
G
lo

ba
l

ed
it

io
n

For these Global editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. this Global edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the north american version.

logic and C
om

puter d
esign Fundam

entals
M

ano
K

im
e

M
artin

FiFt
h

ed

it
io

n

Global
edition

Global
edition

 Morris Mano • Charles R. Kime • Tom Martin

logic and Computer design Fundamentals
 FiFth edition

this is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. if you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or author.

Pearson Global Edition

Mano_1292096071_mech.indd 1 18/06/15 8:39 PM

Logic and
Computer

Design
Fundamentals

Fifth Edition

Global Edition

M. Morris Mano
California State University, Los Angeles

Charles R. Kime
University of Wisconsin, Madison

Tom Martin
Virginia Tech

Boston Columbus Indianapolis New York San Francisco Hoboken

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Pearson Education Limited

Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:

www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Morris Mano, Charles R. Kime, and Tom Martin, to be identified as the authors of this work, have been asserted by them

in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Logic and Computer Design Fundamentals, ISBN 978-0-13-376063-7, by
Morris Mano, Charles R. Kime, and Tom Martin, published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or

a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10

Kirby Street, London EC1N 8TS.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations

appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, re-

search, and testing of theories and programs to determine their effectiveness. The author and publi sher make no warranty of any kind,

expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be

liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2012 by Microsoft Corporation. Used with permission from Microsoft.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY

OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF

THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS IS”

WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM

ALLWARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALLWARRANTIES

AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS

RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE

OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED

GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE

SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)

DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE

VERSION SPECIFIED.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-09607-1

ISBN 13: 978-1-292-09607-0

Typeset by Jouve, in 10/12 Times Ten LT Std

Printed and bound in Great Britain by Courier Westford

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Johnson
Acquisitions Editor: Julie Bai
Assistant Acquisitions Editor, Global Editions: Aditee Agarwal
Executive Marketing Manager: Tim Galligan

Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno

Production Project Manager: Greg Dulles
Project Editor, Global Editions: Donald Villamero
Program Manager: Joanne Manning

Global HE Director of Vendor Sourcing and

Procurement: Diane Hynes

Director of Operations: Nick Sklitsis

Operations Specialist: Maura Zaldivar-Garcia
Senior Production Manufacturing Controller, Global Editions:

Trudy Kimber
Media Production Manager, Global Editions: Vikram Kumar
Cover Art: © Shaparniy/Shutterstock
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:

Timothy Nicholls
Composition: Jouve India

 3

Preface 12

 Chapter 1 19

Digital Systems and Information 19
1-1 Information Representation 20

The Digital Computer 22

Beyond the Computer 23

More on the Generic Computer 26

1-2 Abstraction Layers in Computer Systems Design 28

An Overview of the Digital Design Process 30

1-3 Number Systems 31

Binary Numbers 33

Octal and Hexadecimal Numbers 34

Number Ranges 36

1-4 Arithmetic Operations 36

Conversion from Decimal to Other Bases 39

1-5 Decimal Codes 41

1-6 Alphanumeric Codes 42

ASCII Character Code 42

Parity Bit 45

1-7 Gray Codes 46

1-8 Chapter Summary 48

References 49

Problems 49

 Chapter 2 53

Combinational Logic Circuits 53
2-1 Binary Logic and Gates 54

Binary Logic 54

Logic Gates 56

HDL Representations of Gates 60

Contents

4 Contents

2-2 Boolean Algebra 61

Basic Identities of Boolean Algebra 65

Algebraic Manipulation 67

Complement of a Function 70

2-3 Standard Forms 71

Minterms and Maxterms 71

Sum of Products 75

Product of Sums 76

2-4 Two-Level Circuit Optimization 77

Cost Criteria 77

Map Structures 79

Two-Variable Maps 81

Three-Variable Maps 83

2-5 Map Manipulation 87

Essential Prime Implicants 87

Nonessential Prime Implicants 89

Product-of-Sums Optimization 90

Don’t-Care Conditions 91

2-6 Exclusive-Or Operator and Gates 94

Odd Function 94

2-7 Gate Propagation Delay 96

2-8 HDLs Overview 98

Logic Synthesis 100

2-9 HDL Representations—VHDL 102

2-10 HDL Representations—Verilog 110

2-11 Chapter Summary 117

References 118

Problems 118

 Chapter 3 129

Combinational Logic Design 129
3-1 Beginning Hierarchical Design 130

3-2 Technology Mapping 134

3-3 Combinational Functional Blocks 138

3-4 Rudimentary Logic Functions 138

Value-Fixing, Transferring, and Inverting 139

Multiple-Bit Functions 139

Enabling 142

3-5 Decoding 144

Decoder and Enabling Combinations 148

Decoder-Based Combinational Circuits 151

3-6 Encoding 153

Priority Encoder 154

Encoder Expansion 155

Contents 5

3-7 Selecting 156

Multiplexers 156

Multiplexer-Based Combinational Circuits 166

3-8 Iterative Combinational Circuits 171

3-9 Binary Adders 173

Half Adder 173

Full Adder 174

Binary Ripple Carry Adder 175

3-10 Binary Subtraction 177

Complements 178

Subtraction Using 2s Complement 180

3-11 Binary Adder-Subtractors 181

Signed Binary Numbers 182

Signed Binary Addition and Subtraction 184

Overflow 186

HDL Models of Adders 188

Behavioral Description 190

3-12 Other Arithmetic Functions 193

Contraction 194

Incrementing 195

Decrementing 196

Multiplication by Constants 196

Division by Constants 198

Zero Fill and Extension 198

3-13 Chapter Summary 199

References 199

Problems 200

 Chapter 4 213

Sequential Circuits 213
4-1 Sequential Circuit Definitions 214

4-2 Latches 217

SR and SR Latches 217

D Latch 220

4-3 Flip-Flops 220

Edge-Triggered Flip-Flop 222

Standard Graphics Symbols 223

Direct Inputs 225

4-4 Sequential Circuit Analysis 226

Input Equations 226

State Table 227

State Diagram 229

Sequential Circuit Simulation 232

4-5 Sequential Circuit Design 234

Design Procedure 234

Finding State Diagrams and State Tables 235

State Assignment 242

Designing with D Flip-Flops 243

Designing with Unused States 246

Verification 248

4-6 State-Machine Diagrams and Applications 250

State-Machine Diagram Model 252

Constraints on Input Conditions 254

Design Applications Using State-Machine Diagrams 256

4-7 HDL Representation for Sequential Circuits—VHDL 264

4-8 HDL Representation for Sequential Circuits—Verilog 273

4-9 Flip-Flop Timing 282

4-10 Sequential Circuit Timing 283

4-11 Asynchronous Interactions 286

4-12 Synchronization and Metastability 287

4-13 Synchronous Circuit Pitfalls 293

4-14 Chapter Summary 294

References 295

Problems 296

 Chapter 5 311

Digital Hardware Implementation 311
5-1 The Design Space 311

Integrated Circuits 311

CMOS Circuit Technology 312

Technology Parameters 318

5-2 Programmable Implementation Technologies 320

Read-Only Memory 322

Programmable Logic Array 324

Programmable Array Logic Devices 327

Field Programmable Gate Array 329

5-3 Chapter Summary 334

References 334

Problems 334

 Chapter 6 339

Registers and Register Transfers 339
6-1 Registers and Load Enable 340

Register with Parallel Load 341

6-2 Register Transfers 343

6-3 Register Transfer Operations 345

6-4 Register Transfers in VHDL and Verilog 347

6 Contents

6-5 Microoperations 348

Arithmetic Microoperations 349

Logic Microoperations 351

Shift Microoperations 353

6-6 Microoperations on a Single Register 353

Multiplexer-Based Transfers 354

Shift Registers 356

Ripple Counter 361

Synchronous Binary Counters 363

Other Counters 367

6-7 Register-Cell Design 370

6-8 Multiplexer and Bus-Based Transfers for

Multiple Registers 375

High-Impedance Outputs 377

Three-State Bus 379

6-9 Serial Transfer and Microoperations 380

Serial Addition 381

6-10 Control of Register Transfers 383

Design Procedure 384

6-11 HDL Representation for Shift Registers

and Counters—VHDL 400

6-12 HDL Representation for Shift Registers

and Counters—Verilog 402

6-13 Microprogrammed Control 404

6-14 Chapter Summary 406

References 407

Problems 407

Chapter 7 419

Memory Basics 419
7-1 Memory Definitions 419

7-2 Random-Access Memory 420

Write and Read Operations 422

Timing Waveforms 423

Properties of Memory 425

7-3 SRAM Integrated Circuits 425

Coincident Selection 427

7-4 Array of SRAM ICs 431

7-5 DRAM ICs 434

DRAM Cell 435

DRAM Bit Slice 436

7-6 DRAM Types 440

Synchronous DRAM (SDRAM) 442

Double-Data-Rate SDRAM (DDR SDRAM) 444

Contents 7

RAMBUS® DRAM (RDRAM) 445

7-7 Arrays of Dynamic RAM ICs 446

7-8 Chapter Summary 446

References 447

Problems 447

 Chapter 8 449

Computer Design Basics 449
8-1 Introduction 450

8-2 Datapaths 450

8-3 The Arithmetic/Logic Unit 453

Arithmetic Circuit 453

Logic Circuit 456

Arithmetic/Logic Unit 458

8-4 The Shifter 459

Barrel Shifter 460

8-5 Datapath Representation 461

8-6 The Control Word 463

8-7 A Simple Computer Architecture 469

Instruction Set Architecture 469

Storage Resources 470

Instruction Formats 471

Instruction Specifications 473

8-8 Single-Cycle Hardwired Control 476

Instruction Decoder 477

Sample Instructions and Program 479

Single-Cycle Computer Issues 482

8-9 Multiple-Cycle Hardwired Control 483

Sequential Control Design 487

8-10 Chapter Summary 492

References 494

Problems 494

 Chapter 9 501

Instruction Set Architecture 501
9-1 Computer Architecture Concepts 501

Basic Computer Operation Cycle 503

Register Set 503

9-2 Operand Addressing 504

Three-Address Instructions 505

Two-Address Instructions 505

One-Address Instructions 506

8 Contents

Zero-Address Instructions 506

Addressing Architectures 507

9-3 Addressing Modes 510

Implied Mode 511

Immediate Mode 511

Register and Register-Indirect Modes 512

Direct Addressing Mode 512

Indirect Addressing Mode 513

Relative Addressing Mode 514

Indexed Addressing Mode 515

Summary of Addressing Modes 516

9-4 Instruction Set Architectures 517

9-5 Data-Transfer Instructions 518

Stack Instructions 518

Independent versus Memory-Mapped I/O 520

9-6 Data-Manipulation Instructions 521

Arithmetic Instructions 521

Logical and Bit-Manipulation Instructions 522

Shift Instructions 524

9-7 Floating-Point Computations 525

Arithmetic Operations 526

Biased Exponent 527

Standard Operand Format 528

9-8 Program Control Instructions 530

Conditional Branch Instructions 531

Procedure Call and Return Instructions 533

9-9 Program Interrupt 535

Types of Interrupts 536

Processing External Interrupts 537

9-10 Chapter Summary 538

References 539

Problems 539

Chapter 10 547

Risc and Cisc Central Processing Units 547
10-1 Pipelined Datapath 548

Execution of Pipeline Microoperations 552

10-2 Pipelined Control 553

Pipeline Programming and Performance 555

10-3 The Reduced Instruction Set Computer 557

Instruction Set Architecture 557

Addressing Modes 560

Datapath Organization 561

Control Organization 564

Contents 9

Data Hazards 566

Control Hazards 573

10-4 The Complex Instruction Set Computer 577

ISA Modifications 579

Datapath Modifications 580

Control Unit Modifications 582

Microprogrammed Control 583

Microprograms for Complex Instructions 585

10-5 More on Design 588

Advanced CPU Concepts 589

Recent Architectural Innovations 592

10-6 Chapter Summary 595

References 596

Problems 597

 Chapter 11 601

Input—Output and Communication 601
11-1 Computer I/O 601

11-2 Sample Peripherals 602

Keyboard 602

Hard Drive 603

Liquid Crystal Display Screen 605

I/O Transfer Rates 608

11-3 I/O Interfaces 608

I/O Bus and Interface Unit 609

Example of I/O Interface 610

Strobing 611

Handshaking 613

11-4 Serial Communication 614

Synchronous Transmission 615

The Keyboard Revisited 616

A Packet-Based Serial I/O Bus 617

11-5 Modes of Transfer 620

Example of Program-Controlled Transfer 621

Interrupt-Initiated Transfer 622

11-6 Priority Interrupt 624

Daisy Chain Priority 624

Parallel Priority Hardware 626

11-7 Direct Memory Access 627

DMA Controller 628

DMA Transfer 630

11-8 Chapter Summary 631

References 631

Problems 632

10 Contents

 Chapter 12 635

Memory Systems 635
12-1 Memory Hierarchy 635

12-2 Locality of Reference 638

12-3 Cache Memory 640

Cache Mappings 642

Line Size 647

Cache Loading 648

Write Methods 649

Integration of Concepts 650

Instruction and Data Caches 652

Multiple-Level Caches 653

12-4 Virtual Memory 653

Page Tables 655

Translation Lookaside Buffer 657

Virtual Memory and Cache 659

12-5 Chapter Summary 659

References 660

Problems 660

Index 664

Contents 11

12

Preface

The objective of this text is to serve as a cornerstone for the learning of logic design,

digital system design, and computer design by a broad audience of readers. This fifth

edition marks the continued evolution of the text contents. Beginning as an adap-

tation of a previous book by the first author in 1997, it continues to offer a unique

combination of logic design and computer design principles with a strong hardware

emphasis. Over the years, the text has followed industry trends by adding new mater-

ial such as hardware description languages, removing or de-emphasizing material of

declining importance, and revising material to track changes in computer technology

and computer-aided design.

NEW TO THIS EDITION
The fifth edition reflects changes in technology and design practice that require com-

puter system designers to work at higher levels of abstraction and manage larger

ranges of complexity than they have in the past. The level of abstraction at which

logic, digital systems, and computers are designed has moved well beyond the level

at which these topics are typically taught. The goal in updating the text is to more

effectively bridge the gap between existing pedagogy and practice in the design of

computer systems, particularly at the logic level. At the same time, the new edition

maintains an organization that should permit instructors to tailor the degree of tech-

nology coverage to suit both electrical and computer engineering and computer sci-

ence audiences. The primary changes to this edition include:

Chapter 1 has been updated to include a discussion of the layers of abstractions

in computing systems and their role in digital design, as well as an overview of

the digital design process. Chapter 1 also has new material on alphanumeric

codes for internationalization.

The textbook introduces hardware description languages (HDLs) earlier, start-

ing in Chapter 2. HDL descriptions of circuits are presented alongside logic sche-

matics and state diagrams throughout the chapters on combinational and

sequential logic design to indicate the growing importance of HDLs in contem-

porary digital system design practice. The material on propagation delay, which is

a first-order design constraint in digital systems, has been moved into Chapter 2.

Chapter 3 combines the functional block material from the old Chapter 3 and

the arithmetic blocks from the old Chapter 4 to present a set of commonly

Preface 13

occurring combinational logic functional blocks. HDL models of the func-

tional blocks are presented throughout the chapter. Chapter 3 introduces the

concept of hierarchical design.

Sequential circuits appear in Chapter 4, which includes both the description of

design processes from the old Chapter 5, and the material on sequential circuit

timing, synchronization of inputs, and metastability from the old Chapter 6.

The description of JK and T flip-flops has been removed from the textbook

and moved to the online Companion Website.

Chapter 5 describes topics related to the implementation of digital hardware,

including design of complementary metal-oxide (CMOS) gates and program-

mable logic. In addition to much of the material from the old Chapter 6,

Chapter 5 now includes a brief discussion of the effect of testing and verifica-

tion on the cost of a design. Since many courses employing this text have lab

exercises based upon field programmable gate arrays (FPGAs), the descrip-

tion of FPGAs has been expanded, using a simple, generic FPGA architecture

to explain the basic programmable elements that appear in many commer-

cially available FPGA families.

The remaining chapters, which cover computer design, have been updated to

reflect changes in the state-of-the art since the previous edition appeared.

Notable changes include moving the material on high-impedance buffers from

the old Chapter 2 to the bus transfer section of Chapter 6 and adding a discus-

sion of how procedure call and return instructions can be used to implement

function calls in high level languages in Chapter 9.

Offering integrated coverage of both digital and computer design, this edition

of Logic and Computer Design Fundamentals features a strong emphasis on fun-

damentals underlying contemporary design. Understanding of the material is sup-

ported by clear explanations and a progressive development of examples ranging

from simple combinational applications to a CISC architecture built upon a RISC

core. A thorough coverage of traditional topics is combined with attention to com-

puter-aided design, problem formulation, solution verification, and the building of

problem-solving skills. Flexibility is provided for selective coverage of logic design,

digital system design, and computer design topics, and for coverage of hardware

description languages (none, VHDL, or Verilog®).

With these revisions, Chapters 1 through 4 of the book treat logic design,

Chapters 5 through 7 deal with digital systems design, and Chapters 8 through 12

focus on computer design. This arrangement provides solid digital system design

fundamentals while accomplishing a gradual, bottom-up development of funda-

mentals for use in top-down computer design in later chapters. Summaries of the

topics covered in each chapter follow.

Logic Design

Chapter 1, Digital Systems and Information, introduces digital computers, com-

puter systems abstraction layers, embedded systems, and information representation

including number systems, arithmetic, and codes.

14 Preface

Chapter 2, Combinational Logic Circuits, deals with gate circuits and their

types and basic ideas for their design and cost optimization. Concepts include

Boolean algebra, algebraic and Karnaugh-map optimization, propagation delay, and

gate-level hardware description language models using structural and dataflow mod-

els in both VHDL and Verilog.

Chapter 3, Combinational Logic Design, begins with an overview of a con-

temporary logic design process. The details of steps of the design process including

problem formulation, logic optimization, technology mapping to NAND and NOR

gates, and verification are covered for combinational logic design examples. In addi-

tion, the chapter covers the functions and building blocks of combinational design

including enabling and input-fixing, decoding, encoding, code conversion, selecting,

distributing, addition, subtraction, incrementing, decrementing, filling, extension and

shifting, and their implementations. The chapter includes VHDL and Verilog models

for many of the logic blocks.

Chapter 4, Sequential Circuits, covers sequential circuit analysis and design.

Latches and edge-triggered flip-flops are covered with emphasis on the D type.

Emphasis is placed on state machine diagram and state table formulation. A com-

plete design process for sequential circuits including specification, formulation, state

assignment, flip-flop input and output equation determination, optimization, technol-

ogy mapping, and verification is developed. A graphical state machine diagram model

that represents sequential circuits too complex to model with a conventional state

diagram is presented and illustrated by two real world examples. The chapter includes

VHDL and Verilog descriptions of a flip-flop and a sequential circuit, introducing

procedural behavioral VHDL and Verilog language constructs as well as test benches

for verification. The chapter concludes by presenting delay and timing for sequential

circuits, as well as synchronization of asynchronous inputs and metastability.

Digital Systems Design

Chapter 5, Digital Hardware Implementation, presents topics focusing on various

aspects of underlying technology including the MOS transistor and CMOS circuits,

and programmable logic technologies. Programmable logic covers read-only memo-

ries, programmable logic arrays, programmable array logic, and field programmable

gate arrays (FPGAs). The chapter includes examples using a simple FPGA architec-

ture to illustrate many of the programmable elements that appear in more complex,

commercially available FPGA hardware.

Chapter 6, Registers and Register Transfers, covers registers and their applica-

tions. Shift register and counter design are based on the combination of flip-flops

with functions and implementations introduced in Chapters 3 and 4. Only the ripple

counter is introduced as a totally new concept. Register transfers are considered

for both parallel and serial designs and time–space trade-offs are discussed. A sec-

tion focuses on register cell design for multifunction registers that perform multiple

operations. A process for the integrated design of datapaths and control units using

register transfer statements and state machine diagrams is introduced and illustrated

by two real world examples. Verilog and VHDL descriptions of selected register

types are introduced.

Chapter 7, Memory Basics, introduces static random access memory (SRAM)

and dynamic random access memory (DRAM), and basic memory systems. It also

describes briefly various distinct types of DRAMs.

Computer design

Chapter 8, Computer Design Basics, covers register files, function units, datapaths,

and two simple computers: a single-cycle computer and a multiple-cycle computer.

The focus is on datapath and control unit design formulation concepts applied to

implementing specified instructions and instruction sets in single-cycle and multiple-

cycle designs.

Chapter 9, Instruction Set Architecture, introduces many facets of instruc-

tion set architecture. It deals with address count, addressing modes, architectures,

and the types of instructions and presents floating-point number representation

and operations. Program control architecture is presented including procedure

calls and interrupts.

Chapter 10, RISC and CISC Processors, covers high-performance processor

concepts including a pipelined RISC processor and a CISC processor. The CISC

processor, by using microcoded hardware added to a modification of the RISC

processor, permits execution of the CISC instruction set using the RISC pipeline,

an approach used in contemporary CISC processors. Also, sections describe high-

performance CPU concepts and architecture innovations including two examples

of multiple CPU microprocessors.

Chapter 11, Input–Output and Communication, deals with data transfer

between the CPU and memory, input–output interfaces and peripheral devices. Dis-

cussions of a keyboard, a Liquid Crystal Display (LCD) screen, and a hard drive as

peripherals are included, and a keyboard interface is illustrated. Other topics range

from serial communication, including the Universal Serial Bus (USB), to interrupt

system implementation.

Chapter 12, Memory Systems, focuses on memory hierarchies. The concept of

locality of reference is introduced and illustrated by consideration of the cache/main

memory and main memory/hard drive relationships. An overview of cache design

parameters is provided. The treatment of memory management focuses on paging

and a translation lookaside buffer supporting virtual memory.

In addition to the text itself, a Companion Website and an Instructor’s Manual

are provided. Companion Website (www.pearsonglobaleditions.com/Mano) content

includes the following: 1) reading supplements including material deleted from prior

editions, 2) VHDL and Verilog source files for all examples, 3) links to computer-

aided design tools for FPGA design and HDL simulation, 4) solutions for about

one-third of all text chapter problems, 5) errata, 6) PowerPoint® slides for Chapters 1

through 8, 7) projection originals for complex figures and tables from the text, and

8) site news sections for students and instructors pointing out new material, updates,

and corrections. Instructors are encouraged to periodically check the instructor’s site

news so that they are aware of site changes. Instructor’s Manual content includes

suggestions for use of the book and all problem solutions. Online access to this man-

ual is available from Pearson to instructors at academic institutions who adopt the

Preface 15

book for classroom use. The suggestions for use provide important detailed informa-

tion for navigating the text to fit with various course syllabi.

Because of its broad coverage of both logic and computer design, this book

serves several different objectives in sophomore through junior level courses. Chapters

1 through 9 with selected sections omitted, provide an overview of hardware for com-

puter science, computer engineering, electrical engineering, or engineering students in

general in a single semester course. Chapters 1 through 4 possibly with selected parts

of 5 through 7 give a basic introduction to logic design, which can be completed in a

single quarter for electrical and computer engineering students. Covering Chapters

1 through 7 in a semester provides a stronger, more contemporary logic design treat-

ment. The entire book, covered in two quarters, provides the basics of logic and com-

puter design for computer engineering and science students. Coverage of the entire

book with appropriate supplementary material or a laboratory component can fill a

two-semester sequence in logic design and computer architecture. Due to its moder-

ately paced treatment of a wide range of topics, the book is ideal for self-study by engi-

neers and computer scientists. Finally, all of these various objectives can also benefit

from use of reading supplements provided on the Companion Website.

The authors would like to acknowledge the instructors whose input contributed

to the previous edition of the text and whose influence is still apparent in the current

edition, particularly Professor Bharat Bhuva, Vanderbilt University; Professor Donald

Hung, San Jose State University; and Professors Katherine Compton, Mikko Lipasti,

Kewal Saluja, and Leon Shohet, and Faculty Associate Michael Morrow, ECE, Uni-

versity of Wisconsin, Madison. We appreciate corrections to the previous editions pro-

vided by both instructors and students, most notably, those from Professor Douglas

De Boer of Dordt College. In getting ready to prepare to think about getting started

to commence planning to begin working on the fifth edition, I received valuable feed-

back on the fourth edition from Patrick Schaumont and Cameron Patterson at Virginia

Tech, and Mark Smith at the Royal Institute of Technology (KTH) in Stockholm, Swe-

den. I also benefited from many discussions with Kristie Cooper and Jason Thweatt

at Virginia Tech about using the fourth edition in the updated version of our depart-

ment’s Introduction to Computer Engineering course. I would also like to express

my appreciation to the folks at Pearson for their hard work on this new edition. In

particular, I would like to thank Andrew Gilfillan for choosing me to be the new third

author and for his help in planning the new edition; Julie Bai for her deft handling of

the transition after Andrew moved to another job, and for her guidance, support, and

invaluable feedback on the manuscript; Pavithra Jayapaul for her help in text produc-

tion and her patience in dealing with my delays (especially in writing this preface!);

and Scott Disanno and Shylaja Gattupalli for their guidance and care in producing the

text. Special thanks go to Morris Mano and Charles Kime for their efforts in writing

the previous editions of this book. It is an honor and a privilege to have been chosen as

their successor. Finally, I would like to thank Karen, Guthrie, and Eli for their patience

and support while I was writing, especially for keeping our mutt Charley away from

this laptop so that he didn’t eat the keys like he did with its short-lived predecessor.

Tom Martin

Blacksburg, Virginia

16 Preface

GLOBAL EDITION

The publishers would like to thank the following for their contribution to the Global

Edition:

Contributors

Chiranjib Koley, Associate Professor, National Institute of Technology, Durgapur

Lyla B. Das, Associate Professor, National Institute of Technology, Calicut

Reviewers

Debaprasad Das, Professor, Assam University
Moumita Mitra Manna, Lecturer of Computer Science and Applications at Bangabasi
College, University of Calcutta
Piyali Sengupta, Freelance

Preface 17

Processor

Graphics Adapter

Drive Controller
Bus Interface

Keyboard

RAM

External
Cache

Hard Drive

FPU
CPU MMU

Internal
Cache

LCD
Screen

 19

C H A P T E R

Digital Systems
and Information

1

This book deals with logic circuits and digital computers. Early computers were used

for computations with discrete numeric elements called digits (the Latin word for

digital computer. The use of “digital” spread from the

computer to logic circuits and other systems that use discrete elements of information,

giving us the terms digital circuits and digital systems. The term logic is applied to circuits

computers are based on logic circuits, they operate on patterns of elements from these

two-valued sets, which are used to represent, among other things, the decimal digits.

Today, the term “digital circuits” is viewed as synonymous with the term “logic circuits.”

The general-purpose digital computer is a digital system that can follow a stored

sequence of instructions, called a program, that operates on data. The user can specify

processing tasks, ranging over a very wide spectrum of applications. This makes the

learning the concepts, methods, and tools of digital system design. To this end, we use

generic computer and see how they relate to a block diagram commonly used to

programming computers constructed using billions of transistors. Otherwise, the

remainder of the chapter focuses on the digital systems in our daily lives and introduces

approaches for representing information in digital circuits and systems.

20 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

1-1 INFORMATION REPRESENTATION

Digital systems store, move, and process information. The information represents a

broad range of phenomena from the physical and man-made world. The physical

world is characterized by parameters such as weight, temperature, pressure, velocity,

flow, and sound intensity and frequency. Most physical parameters are continuous,

typically capable of taking on all possible values over a defined range. In contrast, in

the man-made world, parameters can be discrete in nature, such as business records

using words, quantities, and currencies, taking on values from an alphabet, the inte-

gers, or units of currency, respectively. In general, information systems must be able

to represent both continuous and discrete information. Suppose that temperature,

which is continuous, is measured by a sensor and converted to an electrical voltage,

which is likewise continuous. We refer to such a continuous voltage as an analog
signal, which is one possible way to represent temperature. But, it is also possible

to represent temperature by an electrical voltage that takes on discrete values that

occupy only a finite number of values over a range, for example, corresponding to

integer degrees centigrade between -40 and +119. We refer to such a voltage as a

digital signal. Alternatively, we can represent the discrete values by multiple voltage

signals, each taking on a discrete value. At the extreme, each signal can be viewed as

having only two discrete values, with multiple signals representing a large number of

discrete values. For example, each of the 160 values just mentioned for temperature

can be represented by a particular combination of eight two-valued signals. The sig-

nals in most present-day electronic digital systems use just two discrete values and

are therefore said to be binary. The two discrete values used are often called 0 and 1,

the digits for the binary number system.

We typically represent the two discrete values by ranges of voltage values

called HIGH and LOW. Output and input voltage ranges are illustrated in

Figure 1-1(a). The HIGH output voltage value ranges between 0.9 and 1.1 volts, and

the LOW output voltage value between -0.1 and 0.1 volts. The high input range

allows 0.6 to 1.1 volts to be recognized as a HIGH, and the low input range allows

1.0
0.9

0.6

0.4

0.0
Volts

HIGH

LOW

HIGH

LOW

OUTPUT INPUT

0.1

(a) Example voltage ranges

(b) Time-dependent voltage

 (c) Binary model of time-dependent voltage

1

0

1.0

0.5

0.0

Voltage (Volts)

Time

Time

 FIGURE 1-1
Examples of Voltage Ranges and Waveforms for Binary Signals

1-1 / Information Representation 21

-0.1 to 0.4 volts to be recognized as a LOW. The fact that the input ranges are wider

than the output ranges allows the circuits to function correctly in spite of variations

in their behavior and undesirable “noise” voltages that may be added to or sub-

tracted from the outputs.

We give the output and input voltage ranges a number of different names.

Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and 0.

It is natural to associate the higher voltage ranges with HIGH or H, and the lower

voltage ranges with LOW or L. For TRUE and 1 and FALSE and 0, however, there is

a choice. TRUE and 1 can be associated with either the higher or lower voltage range

and FALSE and 0 with the other range. Unless otherwise indicated, we assume that

TRUE and 1 are associated with the higher of the voltage ranges, H, and the FALSE

and 0 are associated with the lower of the voltage ranges, L. This particular conven-

tion is called positive logic.

It is interesting to note that the values of voltages for a digital circuit in

Figure 1-1(a) are still continuous, ranging from -0.1 to +1.1 volts. Thus, the voltage

is actually analog! The actual voltages values for the output of a very high-speed

digital circuit are plotted versus time in Figure 1-1(b). Such a plot is referred to as a

waveform. The interpretation of the voltage as binary is based on a model using

voltage ranges to represent discrete values 0 and 1 on the inputs and the outputs.

The application of such a model, which redefines all voltage above 0.5 V as 1 and

below 0.5 V as 0 in Figure 1-1(b), gives the waveform in Figure 1-1(c). The output

has now been interpreted as binary, having only discrete values 1 and 0, with the

actual voltage values removed. We note that digital circuits, made up of electronic

devices called transistors, are designed to cause the outputs to occupy the two dis-

tinct output voltage ranges for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs

are not changing. In contrast, analog circuits are designed to have their outputs

take on continuous values over their range, whether changing or not.

Since 0 and 1 are associated with the binary number system, they are the pre-

ferred names for the signal ranges. A binary digit is called a bit. Information is

represented in digital computers by groups of bits. By using various coding tech-

niques, groups of bits can be made to represent not only binary numbers, but also

other groups of discrete symbols. Groups of bits, properly arranged, can even

specify to the computer the program instructions to be executed and the data to be

processed.

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys-

tem with 10 values representing the decimal digits. In such a system, the voltages

available—say, 0 to 1.0 volts—could be divided into 10 ranges, each of length

0.1 volt. A circuit would provide an output voltage within each of these 10 ranges.

An input of a circuit would need to determine in which of the 10 ranges an applied

voltage lies. If we wish to allow for noise on the voltages, then output voltage

might be permitted to range over less than 0.05 volt for a given digit representa-

tion, and boundaries between inputs could vary by less than 0.05 volt. This would

require complex and costly electronic circuits, and the output still could be dis-

turbed by small “noise” voltages or small variations in the circuits occurring

during their manufacture or use. As a consequence, the use of such multivalued

circuits is very limited. Instead, binary circuits are used in which correct circuit

22 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

operation can be achieved with significant variations in values of the two output

voltages and the two input ranges. The resulting transistor circuit with an output

that is either HIGH or LOW is simple, easy to design, and extremely reliable. In

addition, this use of binary values makes the results calculated repeatable in the

sense that the same set of input values to a calculation always gives exactly the

same set of outputs. This is not necessarily the case for multivalued or analog cir-

cuits, in which noise voltages and small variations due to manufacture or circuit

aging can cause results to differ at different times.

The Digital Computer

A block diagram of a digital computer is shown in Figure 1-2. The memory stores

programs as well as input, output, and intermediate data. The datapath performs

arithmetic and other data-processing operations as specified by the program. The

control unit supervises the flow of information between the various units. A data-

path, when combined with the control unit, forms a component referred to as a cen-
tral processing unit, or CPU.

The program and data prepared by the user are transferred into memory by

means of an input device such as a keyboard. An output device, such as an LCD (liq-

uid crystal display), displays the results of the computations and presents them to the

user. A digital computer can accommodate many different input and output devices,

such as DVD drives, USB flash drives, scanners, and printers. These devices use digi-

tal logic circuits, but often include analog electronic circuits, optical sensors, LCDs,

and electromechanical components.

The control unit in the CPU retrieves the instructions, one by one, from the

program stored in the memory. For each instruction, the control unit manipulates the

datapath to execute the operation specified by the instruction. Both program and

data are stored in memory. A digital computer can perform arithmetic computations,

manipulate strings of alphabetic characters, and be programmed to make decisions

based on internal and external conditions.

Memory

Control
Unit Datapath

Input/Output

CPU

 FIGURE 1-2
Block Diagram of a Digital Computer

1-1 / Information Representation 23

Beyond the Computer

In terms of world impact, computers, such as the PC, are not the end of the story.

Smaller, often less powerful, single-chip computers called microcomputers or micro-
controllers, or special-purpose computers called digital signal processors (DSPs)

 actually are more prevalent in our lives. These computers are parts of everyday prod-

ucts and their presence is often not apparent. As a consequence of being integral

parts of other products and often enclosed within them, they are called embedded
systems. A generic block diagram of an embedded system is shown in Figure 1-3.

Central to the system is the microcomputer (or its equivalent). It has many of the

characteristics of the PC, but differs in the sense that its software programs are often

permanently stored to provide only the functions required for the product. This soft-

ware, which is critical to the operation of the product, is an integral part of the em-

bedded system and referred to as embedded software. Also, the human interface of

the microcomputer can be very limited or nonexistent. The larger information-

storage components such as a hard drive and compact disk or DVD drive frequently

are not present. The microcomputer contains some memory; if additional memory is

needed, it can be added externally.

With the exception of the external memory, the hardware connected to the

embedded microcomputer in Figure 1-3 interfaces with the product and/or the out-

side world. The input devices transform inputs from the product or outside world

into electrical signals, and the output devices transform electrical signals into out-

puts to the product or outside world. The input and output devices are of two types,

those which use analog signals and those which use digital signals. Examples of digi-

tal input devices include a limit switch which is closed or open depending on whether

a force is applied to it and a keypad having ten decimal integer buttons. Examples of

Microcomputer,
Microcontroller,
or Digital Signal

Processor

A-to-D
Converters

D-to-A
Converters

Analog
Input Devices

and Signal
Conditioning

Digital
Input Devices

and Signal
Conditioning

External
Memory

Signal
Conditioning
and Digital

Output Devices

Signal
Conditioning
and Digital

Output Devices

 FIGURE 1-3
Block Diagram of an Embedded System

24 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

analog input devices include a thermistor which changes its electrical resistance in

response to the temperature and a crystal which produces a charge (and a corre-

sponding voltage) in response to the pressure applied. Typically, electrical or elec-

tronic circuitry is required to “condition” the signal so that it can be read by the

embedded system. Examples of digital output devices include relays (switches that

are opened or closed by applied voltages), a stepper motor that responds to applied

voltage pulses, or an LED digital display. Examples of analog output devices include

a loudspeaker and a panel meter with a dial. The dial position is controlled by the

interaction of the magnetic fields of a permanent magnet and an electromagnet

driven by the voltage applied to the meter.

Next, we illustrate embedded systems by considering a temperature measure-

ment performed by using a wireless weather station. In addition, this example also

illustrates analog and digital signals, including conversion between the signal types.

EXAMPLE 1-1 Temperature Measurement and Display

A wireless weather station measures a number of weather parameters at an outdoor

site and transmits them for display to an indoor base station. Its operation can be

 illustrated by considering the temperature measurement illustrated in Figure 1-4

with reference to the block diagram in Figure 1-3. Two embedded microprocessors

are used, one in the outdoor site and the other in the indoor base station.

The temperature at the outdoor site ranges continuously from -40°F to

+115°F. Temperature values over one 24-hour period are plotted as a function of

time in Figure 1-4(a). This temperature is measured by a sensor consisting of a therm-

istor (a resistance that varies with temperature) with a fixed current applied by an

electronic circuit. This sensor provides an analog voltage that is proportional to the

temperature. Using signal conditioning, this voltage is changed to a continuous volt-

age ranging between 0 and 15 volts, as shown in Figure 1-4(b).

The analog voltage is sampled at a rate of once per hour (a very slow sampling

rate used just for illustration), as shown by the dots in Figure 1-4(b). Each value sam-

pled is applied to an analog-to-digital (A/D) converter, as in Figure 1-3, which replaces

the value with a digital number written in binary and having decimal values between

0 and 15, as shown in Figure 1-4(c). A binary number can be interpreted in decimal

by multiplying the bits from left to right times the respective weights, 8, 4, 2, and 1,

and adding the resulting values. For example, 0101 can be interpreted as

0 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 5. In the process of conversion, the value of the

temperature is quantized from an infinite number of values to just 16 values.

Examining the correspondence between the temperature in Figure 1-4(a) and the volt-

age in Figure 1-4(b), we find that the typical digital value of temperature represents an

actual temperature range up to 5 degrees above or below the digital value. For exam-

ple, the analog temperature range between -25 and -15 degrees is represented by the

digital temperature value of -20 degrees. This discrepancy between the actual tem-

perature and the digital temperature is called the quantization error. In order to obtain

greater precision, we would need to increase the number of bits beyond four in the

output of the A/D converter. The hardware components for sensing, signal condition-

ing, and A/D conversion are shown in the upper left corner of Figure 1-3.

1-1 / Information Representation 25

00
11
00

11
00

11

Sampling point

01
00 01

0101
10 01

11

01
10

01
00 01

01

01
00

00
11

00
11

Temperature (degrees F)

0

40

Voltage (Volts)

(a) Analog temperature

(b) Continuous (analog) voltage

(c) Digital voltage

(d) Discrete (digital) voltage

Digital numbers (binary)

Voltage (volts)

Time (hours)

(e) Continuous (analog) voltage

Voltage (volts)

Sensor and
Signal Conditioning

Analog-to-Digital
(A/D) Conversion

Digital-to-Analog
(D/A) Conversion

Signal Conditioning

00
11
00

11 01
00

01
00

�40

80

120

4

8

0

12

16

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

Output

(f) Continuous (analog) readout

Temp Temp

01
11

01
11

01
11

01
11

00
11

00
11 01

01

0 4 2016128 24

0 4 2016128 24

4

8

0

12

16

4

8

0

12

16

4

8

0

12

16

0 4 2016128 24

0 4 2016128 24

0 4 2016128 24

Time (hours)

Time (hours)

Time (Hours)

Time (hours)

Temp Temp Temp

 FIGURE 1-4
Temperature Measurement and Display

26 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

Next, the digital value passes through the microcomputer to a wireless trans-

mitter as a digital output device in the lower right corner of Figure 1-3. The digital

value is transmitted to a wireless receiver, which is a digital input device in the base

station. The digital value enters the microcomputer at the base station, where calcu-

lations may be performed to adjust its value based on thermistor properties. The

resulting value is to be displayed with an analog meter shown in Figure 1-4(f) as the

output device. In order to support this display, the digital value is converted to an

analog value by a digital-to-analog converter, giving the quantized, discrete voltage

levels shown in Figure 1-4(d). Signal conditioning, such as processing of the output

by a low-pass analog filter, is applied to give the continuous signal in Figure 1-4(e).

This signal is applied to the analog voltage display, which has been labeled with the

corresponding temperature values shown for five selected points over the 24-hour

period in Figure 1-4(f). ■

You might ask: “How many embedded systems are there in my current living

environment?” Do you have a cell phone? An iPod™? An Xbox™? A digital cam-

era? A microwave oven? An automobile? All of these are embedded systems. In

fact, a late-model automobile can contain more than 50 microcontrollers, each con-

trolling a distinct embedded system, such as the engine control unit (ECU), auto-

matic braking system (ABS), and stability control unit (SCU). Further, a significant

proportion of these embedded systems communicate with each other through a

CAN (controller area network). A more recently developed automotive network,

called FlexRay, provides high-speed, reliable communication for safety-critical tasks

such as braking-by-wire and steering-by-wire, eliminating primary dependence on

mechanical and hydraulic linkages and enhancing the potential for additional safety

features such as collision avoidance. Table 1-1 lists examples of embedded systems

classified by application area.

Considering the widespread use of personal computers and embedded sys-

tems, digital systems have a major impact on our lives, an impact that is not often

fully appreciated. Digital systems play central roles in our medical diagnosis and

treatment, in our educational institutions and workplaces, in moving from place to

place, in our homes, in interacting with others, and in just having fun! The complexity

of many of these systems requires considerable care at many levels of design abstrac-

tion to make the systems work. Thanks to the invention of the transistor and the

integrated circuit and to the ingenuity and perseverance of millions of engineers and

programmers, they indeed work and usually work well. In the remainder of this text,

we take you on a journey that reveals how digital systems work and provide a

detailed look at how to design digital systems and computers.

More on the Generic Computer

At this point, we will briefly discuss the generic computer and relate its various parts

to the block diagram in Figure 1-2. At the lower left of the diagram at the beginning

of this chapter is the heart of the computer, an integrated circuit called the processor.

Modern processors such as this one are quite complex and consist of tens to hun-

dreds of millions of transistors. The processor contains four functional modules: the

CPU, the FPU, the MMU, and the internal cache.

1-1 / Information Representation 27

We have already discussed the CPU. The FPU (floating-point unit) is some-

what like the CPU, except that its datapath and control unit are specifically designed

to perform floating-point operations. In essence, these operations process informa-

tion represented in the form of scientific notation (e.g., 1.234 * 107), permitting the

generic computer to handle very large and very small numbers. The CPU and the

FPU, in relation to Figure 1-2, each contain a datapath and a control unit.

The MMU is the memory management unit. The MMU plus the internal cache

and the separate blocks near the bottom of the computer labeled “External Cache”

and “RAM” (random-access memory) are all part of the memory in Figure 1-2. The

two caches are special kinds of memory that allow the CPU and FPU to get at the

data to be processed much faster than with RAM alone. RAM is what is most com-

monly referred to as memory. As its main function, the MMU causes the memory

that appears to be available to the CPU to be much, much larger than the actual size

of the RAM. This is accomplished by data transfers between the RAM and the hard

drive shown at the top of the drawing of the generic computer. So the hard drive,

which we discuss later as an input/output device, conceptually appears as a part of

both the memory and input/output.

The connection paths shown between the processor, memory, and external

cache are the pathways between integrated circuits. These are typically implemented

 TABLE 1-1
Embedded System Examples

Application Area Product

Banking, commerce and

manufacturing

Copiers, FAX machines, UPC scanners, vending

machines, automatic teller machines, automated

warehouses, industrial robots, 3D printers

Communication Wireless access points, network routers, satellites

Games and toys Video games, handheld games, talking stuffed toys

Home appliances Digital alarm clocks, conventional and microwave

ovens, dishwashers

Media CD players, DVD players, flat panel TVs, digital

cameras, digital video cameras

Medical equipment Pacemakers, incubators, magnetic resonance

imaging

Personal Digital watches, MP3 players, smart phones,

wearable fitness trackers

Transportation and navigation Electronic engine controls, traffic light controllers,

aircraft flight controls, global positioning systems

28 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

as fine copper conductors on a printed circuit board. The connection paths below the

bus interface are referred to as the processor bus. The connections above the bus

interface are the input/output (I/O) bus. The processor bus and the I/O bus attached

to the bus interface carry data having different numbers of bits and have different

ways of controlling the movement of data. They may also operate at different speeds.

The bus interface hardware handles these differences so that data can be communi-

cated between the two buses.

All of the remaining structures in the generic computer are considered part

of I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate.

In order to enter information into the computer, a keyboard is provided. In order

to view output in the form of text or graphics, a graphics adapter card and LCD

(liquid crystal display) screen are provided. The hard drive, discussed previously, is

an electromechanical magnetic storage device. It stores large quantities of infor-

mation in the form of magnetic flux on spinning disks coated with magnetic mate-

rials. In order to control the hard drive and transfer information to and from it, a

drive controller is used. The keyboard, graphics adapter card, and drive controller

card are all attached to the I/O bus. This allows these devices to communicate

through the bus interface with the CPU and other circuitry connected to the pro-

cessor buses.

1-2 ABSTRACTION LAYERS IN COMPUTER SYSTEMS DESIGN

As described by Moggridge, design is the process of understanding all the relevant

constraints for a problem and arriving at a solution that balances those constraints.

In computer systems, typical constraints include functionality, speed, cost, power,

area, and reliability. At the time that this text is being written in 2014, leading edge

integrated circuits have billions of transistors—designing such a circuit one transistor

at a time is impractical. To manage that complexity, computer systems design is

 typically performed in a “top down” approach, where the system is specified at a high

level and then the design is decomposed into successively smaller blocks until a

block is simple enough that it can be implemented. These blocks are then connected

together to make the full system. The generic computer described in the previous

section is a good example of blocks connected together to make a full system. This

book begins with smaller blocks and then moves toward putting them together into

larger, more complex blocks.

A fundamental aspect of the computer systems design process is the concept of

“layers of abstraction.” Computer systems such as the generic computer can be

viewed at several layers of abstraction from circuits to algorithms, with each higher

layer of abstraction hiding the details and complexity of the layer below. Abstraction

removes unnecessary implementation details about a component in the system so

that a designer can focus on the aspects of the component that matter for the prob-

lem being solved. For example, when we write a computer program to add two vari-

ables and store the result in a third variable, we focus on the programming language

constructs used to declare the variables and describe the addition operation. But

when the program executes, what really happens is that electrical charge is moved

around by transistors and stored in capacitive layers to represent the bits of data and

1-2 / Abstraction Layers in Computer Systems Design 29

control signals necessary to perform the addition and store the result. It would be

difficult to write programs if we had to directly describe the flow of electricity for

individual bits. Instead, the details of controlling them are managed by several layers

of abstractions that transform the program into a series of more detailed representa-

tions that eventually control the flow of electrical charges that implement the

computation.

Figure 1-5 shows the typical layers of abstraction in contemporary computing

systems. At the top of the abstraction layers, algorithms describe a series of steps that

lead to a solution. These algorithms are then implemented as a program in a high-

level programming language such as C++, Python, or Java. When the program is run-

ning, it shares computing resources with other programs under the control of an

operating system. Both the operating system and the program are composed of

sequences of instructions that are particular to the processor running them; the set of

instructions and the registers (internal data memory) available to the programmer

are known as the instruction set architecture. The processor hardware is a particular

implementation of the instruction set architecture, referred to as the microarchitec-

ture; manufacturers very often make several different microarchitectures that exe-

cute the same instruction set. A microarchitecture can be described as underlying

sequences of transfers of data between registers. These register transfers can be

decomposed into logic operations on sets of bits performed by logic gates, which are

electronic circuits implemented with transistors or other physical devices that con-

trol the flow of electrons.

An important feature of abstraction is that lower layers of abstraction can usu-

ally be modified without changing the layers above them. For example, a program

written in C++ can be compiled on any computer system with a C++ compiler and

then executed. As another example, an executable program for the Intel™ x86

instruction set architecture can run on any microarchitecture (implementation) of

that architecture, whether that implementation is from Intel™ or AMD. Consequently,

abstraction allows us to continue to use solutions at higher layers of abstraction even

when the underlying implementations have changed.

This book is mainly concerned with the layers of abstraction from logic gates

up to operating systems, focusing on the design of the hardware up to the interface

between the hardware and the software. By understanding the interactions of the

Algorithms
Programming Languages

Operating Systems
Instruction Set Architecture

Microarchitecture
Register Transfers

Logic Gates
Transistor Circuits

 FIGURE 1-5
Typical Layers of Abstraction in Modern Computer Systems

30 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

layers of abstraction, we can choose the proper layer of abstraction on which to con-

centrate for a given design, ignoring unnecessary details and optimizing the aspects

of the system that are likely to have the most impact on achieving the proper balance

of constraints for a successful design. Oftentimes, the higher layers of abstraction

have the potential for much more improvement in the design than can be found at

the lower layers. For example, it might be possible to re-design a hardware circuit for

multiplying two numbers so that it runs 20–50% faster than the original, but it might

be possible to have much bigger impact on the speed of the overall circuit if the algo-

rithm is modified to not use multiplication at all. As technology has progressed and

computer systems have become more complex, the design effort has shifted to higher

layers of abstraction and, at the lower layers, much of the design process has been

automated. Effectively using the automated processes requires an understanding of

the fundamentals of design at those layers of abstraction.

An Overview of the Digital Design Process

The design of a digital computer system starts from the specification of the problem

and culminates in representation of the system that can be implemented. The design

process typically involves repeatedly transforming a representation of the system at

one layer of abstraction to a representation at the next lower level of abstraction, for

example, transforming register transfers into logic gates, which are in turn trans-

formed into transistor circuits.

While the particular details of the design process depend upon the layer of

abstraction, the procedure generally involves specifying the behavior of the system,

generating an optimized solution, and then verifying that the solution meets the spec-

ification both in terms of functionality and in terms of design constraints such as speed

and cost. As a concrete example of the procedure, the following steps are the design

procedure for combinational digital circuits that Chapters 2 and 3 will introduce:

1. Specification: Write a specification for the behavior of the circuit, if one is not

already available.

2. Formulation: Derive the truth table or initial Boolean equations that define

the required logical relationships between inputs and outputs.

3. Optimization: Apply two-level and multiple-level optimization to minimize

the number of logic gates required. Draw a logic diagram or provide a netlist

for the resulting circuit using logic gates.

4. Technology Mapping: Transform the logic diagram or netlist to a new diagram

or netlist using the available implementation technology.

5. Verification: Verify the correctness of the final design.

For digital circuits, the specification can take a variety of forms, such as text or a

description in a hardware description language (HDL), and should include the respec-

tive symbols or names for the inputs and outputs. Formulation converts the specifica-

tion into forms that can be optimized. These forms are typically truth tables or Boolean

expressions. It is important that verbal specifications be interpreted correctly when

formulating truth tables or expressions. Often the specifications are incomplete, and

any wrong interpretation may result in an incorrect truth table or expression.

1-3 / Number Systems 31

Optimization can be performed by any of a number available methods, such as

algebraic manipulation, the Karnaugh map method, which will be introduced in

Chapter 2, or computer-based optimization programs. In a particular application,

specific criteria serve as a guide for choosing the optimization method. A practical

design must consider constraints such as the cost of the gates used, maximum allow-

able propagation time of a signal through the circuit, and limitations on the fan-out

of each gate. This is complicated by the fact that gate costs, gate delays, and fan-out

limits are not known until the technology mapping stage. As a consequence, it is dif-

ficult to make a general statement about what constitutes an acceptable end result

for optimization. It may be necessary to repeat optimization and technology map-

ping multiple times, repeatedly refining the circuit so that it has the specified behav-

ior while meeting the specified constraints.

This brief overview of the digital design process provides a road map for the

remainder of the book. The generic computer consists mainly of an interconnection

of digital modules. To understand the operation of each module, we need a basic

knowledge of digital systems and their general behavior. Chapters 1 through 5 of this

book deal with logic design of digital circuits in general. Chapters 4 and 6 discuss the

primary components of a digital system, their operation, and their design. The opera-

tional characteristics of RAM are explained in Chapter 7. Datapath and control for

simple computers are introduced in Chapter 8. Chapters 9 through 12 present the

basics of computer design. Typical instructions employed in computer instruction-set

architectures are presented in Chapter 9. The architecture and design of CPUs are

examined in Chapter 10. Input and output devices and the various ways that a CPU

can communicate with them are discussed in Chapter 11. Finally, memory hierarchy

concepts related to the caches and MMU are introduced in Chapter 12.

To guide the reader through this material and to keep in mind the “forest” as

we carefully examine many of the “trees,” accompanying discussion appears in a

blue box at the beginning of each chapter. Each discussion introduces the topics in

the chapter and ties them to the associated components in the generic computer dia-

gram at the start of this chapter. At the completion of our journey, we will have cov-

ered most of the various modules of the computer and will have gained an

understanding of the fundamentals that underlie both its function and design.

1-3 NUMBER SYSTEMS

Earlier, we mentioned that a digital computer manipulates discrete elements of in-

formation and that all information in the computer is represented in binary form.

Operands used for calculations may be expressed in the binary number system or in

the decimal system by means of a binary code. The letters of the alphabet are also

converted into a binary code. The remainder of this chapter introduces the binary

number system, binary arithmetic, and selected binary codes as a basis for further

study in the succeeding chapters. In relation to the generic computer, this material is

very important and spans all of the components, excepting some in I/O that involve

mechanical operations and analog (as contrasted with digital) electronics.

The decimal number system is employed in everyday arithmetic to represent

numbers by strings of digits. Depending on its position in the string, each digit has an

associated value of an integer raised to the power of 10. For example, the decimal

32 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4 units plus 5

tenths. The hundreds, tens, units, and tenths are powers of 10 implied by the position

of the digits. The value of the number is computed as follows:

724.5 = 7 * 102 + 2 * 101 + 4 * 100 + 5 * 10-1

The convention is to write only the digits and infer the corresponding powers

of 10 from their positions. In general, a decimal number with n digits to the left of the

decimal point and m digits to the right of the decimal point is represented by a string

of coefficients:

An - 1 An - 2 . . . A1 A0 .A-1 A-2 . . . A-m+1 A-m

Each coefficient Ai is one of 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The subscript value i
gives the position of the coefficient and, hence, the weight 10i by which the coeffi-

cient must be multiplied.

The decimal number system is said to be of base or radix 10, because the coeffi-

cients are multiplied by powers of 10 and the system uses 10 distinct digits. In gen-

eral, a number in base r contains r digits, 0, 1, 2, . . ., r-1, and is expressed as a power

series in r with the general form

An - 1 rn - 1 + An - 2 rn - 2 + . . . + A1r
1 + A0r

0

+ A-1 r-1 + A-2 r-2 + . . . + A-m + 1 r-m + 1 + A-m r-m

When the number is expressed in positional notation, only the coefficients and the

radix point are written down:

An - 1 An - 2 . . . A1 A0 . A-1 A-2 . . . A-m + 1 A-m

In general, the “ . ” is called the radix point. An - 1 is referred to as the most signifi-
cant digit (msd) and A-m as the least significant digit (lsd) of the number. Note

that if m = 0, the lsd is A-0 = A0. To distinguish between numbers of different

bases, it is customary to enclose the coefficients in parentheses and place a sub-

script after the right parenthesis to indicate the base of the number. However,

when the context makes the base obvious, it is not necessary to use parentheses.

The following illustrates a base 5 number with n = 3 and m = 1 and its conver-

sion to decimal:

 (312.4)5 = 3 * 52 + 1 * 51 + 2 * 50 + 4 * 5-1

 = 75 + 5 + 2 + 0.8 = (82.8)10

Note that for all the numbers without the base designated, the arithmetic is

performed with decimal numbers. Note also that the base 5 system uses only five

digits, and, therefore, the values of the coefficients in a number can be only 0, 1, 2, 3,

and 4 when expressed in that system.

An alternative method for conversion to base 10 that reduces the number of

operations is based on a factored form of the power series:

(. . .((An - 1r + An - 2)r + (An - 3)r + . . .+ A1)r + A0

+ (A-1 + (A-2 + (A-3 ++ (A-m + 2 + (A-m + 1 + A-mr-1)r-1)r-1 . . .)r-1)r-1)r-1

1-3 / Number Systems 33

4K = 22 * 210 = 212 = 4096 and 16M = 24 * 220 = 224 = 16,777,216

For the example above,

 (312.4)5 = ((3 * 5 + 1) * 5) + 2 + 4 * 5-1

 = 16 * 5 + 2 + 0.8 = (82.8)10

In addition to decimal, three number systems are used in computer work:

binary, octal, and hexadecimal. These are base 2, base 8, and base 16 number systems,

respectively.

Binary Numbers

The binary number system is a base 2 system with two digits: 0 and 1. A binary num-

ber such as 11010.11 is expressed with a string of 1s and 0s and, possibly, a binary

point. The decimal equivalent of a binary number can be found by expanding the

number into a power series with a base of 2. For example,

(11010)2 = 1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20 = (26)10

As noted earlier, the digits in a binary number are called bits. When a bit is equal

to 0, it does not contribute to the sum during the conversion. Therefore, the conver-

sion to decimal can be obtained by adding the numbers with powers of two corre-

sponding to the bits that are equal to 1. For example,

(110101.11)2 = 32 + 16 + 4 + 1 + 0.5 + 0.25 = (53.75)10

The first 24 numbers obtained from 2 to the power of n are listed in Table 1-2.

In digital systems, we refer to 210 as K (kilo), 220 as M (mega), 230 as G (giga), and 240

as T (tera). Thus,

 TABLE 1-2
Powers of Two

n 2n n 2n n 2n

0 1 8 256 16 65,536

1 2 9 512 17 131,072

2 4 10 1,024 18 262,144

3 8 11 2,048 19 524,288

4 16 12 4,096 20 1,048,576

5 32 13 8,192 21 2,097,152

6 64 14 16,384 22 4,194,304

7 128 15 32,768 23 8,388,608

This convention does not necessarily apply in all cases, with more conventional usage

of K, M, G, and T as 103, 106, 109 and 1012, respectively, sometimes applied as well. So

caution is necessary in interpreting and using this notation.

The conversion of a decimal number to binary can be easily achieved by a

method that successively subtracts powers of two from the decimal number. To

34 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

convert the decimal number N to binary, first find the greatest number that is a

power of two (see Table 1-2) and that, subtracted from N, produces a positive differ-

ence. Let the difference be designated N1. Now find the greatest number that is a

power of two and that, subtracted from N1, produces a positive difference N2.

Continue this procedure until the difference is zero. In this way, the decimal number

is converted to its powers-of-two components. The equivalent binary number is

obtained from the coefficients of a power series that forms the sum of the compo-

nents. 1s appear in the binary number in the positions for which terms appear in the

power series, and 0s appear in all other positions. This method is demonstrated by

the conversion of decimal 625 to binary as follows:

 625 - 512 = 113 = N1 512 = 29

 113 - 64 = 49 = N2 64 = 26

 49 - 32 = 17 = N3 32 = 25

 17 - 16 = 1 = N4 16 = 24

 1 - 1 = 0 = N5 1 = 20

(625)10 = 29 + 26 + 25 + 24 + 20 = (1001110001)2

Octal and Hexadecimal Numbers

As previously mentioned, all computers and digital systems use the binary represen-

tation. The octal (base 8) and hexadecimal (base 16) systems are useful for repre-

senting binary quantities indirectly because their bases are powers of two. Since

23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and each

hexadecimal digit corresponds to four binary digits.

The more compact representation of binary numbers in either octal or

hexadecimal is much more convenient for people than using bit strings in binary

that are three or four times as long. Thus, most computer manuals use either

octal or hexadecimal numbers to specify binary quantities. A group of 15 bits, for

example, can be represented in the octal system with only five digits. A group of

16 bits can be represented in hexadecimal with four digits. The choice between

an octal and a hexadecimal representation of binary numbers is arbitrary,

although hexadecimal tends to win out, since bits often appear in strings of size

divisible by four.

The octal number system is the base 8 system with digits 0, 1, 2, 3, 4, 5, 6, and 7.

An example of an octal number is 127.4. To determine its equivalent decimal value,

we expand the number in a power series with a base of 8:

(127.4)8 = 1 * 82 + 2 * 81 + 7 * 80 + 4 * 8-1 = (87.5)10

Note that the digits 8 and 9 cannot appear in an octal number.

It is customary to use the first r digits from the decimal system, starting with 0,

to represent the coefficients in a base r system when r is less than 10. The letters of

the alphabet are used to supplement the digits when r is 10 or more. The hexadeci-

mal number system is a base 16 system with the first 10 digits borrowed from the

1-3 / Number Systems 35

decimal system and the letters A, B, C, D, E, and F used for the values 10, 11, 12, 13,

14, and 15, respectively. An example of a hexadecimal number is

(B65F)16 = 11 * 163 + 6 * 162 + 5 * 161 + 15 * 160 = (46687)10

The first 16 numbers in the decimal, binary, octal, and hexadecimal number

systems are listed in Table 1-3. Note that the sequence of binary numbers follows a

prescribed pattern. The least significant bit alternates between 0 and 1, the second

significant bit between two 0s and two 1s, the third significant bit between four 0s

and four 1s, and the most significant bit between eight 0s and eight 1s.

The conversion from binary to octal is easily accomplished by partitioning the

binary number into groups of three bits each, starting from the binary point and pro-

ceeding to the left and to the right. The corresponding octal digit is then assigned to

each group. The following example illustrates the procedure:

(010 110 001 101 011. 111 100 000 110)2 = (26153.7406)8

The corresponding octal digit for each group of three bits is obtained from the first

eight entries in Table 1-3. To make the total count of bits a multiple of three, 0s can be

added on the left of the string of bits to the left of the binary point. More importantly,

0s must be added on the right of the string of bits to the right of the binary point to

make the number of bits a multiple of three and obtain the correct octal result.

Conversion from binary to hexadecimal is similar, except that the binary num-

ber is divided into groups of four digits, starting at the binary point. The previous

binary number is converted to hexadecimal as follows:

(0010 1100 0110 1011. 1111 0000 0110)2 = (2C6B.F06)16

 TABLE 1-3
Numbers with Different Bases

Decimal

(base 10)

Binary

(base 2)

Octal

(base 8)

Hexadecimal

(base 16)

00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

36 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

The corresponding hexadecimal digit for each group of four bits is obtained by refer-

ence to Table 1-3.

Conversion from octal or hexadecimal to binary is done by reversing the pro-

cedure just performed. Each octal digit is converted to a 3-bit binary equivalent, and

extra 0s are deleted. Similarly, each hexadecimal digit is converted to its 4-bit binary

equivalent. This is illustrated in the following examples:

 (673.12)8 = 110 111 011. 001 010 = (110111011.00101)2

 (3A6.C)16 = 0011 1010 0110. 1100 = (1110100110.11)2

Number Ranges

In digital computers, the range of numbers that can be represented is based on the

number of bits available in the hardware structures that store and process informa-

tion. The number of bits in these structures is most frequently a power of two, such as

8, 16, 32, and 64. Since the numbers of bits is fixed by the structures, the addition of

leading or trailing zeros to represent numbers is necessary, and the range of numbers

that can be represented is also fixed.

For example, for a computer processing 16-bit unsigned integers, the number

537 is represented as 0000001000011001. The range of integers that can be handled

by this representation is from 0 to 216 - 1, that is, from 0 to 65,535. If the same com-

puter is processing 16-bit unsigned fractions with the binary point to the left of the

most significant digit, then the number 0.375 is represented by 0.0110000000000000.

The range of fractions that can be represented is from 0 to (216 - 1)/216, or from 0.0

to 0.9999847412.

In later chapters, we will deal with fixed-bit representations and ranges for

binary signed numbers and floating-point numbers. In both of these cases, some bits

are used to represent information other than simple integer or fraction values.

1-4 ARITHMETIC OPERATIONS

Arithmetic operations with numbers in base r follow the same rules as for decimal

numbers. However, when a base other than the familiar base 10 is used, one must be

careful to use only r allowable digits and perform all computations with base r digits.

