the positive edge of T2. The two lines that cross each other in the address and 

data waveforms designate a possible change in value of the multiple lines. The 

shaded areas represent unspecified values. A change of the Read/Write signal to 0 

to designate the write operation is also at the positive edge of T2. To avoid 

destroying data in other memory words, it is important that this change occur 

after the signals on the address lines have become fixed at the desired values. 

Otherwise, one or more other words might be momentarily addressed and acci-

dentally written over with different data. The Read/Write signal must stay at 0 

long enough after application of the address and Memory Enable to allow the 

write operation to complete. Finally, the address and data signals must remain 
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stable for a short time after the Read/Write goes to 1, again to avoid destroying 

data in other memory words. At the completion of the fourth clock pulse, the 

memory write operation has ended with 5 ns to spare, and the CPU can apply the 

address and control signals for another memory request with the next T1 pulse.

The read cycle shown in Figure 7-3(b) has an address for the memory that is 

provided by the CPU. The CPU applies the address, sets the Memory Enable to 1, 

and sets Read/Write to 1 to designate a read operation, all at the positive edge of T1. 

The memory places the data of the word selected by the address onto the data out-

put lines within 65 ns from the time that the address is applied and the memory 

enable is activated. Then, the CPU transfers the data into one of its internal registers 

during the positive transition of the next T1 pulse, which can also change the address 

and controls for the next memory request.

(a) Write cycle

Clock

Address

Memory
enable

Read/
Write

Data
input

20 ns

T1 T2 T3 T4 T1

Address valid

Data valid

75 ns

(b) Read cycle

Clock

Address

Memory
enable

Read/
Write

Data
output

20 ns

T1 T2 T3 T4 T1

Address valid

65 ns

Data valid

 FIGURE 7-3
Memory Cycle Timing Waveforms
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Properties of Memory

Integrated-circuit RAM may be either static or dynamic. Static RAM (SRAM) consists 

of internal latches that store the binary information. The stored information remains 

valid as long as power is applied to the RAM. Dynamic RAM (DRAM) stores the 

binary information in the form of electric charges on capacitors. The capacitors are 

accessed inside the chip by n-channel MOS transistors. The stored charge on the capaci-

tors tends to discharge with time, and the capacitors must be periodically recharged by 

refreshing the DRAM. This is done by cycling through the words every few milliseconds, 

reading and rewriting them to restore the decaying charge. DRAM offers reduced power 

consumption and larger storage capacity in a single memory chip, but SRAM is easier to 

use and has shorter read and write cycles. Also, no refresh is required for SRAM.

Memory units that lose stored information when power is turned off are said to 

be volatile. Integrated-circuit RAMs, both static and dynamic, are of this category, 

since the binary cells need external power to maintain the stored information. In 

contrast, a nonvolatile memory, such as magnetic disk, retains its stored information 

after the removal of power. This is because the data stored on magnetic components 

is represented by the direction of magnetization, which is retained after power is 

turned off. Another nonvolatile memory is ROM, discussed in Section 5-2.

7-3 SRAM INTEGRATED CIRCUITS

As indicated earlier, memory consists of RAM chips plus additional logic. We will 

consider the internal structure of the RAM chip first. Then we will study combina-

tions of RAM chips and additional logic used to construct memory. The internal 

structure of a RAM chip of m words with n bits per word consists of an array of mn 

binary storage cells and associated circuitry. The circuity is made up of decoders to 

select the word to be read or written, read circuits, write circuits, and output logic. 

The RAM cell is the basic binary storage cell used in the RAM chip, which is typi-

cally designed as an electronic circuit rather than a logic circuit. Nevertheless, it is 

possible and convenient to model the RAM chip using a logic model.

A static RAM chip serves as the basis for our discussion. We first present RAM 

cell logic for storing a single bit and then use the cell in a hierarchy to describe the 

RAM chip. Figure 7-4 shows the logic model of the RAM cell. The storage part of the 

Select

B

RAM cell

C

C

B

S

R

Q

Q

 FIGURE 7-4
Static RAM Cell
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cell is modeled by an SR latch. The inputs to the latch are enabled by a Select signal. For 

Select equal to 0, the stored content is held. For Select equal to 1, the stored content is 

determined by the values on B and B. The outputs from the latch are gated by Select to 

produce cell outputs C and C. For Select equal to 0, both C and C are 0, and for Select 

equal to 1, C is the stored value and C is its complement.

To obtain simplified static RAM diagrams, we interconnect a set of RAM cells 

and read and write circuits to form a RAM bit slice that contains all of the circuitry asso-

ciated with a single bit position of a set of RAM words. The logic diagram for a RAM 

bit slice is shown in Figure 7-5(a). The portion of the model representing each RAM cell 

(a) Logic diagram
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 FIGURE 7-5
RAM Bit Slice Model
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is highlighted in blue. The loading of a cell latch is now controlled by a Word Select 

input. If this is 0, then both S and R are 0, and the cell latch contents remain unchanged. 

If the Word Select input is 1, then the value to be loaded into the latch is controlled by 

two signals B and B from the Write Logic. In order for either of these signals to be 1 and 

potentially change the stored value, Read/Write must be 0 and Bit Select must be 1. 

Then the Data In value and its complement are applied to B and B, respectively, to set 

or reset the latch in the RAM cell selected. If Data In is 1, the latch is set to 1, and if 

Data In is 0, the latch is reset to 0, completing the write operation.

Only one word is written at a time. That is, only one Word Select line is 1, and 

all other Word Select lines are 0. Thus, only one RAM cell attached to B and B is 

written. The Word Select also controls the reading of the RAM cells, using shared 

Read Logic. If Word Select is 0, then the stored value in the SR latch is prevented by 

the AND gates from reaching the pair of OR gates in the Read Logic. But if Word 

Select is 1, the stored value passes through to the OR gates and is captured in the 

Read Logic SR latch. If Bit Select is also 1, the captured value appears on the Data 

Out line of the RAM bit slice. Note that for this particular Read Logic design, the 

read occurs regardless of the value of Read/Write.

The symbol for the RAM bit slice given in Figure 7-5(b) is used to represent 

the internal structure of RAM chips. Each Word Select line extends beyond the bit 

slice, so that when multiple RAM bit slices are placed side by side, corresponding 

Word Select lines connect. The other signals in the lower portion of the symbol may 

be connected in various ways, depending on the structure of the RAM chip.

The symbol and block diagram for a 16 * 1 RAM chip are shown in Figure 7-6. 

Both have four address inputs for the 16 one-bit words stored in RAM. There are 

also Data Input, Data Output, and Read/Write signals. The Chip Select at the chip 

level corresponds to the Memory Enable at the level of a RAM consisting of multi-

ple chips. The internal structure of the RAM chip consists of a RAM bit slice having 

16 RAM cells. Since there are 16 Word Select lines to be controlled such that one and 

only one has the value logic 1 at a given time, a 4–to–16-line decoder is used to 

decode the four address bits into 16 Word Select bits.

The only additional logic in the figure is a triangular symbol with one normal 

input, one normal output, and a second input on the bottom of the symbol. This sym-

bol is a three-state buffer that allows construction of a multiplexer with an arbitrary 

number of inputs. Three-state outputs are connected together and properly con-

trolled using the Chip Select inputs. By using three-state buffers on the outputs of 

RAM chips, these outputs can be connected together to provide the word from the 

chip being read on the bit lines attached to the RAM outputs. The enable signals in 

the preceding discussion correspond to the Chip Select inputs on the RAM chips. To 

read a word from a particular RAM chip, the Chip Select value for that chip must be 

1, and for all other chips attached to the same output bit lines, the Chip Select must 

be 0. These combinations containing a single 1 can be obtained from a decoder.

Coincident Selection

Inside a RAM chip, the decoder with k inputs and 2k outputs requires 2k AND gates 

with k inputs per gate if a straightforward design approach is used. In addition, if the 
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number of words is large, and all bits for one bit position in the word are contained in 

a single RAM bit slice, the number of RAM cells sharing the read and write circuits 

is also large. The electrical properties resulting from both of these situations cause 

the access and write cycle times of the RAM to become long, which is undesirable.

The total number of decoder gates, the number of inputs per gate, and the number 

of RAM cells per bit slice can all be reduced by employing two decoders with a coinci-
dent selection scheme. In one possible configuration, two k/2-input decoders are used 
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instead of one k-input decoder. One decoder controls the word select lines and the other 

controls the bit select lines. The result is a two-dimensional matrix selection scheme. If 

the RAM chip has m words with 1 bit per word, then the scheme selects the RAM cell at 

the intersection of the Word Select row and the Bit Select column. Since the Word Select 

is no longer strictly selecting words, its name is changed to Row Select. An output from 

the added decoder that selects one or more bit slices is referred to as a Column Select.
Coincident selection is illustrated for the 16 * 1 RAM chip with the struc-

ture shown in Figure 7-7. The chip consists of four RAM bit slices of four bits each 

and has a total of 16 RAM cells in a two-dimensional array. The two most signifi-

cant address inputs go through the 2–to–4-line row decoder to select one of the 

four rows of the array. The two least significant address inputs go through the 
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2–to–4-line column decoder to select one of the four columns (RAM bit slices) of 

the array. The column decoder is enabled with the Chip Select input. When the 

Chip Select is 0, all outputs of the decoder are 0 and none of the cells is selected. 

This prevents writing into any RAM cell in the array. With Chip Select at 1, a sin-

gle bit in the RAM is accessed. For example, for the address 1001, the first two 

address bits are decoded to select row 10 of the RAM cell array. The second two 

address bits are decoded to select column 01 of the array. The RAM cell accessed, 

in row 2 and column 1 of the array, is cell 9 (102012). With a row and column 

selected, the Read/Write input determines the operation. During the read opera-

tion (Read/Write =  1), the selected bit of the selected row goes through the OR 

gate to the three-state buffer. Note that the gate is drawn according to the array 

logic established in Figure 5-5. Since the buffer is enabled by Chip Select, the 

value read appears at the Data Output. During the write operation 

(Read/Write =  0), the bit available on the Data Input line is transferred into the 

selected RAM cell. Those RAM cells not selected are disabled, and their previous 

binary values remain unchanged.

The same RAM cell array is used in Figure 7-8 to produce an 8 * 2 RAM 

chip (eight words of two bits each). The row decoding is unchanged from that in 

Figure 7-7; the only changes are in the column and output logic. Since there are 

just three address bits, and two are handled by the row decoder, the column 

decoder has only one address bit and Chip Select as inputs and produces just two 

Column Select lines. Since two bits at a time are to be written or read, the Column 

Select lines go to adjacent pairs of RAM bit slices. Two input lines, Data Input 0 

and Data Input 1, each go to a different bit in all of the pairs. Finally, correspond-

ing bits of the pairs share output OR gates and three-state buffers, giving output 

lines Data Output 0 and Data Output 1. The operation of this structure can be 

illustrated by the application of the address 3  (0112). The first two bits of the 

address, 01, access row 1 of the array. The final bit, 1, accesses column 1, which 

consists of bit slices 2  (102) and 3  (112). So the word to be written or read lies in 

RAM cells 6 and 7 (011 02 and 011 12), which contain bits 0 and 1, respectively, of 

word 3.

We can demonstrate the savings of the coincident selection scheme by con-

sidering a more realistic static RAM size, 32K * 8. This RAM chip contains a 

total of 256K bits. To make the number of rows and columns in the array equal, 

we  take the square root of 256K, giving 512 = 29. So the first nine bits of the 

address are fed to the row decoder and the remaining six bits to the column 

decoder. Without coincident selection, the single decoder would have 15 inputs 

and 32,768 outputs. With coincident selection, there is one 9–to–512-line decoder 

and one 6–to–64-line decoder. The number of gates for a straightforward design 

of the single decoder would be 32,800. For the two coincident decoders, the num-

ber of gates is 608, reducing the gate count by a factor of more than 50. In addi-

tion, although it appears that there are 64 times as many Read/Write circuits, the 

column selection can be done between the RAM cells and the Read/Write cir-

cuits, so that only the original eight circuits are required. Because of the reduced 

number of RAM cells attached to each Read/Write circuit at any time, the access 

time of the chip is also improved.
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 FIGURE 7-8
 Block Diagram of an 8 * 2 RAM Using a 4 * 4 RAM Cell Array

7-4 ARRAY OF SRAM ICS

Integrated-circuit RAM chips are available in a variety of sizes. If the memory unit 

needed for an application is larger than the capacity of one chip, it is necessary to 

combine a number of chips in an array to form the required size of memory. The 

capacity of the memory depends on two parameters: the number of words and 

the number of bits per word. An increase in the number of words requires that we 

increase the address length. Every bit added to the length of the address doubles the 

number of words in memory. An increase in the number of bits per word requires 

that we increase the number of data input and output lines, but the address length 

remains the same.
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To illustrate an array of RAM ICs, let us first introduce a RAM chip using 

the condensed representation for inputs and outputs shown in Figure 7-9. The 

capacity of this chip is 64K words of 8 bits each. The chip requires a 16-bit address 

and 8 input and output lines. Instead of 16 lines for the address and 8 lines each 

for data input and data output, each is shown in the block diagram by a single line. 

Each line has a slash across it with a number indicating the number of lines repre-

sented. The CS (Chip Select) input selects the particular RAM chip, and the R/W 

(Read/Write) input specifies the read or write operation when the chip is selected. 

The small triangle shown at the outputs is the standard graphics symbol for three-

state outputs. The CS input of the RAM controls the behavior of the data output 

lines. When CS = 0, the chip is not selected, and all its data outputs are in the 

high-impedance state. With CS = 1, the data output lines carry the eight bits of 

the selected word.

Suppose that we want to increase the number of words in the memory by using 

two or more RAM chips. Since every bit added to the address doubles the binary 

number that can be formed, it is natural to increase the number of words in factors of 

two. For example, two RAM chips will double the number of words and add one bit 

to the composite address. Four RAM chips multiply the number of words by four 

and add two bits to the composite address.

Consider the possibility of constructing a 256K * 8 RAM with four 64K * 8 

RAM chips, as shown in Figure 7-10. The eight data input lines go to all the chips. The 

three-state outputs can be connected together to form the eight common data out-

put lines. This type of output connection is possible only with three-state outputs. 

Just one Chip Select input will be active at any time, while the other three chips will 

be disabled. The eight outputs of the selected chip will contain 1s and 0s, and the 

other three will be in a high-impedance state, presenting only open circuits to the 

binary output signals of the selected chip.

The 256K-word memory requires an 18-bit address. The 16 least significant bits 

of the address are applied to the address inputs of all four chips. The two most signif-

icant bits are applied to a 2 * 4 decoder. The four outputs of the decoder are applied 

to the CS inputs of the four chips. The memory is disabled when the EN input of the 

decoder, Memory Enable, is equal to 0. All four outputs of the decoder are then 0, 

and none of the chips is selected. When the decoder is enabled, address bits 17 and 16 

determine the particular chip that is selected. If these bits are equal to 00, the first 
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 FIGURE 7-9
 Symbol for a 64K * 8 RAM Chip
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RAM chip is selected. The remaining 16 address bits then select a word within the 

chip in the range from 0 to 65,535. The next 65,536 words are selected from the sec-

ond RAM chip with an 18-bit address that starts with 01 followed by the 16 bits from 

the common address lines. The address range for each chip is listed in decimal under 

its symbol in the figure.
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It is also possible to combine two chips to form a composite memory contain-

ing the same number of words, but with twice as many bits in each word. Figure 7-11 

shows the interconnection of two 64K * 8 chips to form a 64K * 16 memory. The 

16 data input and data output lines are split between the two chips. Both receive the 

same 16-bit address and the common CS and R/W control inputs.

The two techniques just described may be combined to assemble an array of 

identical chips into a large-capacity memory. The composite memory will have a 

number of bits per word that is a multiple of that for one chip. The total number of 

words will increase in factors of two times the word capacity of one chip. An external 

decoder is needed to select the individual chips based on the additional address bits 

of the composite memory.

To reduce the number of pins on the chip package, many RAM ICs provide 

common terminals for the data input and data output. The common terminals are 

said to be bidirectional, which means that for the read operation they act as outputs, 

and for the write operation they act as inputs. Bidirectional lines are constructed 

with three-state buffers and are discussed further in Section 6-8. The use of bidirec-

tional signals requires control of the three-state buffers by both Chip Select and 

Read/Write.

7-5 DRAM ICS

Because of its ability to provide high storage capacity at low cost, dynamic RAM 

(DRAM) dominates the high-capacity memory applications, including the primary 

RAM in computers. Logically, DRAM in many ways is similar to SRAM. However, 
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because of the electronic circuit used to implement the storage cell, its electronic 

design is considerably more challenging. Further, as the name “dynamic” implies, the 

storage of information is inherently only temporary. As a consequence, the informa-

tion must be periodically “refreshed” to mimic the behavior of static storage. This 

need for refresh is the primary logical difference in the behavior of DRAM com-

pared to SRAM. We explore this logical difference by examining the dynamic RAM 

cell, the logic required to perform the refresh operation, and the impact of the need 

for refresh on memory system operation.

DRAM Cell

The dynamic RAM cell circuit is shown in Figure 7-12(a). It consists of a capacitor C 

and a transistor T. The capacitor is used to store electrical charge. If sufficient charge is 

stored on the capacitor, it can be viewed as storing a logical 1. If insufficient charge  

is stored on the capacitor, it can be viewed as storing a logical 0. The transistor acts 

much like a switch, as described in Section 5-1. When the switch is “open,” the charge 

on the capacitor roughly remains fixed—in other words, is stored. But when the switch 

is “closed,” charge can flow into and out of the capacitor from the external Bit (B) 

line. This charge flow allows the cell to be written with a 1 or 0 and to be read.

In order to understand the read and write operations for the cell, we will use a 

hydraulic analogy with charge replaced by water, the capacitor by a small storage 

tank, and the transistor by a valve. Since the bit line has a large capacitance, it is repre-

sented by a large tank, and pumps which can fill and empty this tank rapidly. This 

analogy is given in Figures 7-12(b) and (c) with the valve closed. Note that in one case 

the small storage tank is full, representing a stored 1, and in the other case it is empty, 

representing a stored 0. Suppose that a 1 is to be written into the cell. The valve is 

opened and the pumps fill up the large tank. Water flows through the valve, filling the 
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Dynamic RAM cell, hydraulic analogy of cell operation, and cell model
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small storage tank, as shown in Figure 7-12(d). Then the valve is closed, leaving the 

small tank full, which represents a 1. A 0 can be written using the same sort of opera-

tions, except that the pumps empty the large tank as shown in Figure 7-12(e).

Now, suppose we want to read a stored value and that the value is a 1 corre-

sponding to a full storage tank. With the large tank at a known intermediate level, 

the valve is opened. Since the small storage tank is full, water flows from the small 

tank to the large tank, increasing the level of the water surface in the large tank 

slightly as shown in Figure 7-12(f). This increase in level is observed as the reading of 

1 from the storage tank. Correspondingly, if the storage tank is initially empty, there 

will be a slight decrease in the level in the large tank in Figure 7-12(g), which is 

observed as the reading of a 0 from the storage tank.

In the read operation just described, Figures 7-12(f) and (g) show that, regardless 

of the initial stored value in the storage tank, it now contains an intermediate value 

which will not cause enough change in the level of the external tank to permit a 0 or 1 

to be observed. So the read operation has destroyed the stored value; this is referred to 

as a destructive read. To be able to read the original stored value in the future, we must 

restore it (i.e., return the storage tank to its original level). To perform the restore for a 

stored 1 observed, the large tank is filled by the pumps and the small tank fills through 

the open valve. To perform the restore for a stored 0 observed, the large tank is emp-

tied by the pumps, and the small tank drains through the open valve.

In the actual storage cell, there are other paths present for charge flow. These 

paths are analogous to small leaks in the storage tank. Due to these leaks, a full small 

storage tank will eventually drain to a point at which the increase in the level of the 

large tank on a read cannot be observed as an increase. In fact, if the small tank is 

less than half full when read, it is possible that a decrease in the level of the large 

tank may be observed. To compensate for these leaks, the small storage tank storing 

a 1 must be periodically refilled. This is referred to as a refresh of the cell contents. 

Every storage cell must be refreshed before its level has declined to a point at which 

the stored value can no longer be properly observed.

Through the hydraulic analogy, the DRAM operation has been explained. Just as 

for the SRAM, we employ a logic model for the cell. The model shown in Figure 7-12(h) 

is a D latch. The C input to the D latch is Select and the D input to the D latch is B. In 

order to model the output of the DRAM cell, we use a three-state buffer with Select as 

its control input and C as its output. In the original electronic circuit for the DRAM cell 

in Figure 7-12(a), B and C are the same signal, but in the logical model they are separate. 

This is necessary in the modeling process to avoid connecting gate outputs together.

DRAM Bit Slice

Using the logic model for the DRAM cell, we can construct the DRAM bit-slice 

model shown in Figure 7-13. This model is similar to that for the SRAM bit slice in 

Figure 7-5. It is apparent that, aside from the cell structure, the two RAM bit slices 

are logically similar. However, from the standpoint of cost per bit, they are quite dif-

ferent. The DRAM cell consists of a capacitor plus one transistor. The SRAM cell 

typically contains six transistors, giving a cell complexity roughly three times that of 

the DRAM. Therefore, the number of SRAM cells in a chip of a given size is less 



7-5 / DRAM ICs      437

than one-third of those in the DRAM. The DRAM cost per bit is less than one-third 

the SRAM cost per bit, which justifies the use of DRAM in large memories.

Refresh of the DRAM contents remains to be discussed. But first, we need to 

develop the typical structure used to handle addressing in DRAMs. Since many DRAM 

chips are used in a DRAM, we want to reduce the physical size of the DRAM chips. 

Large DRAMs require 20 or more address bits, which would require 20 address pins on 

each DRAM chip. To reduce the number of pins, the DRAM address is applied serially 

in two parts with the row address first and the column address second. This can be done 
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since the row address, which performs the row selection, is actually needed before the 

column address, which reads out the data from the row selected. In order to hold the 

row address throughout the read or write cycle, it is stored in a register, as shown in 

Figure 7-14. The column address is also stored in a register. The load signal for the row 

address register is RAS (Row Adress Strobe) and for the column addresses is CAS 

(Column Address Strobe). Note that in addition to RAS and CAS, control signals for 

the DRAM chip include R/W (Read/Write) and OE (Output enable). Note that this 

design uses signals active at the LOW (0) level.

The timing for DRAM write and read operation appears in Figure 7-15(a). The 

row address is applied to the address inputs, and then RAS changes from 1 to 0, load-

ing the row address into the row address register. This address is applied to the row 

address decoder and selects a row of DRAM cells. Meanwhile, the column address is 

applied, and then CAS changes from 1 to 0, loading the column address into the col-

umn address register. This address is applied to the column address decoder, which 

selects a set of columns of the RAM array of size equal to the number of RAM data 

bits. The input data with Read/Write =  0 is applied over a time interval similar to 

that for the column address. The data bits are applied to the set of bit lines selected 

by the column address decoder, which in turn apply the values to the DRAM cells in 

the selected row, writing the new data into the cells. When CAS and RAS return to 1, 

the write cycle is complete and the DRAM cells store the newly written data. Note 

that the stored data in all of the other cells in the addressed row has been restored.
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The read operation timing shown in Figure 7-15(b) is similar. Timing of the 

address operations is the same. However, no data is applied and Read/Write is 1 

instead of 0. Data values in the DRAM cells in the selected row are applied to the bit 

(a) Write cycle 

20 ns

T1 T2 T3 T4 T1

Data valid

75 ns

Read/
Write

Data
input

Clock

Row
Address

Column
Address

RAS

CAS

Address

Output
enable

(b) Read cycle

20 ns

T1 T2 T3 T4 T1

Data valid

65 ns

Hi-Z

Read/
Write

Data
output

Clock

Row
Address

Column
Address

RAS

CAS

Address

Output
enable

 FIGURE 7-15
Timing for DRAM Write and Read Operations



440          CHAPTER 7 / MEMORY BASICS

lines and sensed by the sense amplifiers. The column address decoder selects the val-

ues to be sent to the Data output, which is enabled by Output enable. During the 

read operation, all values in the addressed row are restored.

To support refresh, additional logic shown in color is present in the block dia-

gram in Figure 7-14. There is a Refresh counter and a Refresh controller. The Refresh 

counter is used to provide the address of the row of DRAM cells to be refreshed. It is 

essential for the refresh modes that require the address to be provided from within 

the DRAM chip. The refresh counter advances on each refresh cycle. Due to the 

number of bits in the counter, when it reaches 2n - 1, where n is the number of rows 

in the DRAM array, it advances to 0 on the next refresh. The standard ways in which 

a refresh cycle can be triggered and the corresponding refresh types are as follows:

1. RAS-only refresh. A row address is placed on the address lines and RAS is 

changed to 0. In this case, the refresh addresses must be applied from outside 

the DRAM chip, typically by an IC called a DRAM controller.

2. CAS-before-RAS refresh. The CAS is changed from 1 to 0 followed by a 

change from 1 to 0 on RAS. Additional refresh cycles can be performed by 

changing RAS without changing CAS. The refresh addresses for this case come 

from the refresh counter, which is incremented after the refresh for each cycle.

3. Hidden refresh. Following a normal read or write, CAS is left at 0 and RAS is 

cycled, effectively performing a CAS-before-RAS refresh. During a hidden 

refresh, the output data from the prior read remains valid. Thus, the refresh is 

hidden. Unfortunately, the time taken by the hidden refresh is significant, so a 

subsequent read or write operation is delayed.

In all cases, note that the initiation of a refresh is controlled externally by using 

the RAS and CAS signals. Each row of a DRAM chip requires refreshing within a 

specified maximum refresh time, typically ranging from 16 to 64 milliseconds (ms). 

Refreshes may be performed at evenly spaced points in the refresh time, an approach 

called distributed refresh. Alternatively, all refreshes may be performed one after the 

other, an approach called burst refresh. For example, a 4M * 4 DRAM has a refresh 

time of 64 ms and has 4096 rows to be refreshed. The length of time to perform a sin-

gle refresh is 60 ns, and the refresh interval for distributed refresh is 64  ms/4096 = 15.6 

microseconds (ms). A total time out for refresh of 0.25 ms is used out of the 64 ms 

refresh interval. For the same DRAM, a burst refresh also takes 0.25 ms. The DRAM 

controller must initiate a refresh every 15.6 μs for distributed refresh and must initiate 

4096 refreshes sequentially every 64 ms for burst refresh. During any refresh cycle, no 

DRAM reads or writes can occur. Since use of burst refresh would halt computer 

operation for a fairly long period, distributed refresh is more commonly used.

7-6 DRAM TYPES

Over the last two decades, both capacity and speed of DRAM have increased signifi-

cantly. The quest for speed has resulted in the evolution of many types of DRAM. 

Several are listed with brief descriptions in Table 7-2. Of the memory types listed, the 

first two have largely been replaced in the marketplace by the more advanced 

SDRAM and RDRAM approaches. Since we have chosen to provide a discussion of 
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error-correcting codes (ECC) for memories on the text website, our discussion of 

memory types here will omit the ECC feature and focus on synchronous DRAM, 

double-data-rate synchronous DRAM, and Rambus® DRAM. Before considering 

these, we briefly cover some underlying concepts.

First, all three of these DRAM types work well because of the particular environ-

ment in which they operate. In modern high-speed computer systems, the processor 

 TABLE 7-2
DRAM Types

Type Abbreviation Description

Fast page mode DRAM FPM DRAM Takes advantage of the fact that, when a row 

is accessed, all of the row values are available 

to be read out. By changing the column 

address, data from different addresses can be 

read out without reapplying the row address 

and waiting for the delay associated with 

reading out the row cells to pass if the row 

portions of the addresses match.

Extended data output  

DRAM

EDO DRAM Extends the length of time that the DRAM 

holds the data values on its output, 

permitting the CPU to perform other tasks 

during the access, since it knows the data 

will still be available.

Synchronous DRAM SDRAM Operates with a clock rather than being 

asynchronous. This permits a tighter 

interaction between memory and CPU, 

since the CPU knows exactly when the 

data will be available. SDRAM also takes 

advantage of the row value availability and 

divides memory into distinct banks, 

permitting overlapped accesses.

Double-data-rate  

synchronous DRAM

DDR SDRAM The same as SDRAM except that data 

output is provided on both the negative 

and the positive clock edges.

Rambus® DRAM RDRAM A proprietary technology that provides 

very high memory access rates using a 

relatively narrow bus.

Error-correcting code ECC May be applied to most of the DRAM 

types above to correct single-bit data 

errors and often detect double errors.
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interacts with the DRAM within a memory hierarchy. Most of the instructions and data 

for the processor are fetched from two lower levels of the hierarchy, the L1 and L2 

caches. These are comparatively smaller SRAM-based memory structures that are cov-

ered in detail in Chapter 12. For our purposes, the key issue is that most of the reads 

from the DRAM are not directly from the CPU, but instead are initiated to bring data 

and instructions into these caches. The reads are in the form of a line (i.e., some number 

of bytes in contiguous addresses in memory) that is brought into the cache. For exam-

ple, in a given read, the 16 bytes in hexadecimal addresses 000000 through 00000F 

would be read. This is referred to as a burst read. For burst reads, the effective rate of 

reading bytes, which is dependent upon reading bursts from contiguous addresses, 

rather than the access time is the important measure. With this measure, the three 

DRAM types we are discussing provide very fast performance.

Second, the effectiveness of these three DRAM types depends upon a very 

fundamental principle involved in DRAM operation, the reading out of all of the 

bits in a row for each read operation. The implication of this principle is that all of 

the bits in a row are available after a read using that row if only they can be accessed. 

With these two concepts in mind, the synchronous DRAM can be introduced.

Synchronous DRAM (SDRAM)

The use of clocked transfers differentiates SDRAM from conventional DRAM. A 

block diagram of a 16-megabyte SDRAM IC appears in Figure 7-16. The inputs and 

outputs differ little from those for the DRAM block diagram in Figure 7-14 with the 

exception of the presence of the clock for synchronous operation. Internally, there are 

a number of differences. Since the SDRAM appears synchronous from the outside, 
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Block Diagram of a 16 MB SDRAM
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there are synchronous registers on the address inputs and the data inputs and outputs. 

In addition, a column address counter has been added, which is key to the operation of 

the SDRAM. While the control logic may appear to be similar, the control in this case 

is much more complex, since the SDRAM has a mode control word that can be loaded 

from the address bus. Considering a 16 MB memory, the memory array contains 

134,217,728 bits and is almost square, with 8192 rows and 16,384 columns. There are 13 

row address bits. Since there are 8 bits per byte, the number of column addresses is 

16,384 divided by 8, which equals 2048. This requires 11 column address bits. Note that 

13 plus 11 equals 24, giving the correct number of bits to address 16 MB.

As with the regular DRAM, the SDRAM applies the row address first, followed 

by the column address. The timing, however, is somewhat different, and some new ter-

minology is used. Before performing an actual read operation from a specified column 

address, the entire row of 2048 bytes specified by the applied row address is read out 

internally and stored in the I/O logic. Internally, this step takes a few clock cycles. Next, 

the actual read step is performed with the column address applied. After an additional 

delay of a few clock cycles, the data bytes begin appearing on the output, one per clock 

period. The number of bytes that appear, the burst length, has been set by loading a 

mode control word into the control logic from the address input.

The timing of a burst read cycle with burst length equal to four is shown in 

Figure 7-17. The read begins with the application of the row address and the row 

address strobe (RAS), which causes the row address to be captured in the address 

register and the reading of the row to be initiated. During the next two clock periods, 
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the reading of the row is taking place. During the third clock period, the column 

address and the column address strobe are applied, with the column address cap-

tured in the address register and the reading of the first data byte initiated. The data 

byte is then available to be read from the SDRAM at the positive clock edge occur-

ring two cycles later. The second, third, and fourth bytes are available for reading on 

subsequent clock edges. In Figure 7-17, note that the bytes are presented in the order 

1, 2, 3, 0. This is because, in the column address identifying the byte immediately 

needed by the CPU, the last two bits are 01. The subsequent bytes appear in the 

order of these two bits counted up modulo (burst length) by the column address 

counter, giving addresses ending in 01, 10, 11, and 00, with all other address bits fixed.

It is interesting to compare the byte rate for reading bytes from SDRAM to that 

of the basic DRAM. We assume that the read cycle time tRC for the basic DRAM is  

60 ns and that the clock period tCLK for the SDRAM is 7.5 ns. The byte rate for the 

basic DRAM is one byte per 60 ns, or 16.67 MB/s. For the SDRAM, from Figure 7-17, it 

requires 8.0 clock cycles, or 60 ns, to read four bytes, giving a byte rate of 66.67 MB/s. If 

the burst is eight instead of four bytes, a read cycle time of 90 ns is required, giving a 

byte rate of 88.89 MB/s. Finally, if the burst is the entire 2048-byte row of the SDRAM, 

the read cycle time becomes 60 + (2048 - 4) * 7.5 = 15,390 ns, giving a byte rate of 

133.07 MB, which approaches the limit of one byte per 7.5 ns clock period.

Double-Data-Rate SDRAM (DDR SDRAM)

The second DRAM type, double-data-rate SDRAM (DDR SDRAM) overcomes 

the preceding limit without decreasing the clock period. Instead, it provides two 

bytes of data per clock period by using both the positive and negative clock edges. In 

Figure 7-17, four bytes are read, one per positive clock edge. By using both clock 

edges, eight bytes can be transferred in the same read cycle time tRC. For a 7.5 ns 

clock period, the byte rate limit doubles in the example to 266.14 MB/s.

Additional basic techniques can be applied to further increase the byte rate. 

For example, instead of having single byte data, an SDRAM IC can have the data 

I/O length of four bytes (32 bits). This gives a byte rate limit of 1.065 GB/s with a  

7.5 ns clock period. Eight bytes give a byte rate limit of 2.130 GB/s.

The byte rates achieved in the examples are upper limits. If the actual accesses 

needed are to different rows of the RAM, the delay from the application of the RAS 

pulse to read out the first byte of data is significant and leads to performance well 

below the limit. This can be partially offset by breaking up the memory into multiple 

banks, where each bank performs the row read independently. Provided that the row 

and bank addresses are available early enough, row reads can be performed on one 

or more banks while data is still being transferred from the currently active row. 

When the column reads from the currently active row are complete, data can poten-

tially be available immediately from other banks, permitting an uninterrupted flow 

of data from the memory. This permits the actual read rate to more closely approach 

the limit. Nevertheless, due to the fact that multiple row accesses to the same bank 

may occur in sequence, the maximum rate is not reached.

More recent versions of DDR memory include DDR2 and DDR3, with DDR4 

expected to become available in 2014. While none of the versions of DDR are com-

patible with each other due to differences in electrical properties and timing, all of 
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the versions depend on the same principle of transferring data on both the rising 

and the falling edges of the memory bus clock. Each succeeding version has increased 

the number of data transfers per memory bus clock cycle.

RAMBUS® DRAM (RDRAM)

The final DRAM type to be discussed is RAMBUS DRAM (RDRAM). Although no 

longer widely available, we include a description of RDRAM to illustrate its alterna-

tive design for the memory interface. RDRAM ICs are designed to be integrated into 

a memory system that uses a packet-based bus for the interaction between the 

RDRAM ICs and the memory bus to the processor. The primary components of the 

bus are a 3-bit path for the row address, a 5-bit path for the column address, and a  16-bit 

or 18-bit path for data. The bus is synchronous and performs transfers on both clock 

edges, the same property possessed by the DDR SDRAM. Information on the three 

paths mentioned above is transferred in packets that are four clock cycles long, which 

means that there are eight transfers/packet. The number of bits per packet for each of 

the paths is 24 bits for the row address packet, 40 bits for the column address packet, 

and 128 bits or 144 bits for the data packet. The larger data packet includes 16 parity 

bits for implementing an error-correcting code. The RDRAM IC employs the concept 

of multiple memory banks mentioned earlier to provide capability for  concurrent 

memory accesses with different row addresses. RDRAM uses the usual row-activate 

technique in which the addressed row data of the memory is read. From this row data, 

the column address is used to select byte pairs in the order in which they are to be 

transmitted in the packet. A typical timing picture for an RDRAM read access is 

shown in Figure 7-18. Due to the sophisticated electronic design of the RAMBUS 
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 system, we can  consider a clock period of 1.875 ns. Thus, the time for transmission of a 

packet is tPACK = 4 * 1.875 = 7.5 ns. The cycle time for accessing a single data 

packet of 8 byte pairs or 16 bytes is 32 clock cycles or 60 ns, as shown in Figure 7-18. The 

corresponding byte rate is 266.67 MB/s. If four of the byte packets are accessed from 

the same row, the rate increases to 1.067 GB/s. By reading an entire RDRAM row of 

2048 bytes, the cycle time increases to  60 + (2048 - 64) * 1.875/4 = 990 ns or a 

byte rate limit of 2048/(990 * 10-9) = 2.069 MB/s, approaching the ideal limit of 

4/1.875 ns or 2.133 GB/s.

7-7 ARRAYS OF DYNAMIC RAM ICS

Many of the same design principles used for SRAM arrays in Section 7-4 apply to 

DRAM arrays. There are, however, a number of different requirements for the con-

trol and addressing of DRAM arrays. These requirements are typically handled by a 

DRAM controller, which performs the following functions:

1. controlling separation of the address into a row address and a column address, 

and providing these addresses at the required times,

2. providing the RAS and CAS signals at the required times for read, write, and 

refresh operations,

3. performing refresh operations at the necessary intervals, and

4. providing status signals to the rest of the system (e.g., indicating whether the 

memory is busy performing refresh).

The DRAM controller is a complex synchronous sequential circuit with the external 

CPU clock providing synchronization of its operation.

7-8 CHAPTER SUMMARY

Memory is of two types: random-access memory (RAM) and read-only memory 

(ROM). For both types, we apply an address to read from or write into a data 

word. Read and write operations have specific steps and associated timing param-

eters, including access time and write cycle time. Memory can be static or dynamic 

and volatile or nonvolatile. Internally, a RAM chip consists of an array of RAM 

cells, decoders, write circuits, read circuits, and output circuits. A combination of a 

write circuit, read circuit, and the associated RAM cells can be logically modeled 

as a RAM bit slice. RAM bit slices, in turn, can be combined to form two-dimen-

sional RAM cell arrays, which, with decoders and output circuits added, form the 

basis for a RAM chip. Output circuits use three-state buffers in order to facilitate 

connecting together an array of RAM chips without significant additional logic. 

Due to the need for refresh, additional circuitry is required within DRAMs, as 

well as in arrays of DRAM chips. In a quest for faster memory access, a number of 

new DRAM types have been developed. The most recent forms of these high-

speed DRAMs employ a synchronous interface that uses a clock to control mem-

ory accesses.
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Error-detection and correction codes, often based on Hamming codes, are used to 

detect or correct errors in stored RAM data. Material from Edition 1 covering these 

codes is available on the Companion Website for the text.
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PROBLEMS
The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

 7-1.  *The following memories are specified by the number of words times the 

number of bits per word. How many address lines and input–output data 

lines are needed in each case? (a) 48K * 8, (b) 512K * 32, (c) 64M * 64, 

and (d) 2G * 1.

 7-2.  (a)  Word number (835)10 in the memory shown in Figure 7-2 contains the 

binary equivalent of (15,103)10. List the 10-bit address and the 16-bit 

memory contents of the word.

(b)  Repeat part (a) for word number (513)10 containing the binary equivalent 

of (44,252)10.

 7-3.  *A 64K * 16 RAM chip uses coincident decoding by splitting the internal 

decoder into row select and column select. (a) Assuming that the RAM cell 

array is square, what is the size of each decoder, and how many AND gates 

are required for decoding an address? (b) Determine the row and column 

selection lines that are enabled when the input address is the binary 

equivalent of (32000)10.

 7-4. (a)  How many address and data lines are needed for memory chips with the 

following organization?

(1) 256 * 4

(2) 512 * 8

(3) 1K * 16

(4) 32K * 8
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(b) Design an address decoder for two RAM chips and two ROM chips 

each organized as 1K * 8 chip. Assume that a 20-bit address is 

available. Use gates for the decoding circuitry and specify the address 

range of each chip.

 7-5.  A DRAM has 8 address lines on which row and column addresses are placed 

one after the other. What is the memory capacity of the DRAM?

 7-6.  Two DRAM chips of 8K capacity are used to obtain a total memory of 

16K * 16. How many address and data lines will each chip have assuming 

that the row X column matrix is a square, for addresses?

 7-7.  A DRAM has a refresh interval of 64 ms and has 8192 rows. What is the interval 

between refreshes for distributed refresh? What is the total time required out of 

the 64 ms for a refresh of the entire DRAM? What is the minimum number of 

address pins on the DRAM?

 7-8.   *(a)  How many 128K * 16 RAM chips are needed to provide a memory 

capacity of 2 MB?

 (b)  How many address lines are required to access 2 MB? How many of 

these lines are connected to the address inputs of all chips?

 (c)  How many lines must be decoded to produce the chip select inputs? 

Specify the size of the decoder.

 7-9.  Draw a decoding circuitry for 32K * 8 RAM using an OR gate for address 

decoding. The number of address lines to be decoded is 20. What is the 

address map obtained with this decoding scheme? The address range of this 

memory chip is 00000 to 07FFFH.

7-10.  Why is a refresh cycle needed for DRAMs? Name one standard method used 

for doing “refreshing”.

7-11.  What are the features that an SDRAM possesses that makes it superior to 

asynchronous DRAM?
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8-1 INTRODUCTION

Computers and their design are introduced in this chapter. The specification for a 

computer consists of a description of its appearance to a programmer at the lowest 

level, its instruction set architecture (ISA). From the ISA, a  high-  level description of 

the hardware to implement the computer, called the computer architecture, is formu-

lated. This architecture, for a simple computer, is typically divided into a datapath 

and a control. The datapath is defined by three basic components:

1. a set of registers,

2. the microoperations performed on data stored in the registers, and

3. the control interface.

The control unit provides signals that control the microoperations performed 

in the datapath and in other components of the system, such as memories. In addi-

tion, the control unit controls its own operation, determining the sequence of events 

that occur. This sequence may depend upon the results of current and past microop-

erations executed. In a more complex computer, typically multiple control units and 

datapaths are present.

To build a foundation for considering computer designs, initially, we extend the 

ideas in Chapter 6 to the implementation of computer datapaths. Specifically, we 

consider a generic datapath, one that can be used, in some cases in modified form, in 

all of the computer designs considered in the remainder of the text. These future 

designs show how a given datapath can be used to implement different instruction 

set architectures by simply combining the datapath with different control units.

8-2 DATAPATHS

Instead of having each individual register perform its microoperations directly, computer 

systems often employ a number of storage registers in conjunction with a shared opera-

tion unit called an arithmetic/logic unit, abbreviated ALU. To perform a microoperation, 

the contents of specified source registers are applied to the inputs of the shared ALU. The 

ALU performs an operation, and the result of this operation is transferred to a destina-

tion register. With the ALU as a combinational circuit, the entire register transfer oper-

ation from the source registers, through the ALU, and into the destination register is 

performed during one clock cycle. The shift operations are often performed in a sep-

arate unit, but sometimes these operations are also implemented within the ALU.

Recall that the combination of a set of registers with a shared ALU and inter-

connecting paths is the datapath for the system. The rest of this chapter is concerned 

with the organization and design of computer datapaths and associated control units 

used to implement simple computers. The design of a particular ALU is undertaken 

to show the process involved in implementing a complex combinational circuit. We 

also design a shifter, combine control signals into control words, and then add con-

trol units to implement two different computers.

The datapath and the control unit are the two parts of the processor, or CPU, of 

a computer. In addition to the registers, the datapath contains the digital logic that 

implements the various microoperations. This digital logic consists of buses, multi-

plexers, decoders, and processing circuits. When a large number of registers is 
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included in a datapath, the registers are most conveniently connected through one or 

more buses. Registers in a datapath interact by the direct transfer of data, as well as 

in the performance of the various types of microoperations. A simple  bus-  based 

data path with four registers, an ALU, and a shifter is shown in Figure  8-1. The 

MD select 0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n
n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address
out
Data
out

Bus A
Bus B

n
n

Function unit

A B n
G select

4

Zero Detect

MF select

nn

n
F

MUX F

H select
2

n

A B
S2:0 || Cin

Arithmetic/logic
unit (ALU)

G

B
S

Shifter

H

MUX

0

1
2

3

MUX

0
1
2
3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write
D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus Dn

Data in

ILIR0 0

0 1

 FIGURE 8-1
Block Diagram of a Generic Datapath



452          CHAPTER 8 / COMPUTER DESIGN BASICS 

shading and blue signal names relate to Figure  8-10 and will be discussed in 

Section 8-5. The black signal names are used here to describe the details in Figure 8-1. 

Each register is connected to two multiplexers to form ALU and shifter input buses 

A and B. The select inputs on each multiplexer select one register for the corre-

sponding bus. For Bus B, there is an additional multiplexer, MUX B, so that con-

stants can be brought into the datapath from outside using Constant in. Bus B also 

connects to Data out, to send data outside the datapath to other components of the 

system, such as memory or  input–  output. Likewise, Bus A connects to Address out, 

to send address information outside of the datapath for memory or  input–  output.

Arithmetic and logic microoperations are performed on the operands on the A 

and B buses by the ALU. The G select inputs select the microoperation to be per-

formed by the ALU. The shift microoperations are performed on data on Bus B by 

the shifter. The H select input either passes the operand on Bus B directly through to 

the shifter output or selects a shift microoperation. MUX F selects the output of the 

ALU or the output of the shifter. MUX D selects the output of MUX F or external 

data on input Data in to be applied to Bus D. The latter is connected to the inputs of 

all the registers. The destination select inputs determine which register is loaded with 

the data on Bus D. Since the select inputs are decoded, only one register Load signal 

is active for any transfer of data into a register from Bus D. A Load enable signal 

that can force all register Load signals to 0 using AND gates is present for transfers 

that are not to change the contents of any of the four registers.

It is useful to have certain information, based on the results of an ALU operation, 

available for use by the control unit of the CPU to make decisions. Four status bits are 

shown with the ALU in Figure 8-1. The status bits, carry C and overflow V, were explained 

in conjunction with Figure 3-46. The zero status bit Z is 1 if the output of the ALU con-

tains all zeros and is 0 otherwise. Thus, Z = 1 if the result of an operation is zero, and 

Z = 0 if the result is nonzero. The sign status bit N (for negative) is the leftmost bit of 

the ALU output, which is the sign bit for the result in  signed-  number representations. 

Status values from the shifter can also be incorporated into the status bits if desired.

The control unit for the datapath directs the information flow through the 

buses, the ALU, the shifter, and the registers by applying signals to the select inputs. 

For example, to perform the microoperation

R1 d R2 + R3

the control unit must provide binary selection values to the following sets of control 

inputs:

1. A select, to place the contents of R2 onto A data and, hence, Bus A.

2. B select, to place the contents of R3 onto the 0 input of MUX B; and MB select, 
to put the 0 input of MUX B onto Bus B.

3. G select, to provide the arithmetic operation A + B.

4. MF select, to place the ALU output on the MUX F output.

5. MD select, to place the MUX F output onto Bus D.

6. Destination select, to select R1 as the destination of the data on Bus D.

7. Load enable, to enable a  register—  in this case, R1—to be loaded.
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The sets of values must be generated and must become available on the corre-

sponding control lines early in the clock cycle. The binary data from the two source 

registers must propagate through the multiplexers and the ALU and on into the 

inputs of the destination register, all during the remainder of the same clock cycle. 

Then, when the next positive clock edge arrives, the binary data on Bus D is loaded 

into the destination register. To achieve fast operation, the ALU and shifter are con-

structed with combinational logic having a limited number of levels.

8-3 THE ARITHMETIC/LOGIC UNIT

The ALU is a combinational circuit that performs a set of basic arithmetic and logic 

microoperations. It has a number of selection lines used to determine the operation 

to be performed. The selection lines are decoded within the ALU, so that k selection 

lines can specify up to 2k distinct operations.

Figure 8-2 shows the symbol for a typical  n-  bit ALU. The n data inputs from 

A are combined with the n data inputs from B to generate the result of an operation 

at the G outputs. The  mode-  select input S
2
 distinguishes between arithmetic and 

logic operations. The two Operation select inputs S
1
 and S

0
 and the Carry input C

in
 

specify the eight arithmetic operations with S
2
 at 0. Operand select input S

0
 and C

in
 

specify the four logic operations with S
2
 at 1.

We perform the design of this ALU in three stages. First, we design the arith-

metic section. Then we design the logic section, and finally, we combine the two sec-

tions to form the ALU.

Arithmetic Circuit

The basic component of an arithmetic circuit is a parallel adder, which is constructed 

with a number of  full-  adder circuits connected in cascade, as shown in Figure 3-43. By 
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controlling the data inputs to the parallel adder, it is possible to obtain different types 

of arithmetic operations. The block diagram in Figure 8-3 demonstrates a configuration 

in which one set of inputs to the parallel adder is controlled by the select lines S
1
 and S

0
. 

There are n bits in the arithmetic circuit, with two inputs A and B and output G. The n 

inputs from B go through the B input logic to the Y inputs of the parallel adder. The 

input carry C
in
 goes in the carry input of the full adder in the  least-  significant-  bit posi-

tion. The output carry C
out

 is from the full adder in the  most-  significant-  bit position. The 

output of the parallel adder is calculated from the arithmetic sum as

G = X + Y + Cin

where X is the  n-  bit binary number from the inputs and Y is the  n-  bit binary number 

from the B input logic. C
in
 is the input carry, which equals 0 or 1. Note that the symbol +  

in the equation denotes arithmetic addition.

Table 8-1 shows the arithmetic operations that are obtainable by controlling 

the value of Y with the two selection inputs S
1
 and S

0
. If the inputs from B are ignored 
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 FIGURE 8-3
Block Diagram of an Arithmetic Circuit

 TABLE 8-1
Function Table for Arithmetic Circuit

Select Input   G = (A  + Y  + C
in
)

S
1

S
0

Y C
in
 =  0 C

in
 =  1

0 0 all 0s  G = A (transfer)  G = A + 1 (increment)

0 1 B  G = A + B (add)  G = A + B + 1

1 0 B  G = A + B  G = A + B + 1 (subtract)

1 1 all 1s  G = A - 1 (decrement)  G = A (transfer)
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and we insert all 0s at the Y inputs, the output sum becomes G = A + 0 + Cin. This 

gives G = A when Cin = 0 and G = A + 1 when Cin = 1. In the first case, we have 

a direct transfer from input A to output G. In the second case, the value of A is incre-

mented by 1. For a straight arithmetic addition, it is necessary to apply the B inputs 

to the Y inputs of the parallel adder. This gives G = A + B when Cin = 0. 

Arithmetic subtraction is achieved by applying the complement of inputs B to the Y 

inputs of the parallel adder, to obtain G = A + B + 1 when Cin = 1. This gives A 

plus the 2s complement of B, which is equivalent to 2s complement subtraction. All 

1s is the 2s complement representation for -1. Thus, applying all 1s to the Y inputs 

with Cin = 0 produces the decrement operation G = A - 1.

The B input logic in Figure 8-3 can be implemented with n multiplexers. The 

data inputs to each multiplexer in stage i for i = 0, 1, c , n - 1 are 0, B
i
, Bi, and 1, 

corresponding to selection values S
1
S

0
: 00, 01, 10, and 11, respectively. Thus, the arith-

metic circuit can be constructed with n full adders and n 4- to-  1 multiplexers.

The number of gates in the B input logic can be reduced if, instead of using 

4- to-  1 multiplexers, we go through the logic design of one stage (one bit) of the B 

input logic. This can be done as shown in Figure 8-4. The truth table for one typical 

stage i of the logic is given in Figure 8-4(a). The inputs are S
1
, S

0
, and B

i
, and the out-

put is Y
i
. Following the requirements specified in Table  8-1, we let Yi = 0 when 

S1S0 = 00, and similarly assign the other three values of Y
i
 for each of the combina-

tions of the selection variables. Output Yi is simplified in the map in Figure 8-4(b) 

to give

Yi = BiS0 + BiS1

where S
1
 and S

0
 are common to all n stages. Each stage i is associated with input B

i
 

and output Y
i
 for i = 0, 1, 2, c , n -1. This logic corresponds to a 2- to-  1 multi-

plexer with B
i
 on the select input and S

1
 and S

0
 on the data inputs.

Figure 8-5 shows the logic diagram of an arithmetic circuit for n = 4. The four 

 full-  adder (FA) circuits constitute the parallel adder. The carry into the first stage is the 

input carry C
in
. All other carries are connected internally from one stage to the next. 

Inputs Output
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0
0

0
0

1
1

1
1

S0

0
0

1
1

0
0

1
1

Bi

0
1
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0
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0
1

Yi

0
0

0
1

1
0

1
1

0

1

S0

Bi

S1 1

00 01 11 10

1 1

1

(a) Truth table 
s

 FIGURE 8-4
B Input Logic for One Stage of Arithmetic Circuit
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The selection variables are S
1
, S

0
, and C

in
. Variables S

1
 and S

0
 control all Y inputs of the 

full adders according to the Boolean function derived in Figure 8-4(b). Whenever C
in
 is 

1, A + Y has 1 added. The eight arithmetic operations for the circuit as a function of 

S
1
, S

0
, and C

in
 are listed in Table 8-2. It is interesting to note that the operation G = A 

appears twice in the table. This is a harmless  by-  product of using C
in
 as one of the con-

trol variables while implementing both increment and decrement instructions.

Logic Circuit

The logic microoperations manipulate the bits of the operands by treating each bit in 

a register as a binary variable, giving bitwise operations. There are four commonly 

used logic  operations—  AND, OR, XOR ( exclusive-  OR), and  NOT—  from which 

others can be conveniently derived.

Figure 8-6(a) shows one stage of the logic circuit. It consists of four gates and a 

4- to-  1 multiplexer, although simplification could yield less complex logic. Each of 

the four logic operations is generated through a gate that performs the required 

Cin
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A0
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A1
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 FIGURE 8-5
Logic Diagram of a 4-Bit Arithmetic Circuit
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logic. The outputs of the gates are applied to the inputs of the multiplexer with two 

selection variables S
1
 and S

0
. These choose one of the data inputs of the multiplexer 

and direct its value to the output. The diagram shows a typical stage with subscript i. 
For the logic circuit with n bits, the diagram must be repeated n times, for 

i = 0, 1, 2, c ,  n-1. The selection variables are applied to all stages. The function 

table in Figure 8-6(b) lists the logic operations obtained for each combination of the 

selection values.

 TABLE 8-2
Function Table for ALU

Operation Select

S
2

S
1

S
0

C
in

Operation Function

0 0 0 0 G = A Transfer A

0 0 0 1 G = A + 1 Increment A

0 0 1 0 G = A + B Addition

0 0 1 1 G = A + B + 1 Add with carry input of 1

0 1 0 0 G = A + B A plus 1s complement of B

0 1 0 1 G = A + B  + 1 Subtraction

0 1 1 0 G = A - 1 Decrement A

0 1 1 1 G = A Transfer A

1 X 0 0 G = A ¿ B AND

1 X 0 1 G = A ¡ B OR

1 X 1 0 G = A ⊕ B XOR

1 X 1 1 G = A NOT (1s complement)

 FIGURE 8-6
One Stage of Logic Circuit
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Arithmetic/Logic Unit

The logic circuit can be combined with the arithmetic circuit to produce an ALU. The 

configuration for one stage of the ALU is illustrated in Figure 8-7. The outputs of the 

arithmetic and logic circuits in each stage are applied to a 2- to-  1 multiplexer with 

selection variable S
2
. When S2 = 0, the arithmetic output is selected, and when 

S2 = 1, the logic output is selected. Note that the diagram shows just one typical 

stage of the ALU; the circuit must be repeated n times for an  n-  bit ALU. The output 

carry C
i+1

 of a given arithmetic stage must be connected to the input carry C
i
 of the 

next stage in sequence. C
0
, the input carry to the first stage, is the input carry C

in
 for 

the ALU, as well as a selection variable for logic operations instead of using S
1
.This 

somewhat strange use of C
in
 provides a more systematic encoding of the control vari-

ables when the shifter is added later.

The ALU specified in Figure 8-7 provides eight arithmetic and four logic oper-

ations. Each operation is selected through the variables S
2
, S

1
, S

0
, and C

in
. Table 8-2 

lists the 12 ALU operations. The first eight are arithmetic operations and are selected 

with S2 = 0. The next four are logic operations and are selected with S2 = 1. 

Selection input S
1
 has no effect during the logic operations and is marked with X to 

indicate that its value may be either 0 or 1. Later in the design, it is assigned value 0 

for logic operations.

The ALU logic we have designed is not as simple as it could be and has a fairly 

high number of logic levels, contributing to propagation delay in the circuit. With the 

use of logic simplification software, we can simplify this logic and reduce the delay. 

For example, it is quite easy to simplify the logic for a single stage of the ALU. For 

realistic n, a means of further reducing the carry propagation delay in the ALU, such 

as the carry lookahead adder, described in a Website Supplement, is usually 

necessary.
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One stage of 
logic circuit
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S0

S1
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 FIGURE 8-7
One Stage of ALU
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8-4 THE SHIFTER

The shifter shifts the value on Bus B, placing the result on an input of MUX F. The 

basic shifter performs one of two main types of transformations on the data: right 

shift and left shift.

A seemingly obvious choice for a shifter would be a bidirectional shift register 

with parallel load. Data from Bus B can be transferred to the register in parallel and 

then shifted to the right, the left, or not at all. A clock pulse loads the output of Bus B 

into the shift register, and a second clock pulse performs the shift. Finally, a third clock 

pulse transfers the data from the shift register to the selected destination register.

Alternatively, the transfer from a source register to a destination register can 

be done using only one clock pulse if the shifter is implemented as a combinational 

circuit as done in Chapter 3. Because of the faster operation that results from the use 

of one clock pulse instead of three, this is the preferred method. In a combinational 

shifter, the signals propagate through the gates without the need for a clock pulse. 

Hence, the only clock needed for a shift in the datapath is for loading the data from 

Bus H into the selected destination register.

A combinational shifter can be constructed with multiplexers as shown in 

Figure 8-8. The selection variable S is applied to all four multiplexers to select the 

type of operation within the shifter. S = 00 causes B to be passed through the shifter 

unchanged. S = 01 causes a  right-  shift operation and S = 10 causes a  left-  shift oper-

ation. The right shift fills the position on the left with the value on serial input IR. The 

left shift fills the position on the right with the value on serial input IL. Serial outputs 

are available from serial output R and serial output L for right and left shifts, 

respectively.

The diagram of Figure 8-8 shows only four stages of the shifter, which has n 

stages in a system with  n-  bit operands. Additional selection variables may be 

 FIGURE 8-8
4-Bit Basic Shifter
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employed to specify what goes into IR and IL during a single  bit-  position shift. Note 

that to shift an operand by m 7 1 bit positions, this shifter must perform a series of 

m 1-bit position shifts, taking m clock cycles.

Barrel Shifter

In datapath applications, often the data must be shifted more than one bit position in a 

single clock cycle. A barrel shifter is one form of combinational circuit that shifts or ro-

tates the input data bits by the number of bit positions specified by a binary value on a 

set of selection lines. The shift we consider here is a rotation to the left, which means 

that the binary data is shifted to the left, with the bits coming from the most significant 

part of the register rotated back into the least significant part of the register.

A 4-bit version of this kind of barrel shifter is shown in Figure 8-9. It consists of 

four multiplexers with common select lines S
1
 and S

0
. The selection variables deter-

mine the number of positions that the input data will be shifted to the left by rota-

tion. When S1S0 = 00, no shift occurs, and the input data has a direct path to the 

outputs. When S1S0 = 01, the input data is rotated one position, with D
0
 going to Y

1
, 

D
1
 going to Y

2
, D

2
 going to Y

3
, and D

3
 going to Y

0
. When S1S0 = 10, the input is 

rotated two positions, and when S1S0 = 11, the rotation is by three bit positions. 

Table 8-3 gives the function table for the 4-bit barrel shifter. For each binary value of 

the selection variables, the table lists the inputs that go to the corresponding output. 