Examples of the addition of two binary numbers are as follows (note the names of

the operands for addition):

Carries: 00000 101100

Augend: 01100 10110

Addend: +10001 +10111

Sum: 11101 101101

The sum of two binary numbers is calculated following the same rules as for decimal

numbers, except that the sum digit in any position can be only 1 or 0. Also, a carry in

binary occurs if the sum in any bit position is greater than 1. (A carry in decimal

1-4 / Arithmetic Operations 37

occurs if the sum in any digit position is greater than 9.) Any carry obtained in a

given position is added to the bits in the column one significant position higher. In

the first example, since all of the carries are 0, the sum bits are simply the sum of the

augend and addend bits. In the second example, the sum of the bits in the second

column from the right is 2, giving a sum bit of 0 and a carry bit of 1 (2 = 2 + 0). The

carry bit is added with the 1s in the third position, giving a sum of 3, which produces

a sum bit of 1 and a carry of 1 (3 = 2 + 1).

The following are examples of the subtraction of two binary numbers; as with

addition, note the names of the operands:

Borrows: 00000 00110 00110

Minuend: 10110 10110 10011 11110

Subtrahend: -10010 -10011 -11110 -10011

Difference: 00100 00011 -01011

The rules for subtraction are the same as in decimal, except that a borrow into

a given column adds 2 to the minuend bit. (A borrow in the decimal system adds 10

to the minuend digit.) In the first example shown, no borrows occur, so the differ-

ence bits are simply the minuend bits minus the subtrahend bits. In the second exam-

ple, in the right position, the subtrahend bit is 1 with the minuend bit 0, so it is

necessary to borrow from the second position as shown. This gives a difference bit in

the first position of 1 (2 + 0 - 1 = 1). In the second position, the borrow is sub-

tracted, so a borrow is again necessary. Recall that, in the event that the subtrahend

is larger than the minuend, we subtract the minuend from the subtrahend and give

the result a minus sign. This is the case in the third example, in which this interchange

of the two operands is shown.

The final operation to be illustrated is binary multiplication, which is quite simple.

The multiplier digits are always 1 or 0. Therefore, the partial products are equal either to

the multiplicand or to 0. Multiplication is illustrated by the following example:

Multiplicand: 1011

Multiplier: * 101

 1011

0000

 1011

Product: 110111

Arithmetic operations with octal, hexadecimal, or any other base r system will

normally require the formulation of tables from which one obtains sums and prod-

ucts of two digits in that base. An easier alternative for adding two numbers in base r

is to convert each pair of digits in a column to decimal, add the digits in decimal, and

then convert the result to the corresponding sum and carry in the base r system.

Since addition is done in decimal, we can rely on our memories for obtaining the

entries from the familiar decimal addition table. The sequence of steps for adding

the two hexadecimal numbers 59F and E46 is shown in Example 1-2.

38 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

In general, the multiplication of two base r numbers can be accomplished by

doing all the arithmetic operations in decimal and converting intermediate results

one at a time. This is illustrated in the multiplication of two octal numbers shown in

Example 1-3.

EXAMPLE 1-2 Hexadecimal Addition

Perform the addition 159F216 + 1E46216:

Hexadecimal Equivalent Decimal Calculation

 1 1

 5 9 F 5 Carry 9 15 Carry

 E 4 6 14 4 6

 1 3 E 5 1 19 = 16 + 3 14 = E 21 = 16 + 5

The equivalent decimal calculation columns on the right show the mental reasoning

that must be carried out to produce each digit of the hexadecimal sum. Instead of

adding F + 6 in hexadecimal, we add the equivalent decimals, 15 + 6 = 21. We

then convert back to hexadecimal by noting that 21 = 16 + 5. This gives a sum digit

of 5 and a carry of 1 to the next higher-order column of digits. The other two columns

are added in a similar fashion. ■

EXAMPLE 1-3 Octal Multiplication

Perform the multiplication (762)8 * (45)8:

 Octal Octal Decimal Octal

 7 6 2 5 * 2 = 10 = 8 + 2 = 12

 4 5 5 * 6 + 1 = 31 = 24 + 7 = 37

 4 6 7 2 5 * 7 + 3 = 38 = 32 + 6 = 46

 3 7 1 0 4 * 2 = 8 = 8 + 0 = 10

 4 3 7 7 2 4 * 6 + 1 = 25 = 24 + 1 = 31

 4 * 7 + 3 = 31 = 24 + 7 = 37

Shown on the right are the mental calculations for each pair of octal digits. The octal

digits 0 through 7 have the same value as their corresponding decimal digits. The

multiplication of two octal digits plus a carry, derived from the calculation on

the previous line, is done in decimal, and the result is then converted back to octal.

The left digit of the two-digit octal result gives the carry that must be added to the

digit product on the next line. The blue digits from the octal results of the decimal

calculations are copied to the octal partial products on the left. For example,

(5 * 2)8 = (12)8. The left digit, 1, is the carry to be added to the product (5 * 6)8,

and the blue least significant digit, 2, is the corresponding digit of the octal partial

product. When there is no digit product to which the carry can be added, the carry is

written directly into the octal partial product, as in the case of the 4 in 46. ■

1-4 / Arithmetic Operations 39

Conversion from Decimal to Other Bases

We convert a number in base r to decimal by expanding it in a power series and add-

ing all the terms, as shown previously. We now present a general procedure for the

operation of converting a decimal number to a number in base r that is the reverse of

the alternative expansion to base 10 on page 32. If the number includes a radix point,

we need to separate the number into an integer part and a fraction part, since the

two parts must be converted differently. The conversion of a decimal integer to a

number in base r is done by dividing the number and all successive quotients by r

and accumulating the remainders. This procedure is best explained by example.

EXAMPLE 1-4 Conversion of Decimal Integers to Octal

Convert decimal 153 to octal:

The conversion is to base 8. First, 153 is divided by 8 to give a quotient of 19 and a

remainder of 1, as shown in blue. Then 19 is divided by 8 to give a quotient of 2 and a

remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of 2.

The coefficients of the desired octal number are obtained from the remainders:

 153/8 = 19 + 1/8 Remainder = 1 Least significant digit

 19/8 = 2 + 3/8 = 3

 2/8 = 0 + 2/8 = 2 Most significant digit

 (153)10 = (231)8 ■

 41/2 = 20 + 1/2 Remainder = 1 Least significant digit

 20/2 = 10 = 0

 10/2 = 5 = 0

 5/2 = 2 + 1/2 = 1

 2/2 = 1 = 0

 1/2 = 0 + 1/2 = 1 Most significant digit

 (41)10 = (101001)2

Note in Example 1-4 that the remainders are read from last to first, as indicated

by the arrow, to obtain the converted number. The quotients are divided by r until

the result is 0. We also can use this procedure to convert decimal integers to binary,

as shown in Example 1-5. In this case, the base of the converted number is 2, and

therefore, all the divisions must be done by 2.

EXAMPLE 1-5 Conversion of Decimal Integers to Binary

Convert decimal 41 to binary:

Of course, the decimal number could be converted by the sum of powers of two:

 (41)10 = 32 + 8 + 1 = (101001)2 ■

40 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

Example 1-6 Conversion of Decimal Fractions to Binary

Convert decimal 0.6875 to binary:

First, 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is mul-

tiplied by 2 to give a new integer and a new fraction. This process is continued until the

fractional part equals 0 or until there are enough digits to give sufficient accuracy. The

coefficients of the binary number are obtained from the integers as follows:

 0.6875 * 2 = 1.3750 Integer = 1 Most significant digit

 0.3750 * 2 = 0.7500 = 0

 0.7500 * 2 = 1.5000 = 1

 0.5000 * 2 = 1.0000 = 1 Least significant digit

 (0.6875)10 = (0.1011)2 ■

 0.513 * 8 = 4.104 Integer = 4 Most significant digit

 0.104 * 8 = 0.832 = 0

 0.832 * 8 = 6.656 = 6

 0.565 * 8 = 5.248 = 5 Least significant digit

The conversion of a decimal fraction to base r is accomplished by a method

similar to that used for integers, except that multiplication by r is used instead of

division, and integers are accumulated instead of remainders. Again, the method is

best explained by example.

EXAMPLE 1-7 Conversion of Decimal Fractions to Octal

Convert decimal 0.513 to a three-digit octal fraction:

The answer, to three significant figures, is obtained from the integer digits. Note that

the last integer digit, 5, is used for rounding in base 8 of the second-to-the-last digit, 6,

to obtain

 (0.513)10 = (0 .407)8 ■

The conversion of decimal numbers with both integer and fractional parts is

done by converting each part separately and then combining the two answers. Using

the results of Example 1-4 and Example 1-7, we obtain

(153.513)10 = (231.407)8

Note in the foregoing example that the integers are read from first to last, as

indicated by the arrow, to obtain the converted number. In the example, a finite num-

ber of digits appear in the converted number. The process of multiplying fractions by

r does not necessarily end with zero, so we must decide how many digits of the frac-

tion to use from the conversion. Also, remember that the multiplications are by num-

ber r. Therefore, to convert a decimal fraction to octal, we must multiply the fractions

by 8, as shown in Example 1-7.

1-5 / Decimal Codes 41

1-5 DECIMAL CODES

The binary number system is the most natural one for a computer, but people are ac-

customed to the decimal system. One way to resolve this difference is to convert deci-

mal numbers to binary, perform all arithmetic calculations in binary, and then convert

the binary results back to decimal. This method requires that we store the decimal

numbers in the computer in such a way that they can be converted to binary. Since the

computer can accept only binary values, we must represent the decimal digits by a

code that contains 1s and 0s. It is also possible to perform the arithmetic operations

directly with decimal numbers when they are stored in the computer in coded form.

An n-bit binary code is a group of n bits that assume up to 2n distinct combina-

tions of 1s and 0s, with each combination representing one element of the set being

coded. A set of four elements can be coded with a 2-bit binary code, with each ele-

ment assigned one of the following bit combinations: 00, 01, 10, 11. A set of 8 elements

requires a 3-bit code, and a set of 16 elements requires a 4-bit code. The bit combina-

tions of an n-bit code can be determined from the count in binary from 0 to 2n - 1.

Each element must be assigned a unique binary bit combination, and no two ele-

ments can have the same value; otherwise, the code assignment is ambiguous.

A binary code will have some unassigned bit combinations if the number of

elements in the set is not a power of 2. The ten decimal digits form such a set. A

binary code that distinguishes among ten elements must contain at least four bits,

but six out of the 16 possible combinations will remain unassigned. Numerous differ-

ent binary codes can be obtained by arranging four bits into 10 distinct combina-

tions. The code most commonly used for the decimal digits is the straightforward

binary assignment listed in Table 1-4. This is called binary-coded decimal and is com-

monly referred to as BCD. Other decimal codes are possible but not commonly used.

Table 1-4 gives a 4-bit code for each decimal digit. A number with n decimal dig-

its will require 4n bits in BCD. Thus, decimal 396 is represented in BCD with 12 bits as

0011 1001 0110

with each group of four bits representing one decimal digit. A decimal number in

BCD is the same as its equivalent binary number only when the number is between

 TABLE 1-4
Binary-Coded Decimal (BCD)

Decimal

Symbol

BCD

Digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

42 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

0 and 9, inclusive. A BCD number greater than 10 has a representation different

from its equivalent binary number, even though both contain 1s and 0s. Moreover,

the binary combinations 1010 through 1111 are not used and have no meaning in the

BCD code.

Consider decimal 185 and its corresponding value in BCD and binary:

(185)10 = (0001 1000 0101)BCD = (10111001)2

The BCD value has 12 bits, but the equivalent binary number needs only 8 bits. It is

obvious that a BCD number needs more bits than its equivalent binary value.

However, BCD representation of decimal numbers is still important, because com-

puter input and output data used by most people needs to be in the decimal system.

BCD numbers are decimal numbers and not binary numbers, even though they are

represented using bits. The only difference between a decimal and a BCD number is

that decimals are written with the symbols 0, 1, 2, …, 9, and BCD numbers use the

binary codes 0000, 0001, 0010, …, 1001.

1-6 ALPHANUMERIC CODES

Many applications of digital computers require the handling of data consisting not

only of numbers, but also of letters. For instance, an insurance company with thou-

sands of policyholders uses a computer to process its files. To represent the names

and other pertinent information, it is necessary to formulate a binary code for the

letters of the alphabet. In addition, the same binary code must represent numerals

and special characters such as $. Any alphanumeric character set for English is a set

of elements that includes the ten decimal digits, the 26 letters of the alphabet, and

several (more than three) special characters. If only capital letters are included, we

need a binary code of at least six bits, and if both uppercase letters and lowercase

letters are included, we need a binary code of at least seven bits. Binary codes play

an important role in digital computers. The codes must be in binary because comput-

ers can handle only 1s and 0s. Note that binary encoding merely changes the sym-

bols, not the meaning of the elements of information being encoded.

ASCII Character Code

The standard binary code for the alphanumeric characters is called ASCII (Ameri-

can Standard Code for Information Interchange). It uses seven bits to code 128 char-

acters, as shown in Table 1-5. The seven bits of the code are designated by B
1
 through

B
7
, with B

7
 being the most significant bit. Note that the most significant three bits of

the code determine the column of the table and the least significant four bits the row

of the table. The letter A, for example, is represented in ASCII as 1000001 (column

100, row 0001). The ASCII code contains 94 characters that can be printed and 34

nonprinting characters used for various control functions. The printing characters

consist of the 26 uppercase letters, the 26 lowercase letters, the 10 numerals, and 32

special printable characters such as %, @, and $.

The 34 control characters are designated in the ASCII table with abbreviated

names. They are listed again below the table with their full functional names. The

control characters are used for routing data and arranging the printed text into a

1-6 / Alphanumeric Codes 43

prescribed format. There are three types of control characters: format effectors,

information separators, and communication control characters. Format effectors are

characters that control the layout of printing. They include the familiar typewriter

controls such as backspace (BS), horizontal tabulation (HT), and carriage return

(CR). Information separators are used to separate the data into divisions—for

example, paragraphs and pages. They include characters such as record separator

 TABLE 1-5
American Standard Code for Information Interchange (ASCII)

B
7
B

6
B

5

B
4
B

3
B

2
B

1
000 001 010 011 100 101 110 111

0000 NULL DLE SP 0 @ P ` p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 " 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ' 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {

1100 FF FS , 6 L \ l |

1101 CR GS - = M] m }

1110 SO RS . 7 N ^ n ˜
1111 SI US / ? O _ o DEL

Control Characters

NULL NULL DLE Data link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End of transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in US Unit separator

SP Space DEL Delete

44 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

(RS) and file separator (FS). The communication control characters are used during

the transmission of text from one location to the other. Examples of communication

control characters are STX (start of text) and ETX (end of text), which are used to

frame a text message transmitted via communication wires.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a

single unit called a byte. Therefore, ASCII characters most often are stored one per

byte, with the most significant bit set to 0. The extra bit is sometimes used for specific

purposes, depending on the application. For example, some printers recognize an

additional 128 8-bit characters, with the most significant bit set to 1. These characters

enable the printer to produce additional symbols, such as those from the Greek

alphabet or characters with accent marks as used in languages other than English.

Adapting computing systems to different world regions and languages is

known as internationalization or localization. One of the major aspects of localiza-

tion is providing characters for the alphabets and scripts for various languages.

ASCII was developed for the English alphabet but, even extending it to 8-bits, it is

unable to support other alphabets and scripts that are commonly used around the

world. Over the years, many different character sets were created to represent the

scripts used in various languages, as well as special technical and mathematical sym-

bols used by various professions. These character sets were incompatible with each

other, for example, by using the same number for different characters or by using

different numbers for the same character.

Unicode was developed as an industry standard for providing a common repre-

sentation of symbols and ideographs for the most of the world’s languages. By provid-

ing a standard representation that covers characters from many different languages,

Unicode removes the need to convert between different character sets and eliminates

the conflicts that arise from using the same numbers for different character sets.

Unicode provides a unique number called a code point for each character, as well as a

unique name. A common notation for referring to a code point is the characters “U+”

followed by the four to six hexadecimal digits of the code point. For example, U+0030

is the character “0”, named Digit Zero. The first 128 code points of Unicode, from

U+0000 to U+007F, correspond to the ASCII characters. Unicode currently sup-

ports over a million code points from a hundred scripts worldwide.

 There are several standard encodings of the code points that range from 8 to

32 bits (1 to 4 bytes). For example, UTF-8 (UCS Transformation Format, where

UCS stands for Universal Character Set) is a variable-length encoding that uses

from 1 to 4 bytes for each code point, UTF-16 is a variable-length encoding that

uses either 2 or 4 bytes for each code point, while UTF-32 is a fixed-length that

uses 4 bytes for every code point. Table 1-6 shows the formats used by UTF-8. The

x’s in the right column are the bits from the code point being encoded, with the

least significant bit of the code point placed in the right-most bit of the UTF-8

encoding. As shown in the table, the first 128 code points are encoded with a single

byte, which provides compatibility between ASCII and UTF-8. Thus a file or char-

acter string that contains only ASCII characters will be the same in both ASCII

and UTF-8.

In UTF-8, the number of bytes in a multi-byte sequence is indicated by the

number of leading ones in the first byte. Valid encodings must use the least number

1-6 / Alphanumeric Codes 45

 TABLE 1-6
UTF-8 Encoding for Unicode Code Points

Code point range (hexadecimal)

UTF-8 encoding (binary, where bit

positions with x are the bits of the code

point value)

U+0000 0000 to U+0000 007F 0xxxxxxx

U+0000 0080 to U+0000 07FF 110xxxxx 10xxxxxx

U+0000 0800 to U+0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+0001 0000 to U+0010 FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

of bytes necessary for a given code point. For example, any of the first 128 code

points, which correspond to ASCII, must be encoded using only one byte rather

using one of the longer sequences and padding the code point with 0s on the left. To

illustrate the UTF-8 encoding, consider a couple of examples. The code point

U+0054, Latin capital letter T, “T”, is in the range of U+0000 0000 to U+0000 007F,

so it would be encoded with one byte with a value of (01010100)2. The code point

U+00B1, plus-minus sign, “±”, is in the range of U+0000 0080 to U+0000 07FFF,

so it would be encoded with two bytes with a value of (11000010 10110001)2.

Parity Bit

To detect errors in data communication and processing, an additional bit is some-

times added to a binary code word to define its parity. A parity bit is the extra bit in-

cluded to make the total number of 1s in the resulting code word either even or odd.

Consider the following two characters and their even and odd parity:

With Even Parity With Odd Parity

1000001 01000001 11000001

1010100 11010100 01010100

In each case, we use the extra bit in the most significant position of the code to produce

an even number of 1s in the code for even parity or an odd number of 1s in the code for

odd parity. In general, one parity or the other is adopted, with even parity being more

common. Parity may be used with binary numbers as well as with codes, including

ASCII for characters, and the parity bit may be placed in any fixed position in the code.

EXAMPLE 1-8 Error Detection and Correction for ASCII Transmission

The parity bit is helpful in detecting errors during the transmission of information

from one location to another. Assuming that even parity is used, the simplest case is

handled as follows—An even (or odd) parity bit is generated at the sending end for

all 7-bit ASCII characters—the 8-bit characters that include parity bits are transmit-

ted to their destination. The parity of each character is then checked at the receiving

end; if the parity of the received character is not even (odd), it means that at least

46 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

1-7 GRAY CODES

As we count up or down using binary codes, the number of bits that change from one

binary value to the next varies. This is illustrated by the binary code for the octal dig-

its on the left in Table 1-7. As we count from 000 up to 111 and “roll over” to 000, the

number of bits that change between the binary values ranges from 1 to 3.

For many applications, multiple bit changes as the circuit counts is not a prob-

lem. There are applications, however, in which a change of more than one bit when

counting up or down can cause serious problems. One such problem is illustrated by

an optical shaft-angle encoder shown in Figure 1-6(a). The encoder is a disk attached

to a rotating shaft for measurement of the rotational position of the shaft. The disk

contains areas that are clear for binary 1 and opaque for binary 0. An illumination

source is placed on one side of the disk, and optical sensors, one for each of the bits

to be encoded, are placed on the other side of the disk. When a clear region lies

 TABLE 1-7
Gray Code

Binary

Code

Bit

Changes

Gray

Code

Bit

Changes

000
001
010
011
100
101
110
111
000

1
2
1
3
1
2
1
3

000
001
011
010
110
111
101
100
000

1
1
1
1
1
1
1
1

one bit has changed its value during the transmission. This method detects one, three,

or any odd number of errors in each character transmitted. An even number of er-

rors is undetected. Other error-detection codes, some of which are based on addi-

tional parity bits, may be needed to take care of an even number of errors. What is

done after an error is detected depends on the particular application. One possibility

is to request retransmission of the message on the assumption that the error was ran-

dom and will not occur again. Thus, if the receiver detects a parity error, it sends back

a NAK (negative acknowledge) control character consisting of the even-parity eight

bits, 10010101, from Table 1-5 on page 43. If no error is detected, the receiver sends

back an ACK (acknowledge) control character, 00000110. The sending end will

 respond to a NAK by transmitting the message again, until the correct parity is

 received. If, after a number of attempts, the transmission is still in error, an indication

of a malfunction in the transmission path is given. ■

1-7 / Gray Codes 47

B0

111

110

000

001

010

011100

101

B1

B2

(a) Binary code for positions 0 through 7

G0
G1

G2

111

101

100 000

001

011

010110
(b) Gray code for positions 0 through 7

 FIGURE 1-6
Optical Shaft-Angle Encoder

between the source and a sensor, the sensor responds to the light with a binary 1 out-

put. When an opaque region lies between the source and the sensor, the sensor

responds to the dark with a binary 0.

The rotating shaft, however, can be in any angular position. For example, sup-

pose that the shaft and disk are positioned so that the sensors lie right at the bound-

ary between 011 and 100. In this case, sensors in positions B2, B1, and B0 have the

light partially blocked. In such a situation, it is unclear whether the three sensors will

see light or dark. As a consequence, each sensor may produce either a 1 or a 0. Thus,

the resulting encoded binary number for a value between 3 and 4 may be 000, 001,

010, 011, 100, 101, 110, or 111. Either 011 or 100 will be satisfactory in this case, but

the other six values are clearly erroneous!

To see the solution to this problem, notice that in those cases in which only a

single bit changes when going from one value to the next or previous value, this

problem cannot occur. For example, if the sensors lie on the boundary between 2 and

3, the resulting code is either 010 or 011, either of which is satisfactory. If we change

the encoding of the values 0 through 7 such that only one bit value changes as we

count up or down (including rollover from 7 to 0), then the encoding will be satisfac-

tory for all positions. A code having the property that only one bit at a time changes

between codes during counting is a Gray code named for Frank Gray, who patented

its use for shaft encoders in 1953. There are multiple Gray codes for any set of n con-

secutive integers, with n even.

A specific Gray code for the octal digits, called a binary reflected Gray code,

appears on the right in Table 1-7. Note that the counting order for binary codes is now

000, 001, 011, 010, 110, 111, 101, 100, and 000. If we want binary codes for processing,

then we can build a digital circuit or use software that converts these codes to binary

before they are used in further processing of the information.

Figure 1-6(b) shows the optical shaft-angle encoder using the Gray code from

Table 1-7. Note that any two segments on the disk adjacent to each other have only

one region that is clear for one and opaque for the other.

The optical shaft encoder illustrates one use of the Gray code concept. There

are many other similar uses in which a physical variable, such as position or voltage,

48 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

has a continuous range of values that is converted to a digital representation. A quite

different use of Gray codes appears in low-power CMOS (Complementary Metal

Oxide Semiconductor) logic circuits that count up or down. In CMOS, power is con-

sumed only when a bit changes. For the example codes given in Table 1-7 with contin-

uous counting (either up or down), there are 14 bit changes for binary counting for

every eight bit changes for Gray code counting. Thus, the power consumed at the

counter outputs for the Gray code counter is only 57 percent of that consumed at the

binary counter outputs.

A Gray code for a counting sequence of n binary code words (n must be even)

can be constructed by replacing each of the first n/2 numbers in the sequence with a

code word consisting of 0 followed by the even parity for each bit of the binary code

word and the bit to its left. For example, for the binary code word 0100, the Gray

code word is 0, parity(0, 1), parity(1, 0), parity(0, 0) = 0110. Next, take the

sequence of numbers formed and copy it in reverse order with the leftmost 0

replaced by a 1. This new sequence provides the Gray code words for the second n/2

of the original n code words. For example, for BCD codes, the first five Gray code

words are 0000, 0001, 0011, 0010, and 0110. Reversing the order of these codes and

replacing the leftmost 0 with a 1, we obtain 1110, 1010, 1011, 1001, and 1000 for the

last five Gray codes. For the special cases in which the original binary codes are 0

through 2n - 1, each Gray code word may be formed directly from the correspond-

ing binary code word by copying its leftmost bit and then replacing each of the

remaining bits with the even parity of the bit of the number and the bit to its left.

1-8 CHAPTER SUMMARY

In this chapter, we introduced digital systems and digital computers and showed why

such systems use signals having only two values. We briefly introduced the structure

of the stored-program digital computer and showed how computers can be applied

to a broad range of specialized applications by using embedded systems. We then

related the computer structure to a representative example of a personal computer

(PC). We also described the concept of layers of abstraction for managing the com-

plexity of designing a computer system built from millions of transistors, as well as

outlining the basic design procedure for digital circuits.

Number-system concepts, including base (radix) and radix point, were pre-

sented. Because of their correspondence to two-valued signals, binary numbers were

discussed in detail. Octal (base 8) and hexadecimal (base 16) were also emphasized,

since they are useful as shorthand notation for binary. Arithmetic operations in bases

other than base 10 and the conversion of numbers from one base to another were

covered. Because of the predominance of decimal in normal use, Binary-Coded

Decimal (BCD) was treated. The representation of information in the form of char-

acters instead of numbers by means of the ASCII code for the English alphabet was

presented. Unicode, a standard for providing characters for languages worldwide,

was described. The parity bit was presented as a technique for error detection, and

the Gray code, which is critical to selected applications, was defined.

In subsequent chapters, we treat the representation of signed numbers and

floating-point numbers. Although these topics fit well with the topics in this chapter,

they are difficult to motivate without associating them with the hardware used to

Problems 49

implement the operations performed on them. Thus, we delay their presentation

until we examine the associated hardware.

REFERENCES

1. Gray, F. Pulse Code Communication. U. S. Patent 2 632 058, March 17, 1953.

2. Moggridge, B. Designing Interactions. Boston: MIT Press, 2006.

3. Patterson, D. A., and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 3rd ed. San Francisco: Morgan Kaufmann, 2004.

4. The Unicode Consortium. “Unicode 6.3.0.” 13 November 2013.

http://www.unicode.org/versions/Unicode6.3.0/

5. White, R. How Computers Work: Millennium Edition, 5th ed. Indianapolis: Que,

1999.

PROBLEMS

The plus (+) indicates a more advanced problem, and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

 1-1. This problem concerns wind measurements made by the wireless weather

station illustrated in Example 1-1. The wind-speed measurement uses a

rotating anemometer connected by a shaft to an enclosed disk that is one-half

clear and one-half black. There is a light above and a photodiode below the

disk in the enclosure. The photodiode produces a 3 V signal when exposed to

light and a 0 V signal when not exposed to light. (a) Sketch the relative

appearance of voltage waveforms produced by this sensor (1) when the wind

is calm, (2) when the wind is 10 mph, and (3) when the wind is 100 mph.

(b) Explain verbally what information the microcomputer must have

available and the tasks it must perform to convert the voltage waveforms

produced into a binary number representing wind speed in miles per hour.

 1-2. Using the scheme in Example 1-1, find the discrete, quantized value of voltage

and the binary code for each of the following Fahrenheit temperatures:

-34, +31, +77, and +108.

 1-3. *List the binary, octal, and hexadecimal numbers from 16 to 31.

 1-4. Calculate the exact number of bits in a memory that contains (a) 8K bits,
(b) 4M bits, and (c) 2G bytes?

 1-5. Calculate the exact number of bits in 2 Tb, with the help of following steps:

use the formula of 220 = 1,000,000
10

 + d, where d is the difference between 220

and 1,000,000
10

, to calculate exact number for 220; then expand the power

equation for 1 Tb into a sum-of-products form; insert the value of d; and then

find the sum for 1 Tb; thereafter, calculate the exact number of bits for 2 Tb.

 1-6. What is the decimal equivalent of the largest binary integer that can be

obtained with (a) 11 bits and (b) 25 bits?

50 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

 1-7. Convert the binary numbers into decimal numbers: 1011001, 1100111.001,

and 10110010.10101.

 1-8. Convert the following decimal numbers to binary: 255, 452, 124.5, and 587.625.

 1-9. *Convert the following numbers from the given base to the other three bases

listed in the table:

Decimal Binary Octal Hexadecimal

369.3125 ? ? ?

? 10111101.101 ? ?

? ? 326.5 ?

? ? ? F3C7.A

1-10. *Convert the following decimal numbers to the indicated bases, using the

methods of Examples 1-4 on page 39 and 1-7 on page 40:

(a) 7562.45 to octal

(a) (673.6)8 to hexadecimal

(a) 100 * 1110

(b) 1938.257 to hexadecimal

(b) (E7C.B)16 to octal

(b) 1100 * 1011

(c) 175.175 to binary.

(c) (310.2)4 to octal

(c) 10100 * 11010

1-11. *Perform the following conversion by using base 2 instead of base 10 as the

intermediate base for the conversion:

1-12. Perform multiplications of the following binary numbers:

1-13. +Division is composed of multiplications and subtractions. Perform the binary

division 1010110 , 101 to obtain a quotient and remainder.

1-14. Assume a new number system has a base of 4. There are at most four integer

digits. The weights of the digits are 43, 42, 41, and 40. Special names are given

to the weights as follows: 4 = 1 C, 42 = 1 G, and 43 = 1 R.

(a) Convert the 6 R + 2 G + 2 C number into equivalent decimal number.

(b) Find the base 4 representations of a decimal number 854810.

1-15. Evidence shows that base 20 has historically been used for number systems. If

the numbers are represented as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J,

then do the following:

(a) Convert 5618010 to base 20.

(b) Convert 9ABF20 to decimal numbers.

(c) Convert D5HA.520 to decimal numbers.

1-16. *In each of the following cases, determine the radix r:

(a) (BEE)r = (2699)10 (b) (365)r = (194)10

Problems 51

1-17. The following mathematical calculation is available in a written script of

ancient age, wherein the base is unknown. The calculation indicates

summation and multiplication of the unknown number system as presented

below. Find the base of the number system.

(24 + 13) * 2 = 134

1-18. Find the binary representations for each of the following BCD numbers:

(a) 0010 1001 0111 0101 (b) 0001 1001 0010.0101 0100

1-19. *Represent the decimal numbers 715 and 354 in BCD.

1-20. *Internally in the computer, with few exceptions, all numerical computation

is done using binary numbers. Input, however, often uses ASCII, which is

formed by appending 011 to the left of a BCD code. Thus, an algorithm that

directly converts a BCD integer to a binary integer is very useful. Here is one

such algorithm:

1. Draw lines between the 4-bit decades in the BCD number.

2. Move the BCD number one bit to the right.

3. Subtract 0011 from each BCD decade containing a binary value > 0111.

4. Repeat steps 2 and 3 until the leftmost 1 in the BCD number has been

moved out of the least significant decade position.

5. Read the binary result to the right of the least significant BCD decade.

(a) Execute the algorithm for the BCD number 0111 1000.

(b) Execute the algorithm for the BCD number 0011 1001 0111.

1-21. Internally in a computer, with few exceptions, all computation is done using

binary numbers. Output, however, often uses ASCII, which is formed by

appending 011 to the left of a BCD code. Thus, an algorithm that directly

converts a binary integer to a BCD integer is very useful. Here is one such

algorithm:

1. Draw lines to bound the expected BCD decades to the left of the binary

number.

2. Move the binary number one bit to the left.

3. Add 0011 to each BCD decade containing a binary value > 0100.

4. Repeat steps 2 and 3 until the last bit in the binary number has been

moved into the least significant BCD decade position.

5. Read the BCD result.

(a) Execute the algorithm for the binary number 1111000.

(b) Execute the algorithm for the binary number 01110010111.

52 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

1-22. How many ASCII codes are possible and how many ASCII characters are

used? How an upper-case letter can be converted into lower-case?

1-23. Find the characters representing the following ASCII codes: 1001110

1101111 0101110 0110001 0101101. Represent the 8 bit binary codes for

(a) even parity system and (b) odd parity system.

1-24. Represent the following sentence into ASCII code by maintaining the space

and upper- and lower-case letters as given under double quotes: “Pro. No. 1-24”.

1-25. *Show the bit configuration that represents the decimal number 255 in:

(a) binary, (b) BCD, (c) ASCII, and (d) ASCII with odd parity.

1-26. What is the use of Unicode code points? How the compatibility with ASCII

characters is maintained in UTF-8 format? Encode the U+00C3 in UTF-8.

1-27. (a) List the 7-bit binary number equivalents for 64 through 69 with a parity bit

added in the rightmost position, giving odd parity to the overall 7-bit

numbers. (b) Repeat for even parity.

1-28. Using the procedure given in Section 1-7, find the hexadecimal Gray code.

1-29. This problem concerns wind measurements made by the wireless weather

station in Example 1-1. The wind direction is to be measured with a disk

encoder like the one shown in Figure 1-6(b). (a) Assuming that the code 000

corresponds to N, list the Gray code values for each of the directions, S, E, W,

NW, NE, SW, and SE. (b) Explain why the Gray code you have assigned

avoids the reporting of major errors in wind direction.

1-30. Calculate the total number of bit changes in a one cycle of an 8-bit counter

which is counting in binary number. If the counter is now used to count in

Gray code, then what will be the total number of bit changes in one complete

cycle? What is the advantage of lower number of bit changes?

 53

In this chapter, we will begin our study of logic and computer design by describing

logic gates and various means of representing the input/output relationships of

propagation delay, the amount of time that it takes for a change on the input of gate to

combinational logic circuits and presents several methods for describing the input and

 53

C H A P T E R

Combinational
Logic Circuits

2

54 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

2-1 BINARY LOGIC AND GATES

Digital circuits are hardware components that manipulate binary information. The cir-

cuits are implemented using transistors and interconnections in complex semi- conductor

devices called integrated circuits. Each basic circuit is referred to as a logic gate. For sim-

plicity in design, we model the transistor- based electronic circuits as logic gates. Thus, the

designer need not be concerned with the internal electronics of the individual gates, but

only with their external logic properties. Each gate performs a specific logical operation.

The outputs of gates are applied to the inputs of other gates to form a digital circuit.

In order to describe the operational properties of digital circuits, we need to

introduce a mathematical notation that specifies the operation of each gate and that

can be used to analyze and design circuits. This binary logic system is one of a class of

mathematical systems generally called Boolean algebras (after the English mathemati-

cian George Boole, who in 1854 published a book introducing the mathematical theory

of logic). The specific Boolean algebra we will study is used to describe the interconnec-

tion of digital gates and to design logic circuits through the manipulation of Boolean

expressions. We first introduce the concept of binary logic and show its relationship to

digital gates and binary signals. We then present the properties of the Boolean algebra,

together with other concepts and methods useful in designing logic circuits.

Binary Logic

Binary logic deals with binary variables, which take on two discrete values, and with

the operations of mathematical logic applied to these variables. The two values the

variables take may be called by different names, as mentioned in Section 1-1, but for

our purpose, it is convenient to think in terms of binary values and assign 1 or 0 to

each variable. In the first part of this book, variables are designated by letters of the

alphabet, such as A, B, C, X, Y, and Z. Later this notation will be expanded to include

strings of letters, numbers, and special characters. Associated with the binary vari-

ables are three basic logical operations called AND, OR, and NOT:

1. AND. This operation is represented by a dot or by the absence of an operator.

For example, Z = X # Y or Z = XY is read “Z is equal to X AND Y.” The

logical operation AND is interpreted to mean that Z = 1 if and only if X = 1

and Y = 1—otherwise Z = 0. (Remember that X, Y, and Z are binary vari-

ables and can be equal to only 1 or 0.)

2. OR. This operation is represented by a plus symbol. For example, Z = X + Y

is read “Z is equal to X OR Y,” meaning that Z = 1 if X = 1 or if Y = 1, or if

both X = l and Y = 1. Z = 0 if and only if X = 0 and Y = 0.

3. NOT. This operation is represented by a bar over the variable. For example,

Z = X is read “Z is equal to NOT X,” meaning that Z is what X is not. In other

words, if X = 1, then Z = 0—but if X = 0, then Z = 1. The NOT operation is

also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

2-1 / Binary Logic and Gates 55

Binary logic resembles binary arithmetic, and the operations AND and OR

have similarities to multiplication and addition, respectively. This is why the symbols

used for AND and OR are the same as those used for multiplication and addition.

However, binary logic should not be confused with binary arithmetic. One should

realize that an arithmetic variable designates a number that may consist of many

digits, whereas a logic variable is always either a 1 or a 0. The following equations

define the logical OR operation:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 1

These resemble binary addition, except for the last operation. In binary logic, we

have 1 + 1 = 1 (read “one OR one is equal to one”), but in binary arithmetic, we

have 1 + 1 = 10 (read “one plus one is equal to two”). To avoid ambiguity, the sym-

bol ¡ is sometimes used for the OR operation instead of the + symbol. But as long

as arithmetic and logic operations are not mixed, each can use the + symbol with its

own independent meaning.

The next equations define the logical AND operation:

 0 # 0 = 0

 0 # 1 = 0

 1 # 0 = 0

 1 # 1 = 1

This operation is identical to binary multiplication, provided that we use only a single

bit. Alternative symbols to the · for AND and + for OR, are symbols ¿ and ¡ , respec-

tively, that represent conjunctive and disjunctive operations in propositional calculus.

For each combination of the values of binary variables such as X and Y, there is

a value of Z specified by the definition of the logical operation. The definitions may

be listed in compact form in a truth table. A truth table for an operation is a table of

combinations of the binary variables showing the relationship between the values

that the variables take on and the values of the result of the operation. The truth

tables for the operations AND, OR, and NOT are shown in Table 2-1. The tables list

 TABLE 2-1
Truth Tables for the Three Basic Logical Operations

AND OR NOT

X Y Z = X # Y X Y Z = X + Y X Z = X

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1

56 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

all possible combinations of values for two variables and the results of the operation.

They clearly demonstrate the definition of the three operations.

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to pro-

duce an output signal. Electrical signals such as voltages or currents exist throughout

a digital system in either of two recognizable values. Voltage- operated circuits re-

spond to two separate voltage ranges that represent a binary variable equal to logic 1

or logic 0, as illustrated in Figure 2-1. The input terminals of logic gates accept binary

signals within the allowable range and respond at the output terminals with binary

signals that fall within a specified range. The intermediate regions between the

allowed ranges in the figure are crossed only during changes from 1 to 0 or from 0 to

1. These changes are called transitions, and the intermediate regions are called the

transition regions.

The graphics symbols used to designate the three types of gates— AND, OR,

and NOT— are shown in Figure 2-1(a). The gates are electronic circuits that produce

the equivalents of logic- 1 and logic- 0 output signals in accordance with their respec-

tive truth tables if the equivalents of logic- 1 and logic- 0 input signals are applied. The

two input signals X and Y to the AND and OR gates take on one of four possible

combinations: 00, 01, 10, or 11. These input signals are shown as timing diagrams in

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X � Y (AND) 0 0 0 1

(OR) X � Y 0 1 1 1

(NOT) X 1 1 0 0

(a) Graphic symbols

OR gate

X

Y

X

Y

AND gate

Z � X � Y Z � X � Y Z � XX

NOT gate or
inverter

X � Y (AND) 0 0 0 1

tG

(c) AND timing diagram with gate delay tG

 FIGURE 2-1
Digital Logic Gates

2-1 / Binary Logic and Gates 57

Figure 2-1(b), together with the timing diagrams for the corresponding output signal

for each type of gate. The horizontal axis of a timing diagram represents time, and

the vertical axis shows a signal as it changes between the two possible voltage levels.

The low level represents logic 0 and the high level represents logic 1. The AND gate

responds with a logic- 1 output signal when both input signals are logic 1. The OR

gate responds with a logic- 1 output signal if either input signal is logic 1. The NOT

gate is more commonly referred to as an inverter. The reason for this name is appar-

ent from the response in the timing diagram. The output logic signal is an inverted

version of input logic signal X.
In addition to its function, each gate has another very important property

called gate delay, the length of time it takes for an input change to result in the corre-

sponding output change. Depending on the technology used to implement the gate,

the length of time may depend on which of the inputs are changing. For example, for

the AND gate shown in Figure 2-1(a), with both inputs equal to 1, the gate delay

when input B changes to 0 may be longer than the gate delay when the input A

changes to 0. Also, the gate delay when the output is changing from 0 to 1 may be

longer than when the output is changing from 1 to 0, or vice versa. In the simplified

model introduced here, these variations are ignored and the gate delay is assumed to

have a single value, tG. This value may be different for each gate type, number of

inputs, and the underlying technology and circuit design of the gate. In Figure 2-1(c),

the output of the AND gate is shown taking into consideration the AND gate delay,

tG. A change in the output waveform is shifted tG time units later compared to the

change in input X or Y that causes it. When gates are attached together to form logic

circuits, the delays down each path from an input to an output add together. In

Section 2-7, we will revisit gate delay and consider a more accurate model.

AND and OR gates may have more than two inputs. An AND gate with three

inputs and an OR gate with six inputs are shown in Figure 2-2. The three- input AND

gate responds with a logic- l output if all three inputs are logic l. The output is logic 0

if any input is logic 0. The six- input OR gate responds with a logic 1 if any input is

logic 1; its output becomes a logic 0 only when all inputs are logic 0.

Since Boolean functions are expressed in terms of AND, OR, and NOT opera-

tions, it is a straightforward procedure to implement a Boolean function with AND,

OR, and NOT gates. We find, however, that the possibility of considering gates with

other logic operations is of considerable practical interest. Factors to be taken into

consideration when constructing other types of gates are the feasibility and econ-

omy of implementing the gate with electronic components, the ability of the gate to

implement Boolean functions alone or in conjunction with other gates, and the con-

venience of representing gate functions that are frequently used. In this section, we

A
B
C

F � ABC

(a) Three-input AND gate (b) Six-input OR gate

A
B
C

G � A � B � C � D � E � F

D
E
F

 FIGURE 2-2
Gates with More than Two Inputs

58 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

introduce these other gate types, which are used throughout the rest of the text.

Specific techniques for incorporating these gate types in circuits are given in

Section 3-2.

The graphics symbols and truth tables of the most commonly used logic- gate

types are shown in Figure 2-3. Although the gates in Figure 2-3 are shown with just

two binary input variables, X and Y, and one output binary variable, F, with the

exception of the inverter, all may have more than two inputs. The distinctively shaped

symbols shown, as well as rectangular symbols not shown, are specified in detail in

the Institute of Electrical and Electronics Engineers’ (IEEE) Standard Graphic
Symbols for Logic Functions (IEEE Standard 91–1984). The AND, OR, and NOT

gates were defined previously. The NOT circuit inverts the logic sense of a binary

signal to produce the complement operation. Recall that this circuit is typically

called an inverter rather than a NOT gate. The small circle at the output of the

graphic symbol of an inverter is formally called a negation indicator and designates

the logical complement. We informally refer to the negation indicator as a “bubble.”

The NAND gate represents the complement of the AND operation, and the

NOR gate represents the complement of the OR operation. Their respective names

are abbreviations of NOT- AND and NOT- OR, respectively. The graphics symbols

for the NAND gate and NOR gate consist of an AND symbol and an OR symbol,

respectively, with a bubble on the output, denoting the complement operation. In

contemporary integrated circuit technology, NAND and NOR gates are the natural

primitive gate functions for the simplest and fastest electronic circuits. If we consider

the inverter as a degenerate version of NAND and NOR gates with just one input,

NAND gates alone or NOR gates alone can implement any Boolean function. Thus,

these gate types are much more widely used than AND and OR gates in actual logic

circuits. As a consequence, actual circuit implementations are often done in terms of

these gate types.

A gate type that alone can be used to implement all possible Boolean func-

tions is called a universal gate and is said to be “functionally complete.” To show that

the NAND gate is a universal gate, we need only show that the logical operations of

AND, OR, and NOT can be obtained with NAND gates only. This is done in Figure 2-4.

The complement operation obtained from a one- input NAND gate corresponds to a

NOT gate. In fact, the one- input NAND is an invalid symbol and is replaced by the

NOT symbol, as shown in the figure. The AND operation requires a NAND gate fol-

lowed by a NOT gate. The NOT inverts the output of the NAND, giving an AND

operation as the result. The OR operation is achieved using a NAND gate with

NOTs on each input. As will be detailed in Section 2-2, when DeMorgan’s theorem is

applied, the inversions cancel, and an OR function results.

Two other gates that are commonly used are the exclusive- OR (XOR) and

 exclusive- NOR (XNOR) gates, which will be described in more detail in Section 2-6.

The XOR gate shown in Figure 2-3 is similar to the OR gate, but excludes (has the

value 0 for) the combination with both X and Y equal to 1. The graphics symbol for

the XOR gate is similar to that for the OR gate, except for the additional curved line

on the inputs. The exclusive- OR has the special symbol ⊕ to designate its operation.

The exclusive- NOR is the complement of the exclusive- OR, as indicated by the

2-1 / Binary Logic and Gates 59

 FIGURE 2-3
Commonly Used Logic Gates

60 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

bubble at the output of its graphics symbol. These gates indicate whether their two

inputs are equal (XNOR) or not equal (XOR) to each other.

HDL Representations of Gates

While schematics using the basic logic gates are sufficient for describing small circuits,

they are impractical for designing more complex digital systems. In contemporary

computer systems design, HDL has become intrinsic to the design process. Conse-

quently, we introduce HDLs early in the text. Initially, we justify such languages by

describing their uses. We will then briefly discuss VHDL and Verilog®, the most pop-

ular of these languages. At the end of this chapter and in Chapters 3 and 4, we will

introduce them both in detail, although, in any given course, we expect that only one

of them will be covered.

HDLs resemble programming languages, but are specifically oriented to

describing hardware structures and behavior. They differ markedly from typical pro-

gramming languages in that they represent extensive parallel operation, whereas

most programming languages represent serial operation. An obvious use for an

HDL is to provide an alternative to schematics. When a language is used in this fash-

ion, it is referred to as a structural description, in which the language describes an

interconnection of components. Such a structural description, referred to as a netlist,
can be used as input to logic simulation just as a schematic is used. For this applica-

tion, models for each of the primitive blocks are required. If an HDL is used, then

these models can also be written in the HDL, providing a more uniform, portable

representation for simulation input. Our use of HDLs in this chapter will be mainly

limited to structural models. But as we will show later in the book, HDLs can repre-

sent much more than low- level behavior. In contemporary digital design, HDL mod-

els at a high level of abstraction can be automatically synthesized into optimized,

working hardware.

To provide an initial introduction to HDLs, we start with features aimed at rep-

resenting structural models. Table 2-2 shows the built- in Verilog primitives for the

NOT XX X

Y

X

OR

X

Y

AND

X

XY � XY

 � X � YX Y

 FIGURE 2-4
Logical Operations with NAND Gates

2-2 / Boolean Algebra 61

common logic gates from Figure 2-3. Each primitive declaration includes a list of

signals that are its inputs and output. The first signal in the list is the output of the

gate, and the remaining signals are the inputs. For the not gate, there can be only

one input, but for the other gates, there can be two or more inputs. In Verilog, the

gate primitives can be connected together to create structural models of logic cir-

cuits. VHDL does not have built- in logic gate primitives, but it does have logic oper-

ators that can be used to model the basic combinational gates, shown in Table 2-3.

Verilog also has logic operators that can be used to model the basic combinational

gates, shown in Table 2-4. Chapters 3 and 4 will show the necessary details to create

fully simulation- ready models using these gate primitives and logic operators, but

the reason for describing them at this point is to show that the HDLs provide an

alternative for representing logic circuits. For small circuits, describing the input/out-

put relationships with logic functions, truth tables, or schematics might be clear and

feasible, but for larger, more complex circuits, HDLs are often more appropriate.

2-2 BOOLEAN ALGEBRA

The Boolean algebra we present is an algebra dealing with binary variables and logic

operations. The variables are designated by letters of the alphabet, and the three

basic logic operations are AND, OR, and NOT (complementation). A Boolean expres-
sion is an algebraic expression formed by using binary variables, the constants 0 and 1,

 TABLE 2-2
Verilog Primitives for Combinational Logic Gates

Gate primitive Example instance

and and (F, X, Y);

or or (F, X, Y);

not not (F, Y);

nand nand (F, X, Y);

nor nor (F, X, Y);

xor xor (F, X, Y);

xnor xnor (F, X, Y);

 TABLE 2-3
VHDL Predefined Logic Operators

VHDL logic operator Example

not F <= not X;

and F <= X and Y;

or F <= X or Y;

nand F <= X nand Y;

nor F <= X nor Y;

xor F <= X xor Y;

xnor F <= X xnor Y;

62 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

the logic operation symbols, and parentheses. A Boolean function can be described

by a Boolean equation consisting of a binary variable identifying the function fol-

lowed by an equals sign and a Boolean expression. Optionally, the function identifier

is followed by parentheses enclosing a list of the function variables separated by com-

mas. A single- output Boolean function is a mapping from each of the possible combi-

nations of values 0 and 1 on the function variables to value 0 or 1. A multiple- output
Boolean function is a mapping from each of the possible combinations of values 0 and

1 on the function variables to combinations of 0 and 1 on the function outputs.

EXAMPLE 2-1 Boolean Function Example–Power Windows

Consider an example Boolean equation representing electrical or electronic logic

for control of the lowering of the driver’s power window in a car.

L(D, X, A) = DX + A

The window is raised or lowered by a motor driving a lever mechanism connected to

the window. The function L = 1 means that the window motor is powered up to turn

in the direction that lowers the window. L = 0 means the window motor is not pow-

ered up to turn in this direction. D is an output produced by pushing a panel switch

on the inside of the driver’s door. With D = 1, the lowering of the driver’s window is

requested, and with D = 0, this action is not requested. X is the output of a mechan-

ical limit switch. X = 1 if the window is at a limit— in this case, in the fully down

position. X = 0 if the window is not at its limit— i.e., not in the fully down position.

A = 1 indicates automatic lowering of the window until it is in the fully down posi-

tion. A is a signal generated by timing logic from D and X. Whenever D has been 1

for at least one- half second, A becomes 1 and remains at 1 until X = 1. If D = 1 for

less than one- half second, A = 0. Thus, if the driver requests that the window be

lowered for one- half second or longer, the window is to be lowered automatically to

the fully down position.

The two parts of the expression, DX and A, are called terms of the expression

for L. The function L is equal to 1 if term DX is equal to 1 or if term A is equal to 1.

Otherwise, L is equal to 0. The complement operation dictates that if X = 1, then

X = 0. Therefore, we can say that L = 1 if D = 1, and X = 0 or if A = 1. So what

does the equation for L say if interpreted in words? It says that the window will be

 TABLE 2-4
Verilog Bitwise Logic Operators

Verilog operator

symbol Operator function Example

~ Bitwise not F = ~X;

& Bitwise and F = X & Y;

| Bitwise or F = X | Y;

^ Bitwise xor F = X ^ Y;

~^, ^~ Bitwise xnor F = X ~^ Y;

2-2 / Boolean Algebra 63

lowered if the window is not fully lowered (X = 0) and the switch D is being pushed

(D = 1) or if the window is to be lowered automatically to fully down position

(A = 1). ■

A Boolean equation expresses the logical relationship between binary vari-

ables. It is evaluated by determining the binary value of the expression for all

possible combinations of values for the variables. A Boolean function can be repre-

sented by a truth table. A truth table for a function is a list of all combinations of 1s

and 0s that can be assigned to the binary variables and a list that shows the value of

the function for each binary combination. The truth tables for the logic operations

given in Table 2-1 are special cases of truth tables for functions. The number of rows

in a truth table is 2n, where n is the number of variables in the function. The binary

combinations for the truth table are the n- bit binary numbers that correspond to

counting in decimal from 0 through 2n - 1. Table 2-5 shows the truth table for the

function L = DX + A. There are eight possible binary combinations that assign

bits to the three variables D, X, and A. The column labeled L contains either 0 or 1

for each of these combinations. The table shows that the function L is equal to 1 if

D = 1 and X = 0 or if A = 1. Otherwise, the function L is equal to 0.

An algebraic expression for a Boolean function can be transformed into a cir-

cuit diagram composed of logic gates that implements the function. The logic circuit

diagram for function L is shown in Figure 2-5, with the equivalent Verilog and VHDL

models for the circuit shown in Figures 2-6 and 2-7. An inverter on input X generates

the complement, X. An AND gate operates on X and D, and an OR gate combines

DX and A. In logic circuit diagrams, the variables of the function F are taken as the

inputs of the circuit, and the binary variable F is taken as the output of the circuit. If

the circuit has a single output, F is a single output function. If the circuit has multiple

 TABLE 2-5
Truth Table for the Function L = DX + A

D X A L

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

A

X

D

L

 FIGURE 2-5
Logic Circuit Diagram for L = DX + A

64 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

 module fig2_5 (L, D, X, A);
 input D, X, A;
 output L;
 wire X_n, t2;

 not (X_n, X);
 and (t2, D, X_n);
 or (L, t2, A);
 endmodule

 FIGURE 2-6
Verilog Model for the Logic Circuit of Figure 2-5

library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all,
lcdf_vhdl.func_prims.all;
entity fig2_5 is
 port (L: out std_logic;
 D, X, A: in std_logic);
end fig2_5;

architecture structural of fig2_5 is
 component NOT1
 port(in1: in std_logic;
 out1: out std_logic);
 end component;
 component AND2
 port(in1, in2: in std_logic;
 out1: out std_logic);
 end component;
 component OR2
 port(in1, in2: in std_logic;
 out1: out std_logic);
 end component;
signal X_n, t2: std_logic;

begin
 g0: NOT1 port map(X, X_n);
 g1: AND2 port map(D, X_n, t2);
 g3: OR2 port map(t2, A, L);
end structural;

 FIGURE 2-7
VHDL Model for the Logic Circuit of Figure 2-5

2-2 / Boolean Algebra 65

outputs, function F is a multiple output function with multiple variables and equa-

tions required to represent its outputs. Circuit gates are interconnected by wires that

carry logic signals. Logic circuits of this type are called combinational logic circuits,

since the variables are “combined” by the logical operations. This is in contrast to the

sequential logic to be treated in Chapter 4, in which variables are stored over time as

well as being combined.

There is only one way that a Boolean function can be represented in a truth

table. However, when the function is in algebraic equation form, it can be expressed

in a variety of ways. The particular expression used to represent the function dictates

the interconnection of gates in the logic circuit diagram. By manipulating a Boolean

expression according to Boolean algebraic rules, it is often possible to obtain a sim-

pler expression for the same function. This simpler expression reduces both the

number of gates in the circuit and the numbers of inputs to the gates. To see how this

is done, we must first study the basic rules of Boolean algebra.

Basic Identities of Boolean Algebra

Table 2-6 lists the most basic identities of Boolean algebra. The notation is simplified

by omitting the symbol for AND whenever doing so does not lead to confusion. The

first nine identities show the relationship between a single variable X, its comple-

ment X, and the binary constants 0 and 1. The next five identities, 10 through 14, have

counterparts in ordinary algebra. The last three, 15 through 17, do not apply in ordi-

nary algebra, but are useful in manipulating Boolean expressions.

The basic rules listed in the table have been arranged into two columns that

demonstrate the property of duality of Boolean algebra. The dual of an algebraic

expression is obtained by interchanging OR and AND operations and replacing 1s

by 0s and 0s by 1s. An equation in one column of the table can be obtained from the

corresponding equation in the other column by taking the dual of the expressions on

both sides of the equals sign. For example, relation 2 is the dual of relation 1 because

the OR has been replaced by an AND and the 0 by 1. It is important to note that

most of the time the dual of an expression is not equal to the original expression, so

that an expression usually cannot be replaced by its dual.

 TABLE 2-6
Basic Identities of Boolean Algebra

 1. X + 0 = X 2. X # 1 = X
 3. X + 1 = 1 4. X # 0 = 0

 5. X + X = X 6. X # X = X
 7 . X + X = 1 8. X # X = 0
 9. X = X

10. X + Y = Y + X 11. XY = YX Commutative

12. X + (Y + Z) = (X + Y) + Z 13. X(YZ) = (XY)Z Associative

14. X(Y + Z) = XY + XZ 15. X + YZ = (X + Y)(X + Z) Distributive

16. X + Y = X # Y 17. X # Y = X + Y DeMorgan’s

66 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

The nine identities involving a single variable can be easily verified by substi-

tuting each of the two possible values for X. For example, to show that X + 0 = X,

let X = 0 to obtain 0 + 0 = 0, and then let X = 1 to obtain 1 + 0 = 1. Both equa-

tions are true according to the definition of the OR logic operation. Any expression

can be substituted for the variable X in all the Boolean equations listed in the table.

Thus, by identity 3 and with X = AB + C, we obtain

AB + C + 1 = 1

Note that identity 9 states that double complementation restores the variable to its

original value. Thus, if X = 0, then X = 1 and X = 0 = X.

Identities 10 and 11, the commutative laws, state that the order in which the

variables are written will not affect the result when using the OR and AND opera-

tions. Identities 12 and 13, the associative laws, state that the result of applying an

operation over three variables is independent of the order that is taken, and there-

fore, the parentheses can be removed altogether, as follows:

 X + (Y + Z) = (X + Y) + Z = X + Y + Z

 X(YZ) = (XY)Z = XYZ

These two laws and the first distributive law, identity 14, are well known from ordi-

nary algebra, so they should not pose any difficulty. The second distributive law,

given by identity 15, is the dual of the ordinary distributive law and does not hold in

ordinary algebra. As illustrated previously, each variable in an identity can be

replaced by a Boolean expression, and the identity still holds. Thus, consider the

expression (A + B) (A + CD). Letting X = A, Y = B, and Z = CD, and apply-

ing the second distributive law, we obtain

(A + B)(A + CD) = A + BCD

The last two identities in Table 2-6,

X + Y = X # Y and X # Y = X + Y

are referred to as DeMorgan’s theorem. This is a very important theorem and is used

to obtain the complement of an expression and of the corresponding function.

DeMorgan’s theorem can be illustrated by means of truth tables that assign all the

possible binary values to X and Y. Table 2-7 shows two truth tables that verify the

 TABLE 2-7
Truth Tables to Verify DeMorgan’s Theorem

(a) X Y X + Y X + Y (b) X Y X Y X # Y
0 0 0 1 0 0 1 1 1

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 0 1 0

1 1 1 0 1 1 0 0 0

2-2 / Boolean Algebra 67

first part of DeMorgan’s theorem. In (a), we evaluate X + Y for all possible values

of X and Y. This is done by first evaluating X + Y and then taking its complement.

In (b), we evaluate X and Y and then AND them together. The result is the same for

the four binary combinations of X and Y, which verifies the identity of the equation.

Note the order in which the operations are performed when evaluating an

expression. In part (b) of the table, the complement over a single variable is evalu-

ated first, followed by the AND operation, just as in ordinary algebra with multipli-

cation and addition. In part (a), the OR operation is evaluated first. Then, noting that

the complement over an expression such as X + Y is considered as specifying NOT

(X + Y), we evaluate the expression within the parentheses and take the comple-

ment of the result. It is customary to exclude the parentheses when complementing

an expression, since a bar over the entire expression joins it together. Thus, (X + Y)

is expressed as X + Y when designating the complement of X + Y.
DeMorgan’s theorem can be extended to three or more variables. The general

DeMorgan’s theorem can be expressed as

 X1 + X2 + c + Xn = X1X2 c Xn

 X1X2 c Xn = X1 + X2 + c + Xn

Observe that the logic operation changes from OR to AND or from AND to OR. In

addition, the complement is removed from the entire expression and placed instead

over each variable. For example,

A + B + C + D = A B C D

Algebraic Manipulation

Boolean algebra is a useful tool for simplifying digital circuits. Consider, for example,

the Boolean function represented by

F = XYZ + XYZ + XZ

The implementation of this equation with logic gates is shown in Figure 2-8(a). Input

variables X and Z are complemented with inverters to obtain X and Z. The three

terms in the expression are implemented with three AND gates. The OR gate forms

the logical OR of the terms. Now consider a simplification of the expression for F by

applying some of the identities listed in Table 2-6:

 F = XYZ + XYZ + XZ

 = XY(Z + Z) + XZ by identity 14

 = XY # 1 + XZ by identity 7

 = XY + XZ by identity 2

The expression is reduced to only two terms and can be implemented with

gates as shown in Figure 2-8(b). It is obvious that the circuit in (b) is simpler than the

one in (a) yet, both implement the same function. It is possible to use a truth table to

verify that the two implementations are equivalent. This is shown in Table 2-8. As

68 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

X

Y

Z

F

(a) F � XYZ � XYZ � XZ

(b) F � XY � XZ

X
Y

F

Z

 FIGURE 2-8
Implementation of Boolean Function with Gates

 TABLE 2-8
Truth Table for Boolean Function

X Y Z (a) F (b) F

0 0 0 0 0

0 0 1 0 0

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

expressed in Figure 2-8(a), the function is equal to 1 if X = 0, Y = 1, and Z = 1; if

X = 0, Y = 1, and Z = 0; or if X and Z are both 1. This produces the four 1s for F in

part (a) of the table. As expressed in Figure 2-8(b), the function is equal to 1 if X = 0

and Y = 1 or if X = 1 and Z = 1. This produces the same four 1s in part (b) of the

table. Since both expressions produce the same truth table, they are equivalent.

Therefore, the two circuits have the same output for all possible binary combinations

of the three input variables. Each circuit implements the same function, but the one

with fewer gates and/or fewer gate inputs is preferable because it requires fewer

components.

When a Boolean equation is implemented with logic gates, each term requires

a gate, and each variable within the term designates an input to the gate. We define a

literal as a single variable within a term that may or may not be complemented. The

2-2 / Boolean Algebra 69

expression for the function in Figure 2-8(a) has three terms and eight literals; the one

in Figure 2-8(b) has two terms and four literals. By reducing the number of terms, the

number of literals, or both in a Boolean expression, it is often possible to obtain a

simpler circuit. Boolean algebra is applied to reduce an expression for the purpose

of obtaining a simpler circuit. For highly complex functions, finding the best expres-

sion based on counts of terms and literals is very difficult, even by the use of com-

puter programs. Certain methods, however, for reducing expressions are often

included in computer tools for synthesizing logic circuits. These methods can obtain

good, if not the best, solutions. The only manual method for the general case is a cut-

 and- try procedure employing the basic relations and other manipulations that

become familiar with use. The following examples use identities from Table 2-6 to

illustrate a few of the possibilities:

1. X + XY = X # 1 + XY = X(1 + Y) = X # 1 = X

2. XY + XY = X(Y + Y) = X # 1 = X

3. X + XY = (X + X)(X + Y) = 1 # (X + Y) = X + Y

Note that the intermediate steps X = X # 1 and X # 1 = X are often omitted because

of their rudimentary nature. The relationship 1 + Y = 1 is useful for eliminating

redundant terms, as is done with the term XY in this same equation. The relation

Y + Y = 1 is useful for combining two terms, as is done in equation 2. The two

terms being combined must be identical except for one variable, and that variable

must be complemented in one term and not complemented in the other. Equation 3

is simplified by means of the second distributive law (identity 15 in Table 2-6). The

following are three more examples of simplifying Boolean expressions:

4. X(X + Y) = X # X + X # Y = X + XY = X(1 + Y) = X # 1 = X

5. (X + Y)(X + Y) = X + YY = X + 0 = X

6. X(X + Y) = XX + XY = 0 + XY = XY

The six equalities represented by the initial and final expressions are theorems of

Boolean algebra proved by the application of the identities from Table 2-6. These

theorems can be used along with the identities in Table 2-6 to prove additional

results and to assist in performing simplification.

Theorems 4 through 6 are the duals of equations 1 through 3. Remember that

the dual of an expression is obtained by changing AND to OR and OR to AND

throughout (and 1s to 0s and 0s to 1s if they appear in the expression). The duality
principle of Boolean algebra states that a Boolean equation remains valid if we take

the dual of the expressions on both sides of the equals sign. Therefore, equations 4, 5,

and 6 can be obtained by taking the dual of equations 1, 2, and 3, respectively.