Thus, to rotate three positions, S
1
S

0
 must be equal to 11, causing D

0
 to go to Y

3
, D

1
 to 

go to Y
0
, D

2
 to go to Y

1
, and D

3
 to go to Y

2
. Note that, by using this  left-  rotation barrel 

shifter, one can generate all desired right rotations as well. For example, a left rota-

tion by three positions is the same as a right rotation by one position in this 4-bit 

barrel shifter. In general, in a 2n   -bit barrel shifter, i positions of left rotation are the 

same as 2n - i bits of right rotation.
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 FIGURE 8-9
4-Bit Barrel Shifter
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A barrel shifter with 2n input and output lines requires 2n multiplexers, each hav-

ing 2n data inputs and n selection inputs. The number of positions for the data to be 

rotated is specified by the selection variables and can be from 0 to 2n − 1 positions. For a 

large n, the  fan-  in to gates is too large, so larger barrel shifters consist of layers of multi-

plexers, as shown in Section 10-3, or of special structures designed at the transistor level.

8-5 DATAPATH REPRESENTATION

The datapath in Figure 8-1 includes the registers, selection logic for the registers, the 

ALU, the shifter, and three additional multiplexers. With a hierarchical structure, we 

can reduce the apparent complexity of the datapath. This reduction is important, 

since we frequently use this datapath. Also, as illustrated by the register file to be 

discussed next, the use of a hierarchy allows one implementation of a module to be 

replaced with another, so that we are not tied to specific logic implementations.

A typical datapath has more than four registers. Indeed, computers with 32 or 

more registers are common. The construction of a bus system with a large number of 

registers requires different techniques. A set of registers having common microopera-

tions performed on them may be organized into a register file. The typical register file 

is a special type of fast memory that permits one or more words to be read and one or 

more words to be written, all simultaneously. Functionally, a simple register file con-

tains the equivalent of the logic shaded in blue in Figure 8-1. Due to the  memory-  like 

nature of register files, the A select, B select, and Destination select inputs in the figure 

become three addresses. As shown in Figure 8-1 in blue and on the register file sym-

bol in Figure 8-10, the A address accesses a word to be read onto A data, the B address 

accesses a second word to be read onto B data, and the D address accesses a word to 

be written into from D data. All of these accesses occur in the same clock cycle. A 

Write input corresponding to the Load Enable signal is also provided. When at 1, the 

Write signal permits registers to be loaded during the current clock cycle, and when at 

0, prevents register loading. The size of the register file is 2m * n, where m is the num-

ber of register address bits and n is the number of bits per register. For the datapath in 

Figure 8-1, m = 2, giving four registers, and n is unspecified.

Since the ALU and the shifter are shared processing units with outputs that are 

selected by MUX F, it is convenient to group the two units and the MUX together to 

 TABLE 8-3
Function Table for 4-Bit Barrel Shifter

Select Output

S1 S0 Y3 Y2 Y1 Y0 Operation

0 0 D
3

D
2

D
1

D
0

No rotation

0 1 D
2

D
1

D
0

D
3

Rotate one position

1 0 D
1

D
0

D
3

D
2

Rotate two positions

1 1 D
0

D
3

D
2

D
1

Rotate three positions
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form a shared function unit. Gray shading in Figure 8-1 highlights the function unit, 

which can be represented by the symbol given in Figure 8-10. The inputs to the function 

unit are from Bus A and Bus B, and the output of the function unit goes to MUX D. The 

function unit also has the four status bits V, C, N, and Z as added outputs.

In Figure 8-1, there are three sets of select inputs: the G select, H select, and MF 
select. In Figure 8-10, there is a single set of select inputs labeled FS, for “function 

select.” To fully specify the function unit symbol in the figure, all of the codes for MF 
select, G select, and H select must be defined in terms of the codes for FS. Table 8-4 

defines these code transformations. The codes for FS are given in the left column. 

From Table 8-4, it is apparent that MF is 1 for the leftmost two bits of FS both equal 

to 1. If MF select = 0, then the G select codes determine the function on the output 

 FIGURE 8-10
Block Diagram of Datapath Using the Register File and Function Unit
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of the function unit. If MF select = 1, then the H select codes determine the function 

on the output of the function unit. To show this dependency, the codes that deter-

mine the  function-  unit outputs are highlighted in blue in the table. From Table 8-4, 

the code transformations can be implemented using the Boolean equations: 

MF = F3
# F2,G3 = F3,G2 = F2,G1 = F1,G0 = F0,H1 = F1, and H0 = F0.

The status bits are assumed to be meaningless when the shifter is selected, 

although in a more complex system, shifter status bits can be designed to replace those 

for the ALU whenever a shifter microoperation is specified. Note that the status bit 

implementation depends on the specific implementation that has been used for the 

arithmetic circuit. Alternative implementations may not produce the same results.

8-6 THE CONTROL WORD

The selection variables for the datapath control the microoperations executed 

within the datapath for any given clock pulse. For the datapath in Section 8-5, the 

selection variables control the addresses for the data read from the register file, 

the function performed by the function unit, and the data loaded into the register 

file, as well as the selection of external data. We will now demonstrate how these 

control variables select the microoperations for the datapath. The choice of con-

trol variable values for typical microoperations will be discussed, and a simulation 

of the datapath will be illustrated.

 TABLE 8-4
G Select, H Select, and MF Select Codes Defined  
in Terms of FS Codes

FS(3:0)

MF 

Select

G  

Select(3:0)

H  

Select(3:0) Microoperation

0 0 0 0 0 0 0 0 0 XX F = A

0 0 0 1 0 0 0 0 1 XX F = A + 1

0 0 1 0 0 0 0 1 0 XX F = A + B

0 0 1 1 0 0 0 1 1 XX F = A + B + 1

0 1 0 0 0 0 1 0 0 XX F = A + B

0 1 0 1 0 0 1 0 1 XX F = A + B + 1

0 1 1 0 0 0 1 1 0 XX F = A - 1

0 1 1 1 0 0 1 1 1 XX F = A

1 0 0 0 0 1 X0 0 XX F = A ¿ B

1 0 0 1 0 1 X0 1 XX F = A ¡ B

1 0 1 0 0 1 X1 0 XX F = A ⊕ B

1 0 1 1 0 1 X1 1 XX F = A

1 1 0 0 1 XXXX 0 0 F = B

1 1 0 1 1 XXXX 0 1 F = sr  B

1 1 1 0 1 XXXX 1 0 F = sl  B
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A block diagram of a datapath that is a specific version of the datapath in 

Figure 8-10 is shown in Figure 8-11(a). It has a register file with eight registers, R0 

through R7.  The register file provides the inputs to the function unit through 

Bus A and Bus B. MUX B selects between constant values on Constant in and 

register values on B data. The ALU and  zero-  detection logic within the function 

unit generate the binary data for the four status bits: V (overflow), C (carry), 

(b) Control word
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 FIGURE 8-11
Datapath with Control Variables
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N  (sign), and Z (zero). MUX D selects the function unit output or the data on 

Data in as input for the register file.

There are 16 binary control inputs. Their combined values specify a control 
word. The 16-bit control word is defined in Figure 8-11(b). It consists of seven parts 

called fields, each designated by a pair of letters. The three register fields are three 

bits each. The remaining fields have one or four bits. The three bits of DA select one 

of eight destination registers for the result of the microoperation. The three bits of 

AA select one of eight source registers for the Bus A input to the ALU. The three 

bits of BA select a source register for the 0 input of the MUX B. The single MB bit 

determines whether Bus B carries the contents of the selected source register or a 

constant value. The 4-bit FS field controls the operation of the function unit. The FS 

field contains one of the 15 codes from Table 8-4. The single bit of MD selects the 

function unit output or the data on Data in as the input to Bus D. The final field, RW, 

determines whether a register is written or not. When applied to the control inputs, 

the 16-bit control word specifies a particular microoperation.

The functions of all meaningful control codes are specified in Table 8-5. For 

each field a binary code for each function is given. The register selected by each of 

the address fields DA, AA, and BA is the one with the decimal equivalent equal to 

the binary number for the code. MB selects either the register selected by the BA 

field or a constant from outside the datapath on Constant in. The ALU operations, 

the shifter operations, and the selection of the ALU or shifter outputs are all speci-

fied by the FS field. The field MD controls the information to be loaded into the 

 TABLE 8-5
Encoding of Control Word for the Datapath

  DA, AA, BA MB FS MD RW

Function Code Function Code Function Code Function Code Function Code

R0 000 Register 0 F = A 0000 Function 0 No Write 0

R1 001 Constant 1 F = A + 1 0001 Data in 1 Write 1

R2 010 F = A + B 0010

R3 011 F = A + B + 1 0011

R4 100 F = A + B 0100

R5 101 F = A + B + 1 0101

R6 110 F = A - 1 0110

R7 111 F = A 0111

F = A ¿ B 1000

F = A ¡ B 1001

F = A ⊕ B 1010

F = A 1011

F = B 1100

F = sr  B 1101

F = sl  B 1110
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register file. The final field, RW, has the functions No Write, to prevent writing to any 

registers, and Write, to signify writing to a register.

The control word for a given microoperation can be derived by specifying the 

value of each of the control fields. For example, a subtraction given by the statement

R1 d R2 + R3 + 1

specifies R2 for the A input of the ALU and R3 for the B input of the ALU. It also 

specifies function unit operation F = A + B + 1 and selection of the function unit 

output for input into the register file. Finally, the microoperation selects R1 as the 

destination register and sets RW to 1 to cause R1 to be written. The control word for 

this microinstruction is specified by its seven fields, with the binary value for each 

field obtained from the encoding listed in Table 8-5. The binary control word for this 

subtraction microoperation, 001_010_011_0_0101_0_1 (with underline “_” used for 

convenience to separate the fields), is obtained as follows:

Field: DA AA BA MB FS MD RW

Symbolic: R1 R2 R3 Register F = A + B + 1 Function Write

Binary: 001 010 011 0 0101 0 1

The control word for the microoperation and those for several other microoperations 

are given in Table 8-6 using symbolic notation and in Table 8-7 using binary codes.

The second example in Table 8-6 is a shift microoperation given by the statement

R4 d sl  R6

This statement specifies a shift left for the shifter. The content of register R6, shifted 

to the left, is transferred to R4. Note that because the shifter is driven by Bus B, the 

source for the shift is specified in the BA rather than the AA field. From the knowl-

edge of the symbols in each field, the control word in binary is derived as shown in 

Table 8-7.  For many microoperations, neither the A data nor the B data from the reg-

ister file is used. In these cases, the respective symbolic field is marked with a dash. 

 TABLE 8-6
Examples of Microoperations for the Datapath, Using Symbolic Notation

Micro-

operation DA AA BA MB FS MD RW

R1 d R2 - R3 R1 R2 R3 Register F = A + B + I Function Write

R4 d sl  R6 R4 — R6 Register F =  sl B Function Write

R7 d R7 + 1 R7 R7 — — F =  A + 1 Function Write

R1 d R0 + 2 R1 R0 — Constant F =  A +  B Function Write

Data  out d R3 — — R3 Register — — No Write

R4 d Data  in R4 — — — — Data in Write

R5 d 0 R5 R0 R0 Register F = A ⊕ B Function Write
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Since these values are unspecified, the corresponding binary values in Table 8-7 are 

Xs. Continuing with the last three examples in Table 8-6, to make the contents of a 

register available to an external destination only, we place the contents of the register 

on the B data output of the register file, with RW =  No Write (0) to prevent the reg-

ister file from being written. To place a small constant in a register or use a small con-

stant as one of the operands, we place the constant on Constant in, set MB to Constant, 

and pass the value from Bus B through the ALU and Bus D to the destination regis-

ter. To clear a register to 0, Bus D is set to all 0s by using the same register for both A 

data and B data with an XOR operation specified (FS = 1010) and MD = 0. The 

DA field is set to the code for the destination register, and RW is Write (1).

It is apparent from these examples that many microoperations can be per-

formed by the same datapath. Sequences of such microoperations can be realized by 

providing a control unit that produces the appropriate sequences of control words.

To complete this section, we perform a simulation of the datapath in Figure 8-11. 

The number of bits in each register, n, is equal to 8. An unsigned decimal representa-

tion, which is most convenient for reading the simulation output, is used for all  multiple- 

 bit signals. We assume that the microoperations in Table  8-7, executed in sequence, 

provide the inputs to the datapath and that the initial content of each register is its 

number in decimal (e.g., R5 contains (0000 0101)2 = (5)10). Figure 8-12 gives the result 

of this simulation. The first value displayed is the Clock with the clock cycles numbered 

for reference. The inputs, outputs, and state for the datapath are given roughly in the 

order of the flow of information through the path. The first four inputs are the primary 

 control-  word fields, which specify the register addresses that determine the register file 

outputs and the function selection. Next are inputs Constant in and MB, which control 

the input to Bus B. Following are the outputs Address out and Data out, which are the 

outputs from Bus A and Bus B, respectively. The next three  variables—  Data in, MD, 

and  RW—  are the final three inputs to the datapath. They are followed by the content of 

the eight registers and the Status bits, which are given as a vector (V, C, N, Z). The initial 

content of each register is its number in decimal. The value 2 is applied to Constant only 

in cycle 4, where MB equals 1. Otherwise, the value on Constant in is unknown, as indi-

cated by X. Finally, Data in has value 18. In the simulation, this value comes from a 

 TABLE 8-7
Examples of Microoperations from Table 8-6, Using Binary Control Words

Micro-

operation DA AA BA MB FS MD RW

R1 d R2 - R3 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1

R4 d sl  R6 1 0 0 XXX 1 1 0 0 1 1 1 0 0 1

R7 d R7 + 1 1 1 1 1 1 1 XXX X 0 0 0 1 0 1

R1 d R0 + 2 0 0 1 0 0 0 XXX 1 0 0 1 0 0 1

Data  out d R3 XXX XXX 0 1 1 0 XXXX X 0

R4 d Data  in 1 0 0 XXX XXX X XXXX 1 1

R5 d 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1



468          CHAPTER 8 / COMPUTER DESIGN BASICS 

memory that is addressed by Address out and that has value 18 in location 0 with 

unknown values in all other locations. The resulting value, except when Address out is 0, 

is represented by a line midway between 0 and 1, indicating the value is unknown.

Of note in the simulation results is that changes in registers as a result of a partic-

ular microoperation appear in the clock cycle after that in which the microoperation 

is specified. For example, the result of the subtraction in clock cycle 1 appears in regis-

ter R1 in clock cycle 2. This is because the result is loaded into  flip-  flops on the positive 

edge of the clock at the end of the clock cycle 1. On the other hand, the values on the 

Status bits, Address out, and Data out appear in the same clock cycle as the microoper-

ation controlling them, since they do not depend on a positive clock edge occurring. 

Since no combinational delay is specified in the simulation, these values change at the 

same time as the register values. Finally, note that eight clock cycles of simulation are 

used for seven microoperations so that the values in the registers that result from the 

last microoperation executed can be observed. Although Status bits appear for all 

microoperations, they are not always meaningful. For example, for the microopera-

tions, R3=Data out and R4 ← Data in, in clock cycles 5 and 6, respectively; the value of 

the status bits does not relate to the result, since the Function unit is not used in these 

operations. Finally, for R5 ← R0 ⊕  R0 in clock cycle 7, the arithmetic unit is not used, 

1 4 7 1 0 4 5

2 0 7 0

3 6 0 3 0

X X

2 0 7 0

3 6 0 2 3 0

14 1 2 0 10

2 0 0 1 X

18 18

1 255 2

2
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4 12 18
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7 8
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7 8
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 FIGURE 8-12
Simulation of the Microoperation Sequence in Table 8-7
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so the values of V and C from that unit are irrelevant, but the values for N and Z do 

represent the status of the result as a signed 2s complement integer.

8-7 A SIMPLE COMPUTER ARCHITECTURE

We introduce a simple computer architecture to obtain an initial understanding of 

computer design and to illustrate control designs for programmable systems. In a 

programmable system, a portion of the input to the processor consists of a sequence 

of instructions. Each instruction specifies an operation the system is to perform, 

which operands to use for the operation, where to place the results of the operation, 

and/or, in some cases, which instruction to execute next. For the programmable sys-

tem, the instructions are usually stored in memory, which is either RAM or ROM. To 

execute the instructions in sequence, it is necessary to provide the address in memo-

ry of the instruction to be executed. In a computer, this address comes from a  register 

called the program counter (PC). As the name implies, the PC has logic that permits 

it to count. In addition, to change the sequence of operations using decisions based 

on status information, the PC needs parallel load capability. So, in the case of a pro-

grammable system, the control unit contains a PC and associated decision logic, as 

well as the necessary logic to interpret the instruction in order to execute it. Execut-
ing an instruction means activating the necessary sequence of microoperations in the 

datapath (and elsewhere) required to perform the operation specified by the instruc-

tion. In contrast to the preceding, note that for a nonprogrammable system, the 

 control unit is not responsible for obtaining instructions from memory, nor is it 

 responsible for sequencing the execution of those instructions. There is no PC or 

similar register in such a system. Instead, the control unit determines the operations 

to be performed and the sequence of those operations, based on only its inputs and 

the status bits.

We show how the operations specified by instructions for the simple computer 

can be implemented by microoperations in the datapath, plus movement of informa-

tion between the datapath and memory. We also show two different control struc-

tures for implementing the sequences of operations necessary for controlling 

program execution. The purpose here is to illustrate two different approaches to 

control design and the effects that such approaches have on datapath design and 

system performance. A more extensive study of the concepts associated with instruc-

tion sets for digital computers is presented in detail in the next chapter, and more 

complete CPU designs are undertaken in Chapter 10.

Instruction Set Architecture

The user specifies the operations to be performed and their sequence by the use 

of a program, which is a list of instructions that specifies the operations, the oper-

ands, and the sequence in which processing is to occur. The data processing per-

formed by a computer can be altered by specifying a new program with different 

instructions or by specifying the same instructions with different data. Instruc-

tions and data are usually stored together in the same memory. By means of the 

techniques discussed in Chapter 10, however, they may appear to be coming from 

different memories. The control unit reads an instruction from memory and 
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 decodes and executes the instruction by issuing a sequence of one or more 

 microoperations. The ability to execute a program from memory is the most im-

portant single property of a  general-  purpose computer. Execution of a program 

from memory is in sharp contrast to the nonprogrammable control units consid-

ered earlier in Examples 6-3 and 4, which execute fixed operations sequenced by 

inputs and status signals only.

An instruction is a collection of bits that instructs the computer to perform a 

specific operation. We call the collection of instructions for a computer its instruction 
set and a thorough description of the instruction set its instruction set architecture 

(ISA). Simple instruction set architectures have three major components: the stor-

age resources, the instruction formats, and the instruction specifications.

Storage Resources

The storage resources for the simple computer are represented by the diagram in 

Figure 8-13. The diagram depicts the computer structure as viewed by a user pro-

gramming it in a language that directly specifies the instructions to be executed. It 

gives the resources which the user sees available for storing information. Note that 

the architecture includes two memories, one for storage of instructions and the other 

for storage of data. These may actually be different memories, or they may be the 

same memory, but viewed as different from the standpoint of the CPU as discussed 

in Chapter 10. Also visible to the programmer in the diagram is a register file with 

eight 16-bit registers and the 16-bit program counter.

Program counter 
(PC)

Instruction
memory
215 	 16

Data
memory
215 	 16

Register file
8 	 16

 FIGURE 8-13
Storage Resource Diagram for a Simple Computer
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Instruction Formats

The format of an instruction is usually depicted by a rectangular box symbolizing the 

bits of the instruction, as they appear in memory words or in a control register. The 

bits are divided into groups or parts called fields. Each field is assigned a specific 

item, such as the operation code, a constant value, or a register file address. The vari-

ous fields specify different functions for the instruction and, when shown together, 

constitute an instruction format.

The operation code of an instruction, often shortened to “opcode,” is a 

group of bits in the instruction that specifies an operation, such as add, subtract, 

shift, or complement. The number of bits required for the opcode of an instruc-

tion is a function of the total number of operations in the instruction set. It must 

consist of at least m bits for up to 2m distinct operations. The designer assigns a 

bit combination (a code) to each operation. The computer is designed to accept 

this bit configuration at the proper time in the sequence of activities and to sup-

ply the proper  control-  word sequence to execute the specified operation. As a 

specific example, consider a computer with a maximum of 128 distinct opera-

tions, one of them an addition operation. The opcode assigned to this operation 

consists of seven bits 0000010. When the opcode 0000010 is detected by the con-

trol unit, a sequence of control words is applied to the datapath to perform the 

intended addition.

The opcode of an instruction specifies the operation to be performed. The 

operation must be performed using data stored in computer registers or in mem-

ory (i.e., on the contents of the storage resources). An instruction, therefore, must 

specify not only the operation, but also the registers or memory words in which 

the operands are to be found and the result is to be placed. The operands may be 

specified by an instruction in two ways. An operand is said to be specified explic-
itly if the instruction contains special bits for its identification. For example, the 

instruction performing an addition may contain three binary numbers specifying 

the registers containing the two operands and the register that receives the result. 

An operand is said to be defined implicitly if it is included as a part of the defini-

tion of the operation itself, as represented by the opcode, rather than being given 

in the instruction. For example, in an Increment Register operation, one of the 

operands is implicitly +1.

The three instruction formats for the simple computer are illustrated in 

Figure 8-14. Suppose that the computer has a register file consisting of eight regis-

ters, R0 through R7. The instruction format in Figure 8-14(a) consists of an opcode 

that specifies the use of three or fewer registers, as needed. One of the registers is 

designated a destination for the result and two of the registers sources for oper-

ands. For convenience, the field names are abbreviated DR for “Destination 

Register,” SA for “Source Register A,” and SB for “Source Register B.” The num-

bers of register fields and registers actually used are determined by the specific 

opcode. The opcode also specifies the use of the registers. For example, for a sub-

traction operation, suppose that the three bits in SA are 010, specifying R2, the 

three bits in SB are 011, specifying R3, and the three bits in DR are 001, 
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specifying R1. Then the contents of R3 will be subtracted from the contents of R2, 

and the result will be placed in R1. As an additional example, suppose that the 

operation is a store (to memory). Suppose further, that the three bits in SA spec-

ify R4 and the three bits in SB specify R5. For this particular operation, it is 

assumed that the register specified in SA contains the address and the register 

specified in SB contains the operand to be stored. So the value in R5 is stored in 

the memory location given by the value in R4. The DR field has no effect, since 

the store operation prevents the register file from being written.

The instruction format in Figure 8-14(b) has an opcode, two register fields, 

and an operand. The operand is a constant called an immediate operand, since it is 

immediately available in the instruction. For example, for an add immediate opera-

tion with SA specified as R7, DR specified as R2, and operand OP equal to 011, the 

value 3 is added to the contents of R7, and the result of the addition is placed in R2. 

Since the operand is only three bits rather than a full 16 bits, the remaining 13 bits 

must be filled by using either zero fill or sign extension, as discussed in Chapter 3. 

In this ISA, zero fill is specified for the operand.

The instruction format in Figure 8-14(c), in contrast to the other two formats, 

does not change any register file or memory contents. Instead, it affects the order in 

which the instructions are fetched from memory. The location of an instruction to be 

fetched is determined by the program counter, denoted by PC. Ordinarily, the pro-

gram counter fetches the instructions from sequential addresses in memory as the 

program is executed. But much of the power of a processor comes from its ability to 

change the order of execution of the instructions based on results of the processing 

performed. These changes in the order of instruction execution are based on the use 

of instructions referred to as jumps and branches.

(a) Register

Opcode
Destination 

register (DR)
Source reg- 
ister A (SA)

Source reg- 
ister B (SB)

15 9 8 6 5 3 2 0

(b) Immediate

Opcode
Destination 

register (DR)
Source reg- 
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

(c) Jump and branch

Opcode
Source reg- 
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD) 
(Right)

Address (AD) 
(Left)

 FIGURE 8-14
Three Instruction Formats
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The example format given in Figure 8-14(c) for jump and branch instruc-

tions has an operation code, one register field SA, and a split address field AD. If 

a branch (possibly based on the contents of the register specified) is to occur, the 

new address is formed by adding the current PC contents and the contents of the 

6-bit address field. This addressing method is called PC relative and the 6-bit 

address field, referred to as an address offset, is treated as a signed 2s complement 

number. To preserve the 2s complement representation, sign extension is applied 

to the 6-bit address to form a 16-bit offset before the addition. If the leftmost bit 

of the address field AD is a 1, then the 10 bits to its left are filled with 1s to give a 

negative 2s complement offset. If the leftmost bit of the address field is 0, then the 

10 bits to its left are filled with 0s to give a positive 2s complement offset. The off-

set is added to the contents of the PC to form the location from which the next 

instruction is to be fetched. For example, with the PC value equal to 55, suppose 

that a branch is to occur to location 35 if the contents of R6 is equal to zero. The 

opcode would specify a  branch-  on-  zero instruction, SA would be specified as R6, 

and AD would be the 6-bit, 2s complement representation of -20. If R6 is zero, 

then PC contents becomes 55 + (-20) = 35, and the next instruction will be 

fetched from address 35. Otherwise, if R6 is nonzero, the PC will count up to 56, 

and the next instruction will be fetched from address 56. This addressing method 

alone provides branch addresses within a small range below and above the PC 

value. The jump provides a broader range of addresses by using the unsigned con-

tents of a 16-bit register as the jump target.

The three formats in Figure 8-14 are used for the simple computer to be dis-

cussed in this chapter. In Chapter 9, we present and discuss more generally other 

instruction types and formats.

Instruction specifications describe each of the distinct instructions that can be 

executed by the system. For each instruction, the opcode is given along with a 

shorthand name called a mnemonic, which can be used as a symbolic representa-

tion for the opcode. This mnemonic, along with a representation for each of the 

additional instruction fields in the format for the instruction, represents the no-

tation to be used in specifying all of the fields of the instruction symbolically. 

This symbolic representation is then converted to the binary representation of 

the instruction by a program called an assembler. A description of the operation 

performed by the instruction execution is given, including the status bits that are 

affected by the instruction. This description may be text or may use a register 

 transfer-  like notation.

The instruction specifications for the simple computer are given in Table 8-8. 

The register transfer notation introduced in previous chapters is used to describe the 

operation performed, and the status bits that are valid for each instruction are 

 indicated. In order to illustrate the instructions, suppose that we have a memory 

with  16  bits per word with instructions having one of the formats in Figure  8-14. 
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Instructions and data, in binary, are placed in memory, as shown in Table 8-9. This 

stored information represents the four instructions illustrating the distinct formats. 

At address 25, we have a register format instruction that specifies an operation to 

subtract R3 from R2 and load the difference into R1. This operation is represented 

symbolically in the rightmost column of Table 8-9. Note that the 7-bit opcode for 

subtraction is 0000101, or decimal 5. The remaining bits of the instruction specify 

the three registers: 001 specifies the destination register as R1, 010 specifies the 

source register A as R2, and 011 specifies the source register B as R3.

In memory location 35 is a register format instruction to store the contents of 

R5 in the memory location specified by R4. The opcode is 0100000, or decimal 32, 

and the operation is given symbolically, again, in the rightmost column of the figure. 

Suppose R4 contains 70 and R5 contains 80. Then the execution of this instruction 

will store the value 80 in memory location 70, replacing the original value of 192 

stored there.

 TABLE 8-8
Instruction Specifications for the Simple Computer

Instruction Opcode

Mne-

monic Format Description

Status 

Bits

Move A 0000000 MOVA RD, RA R[DR] d R[SA]* N, Z

Increment 0000001 INC RD, RA R[DR] d R[SA] + 1* N, Z

Add 0000010 ADD RD, RA, RB R[DR] d R[SA] + R[SB]* N, Z

Subtract 0000101 SUB RD, RA, RB R[DR] d R[SA] - R[SB]* N, Z

Decrement 0000110 DEC RD, RA R[DR] d R[SA] - 1* N, Z

AND 0001000 AND RD, RA, RB R[DR] d R[SA] ¿ R[SB]* N, Z

OR 0001001 OR RD, RA, RB R[DR] d R[SA] ¡ R[SB]* N, Z

Exclusive OR 0001010 XOR RD, RA, RB R[DR] d R[SA] ⊕ R[SB]* N, Z

NOT 0001011 NOT RD, RA R[DR] d R[SA]* N, Z

Move B 0001100 MOVB RD, RB R[DR] d R[SB]*

Shift Right 0001101 SHR RD, RB R[DR] d sr R[SB]*

Shift Left 0001110 SHL RD, RB R[DR] d sl R[SB]*

Load  

 Immediate

1001100 LDI RD, OP R[DR] d zf OP*

 Add Immediate 1000010 ADI RD, RA, OP R[DR] d R[SA] + zf OP* N, Z

Load 0010000 LD RD, RA R[DR] d M[SA]*

Store 0100000 ST RA, RB M[SA] d R[SB]*

Branch on Zero 1100000 BRZ RA, AD if (R[SA] = 0) PC d PC + se AD,

if (R[SA] ≠ 0) PC d PC + 1

N, Z

Branch on  

 Negative

1100001 BRN RA, AD if (R[SA] 6 0) PC d PC + se AD,

if (R[SA] Ú 0) PC d PC + 1

N, Z

Jump 1110000 JMP RA PC d R[SA]*

* For all of these instructions, PC d PC + 1 is also executed to prepare for the next cycle.
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 TABLE 8-9
Memory Representation of Instructions and Data

Decimal 

Address  Memory Contents

Decimal  

Opcode Other Fields Operation

25 0000101 001 010 011 5 (Subtract) DR:1, SA:2, SB:3 R1 ← R2 – R3

35 0100000 000 100 101 32 (Store) SA:4, SB:5 M[R4] ← R5

45 1000010 010 111 011 66 (Add  

Immediate)

DR:2, SA:7, OP:3 R2 ← R7 + 3

55 1100000 101 110 100 96 (Branch  

on Zero)

AD: 44, SA:6 If R6 = 0,

PC ← PC − 20

70 00000000011000000 Data = 192. After execution of instruction in 35,

Data = 80.

At address 45, an immediate format instruction appears that adds 3 to the con-

tents of R7 and loads the result into R2. The opcode for this instruction is 66, and the 

operand to be added is the value 3 (011) in the OP field, the last three bits of the 

instruction.

In location 55, the branch instruction previously described appears. The 

opcode for this instruction is 96, and source register A is specified as R6. Note that 

AD (Left) contains 101 and AD (Right) contains 100. Putting these two together 

and applying sign extension, we obtain 1111111111101100, which represents -20 in 

2s complement. If register R6 is zero, then -20 is added to the PC to give 35. If reg-

ister R6 is nonzero, the new PC value will be 56. Notice our assumption that the 

addition to the PC content occurs before the PC has been incremented, which 

would be the case in the simple computer. In real systems, however, the PC has 

sometimes been incremented to point to the next instruction in memory. In such a 

case, the value stored in AD needs to be adjusted accordingly to obtain the right 

branch address, in this case, -19.

The placement of instructions in memory as shown in Table 8-9 is quite arbi-

trary. In many computers, the word length is from 32 to 64 bits, so the instruction 

formats can hold much larger immediate operands and addresses than those we have 

given. Depending on the computer architecture, some of the instruction formats may 

occupy two or more consecutive memory words. Also, the number of registers is 

often larger, so the register fields in the instructions must contain more bits.

At this point, it is vital to recognize the difference between a computer opera-
tion and a hardware microoperation. An operation is specified by an instruction 

stored in binary, in the computer’s memory. The control unit in the computer uses 

the address or addresses provided by the program counter to retrieve the instruction 

from memory. It then decodes the opcode bits and other information in the instruc-

tion to perform the required microoperations for the execution of the instruction. In 
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contrast, a microoperation is specified by the bits in a control word in the hardware 

which is decoded by the computer hardware to execute the microoperation. The exe-

cution of a computer operation often requires a sequence or program of microoper-

ations, rather than a single microoperation.

8-8  SINGLE-  CYCLE HARDWIRED CONTROL

The block diagram for a computer that has a hardwired control unit and that fetches 

and executes an instruction in a single clock cycle is shown in Figure 8-15. We refer to 

this computer as the  single-  cycle computer. The storage resources, instruction for-

mats, and instruction specifications for this computer are given in the previous sec-

tion. The datapath shown is the same as that in Figure 8-11 with m = 3 and n = 16. 

The data memory M is attached to the Address out, Data out, and Data in by connec-
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Data out
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 FIGURE 8-15
Block Diagram for a  Single-  Cycle Computer
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tions to the datapath. It has a single control signal MW, which is 1 to write the mem-

ory, and 0 otherwise.

The Control unit appears on the left in Figure  8-15. Although not usually 

thought of as part of the control unit, the instruction memory, together with its address 

inputs and instruction outputs, is shown for convenience within the control unit. We 

do not write to the instruction memory during the execution of a program, making it 

appear in this model to be a combinational rather than a sequential component. As 

previously discussed, the PC provides the instruction address to the instruction mem-

ory, and the instruction output from the instruction memory goes to the control logic, 

which in this case is the instruction decoder. The output from the instruction memory 

also goes to Extend and Zero fill, which provide the address offset to the PC and the 

constant input, Constant in, to the datapath, respectively. Extension appends the left-

most bit of the 6-bit address offset field AD to the left of AD, preserving its 2s com-

plement representation. Zero fill appends 13 zeros to the left of the operand (OP) 

field of the instruction to form a 16-bit unsigned operand for use in the datapath. For 

example, operand value 110 becomes 0000000000000110 or +6.

The PC is updated in each clock cycle. The behavior of the PC, which is a com-

plex register, is determined by the opcode, N, and Z, since C and V are not used in 

this  control-  unit design. If a jump occurs, the new PC value becomes the value on 

Bus A. If a branch is taken, then the new PC value is the sum of the previous PC 

value and the  sign-  extended address offset, which in 2s complement can be either 

positive or negative. Otherwise, the PC is incremented by 1. A jump occurs for bit 13 

in the instruction equal to 1. For bit 13 equal to 0, a conditional branch occurs. The 

status bit that is the condition for the branch is selected by bit 9 of the instruction. 

For bit 9 equal to 1, N is selected and, for bit 9 equal to 0, Z is selected.

All parts of the computer that are sequential are shown in blue. Note that there 

is no sequential logic in the control part other than the PC. Thus, aside from provid-

ing the address to the instruction memory, the control logic is combinational in this 

case. That fact, combined with the structure of the datapath and the use of separate 

instruction and data memories, allows the  single-  cycle computer to obtain and exe-

cute an instruction from the instruction memory, all in a single clock cycle.

Instruction Decoder

The instruction decoder is a combinational circuit that provides all of the control 

words for the datapath, based on the contents of the fields of the instruction. A num-

ber of the fields of the control word can be obtained directly from the contents of the 

fields in the instruction. Looking at Figure 8-16, we see that the  control-  word fields 

DA, AA, and BA are equal to the instruction fields DR, SA, and SB, respectively. 

Also, control field BC for selection of the branch condition status bits is taken direct-

ly from the last bit of Opcode. The remaining  control-  word fields include datapath 

and data memory control bits MB, MD, RW, and MW. There are two added bits for 

the control of the PC: PL and JB. If there is to be a jump or branch, PL = 1, loading 

the PC. For PL = 0, the PC is incremented. With PL = 1,  JB = 1 calls for a jump, 

and JB = 0 calls for a conditional branch. Some of the  single-  bit  control-  word fields 

require logic for their implementation. In order to design this logic, we divide the 
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various instructions possible for the simple computer into different function types 

and then assign the first three bits of the opcode to the various types. The instruction 

function types shown in Table 8-10 are based on the use of specific hardware resourc-

es in the computer, such as MUX B, the Function unit, the Register file, Data memo-

ry, and the PC. For example, the first function type uses the ALU, sets MUX B to use 

the Register file source, sets MUX D to use the Function unit output, and writes to 

the Register file. Other instruction function types are defined as various combina-

tions of use of a constant input instead of a register, Data memory reads and writes, 

and manipulation of the PC for jumps and branches.

By looking at the relationship between the instruction function types and the 

necessary  control-  word values needed for their implementation, bits 15 through 13 

and bit 9 were assigned as shown in Table 8-10. This assignment attempted to mini-

mize the logic required to implement the decoder. To perform the design of the 

decoder, the values for all of the  single-  bit fields in the control word were deter-

mined from the function types and entered into Table 8-10. Note that there are a 

number of don’ t-  care (X) entries. Treating Table 8-10 as a truth table and optimizing 

the logic functions, the logic for the  single-  bit outputs of the instruction decoder in 

 FIGURE 8-16
Diagram of Instruction Decoder
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Figure 8-16 results. In the optimization, the four unused codes for bits 15, 14, 13, and 

9 were assumed to have X values for all of the single bit fields. This implies that if one 

of these codes occurs in a program, the effect is unknown. A more conservative 

design specifies RW, MW, and PL all zero for these four codes to insure that the stor-

age resource state is unchanged for these unused codes. The optimization results in 

the logic in Figure 8-16 for implementing MB, MD, RW, MW, PL, and JB.

The remaining logic in the decoder deals with the FS field. For all but the con-

ditional branch and unconditional jump instructions, bits 9 through 12 are fed 

directly through to form the FS field. During conditional branch operations, such as 

Branch on Zero, the value in source register A must be passed through the ALU so 

that the status bits N and Z can be evaluated. This requires FS = 0000. The use of 

bit 9, however, for  status-  bit selection for conditional branches requires at times that 

bit 9, which controls the rightmost bit of FS, be a 1. The contradiction in values 

between bit 9 and FS is resolved by adding an enable on bit 9 that forces FS0 to zero 

whenever PL = 1, as shown in Figure 8-16.

Sample Instructions and Program

Six instructions for the  single-  cycle computer are listed in Table  8-11. The 

 symbolic names associated with the instructions are useful for listing programs 

in symbolic form rather than in binary code. Because of the importance of in-

struction decoding, the rightmost six columns of the table show critical  control- 

 signal values for each instruction, based on the values obtained using the logic in 

Figure 8-16.

Now suppose that the first instruction, “Add Immediate” (ADI), is present on 

the output of the instruction memory shown in Figure  8-15. Then, on the basis 

 TABLE 8-10
Truth Table for Instruction Decoder Logic

   Instruction Bits  Control-  Word Bits

Instruction Function Type 15 14 13 9 MB MD RW MW PL JB BC

 Function-  unit operations using 

registers

0 0 0 X 0 0 1 0 0 X X

Memory read 0 0 1 X 0 1 1 0 0 X X

Memory write 0 1 0 X 0 X 0 1 0 X X

 Function-  unit operations using 

register and constant

1 0 0 X 1 0 1 0 0 X X

Conditional branch on zero (Z) 1 1 0 0 X X 0 0 1 0 0

Conditional branch on negative (N) 1 1 0 1 X X 0 0 1 0 1

Unconditional jump 1 1 1 X X X 0 0 1 1 X
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of  the first three bits of the opcode, 100, the outputs of the instruction decoder 

have the values MB = 1, MD = 0, RW = 1, and MW = 0. The last three bits of 

the instruction, OP2 - 0, are extended to 16 bits by zero fill. We denote this in a reg-

ister transfer statement by zf. Since MB is 1, this  zero-  filled value is placed on 

Bus B. With MD equal to 0, the function unit output is selected, and since the last 

four bits of the opcode, 0010, specify field FS, the operation is A + B. So the  zero- 

 filled value on Bus B is added to the contents of register SA, with the result pre-

sented on Bus  D.  Since RW = 1, the value on Bus D is written into 

register DR. Finally, with MW = 0, no write into memory occurs. This entire oper-

ation takes place in a single clock cycle. At the beginning of the next cycle, the 

destination register is written and, since PL = 0, the PC is incremented to point to 

the next instruction.

The second instruction, LD, is a load from memory with opcode 0010000. The 

first three bits of this opcode, 001, give control values MD = 1, RW = 1, and 

MW = 0. These values, plus the register source field SA and register destination 

field DR, fully specify this instruction, which loads the contents of the memory 

address specified by register SA into register DR. Again, since PL = 0, the PC is 

incremented. Note that the values of JB and BC are ignored, since this is neither a 

jump nor a branch instruction.

The third instruction, ST, stores the contents of a register in memory. The 

first three bits of the opcode, 010, give control signal values MB = 0, RW = 0, 

and MW = 1. MW = 1 causes a memory write operation, with the address and 

data from the register file. RW = 0 prevents the register file from being written. 

The address for the memory write comes from the register selected by field SA, 

and the data for the memory write comes from the register selected by SB, since 

MB = 0. The DR field, although present, is not used, since no write occurs to a 

register.

Because this computer has load and store instructions and does not combine 

loading and storing of data operands with other operations, it is referred to as having 

a load/store architecture. The use of such an architecture simplifies the execution of 

instructions.

The next two instructions use the Function unit and write to the Register file 

without immediate operands. The last four bits of the opcode, the value for the FS 

field of the control word, specify Function unit operation. For these two instructions, 

only one source register, R[SA] for the NOT and R[SB] for the shift left, and a desti-

nation register are involved.

The final instruction is a conditional branch and manipulates the PC value. It 

has PL = 1, causing the program counter to be loaded instead of incremented, and 

JB = 0, causing a conditional branch rather than a jump. Since BC = 0, register 

R[SA] is tested for a value of zero. If R[SA] equals zero, the PC value becomes PC +  

se AD, where se stands for sign extend. Otherwise, PC is incremented. For this 

instruction, the DR and SB fields become the 6-bit address field AD, which is sign 

extended and added to the PC.

To demonstrate how instructions such as these can be used in a simple pro-

gram, consider the arithmetic expression 83 - (2 + 3). The following program 

performs this computation, assuming that register R3 contains 248, location 248 in 
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data memory contains 2, location 249 contains 83, and the result is to be placed in 

location 250:

LD R1, R3 Load R1 with contents of location 248 in memory (R1 = 2)

ADI R1, R1, 3 Add 3 to R1 (R1 = 5)

NOT R1, R1 Complement R1

INC R1, R1 Increment R1 (R1 = -5)

INC R3, R3 Increment the contents of R3 (R3 = 249)

LD R2, R3 Load R2 with contents of location 249 in memory (R2 = 83)

ADD R2, R2, R1 Add contents of R1 to contents of R2 (R2 = 78)

INC R3, R3 Increment the contents of R3 (R3 = 250)

ST R3, R2 Store R2 in memory location 250 (M[250] = 78)

The subtraction in this case is done by taking the 2s complement of (2 + 3) and  adding 

it to 83; the subtraction operation SUB could have been used as well. If a register field is 

not used in executing an instruction, its symbolic value is omitted. The symbolic values 

for the  register-  type instructions, when the latter are present, are in the order DR, SA, 

and SB. For immediate types, the fields are in the order DR, SA, and OP. To store this 

program in the instruction memory, it is necessary to convert all of the symbolic names 

and decimal numbers used to their corresponding binary codes.

 Single-  Cycle Computer Issues

Although there may be instances in which  single-  cycle computer timing and control 

strategy is useful, it has a number of shortcomings. One is in the area of performing 

complex operations. For example, suppose that an instruction is desired that executes 

unsigned binary multiplication using a multiplication algorithm that processes one bit 

of the multiplier at a time. With the given datapath, this cannot be accomplished by a 

microoperation that can be executed in a single clock cycle. Thus, a control organiza-

tion that provides multiple clock cycles for the execution of instructions is needed.

Also, the  single-  cycle computer has two distinct 16-bit memories, one for 

instructions and one for data. For a simple computer with instructions and data in 

the same 16-bit memory, two read accesses of memory are required to execute an 

instruction that loads a data word from memory into a register. The first access 

obtains the instruction, and the second access, if required, reads or writes the data 

word. Since two different addresses must be applied to the memory address inputs, 

at least two clock cycles, one for each address, are required for obtaining and execut-

ing the instruction. This can also be accomplished easily with  multiple-  cycle control.

Finally, the  single-  cycle computer has a lower limit on the clock period based 

on a long  worst-  case delay path. This path is shown in blue in the simplified diagram 

of Figure 8-17. The total delay along the path is 9.8 ns. This limits the clock frequency 

to 102 MHz, which, although it may be adequate for some applications, is too slow for 

a modern computer CPU. In order to have a higher clock frequency, either the delays 

of the components on the path or the number of components in the path must be 

reduced. If the delays of the components cannot be reduced, reducing the number of 

components in the path is the only alternative. In Chapter 10, pipelining of the data-

path reduces the number of components in the longest combinational delay path and 
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permits the clock frequency to be increased. A pipelined datapath and control given 

in Chapter 10 demonstrates the improved CPU performance that can be obtained.

8-9  MULTIPLE-  CYCLE HARDWIRED CONTROL

To demonstrate  multiple-  cycle control, we use the architecture of the simple com-

puter, but modify its datapath, memory, and control. The goal of the modifications is 

to demonstrate the use of a single memory for both data and instructions and to 

demonstrate how more complex instructions can be implemented by using multiple 

clock cycles per instruction. The block diagram in Figure 8-18 shows the modifica-

tions to the datapath, memory, and control.

The changes to the  single-  cycle computer can be observed by comparing Figures 

8-15 and 8-18. The first modification, which is possible with, but not essential to, 

 multiple-  cycle operation, replaces the separate instruction memory and data memory 

in Figure 8-15 with the single Memory M in Figure 8-18. To fetch instructions, the PC is 

the address source for the memory, and to fetch data, Bus A is the address source. At 

the address input to memory, multiplexer MUX M selects between these two address 

sources. MUX M requires an additional control signal, MM, which is added to the 

 control-  word format. Since instructions from Memory M are needed in the control 

unit, a path is added from its output to the instruction register IR in the control unit.

PC

Instruction
memory

Register file
(Read)

MUX B 

Function
unit or

Data memory

MUX D 

Register file 0.6 ns
(Write)

0.2 ns

4 ns

0.6 ns

0.2 ns

4 ns

0.2 ns

 FIGURE 8-17
 Worst-  Case Delay Path in  Single-  Cycle Computer
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In executing an instruction across multiple clock cycles, data generated during 

the current cycle is often needed in a later cycle. This data can be temporarily stored 

in a register from the time it is generated until the time it is used. Registers used for 

such temporary storage during the execution of the instruction are usually not visible 

to the user (i.e., are not part of the storage resources). The second modification pro-

vides these temporary storage registers by doubling the number of registers in the 

register file. Registers 0 through 7 are storage resources and registers 8 through 15 

are used only for temporary storage during instruction execution, so are not part of 

the storage resources visible to the user. The addressing of 16 registers requires 4 bits, 

and becomes more complex, since addressing of the first eight registers must be con-

trolled from the instruction, and the second eight registers, from the control unit. 

This is handled by the Register address logic in Figure 8-18 and by modified DX, AX, 
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Block Diagram for a  Multiple-  Cycle Computer
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 FIGURE 8-19
 Control-  Word Format for  Multiple-  Cycle Computer

and BX fields in the control word. The details of this change will be discussed later 

when the  control-  word information is defined.

The PC is the only control unit component retained and it must also be modi-

fied. During the execution of a  multiple-  cycle instruction, the PC must be held at its 

current value for all but one of the cycles. To provide this hold capability, as well as 

an increment and two load operations, the PC is modified to be controlled by a 2-bit 

 control-  word field, PS. Since the PC is controlled completely by the control word, 

the Branch control logic previously represented by BC is absorbed into the Control 

Logic block in Figure 8-18.

Because of the multiple cycles of the modified computer, the instruction needs 

to be held in a register for use during its execution since its values are likely to be 

needed for more than just the first cycle. The register used for this purpose is the 

instruction register IR in Figure 8-18. Since the IR loads only when an instruction is 

being read from memory, it has a  load-  enable signal IL that is added to the control 

word. Because of the  multiple-  cycle operation, a sequential control circuit, which can 

provide a sequence of control words for microoperations used to interpret the 

instruction is required and replaces the Instruction decoder. The sequential control 

unit consists of the Control state register and the combinational Control logic. The 

Control logic has the state, the opcode, and the status bits as its inputs and produces 

the control word as its output. Conceptually, the control word is divided into two 

parts, one for Sequence control, which determines the next state of the overall con-

trol unit, and one for Datapath control, which controls the microoperations executed 

by the Datapath and Memory M as shown in Figure 8-18.

The 28-bit modified control word is given in Figure 8-19 and the definitions of the 

fields of the control word are given in Tables 8-12 and 8-13. In Table 8-12, the fields DX, 

AX, and BX control the register selection. If the MSB of one of these fields is 0, then the 

corresponding register addresses DA, AA, or BA are that given by 0 || DR, 0 || SA, and 0 

|| SB, respectively. If the MSB of one of these fields is 1, then the corresponding register 

address is the contents of the field DX, AX, or BX. This selection process is performed 

by the Register address logic, which contains three multiplexers, one for each of DA, 

AA, and BA, controlled by the MSB of DX, AX, and BX, respectively. Table 8-12 also 

gives the code values for the MM field, which determines whether Address out or PC 

serves as the Memory M address. The remaining fields in Table 8-12, MB, MD, RW, and 

MW, have the same functions as for the  single-  cycle computer.

In the sequential control circuit, the State control register has a set of states, just 

as a set of  flip-  flops in any other sequential circuit has. At the level of our discussion, 

we assume that each state has an abstract name which can be used as both the state 

and the  next-  state value. In the design process, a state assignment needs to be made to 



486          CHAPTER 8 / COMPUTER DESIGN BASICS 

 TABLE 8-13
Control Information for Sequence Control

NS PS IL

Next State Action Code Action Code

Gives next state  

of control state  

register

Hold PC 00 No load 0

Inc PC 01 Load IR 1

Branch 10

Jump 11

 TABLE 8-12
 Control-  Word Information for Datapath

DX AX BX Code MB Code FS Code MD RW MM MW Code

R[DR]R[SA]R[SB] 0XXX Register 0  F = A 0000 FnUt No  

Write

Address  

out

No  

Write

0

R8 R8 R8 1000 Constant 1 F = A + 1 0001 Data in Write PC Write 1

R9 R9 R9 1001 F = A + B 0010

R10 R10 R10 1010 Unused 0011

R11 R11 R11 1011 Unused 0100

R12 R12 R12 1100 F = A+B+1 0101

R13 R13 R13 1101 F = A-1 0110

R14 R14 R14 1110 Unused 0111

R15 R15 R15 1111 F = A¿B 1000

F = A¡B 1001

F = A ⊕ B 1010

F = A 1011

F = B 1100

F = sr  B 1101

F = sl  B 1110

Unused 1111

these abstract states. Referring to Table 8-13, the field NS in the control word provides 

the next state for the Control State register. We have assigned four bits for the state 

code, but this can be modified as necessary, depending on the number of states needed 

and the state assignment used in the design. This particular field could be considered 

as integral to the control and sequential circuit and not part of the control word, but it 

will appear in the state table of the control in any case. The 2-bit PS field controls the 

program counter, PC. On a given clock cycle the PC holds its state (00), increments 

its state by 1 (01), conditionally loads PC plus  sign-  extended AD (10), or uncondi-

tionally loads the contents of R[SA] (11). Finally, the instruction register is loaded 
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only once during the execution of an instruction. Thus, on any given cycle, either a 

new instruction is loaded (IL = 1) or the instruction remains unchanged (IL = 0).

Sequential Control Design

The design of the sequential control circuit can be done using techniques from Chap-

ters 4 and 6. However, compared to the examples there, even for this comparatively 

simple computer, the control is quite complex. Assuming there are four state variables, 

the combinational Control logic has 15 input variables and 28 output variables. It turns 

out that a condensed state table for the circuit is not too difficult to develop, but manual 

design of the detailed logic is very complex, making the use of logic synthesis or a PLA 

(programmed logic array), as discussed in Chapter 5, more viable options. As a conse-

quence, we focus on state table development rather than detailed logic implementation. 

We begin by developing a state machine diagram that represents the instructions that 

can be implemented with the minimum number of clock cycles. Extensions of this chart 

can then be developed for implementation of instructions requiring more than the min-

imum number of clock cycles. The state machine diagrams provide the information 

needed to develop the state table entries for implementing the instruction set. For in-

structions requiring a memory access for data as well as for the instruction itself, at least 

two cycles are required. It is convenient to separate the cycles into two processing steps: 

instruction fetch and instruction execution. On the basis of this division, the partial state 

machine diagram for the  two-  cycle instructions is given in Figure 8-20. This is called a 

partial state diagram, since there will be other pieces added to it, e.g., in Figures 8-21 and 

8-22. The instruction fetch occurs in state INF at the top of the chart. The PC contains 

the address of the instruction in Memory M. This address is applied to the memory, and 

the word read from memory is loaded into the IR on the positive clock edge that ends 

0000001

0000010
0000101

0000110

0001000
0001001

0001010

0001011

0001100

0010000

0100000
1001100

1000010
1100000 · Z 

1100001 · N

0000000

EX0

INF

R[DR]      R[SA]

R[DR]      R[SA] + 1
R[DR]      R[SA] + R[SB]

+ R[SB] +1R[DR]      R[SA]

R[DR]      R[SA] �1

R[DR]      R[SA]     R[SB]

R[DR]      R[SA] � R[SB]

IR      M[PC]

R[DR]      R[SB]

R[DR]      M[R[SA]]
M[R[SA]]      R[SB]
R[DR]      zf OP
R[DR]      R[SA] + zf OP

R[DR]      R[SA]

R[DR]      R[SA]     R[SB]

Opcode � Opcode �

1110000 PC      R[SA]

PC      PC + 1
Σ transition conditions on merged arcs

PC      PC � se AD
1100000 · Z

1100001 · N
PC      PC � se AD

 FIGURE 8-20
Partial State Machine Diagram for  Multiple-  Cycle Computer
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state INF. The same clock edge causes the new state to become EX0. In state EX0, the 

instruction is decoded and the microoperations executing all or part of the instruction 

appear in  Mealy-  type outputs. If the instruction can be completed in state EX0, the next 

state is INF in preparation for fetching of the next instruction. Further, for instructions 

that do not change PC contents during their execution, the PC is incremented. If addi-

tional states are required for instruction execution, the next state is EX1. In each of the 

execution states, 128 different input combinations are possible, based on the opcode. 

Many of these opcodes will be unused. An unused opcode is one which does not appear 

in any of the partial state diagrams for a particular control unit. We assume that these 

opcodes will never appear and so will be don’ t-  care inputs. An alternative assumption is 

that if they do appear, they cause an exception that signals their presence. These and 

other assumptions for unused opcodes must be taken into account when evaluating 

constraint 2 of the transition condition constraints in Section 4-6.

Status bits are used with some operation codes, typically one at a time. In 

Figure 8-20, N and Z appear for the branch instructions on the lower right as output 

conditions and affect output actions only. In other cases, they may also affect 

sequencing, appearing as transition conditions.

Next, we describe a sampling of the instruction executions specified by the 

state machine diagram in Figure 8-20. The first opcode is 0000000 for the move A 

(MOVA) instruction. This instruction involves a simple transfer from the source A 

register to the destination register, as specified by the register transfer shown in state 

EX0 for the instruction opcode. Although the status bits N and Z are valid, they are 

not used in the execution of this instruction. The move action occurs and the PC is 

incremented on the clock edge, ending state EX0. The incrementing of the PC is an 

action that occurs for all but branch and jump instructions in the state machine dia-

gram. Note that due to the sharing of arcs by the transitions to state INF, the incre-

menting of the PC can be placed on the arc shared by all transitions rather than 

being added to the output branch for each transition.

The third opcode is 0000010 for the ADD instruction with the register transfer 

for addition shown. In this case, status bits V, C, N, and Z are valid, although not used. 

R8      M[R[SA]]

R[DR]     M[R8], PC       PC � 1

Opcode = 0010001

Opcode = 0010001

EX1

EX0

To INF

From INF

 FIGURE 8-21
Partial State Machine Diagram for Register Indirect Instruction
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The eleventh opcode, 0010000, is the load (LD) instruction, which uses the value in the 

register specified by SA for the address and loads the data word from Memory M into 

the register specified by DR. The twelfth opcode, 0100000, is for the store (ST) instruc-

tion, which stores the value in register SB into the location in Memory M specified by 

the address from register  SA.  The fourteenth opcode, 1001100, is add immediate 

(ADI), which adds the  zero-  filled value of the OP field, the rightmost three bits of the 

instruction, to the contents of register SA and places the result in the register DR.

The sixteenth opcode, 1100001, is the branch on negative (BRN) instruction. The 

decoding of this instruction causes the value in the register specified by SA to be passed 

through the Function unit in order to evaluate status bits N and Z. The values N and Z 

then propagate back to the Control logic, but no register load of the Function unit out-

put occurs. Based on the value of N, the branch is taken or not taken by adding the 

extended address AD from the instruction to the value in the PC or incrementing the 

PC, respectively. This is represented by the output action for N shown in Figure 8-20.

From this state machine diagram, the state table for the sequential control cir-

cuit can be developed as shown in Table 8-14. The present states are given as abstract 

state names, and the opcodes and status bits serve as inputs. In the case of the status 

bits, only those bits that are used in the instruction are specified. By using combina-

tions of bits and multiple status bit patterns, it is possible to specify functions of sta-

tus bits. Note that many of the entries in Table 8-14 contain Xs, symbolizing “don’t 

From INF

To INF

Opcode = 0001101
R8      sl R8

R[DR]      R8

EX1

EX2

EX0
Z · ((Opcode = 0001101) + (Opcode = 0001110)) 

Z · ((Opcode = 0001101)
      + (Opcode = 0001110)) 

Z · ((O
pcode = 0001101) + (Opcode = 0001110)) 

EX3
R8       sr R8

Opcode = 0001110

Z · ((Opcode = 0001101)
       + (Opcode = 0001110))

Z · ((Opcode = 0001101) + (Opcode = 0001110)) 

EX4

(Opcode = 0001101) + (Opcode = 0001110)

Z · ((Opcode = 0001101)
       + (Opcode = 0001110)) 

R9      zf OP

(Opcode = 0001101) + (Opcode = 0001110)/R8      R[SA]

 state-transition conditions
on merged arcs

((Opcode = 0001101)
    + (Opcode = 0001110))/

((Opcode = 0001101)
    + (Opcode = 0001110))/

 FIGURE 8-22
Partial State Machine Diagram for  Right-  Shift and  Left-  Shift Multiple Instructions
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cares.” For these entries, the input or resource is not used in the given microopera-

tion, or the specific bits of the code that are X are not used for controlling it. It is a 

useful exercise to determine how each of the entries in Table 8-14 is obtained, based 

on Tables 8-12, 8-13, and Figure 8-20.

It is interesting to briefly compare the timing of the execution of instructions in 

this organization with that for the  single-  cycle computer. Each instruction requires 

two clock cycles to fetch and execute, compared with one clock cycle for the  single- 

 cycle computer. Because the very long delay path from the PC through the 

Instruction memory, Instruction decoder, datapath, and branch control is broken up 

by the instruction register, the clock periods are somewhat shorter. Nevertheless, 

due to setup time requirements for the added  flip-  flops in the IR and a potential 

imbalance in delays for the various paths through the circuit, the overall time taken 

to execute an instruction could be just as long as or longer than in the  single-  cycle 

computer. So what is the benefit of this organization, other than ability to use a single 

memory? The next two instructions give the answer.

The first instruction to be added is a “load register indirect” (LRI), with opcode 

0010001. In this instruction, the contents of register SA address a word in memory. 

The word, which is known as an indirect address, is then used to address the word in 

memory that is loaded into register DR. This can be represented symbolically as

R[DR] d M[M[R[SA]]]

The partial state machine diagram for the execution of this instruction is given in 

Figure 8-21. Following the instruction fetch, the state becomes EX0, the same EX0 

used in Figure 8-20. In this state, R[SA] addresses the memory to obtain the indirect 

address, which is then placed in temporary register R8. In the next state, EX1, a new 

state that is added here, the next memory access occurs with the address from R8. The 

operand obtained is placed in R[DR] to complete the operation, and the PC is incre-

mented. The state machine diagram then returns to state INF to fetch the next instruc-

tion. The state machine diagram portion for the execution of a given instruction must 

have the opcode for the instruction appear on all transitions from states that have 

opcodes for other instructions appearing, since the same states are used by the other 

instructions for their execution. This applies across all of the partial state machine dia-

grams for the control unit. Clearly, with two accesses to Memory M, this instruction 

could not be executed by the  single-  clock-  cycle computer or by using two clock cycles 

in the  multiple-  cycle computer. Also, to avoid disturbing the contents of registers R0 

through R7 (except for R[SA]), the use of register R8 for temporary storage is essen-

tial. The LRI instruction requires three clock cycles for its execution. To accomplish the 

same operation in the  single-  cycle computer requires two LD instructions, taking two 

clock cycles. In the  multiple-  cycle computer, due to two instruction fetches and two 

data accesses, it would require two LD instructions, but would take four clock cycles. 

So the LRI instruction gives an improvement in execution time in the latter case.

The final two instructions to be added are “shift right multiple” (SRM) and 

“shift left multiple” (SLM), with opcodes 0001101 and 0001110, respectively. These 

two instructions can share most of the microinstruction sequence to be used. SRM 

specifies that the contents of register SA are to be shifted to the right by the number 

of positions given by the three bits of the OP field, with the result placed in regis-

ter DR. The partial state machine diagram for this operation (and for SLM) is given 
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in Figure 8-22. Register R9 stores the number of bit positions remaining to be shifted, 

and the shifting is performed in register R8.

Initially, the contents of R[SA] to be shifted is placed in R8. As the contents are 

loaded into R8, it passes through the ALU and is checked to see if it is 0 to determine 

if shifting is needed or not. Note that this check could occur even if R8 was not loaded. 

Likewise, the shift amount being loaded into R9 is checked to see whether it is 0, again 

to determine if shifting is needed or not. If either case is satisfied, the instruction exe-

cution is complete, and the state machine flow returns to state INF. Otherwise, a  right- 

 shift operation is performed on the contents of register R8. R9 is decremented and 

tested to see whether it will be 0. If R9 ≠ 0, then the shift and decrement are repeated. 

If R9=0, then the contents of R8 have been shifted by the number of bit positions 

specified by OP, so the result is transferred to R[DR] to complete the instruction exe-

cution, and the state machine flow returns to state INF.

If both the operand and the shift amount are nonzero, SRM, including fetch, 

requires 2s+4 clock cycles, where s is the number of positions shifted. The range of 

clock cycles required, including the instruction fetch, is from 6 to 18. If the same 

operation were implemented by a program using the  right-  shift instruction plus 

increment and branching, then 3s+3 instructions would be required, giving 6s+6 

cycles. The improvement in the required number of clock cycles is 4s+2, so 6 to 30 

clock cycles are saved in the  multiple-  cycle computer for a nonzero operand and 

shift amount. Also, five fewer memory locations are required for storage of the SRM 

instruction, in contrast to that for the program.

In the state machine diagram in Figure 8-22, the states INF and EX0 are the 

same as those used for the  two-  cycle instructions in the state machine diagram in 

Figure 8-20, and EX1 is the same as used for the LRI instruction in Figure 8-21. Also, 

implementation of the  left-  shift multiple operation is shown in Figure 8-22, in which, 

based on the opcode, the left shift of R8 replaces the right shift of R8. As a conse-

quence, the logic implementing the states used for implementation of these two 

instructions can be shared. Further, the logic used for the sequencing of the states can 

be shared between the SRM and SLM instruction implementations. The state table 

specification in Table 8-15 is derived by using the information from the state machine 

diagram in Figure 8-22, and Tables 8-12 and 8-13. The codes are derived from the reg-

ister transfer and sequencing action described in the comments on the right in the 

same way that Table 8-14 was derived.

Implementation of the LRI and SRM instructions illustrates the flexibility 

achieved using  multiple-  cycle control. Implementation of additional instructions is 

explored in the problems at the end of the chapter.

8-10 CHAPTER SUMMARY

In the first part of the chapter, the concept of a computer datapath for implementing 

computer microoperations was introduced. Among the major components of datap-

aths are register files, buses, arithmetic/logic units (ALUs), and shifters. The control 

word provides a means of organizing the control of the microoperations performed 

by the datapath. These concepts were combined to serve as a basis for exploring 

computers in the remainder of the text.

In the second part of the chapter, control design for programmed systems was 

introduced by examining two different implementations of basic control units for a 
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simple computer architecture. We introduced the concept of instruction set architec-

tures and defined instruction formats and operations for the simple computer. The 

first implementation of this computer is capable of executing any instruction in a 

single clock cycle. Aside from having a program counter and its logic, the control unit 

of this computer consists of a combinational decoder circuit.

Among the shortcomings of the  single-  cycle computer are limitations on the 

complexity of the instructions that can be executed on it, problems with the interface 

to a single memory, and the relatively low clock frequencies attained. To deal with 

the first two of these shortcomings, we examined a  multiple-  cycle version of the 

simple computer in which a single memory is used and instructions are implemented 

using two distinct phases: instruction fetch and instruction execution. The remaining 

issue of long clock cycles is dealt with in Chapter 10 by introducing pipelined datap-

aths and control.
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PROBLEMS
The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

8-1.  A datapath similar to the one in Figure  8-1 has 64 registers. How many 

selection lines are needed for each set of multiplexers and for the decoder?

8-2.  *Given an 8-bit ALU with outputs F
7
 through F

0
 and available carries C

8
 and 

C
7
, show the logic circuit for generating the signals for the four status bits N 

(sign), Z (zero), V (overflow), and C (carry).

8-3.  *Design an arithmetic circuit with two selection variables S
1
 and S

0
 and two  

 n- bit data inputs A and B. The circuit generates the following eight arithmetic 

operations in conjunction with carry C
in
:

S1 S0 Cin = 0 Cin = 1

0 0 F = A + B (add) F = A + B + 1 (subtract A − B)

0 1 F = A + B F = A + B + 1 (subtract B − A)

1 0 F = A - 1 (decrement) F = A + 1 (increment)

1 1 F = A (1s complement) F = A + 1 (2s complement)

Draw the logic diagram for the two least significant bits of the arithmetic circuit.
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8-4.  *Design a 4-bit arithmetic circuit, with two selection variables S
1
 and S

0
, that 

generates the arithmetic operations in the following table. Draw the logic 

diagram for a typical  single-  bit stage and the LSB stage.

S1 S0 Cin = 0 Cin = 1

0 0 F = A + B (add) F = A + B + 1

0 1 F = A (transfer) F = A + 1 (increment)

1 0 F = B (complement) F = B + 1 (negate)

1 1 F = A + B F = A + B + 1 (subtract)

8-5.  Draw the diagram of an ALU in which there are three bits allocated for 

selecting the following operations, for two operands. The operations are 

below. Draw a simple block diagram. Also, consider what should be done in 

the case an invalid combination of selection bits appears.

(a) Add

(b) Subtract 

(c)  Logical OR

(d) Logical AND

(e) Logical  XOR

8-6.  *Design one bit of a digital circuit that performs the four logic operations of 

 exclusive-  OR,  exclusive-  NOR, NOR, and NAND on register operands A and 

B with the result to be loaded into register A. Use two selection variables.

(a) Using a Karnaugh map, design minimum logic for one typical stage, and 

show the logic diagram.

(b) Repeat (a), trying different assignments of the selection codes to the four 

operations to see whether the logic for the stage can be simplified further.

8-7.  +Design an ALU that performs the following operations:

A + B                  sr  A
A + B + 1          A ¡ B
B                            sl  A

B + 1                   A ¿ B

Give the result of your design as the logic diagram for a single stage of 

the ALU. Your design should have one carry line to the left and one carry 

line to the right between stages and three selection bits. If you have access 

to logic optimization software, apply it to the design to obtain reduced logic. 

Model your ALU in an HDL and verify its operation by simulation.

8-8.  *Find the output Y of the 4-bit barrel shifter in Figure 8-9 for each of the 

following bit patterns applied to S
1
, S

0
, D

3
, D

2
, D

1
, and D

0
:

(a) 110101 (b) 101011

(c) 011010 (d) 001101
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8-9.  Specify the 16-bit control word that must be applied to the datapath of 

Figure 8-11 to implement each of the following microoperations:

(a) R3 ← Data in  (b) R4 ← 0

(c) R1 ← sr R4  (d) R3 ← R3 + 1

(e) R2 ← sl R2  ( f ) R1 d R2 ⊕ R4

(g) R7 ← R1 + R3 (h) R4 ← R5 – Constant in

8-10.  *Given the following 16-bit control words for the datapath of Figure 8-11, 

determine (a) the microoperation that is executed and (b) the change in 

the contents of the register for each control word (assume that the registers 

are 8-bit registers and that, before the execution of a control word, they 

contain the  value of their number (e.g., register R5 contains 05 in 

hexadecimal)). Assume that Constant in has value 6 and Data in has value 1B, 

both in hexadecimal.

(a) 101 100 101 0 1000 0 1 (b) 110 010 100 0 0101 0 1

(c) 101 110 000 0 1100 0 1 (d) 101 000 000 0 0000 0 1

(e) 100 100 000 1 1101 0 1 ( f ) 011 000 000 0 0000 1 1

8-11.  Given the sequence of 16-bit control words below for the datapath in 

Figure 8-11 and the initial ASCII character codes in 8-bit registers, simulate 

the datapath to determine the alphanumeric characters in the registers after 

the execution of the sequence. The result is a scrambled word: what is it?

011 011 001 0 0010 0 1 R0 00000000

100 100 001 0 1001 0 1 R1 00100000

101 101 001 0 1010 0 1 R2 01000100

001 001 000 0 1011 0 1 R3 01000111

001 001 000 0 0001 0 1 R4 01010100

110 110 001 0 0101 0 1 R5 01001100

111 111 001 0 0101 0 1 R6 01000001

001 111 000 0 0000 0 1 R7 01001001

8-12.  A  RISC computer has a 32-bit instruction format consisting of the following: 

(1) Opcode: 8 bits 

(2) 3 register fields, each of 4 bits

(3) A 4 bit field for “condition”

 The remaining bits are for information pertaining to the processor.

(a) What is the maximum number of operations possible?

(b) How many combinations of three registers are possible?

(c) How many conditions can be accommodated?

(d) How many registers are possible?

8-13.  *A digital computer has a memory unit with a 32-bit instruction and a 

register file with 64 registers. The instruction set consists of 130 different 

operations. There is only one type of instruction format, with an opcode part, 



a register file address, and an immediate operand part. Each instruction is 

stored in one word of memory.

(a) How many bits are needed for the opcode part of the instruction?

(b) How many bits are left for the immediate part of the instruction?

(c) If the immediate operand is used as an unsigned address to memory, what 

is the maximum number of words that can be addressed in memory?

(d) What are the largest and the smallest algebraic values of signed 2s comple-

ment binary numbers that can be accommodated as an immediate operand?

8-14.  A RISC processor has the following format for its branch instruction:

31    28 27 26 25 24  23

COND 1 0 1 L Signed-immed_24

 The figure shows the offset of the target to use a signed immediate number 

with 24 bits. What is the range to which control can branch to?

8-15.  The  single-  cycle computer in Figure  8-15 executes the five instructions 

described by the register transfers in the table that follows.

(a) Complete the following table, giving the binary instruction decoder 

outputs from Figure 8-16 during execution of each of the instructions:

 Instruction—  Register 

Transfer DA AA BA BA FS MD RW MW PL JB

R[0] d R[7] ⊕ R[3]

R[1] d M[R[4]]

R[2] d R[5]+2

R[3] d sl  R[6]

if  (R([4] = 0)

PC d PC+se  AD
else   PC  d PC+1

(b) Complete the following table, giving the instruction in binary for the 

 single-  cycle computer that executes the register transfer (if any field is not 

used, give it the value 0):

 Instruction—  Register Transfer Opcode DR SA SB or Operand

R[0] ← R[7]+R[6]

R[1] ← R[5]-1

R[2] ← sl R[4]

R[3] d R[3]

R[4] d R[2] ¡ R[1]
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8-16.  Using the information in the truth table in Table 8-10, verify that the design 

for the  single-  bit outputs in the decoder in Figure 8-16 is correct.

8-17.  Manually simulate the  single-  cycle computer in Figure 8-15 for the following 

sequence of instructions, assuming that each register initially contains contents 

equal to its index (i.e., R0 contains 0, R1 contains 1, and so on):

ADD R0, R1, R2

SUB R3, R4, R5

SUB R6, R7, R0

ADD R0, R0, R3

SUB R0, R0, R6

ST R7, R0

LD R7, R6

ADI R0, R6, 2

ADI R3, R6, 3

Give (a) the binary value of the instruction on the current line of the results 

and (b) the contents of any register changed by the instruction, or the loca-

tion and contents of any memory location changed by the instruction on the 

next line of the results. The results are positioned in this fashion because the 

new values do not appear in a register or memory, due to the execution of an 

instruction, until after a positive clock edge has occurred.

8-18.  Some computers have different memory areas for storing data and 

instructions. The single cycle computer described here is one such computer. 

Obviously there are advantages as well as disadvantages of such a system.

(a) What is the name of such a type of computer architecture?

(b) What is the basic disadvantage of such a system?

(c)  What is the advantage of using such a memory architecture? 

8-19.  List the control logic state table entries for the  multiple-  cycle computer (see 

Tables 8-12, 8-13 and 8-15) that implement the following register transfer 

statements. Assume that in all cases the present state is EX0. If an opcode is 

needed, use a symbolic name based on the problem  part—  e.g., for part (a), 

opcode_a.

(a) R3 ← R7 − R2, →EX1. Assume DR = 3, SA = 7, SB = 2.

(b) R8 ← sr R8, →INF. Assume DR = 5, SB = 5.

(c) if (Z = 0) then (PC → PC +  se AD, → INF) else (PC → PC +1, → INF).

(d) R6 ← R6, C ← 0, → INF. Assume DR = SA = 6.

8-20.  (a)    What is the arithmetic operation that is the result of logical shifting left?

(b) Show what happens when the 0000 0000 1011 1000 is shifted left four times?

(c)  What will the result if the above data is shifted right twice?

8-21.  +In the SRM and SLM instructions, both the operand R[SA] and the shift 

amount field OP are checked to see if either is 0 before the shifts begin.

(a) Redraw the state machine diagram for these operations with these checks 

removed.



(b) Use the original diagram and the new diagram to compare the number of 

clock cycles required for values of OP equal to 0 through 7. Assume that 

the probability of each OP value for 1 through 6 is 1/8, for 0 is 1/4, and for 

7 is 0. Assume that the likelihood of a 0 operand is 1/8. Perform calculations 

to determine the best implementation (with checks or without checks) 

based on the given probability information and comparative number of 

clock cycles for the two implementations. Provide a convincing argument 

for your selected answer.

8-22.  A new instruction is to be defined for the  multiple-  cycle computer with 

opcode 0010001. The instruction implements the register transfer

R[DR] d R[SB] + M[R[SA]]

Find the state machine diagram for implementing the instruction, assuming 

that 0010001 is the opcode. Form the part of the control state table that im-

plements this instruction.

8-23.  Repeat Problem 8-22 for the two instructions: Add and check OV (AOV), 

described by the register transfer

R[DR] d R[SA] + R[SB],       V:R8 d 1,      V:R8 d 0

and branch on overflow (BRV), described by the register transfer

R8 d R8,     V: PC d PC + se AD,     V: PC d PC + 1

The opcode for AOV is 1000101 and for BRV is 1000110. Note that register 

R8 is used as a “status” register that stores the overflow result V for the pre-

vious operation. All of the values N, Z, C and V could be stored in R8 to give 

a complete status on the prior arithmetic or logic operation.

8-24.  In a multiple-cycle computer, any instruction can take more than one cycle. 

Delve into the different kinds of instructions available in such computers and 

identify the different activities for each of these operations:

(a) Fetching an opcode from memory

(b) Fetching the operand from memory

(c)  Adding the content of two registers.

(d) Storing the result in memory. 

8-25.  The multiple-cycle computer has the capacity for multiple register loading. 

Take an example of 8 registers being loaded with data from 8 locations in 

memory. Compare this to a case of multiple instructions for loading into the 8 

registers. Does this reduce the execution time to one eighth of the latter case? 

Substantiate with logical reasons. 

8-26.  +A new instruction, SMR (Store Multiple Registers), with symbolic opcode 

name SMR, is to be implemented for the  multiple-  cycle computer. The 

instruction stores the contents of eight registers in eight consecutive memory 

locations. Register R[SA] specifies the address in memory M to which the first 
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register R[SB] is to be stored. The registers to be stored are R[SB], R[(SB+1)

modulo 8], . . ., R[(SB+7)modulo 8] in Memory M addresses R[SA], R[SA] 

+1, . . ., R[SA]+7. Design this instruction presenting your final results in the 

form shown in Table 8-15. [Hint: In order to address all eight registers, it is 

necessary to provide eight values of SB in the Instruction Register. Since the 

Instruction Register can only be loaded from memory, these “instructions” 

must be placed in memory temporarily during the instruction execution and 

loaded into the IR as data without using the usual instruction fetch.]

8-27.  Using the mnemonics for the single-cycle computer, write instructions to 

perform the following simple operations. Assume the following:

 The registers available are R1 and R2. Data memory location 120 has content 

45, and address 121 has content 23. Registers R3 and R4 have the address of 

these data, i.e., R3 = 121 and R4 = 23.

(a) Load the two numbers in memory locations into two registers.

(b) Add the number 20 to the content of one register.

(c)  Add the sum to the content of the other register.

(d) Store the sum into a memory location. 
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9-1 COMPUTER ARCHITECTURE CONCEPTS

The binary language in which instructions are defined and stored in memory is 

 referred to as machine language. A symbolic language that replaces binary  opcodes 

and addresses with symbolic names and that provides other features helpful to the 

programmer is referred to as assembly language. The logical structure of computers 
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C H A P T E R 

Instruction Set 
Architecture

9

Up to this point, much of what we have studied has focused on digital system 

design, with computer components serving as examples. In this chapter, we will 

study more specialized material, dealing with instruction set architecture for 

 general-  purpose computers. We will examine the operations that the instructions 

perform and focus particularly on how the operands are obtained and where the results 

are stored. We will contrast two distinct classes of architectures: reduced instruction set 

computers (RISCs) and complex instruction set computers (CISCs). We will classify 

elementary instructions into three categories: data transfer, data manipulation, and 

program control. In each of these categories, we elaborate on typical elementary 

instructions.

Central to the material presented here are the  general-  purpose parts of the 

microprocessor may be present for controlling keyboard and monitor functions, 

and I/O components, the concepts studied apply less to other areas of the 

components.
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is normally described in  assembly-  language reference manuals. Such manuals 

 explain various internal elements of the computer that are of interest to the pro-

grammer, such as processor registers. The manuals list all  hardware-  implemented 

 instructions, specify the symbolic names and binary code format of the instructions, 

and provide a precise definition of each instruction. In the past, this information 

 represented the architecture of the computer. A computer was composed of its archi-

tecture, plus a specific implementation of that architecture. The implementation was 

separated into two parts: the organization and the hardware. The organization con-

sists of structures such as datapaths, control units, memories, and the buses that inter-

connect them. Hardware refers to the logic, the electronic technologies employed, 

and the various physical design aspects of the computer.

As computer designers pushed for higher and higher performance, and as 

increasingly more of the computer resided within a single IC, the relationships 

among architecture, organization, and hardware became so intertwined that a more 

integrated viewpoint became necessary. According to this new viewpoint, architec-

ture as previously defined is more restrictively called instruction set architecture 

(ISA), the structure of a particular hardware implementation of the ISA is referred 

to as the microarchitecture or computer organization, and the term architecture is 

used to encompass the whole of the computer, including instruction set architecture, 

organization, and hardware. This unified view enables intelligent design  trade-  offs to 

be made that are apparent only in a tightly coupled design process. These  trade-  offs 

have the potential for producing better computer designs.

In this chapter, we focus on instruction set architecture. In the next, we will 

look at two distinct instruction set architectures, with a focus on implementation 

using two somewhat different architectures.

A computer usually has a variety of instructions and multiple instruction for-

mats. It is the function of the control unit to decode each instruction and provide the 

control signals needed to process it. Simple examples of instructions and instruction 

formats were presented in Section 8-7. We now expand this presentation by introduc-

ing typical instructions found in commercial  general-  purpose computers. We also 

investigate the various instruction formats that may be encountered in a typical 

computer, with an emphasis on the addressing of operands. The format of an instruc-

tion is depicted in a rectangular box symbolizing the bits of the binary instruction. 

The bits are divided into groups called fields. The following are typical fields found in 

instruction formats:

1. An opcode field, which specifies the operation to be performed.

2. An address field, which provides either a memory address or an address that 

selects a processor register.

3. A mode field, which specifies the way the address field is to be interpreted.

Other special fields are sometimes employed under certain  circumstances—  for 

example, a field that gives the number of positions to shift in a  shift-  type instruction 

or an operand field in an immediate operand instruction.
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Basic Computer Operation Cycle

In order to comprehend the various addressing concepts to be presented in the next 

two sections, we need to understand the basic operation cycle of the computer. The 

computer’s control unit is designed to execute each instruction of a program in the 

following sequence of steps:

1. Fetch the instruction from memory into the instruction register in the control 

unit.

2. Decode the instruction.

3. Locate the operands used by the instruction.

4. Fetch operands from memory (if necessary).

5. Execute the operation in processor registers.

6. Store the results in the proper place.

7. Go back to Step 1 to fetch the next instruction.

As explained in Section  8-7, a register in the computer called the program 
counter (PC) keeps track of the instructions in the program stored in memory. The 

PC holds the address of the instruction to be executed next and is incremented each 

time a word is read from the program in memory. The decoding done in Step 2 deter-

mines the operation to be performed and the addressing mode or modes of 

the instruction. The operands in Step 3 are located from the addressing modes and 

the address fields of the instruction. The computer executes the instruction, storing 

the result, and returns to Step 1 to fetch the next instruction in sequence.

Register Set

The register set consists of all registers in the CPU that are accessible to the program-

mer. These registers are typically those mentioned in  assembly-  language  programming 

reference manuals. In the simple CPUs we have dealt with so far, the register set has 

consisted of the  programmer-  accessible portion of the register file and the PC. The 

CPUs can also contain other registers, such as the instruction register, registers in the 

register file that are accessible only to hardware controls and/or microprograms, and 

pipeline registers. These registers, however, are not directly accessible to the program-

mer and, as a consequence, are not a part of the register set, which represents the 

stored information in the CPU that is visible to the programmer through the instruc-

tions. Thus, the register set has a considerable influence on instruction set  architecture.

The register set for a realistic CPU is quite complex. In this chapter, we add 

two registers to the set we have used thus far: the processor status register (PSR) and 

the stack pointer (SP). The processor status register contains  flip-  flops that are selec-

tively set by status values C, N, V, and Z from the ALU and shifter. These stored sta-

tus bits are used to make decisions that determine the program flow, based on ALU 

results, shifter results, or the contents of registers. The stored status bits in the 
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processor status register are also referred to as the condition codes or the flags. 

Additional bits in the PSR will be discussed when we cover associated concepts in 

this chapter.

9-2 OPERAND ADDRESSING

Consider an instruction such as ADD, which specifies the addition of two operands 

to produce a result. Suppose that the result of the addition is treated as just another 

operand. Then the ADD instruction has three operands: the addend, the augend, and 

the result. An operand residing in memory is specified by its address. An operand 

residing in a processor register is specified by a register address, a binary code of n 

bits that specifies one of at most 2n registers in the register file. Thus, a computer with 

16 processor registers, say, R0 through R15, has in its instructions one or more regis-

ter address fields of four bits. The binary code 0101, for example, designates regis-

ter R5.

Some operands, however, are not explicitly addressed, because their location is 

specified either by the opcode of the instruction or by an address assigned to one of 

the other operands. In such a case, we say that the operand has an implied address. If 

the address is implied, then there is no need for a memory or register address field 

for the operand in the instruction. On the other hand, if an operand has an address in 

the instruction, then we say that the operand is explicitly addressed or has an explicit 
address.

The number of operands explicitly addressed for a  data-  manipulation opera-

tion such as ADD is an important factor in defining the instruction set architecture 

for a computer. An additional factor is the number of such operands that can be 

explicitly addressed in memory by the instruction. These two factors are so import-

ant in defining the nature of instructions that they act a means of distinguishing 

 different instruction set architectures. They also govern the length of computer 

instructions.

We begin by illustrating simple programs with different numbers of explicitly 

addressed operands per instruction. Since the explicitly addressed operands have up 

to three memory or register addresses per instruction, we label the instructions as 

having three, two, one, or zero addresses. Note that, of the three operands needed for 

an instruction such as ADD, the addresses of all operands not having an address in 

the instruction are implied.

To illustrate the influence of the number of operands on computer programs, 

we will evaluate the arithmetic statement

X  = (A + B)(C + D)

using three, two, one, and zero address instructions. We assume that the operands 

are in memory addresses symbolized by the letters A, B, C, and D and must not be 

changed by the program. The result is to be stored in memory at a location with 

address  X.  The initial arithmetic operations to be used in the instructions are 

addition, subtraction, and multiplication, with mnemonics ADD, SUB, and MUL, 

respectively. Further, three operations needed to transfer data during the evalua-

tion are move, load, and store, denoted by MOVE, LD, and ST, respectively. LD 



9-2 / Operand Addressing      505

moves an operand from memory to a register and ST from a register to memory. 

Depending on the addresses permitted, MOVE can transfer data between regis-

ters, between memory locations, or from memory to register or register to 

memory.

 Three-  Address Instructions

A program that evaluates X  = (A + B)(C + D) using  three-  address instructions is 

as follows (a register transfer statement is shown for each instruction):

ADD   T1, A, B   M[T1] d M[A] + M[B]

ADD   T2, C, D   M[T2] d M[C] + M[D]

MUL X, T1, T2   M[X] d M[T1] * M[T2]

The symbol M[A] denotes the operand stored in memory at the address symbolized 

by  A.  The symbol *  designates multiplication. T1 and T2 are temporary storage 

locations in memory.

This same program can use registers as the temporary storage locations:

ADD R1, A, B   R1 d M[A] + M[B]

ADD R2, C, D   R2 d M[C] + M[D]

MUL X, R1, R2  M[X] d R1 * R2

Use of registers reduces the data memory accesses required from nine to five. An 

advantage of the  three-  address format is that it results in short programs for 

evaluating expressions. A disadvantage is that the  binary-  coded instructions 

require more bits to specify three addresses, particularly if they are memory 

addresses.

 Two-  Address Instructions

For  two-  address instructions, each address field can again specify either a possible 

register or a memory address. The first operand address listed in the symbolic in-

struction also serves as the implied address to which the result of the operation is 

transferred. The program is as follows:

MOVE T1, A  M[T1] d M[A]

ADD T1, B    M[T1] d M[T1] + M[B]

MOVE X, C   M[X] d M[C]

ADD X, D     M[X] d M[X] + M[D]

MUL X, T1    M[X] d M[X] * M[T1]

If a temporary storage register R1 is available, it can replace T1. Note that this pro-

gram takes five instructions instead of the three used by the  three-  address instruc-

tion program.
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 One-  Address Instructions

To perform instructions such as ADD, a computer with  one-  address instructions uses 

an implied  address—  such as a register called an accumulator,  ACC—  for obtaining 

one of the operands and as the location of the result. The program to evaluate the 

arithmetic statement is as follows:

LD A ACC d M[A]

ADD B ACC d ACC + M[B]

ST X M[X  ] d ACC

LD C ACC d M[C]

ADD D ACC d ACC + M[D]

MUL X ACC d ACC * M[X]

ST X M[X  ] d ACC

All operations are done between the ACC register and a memory operand. In this 

case, the number of instructions in the program has increased to seven and the num-

ber of memory data accesses is also seven.

 Zero-  Address Instructions

To perform an ADD instruction with zero addresses, all three addresses in the in-

struction must be implied. A conventional way of achieving this goal is to use a stack, 

which is a mechanism or structure that stores information such that the item stored 

last is the first retrieved. Because of its “ last-  in,  first-  out” nature, a stack is also called 

a  last-  in,  first-  out (LIFO) queue. The operation of a computer stack is analogous to 

that of a stack of trays or plates, in which the last tray placed on top of the stack is the 

first to be taken off.  Data-  manipulation operations such as ADD are performed on 

the stack. The word at the top of the stack is referred to as TOS. The word below it is 

TOS-1. When one or more words are used as operands for an operation, they are re-

moved from the stack. The word below them then becomes the new TOS. When a 

resulting word is produced, it is placed on the stack and becomes the new TOS. Thus, 

TOS and a few locations below it are the implied addresses for operands, and TOS is 

the implied address for the result. For example, the instruction that specifies an addi-

tion is simply

ADD

The resulting register transfer action is TOS d TOS + TOS-1. Thus, there are no 

registers or register addresses used for  data-  manipulation instructions in a stack 

architecture. Memory addressing, however, is used in such architectures for data 

transfers. For instance, the instruction

PUSH X
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results in TOS d M[X], a transfer of the word in address X in memory to the top of 

the stack. A corresponding operation,

POP X

results in M[X] d TOS, a transfer of the entry at the top of the stack to address X in 

memory.

The program for evaluating the sample arithmetic statement for the  zero- 

 address situation is as follows:

PUSH A TOS d M[A]

PUSH B TOS d M[B]

ADD  TOS d TOS + TOS-1

PUSH C TOS d M[C]

PUSH D TOS d M[D]

ADD  TOS d TOS+TOS-1

MUL  TOS d TOS * TOS-1

POP X M[X] d TOS

This program requires eight  instructions—  one more than the number required by 

the previous  one-  address program. However, it uses addressed memory locations 

or registers only for PUSH and POP and not to execute  data-  manipulation 

instructions involving ADD and MUL. Note that memory data accesses may be 

necessary, however, depending upon the stack implementation. Often, stacks uti-

lize a fixed number of registers near the top of the stack. If a given program can be 

executed only within these stack locations, memory data accesses are necessary 

for fetching the initial operands and storing the final result only. But, if the pro-

gram requires more temporary, intermediate storage, additional data accesses to 

memory are required.

Addressing Architectures

The programs just presented change if the number of addresses to the memory in the 

instructions is restricted or if the memory addresses are restricted to specific instruc-

tions. These restrictions, combined with the number of operands addressed, define 

addressing architectures. We can illustrate such architectures with the evaluation of 

an arithmetic statement in a  three-  address architecture that has all of the accesses to 

memory. Such an addressing scheme is called a  memory-  to-  memory architecture. 

This architecture has only control registers, such as the program counter in 

the CPU. All operands come directly from memory, and all results are sent directly 

to memory. The formats of data transfer and manipulation instructions contain from 

one to three address fields, all of which are used for memory addresses. For the previ-

ous example, three instructions are required, but if an extra word must appear in the 

instruction for each memory address, then up to four memory reads are required to 
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fetch each instruction. Including the fetching of operands and storing of results, the 

program to perform the arithmetic operation would require 21 accesses to memory. 

If memory accesses take more than one clock cycle, the execution time would be in 

excess of 21 clock periods. Thus, even though the instruction count is low, the execu-

tion time is potentially high. Also, providing the capability for all operations to ac-

cess memory increases the complexity of the control structures and may lengthen 

the clock cycle. Thus, this  memory-  to-  memory architecture is typically not used in 

new designs.

In contrast, the  three-  address  register-  to-  register or load/store architecture, 

which allows only one memory address and restricts its use to load and store types 

of instructions, is typical in modern processors. Such an architecture requires a 

sizeable register file, since all data manipulation instructions use register oper-

ands. With this architecture, the program to evaluate the sample arithmetic state-

ment is as follows:

LD R1, A R1 d M[A]

LD R2, B R2 d M[B]

ADD R3, R1, R2 R3 d R1 + R2

LD R1, C R1 d M[C]

LD R2, D R2 d M[D]

ADD R1, R1, R2 R1 d R1 + R2

MUL R1, R1, R3 R1 d R1 * R3

ST X, R1 M[X] d R1

Note that the instruction count increases to eight compared to three for the 

 three-  address,  memory-  to-  memory case. Note also that the operations are the 

same as those for the stack case, except for the need for register addresses. By 

using registers, the number of accesses to memory for instructions, addresses, and 

operands is reduced from 21 to 18. If addresses can be obtained from registers 

instead of memory, as discussed in the next section, this number can be further 

reduced.

Variations on the previous two addressing architectures include  three-  address 

instructions and  two-  address instructions with one or two of the addresses to mem-

ory. The program lengths and number of memory accesses tend to be intermediate 

between the previous two architectures. An example of a  two-  address instruction 

with a single memory address allowed is

ADD  R1,A   R1 d R1 + M[A]

This  register-  memory type of architecture remains common among the current 

instruction set architectures, primarily to provide compatibility with older software 

using a specific architecture.

The program with  one-  address instructions illustrated previously gives the 

 single-  accumulator architecture. Since this architecture has no register file, its single 

address is for accessing memory. It requires 21 accesses to memory to evaluate the 
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sample arithmetic statement. In more complex programs, significant additional 

memory accesses would be needed for temporary storage locations in memory. 

Because of its large number of memory accesses, this architecture is inefficient and 

consequently, is restricted to use in CPUs for simple,  low-  cost applications that do 

not require high performance.

The  zero-  address instruction case using a stack supports the concept of a stack 
architecture.  Data-  manipulation instructions such as ADD use no address, since they 

are performed on the top few elements of the stack. Single  memory-  address load 

and store operations, as shown in the program to evaluate the sample arithmetic 

statement, are used for data transfer. Since most of the stack is located in memory, as 

discussed earlier, one or more hidden memory accesses may be required for each 

stack operation. As  register-  register and load/store architectures have made strong 

performance advances, the high frequency of memory accesses in stack architectures 

has made them unattractive. However, stack architectures have begun to borrow 

technological advances from these other architectures. These architectures store 

substantial numbers of stack locations in the processor chip and handle transfers 

between these locations and the memory transparently. Stack architectures are par-

ticularly useful for rapid interpretation of  high-  level language programs in which the 

intermediate code representation uses stack operations.

Stack architectures are compatible with a very efficient approach to expression 

processing which uses postfix notation rather than the traditional infix notation to 

which we are accustomed. The infix expression

(A + B) *  C + (D *  E)

with the operators between the operands can be written as the postfix expression

A B + C *  D E * +

Postfix notation is called reverse Polish notation (RPN), honoring the Polish mathe-

matician Jan Lukasiewicz, who proposed prefix (the reverse of postfix) notation; 

 prefix was also known as Polish notation.

Conversion of (Α + Β) *  C + (D *  E) to RPN can be achieved graphi-

cally, as shown in Figure 9-1. When the path shown traversing the graph passes a 

A B

C D E

 FIGURE  9-1
Graph for Example of Conversion from Infix to RPN
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variable, that variable is entered into the RPN expression. When the path passes an 

operation for the final time, the operation is entered into the RPN expression.

It is very easy to develop a program for an RPN expression. Whenever a 

variable is encountered, it is pushed onto the stack. Whenever an operation is 

encountered, it is executed on the implicit address TOS, or addresses TOS and 

TOS-1, with the result placed in the new TOS. The program for the example RPN 

expression is

PUSH A

PUSH B

ADD

PUSH C

MUL

PUSH D

PUSH E

MUL

ADD

The execution of the program is illustrated by the successive stack states shown in 

Figure 9-2. As an operand is pushed on the stack, the stack grows by one stack loca-

tion. When an operation is performed, the operand in the TOS is popped off and 

temporarily stored in a register. The operation is applied to the stored operand and 

the new TOS operand, and the result replaces the TOS operand.

9-3 ADDRESSING MODES

The operation field of an instruction specifies the operation to be performed. This 

operation must be executed on data stored in computer registers or memory words. 

How the operands are selected during program execution is dependent on the ad-

dressing mode of the instruction. The addressing mode specifies a rule for interpret-

ing or modifying the address field of the instruction before the operand is actually 

referenced. The address of the operand produced by the application of such a rule is 

called the effective address. Computers use  addressing-  mode techniques to accom-

modate one or both of the following provisions:

A

A

B C

E

D

D

 FIGURE  9-2
Stack Activity for Execution of Example Stack Program
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1. To give programming flexibility to the user via pointers to memory, counters for 

loop control, indexing of data, and relocation of programs.

2. To reduce the number of bits in the address fields of the instruction.

The availability of various addressing modes gives the experienced programmer the 

ability to write programs that require fewer instructions. The effect, however, on 

throughput and execution time must be carefully weighed. For example, the pres-

ence of more complex addressing modes may actually result in lower throughput 

and longer execution time. Also, most  machine-  executable programs are produced 

by compilers that often do not use complex addressing modes effectively.

In some computers, the addressing mode of the instruction is specified by a 

distinct binary code. Other computers use a common binary code that designates 

both the operation and the addressing mode of the instruction. Instructions may be 

defined with a variety of addressing modes, and sometimes two or more addressing 

modes are combined in one instruction.

An example of an instruction format with a distinct  addressing-  mode field is 

shown in Figure 9-3. The opcode specifies the operation to be performed. The mode 

field is used to locate the operands needed for the operation. There may or may not 

be an address field in the instruction. If there is, it may designate a memory address 

or a processor register. Moreover, as discussed in the previous section, the instruc-

tion may have more than one address field. In that case, each address field is associ-

ated with its own particular addressing mode.

Implied Mode

Although most addressing modes modify the address field of the instruction, one 

mode needs no address field at all: the implied mode. In this mode, the operand is 

specified implicitly in the definition of the opcode. It is the implied mode that pro-

vides the location for the  two-  operand-  plus-  result operations when fewer than three 

addresses are contained in the instruction. For example, the instruction “comple-

ment accumulator” is an  implied-  mode instruction because the operand in the accu-

mulator register is implied in the definition of the instruction. In fact, any instruction 

that uses an accumulator without a second operand is an  implied-  mode instruction. 

For example,  data-  manipulation instructions in a stack computer, such as ADD, are 

 implied-  mode instructions, since the operands are implied to be on top of stack.

Immediate Mode

In the immediate mode, the operand is specified in the instruction itself. In other 

words, an  immediate-  mode instruction has an operand field rather than an address 

Opcode Mode Address or operand

 FIGURE  9-3
Instruction Format with Mode Field
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field. The operand field contains the actual operand to be used in conjunction with 

the operation specified in the instruction.  Immediate-  mode instructions are useful, 

for example, for initializing registers to a constant value.

Register and  Register-  Indirect Modes

Earlier, we mentioned that the address field of the instruction may specify either a 

memory location or a processor register. When the address field specifies a processor 

register, the instruction is said to be in the register mode. In this mode, the operands 

are in registers that reside within the processor of the computer. The particular regis-

ter is selected by a register address field in the instruction format.

In the  register-  indirect mode, the instruction specifies a register in the proces-

sor whose content gives the address of the operand in memory. In other words, the 

selected register contains the memory address of the operand, rather than the oper-

and itself. Before using a  register-  indirect mode instruction, the programmer must 

ensure that the memory address is available in the processor register. A reference to 

the register is then equivalent to specifying a memory address. The advantage of 

 register-  indirect mode is that the address field of the instruction uses fewer bits to 

select a register than would have been required to specify a memory address directly.

An autoincrement or autodecrement mode is similar to the  register-  indirect 

mode, except that the register is incremented or decremented after (or before) its 

address value is used to access memory. When the address stored in the register 

refers to an array of data in memory, it is convenient to increment the register after 

each access to the array. This can be achieved by using a separate  register-  increment 

instruction. However, because it is such a common requirement, some computers 

incorporate an autoincrement mode that increments the content of the register con-

taining the address after the memory data are accessed.

In the following instruction, an autoincrement mode is used to add the con-

stant value 3 to the elements of an array addressed by register R1:

ADD   (R1)+ , 3   M[R1] d M[R1]+3, R1 d R1+1

R1 is initialized to the address of the first element in the array. Then the ADD instruc-

tion is repeatedly executed until the addition of 3 to all elements of the array has 

occurred. The register transfer statement accompanying the instruction shows the 

addition of 3 to the memory location addressed by R1 and the incrementing of R1 in 

preparation for the next execution of the ADD on the next element in the array.

Direct Addressing Mode

In the direct addressing mode, the address field of the instruction gives the address of 

the operand in memory in a  data-  transfer or  data-  manipulation instruction. An 

example of a  data-  transfer instruction is shown in Figure 9-4. The instruction in mem-

ory consists of two words. The first, at address 250, has the opcode for “load to ACC” 

and a mode field specifying a direct address. The second word of the instruction, at 

address 251, contains the address field, symbolized by ADRS, and is equal to 500. The 

PC holds the address of the instruction, which is brought from memory using two 
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memory accesses. Simultaneously with or after the completion of the first access, the 

PC is incremented to 251. Then the second access for ADRS occurs and the PC is 

again incremented. The execution of the instruction results in the operation

ACC d M[ADRS]

Since ADRS =  500 and M[500] = 800, the ACC receives the number 800. After the 

instruction is executed, the PC holds the number 252, which is the address of the 

next instruction in the program.

Now consider a  branch-  type instruction, as shown in Figure 9-5. If the contents 

of ACC equal 0, control branches to ADRS; otherwise, the program continues with 

the next instruction in sequence. When ACC =  0, the branch to address 500 is 

accomplished by loading the value of the address field ADRS into the PC. Control 

then continues with the instruction at address 500. When ACC ≠ 0, no branch 

occurs, and the PC, which was incremented twice during the fetch of the instruction, 

holds the address 302, the address of the next instruction in sequence.

Sometimes the value given in the address field is the address of the operand, 

but sometimes it is just an address from which the address of the operand is calcu-

lated. To differentiate among the various addressing modes, it is useful to distinguish 

between the address part of the instruction, as given in the address field, and the 

address used by the control when executing the instruction. Recall that we refer to 

the latter as the effective address.

Indirect Addressing Mode

In the indirect addressing mode, the address field of the instruction gives the address 

at which the effective address is stored in memory. The control unit fetches the 

 instruction from memory and uses the address part to access memory again in order 

Memory

Opcode Mode

ADRS

Next instruction

Program

800

Data

250

251

252

500

PC = 250

ACC

Opcode:
Mode:
ADRS:
Operation:

Load ACC
Direct address
500
ACC 800

 FIGURE  9-4
Example Demonstrating Direct Addressing for a  Data-  Transfer Instruction
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to read the effective address. Consider the instruction “load to ACC” given in Fig-

ure 9-4. If the mode specifies an indirect address, the effective address is stored in 

M[ADRS]. Since ADRS = 500 and M[ADRS] = 800, the effective address is 800. 

This means that the operand loaded into the ACC is the one found in memory at 

address 800 (not shown in the figure).

Relative Addressing Mode

Some addressing modes require that the address field of the instruction be added to 

the content of a specified register in the CPU in order to evaluate the effective ad-

dress. Often, the register used is the PC. In the relative addressing mode, the effec-

tive address is calculated as follows:

Effective address =  Address part of the instruction +  Contents of PC

The address part of the instruction is considered to be a signed number that can be 

either positive or negative. When this number is added to the contents of the PC, the 

result produces an effective address whose position in memory is relative to the 

address of the next instruction in the program.

To clarify this with an example, let us assume that the PC contains the number 

250 and the address part of the instruction contains the number 500, as in Figure 9-6, 

with the mode field specifying a relative address. The instruction at location 250 is read 

from memory during the fetch phase of the operation cycle, and the PC is incremented 

by 1 to 251. Since the instruction has a second word, the control unit reads the address 

field into a control register, and the PC is incremented to 252. The computation of the 

effective address for the relative addressing mode is 252 + 500 = 752. The result is 

that the operand associated with the instruction is 500 locations away, relative to the 

location of the next instruction.

Relative addressing is often used in  branch-  type instructions when the branch 

address is in a location close to the instruction word. Relative addressing produces 

 FIGURE  9-5
Example Demonstrating Direct Addressing in a Branch Instruction

Memory

Opcode Mode

ADRS

Next instruction

Program

Instruction

Program

300

301

302

500

PC = 300

ACC

Opcode:
Mode:
ADRS:
Operation:

Direct address
500

PC 302 if ACC 
 0
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more compact instructions, since the relative address can be specified with fewer bits 

than are required to designate the entire memory address. This permits the relative 

address field to be included in the same instruction word as the opcode.

Indexed Addressing Mode

In the indexed addressing mode, the content of an index register is added to the ad-

dress part of the instruction to obtain the effective address. The index register may 

be a special CPU register or simply a register in a register file. We illustrate the use of 

indexed addressing by considering an array of data in memory. The address field of 

the instruction defines the beginning address of the array. Each operand in the array 

is stored in memory relative to the beginning address. The distance between the be-

ginning address and the address of the operand is the index value stored in the regis-

ter. Any operand in the array can be accessed with the same instruction, provided 

that the index register contains the correct index value. The index register can be in-

cremented to facilitate access to consecutive operands.

Some computers dedicate one CPU register to function solely as an index reg-

ister. This register is addressed implicitly when an  index-  mode instruction is used. In 

Memory

Opcode Mode

ADRS or NBR = 500

Next instruction

Opcode: Load to ACC

ACC

R1 = 400

PC = 250

700

800

600

300

250

251

252

400

500

752

800

900 200

 FIGURE  9-6
Numerical Example for Addressing Modes
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computers with many processor registers, any CPU register can be used as an index 

register. In such a case, the index register to be used must be specified with a register 

field within the instruction format.

A specialized variation of the index mode is the  base-  register mode. In this 

mode, the contents of a base register are added to the address part of the instruction 

to obtain the effective address. This is similar to indexed addressing, except that the 

register is called a base register instead of an index register. The difference between 

the two modes is in the way they are used rather than in the way addresses are com-

puted: an index register is assumed to hold an index number that is relative to the 

address field of the instruction; a base register is assumed to hold a base address, and 

the address field of the instruction gives a displacement relative to the base address.

Summary of Addressing Modes

In order to show the differences among the various modes, we investigate the effect 

of the addressing mode on the instruction shown in Figure 9-6. The instruction in 

addresses 250 and 251 is “load to ACC,” with the address field ADRS (or an operand 

NBR) equal to 500. The PC has the number 250 for fetching this instruction. The 

content of a processor register R1 is 400, and the ACC receives the result after the 

instruction is executed. In the direct mode, the effective address is 500, and the oper-

and to be loaded into the ACC is 800. In the immediate mode, the operand 500 is 

loaded into the ACC. In the indirect mode, the effective address is 800, and the oper-

and is 300. In the relative mode, the effective address is 500 + 252 = 752, and the 

operand is 600. In the index mode, the effective address is 500 + 400 = 900, assum-

ing that R1 is the index register. In the register mode, the operand is in R1, and 400 is 

loaded into the ACC. In the  register-  indirect mode, the effective address is the con-

tents of R1, and the operand loaded into the ACC is 700.

Table 9-1 lists the value of the effective address and the operand loaded into the 

ACC for the seven addressing modes. The table also shows the operation with a 

 TABLE  9-1
Symbolic Convention for Addressing Modes

Addressing  

Mode

Symbolic 

Convention

Register  

Transfer

Effective 

Address

Contents 

ACC

Direct LDA ADRS ACC d M[ADRS] 500 800

Immediate LDA #NBR ACC d NBR 251 500

Indirect LDA [ADRS] ACC d M[M[ADRS]] 800 300

Relative LDA $ADRS ACC d M[ADRS + PC] 752 600

Index LDA ADRS (R1) ACC d M[ADRS + R1 ] 900 200

Register LDA R1 ACC d R1 — 400

 Register-  indirect LDA (R1) ACC d M[R1 ] 400 700
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register transfer statement and a symbolic convention for each addressing mode. 

LDA is the symbol for the  load-  to-  accumulator opcode. In the direct mode, we use 

the symbol ADRS for the address part of the instruction. The # symbol precedes the 

operand NBR in the immediate mode. The symbol ADRS enclosed in square brack-

ets symbolizes an indirect address, which some compilers or assemblers designate 

with the symbol @. The symbol $ before the address makes the effective address rela-

tive to the PC. An  index-  mode instruction is recognized by the symbol of a register 

placed in parentheses after the address symbol. The register mode is indicated by giv-

ing the name of the processor register following LDA. In the  register-  indirect mode, 

the name of the register that holds the effective address is enclosed in parentheses.

9-4 INSTRUCTION SET ARCHITECTURES

Computers provide a set of instructions to permit computational tasks to be carried 

out. The instruction sets of different computers differ in several ways from each oth-

er. For example, the binary code assigned to the opcode field varies widely for differ-

ent computers. Likewise, although a standard exists (see Reference 2), the symbolic 

name given to instructions varies for different computers. In comparison to these 

minor differences, however, there are two major types of instruction set architec-

tures that differ markedly in the relationship of hardware to software: Complex in-
struction set computers (CISCs) provide hardware support for  high-  level language 

operations and have compact programs; reduced instruction set computers (RISCs) 

emphasize simple instructions and flexibility that, when combined, provide higher 

throughput and faster execution. These two architectures can be distinguished by 

considering the properties that characterize their instruction sets.

A RISC architecture has the following properties:

1. Memory accesses are restricted to load and store instructions, and data manip-

ulation instructions are  register-  to-  register.

2. Addressing modes are limited in number.

3. Instruction formats are all of the same length.

4. Instructions perform elementary operations.

The goal of a RISC architecture is high throughput and fast execution. To achieve 

these goals, accesses to memory, which typically take longer than other elementary 

operations, are to be avoided, except for fetching instructions. A result of this view is 

the need for a relatively large register file. Because of the fixed instruction length, 

limited addressing modes, and elementary operations, the control unit of a RISC is 

comparatively simple and is typically hardwired. In addition, the underlying organi-

zation is universally a pipelined design, as covered in Chapter 10.

A purely CISC architecture has the following properties:

1. Memory access is directly available to most types of instructions.

2. Addressing modes are substantial in number.

3. Instruction formats are of different lengths.

4. Instructions perform both elementary and complex operations.
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The goal of the CISC architecture is to match more closely the operations used in 

programming languages and to provide instructions that facilitate compact programs 

and conserve memory. In addition, efficiencies in performance may result through a 

reduction in the number of instruction fetches from memory, compared with the 

number of elementary operations performed. Because of the high memory accessi-

bility, the register files in a CISC may be smaller than in a RISC. Also, because of the 

complexity of the instructions and the variability of the instruction formats, micro-

programmed control is more likely to be used. In the quest for speed, the micropro-

grammed control in newer designs is likely to be controlling a pipelined datapath. 

CISC instructions are converted to a sequence of  RISC-  like operations that are pro-

cessed by the  RISC-  like pipeline, as discussed in detail in Chapter 10.

Actual instruction set architectures range between those which are purely 

RISC and those which are purely CISC. Nevertheless, there is a basic set of ele-

mentary operations that most computers include among their instructions. In this 

chapter, we will focus primarily on elementary instructions that are included in 

both CISC and RISC instruction sets. Most elementary computer instructions can 

be classified into three major categories: (1)  data-  transfer instructions, (2)  data- 

 manipulation instructions, and (3)  program-  control instructions.

 Data-  transfer instructions cause transfer of data from one location to another 

without changing the binary information content.  Data-  manipulation instructions 

perform arithmetic, logic, and shift operations.  Program-  control instructions provide 

 decision-  making capabilities and change the path taken by the program when exe-

cuted in the computer. In addition to the basic instruction set, a computer may have 

other instructions that provide special operations for particular applications.

9-5  DATA-  TRANSFER INSTRUCTIONS

 Data-  transfer instructions move data from one place in the computer to another 

without changing the data. Typical transfers are between memory and processor reg-

isters, between processor registers and input and output registers, and among the 

processor registers themselves.

Table 9-2 gives a list of eight typical  data-  transfer instructions used in many com-

puters. Accompanying each instruction is a mnemonic symbol, the  assembly-  language 

abbreviation recommended by an IEEE standard (Reference 2). Different computers, 

however, may use different mnemonics for the same instruction name. The load 

instruction is used to designate a transfer from memory to a processor register. The 

store instruction designates a transfer from a processor register into a memory word. 

The move instruction is used in computers with multiple processor registers to desig-

nate a transfer from one register to another. It is also used for data transfer between 

registers and memory and between two memory words.

The exchange instruction exchanges information between two registers, 

between a register and a memory word, or between two memory words. The push 

and pop instructions are for stack operations described next.

Stack Instructions

The stack architecture introduced earlier possesses features that facilitate a number 

of  data-  processing and control tasks. A stack is used in some electronic calculators 
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and computers for the evaluation of arithmetic expressions. Unfortunately, because 

of the negative effects on performance of having the stack reside primarily in memo-

ry, a stack in a computer typically handles only state information related to proce-

dure calls and returns and interrupts, as explained in Sections 9-8 and 9-9.

The stack instructions push and pop transfer data between a memory stack and 

a processor register or memory. The push operation places a new item onto the top 

of the stack. The pop operation removes one item from the stack so that the stack 

pops up. However, nothing is really physically pushed or popped in the stack. Rather, 

the memory stack is essentially a portion of a memory address space accessed by an 

address that is always incremented or decremented before or after the memory 

access. The register that holds the address for the stack is called a stack pointer (SP) 

because its value always points to TOS, the item at the Top Of Stack. Push and pop 

operations are implemented by decrementing or incrementing the stack pointer.

Figure 9-7 shows a portion of a memory organized as a stack that grows from 

higher to lower addresses. The stack pointer, SP, holds the binary address of the item 

that is currently on top of the stack. Three items are presently stored in the stack: A, B, 

 TABLE  9-2
Typical Data Transfer Instructions

Name Mnemonic

Load LD

Store ST

Move MOVE

Exchange XCH

Push PUSH

Pop POP

Input IN

Output OUT

R1

C

B

A

100

101

102

103

104

Address

Memory

 FIGURE  9-7
Memory Stack
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and C, in consecutive addresses 103, 102, and 101, respectively. Item C is on top of the 

stack, so SP contains 101. To remove the top item, the stack is popped by reading the 

item at address 101 and incrementing SP. Item B is now on top of the stack, since SP 

contains address 102. To insert a new item, the stack is pushed by first decrementing SP 

and then writing the new item on top of the stack using SP as the memory address. Note 

that item C has been read out of the stack, but is not physically removed from it. This 

does not matter as far as the stack operation is concerned, because when the stack is 

pushed, a new item is written over it regardless of what was there before.

We assume that the items in the stack communicate with a data register R1 or a 

memory location X. A new item is placed on the stack with the push operation sequence:

SP d SP - 1

M[SP] d R1

The stack pointer is decremented so that it points at the address of the next word. A 

memory write microoperation inserts the word from R1 onto the top of the stack. 

Note that SP holds the address of the top of the stack and that M[SP] denotes the 

memory word specified by the address presently in SP. An item is deleted from the 

stack with the pop operation pair:

R1 d M[SP]

SP d SP + 1

The top item is read from the stack into R1, and the stack pointer is incremented to 

point at the next item in the stack, which is the new top of the stack. The two micro-

operations described in this case can be in parallel.

The two microoperations needed for either the push or the pop operation are 

an access to memory through SP and an update of SP. In Figure 9-7, the stack grows 

by decreasing the memory address. By contrast, a stack may be constructed to grow 

by increasing the memory address. In such a case, SP is incremented for the push 

operation and decremented for the pop operation. A stack may also be constructed 

so that SP points to the next empty location above the top of the stack. In that case, 

the order of execution of the microoperations must be modified.

A stack pointer is loaded with an initial value, which must be the bottom 

address of an assigned stack in memory. From then on, SP is automatically decre-

mented or incremented with every push or pop operation. The advantage of a mem-

ory stack is that the processor can refer to it without having to specify an address, 

since the address is always available and automatically updated in the stack pointer.

The final pair of data transfer instructions, input and output, depend on the 

type of  input-  output used, as described next.

Independent versus  Memory-  Mapped I/O

Input and output (I/O) instructions transfer data between processor registers and 

input and output devices. These instructions are similar to load and store instruc-

tions, except that the transfers are to and from external registers instead of memory 

words. The computer has a number of input and output ports, with one or more ports 
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dedicated to communication with a specific input or output device. A port is typically 

a register with input and/or output lines attached to the device. The particular port is 

chosen by an address, in a manner similar to the way an address selects a word in 

memory. Input and output instructions include an address field in their format, for 

specifying the particular port selected for the transfer of data.

Port addresses are assigned in two ways. In the independent I/O system, the 

address ranges assigned to memory and I/O ports are independent from each other. 

The computer has distinct input and output instructions, as listed in Table 9-2, con-

taining a separate address field that is interpreted by the control and used to select a 

particular I/O port. Independent I/O addressing isolates memory and I/O selection, 

so that the memory address range is not affected by the port address assignment. For 

this reason, the method is also referred to as an isolated I/O configuration.

In contrast to independent I/O,  memory-  mapped I/O assigns a subrange of the 

memory addresses for addressing I/O ports. There are no separate addresses for han-

dling input and output transfers, since I/O ports are treated as memory locations in 

one common address range. Each I/O port is regarded as a memory location, similar 

to a memory word. Computers that adopt the  memory-  mapped scheme have no dis-

tinct input or output instructions, because the same instructions are used for manip-

ulating both memory and I/O data. For example, the load and store instructions used 

for memory transfer are also used for I/O transfer, provided that the address associ-

ated with the instruction is assigned to an I/O port and not to a memory word. The 

advantage of this scheme is the simplicity that results with the same set of instruc-

tions serving for both memory and I/O access.

9-6  DATA-  MANIPULATION INSTRUCTIONS

 Data-  manipulation instructions perform operations on data and provide the compu-

tational capabilities of the computer. In a typical computer, they are usually divided 

into three basic types:

1. Arithmetic instructions.

2. Logical and  bit-  manipulation instructions.

3. Shift instructions.

A list of elementary  data-  manipulation instructions looks very much like the list of 

microoperations given in Chapter 8. However, an instruction is typically processed 

by executing a sequence of one or more microinstructions. A microoperation is an 

elementary operation executed by the hardware of the computer under the control 

of the control unit. In contrast, an instruction may involve several elementary opera-

tions that fetch the instruction, bring the operands from appropriate processor regis-

ters, and store the result in the specified location.

Arithmetic Instructions

The four basic arithmetic instructions are addition, subtraction, multiplication, and 

division. Most computers provide instructions for all four operations. A list of typical 

arithmetic instructions is given in Table 9-3. The increment instruction adds one to 
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the value stored in a register or memory word. A common characteristic of the incre-

ment operation, when executed on a computer word, is that a binary number of all 1s 

produces a result of all 0s when incremented. The decrement instruction subtracts 

one from a value stored in a register or memory word. When decremented, a number 

of all 0s produces a number of all 1s.

The add, subtract, multiply, and divide instructions may be available for differ-

ent types of data. The data type assumed to be in processor registers during the exe-

cution of these arithmetic operations is included in the definition of the opcode. An 

arithmetic instruction may specify unsigned or signed integers, binary or decimal 

numbers, or  floating-  point data. The arithmetic operations with binary integers were 

presented in Chapters 1 and 3. The  floating-  point representation is used for scientific 

calculations and is presented in the next section.

The number of bits in any register is finite; therefore, the results of arithmetic 

operations are of finite precision. Most computers provide special instructions to 

facilitate  double-  precision arithmetic. A carry  flip-  flop is used to store the carry from 

an operation. The instruction “add with carry” performs the addition with two oper-

ands plus the value of the carry from the previous computation. Similarly, the “sub-

tract with borrow” instruction subtracts two operands and a borrow that may have 

resulted from a previous operation.

The subtract reverse instruction reverses the order of the operands, performing 

B - A instead of A - B. The negate instruction performs the 2s complement of a 

signed number, which is equivalent to multiplying the number by -1.

Logical and  Bit-  Manipulation Instructions

Logical instructions perform binary operations on words stored in registers or mem-

ory words. They are useful for manipulating individual bits or a group of bits that 

represent  binary-  coded information. Logical instructions consider each bit of the op-

erand separately and treat it as a binary variable. By proper application of the logical 

 TABLE  9-3
Typical Arithmetic Instructions

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with borrow SUBB

Subtract reverse SUBR

Negate NEG
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instructions, it is possible to change bit values, to clear a group of bits, or to insert 

new bit values into operands stored in registers or memory.

Some typical logical and  bit-  manipulation instructions are listed in Table 9-4. 

The clear instruction causes the specific operand to be replaced by 0s. The set instruc-

tion causes the operand to be replaced by 1s. The complement instruction inverts all 

the bits of the operand. The AND, OR, and XOR instructions produce the corre-

sponding logical operations on individual bits of two operands. Although logical 

instructions perform Boolean operations, when used on words they often are viewed 

as performing  bit-  manipulation operations. Three  bit-  manipulation operations are 

possible. A selected bit can be cleared to 0, set to 1, or complemented. The three log-

ical instructions are usually applied to do just that.