Along with the results just given in equations 1 through 6, the following con-
sensus theorem is useful when simplifying Boolean expressions:

XY + XZ + YZ = XY + XZ

The theorem shows that the third term, YZ, is redundant and can be eliminated.

Note that Y and Z are associated with X and X in the first two terms and appear

70 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

together in the term that is eliminated. The proof of the consensus theorem is

obtained by first ANDing YZ with (X + X) = 1 and proceeds as follows:

 XY + XZ + YZ = XY + XZ + YZ(X + X)

 = XY + XZ + XYZ + XYZ

 = XY + XYZ + XZ + XYZ

 = XY(1 + Z) + XZ(1 + Y)

 = XY + XZ

The dual of the consensus theorem is

(X + Y)(X + Z)(Y + Z) = (X + Y)(X + Z)

The following example shows how the consensus theorem can be applied in

manipulating a Boolean expression:

 (A + B)(A + C) = AA + AC + AB + BC

 = AC + AB + BC

 = AC + AB

Note that AA = 0 and 0 + AC = AC. The redundant term eliminated in the last

step by the consensus theorem is BC.

Complement of a Function

The complement representation for a function F, F, is obtained from an interchange

of 1s to 0s and 0s to 1s for the values of F in the truth table. The complement of a

function can be derived algebraically by applying DeMorgan’s theorem. The gener-

alized form of this theorem states that the complement of an expression is obtained

by interchanging AND and OR operations and complementing each variable and

constant, as shown in Example 2-2.

EXAMPLE 2-2 Complementing Functions

Find the complement of each of the functions represented by the equations

F1 = XYZ + X YZ and F2 = X(Y Z + YZ). Applying DeMorgan’s theorem as

many times as necessary, we obtain the complements as follows:

 F1 = XYZ + X YZ = (XYZ) # (X YZ)

 = (X + Y + Z)(X + Y + Z)

 F2 = X(Y Z + YZ) = X + (Y Z + YZ)

 = X + Y Z # YZ

 = X + (Y + Z)(Y + Z)

A simpler method for deriving the complement of a function is to take the dual

of the function equation and complement each literal. This method follows from the

2-3 / Standard Forms 71

generalization of DeMorgan’s theorem. Remember that the dual of an expression is

obtained by interchanging AND and OR operations and 1s and 0s. To avoid confu-

sion in handling complex functions, adding parentheses around terms before taking

the dual is helpful, as illustrated in the next example. ■

EXAMPLE 2-3 Complementing Functions by Using Duals

Find the complements of the functions in Example 2-2 by taking the duals of their

equations and complementing each literal.

We begin with

F1 = XYZ + X YZ = (XYZ) + (X YZ)

The dual of F1 is

(X + Y + Z)(X + Y + Z)

Complementing each literal, we have

(X + Y + Z)(X + Y + Z) = F1

Now,

F2 = X(Y Z + YZ) = X((Y Z) + (YZ))

The dual of F2 is

X + (Y + Z)(Y + Z)

Complementing each literal yields

X + (Y + Z)(Y + Z) = F2

2-3 STANDARD FORMS

A Boolean function expressed algebraically can be written in a variety of ways. There

are, however, specific ways of writing algebraic equations that are considered to

be standard forms. The standard forms facilitate the simplification procedures for

Boolean expressions and, in some cases, may result in more desirable expressions for

implementing logic circuits.

The standard forms contain product terms and sum terms. An example of a

product term is XYZ. This is a logical product consisting of an AND operation

among three literals. An example of a sum term is X + Y + Z. This is a logical sum

consisting of an OR operation among the literals. In Boolean algebra, the words

“product” and “sum” do not imply arithmetic operations—instead, they specify the

logical operations AND and OR, respectively.

Minterms and Maxterms

A truth table defines a Boolean function. An algebraic expression for the function

can be derived from the table by finding a logical sum of product terms for which the

function assumes the binary value 1. A product term in which all the variables appear

 ■

72 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

exactly once, either complemented or uncomplemented, is called a minterm. Its

characteristic property is that it represents exactly one combination of binary

variable values in the truth table. It has the value 1 for that combination and 0 for all

others. There are 2n distinct minterms for n variables. The four minterms for the two

variables X and Y are X Y, XY, XY, and XY. The eight minterms for the three vari-

ables X, Y, and Z are listed in Table 2-9. The binary numbers from 000 to 111 are

listed under the variables. For each binary combination, there is a related minterm.

Each minterm is a product term of exactly n literals, where n is the number of vari-

ables. In this example, n = 3. A literal is a complemented variable if the correspond-

ing bit of the related binary combination is 0 and is an uncomplemented variable if it

is 1. A symbol mj for each minterm is also shown in the table, where the subscript j
denotes the decimal equivalent of the binary combination corresponding to the min-

term. This list of minterms for any given n variables can be formed in a similar man-

ner from a list of the binary numbers from 0 through 2n -1. In addition, the truth

table for each minterm is given in the right half of the table. These truth tables clear-

ly show that each minterm is 1 for the corresponding binary combination and 0 for

all other combinations. Such truth tables will be helpful later in using minterms to

form Boolean expressions.

A sum term that contains all the variables in complemented or uncomple-

mented form is called a maxterm. Again, it is possible to formulate 2n maxterms with

n variables. The eight maxterms for three variables are listed in Table 2-10. Each

maxterm is a logical sum of the three variables, with each variable being comple-

mented if the corresponding bit of the binary number is 1 and uncomplemented if it

is 0. The symbol for a maxterm is Mj, where j denotes the decimal equivalent of the

binary combination corresponding to the maxterm. In the right half of the table,

the truth table for each maxterm is given. Note that the value of the maxterm is 0 for

the corresponding combination and 1 for all other combinations. It is now clear

where the terms “minterm” and “maxterm” come from: a minterm is a function, not

equal to 0, having the minimum number of 1s in its truth table; a maxterm is a func-

tion, not equal to 1, having the maximum of 1s in its truth table. Note from Table 2-9

 TABLE 2-9
Minterms for Three Variables

X Y Z

Product

Term Symbol m
0

m
1

m
2

m
3

m
4

m
5

m
6

m
7

0 0 0 X Y Z m
0

1 0 0 0 0 0 0 0

0 0 1 X YZ m
1

0 1 0 0 0 0 0 0

0 1 0 XYZ m
2

0 0 1 0 0 0 0 0

0 1 1 XYZ m
3

0 0 0 1 0 0 0 0

1 0 0 XY Z m
4

0 0 0 0 1 0 0 0

1 0 1 XYZ m
5

0 0 0 0 0 1 0 0

1 1 0 XYZ m
6

0 0 0 0 0 0 1 0

1 1 1 XYZ m
7

0 0 0 0 0 0 0 1

2-3 / Standard Forms 73

and Table 2-10 that a minterm and maxterm with the same subscript are the comple-

ments of each other; that is, Mj = mj and mj = Mj. For example, for j = 3, we have

M3 = X + Y + Z + = XYZ = m3

A Boolean function can be represented algebraically from a given truth table

by forming the logical sum of all the minterms that produce a 1 in the function.

This expression is called a sum of minterms. Consider the Boolean function F in

Table 2-11(a). The function is equal to 1 for each of the following binary combinations

of the variables X, Y, and Z : 000, 010, 101 and 111. These combinations correspond

to minterms 0, 2, 5, and 7. By examining Table 2-11 and the truth tables for these min-

terms in Table 2-9, it is evident that the function F can be expressed algebraically as

the logical sum of the stated minterms:

F = X Y Z + XYZ + XYZ + XYZ = m0 + m2 + m5 + m7

This can be further abbreviated by listing only the decimal subscripts of the minterms:

F(X, Y, Z) = Σm(0, 2, 5, 7)

 TABLE 2-10
Maxterms for Three Variables

X Y Z Sum Term Symbol M0 M1 M2 M3 M4 M5 M6 M7

0 0 0 X + Y + Z M0 0 1 1 1 1 1 1 1

0 0 1 X + Y + Z M1 1 0 1 1 1 1 1 1

0 1 0 X + Y + Z M2 1 1 0 1 1 1 1 1

0 1 1 X + Y + Z M3 1 1 1 0 1 1 1 1

1 0 0 X + Y + Z M4 1 1 1 1 0 1 1 1

1 0 1 X + Y + Z M5 1 1 1 1 1 0 1 1

1 1 0 X + Y + Z M6 1 1 1 1 1 1 0 1
1 1 1 X + Y + Z M7 1 1 1 1 1 1 1 0

 TABLE 2-11
Boolean Functions of Three Variables

(a) X Y Z F F (b) X Y Z E

0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1

0 1 1 0 1 0 1 1 0

1 0 0 0 1 1 0 0 1

1 0 1 1 0 1 0 1 1

1 1 0 0 1 1 1 0 0

1 1 1 1 0 1 1 1 0

74 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

The symbol Σ stands for the logical sum (Boolean OR) of the minterms. The num-

bers following it represent the minterms of the function. The letters in parentheses

following F form a list of the variables in the order taken when the minterms are

converted to product terms.

Now consider the complement of a Boolean function. The binary values of F in

Table 2-11(a) are obtained by changing 1s to 0s and 0s to 1s in the values of F. Taking

the logical sum of minterms of F, we obtain

F(X,Y,Z) = X YZ + XYZ + XY Z + XYZ = m1 + m3 + m4 + m6

or, in abbreviated form,

F(X, Y, Z) = Σm(1, 3, 4, 6)

Note that the minterm numbers for F are the ones missing from the list of the min-

term numbers of F. We now take the complement of F to obtain F:

 F = m1 + m3 + m4 + m6 = m1
m3

m4
m6

 = M1
M3

M4
M6 (since mj = Mj)

 = (X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

This shows the procedure for expressing a Boolean function as a product of max-
terms. The abbreviated form for this product is

F(X, Y, Z) = wM(1, 3, 4, 6)

where the symbol ∑ denotes the logical product (Boolean AND) of the maxterms

whose numbers are listed in parentheses. Note that the decimal numbers included in

the product of maxterms will always be the same as the minterm list of the comple-

mented function, such as (1, 3, 4, 6) in the foregoing example. Maxterms are seldom

used directly when dealing with Boolean functions, since we can always replace them

with the minterm list of F.

The following is a summary of the most important properties of minterms:

1. There are 2n minterms for n Boolean variables. These minterms can be generat-

ed from the binary numbers from 0 to 2n - 1.

2. Any Boolean function can be expressed as a logical sum of minterms.

3. The complement of a function contains those minterms not included in the

original function.

4. A function that includes all the 2n minterms is equal to logic 1.

A function that is not in the sum- of- minterms form can be converted to that form by

means of a truth table, since the truth table always specifies the minterms of the

function. Consider, for example, the Boolean function

E = Y + X Z

The expression is not in sum- of- minterms form, because each term does not contain all

three variables X, Y, and Z. The truth table for this function is listed in Table 2-11(b).

2-3 / Standard Forms 75

From the table, we obtain the minterms of the function:

E(X, Y, Z) = Σm(0, 1, 2, 4, 5)

The minterms for the complement of E are given by

E(X, Y, Z) = Σm(3, 6, 7)

Note that the total number of minterms in E and E is equal to eight, since the func-

tion has three variables, and three variables produce a total of eight minterms. With

four variables, there will be a total of 16 minterms, and for two variables, there will be

four minterms. An example of a function that includes all the minterms is

G(X, Y) = Σm(0, 1, 2, 3) = 1

Since G is a function of two variables and contains all four minterms, it is always

equal to logic 1.

Sum of Products

The sum- of- minterms form is a standard algebraic expression that is obtained direct-

ly from a truth table. The expression so obtained contains the maximum number of

literals in each term and usually has more product terms than necessary. This is be-

cause, by definition, each minterm must include all the variables of the function,

complemented or uncomplemented. Once the sum of minterms is obtained from the

truth table, the next step is to try to simplify the expression to see whether it is

possible to reduce the number of product terms and the number of literals in the

terms. The result is a simplified expression in sum- of- products form. This is an alter-

native standard form of expression that contains product terms with up to n literals.

An example of a Boolean function expressed as a sum of products is

F = Y + XYZ + XY

The expression has three product terms, the first with one literal, the second with

three literals, and the third with two literals.

The logic diagram for a sum- of- products form consists of a group of AND gates

followed by a single OR gate, as shown in Figure 2-9. Each product term requires an

AND gate, except for a term with a single literal. The logical sum is formed with an

OR gate that has single literals and the outputs of the AND gates as inputs. Often,

Y

X
Y

X
Y

F
Z

 FIGURE 2-9
 Sum- of- Products Implementation

76 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

we assumed that the input variables are directly available in their complemented

and uncomplemented forms, so inverters are not included in the diagram. The AND

gates followed by the OR gate form a circuit configuration referred to as a two- level
implementation or two- level circuit.

If an expression is not in sum- of- products- form, it can be converted to the stan-

dard form by means of the distributive laws. Consider the expression

F = AB + C(D + E)

This is not in sum- of- products form, because the term D + E is part of a product,

not a single literal. The expression can be converted to a sum of products by applying

the appropriate distributive law as follows:

F = AB + C(D + E) = AB + CD + CE

The function F is implemented in a nonstandard form in Figure 2-10(a). This requires

two AND gates and two OR gates. There are three levels of gating in the circuit. F is

implemented in sum- of- products form in Figure 2-10(b). This circuit requires three

AND gates and an OR gate and uses two levels of gating. The decision as to whether

to use a two- level or multiple- level (three levels or more) implementation is com-

plex. Among the issues involved are the number of gates, number of gate inputs, and

the amount of delay between the time the input values are set and the time the

resulting output values appear. Two- level implementations are the natural form for

certain implementation technologies, as we will see in Chapter 5.

Product of Sums

Another standard form of expressing Boolean functions algebraically is the product
of sums. This form is obtained by forming a logical product of sum terms. Each logi-

cal sum term may have any number of distinct literals. An example of a function ex-

pressed in product- of- sums form is

F = X(Y + Z)(X + Y + Z)

This expression has sum terms of one, two, and three literals. The sum terms perform

an OR operation, and the product is an AND operation.

(a) AB � C(D � E)

A
B

C

D
E

(b) AB � CD � CE

A

B

C

D

C

E

 FIGURE 2-10
 Three- Level and Two- Level Implementation

2-4 / Two-Level Circuit Optimization 77

The gate structure of the product- of- sums expression consists of a group of OR

gates for the sum terms (except for a single literal term), followed by an AND gate.

This is shown in Figure 2-11 for the preceding function F. As with the sum of prod-

ucts, this standard type of expression results in a two- level gating structure.

2-4 TWO- LEVEL CIRCUIT OPTIMIZATION

The complexity of a logic circuit that implements a Boolean function is directly relat-

ed to the algebraic expression from which the function is implemented. Although the

 truth- table representation of a function is unique, when expressed algebraically, the

function appears in many different forms. Boolean expressions may be simplified by

algebraic manipulation, as discussed in Section 2-2. However, this procedure of sim-

plification is awkward, because it lacks specific rules to predict each succeeding step

in the manipulative process and it is difficult to determine whether the simplest ex-

pression has been achieved. By contrast, the map method provides a straightforward

procedure for optimizing Boolean functions of up to four variables. Maps for five and

six variables can be drawn as well, but are more cumbersome to use. The map is also

known as the Karnaugh map, or K- map. The map is a diagram made up of squares,

with each square representing one row of a truth table, or correspondingly, one mint-

erm of a single output function. Since any Boolean function can be expressed as a

sum of minterms, it follows that a Boolean function is recognized graphically in the

map by those squares for which the function has value 1, or correspondingly, whose

minterms are included in the function. From a more complex view, the map presents a

visual diagram of all possible ways a function may be expressed in a standard form.

Among these ways are the optimum sum- of- products standard forms for the func-

tion. The optimized expressions produced by the map are always in sum- of- products

or product- of- sums form. Thus, maps handle optimization for two- level implementa-

tions, but do not apply directly to possible simpler implementations for the general

case with three or more levels. Initially, this section covers sum- of- products optimiza-

tion and, later, applies it to performing product- of- sums optimization.

Cost Criteria

In the prior section, counting literals and terms was mentioned as a way of measuring

the simplicity of a logic circuit. We introduce two cost criteria to formalize this concept.

X

Z

X
Y
Z

Y
F

 FIGURE 2-11
 Product- of- Sums Implementation

78 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

The first criterion is literal cost, the number of literal appearances in a Boolean

expression corresponding exactly to the logic diagram. For example, for the circuits

in Figure 2-10, the corresponding Boolean expressions are

F = AB + C(D + E) and F = AB + CD + CE

There are five literal appearances in the first equation and six in the second, so the

first equation is the simplest in terms of literal cost. Literal cost has the advantage

that it is very simple to evaluate by counting literal appearances. It does not, how-

ever, represent circuit complexity accurately in all cases, even for the comparison of

different implementations of the same logic function. The following Boolean equa-

tions, both for function G, illustrate this situation:

G = ABCD + A B C D and G = (A + B)(B + C)(C + D)(D + A)

The implementations represented by these equations both have a literal cost of

eight. But, the first equation has two terms and the second has four. This suggests

that the first equation has a lower cost than the second.

To capture the difference illustrated, we define gate- input cost as the number of

inputs to the gates in the implementation corresponding exactly to the given equa-

tion or equations. This cost can be determined easily from the logic diagram by sim-

ply counting the total number of inputs to the gates in the logic diagram. For

 sum- of- products or product- of- sums equations, it can be found from the equation by

finding the sum of

1. all literal appearances,

2. the number of terms excluding terms that consist only of a single literal, and,

optionally,

3. the number of distinct complemented single literals.

In (1), all gate inputs from outside the circuit are represented. In (2), all gate inputs

within the circuit, except for those to inverters, are represented and in (3), inverters

needed to complement the input variables are counted in the event that comple-

mented input variables are not provided. For the two preceding equations, excluding

the count from (3), the respective gate- input counts are 8 + 2 = 10 and 8 + 4 = 12.

Including the count from (3), that of input inverters, the respective counts are 14 and

16. So the first equation for G has a lower gate- input cost, even though the literal

costs are equal.

 Gate- input cost is currently a good measure for contemporary logic imple-

mentations, since it is proportional to the number of transistors and wires used in

implementing a logic circuit. Representation of gate inputs becomes particularly

important in measuring cost for circuits with more than two levels. Typically, as the

number of levels increases, literal cost represents a smaller proportion of the actual

circuit cost, since more and more gates have no inputs from outside the circuit itself.

On the Companion Website, we introduce complex gate types for which evaluation

of the gate- input cost from an equation is invalid, since the correspondence between

the AND, OR, and NOT operations in the equation and the gates in the circuit can

no longer be established. In such cases, as well as for equation forms more complex

2-4 / Two-Level Circuit Optimization 79

than sum- of- products and product- of- sums, the gate- input count must be deter-

mined directly from the implementation.

Regardless of the cost criteria used, we see later that the simplest expression is

not necessarily unique. It is sometimes possible to find two or more expressions that

satisfy the cost criterion applied. In that case, either solution is satisfactory from the

cost standpoint.

Map Structures

We will consider maps for two, three, and four variables as shown in Figure 2-12. The

number of squares in each map is equal to the number of minterms in the corre-

sponding function. In our discussion of minterms, we defined a minterm mi to go with

the row of the truth table with i in binary as the variable values. This use of i to

(a) (b)

0

1

0 1
Y

X

X Y X Y

X YX Y

(c) (d)

ZX

ZX

0

6 4

13

57

2

X Z

0
2

8 10

1 39
11

(f)(e)

00

01

00 01
YZ

WX

Y

Z

W

11 10

11

10

X

X Z

0 1

2 3 X

Y

0

1

0 1
Y

X

Y

X

Z

0 1 3 2

4 5 7 6

YZ

X

0

00 01 11 10

1

1 3 2

4 5 7 6

8 9 1011

12 13 1415

0

 FIGURE 2-12
Map Structures

80 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

 represent the minterm mi is carried over to the cells of the maps, each of which corre-

sponds to a minterm. For two, three, and four variables, there are 4, 8, and 16 squares,

respectively. Each of the maps is labeled in two ways: 1) with variables at the upper

left for the columns and the rows and with a binary combination of those variables for

each column and each row, and 2) with single variable labels at the edges of the map

applied by a bracket to single or double rows and columns. Each location of a variable

label aligns with the region of the map for which the variable has value 1. The region

for which the variable has value 0 is implicitly labeled with the complement of the

variable. Only one of these two schemes is required to completely label a map, but

both are shown to allow selection of the one that works best for a given user.

Beginning with the binary combination scheme, we note that the binary combi-

nations across the top and down the left side of a map take the form of a Gray code

as introduced in Section 1-7. The use of the Gray code is appropriate because it rep-

resents the adjacency of binary combinations and of the corresponding minterms

that is the foundation of K- maps. Two binary combinations are said to be adjacent if
they differ in the value of exactly one variable. Two product terms (including min-

terms) are adjacent if they differ in one and only one literal which appears uncom-

plemented in one and complemented in the other. For example, the combinations

(X, Y, Z) = 011 and 010 are adjacent, since they differ only in the value of

variable Z. Further, the minterms XYZ and XYZ are adjacent, since they have

identical literal appearances except for Z, which appears uncomplemented and com-

plemented. The reason for the use of a Gray code on K- maps is that any two squares

which share a common edge correspond to a pair of adjacent binary combinations

and adjacent minterms. This correspondence can be used to perform simplification

of product terms for a given function on a K- map. This simplification is based on the

Boolean algebraic theorem:

AB + AB = A

Applying this to the example with A = XY and B = Z,

(XY)Z + (XY)Z = XY

Looking at the K- map in Figure 2-12(c), we see that the two corresponding squares

are located at (X, Y, Z) = 011 (3) and 010 (2), which are in row 0 and columns 11

and 10, respectively. Note that these two squares are adjacent (share an edge) and

can be combined, as indicated by the black rectangle in Figure 2-12(c). This rectangle

on the K- map contains both 0 and 1 for Z, and so no longer depends on Z, and can be

read off as XY. This demonstrates that whenever we have two squares sharing edges

that are minterms of a function, these squares can be combined to form a product

term with one less variable.

For the 3- and 4-variable K- maps, there is one more issue to be addressed with

respect to the adjacency concept. For a 3-variable K- map, suppose we consider the

minterms 0 and 2 in Figure 2-12(c). These two minterms do not share an edge, and

hence do not appear to be adjacent. However, these two minterms are X Y Z and

X Y Z, which by definition are adjacent. In order to recognize this adjacency on the

 K- map, we need to consider the left and right borders of the map to be a shared edge.

Geometrically, this can be accomplished by forming a cylinder from the map so that

2-4 / Two-Level Circuit Optimization 81

the squares touching the left and right borders actually have a shared edge! A view

of this cylinder appears in Figure 2-12(d). Here minterms m
0
 and m

2
 share an edge

and, from the K- map, are adjacent. Likewise, m
4
 and m

6
 share an edge on the K- map

and are adjacent. The two rectangles resulting from these adjacencies are shown in

Figure 2-12(c) and 2-12(d) in blue.

The 4-variable K- map in Figure 2-12(e) can likewise be formed into a cylinder.

This demonstrates four adjacencies, m0 and m2, m4 and m6, m12 and m14, and m8 and

m10. The minterms m0 and m8, W X Y Z and W X Y Z, are adjacent, suggesting that

the top border of the map should be a shared edge with the bottom border. This can

be accomplished by taking the cylinder formed from the map and bending it, joining

these two borders. This results in the torus (doughnut shape) in Figure 2-12(f). The

additional resulting adjacencies identifiable on the map are m
1
 and m

9
, m

3
 and m

11
,

and m
2
 and m

10
.

Unfortunately, the cylinder and the torus are not convenient to use, but they

can help us remember the locations of shared edges. These edges are at the left and

right border pair for the flat 3-variable map and at the left and right border pair and

the top and bottom border pair for 4-variable K- maps, respectively. The use of flat

maps will require the use of pairs of split rectangles lying across the border pairs.

One final detail is the placing of a given function F on a map. Suppose that the

function F is given as a truth table with the row designated by decimal i correspond-

ing to the binary input values equivalent to i. Based on the binary combinations on

the left and top edges of the K- map combined in order, we can designate each cell

of the map by the same i. This will permit easy transfer of the 0 and 1 values of F
from the truth table onto the K- map. The values of i for this purpose are shown on the

three maps in Figure 2-12. It is a good idea to determine how to fill in the values of i
quickly by noting the order of the values of i in a row depends on the Gray code value

order for the columns and the ordering of the rows of i values depends on the Gray code

value order for the rows. For example, for the 4-variable map, the rows- of- columns

order of the i values is: 0, 1, 3, 2, 4, 5, 7, 6, 12, 13, 15, 14, 8, 9, 11, 10. The rows- of- columns

order of the i values for 2-variable and 3-variable maps are the first four values and

the first eight values from this sequence. These values can also be used for sum of

minterm expressions defined using the abbreviated Σ notation. Note that the posi-

tioning of the i values is dependent upon the placement of the variables in order

from lower left side to middle right side to right top and middle bottom for a

4-variable map. For 2- and 3-variable maps, the order is the same with the nonexis-

tent “middle” positions skipped. Any variation from this ordering will give a differ-

ent map structure.

 Two- Variable Maps

There are four basic steps for using a K- map. Initially, we present each of these steps

using a 2-variable function F(A, B) as an example.

The first step is to enter the function on the K- map. The function may be in

the form of a truth table, the Σm shorthand notation for a sum of minterms, or a

 sum- of- products expression. The truth table for F(A, B) is given in Table 2-12. For

each row in which the function F has value 1, the values of A and B can be read to

82 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

determine where to place a 1 on the map. For example, the function has value 1 for

the combination A = 0 and B = 0. Thus, a 1 is placed in the upper left square of

the K- map in Figure 2-13(a) corresponding to A = 0 and B = 0. This operation is

repeated for rows (0, 1) and (1, 1) in the truth table to complete the entry of F in the

map.

If the decimal subscripts for the minterms have been added to the truth table

and entered on the map as discussed previously, a much faster approach to entering

the function on the map is available. The subscripts for the minterms of the function

are those corresponding to the rows for which the function is a 1. So a 1 is simply

entered in squares 0, 1, and 3 of the K- map. For these two entry methods, as well as

others, we assume that each remaining square contains a 0, but do not actually enter

0s in the K- map.

The Σm notation for F in the truth table is F(A, B) = Σm(0, 1, 3), which can

be entered on the K- map simply by placing 1 in each of the squares 0, 1, and 3.

Alternatively, a sum- of- products expression such as F = A + AB can be given as a

specification. This can be converted to minterms and entered on the K- map. More

simply, the region of the K- map corresponding to each of the product terms can be

identified and filled with 1s. Since AB is a minterm, we can simply place a 1 in square

3. For A, we note that the region is that identified as “not” A on the K- map and con-

sists of squares 0 and 1. So A can be entered by placing a 1 in each of these two

squares. In general, this last process becomes easier once we have mastered the con-

cept of rectangles on a K- map, as discussed next.

The second step is to identify collections of squares on the map representing

product terms to be considered for the simplified expression. We call such objects

rectangles, since their shape is that of a rectangle (including, of course, a square).

 TABLE 2-12
 Two- Variable Function F(A, B)

A B F

0 0 1
0 1 1
1 0 0
1 1 1

0

1 1

0 1
B

A

1

11

A

B

0 1

2 3

(a) (b)

0

1

0 1
B

A

1

1

A

B

0 1

2 3

 FIGURE 2-13
 Two- Variable K- Map Examples

2-4 / Two-Level Circuit Optimization 83

Rectangles that correspond to product terms are restricted to contain numbers of

squares that are powers of 2, such as 1, 2, 4, and 8. Also, this implies that the length of

a side of any rectangle is a power of 2. Our goal is to find the fewest such rectangles

that include or cover all of the squares marked with 1s. This will give the fewest

product terms and the least input cost for summing the product terms. Any rectangle

we are planning to use should be as large as possible in order to include as many 1s

as possible. Also, a larger rectangle gives a lower input cost for the corresponding

product term.

For the example, there are two largest rectangles. One consists of squares 1 and

0, the other of squares 3 and 1. Squares 1 and 0 correspond to minterms AB and A B,

which can be combined to form rectangle A. Squares 3 and 1 correspond to min-

terms AB and AB, which can be combined to form rectangle B.
The third step is to determine if any of the rectangles we have generated is not

needed to cover all of the 1s on the K- map. In the example, we can see that rectangle

A is required to cover minterm 0 and rectangle B is required to cover minterm 3. In

general, a rectangle is not required if it can be deleted and all of the 1s on the map

are covered by the remaining rectangles. If there are choices as to which rectangle of

two having unequal size to remove, the largest one should remain.

The final step is to read off the sum- of- products expression, determining the

corresponding product terms for the required rectangles in the map. In the example,

we can read off the corresponding product terms by using the rectangles shown and

the variable labels on the map boundary as A and B, respectively. This gives a sum-

 of- products expression for F as:

F = A + B

EXAMPLE 2-4 Another 2-Variable Map Example

The function G(A, B) = Σm(1, 2) is shown on the 2-variable K- map in Figure

2-13(b). Looking at the map, we find the two rectangles are simply the minterms 1 and

2. From the map, ■

G(A, B) = AB + AB

From Figure 2-13(a) and 2-13(b), we find that 2-variable maps contain:

(1) 1 * 1 rectangles which correspond to minterms and (2) 2 * 1 rectangles consist-

ing of a pair of adjacent minterms. A 1 * 1 rectangle can appear on any square of

the map and a 2 * 1 rectangle can appear either horizontally or vertically on the

map, each in one of two positions. Note that a 2 * 2 rectangle covers the entire map

and corresponds to the function F = 1.

 Three- Variable Maps

We introduce simplification on 3-variable maps by using two examples followed by a

discussion of the new concepts involved beyond those required for 2-variable maps.

84 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 2-5 Three- Variable Map Simplification 1

Simplify the Boolean function

F(A, B, C) = Σm(0, 1, 2, 3, 4, 5)

This function has been entered on the K- map shown in Figure 2-14(a), where squares

0 through 5 are marked with 1s. In the map, the two largest rectangles each enclose

four squares containing 1s. Note that two squares, 0 and 1, lie in both of the rectan-

gles. Since these two rectangles include all of the 1s in the map and neither can be

removed, the logical sum of the corresponding two product terms gives the opti-

mized expression for F:

F = A + B

To illustrate algebraically how a 4 * 4 rectangle such as B arises, consider the two

adjacent black rectangles AB and A B connected by two pairs of adjacent minterms.

These can be combined based on the theorem XY + XY = X with X = B and

Y = A to obtain B. ■

EXAMPLE 2-6 Three- Variable Map Simplification 2

Simplify the Boolean function

G(A, B, C) = Σm(0, 2, 4, 5, 6)

This function has been entered on the K- map shown in Figure 2-14(b), where squares

listed are marked with 1s. In some cases, two squares in the map are adjacent and

form a rectangle of size two, even though they do not touch each other. For example,

in Figure 2-14(b) and 2-12(d), m
0
 is adjacent to m

2
 because the minterms differ by

one variable. This can be readily verified algebraically:

m0 + m2 = A B C + A B C = A C(B + B) = A C

This rectangle is represented in black in Figure 2-14(b) and in blue in Figure 2-12(d)

on a cylinder where the adjacency relationship is apparent. Likewise, a rectangle is

shown in both figures for squares 4 and 6 which corresponds to AC. From the prior

example, it is apparent that these two rectangles can be combined to give a larger

rectangle C which covers squares 0, 2, 4, and 6. An additional rectangle is required to

0

1

B

C

A 1

00 01 11 10

1

1

BC

A

1
0

54

231

7 6

11 0

1

B

C

A 1

00 01 11 10

1

1

BC

A

1
0

54

231

7 6
1

0

1

B

C

A 1

00 01 11 10

1

1

BC

A

1
0

54

231

7 6
1

(a) (b) (c)

 FIGURE 2-14
 Three- Variable K- Maps for Examples 2-5 through 2-7

2-4 / Two-Level Circuit Optimization 85

cover square 5. The largest such rectangle covers squares 4 and 5. It can be read from

the K- map as AB. The resulting simplified function is

G(A, B) = AB + C

From Figures 2-14(a) and 2-14(b), we find that 3-variable maps can contain all

of the rectangles contained in a 2-variable map plus: (1) 2 * 2 rectangles, (2) 1 * 4

rectangles, (3) 2 * 1 “split rectangles” at the left and right edges, and a 2 * 2 split

rectangle at the left and right edges. Note that a 2 * 4 rectangle covers the entire

map and corresponds to the function G = 1.

EXAMPLE 2-7 Three- Variable Map Simplification 3

Simplify the Boolean function

H(A, B, C) = Σm(1, 3, 4, 5, 6)

This function has been entered on the K- map shown in Figure 2-14(c), where squares

listed are marked with 1s. In this example, we intentionally set the goal of finding all

of the largest rectangles in order to emphasize step 3 of simplification, which has not

been a significant step in earlier examples. Progressing from the upper center, we

find the rectangles corresponding to the following pairs of squares: (3, 1), (1, 5), (5, 4),

(4, 6). Can any of these rectangles be removed and still have all squares covered?

Since only (3, 1) covers 3, it cannot be removed. The same holds for (4, 6) which cov-

ers square 6. After these are included, the only square that remains uncovered is 5,

which permits either (1, 5) or (5, 4), but not both, to be removed. Assuming that (5, 4)

remains, the result can be read from the map as

H(A, B, C) = AC + AB + AC

EXAMPLE 2-8 Four- Variable Map Simplification 1

Simplify the Boolean function

F(A, B, C, D) = Σm(0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13)

The minterms of the function are marked with 1s in the K- map shown in Figure 2-15.

Eight squares in the two left columns are combined to form a rectangle for the one

literal term, C. The remaining three 1s cannot be combined to give a single simplified

product term—rather, they must be combined as two split 2 * 2 rectangles. The top

two 1s on the right are combined with the top two 1s on the left to give the term A D.

Note again that it is permissible to use the same square more than once. We are now

left with a square marked with a 1 in the fourth row and fourth column (minterm

1010). Instead of taking this square alone, which will give a term with four literals, we

combine it with squares already used to form a rectangle of four squares on the four

corners, giving the term B D. This rectangle is represented in Figure 2-15 and in

Figure 2-12(e) on a torus, where the adjacency relationships between the four

squares are apparent. The optimized expression is the logical sum of the three terms:

F = C + A D + B D

■

 ■

 ■

86 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 2-9 Four- Variable Map Simplification 2

Simplify the Boolean function

G(A, B, C, D) = A C D + A D + B C + C D + A B D

This function has four variables: A, B, C, and D. It is expressed in a fairly complex

 sum- of- products form. In order to enter G on a K- map, we will actually enter the

regions corresponding to the product terms onto the map, fill the regions with 1s, and

then copy the 1s onto a new map for solution. The area in the map covered by the

function is shown in Figure 2-16(a). A C D places 1s on squares 0 and 4. AD adds 1s

to squares 1, 3, 5, and 7. BC adds new 1s to squares 2, 10, and 11. CD adds a new 1 to

square 15 and A B D adds the final 1 to square 8. The resulting function

G(A, B, C, D) = Σm(0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 15)

is placed on the map in Figure 2-16(b). It is a good idea to check if the 4-corner rect-

angle B D is present and required. It is present, is required to cover square 8, and also

covers squares 0, 2, and 10. With these squares covered, it is easy to see that just two

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1 1

1 1

1 1

1 1

1

1

1

0

141312

11 1098

7 654

3 21

15

 FIGURE 2-15
 Four- Variable K- Map for Example 2-8

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1 1

1

1

1

11

1
0

141312

11 1098

7 654

3 21

15

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

11

1

1

1

111

1

0

141312

11 1098

7 654

3 21

15

(a) K-map for original function G (b) K-map for simplified function G

 FIGURE 2-16
 Four- Variable K- Map for Example 2-9

2-5 / Map Manipulation 87

rectangles, A C and CD, cover all of the remaining uncovered squares. We can read

off the resulting function as:

G = B D + A C + CD

Note that this function is much simpler than the original sum- of- products given. ■

2-5 MAP MANIPULATION

When combining squares in a map, it is necessary to ensure that all the minterms of

the function are included. At the same time, we need to minimize the number of

terms in the optimized function by avoiding any redundant terms whose minterms

are already included in other terms. In this section, we consider a procedure that as-

sists in the recognition of useful patterns in the map. Other topics to be covered are

the optimization of products of sums and the optimization of incompletely specified

functions.

Essential Prime Implicants

The procedure for combining squares in a map may be made more systematic if we

introduce the terms “implicant,” “prime implicant,” and “essential prime implicant.”

A product term is an implicant of a function if the function has the value 1 for all

minterms of the product term. Clearly, all rectangles on a map made up of squares

containing 1s correspond to implicants. If the removal of any literal from an impli-

cant P results in a product term that is not an implicant of the function, then P is a

prime implicant. On a map for an n- variable function, the set of prime implicants

corresponds to the set of all rectangles made up of 2m squares containing 1s

(m = 0, 1, ..., n), with each rectangle containing as many squares as possible.

If a minterm of a function is included in only one prime implicant, that prime

implicant is said to be essential. Thus, if a square containing a 1 is in only one rectangle

representing a prime implicant, then that prime implicant is essential. In Figure 2-14(c),

the terms A C and A C are essential prime implicants, and the terms A B and B C are

nonessential prime implicants.

The prime implicants of a function can be obtained from a map of the function

as all possible maximum collections of 2m squares containing 1s (m = 0, 1, ..., n)

that constitute rectangles. This means that a single 1 on a map represents a prime

implicant if it is not adjacent to any other 1s. Two adjacent 1s form a rectangle repre-

senting a prime implicant, provided that they are not within a rectangle of four or

more squares containing 1s. Four 1s form a rectangle representing a prime implicant

if they are not within a rectangle of eight or more squares containing 1s, and so on.

Each essential prime implicant contains at least one square that is not contained in

any other prime implicant.

The systematic procedure for finding the optimized expression from the map

requires that we first determine all prime implicants. Then, the optimized expression

is obtained from the logical sum of all the essential prime implicants, plus other

prime implicants needed to include remaining minterms not included in the essen-

tial prime implicants. This procedure will be clarified by examples.

88 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 2-10 Simplification Using Prime Implicants

Consider the map of Figure 2-17. There are three ways that we can combine four

squares into rectangles. The product terms obtained from these combinations are the

prime implicants of the function, A D, B D and A B. The terms A D and B D are es-

sential prime implicants, but A B is not essential. This is because minterms 1 and 3

are included only in the term A D, and minterms 12 and 14 are included only in the

term B D. But minterms 4, 5, 6, and 7 are each included in two prime implicants, one

of which is A B, so the term A B is not an essential prime implicant. In fact, once the

essential prime implicants are chosen, the term A B is not needed, because all the

minterms are already included in the two essential prime implicants. The optimized

expression for the function of Figure 2-17 is

F = A D + B D

EXAMPLE 2-11 Simplification Via Essential and Nonessential Prime Implicants

A second example is shown in Figure 2-18. The function plotted in part (a) has seven

minterms. If we try to combine squares, we will find that there are six prime impli-

 ■

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

11 1

1 1

0

54

231

7 6

12

98

141513

11 10

 FIGURE 2-17
Prime Implicants for Example 2-10: A D, B D, and A B

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1 1

1

1

(a) Plotting the minterms

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1 1

1

1

(b) Essential prime implicants

 FIGURE 2-18
Simplification with Prime Implicants in Example 2-11

2-5 / Map Manipulation 89

cants. In order to obtain a minimum number of terms for the function, we must first

determine the prime implicants that are essential. As shown in blue in part (b) of the

figure, the function has four essential prime implicants. The product term A B C D is

essential because it is the only prime implicant that includes minterm 0. Similarly,

the product terms B C D, A B C, and A B C are essential prime implicants because

they are the only ones that include minterms 5, 12, and 10, respectively. Minterm 15 is

included in two nonessential prime implicants. The optimized expression for the

function consists of the logical sum of the four essential prime implicants and one

prime implicant that includes minterm 15:

F = A B C D + B C D + A B C + A B C + £A C D
 or

A B D

The identification of essential prime implicants in the map provides an additional

tool which shows the terms that must absolutely appear in every sum- of- products

expression for a function and provides a partial structure for a more systematic

method for choosing patterns of prime implicants.

Nonessential Prime Implicants

Beyond using all essential prime implicants, the following rule can be applied to in-

clude the remaining minterms of the function in nonessential prime implicants:

Selection Rule: Minimize the overlap among prime implicants as much as

possible. In particular, in the final solution, make sure that each prime implicant

selected includes at least one minterm not included in any other prime implicant

selected.

In most cases, this results in a simplified, although not necessarily optimum,

 sum- of- products expression. The use of the selection rule is illustrated in the next

example.

EXAMPLE 2-12 Simplifying a Function Using the Selection Rule

Find a simplified sum- of- products form for (0, 1, 2, 4, 5, 10, 11, 13, 15).

The map for F is given in Figure 2-19, with all prime implicants shown. A C is

the only essential prime implicant. Using the preceding selection rule, we can choose

the remaining prime implicants for the sum- of- products form in the order indicated

by the numbers. Note how the prime implicants 1 and 2 are selected in order to

include minterms without overlapping. Prime implicant 3 (A B D) and prime impli-

cant B C D both include the one remaining minterm 0010, and prime implicant 3 is

arbitrarily selected to include the minterm and complete the sum- of- products

expression:

F(A, B, C, D) = A C + A B D + A B C + A B D

The prime implicants not used are shown in black in Figure 2-19. ■

 ■

90 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

 Product- of- Sums Optimization

The optimized Boolean functions derived from the maps in all of the previous exam-

ples were expressed in sum- of- products form. With only minor modification, the

 product- of- sums form can be obtained.

The procedure for obtaining an optimized expression in product- of- sums form

follows from the properties of Boolean functions. The 1s placed in the squares of the

map represent the minterms of the function. The minterms not included in the func-

tion belong to the complement of the function. From this, we see that the comple-

ment of a function is represented in the map by the squares not marked by 1s. If we

mark the empty squares with 0s and combine them into valid rectangles, we obtain

an optimized expression of the complement of the function, F. We then take the

complement of F to obtain F as a product of sums. This is done by taking the dual

and complementing each literal, as in Example 2-13.

EXAMPLE 2-13 Simplifying a Product- of- Sums Form

Simplify the following Boolean function in product- of- sums form:

F(A, B, C, D) = Σm(0, 1, 2, 5, 8, 9, 10)

The 1s marked in the map of Figure 2-20 represent the minterms of the function. The

squares marked with 0s represent the minterms not included in F and therefore

denote the complement of F. Combining the squares marked with 0s, we obtain the

optimized complemented function

F = A B + C D + B D

Taking the dual and complementing each literal gives the complement of F. This is F
in product- of- sums form:

F = (A + B)(C + D)(B + D) ■

1 2

3

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1

1

1

11

1

 FIGURE 2-19
Map for Example 2-12

2-5 / Map Manipulation 91

The previous example shows the procedure for obtaining the product- of- sums

optimization when the function is originally expressed as a sum of minterms. The

procedure is also valid when the function is originally expressed as a product of max-

terms or a product of sums. Remember that the maxterm numbers are the same as

the minterm numbers of the complemented function, so 0s are entered in the map

for the maxterms or for the complement of the function. To enter a function

expressed as a product of sums into the map, we take the complement of the func-

tion and, from it, find the squares to be marked with 0s. For example, the function

F = (A + B + C)(B + D)

can be plotted in the map by first obtaining its complement,

F = ABC + B D

and then marking 0s in the squares representing the minterms of F. The remaining

squares are marked with 1s. Then, combining the 1s gives the optimized expression

in sum- of- products form. Combining the 0s and then complementing gives the opti-

mized expression in product- of- sums form. Thus, for any function plotted on the

map, we can derive the optimized function in either one of the two standard forms.

Don’ t- Care Conditions

The minterms of a Boolean function specify all combinations of variable values for

which the function is equal to 1. The function is assumed to be equal to 0 for the rest of

the minterms. This assumption, however, is not always valid, since there are applica-

tions in which the function is not specified for certain variable value combinations.

There are two cases in which this occurs. In the first case, the input combinations never

occur. As an example, the four- bit binary code for the decimal digits has six combina-

tions that are not used and not expected to occur. In the second case, the input combi-

nations are expected to occur, but we do not care what the outputs are in response to

these combinations. In both cases, the outputs are said to be unspecified for the input

combinations. Functions that have unspecified outputs for some input combinations

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1 1

0

0 0

0

0

1 1

0

0

1

0 0

 FIGURE 2-20
Map for Example 2-13

92 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

are called incompletely specified functions. In most applications, we simply do not care

what value is assumed by the function for the unspecified minterms. For this reason, it

is customary to call the unspecified minterms of a function don’ t- care conditions. These

conditions can be used on a map to provide further simplification of the function.

It should be realized that a don’ t- care minterm cannot be marked with a 1 on

the map, because that would require that the function always be a 1 for such a min-

term. Likewise, putting a 0 in the square requires the function to be 0. To distinguish

the don’ t- care condition from 1s and 0s, an X is used. Thus, an X inside a square in the

map indicates that we do not care whether the value of 0 or 1 is assigned to the func-

tion for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’ t- care

minterms may be used. When simplifying function F using the 1s, we can choose to

include those don’ t- care minterms that give the simplest prime implicants

for F. When simplifying function F using the 0s, we can choose to include those don’ t-

 care minterms that give the simplest prime implicants for F, irrespective of those

included in the prime implicants for F. In both cases, whether or not the don’ t- care

minterms are included in the terms in the final expression is irrelevant. The handling

of don’ t- care conditions is illustrated in the next example.

EXAMPLE 2-14 Simplification with Don’ t- Care Conditions

To clarify the procedure for handling the don’ t- care conditions, consider the follow-

ing incompletely specified function F that has three don’ t- care minterms d:

 F(A, B, C, D) = Σm(1, 3, 7, 11, 15)

 d(A, B, C, D) = Σm(0, 2, 5)

The minterms of F are the variable combinations that make the function equal to 1.

The minterms of d are the don’ t- care minterms. The map optimization is shown in

Figure 2-21. The minterms of F are marked by 1s, those of d are marked by Xs, and

the remaining squares are filled with 0s. To get the simplified function in sum- of-

 products form, we must include all five 1s in the map, but we may or may not include

any of the Xs, depending on what yields the simplest expression for the function. The

term CD includes the four minterms in the third column. The remaining minterm in

square 0001 can be combined with square 0011 to give a three- literal term. However,

by including one or two adjacent Xs, we can combine four squares into a rectangle to

give a two- literal term. In part (a) of the figure, don’ t- care minterms 0 and 2 are

included with the 1s, which results in the simplified function

F = C D + A B

In part (b), don’ t- care minterm 5 is included with the 1s, and the simplified function

now is

F = C D + A D

The two expressions represent two functions that are algebraically unequal. Both

include the specified minterms of the original incompletely specified function, but

2-5 / Map Manipulation 93

each includes different don’ t- care minterms. As far as the incompletely specified

function is concerned, both expressions are acceptable. The only difference is in the

value of F for the unspecified minterms.

It is also possible to obtain an optimized product- of- sums expression for the

function of Figure 2-21. In this case, the way to combine the 0s is to include don’ t- care

minterms 0 and 2 with the 0s, giving the optimized complemented function

F = D + A C

Taking the complement of F gives the optimized expression in product- of- sums

form:

F = D(A + C)

The foregoing example shows that the don’ t- care minterms in the map are initially

considered as representing both 0 and 1. The 0 or 1 value that is eventually assigned

depends on the optimization process. Due to this process, the optimized function will

have a 0 or 1 value for each minterm of the original function, including those that

were initially don’t cares. Thus, although the outputs in the initial specification may

contain Xs, the outputs in a particular implementation of the specification are only 0s

and 1s.

MORE OPTIMIZATION This supplement gives a procedure for selecting prime im-

plicants that guarantees an optimum solution. In addition, it presents a symbolic

method for performing prime- implicant generation and a tabular method for prime-

 implicant selection. The supplement also discusses how finding the true two- level

optimum solution for large circuits is impractical due to the difficulty of generating

all of the prime implicants and selecting from a large number of possible prime-

 implicant solutions. The supplement describes a computer algorithm that general-

ly achieves near- optimum two- level solutions for large circuits much more quickly

than using the optimum approach.

■

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

X X1 1

0 X 1 0

0 0 01

0 0 01

B

CD

AB

X00

01

00 01

C

D

A

11 10

11

10

B

1 1 X

0 X 1 0

0 0 1

0 0 1

0

0

 FIGURE 2-21
Example with Don’ t- Care Conditions

94 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

2-6 EXCLUSIVE- OR OPERATOR AND GATES

In addition to the exclusive- OR gate shown in Figure 2-3, there is an exclusive- OR

operator with its own algebraic identities. The exclusive- OR (XOR), denoted by ⊕ ,

is a logical operation that performs the function

X ⊕ Y = XY + XY

It is equal to 1 if exactly one input variable is equal to 1. The exclusive- NOR, also

known as the equivalence, is the complement of the exclusive- OR and is expressed

by the function

X ⊕ Y = XY + X Y

It is equal to 1 if both X and Y are equal to 1 or if both are equal to 0. The two func-

tions can be shown to be the complement of each other, either by means of a truth

table or, as follows, by algebraic manipulation:

X ⊕ Y = XY + XY = (X + Y)(X + Y) = XY + X Y

The following identities apply to the exclusive- OR operation:

 X ⊕ 0 = X X ⊕ 1 = X

 X ⊕ X = 0 X ⊕ X = 1

 X ⊕ Y = X ⊕ Y X ⊕ Y = X ⊕ Y

Any of these identities can be verified by using a truth table or by replacing

the ⊕ operation by its equivalent Boolean expression. It can also be shown that the

 exclusive- OR operation is both commutative and associative—that is,

 A ⊕ B = B ⊕ A

 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) = A ⊕ B ⊕ C

This means that the two inputs to an exclusive- OR gate can be interchanged without

affecting the operation. It also means that we can evaluate a 3-variable exclusive- OR

operation in any order, and for this reason, exclusive- ORs with three or more vari-

ables can be expressed without parentheses.

A two- input exclusive- OR function may be constructed with conventional

gates. Two NOT gates, two AND gates, and an OR gate are used. The associativity of

the exclusive- OR operator suggests the possibility of exclusive- OR gates with more

than two inputs. The exclusive- OR concept for more than two variables, however, is

replaced by the odd function to be discussed next. Thus, there is no symbol for

 exclusive- OR for more than two inputs. By duality, the exclusive- NOR is replaced

by the even function and has no symbol for more than two inputs.

Odd Function

The exclusive- OR operation with three or more variables can be converted into an

ordinary Boolean function by replacing the ⊕ symbol with its equivalent Boolean

2-6 / Exclusive-Or Operator and Gates 95

expression. In particular, the 3-variable case can be converted to a Boolean expres-

sion as follows:

 X ⊕ Y ⊕ Z = (XY + XY)Z + (XY + X Y)Z

 = XY Z + XYZ + X YZ + XYZ

The Boolean expression clearly indicates that the 3-variable exclusive- OR is equal

to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Hence,

whereas in the 2-variable function only one variable need be equal to 1, with three or

more variables an odd number of variables must be equal to 1. As a consequence, the

 multiple- variable exclusive- OR operation is defined as the odd function. In fact,

strictly speaking, this is the correct name for the ⊕ operation with three or more

variables; the name “ exclusive- OR” is applicable to the case with only two variables.

The definition of the odd function can be clarified by plotting the function on a

map. Figure 2-22(a) shows the map for the 3-variable odd function. The four min-

terms of the function differ from each other in at least two literals and hence cannot

be adjacent on the map. These minterms are said to be distance two from each other.

The odd function is identified from the four minterms whose binary values have an

odd number of 1s. The 4-variable case is shown in Figure 2-22(b). The eight minterms

00

01

00 01
CD

AB

C

D

A

11 10

11

10

B

1

1

1

1

1

1

1

10

1

Y

Z

X 1

00 01 11 10

1

YZ

X

(a) X Y Z

(b) A B C D

1

1

 FIGURE 2-22
Maps for Multiple- Variable Odd Functions

X

Y
Z C

P

X
Y

Z
P

(a) P � X � Y � Z (b) C � X � Y � Z � P

 FIGURE 2-23
 Multiple- Input Odd Functions

96 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

marked with 1s in the map constitute the odd function. Note the characteristic pat-

tern of the distance between the 1s in the map. It should be mentioned that the min-

terms not marked with 1s in the map have an even number of 1s and constitute the

complement of the odd function, called the even function. The odd function is imple-

mented by means of two- input exclusive- OR gates, as shown in Figure 2-23. The

even function is obtained by replacing the output gate with an exclusive- NOR gate.

2-7 GATE PROPAGATION DELAY

As mentioned in Section 2-1, an important property of logic gates is propagation
delay. Propagation delay is the time required for a change in value of a signal to

propagate from input to output. The operating speed of a circuit is inversely related

to the longest propagation delays through the gates of the circuit. The operating

speed of a circuit is usually a critical design constraint. In many cases, operating

speed can be the most important design constraint.

The determination of propagation delay is illustrated in Figure 2-24. Three

propagation delay parameters are defined. The high- to- low propagation time t
PHL

 is

the delay measured from the reference voltage on the input IN to the reference volt-

age on the output OUT, with the output voltage going from H to L. The reference

voltage we are using is the 50 percent point, halfway between the minimum and the

maximum values of the voltage signals; other reference voltages may be used,

depending on the logic family. The low- to- high propagation time t
PLH

 is the delay

measured from the reference voltage on the input voltage IN to the reference volt-

age on the output voltage OUT, with the output voltage going from L to H. We

define the propagation delay t
pd

 as the maximum of these two delays. The reason we

have chosen the maximum value is that we will be most concerned with finding the

longest time for a signal to propagate from inputs to outputs. Otherwise, the defini-

tions given for t
pd

 may be inconsistent, depending on the use of the data.

Manufacturers usually specify the maximum and typical values for both t
PHL

 and t
PLH

or for t
pd

 for their products.

Two different models, transport delay and inertial delay, are employed in mod-

eling gates during simulation. For transport delay, the change in an output in response

to the change of an input occurs after a specified propagation delay. Inertial delay is

similar to transport delay, except that if the input changes cause the output to change

twice in an interval less than the rejection time, then the first of the two output

changes does not occur. The rejection time is a specified value no larger than the

propagation delay and is often equal to the propagation delay. An AND gate mod-

eled with both a transport delay and an inertial delay is illustrated in Figure 2-25. To

help visualize the delay behavior, we have also given the AND output with no delay.

A colored bar on this waveform shows a 2 ns propagation delay time after each input

change, and a smaller black bar shows a rejection time of 1 ns. The output modeled

with the transport delay is identical to that for no delay, except that it is shifted to the

right by 2 ns. For the inertial delay, the waveform is likewise shifted. To define the

waveform for the delayed output, we will call each change in a waveform an edge. To

determine whether a particular edge appears in the ID output, it must be determined

whether a second edge occurs in the ND output before the end of the rejection time

2-7 / Gate Propagation Delay 97

for the edge in question, and whether the edge will result in a change in the ID out-

put. Since edge b occurs before the end of the rejection time for edge a in the ND

output, edge a does not appear in the ID output. Since edge b does not change the

state of ID, it is ignored. Since edge d occurs at the rejection time after edge c in the

ND output, edge c does appear. Edge e, however, occurs within the rejection time

after edge d, so edge d does not appear. Since edge c appeared and edge d did not

appear, edge e does not cause a change.

Next, we want to consider further the components that make up the gate delay

within a circuit environment. The gate itself has some fixed inherent delay. Because it

represents capacitance driven, however, the actual fan- out of the gate, in terms of

standard loads, discussed in Chapter 5, also affects the propagation delay of the gate.

But depending upon the loading of the gate by the inputs of the logic attached to its

output, the overall delay of the gate may be significantly larger than the inherent

gate delay. Thus, a simple expression for propagation delay can be given by a formula

IN

OUT tPHL

tPHLtpd

tPLH

tPLH

IN OUT

� max ,()

 FIGURE 2-24
Propagation Delay for an Inverter

A

A · B:

Transport
Delay (TD)

Inertial
Delay (ID)

B

Time (ns)0 42 6 8 10 12 14 16

No Delay
(ND)

a b c d e

 FIGURE 2-25
Examples of Behavior of Transport and Inertial Delays

98 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

or table that considers a fixed delay plus a delay per standard load times the number

of standard loads driven by the output as shown in the example that follows.

EXAMPLE 2-15 Calculation of Gate Delay Based on Fan- Out

A 4-input NAND gate output is attached to the inputs of the following gates with

the given number of standard loads representing their inputs:

4-input NOR gate— 0.80 standard load

3-input NAND gate— 1.00 standard load, and

 inverter— 1.00 standard load.

The formula for the delay of the 4-input NAND gate is

tpd = 0.07 + 0.021 * SL ns

where SL is the sum of the standard loads driven by the gate.

Ignoring the wiring delay, the delay projected for the NAND gate as loaded is

tpd = 0.07 + 0.021 * (0.80 + 1.00 + 1.00) = 0.129 ns

In modern high- speed circuits, the portion of the gate delay due to wiring capaci-

tance is often significant. While ignoring such delay is unwise, it is difficult to evalu-

ate, since it depends on the layout of the wires in the integrated circuit. Nevertheless,

since we do not have this information or a method to obtain a good estimate of it, we

ignore this delay component here. ■

2-8 HDLS OVERVIEW

Designing complex systems and integrated circuits would not be feasible without the

use of computer- aided design (CAD) tools. Schematic capture tools support the

drawing of blocks and interconnections at all levels of the hierarchy. At the level of

primitives and functional blocks, libraries of graphics symbols are provided. Schematic

capture tools support the construction of a hierarchy by permitting the generation of

symbols for hierarchical blocks and the replication of symbols for reuse.

The primitive blocks and the functional block symbols from libraries have

associated models that allow the behavior and the timing of the hierarchical blocks

and the entire circuit to be verified. This verification is performed by applying inputs

to the blocks or circuit and using a logic simulator to determine the outputs.

The primitive blocks from libraries can also have associated data, such as phys-

ical area information and delay parameters, that can be used by logic synthesizers to

optimize designs being generated automatically from HDL specifications.

As we briefly described in Section 2-1, while schematics and Boolean equa-

tions are adequate for small circuits, HDLs have become crucial to the modern

design process required for developing large, complex circuits. HDLs resemble soft-

ware programming languages, but they have particular features to describe hard-

ware structures and behavior. They differ from typical programming languages by

representing the parallel operations performed by hardware, whereas most pro-

gramming languages represent serial operations.

2-8 / HDLs Overview 99

As we will show in the remainder of this chapter and in Chapters 3 and 4, the

power of an HDL becomes more apparent when it is used to represent more than

just schematic information. It can represent Boolean equations, truth tables, and

complex operations such as arithmetic. Thus, in top- down design, a very high- level

description of an entire system can be precisely specified using an HDL. As a part of

the design process, this high- level description can then be refined and partitioned

into lower- level descriptions. Ultimately, a final description in terms of primitive

components and functional blocks can be obtained as the result of the design pro-

cess. Note that all of these descriptions can be simulated. Since they represent the

same system in terms of function, but not necessarily timing, they should respond by

giving the same logic values for the same applied inputs. This vital simulation prop-

erty supports design verification and is one of the principal reasons for the use of

HDLs.

A final major reason for increased use of HDLs is logic synthesis. An HDL

description of a system can be written at an intermediate level referred to as a regis-

ter transfer language (RTL) level. A logic synthesis tool with an accompanying

library of components can convert such a description into an interconnection of

primitive components that implements the circuit. This replacement of the manual

logic design process makes the design of complex logic much more efficient. Logic

synthesis transforms an RTL description of a circuit in an HDL into an optimized

netlist representing storage elements and combinational logic. The optimizations

involved are more complex than those presented previously in this chapter, but they

share many of the same underlying concepts. Subsequent to logic optimization, this

netlist may be transformed by using physical design tools into an actual integrated

circuit layout or field programmable gate array (FPGA). The logic synthesis tool

takes care of a large portion of the details of a design and allows designers to explore

the trade- offs between design constraints that are essential to advanced designs.

Currently, VHDL and Verilog are widely used, standard hardware design lan-

guages. The language standards are defined, approved, and published by the Institute

of Electrical and Electronics Engineers (IEEE). All implementations of these lan-

guages must obey their respective standard. This standardization gives HDLs

another advantage over schematics. HDLs are portable across computer- aided

design tools, whereas schematic capture tools are typically unique to a particular

vendor. In addition to the standard languages, a number of major companies have

their own internal languages, often developed long before the standard languages

and incorporating features unique to their particular products.

Regardless of the HDL, a typical procedure is used in employing an HDL

description as simulation input. The steps in the procedure are analysis, elaboration,

and initialization, followed finally by the simulation. Analysis and elaboration are

typically performed by a compiler similar to those for programming languages.

Analysis checks the description for violations of the syntax and semantic rules for

the HDL and produces an intermediate representation of the design. Elaboration

traverses the design hierarchy represented by the description; in this process, the

design hierarchy is flattened to an interconnection of modules that are described

only by their behaviors. The end result of the analysis and elaboration performed by

the compiler is a simulation model of the original HDL description. This model is

100 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

then passed to the simulator for execution. Initialization sets all of the variables in

the simulation model to specified or default values. Simulation executes the simula-

tion model in either batch or interactive mode with inputs specified by the user.

Because fairly complex hardware can be described efficiently in an HDL, a

special HDL structure called a testbench may be used. The testbench is a description

that includes the design to be tested, typically referred to as the Device Under Test

(DUT). The testbench describes a collection of hardware and software functions

that apply inputs to the DUT and analyze the outputs for correctness. This approach

bypasses the need to provide separate inputs to the simulator and to analyze, often

manually, the simulator outputs. Construction of a testbench provides a uniform ver-

ification mechanism that can be used at multiple levels in the top- down design pro-

cess for verification of correct function of the design.

Logic Synthesis

As indicated earlier, the availability of logic synthesis tools is one of the driving forc-

es behind the growing use of HDLs. Logic synthesis transforms an RTL description

of a circuit in an HDL into an optimized netlist representing storage elements and

combinational logic. Subsequently, this netlist may be transformed by using physical

design tools into an actual integrated circuit layout. This layout serves as the basis for

integrated circuit manufacture. The logic synthesis tool takes care of a large portion

of the details of a design and allows exploration of the cost/performance trade- offs

essential to advanced designs.

Figure 2-26 shows a simple high- level flow of the steps involved in logic syn-

thesis. The user provides an HDL description of the circuit to be designed as well as

HDL Description
of Circuit

Electronic, Speed,
and Area Constraints

Translation

Intermediate
Representation

OptimizationPreoptimization Technology Mapping

Technology
Library

Netlist

 FIGURE 2-26
 High- Level Flow for Logic Synthesis Tool

2-8 / HDLs Overview 101

various constraints or bounds on the design. Electrical constraints include allow-

able gate fan- outs and output loading restrictions. Area and speed constraints direct

the optimization steps of the synthesis. Area constraints typically give the maxi-

mum permissible area that a circuit is allowed to occupy within the integrated

circuit.

Alternatively, a general directive may be given which specifies that area is to

be minimized. Speed constraints are typically maximum allowable values for the

delay on various paths in the circuit. Alternatively, a general directive may be

given to maximize speed. Area and speed both translate into the cost of a circuit.

A fast circuit will typically have larger area and thus cost more to manufacture. A

circuit that need not operate fast can be optimized for area, and, relatively speak-

ing, costs less to manufacture. In some sophisticated synthesis tools, power con-

sumption can also be used as a constraint. Additional information used by a

synthesis tool is a technology library that describes the primitive blocks available

for use in the netlist as well as their physical parameters necessary for delay com-

putations. The latter information is essential in meeting constraints and perform-

ing optimization.

The first major step in the synthesis process in Figure 2-26 is a translation of the

HDL description into an intermediate form. The translation result may be an inter-

connection of generic gates and storage elements, not taken from the technology

library. It may also be in an alternate form that represents clusters of logic and the

interconnections between the clusters.

The second major step in the synthesis process is optimization. A preoptimiza-

tion step may be used to simplify the intermediate form. For example, logic that is

identical in the intermediate form may be shared. Next is the optimization, in which

the intermediate form is processed to attempt to meet the constraints specified.