The AND instruction is used to clear a bit or a selected group of bits of an 

operand to 0. For any Boolean variable X, the relationship X # 0 = 0  dictates that a 

binary variable ANDed with a 0 produces a 0; and similarly, the relationship 

X # 1 = X dictates that the variable does not change when ANDed with a 1. 

Therefore, the AND instruction is used to selectively clear bits of an operand by 

ANDing the operand with a word that has 0s in the bit positions that must be cleared 

and 1s in the bit positions that must remain the same. The AND instruction is also 

called a mask because, by inserting 0s, it masks a selected portion of an operand. 

AND is also sometimes referred to as a bit clear instruction.

The OR instruction is used to set a bit or a selected group of bits of an operand 

to 1. For any Boolean variable X, the relationship X + 1 = 1 dictates that a binary 

variable ORed with a 1 produces a 1; similarly, the relationship X + 0 = X dictates 

that the variable does not change when ORed with a 0. Therefore, the OR instruc-

tion can be used to selectively set bits of an operand by ORing the operand with a 

word with 1s in the bit positions that must be set to 1. The OR instruction is some-

times called a bit set instruction.

The XOR instruction is used to selectively complement bits of an operand. 

This is because of the Boolean relationships X ⊕ 1 = X and X ⊕ 0 = X. A binary 

variable is complemented when XORed with a 1, but does not change value when 

 TABLE  9-4
Typical Logical and  Bit-  Manipulation Instructions

Name Mnemonic

Clear CLR

Set SET

Complement NOT

AND AND

OR OR

 Exclusive-  OR XOR

Clear carry CLRC

Set carry SETC

Complement carry COMC
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XORed with a 0. The XOR instruction is sometimes called a bit complement 
instruction.

Other  bit-  manipulation instructions included in Table  9-4 can clear, set, or 

complement the carry bit. Additional instructions can clear, set, or complement 

other status bits or flag bits in a similar manner.

Shift Instructions

Instructions to shift the content of a single operand are provided in several varieties. 

Shifts are operations in which the bits of the operand are moved to the left or to the 

right. The incoming bit shifted in at the end of the word determines the type of shift. 

Instead of using just a 0, as for sl and sr in Chapter 8, here we add further possibili-

ties. The shift instructions may specify either logical shifts, arithmetic shifts, or  rotate- 

 type operations.

Table 9-5 lists four types of shift instructions, both right and left versions. The 

small diagrams shown in the right column show the bit movement for each of the shifts 

in the Intel  IA-  32  ISA.  In all cases, the outgoing bit is copied into the carry status 

bit C. The logical shifts insert 0 into the incoming bit position during the shift. Arithmetic 

shifts conform to the rules for shifting 2s complement signed numbers. The arithmetic 

shift right instruction uses sign extension, filling the leftmost position with its own value 

during the shift. The arithmetic shift left instruction inserts 0 into the incoming bit in the 

rightmost position and is identical to the logical shift left instruction.

The rotate instructions produce a circular shift: the values shifted out of the 

outgoing bit are rotated back into the incoming bit. The  rotate-  with-  carry instruc-

tions treat the carry bit as an extension of the register whose word is being rotated. 

 TABLE  9-5
Typical Shift Instructions

Name Mnemonic Diagram

Logical shift right SHR 0 C

Logical shift left SHL 0C

Arithmetic shift right SHRA
C

Arithmetic shift left SHLA 0C

Rotate right ROR
C

Rotate left ROL
C

Rotate right with carry RORC
C

Rotate left with carry ROLC
C
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Thus, a rotate left with carry transfers the carry bit into the incoming bit in the right-

most bit position of the register, transfers the outgoing bit from the leftmost bit of 

the register into the carry, and shifts the entire register to the left.

Most computers have a  multiple-  field format for the shift instruction that pro-

vides for shifting multiple, rather than just one, bit positions. One field contains the 

opcode, and another contains the number of positions that an operand is to be 

shifted. A shift instruction may include the following five fields:

OP  REG  TYPE  RL  COUNT

OP is the opcode field for specifying a shift, and REG is a register address that 

specifies the location of the operand. TYPE is a 2-bit field that specifies one of the 

four types of shifts (logical, arithmetic, rotate, and rotate with carry), while RL is a 

1-bit field that specifies whether a shift is to the right or the left. COUNT is a  k-  bit 

field that specifies shifts of up to 2k - 1 positions. With such a format, it is possible 

to specify the type of shift, the direction of the shift, and the number of positions to 

be shifted, all in one instruction.

Note that for shifts of greater than one position, the filling of the positions 

vacated by the shift is consistent with the diagrams shown in Table 9-5. In the Intel  IA- 

 32 ISA, in addition to the use of the carry bit C, the N and Z condition code bits are 

also set based on the shift results. The overflow bit, V, is defined only for 1-bit shifts.

9-7  FLOATING-  POINT COMPUTATIONS

In many scientific calculations, the range of numbers is very large. In a computer, the 

way to express such numbers is in  floating-  point notation. The  floating-  point number 

has two parts, one containing the sign of the number and a fraction (sometimes called 

a mantissa) and the other designating the position of the radix point in the number 

and called the exponent. For example, the decimal number +6132.789 is represented 

in  floating-  point notation as

Fraction Exponent

.6132789 04

The value of the exponent indicates that the actual position of the decimal point is 

four positions to the right of the indicated decimal point in the fraction. This repre-

sentation is equivalent to the scientific notation + .6132789 * 10+4. Decimal  floating- 

 point numbers are interpreted as representing a number in the form

F * 10E

where F is the fraction and E the exponent. Only the fraction and the exponent are 

physically represented in computer registers; radix 10 and the decimal point of the 

fraction are assumed and are not shown explicitly. A  floating-  point binary number is 

represented in a similar manner, except that it uses radix 2 for the exponent. For 

example, the binary number +1001.11 is represented with an 8-bit fraction and 6-bit 

exponent as



526          CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

Fraction Exponent

01001110 000100

The fraction has a 0 in the leftmost position to denote a plus. The binary point of the 

fraction follows the sign bit, but is not shown in the register. The exponent has the 

equivalent binary number +4. The  floating-  point number is equivalent to

F * 2E = +(0.1001110)2 * 2+4

A  floating-  point number is said to be normalized if the most significant digit of 

the fraction is nonzero. For example, the decimal fraction 0.350 is normalized, but 

0.0035 is not. Normalized numbers provide the maximum possible precision for the 

 floating-  point number. A zero cannot be normalized because it does not have a non-

zero digit; it is usually represented in  floating-  point by all 0s in both the fraction and 

the exponent.

 Floating-  point representation increases the range of numbers that can be 

accommodated in a given register. Consider a computer with 48-bit registers. Since 

one bit must be reserved for the sign, the range of signed integers will be {(247 - 1), 

which is approximately {1014. The 48 bits can be used to represent a  floating-  point 

number, with one bit for the sign, 35 bits for the fraction, and 12 bits for the exponent. 

The largest positive or negative number that can be accommodated is thus

{(1 - 2-35) * 2+2047

This number is derived from a fraction that contains 35 1s, and an exponent with a 

sign bit and 11 1s. The maximum exponent is 211 - 1, or 2047. The largest number that 

can be accommodated is approximately equivalent to decimal 10615. Although a 

much larger range is represented, there are still only 48 bits in the representation. As a 

consequence, exactly the same number of numbers are represented. Hence, the range 

is traded for the precision of the numbers, which is reduced from 48 bits to 35 bits.

Arithmetic Operations

Arithmetic operations with  floating-  point numbers are more complicated than with 

integer numbers, and their execution takes longer and requires more complex hard-

ware. Adding and subtracting two numbers require that the radix points be aligned, 

since the exponent parts must be equal before adding or subtracting the fractions. 

The alignment is done by shifting one fraction and correspondingly adjusting its ex-

ponent until it is equal to the other exponent. Consider the sum of the following 

 floating-  point numbers:

 .5372400 * 102

+ .1580000 * 10-1

It is necessary that the two exponents be equal before the fractions can be added. We 

can either shift the first number three positions to the left or shift the second number 

three positions to the right. When the fractions are stored in registers, shifting to the left 

causes a loss of the most significant digits. Shifting to the right causes a loss of the least 
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significant digits. The second method is preferable because it only reduces the precision, 

whereas the first method may cause an error. The usual alignment procedure is to shift 

the fraction with the smaller exponent to the right by a number of places equal to the 

difference between the exponents. After this is done, the fractions can be added:

 .5372400 * 102

+  .0001580 * 102

 .5373980 * 102

When two normalized fractions are added, the sum may contain an overflow 

digit. An overflow can be corrected by shifting the sum once to the right and incre-

menting the exponent. When two numbers are subtracted, the result may contain 

most significant zeros in the fraction, as shown in the following example:

 .56780 * 105

-  .56430 * 105

 .00350 * 105

A  floating-  point number that has a 0 in the most significant position of the fraction is 

not normalized. To normalize the number, it is necessary to shift the fraction to the 

left and decrement the exponent until a nonzero digit appears in the first position. 

In the preceding example, it is necessary to shift left twice to obtain .35000 * 103. In 

most computers, a normalization procedure is performed after each operation to 

ensure that all results are in normalized form.

 Floating-  point multiplication and division do not require an alignment of the 

fractions. Multiplication can be performed by multiplying the two fractions and add-

ing the exponents. Division is accomplished by dividing the fractions and subtracting 

the exponents. In the examples shown, we used decimal numbers to demonstrate 

arithmetic operations on  floating-  point numbers. The same procedure applies to 

binary numbers, except that the base of the exponent is 2 instead of 10.

Biased Exponent

The sign and fraction part of a  floating-  point number is usually a  signed-  magnitude 

representation. The exponent representation employed in most computers is known 

as a biased exponent. The bias is an excess number added to the exponent so that, 

internally, all exponents become positive. As a consequence, the sign of the exponent 

is removed from being a separate entity.

Consider, for example, the range of decimal exponents from -99 to +99. This is 

represented by two digits and a sign. If we use an excess 99 bias, then the biased expo-

nent e will be equal to e = E + 99, where E is the actual exponent. For E = -99, we 

have e = -99 + 99 = 0; and for E = +99, we have e = 99 + 99 = 198. In this way, 

the biased exponent is represented in a register as a positive number in the range 

from 000 to 198.  Positive-  biased exponents have a range of numbers from 099 to 198. 

Subtraction of the bias, 99, gives the positive values from 0 to +99.  Negative-  biased 
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exponents have a range from 098 to 000. Subtraction of 99 gives the negative values 

from -1 to -99.

The advantage of biased exponents is that the resulting  floating-  point numbers 

contain only positive exponents. It is then simpler to compare the relative magnitude 

between two numbers without being concerned with the signs of their exponents. 

Another advantage is that the most negative exponent converts to a biased expo-

nent with all 0s. The  floating-  point representation of zero is then a zero fraction and a 

zero biased exponent, which is the smallest possible exponent.

Standard Operand Format

Arithmetic instructions that perform operations with  floating-  point data often use 

the suffix F. Thus, ADDF is an add instruction with  floating-  point numbers. There are 

two standard formats for representing a  floating-  point operand: the  single-  precision 

data type, consisting of 32 bits, and the  double-  precision data type, consisting of 

64 bits. When both types of data are available, the  single-  precision instruction mne-

monic uses an FS suffix, and the double precision uses FL (for “ floating-  point long”).

The format of the IEEE standard (see Reference 3)  single-  precision  floating- 

 point operand is shown in Figure 9-8. It consists of 32 bits. The sign bit s designates 

the sign for the fraction. The biased exponent e contains 8 bits and uses an excess 127 

number. The fraction f consists of 23 bits. The binary point is assumed to be immedi-

ately to the left of the most significant bit of the f field. In addition, an implied 1 bit is 

inserted to the left of the binary point, which in effect expands the number to 24 bits 

representing a value from 1.02 to 1.11c 12. The component of the binary  floating- 

 point number that consists of a leading bit to the left of the implied binary point, 

together with the fraction in the field, is called the significand. Following are some 

examples of field values and the corresponding significands:

f Field Decimal Equivalent

100 . . . 0 1.100 . . . 0 1.50

010 . . . 0 1.010 . . . 0 1.25

000 . . . 0 1.000 . . . 0* 1.00*

* Assuming the exponent is not equal to 00 . . . 0.

Even though the f field by itself may not be normalized, the significand is 

always normalized, because it has a nonzero bit in the most significant position. 

Since normalized numbers must have a nonzero most significant bit, this 1 bit is 

not included explicitly in the format, but must be inserted by the hardware during 

arithmetic computations. The exponent field uses an excess 127 bias value for 

1 8 23

s e f

 FIGURE  9-8
IEEE  Floating-  Point Operand Format
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normalized numbers. The range of valid exponents is from -126 (represented as 

00000001) through +127 (represented as 11111110). The maximum (11111111) 

and minimum (00000000) values for the e field are reserved to indicate 

 exceptional conditions. Table  9-6 shows the biased and actual values of some 

exponents.

Normalized numbers are numbers that can be expressed as  floating-  point 

operands in which the e field is neither all 0s nor all 1s. The value of the number is 

derived from the three fields in the format of Figure 9-8 using the formula

(-1)s2e-127 * (1.f)

The most positive normalized number that can be obtained has a 0 for the sign bit 

for a positive sign, a biased exponent equal to 254, and an f field with 23 1s. This gives 

an exponent E = 254 - 127 = 127. The significand is equal to 1 + 1 - 2-23 =
2 - 2-23. The maximum positive number that can be accommodated is

+2127 * (2 - 2-23)

The smallest positive normalized number has a biased exponent equal to 00000001 

and a fraction of all 0s. The exponent is E = 1 - 127 = -126, and the significand is 

equal to 1.0. The smallest positive number that can be accommodated is +2-126. The 

corresponding negative numbers are the same, except that the sign bit is negative. As 

mentioned before, exponents with all 0s or all 1s (decimal 255) are reserved for the 

following special conditions:

1. When e = 255 and f = 0, the number represents plus or minus infinity. The 

sign is determined from the sign bit s.

2. When e = 255 and f ≠ 0, the representation is considered to be not a num-
ber, or NaN, regardless of the sign value. NaNs are used to signify invalid oper-

ations, such as the multiplication of zero by infinity.

3. When e = 0 and f = 0, the number denotes plus or minus zero.

 TABLE  9-6
Evaluating Biased Exponents

Exponent E  

in decimal

Biased exponent e = E + 127 

Decimal Binary

-126 -126 + 127 = 1 00000001

-001 -001 + 127 = 126 01111110

   000    000 + 127 = 127 01111111

+001    001 + 127 = 128 10000000

+126    126 + 127 = 253 11111101

+127    127 + 127 = 254 11111110
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4. When e = 0 and f ≠ 0, the number is said to be denormalized. This is the 

name given to numbers with a magnitude less than the minimum value that is 

represented in the normalized format.

9-8 PROGRAM CONTROL INSTRUCTIONS

The instructions of a program are stored in successive memory locations. When pro-

cessed by the control, the instructions are read from consecutive memory locations 

and executed one by one. Each time an instruction is fetched from memory, the PC is 

incremented so that it contains the address of the next instruction in sequence. In 

contrast, a program control instruction, when executed, may change the address val-

ue in the PC and cause the flow of control to be altered. The change in the PC as a 

result of the execution of a program control instruction causes a break in the se-

quence of execution of instructions. This is an important feature of digital computers, 

since it provides control over the flow of program execution and a capability of 

branching to different program segments, depending on previous computations.

Some typical program control instructions are listed in Table 9-7. The branch 

and jump instructions are often used interchangeably to mean the same thing, 

although sometimes they are used to denote different addressing modes. For 

example, the jump may use direct or indirect addressing, whereas the branch uses 

relative addressing. The branch (or jump) is usually a  one-  address instruction. When 

executed, the branch instruction causes a transfer of the effective address into 

the PC. Since the PC contains the address of the instruction to be executed next, the 

next instruction will be fetched from the location specified by the effective address.

Branch and jump instructions may be conditional or unconditional. An uncon-

ditional branch instruction causes a branch to the specified effective address without 

any conditions. The conditional branch instruction specifies a condition that must be 

met in order for the branch to occur, such as the value in a specified register being 

negative. If the condition is met, the PC is loaded with the effective address, and the 

next instruction is taken from this address. If the condition is not met, the PC is not 

changed, and the next instruction is taken from the next location in sequence.

The call and return instructions are used in conjunction with procedures. Their 

performance and implementation are discussed later in this section.

 TABLE  9-7
Typical Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Call procedure CALL

Return from procedure RET

Compare (by subtraction) CMP

Test (by ANDing) TEST
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The compare instruction performs a comparison via a subtraction, with the dif-

ference not retained. Instead, the comparison causes a conditional branch, changes 

the contents of a register, or sets or resets stored status bits. Similarly, the test instruc-

tion performs the logical AND of two operands without retaining the result and exe-

cutes one of the actions listed for the compare instruction.

Based on their three possible actions, compare and test instructions are viewed 

to be of three distinct types, depending upon the way in which conditional decisions 

are handled. The first type executes the entire decision as a single instruction. For 

example, the contents of two registers can be compared and a branch or jump taken 

if the contents are equal. Since two register addresses and a memory address are 

involved, such an instruction requires three addresses. The second type of compare 

and test instruction also uses three addresses, all of which are register addresses. 

Considering the same example, if the contents of the first two registers are equal, a 1 

is placed in the third register. If the contents are not equal, a 0 is placed in the third 

register. These two types of instructions avoid the use of stored status bits. In the first 

case, no such bit is required, and in the second case, a register is used to simulate its 

presence. The third type of compare and test has compare and test operations that 

set or reset stored status bits. Branch or jump instructions are then used to condition-

ally change the program sequence. This third type of compare and test instruction is 

discussed in the next subsection.

Conditional Branch Instructions

A conditional branch instruction is a branch instruction that may or may not cause a 

transfer of control, depending on the value of stored bits in the processor status reg-

ister, PSR. Each conditional branch instruction tests a different combination of sta-

tus bits for a condition. If the condition is true, control is transferred to the effective 

address. If the condition is false, the program continues with the next instruction.

Table 9-8 gives a list of conditional branch instructions that depend directly on 

the bits in the PSR. In most cases, the instruction mnemonic is constructed with the 

letter B (for “branch”) and a letter for the name of the status bit. The letter N (for 

 TABLE  9-8
Conditional Branch Instructions Relating to Status  
Bits in the PSR

Branch Condition Mnemonic Test Condition

Branch if zero BZ Z =  1

Branch if not zero BNZ Z =  0

Branch if carry BC C =  1

Branch if no carry BNC C =  0

Branch if minus BN N =  1

Branch if plus BNN N =  0

Branch if overflow BV V =  1

Branch if no overflow BNV V =  0
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“not”) is included if the status bit is tested for a 0 condition. Thus, BC is a branch if 

carry = 1, and BNC is a branch if carry = 0.

The zero status bit Z is used to check whether the result of an ALU operation or 

shift is equal to zero. The carry bit C is used to check the carry after the addition or the 

borrow after the subtraction of two operands in the ALU. It is also used in conjunction 

with shift instructions to check the value of the outgoing bit. The sign bit N reflects the 

state of the leftmost bit of the output from the ALU or shift. N = 0 denotes a positive 

sign and N = 1 a negative sign. These instructions can be used to check the value of the 

leftmost bit, whether it represents a sign or not. The overflow bit V is used in conjunc-

tion with arithmetic and shift operations with both signed and unsigned numbers.

As stated previously, the compare instruction performs a subtraction of two 

operands, say, A - B. The result of the operation is not transferred into a destination 

register, but the status bits are affected. The status bits provide information about 

the relative magnitude between A and B. Some computers provide special branch 

instructions that can be applied after the execution of a compare instruction. The 

specific conditions to be tested depend on whether the two numbers are considered 

to be unsigned or signed.

The relative magnitude between two unsigned binary numbers A and B can be 

determined by subtracting A - B and checking the C and Z status bits. Most commer-

cial computers consider the C status bit as a carry after addition and a borrow after sub-

traction. A borrow occurs when A 6 B, because the most significant position must 

borrow a bit to complete the subtraction. A borrow does not occur if A Ú B, because 

the difference A - B is positive. The condition for borrowing is the inverse of the condi-

tion for carrying when the subtraction is done by taking the 2s complement 

of B. Computers that use the C status bit as a borrow after a subtraction, complement 

the output carry after adding the 2s complement of the subtrahend and call this bit a 

borrow. The technique is typically applied to all instructions that use subtraction within 

the functional unit, not just the subtract instruction. For example, it applies to compare 

instructions.

The conditional branch instructions for unsigned numbers are listed in Table 9-9. 

It is assumed that a previous instruction has updated status bits C and Z after a sub-

traction A - B or some other similar instruction. The words “above,” “below,” and 

 TABLE  9-9
Conditional Branch Instructions for Unsigned Numbers

Branch Condition Mnemonic Condition Status Bits*

Branch if above BA A 7 B C + Z = 0

Branch if above or equal BAE A Ú B C = 0

Branch if below BB A 6 B C = 1

Branch if below or equal BBE A … B C + Z = 1

Branch if equal BE A = B Z = 1

Branch if not equal BNE A ≠ B Z = 0  

*Note that C here is a borrow bit.
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“equal” are used to denote the relative magnitude between two unsigned numbers. 

The two numbers are equal if A = B. This is determined from the zero status bit Z, 

which is equal to 1 because A = B. A is below B and the borrow C = 1 when 

A - B = 0. For A to be below or equal to B (A 6 B), we must have C = 1 or 

Z = 1 . The relationship (A … B), is the inverse of A 7 B and is detected from the 

complemented condition of the status bits. Similarly, A … B is the inverse of A Ú B
, and A ≠ B is the inverse of A = B.

The conditional branch instructions for signed numbers are listed in Table 9-10. 

Again, it is assumed that a previous instruction has updated the status bits N, V, and 

Z after a subtraction A - B. The words “greater,” “less,” and “equal” are used to 

denote the relative magnitude between two signed numbers. If N = 0, the sign of 

the difference is positive, and A must be greater than or equal to B, provided that 

V = 0, indicating that no overflow occurred. An overflow causes a sign reversal, as 

discussed in Section  3-11. This means that if N = 1 and V = 1, there was a sign 

reversal, and the result should have been positive, which makes A greater than or 

equal to B. Therefore, the condition A Ú B is true if both N and V are equal to 0 or 

both are equal to 1. This is the complement of the  exclusive-  OR operation.

For A to be greater than but not equal to B (A 7 B), the result must be 

 positive and nonzero. Since a zero result gives a positive sign, we must ensure that 

the Z bit is 0 to exclude the possibility that A = B. Note that the condition 

(N ⊕ V) + Z = 0 means that both the  exclusive-  OR operation and the Z bit 

must be equal to 0. The other two conditions in the table can be derived in a simi-

lar manner. The conditions BE (branch on equal) and BNE (branch on not equal) 

given for unsigned numbers apply to signed numbers as well and can be deter-

mined from Z = 1 and Z = 0, respectively.

Procedure Call and Return Instructions

A procedure is a  self-  contained sequence of instructions that performs a given compu-

tational task. During the execution of a program, a procedure may be called to perform 

its function many times at various points in the program, a procedure may be called to 

perform its function many times at various points in the program. Each time the proce-

dure is called, a branch is made to the beginning of the procedure to start  executing its 

 TABLE  9-10
Conditional Branch Instructions for Signed Numbers

Branch Condition Mnemonic Condition Status Bits

Branch if greater BG A 7 B (N ⊕ V) + Z = 0

Branch if greater or equal BGE A Ú B N ⊕ V = 0

Branch if less BL A 6 B N ⊕ V = 1

Branch if less or equal BLE A … B (N ⊕ V) + Z = 1

Branch if equal BE A = B Z = 1

Branch if not equal BNE A ≠ B Z = 0
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set of instructions. After the procedure has been executed, a branch is made again to 

return to the main program. A procedure is also referred to as a subroutine.

The instruction that transfers control to a procedure is known by different names, 

including call procedure, call subroutine, jump to subroutine, branch to subroutine, and 

branch and link. We will refer to the routine containing the procedure call as the call-
ing procedure. The calling procedure is often referred to as the caller, and the proce-

dure being called is often referred to as the callee. The call procedure instruction has a 

 one-  address field and performs two operations. First, it stores the value of the PC, 

which is the address following that of the call procedure instruction, in a temporary 

location. This address is called the return address, and the corresponding instruction is 

the continuation point in the calling procedure. Second, the address in the call proce-

dure  instruction—  the address of the first instruction in the  procedure—  is loaded into 

the PC. When the next instruction is fetched, it comes from the called procedure.

The final instruction in every procedure must be a return to the calling proce-

dure. The return instruction takes the address that was stored by the call procedure 

instruction and places it back in the PC. This results in a transfer of program execu-

tion back to the continuation point in the calling procedure.

Different computers use different temporary locations for storing the return 

address. Some computers store it in a fixed location in memory, some store it in a pro-

cessor register, and some store it in a memory stack. The advantage of using a stack for 

the return address is that, when a succession of procedures are called, the sequential 

return address can be pushed onto the stack. The return instruction causes the stack to 

pop, and the contents of the top of the stack are then transferred to the PC. In this way, 

a return is always to the program that last called the procedure. A procedure call instruc-

tion using a stack is implemented with the following microoperation sequence:

SP d SP – 1 Decrement stack pointer

M[SP] d PC Store return address on stack

PC d Effective address Transfer control to procedure

The return instruction is implemented by popping the stack and transferring 

the return address to the PC:

PC d M[SP] Transfer return address to PC

SP d SP + 1  Increment stack pointer

By using a procedure stack, all return addresses are automatically stored by the 

hardware in the memory stack. Thus, the programmer does not have to be concerned 

about managing the return addresses for procedures called from within procedures.

In addition to storing the return address, the program must also properly man-

age any parameter values transferred to the procedure and result values returned to 

the calling procedure, as well as temporary values stored in registers required by 

either the procedure or calling procedure. The method used by a programming lan-

guage or compiler to ensure that the values are properly managed is commonly 

known as a calling convention. The calling convention will typically specify how 

parameter values are provided to the procedure, how result values are returned to 

the calling procedure, which registers may be overwritten by the procedure, and 
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which registers must be preserved by the procedure so that their values can be used 

by the calling procedure after the procedure returns control to it. A combination of 

registers and the stack is often used as part of the calling convention to pass parame-

ter values to the procedure and return values to the calling procedure. The stack can 

also be used to preserve register values across the procedure call.

9-9 PROGRAM INTERRUPT

A program interrupt is used to handle a variety of situations that require a departure 

from the normal program sequence. A program interrupt transfers control from a 

program that is currently running to another service program as a result of an exter-

nally or internally generated request. Control returns to the original program after 

the service program is executed. In principle, the interrupt procedure is similar to a 

call procedure, except in three respects:

1. The interrupt is usually initiated at an unpredictable point in the program by an 

external or internal signal, rather than the execution of an instruction.

2. The address of the service program that processes the interrupt request is deter-

mined by a hardware procedure, rather than the address field of an instruction.

3. In response to an interrupt, it is necessary to store information that defines all or 

part of the contents of the register set, rather than storing only the program counter.

After the computer has been interrupted and the appropriate service program 

executed, the computer must return to exactly the same state that it was in before the 

interrupt occurred. Only if this happens will the interrupted program be able to resume 

exactly as if nothing had happened. The state of the computer at the end of an execu-

tion of an instruction is determined from the contents of the register set. In addition to 

containing the condition codes, the PSR can specify what interrupts are allowed to 

occur and whether the computer is operating in user or system mode. Most computers 

have a resident operating system that controls and supervises all other programs. When 

the computer is executing a program that is part of the operating system, the computer 

is placed in system mode, in which certain instructions are privileged and can be exe-

cuted in the system mode only. The computer is in user mode when it executes user 

programs, in which case it cannot execute the privileged instructions. The mode of the 

computer at any given time is determined from a special status bit or bits in the PSR.

Some computers store only the program counter when responding to an interrupt. 

In such computers, the program that performs the data processing for servicing the inter-

rupt must include instructions to store the essential contents of the register set. Other 

computers store the entire register set automatically in response to an interrupt. Some 

computers have two sets of processor registers, so that when the program switches from 

user to system mode in response to an interrupt, it is not necessary to store the contents 

of processor registers, because each computer mode employs its own set of registers.

The hardware procedure for processing interrupts is very similar to the execu-

tion of a procedure call instruction. The contents of the register set of the processor 

are temporarily stored in memory, typically by being pushed onto a memory stack, 

and the address of the first instruction of the interrupt service program is loaded into 

the PC. The address of the service program is chosen by the hardware. Some com-

puters assign one memory location for the beginning address of the service program: 
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the service program must then determine the source of the interrupt and proceed to 

service it. Other computers assign a separate memory location for each possible 

interrupt source. Sometimes, the interrupt source hardware itself supplies the 

address of the service routine. In any case, the computer must possess some form of 

hardware procedure for selecting a branch address for servicing the interrupt.

Most computers will not respond to an interrupt until the instruction that is in 

the process of being executed is completed. Then, just before going to fetch the next 

instruction, the control checks for any interrupt signals. If an interrupt has occurred, 

control goes to a hardware interrupt cycle. During this cycle, the contents of some 

part or all of the register set are pushed onto the stack. The branch address for the 

particular interrupt is then transferred to the PC, and the control goes to fetch the 

next instruction, which is the beginning of the interrupt service routine. The last 

instruction in the service routine is a return from the interrupt instruction. When this 

return is executed, the stack is popped to retrieve the return address, which is trans-

ferred to the PC as well as any stored contents of the rest of the register set, which 

are transferred back to the appropriate registers.

Types of Interrupts

The three major types of interrupts that cause a break in the normal execution of a 

program are as follows:

1. External interrupts.

2. Internal interrupts.

3. Software interrupts.

External interrupts come from input or output devices, from timing devices, 

from a circuit monitoring the power supply, or from any other external source. 

Conditions that cause external interrupts are an input or output device requesting a 

transfer of data, an external device completing a transfer of data, the  time-  out of an 

event, or an impending power failure. A  time-  out interrupt may result from a pro-

gram that is in an endless loop and thus exceeds its time allocation. A  power-  failure 

interrupt may have as its service program a few instructions that transfer the com-

plete contents of the register set of the processor into a nondestructive memory such 

as a disk in the few milliseconds before power ceases.

Internal interrupts arise from the invalid or erroneous use of an instruction or 

data. Internal interrupts are also called traps. Examples of interrupts caused by 

internal conditions are an arithmetic overflow, an attempt to divide by zero, an 

invalid opcode, a memory stack overflow, and a protection violation. A protection 
violation is an attempt to address an area of memory that is not supposed to be 

accessed by the currently executing program. The service programs that process 

internal interrupts determine the corrective measure to be taken in each case.

External and internal interrupts are initiated by the hardware of the computer. 

By contrast, a software interrupt is initiated by executing an instruction. The software 

interrupt is a special call instruction that behaves like an interrupt rather than a pro-

cedure call. It can be used by the programmer to initiate an interrupt procedure at 

any desired point in the program. Typical use of the software interrupt is associated 
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with a system call instruction. This instruction provides a means for switching from 

user mode to system mode. Certain operations in the computer may be performed by 

the operating system only in system mode. For example, a complex input or output 

procedure is done in system mode. In contrast, a program written by a user must run 

in user mode. When an input or output transfer is required, the user program causes a 

software interrupt, which stores the contents of the PSR (with the mode bit set to 

“user”), loads new PSR contents (with the mode bit set to “system”), and initiates the 

execution of a system program. The calling program must pass information to the 

operating system in order to specify the particular task that is being requested.

An alternative term for an interrupt is an exception, which may apply only to inter-

nal interrupts or to all interrupts, depending on the particular computer manufacturer. As 

an illustration of the use of the two terms, what one programmer calls  interrupt-  handling 

routines may be referred to as  exception-  handling routines by another programmer.

Processing External Interrupts

External interrupts may have single or multiple interrupt input lines. If there are 

more interrupt sources than there are interrupt inputs in the computer, two or more 

sources are ORed to form a common line. An interrupt signal may originate at any 

time during program execution. To ensure that no information is lost, the computer 

usually acknowledges the interrupt only after the execution of the current instruc-

tion is completed and only if the state of the processor warrants it.

Figure  9-9 shows a simplified external interrupt configuration. Four external 

interrupt sources are ORed to form a single interrupt input signal. Within the CPU is 

an  enable-  interrupt  flip-  flop (EI) that can be set or reset with two program instruc-

tions: enable interrupt (ENI) and disable interrupt (DSI). When EI is 0, the interrupt 

signal is neglected. When EI is 1 and the CPU is at the end of executing an instruction, 

the computer acknowledges the interrupt by enabling the interrupt acknowledge out-

put INTACK. The interrupt source responds to INTACK by providing an interrupt 

vector address IVAD to the CPU. The  program-  controlled EI  flip-  flop allows the pro-

grammer to decide whether to use the interrupt facility. If a DSI instruction to reset EI 

has been inserted in the program, it means that the programmer does not want the 

program to be interrupted. The execution of an ENI instruction to set EI indicates 

that the interrupt facility will be active while the program is running.

The computer responds to an interrupt request signal if EI = 1 and execution 

of the present instruction is completed. Typical microinstructions that implement the 

interrupt are as follows:

SP d SP – 1 Decrement stack pointer

M[SP] d PC Store return address on stack

SP d SP – 1 Decrement stack pointer

M[SP] d PSR Store processor status word on stack

EI d 0 Reset enable – interrupt flip – flop

INTACK d 1 Enable interrupt acknowledge

PC d IVAD Transfer interrupt vector address to PC
 Go to fetch phase. 
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The return address available in the PC is pushed onto the stack, and the PSR 

contents are pushed onto the stack. EI is reset to disable further interrupts. The pro-

gram that services the interrupt can set EI with an instruction whenever it is appro-

priate to enable other interrupts. The CPU assumes that the external source will 

provide an IVAD in response to an INTACK. The IVAD is taken as the address of 

the first instruction of the program that services the interrupt. Obviously, a program 

must be written for that purpose and stored in memory.

The return from an interrupt is done with an instruction at the end of the ser-

vice program that is similar to a return from a procedure. The stack is popped, and 

the return address is transferred to the PC. Since the EI  flip-  flop is usually included 

in the PSR, the value of EI for the original program is returned to EI when the old 

value of the PSR is returned. Thus, the interrupt system is enabled or disabled for the 

original program, as it was before the interrupt occurred.

9-10 CHAPTER SUMMARY

In this chapter, we defined the concepts of instruction set architecture and the compo-

nents of an instruction and explored the effects on programs of the maximum address 

count per instruction, using both memory addresses and register addresses. This led to 

the definitions of four types of addressing architecture:  memory-  to-  memory,  register- 

 to-  register,  single-  accumulator, and stack. Addressing modes specify how the informa-

tion in an instruction is interpreted in determining the effective address of an operand.

Reduced instruction set computers (RISCs) and complex instruction set com-

puters (CISCs) are two broad categories of instruction set architecture. A RISC has 
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as its goals high throughput and fast execution of instructions. In contrast, a CISC 

attempts to closely match the operations used in programming languages and facili-

tates more compact programs.

Three categories of elementary instructions are data transfer, data manipula-

tion, and program control. In elaborating data transfer instructions, the concept of 

the memory stack appears. Transfers between the CPU and I/O are addressed by two 

different methods: independent I/O, with a separate address space, and  memory- 

 mapped I/O, which uses part of the memory address space. Data manipulation 

instructions fall into three classes: arithmetic, logical, and shift.  Floating-  point for-

mats and operations handle broader ranges of operand values for arithmetic 

operations.

Program control instructions include basic unconditional and conditional 

transfers of control, the latter may or may not use condition codes. Procedure calls 

and returns permit programs to be broken up into procedures that perform useful 

tasks. Interruption of the normal sequence of program execution is based on three 

types of interrupts: external, internal, and software. Also referred to as exceptions, 

interrupts require special processing actions upon the initiation of routines to ser-

vice them and upon returns to execution of the interrupted programs.
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PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

9-1.  Based on operations illustrated in Section 9-2, write a program to evaluate 

the arithmetic expression

X = (A + B - C) * (D - E)

Problems      539
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Make effective use of the registers to minimize the number of MOVE or LD 

instructions where possible.

(a)  Assume a  register-  to-  register architecture with  three-  address instructions. 

The operand order for subtraction, SUB, is difference, minuend, subtrahend.

(b) Assume a  memory-  to-  memory architecture with  two-  address instructions.

(c) Assume a  single-  accumulator computer with  one-  address instructions.

9-2.  *Repeat Problem 9-1 for

Y = (A + B) * C , (D - E * F)

All operands are initially in memory. The operand order for divide, DIV, is 

quotient, dividend, divisor.

9-3.  *A program is to be written for a stack architecture for the arithmetic expression

X = (A - B) * (A + C) * (B - D)

(a) Find the corresponding RPN expression.

(b) Write the program using PUSH, POP, ADD, MUL, SUB, and DIV 

instructions as appropriate for the operators in the expression.

(c) Show the contents of the stack after the execution of each instruction.

9-4.  Repeat Problem 9-3 for the arithmetic expression

Y = (((A * B) + C) * D) , (E - (A * F))

9-5.  (a)  There are different ways of address calculation for instructions in which 

one of the operands is in memory. Consider the case of address being 

calculated before getting the second operand from memory (assuming 

that the first operand is in one of the registers). How is the second 

operand’s address calculated in the indexed and relative modes?

 (b)  The length of an instruction is shortest if both operands are in registers. 

Why?

9-6.  *A  two-  word relative mode  branch-  type instruction is stored in memory at 

locations 207 and 208 (decimal). The branch is made to an address equivalent 

to decimal 195. Let the address field of the instruction (stored at address 208) 

be designated by X.

(a) Determine the value of X in decimal.

(b) Determine the value of X in binary, using 16 bits. (Note that the number is 

negative and must be in 2s complement notation. Why?)

9-7.  Repeat Problem 9-6 for a branch instruction in locations 143 and 144 and a 

branch address equivalent to 1000. All values are in decimal.

9-8.  Consider the case of the following “two operand” instructions where the first 

operand is the destination and the second is the source. “M” refers to an 

address in memory.



(a) ADD R1, M

(b) ADD M, R1

 Illustrate the difference in the actions needed to get these instructions 

executed.

9-9.  Do address calculations (in hex format) for the following modes of addressing:  

(a) Relative 

(b) Relative Indexed

 The relative number is 1214H. The index register contains the number 0078H. 

The instruction contains one constituent of the address in R1 as R1 = 5600H.

9-10.  *A computer has a 32-bit word length, and all instructions are one word in 

length. The register file of the computer has 16 registers.

(a) For a format with no mode fields and three register addresses, what is the 

maximum number of opcodes possible?

(b) For a format with two register address fields, one memory field, and a 

maximum of 100 opcodes, what is the maximum number of memory 

address bits available?

9-11.  Stacks are of two types: ascending and descending. Consider two stacks: one 

which is descending and the other which is ascending. The value of SP for 

both the stacks is 124. Refer to the figure below for the SP values for the two 

kinds of stacks and where it points to.
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 Draw the figures of the stack with the value of SP and where it points after 

the following operations:

(a) Two PUSH operations where XX and YY are the data that are pushed in.

(b) One POP operation.

9-12.  It is required to swap the data of two registers R1 and R2, which are part of 

the architected set of registers.

(a) Write the code to do it using only PUSH and POP operations

(b) Write the code to do it by register transfer instructions.

(c)  Compare the two methods and explain why one method is superior to the 

other in terms of time expended.

Ascending stack Descending stack

Before PUSH

Stack
Stack

124

SP Value
Before PUSH

124
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9-13.  In I/O mapped input-output, the address of the port is needed to be specified 

in the instruction. It uses only the IN and OUT instructions for accessing 

peripherals.

(a) Write the code for inputting data from an input device with address 89.

(b) Write the code for outputting data to an output device with address 95.

(c)  Write the code for doing both these operations using memory-mapped 

I/O.

9-14.  *Assume a computer with 8-bit words for the  multiple-  precision addition of 

two 32-bit unsigned numbers,

1F C6 24 7B + 00 57 ED 4B

(a) Write a program to execute the addition, using add and add with carry 

instructions.

(b) Execute the program for the given operands. Each byte is expressed as a 

2-digit hexadecimal number.

9-15. How many operands does each of these instructions have at the minimum?

(a) Add with carry

(b) Increment

9-16.  (a) What is the importance of “Arithmetic right shifting”?

 (b) Given the data 1001 0000 1100 1101, perform each of the below 

      operations on it. The carry flag is reset.

(1) Arithmetic right shift once.

(2) Rotate Right with carry once. 

(3) Logical shift left once.

9-17.  *An 8-bit register contains the value 01101001, and the carry bit is equal to 1. 

Perform the eight shift operations given by the instructions listed in Table 9-5 

as a sequence of operations on this register.

9-18.  Represent the following two numbers in two exponential forms of 

representation.

(a) 6567

(b) 0.006789

9-19.  *A 36-bit  floating-  point number consists of 26 bits plus sign for the fraction 

and 8 bits plus sign for the exponent. What are the largest and smallest 

positive nonzero quantities for normalized numbers?

9-20.  *A 4-bit exponent uses an excess 7 number for the bias. List all biased binary 

exponents from +8 through -7.

9-21.  Floating point numbers are represented in single precision or in double 

precision as the following figures show.
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S E M

23-bit MantissaBiased
Exponent (8-bit)

Sign Bit

32 bits

S E M

52-bit MantissaBiased
Exponent (11-bit)

Sign Bit

64 bits

 Convert the number 230.25 into single precision and –6765.1875 into double 

precision.

9-22.  Convert the following double- and single-precision numbers to normal 

decimal representation:

(a) Double precision

(1) 40AB0F8000000000

(2) 4056480000000000

(3) 416110027C000000

(b) Single precision

(1) 45587C00H 

(2) 42B24000H

(3) 4B088013H 

9-23.  What is meant by the “fixed point” representation of floating point numbers? 

How will the number 7.0301678 be rounded off if it is decided to have four 

digits after the decimal point?.

9-24.  The IEEE standard  single-  precision  floating-  point format shown in Figure 

9-8 uses 32 bits.

(a) What is the 8-digit hexadecimal representation of the decimal number 

-9.359375?

(b) What decimal number is represented by the hexadecimal value 

41CBA000?

9-25.  *It is necessary to branch to ADRS if the bit in the least significant position of 

the operand in a 16-bit register is equal to 1. Show how this can be done with 

the TEST (Table 9-7) and BNZ (Table 9-8) instructions.

9-26.  (a)  Find the status of the carry and sign flags after adding the following 8-bit 

numbers, i.e., 0011 0101 and 1100 1111.

 (b) What is sum obtained? What is the size of the result?
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 (c)  Find the sum obtained adding the following 16-bit numbers 0100 0101 

1110 1100 and 0111 0111 0010 0011.

 (d)  What is the status of the carry, overflow, and Zero flags after the 16-bit 

addition?

 (e)  Write a few instructions that use the condition of flags as criteria for their 

operation. 

9-27.  *The program in a computer compares two unsigned numbers A and B by 

performing a subtraction A - B and updating the status bits. For operands 

let A = 01011101 and B = 01011100,

(a) Evaluate the difference and interpret the binary result.

(b) Determine the values of status bits C (borrow) and Z (zero).

(c) List the conditional branch instructions from Table 9-9 that will have a 

true condition.

9-28.  The program in a computer compares two signed 2s complement numbers A 

and B by performing subtraction A - B and updating the status bits. For 

operands let A = 11011010 and B = 01110110,

(a) Evaluate the difference and interpret the binary result.

(b) Determine the value of status bits N (sign), Z (zero), and V (overflow).

(c) List the conditional branch instructions from Table 9-10 that will have a 

true condition.

9-29.  Repeat Problem 9-28 with A = 10100100 and B = 10101001.

9-30.  *The top of a memory stack contains 5000. The stack pointer SP contains 

4000. A  two-  word procedure call instruction is located in memory at address 

2000, followed by the address field of 502 at location 2001. All of these are 

decimal values. What are the contents of PC, SP, and the top of the stack (a) 

before the call instruction is fetched from memory, (b) after the call 

instruction is executed, and (c) after the return from the procedure?

9-31.  In computer architecture literature, it is found that very few computers use 

the concept of a link register. A link register saves the “return” address on the 

event of a procedure calls.

(a) How is the idea of using a “link register” superior compared to 

architectures that don’t have such a register?

(b) In architectures that don’t have a link register, the last instruction in a 

procedure is RET. What is the last instruction for the case when a link 

register is present?

9-32.  “A procedure call has more overheads than a jump instruction.” Explain the 

concept behind this statement.

9-33.  *Give five examples of external interrupts and five examples of internal 

interrupts. What is the difference between a software interrupt and a 

procedure call?



9-34.  Interrupts are very important in the scheme of computer activity. Answer the 

following questions regarding interrupts:

(a) How are software interrupts initiated?

(b) Error induced interrupts are named “exceptions”. Give an example of an 

exception.

(c) When the current program is interrupted, a new program is to be started. 

What is this new program called?

(d) Where is this new program available?

(e) Does the stack have a role in interrupt processing?

9-35.  The program counter (PC) is an important register for any computer. Answer 

the following questions regarding the program counter:

(a) On what aspect of the computer’s architecture does the size of the PC 

depend on?

(b) Can a computer with an 8-bit data bus have a 16-bit PC? 

(c) When a call instruction is encountered, what happens to the value in PC?

(d) How does the PC get a new value when a jump instruction is encountered?

Problems      545
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C H A P T E R 

Risc and Cisc Central 
Processing Units

10

The central processing unit (CPU) is the key component of a digital computer. Its 

purpose is to decode instructions received from memory and perform transfer, 

arithmetic, logic, and control operations with data stored in internal registers, 

memory, or I/O interface units. Externally, the CPU provides one or more buses for 

transferring instructions, data, and control information to and from components 

connected to it.

In the generic computer at the beginning of Chapter 1, the CPU is a part of the 

processor. CPUs, however, may also appear elsewhere in computers. Small, relatively 

simple computers called microcontrollers are used in computers and in other digital 

systems to perform limited or specialized tasks. For example, a microcontroller is 

present in the keyboard and in the monitor in the generic computer. In such 

microcontrollers, the CPU may be quite different from those discussed in this chapter. 

The word lengths may be short (e.g., eight bits), the number of registers small, and the 

instruction sets limited. Performance, relatively speaking, is low, but adequate. Most 

important, the cost of these microcontrollers is very low, making their use cost effective.

The approach in this chapter builds upon and parallels that in Chapter 8. It begins 

by converting the datapath in Chapter 8 to a pipelined datapath and then adding a 

pipelined control unit to form a reduced instruction set computer (RISC) analogous to 

the single-cycle computer. Problems due to the use of pipelining are introduced and 

solutions are offered for the RISC design. Next, the control unit is expanded to form a 

complex instruction set computer (CISC) that is analogous to the multiple-cycle 

computer. A brief overview of techniques to enhance pipelined processor performance 

is presented. Finally, we consider PC microprocessors that use multiple processors on 

a single chip.
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10-1 PIPELINED DATAPATH

Figure 8-17 was used to illustrate the long delay path present in the single-cycle com-

puter and the resultant clock frequency limit. With a narrower focus, Figure 10-1(a) 

illustrates maximum delay values for each of the components of a typical datapath. 

A maximum of 0.8 ns (0.6 ns + 0.2 ns) is required to read two operands from the 

register file or to read one operand from the register file and obtain a constant from 

MUX B. A maximum of 0.8 ns is required to execute an operation in the functional 

unit. Also, a maximum of 0.8 ns is required to write the result back into the register 

file, including the delay of MUX D. Adding these delays, we find that 2.4 ns is 

required to perform a single microoperation. The maximum rate at which the micro-

operations can be performed is the inverse of 2.4 ns (i.e., 416.7 MHz). This is the 

maximum frequency at which the clock can be operated, since 2.8 ns is the smallest 

clock period that will allow each microoperation to be completed with certainty. As 

illustrated in Figure 8-17, delay paths that pass through both the datapath and the 

control unit limit the clock frequency to an even smaller value. For the datapath 
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MUX D
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0.2 ns
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 FIGURE  10-1
Datapath Timing
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alone and for the combination of the datapath and control unit in the single-cycle 

computer, the execution of a microoperation constitutes the execution of an instruc-

tion. Thus, the rate of execution of instructions equals the clock frequency.

Now suppose that the datapath execution rate is not adequate for a particular 

application, and that no faster components are available with which to reduce the 

2.8  ns required to complete a microoperation. Still, it may be possible to reduce 

the  clock period and increase the clock frequency. This can be done by breaking 

up the 2.8 ns delay path with registers. The resulting datapath, sketched in Figure 10-1(b), 

is referred to as a pipelined datapath, or just a pipeline.

Three sets of registers break the delay of the original datapath into three parts. 

These registers are shown crosshatched in blue. The register file contains the first set 

of registers. Cross-hatching covers only the top half of the register file, since the 

lower half is viewed as the combinational logic that selects the two registers to be 

read. The two registers that store the A data from the register file and the output of 

MUX B constitute the second set of registers. The third set of registers stores the 

inputs to MUX D.

The term “pipeline,” unfortunately, does not provide the best analogy for the 

corresponding datapath structure. A better analogy is a production line. A common 

example is an automated car wash in which cars are pulled through a series of sta-

tions at which a particular step is performed:

1. Wash—Flush with hot, soapy water,

2. Rinse—Flush with plain warm water, and

3. Dry—Blow air over the surface.

The processing of a vehicle through the car wash consists of three steps and requires a 

certain amount of time to complete. Analogously, the processing of an instruction by a 

pipeline consists of n > 1 steps and requires a certain amount of time to complete. The 

length of time required to process an instruction is called the latency time. In the car 

wash, the latency time is the length of time it takes for a car to pass through the three 

stations performing the three steps of the process. This time remains the same regard-

less of whether a single car or three cars are in the car wash at a given time.

Continuing this analogy, with the pipelined datapath corresponding to the car 

wash, what corresponds to the nonpipelined datapath? It would be a car wash with 

all of the steps available at a single station, with the steps performed serially. We now 

can compare the analogies, thereby comparing the pipelined and nonpipelined data-

paths. For the multiple-station car wash and the single-station car wash, the latencies 

are approximately the same. So, going to the multiple-station car wash does not, 

decrease the time required to wash a car. However, suppose that we consider the 

frequency at which a washed car emerges from the two types of car washes. For the 

single-station car wash, this frequency is the inverse of the latency time. In contrast, 

for the multiple-station car wash with three stages, a washed car emerges at a fre-

quency of three times the inverse of the latency time. Thus, there is a factor-of-three 

improvement in the frequency or rate of delivery of washed cars. Based on the anal-

ogy to pipelined datapaths with n stages and nonpipelined datapaths, the former has 

a processing rate or throughput for instructions that is n times that of the latter.
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The desired structure, based on the nonpipelined, conventional datapath 

described in Chapter 8, is sketched in Figure 10-1(b). The operand fetch (OF) is 

stage 1, the execution (EX) is stage 2, and the write-back (WB) is stage 3. These 

stages are labeled at their boundaries with appropriate abbreviations. At this point 

the analogy breaks down somewhat, because the cars move smoothly through the 

car wash while the data within the pipeline moves synchronously with a clock, 

which controls the movement from stage to stage. This has some interesting impli-

cations. First of all, the movement of the data through the pipeline is in discrete 

steps rather than continuous. Second, the length of time in each of the stages must 

be the clock period and is the same for all stages. To provide the mechanism sepa-

rating the stages in the pipeline, registers are placed between the stages. These reg-

isters provide temporary storage for data passing through the pipeline and are 

called pipeline platforms. 
Returning to the pipelined datapath example in Figure 10-1(b), Stage 1 of the 

pipeline has the delay required for reading the register file followed by selection by 

MUX B. This delay is 0.6 plus 0.2 ns, or 0.8 ns. Stage 2 of the pipeline has the 0.2 ns 

delay of the platform plus the 0.8 ns delay of the functional unit, giving 1.0 ns. Stage 3 

has the 0.2 ns delay of the platform, the delay for the selection by MUX D, and the 

delay for writing back into the register file. This delay is 0.2 + 0.2 + 0.6, for a total 

of 1.0 ns. Thus, all flip-flop–to–flip-flop delays are at most 1.0 ns, allowing a minimum 

clock period of 1.0 ns (assuming that the setup times for the flip-flops are zero) and a 

maximum clock frequency of 1.0 GHz, compared with the 416.7 MHz for the 

 single-stage datapath. This clock frequency corresponds to the maximum through-

put of the pipeline, which is 1 billion instructions per second, about 2.4 times that of 

the nonpipelined datapath. Even though there are three stages, the improvement 

factor is not three—for two reasons: (1) the additional delay contributed by the pipe-

line platforms and (2) the differences between the delay of the logic assigned to each 

stage. The clock period is governed by the longest delay, rather than the average 

delay assigned to any stage.

A more detailed diagram of the pipelined datapath appears in Figure 10-2. In 

this diagram, rather than showing the path from the output of MUX D to the register 

file input, the register file is shown twice—once in the OF stage, where it is read, and 

once in the WB stage, where it is written.

The first stage, OF, is the operand fetch stage. The operand fetch consists of 

reading register values to be used from the register file and, for Bus B, selecting 

between a register value or a constant by using MUX B. Following the OF stage is 

the first pipeline platform. The pipeline registers store the operand or operands for 

use in the next stage during the next clock cycle.

The second stage of the pipeline is the execute stage, denoted EX. In this stage, 

a function unit operation occurs for most microoperations. The results produced 

from this stage are captured by the second pipeline platform.

The third and final stage of the pipeline is the write-back stage, denoted WB. In 

this stage, the result saved from the EX stage, or the value on Data in, is selected by 

MUX D and written back into the register file at the end of the stage. In this case, the 

write part of the register file is the pipeline platform. The WB stage completes the 

execution of each microoperation that requires writing to a register.
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Before leaving the car-wash analogy, we examine the cost of the single-stage 

versus that of the three-stage car wash. First, even though the three-stage facility 

washes vehicles three times as fast as the single-stage one, it costs three times as 

much in terms of space. Plus, it has the overhead of the mechanism to move the cars 
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Block Diagram of Pipelined Datapath
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through the stages. So it, would appear to be less cost effective than three single-stage 

wash stations operating in parallel. Nevertheless, from a business standpoint, it has 

proven to be cost effective. In terms of the car wash, can you figure out why? In con-

trast, for the pipelined datapath, pipeline platforms cut a single datapath into three 

pieces. Thus, a first-order estimate of the cost increase is mainly that of the pipeline 

platforms.

Execution of Pipeline Microoperations

There are up to three operations at some stage of completion in the car wash at any 

given time. By analogy, we should be able to have three microoperations at some 

stage of completion in the pipelined datapath at any given time.

We now examine the execution of this sequence of microoperations with 

respect to the stages of the pipeline in Figure 10-2. In clock period 1, microoperation 

1 is in the OF stage. In clock period 2, microoperation 1 is in the EX stage, and micro-

operation 2 is in the OF stage. In clock period 3, microoperation 1 is in the WB stage, 

microoperation 2 is in the EX stage, and microoperation 3 is in the OF stage. So at 

the end of the third clock period, microoperation 1 has completed execution, micro-

operation 2 is two-thirds finished, and microoperation 3 is one-third finished. So we 

have completed 1 + 2/3 + 1/3 = 2.0 microoperations in three clock periods, or 3 ns. 

In the conventional datapath, we would have completed microoperation 1 only. So, 

indeed, the pipelined datapath performance is superior in this example.

The procedure we have been using so far is somewhat tedious. So to finish ana-

lyzing the timing of the sequence, we will use a pipeline execution pattern diagram, as 

shown in Figure 10-3. Each vertical position in this diagram represents a microoper-

ation to be performed, and each horizontal position represents a clock cycle. An 

entry in the diagram represents the stage of processing of the microoperation. So, for 

example, the execution (EX) stage of microoperation 4, which adds the constant 2 to 

R0, occurs in clock cycle 5.
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OF EX WB

OF EX WB

OF EX WB

OF EX WB
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OF EX WB

Microoperation
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Data out     R3

R4      Data in

R5      0

 FIGURE  10-3
Pipeline Execution Pattern for Microoperation Sequence
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We can see from the overall diagram that the sequence of seven microopera-

tions requires nine clock cycles to execute completely. The time required for execu-

tion is 9 * 1 = 9 ns, compared to 7 * 2.4 = 16.8 ns for the conventional datapath. 

Thus, the sequence of microoperations is executed about 1.9 times faster using the 

pipeline.

Now let us examine the pipeline execution pattern carefully. In the first two 

clock cycles, not all of the pipeline stages are active, since the pipeline is filling. In 

the next five clock cycles, all stages of the pipeline are active, as indicated in blue, 

and the pipeline is fully utilized. In the last two clock cycles, not all stages of the 

pipeline are active, since the pipeline is emptying. If we want to find the maximum 

possible improvement of the pipelined datapath over the conventional one, we 

compare the two when the pipeline is fully utilized. Over these five clock cycles, 3 

through 7, the pipeline executes (5 * 3) , 3 = 5 microoperations in 5 ns. In the 

same time, the conventional datapath executes 5/2.4 = 2.083 microoperations. So 

the pipelined datapath executes at best 5 , 2.083 = 2.4 times as many microoper-

ations in a given time as the conventional datapath. In this ideal situation, we say 

that the throughput of the pipelined datapath is 2.4 times that of the conventional 

one. Note that filling and emptying reduce the pipeline speed below the maximum 

of 2.4. Additional topics associated with pipelines—in particular, providing a con-

trol unit for a pipelined datapath and dealing with pipeline hazards—are covered 

in the next two sections.

10-2 PIPELINED CONTROL

In this section, a control unit is specified to produce a CPU by using the datapath 

from the last section. Since the instruction must be fetched from a memory as well as 

executed, we add a stage to the analogous car wash used for illustration in that sec-

tion. Analogous to the instruction fetch from the instruction memory, the operations 

in the car wash are specified by order sheets, produced by an attendant, that permit 

the functions performed in the stages of the car wash to vary. The order sheet, which 

is analogous to an instruction, accompanies the car as it moves down the line.

Figure 10-4 shows the block diagram of a pipelined computer based on the sin-

gle-cycle computer. The datapath is that of Figure 10-2. The control has an added 

stage for instruction fetch that includes the PC and instruction memory. This 

becomes stage 1 of the combined pipeline. The instruction decoder and register file 

read are now in stage 2, the function unit and data memory read and write are in 

stage 3, and the register file write is in stage 4. These stages are labeled at their 

boundaries with appropriate abbreviations. In the figure, we have added registers to 

the pipeline platforms between stages, as necessary, to pass the decoded instruction 

information through the pipeline along with the data being processed. These addi-

tional registers serve to pass along the instruction information, just as order informa-

tion was passed along in the car wash.

The added first stage is the instruction fetch stage, denoted by IF, which lies 

wholly in the control. In this stage, the instruction is fetched from the instruction 

memory, and the value in the PC is updated. Due to additional complexities of han-

dling jumps and branches in a pipelined design, PC update is restricted here to an 
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Block Diagram of Pipelined Computer

increment, with a more complete treatment provided in the next section. Between 

the first stage and the second stage is an interstage pipeline platform that plays the 

role of instruction register, so it has been labeled IR.
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In the second stage, DOF (decode and operand fetch), decoding of the IR into 

control signals takes place. Among the decoded signals, the register file addresses 

AA and BA and the multiplexer control signal MB are used in this stage for operand 

fetch. All other decoded control signals are passed on to the next pipeline platform, 

to be used later. Following the DOF stage is the second pipeline platform, whose 

registers store control signals to be used later. The third stage of the pipeline is the 

execution stage, denoted EX. In this stage, an ALU operation, a shift operation, or a 

memory operation is executed for most instructions. Thus, the control signals used in 

this stage are FS and MW. The read part of the data memory M is considered a part 

of the stage. For a memory read, the value of the word addressed is read to Data out 

from the data memory. All of the results produced from this stage, plus the control 

signals for the last stage, are captured by the third pipeline platform. The write part 

of data memory M is considered a part of this platform, so a memory write may 

occur here. The control information held in the final pipeline platform consists of 

DA, MD, and RW, which are used in the final write-back stage, WB.

The location of the pipeline platforms has balanced the partitioning of the 

delays, so that the delays per stage are no more than 1.0 ns. This gives a potential 

maximum clock frequency of 1 GHz, 3.4 times that of the single-cycle computer. 