Typically, two- level and multiple- level optimization are performed. Optimization is

followed by technology mapping, which replaces AND gates, OR gates, and inverters

with gates from the technology library. In order to evaluate area and speed parame-

ters associated with these gates, additional information from the technology library

is used. In sophisticated synthesis tools, further optimization may be applied during

technology mapping in order to improve the likelihood of meeting the constraints

on the design. Optimization can be a very complex, time- consuming process for large

circuits. Many optimization passes may be necessary to achieve the desired results or

to demonstrate that constraints are difficult, if not impossible, to meet. The designer

may need to modify the constraints or the HDL in order to achieve a satisfactory

design. Modification of the HDL may include manual design of some portions of the

logic in order to achieve the design goals.

The output of the optimization/technology mapping processes is typically a

netlist corresponding to a schematic diagram made up of storage elements, gates,

and other combinational logic functional blocks. This output serves as input to phys-

ical design tools that physically place the logic elements and route the interconnec-

tions between them to produce the layout of the circuit for manufacture. In the case

of programmable parts, such as field- programmable gate arrays as discussed in

Chapter 5, an analog to the physical design tools produces the binary information

used to program the logic within the parts.

102 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

2-9 HDL REPRESENTATIONS— VHDL
Since an HDL is used for describing and designing hardware, it is very important to

keep the underlying hardware in mind as you write in the language. This is particularly

critical if your language description is to be synthesized. For example, if you ignore the

hardware that will be generated, it is very easy to specify a large complex gate structure

by using an inefficient HDL description when a much simpler structure using only a few

gates is all that is needed. For this reason, we initially emphasize description of detailed

hardware with VHDL, and proceed to more abstract, higher- level descriptions later.

Selected examples in this chapter are useful for introducing VHDL as an alter-

native means for representing detailed digital circuits. Initially, we show structural

VHDL descriptions that replace the schematic for the two- bit greater- than compar-

ator circuit given in Figure 2-27. This example illustrates many of the fundamental

concepts of VHDL. We then present higher- level behavioral VHDL descriptions for

these circuits that further illustrate fundamental VHDL concepts.

EXAMPLE 2-16 Structural VHDL for a Two- Bit Greater- Than Comparator
Circuit

Figure 2-28 shows a VHDL description for the two- bit greater- than comparator cir-

cuit from Figure 2-27. This example will be used to demonstrate a number of general

VHDL features as well as structural description of circuits.

The text between two dashes -- and the end of the line is interpreted as a com-
ment. So the description in Figure 2-28 begins with a two- line comment identifying

the description and its relationship to Figure 2-27. To assist in discussion of this

description, comments providing line numbers have been added on the right. As a

language, VHDL has a syntax that describes precisely the valid constructs that can

be used in the language. This example will illustrate many aspects of the syntax. In

particular, note the use of semicolons, commas, and colons in the description.

Initially, we skip lines 3 and 4 of the description to focus on the overall structure.

Line 6 begins the declaration of an entity, which is the fundamental unit of a VHDL

design. In VHDL, just as for a symbol in a schematic, we need to give the design a

name and to define its inputs and outputs. This is the function of the entity declaration.

Entity and is are keywords in VHDL. Keywords, which we show in bold type, have

a special meaning and cannot be used to name objects such as entities, inputs, outputs

 FIGURE 2-27
Gate level schematic for a two- bit greater- than comparator circuit

2-9 / HDL Representations— VHDL 103

-- Two- bit greater- than circuit : Structural VHDL Description -- 1

-- (See Figure 2-27 for logic diagram) -- 2

library ieee, lcdf_vhdl; -- 3

use ieee.std_logic_1164.all, lcdf_vhdl.func_pri ms.all; -- 4

 -- 5

entity comparator_greater_than_structural is -- 6

 port (A: in std_logic_vector(1 downto 0); -- 7

 B: in std_logic_vector(1 downto 0); -- 8

 A_greater_than_B: out std_logic); -- 9

end comparator_greater_than_structural; -- 10

 -- 11

architecture structural of comparator_greater_than_structural is -- 12

 -- 13

 component NOT1 -- 14

 port(in1: in std_logic; -- 15

 out1: out std_logic); -- 16

 end component; -- 17

 component AND2 -- 18

 port(in1, in2: in std_logic; -- 19

 out1: out std_logic); -- 20

 end component; -- 21

 component AND3 -- 22

 port(in1, in2, in3: in std_logic; -- 23

 out1: out std_logic); -- 24

 end component; -- 25

 component OR3 -- 26

 port(in1, in2, in3 : in std_logic; -- 27

 out1: out std_logic); -- 28

 end component; -- 29

 signal B1_n, B0_n, and0_out, and1_out, and2_out: std_logic; -- 30

begin -- 31

 inv_0: NOT1 port map (in1 => B(0), out1 => B0_n); -- 32

 inv_1: NOT1 port map (B(1), B1_n); -- 33

 and_0: AND2 port map (A(1), B1_n, and0_out); -- 34

 and_1: AND3 port map (A(1), A(0), B0_n, and1_out); -- 35

 and_2: AND3 port map (A(0), B1_n, B0_n, and2_out); -- 36

 or0: OR3 port map (and0_out,and1_out,and2_out, A_greater_than_B); -- 37

end structural; -- 38

 FIGURE 2-28
Structural VHDL Description of Two- Bit Greater- Than Comparator Circuit

104 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

or signals. Statement entity comparator_greater_than_structural is

declares that a design exists with the name comparator_greater_than_struc-

tural. VHDL is case insensitive (i.e., names and keywords are not distinguished by

the use of uppercase or lowercase letters). COMPARATOR_greater_than_

Structural is the same as comparator_Greater_than_structural and

comparator_greater_than_Structural.

Next, a port declaration in lines 7 through 9 is used to define the inputs and out-

puts just as we would do for a symbol in a schematic. For the example design, there are

two input signals: A and B. The fact that these are inputs is denoted by the mode in.

Likewise, A_greater_than_B is denoted as an output by the mode out. In VHDL is

a strongly typed language, so the type of the inputs and output must be declared. In the

case of the output, the type is std_logic, which represents standard logic. This type

declaration specifies the values that may appear on the inputs and the outputs, as well as

the operations that may be applied to the signals. Standard logic, among its nine values,

includes the usual binary values 0 and 1 and two additional values X and U. X represents

an unknown value, U an uninitalized value. We have chosen to use standard logic, which

includes these values, since these values are used by typical simulation tools.

The inputs A and B illustrate another VHDL concept, std_logic_vectors.

The inputs are each two bits wide, so they are specified as type std_logic_vector

instead of individual std_logic signals. In specifying vectors, we use an index. Since

A consists of two input signals numbered 0 and 1, with 1 being the most significant

(leftmost) bit, the index for A is 1 down to 0. The components of this vector are A(1)

and A(0). B likewise consists of two signals numbered 1 and 0, so its index is also 1

down to 0. Beginning at line 32, note how the signals within std_logic_vectors

are referred to by giving the signal name and the index in parentheses. Also, if one

wishes to have the larger index for a vector appear last, VHDL uses a somewhat dif-

ferent notational approach. For example, signal N: std_logic_vector (0

to 3) defines the first (leftmost) bit in signal N as N(0) and the last (rightmost) sig-

nal in N as N(3). It is also possible to refer to subvectors (e.g., N(1 to 2), which

refers to N(1) and N(2), would be the center two signals in N).

In order to use the types std_logic and std_logic_vector, it is necessary

to define the values and the operations. For convenience, a package consisting of pre-

compiled VHDL code is employed. Packages are usually stored in a directory referred

to as a library, which is shared by some or all of the tool users. For std_logic, the

basic package is ieee.std_logic_1164. This package defines the values and basic

logic operators for types std_ulogic and std_logic. In order to use std_logic,

we include line 3 to call up the library of packages called ieee and include line 4

containing ieee.std_logic_1164.all to indicate we want to use all of the

package std_logic_1164 from the ieee library. An additional library, lcdf_vhdl,

contains a package called func_prims made up of basic logic gates, latches, and flip-

 flops described using VHDL, of which we use all. Library lcdf_vhdl is available in

ASCII for copying from the Companion Website for the text. Note that the statements

in lines 3 and 4 are tied to the entity that follows. If another entity is included in the

same file, which also uses type std_logic and the elements from func_prims, the

library and use statements must be repeated prior to that entity declaration.

2-9 / HDL Representations— VHDL 105

The entity declaration ends with keyword end followed by the entity name. Thus

far, we have discussed the equivalent of a schematic symbol in VHDL for the circuit.

STRUCTURAL DESCRIPTION Next, we want to specify the function of the circuit. A par-

ticular representation of the function of an entity is called the architecture of the

entity. Thus, the contents of line 12 declare a VHDL architecture named structural

for the entity comparator_greater_than_structural to exist. The details of

the architecture follow. In this case, we use a structural description that is equivalent

to the schematic for the circuit given in Figure 2-27.

First, we declare the gate types we are going to use as components of our

description in lines 15 through 29. Since we are building this architecture from gates,

we declare an inverter called NOT1, a 2-input AND gate called AND2, a 3-input AND

gate called AND3, and a 3-input OR gate called OR3 as components. These gate types

are VHDL descriptions in package func_prims that contain the entity and archi-

tecture for each of the gates. The name and the port declaration for a component

must be identical to those for the underlying entity. For NOT1, port gives the input

name in1 and the output name out1. The component declaration for AND2 gives

input names in1 and in2, and output name out1. Similarly, the component

 declarations for AND3 and OR3 give input names in1, in2, and in3, and output

name out1.

Next, before specifying the interconnection of the gates, which is equivalent to a

circuit netlist, we must name all of the nets in the circuit. The inputs and outputs already

have names. The internal nets are the outputs of the two inverters and of the three AND

gates in Figure 2-27. These output nets are declared as signals of type std_logic. Not_B1

and not_B0 are the signals for the two inverter outputs and and0_out, and1_out,

and and2_out are the signals for the three AND gate outputs. Likewise, all of the

inputs and outputs declared as ports are signals. In VHDL, there are both signals and

variables. Variables are evaluated instantaneously. In contrast, signals are evaluated at

some future point in time. This time may be physical time, such as 2 ns from the current

time, or may be what is called delta time, in which a signal is evaluated one delta time

from the current time. Delta time is viewed as an infinitesimal amount of time. Some

time delay in evaluation of signals is essential to the internal operation of the typical

digital simulator and, of course, based on the delay of gates, is realistic in performing

simulations of circuits. For simplicity, we will typically be simulating circuits for correct

function, not for performance or delay problems. For such functional simulation, it is

easiest to let the delays default to delta times. Thus, no delay will be explicit in our

VHDL descriptions of circuits, although delays may appear in test benches.

Following the declaration of the internal signals, the main body of the architec-

ture starts with the keyword begin. The circuit described consists of two inverters,

one 2-input AND gate, two 3-input AND gates, and one 3-input OR gate. Line 32

gives the label inv_0 to the first inverter and indicates that the inverter is compo-

nent NOT1. Next is a port map, which maps the input and output of the inverter to

the signals to which they are connected. This particular form of port map uses =>

with the port of the gate on the left and the signal to which it is connected on the

right. For example, the input of inverter inv_0 is B(0) and the output is not_B0.

106 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

Lines 33 through 37 give the remaining five gates and the signals connected to

their inputs and outputs. These five gates use an alternative method to specify the

port maps for the logic gates. Instead of explicitly giving the component input and

output names, we assume that these names are in the port map in the same order as

given for the component. We can then implicitly specify the signals attached to these

names by listing the signals in same order as the names. For example, in line 33, B(1)

is connected to the input and not_B1 is connected to the output. The architecture is

completed with the keyword end followed by its name structural. ■

DATAFLOW DESCRIPTION A dataflow description describes a circuit in terms of func-

tion rather than structure and is made up of concurrent assignment statements or

their equivalent. Concurrent assignment statements are executed concurrently (i.e.,

in parallel) whenever one of the values on the right- hand side of the statement

changes. For example, whenever a change occurs in a value on the right- hand side of

a Boolean equation, the left- hand side is evaluated. The use of dataflow descriptions

made up of Boolean equations is illustrated in Example 2-17.

EXAMPLE 2-17 Dataflow VHDL for a Two- Bit Greater- Than Comparator
Circuit

Figure 2-29 shows a dataflow VHDL description for the two- bit greater- than com-

parator circuit from Figure 2-27. This example will be used to demonstrate a dataflow

description made up of Boolean equations. The library, use, and entity statements

 FIGURE 2-29
Dataflow VHDL Description of Two- Bit Greater- Than Comparator Circuit

-- Two- bit greater- than circuit : Dataflow VHDL Description -- 1

-- (See Figure 2-27 for logic diagram) -- 2

library ieee; -- 3

use ieee.std_logic_1164.all; -- 4

 -- 5

entity comparator_greater_than_dataflow is -- 6

 port (A: in std_logic_vector(1 downto 0); -- 7

 B: in std_logic_vector(1 downto 0); -- 8

 A_greater_than_B: out std_logic); -- 9

end comparator_greater_than_dataflow; -- 10

 -- 11

 architecture dataflow of comparator_greater_than_dataflow is -- 12

 signal B1_n, B0_n, and0_out, and1_out, and2_out: std_logic; -- 13

begin -- 14

 B1_n <= not B(1); -- 15

 B0_n <= not B(0); -- 16

 and0_out <= A(1) and B1_n; -- 17

 and1_out <= A(1) and A(0) and B0_n; -- 18

 and2_out <= A(0) and B1_n and B0_n; -- 19

 A_greater_than_B <= and0_out or and1_out or and2_out; -- 20

end dataflow; -- 21

2-9 / HDL Representations— VHDL 107

are identical to those in Figure 2-28, so they are not repeated here. The dataflow

 description begins in line 15. The signals B0_n and B1_n are defined by signal assign-

ments that apply the not operation to the input signal B(0) and B(1), respectively.

In line 17, B1_n and A(1) are combined with an and operator to form and0_out.

The signals and1_out, and2_out, and A_greater_than_B are similarly defined

in lines 18 through 20, with A_greater_than_B using the or operator. Note

that this dataflow description is much simpler than the structural description in

Figure 2-28.

The order of execution of the assignment statements does not depend upon

the order of their appearance in the model description, but rather on the order of

changes of signals on the right- hand side of the assignment statements. Thus the

description in Figure 2-29 would have exactly the same behavior even if the assign-

ment statements were listed in some other order, e.g., if line 15 and line 20 were

interchanged. ■

BEHAVIORAL DESCRIPTION Dataflow models using concurrent assignments are con-

sidered to be behavioral descriptions, because they describe the function of the cir-

cuit without describing its structure. As will be shown in Chapter 4, VHDL also pro-

vides ways to describe behavior using statements that execute sequentially within

a process, known as algorithmic modeling. But even with dataflow modeling using

concurrent assignments, VHDL provides ways to describe circuits more abstractly

than the logic level.

EXAMPLE 2-18 VHDL for a Two- Bit Greater- Than Comparator Using
When- Else

In Figure 2-30, instead of using Boolean equation- like statements in the architecture

to describe the multiplexer, we use a when- else statement. This model of the circuit

-- Two- bit greater- than circuit : Conditional VHDL Description -- 1

-- using when- else(See Figure 2-27 for logic diagram) -- 2

library ieee; -- 3

use ieee.std_logic_1164.all; -- 4

 -- 5

 entity comparator_greater_than_behavioral is -- 6

 port (A: in std_logic_vector(1 downto 0); -- 7

 B: in std_logic_vector(1 downto 0); -- 8

 A_greater_than_B: out std_logic); -- 9

end comparator_greater_than_behavioral; -- 10

 -- 11

 architecture when_else of comparator_greater_than_behavioral is -- 12

begin -- 13

 A_greater_than_B <= '1' when (A > B) else -- 14

 '0'; -- 15

end when_else; -- 16

 FIGURE 2-30
Dataflow VHDL Description of Two- Bit Greater-Than Comparator Using When- Else

108 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

describes the behavior of the circuit (i.e., the output is a 1 when A > B and 0

 otherwise) using the desired mathematical operation of the circuit rather than Bool-

ean logic. Whenever either A or B changes, the when condition is re- evaluated and

the value is assigned accordingly. ■

Example 2-19 VHDL for a Two- Bit Greater- Than Comparator Using With- Select

 With- select is a variation on when- else as illustrated for the model shown in

 Figure 2-31. The expression, the value of which is to be used for the decision, fol-

lows with and precedes select. The values for the expression that causes the

alternative assignments then follow when with each of the assignment- value pairs

separated by commas. In the example, A is the signal, the value of which deter-

mines the value selected for A_greater_than_B. For this example, A is used to

select a function of B that represents the proper output. When A = “00,” 0 is as-

signed to the output because the function is 0 for all combinations of B. When

-- Two- bit greater- than circuit : Conditional VHDL Description -- 1

-- using with- select(See Figure 2-27 for logic diagram) -- 2

library ieee; -- 3

 use ieee.std_logic_1164.all, ieee.std_logic_unsigned .all; -- 4

 -- 5

 entity comparator_greater_than_behavioral2 is -- 6

 port (A: in std_logic_vector(1 downto 0); -- 7

 B: in std_logic_vector(1 downto 0); -- 8

 A_greater_than_B: out std_logic); -- 9

end comparator_greater_than_behavioral2; -- 10

 -- 11

 architecture with_select of comparator_greater_than_behavioral2 is -- 12

begin -- 13

 with A select -- 14

 A_greater_than_B <= '0' when "00", -- 15

 B(0) nor B(1) when "01", -- 16

 not B(1) when "10", -- 17

 B(0) nand B(1) when "11", -- 18

 'X' when others; -- 19

end with_select; -- 20

 FIGURE 2-31
Conditional Dataflow VHDL Description of Two- Bit Greater- Than Comparator Using
 With- Select

2-9 / HDL Representations— VHDL 109

A = “01,” the output should only be 1 when B = “00,” which is the NOR

 function of the two bits of B. When A = “10,” the output is a 1 when B(1) is 0

and 0 when B(1) is 1, so the function assigned is the inverse of B(1). When

A = “11,” the output is a 1 except for when B = “11,” which is the NAND func-

tion of the two bits of B. Finally, ‘X’ is assigned to the output when others,

where others represents the standard logic combinations not already specified,

i.e., when one of the bits of A is neither a 0 nor a 1, such as U.

This example is somewhat contrived for this particular circuit, resulting in a

description that is less straightforward than the previous versions. However, this

example illustrates an approach with the conditional operator that is often useful

when a set of conditions is used to select between several functions. We will see

examples of these types of selection circuits in later chapters, particularly in

Chapter 3 with multiplexers and Chapter 6 with register transfers.

Note that when- else permits decisions on multiple distinct signals. For example,

a model could have a first when conditioned on one signal, with another when in the

else part that is conditioned on a different signal, and so on. In contrast, the with-
 select can depend on only a single Boolean condition (e.g., either the first signal or

the second one, but not both). Also, for typical synthesis tools, when- else usually

results in a more complex logical structure than with- select because when- else

depends upon multiple conditions. ■

TESTBENCHES As briefly described in Section 2-8, a testbench is an HDL model

whose purpose is to test another model, often called the Device Under Test

(DUT), by applying stimuli to the inputs. More complex testbenches will also

 analyze the output of the DUT for correctness. Figure 2-32 shows a simple

VHDL testbench for the structural two- bit greater- than comparator circuit.

The testbench has several aspects that are common to testbenches. First, the en-

tity declaration does not have any input or output ports (lines 5–6). Second,

the architecture for the testbench declares the component for the DUT (lines

11–15) and then instantiates the DUT (line 17). The architecture also declares

the signals that will be connected to the inputs and outputs of the DUT (lines

9–10). Finally, the architecture applies combinations of inputs to the DUT to

test it under various conditions (lines 18–29). The input values are applied us-

ing a process named tb, where a process is a block of statements that are ex-

ecuted sequentially. The tb process in this testbench starts at the beginning of

the simulation, and assigns values to the inputs of the DUT, waiting 10 ns of

simulation time between assignments, and then halting by waiting forever. The

process in this example uses only a few combinations of inputs for the sake of

clarity, although it does test all three conditions for the relationship between A

and B (A 6 B, A = B, and A 7 B). Processes will be described in more detail

in Chapter 4, where a richer set of sequential statements that can be used in a

process will be introduced.

This completes our introduction to VHDL for combinational circuits. We will

continue with more on VHDL by presenting additional features of the language to

describe more complex circuits in Chapters 3 and 4.

110 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

2-10 HDL REPRESENTATIONS— VERILOG

Since an HDL is used for describing and designing hardware, it is very important

to keep the underlying hardware in mind as you write in the language. This is par-

ticularly critical if your language description is to be synthesized. For example, if

you ignore the hardware that will be generated, it is very easy to specify a large

complex gate structure by using an inefficient HDL description, when a much

simpler structure using only a few gates is all that is needed. For this reason, ini-

tially, we emphasize describing detailed hardware with Verilog, and finishing with

more abstract, higher- level descriptions.

Selected examples in this chapter are useful for introducing Verilog as

an alternative means for representing detailed digital circuits. First, we show a

 structural Verilog description in Figure 2-33 that replaces the schematic for the

-- Testbench for VHDL two- bit greater- than comparator -- 1

library ieee; -- 2

 use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all; -- 3

 -- 4

entity greater_testbench is -- 5

end greater_testbench; -- 6

 -- 7

 architecture testbench of greater_testbench is -- 8

 signal A, B: std_logic_vector (1 downto 0); -- 9

signal struct_out: std_logic; -- 10

 component comparator_greater_than_structural is -- 11

 port (A: in std_logic_vector(1 downto 0); -- 12

 B: in std_logic_vector(1 downto 0); -- 13

 A_greater_than_B: out std_logic); -- 14

end component; -- 15

begin -- 16

u1: comparator_greater_than_structural port map(A,B, struct_out); -- 17

tb: process -- 18

begin -- 19

 A <= "10"; -- 20

 B <= "00"; -- 21

 wait for 10 ns; -- 22

 B <= "01"; -- 23

 wait for 10 ns; -- 24

 B <= "10"; -- 25

 wait for 10 ns; -- 26

 B <= "11"; -- 27

 wait; -- halt the process -- 28

end process; -- 29

end testbench; -- 30

 FIGURE 2-32
Testbench for the Structural Model of the Two- Bit Greater- Than Comparator

2-10 / HDL Representations— Verilog 111

// Two- bit greater- than circuit: Verilog structural model // 1

// See Figure 2-27 for logic diagram // 2

 module comparator_greater_than_structural(A, B, A_ greater_than_B); // 3
 input [1:0] A, B; // 4

 output A_greater_than_B; // 5

 wire B0_n, B1_n, and0_out, and1_out, and2_out; // 6

 not // 7

 inv0(B0_n, B[0]), inv1(B1_n, B[1]); // 8

 and // 9

 and0(and0_out, A[1], B1_n), // 10

 and1(and1_out, A[1], A[0], B0_n), // 11

 and2(and2_out, A[0], B1_n, B0_n); // 12

 or // 13

 or0(A_greater_than_B, and0_out, and1_out, and2_out); // 14

endmodule // 15

 FIGURE 2-33
Structural Verilog Description of Two- Bit Greater- Than Circuit

 two- bit greater- than comparator. This example illustrates many of the funda-

mental concepts of Verilog. We then present higher- level behavioral Verilog

descriptions for these circuits that further illustrate Verilog concepts.

EXAMPLE 2-20 Structural Verilog for a Two- Bit Greater- Than Circuit

The Verilog description for the two- bit greater- than circuit from Figure 2-27 is given

in Figure 2-33. This description will be used to introduce a number of general Verilog

features, as well as to illustrate structural circuit description.

The text between two slashes / / and the end of a line as shown in lines 1 and

2 of Figure 2-33 is interpreted as a comment. For multiline comments, there is an

alternative notation using a / and *:

/* Two- bit greater- than circuit: Verilog structural model

 See Figure 2-27 for logic diagram */

To assist in discussion of the Verilog description, comments providing line

numbers have been added on the right. As a language, Verilog has a syntax that

describes precisely the valid constructs that can be used in the language. This

example will illustrate many aspects of the syntax. In particular, note the use of

commas and colons in the description. Commas (,) are typically used to sepa-

rate elements of a list and semicolons (;) are used to terminate Verilog

statements.

Line 3 begins the declaration of a module, which is the fundamental building

block of a Verilog design. The remainder of the description defines the module,

112 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

ending in line 15 with endmodule. Note that there is no ; after endmodule. Just as

for a symbol in a schematic, we need to give the design a name and to define its

inputs and outputs. This is the function of the module statement in line 3 and the

input and output declarations that follow. The words module, input, and output

are keywords in Verilog. Keywords, which we show in bold type, have a special mean-

ing and cannot be used as names of objects such as modules, inputs, outputs, or wires.

The statement module comparator_greater_than_structural declares

that a design or design part exists with the name comparator_greater_than_

structural. Further, Verilog names are case sensitive (i.e., names are distinguished

by the use of uppercase or lowercase letters). COMPARATOR_greater_than_

Structural, Comparator_greater_than_structural, and comparator_

greater_than_Structural are all distinct names.

Just as we would do for a symbol in a schematic, we give the names of the

decoder inputs and outputs in the module statement. Next, an input declaration is

used to define which of the names in the module statement are inputs. For the

example design, there are two input signals, A and B. The fact that these are inputs is

denoted by the keyword input. Similarly, an output declaration is used to define the

output. The signal A_greater_than_B is denoted as an output by the keyword

output.

Inputs and outputs as well as other binary signal types in Verilog can take on

one of four values. The two obvious values are 0 and 1. Added are x to represent

unknown values and z to represent high- impedance values on the outputs of 3-state

logic. Verilog also has strength values that, when combined with the four values

given, provide 120 possible signal states. Strength values are used in electronic circuit

modeling, however, so will not be considered here.

The inputs A and B also illustrate the Verilog concept of a vector. In line 4,

instead of specifying A and B as single bit wires, they are specified as multiple- bit

wires called vectors. The bits of a vector are named by a range of integers. This range

is given by maximum and minimum values. By specifying these two values, we spec-

ify the width of the vector and the names of each of its bits. The line input [1:0]
A, B indicates that A and B are each a vector with a width of two, with the most

significant (leftmost) bit numbered 1 and least significant (rightmost) bit numbered

0. The components of A are A[1] and A[0]. Once a vector has been declared, then

the entire vector or its subcomponents can be referenced. For example, A refers to

the two bits of A, and A[1] refers to the most significant bit of A. These types of

 references are used in specifying the output and inputs in instances of the gates in

lines 8 and lines 9 through 12. Also, Verilog permits the larger index for a vector to

appear last. For example, input [0:3] N defines an input port N as a vector with

four bits, where the most significant (leftmost) bit is numbered 0 and the least signif-

icant (rightmost) bit is numbered 3.

2-10 / HDL Representations— Verilog 113

STRUCTURAL DESCRIPTION Next, we want to specify the function of the decoder. In

this case, we use a structural description that is equivalent to the circuit schematic

given in Figure 2-27. Note that the schematic is made up of gates. Verilog provides 14

primitive gates as keywords. Of these, we are interested in eight for now: buf, not,

and, or, nand, nor, xor, and xnor. buf and not have single inputs, and all other

gate types may have from two to any integer number of inputs. buf is a buffer, which

has the function z = x, with x as the input and z as the output. It is as an amplifier

of electronic signals that can be used to provide greater fan- out or smaller delays.

xor is the exclusive- OR gate and xnor is the exclusive- NOR gate, the complement

of the exclusive- OR. In our example, we will use just three gate types, not, and, and

or as shown in lines 7 through 14 of Figure 2-33.

Before specifying the interconnection of the gates, which is the same as a cir-

cuit netlist, we need to name all of the nets in the circuit. The inputs and outputs

already have names. The internal nets are the outputs of the two inverters and of the

three AND gates in Figure 2-27. In line 6, these nets are declared as wires by use of

the keyword wire. Names B0_n and B1_n are used for the inverter outputs and

and0_out, and1_out, and and2_out for the outputs of the AND gates. In Verilog,

wire is the default net type. Notably, input and output ports have the default

type wire.

Following the declaration of the internal signals, the circuit described contains

two inverters, one 2-input AND gate, two 3-input AND gates, and one 3-input OR

gate. A statement consists of a gate type followed by a list of instances of that gate

type separated by commas. Each instance consists of a gate name and, enclosed in

parentheses, the gate output and inputs separated by commas, with the output given

first. The first statement begins on line 7 with the not gate type. Following is inverter

inv0 with B0_n as the output and B0 as the input. To complete the statement, inv1

is similarly described. Lines 9 through 14 give the remaining four gates and the sig-

nals connected to their outputs and inputs, respectively. For example, in line 12, an

instance of a 3-input AND gate named and2 is defined. It has output and2_out and

inputs A[0], B1_n, and B0_n. The module is completed with the keyword

endmodule. ■

DATAFLOW DESCRIPTION A dataflow description describes a circuit in terms of func-

tion rather than structure and is made up of concurrent assignment statements or

their equivalent. Concurrent assignment statements are executed concurrently (i.e.,

in parallel) whenever one of the values on the right- hand side of the statement

changes. For example, whenever a change occurs in a value on the right- hand side of

a Boolean equation, the left- hand side is evaluated. The use of dataflow descriptions

made up of Boolean equations is illustrated in Example 2-21.

114 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

EXAMPLE 2-21 Dataflow Verilog for a Two- Bit Greater- Than Comparator

In Figure 2-34, a dataflow Verilog description is given for the two- bit greater- than

comparator. This particular dataflow description uses the assignment statement con-

sisting of the keyword assign followed, in this case, by a Boolean equation. In such

equations, we use the bitwise Boolean operators given in Table 2-4. In line 7 of

Figure 2-34, B1_n is assigned the inverse of B[1] using the ~ operator. In line 9, A[1]

and B1_n are ANDed together with an & operator. This AND combination is as-

signed to the output and0_out. The wires and1_out and and2_out are similarly

defined in lines 10 and 11. The output A_greater_than_B is assigned using the

OR operator | on wires and0_out, and1_out, and and2_out on line 12.

The order of execution of the assignment statements does not depend upon

the order of their appearance in the model description, but rather on the order of

changes of signals on the right- hand side of the assignment statements. Thus the

description in Figure 2-34 would have exactly the same behavior even if the assign-

ment statements were listed in some other order, e.g., if lines 7 and 12 were

 interchanged. ■

BEHAVIORAL DESCRIPTION Dataflow models using concurrent assignments are consid-

ered to be behavioral descriptions, because they describe the function of the circuit

without describing its structure. As will be shown in Chapter 4, Verilog also pro-

vides ways to describe behavior using statements that execute sequentially within

a process, known as algorithmic modeling. But even with dataflow modeling using

concurrent assignments, Verilog provides ways to describe circuits at levels higher

than the logic level.

// Two- bit greater- than circuit: Dataflow model // 1

// See Figure 2-27 for logic diagram // 2

 module comparator_greater_than_dataflow(A, B, A_greater_than_B); // 3

 input [1:0] A, B; // 4

 output A_greater_than_B; // 5

 wire B1_n, B0_n, and0_out, and1_out, and2_out; // 6

 assign B1_n = ~B[1]; // 7

 assign B0_n = ~B[0]; // 8

 assign and0_out = A[1] & B1_n; // 9

 assign and1_out = A[1] & A[0] & B0_n; // 10

 assign and2_out = A[0] & B1_n & B0_n; // 11

 assign A_greater_than_B = and0_out | and1_out | and2_out; // 12

endmodule // 13

 FIGURE 2-34
Dataflow Verilog Description of Two- Bit Greater- Than Comparator

2-10 / HDL Representations— Verilog 115

EXAMPLE 2-22 Verilog for a Two- Bit Greater- Than Comparator Using
Conditional Operator

The description in Figure 2-35 implements the circuit’s function by using a condi-

tional operator ?: in line 6. If the logical value within the parentheses before the ? is

true, then the value before the : is assigned to signal that is the target of the assign-

ment, in this case, A_greater_than_B. If the logical value is false, then the value

after the : is assigned. The value 1’b1 represents a constant. The first 1 specifies that

the constant contains one digit, ’b that the constant is given in binary, and 1 gives

the constant value. In this case, if the condition A > B is true, then A_greater_

than_B is assigned the value 1’b1; otherwise, A_greater_than_B is assigned the

value 1’b0. ■

// Two- bit greater- than circuit: Conditional model // 1

// See Figure 2-27 for logic diagram // 2

 module comparator_greater_than_conditional2(A, B, A_greater_than_B); // 3

 input [1:0] A, B; // 4

 output A_greater_than_B; // 5

 assign A_greater_than_B = (A > B)? 1'b1 : // 6

 1'b0; // 7

endmodule // 8

 FIGURE 2-35
Conditional Dataflow Verilog Description of Two- Bit Greater- Than Circuit

EXAMPLE 2-23 Verilog for a Two- Bit Greater- Than Circuit Using
Behavioral Model

As a more extended example of the conditional operator, another form of dataflow

description using a conditional operator is shown in Figure 2-36. The logical equality

operator is denoted by = . Suppose we consider condition A = 2’b00. 2’b00

represents a constant. The 2 specifies that the constant contains two digits, b that the

constant is given in binary, and 00 gives the constant value. Thus, the expression has

value true if vector A is equal to 00; otherwise, it is false. If the expression is true,

then 1’b0 is assigned to A_greater_than_B. If the expression is false, then the

next expression containing a ? is evaluated, and so on. In this case, for a condition to

be evaluated, all conditions preceding it must evaluate to false. If none of the deci-

sions evaluate to true, then the default value 1’bx is assigned to A_greater_

than_B. Recall that default value x represents unknown.

This example is somewhat contrived for this particular circuit, resulting in a

description that is less straightforward than the previous versions. However, this

example illustrates an approach with the conditional operator that is often useful

when a set of conditions is used to select between several functions. We will see

116 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

// Two- bit greater- than circuit: Conditional model // 1

// See Figure 2-27 for logic diagram // 2

 module comparator_greater_than_conditional(A, B, A_greater_than_B); // 3

 input [1:0] A, B; // 4

 output A_greater_than_B; // 5

 assign A_greater_than_B = (A == 2'b00)? 1'b0 : // 6

 (A == 2'b01)? ~(B[1]|B[0]): // 7

 (A == 2'b10)? ~B[1] : // 8

 (A == 2'b11)? ~(B[1]&B[0]): // 9

 1'bx; // 10

 endmodule // 11

 FIGURE 2-36
Conditional Dataflow Verilog Description of Two- Bit Greater- Than Circuit
Using Combinations

// Two- bit greater- than circuit: Behavioral model // 1

// See Figure 2-27 for logic diagram // 2

 module comparator_greater_than_behavioral(A, B, A_greater_than_B); // 3

 input [1:0] A, B; // 4

 output A_greater_than_B; // 5

 assign A_greater_than_B = A > B; // 6

endmodule // 7

 FIGURE 2-37
Behavioral Verilog Description of Two- Bit Greater- Than Circuit

examples of these types of selection circuits in later chapters, particularly in

Chapter 3 with multiplexers and Chapter 6 with register transfers. ■

EXAMPLE 2-24 Verilog for a Two- Bit Greater- Than Circuit Using a Behavioral
Description

As a final example of the two- bit greater- than circuit, Figure 2-37 is a description

that describes the behavior of the circuit at a much higher level of abstraction than

Boolean equations. This description simply uses single statement with the > mathe-

matical operator to implement the desired function. ■

TESTBENCHES As briefly described in Section 2-8, a testbench is an HDL model

whose purpose is to test another model, often called the Device Under Test (DUT),

by applying stimuli to the inputs. More complex testbenches will also analyze the out-

put of the DUT for correctness. Figure 2-38 shows a simple Verilog testbench for the

structural two- bit greater- than comparator circuit. The testbench has several aspects

that are common to testbenches. First, the module declaration does not have any

2-11 / Chapter Summary 117

 input or output ports (line 2). Second, the testbench declares the registers (variables)

and wires that will be connected to the inputs and outputs of the DUT (lines 3–4) and

instantiates the DUT (line 5). Finally, the testbench applies combinations of inputs to

the DUT to test it under various conditions (lines 6–16). The input values are applied

using a process, which is a block of statements that are executed sequentially. Because

the values for A and B are assigned as variables in a process rather than with continuous

assignments, A and B must be declared as type reg rather than as type wire (line 3).

The process in this testbench runs once at the beginning of the simulation because of

the keyword initial (line 6), and assigns values to the inputs of the DUT, waiting

10 time units of simulation time between assignments. In Verilog, delays are specified

with a number sign (#) followed by a real number. The process in this example uses

only a few combinations of inputs for the sake of clarity, although it does test all three

conditions for the relationship between A and B (A 6 B, A = B, and A 7 B). Pro-

cesses will be described in more detail in Chapter 4, where a richer set of sequential

statements that can be used in a process will be introduced.

This completes our introduction to Verilog for combinational circuits. We will

continue with more on Verilog by presenting additional features of the language for

describing more complex circuits in Chapters 3 and 4.

2-11 CHAPTER SUMMARY

The logic operations AND, OR, and NOT define the input/output relationships of logic

components called gates, from which digital systems are implemented. A Boolean

algebra defined in terms of these operations provides a tool for manipulating Boolean

functions in designing digital logic circuits. Minterm and maxterm standard

forms correspond directly to truth tables for functions. These standard forms can be

manipulated into sum- of- products and product- of- sums forms, which correspond to

 two- level gate circuits. Two cost measures to be minimized in optimizing a circuit are

// Testbench for Verilog two- bit greater- than comparator // 1

module comparator_testbench_verilog(); // 2

 reg [1:0] A, B; // 3

 wire struct_out; // 4

 comparator_greater_than_structural U1(A, B, struct_out); // 5

 initial // 6

 begin // 7

 A = 2'b10; // 8

 B = 2'b00; // 9

 #10; // 10

 B = 2'b01; // 11

 #10; // 12

 B = 2'b10; // 13

 #10; // 14

 B = 2'b11; // 15

 end // 16

endmodule // 17

 FIGURE 2-38
Testbench for the Structural Model of the Two- Bit Greater- Than Comparator

118 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

the number of input literals to the circuit and the total number of inputs to the gates

in the circuit. K- maps with two to four variables are an effective alternative to alge-

braic manipulation in optimizing small circuits. These maps can be used to optimize

 sum- of- products forms, product- of- sums forms, and incompletely specified functions

with don’ t- care conditions.

The primitive operations AND and OR are not directly implemented by prim-

itive logic elements in the most popular logic family. Thus, NAND and NOR primi-

tives that implement these families were introduced and used to implement circuits.

A more complex primitive, the exclusive- OR, and its complement, the exclusive-

 NOR, were presented along with their mathematical properties.

Gate propagation delays were discussed. Propagation delay determines the

speed of the overall digital circuit, and thus is a major design constraint.

Finally, the chapter provided a general introduction to HDLs and introduced

two languages, VHDL and Verilog. Combinational circuits were used to illustrate

structural and behavioral level descriptions for the two languages.

REFERENCES

1. BOOLE, G. An Investigation of the Laws of Thought. New York: Dover, 1854.

2. DIETMEYER, D. L. Logic Design of Digital Systems, 3rd ed. Boston: Allyn &

Bacon, 1988.

3. GAJSKI, D. D. Principles of Digital Design. Upper Saddle River, NJ: Prentice

Hall, 1997.

4. IEEE Standard Graphic Symbols for Logic Functions (includes IEEE Std

91 a– 1991 Supplement and IEEE Std 91–1984). New York: The Institute of

Electrical and Electronics Engineers, 1991.

5. KARNAUGH, M. “A Map Method for Synthesis of Combinational Logic

Circuits,” Transactions of AIEE, Communication and Electronics, 72, part I

(November 1953), 593–99.

6. MANO, M. M. Digital Design, 3rd ed. Upper Saddle River, NJ: Prentice Hall,

2002.

7. WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle

River, NJ: Pearson Prentice Hall, 2004.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

 2-1. *Demonstrate by means of truth tables the validity of the following identities:

(a) DeMorgan’s theorem for three variables: XYZ = X + Y + Z

(b) The second distributive law: X + YZ = (X + Y)(X + Z)

(c) XY + YZ + XZ = XY + YZ + XZ

Problems 119

 2-2. *Prove the identity of each of the following Boolean equations, using

algebraic manipulation:

(a) X Y + XY + XY = X + Y

(b) AB + B C + AB + BC = 1

(c) Y + XZ + XY = X + Y + Z

(d) X Y + YZ + XZ + XY + YZ = X Y + XZ + YZ

 2-3. +Prove the identity of each of the following Boolean equations, using

algebraic manipulation:

(a) ABC + BC D + BC + CD = B + CD

(b) WY + WYZ + WXZ + WXY = WY + WXZ + XYZ + XYZ

(c) AD + AB + CD + BC = (A + B + C + D)(A + B + C + D)

 2-4. +Given that A # B = 0 and A + B = 1, use algebraic manipulation to

prove that

(A + C) # (A + B) # (B + C) = B # C

 2-5. +A specific Boolean algebra with just two elements 0 and 1 has been used in

this chapter. Other Boolean algebras can be defined with more than two

elements by using elements that correspond to binary strings. These algebras

form the mathematical foundation for bitwise logical operations that we will

study in Chapter 6. Suppose that the strings are each a nibble (half of a byte)

of four bits. Then there are 24, or 16, elements in the algebra, where an

element I is the four- bit nibble in binary corresponding to I in decimal. Based

on bitwise application of the two- element Boolean algebra, define each of the

following for the new algebra so that the Boolean identities hold:

(a) The OR operation A + B for any two elements A and B

(b) The AND operation A # B for any two elements A and B

(c) The element that acts as the 0 for the algebra

(d) The element that acts as the 1 for the algebra

(e) For any element A, the element A.

 2-6. Simplify the following Boolean expressions to expressions containing a

minimum number of literals.

(a) WX Y + W Y + X Y Z + W X Y

(b) (W + X) (W + Y + X)

(c) X YZ + XYZ + X Y Z + X Z

(d) (W + X + Y)(X + Y)

(e) W X Y + X Y Z + XY + Y Z + W X Y

 2-7. *Reduce the following Boolean expressions to the indicated number of literals:

(a) X Y + XYZ + XY to three literals

(b) X + Y(Z + X + Z) to two literals

120 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

(c) WX(Z + YZ) + X(W + WYZ) to one literal

(d) (AB + A B)(C D + CD) + AC to four literals

 2-8. Apply DeMorgan’s theorem to express the function

F = X Y + WX + WY

(a) with only OR and complement operations.

(b) with only AND and complement operations.

(c) with only NAND and complement operations.

 2-9. *Find the complement of the following expressions:

(a) AB + AB

(b) (VW + X)Y + Z

(c) WX(YZ + YZ) + W X(Y + Z)(Y + Z)

(d) (A + B + C)(A B + C)(A + B C)

2-10. *Obtain the truth table of the following functions, and express each function

in sum- of- minterms and product- of- maxterms form:

(a) (XY + Z)(Y + XZ)

(b) (A + B)(B + C)

(c) WXY + WXZ + WXZ + YZ

2-11. For the Boolean functions E and F, as given in the following truth table:

X Y Z F E

0 0 0 0 0

0 0 1 0 1

0 1 0 0 0

0 1 1 1 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 1

1 1 1 1 1

(a) List the minterms and maxterms of each function.

(b) List the maxterms of F and E

(c) List the minterms of E + F and E # F.

(d) Express E and F in sum-of-minterms algebraic form.

(e) Simplify E # F to expressions with a minimum of literals.

2-12. *Convert the following expressions into sum- of- products and product- of-

 sums forms:

(a) (AB + C)(B + CD)

(b) X + X(X + Y)(Y + Z)

(c) (A + BC + CD)(B + EF)

2-13. Draw the logic diagram for the following Boolean expressions. The diagram

should correspond exactly to the equation. Assume that the complements of

the inputs are not available.

(a) A B C + AB + AC

(b) X(YZ + YZ) + W(Y + XZ)

(c) AC(B + D) + AC(B + D) + BC(A + D)

2-14. Optimize the following Boolean functions by means of a 3-variable map:

(a) F(A, B, C) = Σm(3, 4, 5, 6, 7)

(b) F(A, B, C) = Σm(1, 3, 6, 7)

(c) F(A, B, C) = Σm(3, 6, 7)

(d) F(A, B, C) = Σm(1, 3, 4, 5, 6, 7)

2-15. *Optimize the following Boolean expressions using a map:

(a) X Z + YZ + XYZ

(b) AB + BC + A B C

(c) A B + AC + BC + ABC

2-16. Optimize the following Boolean functions by means of a 4-variable map:

(a) F(A, B, C, D) = Σm(3, 4, 5, 6, 7, 12, 13)

(b) F(A, B, C, D) = Σm(4, 6, 7, 12, 13)

(c) F(A, B, C, D) = Σm(0, 1, 4, 5, 6, 7, 12, 13)

(d) F(A, B, C, D) = Σm(1, 3, 4, 5, 6, 7)

2-17. Optimize the following Boolean functions, using a map:

(a) F(A, B, C, D) = Σm(0, 1, 4, 5, 8, 9, 12, 13, 15)

(b) F(A, B, C, D) = Σm(4, 6, 7, 12, 13)

2-18. *Find the minterms of the following expressions by first plotting each

expression on a map:

(a) XY + XZ + XYZ

(b) XZ + WXY + WXY + WYZ + WYZ

(c) B D + ABD + ABC

2-19. *Find all the prime implicants for the following Boolean functions, and

determine which are essential:

(a) F(W, X, Y, Z) = Σm (0, 2, 5, 7, 8, 10, 12, 13, 14, 15)

(b) F(A, B, C, D) = Σm (0, 2, 3, 5, 7, 8, 10, 11, 14, 15)

(c) F(A, B, C, D) = Σm (1, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15)

2-20. Optimize the following Boolean functions by finding all prime implicants and

essential prime implicants and applying the selection rule:

(a) F(A, B, C, D) = Σm(0, 1, 5, 6, 7, 11, 12, 13, 15)

(b) F(A, B, C, D) = Σm(1, 3, 5, 7, 13, 15)

(c) F(A, B, C, D) = Σm(0, 2, 4, 8, 10, 12, 13, 15)

Problems 121

122 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

2-21. Optimize the following Boolean functions in product-of-sums form:

(a) F(A, B, C, D) = Σm(1, 2, 3, 5, 6, 7, 13, 14, 15)

(b) F(A, B, C, D) = Σm(0, 1, 2, 3, 6, 8, 9, 10, 11, 14)

2-22. *Optimize the following expressions in (1) sum- of- products and (2) product-

 of- sums forms:

(a) AC + BD + ACD + ABCD

(b) (A + B + D)(A + B + C)(A + B + D)(B + C + D)

(c) (A + B + D)(A + D)(A + B + D)(A + B + C + D)

2-23. Optimize the following functions that are given in maxterms into (1) product-

of-sums and (2) sum-of-products forms:

(a) F(A, B, C, D) = Π M(2, 5, 6, 7, 8, 9, 10, 11, 14)

(b) F(A, B, C, D) = Π M(5, 7, 9, 11)

2-24. Optimize the following Boolean functions F together with the don’t-care

conditions d in sum-of-products form:

(a) F (A, B, C, D) = Σm (2, 3, 4, 6, 8, 10, 12, 13, 14), d(A, B, C, D) = Σm(0, 1, 15)

(b) F (A, B, C, D) = ΠM (5, 7, 13, 15), d(A, B, C, D) = Σm(9, 11)

(c) F (A, B, C, D) = ΠM (10, 13, 14, 15), d(A, B, C, D) = Σm(0, 3, 4, 7, 12)

2-25. *Optimize the following Boolean functions F together with the don’ t- care

conditions d. Find all prime implicants and essential prime implicants, and

apply the selection rule.

(a) F(A, B, C) = Σm (3, 5, 6), d(A, B, C) = Σm (0, 7)

(b) F(W, X, Y, Z) = Σm (0, 2, 4, 5, 8, 14, 15), d(W, X, Y, Z)= Σm (7, 10, 13)

(c) F(A, B, C, D) = Σm (4, 6, 7, 8, 12, 15),

d(A, B, C, D) = Σm (2, 3, 5, 10, 11, 14)

2-26. Optimize the following Boolean functions F together with the don’t-care

conditions d in (1) product-of-sums and (2) sum-of-products forms.

(a) F(A, B, C, D) = Σm(0, 1, 4, 5, 6, 11, 15),

d(A, B, C, D) = Σm(7, 8, 9, 12)

(b) F(A, B, C, D) = Πm(2, 3, 7, 8, 10, 12),

 d(A, B, C, D) = Σm(0, 9, 13, 14)

2-27. *Prove that the dual of the exclusive- OR is also its complement.

2-28. Implement the following Boolean function with exclusive- OR and AND

gates, using a minimum number of gate inputs:

F(A, B, C, D) = ABCD + AD + AD

2-29. *The NOR gates in Figure 2-39 have propagation delay tpd = 0.073 ns and

the inverter has a propagation delay tpd = 0.048 ns. What is the propagation

delay of the longest path through the circuit?

2-30. The waveform in Figure 2-40 is applied to an inverter. Find the output of the

inverter, assuming that

(a) It has no delay.

(b) It has a transport delay of 0.06 ns.

(c) It has an inertial delay of 0.06 ns with a rejection time of 0.04 ns.

2-31. Assume that tpd is the average of tPHL and tPLH. Find the delay from each input

to the output in Figure 2-41 by

(a) Finding tPHL and tPLH for each path, assuming tPHL = 0.20 ns and

tPLH = 0.36 ns for each gate. From these values, find tpd for each path.

(b) Using tpd = 0.28 ns for each gate.

(c) Compare your answers from parts (a) and (b) and discuss any

differences.

2-32. The rejection time for inertial delays is required to be less than or equal to the

propagation delay. In terms of the discussion of the example in Figure 2-25,

why is this condition necessary to determine the delayed output?

A

B

C

F

E

D

B

A

 FIGURE 2-39
Circuit for Problem 2-29

Time (ns)0 1 2 3 4 5 6 7

 FIGURE 2-40
Waveform for Problem 2-30

C
D

A

B
C

F

B

 FIGURE 2-41
Circuit for Problem 2-31

Problems 123

124 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

2-33. +For a given gate, tPHL = 0.05 ns and tPLH = 0.10 ns. Suppose that an inertial

delay model is to be developed from this information for typical gate- delay

behavior.

(a) Assuming a positive output pulse (LHL), what would the propagation

delay and rejection time be?

(b) Discuss the applicability of the parameters in (a) assuming a negative

output pulse (HLH).

All HDL files for circuits referred to in the remaining problems are available

in ASCII form for simulation and editing on the Companion Website for the

text. A VHDL or Verilog compiler/simulator is necessary for the problems or

portions of problems requesting simulation. Descriptions can still be written,

however, for many problems without using compilation or simulation.

-- Combinational Circuit 1: Structural VHDL Description

library ieee, lcdf_vhdl;
use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all;
 entity comb_ckt_1 is
 port(x1, x2, x3, x4 : in std_logic;
 f : out std_logic);
end comb_ckt_1;

architecture structural_1 of comb_ckt_1 is
 component NOT1
 port(in1: in std_logic;
 out1: out std_logic);
 end component;
 component AND2
 port(in1, in2 : in std_logic;
 out1: out std_logic);
 end component;
 component OR3
 port(in1, in2, in3 : in std_logic;
 out1: out std_logic);
 end component;
 signal n1, n2, n3, n4, n5, n6 : std_logic;
 begin
 g0: NOT1 port map (in1 => x1, out1 => n1);
 g1: NOT1 port map (in1 => n3, out1 => n4);
 g2: AND2 port map (in1 => x2, in2 => n1,
 out1 => n2);

 g3: AND2 port map (in1 => x2, in2 => x3,
 out1 => n3);

 g4: AND2 port map (in1 => x3, in2 => x4,
 out1 => n5);

 g5: AND2 port map (in1 => x1, in2 => n4,
 out1 => n6);

 g6: OR3 port map (in1 => n2, in2 => n5,
 in3 => n6, out1 => f);

end structural_1;

 FIGURE 2-42
VHDL for Problem 2-34

2-34. *Find a logic diagram that corresponds to the VHDL structural description in

Figure 2-42. Note that complemented inputs are not available.

2-35. Using Figure 2-28 as a framework, write a structural VHDL description of the

circuit in Figure 2-43. Replace X, Y, and Z with X (2:0). Consult package

func_prims in library lcdf_vhdl for information on the various gate

components. Compile func_prims and your VHDL model, and simulate

your VHDL model for all eight possible input combinations to verify your

description’s correctness.

X

Y

Z

F

 FIGURE 2-43
Circuit for Problem 2-35, 2-38, 2-41, and 2-43

A

D

C
B

X

Y

 FIGURE 2-44
Circuit for Problems 2–36 and 2-40

Problems 125

2-36. Using Figure 2-28 as a framework, write a structural VHDL description of the

circuit in Figure 2-44. Consult package func_prims in library lcdf_vhdl

for information on the various gate components. Compile func_prims and

your VHDL model, and simulate your VHDL model for all 16 possible input

combinations to verify your description’s correctness.

2-37. Find a logic diagram representing minimum two- level logic needed to

implement the VHDL dataflow description in Figure 2-45. Note that

complemented inputs are available.

2-38. *Write a dataflow VHDL description for the circuit in Figure 2-43 by using

the Boolean equation for the output F.

2-39. *Find a logic diagram that corresponds to the Verilog structural description in

Figure 2-46. Note that complemented inputs are not available.

126 CHAPTER 2 / COMBINATIONAL LOGIC CIRCUITS

2-40. Using Figure 2-33 as a framework, write a structural Verilog description of

the circuit in Figure 2-44. Compile and simulate your Verilog model for all 16

possible input combinations to verify your description’s correctness.

2-41. Using Figure 2-46 as a framework, write a structural Verilog description of

the circuit in Figure 2-43. Replace X, Y, and Z with input
[2:0] X. Compile and simulate your Verilog model for all eight possible

input combinations to verify your description’s correctness.

-- Combinational Circuit 2: Dataflow VHDL Description

library ieee;
use ieee.std_logic_1164.all;
 entity comb_ckt_2 is
 port(a, b, c, d, a_n, b_n, c_n, d_n: in std_logic;
 f, g : out std_logic);
-- a_n, b_n, . . . are complements of a, b, . . . , respectively.

end comb_ckt_2;
architecture dataflow_1 of comb_ckt_2 is
begin
 f <= b and (a or (a_n and c)) or (b_n and c and d_n);
 g <= b and (c or (a_n and c_n) or (c_n and d_n));
end dataflow_1;

 FIGURE 2-45
VHDL for Problem 2–37

// Combinational Circuit 1: Structural Verilog Description

module comb_ckt_1(x1, x2, x3, x4, f);
 input x1, x2, x3, x4;
 output f;

 wire n1, n2, n3, n4, n5, n6;

 not
 go(n1, x1),

 g1(n4, n3);

 and
 g2(n2, x2, n1),

 g3(n3, x2, x3),

 g4(n5, x3, x4),);

 g5(n6, x1, n4),);

 or
 g6(f, n2, n5, n6),

endmodule

 FIGURE 2-46
Verilog for Problems 2–39 and 2-41

Problems 127

// Combinational Circuit 2: Dataflow Verilog Description

module comb_ckt_1 (a, b, c, d, a_n, b_n, c_n, d_n, f, g);
// a_n, b_n, . . . are complements of a, b, . . . , respectively.

 input a, b, c, d, a_n, b_n, c_n, d_n;
 output f, g;

 assign f = b & (a |(a_n & c)) | (b_n & c & d_n);
 assign g = b & (c | (a_n & c_n) | (c_n & d_n));
endmodule

 FIGURE 2-47
Verilog for Problem 2–42

2-42. Find a logic diagram representing minimum 2-level logic needed to

implement the Verilog dataflow description in Figure 2-47. Note that

complemented inputs are available.

2-43. *Write a dataflow Verilog description for the circuit in Figure 2-43 by using

the Boolean equation for the output F and using Figure 2-34 as a model.

 129 129

C H A P T E R

Combinational
Logic Design

3

In this chapter, we continue our study of the design of combinational circuits. The

chapter begins by describing a hierarchical approach to design, where the desired

functionality is broken into smaller, less complex pieces that can be designed

number of common functions and the corresponding fundamental circuits that are very

useful in designing larger digital circuits. The fundamental, reusable circuits, which we

call functional blocks, implement functions of a single variable, decoders, encoders,

code converters, and multiplexers. The chapter then covers a special class of functional

blocks that perform arithmetic operations. It introduces the concept of iterative circuits

made up of arrays of combinational cells and describes blocks designed as iterative

arrays for performing addition, covering both addition and subtraction. The simplicity of

these arithmetic circuits comes from using complement representations for numbers

us to design new functional blocks from existing ones. Contraction involves application

These circuits perform operations such as incrementing a number, decrementing a

number, or multiplying a number by a constant. Many of these new functional blocks will

be used to construct sequential functional blocks in Chapter 6.

The various concepts in this chapter are pervasive in the design of the generic

computer in the diagram at the beginning of Chapter 1. Combinational logic is a

mainstay in all of the digital components. Multiplexers are very important for selecting

data in the processor, in memory, and on I/O boards. Decoders are used for selecting

boards attached to the input—output bus and to decode instructions to determine the

operations performed in the processor. Encoders are used in a number of components,

such as the keyboard. Functional blocks are widely used, so concepts from this chapter

apply across all of the digital components of the generic computer, including memories.

In the generic computer diagram at the beginning of Chapter 1, adders, adder-subtractors,

130 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

3-1 BEGINNING HIERARCHICAL DESIGN

As briefly described in Chapter 1, the procedure for designing a digital system is to:

1. specify the desired behavior,

2. formulate the relationship between the inputs and outputs of the system, usu-

ally in terms of Boolean equations or a truth table,

3. optimize the representation of the logical behavior to minimize the number of

logic gates required, as illustrated by the Karnaugh map procedure introduced

in Chapter 2,

4. map the optimized logic to the available implementation technology, such as the

logic gates from Chapter 2 or the functional blocks described in this chapter, and

5. verify the correctness of the final design in meeting the specifications.

The focus in this chapter is on the first four steps of the design procedure for com-

binational logic, from specifying the system to mapping the logic to the available imple-

mentation technology. But in actual design practice, the last step of verifying the

correctness of the design typically is a considerable part of the effort creating the design.

While an in-depth treatment of verification is beyond the scope of an introductory text

such as this one, we should keep in mind that making sure that the design meets the

specification is an important step that is often a bottleneck in the product design cycle.

Small designs can be verified manually by finding the Boolean logic equations for the

design and confirming that the truth table for them matches the specification. Larger

designs are verified using simulation as well as more advanced techniques. If the circuit

does not meet its specification, then it is incorrect. As a consequence, verification plays a

vital role in preventing incorrect circuit designs from being manufactured and used.

For complex digital systems, rather than applying the design process above to the

whole system, a typical method for designing them is to use a “divide-and-conquer”

approach called hierarchical design. The resulting related symbols and schematics

 constitute a hierarchy representing the circuit designed. In order to deal with circuit

complexity, the circuit is broken up into pieces we call blocks, and the above design pro-

cedure is used to design the blocks. The blocks are then interconnected to form the cir-

cuit. The functions of these blocks and their interfaces are carefully defined, so that the

circuit formed by interconnecting the blocks obeys the initial circuit specification. If a

block is still too large and complex to be designed as a single entity, it can be broken into

smaller blocks. This process can be repeated as necessary. Note that since we are work-

ing primarily with logic circuits, we use the term “circuit” in this discussion, but the ideas

apply equally well to the “systems” covered in later chapters.

Example 3-1 illustrates a very simple use of hierarchical design to “divide and

conquer” a circuit that has eight inputs. This number of inputs makes the truth table

and other arithmetic circuits are used in the processor. Incrementers and decrementers

are used widely in other components as well, so concepts from this chapter apply

across most components of the generic computer.

3-1 / Beginning Hierarchical Design 131

cumbersome and K-maps impossible. Thus, direct application of the basic combina-

tional design approach, as used in Chapter 2, is difficult.

EXAMPLE 3-1 Design of a 4-Bit Equality Comparator

SPECIFICATION: An equality comparator is a circuit that compares two binary vectors

to determine whether they are equal or not. The inputs to this specific circuit consist

of two vectors: A(3:0) and B(3:0). Vector A consists of four bits, A(3), A(2), A(1), and

A(0), with A(3) as the most significant bit. Vector B has a similar description with B

replaced by A. The output of the circuit is a single-bit variable E. Output E is equal to

1 if vectors A and B are equal and equal to 0 if vectors A and B are unequal.

FORMULATION: The formulation attempts to bypass the use of a truth table due to

its size. In order for A and B to be equal, the bit values in each of the respective

positions, 3 down to 0, of A and B must be equal. If all of the bit positions for A and

B contain equal values in every position, then E = 1—otherwise, E = 0. Intuitively,

we can see from this formulation of the problem that the circuit can be developed as

a simple 2-level hierarchy with the complete circuit at the top level and five circuits

at the bottom level. Since comparison of a bit from A and the corresponding bit from

B must be done in each of the bit positions, we can decompose the problem into four

1-bit comparison circuits MX and an additional circuit ME that combines the four

comparison-circuit outputs to obtain E. A logic diagram of the hierarchy showing

the interconnection of the five blocks is shown in Figure 3-1(a).

(a)

A0 N0
MX

MX

MX

MX

ME

N1

N2

N3

E

B0

A1

B1

A2

B2

A3

B3

Ai

Ni

MX
Bi

N0
N1 E

ME
N2
N3

(b) (c)

 FIGURE 3-1
Hierarchical Diagram for a 4-Bit Equality Comparator

132 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

OPTIMIZATION: For bit position i, we define the circuit output Ni to be 0 if Ai and Bi

have the same values and Ni = 1 if Ai and Bi have different values. Thus, the MX

circuit can be described by the equation

Ni = AiBi + AiBi

which has the circuit diagram shown in Figure 3-1(b). By using hierarchy, we can

employ four copies of this circuit, one for each of the four bits of A and B. Output

E = 1 only if all of the Ni values are 0. This can be described by the equation

E = N0 + N1 + N2 + N3

and has the diagram given in Figure 3-1(c). Both of the circuits given are optimum

two-level circuits. These two circuit diagrams plus the block diagram in Figure 3-1(a)

represent the hierarchical design of the circuit. The actual circuit is obtained by

replacing the respective blocks in Figure 3-1(a) by copies of the two circuits shown in

Figures 3-1(b) and (c).

The structure of the hierarchy for the 4-bit equality comparator can be repre-

sented without the interconnections by starting with the top block for the overall

circuit and, below each block, connecting those blocks or primitives from which the

block is constructed. Using this representation, the hierarchy for the 4-bit equality

comparator circuit is shown in Figure 3-2(a). Note that the resulting structure has the

form of a tree with the root at the top. The “leaves” of the tree are the gates, in this

case 21 of them. In order to provide a more compact representation of the hierarchy,

we can reuse blocks, as shown in Figure 3-2(b). This diagram corresponds to blocks

used in Figure 3-1, with only one copy of each distinct block shown. These diagrams

and the circuits in Figure 3-1 are helpful in illustrating a number of useful concepts

associated with hierarchies and hierarchical blocks. .

First of all, a hierarchy reduces the complexity required to represent the sche-

matic diagram of a circuit. For example, in Figure 3-2(a), 21 gates appear. This means

that if the circuit were designed directly in terms of gates, the schematic for the

(a)

4-input
equality comparator

MX MX MX MEMX

(b)

4-input
equality comarator

MX ME

 FIGURE 3-2
Diagrams Representing the Structure of the Hierarchy for Figure 3-1

3-1 / Beginning Hierarchical Design 133

circuit would consist of 21 interconnected gate symbols, in contrast to just 11 sym-

bols used to describe the circuit implementation as a hierarchy in Figure 3-1. Thus, a

hierarchy gives a simplified representation of a complex circuit.

Second, the hierarchy ends at a set of “leaves” in Figure 3-2. In this case, the

leaves consist of AND gates, OR gates, inverters, and a NOR gate. Since the gates

are electronic circuits, and we are interested here only in designing the logic, these

gates are commonly called primitive blocks. These are predefined rudimentary blocks

that have a symbol, but no logic schematic. In general, more complex structures that

likewise have symbols, but no logic schematics, are also predefined blocks. Instead of

schematics, their function can be defined by a program or description that can serve

as a model. For example, in the hierarchy depicted in Figure 3-1, the MX blocks

could have been considered as predefined exclusive-OR gates consisting of elec-

tronic circuits. In such a case, the diagram describing the internal logic for MX exclu-

sive-OR blocks in Figure 3-1(b) would not be necessary. The hierarchical

representations in Figure 3-1(b) and 3-2(a) would then end with the exclusive-OR

blocks. In any hierarchy, the “leaves” consist of predefined blocks, some of which

may be primitives.