Note, however, that an instruction takes 4 * 1 = 4 ns to execute. This latency of 4 ns 

compares to that of 3.4 ns for the single-cycle computer. So if only one instruction at 

a time is being executed, even fewer instructions are executed per second than for 

the single-cycle computer.

Pipeline Programming and Performance

If our hypothetical car wash is extended to four stages, there are up to four operations 

at some stage of completion at any given time. By analogy, then, we should be able to 

have four instructions at some stage of completion in the pipeline of our computer at 

any given time. Suppose we consider a simple calculation: Load the constants 1 through 

7 into the seven registers R1 through R7, respectively. The program to do this is as fol-

lows (the number on the left is a number to identify the instruction):

1 LDI R1, 1

2 LDI R2, 2

3 LDI R3, 3

4 LDI R4, 4

5 LDI R5, 5

6 LDI R6, 6

7 LDI R7, 7

Let us examine the execution of this program with respect to the stages of the 

 pipeline in Figure 10-4. We employ the pipeline execution pattern diagram shown 

in  Figure 10-5. In clock period 1, instruction 1 is in the IF stage of the pipeline. 

In clock period 2, instruction 1 is in the DOF stage and instruction 2 is the IF stage. In 

clock period 3, instruction 1 is in the EX stage, instruction 2 is in the DOF stage, and 
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instruction 3 is in the IF stage. In clock period 4, instruction 1 is in the WB stage, 

instruction 2 is in the EX stage, instruction 3 is in the DOF stage, and instruction 4 is 

in the IF stage. So at the end of the fourth clock period, instruction 1 has completed 

execution, instruction 2 is three-fourths finished, instruction 3 is half finished, and 

instruction 4 is one-fourth finished. So we have completed 1 + 3/4 + 1/2 + 1/4 = 2.5 

instructions in four clock periods, or 4 ns. We can see from the overall diagram that 

the complete program of seven instructions requires 10 clock cycles to execute. Thus, 

the time required is 10 ns, compared to 23.8 ns for the single-cycle computer, and the 

program is executed about 2.4 times faster.

Now suppose that we examine the pipeline execution pattern carefully. In the 

first three clock cycles, not all of the pipeline stages are active, since the pipeline is fill-
ing. In the next four clock cycles, all stages of the pipeline are active, as indicated in 

blue, and the pipeline is fully utilized. In the last three clock cycles, not all stages of the 

pipeline are active, since the pipeline is emptying. If we want to find the maximum pos-

sible improvement of the pipelined computer over the single-cycle computer, we com-

pare the two in the situation in which the pipeline is fully utilized. Over these four 

clock cycles, or 4 ns, the pipeline executes 4 * 4 , 4 = 4.0 instructions. In the same 

time, the single-cycle computer executes 4 , 3.4 = 1.18 instructions. So in the best 

case, the pipelined computer executes 4 , 1.18 = 3.4 times as many instructions in a 

given time as the single-cycle computer does. In this ideal situation, we say that the 

throughput of the pipelined computer is 3.4 times that of the single-cycle computer.

Note that even though the pipeline has four stages, the pipelined computer is 

not four times as fast as the single-cycle computer, because the delays of the latter 

cannot be divided exactly into four equal pieces and because of the delays of the 

added pipeline platforms. Also, filling and emptying the pipeline reduces its speed 

enough that the speed of the pipelined computer is less than the ideal maximum 

speed of 3.4 times as fast as the single-cycle computer.

The study of the pipelined computer here, along with the single-cycle computer 

and multiple-cycle computer in Chapter 8, completes our examination of three 
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computer control organizations. Both the pipelined datapaths and the controls we 

have studied here are simplified and have elements missing. Next we present two 

CPU designs that illustrate combinations of architectural characteristics of the 

instruction set, the datapath, and the control unit. The designs are top down, but 

reuse prior component designs, illustrating the influence of the instruction set archi-

tecture on the datapath and control units, and the influence of the datapath on the 

control unit. The material makes extensive use of tables and diagrams. Although we 

reuse and modify component designs from Chapter 8, background information from 

these chapters is not repeated here. Pointers, however, are given to earlier sections of 

the book, where detailed information can be found.

The two CPUs presented are for a RISC using a pipelined datapath with a 

hardwired pipelined control unit and a CISC based on the RISC using an auxiliary 

microprogrammed control unit. These two designs represent two distinct instruction 

set architectures with architectures using a common pipelined core that contributes 

enhanced performance.

10-3 THE REDUCED INSTRUCTION SET COMPUTER

The first design we examine is for a reduced instruction set computer with a pipelined 

datapath and control unit. We begin by describing the RISC instruction set architec-

ture, which is characterized by load/store memory access, four addressing modes, a sin-

gle instruction format length, and instructions that require only elementary operations. 

The operations, resembling those that can be performed by the single-cycle computer, 

can be performed by a single pass through the pipeline. The datapath for implement-

ing the ISA is based on the single-cycle datapath initially described in Figure 8-11 and 

converted to a pipeline in Figure 10-2. In order to implement the RISC instruction set 

architecture, modifications are made to the register file and the function unit. These 

modifications represent the effects of a longer instruction-word length and the desire 

to include multiple position shifts among the elementary operations. The control unit 

is based on the pipelined control unit in Figure 10-4. Modifications include support for 

the 32-bit instruction word and a more extensive program counter structure for deal-

ing with branches in the pipeline environment. In response to data and control hazards 

associated with pipelined designs, additional changes will be made to both the control 

and datapath to sustain the performance gain achieved by using a pipeline.

Instruction Set Architecture

Figure 10-6 shows the CPU registers accessible to the programmer in this RISC. 

All registers are 32 bits. The register file has 32 registers, R0 through R31. R0 is a 

special register that supplies the value zero when used as a source and discards 

the result when used as a destination. The size of the programmer-accessible reg-

ister file is comparatively large in the RISC because of the load/store instruction 

set architecture. Since the data-manipulation operations can use only register 

operands, many active operands need to be present in the register file. Otherwise, 

numerous stores and loads would be needed to temporarily save operands in the 

data memory between data-manipulation operations. In addition, in many real 
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pipelines, these stores and loads require more than one clock cycle for their exe-

cution. To prevent these factors from degrading RISC performance, a larger regis-

ter file is required.

In addition to the register file, only a program counter, PC, is provided. If stack 

pointer-based or processor status register-based operations are required, they are 

simply implemented by sequences of instructions using registers.

Figure 10-7 gives the three instruction formats for the RISC CPU. The formats 

use a single word of 32 bits. This longer word length is needed to hold realistic 

address values, since additional instruction words for holding addresses are difficult 

to accommodate in the RISC CPU. The first format specifies three registers. The two 

registers addressed by the 5-bit source register fields SA and SB contain the two 

operands. The third register, addressed by a 5-bit destination register field DR, spec-

ifies the register location for the result. A 7-bit OPCODE provides for a maximum of 

128 operations.

R1

R31

Register file

Program counter

PC

 FIGURE  10-6
CPU Register Set Diagram for RISC

OPCODE DR Immediate

OPCODE DR Target offset

Three-register type

Two-register type

Branch

OPCODE DR

SA

SA

SA SB

31 25 24 20 19 15 14 10 9 0

 FIGURE  10-7
RISC CPU Instruction Formats
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The remaining two formats replace the second register with a 15-bit con-

stant. In the two-register format, the constant acts as an immediate operand, and 

in the branch format, the constant is a target offset. The target address is another 

name for the effective address, particularly if the address is used in a branch 

instruction. The target address is formed by adding the target offset to the con-

tents of the PC. Thus, branching uses relative addressing based on the updated 

value of the PC. In order to branch backward from the current PC location, the 

offset, regarded as a 2s complement number with sign extension, is added to the 

PC. The branch instructions specify source register SA. Whether the branch or 

jump is taken is based on whether the source register contains zero. The DR field 

is used to specify the register in which to store the return address for the proce-

dure call. Finally, the rightmost 5 bits of the 15-bit constant are also used as the 

shift amount SH for multiple bit shifts.

Table 10-1 contains the 27 operations to be performed by the instructions. 

A mnemonic, an opcode, and a register transfer description are given for each 

operation. All of the operations are elementary and can be described by a single 

register transfer statement. The only operations that can access memory are 

Load and Store. A significant number of immediate instructions help to reduce 

data memory accesses and speed up execution when constants are employed. 

Since the immediate field of the instruction is only 15 bits, the leftmost 17 bits 

must be filled to form a 32-bit operand. In addition to using zero fill for logical 

operations, a second method used is called sign extension. The most significant 

bit of the immediate operand, bit 14 of the instruction, is viewed as a sign bit. To 

form a 32-bit 2s complement operand, this bit is copied into the 17 bits. In Table 

10-1, the sign extension of the immediate field is denoted by se IM. The same 

notation, se IM, also represents the sign extension of the target offset field dis-

cussed previously.

The absence of stored versions of status bits is handled by the use of three 

instructions: Branch if Zero (BZ), Branch if Nonzero (BNZ), and Set if Less Than 

(SLT). BZ and BNZ are single instructions that determine whether a register oper-

and is zero or nonzero and branch accordingly. SLT stores a value in register R[DR] 

that acts like a negative status bit. If R[SA] is less than R[SB], a 1 is placed in register 

R[DR]; if R[SA] is greater than or equal to R[SB], a 0 is placed in R[DR]. The regis-

ter R[DR] can then be examined by a subsequent instruction to see whether it is 

zero (0) or nonzero (1). Thus, using two instructions, the relative values of two oper-

ands or the sign of one operand (by letting R[SB] equal R0) can be determined.

The Jump and Link (JML) instruction provides a mechanism for implement-

ing procedures. The value in the PC after updating is stored in register R[DR], and 

then the sum of the PC and the sign-extended target offset from the instruction is 

placed in the PC. The return from a called procedure can use the Jump Register 

instruction with SA equal to DR for the calling procedure. If a procedure is to be 

called from within a called procedure, then each successive procedure that is 

called will need its own register for storing the return value. A software stack that 

moves return addresses from R[DR] to memory at the beginning of a called pro-

cedure and restores them to R[SA] before the return can also be used, as was 

explained in Chapter 9.
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Addressing Modes

The four addressing modes in the RISC are register, register indirect, immediate, and 

relative. The mode is specified by the operation code, rather than by a separate mode 

field. As a consequence, the mode for a given operation is fixed and cannot be varied. 

 TABLE  10-1
RISC Instruction Operations

Operation

Symbolic 

Notation Opcode Action

No Operation NOP 0000000 None

Move A MOVA 10000001 R[DR] d  R[SA]

Add ADD 0000010 R[DR] d  R[SA] +  R[SB]

Subtract SUB 0000101 R[DR] d  R[SA] +  R[SB] +  1

AND AND 0001000 R[DR] d  R[SA] ¿ R[SB]

OR OR 0001001 R[DR] d  R[SA] ¡ R[SB]

Exclusive-OR XOR 0001010 R[DR] d  R[SA]   ⊕ R[SB]

Complement NOT 0001011 R[DR] d  R[SA]

Add Immediate ADI 0100010 R[DR] d  R[SA] +  se IM
Subtract Immediate SBI 0100101 R[DR] d  R[SA] +  (se  IM) +  1

AND Immediate ANI 0101000 R[DR] d  R[SA] ¿ (0  }   IM)

OR Immediate ORI 0101001 R[DR] d  R[SA] ¡ (0  }   IM)

Exclusive-OR 

Immediate

XRI 0101010 R[DR] d  R[SA] ⊕ (0  }   IM)

Add Immediate 

Unsigned

AIU 1000010 R[DR] d  R[SA] + (0  }   IM)

Subtract Immediate 

Unsigned

SIU 1000101 R[DR] d  R[SA] +  (0 } IM) +   1

Move B MOVB 0001100 R[DR] d  R[SB]

Logical Right Shift by 

SH Bits

LSR 0001101 R[DR] d lsr R[SA] by SH

Logical Left Shift by 

SH Bits

LSL 0001110 R[DR] d lsl R[SA] by SH

Load LD 0010000 R[DR] d  M[R[SA]]

Store ST 0100000 M[R[SA]] d  R[SB]

Jump Register JMR 1110000 PC d  R[SA]

Set if Less Than2 SLT 1100101 If R[SA] 6  R[SB] then R[DR] = 1

Branch if Zero BZ 1100000 If R[SA] = 0, then PC d  PC +   1 + se IM
Branch if Nonzero BNZ 1001000 If R[SA] ≠ 0, then PC d  PC +   1 + se IM
Jump JMP 1101000 PC d  PC +   1 + se IM
Jump and Link JML 0110000 PC d  PC +   1 + se IM, R[DR] d  PC +  1

1In the CISC, beginning with MOVA and ending with LSL, each instruction has an additional opcode 

having a 1 in position 4 (with opcode bits numbered 0 through 6 from right to left). In addition to caus-

ing the usual operation to occur, these codes update the condition code bits.
2In the CISC, the SLT instruction is removed. Its function is replaced by branching on the status bits.
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The three-operand data-manipulation instructions use register-mode addressing. 

Register indirect, however, applies only to the load and store instructions, the only 

instructions that access data memory. Instructions using the two-register format 

have an immediate value that replaces register address SB. Relative addressing 

applies exclusively to branch and jump instructions and so produces addresses only 

for the instruction memory.

When programmers want to use an addressing mode not provided by the 

instruction set architecture, such as indexed addressing, they must use a sequence of 

RISC instructions. For example, for an indexed address for a load operation, the 

desired transfer is

R15 d M[R5 + 0 		 I]

This transfer can be accomplished by executing two instructions:

AIU R9, R5, I

LD R15, R9

The first instruction, Add Immediate Unsigned, forms the address by appending 17 

0s to the left of I and adding the result to R5. The resulting effective address is then 

temporarily stored in R9. Next, the Load instruction uses the contents of R9 as the 

address at which to fetch the operand and places the operand in the destination reg-

ister R15. Since, for indexed addressing, I is regarded as a positive offset in memory, 

the use of unsigned addition is appropriate. Sequences of operations for implement-

ing addressing modes are the primary justification for having unsigned immediate 

addition available.

Datapath Organization

The pipelined datapath in Figure 10-2 serves as the basis for the datapath here, 

and we deal only with modifications. These modifications affect the register file, 

the function unit, and the bus structure. The reader should also refer to the 

 datapath in Figure 10-2 and the new datapath shown in Figure 10-8 in order to 

understand fully the discussion that follows. We treat each modification in turn, 

beginning with the register file.

In Figure 10-2, there are 16 16-bit registers, and all registers are identical 

in function. In the new datapath, there are 32 32-bit registers. Also, reading regis-

ter R0 gives a constant value of zero. If a write is attempted into R0, the data will 

be lost. These changes are implemented in the new register file in Figure 10-8. All 

data inputs and the data output are 32 bits. To correspond to the 32 registers, the 

address inputs are five bits. The fixed value of 0 in R0 is implemented by  replacing 

the storage elements for R0 with open circuits on the lines that were their inputs, 

and with constant zero values on the lines that were their outputs.

A second major modification to the datapath is the replacement of the 

 single-bit position shifter with a barrel shifter to permit multiple-position shifting. 

This barrel shifter can perform a logical right or logical left shift of from 0 to 31 
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positions. A block diagram for the barrel shifter appears in Figure 10-9. The data 

input is 32-bit operand A, and the output is 32-bit result G. Left/right, a control sig-

nal decoded from OPCODE, selects a left or right shift. The shift amount field 

SH = IR  (4:0) specifies the number of bit positions to shift the data input and takes 

on values from 0 through 31. A logical shift of p bit positions involves inserting p 

zeros into the result. In order to provide these zeros and simplify the design of the 

shifter, we will perform both the left and right shift by using a right rotate. The input 

to this rotate will be the input data A with 32 zeros concatenated to its left. A right 

shift is performed by rotating the input p positions to the right; a left shift is per-

formed by rotating 64 - p positions to the right. This number of positions can be 

obtained by taking the 2s complement of the 6-bit value of 0 || SH.

The 63 different rotates can be obtained by using three levels of 4-to-1 multiplex-

ers, as shown in Figure 10-8. The first level shifts by 0, 16, 32, or 48 positions, the second 

level by 0, 4, 8, or 12 positions, and the third level by 0, 1, 2, or 3 positions. The number of 

positions for A to be shifted, 0 through 63, can be implemented by representing 0 || SH 

as a three-digit base-4 integer. From left to right, the digits have weights 42 = 16,  41 = 4, 

and 40 = 1. The digit values in each of the positions are 0, 1, 2, and 3. Each digit controls 

a level of the 4-to-1 multiplexers, the most significant digit controlling the first level, the 

least significant the third level. Due to the presence of 32 zeros in the 64-bit input, fewer 

than 64 multiplexers can be used in each level. A level requires the number of multi-

plexers to be 32 plus the total number of positions its output can be shifted by subse-

quent levels. The output of the first level can be shifted at most 12 + 3 = 15 positions 

to the right. Thus, this level requires 32 + 15 = 47 multiplexers. The output of the sec-

ond level can be shifted at most three positions, giving 32 + 3 = 35 multiplexers. The 

final level cannot be shifted further and so needs just 32 multiplexers.

SH0

47 4-to-1 multiplexers (rotate right 0, 16, 32, or 48 bit positions)

32 4-to-1 multiplexers (rotate right 0, 1, 2, or 3 bit positions)

G

Selective
2s complementS

Left/right

2 2 2

5

64

47

35

32

0 || A

35 4-to-1 multiplexers (rotate right 0, 4, 8, or 12 bit positions)

 FIGURE  10-9
32-Bit Barrel Shifter
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In the function unit, the ALU is expanded to 32 bits, and the barrel shifter 

replaces the single-position shifter. The resulting modified function unit uses the 

same function codes as in Chapter 8, except that the two codes for shifts are now 

labeled as logical shifts, and some codes are not used. The shift amount SH is a new 

5-bit input to the modified function unit in Figure 10-8.

The remaining datapath changes are shown in Figure 10-8. Beginning at the 

top of the datapath, zero fill has been replaced by the constant unit. The constant 

unit performs zero fill for CS = 0 and sign extension for CS = 1. MUX A is added 

to provide a path for the updated PC, PC-1, to the register file for implementation of 

the Jump and Link (JML) instruction.

One other change in the figure helps implement the Set if Less Than (SLT) 

instruction. This logic provides a 1 to be loaded into R[DA] if R[AA] -  R[BA] 6  0 

and a 0 to be loaded into R[DA] if R[AA] -  R[BA] Ú  0. It is implemented by adding 

an additional input to MUX D. The leftmost 31 bits of the input are 0; the rightmost 

bit is 1 if N is 1 and V is 0 (i.e., if the result of the subtraction is negative and there is 

no overflow). It is also 1 if N is 0 and V is 1 (i.e., if the result of the subtraction is pos-

itive and there is an overflow). These represent all cases in which R[AA] is greater 

than R[BA] and can be implemented using an exclusive-OR of N and V.

A final difference in the datapath is that the register file is no longer edge trig-

gered and is no longer a part of a pipeline platform at the end of the write-back 

(WB) stage. Instead, the register file uses latches and is written much earlier than the 

positive clock edge. Special timing signals are provided that permit the register file to 

be written in the first half and to be read in the last half of the cycle. In particular, in 

the second half of the cycle, it is possible to read data written into the register file 

during the first half of the same clock cycle. This is called a read-after-write register 

file, and it both avoids added complexity in the logic used for handling hazards and 

reduces the cost of the register file.

Control Organization

The control organization in the RISC is modified from that in Figure 10-4. The mod-

ified instruction decoder is essential to deal with the new instruction set. In Figure 

10-8, SH is added as an IR field, a 1-bit CS field is added to the instruction decoder, 

and MD is expanded to two bits. There is a new pipeline platform for SH, and 

expanded 2-bit platforms for MD.

The remaining control signals are included to handle the new control logic for 

the PC. This logic permits the loading of addresses into the PC for implementing 

branches and jumps. MUX C selects from three different sources for the next value 

of PC. The updated PC is used to move sequentially through a program. The branch 

target address BrA is formed from the sum of the updated PC value for the branch 

instruction and the sign-extended target offset. The value in R[AA] is used for the 

register jump. The selection of these values is controlled by the field BS. The effects 

of BS are summarized in Table 10-2. If BS0 = 0, then the updated PC is selected by 

BS1 = 0, and R[AA] is selected by BS1 = 1. If BS0 = 1 and BS1 = 1, then BrA is 

selected unconditionally. If BS0 = 1 and BS1 = 0, then, for PS = 0, a branch to 
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BrA occurs for Z = 1, and for PS = 1, a branch to BrA occurs for Z = 0. This 

implements the two conditional branch instructions BZ and BNZ.

In order to have the value of the updated PC for the branch and jump instruc-

tions when they reach the execution stage, two pipeline registers, PC
−1

 and PC
−2

, are 

added. PC
−2

 and the value from the constant unit are inputs to the dedicated adder 

that forms BrA in the execution stage. Note that MUX C and the attached control 

logic are in the EX stage, although shown above the PC. The related clock-cycle dif-

ference causes problems with instructions following branches, which we will deal 

with in later subsections.

The heart of the control unit is the instruction decoder. This is combinational 

circuitry that converts the operation code in the IR into the control signals necessary 

for the datapath and control unit. In Table 10-3, each instruction is identified by its 

mnemonic. A register transfer statement and the opcode are given for the instruc-

tion. The opcodes are selected such that the least significant four of the seven bits 

match the bits in the control field FS whenever it is used. This leads to simpler decod-

ing. The register file addresses AA, BA, and DA come directly from SA, SB, and DR, 

respectively, in the IR.

Otherwise, to determine the control codes, the CPU is viewed much as is the 

single-cycle CPU in Figure 8-15. The pipeline platforms can be ignored in this deter-

mination—however, it is important to examine the timing carefully to be sure that 

various parts of the register transfer statement for the operation take place in the 

right stage of the pipeline. For example, note that the adder for the PC is in stage EX. 

This adder is connected to MUX C and its attached control logic, and to the incre-

menter +1 for the PC. Thus, all of this logic is in the EX stage, and the loading of the 

PC that begins the IF stage is controlled from the EX stage. Likewise, the input 

R[AA] is in the same combinational block of logic and comes not from the A Data 

output of the register file, but from Bus A in the EX stage, as shown.

Table 10-3 can serve as the basis for the design of the instruction decoder. It 

contains the values for all control signals, except the register addresses from IR. In 

contrast to the instruction decoder in Section 8-8, the logic is complex and is most 

easily designed by using a computer-based logic synthesis program.

 TABLE  10-2
Definition of Control Fields BS and PS

Register Transfer

BS 

Code

PS 

Code Comments

PC d  PC +  1 00 X Increment PC

Z: PC d BrA,   Z: PC d PC + 1 01 0 Branch on Zero

Z: PC d BrA,   Z: PC d PC + 1 01 1 Branch on Nonzero

PC d  R[AA] 10 X Jump to Contents of R[AA]

PC d BrA 11 X Unconditional Branch
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Data Hazards

In Section 10-1, we examined a pipeline execution diagram and found that filling and 

flushing of the pipeline reduced the throughput below the maximum level achiev-

able. Unfortunately, there are other problems with pipeline operation that reduce 

throughput. In this and the next subsection, we will examine two such problems: data 

hazards and control hazards. Hazards are timing problems that arise because the 

execution of an operation in a pipeline is delayed by one or more clock cycles from 

the time at which the instruction containing the operation was fetched. If a subse-

quent instruction tries to use the result of the operation as an operand before the 

result is available, it uses the old or stale value, which is very likely to give a wrong 

result. To deal with data hazards, we present two solutions, one that uses software 

and another that uses hardware.

Two data hazards are illustrated by examining the execution of the following 

program:

 TABLE  10-3
Control Words for Instructions

Op 

Code

Control Word Values

Symbolic 

Notation Action RW MD BS PS MW FS MBMACS

NOP None 0000000 0 XX 00 X 0 XXXX X X X

MOVA R[DR] d  R[SA] 1000000 1 00 00 X 0 0000 X 0 X

ADD R[DR] d  R[SA] +  R[SB] 0000010 1 00 00 X 0 0010 0 0 X

SUB R[DR] d  R[SA] +  R[SB] +   1 0000101 1 00 00 X 0 0101 0 0 X

AND R[DR] d  R[SA] ¿ R[SB] 0001000 1 00 00 X 0 1000 0 0 X

OR R[DR] d  R[SA] ¡  R[SB] 0001001 1 00 00 X 0 1001 0 0 X

XOR R[DR] d  R[SA] ⊕ R[SB] 0001010 1 00 00 X 0 1010 0 0 X

NOT R[DR] d  R[SA] 0001011 1 00 00 X 0 1011 X 0 X

ADI R[DR] d  R[SA] +   se  IM 0100010 1 00 00 X 0 0010 1 0 1
SBI R[DR] d  R[SA] +  (se IM)+1 0100101 1 00 00 X 0 0101 1 0 1

ANI R[DR] d  R[SA] ¿ zf IM 0101000 1 00 00 X 0 1000 1 0 0
ORI R[DR] d  R[SA] ¡ zf IM 0101001 1 00 00 X 0 1001 1 0 0
XRI R[DR] d  R[SA] ⊕ zf IM 0101010 1 00 00 X 0 1010 1 0 0
AIU R[DR] d  R[SA] +   zf  IM 1000010 1 00 00 X 0 0010 1 0 0
SIU R[DR] d  R[SA] +  (zf IM) +   1 1000101 1 00 00 X 0 0101 1 0 0

MOVB R[DR] d  R[SB] 0001100 1 00 00 X 0 1100 0 X X

LSR R[DR] d lsr R[SA] by SH 0001101 1 00 00 X 0 1101 X 0 X

LSL R[DR] d lsl R[SA] by SH 0001110 1 00 00 X 0 1110 X 0 X

LD R[DR] d  M[R[SA]] 0010000 1 01 00 X 0 XXXX X 0 X

ST M[R[SA]] d  R[SB] 0100000 0 XX 00 X 1 XXXX 0 0 X

JMR PC d  R[SA] 1110000 0 XX 10 X 0 XXXX X 0 X

SLT If R[SA] 6  R[SB], then R[DR] = 1 1100101 1 10 00 X 0 0101 0 0 X

BZ If R[SA] = 0, then PC d  PC +  1 +  se  IM 1100000 0 XX 01 0 0 0000 1 0 1
BNZ If R[SA] ≠ 0, then PC d  PC +  1 +  se  IM 1001000 0 XX 01 1 0 0000 1 0 1
JMP PC d  PC +  1 +  se  IM 1101000 0 XX 11 X 0 XXXX 1 X 1
JML PC d  PC +  1 +  se  IM, R[DR] d  PC +  1 0110000 1 00 11 X 0 0000 1 1 1
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1 MOVA R1, R5

2 ADD R2, R1, R6

3 ADD R3, R1, R2

The execution diagram of this program appears in Figure 10-10(a). The MOVA instruc-

tion places the contents of R5 into R1 in the first half of WB in cycle 4. But, as shown by 

the blue arrow, the first ADD instruction reads R1 in the last half of DOF in cycle 3, one 

cycle before it is written. Thus, the ADD instruction uses the stale value in R1. The result 

of this operation is placed in R2 in the first half of WB in cycle 5. The second ADD 

instruction, however, reads both R1 and R2 in the second half of DOF in cycle 4. In the 

case of R1, the value read was written in the first half of WB in cycle 4. So the value read 

in the second half of cycle 4 is the new value. The write-back of R2, however, occurs in 

the first half of cycle 5, after it is read by the next instruction during cycle 4. So R2 has 

not been updated to the new value at the time it is read. This gives two data hazards, as 

indicated by the blue arrows in the figure. The registers that are not properly updated to 

new values are highlighted in blue in the program and in the register transfer state-

ments, both in the figure. In each of these cases, the read of the involved register occurs 

one clock cycle too soon with respect to the write of that register.

(b) A program-based solution

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

Write R1

Write R2

First read R1

Second read R1

NOP

MOVA R1, R5
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ADD R3, R1, R2

NOP

IF DOF EX WB

IF DOF EX WB

Read R2

R2

R1     R5
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 FIGURE  10-10
Example of Data Hazard
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One possible remedy for data hazards is to have the compiler or programmer 

generate the machine code to delay instructions so that new values are available. The 

program is written so that any pending write to a register occurs in the same or an 

earlier clock cycle than a subsequent read from the register. To accomplish this, the 

programmer or compiler needs to have detailed information on how the pipeline 

operates. Figure 10-10(b) illustrates a modification of the simple three-line program 

that solves the problem. No-operation (NOP) instructions are inserted between the 

first and second instructions and between the second and third instructions to delay 

the respective reads relative to the writes by one clock cycle. The execution diagram 

shows that, at worst, this approach has writes and subsequent reads in the same clock 

cycle. This is indicated by the pairs consisting of a register write and a subsequent 

register read connected by a black arrow in the diagram. Because of the 

 read-after-write assumption for the register file, the timing shown permits the pro-

gram to be executed on correct operands.

This approach solves the problem, but what is the cost? First of all, the program 

is obviously longer, although it may be possible to place other, unrelated instructions 

in the NOP positions instead of just wasting them. Also, the program takes two clock 

cycles longer and reduces the throughput from 0.5 instruction per cycle to 0.375 

instruction per cycle with the NOPs in place.

Figure 10-11 illustrates an alternative solution involving added hardware. 

Instead of the programmer or compiler putting NOPs in the program, the hardware 

inserts the NOPs automatically. When an operand is found at the DOF stage that has 

not been written back yet, the associated execution and write-back are delayed by 

stalling the pipeline flow in IF and DOF for one clock cycle. Then the flow resumes 

with completion of the instruction when the operand becomes available, and a new 

instruction is fetched as usual. The delay of one cycle is enough to permit the result 

to be written before it is read as an operand.

When the actions associated with an instruction flowing through the pipe 

are prevented from happening at a given point, the pipeline is said to contain a 

IF DOF EX WB

IF DOF

IF DOF EX WB

R1 write and reads

R2 Write and read

R2 data hazard detected,
pipeline stalled, and
bubble launched.

MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

(ADD R2, R1, R6)

(ADD R3, R1, R2) IF DOF

IF DOF EX WB

1 2 3 4 5 6 7

R1 data hazard detected
pipeline stalled, and bubble launched

8

R1     R5

R2     R1 R6�

R2     R1 R6�

R3     R1 R2�

R3     R1 R2�

 FIGURE  10-11
Example of Data Hazard Stall
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bubble in subsequent clock cycles and stages for that instruction. In Figure 10-11, 

when the flow for the first ADD instruction is prevented beyond the DOF stage, 

in the next two clock cycles a bubble passes through the EX and the WB stages, 

respectively. The holding of the pipeline flow in the IF and DOF stages delays the 

microoperations taking place in these stages for one clock cycle. In the figure, 

this delay is represented by two diagonal blue arrows from the initial location in 

which the completion of the microoperation is prevented to the location one 

clock cycle later in which the microoperation is performed. When the pipeline 

flow is held in IF and DOF for an extra clock cycle, the pipeline is said to be 

stalled, and if the cause of the stall is a data hazard, then the stall is referred to as 

a data hazard stall.
An implementation of data-hazard handling for the pipelined RISC that uses 

data-hazard stalls is presented in Figure 10-12. The added or modified hardware is 

shown in the areas shaded in light blue. For this particular pipeline stage arrange-

ment, a data hazard will occur for a register file read if there is a destination register 

at the execution stage that is to be written back in the next clock cycle and that is to 

be read at the current DOF stage as either of the two operands. So we have to deter-

mine whether such a register exists. This is done by evaluating the Boolean 

equations

HA = MADOF
# (DAEX = AADOF) # RWEX

# a
4

i=0

(DAEX)i

HB = MBDOF
# (DAEX = BADOF) # RWEX

# a
4

i=0

(DAEX)i

and

DHS = HA + HB

The following events must all occur for HA, which represents a hazard for the A 

data, to equal 1:

1. MA in the DOF stage must be 0, meaning that the A operand is coming from 

the register file.

2. AA in the DOF stage equals DA in the EX stage, meaning that there is poten-

tially a register being read in the DOF stage that is to be written in the next 

clock cycle.

3. RW in the EX stage is 1, meaning that register DA in the EX stage will defi-

nitely be written in WB during the next clock cycle.

4. The OR (Σ) of all bits of DA is 1, meaning that the register to be written is not 

R0 and so is a register that must be written before being read. (R0 has the same 

value 0 regardless of any writes to it.)

If all these conditions hold, there is a write pending for the next clock cycle to a reg-

ister that is the same as one being read and used on Bus A. Thus, a data hazard exists 

for the A operand from the register file. HB represents the same combination of 

events for the B data. If either of the HA or HB terms equals 1, there is a data hazard 

and DHS is 1, meaning that a data-hazard stall is required.
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The logic implementing the preceding equations is shown in the shaded area 

in the center of Figure 10-12. The blocks marked “Comp” are equality compara-

tors that have output 1 if and only if the two 5-bit inputs are equal. The OR gate 

with DA entering it ORs together the five bits of DA and has output 1 as long as 

DA is not 00000 (R0).
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DHS is inverted and the inverted signal is used to initiate a bubble in the 

pipeline for the instruction currently in the IR, as well as to stop the PC and IR 

from changing. The bubble, which prevents actions from occurring as the instruc-

tion passes through the EX and WB stages, is produced by using AND gates to 

force RW and MW to 0. These 0s prevent the instruction from writing the register 

file and the memory. AND gates also force BS to 0, causing the PC to be incre-

mented instead of loaded during the EX stage for a jump register or branch 

instruction affected by a data hazard. Finally, to prevent the data stall from con-

tinuing for the next and subsequent clock cycles, AND gates force DA to 0 so 

that it appears that R0 is being written, giving a condition which does not cause a 

stall. The registers to remain unchanged in the stall are the PC, the PC
−1

, PC
−2

, 

and the IR. These registers are replaced with registers with load control signals 

driven by DHS. When DHS goes to 0, requesting a stall, the load signals become 

0 and these pipeline platform registers hold their contents unchanged for the 

next clock cycle.

Returning to Figure 10-12, we see that in cycle 3 the data hazard for R1 is 

detected, so that DHS goes to 0 before the next clock edge. RW, MW, BS, and DA 

are set to 0, and at the clock edge, a bubble is launched into the EX stage for the 

ADD. At the same clock edge, the IF and DOF stages are stalled, so the 

 information in them now is associated with clock cycle 4 instead of 3. In clock 

cycle 4, since DA
EX

 is 0, there is no stall, so the execution of the stalled ADD  

instruction proceeds. The same sequence of events occurs for the next ADD. Note  

that the execution diagram is identical to that in Figure 10-10(b), except that 

the  NOPs are replaced by stalled instructions, shown in parentheses. Thus, 

although it removes the need for programming NOPs into the software, the 

data-hazard stall solution has the same throughput penalty as the program with 

the NOPs.

A second hardware solution, data forwarding, does not have this penalty. Data 

forwarding is based on the answer to the following question: When a data hazard is 

detected, is the result available somewhere else in the pipeline, so that it can be 

used immediately in the operation having the data hazard? The answer is “almost.” 

The result will be on Bus D, but it is not available until the next clock cycle. The 

result is to be written into the destination register during that clock cycle. The infor-

mation needed to form the result, however, is available on the inputs to the pipeline 

platform that provides the inputs to MUX D. All that is needed to form the result 

during the current clock cycle is a multiplexer to select from the three values, just as 

MUX D does. MUX D' is accordingly added to produce the result on Bus D'. In 

Figure 10-13, instead of reading the operand from the register file, we use data for-

warding to replace the operand with the value on Bus D'. This replacement is imple-

mented with an additional input to MUX A and to MUX B from Bus D' as shown. 

Essentially the same logic as before is used to detect the data hazard, except that 

the separate detection signals HA and HB are used directly for A data and B data, 

respectively, so that the replacement occurs for the operand that has the data 

hazard.
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The data-forwarding execution diagram for the three-instruction example 

appears in Figure 10-14. The data hazard for R1 is detected in cycle 3. This causes the 

value to go into R1 in the next cycle, to be forwarded from the EX stage of the first 

instruction in cycle 3. The correct value of R1 enters the DOF/EX platform at the 

next clock edge so that execution of the first ADD can proceed normally. The data 

hazard for R2 is detected in cycle 4, and the correct value is forwarded from the 

EX stage of the second instruction in that cycle. This gives the correct value in the 
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DOF/EX platform needed for the second ADD to proceed normally. In contrast to 

the data-hazard stall method, data forwarding does not increase the number of clock 

cycles required to execute the program and hence does not affect the throughput in 

terms of the number of clock cycles required. It may, however, add combinational 

delay, causing the clock period to be somewhat longer.

Data hazards can also occur with memory access, as well as with register access. 

For the ST and LD instructions, it is not likely that a data memory read can be per-

formed after a write in a single clock cycle. Further, some memory reads may take 

more than one clock cycle, in contrast to what we have assumed here. Thus, the 

reduction in throughput for a data hazard may be increased due to a longer delay 

before the data is available.

Control Hazards

Control hazards are associated with branches in the control flow of the program. The 

following program containing a conditional branch illustrates a control hazard:

1 BZ R1, 18

2 MOVA R2, R3

3 MOVA R1, R2

4 MOVA R4, R2

20 MOVA R5, R6

The execution diagram for this program is given in Figure 10-15(a). If R1 is zero, 

then a branch to the instruction in location 20 (recall that addressing is PC relative) 

is to occur, skipping the instructions in locations 2 and 3. If R1 is nonzero, then the 

instructions in locations 2 and 3 are to be executed in sequence. Assume that the 

branch is taken to location 20 because R1 is equal to zero. The fact that R1 equals 0 

is not detected until EX in cycle 3 of the first instruction in Figure 10-15(a). So the 

1 3 4

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

R1 data hazard detected
and R1 value forwarded

R1 write and read

R2 data hazard detected 
and R2 value forwarded

MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

R1     R5 Write R2
2 5 6

R2     R1 R6�

R3     R1 R2�

 FIGURE  10-14
Example of Data Forwarding
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PC is set to 20 on the clock edge at the end of cycle 3. But the MOVA instructions in 

locations 2 and 3 are into the EX and DOF stages, respectively, after the clock edge. 

Thus, unless corrective action is taken, these instructions will complete execution, 

even though the programmer’s intention was for them to be skipped. This situation 

is one form of a control hazard.

NOP instructions can be used to deal with control hazards just as they were 

with data hazards. The insertion of NOPs is performed by the programmer or 

compiler generating the machine-language program. The program must be writ-

ten so that only operations intended to be performed, regardless of whether the 

branch is taken, are introduced into the pipeline before the branch execution 

actually occurs. Figure 10-15(b) illustrates a modification of the simple three-line 

program that satisfies this condition. Two NOPs are inserted after the branch 

instruction BZ. These two NOPs can be performed regardless of whether the 

branch is taken in the EX stage of BZ in cycle 3, with no adverse effects on the 

correctness of the program. When control hazards in the CPU are handled in this 

manner by programming, the branch hazard dealt with by the NOPs is referred 

to as a delayed branch. Branch execution is delayed by two clock cycles in 

this CPU.

(b) Program-based solution

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

R1 = 0 evaluated

PC set to 20

Instruction MOV R5, R6
fetched from target address

1 BZ R1, 18

3 NOP

2 NOP

20 MOV R5, R6 IF DOF EX WB

No change

No change

1 2 3 4 5 6 7

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

R1 = 0 evaluated

PC set to 20

Instruction MOV R5, R6
fetched from target address

1 BZ R1, 18

3 MOV R1, R2

2 MOV R2, R3

20 MOV R5, R6 IF DOF EX WB

Change in R2

Change in R1

1 2 3 4 5 6 7

(a) Branch-hazard problem

 FIGURE  10-15
Example of Control Hazard
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The NOP solution in Figure 10-15(b) increases the time required to process the 

simple program by two clock cycles, regardless of whether the branch is taken. Note, 

however, that these wasted cycles can sometimes be avoided by rearranging the 

order of instructions. Suppose that those instructions to be executed regardless of 

whether the branch is taken can be placed in the two locations following the branch 

instruction. In this situation, the lost throughput is completely recovered.

Just as in the case of the data hazard, a stall can be used to deal with the control 

hazard. But, also as in the case of the data hazard, the reduction in throughput will be 

the same as with the insertion of NOPs. This solution is referred to as a branch- 
hazard stall and will not be presented here.

A second hardware solution is to use branch prediction. In its simplest form, this 

method predicts that branches will never be taken. Thus, instructions will be fetched 

and decoded and operands fetched on the basis of the addition of 1 to the value of the 

PC. These actions occur until it is known during the execution cycle whether the branch 

in question will be taken. If the branch is not taken, the instructions already in the pipe-

line due to the prediction will be allowed to proceed. If the branch is taken, the instruc-

tions following the branch instruction need to be canceled. Usually, the cancellation is 

done by inserting bubbles into the execution and write-back stages for these instruc-

tions. This is illustrated for the four instruction program in Figure 10-16. On the basis of 

the prediction that the branch will not be taken, the two MOVA instructions after BZ 

are fetched, the first one is decoded, and its operands are fetched. These actions take 

place in cycles 2 and 3. In cycle 3, the condition upon which the branch is based has been 

evaluated, and it is found that R1 = 0. Thus, the branch is to be taken. At the end of 

cycle 3, the PC is set to 20, and the instruction fetch in cycle 4 is performed using the 

new value of the PC. In cycle 3, the fact that the branch is taken has been detected, and 

bubbles are inserted into the pipeline for instructions 2 and 3. Proceeding through the 

pipeline, these bubbles have the same effect as two NOP instructions. However, because 

the NOPs are not present in the program, there is no delay or performance penalty 

when the branch is not taken.
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576          CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

The branch-prediction hardware is shown in Figure 10-17. Whether a branch is 

taken is determined by looking at the selection values on the inputs to MUX C. If 

the pair of inputs is 01, then a conditional branch is being taken. If the pair is 10, then 
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an unconditional JMR is occurring. If the pair is 11, then an unconditional JMP or 

JML is taking place. On the other hand, if the pair of inputs is 00, then no branch is 

occurring. Thus, a branch occurs for all combinations other than 00 (i.e., for at least 

one 1) on the pair of lines. Logically, this corresponds to the OR of the lines, as shown 

in the figure. The output of the OR is inverted and then ANDed with the RW and 

MW fields, so that the register file and the data memory cannot be written for the 

instruction following the branch instruction if the branch is taken. The inverted out-

put is also ANDed with the BS field, so that a branch in the next instruction is not 

executed. In order to cancel the second instruction following the branch, the inverted 

OR output is ANDed with the IR output. This gives an instruction of all 0s, for which 

the OPCODE field is defined as NOP. If the branch is not taken, however, the 

inverted OR output is 1, and the IR and the three control fields remain unchanged, 

giving normal execution of the two instructions following the branch.

Branch prediction can also be done on the assumption that the branch is taken. 

In this case, the instructions and operands must be fetched down the path of the 

branch target. Thus, the branch target address must be computed and used for fetch-

ing the instruction in the branch target location. In case the branch does not take 

place, however, the updated value of the PC must also be saved. As a consequence, 

this solution will require additional hardware to compute and store the branch target 

address. Nevertheless, if branches are more likely to be taken than not, the “branch 

taken” prediction may yield a more favorable cost–performance trade-off than the 

“branch not taken” prediction.

For simplicity of presentation, we have treated the hardware solutions for deal-

ing with hazards one at a time. In an actual CPU, these solutions need to be com-

bined. In addition, other hazards, such as those associated with writing and reading 

memory locations, need to be handled.

10-4 THE COMPLEX INSTRUCTION SET COMPUTER

CISC instruction set architectures are characterized by complex instructions that 

are, at worst, impossible, and, at best, difficult to implement using a single-cycle 

 computer or a single pass through a pipeline. A CISC ISA often employs a sizable 

number of addressing modes. Further, the ISA often employs variable-length 

instructions. The support for decision making via conditional branching is also more 

sophisticated than the simple concepts of branch on zero register contents and set-

ting a register bit to 1 based on a comparison of two registers. In this section, a basic 

architecture for a CISC is developed with the high-performance of a RISC for sim-

ple instructions and most of the characteristics of a CISC ISA as just described.

Suppose that we are to implement a CISC architecture, but we are interested in 

approaching a throughput of one instruction per short RISC clock cycle for simple, 

frequently used instructions. To accomplish this goal, we use a pipelined datapath 

and a combination of pipelined and microprogrammed control as shown in Figure 10-18. 

An instruction is fetched into the IR and enters the Decode and Operand Fetch 

stage. If it is a simple instruction that executes completely in a single pass through 

the normal RISC pipeline, it is decoded and operand fetch occurs as usual. On 

the  other hand, if the instruction requires multiple microoperations or multiple 
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memory accesses in sequence, the decode stage produces a microcode address for 

the microcode ROM and replaces the usual decoder outputs with control values 

from the microcode ROM. Execution of microinstructions from the ROM, selected 

by the microprogram counter, continues until the execution of the instruction is 

completed.

Recall that to execute a sequence of microinstructions, it is often necessary to 

have temporary registers in which to store information. An organization of this type 

will frequently supply temporary registers with a convenient mechanism for switch-

ing between temporary registers and the usual programmer-accessible register 

resources.

The preceding organization supports an architecture that has combined 

CISC–RISC properties. It illustrates that pipelines and microprograms can be 

compatible and need not be viewed as mutually exclusive. The most frequent use 

of such a combined architecture allows existing software designed for a CISC to 

take advantage of a RISC architecture while preserving the existing ISA. The 

CISC–RISC architecture is a combination of concepts from the multiple-cycle 

computer in Chapter 8, the RISC CPU in the previous section, and the micropro-

gramming concept introduced briefly in Chapter 8. This combination of concepts 

makes sense, since the CISC CPU executes instructions using multiple passes 

through the RISC datapath pipeline. To sequence these multiple-pass instruction 

implementations, a sequential control of considerable complexity is needed, so 

microprogrammed control is chosen.

The development of the architecture begins with some minor modifications to 

the RISC ISA to obtain some capabilities desirable in the CISC ISA. Next, the data-

path is modified to support the ISA changes. These include modification of the 

Constant Unit, addition of a Condition Code register CC, and deletion of the hard-

ware for supporting the SLT instruction. Further, the Register file addressing logic is 

modified to provide addressing for 16 temporary registers for multiple-pass use of 

the datapath, with 16 registers remaining in the storage resources. This is in contrast 

to the 32 registers in the storage resources for the RISC. The next step is to adapt the 

Microprogram
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Control ROM

Instruction fetch
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operand fetch
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Write-back

 FIGURE  10-18
Combined CISC–RISC Organization
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RISC control to work with the microprogrammed control in implementing the mul-

tiple pass instructions. Finally, the microprogrammed control itself is developed and 

its operation is illustrated by the implementation of three CISC instructions that 

characterize a CISC ISA.

The first modification to the RISC ISA is the addition of a new format for branch 

instructions. In terms of the instructions provided in the CISC, it is desirable to have 

the capability to compare the contents of two source registers and branch, indicating 

the relationship between the contents of the two registers. To perform such a com-

parison, a format with two source register fields SA and SB and a target offset are 

required. Referring to Figure 10-7, addition of the SB field to the branch format 

reduces the length of the target offset from 15 bits to 10 bits. The resulting Branch 2 

format added for the CISC instructions is shown in Figure 10-19. This format is used 

by an illustration in Example 10-2 of a BLE instruction that compares the contents 

of registers R[SA] and R[SB].

The second modification is to partition the Register file to provide addressing 

for 16 temporary registers for multiple-pass use of the datapath. With the partition, 

only 16 registers remain in the storage resources. Rather than modify all of the regis-

ter address fields in the instruction formats, we will simply ignore the most significant 

bit of these fields. For example, only the rightmost four bits of the field DR will be 

used. DR4 will be ignored.

The third modification to the RISC ISA is the addition of condition codes (also 

called flags) as discussed in Chapter 9. The condition codes provided are designed 

OPCODE DR SA Immediate

Three-register type

Two-register type

OPCODE DR SA Long target offsetBranch 1

OPCODE DR SA SB

31 25 24 20 19 15 14 10 9 0

OPCODE DR SA Short target offsetBranch 2 SB

 FIGURE  10-19
CISC CPU Instruction Formats
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specifically to be used in combination with branch on zero and branch on nonzero in 

implementing instructions that will provide a wide spectrum of decisions, such as 

greater than, less than, less than or equal to, and so on for both signed and unsigned 

integers. The codes are zero (Z), negative (N), carry (C), overflow (V), and less than 

(L). The first four are stored versions of the status outputs of the Function Unit. The 

less than (L) bit is the exclusive OR of Z and V, which is useful in easily implement-

ing particular decisions. The inclusion of the L bit in the condition codes eliminates 

the need for the SLT instruction.

To make the most effective use of these condition codes, it is useful to con-

trol whether or not they are modified for a particular microoperation execution 

from the instructions. Examination of the RISC instruction codes in Table 10-1 

shows that bit 4 (third from the left) of the opcode is 0 for the operations MOVA 

down through instruction LSL. This bit can be used for these instructions to con-

trol whether the condition codes are affected by the instruction. If the bit is 1, 

then the condition-code values are affected by the execution of the instruction. If 

it is 0, then the condition codes will not be affected. This adds an additional 17 

new operation codes with a 1 in opcode position 4 and 17 new mnemonic codes to 

the architecture. These opcodes must not overlap the existing operation codes, 

and the mnemonics are formed by appending C to the current mnemonics in 

Table 10-1. These modifications permit flexible use of the condition codes in mak-

ing decisions at both the ISA level and in the microcode. In both cases, the actual 

control of condition-code loading is passed through a bit LD in the control words 

for the RISC pipeline.

Several changes to the datapath are required to support the ISA modifications. These 

changes will be covered beginning with the datapath components in the DOF stage 

in Figure 10-20.

First, modifications are made to the Constant unit to handle the change in the 

length of the target offset. Logic added to the Constant unit extracts a constant, 

IMS = IR9:0, from constant IM. Sign extension is applied to IM
S
 to obtain a 32-bit 

word. Also, for use in comparisons with condition-code values, an 8-bit constant CA 

is provided from the microinstruction register, MIR, in the microprogrammed con-

trol. This constant is zero filled to form a 32-bit word. The CS control field for the 

Constant unit is expanded to two bits to perform selection from among the four pos-

sible constant sources.

Second, the Register address logic from the multiple-cycle computer in 

Chapter 8 is added to the address inputs of the Register file. The purpose of this 

change is to support the ISA modification that provides 16 temporary registers and 

16 registers that are a part of the storage resources. An additional mode supports the 

use of DX as a register-file source address with BX as the corresponding register-file 

destination address. This is necessary to capture the contents for R[DR] for use in 

destination address mode calculations.
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Third, a number of changes are made to support the modification adding condi-

tion codes. In the DOF stage, an additional port is added on MUX A in order to provide 

access to CC, the stored condition codes, for storage in temporary registers or compari-

son to constant values. In the EX stage, the condition-code bit L (less than) is imple-

mented and the condition-code register CC is added to the pipeline platform. The new 

control signal LC determines whether CC is loaded for the execution of a specific 

microoperation using a function unit operation. In the WB stage, the logic for support 

of the SLT instruction is replaced by a zero-filled CC value, which is passed to the new 

port on MUX A. Since the new condition-code structure provides support for the same 

decision making as SLT did and more, support for SLT is no longer needed.
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The addition of a microprogrammed control to the control unit to support instruc-

tion implementation using multiple passes through the pipeline causes significant 

changes to the existing control, as shown in Figure 10-20. The microprogrammed 

control is a part of the instruction decoding hardware in the DOF stage, but it 

interacts with other parts of the control as well. For convenience, it will be 

described separately.

A quick overview of the execution of a multiple-pass instruction provides a 

perspective for the control unit changes. The PC points to the instruction in the 

Instruction memory. The instruction is fetched in the IF stage, and on the next 

clock edge it is loaded into the IR and the PC is updated. The instruction is identi-

fied as a multiple-pass instruction from its opcode. Decoding of the opcode 

changes signal MI to 1 to indicate that this instruction is to use the micropro-

grammed control. The decoder also produces an 8-bit starting address, SA, that 

identifies the beginning of the microprogram in the Microcode ROM. Since multi-

ple passes through the pipeline are needed to implement the instruction, the load-

ing of subsequent instructions into the IR and further updating of the PC must be 

prevented. A signal MS produced by the microprogrammed control logic becomes 

1 and stalls the PC and the IR. This prevents the PC from incrementing, but per-

mits PC + 1 to continue down the pipeline into PC
–1

 and PC
–2

 for use in a branch. 

This stall remains until the multiple-pass instruction has been executed or until 

there is branch or jump action on the PC. Also, when MI = 1, most of the fields of 

the decoded instruction are replaced with fields of the current microinstruction, 

which is a decoded NOP (no operation). This 31-bit field replacement, performed 

by MUX I, prevents the instruction itself from causing any direct actions. Some 

changes have been made to the control word to control modified datapath 

resources. Fields CS and MA have been expanded to two bits each, and field LC 

has been added. At this point, the microprogrammed control is now controlling 

the pipeline and supplies a series of microinstructions (control words) to imple-

ment the instruction execution. The control word format follows that for the mul-

tiple cycle computer and includes fields such as SH, AX, BX, and DX. DX is 

modified to match the register address changes described for the datapath. In 

addition, the microprogrammed control has to interact with the datapath in order 

to perform decisions. This interaction includes application of the constant CA, use 

of the condition codes CC, and use of the zero detect signal Z.

To support the operations just discussed, the following changes are made to the 

control unit:

1. the addition of the stall signal MS to the PC, PC
−1

, and IR,

2. changes in the instruction decoder to produce MI and ST,

3. expansion of the fields CS and MA to two bits,

4. addition of MUX I, and

5. addition of control fields AX, BX, and DX, and LC.
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The definitions of new and modified control fields are given in Table 10-4.

Except for the addition of the microprogrammed control discussed in the next 

section, this completes the changes to the control unit.

Microprogrammed Control

A block diagram for the microprogrammed control and the format for microinstruc-

tions appear in Figure 10-21. The control is centered about the Microcode ROM, 

which has an 8-bit address and stores up to 256 41-bit microinstructions. The micro-

program counter MC stores the address corresponding to the current microinstruc-

tion stored in the microinstruction register, MIR. The address for the ROM is 

 provided by MUX E, which selects from the incremented MC, the jump address 

obtained from the microinstruction, CA, the prior value of the jump address, CA-1, 

and the starting address from the instruction decoder in the control unit, SA. Table 

10-5 defines the 2-bit select input ME for MUX E and stall bit, MS, in terms of the 

new control field MZ plus other variables. This function is implemented by 

the Microaddress Control logic. To set the context for the discussion, in location 0 of 

 TABLE  10-4
Added or Modified Control Word (Microinstruction) Fields for CISC

Control Fields Register Fields CS MA LC

MZ  

2b

CA  

8h

BS  

2b

P 

S
Action

Code 

5h
Action

Code  

2b
Action

Code  

2b
Action Code

See 

Table 

10-5

Next 

Address  

or  

Con stant

See 

Table 

10-2
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the ROM, the IDLE state 0 for the microprogrammed control contains a microin-

struction that is a NOP consisting of all zeros. This microinstruction has MZ = 0 and 

CA = 0. From Table 10-5, with MI = 0, the microprogram address is CA = 0, caus-

ing the control to remain in this state until MI = 1. With MI = 1, starting address 

SA is applied to fetch the first microinstruction of the microprogram for the complex 

instruction being held in IR. In the control unit, MI = 1 also switches MUX I from 

the normal control word coming from the decoder to the 31-bit MIR portion that is a 

NOP instruction. In addition, the output MS from the Microaddress control becomes 

1, stalling the PC, PC
−1

, and the IR in the main control. At the next clock edge, the 

microinstruction fetched from the starting address SA enters the MIR, and the pipe-

line is now controlled by the microprogram.

In Figure 10-21, two pipeline registers are required as a part of the micropro-

grammed control. The stored pipeline values, MZ
−1

 and CA
−1

, are required for the 

execution of a conditional microbranch, since the value of Z to be tested occurs 

during the execution cycle for the microbranch instruction, one clock cycle after it 

enters the MIR.

During the execution of the microprogram, the microaddress is controlled by MZ, 

MZ
−1

, MI, PS, and Z. For MZ
−1

 = 11,  MZ = 01 since the microinstruction following a 
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conditional microbranch must be a NOP. Under these conditions, the ME values are 

controlled by PS and Z with MS = 1. For PS and Z having opposite values, a condi-

tional branch to the microaddress value from CA
−1

 occurs. Otherwise, for MZ
−1

 = 11 

and MZ = 01, the next microaddress becomes the incremented value of MC.

For MZ
−1

 ≠ 11,  MZ,  MI, and PS control the microaddress. For MZ = 00, 

the values of ME and MS are controlled by MI. For MI = 0, the next microad-

dress is CA and MS = 0, corresponding to the idle state for the microprogrammed 

control. For MI = 1, the next microaddress is SA and MS = 1, selecting the next 

microinstruction from the Microcode ROM and stalling the first two pipeline 

platforms. For MZ = 01, the next microaddress is the incremented value of MC, 

advancing execution to the next microinstruction in sequence. For MZ = 10, an 

unconditional jump is performed in the microcode control and the value of MS is 

controlled by PS. PS = 1 causes MS = 1, continuing microprogram execution. 

PS = 0 forces MS = 0, removing the stall, and returning control to the pipeline. 

This causes MI to become 0 (if the new instruction is not also a complex one). If 

CA = 0, the microprogrammed control is locked the IDLE state until MI = 1. In 

order for this to happen, the final instruction in the microprogram must have 

MZ = 10,  PS = 0, and CA = 0.

Microprograms for Complex Instructions

Three examples illustrate complex instructions implemented by using the CISC 

capabilities provided by the design just completed. The resulting microprograms are 

given in Table 10-6.

 TABLE  10-5
Address Control

Inputs Outputs

MZ
–1

MZ MI PS Z ME
1

ME
0

MS Register Transfer Due to ME

11 01 X 0 0 0 0 1 PS # Z: MC d MC + 1

11 01 X 0 1 0 1 1 PS # Z: MC d CA- 1

11 01 X 1 0 0 1 1 PS # Z: MC d CA- 1

11 01 X 1 1 0 0 0 PS # Z: MC d MC + 1

0X 01 X X X 0 0 1 MC d MC + 1

X0 01 X X X 0 0 1 MC d MC + 1

XX 00 0 X X 1 0 0 MC d CA

XX 00 1 X X 0 1 1 MC d ST

XX 10 X 0 X 1 0 0 PS: MC d CA

XX 10 X 1 X 1 0 1 PS: MC d CA

XX 11 X X X 0 0 1 MC d MC + 1
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EXAMPLE  10-1 LD Instruction with Indirect Indexed Addressing (LII)

The LII instruction adds the target offset to the contents of a register that is being used 

as an index register. In the indirection step, the indexed address formed is then used to 

 TABLE  10-6
Example Microprograms for CISC Architecture

Microinstructions

Action Address MZ CA

R 

W DX

M 

D BS

P 

S

M 

W FS

L 

C MA

M 

B AX BX CS

Shared Microinstructions

MI: MC d  ST, MI: MC d 00 IDLE 00 00 0 00 0 00 0 0 0 0 00 0 00 00 00

MC d  MC +  1 (NOP) Arbitrary 01 XX 0 00 0 00 0 0 0 0 00 0 00 00 00

Load Indirect Indexed (LII)

R16 d  R[SA] +   zf  IML LII0 01 00 1 10 0 00 0 0 2 0 00 1 00 00 00

MC d  MC + 1 (NOP) LII1 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R17 d  M[R16] LII2 01 00 1 11 1 00 0 0 0 0 00 0 10 00 00

MC d  MC + 1 (NOP) LII3 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R[DR] d  M[R17] LII4 10 IDLE 1 01 1 00 0 0 0 0 00 0 11 00 00

Compare Less Than or Equal To (BLE)

R[SA]-R[SB],  

CC d  L }Z }N }C }V
BLE0 01 00 0 01 0 00 0 0 5 1 00 0 00 00 00

MC d  MC + 1 (NOP) BLE1 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R31 d  CC^11000 BLE2 01 18 1 1F 0 00 0 0 8 0 10 1 00 00 11

MC d  MC + 1 (NOP) BLE3 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00
if (R

31
 ≠ 0) MC d BLE7 

 else MC d  MC + 1

BLE4 11 BLE7 0 00 0 00 1 0 0 0 00 0 1F 00 00

MC d  MC + 1 (NOP) BLE5 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00
MC d IDLE BLE6 00 IDLE 0 00 0 00 0 0 0 0 00 0 00 00 00

PC d  (PC-1) +   se IML, 

    MC d IDLE
BLE7 10 IDLE 0 00 0 11 0 0 0 0 01 1 00 00 00

Move Memory Block (MMB)

R16 d  R[SB] MMB0 01 00 1 10 0 00 0 0 C 0 00 0 00 00 00

MC d  MC + 1 (NOP) MMB1 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R16 d  R16 -1 MMB2 01 01 1 10 0 00 0 0 5 0 00 1 00 00 11

R17 d  R[DR] MMB3 01 00 1 00 0 00 0 0 C 0 00 0 00 11 00

R18 d  R[SA] + R16 MMB4 01 00 1 12 0 00 0 0 2 0 00 0 00 10 00

R19 d  R17 +  R16 MMB5 01 00 1 13 0 00 0 0 2 0 00 0 11 10 00

R20 d  M[R18] MMB6 01 00 1 14 1 00 0 0 0 0 00 0 12 00 00

MC d  MC + 1 (NOP) MMB7 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

M[R19] d  R20 MMB8 01 00 0 00 0 00 0 1 0 0 00 0 13 14 00

if (R16 ≠ 0)MC d MMB2 MMB9 11 MMB2 0 00 0 00 1 0 0 1 00 0 10 00 00

MC d  MC + 1 (NOP) MMB10 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00
MC d IDLE MMB11 10 IDLE 0 00 0 00 0 0 0 0 00 0 00 00 00
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fetch the effective address from memory. Finally, the effective address is used to fetch 

the operand from memory. The opcode for this instruction is 0110001, and the instruc-

tion uses the Immediate format with the SA register field and a 15-bit target offset. 

When the LII instruction is fetched and appears in the IR, the instruction decoder sets 

MI equal to 1 and provides the microcode address symbolically represented by LII0 in 

Table 10-6. The first microinstruction to be executed is the one appearing in the IDLE 

address. This microoperation executes a NOP in the datapath and memory, but in the 

presence of MI = 1, the address control selects SA as the next microinstruction 

address, thereby leaving the IDLE state. The LII0 microinstruction forms the indexed 

address and increments the address in MC to fetch the next microinstruction LII1. This 

causes the NOP microinstruction in address LII1 to be fetched for execution in the 

pipeline. This NOP has been inserted, since the result of the microinstruction in LII0 is 

not placed in R
16

 until the WB stage. The next microinstruction in LII2 fetches the 

effective address from memory. A NOP is required next, due to the clockcycle delay in 

writing the effective address to R
17

. The microinstruction in LII4 applies the effective 

address to the memory to obtain the operand and place it in the destination register 

R[DR]. Since this completes the LII implementation, the microprogrammed control 

state in MC returns to IDLE and the next instruction following LII is fetched from the 

instruction memory by using the address in the PC.  ■

In Table 10-6, this sequence of microinstructions is described in the Action col-

umn by register transfer statements, and symbolic names are provided for the 

addresses of the microinstructions in the Microcode ROM. The remainder of the col-

umns in the table provides the coding of the microinstruction fields. These codes are 

selected from Tables 8-12, 10-2, 10-3, and 10-5, to implement the register transfers. Of 

particular note is the appearance of MC = 10,  PS = 0, and CA = IDLE (00) in 

microinstruction LII4, causing the microprogram control to return to IDLE and 

 program control to return to the pipeline control.

EXAMPLE  10-2 Branch on Less Than or Equal to (BLE)

The BLE instruction compares the contents of registers R[SA] and R[SB]. If R[SA] 

is less than or equal to R[SB], then the PC branches to PC +  1 plus the sign-ex-

tended Short Target Offset (IMS). Otherwise, the incremented PC is used. The 

opcode for the instruction is 1100101.

The register transfers for the instruction are given in the Action column of 

Table 10-6. In microinstruction BLE0, R[SB] is subtracted from R[SA] and the con-

dition codes L through V are captured in register CC. Due to the one-cycle delay in 

writing to CC, a NOP is required in microinstruction BLE1. R[SA] is less than or 

equal to R[SB] if (L + Z) = 1 (+  is OR in this expression). Thus, of the five 

 condition-code bits, only L and Z are of interest. So in microinstruction BLE2, the 

least significant three bits of CC are masked out using the mask 11000 ANDed with 

CC. The result is placed in register R
31

, and, in BLE3, another NOP is required wait-

ing for R
31

 to be written. In BLE4, a microbranch on R
31

 nonzero occurs. If R
31

 is 

nonzero, then L + Z = 1, giving R[SA] less than or equal to R[SB]. Otherwise, both 

L and Z are 0, indicating R[SA] is not less than or equal to R[SB]. Due to the micro-

branch, a NOP is required in BLE5. The connections to MUX E require only one 
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NOP after a microbranch instead of the two NOPs needed for the conditional branch 

in the main control. If the branch is not taken, the next microinstruction BLE6 exe-

cutes, returning MC to IDLE and reactivating the pipeline control to execute the 

next instruction. If the branch is taken, microinstruction BLE7 is executed, placing 

PC + 1 + BrA into the PC for fetching the next instruction when the microinstruc-

tion reaches the EX stage. Note that such a branch on the PC can take place only 

after MS becomes 0 and the pipeline is reactivated. In this regard, a control hazard 

exists for this instruction in the main control, so it must be followed by a NOP. The 

codes for the microinstruction fields appear in Table 10-6.  ■

EXAMPLE  10-3 Move Memory Block (MMB)

The MMB instruction copies a block of information from one set of contiguous loca-

tions in memory to another. It has opcode 0100011 and uses the three-register type 

format. Register R[SA] specifies address A, the beginning location of the source 

block in memory, and register R[DR] specifies address B, the beginning location of 

the destination block. R[SB] gives the number n of words in the block.

The register transfers for the instruction are given in the Action column of 

Table 10-6. In microinstruction MMB0, R[SB] is loaded into R
16

. MMB1 contains a 

NOP waiting for R
16

 to be written. In MMB2, R
16

 is decremented, providing an index 

with n values, n - 1 down to 0, for use in addressing the copying of n words. Since 

R[DR] is a destination register, it is ordinarily not available as a source. But to do 

address manipulation for the destination locations, it is necessary for its value to be 

placed in a register that can act as a source. Thus, in MMB3, the value of R[DR] is 

copied to register R
17

 by using the register code DX = 00000, which treats R[DR] as 

the source and the register specified in the BX field, R
17

, as the destination. In micro-

instructions MMB4 and MMB5, R
16

 is added to R[SA] and to R[SB] to serve as 

pointers to the addresses in the blocks. Due to these operations, the words in the 

blocks are transferred from the highest location first. In MMB6, the first word is 

transferred from the first source address in memory to temporary register R
20

. In 

MMB7, a NOP appears to permit the writing of the value in R20 by MMB6 before the 

use of the value by MMB8. In MMB8, the first word is transferred from R
20

 to the 

first destination address in memory. In MMB9, a branch on zero is done on the con-

tents of R
16

 to determine if all of the words in the block have been transferred. If not, 

then MM2 is the next microaddress in which the next word transfer begins. If R
16

 

equals zero, the next microinstruction is the NOP placed in MMB10 due to the 

branch. The final microinstruction in MMB11 returns MC to IDLE and returns exe-

cution back to the pipeline control.

The codes for the microinstructions appear in Table 10-6. The code consists of 

simple register and memory transfers with a single branch to provide the looping 

capability and NOPs to deal with data and control hazards.  ■

10-5 MORE ON DESIGN

The two designs considered in this chapter represent two different ISAs and two 

different supporting CPU architectures. The RISC architecture matches well with 

the pipelined control organization because of the simplicity of the instructions. Due 
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to the need for high performance, the modern CISC architecture presented is built 

upon the RISC foundation. In this section, we will deal with additional features for 

speeding up the fundamental RISC pipeline.

Advanced CPU Concepts

Among the various methods used to design advanced CPUs are multiple units orga-

nized as a pipeline-parallel structure, superpipelines, and superscalar architectures.

Consider the case in which an operation takes multiple clock cycles to execute, 

but the instruction fetch and write-back operations can be handled in a single cycle. 

Then it is possible to initiate an instruction every clock cycle, but not possible to com-

plete the execution of an instruction every cycle. In such a situation, the performance of 

the CPU can be substantially improved by having multiple execution units in parallel. 

A high-level block diagram for this kind of system is shown in Figure 10-22. The instruc-

tion fetch, decoding, and operand fetch, and branches are carried out in the I-unit 

D-UNIT

E-UNIT E-UNIT E-UNIT

I-UNIT

Register 
file

 FIGURE  10-22
Multiple Execution Unit Organization
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pipeline. When decoding of a nonbranch instruction has been completed, the instruc-

tion and operands are issued to the appropriate E-unit. When execution of the 

 instruction is completed by the E-unit, the write-back to the register file occurs. If a 

memory access is required, then the D-unit is used to execute the memory operation. If 

the operation is a store, it goes immediately to the D-unit.

In all of the methods considered thus far, the peak throughput possible is one 

instruction per clock cycle. With this limitation, it is desirable to maximize the clock 

rate by minimizing the maximum pipeline stage delay. If, as a consequence, a large 

number of pipeline stages is used, the CPU is said to be superpipelined. A superpipe-

lined CPU will generally have a very high clock frequency, in the range of a few to 

several GHz. In such an organization, however, handling hazards effectively is criti-

cal, since any stalling or reinitialization of the pipeline will degrade the performance 

of the CPU significantly. Also, as more pipeline stages are added, further dividing up 

the combinational logic, the setup and propagation delay times of the flip-flops begin 

to dominate the platform-to-platform delay and the speed of the clock. The improve-

ment achieved is less, and when hazards are taken into account, the performance 

may actually become worse rather than better.

For fast execution, an alternative to superpipelining is the use of a super-
scalar architecture. Its goal is to have a peak rate of issuing instructions for execu-

tion in excess of one instruction per clock cycle. A superscalar CPU that fetches a 

pair of instructions simultaneously by using a double-word wide path from 

instruction memory is illustrated in Figure 10-23. The processor checks for haz-

ards among the instructions, as well as available execution units in the instruction 

issue stage of the pipeline. If there are hazards or busy execution units corre-

sponding to the first instruction, then both instructions are held for later issuing. 

If the first instruction has no hazard and its E-unit is available, but there is a haz-

ard or no available E-unit for the second instruction, then only the first instruc-

tion is issued. Otherwise, both instructions are issued in parallel. If a given 

superscalar architecture is triple issue, then it has the ability to issue up to three 

instructions simultaneously, and a peak execution rate of three instructions per 

clock cycle. Note that the hazard checking for instructions in both the issue and 

execution stages becomes very complex as the maximum number of instructions 

issued simultaneously is increased.

Following are three methods for preventing hazards from stalling the pipeline 

in superpipelined and superscalar processors.

Instead of waiting for a branch to be taken, a processor predicts which way a 

branch is expected to go and proceeds to speculatively execute down that path. In 

addition, execution continues in order to determine the path the branch actually 

takes. When the result of the branch becomes available, if it does not match the 

speculated direction, the speculated results are quashed and the actual branch 

taken is followed. If the speculated direction is correct, then the pipeline delay 

waiting for the branch to occur is eliminated, significantly improving performance. 

Branch predictors must achieve a high rate of correct speculation in order to 

achieve performance improvement. Branch prediction is based on various 

approaches to recording the recent history of branches taken/not taken. In sophis-

ticated prediction schemes, results from multiple predictors are often combined 
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to achieve high rates of correct speculation, even with complex, and sometimes 

irregular, branching patterns.

Instead of waiting to load data from memory until it is known that the data is 

needed, speculative loading of data from memory is performed. The purpose is to 

avoid the relatively long delay required to fetch an operand from memory. If the 

data that is speculatively fetched turns out to be the data needed, then it will be 

available and the computation can proceed immediately with no waiting for a mem-

ory access to get the data.

Extending this further, data speculation uses methods to predict data values and 

use the predicted values to proceed with computation. When the actual value becomes 

known and matches the predicted value, then the result produced from the predicted 

value can be used to carry forward the computation. If the actual value and the pre-

dicted value differ, then the result based on the predicted value is discarded and the 

actual value is used to continue computation. An example of data speculation is permit-

ting a value to be loaded from memory before a store into the same memory location 

occurring earlier in the program has been executed. In this case, it is predicted that the 

Instruction fetch

Instruction issue

Decode and
operand fetch

Decode and
operand fetch

Execute Execute 1

Write-back Execute 2

Execute 3

Write-back

Floating-point E-unit

Integer E-unit

 FIGURE  10-23
Superscalar Organization



592          CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

store will not change the value of the data loaded from memory. If, at the time the store 

executes, the loaded value is not valid, the result of computation using it is discarded. 

Data speculation is often used in prefetching—executing loads before stores upon 

which the loaded values may depend have been completed.

All of these techniques perform operations or sequences of operations for 

which results are discarded with some frequency. Thus, there is “wasted” computa-

tion. To be able to do large amounts of useful computation, as well as the wasted 

computation, more parallel resources, as well as specialized hardware for imple-

menting the techniques, are required. The payoff in return for the cost of these 

resources is higher performance.

Recent Architectural Innovations

The techniques in the previous section all have the goal of exploiting instruction 
level parallelism (ILP), which in conjunction with advancements in integrated 

circuit technology resulted in the sustained rise in microprocessor performance 

over the last three decades of the 20th century. All of the ILP advances, however, 

have come with an increase in complexity, and, most notably, a seemingly nev-

er-ending increase in power needs. Around the millennium, it became very 

apparent that further increases in performance due to ILP were diminishing. 

This recognition, along with the continuing advancements in IC technology, have 

combined to set a new direction for performance improvement to begin the 21st 

century, namely, the use of multiple-CPU-processors on a single chip in servers 

and desktop and laptop PCs. This section covers two of the directions in this 

changing approach to performance, targeting two somewhat differing goals: gen-

eral-purpose applications and digital media applications.

MIMD AND SYMMETRIC ON-CHIP CORE MULTIPROCESSORS Multiple cores have ap-

peared in microprocessors for servers and, more recently, for the PC market. 

These products resemble shared-memory symmetric (identical) multiproces-

sors, and are categorized as multiple-instruction-stream, multiple-data-stream 

(MIMD) microprocessors. In such systems, advantages can be achieved by exe-

cuting in parallel (1) multiple programs and/or (2) multiple threads. (A thread is 

a process that has its own data, instructions, and processor state.) Multiple cores 

can execute a program by dedicating one of the CPUs to its execution or by exe-

cuting the program’s threads on multiple CPUs to improve performance over 

single-CPU microprocessors. For example, a complex image-processing program 

can run on a single CPU while word processing or web browsing takes place on 

a second CPU. Alternatively, the image-processing program can be spread over 

two cores by running the threads of the program distributed across two CPUs. 

We use the Intel Core 2 Duo and the more recent Core i7 as an illustration of a 

multicore microprocessor. These designs not only achieve performance improve-

ments via multiple CPUs, but also advancements in instruction-level parallelism 

as well.
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EXAMPLE  10-4  The Intel Core 2 Duo and Core i7 Microprocessors

The Core 2 Duo is a microprocessor product introduced by Intel in July 2006. The 

dual symmetric processors each have their own level 1 (L1) instruction and data 

caches1 and share a common unified level 2 (L2) cache of either 2 or 4 MB capacity, 

depending on the particular Core 2 Duo product. The L2 cache is the pair of large 

dark blocks at the bottom of the cover background. Each core is a superscalar pro-

cessor with a quad-issue 14-stage pipeline, a pipeline length decreased by 35 percent 

from recent Intel microprocessor designs, showing a move away from focus on an 

increase in clock rate based on a superpipeline. In addition, the number of execution 

units in each processor has been increased significantly to support the four-issue 

strategy and multimedia performance. Intel has also introduced macrofusion, in 

which multiple machine-level instructions are issued within a single microinstruction 

(called a μop by Intel), providing an increase in maximum instruction issue rate of 

one beyond that achieved by the broader issue path alone. In order to achieve a high 

memory bandwidth, the path from the L2 cache to each core is 256 bits wide. Fur-

ther, there is an elaborate data prefetch mechanism to improve the performance of 

all three data caches. Prefetch is used to load data before it is needed for computa-

tion by predicting what data will be needed and whether or not the data will change 

after it has been prefetched. If the latter is the case, then the data will need to be 

loaded again after the store affecting its value has occurred. Memory disambiguation 

is the term applied to doing prefetch and cleaning up the situation in the event that 

stale data has been loaded into any of the caches.

Technologically, the Core 2 Duo has been fabricated using a 65 nm technology 

(gate lengths of 35 nm) and has embedded temperature sensors in the chip that are 

used to control the fan speed, power voltage values, and clock frequencies. Power 

reduction is also achieved by clock and power gating of entire blocks and unused 

portions of buses. These techniques have little impact on performance, while provid-

ing significantly reduced power consumption. 

More recently, Intel has introduced a range of multicore microprocessors 

called Core i3, Core i5, and Core i7, targeting different price-performance break-

points, with Core i3 intended for entry-level applications, Core i5 intended for mid-

range applications, and Core i7 intended for high-performance applications. Even 

within each line, there are variants intended for desktop and mobile (low power) 

markets. As of mid-2014, the Core i7 is available in 2-, 4-, and 6-core versions, with an 

8-core version soon to be released. Unlike the Core 2 Duo, each Core i7 has its own 

L2 cache and all of the processors share a common unified level 3 (L3) cache. The 

Core i7 is currently constructed using a 22 nm technology. ■

SIMD AND VECTOR PROCESSING The history of single-instruction-stream, multi-

ple-data-stream (SIMD) processors and vector processing goes back to the 1960s 

and 70s, with the beginnings of the Illiac IV project at the University of Illinois, 

1For the basics on caches and multilevel caches, see Section 12-3.
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and with two commercial vector-processing products announced in 1972. These were 

followed over the next two decades by a number of supercomputers targeted pri-

marily at scientific applications. In response to the need for vector processing in PC 

microprocessors for multimedia applications, Intel introduced the MMX extensions 

to the Pentium instruction set in 1997 and Advanced Micro Devices (AMD) add-

ed 3DNow! to the Athalon instruction set in 1998. Multiple sets of SSE (streaming 

SIMD extensions) have been added over time by Intel and AMD. IBM/Motorola 

(Freescale) also introduced Altivec extensions in its PowerPC line. The basic ap-

proach in current microprocessors uses a set of 128-bit registers dedicated to these 

SIMD/vector operations, with each instruction performing the same operations on 

bytes, half-words, words, or double words within the 128-bit registers. Most recently, 

SIMD has been central to the collaborative development by IBM, Sony, and Toshiba 

of the Broadband Processor Architecture and its first-generation product, the Cell 

processor for Sony’s Playstation 3 launched in November 2006. The following exam-

ple summarizes briefly the architecture of the Cell processor.

EXAMPLE  10-5  The STI Cell Processor

The Cell processor is based on the PowerPC architecture. It consists of nine cores 

plus a very fast RAMBUS on-chip memory controller and a controller for a configu-

rable I/O interface. One of the cores is a 64-bit Power Processor Element (PPE) with 

first-level instruction and data caches and 512 KB second-level caches. It supports 

execution of two instruction threads by use of a dual multiprocessor with shared 

dataflow. The integer pipeline has 23 stages. There are 128 128-bit registers per thread 

for SIMD instructions handling 2 * 64,  4 * 32,  8 * 16,  16 * 8, and 128 * 1 ele-

ment widths. The remaining eight processors are Synergistic Processor Elements 

(SPEs), each with (1) 128 * 128 bit register files with same element sizes as the PPE 

and (2) a local store implemented in SRAM of 256 KB. The number of parallel 

actions of the set of SPEs permits from 16 simultaneous parallel operations on 64-bit 

operands to 1024 simultaneous parallel operations on 1-bit operands. The PPE and 

SPEs are connected by a coherent on-chip Element Interconnection Bus (EIB) 

using Direction Memory Access (DMA) communication on a very highspeed set of 

four 128-bit wide bus rings. In the original Playstation 3, the chip is constructed with 

an advanced high-speed, low-voltage, low-power, 90 nm silicon-on-insulator (SOI) 

CMOS technology. Due to the need to carefully control the thermal environment of 

the Cell chip, 11 temperature sensors are built into the chip that are used to provide 

thermal protection and control the cooling system in the Playstation 3. The more 

recent “slim” versions of the Playstation 3 use a Cell processor constructed using a 

45 nm CMOS technology, resulting in power consumption that is less than 40% of 

the original 90 nm version. To form a symmetric multiprocessor system, two Cell 

processors can be connected together directly. Four Cell processors require a broad-

band switch to handle the four bidirectional broadband device interfaces.  ■

GRAPHICS PROCESSING UNITS Related to the introduction of SIMD capabilities to 

CPUs is the development of graphics processing units (GPUs), which grew from 

the addition of functions for accelerating 2D and 3D graphics to video graphics 
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controllers. GPUs are a distinct category from the CPUs that are the focus of this 

text, with their own nomenclature and a narrower focus on graphics- and video- 

related applications. GPUs are not intended to replace CPUs but rather to serve 

as a co-processor for improved graphics. Despite this distinction, they are worthy 

of note because, much as the increased vector functionality of CPUs has permitted 

them to better handle graphics applications, the increased scalar functionality of 

GPUs has allowed them to be used for non-graphics applications that can bene-

fit from high-performance vector processing, particularly in the area of scientif-

ic computing. Using GPUs for non-graphics applications, typically referred to as 

general-purpose computing on graphics processing units (GPGPU), has benefited 

from several efforts to develop general purpose programming languages for GPUs 

instead of relying on graphics languages and application programming interfaces. 

In terms of architectural approaches, GPUs do not fit cleanly into the MIMD/

SIMD categories described earlier in this section. GPUs exploit both thread-level 

and data-level parallelism. For example, the GPU manufacturer Nvidia has intro-

duced the term Single Instruction Multiple Thread (SIMT) to describe the style 

of program execution on their GPU architecture, in which multiple independent 

threads concurrently execute the same instruction.

10-6 CHAPTER SUMMARY

The focus of this chapter was the design of two processors—one for a reduced 

instruction set computer (RISC) and one for a complex instruction set computer 

(CISC). As a prelude to the design of these processors, the chapter began with an 

illustration of a pipelined datapath. The pipeline concept enables operations to be 

performed with clock frequencies and throughput not achievable with the same pro-

cessing components in a conventional datapath. The pipeline execution pattern dia-

gram was introduced for visualizing the behavior of a pipeline and estimating its 

peak performance. The problem of the low clock frequency of the single-cycle com-

puter was addressed by adding a pipelined control unit to the datapath.

Next, we examined a RISC design with a pipelined datapath and control unit. 

Based on the single-cycle computer in Chapter 8, the RISC ISA is characterized by a 

single instruction length, a limited number of instructions with only a few addressing 

modes, and memory access restricted to load and store operations. Most RISC oper-

ations are simple in the sense that, in a conventional architecture, they can be exe-

cuted using a single microoperation.

The RISC ISA is implemented by using a modified version of the pipelined 

datapath in Figure 10-2. Likewise, a modified version of the control unit in Figure 10-4 

is used. Control changes were performed to accommodate the datapath changes and 

to handle branches and jumps in a pipeline environment. After completion of the 

basic design, consideration was given to data hazard and control hazard problems. 

We examined each type of hazard, as well as software and hardware solutions 

for each.

The ISA of the CISC has the potential for performing many distinct opera-

tions, with memory access supported by several addressing modes. The CISC also 

has operations that are complex in the sense that they require many clock cycles for 
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their execution. The CISC also has complex conditional branching supported by 

condition codes (status bits). Although, in general, a CISC ISA permits multiple 

instruction lengths, this feature is not provided by the example architecture.

To provide high throughput, the RISC architecture serves as the core of the 

CISC architecture. Simple instructions can be executed at the RISC throughput, with 

complex instructions, executed by multiple passes through the RISC pipeline. RISC 

datapath modification provided registers for temporary operand storage and condi-

tion code storage. Changes to the control unit were required to support these datapath 

changes. The primary control unit modification, however, was the addition of the 

microprogram control for execution of complex instructions. Added changes to the 

RISC control unit were required to integrate the microprogram control into the con-

trol pipeline. Examples of microprograms for three complex instructions were 

provided.

After completing the CISC and RISC designs, we touched on some advanced 

concepts, including parallel execution units, superpipelined CPUs, superscalar 

CPUs, and predictive and speculative techniques for high performance. Finally, we 

considered, and illustrated with real-world examples, a recent major turn in PC 

microprocessor design toward the use of multiple CPUs and elements rather than 

increased clock frequencies and more aggressive instruction-level parallelism.
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PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

 10-1.  A pipelined datapath is similar to that in Figure 10-1(b), but with the delays 

from the top to the bottom replaced by the following values: 0.5 ns, 0.5 ns, 0.1 ns, 

0.1 ns, 0.7 ns, 0.1 ns, and 0.1 ns. Determine (a) the maximum clock frequency, (b) 

the latency time, and (c) the maximum throughput for this datapath.

 10-2.  *A program consisting of a sequence of ten instructions without branch or 

jump instructions is to be executed in an 8-stage pipelined RISC computer 

with a clock period of 0.5 ns. Determine (a) the latency time for the pipeline, 

(b) the maximum throughput for the pipeline, and (c) the time required for 

executing the program.

 10-3.  Consider an unpipelined processor with a clock period of 2 ns. This processor 

is remodeled with a five-stage pipeline that adds a latency of 0.3 ns to the 

clock period. The five stages of the pipeline are Fetch(IF), Decode (ID), 

Execute(EX), Memory Read(MEM), and Write back (WB).

(a) Draw the five-stage pipeline.

(b) What is the ideal speedup obtained by pipelining?

(c)  What is the actual speedup?

 10-4.  For each of the RISC operations in Table 10-1, list the addressing mode or 

modes used.

 10-5.  Simulate the operation of the barrel shifter in Figure 10-9 for each of the 

following shifts and A = 3DF3CB4A16. List the hexadecimal values on the 

47 lines, 35 lines, and 32 lines out of the three levels of the shifter.

(a) Right, SH = 0F

(b) Left, SH = 1D

 10-6.  *For the RISC CPU in Figure 10-8, manually simulate, in hexadecimal, the 

processing of the instruction ADI R1 R16 2F01 located in PC = 10F. 

Assume that R16 contains 0000001F. Show the contents of each of the 

pipeline platforms and of the register file (the latter only when a change in 

value occurs) for each of the clock cycles.

 10-7.  Repeat Problem 10-6 for the instruction LSR R6 R2 001D with R6 

containing 00000000 and R2 containing 01ABCDEF.

 10-8.  Repeat Problem 10-6 for the instruction SLT R7 R3 R5 with R3 containing 

0000F001 and R5 containing 0000000F.
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 10-9.  Refer to the five-stage pipeline introduced in Problem 10-3. Give an example, 

with explanation, of a set of instructions that can cause a data hazard in this 

pipeline.

 10-10.  +Use a computer-based logic minimization program to design the instruction 

decoder for a RISC from Table 10-3. Create an HDL model of your design 

and verify its correctness in simulation.

 10-11.  *For the RISC design, draw the execution diagram for the following RISC 

program, and indicate any data hazards that are present:

1 MOVA R7, R6

2 SUB R8, R8, R6

3 AND R8, R8, R7

 10-12.  For the RISC design, draw the execution diagram for the following RISC 

program (with the contents of R7 nonzero after the subtraction), and indicate 

any data or control hazards that are present:

1 SUB R7, R7, R2

2 BNZ R7, 000F

3 AND R8, R7, R4

4 OR R4, R8, R2

 10-13.  *Rewrite the RISC programs in Problems 10-11 and 10-12, using NOPs to 

avoid all data and control hazards, and draw the new execution diagrams.

 10-14.  Draw the execution diagrams for the program in Problem 10-11, assuming

(a) RISC CPU with data stall given in Figure 10-12.

(b) RISC CPU with data forwarding in Figure 10-13.

 10-15.  Simulate the processing of the program in Problem 10-12 using the RISC 

CPU with data-hazard stall in Figure 10-12. Give the contents of each 

pipeline platform and the register file (the latter only whenever a change 

occurs) for each clock cycle. Initially, R2 contains 0000001016, R4 contains 

0000002016, R7 contains 0000003016, and the PC contains 0000000116. Is the 

data hazard avoided?

 10-16.  *Repeat Problem 10-15 using the RISC CPU with data forwarding in 

Figure 10-13.

 10-17.  Draw the execution diagram for the program in Problem 10-12, assuming the 

combination of the RISC CPU with branch prediction in Figure 10-17 and the 

RISC CPU with data forwarding in Figure 10-13.

 10-18.  Design the constant unit in the pipelined CISC CPU by using the information 

given in Table 10-4 and multiple-bit multiplexers, AND gates, OR gates, and 

inverters. Create an HDL model of your design and verify its correctness in 

simulation.



 10-19.  *Design the register address logic in the pipelined CISC CPU by using 

information given in the register fields of Table 10-4 plus multiple-bit 

multiplexers, AND gates, OR gates, and inverters.

 10-20.  Design the address control logic described by Table 10-5 by using AND gates, 

OR gates, and inverters.

 10-21.  Write microcode for the execution part of each of the following CISC 

instructions. Give both a register transfer description and binary or 

hexadecimal representations similar to those shown in Table 10-6 for the 

binary code for each microinstruction.

(a) Branch if overflow

(b) Branch if greater than zero

(c)  Compare less than

 10-22.  Repeat Problem 10-21 for the following CISC instructions that are specified 

by register transfer statements.

(a) Push: R[SA] d  R[SA] + 1 followed by M[R[SA]] d  R[SB]. Assume 

DR=SA.

(b) Pop: R[DR] d  M[R[SA]] followed by R[SA] d  R[SA] − 1. Assume 

SB=SA.

 10-23.  *Repeat Problem 10-22 for the following CISC instructions.

(a) Add with carry: R[DR] d  R[SA] +  R[SB] +  C

(b) Subtract with borrow: R[DR] d  R[SA] − R[SB] − B

Borrow B is defined as the complement of the carry out, C.

 10-24.  Repeat Problem 10-22 for the following CISC instructions.

(a) Add Memory Indirect: R[DR] d  R[SA] + M[M[R[SB]]]

(b) Add to Memory: M[R[DR]] d  M[R[SA]] + R[SB]

 10-25.  *Repeat Problem 10-21 for the CISC instruction, Memory Scalar Add. This 

instruction uses the contents of R[SB] as the vector length. It adds the 

elements of the vector with its least significant element in memory pointed to 

by R[SA] and places the result in the memory location pointed to by R[DR].

 10-26.  Repeat Problem 10-21 for the CISC instruction, Memory Vector Add. This 

instruction uses the contents of R[SB] as the vector length. It adds the vector 

with its least significant element in memory pointed to by R[SA] to the vector 

with its least significant element in memory pointed to by R[DR]. The result 

of the addition replaces the vector with its least significant element pointed to 

by R[DR].

 10-27.  PADDB (Add Packed Byte Integers) is the mnemonic for an SSE SIMD 

instruction in the IA-32 architecture. In the RISC computer in this chapter, 
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the equivalent instruction would add two 32-bit operands by adding the 

corresponding pairs of four bytes independently, one byte taken from each 

operand, with the result returned to the third operand, and without setting 

any condition codes.

(a) For operands R[SA] and R[SB] and destination R[DR], write a register 

transfer description of this instruction.

(b) What modifications would need to be made to the ALU in the RISC/

CISC computer to support this instruction?

 10-28.  (a)  In the Core 2 Duo, each core can perform a PMINSW (Minimum of 

Packed Signed Word Integers) instruction with two 128-bit operands, 

placing the result back in the first operand. For 16-bit words, how many 

minimum words can be determined in parallel in the Core 2 Duo?

(b)  In the Cell processor, each SPE can perform an “average bytes” instruction 

on a pair of 128-bit registers RA and RB, with the resulting average 

byte placed in register RT. How many byte averages can be produced in 

parallel for all SPEs executing the same instruction?
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C H A P T E R 

Input–Output and 
Communication

11

11-1 COMPUTER I/O
The input and output subsystem of a computer provides an efficient mode of com-

munication between the CPU and the outside environment. Programs and data must 

be entered into the memory for processing, and results obtained from computations 

must be recorded or displayed. Among the input and output devices commonly 

found in computer systems are keyboards, displays, printers, magnetic drives, com-

pact disc read-only memory (CD-ROM), and digital video disc read-only memory 

In this chapter, we give an overview of selected aspects of computer input–output 

(I/O) and communication between the CPU and external I/O devices. Because of the 

wide variety of different I/O devices and the quest for faster handling of programs 

and data, I/O is one of the most complex areas of computer design. As a consequence, 

we are able to present only selected pieces of the I/O puzzle. We illustrate in detail just 

three devices: a keyboard, a hard drive, and an LCD screen. We then introduce the I/O 

bus and the I/O interfaces that connect to I/O devices. We look at the Universal Serial 

Bus (USB), one of many solutions to the problem of accessing I/O devices. Finally, we 

discuss three modes for performing data transfers: program-controlled transfer, 

interrupt-initiated transfer, and direct memory access.

Interms of the generic computer at the beginning of Chapter 1, it is apparent that 

I/O involves a very large part of the computer. Only the processor, external cache, and 

RAM are not as highly involved, although they, too, are used extensively in directing 

and performing I/O transfers. Even the generic computer, which has fewer I/O devices 

electronic hardware for support.
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(DVD-ROM) drives. Other input and output devices frequently encountered are 

network devices or other communication interfaces, scanners, and sound cards with 

speakers and microphones. Significant numbers of computers, such as those used in 

automobiles, have analog-to-digital converters, digital-to-analog converters, and 

other data-acquisition and control components.

The I/O facility of a computer is a function of its intended application. This 

results in a wide diversity of attached devices and corresponding differences in the 

needs for interacting with them. Since each device behaves differently, it would be 

time consuming to dwell on the detailed interconnections needed between the com-

puter and each peripheral. We will, therefore, examine just three peripherals that 

appear in most computers. In addition, we present some of the common characteris-

tics found in the I/O subsystem of computers, as well as the various techniques avail-

able for transferring data either in parallel, using many conducting paths, or serially, 

through communication lines.

11-2 SAMPLE PERIPHERALS

Devices that the CPU controls directly are said to be connected online. These devices 

communicate directly with the CPU or transfer binary information into or out of the 

memory upon command from the CPU. Input or output devices attached to the 

computer online are called peripherals. In this section, we examine three peripheral 

devices: a keyboard, a hard drive, and a graphics display. We also use the keyboard as 

an example to illustrate I/O concepts in a later section. We introduce the hard drive 

both to motivate the need for direct memory access and to provide background for 

the role of the device in Chapter 12 as a component in a memory hierarchy. We 

include the graphics display to illustrate the very high potential transfer-rate require-

ments of contemporary applications.

Keyboard

The keyboard is among the simplest of the electromechanical devices attached to 

the typical computer. Since it is manually controlled, it has one of the slowest data 

rates of any peripheral.

The keyboard consists of a collection of keys that can be depressed by the user. 

It is necessary to detect which of the keys have been depressed. To do this, a scan 
matrix that lies beneath the keys is used, as shown in Figure 11-1. This two- 

dimensional matrix is conceptually similar to the matrix used in RAM. The matrix 

shown in the figure is 8 × 16, giving 128 intersections, so it can handle up to 128 keys. 

A decoder drives the X lines of the matrix, which are analogous to the word lines of 

a RAM. A multiplexer is attached to the Y lines of the matrix, which are analogous 

to the bit lines of a RAM. The decoder and the multiplexer are controlled by a micro-

controller, a tiny computer that contains RAM, ROM, a timer, and simple I/O 

interfaces.

The microcontroller is programmed to periodically scan all intersections in the 

matrix by manipulating the control inputs of the decoder and multiplexer. If the key 

is depressed at an intersection, a signal path is closed from an output of the X 
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decoder to an input of the Y multiplexer. The existence of this path is sensed at an 

input to the microcontroller. The 7-bit control code applied to the decoder and mul-

tiplexer at the time identifies the key. To allow for “rollover” in typing, in which mul-

tiple keys are depressed before any of them is released, the microcontroller actually 

identifies the depressing and release of the keys. Whether a key is depressed or 

released, the control code at the time of the event is sensed and is translated by the 

microcontroller into a K-scan code. When a key is depressed, a make code is pro-

duced; when a key is released, a break code is produced. Thus, there are two codes for 

each key, one for when the key is depressed and one for when it is released. Note that 

the scanning of the entire keyboard occurs hundreds of times per second, so there is 

no danger of missing any depression or release of a key.

After presenting a number of I/O interface concepts, we will revisit the key-

board to see what happens to the K-scan codes before they are finally translated to 

ASCII characters.

Hard Drive

The hard drive is the primary intermediate-speed, nonvolatile, writable storage 

medium for most computers. The typical hard drive stores information serially on a 

nonremovable disk, as shown in the upper right of the generic computer at the begin-

ning of Chapter 1. Each platter is magnetizable on one or both surfaces. There are 

one or more read/write heads per recording surface. Each disk is divided into con-

centric tracks, as illustrated in Figure 11-2. The set of tracks that are at the same dis-

tance from the center of all disk surfaces is referred to as a cylinder. Each track is 

divided into sectors containing a fixed number of bytes. The number of bytes per 

sector typically ranges from 256 to 4K. In older hard drives, up to the mid-1990s, a 

typical byte address included the cylinder number, head number, sector number, and 

word offset within the sector. The addressing assumes that the number of sectors per 

track is fixed. In modern, high-capacity drives, more sectors are included in the lon-

ger outer tracks than in the shorter inner tracks, referred to as zone bit recording. In 

addition, a number of spare sectors are reserved to take the place of defective sec-

tors. Currently available hard drives use logical block addressing (LBA) in which 
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 FIGURE  11-1
Keyboard Scan Matrix
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each sector is addressed using a single integer, with sectors numbered sequentially. 

The mapping from this address to the physical address is typically accomplished in 

the drive controller or drive electronics.

To enable information to be accessed, the set of heads is mounted on an actu-

ator that can move the heads radially over the disks, as shown in the generic com-

puter drawing. The time required to move the heads from the current cylinder to 

the desired cylinder is called the seek time. The time required to rotate the disk 

from its current position to that having the desired sector under the heads is called 

the rotational delay. In addition, a certain amount of time is required by the drive 

controller to access and output information. This is the controller time. The time 

required to locate a word on the disk is the disk access time, which is the sum of the 

controller time, the seek time, and the rotational delay. Average values over all 

possibilities are used for these four parameters. Words may be transferred singly, 

but as we will see in Chapter 12, they are often accessed in blocks. The transfer rate 

for a block of words, once the block has been located, is the disk transfer rate, typi-

cally specified in megabytes/second (MB/s). The transfer rate required by the 

CPU-memory bus to transfer a sector from the drive is the number of bytes in 

the sector divided by the length of time taken to read a sector from the drive. The 

length of time required to read a sector is equal to the proportion of the cylinder 

occupied by the sector divided by the rotational speed of the disks. For example, 

with 63 sectors, 512 B per sector, a rotational speed of 5400 rpm, and allowance for 

the gap between sectors, this time is about 0.15 ms, giving a transfer rate of 

512/0.15 ms = 3.4 MB/s. The controller will store the information read from the 

sector in its memory. The sum of the disk access time and the disk transfer rate 

times the number of bytes per sector gives an estimate of the time required to 

transfer the information in a sector to or from the hard drive.

Track

Sector

Head positioning

 FIGURE  11-2
Hard Disk Format
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EXAMPLE  11-1  Hard Drive Parameters

This example presents parameters for an advanced desktop hard drive in 2014. The 

drive is 4 TB (with 4 T = 4 * 1012, not 4 * 240). The drive has four disks and eight 

heads. There are 4096 bytes per sector, and there is a 64 MB buffer in the drive. The 

average read seek time is 68.5 ms, and the average write seek time is 69.5 ms. The 

maximum sustained I/O transfer rate is 180 MB per second, with an average rate of 

146 MB per second.  ■

Liquid Crystal Display Screen

The Liquid Crystal Display (LCD) screen is the primary interactive output device 

for both laptop and desktop computers. The display screen is defined in terms of pic-

ture elements called pixels. As this page is being written, it is displayed on a laptop 

with an LCD screen array of 1366 * 768 pixels. The color display has three subpixels 

associated with each pixel on the screen. These subpixels correspond to the primary 

colors red, green, and blue (RGB). A drawing of one pixel for this LCD screen is 

shown in Figure 11-3(a). The three subpixels are side-by side rectangles with a black 

mask filling the space between them.

Initially, we examine the liquid crystal display technology by exploring a small 

square portion of a pixel shown in Figures 11-3(b) and 11-3(c). In a temperature 

range around room temperature, liquid crystals used in LCDs are in a state between 

the usual solid and liquid states. In this state, they have crystal properties but are also 

movable and can be bent, twisted, and so on. The specific liquid crystals used in 

LCDs, called nematic liquid crystals, have limitations on the movements of the mole-

cules. They can be moved in any direction, but can only rotate or wiggle in a single 

plane. In Figure 11-3(b) a one-molecule thick layer of liquid crystals is illustrated. 

The molecules are elongated and rod shaped. The axis through the center of the mol-

ecules about which they can rotate is shown. The particular display illustrated uses 

twisted nematic (TN) liquid crystals. The liquid crystal material is contained in a gap 

between two substrates (glass plates) that are sealed at the panel edges. Crystal 

properties are used to align the rod-shaped liquid crystal molecules. The inner sur-

faces of the substrates are coated and the coating is rubbed with a cloth to produce 

fine grooves. The direction of the rubbing and the resulting grooves fixes the orienta-

tion of the molecules in contact with the coating. In Figure 11-3(b), the rear substrate 

coating has vertical grooves (as illustrated by the small area at its lower left), and the 

front substrate coating has horizontal grooves, as likewise illustrated. The liquid crys-

tal molecules align with the grooves they contact on the two substrates. Due to the 

surrounding molecule structure, the molecules in between the contact layers form a 

helix with a twist of 90 degrees, as shown in Figure 11-3(b).

To understand how the TN crystal can be used in a display, we need to consider 

liquid crystal optics, particularly in the presence of polarized light. In general, light 

waves vibrate in many planes perpendicular to their direction of propagation. Light 

passing through a filter called a linear polarizer emerges as waves that propagate in a 

single plane that aligns with the axis of the polarizer. In Figure 11-3(b), beginning at 

the back of the display, light waves that vibrate in various directions are produced by 

the backlight panel. The light passes through a linear polarizer with a vertical axis of 



606          CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

polarization on the back of the rear substrate. All light emitted from the polarizer 

has its waves vibrating in the direction of the polarization axis, i.e., vertically. The 

molecules at the rear of the liquid crystal are likewise oriented vertically. Optically, a 

liquid crystal layer causes the plane of polarization of light to align with the orienta-

tion of its molecules around the axis of rotation. The liquid crystal helix rotates the 

plane of polarization by 90 degrees, so that the light emerging from the liquid crystal 

is now horizontal instead of vertical. These horizontal waves align with axis of polar-

ization of the front polarizer located on the front face of the front substrate and are 

able to pass through it. Thus, the light appears, although much dimmer than the orig-

inal source, on the face of the display. In each subpixel area, the light has also been 

colored by passing through a color filter positioned beneath the grooved coating on 

the front substrate.

The liquid crystal molecules can be rotated by an electric field produced by 

an applied voltage between electrodes deposited beneath the coatings on the 

two substrates. In turn, the rotated molecules rotate the plane of polarization of 

the light passing through the crystal. The total amount of rotation from the rear 

substrate to the front substrate depends on the value of the voltage applied. In 

Figure 11-3(c), the maximum voltage necessary has been applied to produce a 

full 90-degree rotation. At the upper substrate, the plane of polarization is 
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 FIGURE  11-3
Liquid Crystal Screen Details
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vertical, i.e., perpendicular to the axis of polarization of the polarizer, which is 

horizontal. In this situation, none of the light waves will pass through the polar-

izer, giving a black pixel value. Assuming that the voltage applied to each sub-

pixel is obtained from an 8-bit digital signal using a D-to-A converter, 256 voltage 

values are available to determine the brightness of the subpixel color. Since there 

are three subpixels per pixel, 28 *  3 = 224 = 16,777,216 different colors available 

for each pixel.

In Figure 11-4, three pixels consisting of nine subpixels are shown with the nec-

essary electronic circuitry within the LCD panel. Ignoring the liquid crystal sand-

wich for a moment, the remaining circuitry including the capacitance C, the 

transistor, the gate lines, and the data lines looks exactly like a DRAM using coinci-

dent selection via rows and columns. The differences are: (a) there is the liquid crys-

tal subpixel connected across the storage capacitor C, (b) the input to the transistors 

is a discrete analog signal rather than a digital signal, and (c) the entire circuit is 

constructed between the two glass substrates using thin film technology rather than 

a silicon substrate. The circuitry, is placed in a corner of each pixel on the surface of 

the rear substrate facing the liquid crystal. The transistor, conductors and so on, are 

separated from the liquid crystal by coating layers including the final one with the 

fine grooves in it.

In terms of operation, the circuitry behaves much like a DRAM. To write the 

lower row of elements, the voltage values to be applied are placed on Data Lines m, 

m + 1,  m + 2, and so on, a high voltage is placed on Gate Line n + 3, and 0 volts is 

placed on all other Gate Lines. The voltage values are placed on the storage capaci-

tor C and on the upper surface of the subpixel. For technical reasons, the applied 
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voltages are inverted each time a row is written. When Gate Line 3 is returned to 0 

volts, the transistor turns off and the voltage is stored on capacitance C. The rows of 

the LCD are successively written one at a time, with a full panel write taking less 

than a sixtieth of a second.

The inputs to the Data Lines and Gate Lines are provided by the driver cir-

cuitry for the LCD panel. In addition, there is a display controller that may be 

combined with the driver circuitry. The display driver may be driven by digital 

inputs or analog RGB inputs as used for the older cathode ray tube display 

technology.

I/O Transfer Rates

An indicated earlier, the three peripheral devices discussed in this section give a 

sense of the range of peak I/O transfer rates. The keyboard data transfer rate is less 

than 10 bytes/s. For the hard drive, while the drive controller is capturing the data 

arriving rapidly from the disc in the sector buffer, the transfer of data from the buffer 

to main memory is impossible. Thus, in the case in which the next sector is to be read 

immediately, all of the data from the sector buffer needs to be stored in main mem-

ory during the time the gap on the disc between the sectors passes under the disc 

head. For current desktop hard drives, the peak sustained transfer rate is about 

150 MB/s to 180 MB/s. For a 1366 * 768 display using 32-bit color (8 bits for each 

RGB channel, plus 8 bits for an alpha channel for transparency effects), if the display 

is to be changed entirely every sixtieth of a second, 4 MB of data must be delivered 

to the video RAM from the CPU in that amount of time. This requires a data rate of 

4 MB * 60 = 240 MB/s. Based on the  preceding examples, we can conclude that 

the peak data rates required by the particular peripherals we have considered have a 

wide range. The bus system must be designed to handle the highest transfer rates 

between peripherals and memory.

11-3 I/O INTERFACES

Peripherals connected to a computer need special communication links to interface 

them with the CPU. The purpose of these links is to resolve the differences in the 

properties of the CPU and memory and the properties of each peripheral. The major 

differences are as follows:

1. Peripherals are often electromechanical devices whose manner of operation is 

different from that of the CPU and memory, which are electronic devices. 

Therefore, a conversion of signal values may be required.

2. The data-transfer rate of peripherals is usually different from the clock rate of 

the CPU. Consequently, a synchronization mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in the CPU 

and memory.

4. The operating modes of peripherals differ from each other, and each must be 

controlled in a way that does not disturb the operation of other peripherals 

connected to the CPU.
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To resolve these differences, computer systems include special hardware compo-

nents between the CPU and the peripherals to supervise and synchronize all input 

and output transfers. These components are called interface units, because they 

interface between the bus from the CPU and the peripheral device. In addition, 

each device has its own controller to supervise the operations of the particular 

mechanism of that peripheral. For example, the controller in a printer attached to 

a computer controls the motion of the paper, the timing of the printing, and the 

selection of the characters to be printed.

I/O Bus and Interface Unit

A typical communication structure between the CPU and several peripherals is 

shown in Figure 11-5. Each peripheral has an interface unit associated with it. The 

common bus from the CPU is attached to all peripheral interfaces. To communi-

cate with a particular device, the CPU places a device address on the address bus. 

Each interface attached to the common bus contains an address decoder that 

monitors the address lines. When the interface detects its own address, it activates 

the path between the bus lines and the device that it controls. All peripherals with 

addresses that do not correspond to the address on the bus ignore the bus activity. 

At the same time that the address is made available on the address bus, the CPU 

provides a function code on the control lines. The selected interface responds to 

the function code and proceeds to execute it. If data must be transferred, the 

interface communicates with both the device and the CPU data bus to synchro-

nize the transfer.

In addition to communicating with the I/O devices, the CPU of a computer 

must communicate with the memory unit through an address and data bus. There are 

two ways that external computer buses communicate with memory and I/O. One 

method uses common data, address, and control buses for both memory and I/O. We 
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have referred to this configuration as memory-mapped I/O. The common address 

space is shared between the interface units and memory words, each having distinct 

addresses. Computers that adopt the memory-mapped scheme read and write from 

interface units as if they were assigned memory addresses by using the same instruc-

tions that read from and write to memory.

The second alternative is to share a common address bus and data bus, but use 

different control lines for memory and I/O. Such computers have separate read and 

write lines for memory and I/O. To read or write from memory, the CPU activates 

the memory read or memory write control. To perform input to or output from an 

interface, the CPU activates the read I/O or write I/O control, using special instruc-

tions. In this way, the addresses assigned to memory and I/O interface units are inde-

pendent from each other and are distinguished by separate control lines. This method 

is referred to as the isolated I/O configuration.

Example of I/O Interface

A typical I/O interface unit is shown in block diagram form in Figure 11-6. It consists 

of two data registers called ports, a control register, a status register, a bidirectional 

data bus, and timing and control circuits. The function of the interface is to translate 

the signals between the CPU buses and the I/O device and to provide the needed 

hardware to satisfy the two sets of timing constraints.

The I/O data from the device can be transferred into either port A or port B. 

The interface may operate with an output device, with an input device, or with a 

device that requires both input and output. If the interface is connected to a printer, 

it will only output data; if it services a scanner, it will only input data. A hard drive 

transfers data in both directions, but not at the same time—so the interface needs 

only one set of I/O bidirectional data lines.

The control register receives control information from the CPU. By loading 

appropriate bits into this register, the interface and the device can be placed in a 

variety of operating modes. For example, a printer may be set in a mode that permits 

cartridges to be changed. The bits in the status register are used for status conditions 

and for recording errors that may occur during data transfer. For example, a status 

bit may indicate that port A has received a new data item from the device, while 

another bit in the status register may indicate that a parity error has occurred during 

the transfer.

The interface registers communicate with the CPU through the bidirectional 

data bus. The address bus selects the interface unit through the chip select input 

and the two register select inputs. A circuit (usually a decoder or a gate) detects 

the address assigned to the interface registers. This circuit sets the chip select (CS) 

input when the interface is selected by the address bus. The two register select 
inputs RS1 and RS0 are usually connected to the two least significant lines of the 

address bus. These two inputs select one of the four registers in the interface, as 

specified in the table accompanying the diagram in Figure 11-6. The contents of 

the selected register are transferred into the CPU via the data bus when the I/O 

read signal is set. The CPU transfers binary information into the selected register 

via the data bus when the I/O write input is set.
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The CPU, interface, and I/O device are likely to have different clocks that are 

not synchronized with each other. Thus, these units are said to be asynchronous with 

respect to each other. Asynchronous data transfer between two independent units 

requires that control signals be transmitted between the units to indicate the time at 

which data is being transmitted. In the case of CPU-to-interface communication, 

control signals must also indicate the time at which the address is valid. We will look 

at two methods for performing this timing: strobing, as it is called, and handshaking. 

Initially, we will consider generic cases in which no addresses are involved— subsequently, 

we will add addressing. The communicating units for the generic case will be referred 

to as the source unit and destination unit.

Strobing

Data transfers using strobing are shown in Figure 11-7. The data bus between the two 

units is assumed to be made bidirectional by the use of three-state buffers.

The transfer in Figure 11-7(a) is initiated by the destination unit. In the shaded 

area of the data signal, the data is invalid. Also, a change in Strobe at the tail of each 

arrow causes a change on the data bus at the head of the arrow. The destination unit 
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changes Strobe from 0 to 1. When the value 1 on Strobe reaches the source unit, the 

unit responds by placing the data on the data bus. The destination unit expects the 

data to be available, at worst, a fixed amount of time after Strobe goes to 1. At that 

time, the destination unit captures the data in a register and changes Strobe from 1 to 

0. In response to the 0 value on Strobe, the source unit removes the data from the bus.

The transfer in Figure 11-7(b) is initiated by the source unit. In this case, the 

source unit places the data on the data bus. After a short time required for the data 

to settle on the bus, the source unit changes Strobe from 0 to 1. In response to Strobe 

equal to 1, the destination unit sets up the transfer to one of its registers. The source 

then changes Strobe from 1 to 0, which triggers the transfer into the register at the 

destination. Finally, after a short time required to ensure that the register transfer is 

done, the source removes the data from the data bus, completing the transfer.

Although simple, the strobe method of transferring data has several disadvan-

tages. First, when the source unit initiates the transfer, there is no indication to it that 

the data was ever captured by the destination unit. It is possible, due to a hardware 

failure, that the destination unit did not receive the change in Strobe. Second, when 

the destination unit performs the transfer, there is no indication to it that the source 

has actually placed the data on the bus. Thus, the destination unit could be reading 

arbitrary values from the bus rather than actual data. Finally, the speeds at which the 

various units respond may vary. If there are multiple units, the unit initiating a trans-

fer must wait for the delay of the slowest of the attached communicating units before 

changing Strobe to 0. Thus, the time taken for every transfer is determined by the 

slowest unit with which a given unit initiates transfers.
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Asynchronous Transfer Using Strobing
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Handshaking

The handshaking method uses two control signals to deal with the timing of trans-

fers. In addition to the signal from the unit initiating the transfer, there is a second 

control signal from the other unit involved in the transfer.

The basic principle of a two-signal handshaking procedure for data transfer is 

as follows. One control line from the initiating unit is used to request a response 

from the other unit. The second control line from the other unit is used to reply to 

the initiating unit that the response is occurring. In this way, each unit informs the 

other of its status, and the result is an orderly transfer through the bus.

Figure 11-8 shows data transfer procedures using handshaking. In Figure 11-8(a), 

the transfer is initiated by the destination unit. The two handshaking lines are called 

Request and Reply. In the initial state both Request and Reply are reset and in the 00 

state. Subsequent states are 10, 11, and 01. The destination unit initiates the transfer by 

enabling Request. The source unit responds by placing the data on the bus. After a short 
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 FIGURE  11-8
Asynchronous Transfer Using Handshaking
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time for settling of the data on the bus, the source unit activates Reply, to signal the 

presence of the data. In response to Reply, the destination unit captures the data in a 

register and resets Request. The source unit then resets Reply, and the system goes to 

the initial state. The destination unit may not make another request until the source unit 

has shown its readiness to provide new data by disabling Reply. Figure 11-8(b) rep-

resents handshaking for the source-initiated transfer. In this case, the source controls 

the interval between when the data is applied and when Request changes to 1 and 

between when Request changes to 0 and when the data is removed.

The handshaking scheme provides a high degree of flexibility and reliability, 

because the successful completion of a data transfer relies on active participation by 

both units. If one unit is faulty, the data transfer will not be completed. Such an error can 

be detected by means of a time-out mechanism, which produces an alarm if the data 

transfer is not completed within a predetermined time interval. The time-out is imple-

mented by means of an internal clock that starts counting time when the unit sets one of 

its handshaking control signals. If the return handshake does not occur within a given 

period, the unit assumes that an error occurred. The time-out signal can be used to 

interrupt the CPU and execute a service routine that takes appropriate error recovery 

action. Also, the timing is controlled by both units, not just the initiating unit. Within the 

time-out limits, the response of each unit to a change in the control signal of the other 

unit can take an arbitrary amount of time, and the transfer will still be successful.

The examples of transfers in Figures 11-7 and 11-8 represent transfers between 

an interface and an I/O device and between a CPU and an interface. In the latter 

case, however, an address will be necessary to select the interface with which the 

CPU wishes to communicate and a register within the interface. In order to ensure 

that the CPU addresses the correct interface, the address must have settled on the 

address bus before the Strobe or Request signal changes from 0 to 1. Further, the 

address must remain stable until the change in the strobe or request from 1 to 0 has 

settled to 0 at the interface logic. If either of these conditions is violated, another 

interface may be falsely activated, causing an incorrect data transfer.

11-4 SERIAL COMMUNICATION

The transfer of data between two units may be parallel or serial. In parallel data trans-

fer, each bit of the message has its own path, and the entire message is transmitted at 

one time. This means that an n-bit message is transmitted in parallel through n separate 

conductor paths. In serial data transmission, each bit in the message is sent in sequence, 

one at a time. This method requires the use of one or two signal lines. Parallel transmis-

sion is faster, because multiple signal lines operate in parallel. It is used for short dis-

tances and when speed is important. Serial transmission is slower, but less expensive, 

since it requires only one conductor. Serial connections are becoming increasingly 

important because of the ease of connecting smaller cables and because as data rates 

increase, signal skew from line-to-line becomes more problematic. For the serial case, 

there are just one or two signals, so that skew is less of a problem. As an example of the 

trend toward serial interfaces, in the last decade, the typical hard drive interface for 

desktop computers has changed from the parallel ATA (PATA) interface with 40 wires 

to the serial ATA (SATA) with only seven wires.
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One way that computers and terminals that are remote from each other are 

connected is via telephone lines. Since telephone lines were originally designed for 

voice communication, but computers communicate in terms of digital signals, some 

form of conversion is needed. The devices that do the conversion are called data sets 

or modems (modulator–demodulators). There are various modulation schemes, as 

well as several different grades of communication media and transmission speeds. 

Serial data can be transmitted between two points in three different modes: simplex, 

half duplex, or full duplex. A simplex line carries information in one direction only. 

This mode is seldom used in data communication, because the receiver cannot com-

municate with the transmitter to indicate whether errors have occurred. Examples of 

simplex transmission are radio and television broadcasting.

A half-duplex transmission system is capable of transmitting in both directions, 

but in only one direction at a time. A pair of wires is needed for this mode. A common 

situation is for one modem to act as the transmitter and the other as the receiver. When 

transmission in one direction is completed, the roles of the modems are reversed to 

enable transmission in the opposite direction. The time required to switch a half- 

duplex line from one direction to the other is called the turnaround time.

A full-duplex transmission system can send and receive data in both directions 

simultaneously. This can be achieved by means of a two-wire plus ground link, with a 

different wire dedicated to each direction of transmission. Alternatively, a sin-

gle-wire circuit can support full-duplex communication if the frequency spectrum is 

subdivided into two nonoverlapping frequency bands to create separate receiving 

and transmitting channels in the same physical pair of wires.

The serial transmission of data can be synchronous or asynchronous. In syn-
chronous transmission, the two units share a common clock frequency, and bits are 

transmitted continuously at that frequency. In long-distance serial transmission, the 

transmitter and receiver units are each driven by separate clocks of the same fre-

quency. Synchronization signals are transmitted periodically between the two units 

to keep their clock frequencies in step with each other. In asynchronous transmis-

sion, binary information is sent only when it is available, and the line remains idle 

when there is no information to be transmitted. This is in contrast to synchronous 

transmission, in which bits must be transmitted continuously to keep the clock fre-

quencies in both units synchronized.

ASYNCHRONOUS TRANSMISSION A supplement containing the subsection on asynchro-

nous transmission, a serial port protocol used less frequently in new designs, is avail-

able on the Companion Website.