A third very important property that results from hierarchical design is the

reuse of blocks, as illustrated in Figures 3-2(a) and (b). In part (a), there are four

 copies of the 2-input MX block. In part (b), there is only one copy of the 2-input MX

block. This represents the fact that the designer has to design only one 2-input

MX block and can use this design four times in the 4-bit equality comparator circuit.

In general, suppose that at various levels of a hierarchy, the blocks used are carefully

defined in such a manner that many of them are identical. A prerequisite for being

able to achieve this goal is a fundamental property of the circuit called regularity. A

regular circuit has a function that permits it to be constructed from copies of a rea-

sonably small set of distinct blocks. An irregular circuit has a function with no such

property. Clearly the regularity for any given function is a matter of degree. For a

given repeated block, only one design is necessary. This design can be used every-

where the block is required. The appearance of a block within a design is called an

instance of the block and its use is called an instantiation. The block is reusable in the

sense that it can be used in multiple places in the circuit design and, possibly, in

the design of other circuits as well. This concept greatly reduces the design effort

required for complex circuits. Note that, in the implementation of the actual circuit,

separate hardware has to be provided for each instance of the block, as represented

in Figure 3-2(a). The reuse, as represented in Figure 3-2(b), is confined to the sche-

matics that need to be designed, not to the actual hardware implementation. The

ratio of the number of primitives in the final circuit to the total number of blocks in a

hierarchical diagram including primitives is a measure of regularity. A larger ratio

represents higher regularity; for example, for the 4-bit comparator as in Figure 3-1,

this ratio is 21/11.

A complex digital system may contain millions of interconnected gates. A sin-

gle very-large-scale integrated (VLSI) processor circuit often contains hundreds of

millions of gates. With such complexity, the interconnected gates appear to be an

incomprehensible maze. Such complex systems or circuits are not designed manually

simply by interconnecting gates one at a time.

134 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

In this chapter we focus on predefined, reusable blocks that typically lie at the

lower levels of logic design hierarchies. These are blocks of intermediate size that

provide basic functions used in digital design. They allow designers to do much of

the design process above the primitive block, i.e., gate level. We refer to these partic-

ular blocks as functional blocks. Thus, a functional block is a predefined collection of

interconnected gates. Many of these functional blocks have been available for

decades as medium-scale integrated (MSI) circuits that were interconnected to form

larger circuits or systems. Similar blocks are now, in computer-aided design tool

libraries, used for designing larger integrated circuits. These functional blocks pro-

vide a catalog of digital components that are widely used in the design and imple-

mentation of integrated circuits for computers and digital systems.

3-2 TECHNOLOGY MAPPING

Before we begin our discussion of functional blocks, it will be helpful if we first dis-

cuss technology mapping, where a logic diagram or netlist is transformed into a new

diagram or netlist using available technology components. In this section, we intro-

duce NAND and NOR gate cells and consider mapping AND, OR, NOT descrip-

tions to one or the other of these two technologies. In currently available transistor

technologies, NAND and NOR gates are smaller and faster than AND and OR

gates. As we described in Chapter 2, the NAND and NOR functions are both func-

tionally complete, so any Boolean function can be implemented using only one or

the other. Later in this chapter, we will show how to implement logic functions by

mapping them onto more complex functional blocks. In Chapter 5, technology map-

ping to programmable implementation technologies is covered.

ADVANCED TECHNOLOGY MAPPING Technology mapping using collections of cell types

including multiple gate types is covered in this supplement on the Companion Web

Site for the text.

A NAND technology consists of a collection of cell types, each of which

includes a NAND gate with a fixed number of inputs. The cells have numerous prop-

erties, as described in Chapter 5. Because of these properties, there may be more

than one cell type with a given number of inputs n. For simplicity, we will assume that

there are four cell types, based on the number of inputs, n, for n = 1, 2, 3, and 4. We

will call these four cell types Inverter (n = 1), 2NAND, 3NAND, and 4NAND,

respectively.

A convenient way to implement a Boolean function with NAND gates is to

begin with the optimized logic diagram of the circuit consisting of AND and OR

gates and inverters. Next, the function is converted to NAND logic by converting the

logic diagram to NAND gates and inverters. The same conversion applies for NOR

gate cells.

Given an optimized circuit that consists of AND gates, OR gates, and inverters,

the following procedure produces a circuit using NAND (or NOR) gates with unre-

stricted gate fan-in:

1. Replace each AND and OR gate with the NAND (NOR) gate and inverter

equivalent circuits shown in Figures 3-3(a) and (b).

3-2 / Technology Mapping 135

2. Cancel all inverter pairs.

3. Without changing the logic function, (a) “push” all inverters lying between

(i) either a circuit input or a driving NAND (NOR) gate output and (ii) the

driven NAND (NOR) gate inputs toward the driven NAND (NOR) gate in-

puts. Cancel pairs of inverters in series whenever possible during this step.

(b) Replace inverters in parallel with a single inverter that drives all of the

outputs of the parallel inverters. (c) Repeat (a) and (b) until there is at most

one inverter between the circuit input or driving NAND (NOR) gate output

and the attached NAND (NOR) gate inputs.

In Figure 3-3(c), the rule for pushing an inverter through a “dot” is illustrated.

The inverter on the input line to the dot is replaced with inverters on each of the

 FIGURE 3-3
Mapping of AND Gates, OR Gates, and Inverters to
NAND Gates, NOR Gates, and Inverters

...
...

...
...

(a) Mapping to NAND gates

...

...
...

...

(b) Mapping to NOR gates

...
...

(c) Pushing an inverter through a “dot”

(d) Canceling inverter pairs

136 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

output lines from the dot. The cancelation of pairs of inverters in Figure 3-3(d) is

based on the Boolean algebraic identity

X = X

The next example illustrates this procedure for NAND gates.

EXAMPLE 3-2 Implementation with NAND Gates

Implement the following optimized function with NAND gates:

F = AB + (AB)C + (AB)D + E

The AND, OR, inverter implementation is given in Figure 3-4(a). In Figure 3-4(b),

step 1 of the procedure has been applied, replacing each AND gate and OR gate

with its equivalent circuit using NAND gates and inverters from Figure 3-3(a).

Labels appear on dots and inverters to assist in the explanation. In step 2, the inverter

pairs (1, 2) and (3, 4), cancel, giving direct connections between the corresponding

NAND gates in Figure 3-4(d). As shown in Figure 3-4(c), inverter 5 is pushed through

X and cancels with inverters 6 and 7, respectively. This gives direct connections

between the corresponding NAND gates in Figure 3-4(d). No further steps can be

applied, since inverters 8 and 9 cannot be paired with other inverters and must

remain in the final mapped circuit in Figure 3-4(d). The next example illustrates this

procedure for NOR gates.

A

B

C

D

F

E

(a)

A
B

C
7

5

1

6

2

4

9

X

Y

38D
E

F

(b)

A
B

C

D

E

F

(d)

X

5

5

7

6
Y

(c)

 FIGURE 3-4
Solution to Example 3-2 ■

3-2 / Technology Mapping 137

EXAMPLE 3-3 Implementation with NOR Gates

Implement the same optimized Boolean function used in Example 3-2 with NOR

gates:

F = AB + (AB)C + (AB)D + E

The AND, OR, inverter implementation is given in Figure 3-5(a). In Figure 3-5(b),

step 1 of the procedure has been applied, replacing each AND gate and OR gate with

its equivalent circuit using NOR gates and inverters from Figure 3-3(b). Labels appear

on dots and inverters to assist in the explanation. In step 2, inverter 1 can be pushed

through dot X to cancel with inverters 2 and 3, respectively. The pair of inverters on the

D input line cancel as well. The single inverters on input lines A, B, and C and output

line F must remain, giving the final mapped circuit that appears in Figure 3-5(c).

A
B

C

D
E

F

(a)

A

B

C

D
E

F

(c)

F

A

B

X

C

D
E

(b)

2

3

1

 FIGURE 3-5
Solution to Example 3-3 ■

In Example 3-2 the gate-input cost of the mapped circuit is 12, and in Example

3-3 the gate-input cost is 14, so the NAND implementation is less costly. Also, the

NAND implementation involves a maximum of three gates in series while the NOR

implementation has a maximum of five gates in series. With equal gate delays

assumed, the shorter series of gates in the NAND circuit gives a maximum delay

from an input change to a corresponding output change about 0.6 times as long as

that for the NOR circuit. So, in this particular case, the NAND circuit is superior to

the NOR circuit in both cost and delay.

138 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The result of a technology mapping is clearly influenced by the initial circuit or

equation forms prior to mapping. For example, mapping to NANDs for a circuit

with an OR gate at the output produces a NAND gate at the output. Mapping to

NORs for the same circuit produces an inverter driven by a NOR gate at the output.

Because of these results, the sum of products is viewed as more natural for NANDs

and the product of sums, which eliminates the output inverter, as more natural for

NORs. Nevertheless, the choice should be based on which form gives the best over-

all implementation in terms of whatever optimization criteria are being applied. ■

3-3 COMBINATIONAL FUNCTIONAL BLOCKS

Earlier, we defined and illustrated combinational circuits and their design. In this

 section, we define specific combinational functions and corresponding combinational

circuits, referred to as functional blocks. In some cases, we will go through the design

process for obtaining a circuit from the function, while in other cases, we will simply

present the function and an implementation of it. These functions have special impor-

tance in digital design. In the past, the functional blocks were manufactured as small-

and medium-scale integrated circuits. Today, in very-large-scale integrated (VLSI)

 circuits, functional blocks are used to design circuits with many such blocks. Combina-

tional functions and their implementations are fundamental to the understanding of

VLSI circuits. By using a hierarchy, we typically construct circuits as instances of these

functions or the associated functional blocks as well as logic design at the gate level.

Large-scale and very-large-scale integrated circuits are almost always sequen-

tial circuits, as detailed beginning in Chapter 4. The functions and functional blocks

discussed in this chapter are combinational. However, they are often combined with

storage elements to form sequential circuits, as shown in Figure 3-6. Inputs to the

combinational circuit can come from both the external environment and the storage

elements. Outputs from the combinational circuit go to both the external environ-

ment and the storage elements. In later chapters, we use the combinational functions

and blocks defined here, with storage elements to form sequential circuits that per-

form very useful functions. Further, the functions and blocks defined here serve as a

basis for describing and understanding both combinational and sequential circuits

using hardware description languages.

3-4 RUDIMENTARY LOGIC FUNCTIONS

Value fixing, transferring, inverting, and enabling are among the most elementary of

combinational logic functions. The first two operations, value fixing and transferring,

do not involve any Boolean operators. They use only variables and constants. As a

Inputs
Combinational

circuit
Next
state Storage

elements

Outputs

Present
state

 FIGURE 3-6
Block Diagram of a Sequential Circuit

3-4 / Rudimentary Logic Functions 139

consequence, logic gates are not involved in the implementation of these operations.

Inverting involves only one logic gate per variable, and enabling involves one or two

logic gates per variable.

Value-Fixing, Transferring, and Inverting

If a single-bit function depends on a single variable X, four different functions are

possible. Table 3-1 gives the truth tables for these functions. The first and last col-

umns of the table assign either constant value 0 or constant value 1 to the function,

thus performing value fixing. In the second column, the function is simply the input

variable X, thus transferring X from input to output. In the third column, the func-

tion is X, thus inverting input X to become output X.

The implementations for these four functions are given in Figure 3-7. Value fix-

ing is implemented by connecting a constant 0 or constant 1 to output F, as shown in

Figure 3-7(a). Figure 3-7(b) shows alternative representations used in logic schemat-

ics. For the positive logic convention, constant 0 is represented by the electrical

ground symbol and constant 1 by a power-supply voltage symbol. The latter symbol

is labeled with either VCC or VDD. Transferring is implemented by a simple wire con-

necting X to F as in Figure 3-7(c). Finally, inverting is represented by an inverter

which forms F = X from input X, as shown in Figure 3-7(d).

Multiple-Bit Functions

The functions defined so far can be applied to multiple bits on a bitwise basis. We can

think of these multiple-bit functions as vectors of single-bit functions. For example,

suppose that we have four functions, F
3
, F

2
, F

1
, and F

0
, that make up a four-bit func-

tion F. We can order the four functions with F
3
 as the most significant bit and F

0
 the

 TABLE 3-1
Functions of One Variable

X F = 0 F = X F = X F = 1

0 0 0 1 1

1 0 1 0 1

0

1

(a)

V

F � 1

F � 0

F � 1

F � 0

F � X

F � X

CC or VDD

(b)

X

(c)

X

(d)

 FIGURE 3-7
Implementation of Functions of a Single Variable X

140 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

least significant bit, providing the vector F = (F3, F2, F1, F0). Suppose that F consists

of rudimentary functions F3 = 0, F2 = 1, F1 = A, and F0 = A. Then we can write F

as the vector (0, 1, A, A). For A = 0, F = (0, 1, 0, 1) and for A = 1, F = (0, 1, 1, 0).

This multiple-bit function can be referred to as F(3:0) or simply as F and is imple-

mented in Figure 3-8(a). For convenience in schematics, we often represent a set of

multiple, related wires by using a single line of greater thickness with a slash, across

the line. An integer giving the number of wires represented accompanies the slash as

shown in Figure 3-8(b). In order to connect the values 0, 1, X, and X to the appropri-

ate bits of F, we break F up into four wires, each labeled with the bit of F. Also, in the

process of transferring, we may wish to use only a subset of the elements in F—for

example, F
2
 and F

1
. The notation for the bits of F can be used for this purpose, as

shown in Figure 3-8(c). In Figure 3-8(d), a more complex case illustrates the use of

F
3
, F

1
, F

0
 at a destination. Note that since F

3
, F

1
, and F

0
 are not all together, we cannot

use the range notation F(3:0) to denote this subvector. Instead, we must use a combi-

nation of two subvectors, F(3), F(1:0), denoted by subscripts 3, 1:0. The actual nota-

tion used for vectors and subvectors varies among the schematic drawing tools or

HDL tools available. Figure 3-8 illustrates just one approach. For a specific tool, the

documentation should be consulted.

Value fixing, transferring, and inverting have a variety of applications in logic

design. Value fixing involves replacing one or more variables with constant values

1 and 0. Value fixing may be permanent or temporary. In permanent value fixing,

the value can never be changed. In temporary value fixing, the values can be

changed, often by mechanisms somewhat different from those employed in ordi-

nary logical operation. A major application of fixed and temporary value fixing is

in programmable logic devices. Any logic function that is within the capacity of the

programmable device can be implemented by fixing a set of values, as illustrated in

the next example.

EXAMPLE 3-4 Lecture-Hall Lighting Control Using Value Fixing

The Problem: The design of a part of the control for the lighting of a lecture hall

specifies that the switches that control the normal lights be programmable. There are

to be three different modes of operation for the two switches. Switch P is on the po-

dium in the front of the hall and switch R is adjacent to a door at the rear of the

0 F3

1 F2

A F1

A F0

(a)

0

1

A

A

1

2 3
4

F

0

(b)

4 2:1 F(2:1)
2

F

(c)

4 3,1:0 F(3), F(1:0)
3

F
(d)

 FIGURE 3-8
Implementation of Multibit Rudimentary Functions

3-4 / Rudimentary Logic Functions 141

 lecture hall. H (house lights) is 1 for the house lights on and 0 for the house lights off.

The light control for house lights can be programmed to be in one of three modes,

M
0
, M

1
, or M

2
, defined as:

M
0
: Either switch P or switch R turns the house lights on and off.

M
1
: Only the podium switch P turns the house lights on and off.

M
2
: Only the rear switch R turns the house lights on and off.

The Solution: The truth tables for H(P, R) as a function of programming modes M
0
,

M
1
, and M

2
 are given in Table 3-2. The functions for M

1
 and M

2
 are straightforward,

but the function for M
0
 needs more thought. This function must permit the changing

of one out of the two switches P or R to change the output. A parity function has this

property, and the parity function for two inputs is the exclusive OR, the function en-

tered into Table 3-2 for M
0
. The goal is to find a circuit that will implement the three

programming modes and provide the output H(P, R).

The circuit chosen for a value-fixing implementation is shown in Figure 3-9(a);

later in this chapter, this standard circuit is referred to as a 4–to–1 multiplexer. A

condensed truth table is given for this circuit in Figure 3-9(b). P and R are input vari-

ables, as are I
0
 through I

3
. Values 0 and 1 can be assigned to I

0
 through I

3
 depending

upon the desired function for each mode. Note that H is actually a function of six

variables, giving a fully expanded truth table containing 64 rows and seven columns.

But, by putting I
0
 through I

3
 in the output column, we considerably reduce the size of

the table. The equation for the output H for this truth table is

H(P, R, I0, I1, I2, I3) = P RI0 + PRI1 + PRI2 + PRI3

By fixing the values of I
0
 through I

3
, we can implement any function H(P, R).

As shown in Table 3-2, we can implement the function for M
0
, H = PR + PR by

using I0 = 0, I1 = 1, I2 = 1, and I3 = 0. We can implement the function for M
1
,

H = P by using I0 = 0, I1 = 0, I2 = 1, and I3 = 1, and M2, H = R by using

I0 = 0, I1 = 1, I2 = 0, and I3 = 1. Any one of these functions can be implemented

permanently, or all can be implemented temporarily by fixing I0 = 0, and using I
1
, I

2
,

and I
3
 as variables with values as assigned above for each of the three modes. The

final circuit with I0 = 0 and the programming table after I
0
 has been fixed at 0 are

shown in Figures 3-9(c) and (d), respectively.

 TABLE 3-2
Function Implementation by Value Fixing

Mode: M0 M1 M2

P R H = PR + PR H = P H = R

0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

142 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Enabling

In general, enabling permits an input signal to pass through to an output. In addition to

replacing the input signal with the Hi-Z state, which will be discussed in Section 6-8,

disabling also can replace the input signal with a fixed output value, either 0 or 1. The

additional input signal, often called ENABLE or EN, is required to determine whether

the output is enabled or not. For example, if EN is 1, the input X reaches the output

(enabled), but if EN is 0, the output is fixed at 0 (disabled). For this case, with the dis-

abled value at 0, the input signal is ANDed with the EN signal, as shown in Figure 3-

10(a). If the disabled value is 1, then the input signal X is ORed with the complement of

the EN signal, as shown in Figure 3-10(b). In this case, if EN = 1, a 0 is applied to the

OR gate, and the input X on the other OR gate, input reaches the output, but if EN = 0

, a 1 is applied to the OR gate, which blocks the passage of input X to the output. It is

also possible for each of the circuits in Figure 3-10 to be modified to invert the EN input,

so that EN = 0 enables X to reach the output and EN = 1 blocks X.

I0

I1

I2

I3

P

R

H

(a)

P R H

0 0 I0

0 1 I1

1 0 I2

1 1 I3

(b)

M0

(d)

M1 M2

0

0 1

1
1
1

1
1
0

0

I2

I3

P

R

H

(c)

I1

I1

I2

I3

 FIGURE 3-9
Implementation of Three Functions by Using Value Fixing ■

3-4 / Rudimentary Logic Functions 143

EXAMPLE 3-5 Car Electrical Control Using Enabling

The Problem: In most automobiles, the lights, radio, and power windows operate

only if the ignition switch is turned on. In this case, the ignition switch acts as an “en-

abling” signal. Suppose that we model this automotive subsystem using the follow-

ing variables and definitions:

Ignition switch IG: Value 0 if off and value 1 if on

Light switch LS: Value 0 if off and value 1 if on

Radio switch RS: Value 0 if off and value 1 if on

Power window switch WS: Value 0 if off and value 1 if on

Lights L: Value 0 if off and value 1 if on

Radio R: Value 0 if off and value 1 if on

Power windows W: Value 0 if off and value 1 if on

The Solution: Table 3-3 contains the condensed truth table for the operation

of this automobile subsystem. Note that when the ignition switch IS is off (0), all of

the controlled accessories are off (0) regardless of their switch settings. This is indi-

cated by the first row of the table. With the use of Xs, this condensed truth table

with just nine rows represents the same information as the usual 16-row truth table.

Whereas Xs in output columns represent don’t-care conditions, Xs in input

X
F

EN

(a)

EN
X

F

(b)

 FIGURE 3-10
Enabling Circuits

 TABLE 3-3
Truth Table For Enabling Application

Input

Switches

Accessory

Control

IS LS RS WS L R W

0 X X X 0 0 0

1 0 0 0 0 0 0
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 1 0 0
1 1 0 1 1 0 1
1 1 1 0 1 1 0
1 1 1 1 1 1 1

144 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

columns are used to represent product terms that are not minterms. For example,

0XXX represents the product term IS. Just as with minterms, each variable is com-

plemented if the corresponding bit in the input combination from the table is 0 and

is not complemented if the bit is 1. If the corresponding bit in the input combina-

tion is an X, then the variable does not appear in the product term. When the igni-

tion switch IS is on (1), then the accessories are controlled by their respective

switches. When IS is off (0), all accessories are off. So IS replaces the normal values

of the outputs L, R, and W with a fixed value 0 and meets the definition of an

ENABLE signal. The resulting circuit is given in Figure 3-11. ■

3-5 DECODING

In digital computers, discrete quantities of information are represented by binary

codes. An n-bit binary code is capable of representing up to 2n distinct elements of

coded information. Decoding is the conversion of an n-bit input code to an m-bit

output code with n … m … 2n, such that each valid input code word produces a

unique output code. Decoding is performed by a decoder, a combinational circuit

with an n-bit binary code applied to its inputs and an m-bit binary code appearing

at the outputs. The decoder may have unused bit combinations on its inputs for

which no corresponding m-bit code appears at the outputs. Among all of the spe-

cialized functions defined here, decoding is the most important, since this function

and the corresponding functional blocks are incorporated into many of the other

functions and functional blocks defined here.

In this section, the functional blocks that implement decoding are called

n–to–m-line decoders, where m … 2n. Their purpose is to generate the 2n (or fewer)

minterms from the n input variables. For n = 1 and m = 2, we obtain the 1–to–2-line

decoding function with input A and outputs D
0
 and D

1
. The truth table for this

decoding function is given in Figure 3-12(a). If A = 0, then D0 = 1 and D1 = 0.

If A = 1, then D0 = 0 and D1 = 1. From this truth table, D0 = A and D1 = A,

giving the circuit shown in Figure 3-12(b).

A second decoding function for n = 2 and m = 4 with the truth table given in

Figure 3-13(a) better illustrates the general nature of decoders. This table has 2-vari-

able minterms as its outputs, with each row containing one output value equal to 1

and three output values equal to 0. Output Di is equal to 1 whenever the two input

values on A
1
 and A

0
 are the binary code for the number i. As a consequence, the

circuit implements the four possible minterms of two variables, one minterm for

LS
L

IG

RS
R

WS
W

 FIGURE 3-11
Car Electrical Control Using Enabling

3-5 / Decoding 145

each output. In the logic diagram in Figure 3-13(b), each minterm is implemented by

a 2-input AND gate. These AND gates are connected to two 1–to–2-line decoders,

one for each of the lines driving the AND gate inputs.

Large decoders can be constructed by simply implementing each minterm

function using a single AND gate with more inputs. Unfortunately, as decoders

become larger, this approach gives a high gate-input cost. In this section, we give

a procedure that uses design hierarchy and collections of AND gates to con-

struct any decoder with n inputs and 2n outputs. The resulting decoder has the

same or a lower gate-input cost than the one constructed by simply enlarging each

AND gate.

To construct a 3–to–8-line decoder (n = 3), we can use a 2–to–4-line decoder

and a 1–to–2-line decoder feeding eight 2-input AND gates to form the minterms.

Hierarchically, the 2–to–4-line decoder can be implemented using two 1–to–2-line

decoders feeding four 2-input AND gates, as observed in Figure 3-13. The resulting

structure is shown in Figure 3-14.

The general procedure is as follows:

1. Let k = n.

2. If k is even, divide k by 2 to obtain k/2. Use 2k AND gates driven by two decod-

ers of output size 2k/2. If k is odd, obtain (k + 1)/2 and (k - 1)/2. Use 2k AND

A
D0 � A

D0

D1 � A

D1

0 1 0

1 0 1

(a) (b)

A

 FIGURE 3-12
A 1–to–2-Line Decoder

A1

0
0
1
1

A0

0
1
0
1

D0

1
0
0
0

D1

0
1
0
0

D2

0
0
1
0

D3

0
0
0
1

(a)

(b)

A

D A1A0

A1A0

A1A0

A1A0D

D

D

1

A0

 FIGURE 3-13
A 2–to–4-Line Decoder

146 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

gates driven by a decoder of output size 2(k + 1)/2 and a decoder of output size

2(k - 1)/2.

3. For each decoder resulting from step 2, repeat step 2 with k equal to the values

obtained in step 2 until k = 1. For k = 1, use a 1–to–2 decoder.

EXAMPLE 3-6 6–to–64-Line Decoder

For a 6–to–64-line decoder (k = n = 6), in the first execution of step 2, 64 2-input

AND gates are driven by two decoders of output size 23 = 8 (i.e., by two 3–to–8-

line decoders). In the second execution of step 2, k = 3. Since k is odd, the result

is (k + 1)/2 = 2 and (k - 1)/2 = 1. Eight 2-input AND gates are driven by a

decoder of output size 22 = 4 and by a decoder of output size 21 = 2 (i.e., by a 2–

to–4-line decoder and by a 1–to–2-line decoder, respectively). Finally, on the next

execution of step 2, k = 2, giving four 2-input AND gates driven by two decoders

with output size 2 (i.e., by two 1–to–2-line decoders). Since all decoders have been

expanded, the algorithm terminates with step 3 at this point. The resulting struc-

ture is shown in Figure 3-15. This structure has a gate input cost of

6 + 2 (2 * 4) + 2 (2 * 8) + 2 * 64 = 182. If a single AND gate for each minterm

was used, the resulting gate-input cost would be 6 + (6 * 64) = 390, so a substan-

tial gate-input cost reduction has been achieved. ■

3-to-8-Line decoder

1-to-2-Line decoders

4 2-input ANDs 8 2-input ANDs

2-to-4-Line
decoder

D0
A0

A1

A2

D1

D2

D3

D4

D5

D6

D7

 FIGURE 3-14
A 3–to–8-Line Decoder

3-5 / Decoding 147

As an alternative expansion situation, suppose that multiple decoders are

needed and that the decoders have common input variables. In this case, instead of

implementing separate decoders, parts of the decoders can be shared. For example,

suppose that three decoders da, db, and dc are functions of input variables as follows:

da (A, B, C, D)

db (A, B, C, E)

dc (C, D, E, F)

A 3–to–8-line decoder for A, B, and C can be shared between da and db. A

2–to–4-line decoder for C and D can be shared between da and dc. A 2–to–4-line

decoder for C and E can be shared between db and dc. If we implemented all of this

sharing, we would have C entering three different decoders and the circuit would be

redundant. To use C just once in shared decoders larger than 1 to 2, we can consider

the following distinct cases:

1. (A, B) shared by da and db, and (C, D) shared by da and dc,

2. (A, B) shared by da and db, and (C, E) shared by db and dc, or

3. (A, B, C) shared by da and db.

Since cases 1 and 2 will clearly have the same costs, we will compare the cost of

cases 1 and 3. For case 1, the costs of functions da, db, and dc are reduced by the cost

of two 2–to–4-line decoders (exclusive of inverters) or 16 gate inputs. For case 3, the

A0 D0

D63

4 2-input ANDs

4 2-input ANDs

2-to-4-Line decoder

2-to-4-Line decoder

3-to-8-Line decoder

3-to-8-Line decoder

6-to-64-Line decoder

8 2-input ANDs

8 2-input ANDs

64 2-input ANDs

A1

A2

A3

A4

A5

.

.

.

 FIGURE 3-15
A 6–to–64-Line Decoder

148 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

costs for functions da and db are reduced by one 3–to–8-line decoder (exclusive of

inverters) or 24 gate inputs. So case 3 should be implemented. Formalization of this

procedure into an algorithm is beyond our current scope, so only this illustration of

the approach is given.

Decoder and Enabling Combinations

The function, n–to–m-line decoding with enabling, can be implemented by attaching m

enabling circuits to the decoder outputs. Then, m copies of the enabling signal EN are

attached to the enable control inputs of the enabling circuits. For n = 2 and m = 4,

the resulting 2–to–4-line decoder with enable is shown in Figure 3-16, along with its

truth table. For EN = 0, all of the outputs of the decoder are 0. For EN = 1, one of

the outputs of the decode, determined by the value on (A
1
, A

0
), is 1 and all others are 0.

If the decoder is controlling a set of lights, then with EN = 0, all lights are off, and with

EN = 1, exactly one light is on, with the other three off. For large decoders (n Ú 4),

the gate-input cost can be reduced by placing the enable circuits on the inputs to the

decoder and their complements rather than on each of the decoder outputs.

In Section 3-7, selection using multiplexers will be covered. The inverse of selec-

tion is distribution, in which information received from a single line is transmitted to

one of 2n possible output lines. The circuit which implements such distribution is called

a demultiplexer. The specific output to which the input signal is transmitted is con-

trolled by the bit combination on n selection lines. The 2–to–4-line decoder with enable

in Figure 3-16 is an implementation of a 1–to–4-line demultiplexer. For the demulti-

plexer, input EN provides the data, while the other inputs act as the selection variables.

Although the two circuits have different applications, their logic diagrams are exactly

the same. For this reason, a decoder with enable input is referred to as a decoder/

demultiplexer. The data input EN has a path to all four outputs, but the input informa-

tion is directed to only one of the outputs, as specified by the two selection lines A
1
 and

A
0
. For example, if (A1, A0) = 10, output D

2
 has the value applied to input EN, while

EN

A1

A0
D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0
1
1
1
1

X
0
0
1
1

X
0
1
0
1

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

(a)

 FIGURE 3-16
A 2–to–4-Line Decoder with Enable

3-5 / Decoding 149

all other outputs remain inactive at logic 0. If the decoder is controlling a set of four

lights, with (A1, A0) = 10 and EN periodically changing between 1 and 0, the light con-

trolled by D
2
 flashes on and off and all other lights are off.

The next several examples illustrate using VHDL and Verilog to describe the

behavior of decoders, providing additional instances of structural and dataflow model-

ing in each language with the language constructs initially introduced in Chapter 2.

EXAMPLE 3-7 VHDL Models for a 2–to–4-Line Decoder

Figure 3-17 shows a structural VHDL description for the 2–to–4-line decoder circuit

from Figure 3-16. The model uses the library of basic gates lcdf_vhdl available from

the Companion Website for the text as described in Chapter 2.

Figure 3-18 shows a dataflow VHDL description for the 2–to–4-line decoder

circuit from Figure 3-16. Note that this dataflow description is much simpler

than the structural description in Figure 3-17, which is often the case. The library,

use, and entity statements are identical to those in Figure 3-16, so they are not

repeated here. ■

–– 2-to-4-Line Decoder with Enable: Structural VHDL Description –– 1

–– (See Figure 3-16 for logic diagram) –– 2

library ieee, lcdf_vhdl; –– 3

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all; –– 4

entity decoder_2_to_4_w_enable is –– 5

 port (EN, A0, A1: in std_logic; –– 6

 D0, D1, D2, D3: out std_logic); –– 7

end decoder_2_to_4_w_enable; –– 8

 –– 9

architecture structural_1 of decoder_2_to_4_w_enable is –– 10

 component NOT1 –– 11

 port (in1: in std_logic; –– 12

 out1: out std_logic); –– 13

 end component; –– 14

 component AND2 –– 15

 port (in1, in2: in std_logic; –– 16

 out1: out std_logic); –– 17

 end component; –– 18

 signal A0_n, A1_n, N0, N1, N2, N3: std_logic; –– 19

 begin –– 20

 g0: NOT1 port map (in1 => A0, out1 => A0_n); –– 21

 g1: NOT1 port map (in1 => A1, out1 => A1_n); –– 22

 g2: AND2 port map (in1 => A0_n, in2 => A1_n, out1 => N0); –– 23

 g3: AND2 port map (in1 => A0, in2 => A1_n, out1 => N1); –– 24

 g4: AND2 port map (in1 => A0_n, in2 => A1, out1 => N2); –– 25

 g5: AND2 port map (in1 => A0, in2 => A1, out1 => N3); –– 26

 g6: AND2 port map (in1 => EN, in2 => N0, out1 => D0); –– 27

 g7: AND2 port map (in1 => EN, in2 => N1, out1 => D1); –– 28

 g8: AND2 port map (in1 => EN, in2 => N2, out1 => D2); –– 29

 g9: AND2 port map (in1 => EN, in2 => N3, out1 => D3); –– 30

end structural_1; –– 31

 FIGURE 3-17
Structural VHDL Description of 2–to–4-Line Decoder

150 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

EXAMPLE 3-8 Verilog Models for a 2–to–4-Line Decoder

A structural Verilog description for the 2-to-4-line decoder circuit from Figure 3-16

is given in Figure 3-19. In Figure 3-20, a dataflow description is given for the

2–to–4-line decoder. This particular dataflow description uses an assignment state-

ment followed by a Boolean equation. ■

 FIGURE 3-18
Dataflow VHDL Description of 2–to–4-Line Decoder

–– 2-to-4-Line Decoder: Dataflow VHDL Description –– 1

–– (See Figure 3-16 for logic diagram) –– 2

–– Use library, use, and entity entries from 2_to_4_decoder_st; –– 3

 –– 4

architecture dataflow_1 of decoder_2_to_4_w_enable is –– 5

 –– 6

signal A0_n, A1_n: std_logic; –– 7

begin –– 8

 A0_n <= not A0; –– 9

 A1_n <= not A1; –– 10

 D0 <= A0_n and A1_n and EN; –– 11

 D1 <= A0 and A1_n and EN; –– 12

 D2 <= A0_n and A1 and EN; –– 13

 D3 <= A0 and A1 and EN; –– 14

end dataflow_1; –– 15

 FIGURE 3-19
Structural Verilog Description of 2–to–4-Line Decoder

// 2-to-4-Line Decoder with Enable: Structural Verilog Desc. // 1

// (See Figure 3-16 for logic diagram) // 2

module decoder_2_to_4_st_v (EN, A0, A1, D0, D1, D2, D3); // 3

 input EN, A0, A1; // 4

 output D0, D1, D2, D3; // 5

 // 6

 wire A0_n, A1_n, N0, N1, N2, N3; // 7

 not // 8

 g0(A0_n, A0), // 9

 g1(A1_n, A1); // 10

 and // 11

 g3(N0, A0_n, A1_n), // 12

 g4(N1, A0, A1_n), // 13

 g5(N2, A0_n, A1), // 14

 g6(N3, A0, A1), // 15

 g7(D0, N0, EN), // 16

 g8(D1, N1, EN), // 17

 g9(D2, N2, EN), // 18

 g10(D3, N3, EN); // 19

endmodule // 20

3-5 / Decoding 151

Decoder-Based Combinational Circuits

A decoder provides the 2n minterms of n input variables. Since any Boolean function

can be expressed as a sum of minterms, one can use a decoder to generate the mint-

erms and combine them with an external OR gate to form a sum-of-minterms imple-

mentation. In this way, any combinational circuit with n inputs and m outputs can be

implemented with an n–to–2n-line decoder and m OR gates.

The procedure for implementing a combinational circuit by means of a decoder

and OR gates requires that the Boolean functions be expressed as a sum of mint-

erms. This form can be obtained from the truth table or by plotting each function on

a K-map. A decoder is chosen or designed that generates all the minterms of the

input variables. The inputs to each OR gate are selected as the appropriate minterm

outputs according to the list of minterms of each function. This process is shown in

the next example.

EXAMPLE 3-9 Decoder and OR-Gate Implementation of a Binary Adder Bit

In Chapter 1, we considered binary addition. The sum bit output S and the carry bit

output C for a bit position in the addition are given in terms of the two bits being

added, X and Y, and the incoming carry from the right, Z, in Table 3-4.

From this truth table, we obtain the functions for the combinational circuit in

sum-of-minterms form:

 S(X, Y, Z) = Σm(1, 2, 4, 7)

 C(X, Y, Z) = Σm(3, 5, 6, 7)

Since there are three inputs and a total of eight minterms, we need a 3–to–8-

line decoder. The implementation is shown in Figure 3-21. The decoder generates all

eight minterms for inputs X, Y, and Z. The OR gate for output S forms the logical

sum of minterms 1, 2, 4, and 7. The OR gate for output C forms the logical sum of

minterms 3, 5, 6, and 7. Minterm 0 is not used. ■

 FIGURE 3-20
Dataflow Verilog Description of 2–to–4-Line Decoder

// 2-to-4-Line Decoder with Enable: Dataflow Verilog Desc. // 1

// (See Example 3-16 for logic diagram) // 2

module decoder_2_to_4_df_v(EN, A0, A1, D0, D1, D2, D3); // 3

 input EN, A0, A1; // 4

 output D0, D1, D2, D3; // 5

 // 6

 assign D0 = EN & ~A1 & ~A0; // 7

 assign D1 = EN & ~A1 & A0; // 8

 assign D2 = EN & A1 & ~A0; // 9

 assign D3 = EN & A1 & A0; // 10

 // 11

endmodule // 12

152 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

 TABLE 3-4
Truth Table for 1-Bit Binary Adder

X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Z

Y

X

3-to-8-line
Decoder

20

21

22

S

C

0

1
2
3

4

5
6
7

 FIGURE 3-21
Implementing a Binary Adder Using a Decoder

A function with a long list of minterms requires an OR gate with a large

number of inputs. A function having a list of k minterms can be expressed in its

complement form with 2n - k minterms. If the number of minterms in a function

F is greater than F , then the complement of F, F , can be expressed with fewer

minterms. In such a case, it is advantageous to use a NOR gate instead of an OR

gate. The OR portion of the NOR gate produces the logical sum of the minterms

of F. The output bubble of the NOR gate complements this sum and generates the

normal output F.

The decoder method can be used to implement any combinational circuit.

However, this implementation must be compared with other possible implemen-

tations to determine the best solution. The decoder method may provide the best

solution, particularly if the combinational circuit has many outputs based on the

same inputs and each output function is expressed with a small number of

minterms.

3-6 / Encoding 153

3-6 ENCODING

An encoder is a digital function that performs the inverse operation of a decoder. An

encoder has 2n (or fewer) input lines and n output lines. The output lines generate

the binary code corresponding to the input value. An example of an encoder is the

octal-to-binary encoder whose truth table is given in Table 3-5. This encoder has

eight inputs, one for each of the octal digits, and three outputs that generate the cor-

responding binary number. It is assumed that only one input has a value of 1 at any

given time, so that the table has only eight rows with specified output values. For the

remaining 56 rows, all of the outputs are don’t cares.

From the truth table, we can observe that Ai is 1 for the columns in which Dj is

1 only if subscript j has a binary representation with a 1 in the ith position. For exam-

ple, output A0 = 1 if the input is 1 or 3 or 5 or 7. Since all of these values are odd, they

have a 1 in the 0 position of their binary representation. This approach can be used to

find the truth table. From the table, the encoder can be implemented with n OR

gates, one for each output variable Ai. Each OR gate combines the input variables

Dj having a 1 in the rows for which Ai has value 1. For the 8–to–3-line encoder, the

resulting output equations are

 A0 = D1 + D3 + D5 + D7

 A1 = D2 + D3 + D6 + D7

 A2 = D4 + D5 + D6 + D7

which can be implemented with three 4-input OR gates.

The encoder just defined has the limitation that only one input can be active at

any given time: if two inputs are active simultaneously, the output produces an incorrect

combination. For example, if D
3
 and D

6
 are 1 simultaneously, the output of the encoder

will be 111, because all the three outputs are equal to 1. This represents neither a binary

3 nor a binary 6. To resolve this ambiguity, some encoder circuits must establish an input

priority to ensure that only one input is encoded. If we establish a higher priority for

 TABLE 3-5
Truth Table for Octal-to-Binary Encoder

Inputs Outputs

D7 D6 D5 D4 D3 D2 D1 D0 A 2 A 1 A 0

0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

154 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

inputs with higher subscript numbers, and if both D
3
 and D

6
 are 1 at the same time, the

output will be 110, because D
6
 has higher priority than D

3
. Another ambiguity in the

octal-to-binary encoder is that an output of all 0s is generated when all the inputs are 0,

but this output is the same as when D
0
 is equal to 1. This discrepancy can be resolved by

providing a separate output to indicate that at least one input is equal to 1.

Priority Encoder

A priority encoder is a combinational circuit that implements a priority function. As

mentioned in the preceding paragraph, the operation of the priority encoder is such

that if two or more inputs are equal to 1 at the same time, the input having the high-

est priority takes precedence. The truth table for a four-input priority encoder is

 given in Table 3-6. With the use of Xs, this condensed truth table with just five rows

represents the same information as the usual 16-row truth table. Whereas Xs in out-

put columns represent don’t-care conditions, Xs in input columns are used to repre-

sent product terms that are not minterms. For example, 001X represents the product

term D3 D2 D1. Just as with minterms, each variable is complemented if the corre-

sponding bit in the input combination from the table is 0 and is not complemented if

the bit is 1. If the corresponding bit in the input combination is an X, then the vari-

able does not appear in the product term. Thus, for 001X, the variable D
0
, corre-

sponding to the position of the X, does not appear in D3 D2 D1 .
The number of rows of a full truth table represented by a row in the condensed

table is 2p, where p is the number of Xs in the row. For example, in Table 3-6, 1XXX

represents 23 = 8 truth-table rows, all having the same value for all outputs. In form-

ing a condensed truth table, we must include each minterm in at least one of the rows

in the sense that the minterm can be obtained by filling in 1s and 0s for the Xs. Also, a

minterm must never be included in more than one row such that the rows in which it

appears have one or more conflicting output values.

We form Table 3-6 as follows: Input D
3
 has the highest priority; so, regardless of

the values of the other inputs, when this input is 1, the output for A
1
 A

0
 is 11 (binary 3).

From this we obtain the last row of the table. D
2
 has the next priority level. The out-

put is 10 if D2 = 1, provided that D3 = 0, regardless of the values of the lower-

priority inputs. From this, we obtain the fourth row of the table. The output for D
1
 is

generated only if all inputs with higher priority are 0, and so on down the priority

levels. From this, we obtain the remaining rows of the table. The valid output desig-

nated by V is set to 1 only when one or more of the inputs are equal to 1. If all inputs

 TABLE 3-6
Truth Table of Priority Encoder

Inputs Outputs

D 3 D 2 D 1 D 0 A 1 A 0 V

0 0 0 0 X X 0

0 0 0 1 0 0 1
0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

3-6 / Encoding 155

are 0, V is equal to 0, and the other two outputs of the circuit are not used and are

specified as don’t-care conditions in the output part of the table.

The maps for simplifying outputs A
1
 and A

0
 are shown in Figure 3-22. The min-

terms for the two functions are derived from Table 3-6. The output values in the table

can be transferred directly to the maps by placing them in the squares covered by the

corresponding product term represented in the table. The optimized equation for

each function is listed under the map for the function. The equation for output V is

an OR function of all the input variables. The priority encoder is implemented in

Figure 3-23 according to the following Boolean functions:

 A0 = D3 + D1D2

 A1 = D2 + D3

 V = D0 + D1 + D2 + D3

Encoder Expansion

Thus far, we have considered only small encoders. Encoders can be expanded to

larger numbers of inputs by expanding OR gates. In the implementation of

00

01

00 01

D1

D3

11 10

11

10

1 1 1

1 1

D2

D
A1 � D2 � D3 A0 � D3 � D1D2

0

1

1 1 11

1 1

X

D1D0
D3D2

00

01

00 01

D1

D3

11 10

11

10 1 1

D2

D0

1 1 11

1 1

1 1X

D1D0
D3D2

 FIGURE 3-22
Maps for Priority Encoder

D3

D2

D1

D0

A0

A1

V

 FIGURE 3-23
Logic Diagram of a 4-Input Priority Encoder

156 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

 decoders, the use of multiple-level circuits with OR gates beyond the output lev-

els shared in implementing the more significant bits in the output codes reduces

the gate input cost as n increases for n Ú 5. For n Ú 3, multiple-level circuits

 result from technology mapping anyway, due to limited gate fan-in. Designing

multiple-level circuits with shared gates reduces the cost of the encoders after

technology mapping.

3-7 SELECTING

Selection of information to be used in a computer is a very important function, not

only in communicating between the parts of the system, but also within the parts as

well. Circuits that perform selection typically have a set of inputs from which selec-

tions are made, a single output, and a set of control lines for making the selection.

First, we consider selection using multiplexers; then we briefly examine selection cir-

cuits implemented by using three-state drivers.

Multiplexers

A multiplexer is a combinational circuit that selects binary information from one

of many input lines and directs the information to a single output line. The selec-

tion of a particular input line is controlled by a set of input variables, called selec-
tion inputs.

Normally, there are 2n input lines and n selection inputs whose bit combina-

tions determine which input is selected. We begin with n = 1, a 2–to–1-line multi-

plexer. This function has two information inputs, I
0
 and I

1
, and a single select input S.

The truth table for the circuit is given in Table 3-7. Examining the table, if the select

input S = 0, the output of the multiplexer takes on the values of I
0
, and, if input

S = 1, the output of the multiplexer takes on the values of I
1
. Thus, S selects either

input I
0
 or input I

1
 to appear at output Y. From this discussion, we can see that the

equation for the 2–to–1-line multiplexer output Y is

Y = SI0 + SI1

 TABLE 3-7
Truth Table for 2–to–1-Line Multiplexer

S I 0 I 1 Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

3-7 / Selecting 157

This same equation can be obtained by using a 3-variable K-map. As shown in

Figure 3-24(a), the implementation of the preceding equation can be decomposed

into a 1–to–2-line decoder, two enabling circuits, and a 2-input OR gate. A common

symbol for a 2-to-1 multiplexer is shown in Figure 3-24(b), with a trapezoid signify-

ing the selection of the output on the short parallel side from among the 2n informa-

tion inputs on the long parallel side.

Suppose that we wish to design a 4–to–1-line multiplexer. In this case, the

function Y depends on four inputs I
0
, I

1
, I

2
, and I

3
 and two select inputs S

1
 and S

0
.

By placing the values of I
0
 through I

3
 in the Y column, we can form Table 3-8, a

condensed truth table for this multiplexer. In this table, the information variables

do not appear as input columns of the table but appear in the output column.

Each row represents multiple rows of the full truth table. In Table 3-8, the row 00

I
0
 represents all rows in which (S1, S0) = 00. For I0 = 1 it gives Y = 1, and for

I0 = 0 it gives Y = 0. Since there are six variables, and only S
1
 and S

0
 are fixed,

this single row represents 16 rows of the corresponding full truth table. From the

table, we can write the equation for Y as

Y = S1S0 I0 + S1S0 I1 + S1S0 I2 + S1S0 I3

If this equation is implemented directly, two inverters, four 3-input AND gates,

and a 4-input OR gate are required, giving a gate-input cost of 18. A different imple-

mentation can be obtained by factoring the AND terms to give

Y = (S1S0)I0 + (S1S0)I1 + (S1S0)I2 + (S1S0)I3

 FIGURE 3-24
(a) Single-Bit 2–to–1-Line Multiplexer; (b) common Symbol for a Multiplexer

 TABLE 3-8
Condensed Truth Table for 4-to-1-Line
Multiplexer

S1 S0 Y

0 0 I 0
0 1 I 1
1 0 I 2
1 1 I 3

Y

Y

S

S

Decoder
Enabling
Circuits I0 0

1I1

I0

I1

(b)(a)

158 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

This implementation can be constructed by combining a 2–to–4-line

decoder, four AND gates used as enabling circuits, and a 4-input OR gate, as

shown in Figure 3-25. We will refer to the combination of AND gates and OR

gates as an m * 2 AND-OR, where m is the number of AND gates and 2 is the

number of inputs to the AND gates. This resulting circuit has a gate input cost of

22, which is more costly. Nevertheless, it provides a structural basis for construct-

ing larger n–to–2n-line multiplexers by expansion.

A multiplexer is also called a data selector, since it selects one of many infor-

mation inputs and steers the binary information to the output line. The term “multi-

plexer” is often abbreviated as “MUX.”

Multiplexers can be expanded by considering vectors of input bits for larger

values of n. Expansion is based upon the circuit structure given in Figure 3-24(a),

consisting of a decoder, enabling circuits, and an OR gate. Multiplexer design is illus-

trated in Examples 3-10 and 3-11.

EXAMPLE 3-10 64–to–1-Line Multiplexer

A multiplexer is to be designed for n = 6. This will require a 6–to–64-line decoder as

given in Figure 3-15, and a 64 * 2 AND-OR gate. The resulting structure is shown in

Figure 3-26. This structure has a gate-input cost of 182 + 128 + 64 = 374.

In contrast, if the decoder and the enabling circuit were replaced by invert-

ers plus 7-input AND gates, the gate-input cost would be 6 + 448 + 64 = 518. For

single-bit multiplexers such as this one, combining the AND gate generating Di
with the AND gate driven by Di into a single 3-input AND gate for every i = 0

through 63 reduces the gate-input cost to 310. For multiple-bit multiplexers, this

S1
Decoder

S0

I0

I1
Y

I2

I3

 FIGURE 3-25
A Single-Bit 4–to–1-Line Multiplexer

3-7 / Selecting 159

reduction to 3-input ANDs cannot be performed without replicating the output

ANDs of the decoders. As a result, in almost all cases, the original structure has a

lower gate-input cost. The next example illustrates the expansion to a multiple-bit

multiplexer. ■

EXAMPLE 3-11 4–to–1-Line Quad Multiplexer

A quad 4–to–1-line multiplexer, which has two selection inputs and each informa-

tion input replaced by a vector of four inputs, is to be designed. Since the informa-

tion inputs are a vector, the output Y also becomes a four-element vector. The

implementation for this multiplexer requires a 2–to–4-line decoder, as given in

Figure 3-13, and four 4 * 2 AND-OR gates. The resulting structure is shown in

Figure 3-27. This structure has a gate-input cost of 10 + 32 + 16 = 58. In contrast,

if four 4-input multiplexers implemented with 3-input gates were placed side by

side, the gate-input cost would be 76. So, by sharing the decoder, we reduced the

gate-input cost.

A5

D63
I63

D0
I0

A4

A3

A2

A1

A0

6-to-64-Line decoder Y

.

.

..
.
.

 FIGURE 3-26
A 64–to–1-Line Multiplexer

160 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The next several examples illustrate using VHDL and Verilog to describe

the behavior of multiplexers, providing additional instances of structural and

dataflow modeling in each language with the language constructs initially intro-

duced in Chapter 2.

EXAMPLE 3-12 VHDL Models for a 4-to-1 Multiplexer

In Figure 3-28 shows a structural description of the 4–to–1-line multiplexer from

Figure 3-25. This model illustrates two VHDL concepts introduced in Chapter 2:

std_logic_vector and an alternative approach to mapping ports.

The architecture in Figure 3-29, instead of using Boolean equation-like state-

ments to describe the multiplexer, uses a when-else statement. This statement is a repre-

sentation of the function table given as Table 3-8. When S takes on a particular binary

value, then a particular input I(i) is assigned to output Y. When the value on S is 00,

then Y is assigned I (0). Otherwise, the else is invoked so that when the value on S is

01, then Y is assigned I (1), and so on. In standard logic, each of the bits can take on 9

different values. So the pair of bits for S can take on 81 possible values, only 4 of which

have been specified so far. In order to define Y for the remaining 77 values, the final

2-to-4-Line decoder

I0,0

I3,0

I0,1

I3,1

I0,2

I3,2
I0,3

I3,3

Y0

D0

D3

A0

A1

Y1

Y2

Y3

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

 FIGURE 3-27
A Quad 4–to–1-Line Multiplexer ■

3-7 / Selecting 161

else followed by X (unknown) is given. This assigns the value X to Y if any of these 77

values occurs on S. However, this output value occurs only in simulation, since Y will

always take on a 0 or 1 value in an actual circuit.

Figure 3-30 provides an alternative implementation using with-select for the

4–to–1-line multiplexer. The expression, the value of which is to be used for the deci-

sion, follows with and precedes select. The values for the expression that causes

the alternative assignments then follow when with each of the assignment-value

 FIGURE 3-28
Structural VHDL Description of 4–to–1-Line Multiplexer

-- 4-to-1-Line Multiplexer: Structural VHDL Description -- 1

-- (See Figure 3-25 for logic diagram) -- 2

library ieee, lcdf_vhdl; -- 3

use ieee.std_logic_1164.all, lcdf_vhdl.func_prims.all; -- 4

entity multiplexer_4_to_1_st is -- 5

 port (S: in std_logic_vector(0 to 1); -- 6

 I: in std_logic_vector(0 to 3); -- 7

 Y: out std_logic); -- 8

end multiplexer_4_to_1_st; -- 9

 --10

architecture structural_2 of multiplexer_4_to_1_st is --11

 component NOT1 --12

 port(in1: in std_logic; --13

 out1: out std_logic); --14

 end component; --15

 component AND2 --16

 port(in1, in2: in std_logic; --17

 out1: out std_logic); --18

 end component; --19

 component OR4 --20

 port(in1, in2, in3, in4: in std_logic; --21

 out1: out std_logic); --22

 end component; --23

 signal S_n: std_logic_vector(0 to 1); --24

 signal D, N: std_logic_vector(0 to 3); --25

 begin --26

 g0: NOT1 port map (S(0), S_n(0)); --27

 g1: NOT1 port map (S(1), S_n(1)); --28

 g2: AND2 port map (S_n(1), S_n(0), D(0)); --29

 g3: AND2 port map (S_n(1), S(0), D(1)); --30

 g4: AND2 port map (S(1), S_n(0), D(2)); --31

 g5: AND2 port map (S(1), S(0), D(3)); --32

 g6: AND2 port map (D(0), I(0), N(0)); --33

 g7: AND2 port map (D(1), I(1), N(1)); --34

 g8: AND2 port map (D(2), I(2), N(2)); --35

 g9: AND2 port map (D(3), I(3), N(3)); --36

 g10: OR4 port map (N(0), N(1), N(2), N(3), Y); --37

 end structural_2; --38

162 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

pairs separated by commas. In the example, S is the signal, the value of which deter-

mines the value selected for Y. When S = "00", I(0) is assigned to Y. When S =

"01", I(1) is assigned to Y and so on. 'X' is assigned to Y when others, where

others represents the 77 standard logic combinations not already specified.

 FIGURE 3-29
Conditional Dataflow VHDL Description of 4–to–1-Line Multiplexer Using When-Else

-- 4-to-1-Line Mux: Conditional Dataflow VHDL Description -- 1

-- Using When-Else (See Table 3-8 for function table) -- 2

library ieee; -- 3

use ieee.std_logic_1164.all; -- 4

entity multiplexer_4_to_1_we is -- 5

 port (S : in std_logic_vector(1 downto 0); -- 6

 I : in std_logic_vector(3 downto 0); -- 7

 Y : out std_logic); -- 8

end multiplexer_4_to_1_we; -- 9

 -- 10

architecture function_table of multiplexer_4_to_1_we is -- 11

begin -- 12

 Y <= I(0) when S = "00" else -- 13

 I(1) when S = "01" else -- 14

 I(2) when S = "10" else -- 15

 I(3) when S = "11" else -- 16

 'X'; -- 17

end function_table; -- 18

 FIGURE 3-30
Conditional Dataflow VHDL Description of 4–to–1-Line Multiplexer Using With-Select

--4-to-1-Line Mux: Conditional Dataflow VHDL Description -- 1

Using with Select (See Table 3-8 for function table) -- 2

library ieee; -- 3

use ieee.std_logic_1164.all; -- 4

entity multiplexer_4_to_1_ws is -- 5

 port (S : in std_logic_vector(1 downto 0); -- 6

 I : in std_logic_vector(3 downto 0); -- 7

 Y : out std_logic); -- 8

end multiplexer_4_to_1_ws; -- 9

 -- 10

architecture function_table_ws of multiplexer_4_to_1_ws is -- 11

begin -- 12

 with S select -- 13

 Y <= I(0) when "00", -- 14

 I(1) when "01", -- 15

 I(2) when "10", -- 16

 I(3) when "11", -- 17

 'X'when others; -- 18

end function_table_ws; -- 19

3-7 / Selecting 163

These last two models provide examples of the difference between when-else

and with-select that was noted in Chapter 2: when-else permits decisions on multiple

distinct signals, while with-select can depend on only one signal. For example, for the

demultiplexer in Figure 3-16, the first when can be conditioned on input EN with the

subsequent when’s conditioned on input S. In contrast, the with-select can depend on

only a single Boolean condition (e.g., either EN or S, but not both). Also, as noted

previously in Chapter 2, for typical synthesis tools, when-else usually results in a

more complex logical structure, since each of the decisions depends not only on the

condition currently being evaluated, but also on all prior decisions as well. As a con-

sequence, the structure that is synthesized takes into account this priority order,

replacing the 4 * 2 AND-OR by a chain of four 2-to-1 multiplexers. In contrast,

there is no direct dependency between the decisions made in with-select. With-select

produces a decoder and the 4 * 2 AND-OR gate. ■

EXAMPLE 3-13 Verilog Models for a 4–to–1-Line Multiplexer

In Figure 3-31, the structural description of the 4–to–1-line multiplexer from Figure 3-25

illustrates the Verilog concept of a vector that was introduced in Chapter 2. Rather than

 FIGURE 3-31
Structural Verilog Description of 4–to–1-Line Multiplexer

// 4-to-1-Line Multiplexer: Structural Verilog Description // 1

// (See Figure 3-25 for logic diagram) // 2

module multiplexer_4_to_1_st_v(S, I, Y); // 3

 input [1:0] S; // 4

 input [3:0] I; // 5

 output Y; // 6

 // 7

 wire [1:0] not_S; // 8

 wire [0:3] D, N; // 9

 // 10

not // 11

 gn0(not_S[0], S[0]), // 12

 gn1(not_S[1], S[1]); // 13

 // 14

and // 15

 g0(D[0], not_S[1], not_S[0]), // 16

 g1(D[1], not_S[1], S[0]), // 17

 g2(D[2], S[1], not_S[0]), // 18

 g3(D[3], S[1], S[0]); // 19

 g0(N[0], D[0], I[0]), // 20

 g1(N[1], D[1], I[1]), // 21

 g2(N[2], D[2], I[2]), // 22

 g3(N[3], D[3], I[3]); // 23

 // 24

or go(Y, N[0], N[1], N[2], N[3]); // 25

 // 26

endmodule // 27

164 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

specifying each wire as a single bit, the wires are specified as multiple-bit vectors where

each individual wire can be accessed using the vector name and the number of the indi-

vidual wire within the vector range.

Figure 3-32 shows a Verilog dataflow model using single Boolean equation

for Y to describe the multiplexer. This equation is in sum-of-products form with &

for AND and | for OR. Components of the S and I vectors are used as its

variables.

The Verilog model in Figure 3-33 resembles the function table given as

Table 3-8 by using a conditional operator on binary combinations. If the logical

value within the parentheses is true, then the value before the : is assigned to the

independent variable, in this case, Y. If the logical value is false, then the value

after the: is assigned. Suppose we consider condition S == 2'b00, where == is the

logical equality operator. As introduced in Chapter 2, 2'b00 is Verilog’s represen-

tation of a constant, representing a two-bit binary constant with a value of 00.

 FIGURE 3-33
Conditional Dataflow Verilog Description of 4–to–1-Line
Multiplexer Using Combinations

// 4-to-1 Line Multiplexer: Dataflow Verilog Description

// (See Table 3-8 for function table)

module multiplexer_4_to_1_cf_v(S, I, Y);
 input [1:0] S;
 input [3:0] I;
 output Y;

 assign Y = (S == 2'b00) ? I[0] :

 (S == 2'b01) ? I[1] :

 (S == 2'b10) ? I[2] :

 (S == 2'b11) ? I[3] : 1'bx ;

endmodule

 FIGURE 3-32
Dataflow Verilog Description of 4–to–1-Line Multiplexer Using a Boolean Equation

// 4-to-1-Line Multiplexer: Dataflow Verilog Description

// (See Figure 3-25 for logic diagram)

module multiplexer_4_to_1_df_v(S, I, Y);
 input [1:0] S;
 input [3:0] I;
 output Y;

 assign Y = (~ S[1] & ~ S[0] & I[0])| (~ S[1] & S[0] & I[1])
 | (S[1] & ~ S[0] & I[2]) | (S[1] & S[0] & I[3]);

endmodule

3-7 / Selecting 165

Thus, the expression has value true if vector S is equal to 00; otherwise, it is false.

If the expression is true, then I[0] is assigned to Y. If the expression is false, then

the next expression containing a ? is evaluated, and so on. In this example, for a

condition to be evaluated, all conditions preceding it must evaluate to false. If

none of the conditions evaluate to true, then the default value 1'bx (unknown) is

assigned to Y.

The final form of a Verilog dataflow description for the multiplexer is shown in

Figure 3-34. It is based on conditional operators used to form a decision tree, which

corresponds to a factored Boolean expression. In this case, if S[1] is 1, then S[0] is

evaluated to determine whether Y is assigned I[3] or assigned I[2]. If S[1] is 0,

then S[0] is evaluated to determine whether Y is assigned I[1] or I[0]. For a regu-

lar structure such as a multiplexer, this approach, based on two-way (binary) deci-

sions, gives a simple dataflow expression. ■

EXAMPLE 3-14 Security System Sensor Selection using Multiplexers

The Problem: A home security system has 15 sensors that detect open doors and win-

dows. Each sensor produces a digital signal 0 when the window or door is closed and 1

when the window or door is open. The control for the security system is a microcon-

troller with eight digital input/output bits available. Each bit can be programmed to be

either an input or an output. Design a logic circuit that repeatedly checks each of the

15 sensor values by connecting the sensor output to a microcontroller input/output

that is programmed to be an input. The parts list for the design consists of the following

multiplexer parts: 1) a single 8–to–1-line multiplexer, 2) a dual 4–to–1-line multiplexer,

and 3) a quad 2–to–1-line multiplexer. Any number of each part is available. The design

is to minimize the number of parts and also minimize the number of microcontroller

input/outputs used. Microcontroller input/outputs programmed as outputs are to be

used to control the select inputs on the multiplexers.

The Solution: Some of the sensors can be connected to multiplexer inputs and

some directly to microcontroller inputs. One possible solution that minimizes the num-

ber of multiplexers is to use two 8–to–1 multiplexers, each connected to a

 FIGURE 3-34
Conditional Dataflow Verilog Description of 4–to–1-Line
Multiplexer Using Binary Decisions

// 4-to-1-Line Multiplexer: Dataflow Verilog Description

// (See Table 3-8 for function table)

module multiplexer_4_to_1_tf_v(S, I, Y);
 input [1:0] S;
 input [3:0] I;
 output Y;

 assign Y = S[1] ? (S[0] ? I[3] : I[2]) :
 (S[0] ? I[1] : I[0]);

endmodule

166 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

microcontroller input. The two multiplexers handle 16 sensors and require three micro-

controller outputs as selection inputs. Since there are 15 sensor outputs, the unused 16th

multiplexer input can be attached to 0. The number of microcontroller input/outputs

used is 3 + 2 = 5. Use of any of the other multiplexer types will increase the number

of microcontroller inputs used and decrease the number of microcontroller outputs

used. The increase in inputs, however, is always greater than the decrease in outputs. So

the initial solution is best in terms of microcontroller input/outputs used. ■

Multiplexer-Based Combinational Circuits

Earlier in this section, we learned that a decoder combined with an m * 2 AND-OR

gate implements a multiplexer. The decoder in the multiplexer generates the min-

terms of the selection inputs. The AND-OR gate provides enabling circuits that de-

termine whether the minterms are “attached” to the OR gate with the information

inputs (Ii) used as the enabling signals. If the Ii input is a 1, then minterm mi is at-

tached to the OR gate, and, if the Ii input is a 0, then minterm mi is replaced by a 0.

Value fixing applied to the I inputs provides a method for implementing a Boolean

function of n variables with a multiplexer having n selection inputs and 2n data in-

puts, one for each minterm. Further, an m-output function can be implemented by

using value fixing on a multiplexer with m-bit information vectors instead of the in-

dividual I bits, as illustrated by the next example.

EXAMPLE 3-15 Multiplexer Implementation of a Binary-Adder Bit

The values for S and C from the 1-bit binary adder truth table given in Table 3-4

can be generated by using value fixing on the information inputs of a multiplexer.

Dual
8-to-1
MUX

S2
S1
S0
I0,0
I0,1
I1,0
I1,1
I2,0
I2,1
I3,0 Y0

Y1
I3,1
I4,0
I4,1
I5,0
I5,1
I6,0
I6,1
I7,0
I7,1

S
C

X
Y
Z
0
0
1
0
1
0
0
1
1
0
0
1
0
1
1
1

 FIGURE 3-35
Implementing a 1-Bit Binary Adder with a Dual 8–to–1-Line Multiplexer

3-7 / Selecting 167

Since there are three selection inputs and a total of eight minterms, we need a

dual 8–to–1-line multiplexer for implementing the two outputs, S and C. The im-

plementation based on the truth table is shown in Figure 3-35. Each pair of values,

such as (0, 1) on (I
1,1

, I
1,0

), is taken directly from the corresponding row of the last

two truth-table columns. ■

A more efficient method implements a Boolean function of n variables with

a multiplexer that has only n - 1 selection inputs. The first n - 1 variables of the

function are connected to the selection inputs of the multiplexer. The remaining

variable of the function is used for the information inputs. If the final variable is

Z, each data input of the multiplexer will be either Z, Z, 1 , or 0. The function can

be implemented by attaching implementations of the four rudimentary functions

from Table 3-1 to the information inputs to the multiplexer. The next example

demonstrates this procedure.

EXAMPLE 3-16 Alternative Multiplexer Implementation of a Binary
Adder Bit

This function can be implemented with a dual 4–to–1-line multiplexer, as shown

in Figure 3-36. The design procedure can be illustrated by considering the sum S.

The two variables X and Y are applied to the selection lines in that order; X is

connected to the S
1
 input, and Y is connected to the S

0
 input. The values for the

data input lines are determined from the truth table of the function. When

(X, Y) = 00, the output S is equal to Z, because S = 0 when Z = 0 and S = 1

when Z = 1. This requires that the variable Z be applied to information input I
00

.

The operation of the multiplexer is such that, when (X, Y) = 0 0 , information in-

put I
00

 has a path to the output that makes S equal to Z. In a similar fashion, we

can determine the required input to lines I
10

, I
20

, and I
30

 from the value of S when

(X, Y) = 01, 10, and 11, respectively. A similar approach can be used to determine

the values for I
01

, I
11

, I
21

, and I
31

. ■

 FIGURE 3-36
Implementing a 1-Bit Binary Adder with a Dual 4–to–1-Line Multiplexer

S1
S0

I0,0

I0,1

I1,0
I1,1

I2,0
I2,1
I3,0

I3,1

X
Y

Y0

Y1

Z
0
Z
Z

Z
Z
1

Dual
4-to-1
MUX

S
C

Z

168 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The general procedure for implementing any Boolean function of n variables

with a multiplexer with n - 1 selection inputs and 2n - 1 data inputs follows from the

preceding example. The Boolean function is first listed in a truth table. The first

n - 1 variables in the table are applied to the selection inputs of the multiplexer. For

each combination of the selection variables, we evaluate the output as a function of

the last variable. This function can be 0, 1, the variable, or the complement of the

variable. These values are then applied to the appropriate data inputs. This process is

illustrated in the next example.

EXAMPLE 3-17 Multiplexer Implementation of 4-Variable Function

As a second example, consider the implementation of the following Boolean function:

F (A, B, C, D) = Σm(1, 3, 4, 11, 12, 13, 14, 15)

This function is implemented with an 8 * 1 multiplexer as shown in Figure 3-37.

To obtain a correct result, the variables in the truth table are connected to selection

inputs S
2
, S

1
, and S

0
 in the order in which they appear in the table (i.e., such that A is

connected to S
2
, B is connected to S

1
, and C is connected to S

0
, respectively). The val-

ues for the data inputs are determined from the truth table. The information line

number is determined from the binary combination of A, B, and C. For example,

A

0

0

0

0

0
0

0
0

1
1

1

1

1

1

1

1

B

0

0

0

0

1
1

1
1

0
0

0

0

1

1

1

1

C

0

0

1

1

0
0

1
1

0
0

1

1

0

0

1

1

D

0

1

0

1

0
1

0
1

0
1

0

1

0

1

0

1

F

0

1

0

1

1
0

0
0

0
0

0

1

1

1

1

1

C

B

A

D

0

1

0

1
2

3

4

5

6

7

S0

F

S1

S2

 FIGURE 3-37
Implementing a Four-Input Function with a Multiplexer

3-7 / Selecting 169

when (A, B, C) = 1 0 1 , the truth table shows that F = D, so the input variable D is

applied to information input I
5
. The binary constants 0 and 1 correspond to two fixed

signal values. Recall from Section 3-6 that, in a logic schematic, these constant values

are replaced by the ground and power symbols, as shown in Figure 3-7. ■

The next example provides a comparison between implementing a combina-

tional circuit using logic gates, decoders, or multiplexers.

EXAMPLE 3-18 Design of a BCD–to–Seven-Segment Decoder

SPECIFICATION: Digital readouts found in many consumer electronic products such

as alarm clocks often use light-emitting diodes (LEDs). Each digit of the readout

is formed from seven LED segments, each of which can be illuminated by a digital

signal. A BCD–to–seven-segment decoder is a combinational circuit that accepts

a decimal digit in BCD and generates the appropriate outputs for the segments of

the display for that decimal digit. The seven outputs of the decoder (a, b, c, d, e, f, g)

select the corresponding segments in the display, as shown in Figure 3-38(a). The nu-

meric designations chosen to represent the decimal digits are shown in Figure 3-38(b).

The BCD–to–seven-segment decoder has four inputs, A, B, C, and D, for the BCD

digit and seven outputs, a through g, for controlling the segments.

FORMULATION: The truth table of the combinational circuit is listed in Table 3-9.

On the basis of Figure 3-38(b), each BCD digit illuminates the proper segments

for the decimal display. For example, BCD 0011 corresponds to decimal 3, which

is displayed as segments a, b, c, d, and g. The truth table assumes that a logic 1

signal illuminates the segment and a logic 0 signal turns the segment off. Some

seven-segment displays operate in reverse fashion and are illuminated by a logic

0 signal. For these displays, the seven outputs must be complemented. The six bi-

nary combinations 1010 through 1111 have no meaning in BCD. In the previous

example, we assigned these combinations to don’t-care conditions. If we do the

same here, the design will most likely produce some arbitrary and meaningless

displays for the unused combinations. As long as these combinations do not oc-

cur, we can use that approach to reduce the complexity of the converter. A safer

choice, turning off all the segments when any one of the unused input combina-

tions occurs, avoids any spurious displays if any of the combinations occurs, but

increases the converter complexity. This choice can be accomplished by assigning

all 0s to minterms 10 through 15.

(a) Segment designation

a

bf

e cg

d
(b) Numeric designation for display

 FIGURE 3-38
Seven-Segment Display

170 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

OPTIMIZATION: For implementing the function using logic gates, the information

from the truth table can be transferred into seven K-maps, from which the initial

optimized output functions can be derived. The plotting of the seven functions in

map form is left as an exercise. One possible way of simplifying the seven functions

results in the following Boolean functions:

 a = AC + ABD + B C D + AB C

 b = A B + A C D + ACD + AB C

 c = AB + AD + B C D + AB C

 d = ACD + A BC + B C D + AB C + ABCD

 e = ACD + B C D

 f = ABC + A C D + ABD + AB C

 g = ACD + A BC + ABC + AB C

Independent implementation of these seven functions requires 27 AND gates and 7

OR gates. However, by sharing the six product terms common to the different output

expressions, the number of AND gates can be reduced to 14 along with a substantial

savings in gate-input cost. For example, the term B C D occurs in a, c, d, and e. The

output of the AND gate that implements this product term goes directly to the inputs

of the OR gates in all four functions. For this function, we stop optimization with the

two-level circuit and shared AND gates, realizing that it might be possible to reduce

the gate-input cost even further by applying multiple-level optimization.

In general, the total number of gates can be reduced in a multiple-output com-

binational circuit by using common terms of the output functions. The maps of the

 TABLE 3-9
Truth Table for BCD–to–Seven-Segment
Decoder

BCD Input Seven-Segment Decoder

A B C D a b c d e f g

0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1
All other inputs 0 0 0 0 0 0 0

3-8 / Iterative Combinational Circuits 171

output functions may help us find the common terms by finding identical implicants

from two or more maps. Some of the common terms may not be prime implicants of

the individual functions. The designer must be inventive and combine squares in the

maps in such a way as to create common terms. This can be done more formally by

using a procedure for simplifying multiple-output functions. The prime implicants

are defined not only for each individual function, but also for all possible combina-

tions of the output functions. These prime implicants are formed by using the AND

operator on every possible nonempty subset of the output functions and finding the

prime implicants of each of the results. Using this entire set of prime implicants, we

can employ a formal selection process to find the optimum two-level multiple-out-

put circuit. Such a procedure is implemented in various forms in logic optimization

software and is used to obtain the equations.

The circuit can also be implemented using a decoder or multiplexers rather

than only logic gates. One 4-to-16 decoder along with seven OR gates (one for

each function for the segments on the display) is all that is required—however, in

practice, OR gates with more than four inputs are not practical, so more gates

would be required. In sum-of-minterms form, the inputs to each of the seven OR

gates would be:

 a(A, B, C, D) = Σm(0, 2, 3, 5, 6, 7, 8, 9)

 b(A, B, C, D) = Σm(0, 1, 2, 3, 4, 7, 8, 9)

 c(A, B, C, D) = Σm(0, 1, 3, 4, 5, 6, 7, 8, 9)

 d(A, B, C, D) = Σm(0 ,2, 3, 5, 6, 8, 9)

 e(A, B, C, D) = Σm(0, 2, 6, 8)

 f(A, B, C, D) = Σm(0, 4, 5, 6, 8, 9)

 g(A, B, C, D) = Σm(2, 3, 4, 5, 6, 8, 9)

For a multiplexer implementation, seven 8-to-1 multiplexers are required, one

for each function for the segments on the display. Alternatively, a 7-bit wide 8-to-1

multiplexer could be used. With the select inputs S
2
connected to A, S

1
 connected to

B, and S
0
 connected to C, then the data inputs to the seven multiplexers would be as

shown in Table 3-10. ■

3-8 ITERATIVE COMBINATIONAL CIRCUITS

The remainder of this chapter focuses on functional blocks for arithmetic. The

arithmetic functional blocks are typically designed to operate on binary input

vectors and produce binary output vectors. Further, the function implemented of-

ten requires that the same subfunction be applied to each bit position. Thus, a

functional block can be designed for the subfunction and then used repetitively

for each bit position of the overall arithmetic block being designed. There will of-

ten be one or more connections to pass values between adjacent bit positions.

These internal variables are inputs or outputs of the subfunctions, but are not

172 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

 accessible outside the overall arithmetic block. The subfunction blocks are re-

ferred to as cells and the overall implementation is an array of cells. The cells in

the array are often, but not always, identical. Due to the repetitive nature of the

circuit and the association of a vector index with each of the circuit cells, the over-

all functional block is referred to as an iterative array. Iterative arrays, a special

case of hierarchical circuits, are useful in handling vectors of bits—for example, a

circuit that adds two 32-bit binary integers. At a minimum, such a circuit has 64

inputs and 32 outputs. As a consequence, beginning with truth tables and writing

equations for the entire circuit is out of the question. Since iterative circuits are

based on repetitive cells, the design process is considerably simplified by a basic

structure that guides the design.

A block diagram for an iterative circuit that operates on two n-input vectors

and produces an n-output vector is shown in Figure 3-39. In this case, there are two

lateral connections between each pair of cells in the array, one from left to right and

the other from right to left. Also, optional connections, indicated by dashed lines,

exist at the right and left ends of the array. An arbitrary array employs as many lat-

eral connections as needed for a particular design. The definition of the functions

associated with such connections is very important in the design of the array and its

Cell n � 1

An�1 n�1B

n�1

Xn�1

Yn�1

C

Xn

Yn
Cell 1

X1

Y1

A1

C1

Cell 0
X0

Y0

B0

C0

X2

Y2

A0B1

 FIGURE 3-39
Block Diagram of an Iterative Circuit

 TABLE 3-10
Inputs to Multiplexers to Implement Seven-Segment-Display decoder

Select

Inputs Multiplexer Data Inputs for Each Output Function

S2S1S0 a b c d e f g

000 D 1 1 D D D 0

001 1 1 D 1 D 0 1

010 D D 1 D 0 1 1

011 1 D 1 D D D D
100 1 1 1 1 D 1 1

101 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0

3-9 / Binary Adders 173

cell. In particular, the number of connections used and their functions can affect

both the cost and speed of an iterative circuit.

In the next section, we will define cells for performing addition in individual bit

positions and then define a binary adder as an iterative array of cells.

3-9 BINARY ADDERS

An arithmetic circuit is a combinational circuit that performs arithmetic operations

such as addition, subtraction, multiplication, and division with binary numbers or with

decimal numbers in a binary code. We will develop arithmetic circuits by means of hi-

erarchical, iterative design. We begin at the lowest level by finding a circuit that per-

forms the addition of two binary digits. This simple addition consists of four possible

elementary operations: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10 The first

three operations produce a sum requiring a one-bit representation, but when both the

augend and addend are equal to 1, the binary sum requires two bits. Because of this

case, the result is always represented by two bits, the carry and the sum. The carry ob-

tained from the addition of two bits is added to the next-higher-order pair of signifi-

cant bits. A combinational circuit that performs the addition of two bits is called a half
adder. One that performs the addition of three bits (two significant bits and a previous

carry) is called a full adder. The names of the circuits stem from the fact that two half

adders can be employed to implement a full adder. The half adder and the full adder

are basic arithmetic blocks with which other arithmetic circuits are designed.

Half Adder

A half adder is an arithmetic circuit that generates the sum of two binary digits. The

circuit has two inputs and two outputs. The input variables are the augend and ad-

dend bits to be added, and the output variables produce the sum and carry. We assign

the symbols X and Y to the two inputs and S (for “sum”) and C (for “carry”) to the

outputs. The truth table for the half adder is listed in Table 3-11. The C output is 1 only

when both inputs are 1. The S output represents the least significant bit of the sum.

The Boolean functions for the two outputs, easily obtained from the truth table, are

S = XY + XY = X ⊕ Y

C = XY

 TABLE 3-11
Truth Table of Half Adder

Inputs Outputs

X Y C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

174 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

The half adder can be implemented with one exclusive-OR gate and one AND

gate, as shown in Figure 3-40.

Full Adder

A full adder is a combinational circuit that forms the arithmetic sum of three input

bits. Besides the three inputs, it has two outputs. Two of the input variables, denoted

by X and Y, represent the two significant bits to be added. The third input, Z, rep-

resents the carry from the previous lower significant position. Two outputs are neces-

sary because the arithmetic sum of three bits ranges in value from 0 to 3, and binary

2 and 3 need two digits for their representation. Again, the two outputs are designat-

ed by the symbols S for “sum” and C for “carry”; the binary variable S gives the value

of the bit of the sum, and the binary variable C gives the output carry. The truth table

of the full adder is listed in Table 3-12. The values for the outputs are determined

from the arithmetic sum of the three input bits. When all the input bits are 0, the out-

puts are 0. The S output is equal to 1 when only one input is equal to 1 or when all

three inputs are equal to 1. The C output is a carry of 1 if two or three inputs are

equal to 1. The maps for the two outputs of the full adder are shown in Figure 3-41.

The simplified sum-of-product functions for the two outputs are

 S = X YZ + XYZ + XY Z + XYZ

 C = XY + XZ + YZ

The two-level implementation requires seven AND gates and two OR gates.

However, the map for output S is recognized as an odd function, as discussed in

X
Y

S

C

 FIGURE 3-40
Logic Diagram of Half Adder

 TABLE 3-12
Truth Table of Full Adder

Inputs Outputs

X Y Z C S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3-9 / Binary Adders 175

Section 2-6. Furthermore, the C output function can be manipulated to include the

exclusive-OR of X and Y. The Boolean functions for the full adder in terms of exclu-

sive-OR operations can then be expressed as

 S = (X ⊕ Y) ⊕ Z

 C = XY + Z(X ⊕ Y)

The logic diagram for this multiple-level implementation is shown in Figure 3-42.

It consists of two half adders and an OR gate.

Binary Ripple Carry Adder

A parallel binary adder is a digital circuit that produces the arithmetic sum of two

binary numbers using only combinational logic. The parallel adder uses n full adders

in parallel, with all input bits applied simultaneously to produce the sum.

The full adders are connected in cascade, with the carry output from one full

adder connected to the carry input of the next full adder. Since a 1 carry may appear

near the least significant bit of the adder and yet propagate through many full

0

Z

1X

00 01 11 10

1

YZ

X

1

1 1

Y

0

1X

00 01 11 10
YZ

X

1

1 1 1

Z

Y

S � XYZ � XYZ � XYZ � XYZ
 � X Y Z

C � XY � XZ � YZ
 � XY � Z(XY � XY)
 � XY � Z(X Y)

 FIGURE 3-41
Maps for Full Adder

Half adder Half adder

X
Y

Z

S

C

 FIGURE 3-42
Logic Diagram of Full Adder

176 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

adders to the most significant bit, just as a wave ripples outward from a pebble

dropped in a pond, the parallel adder is referred to as a ripple carry adder. Figure

3-43 shows the interconnection of four full-adder blocks to form a 4-bit ripple carry

adder. The augend bits of A and the addend bits of B are designated by subscripts

in increasing order from right to left, with subscript 0 denoting the least significant

bit. The carries are connected in a chain through the full adders. The input carry to

the parallel adder is C
0
, and the output carry is C

4
. An n-bit ripple carry adder

requires n full adders, with each output carry connected to the input carry of the

next-higher-order full adder. For example, consider the two binary numbers

A = 1011 and B = 0011. Their sum, S = 1110, is formed with a 4-bit ripple carry

adder as follows:

Input carry 0 1 1 0
Augend A 1 0 1 1
Addend B 0 0 1 1
Sum S 1 1 1 0
Output carry 0 0 1 1

The input carry in the least significant position is 0. Each full adder receives the cor-

responding bits of A and B and the input carry, and generates the sum bit for S and

the output carry. The output carry in each position is the input carry of the next-high-

er-order position, as indicated by the blue lines.

The 4-bit adder is a typical example of a digital component that can be used as

a building block. It can be used in many applications involving arithmetic operations.

Observe that the design of this circuit by the usual method would require a truth

table with 512 entries, since there are nine inputs to the circuit. By cascading the four

instances of the known full adders, it is possible to obtain a simple and straightfor-

ward implementation without directly solving this larger problem. This is an exam-

ple of the power of iterative circuits and circuit reuse in design.

B3 A3

FA

B2 A2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A1

FA

B0 A0

FA

 FIGURE 3-43
4-Bit Ripple Carry Adder

3-10 / Binary Subtraction 177

3-10 BINARY SUBTRACTION

In Chapter 1, we briefly examined the subtraction of unsigned binary numbers.

Although beginning texts cover only signed-number addition and subtraction, to the

complete exclusion of the unsigned alternative, unsigned-number arithmetic plays an im-

portant role in computation and computer hardware design. It is used in floating-point

units, in signed-magnitude addition and subtraction algorithms, and in extending the

precision of fixed-point numbers. For these reasons, we will treat unsigned-number

addition and subtraction here. We also, however, choose to treat it first so that we can

clearly justify, in terms of hardware cost, an approach that otherwise appears bizarre and

often is accepted on faith, namely, the use of complement representations in arithmetic.

In Section 1-3, subtraction is performed by comparing the subtrahend with the

minuend and subtracting the smaller from the larger. The use of a method containing

this comparison operation results in inefficient and costly circuitry. As an alternative,

we can simply subtract the subtrahend from the minuend. Using the same numbers

as in a subtraction example from Section 1-3, we have

 Borrows into: 11100

 Minuend: 10011

 Subtrahend: -1100110

 Difference: 10101

 Correct Difference: - 01011

If no borrow occurs into the most significant position, then we know that the

subtrahend is not larger than the minuend and that the result is positive and correct.

If a borrow does occur into the most significant position, as indicated in blue, then

we know that the subtrahend is larger than the minuend. The result must then be

negative, and so we need to correct its magnitude. We can do this by examining the

result of the calculation when a borrow occurs:

M - N + 2n

Note that the added 2n represents the value of the borrow into the most signifi-

cant position. Instead of this result, the desired magnitude is N - M. This can be

obtained by subtracting the preceding formula from 2n:

2n - (M - N + 2n) = N - M

In the previous example, 100000 - 10101 = 01011, which is the correct magnitude.

In general, the subtraction of two n-digit numbers, M - N, in base 2 can be

done as follows:

1. Subtract the subtrahend N from the minuend M.

2. If no end borrow occurs, then M Ú N, and the result is nonnegative and correct.

3. If an end borrow occurs, then N 7 M, and the difference, M - N + 2n, is

subtracted from 2n, and a minus sign is appended to the result.

178 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Subtraction of a binary number from 2n to obtain an n-digit result is called tak-

ing the 2s complement of the number. So in step 3, we are taking the 2s complement

of the difference M - N + 2n. Use of the 2s complement in subtraction is illustrated

by the following example.

EXAMPLE 3-19 Unsigned Binary Subtraction by 2s Complement Subtract

Perform the binary subtraction 01100100 - 10010110. We have

Borrows into: 10011110

Minuend: 01100100

Subtrahend: -10010110

Initial Result: 11001110

The end borrow of 1 implies correction:

28 100000000

-Initial Result : -11001110

 Final Result: - 00110010 ■

To perform subtraction using this method requires a subtractor for the initial sub-

traction. In addition, when necessary, either the subtractor must be used a second time

to perform the correction, or a separate 2s complementer circuit must be provided. So,

thus far, we require a subtractor, an adder, and possibly a 2s complementer to perform

both addition and subtraction. The block diagram for a 4-bit adder–subtractor using

these functional blocks is shown in Figure 3-44. The inputs are applied to both the adder

and the subtractor, so both operations are performed in parallel. If an end borrow value

of 1 occurs in the subtraction, then the selective 2s complementer receives a value of 1

on its complement input. This circuit then takes the 2s complement of the output of the

subtractor. If the end borrow has value of 0, the selective 2s complementer passes the

output of the subtractor through unchanged. If subtraction is the operation, then a 1 is

applied to S of the multiplexer that selects the output of the complementer. If addition

is the operation, then a 0 is applied to S, thereby selecting the output of the adder.

As we will see, this circuit is more complex than necessary. To reduce the amount

of hardware, we would like to share logic between the adder and the subtractor. This

can also be done using the notion of the complement. So before considering the com-

bined adder–subtractor further, we will take a more careful look at complements.

Complements

There are two types of complements for each base-r system: the radix complement,
which we saw earlier for base 2, and the diminished radix complement. The first is

referred to as the r’s complement and the second as the (r - 1) ’s complement. When

the value of the base r is substituted in the names, the two types are referred to as the

3-10 / Binary Subtraction 179

2s and 1s complements for binary numbers and the 10s and 9s complements for

decimal numbers, respectively. Since our interest for the present is in binary numbers

and operations, we will deal with only 1s and 2s complements.

Given a number N in binary having n digits, the 1s complement of N is defined as

(2n - 1) - N. 2n is represented by a binary number that consists of a 1 followed by n

0s. 2n - 1 is a binary number represented by n 1s. For example, if n = 4, we have

24 = (10000)2 and 24 - 1 = (1111)2. Thus, the 1s complement of a binary number is

obtained by subtracting each digit from 1. When subtracting binary digits from 1, we can

have either 1 - 0 = 1 or 1 - 1 = 0, which causes the original bit to change from 0 to

1 or from 1 to 0, respectively. Therefore, the 1s complement of a binary number is

formed by changing all 1s to 0s and all 0s to 1s—that is, applying the NOT or comple-

ment operation to each of the bits. Following are two numerical examples:

The 1s complement of 1011001 is 0100110.

The 1s complement of 0001111 is 1110000.

In similar fashion, the 9s complement of a decimal number, the 7s complement

of an octal number, and the 15s complement of a hexadecimal number are obtained

by subtracting each digit from 9, 7, and F (decimal 15), respectively.

Given an n-digit number N in binary, the 2s complement of N is defined as

2n - N for N ≠ 0 and 0 for N = 0. The reason for the special case of N = 0 is that

the result must have n bits, and subtraction of 0 from 2n gives an (n + 1)-bit result,

100 . . . 0. This special case is achieved by using only an n-bit subtractor or otherwise

dropping the 1 in the extra position. Comparing with the 1s complement, we note

that the 2s complement can be obtained by adding 1 to the 1s complement, since

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

 FIGURE 3-44
Block Diagram of Binary Adder–Subtractor

180 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

2n - N = {[(2n - 1) - N] + 1}. For example, the 2s complement of binary 101100 is

010011 + 1 = 010100 and is obtained by adding 1 to the 1s complement value.

Again, for N = 0, the result of this addition is 0, achieved by ignoring the carry out

of the most significant position of the addition. These concepts hold for other bases

as well. As we will see later, they are very useful in simplifying 2s complement and

subtraction hardware.

Also, the 2s complement can be formed by leaving all least significant 0s and

the first 1 unchanged and then replacing 1s with 0s and 0s with 1s in all other higher

significant bits. Thus, the 2s complement of 1101100 is 0010100 and is obtained by

leaving the two low-order 0s and the first 1 unchanged and then replacing 1s with 0s

and 0s with 1s in the other four most significant bits. In other bases, the first nonzero

digit is subtracted from the base r, and the remaining digits to the left are replaced

with r - 1 minus their values.

It is also worth mentioning that the complement of the complement restores

the number to its original value. To see this, note that the 2s complement of N is

2n - N, and the complement of the complement is 2n - (2n - N) = N, giving back

the original number.

Subtraction Using 2s Complement

Earlier, we expressed a desire to simplify hardware by sharing adder and subtrac-

tor logic. Armed with complements, we are prepared to define a binary subtrac-

tion procedure that uses addition and the corresponding complement logic. The

subtraction of two n-digit unsigned numbers, M - N, in binary can be done as

follows:

1. Add the 2s complement of the subtrahend N to the minuend M. This performs

M + (2n - N) = M - N + 2n.

2. If M Ú N, the sum produces an end carry, 2n. Discard the end carry, leaving

result M - N.

3. If M 6 N, the sum does not produce an end carry, since it is equal

to 2n - (N - M), the 2s complement of N - M. Perform a correction, taking

the 2s complement of the sum and placing a minus sign in front to obtain the

result - (N - M).

The examples that follow further illustrate the foregoing procedure. Note that,

although we are dealing with unsigned numbers, there is no way to get an unsigned

result for the case in step 3. When working with paper and pencil, we recognize, by

the absence of the end carry, that the answer must be changed to a negative number.

If the minus sign for the result is to be preserved, it must be stored separately from

the corrected n-bit result.

EXAMPLE 3-20 Unsigned Binary Subtraction by 2s Complement Addition

Given the two binary numbers X = 1010100 and Y = 1000011, perform the sub-

traction X - Y and Y - X using 2s complement operations. We have

3-11 / Binary Adder-Subtractors 181

 X = 1010100

 2s complement of Y = 0111101

 Sum = 10010001

 Discard end carry 27 = - 10000000

 Answer: X - Y = 0010001

 Y = 1000011

2s complement of X = 0101100

 Sum = 1101111

There is no end carry.

Answer: Y - X = - (2s complement of 1101111) = - 0010001. ■

While subtraction of unsigned numbers also can be done by means of the 1s

complement, it is little used in modern designs, so will not be covered here.

3-11 BINARY ADDER-SUBTRACTORS

Using the 2s complement, we have eliminated the subtraction operation and need

only the complementer and an adder. When performing a subtraction we comple-

ment the subtrahend N, and when performing an addition we do not complement N.

These operations can be accomplished by using a selective complementer and adder

interconnected to form an adder–subtractor. We have used 2s complement, since it is

most prevalent in modern systems. The 2s complement can be obtained by taking the

1s complement and adding 1 to the least significant bit. The 1s complement can be

implemented easily with inverter circuits, and we can add 1 to the sum by making the

input carry of the parallel adder equal to 1. Thus, by using 1s complement and an un-

used adder input, the 2s complement is obtained inexpensively. In 2s complement

subtraction, as a correction step after adding, we complement the result and append

a minus sign if an end carry does not occur. The correction operation is performed by

using either the adder–subtractor a second time with M = 0 or a selective comple-

menter as in Figure 3-44.

The circuit for subtracting A - B consists of a parallel adder as shown in

Figure 3-43, with inverters placed between each B terminal and the corresponding

full-adder input. The input carry C
0
 must be equal to 1. The operation that is per-

formed becomes A plus the 1s complement of B plus 1. This is equal to A plus the 2s

complement of B. For unsigned numbers, it gives A - B if A Ú B or the 2s comple-

ment of B - A if A 6 B.

The addition and subtraction operations can be combined into one circuit with

one common binary adder. This is done by including an exclusive-OR gate with each

182 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

full adder. A 4-bit adder–subtractor circuit is shown in Figure 3-45. Input S controls

the operation. When S = 0 the circuit is an adder, and when S = 1 the circuit

becomes a subtractor. Each exclusive-OR gate receives input S and one of the inputs

of B, Bi. When S = 0, we have Bi ⊕ 0. If the full adders receive the value of B, and

the input carry is 0, the circuit performs A plus B. When S = 1, we have Bi ⊕ 1 = Bi

and C0 = 1. In this case, the circuit performs the operation A plus the 2s comple-

ment of B.

Signed Binary Numbers

In the previous section, we dealt with the addition and subtraction of unsigned num-

bers. We will now extend this approach to signed numbers, including a further use of

complements that eliminates the correction step.

Positive integers and the number zero can be represented as unsigned num-

bers. To represent negative integers, we need a notation for negative values. In ordi-

nary arithmetic, a negative number is indicated by a minus sign and a positive

number by a plus sign. Because of hardware limitations, computers must represent

everything with 1s and 0s, including the sign of a number. As a consequence, it is cus-

tomary to represent the sign with a bit placed in the most significant position of an

n-bit number. The convention is to make the sign bit 0 for positive numbers and 1 for

negative numbers.

It is important to realize that both signed and unsigned binary numbers consist

of a string of bits when represented in a computer. The user determines whether the

number is signed or unsigned. If the binary number is signed, then the leftmost bit

represents the sign and the rest of the bits represent the number. If the binary num-

ber is assumed to be unsigned, then the leftmost bit is the most significant bit of the

number. For example, the string of bits 01001 can be considered as 9 (unsigned

binary) or + 9 (signed binary), because the leftmost bit is 0. Similarly, the string of

bits 11001 represents the binary equivalent of 25 when considered as an unsigned

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A3 B2 A2 B1 A1 B0 A0

 FIGURE 3-45
Adder-Subtractor Circuit

3-11 / Binary Adder-Subtractors 183

number or -9 when considered as a signed number. The latter is because the 1 in the

leftmost position designates a minus sign and the remaining four bits represent

binary 9. Usually, there is no confusion in identifying the bits because the type of

number representation is known in advance. The representation of signed numbers

just discussed is referred to as the signed-magnitude system. In this system, the num-

ber consists of a magnitude and a symbol (+ or -) or a bit (0 or 1) indicating the

sign. This is the representation of signed numbers used in ordinary arithmetic.

In implementing signed-magnitude addition and subtraction for n-bit num-

bers, the single sign bit in the leftmost position and the n - 1 magnitude bits are

processed separately. The magnitude bits are processed as unsigned binary numbers.

Thus, subtraction involves the correction step. To avoid this step, we use a different

system for representing negative numbers, referred to as a signed-complement
system. In this system, a negative number is represented by its complement. While

the signed-magnitude system negates a number by changing its sign, the signed-

complement system negates a number by taking its complement. Since positive

numbers always start with 0 (representing a plus sign) in the leftmost position, their

complements will always start with a 1, indicating a negative number. The

signed-complement system can use either the 1s or the 2s complement, but the latter

is the most common. As an example, consider the number 9, represented in binary

with eight bits. +9 is represented with a sign bit of 0 in the leftmost position, followed

by the binary equivalent of 9, to give 00001001. Note that all eight bits must have a

value, and therefore, 0s are inserted between the sign bit and the first 1. Although

there is only one way to represent +9, we have two different ways to represent -9

using eight bits:

In signed-magnitude representation: 10001001

In signed 2s complement representation: 11110111

In signed magnitude, -9 is obtained from +9 by changing the sign bit in the

leftmost position from 0 to 1. The signed 2s complement representation of -9 is

obtained by taking the 2s complement of the positive number, including the 0 sign

bit.

Table 3-13 lists all possible 4-bit signed binary numbers in two representations.

The equivalent decimal number is also shown. Note that the positive numbers in

both representations are identical and have 0 in the leftmost position. The signed 2s

complement system has only one representation for 0, which is always positive. The

signed-magnitude system has a positive 0 and a negative 0, which is something not

encountered in ordinary arithmetic. Note that both negative numbers have a 1 in the

leftmost bit position; this is the way we distinguish them from positive numbers. With

four bits, we can represent 16 binary numbers. In the signed-magnitude representa-

tion, there are seven positive numbers and seven negative numbers, and two signed

zeros. In the 2s complement representation, there are seven positive numbers, one

zero, and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward

when employed in computer arithmetic due to the separate handling of the sign and

the correction step required for subtraction. Therefore, the signed complement is

normally used. The following discussion of signed binary arithmetic deals exclusively

184 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

with the signed 2s complement representation of negative numbers, because it pre-

vails in actual use.

Signed Binary Addition and Subtraction

The addition of two numbers, M + N, in the signed-magnitude system follows the

rules of ordinary arithmetic: If the signs are the same, we add the two magnitudes

and give the sum the sign of M. If the signs are different, we subtract the magnitude

of N from the magnitude of M. The absence or presence of an end borrow then de-

termines the sign of the result, based on the sign of M, and determines whether or

not a 2s complement correction is performed. For example, since the signs are differ-

ent, (0 0011001) + (1 0100101) causes 0100101 to be subtracted from 0011001. The

result is 1110100, and an end borrow of 1 occurs. The end borrow indicates that the

magnitude of M is smaller than that of N. So the sign of the result is opposite to that

of M and is therefore a minus. The end borrow indicates that the magnitude of the

result, 1110100, must be corrected by taking its 2s complement. Combining the sign

and the corrected magnitude of the result, we obtain 1 0001100.

In contrast to this signed-magnitude case, the rule for adding numbers in the

signed 2s complement system does not require comparison or subtraction, but only

addition. The procedure is simple and can be stated as follows for binary numbers:

The addition of two signed binary numbers with negative numbers repre-

sented in signed 2s complement form is obtained from the addition of the

two numbers, including their sign bits. A carry out of the sign bit position is

discarded.

 TABLE 3-13
Signed Binary Numbers

Decimal Signed 2s Complement Signed Magnitude

+ 7 0111 0111

+ 6 0110 0110

+ 5 0101 0101

+ 4 0100 0100

+ 3 0011 0011

+ 2 0010 0010

+ 1 0001 0001

+ 0 0000 0000

- 0 — 1000

- 1 1111 1001

- 2 1110 1010

- 3 1101 1011

- 4 1100 1100

- 5 1011 1101

- 6 1010 1110

- 7 1001 1111

- 8 1000 —

3-11 / Binary Adder-Subtractors 185

Numerical examples of signed binary addition are given in Example 3-21. Note

that negative numbers will already be in 2s complement form and that the sum

obtained after the addition, if negative, is left in that same form.

EXAMPLE 3-21 Signed Binary Addition Using 2s Complement

 + 6 00000110 - 6 11111010 + 6 00000110 - 6 11111010

 +13 00001101 +13 00001101 -13 11110011 -13 11110011

 + 19 00010011 +7 00000111 -7 11111001 -19 11101101

In each of the four cases, the operation performed is addition, including the sign bits.

Any carry out of the sign bit position is discarded, and negative results are automati-

cally in 2s complement form. ■

The complement form for representing negative numbers is unfamiliar to peo-

ple accustomed to the signed-magnitude system. To determine the value of a nega-

tive number in signed 2s complement, it is necessary to convert the number to a

positive number in order to put it in a more familiar form. For example, the signed

binary number 11111001 is negative, because the leftmost bit is 1. Its 2s complement

is 00000111, which is the binary equivalent of +7. We therefore recognize the origi-

nal number to be equal to -7.

The subtraction of two signed binary numbers when negative numbers are in

2s complement form is very simple and can be stated as follows:

Take the 2s complement of the subtrahend (including the sign bit) and add it

to the minuend (including the sign bit). A carry out of the sign bit position is

discarded.

This procedure stems from the fact that a subtraction operation can be changed

to an addition operation if the sign of the subtrahend is changed. That is,

 (±A) - (+B) = (±A) + (-B)

 (±A) - (-B) = (±A) + (+B)

But changing a positive number to a negative number is easily done by taking

its 2s complement. The reverse is also true, because the complement of a negative

number that is already in complement form produces the corresponding positive

number. Numerical examples are shown in Example 3-22.

EXAMPLE 3-22 Signed Binary Subtraction Using 2s Complement

 6 11111010 11111010 6 00000110 00000110
 (13) 11110011 00001101 (–13) 11110011 00001101

 7 00000111 19 00010011

The end carry is discarded. ■

186 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

It is worth noting that binary numbers in the signed-complement system are

added and subtracted by the same basic addition and subtraction rules as are

unsigned numbers. Therefore, computers need only one common hardware circuit to

handle both types of arithmetic. The user or programmer must interpret the results

of such addition or subtraction differently, depending on whether it is assumed that

the numbers are signed or unsigned. Thus, the same adder–subtractor designed for

unsigned numbers can be used for signed numbers. If the signed numbers are in 2s

complement representation, then the circuit in Figure 3-45 can be used.

EXAMPLE 3-23 Electronic Scale Feature

Often goods or materials must be placed in a container to be weighed. These three

definitions apply to the use of a container in weighing:

Gross Weight—Weight of the container plus its contents.

Tare Weight—Weight of the empty container.

Net Weight—Weight of the contents only.

The Problem: For a particular electronic scale, a feature that permits the net

weight to be displayed is activated by the following sequence of actions:

1) Place the empty container on the scale.

2) Press the TARE button to indicate that the current weight is the weight of the

empty container.

3) Add the contents to be weighed to the container (measure the gross weight).

4) Read the net weight from the scale indicator.

Assuming that the container weight (tare weight) is stored by the scale,

(a) What arithmetic logic is required?

(b) How many bits are required for the operands, assuming the gross weight

capacity of the scale is 2200 grams with one gram as the smallest unit?

The Solution: (a) The scale is measuring the gross weight. The displayed result

is the net weight. So a subtractor is needed to form:

Net Weight = Gross Weight - (stored) Tare Weight

Since the container plus its contents always weighs at least as much as the con-

tainer only, for this application the result must always be nonnegative. If, on the

other hand, the user makes use of this feature to find the differences in the weight of

two objects, then a negative result is possible. In the design of the actual scale, this

negative result is properly taken into account in the display logic.

(b) Assuming that the weights and the subtraction are in binary, 12 bits are

required to represent 2200 grams. If the weights and the subtraction are represented

in BCD, then 2 + 3 * 4 = 1 4 bits are required. ■

To obtain a correct answer when adding and subtracting, we must ensure that the

result has a sufficient number of bits to accommodate the sum. If we start with

3-11 / Binary Adder-Subtractors 187

two n-bit numbers, and the sum occupies n + 1 bits, we say that an overflow

 occurs. This is true for binary or decimal numbers, whether signed or unsigned.

When one performs addition with paper and pencil, an overflow is not a problem,

since we are not limited by the width of the page. We just add another 0 to a posi-

tive number and another 1 to a negative number, in the most significant position,

to extend them to n + 1 bits and then perform the addition. Overflow is a prob-

lem in computers because the number of bits that hold a number is fixed, and a

result that exceeds the number of bits cannot be accommodated. For this reason,

computers detect and can signal the occurrence of an overflow. The overflow

 condition may be handled automatically by interrupting the execution of the pro-

gram and taking special action. An alternative is to monitor for overflow condi-

tions using software.

The detection of an overflow after the addition of two binary numbers depends

on whether the numbers are considered to be signed or unsigned. When two

unsigned numbers are added, an overflow is detected from the end carry out of the

most significant position. In unsigned subtraction, the magnitude of the result is

always equal to or smaller than the larger of the original numbers, making overflow

impossible. In the case of signed 2s complement numbers, the most significant bit

always represents the sign. When two signed numbers are added, the sign bit is

treated as a part of the number, and an end carry of 1 does not necessarily indicate

an overflow.

With signed numbers, an overflow cannot occur for an addition if one number

is positive and the other is negative: Adding a positive number to a negative number

produces a result whose magnitude is equal to or smaller than the larger of the origi-

nal numbers. An overflow may occur if the two numbers added are both positive or

both negative. To see how this can happen, consider the following 2s complement

example: Two signed numbers, +70 and +80, are stored in two 8-bit registers. The

range of binary numbers, expressed in decimal, that each register can accommodate

is from +127 to -128. Since the sum of the two stored numbers is +150, it exceeds

the capacity of an 8-bit register. This is also true for -70 and -80. These two addi-

tions, together with the two most significant carry bit values, are as follows:

Carries: 01 Carries: 10

+70 01000110 -70 10111010

 +80 01010000 -80 10110000

+150 10010110 -150 01101010

Note that the 8-bit result that should have been positive has a negative sign bit and

that the 8-bit result that should have been negative has a positive sign bit. If, how-

ever, the carry out of the sign bit position is taken as the sign bit of the result, then

the 9-bit answer so obtained will be correct. But since there is no position in the

result for the ninth bit, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit

position and the carry out of the sign bit position. If these two carries are not equal,

an overflow has occurred. This is indicated in the 2s complement example just com-

pleted, where the two carries are explicitly shown. If the two carries are applied to an

188 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

exclusive-OR gate, an overflow is detected when the output of the gate is equal to 1.

For this method to work correctly for 2s complement, it is necessary either to apply

the 1s complement of the subtrahend to the adder and add 1 or to have overflow

detection on the circuit that forms the 2s complement as well as on the adder. This

condition is due to overflow when complementing the maximum negative number.

Simple logic that provides overflow detection is shown in Figure 3-46. If the

numbers are considered unsigned, then the C output being equal to 1 detects a carry

(an overflow) for an addition and indicates that no correction step is required for a

subtraction. C being equal to 0 detects no carry (no overflow) for an addition and

indicates that a correction step is required for a subtraction.

If the numbers are considered signed, then the output V is used to detect an

overflow. If V = 0 after a signed addition or subtraction, it indicates that no over-

flow has occurred and the result is correct. If V = 1, then the result of the operation

contains n + 1 bits, but only the rightmost n of those bits fit in the n-bit result, so an

overflow has occurred. The (n + 1)th bit is the actual sign, but it cannot occupy the

sign bit position in the result.

MULTIPLIERS AND DIVIDERS A supplement that discusses the design of multipliers and

dividers is available on the Companion Website for the text.

HDL Models of Adders

Thus far, all of the HDL descriptions used have contained only a single entity (VHDL)

or module (Verilog). Descriptions that represent circuits using hierarchies have multi-

ple entities, one for each distinct element of the hierarchy, as shown in the next example.

EXAMPLE 3-24 Hierarchical VHDL for a 4-Bit Ripple Carry Adder

The example in Figures 3-47 and 3-48 uses three entities to build a hierarchical de-

scription of a 4-bit ripple carry adder. The style used for the architectures will be a

mix of structural and dataflow description. The three entities are a half adder, a full

adder that uses half adders, and the 4-bit adder itself. The architecture of half_

adder consists of two dataflow assignments, one for s and one for c. The architecture

of full_adder uses half_adder as a component. In addition, three internal signals,

 FIGURE 3-46
Overflow Detection Logic for Addition and
Subtraction

Cn

Cn�1

C

V

n-bit Adder/Subtractor

3-11 / Binary Adder-Subtractors 189

 FIGURE 3-47
Hierarchical Structural/Dataflow Description of 4-Bit Full Adder

-- 4-bit Adder: Hierarchical Dataflow/Structural

-- (See Figures 3-42 and 3-43 for logic diagrams)

library ieee;
use ieee.std_logic_1164.all;
entity half_adder is
 port (x, y : in std_logic;
 s, c : out std_logic);
end half_adder;

architecture dataflow_3 of half_adder is
 begin
 s <= x xor y;
 c <= x and y;
end dataflow_3;

library ieee;
use ieee.std_logic_1164.all;
entity full_adder is
 port (x, y, z : in std_logic;
 s, c : out std_logic);
end full_adder;

architecture struc_dataflow_3 of full_adder is
 component half_adder
 port (x, y : in std_logic;
 s, c : out std_logic);
 end component;
 signal hs, hc, tc: std_logic;
 begin
 HA1: half_adder

 port map (x, y, hs, hc);
 HA2: half_adder

 port map (hs, z, s, tc);
 c <= tc or hc;
end struc_dataflow_3;

library ieee;
use ieee.std_logic_1164.all;
entity adder_4 is
 port(B, A : in std_logic_vector(3 downto 0);
 C0 : in std_logic;
 S : out std_logic_vector(3 downto 0);
 C4: out std_logic);
end adder_4;

190 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

hs, hc, and tc, are declared. These signals are applied to two half adders and are also

used in one dataflow assignment to construct the full adder in Figure 3-42. In the

adder_4 entity, four full-adder components are simply connected together using the

signals given in Figure 3-43.

Note that C0 and C4 are an input and an output, respectively, but C(0) through

C(4) are internal signals (i.e., neither inputs nor outputs). C(0) is assigned C0 and C4

is assigned C(4). The use of C(0) and C(4) separately from C0 and C4 is not essential

here, but is useful to illustrate a VHDL constraint. Suppose we wanted to add over-

flow detection to the adder as shown in Figure 3-46. If C(4) is not defined separately,

then one might attempt to write

v 6 = C(3) xor C4

In VHDL, this is incorrect. An output cannot be used as an internal signal. Thus, it

is necessary to define an internal signal to use in place of C4 (e.g., C(4)) giving

 v 6 = C(3) xor C(4) ■

Behavioral Description

The 4-bit adder provides an opportunity to illustrate description of circuits at levels

higher than the logic level. Such levels of description are referred to as the behavior-

al level or the register transfer level. We will specifically study register transfers in

Chapter 6. Without studying register transfers, however, we can still show a behav-

ioral-level description.

 FIGURE 3-48
Hierarchical Structural/Dataflow Description of 4-Bit Full
Adder (continued)

architecture structural_4 of adder_4 is
 component full_adder
 port(x, y, z : in std_logic;
 s, c: out std_logic);
 end component;
 signal C: std_logic_vector (4 downto 0);
 begin
 Bit0: full_adder

 port map (B(0), A(0), C(0), S(0), C(1));
 Bit1: full_adder

 port map (B(1), A(1), C(1), S(1), C(2));
 Bit2: full_adder

 port map (B(2), A(2), C(2), S(2), C(3));
 Bit3: full_adder

 port map (B(3), A(3), C(3), S(3), C(4));
 C(0) <= C0;

 C4 <= C(4);

end structural 4;

3-11 / Binary Adder-Subtractors 191

EXAMPLE 3-25 Behavioral VHDL for a 4-Bit Ripple Carry Adder

A behavioral description for the 4-bit adder is given in Figure 3-49. In the architec-

ture of the entity adder_4_b, the addition logic is described by a single statement

using + and &. The + represents addition and the & represents an operation

called concatenation. A concatenation operator combines two signals into a single

signal having its number of bits equal to the sum of the number of bits in the original

signals. In the example, '0' & A represents the signal vector

'0'A(3)A(2)A(1)A(0)

with 1 + 4 = 5 signals. Note that '0', which appears on the left in the concatena-

tion expression, appears on the left in the signal listing. The inputs to the addition are

all converted to 5-bit quantities for consistency, since the output including C4 is five

bits. This conversion is not essential, but is a safe approach.

Since + cannot be performed on the std_logic type, we need an addi-

tional package to define addition for the std_logic type. In this case, we are

using std_logic_arith, a package present in the ieee library. Further, we wish

to specifically define the addition to be unsigned, so we use the unsigned exten-

sion. Also, concatenation in VHDL cannot be used on the left side of an assign-

ment statement. To obtain C4 and S as the result of the addition, a 5-bit signal sum

is declared. The signal sum is assigned the result of the addition including the

carry out. Following are two additional assignment statements which split sum

into outputs C4 and S.

 FIGURE 3-49
Behavioral Description of 4-Bit Adder ■

-- 4-bit Adder: Behavioral Description

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adder_4_b is
 port(B, A : in std_logic_vector(3 downto 0);
 C0 : in std_logic;
 S : out std_logic_vector(3 downto 0);
 C4: out std_logic);
end adder_4_b;

architecture behavioral of adder_4_b is
signal sum: std_logic_vector (4 downto 0);
begin
 sum <= ('0' & A) + ('0' & B) + ("0000" & C0);

 C4 <= sum(4);

 S <= sum(3 downto 0);
end behavioral;

192 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

EXAMPLE 3-26 Hierarchical Verilog for a 4-Bit Ripple Carry Adder

The description in Figure 3-50 uses three modules to represent a hierarchical design

for a 4-bit ripple carry adder. The style used for the modules will be a mix of structural

and dataflow description. The three modules are a half adder, a full adder built

around half adders, and the 4-bit adder itself.

The half_adder module consists of two dataflow assignments, one for s and

one for c. The full_adder module uses the half_adder as a component as in

Figure 3-42. In the full_adder, three internal wires, hs, hc, and tc, are declared.

Inputs, outputs, and these wire names are applied to the two half adders, and tc

and hc are ORed to form carry c. Note that the same names can be used on

 FIGURE 3-50
Hierarchical Dataflow/Structural Verilog Description of 4-Bit Adder

// 4-bit Adder: Hierarchical Dataflow/Structural

// (See Figures 3-42 and 3–43 for logic diagrams)

module half_adder_v(x, y, s, c);
 input x, y;
 output s, c;

 assign s = x ^ y;
 assign c = x & y;

endmodule

module full_adder_v(x, y, z, s, c);
 input x, y, z;
 output s, c;

 wire hs, hc, tc;

 half_adder_v HA1(x, y, hs, hc),

 HA2(hs, z, s, tc);

 assign c = tc | hc;

endmodule

module adder_4_v(B, A, C0, S, C4);
 input [3:0] B, A;
 input C0;
 output [3:0] S;
 output C4;

 wire [3:1] C;

 full_adder_v Bit0(B[0], A[0], C0, S[0], C[1]),

 Bit1(B[1], A[1], C[1], S[1], C[2]),

 Bit2(B[2], A[2], C[2], S[2], C[3]),

 Bit3(B[3], A[3], C[3], S[3], C4);

endmodule

3-12 / Other Arithmetic Functions 193

different modules (e.g., x, y, s, and c are used in both the half_adder and

full_adder).

In the adder_4 module, four full adders are simply connected together using

the signals given in Figure 3-43. Note that C0 and C4 are an input and an output,

respectively, but C(3) through C(1) are internal signals (i.e., neither inputs nor

 outputs). ■

EXAMPLE 3-27 Behavioral Verilog for a 4-Bit Ripple Carry Adder

Figure 3-51 shows the Verilog description for the 4-bit adder. In module ad-

der_4_b_v, the addition logic is described by a single statement using + and {}.

The + represents addition and the {} represents an operation called concatenation.

The operation + performed on wire data types is unsigned. Concatenation com-

bines two signals into a single signal having its number of bits equal to the sum of the

 number of bits in the original signals. In the example, {C4,S} represents the signal

vector

C4 S[3] S[2] S[1] S[0]

with 1 + 4 = 5 signals. Note that C4, which appears on the left in the concatenation

expression, appears on the left in the signal listing. ■

 FIGURE 3-51
Behavioral Description of Four-Bit Full Adder Using Verilog

// 4-bit Adder: Behavioral Verilog Description

module adder_4_b_v(A, B, C0, S, C4);
 input[3:0] A, B;
 input C0;
 output[3:0] S;
 output C4;

 assign {C4, S} = A + B + C0;
endmodule

3-12 OTHER ARITHMETIC FUNCTIONS

Other arithmetic functions beyond + , - , * and , , are quite important. Among

these are incrementing, decrementing, multiplication and division by a constant,

greater-than comparison, and less-than comparison. Each can be implemented

for multiple-bit operands by using an iterative array of 1-bit cells. Instead of using

these basic approaches, a combination of rudimentary functions and a new tech-

nique called contraction is used. Contraction begins with a circuit such as a binary

adder or a binary multiplier. This approach simplifies design by converting

 existing circuits into useful, less complicated ones instead of designing the latter

circuits directly.

194 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Contraction

Value fixing, transferring, and inverting on inputs can be combined with function blocks

to implement new functions. We can implement new functions by using similar tech-

niques on a given circuit or on its equations and then contracting it for a specific appli-

cation to a simpler circuit. We will call the procedure contraction. The goal of contrac-

tion is to accomplish the design of a logic circuit or functional block by using results

from past designs. It can be applied by the designer in designing a target circuit or can

be applied by logic synthesis tools to simplify an initial circuit with value fixing, transfer-

ring, and inverting on its inputs in order to obtain a target circuit. In both cases, contrac-

tion can also be applied to circuit outputs that are unused, to simplify a source circuit to

a target circuit. First, we illustrate contraction by using Boolean equations.

EXAMPLE 3-28 Contraction of Full-Adder Equations

The circuit Add1 to be designed is to form the sum Si and carry Ci+1 for the single bit

addition Ai + 1 + Ci. This addition is a special case with Bi = 1 of the addition

performed by a full adder, Ai + Bi + Ci. Thus, equations for the new circuit can be

obtained by taking the full-adder equations,

 Si = Ai ⊕ Bi ⊕ Ci

 Ci+ 1 = AiBi + AiCi + BiCi

setting Bi = 1, and simplifying the results, to obtain

 Si = Ai ⊕ 1 ⊕ Ci = Ai ⊕ Ci

 Ci+ 1 = Ai
1 + AiCi + 1 # Ci = Ai + Ci

Suppose that this Add1 circuit is used in place of each of the four full adders in

a 4-bit ripple carry adder. Instead of S = A + B + C0, the computation being per-

formed is S = A + 1111 + C0. In 2s complement, this computation is

S = A - 1 + C0. If C0 = 0, this implements the decrement operation S = A - 1,

using considerably less logic than for a 4-bit addition or subtraction. ■

Contraction can be applied to equations, as done here, or directly on circuit

diagrams with rudimentary functions applied to function-block inputs. In order to

successfully apply contraction, the desired function must obtainable from the initial

circuit by application of rudimentary functions on its inputs. Next we consider con-

traction based on unused outputs.

Placing an unknown value, X, on the output of a circuit means that output will

not be used. Thus, the output gate and any other gates that drive only that output

gate can be removed. The rules for contracting equations with Xs on one or more

outputs are as follows:

1. Delete all equations with Xs on the circuit outputs.

2. If an intermediate variable does not appear in any remaining equation, delete

its equation.

3-12 / Other Arithmetic Functions 195

3. If an input variable does not appear in any remaining equation, delete it.

4. Repeat 2 and 3 until no new deletions are possible.

The rules for contracting a logic diagram with Xs on one or more outputs are as

follows:

1. Beginning at the outputs, delete all gates with Xs on their outputs and place Xs

on their input wires.

2. If all input wires driven by a gate are labeled with Xs, delete the gate and place

Xs on its inputs.

3. If all input wires driven by an external input are labeled with Xs, delete the in-

put.

4. Repeat steps 2 and 3 until no new deletions are possible.

In the next subsection, contraction of a logic diagram is illustrated for the

increment operation.

Incrementing

Incrementing means adding a fixed value to an arithmetic variable, most often a fixed

value of 1. An n-bit incrementer that performs the operation A + 1 can be obtained

by using a binary adder that performs the operation A + B with B = 0c 01. The

use of n = 3 is large enough to determine the incrementer logic to construct the cir-

cuit needed for an n-bit incrementer.

Figure 3-52 (a) shows a 3-bit adder with the inputs fixed to represent the com-

putation A + 1 and with the output from the most significant carry bit C
3
 fixed at

value X. Operand B = 001 and the incoming carry C0 = 0, so that A + 001 + 0 is

computed. Alternatively, B = 000 and incoming carry C0 = 1 could have been used.

 FIGURE 3-52
Contraction of Adder to Incrementer

A2 A1 A0

S2 S1 S0

(b)

S2

C3 � X

A2
X

X

0
A1 A0

1

C1

5
4

3

1

2

00

S1 S0

(a)

0
A

B

C

D

E

C0 � 0

196 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Based on value fixing, there are three distinct contraction cases for the cells in

the adder:

1. The least significant cell on the right with B0 = 1 and C0 = 0,

2. The typical cell in the middle with B1 = 0, and

3. The most significant cell on the left with B2 = 0 and C3 = X.

For the right cell, the output of gate 1 becomes A0, so it can be replaced by an

inverter. The output of gate 2 becomes A
0
, so it can be replaced by a wire connected

to A
0
. Applying A0 and 0 to gate 3, it can be replaced by a wire, connecting A

0
 to the

output S
0
. The output of gate 4 is 0, so it can be replaced with a 0 value. Applying this

0 and A
0
 from gate 2 to gate 5, gate 5 can be replaced by a wire connecting A

0
 to C

1
.

The resulting circuit is shown as the right cell in Figure 3-52(b).

Applying the same technique to the typical cell with B1 = 0 yields

 S1 = A1 ⊕ C1

 C2 = A1C1

giving the circuit shown as the middle cell in Figure 3-52(b).

For the left cell with B2 = 0 and C3 = X, the effects of X are propagated first

to save effort. Since gate E has X on its output, it is removed and Xs are placed on its

two inputs. Since all gates driven by gates B and C have Xs on their inputs, they can

be removed and Xs placed on their inputs. Gates A and D cannot be removed, since

each is driving a gate without an X on its input. Gate A, however, becomes a wire,

since X ⊕ 0 = X. The resulting circuit is shown as the left cell in Figure 3-52(b).

For an incrementer with n 7 3 bits, the least significant incrementer cell is

used in position 0, the typical cell in positions 1 through n - 2, and the most signifi-

cant cell in position n - 1. In this example, the rightmost cell in position 1 is con-

tracted, but, if desired, it could be replaced with the cell in position 2 with B0 = 0

and C0 = 1. Likewise, the output C
3
 could be generated, but not used. In both cases,

logic cost and power efficiency are sacrificed to make all of the cells identical.

Decrementing

Decrementing is the addition of a fixed negative value to an arithmetic variable—

most often, a fixed value of -1. A decrementer has already been designed in

Example 3-28. Alternatively, a decrementer could be designed by using an adder–

subtractor as a starting circuit and applying B = 0c 01, and selecting the subtrac-

tion operation by setting S to 1. Beginning with an adder–subtractor, we can also use

contraction to design a circuit that increments for S = 0 and decrements for S = 1

by applying B = 0c 01, and letting S remain a variable. In this case, the result is a

cell of the complexity of a full adder in the typical bit positions.

 Multiplication by Constants

In Figure 3-53(a), a multiplier with a 3-bit multiplier and a 4-bit multiplicand is shown

with constant values applied to the multiplier. (The design of this multiplier is ex-

plained in the supplement Multipliers and Dividers on the Companion Website.)

3-12 / Other Arithmetic Functions 197

 Constants applied to the multiplier inputs have the following effects. If the multiplier

value for a particular bit position is 1, than the multiplicand will be applied to an adder.

If the value for a particular bit position is 0, then 0 will be applied to an adder and the

adder will be reduced by contraction to wires producing its right inputs plus a carry of

0 on its outputs. In both cases, the AND gates will be removed. In Figure 3-53(a), the

 FIGURE 3-53
Contractions of Multiplier: (a) for 101 * B, (b) for 100 * B, and (c)
for B , 100

B1B2B3

0

0 0

� 1

0 0

0

B0

B1B2B3

Carry
output

4-bit Adder
Sum

Carry
output 4-bit

Adder Sum

B0

C0C1C2C3C4C5C6

B1B2B3 B0

A0

� 0A1

� 1A2

(a)

B0B1B2B3

C0C1

0 0

C2C3C4C5

(b)

B0B1B2B3

C0C1 C�1C2 C�2

00

C3

(c)

198 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

multiplier has been set to 101. The end result of the contraction of this circuit is a circuit

that conveys the two least significant bits of B to the outputs C
1
 and C

0
. The circuit adds

the two most significant bits of B to B, with the result shifted two positions to the left

applied to product outputs C
6
 through C

2
.

An important special case occurs when the constant equals 2i (i.e., for multi-

plication 2i * B). In this case, only one 1 appears in the multiplier and all logic is

eliminated from the circuit, resulting in only wires. In this case, for the 1 in position

i, the result is B followed by i 0s. The functional block that results is simply a com-

bination of skewed transfers and value fixing to 0. The function of this block is

called a left shift by i bit positions with zero fill. Zero fill refers to the addition of 0s

to the right of (or to the left of) an operand such as B. Shifting is a very important

operation applied to both numerical and nonnumerical data. The contraction

resulting from a multiplication by 22 (i.e., a left shift of two bit positions) is shown

in Figure 3-53(b).

Division by Constants

Our discussion of division by constants will be restricted to division by powers of

2 (i.e., by 2i in binary). Since multiplication by 2i results in addition of i 0s to the

right of the multiplicand, by analogy, division by 2i results in removal of the i least

significant bits of the dividend. The remaining bits are the quotient, and the bits

discarded are the remainder. The function of this block is called a right shift by i
bit positions. Just as for left shifting, right shifting is likewise a very important op-

eration. The function block for division by 22 (i.e., right shifting by two bit posi-

tions) is shown in Figure 3-53(c).

Zero Fill and Extension

Zero fill, as defined previously for multiplication by a constant, can also be used

to increase the number of bits in an operand. For example, suppose that a byte

01101011 is to be used as an input to a circuit that requires an input of 16 bits. One

possible way of producing the 16-bit input is to zero-fill with eight 0s on the left to

produce 0000000001101011. Another is to zero-fill on the right to produce

0110101100000000. The former approach would be appropriate for operations

such as addition or subtraction. The latter approach could be used to produce a

low-precision 16-bit multiplication result in which the byte represents the most

significant eight bits of the actual product with the lower byte of the product dis-

carded.

In contrast to zero fill, sign extension is used to increase the number of bits in

an operand represented by using a complement representation for signed numbers.

If the operand is positive, then bits can be added on the left by extending the sign of

the number (0 for positive and 1 for negative). Byte 01101011, which represents 107

in decimal, extended to 16 bits becomes 0000000001101011. Byte 10010101, which

in 2s complement represents -107, extended to 16 bits becomes 1111111110010101.

The reason for using sign extension is to preserve the complement representation

for signed numbers. For example, if 10010101 were extended with 0s, the magnitude

represented would be very large, and further, the leftmost bit, which should be a 1 for

a minus sign, would be incorrect in the 2s complement representation.

DECIMAL ARITHMETIC The supplement that discusses decimal arithmetic functions

and circuit implementations is available on the Companion Website for the text.

3-13 CHAPTER SUMMARY

This chapter dealt with functional blocks, combinational circuits that are frequently

used to design larger circuits. Rudimentary circuits that implement functions of a

single variable were introduced. The design of decoders that activate one of a num-

ber of output lines in response to an input code was covered. Encoders, the inverse

of decoders, generated a code associated with the active line from a set of lines. The

design of multiplexers that select from data applied at the inputs and present it at the

output was illustrated.

The design of combinational logic circuits using decoders and multiplexers,

was covered. In combination with OR gates, decoders provide a simple min

term-based approach to implementing combinational circuits. Procedures were

given for using an n–to–1-line multiplexer or a single inverter and an (n – 1)–to–1-

line multiplexer to implement any n-input Boolean function.