Synchronous Transmission

The modems employed in synchronous transmission have internal clocks that are set to 

the frequency at which bits are being transmitted. For proper operation, the clocks 

of  the transmitter and receiver modems must remain synchronized at all times. The 

communication line, however, carries only the data bits, from which information on the 

clock frequency must be extracted. Frequency synchronization is achieved by the 

receiving modem from the signal transitions that occur in the data that is received. Any 
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frequency shift that may occur between the transmitter and receiver clocks is continu-

ously adjusted by maintaining the receiver clock at the frequency of the incoming bit 

stream. In this way, the same rate is maintained in both the transmitter and the receiver.

Contrary to asynchronous transmission, in which each character can be sent 

separately, synchronous transmission must send a continuous message in order to 

maintain synchronism. The message consists of a group of bits that form a block of 

data. The entire block is transmitted with special control bits at the beginning and 

the end, in order to frame the block into one unit of information.

The Keyboard Revisited

To this point, we have covered the basic nature of the I/O interface and serial transmis-

sion. With these two concepts available, we are now ready to continue with the example 

of the keyboard and its interface, as shown in Figure 11-9. The K-scan code produced by 

the keyboard microcontroller is to be transferred serially from the keyboard through 

the keyboard cable to the keyboard controller in the computer. In this case, however, a 

signal Keyboard clock is also sent through the cable. Thus, the transmission is synchro-

nous with a transmitted clock signal, rather than asynchronous. These same signals are 

used to transmit control commands to the keyboard. In the keyboard controller, the 

microcontroller converts the K-scan code to a more standard scan code, which it then 

places in the Input register, at the same time sending an interrupt signal to the CPU 

indicating that a key has been pressed and a code is available. The interrupt-handling 

routine reads the scan code from the input register into a special area in memory. This 

area is manipulated by software stored in the Basic Input/Output System (BIOS) that 

can translate the scan code into an ASCII character code for use by applications.

The Output register in the interface receives data from the CPU. The data can 

be passed on to control the keyboard—for example, setting the repetition rate when 

a key is held down. The Control register is used for commands to the keyboard con-

troller. Finally, the Status register reports specific information on the status of the 

keyboard and the keyboard controller.
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An interesting aspect of keyboard I/O is its high complexity. It involves two 

microcontrollers executing different programs, plus the main processor executing 

BIOS software (i.e., three different computers executing three distinct programs).

A Packet-Based Serial I/O Bus

Serial I/O, as described for the keyboard, uses a serial cable specifically dedicated to 

communicating between the computer and the keyboard. Whether parallel or serial, 

external I/O connections are typically dedicated. The use of these dedicated paths 

often requires that the computer case be opened and cards inserted with electronics 

and connectors specific to the particular I/O standard used for a given I/O device.

In contrast, packet-based serial I/O permits many different external I/O devices 

to use a shared communication structure that is attached to the computer through just 

one or two connectors. The types of devices supported include keyboards, mice, joy-

sticks, printers, scanners, and speakers. The particular packet-based serial I/O we will 

describe here is the Universal Serial Bus (USB), which is becoming commonplace as 

the connection approach of choice for slow-speed to medium-speed I/O devices.

The interconnection of I/O devices by using USB is shown in Figure 11-10. The 

computer and attached devices can be classified as hubs, devices, or compound 

Computer

Root Hub

Monitor Printer

Mouse Joystick

Scanner

Microphone Speaker Speaker

Keyboard

Hub Hub

Hub
Hub

 FIGURE  11-10
I/O Device Connection Using the Universal Serial Bus (USB)
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devices. A hub provides attachment points for USB devices and other hubs. A hub 

contains a USB interface for control and status handling, and a repeater for transfer-

ring information through the hub.

The computer contains a USB controller and the root hub. Additional hubs 

may be a part of the USB I/O structure. If a hub is combined with a device such as 

the keyboard shown in Figure 11-10, then the keyboard is referred to as a compound 
device. Aside from such compound devices, a USB device contains only one USB 

port to serve its function alone. The scanner is an example of a regular USB device. 

Without USB, the monitor, keyboard, mouse, joystick, microphone, speakers, printer, 

and scanner shown would all have separate I/O connections directly on the com-

puter. The monitor, printer, scanner, microphone, and speakers might all require spe-

cial cards to be inserted, as discussed previously. With USB, only two connections are 

required.

The USB cables contain four wires: ground, power, and two data lines (D+  

and D- ) used for differential signaling. The power wire is used to provide small 

amounts of power to devices such as keyboards so that they do not need their own 

power supplies. To provide immunity to signal variation and noise, 0s and 1s are 

transmitted by using the difference in voltage between D+  and D- . If the voltage 

on D+  exceeds the voltage on D-  by 200 millivolts or more, then the logic value is 

a 1. If the voltage on D-  exceeds the voltage on D+  by 200 millivolts or more, the 

logic value is a 0. Other voltage relationships between D+  and D-  are used as spe-

cial signal states as well.

The logic values used for signaling are not the actual logic values of the infor-

mation being transmitted. Instead, a Non-Return-to-Zero Inverted (NRZI) signal-

ing convention is used. A zero in the data being transmitted is represented by a 

transition from 1 to 0 or 0 to 1 and a 1 is represented by a fixed value of 1 or 0. The 

relationship between the data being transmitted and the NRZI representation is 

illustrated in Figure 11-11. As is typical for I/O devices, there is no common clock 

serving both the computer and the device. NRZI encoding of the data provides 

edges that can be used to maintain synchronization between the arriving data and 

the time at which each bit is sampled at the receiver. If there are a large number of 1s 

in series in the data, there will be no transitions for some time in the NRZI encoding. 

To prevent loss of synchronization, a 0 is “stuffed” in before every seventh bit posi-

tion in a string of 1s prior to NRZI encoding so that no more than six 1s appear in 

series. The receiver must be able to remove these extra zeros when converting NRZI 

data to normal data.

Data

NRZI

0 10 0 0 0 0 01 1 1 11 1

 FIGURE  11-11
Non-Return-to-Zero Inverted Data Representation
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USB information is transmitted in packets. Each packet contains a specific 

set of fields, depending on the packet type. Logical strings of packets are used to 

compose USB transactions. For example, an output transaction consists of an Out 

packet followed by a Data packet and a Handshake packet. The Out packet comes 

from the USB controller in the computer and notifies the device that it is to receive 

data. The computer then sends the Data packet. If the Data packet is received 

without error, then the device responds with the Acknowledge Handshake packet. 

Next, we detail the information contained in each of these packets.

Figure 11-12(a) shows a general format for USB packets and the formats for 

each of the three packets involved in an output transaction. Note that each packet 

begins with a synchronization pattern SYNC. This pattern is 00000001. Because of 

the sequence of zeros, the corresponding NRZI pattern contains seven edges, which 

provide a pattern to which the receiving clock can be synchronized. Since this pat-

tern is preceded by a specific signal voltage state referred to as Idle, the pattern also 

signals the beginning of a new packet.

Following the SYNC, each packet format contains eight bits called the packet 

identifier (PID). In the PID, the packet type is specified by four bits, with an addi-

tional four bits that are complements of the first four to provide an error check on 

the type. A very large class of type errors will be detected by the repetition of the 

type as its complement. The type is optionally followed by information specific to the 

packet, which varies depending upon the packet type. Optionally, a CRC field 

appears next. The CRC pattern consisting of five or 16 bits is a Cyclic Redundancy 

Packet-specific data

(a) General packet format

EOPSYNC PID CRC

(b) Output packet

SYNC
8 bits

Type
4 bits
1001

Check
4 bits
0110

Endpoint
address

4 bits

Device
address

7 bits
CRC EOP

(c) Data packet (Data0 type)

SYNC
8 bits

Type
4 bits
1100

Check
4 bits
0011

CRCData
(Up to 1024 bytes) EOP

(d) Handshake packet (Acknowledge type)

SYNC
8 bits

Type
4 bits
0100

Check
4 bits
1011

EOP

 FIGURE  11-12
USB Packet Formats
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Check pattern. This pattern is calculated at transmission of the packet from the pack-

et-specific data. The same calculation is performed when the data is received. If the 

CRC pattern does not match the newly calculated pattern, then an error has been 

detected. In response to the error, the packet can be ignored and retransmitted. In 

the last field of the packet, an End of Packet (EOP) appears. This consists of D+  and 

D- , both low for two bit times, followed by the Idle state for a bit time. As its name 

indicates, this sequence of signal states identifies the end of the current packet. It 

should be noted that all fields are presented least significant bit first.

Referring to Figure 11-12(b), for the Output packet, the Type and Check fields 

are followed by a Device Address, an Endpoint Address, and a CRC pattern. The 

Device Address consists of seven bits and defines the device that is to input data. The 

Endpoint Address consists of four bits and defines which port of the device is to 

receive the information in the Data packet to follow. For example, there may be a 

port for data and one for control on a given device.

For the Data packet, the packet-specific data consists of 0 to 1024 data bytes. 

Due to the length of the packet, complex errors are more likely, so the CRC pattern 

is increased in length to 16 bits to improve its error-detection capability.

In the Handshake packet, the packet-specific data is empty. The response to 

the receipt of the data packet is carried by the PID. PID 01001011 is an Acknowledge 

(ACK) indicating that the packet was received without any errors detected. Absence 

of any HANDSHAKE packet when one would normally appear is an indication of 

an error. PID 01011010 is a No Acknowledge, indicating that the target is temporar-

ily unable to accept or return data. PID 01111000 is a Stall (STALL), indicating that 

the target is unable to complete the transfer and that software intervention is 

required to recover from the stall condition.

The preceding concepts illustrate the general principles underlying a  packet- 

based serial I/O bus and are specific to USB. USB supports other packet types and 

many different kinds of transactions. In addition, the attachment and detachment of 

devices is sensed and can trigger various software reactions. In general, there is sub-

stantial software in the computer to support the details of the  control and operation 

of the USB.

11-5 MODES OF TRANSFER

Binary information received from an external device is usually stored in memory for 

later processing. Information transferred from the central computer into an external 

device originates in the memory. The CPU merely executes the I/O instructions and 

may accept the data temporarily, but the ultimate source or destination is the mem-

ory. Data transfer between the central computer and I/O devices may be handled in 

a variety of modes, some of which use the CPU as an intermediate path, while others 

transfer the data directly to and from the memory. Data transfer to and from periph-

erals may be handled in one of three possible modes:

1. Data transfer under program control.

2. Interrupt-initiated data transfer.

3. Direct memory access transfer.
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Program-controlled operations are the result of I/O instructions written in the 

computer program. Each transfer of data is initiated by an instruction in the pro-

gram. Usually, the transfer is to and from a CPU register and peripheral. Other 

instructions are needed to transfer the data to and from the CPU and memory. 

Transferring data under program control requires constant monitoring of the periph-

eral by the CPU. Once a data transfer is initiated, the CPU is required to monitor the 

interface to see when a transfer can again be made. It is up to the programmed 

instructions executed in the CPU to keep close tabs on everything that is taking 

place in the interface unit and the external device.

In the program-controlled transfer, the CPU stays in a program loop called a 

busy-wait loop until the I/O unit indicates that it is ready for data transfer. This is a 

time-consuming process, since it keeps the processor busy needlessly. The loop can 

be avoided by using the interrupt facility and special commands to inform the inter-

face to issue an interrupt request signal when the data is available from the device. 

This allows the CPU to proceed to execute another program. The interface, mean-

while, keeps monitoring the device. When the interface determines that the device is 

ready for data transfer, it generates an interrupt request to the computer. Upon 

detecting the external interrupt signal, the CPU momentarily stops the task it is per-

forming, branches to a service program to process the data transfer, and then returns 

to the original task. This interrupt-initiated transfer is the type used for the keyboard 

controller shown in Figure 11-9.

Transferring of data under program control is performed through the I/O bus 

and between the CPU and a peripheral interface unit. In direct memory access 

(DMA), the interface unit transfers data into and out of the memory unit through 

the memory bus. The CPU initiates the transfer by supplying the interface with the 

starting address and the number of words needing to be transferred and then pro-

ceeds to execute other tasks. When the transfer is made, the interface requests mem-

ory cycles through the memory bus. When the request is granted by the memory 

controller, the interface transfers the data directly into memory. The CPU merely 

delays memory operations to allow the direct memory I/O transfer. Since the speed 

of a peripheral is usually slower than that of a processor, I/O memory transfers are 

infrequent compared with processor access to memory. DMA transfer is discussed in 

more detail in Section 11-7.

Many computers combine the interface logic with the requirements for DMA 

into one unit called an I/O processor (IOP). The IOP can handle many peripherals 

through a DMA-and-interrupt facility. In such a system, the computer is divided into 

three separate modules: the memory unit, the CPU, and the IOP.

Example of Program-Controlled Transfer

A simple example of data transfer from an I/O device through an interface into 

the CPU is shown in Figure 11-13. The device transfers bytes of data one at a time 

as they are available. When a byte is available, the device places it on the I/O bus 

and sets Ready. The interface accepts the byte into its data register and sets 

Acknowledge. The interface sets a bit in the status register, which we will refer to 

as a flag. The device can now reset Ready, but it will not transfer another byte 
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until Acknowledge is reset by the interface, according to the handshaking proce-

dure established in Section 11-3.

Under program control, the CPU must check the flag to determine whether 

there is a new byte in the interface data register. This is done by reading the contents 

of the status register into a CPU register and checking the value of the flag. If the flag 

is equal to 1, the CPU reads the data from the data register. The flag is then cleared 

to 0 either by the CPU or the interface, depending on how the interface circuits are 

designed. Once the flag is cleared, the interface resets Acknowledge, and the device 

can transfer the next data byte.

A flowchart of a program written for the preceding transfer is shown in 

Figure 11-14. The flowchart assumes that the device is sending a sequence of bytes 

that must be stored in memory. The program continually examines the status of the 

interface until the flag is set to 1. Each byte is brought into the CPU and transferred 

to memory until all of the data have been transferred.

The program-controlled data transfer is used only in systems that are dedi-

cated to monitor a device continuously. The difference in information transfer 

rate between the CPU and the I/O device makes this type of transfer inefficient. 

To see why, consider a typical computer that can execute the instructions to read 

the status register and check the flag in 100 ns. Assume that the input device trans-

fers its data at an average rate of 100 bytes/s. This is equivalent to one byte every 

10,000 μs, meaning that the CPU will check the flag 100,000 times between each 

transfer. Thus, the CPU is wasting time checking the flag instead of doing a useful 

processing task.

Interrupt-Initiated Transfer

An alternative to having the CPU constantly monitor the flag is to let the inter-

face inform the computer when it is ready to transfer data. This mode of transfer 

uses the interrupt facility. While the CPU is running a program, it does not check 

the flag. However, when the flag is set, the computer is momentarily interrupted 

from proceeding with the current program and is informed that the flag has been 

set. The CPU drops what it is doing to take care of the input or output transfer. 
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Data register
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I/O write

I/O bus 
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 FIGURE  11-13
Data Transfer from I/O Device to CPU
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After the transfer is completed, the computer returns to the previous program to 

continue what it was doing before the interrupt. The CPU responds to the inter-

rupt signal by storing the return address from the program counter into a memory 

stack or register, and then control branches to a service routine that processes the 

required I/O transfer. The way that the processor chooses the branch address of 

the service routine varies from one unit to another. In principle, there are two 

methods for accomplishing this: vectored interrupt and nonvectored interrupt. In a 

nonvectored interrupt, the branch address is assigned to a fixed location in mem-

ory. In a vectored interrupt, the source that interrupts supplies the branch address 

to the computer. This information is called the vector address. In some computers, 

the vector address is the first address of the service routine; in other comput-

ers, the vector address is an address that points to a location in memory where the 

first address of the service routine is stored. The vectored interrupt procedure was 

presented in Section 9-9 in conjunction with Figure 9-9.

Check flag bit

Flag

Read data register

Transfer data to memory

Continue
program

0

No

Yes

Read status register

1

Operation
complete?

 FIGURE  11-14
Flowchart for CPU Program to Input Data
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11-6 PRIORITY INTERRUPT

A typical computer has a number of I/O devices attached to it that are able to origi-

nate an interrupt request. The first task of the interrupt system is to identify the source 

of the interrupt. There is also the possibility that several sources will request service 

simultaneously. In this case, the system must decide which device to service first.

A priority interrupt system establishes a priority over the various interrupt 

sources to determine which interrupt request to service first when two or more are 

pending simultaneously. The system may also determine which requests are permit-

ted to interrupt the computer while another interrupt is being serviced. Higher lev-

els of priority are assigned to requests that, if delayed or interrupted, could have 

serious consequences. Devices with high-speed transfers such as hard drives are 

given high priority, and slow devices such as keyboards receive the lowest priority. 

When two devices interrupt the computer at the same time, the computer services 

the device with the higher priority first.

Establishing the priority of simultaneous interrupts can be done by software or 

hardware. Software uses a polling procedure to identify the interrupt source of high-

est priority. In this method, there is one common branch address for all interrupts. 

The program at the branch address takes care of interrupts by polling the interrupt 

sources in sequence. The priority of each interrupt source determines the order in 

which it is polled. The source with the highest priority is tested first, and if its inter-

rupt signal is on, control branches to a routine which services that source. Otherwise, 

the source with the next lower priority is tested, and so on. Thus, the initial service 

routine for all interrupts pending consists of a program that tests the interrupt 

sources in sequence and branches to one of many possible service routines. The par-

ticular service routine that is reached belongs to the highest-priority device among 

all devices that interrupted the computer. The disadvantage of the software method 

is that if there are many interrupts, the time required to poll all the sources can 

exceed the time available to service the I/O device. In this situation, a hardware pri-

ority interrupt unit can be used to speed up the operation of the system.

A hardware priority interrupt unit functions as an overall manager in an inter-

rupt system environment. The unit accepts interrupt requests from many sources, 

determines which request has the highest priority, and issues an interrupt request to 

the computer based on this determination. To speed up the operation, each interrupt 

source has its own interrupt vector address to access its own service routine directly. 

Thus, no polling is required, because all the decisions are made by the hardware pri-

ority interrupt unit. The hardware priority function can be established either by a 

serial or parallel connection of interrupt lines. The serial connection is also known as 

the daisy chain method.

Daisy Chain Priority

The daisy chain method of establishing priority consists of a serial connection of all 

devices that request an interrupt. The device with the highest priority is placed in the 

first position, followed by devices of priority in descending order, down to the device 

with the lowest priority, which is placed last in the chain. This method of connection 
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between three devices and the CPU is shown in Figure 11-15. Interrupt request lines 

from all devices are ORed to form the interrupt line to the CPU. If any device has its 

Interrupt request at 1, the interrupt line goes to 1 and enables the interrupt input of 

the CPU. When no interrupts are pending, the interrupt line stays at 0, and no inter-

rupts are recognized by the CPU. The CPU responds to an interrupt request by 

enabling Interrupt acknowledge. The signal produced is received by device 0 at its PI 

(priority in) input. The signal then passes on to the next device through the PO (pri-

ority out) output only if device 0 is not requesting an interrupt. If device 0 has a 

pending interrupt, it blocks the acknowledge signal from the next device by placing a 

0 on the PO output and proceeds to insert its own interrupt vector address (VAD) 

onto the data bus for the CPU to use during the interrupt cycle.

A device with a 0 on its PI input generates a 0 on its PO output to inform the 

device with next lower priority that the acknowledge signal has been blocked. A 

device that is requesting an interrupt and has a 1 on its PI input will intercept the 

acknowledge signal by placing a 0 on its PO output. If the device does not have 

pending interrupts, it transmits the acknowledge signal to the next device by placing 

a 1 on its PO output. Thus, the device with PI = 1 and PO = 0 is the one with the 

highest priority that is requesting an interrupt, and this device places its VAD on the 

data bus. The daisy chain arrangement gives the highest priority to the device that 

receives the Interrupt acknowledge signal from the CPU. The farther the device is 

from the first position, the lower is its priority.

Figure 11-16 shows the internal logic that must be included within each device 

connected in the daisy chain scheme. The device sets its RF latch when it is about to 

interrupt the CPU. The output of the latch functionally enters the OR that drives the 

interrupt line. If PI = 0, both PO and the enable line to VAD are equal to 0, irre-

spective of the value of RF. If PI = 1 and RF = 0, then PO = 1, the vector address 

is disabled, and the acknowledge signal passes to the next device through PO. The 

device is active when PI = 1 and RF = 1, which places a 0 on PO and enables the 

vector address onto the data bus. It is assumed that each device has its own distinct 

vector address. The RF latch is reset after a sufficient delay to ensure that the CPU 

has received the vector address.
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 FIGURE  11-15
Daisy Chain Priority Interrupt
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Parallel Priority Hardware

The parallel priority interrupt method uses a register with bits set separately by the 

interrupt signal from each device. Priority is established according to the position of 

the bits in the register. In addition to the interrupt register, the circuit may include a 

mask register to control the status of each interrupt request. The mask register can 

be programmed to disable lower-priority interrupts while a higher-priority device is 

being serviced. It can also allow a high-priority device to interrupt the CPU while a 

lower-priority device is being serviced.

The priority logic for a system with four interrupt sources is shown in Figure 11-17. 

The logic consists of an interrupt register with individual bits set by external condi-

tions and cleared by program instructions. Interrupt input 3 has the highest priority, 

input 0 the lowest. The mask register has the same number of bits as the interrupt 

register. By means of program instructions, it is possible to set or reset any bit in the 

mask register. Each interrupt bit and its corresponding mask bit are applied to an 

AND gate to produce the four inputs to a priority encoder. In this way, an interrupt 

is recognized only if its corresponding mask bit is set to 1 by the program. The prior-

ity encoder generates two bits of the vector address, which is transferred to the CPU 

via the data bus. Output V of the encoder is set to 1 if an interrupt request that is not 

masked has occurred. This provides the interrupt signal for the CPU.

The priority encoder is a circuit that implements the priority function. The 

logic of the priority encoder is such that, if two or more inputs are 1 at the same time, 

the input having the highest priority takes precedence. The circuit of a 4-input prior-

ity encoder can be found in Section 3-6, and its truth table is listed in Table 3-6. Input 

D
3
 has the highest priority, so, regardless of the values of other inputs, when this 

input is 1 the output is A1A0 = 11. D
2
 has the next lower priority. The output is 10 if 
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0
0

0
1

PI
Priority in

Enable Vector address

VAD

Priority out
PO

Delay

Interrupt 
request 
from device

RF
S

R

Interrupt request 
to CPU

 FIGURE  11-16
One Stage of the Daisy Chain Priority Arrangement
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D2 = 1, provided that D3 = 0, regardless of the values of the other two lower- 

priority inputs. The output is 01 when D1 = 1, provided that the two higher-priority 

inputs are equal to 0, and so on down the priority levels. The interrupt output labeled 

V is equal to 1 when one or more inputs are equal to 1. If all inputs are 0, V is 0, and 

the other two outputs of the encoder are not used. This is because the vector address 

is not transferred to the CPU when V = 0.

The output of the priority encoder is used to form part of the vector address of 

the interrupt source. The other bits of the vector address can be assigned any values. 

For example, the vector address can be found by appending six zeros to the outputs 

of the encoder. With this choice, the interrupt vectors for the four I/O devices are 

assigned the 8-bit binary numbers equivalent to decimal 0, 1, 2, and 3.

11-7 DIRECT MEMORY ACCESS

The transfer of blocks of information between a fast storage device such as a hard 

drive and the CPU can preoccupy the CPU and permit little, if any, other processing 

to be accomplished. Removing the CPU from the path and letting the peripheral 

device manage the memory buses directly relieves the CPU from many I/O opera-

tions and allow it to proceed with other processing. In this transfer technique, called 

direct memory access (DMA), the DMA controller takes over the buses to manage 

the transfer directly between the I/O device and memory. As a consequence, the 

CPU is temporarily deprived of access to memory and control of the memory buses.
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Parallel Priority Interrupt Hardware
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DMA may capture the buses in a number of ways. One common method exten-

sively used in microprocessors is to disable the buses through special control signals. 

Figure 11-18 shows two control signals in a CPU that facilitate the DMA transfer. 

The bus request (BR) input is used by the DMA controller to request the CPU to 

relinquish control of the buses. When BR input is active, the CPU places the address 

bus, the data bus, and the read and write lines into a high-impedance state. After this 

is done, the CPU activates the bus granted (BG) output to inform the external DMA 

that it can take control of the buses. As long as the BG line is active, the CPU is 

unable to proceed with any operations requiring access to the buses.

When the bus request input is reset by the DMA, the CPU returns to its nor-

mal operation, resets the BG output, and takes control of the buses. When the BG 

line is set, the external DMA controller takes control of the bus system in order to 

communicate directly with memory. The transfer can be made for an entire block of 

memory words, suspending operation of the CPU until the entire block is trans-

ferred, a process referred to as burst transfer. Or the transfer can be made one word 

at a time between executions of CPU instructions, a process called single-cycle trans-
fer or cycle stealing. The CPU merely delays its bus operations for one memory cycle 

to allow the direct memory-I/O transfer to steal one memory cycle.

DMA Controller

The DMA controller needs the usual circuits of an interface to communicate with 

the CPU and the I/O device. In addition, it needs an address register, a word-count 

register, and a set of address lines. The address register and address lines are used for 

direct communication with memory. The word-count register specifies the number of 

words that must be transferred. The data transfer may be done directly between the 

device and memory under control of the DMA.

Figure 11-19 shows the block diagram of a typical DMA controller. The unit 

communicates with the CPU via the data bus and control lines. The registers in the 

DMA are selected by the CPU through the address bus by enabling the DS (DMA 

select) and RS (register select) inputs. The RD (read) and WR (write) inputs are 

bidirectional. When the BG (bus granted) input is 0, the CPU can communicate with 

the DMA registers through the data bus to read from or write to those registers. 

When BG = 1, the CPU has relinquished the buses, and the DMA can communi-

cate directly with memory by specifying an address on the address bus and activating 

the RD or WR control. The DMA communicates with the external peripheral 
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 FIGURE  11-18
CPU Bus Control Signals
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through the DMA request and DMA acknowledge lines by a prescribed handshak-

ing procedure.

The DMA controller has three registers: an address register, a word-count reg-

ister, and a control register. The address register contains an address to specify the 

desired location of a word in memory. The address bits go through bus buffers onto 

the address bus. The address register is incremented after each word is transferred to 

memory. The word-count register holds the number of words to be transferred. This 

register is decremented by one after each word transfer and internally tested for 

zero. The control register specifies the mode of transfer. All registers in the DMA 

appear to the CPU as I/O interface registers. Thus, the CPU can read from or write 

to the DMA registers under program control via the data bus.

After initialization by the CPU, the DMA starts and continues to transfer data 

between memory and the peripheral unit until an entire block is transferred. The 

initialization process is essentially a program consisting of I/O instructions that 

include the address for selecting particular DMA registers. The CPU initializes the 

DMA by sending the following information through the data bus:

1. The starting address of the memory block in which data is available (for read-

ing) or data is to be stored (for writing).

2. The word count, which is the number of words in the memory block.

3. A control bit to specify the mode of transfer, such as read or write.

4. A control bit to start the DMA transfer.

The starting address is stored in the address register, the word count in the word-

count register, and the control information in the control register. Once the DMA is 
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initialized, the CPU stops communicating with it unless the CPU receives an inter-

rupt signal or needs to check how many words have been transferred.

DMA Transfer

The position of the DMA controller among the other components in a computer sys-

tem is illustrated in Figure 11-20. The CPU communicates with the DMA through the 

address and data buses, as with any interface unit. The DMA has its own address, which 

activates the DS and RS lines. The CPU initializes the DMA through the data bus. Once 

the DMA receives the start control bit, it can begin transferring data between the 

peripheral device and memory. When the peripheral device sends a DMA request, 

the DMA controller activates the BR line, informing the CPU that it is to relinquish the 

buses. The CPU responds with its BG line, informing the DMA that the buses are dis-

abled. The DMA then puts the current value of its address register onto the address bus, 

initiates the RD or WR signal, and sends a DMA acknowledge to the peripheral device.

When the peripheral device receives a DMA acknowledge, it puts a word on 

the data bus (for writing) or receives a word from the data bus (for reading). Thus, 

the DMA controls the read or write operation and supplies the address for memory. 

The peripheral unit can then communicate with memory through the data bus for a 

direct transfer of data between the two units while the CPU access to the data bus is 

momentarily disabled.

Read control

Write control

Address bus 

Interrupt
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BR

CPU

RD WR Address Data
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RD WR Address Data
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decoder

I/O
peripheral
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DMA 
controller
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 FIGURE  11-20
DMA Transfer in a Computer System
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For each word that is transferred, the DMA increments its address register and 

decrements its word-count register. If the word count has not reached zero, the DMA 

checks the request line coming from the peripheral. In a high-speed device, the line will 

be activated as soon as the previous transfer is completed. A second transfer is then ini-

tiated, and the process continues until the entire block is transferred. If the speed of the 

peripheral is slower, the DMA request line may be activated somewhat later. In this 

case, the DMA resets the bus request line so that the CPU can continue to execute its 

program. When the peripheral requests a transfer, the DMA requests the buses again.

If the word count reaches zero, the DMA stops any further transfer and 

removes its bus request. It also informs the CPU of the termination of the transfer by 

means of an interrupt. When the CPU responds to the interrupt, it reads the contents 

of the word-count register. A value of zero indicates that all the words were success-

fully transferred. The CPU can read the word-count register at any time, as well, to 

check the number of words already transferred.

A DMA controller may have more than one channel. In this case, each channel has 

a request and acknowledge pair of control signals that are connected to separate periph-

eral devices. Each channel also has its own address register and word-count register so 

that channels with high priority are serviced before channels with lower priority.

DMA transfer is very useful in many applications, including the fast transfer of 

information between hard drives and memory, and between memory and graphic 

displays.

11-8 CHAPTER SUMMARY

In this chapter, we introduced I/O devices, typically called peripherals, and their 

associated digital support structures, including I/O buses, interfaces, and controllers. 

We studied the structure of a keyboard, a hard drive, and a graphics display. We 

looked at an example of a generic I/O interface and examined the interface and I/O 

controller for the keyboard. We introduced USB as an alternative solution to the 

attachment of many I/O devices. We considered timing problems between systems 

with different clocks and the parallel and serial transmission of information.

We also looked at modes of transferring information and saw how the more 

complex modes came about, principally to relieve the CPU from extensive, perfor-

mance-robbing handling of I/O transfers. Interrupt-initiated transfers with multiple 

I/O interfaces lead to means of establishing priority between interrupt sources. 

Priority can be handled by software, serial daisy chain logic, or parallel interrupt- 

priority logic. Direct memory access accomplishes the transfer of data directly 

between an I/O interface and memory, with little CPU involvement.
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PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

 11-1.  *Find the formatted capacity of the hard drives described in the following table:

 

Drive

 

Heads

 

Cylinders

Sectors/

Track

Bytes/

Sector

A 1 1023 63 512

B 4 8191 63 512

C 16 16383 63 512

 11-2.  Estimate the time required to transfer a block of 1 MB (220  B) from a hard 

drive to memory given the following drive parameters: seek time, 8.5 ms; 

rotational delay, 4.17 ms; controller time, negligible; transfer rate, 150 MB/s.

 11-3.  Assume that your LCD screen has a maximum resolution of 1600 * 1200 by 

virtue of its hardware capability. Your settings (done by the OS or manually 

by you) denote a resolution of 800 * 600 resolution. What will be the effect 

on a 1600 * 1200 picture displayed on it?

 11-4.  The addresses assigned to the four registers of the I/O interface of Figure 11-6 

are equal to hexadecimal CA, CB, CC, and CD. Show the external circuit that 

must be connected between an 8-bit I/O address from the CPU and the CS, 

RS0, and RS1 inputs of the interface.

 11-5.  *How many I/O interface units of the type shown in Figure 11-6 can be 

addressed by using a 16-bit address, assuming

(a) each of the chip select (CS) lines is attached to a different address line?

(b) address bits are fully decoded to form the chip select inputs?

 11-6.  Interface units of the type shown in Figure 11-6 are connected to a CPU that 

uses an I/O address of eight bits. Each one of the six chip select (CS) inputs is 

connected to a different address line. Specifically, address line 0 is connected 

to the CS input of the first interface unit, and address line 4 is connected to 

the CS input of the sixth interface unit. Address lines 7 and 6 are connected to 

the RS1 and RS0 inputs, respectively, of all six interface units. Determine the 

8-bit address of each register in each interface (a total of 24 addresses).



 11-7.  *A different type of I/O interface does not have the RS1 and RS0 inputs. Up to 

two registers can be addressed by using a separate I/O read signal and I/O write 

signal for each address available. Assume that 25 percent of the registers at the 

interface with the CPU are read only, 25 percent of the registers are write only, 

and 50 percent of the registers are both read and write (bidirectional). How 

many registers can be addressed if the address contains eight bits?

 11-8.  A commercial interface unit uses names different from those appearing in 

this text for the handshake lines associated with the transfer of data from the 

I/O device to the interface unit. The interface input handshake line is labeled 

STB (strobe), and the interface output handshake line is labeled IBF (input 

buffer full). A low-level signal on STB loads data from the I/O bus into the 

interface data register. A high-level signal on IBF indicates that the data has 

been accepted by the interface. IBF goes low after an I/O read signal from the 

CPU when it reads the contents of the data register.

(a) Draw a block diagram showing the CPU, the interface, and the I/O device, 

along with the pertinent interconnections between the three units.

(b) Draw a timing diagram for the handshaking transfer.

 11-9.  *Assume that the transfers with strobing shown in Figure 11-7 are between a 

CPU on the left and an I/O interface on the right. There is an address coming 

from the CPU for each of the transfers, both of which are initiated by the CPU.

(a) Draw block diagrams showing the interconnections for the transfers.

(b) Draw the timing diagrams for the two transfers, assuming that the address 

must be applied some time before the strobe becomes 1 and removed 

some time after the strobe becomes 0.

 11-10.  Assume that the transfers with handshaking shown in Figure 11-8 are between 

a CPU on the left and an I/O interface on the right. There is an address coming 

from the CPU for each of the transfers, both of which are initiated by the CPU.

(a) Draw block diagrams, showing interconnections for the transfers.

(b) Draw the timing diagrams, assuming that the address must be applied 

some time before the request becomes 1 and removed some time after 

the request becomes 0.

 11-11.  *Sketch the waveforms for the SYNC pattern used for USB and the 

corresponding NRZI waveform. Explain why the pattern selected is a good 

choice for achieving synchronization.

 11-12.  (a)  Draw the NRZI waveform corresponding to the raw data 10100110001, 

which is to be sent using the USB protocol.

  (b) The USB system has a host and devices. Differentiate between the two.

  (c)  List two input and two output devices that use the USB protocol.

Problems      633
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 11-13.  *The 8-bit ASCII word “Bye” is to be transmitted to a device address 39 and 

endpoint 2. List the Output and Data 0 packets and the Handshake packet 

for a Stall for this transmission prior to NRZI encoding.

 11-14.  Repeat Problem 11-13 for the word “Hlo” and a Handshake packet of type 

No Acknowledge.

 11-15.  Explain why interrupt driven data transfer is preferred over the polling 

method, even though the latter is simpler in concept and application.

 11-16.  *What happens in the daisy chain priority interrupt shown in Figure 11-15 

when device 0 requests an interrupt after device 2 has sent an interrupt request 

to the CPU, but before the CPU responds with the interrupt acknowledge?

 11-17.  (a)  When there are many sources for interrupts, there is an extra hardware to 

take care of interrupt processing. What are the capabilities needed for this 

extra hardware?

  (b) What is the concept of an interrupt vector? 

  (c) What is the idea behind the term “interrupt masking”?

 11-18.  *What changes are needed in Figure 11-17 to make the four VAD values 

equal to the binary equivalent of 024, 025, 026, and 027?

 11-19.  Repeat Problem 11-18 for VAD values 122, 123, 124, and 125.

 11-20.  *Design parallel priority interrupt hardware for a system with six interrupt 

sources.

 11-21.  A priority structure is to be designed that provides vector addresses.

(a) Obtain the condensed truth table of a 16 × 4 priority encoder.

(b) The four outputs w, x, y, z from the priority encoder are used to provide 

an 8-bit vector address in the form 10wxyz01. List the 16 addresses, 

starting from the one with the highest priority.

 11-22.  (a)  What is meant by DMA? Draw a conceptual diagram of DMA and 

explain the role of the control signals used therein.

  (b) What does a DMA controller do?

 11-23.  It is necessary to transfer 2048 words from a hard drive to a section of 

memory starting from address 4096. The transfer is by means of DMA, as 

shown in Figure 11-20.

(a) Give the initial values that the CPU must transfer to the DMA controller.

(b) Give the step-by-step account of the actions taken during the input of the 

first two words.
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C H A P T E R 

Memory Systems

12

12-1 MEMORY HIERARCHY

Figure 12-1 shows a generic block diagram for a memory hierarchy. The lowest level 

of the hierarchy is a small, fast memory called a cache. For the hierarchy to function 

well, a very large proportion of the CPU instruction and operand fetches are 

In Chapter 7, we discussed basic RAM technology for implementing memory systems, 

including SRAMs and DRAMs. In the current chapter, we probe more deeply into what 

really constitutes a computer memory system. We begin with the premise that a fast, 

large memory is desirable, and demonstrate that a straightforward implementation of such 

a memory for the typical computer is too costly and too slow. As a consequence, we 

slow) and the memory appears to be large. This solution employs two concepts: cache 

memory and virtual memory. A cache memory is a small, fast memory with special control 

CPU with an access time of the order of several CPU clock periods. Virtual memory, 

implemented in software and hardware, using an intermediate-sized main memory 

to the main memory for the vast majority of accesses. The actual storage medium for most 

of the code and data in the virtual memory is a hard drive. Because there is a progression 

of components in the memory system having larger and larger storage capability, but 

term memory hierarchy is applied.

In the generic computer presented at the beginning of Chapter 1, a number of 

components are heavily involved in the memory hierarchy. Within the processor, there 

memory. Also in the processor, one or more internal caches appear. A larger cache 

often appears outside the processor. Of course, the RAM is involved, and due to the 

presence of virtual memory, the hard drive, the bus interface, and the drive controller all 

have a role as parts of the memory system.
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 expected to be from the cache. At the next level upward in the hierarchy is the main 
memory. The main memory serves directly most of the CPU instructions and oper-

and fetches not satisfied by the cache. In addition, the cache fetches all of its data, 

some portion of which is passed on to the CPU, from the main memory. At the top 

level of the hierarchy is the hard drive, which is accessed only in the very infrequent 

cases where a CPU instruction or a operand fetch is not found in main memory.

With this memory hierarchy, since the CPU fetches most of the instructions 

and operands from the cache, it “sees” a fast memory, most of the time. Occasionally, 

when a word must come from main memory, a fetch takes somewhat longer. Very 

infrequently, when a word must be fetched from the hard drive, the fetch takes a very 

long time. In this last case, the CPU is likely to experience an interrupt that passes 

execution to a program which brings in a block of words from the hard drive. On 

balance, the situation is usually satisfactory, providing an average fetch time close to 

that of the cache. Moreover, the CPU sees a memory address space considerably 

larger than that of main memory.

Keeping in mind this general notion of a memory hierarchy, we will proceed to 

consider an example that illustrates the potential power of such a hierarchy. 

However, there is one issue to be clarified first. In most instruction set architectures, 

the smallest of the objects that are addressed is a byte rather than a word. For a given 

load or store operation, whether a byte or word is affected is typically determined by 

the opcode. Addressing to bytes brings with it some assumptions and hardware 

details that are important, but, if used up to this point in the text, would have unnec-

essarily complicated much of the material covered. Consequently, for simplicity, we 

have assumed up to now that an addressed location contains a word. By contrast, in 

this chapter we will assume that addresses are defined for bytes, to match current 

practice. Nevertheless, we will still assume that data is moved around outside of the 

CPU as words or sets of words, to avoid messy explanations relating to the manipu-

lation of bytes. This assumption simply hides some hardware details that would dis-

tract from the main focus of our discussion, but nevertheless must be handled by the 

hardware designer. To accomplish the simplification, if there are 2b bytes per word, 

Hard
drive

Main 
memoryCacheCPU

 FIGURE  12-1
Memory Hierarchy
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we will ignore the last b bits of the address. Since these bits are not needed to address 

a word, we show their values as 0s. For the examples we will present, a word is 4 bytes 

and b is always equal to 2, so two 0s are shown.

In Section 10-3, the pipelined CPU had a memory address with 32 bits and was 

able to access an instruction and data, if necessary, in each of the 1-ns clock cycles. Also, 

we assumed that the instruction and the data were, in effect, fetched from two different 

memories. To support this assumption in this chapter, we will suppose initially that the 

memory is divided in half—one-half for instructions and one-half for data. Each half of 

the memory must have an access time of 1 ns. In addition, if we utilize all the bits in the 

32-bit address, then the memory can contain up to 232 bytes, or 4 gigabytes (GB), of 

information. So the goal is to have two 2-GB memories, each with an access time of 1 ns.

Is such a memory realistic in terms of, say, 2014 computer technology? The typ-

ical memory is constructed of DRAM modules ranging in size from 256 MB to 8 GB. 

The typical access time is about 10 ns. Thus, our two 2-GB memories would have an 

access time of somewhat more than 10 ns per word. This kind of memory is both too 

costly and too slow, operating at only one-tenth the desired speed. So our goal must 

be achieved another way, leading us to explore a memory hierarchy.

We begin by assuming a hierarchy with two caches, one for instructions and 

one for data, as shown in Figure 12-2. The use of these two caches permits one 

instruction and one operand to be fetched, or one instruction to be fetched and one 

result to be stored, in a single clock cycle if the caches are fast enough. In terms of the 

generic computer, we assume that the caches are internal, so that they can operate at 

speeds comparable to that of the CPU. Thus, fetches from the instruction cache, and 

fetches from and stores to the data cache can be accomplished in 2 ns. Hence, most of 

the fetches and stores for the CPU are from or to these caches and will take 2 CPU 

clock cycles. Suppose, then, that we are satisfied with most—say, 95 percent—of the 

memory accesses taking 2 ns. Suppose further that most of the remaining 5 percent 

of the memory accesses take 10 ns. Then the average access time is

0.95 *  2 +  0 .05 *  10 =  2 .4 ns

Hard 
disk

Main 
memory

Instruction 
cache

CPU

Data 
cache

 FIGURE  12-2
Example of Memory Hierarchy
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This means that, on 19 out of every 20 memory accesses, the CPU operates at 

full speed, while the CPU will have to wait for 10 clock cycles for 1 out of every 20 

memory accesses. This wait can be accomplished by stalling the CPU pipeline. Thus, 

we have accomplished our goal of “most” memory accesses taking 2 ns. But there is 

still the problem of the cost of the large memory.

Now suppose that, in addition to infrequently accepting a wait for a word from 

main memory that will take more than 10 ns, we are also willing to accept a very 

infrequent wait for a hard disk access taking 13 ms =  1 .3 *  107 ns. Suppose that we 

have data indicating that about 95 percent of the fetches will be from a cache and 

about 4.999995 percent of the fetches will be from main memory. With this informa-

tion, we can estimate the average access time as

0.95 * 2 + 0.04999995 * 10 + 5 * 10-8 * 1.3 * 107 = 3.05 ns

Thus, the average access time is about 3 times the 1 ns CPU clock period, but is 

about one-third of the 10 ns access time for main memory, again with 19 out of 20 of 

the accesses taking place in 2 ns. So we have achieved an average access time of 

about 3.05 ns for a memory structure with a capacity of 232 bytes, not far from the 

original goal. Further, the cost of this memory hierarchy is tens of times smaller than 

the large, fast memory approach.

It therefore appears that the original goal of the appearance of a fast, large 

memory has been approached by the memory hierarchy at a reasonable cost. But 

along the way, we made some assumptions, namely, that 95 percent of the time the 

word desired would come from what we are now calling the cache and that 99.999995 

percent of the time the words would come from either cache or main memory, with 

the remainder from hard disk. In the rest of this chapter, we will explore why assump-

tions similar to these usually hold, and we will examine the hardware and associated 

software components needed to achieve the goals of the memory hierarchy.

12-2 LOCALITY OF REFERENCE

In the previous section, we indicated that the success of the memory hierarchy is 

based on assumptions that are critical to achieving the appearance of a large, fast 

memory. We now deal with the foundation for making these assumptions, which is 

called locality of reference. Here “reference” means reference to memory for access-

ing instructions and for reading or writing operands. The term “locality” refers to the 

relative times at which instructions and operands are accessed (temporal locality) 

and the relative locations at which they reside in main memory (spatial locality).

Let us consider first the nature of the typical program. A program frequently 

contains many loops. In a loop, a sequence of instructions is executed many times 

before the program exits the loop and moves on to another loop or straight-line code 

not in a loop. In addition, loops are often nested in a hierarchy in which loops are 

contained in loops, and so on. Suppose we have a loop of eight instructions that is to 

be executed 100 times. Then for 800 executions, all instruction fetches will occur 

from just eight addresses in memory. Thus, each of the eight addresses is visited 100 

times during the time the loop is executed. This is an example of temporal locality in 

the sense that an address which is accessed is likely to be accessed many times in the 
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near future. Also, it is likely that the addresses of the instructions will be in sequen-

tial order. Thus, if an address is accessed for an instruction, nearby addresses are 

going to be addressed during the execution of the loop. This is an example of spatial 

locality.

In terms of accessing operands, similar temporal and spatial localities also 

occur. For example, in a computation on an array of numbers, there are multiple vis-

its to the locations of many of the operands, giving temporal locality. Also, as the 

computation proceeds, when a particular address is accessed for a number, sequen-

tial addresses near it are likely to be accessed for other numbers in the array, giving 

spatial locality.

From the prior discussion, we can conjecture that there is significant locality of 

reference in computer programs. To verify this decisively, we need to study the pat-

terns of execution of real programs. Such studies have demonstrated the presence of 

significant temporal and spatial locality of reference and play an important role in 

the design of caches and virtual memory systems.

The next question to answer is: What is the relation of locality of reference to 

the memory hierarchy? To examine this issue, we consider again the instruction fetch 

within a loop and look at the relationship between the cache and main memory. 

Initially, we assume that instructions are present only in main memory and that the 

cache is empty. When the CPU fetches the first instruction in a loop, it obtains the 

instruction from main memory. But the instruction and a portion of its address called 

the address tag are also placed in the cache. What then happens for the next 99 exe-

cutions of this instruction? The answer is that the instruction can be fetched from the 

cache, which provides a much faster access. This is temporal locality at work: 

The instruction that was fetched once will tend to be used again and is now present 

in the cache for fast access.

Additionally, when the CPU fetches the instruction from main memory, the 

cache fetches nearby instructions into its SRAM. Now suppose that the nearby 

instructions include the entire loop of eight instructions presented in our example. 

Then all of the instructions are in the cache. By bringing in such a block of instruc-

tions, the cache is able to exploit spatial locality: It takes advantage of the fact that 

the execution of the first instruction implies the execution of instructions with 

nearby addresses by making the latter instructions available for fast access.

In our example, each of the instructions is fetched from main memory exactly 

once for the 100 executions of the loop. All other instruction fetches come from the 

cache. Thus, in this particular example, at least 99 percent of the instructions being 

executed are fetched from the cache, so that the rate of execution of instructions is 

governed almost completely by the cache access time and CPU speed, and very little 

by the main memory access time. Without temporal locality, many more accesses to 

main memory would occur, slowing down the system.

A relationship similar to that between cache and the main memory can exist 

between main memory and the hard drive. Again, both temporal and spatial locality 

of reference are of interest, except this time on a much larger scale. Programs and 

data are fetched from the hard drive, and data is written to the hard drive in blocks 

that range from kilowords to megawords. Ideally, once the code and initial data for a 

program reside in main memory, the hard drive need not be accessed except for 
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storing final results of the program. But this can happen only if all of the code and 

data, including intermediate data used by the program, reside fully in main memory. 

If not, then it will be necessary to bring in code from the hard drive and to read and 

write data from and to the hard drive during program execution. Words are read 

from and written to the drive in blocks referred to as pages. If the movement of 

pages between main memory and hard drive is transparent to the programmer, then 

it will appear as if main memory is large enough to hold the entire program and all of 

the data. Hence, this automated arrangement is referred to as virtual memory. 

During the execution of the program, if an instruction to be executed is not in main 

memory, the CPU program flow is diverted to bring the page containing the instruc-

tion into main memory. Then the instruction can be read from main memory and 

executed. The details of this operation and the hardware and software actions 

required for it will be covered in Section 12-4.

In summary, locality of reference is absolutely key to the success of the con-

cepts of cache memory and virtual memory. In the case of most programs, locality of 

reference is present to a fairly high degree. But occasionally, one does encounter a 

program that, for example, requires frequent access to a large body of data that can-

not be accommodated in main memory. In such a case, the computer spends almost 

all of its time moving information between main memory and the hard drive and 

does little other computation. Emanation of continuous sounds from the hard drive 

as the heads move from track to track is a telltale sign of this phenomenon, referred 

to as thrashing.

12-3 CACHE MEMORY

To illustrate the concept of cache memory, we assume a very small cache of eight 32-bit 

words and a small main memory with 1 KB (256 words), as shown in Figure 12-3. Both 

of these are too small to be realistic, but their size makes illustration of the concepts 

easier. The cache address contains 3 bits, the memory address 10. Out of the 256 words 

in main memory, only 8 at a time may lie in the cache. In order for the CPU to address 

a word in the cache, there must be information in the cache to identify the address of 

the word in main memory. Clearly, if we consider the example of the loop in the last 

section, we find it desirable to contain the entire loop within the cache, so that all of the 

instructions can be fetched from the cache while the program is executing most of the 

passes through the loop. The instructions in the loop lie in consecutive word addresses. 

Thus, it is desirable for the cache to have words from consecutive addresses in main 

memory present simultaneously. A simple way to facilitate this feature is to make bits 2 

through 4 of the main memory address be the cache address. We refer to these bits as 

the index, as shown in Figure 12-3. Note that the data from address 0000001100 in 

main memory must be stored in cache address 011. The upper 5 bits of the main mem-

ory address, called the tag, are stored in the cache along with the data. Continuing the 

example, we find that for main memory address 0000001100, the tag is 00000. The tag 

combined with the index (or cache address) and 00 byte field identify an address in 

main memory.

Suppose that the CPU is to fetch an instruction from location 000001100 in 

main memory. This instruction may actually come from either the cache or main 
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memory. The cache separates the tag 00000 from the cache address 011, internally 

fetches the tag and the stored word from location 011 in the cache memory, and com-

pares the tag fetched with the tag portion of the address from the CPU. If the tag 

fetched is 00000, then the tags match, and the stored word fetched from cache mem-

ory is the desired instruction. Thus, the cache control places this word on the bus to 

the CPU, completing the fetch operation. This case in which the memory word is 

fetched from cache is called a cache hit. If the tag fetched from cache memory is not 

00000, then there is a tag mismatch, and the cache control notifies main memory that 

it must provide the memory word, which is not available in the cache. This situation 

is called a cache miss. For a cache to be effective, the slower fetches from main mem-

ory must be avoided as much as possible, making considerably more cache hits than 

cache misses necessary.

When a cache miss occurs on a fetch, the word from main memory is not placed 

just on the bus for the CPU. The cache also captures the word and its tag and stores 

them for future access. In our example, the tag 00000 and the word from memory 
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0000000000

0000000100

0000001000
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0000010100

0000011000
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1111100000

1111100100
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1111111100
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(b) Cache mapping

1234567

 FIGURE  12-3
Direct Mapped Cache
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will be written in cache location 011 in anticipation of future accesses to the same 

memory address. The handling of writes to memory will be dealt with later in the 

chapter.

Cache Mappings

The example we just considered uses a particular association or mapping between 

the main memory address and the cache address; namely, the last three bits of the 

main memory word address are the cache address. Additionally, there is only one 

location in the cache for the 25 locations in main memory that have their last three 

bits in common. This mapping in Figure 12-3, in which only one specific location in 

the cache can contain the word from a particular main memory location, is called 

direct mapping.

Direct mapping for a cache, however, does not always produce the most desir-

able situation. In our loop instruction fetch example, suppose that instructions and 

data are in the same cache and that data from location 1111101100 is frequently 

used. Then when the instruction in 0000001100 is fetched, location 011 in the cache 

is likely to contain the data from 1111101100 and tag 11111. A cache miss occurs and 

causes tag 11111 to be replaced in the cache with tag 00000 and the data to be 

replaced with the instruction. But the next time the data is needed, another cache 

miss occurs, since the location in the cache is now occupied by the instruction. 

Throughout the execution of the loop, both instruction fetch and data fetch cause 

many cache misses, significantly slowing CPU processing. To solve this problem, we 

explore alternative cache mappings.

In direct mapping, 25 addresses in main memory map to the single address in the 

cache that matches their last three bits. These locations are highlighted in gray in 

Figure 12-3 for index 001. As is illustrated, only one of the 25 addresses can have its 

word in cache address 001 at any time. In contrast, suppose that we let locations in 

main memory map into an arbitrary location in the cache. Then any location in mem-

ory can be mapped to any one of the eight addresses in the cache. This means that the 

tag will now be the full main memory word address. We examine the operation of such 

a cache having a fully associative mapping in Figure 12-4. Note that in this case there 

are two main memory addresses, 0000010000 and 1111110000, with bits 2 through 4 

equal to 100 among the cache tags. These two addresses cannot be present simultane-

ously in the direct-mapped cache, as they would both occupy the cache address 100. 

Thus, a succession of cache misses due to alternate fetching of an instruction and data 

with the same index is avoided here, since both can be in the cache.

Now suppose that the CPU is to fetch an instruction from location 0000010000 

in main memory. This instruction may actually be returned from either the cache or 

main memory. Since the instruction might lie in the cache, the cache must compare 

00000100 to each of its eight tags. One way to do this is to successively read each tag 

and the associated word from the cache memory and compare the tag to 00000100. If 

a match occurs, as it will for the given address and cache location 000 in Figure 12-4, a 

cache hit occurs. The cache control then places the word on the bus to the CPU, com-

pleting the fetch operation. If the tag fetched from the cache is not 00000100, then 

there is a tag mismatch, and the cache control fetches the next successive tag and word. 
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In the worst case, for a match on the tag in cache address 111, eight fetches from the 

cache are required before the cache hit occurs. At 2 ns a fetch, this requires at least 

16 ns, about half the time it would take to obtain the instruction from main memory. So 

successive reads of tags and words from the cache memory to find a match is not a very 

desirable approach. Instead, a structure called associative memory implements the tag 

portion of the cache memory.

Figure 12-5 shows an associative memory for a cache with 4-bit tags. The mech-

anism for writing tags into the memory uses a conventional write. Likewise, the tags 

can be read from the memory using the conventional memory read. Thus, the asso-

ciative memory can use the bit-slice model for RAM presented in Chapter 7. In addi-

tion, each tag storage row has match logic. The implementation of this logic and its 

connection to the RAM cells are shown in the figure. The match logic does an equal-

ity comparison or match between the tag T and the applied address A from the CPU. 

The match logic for each tag is composed of an exclusive-OR gate for each bit and a 
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NOR gate that combines the outputs of the exclusive-ORs. If all of the bits of the tag 

and the address match, then the outputs of all the exclusive-ORs are 0 and the NOR 

output is a 1, indicating a match. If there is a mismatch between any of the bits in the 

tag and the address, then at least one exclusive-OR has a 1 output, which causes the 

output of the NOR gate to be 0, indicating a mismatch.

Since all tags are unique, only two situations can arise in the associative mem-

ory: there will be a match, with a 1 on the output of the match logic for one matching 

tag and a 0 on the remaining match logic outputs; or there will be no match, and all of 

the match logic outputs will be 0. With an associative memory holding the cache tags, 
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the outputs of the match logic drive the word lines for the data memory words to be 

read. A signal must indicate whether a hit or a miss has occurred. If this signal is 1 for 

a hit and 0 for a miss, then it can be generated by using the OR of the match outputs. 

In the case of a hit, a 1 on Hit/miss places the word on the memory bus to the CPU; 

in the case of a miss, a 0 on Hit/miss tells the main memory that it is to provide the 

word addressed.

As in the case of the direct-mapped cache discussed earlier, the fully associa-

tive cache must capture the data word and its address tag and store them for future 

accesses. But now a new problem arises: Where in the cache are the tag and data to 

be placed? In addition to selecting a cache mapping, the cache designer must select a 

replacement approach that determines the location in the cache to be used for the 

incoming tag and data. One possibility is to select a random replacement location. 

The 3-bit address can be read from a simple hardware structure that generates a 

number which satisfies certain properties of random numbers. A somewhat more 

thoughtful approach is to use a first-in, first-out (FIFO) location. In this case, the 

location selected for replacement is the one that has occupied the cache for the lon-

gest time, based on the notion that the use of this oldest entry is likely to be finished. 

An approach that appears to attack the replacement problem even more directly is 

the least recently used (LRU) location approach. The goal of this approach is to 

replace the entry that has been unused for the longest time—hence the least recently 

used entry. The reason is that a cache entry that has not been used for the longest 

time is least likely to be used in the future. Thus, it can be replaced by a new cache 

entry. Although the LRU approach yields better results for caches, the difference 

between it and the other approaches is not large, and full implementation is costly. 

As a consequence, if used at all, the LRU approach is often only approximated.

There are also performance and cost issues surrounding the fully associative 

cache. Although such a cache provides maximum flexibility and good performance, 

it is not clear that the cost is justified. In fact, an alternative mapping that has better 

performance and eliminates the cost of most of the matching logic is a compromise 

between a direct-mapped cache and a fully associative cache. For such a mapping, 

lower-order address bits act much as they do in direct mapping—however, for each 

combination of lower-order address bits, instead of having one location, there is a set 
of s locations. As with direct mapping, the tags and words are read from the cache 

memory locations addressed by the lower-order address bits. For example, if the set 
size s equals two, then two tags and the two accompanying data words are read 

simultaneously. The tags are then simultaneously compared to the CPU-supplied 

address using just two matching logic structures. If one of the tags matches the 

address, then the associated word is returned to the CPU on the memory bus. If nei-

ther tag matches the address, then the two 0 matching values are used to send a miss 

signal to the CPU and main memory. Since there are sets of locations, and associativ-

ity is used on sets, this technique is called set-associative mapping. Such a mapping 

with a set size s is an s-way set-associative mapping.

Figure 12-6 shows a two-way set-associative cache. Eight cache locations are 

arranged in four rows of two locations each. The rows are addressed by a 2-bit 

index and contain tags made up of the remaining six bits of the main memory 

address. The cache entry for a main memory address must lie in a specific row of 
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the cache, but can be in either of the two columns. In the figure, the addresses are 

the same as they are in the fully associative cache in Figure 12-4. Note that no 

mapping is shown for main memory address 1111100000, since the two cache cells 

in set 00 are already occupied by addresses 0000010000 and 1111110000. In order 

to accommodate 1111100000, the set size would need to be at least three. This 

example illustrates a case in which the reduced flexibility of a set-associative 

cache, compared to a fully associative cache, has an impact. The impact declines as 

the set size increases.

Figure 12-7 is a section of a hardware block diagram for the set-associative 

cache of Figure 12-6. The index is used to address each row of the cache memory. The 

two tags read from the tag memories are compared to the tag part of the address on 

the address bus from the CPU. If a match occurs, then the three-state buffer on the 

corresponding data memory output is activated, placing the data onto the data bus 

to the CPU. In addition, the match signal causes the output of the Hit/miss OR gate 

to become 1, indicating a hit. If a match does not occur, then Hit/miss is 0, informing 

the main memory that it must supply the word to the CPU, and informing the CPU 

that the word will be delayed.
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Line Size

To this point, we have assumed that each cache entry consists of a tag and a single 

memory word. In real caches, spatial locality is to be exploited, so additional words 

close to the one addressed are included in the cache entry. Then, rather than a single 

word being fetched from main memory when a cache miss occurs, a block of l words 

called a line is fetched. The number of words in a line is a power of two, and the 

words are aligned on address boundaries. For example, if four words are included in 

a line, then the addresses of the words in the line differ only in bits 2 and 3. The use of 

a block of words changes the makeup of the fields into which the cache divides the 

address. The new field structure is shown in Figure 12-8(a). Bits 2 and 3, the Word 

field, are used to address the word within the line. In this case, two bits are used, so 

there are four words per line. The next field, Index, identifies the set. Here two bits 

are used, so there are four sets of tags and lines. The remainder of the address word is 

the Tag field, which contains the remaining four bits of the 10-bit memory address.