This chapter also introduced common combinational circuits for performing

arithmetic functions. The implementation of binary adders was treated in detail. The

subtraction of unsigned binary numbers using 2s complement was presented, as was

the representation of signed binary numbers and their addition and subtraction. The

adder–subtractor, developed for unsigned binary, was found to apply directly to the

addition and subtraction of signed 2s complement numbers as well.

REFERENCES

1. High-Speed CMOS Logic Data Book. Dallas: Texas Instruments, 1989.

2. IEEE Standard VHDL Language Reference Manual (ANSI/IEEE Std 1076-

1993; revision of IEEE Std 1076-1987). New York: The Institute of Electrical

and Electronics Engineers, 1994.

3. IEEE Standard Description Language Based on the Verilog Hardware Description
Language (IEEE Std 1364-1995). New York: The Institute of Electrical and

Electronics Engineers, 1995.

4. MANO, M. M. Digital Design, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

5. THOMAS, D. and P. Moorby. The Verilog Hardware Description Language, 5th

ed. New York: Springer, 2002.

6. WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle

River, NJ: Pearson Prentice Hall, 2006.

7. YALAMANCHILI, S. VHDL Starter’s Guide, 2nd ed. Upper Saddle River, NJ:

Pearson Prentice Hall, 2005.

3-13 / Chapter Summary 199

200 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

PROBLEMS
 The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the text website.

 3-1. A majority function has an output value of 1 if there are more 1s than 0s on its

inputs. The output is 0 otherwise. Design a four-input majority function.

 3-2. *Find a function to detect an error in the representation of a decimal digit in

BCD. In other words, write an equation with value 1 when the inputs are any

one of the six unused bit combinations in the BCD code, and value 0

otherwise.

 3-3. Design a binary code–to–BCD code converter that gives output code 1111

for all invalid input combinations. Assume that the binary code sequence for

decimal numbers 0 through 9 is 0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111, 1000, and 1001. All other input combinations should be considered to

be invalid.

 3-4. A simple well-known game, tic-tac-toe, is played on a three-by-three grid of

squares by two players. The players alternate turns. Each player chooses a

square and places a mark in a square. (One player uses X and the other O.)

The first player with three marks in a row, in a column, or on a diagonal wins

the game. A logic circuit is to be designed for an electronic tic-tac-toe that

indicates the presence of a winning pattern. The circuit output W is a 1 if a

winning pattern is present and a 0 if a winning pattern is not present. For each

of the nine squares, there are two signals, Xi and Oi . Two copies of the circuit

are used, one for Xs and one for Os. Hint: Form a condensed truth table for

W(X1, X2,c , X9).

(a) Design the X circuit for the following pattern of signals for the squares:

X1 X2 X3

X4 X5 X6

X7 X8 X9

(b) Minimize the W output for the X circuit as much as possible, using

Boolean algebra.

3-5. Repeat Problem 3-4 for 4 * 4 tic-tac-toe, which is played on a four-by-four

grid. Assume that the numbering pattern is left to right and top to bottom, as

in Problem 3-4.

3-6. A low-voltage lighting system is to use a binary logic control for a particular

light. This light lies at the intersection point of a T-shaped hallway. There is a

switch for this light at each of the three endpoints of the T. These switches

have binary outputs 0 and 1 depending on their position and are named X
1
,

X
2
, and X

3
. The light is controlled by a buffer driving a thyristor, an electronic

part that can switch power-circuit current. When Z, the input to the buffer, is

1, the light is ON, and when Z is 0, the light is OFF. You are to find a function
Z = F(X1, X2, X3) so that if any one of the switches is changed, the value of

Z changes, turning the light ON or OFF.

Problems 201

3-7. +A traffic light control at a simple intersection uses a binary counter to

produce the following sequence of combinations on lines A, B, C, and D: 0000,

0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011,

1001, 1000. After 1000, the sequence repeats, beginning again with 0000,

forever. Each combination is present for 5 seconds before the next one

appears. These lines drive combinational logic with outputs to lamps RNS

(red—north/south), YNS (yellow—north/south), GNS (green—north/south),

REW (red—east/west), YEW (yellow—east/west), and GEW (green—east/

west). The lamp controlled by each output is ON for a 1 applied and OFF for a

0 applied. For a given direction, assume that green is on for 30 seconds, yellow

for 5 seconds, and red for 45 seconds. (The red intervals overlap for 5 seconds.)

Divide the 80 seconds available for the cycle through the 16 combinations into

16 intervals and determine which lamps should be lit in each interval based on

expected driver behavior. Assume that, for interval 0000, a change has just

occurred and that GNS = 1, REW = 1, and all other outputs are 0. Design

the logic to produce the six outputs using AND and OR gates and inverters.

 3-8. Design a combinational circuit that accepts a 3-bit number and generates a

4-bit binary number output equal to double of the input number.

 3-9. +Design a combinational circuit that accepts a 4-bit number and generates a

3-bit binary number output that approximates the square root of the number.

For example, if the square root is 3.5 or larger, give a result of 4. If the square

root is 6 3.5 and Ú 2.5, give a result of 3.

3-10. Design a circuit with a 3-bit input A, B, and C, in the form of Gray code, that

produces a 3-bit output 0
0
,

0

1
, and 0

2
 in binary form. For example, if the Gray

code inputs are 001 and 011, then the circuit will produce 001 and 010,

respectively.

 3-11. A traffic metering system for controlling the release of traffic from an

entrance ramp onto a superhighway has the following specifications for a part

of its controller. There are three parallel metering lanes, each with its own

stop (red)–go (green) light. One of these lanes, the car pool lane, is given

priority for a green light over the other two lanes. Otherwise, a “round robin”

scheme in which the green lights alternate is used for the other two (left and

right) lanes. The part of the controller that determines which light is to be

green (rather than red) is to be designed. The specifications for the controller

follow:

Inputs
PS Car pool lane sensor (car present—1; car absent—0)

LS Left lane sensor (car present—1; car absent—0)

RS Right lane sensor (car present—1; car absent—0)

RR Round robin signal (select left—1; select right—0)

Outputs
PL Car pool lane light (green—1; red—0)

LL Left lane light (green—1; red—0)

RL Right lane light (green—1; red—0)

202 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Operation

1. If there is a car in the car pool lane, PL is 1.

2. If there are no cars in the car pool lane and the right lane, and there

is a car in the left lane, LL is 1.

3. If there are no cars in the car pool lane and in the left lane, and there

is a car in the right lane, RL is 1.

4. If there is no car in the car pool lane, there are cars in both the left

and right lanes, and RR is 1, then LL = 1.

5. If there is no car in the car pool lane, there are cars in both the left

and right lanes, and RR is 0, then RL = 1.

6. If any PL, LL, or RL is not specified to be 1 above, then it has value 0.

(a) Find the truth table for the controller part.

(b) Find a minimum multiple-level gate implementation with minimum

gate-input cost using AND gates, OR gates, and inverters.

3-12. Complete the design of the BCD–to–seven-segment decoder by performing

the following steps:

(a) Plot the seven maps for each of the outputs for the BCD–to–seven-

segment decoder specified in Table 3-9.

(b) Simplify the seven output functions in sum-of-products form, and

determine the total number of gate inputs that will be needed to

implement the decoder.

(c) Verify that the seven output functions listed in the text give a valid

simplification. Compare the number of gate inputs with that obtained in

part (b) and explain the difference.

3-13. Design a circuit to implement the following pair of Boolean equations:

 F0 = Z (X Y + Y X + Z(X Y + X Y)

 F1 = W (X Y + X Y) + W (X Y + Y X)

To simplify drawing the schematic, the circuit is to use a hierarchy based

on the factoring shown in the equation. Three instances (copies) of a single

hierarchical circuit component made up of two AND gates, an OR gate, and

an inverter are to be used. Draw the logic diagram for the hierarchical com-

ponent and for the overall circuit diagram using a symbol for the hierarchi-

cal component.

3-14. A hierarchical component with the function is to be used along with inverters

to implement the following equation:

 F0 = Z (X Y + X Y) + Z (X Y + X Y)

 F1 = X (W Z + Z W) + X (W Z + W Z)

Problems 203

The overall circuit can be obtained by using Shannon’s expansion theorem,

F = X # F0(X) + X # F1(X)

where F0 is F evaluated with variable X = 0 and F0 is F evaluated with

variable X = 1. This expansion F can be implemented with function H by

letting Y = F0 and Z = F1. The expansion theorem can then be applied to

each of F
0
 and F

1
 using a variable in each, preferably one that appears in

both true and complemented form. The process can then be repeated until

all Fi ’s are single literals or constants. For F
1
, use X = A to find G

0
 and G

1

and then use X = B for F
1
 and F

1
. Draw the top-level diagram for G using

H as a hierarchical component.

3-15. +A NAND gate with eight inputs is required. For each of the following cases,

minimize the number of gates used in the multiple-level result:

(a) Design the 8-input NAND gate using 2-input NAND gates and NOT

gates.

(b) Design the 8-input NAND gate using 2-input NAND gates, 2-input NOR

gates, and NOT gates only if needed.

(c) Compare the number of gates used in (a) and (b).

3-16. Perform technology mapping to NAND gates for the circuit in Figure 3-54.

Use cell types selected from: Inverter (n = 1), 2NAND, 3NAND, and

4NAND, as defined at the beginning of Section 3-2.

3-17. Repeat Problem 3-16, using NOR gate cell types selected from: Inverter

(n = 1), 2NOR, 3NOR, and 4NOR, each defined in the same manner as the

corresponding four NAND cell types at the beginning of Section 3-2.

 FIGURE 3-55
Circuit for Problem 3-20

X

Y

F

 FIGURE 3-54
Circuit for Problems 3-16 and 3-17

A
B

C
D
E G
F

204 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

3-18. (a) Repeat Problem 3-16 for the Boolean equations for the segments a and c

of the BCD to seven-segment decoder from Example 3-18. Share

common terms where possible.

(b) Repeat part (a) using only Inverter (n = 1) and 2NAND cell types.

3-19. (a) Repeat Problem 3-18, mapping to NOR gate cell types as in Problem 3-17.

Share common terms where possible.

(b) Repeat part (a) using only Inverter (n = 1) and 2NOR cell types.

3-20. By using manual methods, verify that the circuit of Figure 3-55 generates the

exclusive-NOR function.

3-21. The logic diagram for a 74HC138 MSI CMOS circuit is given in Figure 3-56.

Find the Boolean function for each of the outputs. Describe the circuit

function carefully.

3-22. Do Problem 3-21 by using logic simulation to find the output waveforms of

the circuit or a partial truth-table listing, rather than finding Boolean functions.

3-23. (a) Use logic simulation to verify that the circuits described in Example 3-18

implement the BCD–to–seven-segment converter correctly.

 FIGURE 3-56
Circuit for Problems 3-21 and 3-22

A

B

C

G1

G2A

G2B

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Problems 205

(b) Design the converter assuming that the unused input combinations

(minterms 10–15) can be don’t cares rather than 0s. Simulate your design

and compare it to your simulation from part (a).

3-24. *(a) Draw an implementation diagram for a constant vector function

F = (F7, F6, F5, F4, F3, F2, F1, F0) = (1, 0, 0, 1, 0, 1, 1, 0) using the ground

and power symbols in Figure 3-7(b).

(b) Draw an implementation diagram for a rudimentary vector function

G = (G7, G6, G5, G4, G3, G2, G1, G0) = (A, A, 0, 1, A, A, 1, 1) using inputs

1, 0, A, and A.

3-25. (a) Draw an implementation diagram for rudimentary vector function

F = (F7, F6, F5, F4, F3, F2, F1, F0) = (A, A, 1, A, A, 0, 1, A), using the ground

and power symbols in Figure 3-7(b) and the wire and inverter in Figures 3-

7(c) and (d).

(b) Draw an implementation diagram for rudimentary vector function

G = (G7, G6, G5, G4, G3, G2, G1, G0) = (F0, F1, F3, F2, 1, 0, 0, 1), using the

ground and power symbols and components of vector F.

3-26. (a) Draw an implementation diagram for the vector G = (G0 , G1 , G2 , G3 , G4 ,
G5 , G6 , G7) = (F4 , F5 , F6 , F7 , F0 , F2, F1, F3)

(b) Draw a simple implementation for the rudimentary vector H = (H7 , H6 ,
H5 , H4 , H3 , H2 , H1 , H0) = (F0 , F1 , G3 , G2 , G1 , G0 , F3 , F4)

 3-27. A home security system has a master switch that is used to enable an alarm,

lights, video cameras, and a call to local police in the event one or more of six

sets of sensors detects an intrusion. In addition there are separate switches to

enable and disable the alarm, lights, and the call to local police. The inputs,

outputs, and operation of the enabling logic are specified as follows:

Inputs
Si, i = 0, 1, 2, 3, 4, 5 : signals from six sensor sets (0 = intrusion de-

tected, 1 = no intrusion detected)

M: master switch (0 = security system enabled, 1 = security system

disabled)

A: alarm switch (0 = alarm disabled, 1 = alarm enabled)

L: light switch (0 = lights disabled, 1 = lights enabled)

P: police switch (0 = police call disabled, 1 = police call enabled)

Outputs
A: alarm (0 = alarm on, 1 = alarm off)

L: lights (0 = lights on, 1 = lights off)

V: video cameras (0 = video cameras off, 1 = video cameras on)

C: call to police (0 = call off, 1 = call on)

Operation
If one or more of the sets of sensors detect an intrusion and the secu-

rity system is enabled, then outputs activate based on the outputs of

the remaining switches. Otherwise, all outputs are disabled.

206 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

Find a minimum-gate-input cost realization of the enabling logic using AND

and OR gates and inverters.

3-28. Design a 3–to–8-line decoder using two 2–to–4-line decoders and eight

2-input AND gates.

3-29. Design a 4–to–16-line decoder with enable using two 3–to–8-line decoders

with enable and two AND gates and one OR gate.

3-30. *Design a 5–to–32-line decoder using a 3–to–8-line decoder, a 2–to–4-line

decoder, and 32 2-input AND gates.

3-31. A special –16-line decoder is to be designed. The input codes used are in

BCD format, i.e., from 000 to 1001. For a given code applied, the output Di,

with i equal to the decimal equivalent of the code, is 1 and all other outputs

are 0. Design the decoder with a 3–to–8-line decoder, using AND gates and a

NOT gate.

 3-32. An electronic game uses an array of seven LEDs (light-emitting diodes) to

display the results of a random roll of a die. A decoder is to be designed to

illuminate the appropriate diodes for the display of each of the six die values.

The desired display patterns are shown in Figure 3-57.

(a) Use a 3–to–8-line decoder and OR gates to map the 3-bit combinations

on inputs X
2
, X

1
, and X

0
 for values 1 through 6 to the outputs a through g.

Input combinations 000 and 111 are don’t-cares.

(b) Note that for the six die sides, only certain combinations of dots occur.

For example, dot pattern A = 5d 6 and dot pattern B = 5a, g 6 can be

used for representing input values 1, 2, and 3 as {A}, {B}, and {A, B}.

Define four dot patterns A, B, C, and D, sets of which can provide all six

output patterns. Design a minimized custom decoder that has inputs X
2
,

X
1
, and X

0
 and outputs A, B, C, and D, and compare its gate-input cost to

that of the 3-to-8 decoder and OR gates in part (a).

3-33. Draw the detailed logic diagram of a 2–to–4-line decoder using only NAND

gates. Include an enable input.

 3-34. To provide uphill running and walking, an exercise treadmill has a grade

feature that can be set from 0.0% to 15.0% in increments of 0.1%. (The grade

in percent is the slope expressed as a percentage. For example, a slope of 0.10

is a grade of 10%.) The treadmill has a 10 high by 20 wide LCD dot array

showing a plot of the grade versus time. This problem concerns only the

vertical dimension of the display.

FIGURE 3-57
Patterns for Dice for Problem 3-32

a b
c d e
f g

1 2 3 4 5 6

Problems 207

To define the vertical position of the LCD dot to be illuminated for the

current grade, the 151 different grade values (0.0 to 15.0) need to be trans-

lated into ten different dot positions, P0 to P9. The translation of intervals

of inputs to output values is represented as follows: [(0.0,1.4),0], [(1.5,2.9),1],

[(3.0,4.4),2], [(4.5,5.9),3], [(6.0,7.4),4], [(7.5,8.9),5], [(9.0,10.4),6], [(10.5,11.9),7],

[(12.0,13.4),8], and [(13.5,15.0),9]. The grade values are represented by a pair

of values consisting of a 4-bit binary value 0 through 15 followed by a 4-bit

BCD value 0 through 9. For example, 10.6 is represented by (10, 6) [1010, 0110].

Design a special decoder with eight inputs and ten outputs to perform this

translation. Hint: Use two subcircuits, a 4–to–16-line decoder with the binary

value as inputs and D0 through D15 as outputs, and a circuit which deter-

mines whether the BCD input value is greater than or equal to 5 (0101) with

output GE5. Add additional logic to form outputs P0 through P9 from D0

through D15 and GE5. For example:

 P4 = D6 + D7
GE5 and

 P5 = D7
GE5 + D8

 3-35. *Design a 4-input priority encoder with inputs and outputs as in Table 3-6,

but with the truth table representing the case in which input D
0
 has the

highest priority and input D
3
 the lowest priority.

 3-36. Derive the truth table of a decimal-to-binary priority encoder. There are 10

inputs I
1
 through I

9
 and outputs A

3
 through A

0
 and V. Input I

9
 has the highest

priority.

3-37. (a) Design a 4–to–1-line multiplexer using a 2–to–4-line decoder and a four

2-input AND gates and one 4-input OR gate.

(b) Repeat part (a) using three 2–to–1-line multiplexers.

3-38. Design an 8–to–1-line multiplexer using a 3–to–8-line decoder and an 8 3 2

AND gate and one OR gate.

3-39. Design a dual 8–to–1-line multiplexer using a 3–to–8-line decoder and a 2-to-1

line multiplexer with a line selection input.

3-40. Construct a 10–to–1-line multiplexer with two 3–to–8-line decoders, a 2–to–1-

line multiplexer, and a 2-input AND-OR-NOT gate for the BCD input from

0000 to 1001.

3-41. Construct a 32–to–1-line multiplexer with two 3–to–8 decoders and one 4-to-1

line single multiplexer along with two input AND-OR gates. The decoders

should be connected and inputs labeled so that the selection codes 00000

through 11111 can be applied.

3-42. *Construct a 15–to–1-line multiplexer with two 8–to–1-line multiplexers.

Interconnect the two multiplexers and label the inputs such that any added

logic required to have selection codes 0000 through 1110 is minimized.

208 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

3-43. Rearrange the condensed truth table for the circuit of Figure 3-16, and verify

that the circuit can function as a demultiplexer.

3-44. A combinational circuit is defined by the following three Boolean functions:

 F1 = X YZ + XY Z + X Y Z

 F2 = XYZ + YZ

 F3 = YZ + XY

 F4 = X Y + X Y Z

Design the circuit with a decoder and external OR gates.

 3-45. The rear lights of a car are to be controlled by digital logic. There is a single

lamp in each of the rear lights.

Inputs
LT left turn switch—causes blinking of left side lamp

RT right turn switch—causes blinking of right side lamp

EM emergency flasher switch—causes blinking of both lamps

BR brake applied switch—causes both lamps to be on

BL blinking signal with 1 Hz frequency

Outputs
LR power control for left rear lamp

RR power control for right rear lamp

(a) Write the equations for LR and RR. Assume that BR overrides EM and

that LT and RT override BR.

(b) Implement each function LR (BL, BR, EM, LT) and RR (BL, BR, EM,

RT) with a 4–to–16-line decoder and external OR gates.

3-46. Implement the following Boolean function with an 8–to–1-line multiplexer

and a single inverter with variable D as its input:

F(A, B, C, D) = Σm(0, 2, 3, 5, 6, 9, 10, 13)

3-47. *Implement the Boolean function

F(A, B, C, D) = Σm(1, 3, 4, 11, 12, 13, 14, 15)

with a 4–to–1-line multiplexer and external gates. Connect inputs A and B

to the selection lines. The input requirements for the four data lines will

be a function of the variables C and D. The values of these variables are

obtained by expressing F as a function of C and D for each of the four cases

when AB = 0 0 , 0 1 , 1 0 , and 11. These functions must be implemented with

external gates.

3-48. Solve Problem 3-47 using two 3–to–8-line decoders with enables, an inverter,

and OR gates with a maximum fan-in of 4.

3-49. Design a combinational circuit that forms the 2-bit binary sum S
1
S

0
 of two

2-bit numbers X
1
X

0
 and Y

1
Y

0
 and can produce a carry output C. Design the

Problems 209

entire circuit with the help of three half adder circuit implementing each of

the three outputs with XOR-AND and OR gates.

3-50. *The logic diagram of the first stage of a 4-bit adder, as implemented in

integrated circuit type 74283, is shown in Figure 3-58. Verify that the circuit

implements a full adder.

3-51. *Obtain the 1s and 2s complements of the following unsigned binary

numbers: 10011100, 10011101, 10101000, 00000000, and 10000000.

3-52. Perform the indicated subtraction with the following unsigned binary

numbers by taking the 2s complement of the subtrahend:

(a) 11010 - 10001

(b) 11110 - 1110

(c) 1111110 - 1111110

(d) 101001 - 101

3-53. Repeat Problem 3-52, assuming the numbers are 2s complement signed

numbers. Use extension to equalize the length of the operands. Indicate

whether overflow occurs during the complement operations for any of the

given subtrahends. Indicate whether overflow occurs overall for any of

the given subtractions. When an overflow does occur, repeat the operation

with the minimum number of bits required to perform the operation without

overflow.

3-54. *Perform the arithmetic operations (+36) + (-24) and (-35) - (-24) in

binary using signed 2s complement representation for negative numbers.

 FIGURE 3-58
Circuit for Problems 3-50, 3-65, and 3-69

B0

A0

C0

C1

S0

210 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

3-55. The following binary numbers have a sign in the leftmost position and, if

negative, are in 2s complement form. Perform the indicated arithmetic

operations and verify the answers.

(a) 110001 + 011101

(b) 0110111 + 0101111

(c) 0000 0111 - 1111 0100

(d) 0110111 - 0101111

Indicate whether overflow occurs for each computation.

3-56. +Design two versions of the combinational circuit whose input is a 4-bit

number and whose output is the 2s complement of the input number, for each

of the following cases using AND, OR, and NOT gates:

(a) The circuit is a simplified two-level circuit, plus inverters as needed for

the input variables.

(b) The circuit is made up of four identical two-input, two-output cells, one

for each bit. The cells are connected in cascade, with lines similar to a

carry between them. The value applied to the rightmost carry bit is 1.

(c) Calculate the gate input costs for the designs in (a) and (b) and

determine which is the better design in terms of gate-input cost.

3-57. Use contraction beginning with a 4-bit adder with carry out to design a 4-bit

increment circuit with carry out that is incremented by 0011. The function to

be implemented is S = A 1 0011. Design the circuit with AND-OR-XOR

gates.

3-58. Use contraction beginning with a 4-bit adder–subtractor with carry in, to

design a 4-bit circuit with carry out that increments its input by 0010 for input

S = 0 and decrements its input by 0010 for input S = 1. Perform the design by

designing the distinct 1-bit full adder cells needed and indicating the type of

cell use in each of the four bit positions.

3-59. Design a combinational circuit that compares two 4-bit unsigned numbers A

and B to see whether B is greater than A. The circuit has one output X, so that

X = 1 if A 6 B and X = 0 if A Ú B.

3-60. +Repeat Problem 3-59 by using three-input, one-output circuits, one for each

of the four bits. The four circuits are connected together in cascade by carry-

like signals. One of the inputs to each cell is a carry input, and the single

output is a carry output.

3-61. Repeat Problem 3-59 by applying contraction to a 4-bit subtractor and using

the borrow out as X.

3-62. Design a combinational circuit that compares 4-bit unsigned numbers A and

B to see whether A = B or A 7 B. Use an iterative circuit as in Problem 3-60.

3-63. +Design a 5-bit signed-magnitude adder–subtractor. Divide the circuit for

design into (1) sign generation and add–subtract control logic, (2) an

Problems 211

unsigned number adder–subtractor using 2s complement of the minuend for

subtraction, and (3) selective 2s complement result correction logic.

3-64. *The adder–subtractor circuit of Figure 3-45 has the following values for

input select S and data inputs A and B:

S A B

(a) 0 0111 0111

(b) 1 0100 0111

(c) 1 1101 1010

(d) 0 0111 1010

(e) 1 0001 1000

Determine, in each case, the values of the outputs S
3
, S

2
, S

1
, S

0
, and C

4
.

3-65. Using Figure 3-28 as a guide, write a structural VHDL description for the

full-adder circuit in Figure 3-58. Compile and simulate your description.

Apply all eight input combinations to check the correction function of

your description.

3-66. Compile and simulate the 4-bit adder in Figures 3-47 and 3-48. Apply

combinations that check out the rightmost full adder for all eight

input combinations; this also serves as a check for the other full adders. Also,

apply combinations that check the carry chain connections between all full

adders by demonstrating that a 0 and a 1 can be propagated from C0 to C4.

3-67. *Compile and simulate the behavioral description of the 4-bit adder in Figure

3-49. Assuming a ripple carry implementation, apply combinations that check

out the rightmost full adder for all eight input combinations. Also apply

combinations that check the carry chain connections between all full adders

by demonstrating that a 0 and a 1 can be propagated from C0 to C4.

3-68. + Using Figure 3-49 as a guide and a “when-else” on S from Figure 3-29, write

a high-level behavior VHDL description for the adder–subtractor in Figure

3-46 (see Figure 3-45 for details). Compile and simulate your description.

Assuming a ripple carry implementation, apply combinations that check out

one of the full adder–subtractor stages for all 16 possible input combinations.

Also, apply combinations to check the carry chain connections in between

the full adders by demonstrating that a 0 and a 1 can be propagated from C0

to C4. Check the overflow signals as well.

3-69. Using Figure 3-31 as a guide, write a structural Verilog description for the full-

adder circuit in Figure 3-58. Compile and simulate your description. Apply all

eight input combinations to check the correction function of your description.

3-70. Compile and simulate the 4-bit adder in Figure 3-50. Apply combinations that

check out the rightmost full adder for all eight input combinations; this also

serves as a check for the other full adders. Also, apply combinations that

212 CHAPTER 3 / COMBINATIONAL LOGIC DESIGN

check the carry chain connections between all full adders by demonstrating

that a 0 and a 1 can be propagated from C0 to C4.

3-71. *Compile and simulate the behavioral description of the 4-bit adder in

Figure 3-51. Assuming a ripple carry implementation, apply all eight input

combinations to check out the rightmost full adder. Also, apply

combinations to check the carry chain connections between all full adders

by demonstrating that a 0 and a 1 can be propagated from C0 to C4.

3-72. Using Figure 3-51 as a guide and a “binary decision” on S from Figure 3-34,

write a high-level behavior Verilog description for the adder–subtractor in

Figure 3-46 (see Figure 3-45 for details). Compile and simulate your description.

Assuming a ripple carry implementation, apply input combinations to your

design that will (1) cause all 16 possible input combinations to be applied to

the full adder–subtractor stage for bit 2, and (2) simultaneously cause the

carry output of bit 2 to appear at one of your design’s outputs. Also, apply

combinations that check the carry chain connections between all full adders

by demonstrating that a 0 and a 1 can be propagated from C0 to C4.

 213

C H A P T E R

 Sequential Circuits

4

To this point, we have studied only combinational logic. Although such logic is

capable of interesting operations, such as addition and subtraction, the

performance of useful sequences of operations using combinational logic alone

requires cascading many structures together. The hardware to do this is very costly and

able to construct circuits that can store information between the operations. Such

circuits are called sequential circuits. This chapter begins with an introduction to

sequential circuits, describing the difference between synchronous sequential circuits,

which have a clock signal to synchronize changes in the state of the circuit at discrete

points in time, and asynchronous sequential circuits, which can change state at any

time in response to changes in inputs. This introduction is followed by a study of the

state diagrams provide a means for describing the behavior of sequential circuits.

Subsequent sections of the chapter develop the techniques for designing sequential

description language representations for storage elements and for the type of sequential

the timing characteristics are related to the frequency of the clock for sequential circuits.

circuits having multiple clock domains, focusing on the important topic of synchronization

of signals entering a clocked circuit domain. The discussion of delay and timing

concludes with the issue of synchronization failure due to a physical phenomenon

called metastability.

circuits, since large portions of memory are designed as electronic circuits rather than

214 CHAPTER 4 / SEQUENTIAL CIRCUITS

4-1 SEQUENTIAL CIRCUIT DEFINITIONS

The digital circuits considered thus far have been combinational. Although every

digital system is likely to include a combinational circuit, most systems encountered

in practice also include storage elements, requiring that the systems be described as

sequential circuits.

Figure 4-1(a) is block diagram of a sequential circuit, formed by interconnect-

ing a combinational circuit and storage elements. The storage elements are circuits

that are capable of storing binary information. The binary information stored in

these elements at any given time defines the state of the sequential circuit at that

time. The sequential circuit receives binary information from its environment via the

inputs. These inputs, together with the present state of the storage elements, deter-

mine the binary value of the outputs. They also determine the values used to specify

the next state of the storage elements. The block diagram demonstrates that the out-

puts in a sequential circuit are a function not only of the inputs, but also of the pres-

ent state of the storage elements. The next state of the storage elements is also a

function of the inputs and the present state. Thus, a sequential circuit is specified by a

time sequence of inputs, internal states, and outputs.

There are two main types of sequential circuits, and their classification depends

on the times at which their inputs are observed and their internal state changes. The

behavior of a synchronous sequential circuit can be defined from the knowledge of

its signals at discrete instants of time. The behavior of an asynchronous sequential
circuit depends upon the inputs at any instant of time and the order in continuous

time in which the inputs change.

Information is stored in digital systems in many ways, including the use of logic

circuits. Figure 4-2(a) shows a buffer. This buffer has a gate delay t
G
. Since informa-

tion present at the buffer input at time t appears at the buffer output at time t + t
G
,

the information has effectively been stored for time t
G
. But, in general, we wish to

store information for an indefinite time that is typically much longer than the time

delay of one or even many gates. This stored value is to be changed at arbitrary times

based on the inputs applied to the circuit and the duration of storage of a value

should be longer than the specific time delay of a gate.

Inputs
Combinational

circuit
Next
state Storage

elements

Outputs

Present
state

 FIGURE 4-1
Block Diagram of a Sequential Circuit

systems and how they are designed.

4-1 / Sequential Circuit Definitions 215

Suppose that the output of the buffer in Figure 4-2(a) is connected to its input

as shown in Figures 4-2(b) and (c). Suppose further that the value on the input to the

buffer in part (b) has been 0 for at least time t
G
, the delay of the buffer. Then the out-

put produced by the buffer will be 0 at time t + t
G
. This output is applied to the input

so that the output will also be 0 at time t + 2tG. This relationship between input and

output holds for all t, so the 0 will be stored indefinitely. The same argument can be

made for storing a 1 in the circuit in Figure 4-2(c).

The example of the buffer illustrates that storage can be constructed from logic

with delay connected in a closed loop. Any loop that produces such storage must also

have a property possessed by the buffer, namely, that there must be no inversion of

the signal around the loop. A buffer is usually implemented by using two inverters, as

shown in Figure 4-2(d). The signal is inverted twice, that is,

X = X

giving no net inversion of the signal around the loop. In fact, this example illustrates one

of the most popular methods of implementing storage in computer memories. (See

Chapter 7.) However, although the circuits in Figures 4-2(b) through (d) are able to

store information, there is no way for the information to be changed without providing

additional inputs to override with stored values. If the inverters are replaced with NOR

or NAND gates, the information can be changed. Asynchronous storage circuits called

latches are made in this manner and are discussed in the next section.

In general, more complex asynchronous circuits are difficult to design, since

their behavior is highly dependent on the delays of the gates and on the timing of the

input changes. Thus, circuits that fit the synchronous model are the choice of most

designers. Nevertheless, some asynchronous design is necessary. A very important

case is the use of asynchronous latches as blocks to build storage elements, called

 flip- flops, that store information in synchronous circuits.

A synchronous sequential circuit employs signals that affect the storage ele-

ments only at discrete instants of time. Synchronization is achieved by a timing

device called a clock generator which produces a periodic train of clock pulses. The

pulses are distributed throughout the system in such a way that synchronous storage

elements are affected only in some specified relationship to every pulse. In practice,

1 1
tG

(c)

0 0
tG

(b)tG

(a) (d)

tG
1
2

tG
1
2

 FIGURE 4-2
Logic Structures for Storing Information

216 CHAPTER 4 / SEQUENTIAL CIRCUITS

the clock pulses are applied with other signals that specify the required change in the

storage elements. The outputs of storage elements can change their value only in the

presence of clock pulses. Synchronous sequential circuits that use clock pulses as

inputs for storage elements are called clocked sequential circuits. These are the types

of circuits most frequently encountered in practice, since they operate correctly in

spite of wide differences in circuit delays and are relatively easy to design.

The storage elements used in the simplest form of clocked sequential circuits

are called flip- flops. For simplicity, assume circuits with a single clock signal. A

 flip- flop is a binary storage device capable of storing one bit of information and hav-

ing timing characteristics to be defined in Section 4-9. The block diagram of a syn-

chronous clocked sequential circuit is shown in Figure 4-3. The flip- flops receive their

inputs from the combinational circuit and also from a clock signal with pulses that

occur at fixed intervals of time, as shown in the timing diagram. The flip- flops can

change state only in response to a clock pulse. For a synchronous operation, when a

clock pulse is absent, the flip- flop outputs cannot change even if the outputs of the

combinational circuit driving their inputs change in value. Thus, the feedback loops

shown in the figure between the combinational logic and the flip- flops are broken.

As a result, a transition from one state to the other occurs only at fixed time intervals

dictated by the clock pulses, giving synchronous operation. The sequential circuit

outputs are shown as outputs of the combinational circuit. This is valid even when

some sequential circuit outputs are actually the flip- flop outputs. In this case, the

combinational circuit part between the flip- flop outputs and the sequential circuit

outputs consists of connections only.

A flip- flop has one or two outputs, one for the normal value of the bit stored

and an optional one for the complemented value of the bit stored. Binary informa-

tion can enter a flip- flop in a variety of ways, a fact that gives rise to different types of

 flip- flops. Our focus will be on the most prevalent type used today, the D flip- flop.

Other flip- flop types, such as the JK and T flip- flops, are described in the online mate-

rial available at the Companion Website. In preparation for studying flip- flops and

their operation, necessary groundwork is presented in the next section on latches,

from which the flip- flops are constructed.

(b) Timing diagram of clock pulses

(a) Block diagram

Inputs Combinational
circuit

Clock pulses

Outputs

Flip-flops

 FIGURE 4-3
Synchronous Clocked Sequential Circuit

4-2 / Latches 217

4-2 LATCHES

A storage element can maintain a binary state indefinitely (as long as power is deliv-

ered to the circuit), until directed by an input signal to switch states. The major dif-

ferences among the various types of latches and flip- flops are the number of inputs

they possess and the manner in which the inputs affect the binary state. The most

basic storage elements are latches, from which flip- flops are usually constructed. Al-

though latches are most often used within flip- flops, they can also be used with more

complex clocking methods to implement sequential circuits directly. The design of

such circuits is, however, beyond the scope of the basic treatment given here. In this

section, the focus is on latches as basic primitives for constructing storage elements.

SR and S R Latches

The SR latch is a circuit constructed from two cross- coupled NOR gates. It is derived

from the single- loop storage element in Figure 4-2(d) by simply replacing the invert-

ers with NOR gates, as shown in Figure 4-4(a). This replacement allows the stored

value in the latch to be changed. The latch has two inputs, labeled S for set and R for

reset, and two useful states. When output Q = 1 and Q = 0, the latch is said to be in

the set state. When Q = 0 and Q = 1, it is in the reset state. Outputs Q and Q are

normally the complements of each other. When both inputs are equal to 1 at the

same time, an undefined state with both outputs equal to 0 occurs.

Under normal conditions, both inputs of the latch remain at 0 unless the state is

to be changed. The application of a 1 to the S input causes the latch to go to the set

(1) state. The S input must go back to 0 before R is changed to 1 to avoid occurrence

of the undefined state. As shown in the function table in Figure 4-4(b), two input

conditions cause the circuit to be in the set state. The initial condition is S = 1,

R = 0, to bring the circuit to the set state. Applying a 0 to S with R = 0 leaves the

circuit in the same state. After both inputs return to 0, it is possible to enter the reset

state by applying a 1 to the R input. The 1 can then be removed from R, and the cir-

cuit remains in the reset state. Thus, when both inputs are equal to 0, the latch can be

in either the set or the reset state, depending on which input was most recently a 1.

If a 1 is applied to both the inputs of the latch, both outputs go to 0. This produces

an undefined state, because it violates the requirement that the outputs be the

(b) Function table

S

1

R

1

Q

0

Q

1
0

0
0

1
1

0
0

0
0

1
0

0
0

1
1

0

Set state

Reset state

Undefined

(a) Logic diagram

R (Reset)

S (Set)

Q

Q

 FIGURE 4-4
SR Latch with NOR Gates

218 CHAPTER 4 / SEQUENTIAL CIRCUITS

complements of each other. It also results in an indeterminate or unpredictable next

state when both inputs return to 0 simultaneously. In normal operation, these problems

are avoided by making sure that 1s are not applied to both inputs simultaneously.

The behavior of the SR latch described in the preceding paragraph is illustrated

by the ModelSim® logic simulator waveforms shown in Figure 4-5. Initially, the inputs

and the state of the latch are unknown, as indicated by a logic level halfway between 0

and 1. When R becomes 1 with S at 0, the latch is reset, with Q first becoming 0 and, in

response, Q_b (which represents Q) becoming 1. Next, when R becomes 0, the latch

remains reset, storing the 0 value present on Q. When S becomes 1 with R at 0, the

latch is set, with Q_b going to 0 first and, in response, Q going to 1 next. The delays in

the changes of Q and Q_b after an input changes are directly related to the delays of

the two NOR gates used in the latch implementation. When S returns to 0, the latch

remains set, storing the 1 value present on Q. When R becomes 1 with S equal to 0,

the latch is reset, with Q changing to 0 and Q_b responding by changing to 1. The latch

remains reset when R returns to 0. When S and R both become 1, both Q and Q_b
become 0. When S and R simultaneously return to 0, both Q and Q_b take on

unknown values. This form of indeterminate state behavior for the (S, R) sequence of

inputs (1, 1), (0, 0) results from assuming simultaneous input changes and equal gate

delays. The actual indeterminate behavior that occurs depends on circuit delays and

slight differences in the times at which S and R change in the actual circuit. Regardless

of the simulation results, these indeterminate behaviors are viewed as undesirable,

and the input combination (1, 1) is avoided. In general, the latch state changes only in

response to input changes and remains unchanged otherwise.

The S R latch with two cross- coupled NAND gates is shown in Figure 4-6. It

operates with both inputs normally at 1, unless the state of the latch has to be changed.

The application of a 0 to the S input causes output Q to go to 1, putting the latch in the

set state. When the S input goes back to 1, the circuit remains in the set state. With

both inputs at 1, the state of the latch is changed by placing a 0 on the R input. This

causes the circuit to go to the reset state and stay there, even after both inputs return

to 1. The condition that is undefined for this NAND latch is when both inputs are

equal to 0 at the same time, an input combination that should be avoided.

Comparing the NAND latch with the NOR latch, note that the input signals

for the NAND require the complement of those values used for the NOR. Because

0 20 ns 40 ns 60 ns 80 ns

SR Latch

S

R

Q

Q_b

 FIGURE 4-5
Logic Simulation of SR Latch Behavior

4-2 / Latches 219

the NAND latch requires a 0 signal to change its state, it is referred to as an S R latch.

The bar above the letters designates the fact that the inputs must be in their comple-

ment form in order to act upon the circuit state.

The operation of the basic NOR and NAND latches can be modified by pro-

viding an additional control input that determines when the state of the latch can be

changed. An SR latch with a control input is shown in Figure 4-7. It consists of the

basic NAND latch and two additional NAND gates. The control input C acts as an

enable signal for the other two inputs. The output of the NAND gates stays at the

 logic- 1 level as long as the control input remains at 0. This is the quiescent condition

for the S R latch composed of two NAND gates. When the control input goes to 1,

information from the S and R inputs is allowed to affect the S R latch. The set state is

reached with S = 1, R = 0, and C = 1. To change to the reset state, the inputs must

be S = 0, R = 1, and C = 1. In either case, when C returns to 0, the circuit remains

in its current state. Control input C = 0 disables the circuit so that the state of the

output does not change, regardless of the values of S and R. Moreover, when C = 1

and both the S and R inputs are equal to 0, the state of the circuit does not change.

These conditions are listed in the function table accompanying the diagram.

An undefined state occurs when all three inputs are equal to 1. This condition

places 0s on both inputs of the basic S R latch, giving an undefined state. When the

S (Set)
Q

(b) Function table

S

0

R

0

Q

1

0
1

1
1

1
1

0
0

1
1

0
1

0
0

1
1

1

Set state

Reset state

Undefined

(a) Logic diagram

R (Reset)

Q

Q

 FIGURE 4-6
S R Latch with NAND Gates

(a) Logic diagram (b) Function table

C

0

1

1

1

1

S

X
0

0

1

1

R

X
0

1

0

1

Next state of Q

No change

No change

Q � 0; Reset state

Q � 1; Set state

Undefined

S

C

R

Q

Q

 FIGURE 4-7
SR Latch with Control Input

220 CHAPTER 4 / SEQUENTIAL CIRCUITS

control input goes back to 0, one cannot conclusively determine the next state, since

the S R latch sees inputs (0, 0) followed by (1, 1). The SR latch with control input is

an important circuit, because other latches and flip- flops are constructed from it.

Sometimes the SR latch with control input is referred to as an SR (or RS) flip- flop—

however, according to our terminology, it does not qualify as a flip- flop, since the

circuit does not fulfill the flip- flop requirements presented in the next section.

D Latch

One way to eliminate the undesirable undefined state in the SR latch is to ensure

that inputs S and R are never equal to 1 at the same time. This is done in the D latch,

shown in Figure 4-8. This latch has only two inputs: D (data) and C (control). The

complement of the D input goes directly to the S input, and D is applied to the R in-

put. As long as the control input is 0, the S R latch has both inputs at the 1 level, and

the circuit cannot change state regardless of the value of D. The D input is sampled

when C = 1. If D is 1, the Q output goes to 1, placing the circuit in the set state. If D
is 0, output Q goes to 0, placing the circuit in the reset state.

The D latch receives its designation from its ability to hold data in its internal stor-

age. The binary information present at the data input of the D latch is transferred to the

Q output when the control input is enabled (1). The output follows changes in the data

input, as long as the control input is enabled. When the control input is disabled (0), the

binary information that was present at the data input at the time the transition in C
occurred is retained at the Q output until the control input C is enabled again.

4-3 FLIP- FLOPS

A change in value on the control input allows the state of a latch in a flip- flop to

switch. This change is called a trigger, and it enables, or triggers, the flip- flop. The D

(b) Function table

C

0
1
1

D

X
0
1

Next state of Q

No change

(a) Logic diagram

D

C

Q

Q

S

R

 FIGURE 4-8
D Latch

4-3 / Flip-Flops 221

latch with clock pulses on its control input is triggered every time a pulse to the

 logic- l level occurs. As long as the pulse remains at the active (1) level, any changes

in the data input will change the state of the latch. In this sense, the latch is transpar-
ent, since its input value can be seen from the outputs while the control input is 1.

As the block diagram of Figure 4-3 shows, a sequential circuit has a feedback

path from the outputs of the flip- flops to the combination circuit. As a consequence,

the data inputs of the flip- flops are derived in part from the outputs of the same and

other flip- flops. When latches are used for the storage elements, a serious difficulty

arises. The state transitions of the latches start as soon as the clock pulse changes to the

 logic- 1 level. The new state of a latch may appear at its output while the pulse is still

active. This output is connected to the inputs of some of the latches through a combi-

national circuit. If the inputs applied to the latches change while the clock pulse is still

in the logic- 1 level, the latches will respond to new state values of other latches instead

of the original state values, and a succession of changes of state instead of a single one

may occur. The result is an unpredictable situation, since the state may keep changing

and continue to change until the clock returns to 0. The final state depends on how

long the clock pulse stays at the logic- 1 level. Because of this unreliable operation, the

output of a latch cannot be applied directly or through combinational logic to the input

of the same or another latch when all the latches are triggered by a single clock signal.

 Flip- flop circuits are constructed in such a way as to make them operate prop-

erly when they are part of a sequential circuit that employs a single clock. Note that

the problem with the latch is that it is transparent: As soon as an input changes,

shortly thereafter the corresponding output changes to match it. This transparency is

what allows a change on a latch output to produce additional changes at other latch

outputs while the clock pulse is at logic 1. The key to the proper operation of flip- flops

is to prevent them from being transparent. In a flip- flop, before an output can change,

the path from its inputs to its outputs is broken. So a flip- flop cannot “see” the change

of its output or of the outputs of other, similar flip- flops at its input during the same

clock pulse. Thus, the new state of a flip- flop depends only on the immediately pre-

ceding state, and the flip- flops do not go through multiple changes of state.

A common way to create a flip- flop is to connect two latches as shown in

Figure 4-9, which is often referred to as a master– slave flip- flop. The left latch, the

master, changes its value based upon the input while the clock is high. That value is

Q

D

C

QS

C

R

D

C

 FIGURE 4-9
Negative- Edge- Triggered D Flip- Flop

222 CHAPTER 4 / SEQUENTIAL CIRCUITS

then transferred to the right latch, the slave, when the clock changes to low.

Depending upon the type of latch that is used to construct the master– slave flip- flop,

there are two possible ways that the flip- flop can respond to changes in the clock.

One way is to combine two latches such that (1) the inputs presented to the flip- flop

when a clock pulse is present control its state and (2) the state of the flip- flop changes

only when a clock pulse is not present. Such a circuit is called a pulse- triggered
 flip- flop. A master– slave flip- flop constructed with SR latches is a pulse- triggered

 flip- flop, because changes on either the S or R inputs of the master during the clock

pulse can change the master’s output value. Thus a master– slave SR flip- flop depends

on the input values throughout the entire high clock pulse.

In contrast, another way is to produce a flip- flop that triggers only during a sig-

nal transition from 0 to 1 (or from 1 to 0) on the clock and that is disabled at all other

times, including for the duration of the clock pulse. Such a circuit is said to be an

 edge- triggered flip- flop. Edge- triggered flip- flops tend to be faster and have easier

design constraints than pulse- triggered flip- flops, so they are much more commonly

used. It is necessary to consider the SR flip- flop to illustrate the pulse- triggering

approach, which is presented in the online Companion Website due to its lesser

prevalence in contemporary design. The edge- triggered D flip- flop is currently the

most common flip- flop, so its implementation is presented next.

 Edge- Triggered Flip- Flop

An edge- triggered flip- flop ignores the clock pulse while it is at a constant level and

triggers only during a transition of the clock signal. Some edge- triggered flip- flops

trigger on the positive edge (0- to- 1 transition), whereas others trigger on the nega-

tive edge (1- to- 0 transition). The logic diagram of a negative- edge- triggered D

 flip- flop is shown in Figure 4-9. The logic diagram of a D- type positive- edge- triggered

 flip- flop to be analyzed in detail here appears in Figure 4-10. This flip- flop is a

 master- slave flip- flop, with the master a D latch and the slave an SR latch or a D

latch. Also, an inverter is added to the clock input. Because the master latch is a D
latch, the flip- flop exhibits edge- triggered rather than pulse- triggered behavior. For

the clock input equal to 0, the master latch is enabled and transparent and follows

the D input value. The slave latch is disabled and holds the state of the flip- flop fixed.

Q

D

C

QS

C

R

D

C

 FIGURE 4-10
Positive- Edge- Triggered D Flip- Flop

4-3 / Flip-Flops 223

When the positive edge occurs, the clock input changes to 1. This disables the master

latch so that its value is fixed and enables the slave latch so that it copies the state of

the master latch. The state of the master latch to be copied is the state that is present

at the positive edge of the clock. Thus, the behavior appears to be edge triggered.

With the clock input equal to 1, the master latch is disabled and cannot change, so

the state of both the master and the slave remain unchanged. Finally, when the clock

input changes from 1 to 0, the master is enabled and begins following the D value.

But during the 1- to- 0 transition, the slave is disabled before any change in the master

can reach it. Thus, the value stored in the slave remains unchanged during this

 transition. An alternative implementation that requires fewer gates is given in

 Problem 4-3 at the end of the chapter.

Standard Graphics Symbols

The standard graphics symbols for the different types of latches and flip- flops are

shown in Figure 4-11. A flip- flop or latch is designated by a rectangular block with

(a) Latches

S

R

SR SR

S

R

D with 0 Control

D

C

D with 1 Control

D

C

(b) Master–slave flip-flops

D

C

Triggered DTriggered SR

S

R

C

D

C

Triggered DTriggered SR

S

R

C

(c) Edge-triggered flip-flops

Triggered D

D

C

Triggered D

D

C

 FIGURE 4-11
Standard Graphics Symbols for Latches and Flip- Flop

224 CHAPTER 4 / SEQUENTIAL CIRCUITS

inputs on the left and outputs on the right. One output designates the normal state of

the flip- flop, and the other, with a bubble, designates the complement output. The

graphics symbol for the SR latch or SR flip- flop has inputs S and R indicated inside

the block. In the case of the S R latch, bubbles are added to the inputs to indicate that

setting and resetting occur for 0-level inputs. The graphics symbol for the D latch or

D flip- flop has inputs D and C indicated inside the block.

Below each symbol, a descriptive title, which is not part of the symbol, is given.

In the titles, denotes a positive pulse, a negative pulse, a positive edge, and

a negative edge.

Triggering by the 0 level rather than the 1 level is denoted on the latch symbols

by adding a bubble at the triggering input. The pulse- triggered flip- flop is indicated

as such with a right- angle symbol called a postponed output indicator in front of the

outputs. This symbol shows that the output signal changes at the end of the pulse. To

denote that the master– slave flip- flop will respond to a negative pulse (i.e., a pulse to

0 with the inactive clock value at 1), a bubble is placed on the C input. To denote that

the edge- triggered flip- flop responds to an edge, an arrowhead- like symbol in front

of the letter C designates a dynamic input. This dynamic indicator symbol denotes

the fact that the flip- flop responds to edge transitions of the input clock pulses. A

bubble outside the block adjacent to the dynamic indicator designates a

 negative- edge transition for triggering the circuit. The absence of a bubble desig-

nates a positive- edge transition for triggering.

In contemporary practice, positive- or negative- edge- triggered D flip- flops are

the most commonly used flip- flops; the symbols for pulse- triggered flip- flops are

included for completeness but are not likely to be encountered outside of a

textbook.

Often, all of the flip- flops used in a circuit are of the same triggering type, such

as positive- edge triggered. All of the flip- flops will then change in relation to the

same clocking event. When using flip- flops having different triggering in the same

sequential circuit, one may still wish to have all of the flip- flop outputs change rela-

tive to the same clocking event. Those flip- flops that behave in a manner opposite

from the adopted polarity transition can be changed by the addition of inverters to

their clock inputs. The inverters unfortunately cause the clock signal to these

 flip- flops to be delayed with respect to the clocks to the other flip- flops. A preferred

procedure is to provide both positive and negative pulses from the master clock

 generator that are carefully aligned. We apply positive pulses to positive-pulse-

triggered and negative-edge-triggered flip-flops and negative pulses to negative-

pulse-triggered and positive- edge- triggered flip- flops. In this way, all flip- flop outputs

will change at the same time. Finally, to prevent specific timing problems, some

designers use flip- flops having different triggering (i.e., both positive and negative

 edge- triggered flip- flops) with a single clock. In these cases, flip- flop outputs are pur-

posely made to change at different times.

In the remainder of this text, it is assumed that all flip- flops are of the

 positive- edge- triggered type, unless otherwise indicated. This provides a uniform

graphics symbol for the flip- flops and consistent timing diagrams.

Note that there is no input to the D flip- flop that produces a “ no- change” con-

dition. This condition can be accomplished either by disabling the clock pulses on

4-3 / Flip-Flops 225

the C input or by leaving the clock pulses undisturbed and connecting the output

back into the D input using a multiplexer when the state of the flip- flop must remain

the same. The technique that disables clock pulses is referred to as clock gating. This

technique typically uses fewer gates and saves power, but is often avoided because

the gated clock pulses into the flip- flops are delayed. The delay, called clock skew,

causes gated clock and non- gated clock flip- flops to change at different times. This

can make the circuit unreliable without careful design, since the outputs of some

 flip- flops may reach others while their inputs are still affecting their state. To avoid

this problem, delays must be inserted in the clock circuitry to align inverted and

 non- inverted clocks. If possible, this situation should be avoided entirely by using

 flip- flops that trigger on the same edge.

Direct Inputs

 Flip- flops often provide special inputs for setting and resetting them asynchronously

(i.e., independently of the clock input C). The inputs that asynchronously set the

 flip- flop are called direct set or preset. The inputs that asynchronously reset the

 flip- flop are called direct reset or clear. Application of a logic 1 (or a logic 0 if a bubble

is present) to these inputs affects the flip- flop output without the use of the clock.

When power is turned on in a digital system, the states of its flip- flops can be any-

thing. The direct inputs are useful for bringing flip- flops in a digital system to an ini-

tial state prior to the normal clocked operation.

The IEEE standard graphics symbol for a positive- edge- triggered D flip- flop

with direct set and direct reset is shown in Figure 4-12(a). The notations C1 and 1D
illustrate control dependency. An input labeled Cn, where n is any number, con-

trols all the other inputs starting with the number n. In the figure, C1 controls input

1D. S and R have no 1 in front of them, and therefore they are not controlled by

the clock at C1. The S and R inputs have circles on the input lines to indicate that

they are active at the logic- 0 level (i.e., a 0 applied will result in the set or reset

action).

The function table in Figure 4-12(b) specifies the operation of the circuit. The

first three rows in the table specify the operation of the direct inputs S and R. These

inputs behave like NAND S R latch inputs (see Figure 4-6), operating independently

(b) Function table

R DS C

0
Undefined

1

0

Q

1

1

0

1

Q

01 X0 X

0 X1 X

0 X0 X

1 01

1 11

(c) Simplified symbol

D

C
R

S

S

1D

C1

R

Q

Q

(a) Graphic symbol

 FIGURE 4-12
D Flip- Flop with Direct Set and Reset

226 CHAPTER 4 / SEQUENTIAL CIRCUITS

of the clock, and are therefore asynchronous inputs. The last two rows in the function

table specify the clocked operation for values of D. The clock at C is shown with an

upward arrow to indicate that the flip- flop is a positive- edge- triggered type. The D
input effects are controlled by the clock in the usual manner.

Figure 4-12(c) shows a less formal symbol for the positive- edge- triggered

 flip- flop with direct set and reset. The positioning of S and R at the top and bottom of

the symbol rather than on the left edge implies that resulting output changes are not

controlled by the clock C.

 FLIP- FLOP TIMING Flip- flop timing is covered in Section 4-9.

4-4 SEQUENTIAL CIRCUIT ANALYSIS

The behavior of a sequential circuit is determined from the inputs, outputs, and pres-

ent state of the circuit. The outputs and the next state are a function of the inputs and

the present state. The analysis of a sequential circuit consists of obtaining a suitable

description that demonstrates the time sequence of inputs, outputs, and states.

A logic diagram is recognized as a synchronous sequential circuit if it includes

 flip- flops with the clock inputs driven directly or indirectly by a clock signal and if

the direct sets and resets are unused during the normal functioning of the circuit. The

 flip- flops may be of any type, and the logic diagram may or may not include combi-

national gates. In this section, an algebraic representation for specifying the logic

diagram of a sequential circuit is given. A state table and a state diagram are pre-

sented that describe the behavior of the circuit. Specific examples will be used

throughout the discussion to illustrate the various procedures.

Input Equations

The logic diagram of a sequential circuit consists of flip- flops and, usually, combina-

tional gates. The knowledge of the type of flip- flops used and a list of Boolean func-

tions for the combinational circuit provide all the information needed to draw the

logic diagram of the sequential circuit. The part of the combinational circuit that

generates the signals for the inputs of flip- flops can be described by a set of Boolean

functions called flip- flop input equations. We adopt the convention of denoting the

dependent variable in the flip- flop input equation by the flip- flop input symbol with

the name of the flip- flop output as the subscript for the variable, e.g., D
A
. A flip- flop

input equation is a Boolean expression for a combinational circuit. The output of

this combinational circuit is connected to the input of a flip- flop— thus the name

“ flip- flop input equation.”

The flip- flop input equations constitute a convenient algebraic expression for

specifying the logic diagram of a sequential circuit. They imply the type of flip- flop

from the letter symbol, and they fully specify the combinational circuit that drives

the flip- flops. Time is not included explicitly in these equations, but is implied from

the clock at the C input of the flip- flops. An example of a sequential circuit is given in

Figure 4-13. The circuit has two D- type flip- flops, an input X, and an output Y. It can

be specified by the following equations:

4-4 / Sequential Circuit Analysis 227

 DA = AX + BX

 DB = AX

 Y = (A + B)X

The first two equations are for flip- flop inputs, and the third specifies the out-

put Y. Note that the input equations use the symbol D, which is the same as the input

symbol of the flip- flops. The subscripts A and B designate the outputs of the respec-

tive flip- flops.

State Table

The functional relationships among the inputs, outputs, and flip- flop states of a se-

quential circuit can be enumerated in a state table. The state table for the circuit of

Figure 4-13 is shown in Table 4-1. It consists of four sections, labeled present state, in-
put, next state, and output. The present- state section shows the states of flip- flops A
and B at any given time t. The input section gives each value of X for each possible

present state. Note that for each possible input combination, each of the present

states is repeated. The next- state section shows the states of the flip- flops one clock

period later, at time t + 1. The output section gives the value of output Y at time t
for each combination of present state and input.

D

C

A

A

D

C

B

B

X

Clock

Y

 FIGURE 4-13
Example of a Sequential Circuit

228 CHAPTER 4 / SEQUENTIAL CIRCUITS

The derivation of a state table consists of first listing all possible binary combi-

nations of present state and inputs. In Table 4-1, there are eight binary combinations,

from 000 to 111. The next- state values are then determined from the logic diagram or

from the flip- flop input equations. For a D flip- flop, the relationship A(t + 1) = DA(t)

holds. This means that the next state of flip- flop A is equal to the present value of its

input D. The value of the D input is specified in the flip- flop input equation as a func-

tion of the present state of A and B and input X. Therefore, the next state of flip- flop

A must satisfy the equation

A(t + 1) = DA = AX + BX

The next- state section in the state table under column A has three 1s, where the pres-

ent state and input value satisfy the conditions (A, X) = 11 or (B, X) = 11.

Similarly, the next state of flip- flop B is derived from the input equation

B(t + 1) = DB = AX

and is equal to 1 when the present state of A is 0 and input X is equal to 1. The output

column is derived from the output equation

Y = AX + BX

The state table of any sequential circuit with D- type flip- flops is obtained in

this way. In general, a sequential circuit with m flip- flops and n inputs needs 2m+n rows

in the state table. The binary numbers from 0 through 2m+n − 1 are listed in the com-

bined present- state and input columns. The next- state section has m columns, one for

each flip- flop. The binary values for the next state are derived directly from the D
 flip- flop input equations. The output section has as many columns as there are output

variables. Its binary values are derived from the circuit or from the Boolean func-

tions in the same manner as in a truth table.

Table 4-1 is one- dimensional in the sense that the present state and input com-

binations are combined into a single column of combinations. A two- dimensional

 TABLE 4-1
State Table for Circuit of Figure 4-13

Present State Input Next State Output

A B X A B Y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

4-4 / Sequential Circuit Analysis 229

state table having the present state tabulated in the left column and the inputs tabu-

lated across the top row is also frequently used. The next- state entries are made in

each cell of the table for the present- state and input combination corresponding to

the location of the cell. A similar two- dimensional table is used for the outputs if

they depend upon the inputs. Such a state table is shown in Table 4-2. Sequential cir-

cuits in which the outputs depend on the inputs, as well as on the states, are referred

to as Mealy model circuits. Otherwise, if the outputs depend only on the states, then a

 one- dimensional column suffices. In this case, the circuits are referred to as Moore
model circuits. Each model is named after its originator.

As an example of a Moore model circuit, suppose we want to obtain the logic

diagram and state table of a sequential circuit that is specified by the flip- flop input

equation

DA = A ⊕ X ⊕ Y

and output equation

Z = A

The DA symbol implies a D- type flip- flop with output designated by the letter A. The

X and Y variables are taken as inputs and Z as the output. The logic diagram and

state table for this circuit are shown in Figure 4-14. The state table has one column

for the present state and one column for the inputs. The next state and output are

also in single columns. The next state is derived from the flip- flop input equation,

which specifies an odd function. (See Section 2-6.) The output column is simply a

copy of the column for the present- state variable A.

State Diagram

The information available in a state table may be represented graphically in the form

of a state diagram. A state is represented by a circle, and transitions between states

are indicated by directed lines connecting the circles. Examples of state diagrams are

given in Figure 4-15. Figure 4-15(a) shows the state diagram for the sequential circuit

in Figure 4-13 and its state table in Table 4-1. The state diagram provides the same

 TABLE 4-2
Two- Dimensional State Table for the Circuit in Figure 4-13

Present

State

Next State Output

X = 0 X = 1 X = 0 X = 1

A B A B A B Y Y

0 0 0 0 0 1 0 0

0 1 0 0 1 1 1 0

1 0 0 0 1 0 1 0

1 1 0 0 1 0 1 0

230 CHAPTER 4 / SEQUENTIAL CIRCUITS

information as the state table and is obtained directly from it. The binary number in-

side each circle identifies the state of the flip- flops. For Mealy model circuits, the di-

rected lines are labeled with two binary numbers separated by a slash. The input

value during the present state precedes the slash, and the value following the slash

gives the output value during the present state with the given input applied. For

(b) State table

Z

0
0

0
0
1
1
1
1

Output

A

0
1

1
0
1
0
0
1

Next
StateInputs

X

0
0

1
1
0
0
1
1

Y

0
1

0
1
0
1
0
1

A

0
0

0
0
1
1
1
1

Present
State

(a) Logic diagram

Clock

D

C

ZX
Y

A

 FIGURE 4-14
Logic Diagram and State Table for DA = A ⊕ X ⊕ Y

(a)

0/0 1/0

0/1

0/1 0/1

1/0
1/0

1/0

00 01

10 11

(b)

00, 11

01, 10

01, 10

00, 110/0 1/1

 FIGURE 4-15
State Diagrams

4-4 / Sequential Circuit Analysis 231

example, the directed line from state 00 to state 01 is labeled 1/0, meaning that when

the sequential circuit is in the present state 00 and the input is 1, the output is 0. After

the next clock transition, the circuit goes to the next state, 01. If the input changes to

0, then the output becomes 1, but if the input remains at 1, the output stays at 0. This

information is obtained from the state diagram along the two directed lines emanat-

ing from the circle with state 01. A directed line connecting a circle with itself indi-

cates that no change of state occurs.

The state diagram of Figure 4-15(b) is for the sequential circuit of Figure 4-14.

Here, only one flip- flop with two states is needed. There are two binary inputs, and

the output depends only on the state of the flip- flop. For such a Moore model circuit,

the slash on the directed lines is not included, since the outputs depend only on the

state and not on the input values. Instead, the output is included inside the state

circle, indicated here with a slash. There are two input conditions for each state tran-

sition in the diagram, and they are separated by a comma. When there are two input

variables, each state may have up to four directed lines coming out of the corre-

sponding circle, depending upon the number of states and the next state for each

binary combination of the input values.

There is no difference between a state table and a state diagram, except for

their manner of representation. The state table is easier to derive from a given logic

diagram and input equations. The state diagram follows directly from the state table.

The state diagram gives a pictorial view of state transitions and is the form more

suitable for human interpretation of the operation of the circuit. For example, the

state diagram of Figure 4-15(a) clearly shows that, starting at state 00, the output is 0

as long as the input stays at 1. The first 0 input after a string of 1s gives an output of 1

and sends the circuit back to the initial state of 00. The state diagram of Figure 4-15(b)

shows that the circuit stays at a given state as long as the two inputs have the same

value (00 or 11). There is a state transition between the two states only when the two

inputs are different (01 or 10).