The resulting cache structure is shown in Figure 12-8(b). The tag memory has 

eight entries, two in each of the four sets. Corresponding to each of the tag entries is a 

line of four data words. To ensure fast operation, Index is applied to the tag memory to 

read two tags, one for each of the set entries, simultaneously. At the same time, Index 

and the Word address are applied to read out two words from the cache data memory 

that correspond to the two tags. Matching logic provided for each of the two set ele-

ments compares each tag to the CPU-supplied address. If a match occurs, then the 

associated cache data word already read is placed on the memory bus to the CPU. 

Otherwise, a cache miss is signaled, and the word addressed is returned from main 

memory to the CPU. The line containing the word and its tag is also loaded into the 

cache. To facilitate loading the entire line of words, the width of the memory bus 

between main memory and the cache, as well as the cache load path, is made more 

than one word wide. Ideally, for our example the path is 4 *  32 =  128 bits wide. This 
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allows the entire line to be placed in the cache in a single main memory read cycle. If 

the path is narrower, then a sequence of several reads from main memory is required.

An additional decision that the cache designer has to make is to determine the 

line size. A wide path to memory can affect both cost and performance, and a nar-

rower path can slow transfer of the line to the cache. These features encourage a 

smaller cache line size, while spatial locality of reference encourages a larger line. In 

current systems, however, use of synchronous DRAM facilitates reading or writing 

large cache lines without the cost and performance issues associated with wide path. 

The rapid writing to and reading from memory of consecutive words achieved by 

using synchronous DRAM matches well the needs for transferring cache lines.

Cache Loading

Before any words and tags have been loaded into the cache, all locations contain 

invalid information. If a hit occurs on the cache at this time, then the word fetched 

and sent to the CPU cannot have come from main memory and is invalid. As lines 
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are fetched from main memory into the cache, cache entries become valid, but 

there is no way to distinguish valid from invalid entries. To deal with this problem, 

in addition to the tag, a bit is added to each cache entry. This valid bit indicates 

that the associated cache line is valid (1) or invalid (0). It is read out of the cache 

along with the tag. If the valid bit is 0, then a cache miss occurs, even if the tag 

matches the address from the CPU, requiring the addressed word to be taken 

from main memory.

Write Methods

We have focused so far on reading instructions and operands from the cache. What 

happens when a write occurs? Recall that, up to now, the words in a cache have been 

viewed simply as copies of words from main memory that are read from the cache to 

provide faster access. Now that we are considering writing results, this viewpoint 

changes somewhat. Following are three possible write actions from which we can 

select:

1. Write the result into main memory.

2. Write the result into the cache.

3. Write the result into both main memory and the cache.

Various realistic cache write methods employ one or more of these actions. Such 

methods fall into two main categories: write-through and write-back.

In write-through, the result is always written to main memory. This uses the 

main memory write time and can slow down processing. The slowdown can be par-

tially avoided by using write buffering, a technique in which the address and word to 

be written are stored in special registers called write buffers by the CPU so that it 

can continue processing during the write to main memory. In most cache designs, the 

result is also written into the cache if the word is present there—that is, if there is a 

cache hit.

In the write-back method, also called copy-back, the CPU performs a write 

only to the cache in the case of a cache hit. If there is a miss, the CPU performs a 

write to main memory. There are two possible design choices for when a cache miss 

occurs. One is to read the line containing the word to be written from main memory 

into the cache, with the new word written into both the cache and main memory. This 

is referred to as write-allocate. It is done with the hope that there will be additional 

writes to the same block which will result in write hits and thus avoid writes to main 

memory. The other choice on a write miss is simply to write to main memory. In what 

follows, we will assume that write-allocate is used.

The goal of a write-back cache is to be able to write at the writing speed of 

the cache whenever there is a cache hit. This avoids having all writes performed 

at the slower writing speed of main memory. In addition, it reduces the number 

of accesses to main memory, making it more accessible to DMA, an I/O proces-

sor, or another CPU in the system. A disadvantage of write-back is that main 

memory entries corresponding to words in the cache that have been written are 

invalid. Unfortunately, this can cause a problem with respect to I/O processors or 
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another CPU in the system accessing the same main memory, due to “stale” data 

in the memory.

The implementation of the write-back concept requires a write-back opera-

tion from the cache location to be used to store a new line being brought from 

main memory on a read miss. If the location in the cache contains a word that has 

been written into, then the entire line from the cache must be written back into 

main memory in order to release the location for the new line. This write-back 

requires additional time whenever a read miss occurs. To avoid a write-back on 

every read miss, an additional bit is added to each cache entry. This bit, called the 

dirty bit, is a 1 if the line in the cache has been written and a 0 if it has not been 

written. Write-back must be performed only if the dirty bit is a 1. With write- 

allocate used in a write-back cache, a write-back operation may also be required 

on a write miss.

Many other issues affect the choice of cache design parameters, particularly in 

the case of caches in a system in which the main memory may be read or written by a 

device other than the CPU for which the cache is provided.

Integration of Concepts

We now put together the basic concepts we have examined to determine the block 

diagram for a 256 KB, two-way set-associative cache with write-through. The mem-

ory address shown in Figure 12-9(a) contains 32 bits using byte addressing with line 

size l = 16 bytes. The index contains 13 bits. Since four bits are used for addressing 

words and bytes, and 13 bits are used for the index, the tag contains the remaining 15 

bits of the 32-bit address. The cache contains 16,384 entries consisting of 213 = 8192 

sets. Each cache entry contains 16 bytes of data, a 15-bit tag, and a valid bit. The 

replacement strategy is random replacement.

Figure 12-9(b) gives the block diagram for the cache. There are two data 

memories and two tag memories, since the cache is two-way set associative. Each 

of these memories contains 213 = 8192 entries. Each entry in the data memory 

consists of 16 bytes. Since 32-bit words are assumed, there are four words in each 

data memory entry. Thus, each of the data memories consists of four 8192 * 32 

memories in parallel with the index as their common address. In order to read a 

single word from these four memories on a cache hit, a 4-to-1 selector using 

three-state memory outputs selects the word, based on the two bits in the Word 

field of the address. The two tag memories are 8192 * 15—in addition to them, a 

valid bit is associated with each cache entry. These bits are stored in an 8192 * 2 

memory and read out during a cache access with the data and tags. Note that the 

path between the cache and main memory is 128 bits wide. This allows us to 

assume that an entire cache line can be read from main memory in a single main 

memory cycle. To understand the elements of the cache and how they work 

together, we will look at three possible cases of reading and writing. For each 

of  these cases, we assume that the address from the CPU is 0F3F402416. This 

gives  Tag =  0000111100111112 =  079F16, Index =  10100000000102 =  140216, and 

Word =  012.
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First we assume a read hit—a read operation in which the data word lies in a 

cache entry, as in Figure 12-10. The cache uses the Index field to read out two tag 

entries from location 140216 in Tag memory 1 and Tag memory 0. The match logic 

compares the tags of the entries, and in this case we assume that Tag 0 matches, caus-

ing Match 0 to be 1. This does not necessarily mean that we have a hit, since the cache 

entry may be invalid. Thus, the Valid 0 from location 140216 bit is ANDed with Match 

0. Also, the data can be placed on the CPU data bus only if the operation is a read. 

Thus, Read is ANDed with the Match 0 bit and the Valid 0 bit to form the control 

signal for three-state buffer 0. In this case, the  control signal for the buffer 0 is 1. The 

data memories have used the Index field to read out eight words from location 

140216 at the same times the tags were read. The Word field selects the two of the 

eight words with word = 012 to place on the data buses going into the three-state 

buffers 1 and 0. Finally, with three-state buffer 0 turned on, the word addressed is 

placed on the CPU data bus. Also, the Hit/miss signal sends a 1 to the CPU and the 

main memory, notifying them of the hit.

In the second case, also shown in Figure 12-10, we assume a read miss—a read 

operation in which the data word is not in a cache entry. As before, the Index field 
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address reads out the tag and valid entries, two tag comparisons are made, and two 

valid bits are checked. For both entries, a miss has occurred and is signaled by 

Hit/miss at 0. This means that the word must be fetched from main memory. 

Accordingly, the cache control selects the cache entry to be replaced, and four words 

read from main memory are applied simultaneously by the memory data bus to the 

cache inputs and are written into the cache entry. At the same time, the 4-to-1 multi-

plexer selects the word addressed by the Word field and places it on the CPU data 

bus using the three-state buffer 3.

In the third case in Figure 12-10, we assume a write operation. The word from the 

CPU is fanned out to appear in all four of the word positions of the 128-bit memory 

data bus. The address to which the word is to be written is provided by the address bus 

to main memory for the write operation into the addressed word only. If the address 

causes a hit on the cache, the word addressed is also written into the cache.

Instruction and Data Caches

In most of the designs in previous chapters, we assumed that it was possible to fetch 

an instruction and to read an operand or write a result in the same clock cycle. To do 

this, however, we need a cache that can provide access to two distinct addresses in a 

single clock cycle. In response to this need, we discussed in a prior subsection an 

instruction cache and a data cache. In addition to easily providing multiple accesses 

per clock, the use of two caches permits caches that have different design parame-

ters. The design parameters for each cache can be selected to fit the different charac-

teristics of access for fetching instructions or reading and writing data. Because the 
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 demands on each of these caches are typically less than those on a single cache, a 

simpler design can be used. For example, a single cache may require a four-way 

set-association structure, whereas an instruction cache needs only direct mapping, 

and a data cache may need only a two-way set-associative structure.

In other instances, a single cache for both instructions and data may be used. 

Such a unified cache is typically as large as the instruction and data caches combined. 

The unified cache allows cache entries to be shared by instructions and data freely. 

Thus, at one time more entries can be occupied by instructions, and at another time 

more entries can be occupied by data. This flexibility has the potential for increasing 

the number of cache hits. This higher hit rate may be misleading, however, since the 

unified cache supports only one access at a time, and separate caches support two 

simultaneous accesses as long as one is for instructions and one is for data.

Multiple-Level Caches

It is possible to extend the depth of the memory hierarchy by adding additional lev-

els of cache. Two levels of cache, often referred to as L1 and L2, with L1 closest to the 

CPU, are often used. In order to satisfy the demand of the CPU for instruction and 

operands, a very fast L1 cache is needed. To achieve the necessary speed, the delay 

that occurs when crossing IC boundaries is intolerable. Thus, the L1 cache is placed 

in the processor IC together with the CPU and is referred to as the internal cache, as 

in the generic computer processor. If the area in the IC is limited, L1 cache is typi-

cally small and not fully adequate as the only cache. Thus, a larger L2 cache is added 

outside the processor IC. If more space is available in the IC, then the L2 cache can 

also be an internal cache.

The design of a two-level cache is more complex than that of a single-level 

cache. Two sets of parameters are specified. The L1 cache can be designed to specific 

CPU access needs including the possibility of separate instruction and data caches. 

Also, the constraint of external pins between the CPU and L1 cache is removed. In 

addition to permitting faster reads, the path between the CPU and the L1 cache can 

be quite wide, allowing, for example, multiple instructions to be fetched simultane-

ously. On the other hand, the L2 cache may occupy the typical external cache envi-

ronment. It differs, however, from the typical external cache in that, rather than 

providing instructions and operands to a CPU, it primarily provides instructions and 

operands to the first-level cache L1. Since the L2 cache is accessed only on L1 misses, 

the access pattern is considerably different than that for a CPU, and the design 

parameters are accordingly different.

12-4 VIRTUAL MEMORY

In our quest for a large, fast memory, we have achieved the appearance of a fast, 

medium-sized memory through the use of a cache. In order to have the appearance 

of a large memory, we now explore the relationship between main memory and hard 

drive. Because of the complexity of managing transfers between these two media, 

the control of such transfers involves the use of data structures and programs. Ini-

tially, we will discuss the most basic data structure used and the necessary hardware 
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and software actions. Then we will deal with special hardware used to implement 

time-critical hardware actions.

With respect to large memory, not only do we want the entire virtual address 

space to appear to be main memory, but in most cases we would also like this com-

plete space to appear to be available to each program that is executing. Thus, each 

program will “see” a memory the size of the virtual address space. Equally important 

to the programmer is the fact that real address space in main memory and real drive 

addresses are replaced by a single address space that has no restrictions on its use. 

With this arrangement, virtual memory can be used not only to provide the appear-

ance of large main memory, but also to free up the programmer from having to con-

sider the actual locations of the program and data in main memory and on the hard 

drive. The job of the software and hardware that implement virtual memory is to 

map each virtual address for each program into a physical address in the main mem-

ory. In addition, with a virtual address space for each program, it is possible for a 

virtual address from one program and a virtual address from another program to 

map to the same physical address. This allows code and data to be shared by multiple 

programs, thereby reducing the size of the main memory space and drive space 

required.

To permit the software to map virtual addresses to physical addresses, and to 

facilitate the transfer of information between main memory and hard drive, the 

virtual address space is divided into blocks of addresses, typically of a fixed size. 

These blocks, called pages, are larger than, but analogous to, lines in a cache. The 

physical address space in memory is divided into blocks called page frames that 

are the same size as the pages. When a page is present in the physical address 

space, it occupies a page frame. For purposes of illustration, we assume that a 

page consists of 4 KB (1K words of 32 bits). Further, we assume that there are 32 

address bits in the virtual address space. There are 220 pages, maximum, in the vir-

tual address space, and assuming a main memory of 16 MB, there are 212 page 

frames in main memory. Figure 12-11 shows the fields of virtual and physical 

addresses. The portion of the virtual address used to address words or bytes within 

a page is the page offset, which is the only part of the address that the virtual and 

physical addresses share. Note that words are assumed to be aligned in terms of 

their location with respect to their byte addresses such that each word address 

ends in binary 00. Likewise, pages are assumed to be aligned with respect to the 

byte addresses, such that the page offset of the first byte in the page is 00016 and 

that of the last byte in the page is FFF16. The 20-bit portion of the virtual address 

used to select pages from the virtual address space is the virtual page number. The 

12-bit portion of the physical address used to select pages in main memory is the 

page frame number. The figure shows a hypothetical mapping from the virtual 

address space into the physical address space. The virtual and physical page num-

bers are given in hexadecimal. A virtual page can be mapped to any physical page 

frame. Six mappings of pages from virtual memory to physical memory are shown. 

These pages constitute a total of 24 KB. Note that no virtual pages are mapped to 

physical page frames FFC and FFE. Thus, any data present in these pages is 

invalid.
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Page Tables

In general, there may be a very large number of virtual pages, each of which must be 

mapped to either main memory or hard drive. The mappings are stored in a data 

structure called a page table. There are many ways to structure page tables and access 

them; we assume that page tables themselves are also kept in pages. Assuming that 

the representation of each mapping requires one word, 210, or 1K, mappings can be 

contained in a 4 KB page. Thus, the mappings for the entire address space for a 

 program of 222 bytes (4 MB) can be contained in one 4 KB page. A special table for 

each program called a directory page provides the mappings used to locate the 4 KB 

program page tables.

00000

00001

00002

00003

00004

00005

FFFFA

FFFFB

FFFFC

FFFFD

FFFFE

FFFFF

Virtual page

Main memory

Virtual address

Physical address

Virtual page number Page offset

Physical page 
frame number Page offset

000

001

002

003

FFC

FFD

FFE

FFF

31 12 11 0

23 12 11 0

Physical page frame

 FIGURE  12-11
Virtual and Physical Address Fields and Mapping
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A sample format for a page table entry is given in Figure 12-12. Twelve bits are 

used for the page frame number in which the page is located in main memory. In 

addition, there are three single-bit fields: Valid, Dirty, and Used. If Valid is 1, then the 

page frame in memory is valid; if Valid is 0, the page frame in memory is invalid, 

meaning that it does not correspond to correct code or data. If Dirty is 1, then there 

has been a write to at least one byte in the page since it was placed in main memory. 

If Dirty is 0, there have been no writes to the page since it entered main memory. 

Note that the Valid and Dirty bits correspond exactly to those in a cache which uses 

write-back. When it is necessary for a page to be removed from main memory and 

the Dirty bit is 1, then the page is copied back to the hard drive. If the Dirty bit is 0, 

indicating that the page in main memory has not been written into, then the page 

coming into the same page frame is simply written over the present page. This can be 

done because the drive version of the present page is still correct. In order to use this 

feature, the software keeps a record of the location of the page on the drive else-

where when it places the page in main memory. The Used bit is a simple mechanism 

for implementing a crude approximation to an LRU replacement scheme. Some 

additional bit positions in a page entry may be reserved for flags used by the com-

puter operating system. For example, a few flags might represent the read and write 

protection status of a page and whether the page can be accessed in user mode or 

supervisor mode.

The page table structure we have just described is shown in Figure 12-13. The 

directory page pointer is a register that points to the location of the directory page in 

main memory. The directory page contains the locations of up to 1K page tables 

associated with the program that is executing. These page tables may be in main 

memory or on the hard drive. The page table to be accessed is derived from the most 

significant ten bits of the virtual page number, which we call the directory offset. 
Assuming that the page table selected is in main memory, it can be accessed by the 

page table page number. The least significant ten bits of the virtual page number, 

which we call the page table offset, can be used to access the entry for the page to be 

accessed. If the page is in main memory, the page offset is used to locate the physical 

location of the byte or word to be accessed. If either the page table or the desired 

page is not in main memory, it must first be fetched by software from the hard drive 

to main memory before the word within it is accessed. Note that combining the off-

sets with register or table entries is done by simply setting the offset to the right of 

the page frame number, rather than adding the two together. This approach requires 

no delay, whereas addition would cause significant delay.

Validity bit

Dirty bit

Used bit

Physical page frame number

 FIGURE  12-12
Format for Page Table Entries
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Translation Lookaside Buffer

From the preceding discussion, we note that virtual memory has a considerable per-

formance penalty even in the best case, when the directory, the page table, and the 

page to be accessed are in main memory. For our assumed page table approach, three 

successive accesses to main memory occur in order to fetch a single operand or 

instruction:

1. Access for the directory entry.

2. Access for the page table entry.

3. Access for the operand or instruction.

Note that these accesses are performed automatically by hardware that is part of the 

MMU in the generic computer. Thus, to make virtual memory feasible, we need to dras-

tically reduce accesses to main memory. If we have a cache, and if all of the entries are in 

the cache, then the time for each access is reduced. Nevertheless, three accesses to the 

cache are needed. To reduce the number of accesses, we will employ yet another cache 

for the purpose of translating the virtual address directly into a physical address. This 

new cache is called a translation lookaside buffer (TLB). It holds the locations of 

PagesDirectory

Page 
table 
page 
number

Physical 
page 
number

Page offset
Page table offsetDirectory offset

Virtual page number

Directory page pointer

Page table

31 22 21 12 11 0

 FIGURE  12-13
Example of Page Table Structure
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recently addressed pages to speed access to cache or main memory. Figure 12-14 gives 

an example of a TLB, which is typically fully associative or set associative, since it is nec-

essary to compare the virtual page number from the CPU with a number of virtual page 

number tags. In addition to the latter, a cache entry includes the physical page number 

for those pages in main memory and a Valid bit. If the page is in main memory, the Dirty 

bit also appears. The Dirty bit serves the same function for a page in main memory as 

discussed previously for a line in a cache.

We now briefly look at a memory access using the TLB in Figure 12-14. The vir-

tual page number is applied to the page number input to the cache. Within the cache, 

this page number is compared simultaneously with all of the virtual page number tags. 

If a match occurs and the Valid bit is a 1, then a TLB hit has occurred, and the physical 

page frame number appears on the page number output of the cache. This operation 

can be performed very quickly and produces the physical address required to access 

memory or a cache. On the other hand, if there is a TLB miss, then it is necessary to 

access main memory for the directory table entry and the page table entry. If there is a 

physical page in main memory, then the page table entry is brought into the TLB cache 

and replaces one of the entries there. Overall, three memory accesses are required, 

including the one for the operand. If the physical page does not exist in main memory, 

then a page fault occurs. In this case, a software-implemented action fetches the page 

Virtual Address from CPU

Virtual page number Page offset

Page number input

Valid bit Fully associative or set-associative cache

Dirty bit
Tag Data

Virtual page number Physical page frame number

Page frame number output

Page frame number Page offset

Physical address to main memory

 FIGURE  12-14
Example of Translation Lookaside Buffer
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from its hard drive location to main memory. During the time required to complete 

this action, the CPU may execute a different program rather than waiting until the 

page has been placed in main memory.

Noting the prior hierarchy of actions based on the presentation of a virtual 

address, we see that the effectiveness of virtual memory depends on temporal and 

spatial locality. The fastest response is possible when the virtual page number is pres-

ent in the TLB. If the hardware is fast enough and a hit also occurs on the cache, the 

operand can be available in as little as one or two CPU clock cycles. Such an event is 

likely to happen frequently if the same virtual pages tend to get accessed over time. 

Because of the size of the pages, if one operand is accessed from a page, then, due to 

spatial locality, it is likely that another operand will be accessed on the same page. 

With the limited capacity of the TLB, the next fastest action requires three accesses 

to main memory and slows processing considerably. In the worst of all situations, the 

page table and the page to be accessed are not in main memory. Then, lengthy trans-

fers of two pages—the page table and the page from hard drive—are required.

Note that the basic hardware for implementing virtual memory, the TLB, and 

other optional features for memory access are included in the MMU in the generic 

computer. Among the other features is hardware support for an additional layer of 

virtual addressing called segmentation and for protection mechanisms to permit 

appropriate isolation and sharing of programs and data.

Virtual Memory and Cache

Although we have considered the cache and virtual memory separately, in an actual 

system they are both very likely to be present. In that case, the virtual address is con-

verted to the physical address, and then the physical address is applied to the cache. 

Assuming that the TLB takes one clock cycle and the cache takes one clock cycle, in 

the best of cases fetching an instruction or operand requires two CPU clock cycles. As 

a consequence, in many pipelined CPU designs, two or more clock cycles are allowed 

for an operand fetch. Since instruction fetch addresses are more predictable, it is possi-

ble to modify the CPU pipeline and consider the TLB and cache to be a two-stage 

pipeline segment, so that an instruction fetch appears to require only one clock cycle.

12-5 CHAPTER SUMMARY

In this chapter, we examined the components of a memory hierarchy. Two concepts 

fundamental to the hierarchy are cache memory and virtual memory.

Based on the concept of locality of reference, a cache is a small, fast memory that 

holds the operands and instructions most likely to be used by the CPU. Typically, a cache 

gives the appearance of a memory the size of main memory with a speed close to that of 

the cache. A cache operates by matching the tag portion of the CPU address with the 

tag portions of the addresses of the data in the cache. If a match occurs and other spe-

cific conditions are satisfied, a cache hit occurs, and the data can be obtained from the 

cache. If a cache miss occurs, the data must be obtained from the slower main memory. 

The cache designer must determine the values of a number of parameters, including the 

mapping of main memory addresses to cache addresses, the selection of the line of 

the cache to be replaced when a new line is added, the size of the cache, the size of the 
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cache line, and the method for performing memory writes. There may be more than one 

cache in a memory hierarchy, and instructions and data may have separate caches.

Virtual memory is used to give the appearance of a large memory—much larger 

than the main memory—at a speed that is, on average, close to that of the main memory. 

Most of the virtual address space is actually on the hard drive. To facilitate the move-

ment of information between the memory and the hard drive, both are divided up in 

fixed-size address blocks called page frames and pages, respectively. When a page is 

placed in main memory, its virtual address must be translated to a physical address. The 

translation is done using one or more page tables. In order to perform the translation on 

each memory access without a severe performance penalty, special hardware is 

employed. This hardware, called a translation lookaside buffer (TLB), is a special cache 

that is a part of the memory management unit (MMU) of the computer.

Together with main memory, the cache and the TLB give the illusion of a large, fast 

memory that is, in fact, a hierarchy of memories of different capacities, speeds, and tech-

nologies, with hardware and software performing automatic transfers between levels.
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PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that 

a solution is available on the Companion Website for the text.

 12-1.  A CPU produces the following sequence of read addresses in hexadecimal: 

54, 58, 104, 5C, 108, 60, F0, 64, 54, 58, 10C, 5C, 110, 60, F0, 64.

Supposing that the cache is empty to begin with, and assuming an LRU 

replacement, determine whether each address produces a hit or a miss for 

each of the following caches: (a) direct mapped in Figure 12-3, (b) fully asso-

ciative in Figure 12-4, and (c) two-way set associative in Figure 12-6.



 12-2.  Repeat Problem 12-1 for the following sequence of read addresses: 0, 4, 12, 8, 

14, 1C, 1A, 28, 26, 2E, 36, 30, 3E 38, 46, 40, 4E, 48, 56, 50, 5E, 58.

 12-3.  *A computer has a 32-bit address and a direct-mapped cache. Addressing is 

to the byte level. The cache has a capacity of 1 KB and uses lines that are 32 

bytes. It uses write-through and so does not require a dirty bit.

(a) How many bits are in the index for the cache?

(b) How many bits are in the tag for the cache?

(c) What is the total number of bits of storage in the cache, including the valid 

bits, the tags, and the cache lines?

 12-4.  A cache memory system, which contains 32-bit data, uses direct mapping 

and has the following specifications: 

There are 512 words (32 bits) in main memory, which are to be mapped to any 

of the 64-word locations in a cache. This assumes that a cache block, i.e., cache 

line has 4 bytes (words) only.

(a) In which location will the 0th word in main memory be mapped to?

(b) Which other words from main memory will be mapped to the same cache 

location?

(c) Explain the meaning of the following statement: “At any time, the cache 

contains only a copy of a portion of the main memory.”

 12-5.  *Discuss the advantages and disadvantages of:

(a) instruction and data caches versus a unified cache for both.

(b) write-back cache versus a write-through cache.

 12-6.  Give an example of a sequence of program and data memory read addresses 

that will have a high hit rate for separate instruction and data caches and a 

low hit rate for a unified cache. Assume direct-mapped caches with the 

parameters in Figure 12-3. Both the instructions and data are 32-bit words, 

and the address resolution is to bytes.

 12-7.  *Give an example of a sequence of program and data memory read addresses 

that will have a high hit rate for a unified cache and a low hit rate for separate 

instruction and data caches. Assume that each of the instruction and data 

caches is two-way set associative with parameters as in Figure 12-6. Assume 

that the unified cache is four-way set associative with parameters as in 

Figure  12-6. Both the instructions and the data are 32-bit words, and the 

address resolution is to bytes.

 12-8.  Differentiate between “write back” and “write through”, which are the write 

policies used in cache systems.

 12-9.  Consider the following case of a system with 2048 cache lines and 8192 main 

memory blocks. Find where in the cache will the main memory blocks MMB-

19 and MMB-5031 be placed for the mapping policies of:

(a) direct mapping,

(b) fully associative mapping,

(c) 4-way set associative.
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 12-10.  (a)  Find the size of the tag, index, and offset for the two types of caches 

specified below.

 (1) 16KB of data in a direct-mapped cache with 4-word blocks

 (2) 16KB of data in a 2-way set associative cache with 4-word blocks.

  (b) Why is fully associative mapping” never used?

  (c)  Draw diagrams to compare one-way associativity, 2-way associativity, and 

4-way associativity.

 12-11.  *A cache memory has an access time from the CPU of 4 ns, and the main 

memory has an access time from the CPU of 40 ns. What is the effective 

access time for the cache–main memory hierarchy if the hit ratio is: (a) 0.91, 

(b) 0.82, and (c) 0.96?

 12-12.  Repeat Problem 12-11 if the cache access time from the CPU is 1 ns and the 

main memory has an access time from the CPU of 20 ns.

 12-13.  Redesign the cache in Figure 12-7 so that it is the same size, but is four-way set 

associative rather than two-way set associative.

 12-14.  +The cache in Figure 12-9 is to be redesigned to use write-back with write-

allocate rather than write-through. Respond to the following requests, 

making sure to deal with all of the address and data issues involved in the 

write-back operation.

(a) Draw the new block diagram.

(b) Explain the sequence of actions you propose for a write miss and for a 

read miss.

 12-15.  *A virtual memory system uses 4 KB pages, 64-bit words, and a 48-bit virtual 

address. A particular program and its data require 4263 pages.

(a) What is the minimum number of page tables required?

(b) What is the minimum number of entries required in the directory page?

(c)  Based on your answers to (a) and (b), how many entries are there in the 

last page table?

 12-16.  The figure below shows the format of a 32-bit address of a paged memory system.

31   22 21   12 11    0

DIR Page Offset

Calculate the amount of physical memory addressable with this paging system.



 12-17.  The figure below gives a conceptual view of the TLB. Answer the below 

questions regarding the necessity and functioning of TLBs.

Linear address (X) Physical address (Y)

X1 Y1

X2 Y2

X3 Y3

. . . . . . . . . .

. . . . . . . . . .

(a)  Explain how this conceptual description matches an actual TLB 

description.

(b) Why is a TLB necessary in a paged memory system?

(c)  What is meant by a TLB miss?

(d) For a generic computer, is the TLB realized in hardware or software?

 12-18.  (a)  A TLB has a hit rate of 95 percent, and the TLB miss penalty T MISS = 150 

cycles. On a TLB hit, the time for address translation is THIT = 0. What is 

the average time for address translation?

  (b)  What do the bits Dirty and Used indicate?

  (c)   Page tables are stored in main memory and occupy space. How much is 

the size of the page table of a 32-bit computer with 4K page size?

 12-19.  Consider a system with 85 percent hit ratio, 60 ns to search in TLB, and 800 ns 

to access main memory. Find the time to access a page and read a desired 

word from the page for the following situations:

(a) When the page is found in the TLB.

(b) When there is a TLB miss.

(c)  The average memory access time.

 12-20.  *In caches, we use both write-through and write-back as potential writing 

approaches. But for virtual memory, only an approach that resembles write-

back is used. Give a sound explanation of why this is so.

 12-21.  In modern processors, there are many levels of caches. Make a study of cache 

structures and describe the multi-level cache structure in a typical processor 

used in desktop/laptop computers.
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A
Abstraction layers in computer 

design, 28–31
Addressing modes:

direct, 512–513
immediate mode, 511–512
implied mode, 511
indexed, 515–516
indirect, 513–514
register and register-indirect 

modes, 512
relative, 514–515
summary of, 516–517
symbolic convention for, 516
techniques, 510–511

Advanced Micro Devices (AMD), 
594

Algorithmic modeling, 107
Algorithms, 29
Alphanumeric codes:

ASCII character code, 42–45
parity bit, 45

Analog output devices, 24
Analog signal, 20
Analog-to-digital (A/D) converter, 

24
AND gate, 56–57
AND microoperations, 351–352
AND operation, 66–67
Arithmetic functions, See also 

Hardware description 
languages (HDLs)

binary adders, 173–176
binary adder-subtractors, 

181–193
binary subtraction, 177–181
contraction, 194–198
decrementing, 196
division by constants, 198
multiplication by constants, 

196–198
sign extension, 198–199
zero fill, 198–199

Arithmetic microoperations, 349–351
Arithmetic operations:
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subtraction, 37
sum, 36–37

conversion:
of decimal fractions to 
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of decimal integers to binary, 
39
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39
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39–40
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Array of cells, 172
ASCII character code, 42–45

for error detection and 
correction, 45–46

Asynchronous circuit, 286–287
Asynchronous reset, 293
Automatic braking system  

(ABS), 26

B
Barrel shifter, 460–461
Big-endian, 345
Binary adders, 173–176

binary ripple carry adder, 
175–176

4-bit adder, 176
4-bit ripple carry adder, 176
full adder, 173–175
half adder, 173–174

Binary adder-subtractors, 181–193
behavioral-level description, 

190–191
electronic scale feature 

(example), 186
4-bit adder–subtractor circuit, 

182
HDL models, 188–193
overflow, 186–188
signed binary addition and 

subtraction, 184–186
using 2s complement, 

185–186
signed binary numbers, 182–184

Binary logic system, 54
Binary number, 24
Binary number system, 33–34
Binary reflected Gray code, 47
Binary ripple carry adder, 175–176
Binary subtraction, 177–181

complements, 178–180
of N, 179
1s complement subtract, 179
radix complement, 178

2s complement subtract, 178, 
180–181

Binary-coded decimal (BCD), 
41–42, 48

counters, 367–368
Boole, George, 54
Boolean algebra, 54, 61–71

algebraic manipulation, 67–70
basic identities of, 65–67
Boolean expression:

defined, 61
of 3-variable exclusive-

OR, 95
Verilog dataflow model 

using, 164–165
Boolean function, 244, 331

algebraic expression for, 63
defined, 62
driver’s power window in a 

car, 62–65
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VHDL models, 64
for full adder, 175
implementation with gates, 

68
on a K-map, 80
in logic circuit diagrams, 63
multiple-output, 62
single-output, 62
in truth table, 65
two-level circuit 

optimization, 77
complement of a function, 

70–71, 74
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consensus theorem, 69–70
dataflow descriptions, 106
DeMorgan’s theorem, 66–67, 

70–71
duality principle of, 69
literals, 68–69
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sum terms, 71

Boolean functions, 57
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(BLE) instruction, 
587–588

Branch predictors, 590
Break code, 603
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Burst reads, 442
Busy-wait loop, 621
Byte, 420

C
Cache memory, 640–653

data cache, 652–653
direct mapping for, 642
fully associative mapping, 

642–643
instruction cache, 652–653
least recently used (LRU) 

location, 645
line size, 647–648
loading, 648–649
mappings, 642–647
multiple-level caches, 653
random replacement location, 

645
read and write operations, 

649–650, 652
set-associative cache, 650–652
s-way set-associative mapping, 
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unified cache, 653
virtual memory and, 659
write-allocate, 649
write-back, 649–650

Central processing unit (CPU), 22, 
424, 650–652

advanced, 589–592
bus and interface unit, 609–610
graphics processing units 
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superscalar, 590

Clock gating, 225
Clock skew, 225
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binary logic, 54–56
Boolean algebra, 61–71
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and gates, 94–96
gate propagation delay, 96–98
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60–61
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Verilog, 110–117
VHDL, 102–110

high-impedance outputs, 
377–379

logic gates, 56–60
map manipulation, 87–93
standard forms, 71–77
two-level circuit optimization, 
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verilog primitives, 60–61
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arithmetic functions in, 193–199
binary adders, 173–176
binary adder-subtractors, 

181–193
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blocks, 138
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circuits, 134
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Register address logic, 580

Compound devices, 618
Computer architecture:

addressing modes:
direct, 512–513
immediate mode, 511–512
implied mode, 511
indexed, 515–516
indirect, 513–514
register and register-indirect 

modes, 512
relative, 514–515
summary of, 516–517
symbolic convention for, 516
techniques, 510–511
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525–530
arithmetic operations with, 

526–527
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standard operand format, 
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implementation of, 502
instruction of a program, 

sequence of steps, 503
instruction set architecture 
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arithmetic instructions, 

521–522
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503

program control instructions, 
530–535

program counter (PC), 503
program interrupt, 535–538
register set, 503–504
stack pointer (SP), 503
typical fields:

address, 502
mode, 502
opcode, 502

Computer-aided design (CAD) 
tools, 98

Computer design, abstraction layers 
in, 28–31

Computer design basics:
control unit, 450–453
control word, 463–469
datapath, 461–463

with control variables, 
464–465

control word for, 465–466
register file, 461
sets of select inputs, 462–463

multiple-cycle hardwired 
control unit, 483–492

simple computer architecture, 
469

address offset, 473
arithmetic logic unit (ALU)
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Computer design basics (continued)
arithmetic circuit, 453–456
circuit, 458
function table for, 457
logic circuit, 456–457

assembler, 473
datapath, 450–453
immediate operand, 472
Increment Register 

operation, 471
instruction formats, 471–473
instruction set architecture 

(ISA), 450, 469–470
instruction specifications, 

473–476
memory location, 474
memory representation of 

instructions and data, 
475

mnemonic, 473
operation code of an 

instruction, 471–472
register transfer notation, 

473
shifter, 459–461
barrel, 460–461
storage resources for, 470

single-cycle hardwired control 
unit, 476–483

“Add Immediate” (ADI) 
instruction, 479–481

computer timing and control, 
482–483

instruction decoder,  
477–479

sample instructions and 
program, 479–482

Computer input–output (I/O), 
601–602

handshaking, 611, 613–614
interfaces, 608–614

bus and interface unit, 
609–610

in CPU-to-interface 
communication, 611

parallel ATA (PATA) 
interface, 614

ports, 610
registers, 610
serial ATA (SATA) 

interface, 614
I/O transfer rates, 608
isolated I/O configuration, 610
memory-mapped, 610
strobing, 611–612

Computer peripherals:
hard drive, 603–605
keyboard, 602–603
Liquid Crystal Display (LCD) 

screen, 605–608
Concatenation operator, 191
Contraction, 194–195

contraction cases for cells, 196
defined, 194
of full-adder equations, 194
rules for contracting equations, 

194–195
Control address register (CAR), 

404–405

Control data register (CDR), 
404–405

Controller time, 604
Core i7 Microprocessors, 593
Counters:

binary-coded decimal (BCD), 
367–368

count sequence for, 368–369
D flip-flop input equations, 368
divide-by-N counter, 367
logic diagram of, 369
program (PC), 384
state table and flip-flop inputs 

for, 369
synchronous binary, 363–367
Verilog-based, 403–404
VHDL-based, 401–402

Counting order, 242
Cross-hatching, 549

D
D latch, 220, 222
DashWatch (example), 385–392

block diagram of datapath, 389
components, 389–391

BCD counter, 389
control-unit hardware, 

391–392
multiplexer, 391
parallel load register, 391

external control input and 
output signals, 386–387

separation of datapath from 
control, 388

state machine diagram, 386–388
stopwatch inputs, 385

Data speculation, 591
Data transfer modes, 620–623

interrupt-initiated transfer, 
622–623

nonvectored interrupt, 623
vectored interrupt, 623

program-controlled transfer, 
621–622

Datapath, 450–453, 461–463, 485–486
block diagram of, 389
with control variables, 464–465
control word for, 465–466
control-word information for, 

486
microoperations and, 466
PIG, handheld game (example), 

393, 396–399
pipelined, 548–553
register file, 461
separation from control, 388
sets of select inputs, 462–463
timing, 549

Decimal codes, 41–42
Decimal number system, 31–33
Decoders:

AND gate inputs, 145
based combinational circuits, 

151–152
BCD–to–seven-segment, 

169–171, 173
with enabling, 148–149
general nature of, 144
n–to–m-line decoders, 144

1–to–2-line decoder, 145
and OR-gate implementation 

of a binary adder bit, 
151

6–to–64-line decoder, 146–148
state diagram for BCD– to–

excess-3 decoder, 
239–241

3–to–8-line decoder, 145–146
2–to–4-line decoder, 145

Decoding, 144–152
Decrementing, 196
DeMorgan’s theorem, 66–67, 70–71
Demultiplexer, 148
Design space:

CMOS circuit technology, 
312–318

channel, 313
circuit die, 313
complex gates, 316
drain, 313
fully complementary, 

316–318
gallium arsenide (GaAs), 

312
gate structure and examples, 

317
NAND gate, 316
NOR gate, 316
silicon germanium (SiGe), 

312
SOI (silicon on insulator) 

technology, 312
source, 313
static, 316
switch circuit, 315–316
technology parameters, 

318–320
transistor models, 313–315

defined, 311
integrated circuits, 311–312
programmable implementation 

technologies, 320–334
Destructive read, 436
Device Under Test (DUT), 100, 109
D flip-flops, 225, 228

CMOS, 292
designing with, 243–246
input equations for, 247

Digital computer, 22
Digital design process, 30–31

formulation stage, 30
optimization stage, 30–31
specification stage, 30
technology mapping stage, 31
verification stage, 30–31

Digital logic gates, 56–57
Digital output devices, 24
Digital signal, 20
Digital signal processors (DSPs), 23
Digital systems:

digital computer, 22
information representation, 

20–22
roles in medical diagnosis and 

treatment, 26
temperature measurement and 

display, 24–26
Digital value of temperature, 24, 26
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Direct memory access (DMA), 621, 
627–631

controller, 628–630
transfer, 630–631

Direction Memory Access (DMA) 
communication, 594

Directory offset, 656
Directory page pointer, 656
Disk access time, 604
Disk transfer rate, 604
Don’t-care conditions, 154, 246, 368, 

478
Double-data-rate SDRAM (DDR 

SDRAM), 444–445
D-type positive-edge-triggered flip-

flop, 222
Dynamic indicator, 224
Dynamic RAM (DRAM) ICs, 

434–446, 607
arrays of, 446
bit slices, 436–440
cell, 435–436
controller, 446
cost per bit, 437
double-data-rate SDRAM 

(DDR SDRAM), 
444–445

RAMBUS, 445–446
Refresh counter and a Refresh 

controller, 440
synchronous DRAM 

(SDRAM), 442–444
types, 440–446
write and read operation, 

438–439

E
Edge-triggered flip-flop, 222–223

positive, 222–223
Embedded software, 23
Embedded systems, 27

block diagram of, 23
ENABLE signal, 142, 144
Enable-interrupt flip-flop (EI), 537
Enabling, 142–144

car electrical control using, 
143–144

circuits, 143
Encoders:

8–to–3-line, 153
expansion, 155–156
octal-to-binary, 153–154
priority, 154–155

Encoding, 153–156
Engine control unit (ECU), 26
Equivalence, 94
Essential prime implicants, 87–89
Even function, 96
Excess-3 code for a decimal digit, 239
Exclusive-NOR (XNOR) gate, 58
Exclusive-OR (XOR) gate, 58
Exclusive-OR (XOR) operator and 

gates, 94–96
odd function, 94–96

F
Field programmable gate array 

(FPGA), 99, 320, 
329–334

functionality, 332–333
logic blocks of, 333
look-up table circuit, 330–332
programmable feature common 

to, 333–334
SRAM configuration, 330

Flash memories, 321
Flash technology, 321
FlexRay, 26
Flip-flops, 220–226

circuits, 221
clock drives, 293
D, 225, 228, 340, 354

CMOS, 292
designing with, 243–246
input equations for, 247

direct inputs, 225–226
direct reset or clear, 225
direct set or preset, 225
edge-triggered, 222–223

positive, 222–223
input equation, 226
master–slave, 221–222
negative- edge-triggered D, 221
pulse-triggered, 222
standard graphics symbols, 

223–225
synchronizing, 289–290
timing, 282–283

hold time, 282
parameters, 283
propagation delay times, 282
setup time, 282

triggers, 220–221
Floating-point computations, 

525–530
arithmetic operations with, 

526–527
biased exponents, 527–528
binary number, 525–526
decimal point in, 525
standard operand format, 

528–530
Four-variable maps, 80–81, 85–87
FPU ( floating-point unit), 27
Full adder, 173–175
Functional blocks, 134, 138

in very-large-scale integrated 
(VLSI) circuits, 138

G
Gate delay, 57
Gate propagation delay, 96–98

calculation of, based on fan-
out, 98

high-to-low propagation time, 
96

inertial delay, 96–97
low-to-high propagation time, 

96
transport delay, 96

Gate-input cost, 78–79
General-purpose computing on 

graphics processing 
units (GPGPU), 595

Generic computer, 26–28
Graphics processing units (GPUs), 

594–595
Gray, Frank, 47

Gray codes, 46–48, 80, 242
design for the sequence 

recognizer, 244–245

H
Half adder, 173–174
Handshaking, 611, 613–614
Hard drive, 603–605

cylinder, 603
read/write heads, 603
sectors, 603
tracks, 603

Hardware description languages 
(HDLs), 30, 98–101

binary adder-subtractors, 
188–190

counters, 401–404
device under test (DUT), 100
elaboration, 99
initialization, 100
logic synthesis, 100–102
optimization/technology 

mapping processes, 100
representation in sequential 

circuits:
Verilog, 273–282
VHDL, 264–273

shift registers, 400–403
simulation, 100
as simulation input, 99–100
testbench, 100
Verilog, 99–100, 110–117
VHDL, 99, 102–110

Hierarchical design, 130–134
High-impedance outputs, 377–379

I
IEEE, positive edge-triggered flip-

flop, 225
IEEE standard, single-precision 

floating-point operand, 
528

Incrementing, 195–196
n-bit incrementer, 195

Input/output (I/O) bus, 28
Institute of Electrical and 

Electronics Engineers 
(IEEE), 99

Standard Graphic Symbols for 
Logic Functions, 58

Instruction level parallelism (ILP), 
592

Instruction set architecture (ISA), 
469–470, 517–518

AND instruction, 523
arithmetic instructions, 521–522
bit set instruction, 523
CISC and RISC, 517–518
data-manipulation, 518, 

521–525
data-transfer, 518–519
input and output (I/O) 

instructions, 520–521
logical and bit-manipulation 

instructions, 522–524
OR instruction, 523
shift instructions, 524–525
stack instructions, 518–520
XOR instruction, 523–524
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Integrated circuits, 54, 311–312
levels of, 312

Intel Core 2 Duo, 593
Inverter, 57
Inverting, 139–140
Iterative arrays, 173
Iterative circuit, 173
Iterative combinational circuits, 

171–173
Iterative logic array, 383

K
Karnaugh map (K-map), 77, 80, 131, 

243
Boolean function on, 80
for Gray-coded sequential 

circuit with D flip-flops, 
244

map manipulation, 87–93
don’t-care conditions, 91–93
essential prime implicants, 

87–89
incompletely specified 

functions, 92
nonessential prime 

implicants, 87, 89
product-of-sums 

optimization, 90–91
programmable logic array 

(PLA) for, 326
3- and 4-variable, 80–81, 83–87
2-variable, 81–83

Keyboard, 602–603, 616–617
K-scan code, 603

L
Large-scale integrated (LSI) devices, 

312
Latches:

D latch, 220, 222
in flip-flop switch, 220–226
NAND, 218–219
NOR, 218–219
set state and reset state of, 217
SR and SR[11], 217–220, 224

with control input, 219
logic simulation of, 218
with NAND gates, 219

standard graphics symbols, 
223–225

Latency time, 549
LCD (liquid crystal display) screen, 

28
LD instruction with indirect indexed 

addressing (LII) 
instruction, 586–587

Least significant digit (lsd), 32
Liquid Crystal Display (LCD) 

screen, 605–608
Literals, 68–69

cost, 78
Little-endian, 345
Logic gates, commonly used, 59
Logic microoperations, 351–352
Logic simulator, 98
Logic synthesizers, 98
Logical AND operation, 54–55
Logical block addressing (LBA), 603
Logical OR operation, 54–55

M
Macrofusion, 593
Make code, 603
Map manipulation, 87–93

don’t-care conditions, 91–93
essential prime implicants, 

87–89
incompletely specified 

functions, 92
nonessential prime implicants, 

87, 89
product-of-sums optimization, 

90–91
Mask programming, 320
Master–slave flip-flop, 221–222
Maxterms, 71–75

product of, 74
for three variables, 73

M-bit binary code, 144
Mealy model circuit, 229–230, 232
Medium-scale integrated (MSI) 

circuits, 134
Medium-scale integrated (MSI) 

devices, 312
Memory:

cache, 640–653
cycle timing, 423–424
definitions, 419–420
error-correcting codes (ECC) 

for, 441
hierarchy, 635–638
locality of reference, 638–640
random-access memory 

(RAM), 420–425
Chip Select, 422–423
dynamic, 425
integrated-circuit, 425
nonvolatile, 425
properties, 425
static, 425
volatile, 425
write and read operations, 

422–423
read-only memory  

(ROM), 420
serial, 420
SRAM integrated-circuits, 

425–431
virtual, 653–659

Memory address, 323
Microarchitecture, 29
Microcomputers, 23
Microcontroller, 23, 602–603
Microoperation, 475

AND, 351–352
arithmetic, 349–351
control word for, 463–469
for datapath, using symbolic 

notation, 466
logic, 351–352
OR, 352
serial transfer and, 380–383

serial addition, 381–383
shift, 353, 466
on a single register, 353–369
transfer, 348
XOR (exclusive-OR), 352

Microprogram sequencer, 404
Microprogrammed control, 404–406

Minterms, 71–75, 171
defined, 79–80
don’t-care, 92–93
properties of, 74
sum of, 73–74

MMU (memory management  
unit), 27

ModelSim¨ logic simulator 
waveforms, 218

Moore model circuit, 229, 231–232, 
252

Most significant digit (msd), 32
Move Memory Block (MMB) 

instruction, 588
MTI Model-Sim simulator, 250
Multiple-cycle hardwired control 

unit, 483–492
control-word information for 

datapath, 486
datapath and control logic unit, 

485–486
indirect address, 491
“load register indirect” (LRI), 

491
multiple-cycle operations, 

483–485
opcode, 488–489
partial state machine diagram, 

491
registers, 484
sequential control circuit, 

487–492
“shift left multiple”  

(SLM), 491
“shift right multiple” (SRM), 

491
state table for two-cycle 

instructions, 490
Multiple-instruction-stream, 

multiple-data-
stream (MIMD) 
microprocessors, 592

Multiplexers, 156–166, 602
data selector, 158
dataflow description, 162, 

164–165
formulation, 169
4–to–1-line, 157–158
4–to–1-line quad, 159–160
implementation of a binary-

adder bit, 166–168
implementation of 4-variable 

function, 168–169
implemented bus-based 

transfers for multiple 
registers, 375–380

optimization, 170
security system sensor selection 

using, 165–166
shifter and, 459
6–to–64-line, 158–159
specification, 169
2–to–1-line, 156–157
using when-else statement, 

160–163
using with-select statement, 

161–163
Verilog model for, 163–165
VHDL models for, 160–163
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N
NAND gate, 58

logical operations with, 60
NAND latch, 218–219
N-bit binary code, 41, 144
Negation indicator, 58
Negative- edge-triggered D flip-flop, 

221, 224
Nematic liquid crystals, 605
Netlist, 60
Next-address generator, 404
Nonessential prime implicants, 87, 89
Non-Return-to-Zero Inverted 

(NRZI) signaling, 
618–619

Nonvectored interrupt, 623
NOR gate, 58
NOR latch, 218–219
Normalized numbers, 529
NOT gate, 56–57
NOT logic, 54
N–to–m-line decoders, 144
Number system:

binary, 33–34
conversion:

to base 10, 32
from binary to hexadecimal, 

35
from binary to octal, 35
of a decimal number to 

binary, 33–34
conversion from:

octal or hexadecimal to 
binary, 36

decimal, 31–33
number ranges, 36
octal or hexadecimal, 34–36

O
Octal or hexadecimal number 

system, 34–36
arithmetic operations, 37–38

Odd function, 94–96
Odd parity, 45
On-chip core multiprocessors, 592
On-chip Element Interconnection 

Bus (EIB), 594
One-hot coded design for sequence 

recognizer, 245–246
Optical shaft-angle encoder, 47
OR gate, 56–57
OR logic operation, 66
OR microoperations, 352
OR operation, 66–67

P
Packet identifier (PID), 619
Page table offset, 656
Page table page number, 656
Page tables, 655–657
PAL AND-OR circuit, 327
Parallel gating, 364
Parity bit, 45
Pentium instruction set, 594
Physical parameters, 20
PIG, handheld game (example), 

392–400
control-unit hardware, 392
datapath actions, 393, 396–399

exterior view of, 392–393
inputs, outputs, and registers, 

394
LEDs, 393
logic for control transfers, 400
reset state, 395–396
state machine diagram for, 

394–395
Pipelined control, 553–557

programming and performance, 
555–557

Pipelined datapath, 548–553
execution pattern, 552–553

emptying, 553, 556
filling, 553, 556

pipeline platforms,  
550, 554

Positive edge-triggered flip-flop, 
222–224

Positive logic, 21
Positive-edge-triggered D flip-flop:

VHDL representation of, 
265–267

Postponed output indicator, 224
Power Processor Element  

(PPE), 594
Prefetching, 592
Priority encoder, 154–155
Priority interrupts:

daisy chain, 624–626
parallel, 626–627

Processors, 26
Product terms, 71
Product-of-sums expression,  

76–77
gate structure of, 77
optimized expression in,  

90–91, 93
simplifying, 90–91

Program control instructions, 
530–535

branch and jump instructions, 
530

calling convention, 534–535
conditional branch instructions, 

531–533
procedure call and return 

instructions, 533–535
continuation point in calling 

procedure, 534
return instruction, 534

Program interrupt, 535–538
disable interrupt (DSI), 537
enable interrupt (ENI), 537
exceptions, 537
external, 536–538
internal, 536
procedure, 535

hardware, 535
software, 536–537

Programmable array logic (PAL¨) 
device, 320–322, 
327–329

combinational circuit using, 
327–329

Programmable implementation 
technologies, 320–334

control of transistor switching, 
320–321

erasable and electrically 
erasable transistor 
switching, 321

field programmable gate array 
(FPGA), 320, 329–334

flash technology, 321
mask programming, 320
MOS n-channel transistor, 320
pattern of OPEN and 

CLOSED fuses, 320
programmable array logic 

(PAL¨) device, 320–322, 
327–329

programmable logic array 
(PLA), 320, 322, 
324–327

read-only memory (ROM), 320, 
322–324

Programmable logic array (PLA), 
320, 322, 324–327

combinational circuit using, 
326–327

K-maps and expressions for, 
326

with three inputs, four product 
terms, and two outputs, 
325

Programmable read-only memory 
(PROM), 321–322

Pulse-triggered flip-flop, 222

Q
Quantization error, 24

R
Radix point, 32
RAMBUS DRAM, 445–446
RAM (random-access memory), 27
Random access memory (RAM), 31, 

602, 643
Read-only memory (ROM), 320, 

322–324
Reduced instruction set computers 

(RISCs), 517–518
addressing modes, 560–561
barrel shifter, 563
control hazards, 573–577
control organization in, 

564–566
control words for instructions, 

566
CPU, 562
data-forwarding execution 

diagram, 571–572
data hazards, 566–573
datapath organization, 561–564
instruction set architecture 

(ISA), 557–560
no-operation (NOP) 

instructions, 568
read-after-write register, 564

Registers:
address, 345
block-diagram form, 345
cell design, 370–375
counters, 340
dedicated logic of, 354
defined, 340
D flip-flop with enable, 342
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Registers (continued)
function table for, 358, 360
loading, 340–343
microoperations, 348–353

AND, 351–352
arithmetic, 349–351
logic, 351–352
OR, 352
serial transfer and, 380–383
shift, 353
on a single register, 353–369
transfer, 348
XOR (exclusive-OR), 352

microprogrammed control, 
404–406

multiplexer and bus-based 
transfers for multiple, 
375–380

n-bit, 340, 345
with parallel load, 341–343

4-bit register, 343
shared logic of, 354
shift, 356–361

bidirectional, 359–361
“No Change” operation, 

359–360
with parallel load, 357–359
serial inputs, 361
stages, 381
unidirectional, 359

synchronous binary counters, 
363–367

transfers, 343–345
big-endian, 345
conditional statement, 346
control of, 383–400
design procedures,  

384–385
if-then form, 346, 354
little-endian, 345
multiplexer-based, 354–356
nonprogrammable system, 

384
operations, 345–347
programmable system, 384
replacement operator, 346
symbols, 347
in VHDL and Verilog, 

347–348
Register transfer language (RTL) 

level, 99
Reverse Polish notation (RPN), 

509–510
Ripple carry adder, 176
Rotational delay, 604
Rudimentary logic functions, 

138–144
enabling, 142–144
inverting, 139–140
multiple-bit functions,  

139–142
transferring, 139–140
value-fixing, 139–140

S
Schematic capture tools, 98
Seek time, 604
Segmentation, 659
Selection:

using multiplexer-based 
combinational circuits, 
166–171

using multiplexers, 156–166
Sequence recognizer:

Gray-coded design for the, 
244–245

one-hot coded design for, 
245–246

state assignment for, 243
verification of, 248–250
VHDL representation, 267–272

Sequential circuits:
analysis, 226–232
asynchronous interactions, 

286–287
definitions, 214–216
design:

with D flip-flops, 243–246
finding state diagrams and 

state tables, 235–241
flip-flop input equations, 235
formulation, 234
optimization, 235
output equations, 235
procedure, 234–235
specification, 234
state assignment, 234, 

242–243
technology mapping, 235
with unused states, 246–248
verification, 235
verification with simulation, 

248–250
flip-flops, 220–226

timing, 282–283
HDL representation:

Verilog, 273–282
VHDL, 264–273

input equations, 226–227
latches, 217–220
Mealy model circuits, 229–230, 

232
metastability, 290–293
Moore model circuit, 229, 

231–232
pitfalls, 293–294
simulation of, 232–234

functional, 233
state-variable values and 

outputs, 233
timing, 233–234

state diagram, 229–232
equivalent states, 231–232
manner of representation, 

231
state table, 227–229

manner of representation, 
231

next-state section, 227–228
present-state section, 227

state-machine diagrams and 
applications, 250–264

automatic sliding entrance 
doors, 261–264

batch mixing system control, 
256–260

constraints on transition 
conditions, 254–256

input condition, 252–254
model, 252–254
output condition, 252–254
transition and output-

condition dependent 
(TOCD) output 
actions, 253

transition-condition 
dependent (TCD) 
Mealy output actions, 
253

transition-condition 
independent (TCI) 
Mealy outputs, 253

transition condition (TC), 
252–254

unconditional transition, 
252–253

synchronization, 287–290
signal RDY, 288–290

synchronous counter, 293
timing, 283–285

clock period and frequency 
calculations, 285

maximum input-to-output 
delay, 283

Serial communication, 614–620
asynchronous transmission, 615
data sets or modems 

(modulator–
demodulators) for, 615

full-duplex transmission, 615
half-duplex transmission, 615
keyboard, 616–617
packet-based serial I/O bus, 

617–620
simplex line transmission, 615
synchronous transmission, 

615–616
turnaround time, 615

Serial gating, 363
Shannon’s expansion  

theorem, 331
Shift microoperations, 353
Shift registers, 356–361

bidirectional, 359–361
“No Change” operation, 

359–360
with parallel load, 357–359
serial inputs, 361
stages, 381
unidirectional, 359
Verilog-based, 402–403
VHDL-based, 400–401

Shifter, 459–461
barrel, 460–461
combinational, 459
function table for, 461
multiplexers and, 459

Signal conditioning, 26
Significands, 528
Silicon-on-insulator (SOI) CMOS 

technology, 594
Single Instruction Multiple Thread 

(SIMT), 595
Single-cycle hardwired control unit, 

476–483
“Add Immediate” (ADI) 

instruction, 479–481
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computer timing and control, 
482–483

instruction decoder, 477–479
sample instructions and 

program, 479–482
Single-instruction-stream multiple-

data-stream (SIMD) 
processors, 593–594

Small-scale integrated (SSI) devices, 
312

Speculative loading, 591
SRAM integrated-circuits, 425–431

array of, 431–434
Bit Select column, 429
coincident selection, 427–431
RAM bit slice, 426
RAM cell, 425, 427–428
Read/Write circuits, 430
static RAM chip, 425–426
symbol and block diagram, 

427–429, 431
Word Select lines, 427

Stability control unit (SCU), 26
Stack architectures, 509
Standard forms, 71–77
State assignment, 242–243

for sequence recognizer, 243
State diagram:

abstraction of sequence, 
235–236

for BCD– to–excess-3 decoder, 
239–241

construction of, 241
equivalent states, 231–232
manner of representation, 231
reset signal and initial state, 

236–237
for sequence recognizer, 

237–239
State table:

manner of representation, 231
next-state section, 227–228
present-state section, 227

Static random access memory 
(SRAM), 330

STI Cell Processor, 594
Strobing, 611–612
Structural description, 60
Suicide counter, 294
Sum of minterms, 73–74
Sum terms, 71
Superpipelined CPU, 590
Superscalar CPU, 590
S-way set-associative mapping, 645
Synchronous binary counters, 

363–367
AND-gate delays and, 364
parallel counters, 363–364
with parallel load, 365–367
serial counters, 363–364
up–down counter, 365

Synchronous DRAM (SDRAM), 
442–444

Synergistic Processor Elements 
(SPEs), 594

T
Technology library, 101
Technology mapping, 101

Technology mapping in 
combinational logic 
design, 134–138

advanced, 134–136
implementation:

with NAND gates, 134–136
with NOR gates, 134–135, 

137–138
Testbench, 100
Three-state buffer, 377
Three-state bus, 379–380
Three-variable maps, 80–81, 83–85
Timing diagrams, 56–57
Transfer microoperations, 348
Transferring, 139–140
Transition regions, 56
Transitions, 56
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