The state diagram in Figure 4-15(a) is useful for illustrating two concepts:

(1) the reduction of the number of states required by using the concept of equiva-

lent states, and (2) the mixing of Mealy and Moore types of outputs in a single

description. Two states are equivalent if the response for each possible input

sequence is an identical output sequence. This definition can be recast in terms of

states and outputs. Two states are equivalent if the output produced for each input

symbol is identical and the next states for each input symbol are the same or

equivalent.

EXAMPLE 4-1 Equivalent State Illustration

In the state diagram in Figure 4-15(a), consider states 10 and 11. Under input 0, both

states produce output 1, and, under input 1, both states produce output 0. Under in-

put 0, both states have the same state 00 as their next state. Under input 1, both

states have state 10 as their next state. By the second definition above, states 11 and

10 are equivalent. These equivalent states can be merged into a single state entered

from state 01 under input 1, with a transition under input 0 to state 00 with an output

of 1, and a transition back to itself under input 1 with an output of 0. In the original

232 CHAPTER 4 / SEQUENTIAL CIRCUITS

diagram, consider states 01 and 11. These states satisfy the output conditions for

 being equivalent. Under 0, they both go to next state 00, and under 1, they go to next

states 11 and 10, which have just been shown to be equivalent. So, states 01 and 11

are equivalent. Since state 11 is equivalent to state 10, all three of these states are

equivalent. Merging these three states, states 11 and 10 can be deleted and state 01

can be modified to have the transition under 1 with output 0 back to state 01. If the

circuit in Figure 4-13 was analyzed for redesign, the new design has two states and

one flip- flop instead of four states and two flip- flops. ■

State reduction through state equivalence may or may not result in reduced

cost, since cost is dependent on combinational circuit cost as well as flip- flop cost.

Nevertheless, combining equivalent states has inherent advantages in the design,

verification, and testing processes.

Ordinarily, the Mealy and Moore output types are not mixed in a given sequen-

tial circuit representation. In doing real designs, however, such mixing may be

convenient.

EXAMPLE 4-2 Mixed Mealy and Moore Outputs

The state diagram in Figure 4-15(a) can also be used to illustrate a mixed output

model that uses both Mealy and Moore type outputs. For state 00, all input values

produce the same output value 0 on Z. As a consequence, the output depends only

on the state 00 and satisfies the definition of a Moore type output. If desired, the out-

put value 0 can be moved from the outgoing transitions on state 00 to within the

circle for state 00. For the remaining states, however, the outputs for the two input

values on X differ, so the output values are the Mealy type and must remain on the

state transitions. ■

Unfortunately, this representation does not translate well to the two-

dimensional state tables. It can be translated to a modified one- dimensional state

table with rows that contain the state and the Moore output value without the out-

put conditions, and rows that contain the state, an output condition, and the Mealy

value output.

SEQUENTIAL CIRCUIT CLOCKS AND TIMING The details of sequential circuit clocks and

timing are discussed in Section 4-10.

Sequential Circuit Simulation

Simulation of sequential circuit involves issues not present in combinational circuits.

First of all, rather than a set of input patterns for which the order of application is

immaterial, the patterns must be applied in a sequence. This sequence includes time-

ly application of input patterns as well as clock pulses. Second, there must be some

means to place the circuit in a known state. Realistically, initialization to a known

state is accomplished by application of an initialization subsequence at the beginning

4-4 / Sequential Circuit Analysis 233

of the simulation. In the simplest case, this subsequence is a reset signal. For flip- flops

lacking a circuit reset (or set), a longer sequence typically consisting of an initial re-

set followed by a sequence of normal input patterns is required. A simulator may

also have a means of setting the initial state, which is useful to avoid long sequences

that may be needed to get to an initial state. Aside from getting to an initial state, a

third issue is observing the state to verify correctness. In some circuits, application of

an additional sequence of inputs is required to determine the state of the circuit at a

given point. The simplest alternative is to set up the simulation so that the state of

the circuit can be observed directly; the approach to doing this varies depending on

the simulator and whether or not the circuit contains hierarchy. A crude approach

that works with all simulators is to add a circuit output with a path from each state

variable signal.

A final issue to be dealt with in more detail is the timing of application of inputs

and observation of outputs relative to the active clock edge. Initially, we discuss the

timing for functional simulation having as its objective determination or verification

of the function of the circuit. In functional simulation, components of the circuit

have no delay or a very small delay. Much more complex is timing simulation, in

which the circuit elements have realistic delays and verification of the proper opera-

tion of the circuit in terms of timing is the simulation objective.

Some simulators, by default, use a very small component delay for functional

simulation so that the order of changes in signals can be observed, provided that the

time range used for display is small enough. Suppose that the component delays for

gates and the delays associated with flip- flops are all 0.1 ns for such a simulation and

that the longest delay through a path from positive clock edge to positive clock edge

is 1.2 ns in your circuit. If you happen to use a clock period of 1.0 ns for your simula-

tion, when the result depends on the longest delay, the simulation results will be in

error! So for functional simulation with such a simulator, either a longer clock period

should be chosen for the simulation or the default delay needs to be changed by the

user to a smaller value.

In addition to the clock period, the time of application of inputs relative to the

positive clock edge is important. For functional simulation, to allow for any small,

default component delays, the inputs for a given clock cycle should be changed well

before the positive clock edge, preferably early in the clock cycle while the clock is

still at a 1 value. This is also an appropriate time to change the reset signal values to

insure that the reset signal is controlling the state rather than the clock edge or a

meaningless combination of clock and reset.

A final issue is the time at which to examine a simulation result in functional

simulation. At the very latest, the state- variable values and outputs should be at their

final values just before the positive clock edge. Although it may be possible to

observe the values at other locations, this location provides a foolproof observation

time for functional simulation.

The ideas just presented are summarized in Figure 4-16. Input changes in Reset

and Input, encircled in blue, occur at about the 25 percent point in the clock cycle.

Signal values on State and Output, as well as on Input and Reset, all encircled in blue

and listed, are observed just before the 100 percent point in the clock cycle.

234 CHAPTER 4 / SEQUENTIAL CIRCUITS

4-5 SEQUENTIAL CIRCUIT DESIGN

The design of clocked sequential circuits starts from a set of specifications and culmi-

nates in a logic diagram or a list of Boolean functions from which the logic diagram

can be obtained. In contrast to a combinational circuit, which is fully specified by a

truth table, a sequential circuit requires a state table for its specification. Thus, the

first step in the design of a sequential circuit is to obtain a state table or an equivalent

representation such as a state diagram.

A synchronous sequential circuit is made up of flip- flops and combinational

gates. The design of the circuit consists of choosing the flip- flops and finding a combi-

national circuit structure which, together with the flip- flops, produces a circuit that

fulfills the stated specifications. The minimum number of flip- flops is determined by

the number of states in the circuit; n flip- flops can represent up to 2n binary states.

The combinational circuit is derived from the state table by finding the flip- flop input

equations and output equations. In fact, once the type and the number of flip- flops

are determined and binary combinations are assigned to the states, the design pro-

cess transforms a sequential circuit problem into a combinational circuit problem. In

this way, the techniques of combinational circuit design can be applied.

Design Procedure

The following procedure for the design of sequential circuits is similar to the proce-

dure for combinational circuits that was introduced in Chapters 1 through 3, but the

procedure for sequential circuits has some additional steps:

1. Specification: Write a specification for the circuit, if not already available.

2. Formulation: Obtain either a state diagram or a state table from the statement

of the problem.

3. State Assignment: If only a state diagram is available from step 1, obtain the

state table. Assign binary codes to the states in the table.

Clock

Reset

Input

State

Output

0

0

1

1

 FIGURE 4-16
Simulation Timing

4-5 / Sequential Circuit Design 235

4. Flip- Flop Input Equation Determination: Select the flip- flop type or types.

Derive the flip- flop input equations from the next- state entries in the encoded

state table.

5. Output Equation Determination: Derive output equations from the output

entries in the state table.

6. Optimization: Optimize the flip- flop input equations and output equations.

7. Technology Mapping: Draw a logic diagram of the circuit using flip- flops,

ANDs, ORs, and inverters. Transform the logic diagram to a new diagram us-

ing the available flip- flop and gate technology.

8. Verification: Verify the correctness of the final design.

For convenience, we often omit the technology mapping in step 7, since it does not

contribute to our understanding once it is understood. Also, for more complex cir-

cuits, we may skip the use of either the state table or state diagram.

Finding State Diagrams and State Tables

The specification for a circuit is often in the form of a verbal description of the be-

havior of the circuit. This description needs to be interpreted in order to find a state

diagram or state table in the formulation step of the design procedure. This is often

the most creative part of the design procedure, with many of the subsequent steps

performed automatically by computer- based tools.

Fundamental to the formulation of state diagrams and tables is an intuitive

understanding of the concept of a state. A state is used to “remember” something

about the history of input combinations applied to the circuit either at triggering

clock edges or during triggering pulses. In some cases, the states may literally store

input values, retaining a complete history of the sequence appearing on the inputs. In

most cases, however, a state is an abstraction of the sequence of input combinations

at the triggering points. For example, a given state S
1
 may represent the fact that

among the sequence of values applied to a single bit input X, “the value 1 has

appeared on X for the last three consecutive clock edges.” Thus, the circuit would be

in state S
1
 after sequences ... 00111 or ... 0101111, but would not be in state S

1
 after

sequences ... 00011 or ... 011100. A state S
2
 might represent the fact that the sequence

of 2-bit input combinations applied are “in order 00, 01, 11, 10 with any number of

consecutive repetitions of each combination permitted and 10 as the most recently

applied combination.” The circuit would be in state S
2
 for the following example

sequences: 00, 00, 01, 01, 01, 11, 10, 10 or 00, 01, 11, 11, 11, 10. The circuit would not

be in state S
2
 for sequences: 00, 11, 10, 10 or 00, 00, 01, 01, 11, 11. In formulating a

state diagram or state table it is useful to write down the abstraction represented by

each state. In some cases, it may be easier to describe the abstraction by referring to

values that have occurred on the outputs as well as on the inputs. For example, state

S
3
 might represent the abstraction that “the output bit Z

2
 is 1, and the input combina-

tion has bit X
2
 at 0.” In this case, Z

2
 equal to 1 might uniquely represent a complex

set of past sequences of input combinations that would be more difficult to describe

in detail.

236 CHAPTER 4 / SEQUENTIAL CIRCUITS

As one formulates a state table or state diagram, new states are added. There is

potential for the set of states to become unnecessarily large or potentially even

infinite in size! Instead of adding a new state for every current state and possible

applied input combination, it is essential that states be reused as next states to pre-

vent uncontrolled state growth as outlined above. The mechanism for doing this is a

knowledge of the abstraction that each state represents. To illustrate, consider state

S
1
 defined previously as an abstraction: “the value 1 has appeared at the last three

consecutive clock edges.” If S
1
 has been entered due to the sequence ... 00111 and the

next input is a 1, giving sequence ... 001111, is a new state needed or can the next

state be S
1
? By examining the new sequence, we see that the last three input values

are 1s, which matches the abstraction defined for state S
1
. So, state S

1
 can be used as

the next state for current state S
1
 and input value 1, avoiding the definition of a new

state. This careful process of avoiding equivalent states is in lieu of applying a

 state- minimization procedure to combine equivalent states.

When the power in a digital system is first turned on, the state of the flip- flops

is unknown. It is possible to apply an input sequence with the circuit in an unknown

state, but that sequence must be able to bring a portion of the circuit to a known

state before meaningful outputs can be expected. In fact, many of the larger sequen-

tial circuits we design in subsequent chapters will be of this type. In this chapter,

however, the circuits that we design must have a known initial state, and further, a

hardware mechanism must be provided to get the circuit from any unknown

state into this state. This mechanism is a reset or master reset signal. Regardless of all

other inputs applied to the circuit, the reset places the circuit in its initial state. In

fact, the initial state is often called the reset state. The reset signal is usually activated

automatically when the circuit is powered up. In addition, it may be activated elec-

tronically or by pushing a reset button.

The reset may be asynchronous, taking place without clock triggering. In this

case, the reset is applied to the direct inputs on the circuit flip- flops. as shown in

Figure 4-17(a). This design assigns 00...0 to the initial state of the flip- flops to be reset.

If an initial state with a different code is desired, then the Reset signal can be selec-

tively connected to direct set inputs instead of direct reset inputs. It is important to

note that these inputs should not be used in the normal synchronous circuit design

process. Instead, they are reserved only for an asynchronous reset that returns the

system, of which the circuit is a component, to an initial state. Using these direct

(a) Asynchronous Reset

Y

C

D

C

Reset

R

(b) Synchronous Reset

Y

C

Reset
D

C

 FIGURE 4-17
Asynchronous and Synchronous Reset for D Flip- flops

4-5 / Sequential Circuit Design 237

inputs as a part of the synchronous circuit design violates the fundamental synchro-

nous circuit definition, since it permits a flip- flop state to change asynchronously

within direct clock triggering.

Alternatively, the reset may be synchronous and require a clock- triggering

event to occur. The reset must be incorporated into the synchronous design of the

circuit. A simple approach to synchronous reset for D flip- flops, without formally

including the reset bit in the input combinations, is to add the AND gate shown in

Figure 4-17(b) after doing the normal circuit design. This design also assigns 00 ... 0

to the initial state. If a different initial state code is desired, then OR gates with Reset
as an input can selectively replace the AND gates with inverted Reset.

To illustrate the formulation process, two examples follow, each resulting in a

different style of state diagram.

EXAMPLE 4-3 Finding a State Diagram for a Sequence Recognizer

The first example is a circuit that recognizes the occurrence of a particular sequence

of bits, regardless of where it occurs in a longer sequence. This “sequence recognizer”

has one input X and one output Z. It has Reset applied to the direct reset inputs on

its flip- flops to initialize the state of the circuit to all zeros. The circuit is to recognize

the occurrence of the sequence of bits 1101 on X by making Z equal to 1 when the

previous three inputs to the circuit were 110 and current input is a 1. Otherwise, Z
equals 0.

The first step in the formulation process is to determine whether the state dia-

gram or table must be a Mealy model or Moore model circuit. The portion of the

preceding specification that says “... making Z equal to 1 when the previous three

inputs to the circuit are 110 and the current input is a 1” implies that the output is

determined from not only the current state, but also the current input. As a conse-

quence, a Mealy model circuit with the output dependent on both state and inputs is

required.

Recall that a key factor in the formulation of any state diagram is to recognize

that states are used to “remember” something about the history of the inputs. For

example, for the sequence 1101 to be able to produce the output value 1 coincident

with the final 1 in the sequence, the circuit must be in a state that “remembers” that

the previous three inputs were 110. With this concept in mind, we begin to formulate

the state diagram by defining an arbitrary initial state A as the reset state, and the

state in which “none of the sequence to be recognized has occurred.” If a 1 occurs on

the input, since 1 is the first bit in the sequence, this event must be “remembered,”

and the state after the clock pulse cannot be A. So a second state, B, is established to

represent the occurrence of the first 1 in the sequence. Further, to represent the

occurrence of the first 1 in the sequence, a transition is placed from A to B and

labeled with a 1. Since this is not the final 1 in the sequence 1101, its output is a 0. This

initial portion of the state diagram is given in Figure 4-18(a).

The next bit of the sequence is a 1. When this 1 occurs in state B, a new state is

needed to represent the occurrence of two 1s in a row on the input— that is, the

occurrence of an additional 1 while in state B. So a state C and the associated transi-

tion are added, as shown in Figure 4-18(b). The next bit of the sequence is a 0. When

238 CHAPTER 4 / SEQUENTIAL CIRCUITS

this 0 occurs in state C, a state is needed to represent the occurrence of the two 1s in

a row followed by a 0. So the additional state D with a transition having a 0 input and

0 output is added. Since state D represents the occurrence of 110 as the previous

three input bit values on X, the occurrence of a 1 in state D completes the sequence

to be recognized, so the transition for the input value 1 from state D has an output

value of 1. The resulting partial state diagram, which completely represents the

occurrence of the sequence to be recognized, is shown in Figure 4-18(c).

Note in Figure 4-18(c) that, for each state, a transition is specified for only one of

the two possible input values. Also, the state that is the destination of the transition

from D for input 1 is not yet defined. The remaining transitions must be based on the

idea that the recognizer is to identify the sequence 1101, regardless of where it occurs in

a longer sequence. Suppose that an initial part of the sequence 1101 is represented by a

state in the diagram. Then, the transition from that state for an input value that rep-

resents the next input value in the sequence must enter a state such that the 1 output

occurs if the remaining bits of the sequence are applied. For example, state C represents

the first two bits, 11, of sequence 1101. If the next input value is 0, then the state that is

entered, in this case, D, gives a 1 output if the remaining bit of the sequence, 1, is applied.

Next, evaluate where the transition for the 1 input from the D state is to go.

Since the transition input is a 1, it could be the first or second bit in the sequence to

be recognized. But because the circuit is in state D, it is evident that the prior input

was a 0. So this 1 input is the first 1 in the sequence, since it cannot be preceded by a

1. The state that represents the occurrence of a first 1 in the sequence is B, so the

transition with input 1 from state D is to state B. This transition is shown in the

(a)

1/0
A B

(b)

1/0 1/0
A CB

(c)

1/0 1/0 0/0 1/1
A C DB

(d)

1/0 1/0 0/0

1/0

1/1

0/0

0/0
0/0

A C DB

 FIGURE 4-18
Construction of a State Diagram for Example 4-3

4-5 / Sequential Circuit Design 239

 diagram in Figure 4-18(d). Examining state C, we can trace back through states B
and A to see that the occurrence of a 1 input in C is at least the second 1 in the

sequence. The state representing the occurrence of two 1s in sequence is C, so the

new transition is to state C. Since the combination of two 1s is not the sequence to be

recognized, the output for the transition is 0. Repeating this same analysis for miss-

ing transitions from states B and A, the final state diagram in Figure 4-18(d) is

obtained. The resulting state table is given in two- dimensional form in Table 4-3. ■

One issue that arises in the formulation of any state diagram is whether, in

spite of best designer efforts, excess states have been used. This is not the case in the

preceding example, since each state represents input history that is essential for rec-

ognition of the stated sequence. If, however, excess states are present, then it may be

desirable to combine states into the fewest needed. This can be done using ad hoc

methods as in Example 4-1 or formal state- minimization procedures. Due to the

complexity of the latter, particularly in the case in which don’ t- care entries appear in

the state table, formal procedures are not covered here. For the interested student,

 state- minimization procedures are found in Reference 8 at the end of the chapter as

well as in many other logic design texts.

The next example illustrates an additional method for avoiding extra states by

recognizing potential state equivalence during the design process.

EXAMPLE 4-4 Finding a State Diagram for a BCD– to– Excess- 3 Decoder

The excess- 3 code for a decimal digit is the binary combination corresponding to the

decimal digit plus 3. For example, the excess- 3 code for decimal digit 5 is the binary

combination for 5 + 3 = 8, which is 1000. The excess- 3 code has desirable proper-

ties with respect to implementing decimal subtraction. In this example, the function

of the circuit is similar to that of the combinational decoders in Chapter 3 except

that the inputs, rather than being presented to the circuit simultaneously, are pre-

sented serially in successive clock cycles, least significant bit first. In Table 4-4(a), the

input sequences and corresponding output sequences are listed with the least signifi-

cant bit first. For example, during four successive clock cycles, if 1010 is applied to

the input, the output will be 0001. In order to produce each output bit in the same

clock cycle as the corresponding input bit, the output depends on the present input

 TABLE 4-3
State Table for State Diagram in Figure 4-18

Present

State

Next State Output Z

X = 0 X = 1 X = 0 X = 1

A A B 0 0

B A C 0 0

C D C 0 0

D A B 0 1

240 CHAPTER 4 / SEQUENTIAL CIRCUITS

value as well as the state. The specifications also state that the circuit must be ready

to receive a new 4-bit sequence as soon as the prior sequence has completed. The

input to this circuit is labeled X and the output is labeled Z. In order to focus on the

patterns for past inputs, the rows of Table 4-4(a) are sorted according to the first bit

value, the second bit value, and the third bit value of the input sequences.

Table 4-4(b) results.

The state diagram begins with an initial state, as shown in Figure 4-19(a).

Examining the first column of bits in Table 4-4(b) reveals that a 0 produces a 1 out-

put and a 1 produces a 0 output. Next, we ask, “Do we need to remember the value of

the first bit?” In Table 4-4(b), when the first bit is a 0, a 0 in the second bit results in

an output of 1 and a 1 in the second bit gives an output of 0. In contrast, if the first bit

is a 1, a 0 in the second bit causes an output of 0, and a 1 in the second bit gives out-

put 1. It is clear that we cannot determine the output for the second bit without

“remembering” the value of the first bit. Thus, the first input equal to 0 and the first

input equal to 1 must give different states, as shown in Figure 4-19(a), which also

shows the input/output values for the arcs to the new states.

Next, it must be determined whether the inputs following the two new states need

to have two states to remember the second bit value. In the first two columns of inputs

in Table 4-4(b), sequence 00 produces outputs for the third bit that are 0 for input 0 and

1 for input 1. On the other hand, for sequence 01, the outputs for the third bit are 1 for

input 0 and 0 for input 1. Since these are different for the same input values in the third

bit, separate states are necessary, as shown in Figure 4-19(b). A similar analysis for input

sequences 10 and 11, which examines the outputs for both the third and fourth bits,

shows that the value of the second bit has no effect on the output values. Thus, in

Figure 4-19(b), there is only a single next state for state B1 = 1.

 TABLE 4-4
Sequence Tables for Code- Converter Example

 (a) Sequences in Order of

Digits Represented

 (b) Sequences in Order of

BCD Input Excess- 3 Output BCD Input Excess- 3 Output

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0

1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0

0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1

1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0

0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1

1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1

0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0

1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1

4-5 / Sequential Circuit Design 241

At this point, six potential new states might result from the three states just

added. Note, however, that these states are needed only to define the outputs for the

fourth input bit, since it is known that the next state thereafter will be Init in prepara-

tion for applying the next input sequence of four bits. How many states does one

need to specify the different possibilities for the output value in the last bit? Looking

at the final column, a 1 input always produces a 1 output and a 0 may produce either

a 0 or a 1 output. Thus, at most two states are necessary, one that has a 0 output to a 0

and one that has a 1 output to a 0. The output for a 1 input is the same for both states.

In Figure 4-19(c), we have added these two states. For the circuit to be ready to

receive the next sequence, the next state for these new states is Init.
Remaining is the determination of the blue arcs shown in Figure 4-19(d). The

arcs from each of the bit B2 states can be defined based on the third bit in the input/

output sequences. The next state can be chosen based on the response to input 0 in

the fourth bit of the sequence. The B2 state reaches the B3 state on the left with

B3 = 0 or B3 = 1 as indicated by B3 = X on the upper half of the B3 state. The

other two B2 states reach this same state with B3 = 1, as indicated on the lower half

of the state. These same two B2 states reach the B3 state on the right with B3 = 0, as

indicated by the label on the state. ■

0/1

Init

1/0

(a) (b)

0/0 or 1/1

0/1

Init

1/0

0/1 1/0

(d)

0/1

Init

1/0

0/1 1/0 0/0 or 1/1

0/0 or 1/1

0/1 or 1/1

0/0 or 1/1
0/1 1/0

1/0

0/1

(c)

0/1

Init

1/0

0/1 1/0 0/0 or 1/1

0/0 or 1/1

0/1 or 1/1

 FIGURE 4-19
Construction of a State Diagram for Example 4-4

242 CHAPTER 4 / SEQUENTIAL CIRCUITS

State Assignment

In contrast to the states in the analysis examples, the states in the diagrams con-

structed have been assigned symbolic names rather than binary codes. It is necessary

to replace these symbolic names with binary codes in order to proceed with the de-

sign. In general, if there are m states, then the codes must contain at least n bits,

where 2n ≥ m, and each state must be assigned a unique code. So, for the circuit in

Table 4-3 with four states, the codes assigned to the states require two bits. Note that

minimizing the number of bits in the state code does not always minimize the cost of

the overall sequential circuit. The combinational logic may have become more costly

in spite of the gains achieved by having fewer flip- flops.

The first state assignment method we will consider is to assign codes with n bits

(2n ≥ m > 2n-1) such that the code words are assigned in counting order. For example,

for states A, B, C, and D, the codes 00, 01, 10, and 11 are assigned to A, B, C, and D,

respectively. An alternative that is attractive, particularly if K- maps are being used

for optimization, is to assign the codes in Gray code order, with codes 00, 01, 11, and

10 assigned to A, B, C, and D, respectively.

More systematic assignment of codes attempts to reduce the cost of the

sequential circuit combinational logic. A number of methods based on heuristics

are available for targeting minimum two- level and minimum multilevel combina-

tional logic. The problem is difficult and the solutions are too complex for treatment

here.

There are a number of specialized state assignment methods, some of which

are based on efficient structures for implementing at least a portion of the transi-

tions. The most popular of these methods is the one flip- flop per state or one- hot
assignment. This assignment uses a distinct flip- flop for each of the m states, so it

generates codes that are m bits long. The sequential circuit is in a state when the

 flip- flop corresponding to that state contains a 1. By definition, all flip- flops corre-

sponding to the other states must contain 0. Thus, each valid state code contains m
bits, with one bit equal to 1 and all other m − 1 bits equal to 0. This code has the prop-

erty that going from one state to another can be thought of as passing a token, the

single 1, from the source state to the destination state. Since each state is represented

by a single 1, before combinational optimization, the logic for entering a particular

state is totally separate from the logic for entering other states. This is in contrast to

the mixing of the logic that occurs when multiple 1s are present in the destination

and source state codes. This separation can often result in simpler, faster logic, and in

logic that is simpler to debug and analyze. On the other hand, the flip- flop cost may

be overriding. Finally, while the state codes listed have values for m variables, when

equations are written, only the variable which is 1 is listed. For example, for

ABCD = 0100, instead of writing ABC D, we can simply write B. This is because

all of the remaining 2m − m codes never occur and as a consequence produce don’t

cares.

The use of a sequentially assigned Gray code and of a one- hot code for the

sequence recognizer design is illustrated in the following example. In the next sub-

section, the designs will be completed and the costs of these two assignments

compared.

4-5 / Sequential Circuit Design 243

EXAMPLE 4-5 State Assignments for the Sequence Recognizer

The Gray code is selected in this case simply because it makes it easier for the

 next- state and output functions to be placed on a Karnaugh map. The state table de-

rived from Table 4-3 with codes assigned is shown in Table 4-5. States A, B, C, and D

are replaced in the present state column by their respective codes, 00, 01, 11, and 10.

Next, each of the next states is replaced by its respective code. This 2-bit code uses a

minimum number of bits.

A one- hot code assignment is illustrated in Table 4-6. States A, B, C, and D are

replaced in the Present State column by their respective codes, 1000, 0100, 0010, and

0001. Next, each of the next states is replaced by its respective code. Since there are

four states, a 4-bit code is required, with one state variable for each state. ■

 TABLE 4-5
Table 4-3 with Names Replaced by a 2-Bit Binary Gray Code

Present State Next State Output Z

AB X = 0 X = 1 X = 0 X = 1

00 00 01 0 0

01 00 11 0 0

11 10 11 0 0

10 00 01 0 1

 TABLE 4-6
 Table 4-3 with Names Replaced by a 4-Bit One- Hot Code

Present State Next State Output Z

ABCD X = 0 X = 1 X = 0 X = 1

1000 1000 0100 0 0

0100 1000 0010 0 0

0010 0001 0010 0 0

0001 1000 0100 0 1

Designing with D Flip- Flops

The remainder of the sequential circuit design procedure will be illustrated by

the next two examples. We wish to design two clocked sequential circuits for the

sequence recognizer, one that operates according to the Gray- coded state table

given in Table 4-5 and the other according to the one- hot coded table given in

Table 4-6.

244 CHAPTER 4 / SEQUENTIAL CIRCUITS

EXAMPLE 4-6 Gray Code Design for the Sequence Recognizer

For the Gray- coded design, two flip- flops are needed to represent the four states.

Note that the two state variables are labeled with letters A and B.

Steps 1 through 3 of the design procedure have been completed for this circuit.

Beginning step 4, D flip- flops are chosen. To complete step 4, the flip- flop input equa-

tions are obtained from the next- state values listed in the table. For step 5, the output

equation is obtained from the values of Z in the table. The flip- flop input equations

and output equation can be expressed as a sum of minterms of the present- state vari-

ables A and B and the input variable X:

 A(t + 1) = DA(A, B, X) = Σm (3, 6, 7)

 B(t + 1) = DB(A, B, X) = Σm (1, 3, 5, 7)

 Z(A, B, X) = Σm (5)

In the case of this table with the Gray code on the left margin and a trivial Gray

code at the top of the table, the adjacencies of the cells of the state table match the

adjacencies of a K- map. This permits the values for the two next state variables

A(t + 1) and B(t = 1) and output Z to be transferred directly to the three K- maps

in Figure 4-20, bypassing the sum- of- minterms equations. The three Boolean func-

tions, simplified by using the K- maps, are:

 DA = AB + BX

 DB = X

 Z = ABX

The logic diagram of the sequential circuit is shown in Figure 4-21. The gate- input

cost of the combinational logic is 9. A rough estimate for the gate- input cost for a

 flip- flop is 14. Thus the overall gate- input cost for this circuit is 37. ■

1

11

1

1

1

1

1

0 1

B

X

A

00

01

11

10

DA � AB � BX DB � X Z � ABX

X

AB 0 1

B

X

A

00

01

11

10

X

AB 0 1

B

X

A

00

01

11

10

X

AB

 FIGURE 4-20
K- Maps for the Gray- Coded Sequential Circuit with D Flip- Flops

4-5 / Sequential Circuit Design 245

EXAMPLE 4-7 One- Hot Code Design for the Sequence Recognizer

For the one- hot coded design in Table 4-6, four flip- flops are needed to represent the

four states. Note that the four state variables are labeled A, B, C, and D. As is often

the case, the state variables have names that are the same as those of the correspond-

ing states.

Just as for the Gray- coded case, steps 1 through 3 of the design procedure have

been completed and D flip- flops have been chosen. To complete step 4, the flip- flop

input equations are obtained from the next- state values. Although the state codes

listed have values for four variables, recall that when equations from a one- hot code

are written, only the variable with value 1 is included. Also, recall that each term of

the excitation equation for state variable Y is based on a 1 value for variable Y in a

 next- state code entry and the sum of these terms is taken over all such 1s in the

 next- state code entries. For example, a 1 appears for next- state variable B for present

state 1000 (A) and input value X = 1, and for present state 0001 (D) and input

value X = 1. This gives B(t + 1) = AX + DX. For step 5, the output equation is

obtained from the locations of the 1 values of Z in the output table. The resulting

 flip- flop input equations and output equation are:

 A(t + 1) = DA = AX + BX + DX = (A + B + D)X

 B(t + 1) = DB = AX + DX = (A + D)X

 C(t + 1) = DC = BX + CX = (B + C)X

 D(t + 1) = DD = CX

 Z = DX

The logic diagram of the sequential circuit is shown in Figure 4-22. The gate- input

cost of the combinational logic is 19 and the cost of four flip- flops using the estimate

Clock

D

D

C
R

B

Z

C
R

A

X

Reset

 FIGURE 4-21
Logic Diagram for the Gray- Coded Sequence Recognizer with D Flip- Flops

246 CHAPTER 4 / SEQUENTIAL CIRCUITS

from Example 4-5 is 56, giving a total gate input cost of 74, almost twice that of the

Gray code design. This result supports the view that the one- hot design tends to be

more costly, but, in general, there may be reasons for its use with respect to other

factors such as performance, reliability, and ease of design and verification. ■

Designing with Unused States

A circuit with n flip- flops has 2n binary states. The state table from which the circuit

was originally derived, however, may have any number of states, m ≤ 2n. States that

are not used in specifying the sequential circuit are not listed in the state table. In

simplifying the input equations, the unused states can be treated as don’ t- care condi-

tions. The state table in Table 4-7 defines three flip- flops, A, B, and C, and one in-

put, X. There is no output column, which means that the flip- flops serve as outputs of

the circuit. With three flip- flops, it is possible to specify eight states, but the state

table lists only five. Thus, there are three unused states that are not included in the

table: 000, 110, and 111. When an input of 0 or 1 is included with the unused

 present- state values, six unused combinations are obtained for the present- state and

input columns: 0000, 0001, 1100, 1101, 1110, and 1111. These six combinations are

not listed in the state table and hence may be treated as don’ t- care minterms.

Clock

Z

Reset

D

C
R

A

B

C

D

D

C
R

D

C
R

D

C
R

X

 FIGURE 4-22
Logic Diagram for the One- Hot Coded Sequence Recognizer with D Flip- Flops

4-5 / Sequential Circuit Design 247

The three input equations for the D flip- flops are derived from the next- state

values and are simplified in the maps of Figure 4-23. Each map has six don’ t- care

minterms in the squares corresponding to binary 0, 1, 12, 13, 14, and 15. The opti-

mized equations are

 DA = AX + BX + B C

 DB = A C X + A BX

 DC = X

The logic diagram can be obtained directly from the input equations and will not be

drawn here.

It is possible that outside interference or a malfunction will cause the circuit to

enter one of the unused states. Thus, it is sometimes desirable to specify, fully or at least

 TABLE 4-7
State Table for Designing with Unused States

Present State Input Next State

A B C X A B C

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 1 1

0 1 0 1 1 0 0

0 1 1 0 0 0 1

0 1 1 1 1 0 0

1 0 0 0 1 0 1

1 0 0 1 1 0 0

1 0 1 0 0 0 1

1 0 1 1 1 0 0

00

01

00 01
CX

AB 11 10

11

10

X

C

X

A

B

X

1 1

X XX X

1 11

XX

1

1

X XX X

C

X

A

B

XX

1

X XX X

1

1

1

1

C

X

A

B

 FIGURE 4-23
Maps for Optimizing Input Equations

248 CHAPTER 4 / SEQUENTIAL CIRCUITS

partially, the next- state values or the output values for the unused states. Depending on

the function and application of the circuit, a number of ideas may be applied. First, the

outputs for the unused states may be specified so that any actions that result from entry

into and transitions between the unused states are not harmful. Second, an additional

output may be provided or an unused output code employed which indicates that the

circuit has entered an incorrect state. Third, to ensure that a return to normal operation

is possible without resetting the entire system, the next- state behavior for the unused

states may be specified. Typically, next states are selected such that one of the normally

occurring states is reached within a few clock cycles, regardless of the input values. The

decision as to which of the three options to apply, either individually or in combination,

is based on the application of the circuit or the policies of a particular design group.

Sequential circuits can be verified by showing that the circuit produces the original state

diagram or state table. In the simplest cases, all possible input combinations are applied

with the circuit in each of the states, and the state variables and outputs are observed.

For small circuits, the actual verification can be performed manually. More generally,

simulation is used. In manual simulation, it is straightforward to apply each of the state–

 input combinations and verify that the output and the next state are correct.

Verification with simulation is less tedious, but typically requires a sequence of

input combinations and applied clocks. In order to check out a state– input combina-

tion, it is first necessary to apply a sequence of input combinations to place the cir-

cuit in the desired state. It is most efficient to find a single sequence to test all the

 state– input combinations. The state diagram is ideal for generating and optimizing

such a sequence. A sequence must be generated to apply each input combination in

each state while observing the output and next state that appear after the positive

clock edge. The sequence length can be optimized by using the state diagram. The

reset signal can be used as an input during this sequence. In particular, it is used at

the beginning to reset the circuit to its initial state.

In Example 4-8, both manual and simulation- based verification are illustrated.

EXAMPLE 4-8 Verifying the Sequence Recognizer

The state diagram for the sequence recognizer appears in Figure 4-18(d) and the log-

ic diagram in Figure 4-21. There are four states and two input combinations, giving a

total of eight state– input combinations to verify. The next state can be observed as

the state on the flip- flop outputs after the positive clock edge. For D flip- flops, the

next state is the same as the D input just before the clock edge. For other types of

 flip- flops, the flip- flop inputs just before the clock edge are used to determine the

next state of the flip- flop. Initially, beginning with the circuit in an unknown state, we

apply a 1 to the Reset input. This input goes to the direct reset input on the two

 flip- flops in Figure 4-21. Since there is no bubble on these inputs, the 1 value resets

both flip- flops to 0, giving state A (0, 0). Next, we apply input 0, and manually simu-

late the circuit in Figure 4-21 to find that the output is 0 and the next state is A (0, 0),

which agrees with the transition for input 0 while in state A. Next, simulating state A

4-5 / Sequential Circuit Design 249

with input 1, next state B (0, 1) and output 0 result. For state B, input 0 gives output 0

and next state A (0, 0), and input 1 gives output 0 and next state C (1, 1). This same

process can be continued for each of the two input combinations for states C and D.

For verification by simulation, an input sequence that applies all state– input

combination pairs is to be generated accompanied by the output sequence and state

sequence for checking output and next- state values. Optimization requires that the

number of clock periods used exceed the number of state– input combination pairs

by as few periods as possible (i.e., the repetition of state– input combination

pairs should be minimized). This can be interpreted as drawing the shortest path

through the state diagram that passes through each state– input combination pair at

least once.

In Figure 4-24(a), for convenience, the codes for the states are shown and the

path through the diagram is denoted by a sequence of blue integers beginning with 1.

These integers correspond to the positive clock edge numbers in Figure 4-24(b),

where the verification sequence is to be developed. The values shown for the clock

edge numbers are those present just before the positive edge of the clock (i.e., during

the setup time interval). Clock edge 0 is at t = 0 in the simulation and gives unknown

values for all signals. We begin with value 1 applied to Reset (1) to place the circuit in

state A. Input value 0 is applied first (2) so that the state remains A, followed by 1 (3)

checking the second input combination for state A. Now in state B, we can either

move forward to state C or go back to state A. It is not apparent which choice is best,

so we arbitrarily apply 1 (4) and go to state C. In state C, 1 is applied (5) so the state

remains C. Next, a 0 is applied to check the final input for state C. Now in state D, we

have an arbitrary choice to return to state A or to state B. If we return to state B by

A B
1/0

C
1/0

D
0/0

1/0

1/1

0/0

0/0
0/0

1

2

3, 9 4, 10

5

6, 11

78

12

0, 0 0,1 1, 1 1, 0

(a)

Reset

 FIGURE 4-24
Test Sequence Generation for Simulation in Example 4-3

Clock Edge: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Input R: X 1 0 0 0 0 0 0 0 0 0 0 0

Input X: X 0 0 1 1 1 0 1 0 1 1 0 0

State (A, B): X, X 0, 0* 0, 0 0, 0 0, 1 1, 1 1, 1 1, 0 0, 1 0, 0 0, 1 1, 1 1, 0 0, 0

Output Z: X 0 0 0 0 0 0 1 0 0 0 0 0

(b)

250 CHAPTER 4 / SEQUENTIAL CIRCUITS

applying 1 (7), then we can check the transition from B to A for input 0 (8). Then, the

only remaining transition to check is state D for input 0. To reach state D from state

A, we must apply the sequence 1, 1, 0 (9) (10) (11) and then apply 0 (12) to check the

transition from D to A. We have checked eight transitions with a sequence consisting

of reset plus 11 inputs. Although this test sequence is of optimum length, optimality

is not guaranteed by the procedure used. However, it usually produces an efficient

sequence.

In order to simulate the circuit, we enter the schematic in Figure 4-21 using the

Xilinx ISE 4.2 Schematic Editor and enter the sequence from Figure 4-24(b) as a

waveform using the Xilinx ISE 4.2 HDL Bencher. While entering the waveform, it is

important that the input X changes well before the clock edge. This insures that there

is time available to display the current output and to permit input changes to propa-

gate to the flip- flop inputs before the setup time begins. This is illustrated by the

INPUT waveforms in Figure 4-25, in which X changes shortly after the positive clock

edge, providing a good portion of the clock period for the change to propagate to the

 flip- flops. The circuit is simulated with the MTI Model Sim simulator. We can then

compare the values just before the positive clock edge on the STATE and OUTPUT

waveforms in Figure 4-25 with the values shown on the state diagram for each clock

period in Figure 4-24. In this case, the comparison verifies that the circuit operation

is correct. ■

4-6 STATE- MACHINE DIAGRAMS AND APPLICATIONS

Thus far, we have used a traditional notation for state diagrams and tables, a nota-

tion illustrated by a Mealy model state diagram in Figure 4-26(a). Although this

model serves well for very small designs, it often becomes cumbersome or unwork-

able for large designs. For example, all 2n combinations of n input variables must be

represented on the transitions from each of the states even though the next state or

output may be affected by only one of the n input variables. Also, for a large number

Clock

Reset

INPUT

X

STATE
A

B

OUTPUT

Z

0 100 ns 200 ns 300 ns

 FIGURE 4-25
Simulation for Example 4-8

4-6 / State-Machine Diagrams and Applications 251

Moore Output Actions,
OC/TCI Mealy Output Actions

TCD Mealy Output Actions,
OC/TOCD Mealy Output Actions

SO

TC
SD

(b) Generic State Diagram Template

Inputs: A, B
Outputs: Y, Z

00/01,
 01/00

S3 S1

S2

Reset

(a) Traditional state diagram

S0

01, 10, 11/10

10/11

00, 01/11

11/11

00/01 10/10, 11/00

00,10/10,
01,11/00

Inputs: A, B
Outputs: Y, Z
Defaults: Y = 0, Z = 0

(d) Invalid Transition Conditions

S

AB

Y,Z
A

B

(e) Invalid Ouput Action

S
Y,Z

A

AB

AB

Z

Inputs: A, B
Outputs: Y, Z
Defaults: Y = 0, Z = 0

S3 S1

S2

Reset

(c) State machine diagram

S0

(A + B)/Y

AB

Y,Z

A

AB

A

AB
B/Y

B/Y

(A + B)/ZA
Z

 FIGURE 4-26
Traditional State and State- Machine Diagram Representations

252 CHAPTER 4 / SEQUENTIAL CIRCUITS

of output variables, for each state or input combination label, up to 2m output

 combinations must be specified even though only one among the m output variables

is affected by the state and input values. Also, the Mealy model is very inefficient in

specifying outputs because of the need to combine transition and output control

functions together. To illustrate, the use of Moore outputs, in addition to Mealy, can

greatly simplify output specification when applicable. Also, the use of Mealy outputs

that are dependent upon input values, but not dependent on transition labels, can be

useful.

These arguments suggest that for pragmatic design, a modified state diagram

notation is critical. We call this modified state diagram a state- machine diagram. This

term is also applied to the traditional state diagram representations, although here

we use it primarily to identify departures in notation from that used for traditional

diagrams. The main targets of the notation changes are to replace enumeration of

input and output combinations with the use of Boolean expressions and equations

to describe input combinations, and the expansion of the options for describing out-

put functions beyond those permitted by the traditional model.

 State- Machine Diagram Model

The development of this model is based on input conditions, transitions, and out-

put actions. For a given state, an input condition can be described by a Boolean

expression or equation in terms of input variables. An input condition as an ex-

pression is either equal to 1 or 0. As an equation, it is equal to 1 if it is satisfied, and

equal to 0 if it is not. An input condition on a transition arc is called a transition
condition (TC), and causes a transition to occur if it is equal to 1. An input condi-

tion that, if equal to 1, causes an output action to occur is an output condition (OC).

In a Moore model state- machine diagram, only transition conditions appear. Out-

put actions are a function of the state only and therefore are unconditional, i.e.,

with an implicit output condition equal to 1. In a traditional Mealy model, when a

condition appears on an arc, by definition, it is both a transition condition and an

output condition. Multiple transition and output conditions may appear on a given

transition arc. In our model, we modify the Mealy model in two ways. First of all,

we permit output conditions to appear on the state, not just on transitions. Second,

we permit output conditions that depend on, but are not transition conditions on

the arcs. This provides more modeling flexibility in the formulation of correspond-

ing state tables and HDL descriptions. For this more flexible model, a generic state

and one of its transitions and the various possible condition situations are shown

in Figure 4-26(b).

For a given state, if a transition condition is equal to 1, then the corresponding

transition represented by the arc occurs. For a given state and transition, if all transi-

tion conditions are 0, then the corresponding transition does not occur. An uncondi-
tional transition always occurs on the next clock regardless of input values and can

be thought of as having an implicit transition condition equal to 1. In Figure 4-26(c),

which has exactly the same function as the traditional state diagram given in

Figure 4-26(a), transition concepts are illustrated. For example, for state S
0
 the tran-

sition to state S
1
 is unconditional. For state S

3
 and input combination 11, transition

4-6 / State-Machine Diagrams and Applications 253

condition AB equal to 1 causes a transition to state S
0
. The effectiveness of this

approach in simplifying input condition representation is illustrated well by transi-

tion conditions A in state S
1
 and A + B in state S

2
. A is 1 for input combinations 00

and 01, and A + B is 1 for input combinations 01, 10, and 11, causing the respective

transitions from S
1
 to S

0
 and S

2
 to S

0
.

Outputs are handled by listing output conditions and output actions. The vari-

ous forms of specifying the control of output actions by state and output conditions

are shown in Figure 4-26(b). For convenience, output conditions (if any) followed

by a slash and corresponding output actions are placed at the end of a straight or

curved line from either the state or from a transition condition TC. Multiple output

condition/output action pairs are separated by commas. We classify output actions

based on the conditions that cause them into four types as shown in Figure 4-26(b).

Moore output actions depend only on the state, i.e., they are unconditional.

Transition- condition independent (TCI) Mealy outputs are preceded by their respec-

tive output condition and a slash. These two types of output actions are attached by

a line to the state boundary as shown in Figure 4-26(b). Transition- condition depen-
dent (TCD) Mealy output actions depend on both the state and a transition condi-

tion, thereby making the transition condition an output condition as well. Transition
and output- condition dependent (TOCD) output actions depend on the state, a tran-

sition condition, and an output condition and are preceded by their respective out-

put condition OC and a slash. These two types of output actions are attached by a

line to the transition condition TC upon which they depend as shown in

Figure 4-26(b).

In a given state, an output action occurs if: (a) it is unconditional (Moore),

(b) TCI and its output condition OC = 1, (c) TCD and its transition condition

TD = 1, and (d) TOCD and its transition condition TC and output condition OC
are both equal to 1, i.e, TC·OC = 1. Note that Moore and TCI output actions

attached to a state, apply to all transitions from the state as well.

An output action may simply be an output variable. The output variable has

value 1 for a given state present and its corresponding input conditions attached to

the state or transition all equal to 1, and value 0 otherwise. For any state or state–

 input condition pair without an output action on a variable, that variable takes on a

default value noting again the exception that Moore and TCI output actions attached

to a state, apply to all transitions from the state. Ordinarily, we explicitly list default

output actions for reference as shown in Figure 4-26(c).

It is also possible to have variables that are vectors with values assigned. For

vectors, a specific default value may be assigned. Otherwise, for a vector, the implicit

assignment to 0 used for scalar variables does not apply. Finally, in Chapter 6, regis-

ter transfer statements are listed as output actions. All of the modifications described

permit description of a complete system using complex input conditions and output

actions. Note that many of these modifications relate somewhat to the algorithmic

state machines previously used in this text.

Figure 4-26(c) can be used to illustrate the power of this notation. State S
3
 has

variables Y and Z as Moore output actions, so Y = 1 and Z = 1 when in state S
3
.

State S
0
 has a TCI output condition and action B/Y which specifies that when in

state S
0
, Y = 1 whenever B = 0. State S

1
 has a TCI output condition and action

254 CHAPTER 4 / SEQUENTIAL CIRCUITS

(A + B)/Z. In all these cases, repetitive occurrences of the output actions are

avoided on the transitions. For state S
0
 with the use of a TCI output action, the prob-

lem of specifying the transition as unconditional and the output condition B on the

transition is avoided. Also, for state S
1
 with the use of a TOCD output action, the

transition condition A combined with output condition B is easily provided.

In this example, Figure 4-26(a) provided the information for deriving

Figure 4-26(c). Transition and output conditions for each state were obtained by

examining the binary input and output combinations in Figure 4-26(a) and deter-

mining the simplest way to describe an output action and then finding the simplest

Boolean expression for the corresponding output condition. Likewise, the simplest

transition condition can be found for each transition. This approach constitutes a

transformation from the traditional state diagram to an equivalent state- machine

diagram. It should be noted, however, that our principal goal is not this transfor-

mation, but instead, direct formulation of state- machine diagrams from

specifications.

A final element that can appear on a state diagram is the binary code assigned

to a state. This binary code appears in parentheses below the state name or at the

end of a line drawn out from the state.

Constraints on Input Conditions

In formulating transition and output conditions, it is necessary to perform checks to

make sure that invalid next state and output specifications do not arise. For all

possible input conditions, each state must have exactly one next state and have every

 single- bit output variable with exactly one value, e.g., either 0 or 1, but not both.

These conditions are described in terms of constraints.

For each state, there are two constraints on transition conditions:

1. The transition conditions from a given state Si must be mutually exclusive, i.e.,

all possible pair of conditions (Tij, Tik) on distinct transition arcs from a given

state have no identical input values, i.e.,

Tij . Tik = 0,

2. The transition conditions from a given state must cover all possible combina-

tions of input values, i.e.,

ΣTij = 1

in which Σ represents OR. If there are don’ t- care next states for state Si, the transi-

tion conditions for these states must be included in the OR operation. Also, in apply-

ing these constraints, recall that an unconditional transition has an implicit transition

condition of 1.

In the formulation of a state- machine diagram, transition conditions must be

checked for each state and its set of transitions. If constraint 1 does not hold, then the

next state for the current state is specified as two or more states. If constraint 2 does

not hold, then there are cases with no specified next state for one or more transitions

where one is expected to be specified. Both of these situations are invalid.

4-6 / State-Machine Diagrams and Applications 255

For each state, there are two similar constraints on output conditions:

1. For every output action in state Si or on its transitions having coincident output

variables with differing values, the corresponding pair of output conditions (Oij,

Oik) must be mutually exclusive, i.e., satisfy

Oij . Oik = 0

2. For every output variable, the output conditions for state Si or its transitions

must cover all possible combinations of input values that can occur, i.e.,

ΣOij = 1

If there are don’ t- care outputs for state Si, the output conditions for the don’ t- care

outputs must be included in the OR operation. In applying these constraints, recall

that an unconditional output action on a state or an arc has an implicit output condi-

tion of 1. Note that default output actions must be considered in this analysis.

EXAMPLE 4-9 Checking Constraints

In this example, transition and output constraints are checked for the state- machine

diagrams in Figure 4-26(c) and selected invalid cases in parts (d) and (e) of Figure 4-26.

Beginning with Figure 4-26(c), the results for constraint 1 checks on transition condi-

tions are:

S
0
: The constraint is satisfied by default since there are no pairs of transition

conditions on distinct transition arcs.

S
1
: There is one pair of TCs to check: A # A = 0.

S
2
: There is one pair of TCs to check: (A + B) ·A B = 0.

S
3
: There are three pairs of TCs to check: AB # A = 0, AB # AB = 0, and

A # AB = 0.

Since all of the results are 0, constraint 1 is satisfied. Next, checking constraint 2:

S
0
: The transition is unconditional and has an implicit transition condition of 1.

S
1
: A + A = 1

S
2
: (A + B) + A B = 1

S
3
: A + AB + AB = 1

Since the results for all states are 1, constraint 2 is satisfied. Next, checking constraint

1 on output conditions:

S
0
: There is only one output condition, B on output action Y, so the constraint

is satisfied by default.

S
1
: The first coincident output variable is Y and its values are 1 where Y appears

for TOC A # B, and 0 by default where Y does not appear for input condi-

tions A and AB. Note that if B is interpreted without ANDing with transition

condition A, then check A . B ≠ 0 incorrectly fails! The second coincident

output variable is Z, with value 1 for A + B and 0 by default for input con-

dition AB. In general, it is impossible for an invalid case to occur due to a

default output action. So the constraint is satisfied.

256 CHAPTER 4 / SEQUENTIAL CIRCUITS

S
2
: The first coincident output variable is Y and the second is Z. Y has value 1

for output condition A + B, and by default value 0 for A B. Z has value 1

for output condition A B and 0 by default for A + B. Due to the use of a

default value, the constraint is satisfied.

S
3
: There is no coincident output variable with differing output values, so the

output constraint is satisfied by default.

Since the output constraint is satisfied for all four states, it is satisfied for the

 state- machine diagram as are the other two constraints. Next, checking constraint 2

on output conditions:

S
0
: There is a single output condition B for which Y = 1. By default, Y = 0

for the output condition for complement of B = B. ORing the conditions,

B + B = 1. In general, with a default output specified, this will be the case

since the default covers all input combinations not covered by specified

output conditions, so the constraint is satisfied.

S
1
 through S

3
: Because of the default output action for variables Y and Z, as for S

0
,

the constraint is also satisfied.

Parts (d) and (e) of Figure 4-26 are examples that are used to demonstrate

selected invalid cases for state- machine diagrams. For part (d), A # B = A B , so the

transition constraint 1 is not satisfied. For part (e), variable Z appears as an output

with distinct values 1 in state S and 0 on the transition for AB. Output condition con-

straint 1 gives 1 # AB ≠ 0. So the constraint is not satisfied. Actually, this occurs

only because the designer failed to realize that Z = 1 was already specified on the

transition because of its specification on the state S. ■

Design Applications Using State- Machine Diagrams

Two examples will be used to illustrate design using state- machine diagrams. In addi-

tion to design formulation, the effects of the use of a state- machine diagram formu-

lation on the structure for state tables will be illustrated. These examples also illus-

trate that good solutions are possible for problems with larger numbers of inputs and

states, in particular problems for which traditional state diagrams, traditional state

tables, and K- maps are all impractical.

EXAMPLE 4-10 State- Machine Design for a Batch Mixing System Control

A mixing system for large batches of liquids is designed to add up to three ingredi-

ents to a large circular mixing tank, mix the ingredients, and then empty the mixed

liquid from the tank. There are three inlets for ingredients, each with an on– off valve.

There are three movable fluid sensors in the tank that can be set to turn off the re-

spective valves at the level required for the first ingredient alone, for the first and

second ingredients, and for all three ingredients. A switch is used to select either a

two or three ingredient operation. There is a button for starting the operation and a

second button for stopping the operation at any time. There is a timer for timing the

mixing cycle. The length of the mixing cycle is specified by a manually operated dial

4-6 / State-Machine Diagrams and Applications 257

that provides a starting value to a timer. The timer counts downward to zero to time

the mixing. After mixing, the output valve is opened to remove the mixed liquid

from the tank.

A sequential circuit is to be designed to control the batch mixing operation.

The inputs and outputs for the circuit are given in Table 4-8. Before starting the oper-

ation of the mixing system, the operator places the fluid sensor L1, L2, and L3 in the

proper locations. Next, the operator selects either two or three ingredients with

switch NI and sets dial D to the mixing time. Then, the operator pushes the START
to begin the mixing operation which proceeds automatically unless the STOP button

is pushed. Valve V1 is opened and remains open until L1 indicates ingredient level 1

has been reached. Valve 1 closes and valve 2 opens and remains open until L2 indi-

cates level 1 plus 2 has been reached. Valve 2 closes, and, if switch NI = 1, valve 3

opens and remains open until L3 indicates level 1, 2 plus 3 has been reached. If

NI = 0, the value on dial D is then read into the timer, the mixing begins, and the

timer starts counting down. In the case where NI = 1, these actions all occur when

L3 indicates that the level for all three ingredients has been reached. When the timer

reaches 0 as indicated by the signal TZ, the mixing stops. Next, the Output valve is

opened and remains open until sensor L0 indicates the tank is empty. If STOP is

pushed at any time, addition of ingredients stops, mixing stops, and the output valve

closes.

The first step in the design is to develop the state- machine diagram. During this

development, the input and status signals from Table 4-8 are used, and the diagram

 TABLE 4-8
Input and Output Variables for the Batch Mixing System

 Input Meaning for Value 1 Meaning for Value 0

NI

Start

Stop

L0

L1

L2

L3

TZ

Three ingredients

Start a batch cycle

Stop an on- going batch cycle

Tank empty

Tank filled to level 1

Tank filled to level 2

Tank filled to level 3

Timer at value 0

Two ingredients

No action

No action

Tank not empty

Tank not filled to level 1

Tank not filled to level 2

Tank not filled to level 3

Timer not at value 0

 Output Meaning for Value 1 Meaning for Value 0

MX

PST

TM

V1

V2

V3

VE

Mixer on

Load timer with value from D

Timer on

Valve open for ingredient 1

Valve open for ingredient 2

Valve open for ingredient 3

Output valve open

Mixer off

No action

Timer off

Valve closed for ingredient 1

Valve closed for ingredient 2

Valve closed for ingredient 3

Output valve closed

258 CHAPTER 4 / SEQUENTIAL CIRCUITS

development can be traced in Figure 4-27. We begin with an initial state Init, which is

the reset state. As long as START is 0 or STOP is 1, the state is to remain Init. When

START is 1 with STOP at 0, a new state is required in which the addition of ingredi-

ent 1 is performed. State Fill_1 with output V1 is added to perform this operation. In

state Fill_1, if the operator pushes STOP, then the state is to return to Init with the

fill operation ceasing as indicated on the diagram. If STOP is not pushed and L1 is

still 0, then the filling must continue with the state remaining Fill_1 as indicated by

the transition back to Fill_1 labeled L1 # STOP. The filling continues until L1 = 1

because the fill level for ingredient 1 has been reached. When L1 = 1 with

STOP = 0, a new state, Fill_2 is added. For the input condition, L1 # STOP, applied

in state Fill_1, V1 goes to 0, turning off valve 1, and the state becomes Fill_2 with

output V2, turning on valve 2. The loop on Fill_2 specifies that the state remains

Fill_2 until L2 becomes 1. When L2 = 1 with STOP = 0, for NI = 1 the state Fill_3

is added for the three- ingredient case, and for NI = 0 state Mix is added for the

 two- ingredient case and output PST is added to present the timer to the mixing time

on dial D. Fill_3 has transitions the same as for state Fill_1 except that L1 is replaced

by L3. For L3 # STOP, filling is complete, so state Mix is entered for mixing. Also, a

Mealy output PST is added for L3 # STOP to preset the timer to the mixing time. In

state Mix, the output MX is used to activate the mixing. In addition, as long as

TZ = 0 and Stop = 0, the state remains Mix and the timer is turned on by Mealy

output TM, causing the timer to count downward. State Empty is added for the case

where TZ = 1, since the timer has reached 0. With the mixing complete, the fluid

can be emptied from the tank by opening the output valve with VE. The state

remains Empty as long as L0 = 0 and Stop = 0 as indicated by the loop to Empty
with input condition L0 # STOP. If at any time, L0 or STOP becomes 1, the state

returns to Init, turning off the output valve by changing to VE = 0. This completes

the development of the state- machine diagram. The necessary analysis to verify the

transition and output condition constraints is left to the reader in Problem 4-37(a).

Although the state- machine diagram is similar to a state diagram, it is diffi-

cult to form a standard state table since there are eight inputs, giving 256 columns.

Instead, a table can be formed that enumerates rows for each the following:

(1) each state with its unconditional next state and its TCI output actions and out-

put conditions, (2) each transition condition for each state with the corresponding

next state, and (3) corresponding TCD and TCOD output actions, the latter with

output conditions. The results of this process for the state- machine diagram in

Figure 4-27 are shown in Table 4-9. In this table, note that the entries in Non- Zero

Outputs are either Moore outputs or TCD outputs. For the TCD outputs, Boolean

expressions can be shared in the excitation and output equations. To this end, we

define the following intermediate variables for use in excitation equations and

output equations:

 X = Fill_2 # L2 # NI # STOP

 Y = Fill_3 # L3 # STOP

 Z = Mix # TZ # STOP

4-6 / State-Machine Diagrams and Applications 259

Using the one- hot state assignment listed in the table assuming that each state

variable is named with the state for which it is 1, the excitation and output equations

are:

 Init(t + 1) = Init # START + STOP + Empty # L0

 Fill_1(t + 1) = Init # START # STOP + Fill_1 # L1 # STOP

 Fill_2 = Fill_1 # L1 # STOP + Fill_2 # L2 # STOP

 Fill_3 = L2 # NI # STOP + Fill_3 # L3 # STOP

 Mix = X + Y + Z

Default: MX = 0, PST = 0,
TM = 0, V1 = 0, V2 = 0, V3 = 0,
VE = 0

Init

V1

Reset

Fill_1

 START·STOP

 START + STOP

L1·STOP

V2

Fill_2

V3

Fill_3

L2·NI·STOP

L2·NI·STOP

 MX

 Mix

TZ·STOP

L3·STOP

VE

 Empty
L0 + STOP

L0·STOP

STOP

STOP

L2·STOP

L3·STOP

TZ·STOP

L1·STOP

STOP
PST

PST

TM

 FIGURE 4-27
State- Machine Diagram for Batch Mixing System

260 CHAPTER 4 / SEQUENTIAL CIRCUITS

 Empty(t + 1) = Mix # TZ # STOP + Empty # LO # STOP

 V1 = Fill_1

 V2 = Fill_2

 V3 = Fill_3

 PST = X + Y

 MX = Mix

 TM = Z

In the equation for Init (t + 1), since all six states return to state Init for input Stop,

there is no need to specify any states with STOP. It is interesting to note that indeed,

X, Y, and Z are shared between next state and output equations. With the one- hot

state assignment, the formulation of the equations is very straightforward using

either the state table or state- machine diagram. ■

 TABLE 4-9
State Table for the Batch Mixing System

State

State

Code

Transition

Condition

Next

State

State

Code

 Non- Zero Outputs

Including Mealy

Outputs Using TCs*

Init 100000 START + STOP

START·STOP

Init

Fill_1

100000

010000
Fill_1 010000 V1

STOP

L1 # STOP

L1 # STOP

Init

Fill_1

Fill_2

100000

010000

001000
Fill_2 001000 V2

STOP

L2 # STOP

L2 # NI # STOP

L2 # NI # STOP

Init

Fill_2

Mix

Fill_3

100000

001000

000010

000100

PST*

Fill_3 000100 V3
STOP

L3 # STOP

L3 # STOP

Init

Fill_3

Mix

100000

000100

000010 PST*
Mix 000010 MX

STOP

TZ # STOP

TZ # STOP

Init

Mix

Empty

100000

000010

000001

TM*

Empty 000001 VE

LO # STOP

LO + STOP

Empty

Init

000001

100000

4-6 / State-Machine Diagrams and Applications 261

EXAMPLE 4-11 State- Machine Design of a Sliding Door Control

Automatic sliding entrance doors are widely used in retail stores. In this example, we

consider the design of the sequential logic for controlling a sliding door. The one- way

door opens in response to three sensors PA (Approach Sensor), PP (Presence Sen-

sor), DR (Door Resistance Sensor), and to a pushbutton MO (Manual Open). PA
senses a person or object approaching the door, and PP senses the presence of a

person or object within the doorframe. DR senses a resistance to the door closing

that is at least 15 pounds indicating that the door is pushing on a person or obstacle.

MO is a manual pushbutton on the door control box that opens the door without

dependence on the automatic control. The door control box also has a keyed lock

LK for locking the door closed using an electrically- operated bolt BT to prevent en-

trance when the store is closed. In addition to these inputs to the door logic, there are

two limit switches CL (close limit) and OL (open limit) that determine when the

door mechanism has closed the door completely or opened the door completely, re-

spectively. The control mechanism has just three outputs, BT (bolt), CD (close door),

and OD (open door). All of the inputs or outputs are described along with the mean-

ing of value 1 and value 0 for each of them in Table 4-10.

Using the description just given and additional constraints on the design, we will

develop the state- machine diagram as the first step in the design of the sequential cir-

cuit. We begin by defining the initial state to which the circuit will be reset, Closed. After

reset, the door will open for the first time from this state. What is the transition condi-

tion for opening the door? First of all, the door must be unlocked, denoted by LK.

Second, there must be a person approaching the door, a person within the door, or man-

ual opening of the door requested by the pushbutton, denoted by PA + PP + MO.

Ordinarily, one would not expect the opening operation to be initiated by PP since this

 TABLE 4-10
Input and Output Variables for the Sliding Door Control

Input

Symbol Name Meaning for Value 1 Meaning for Value 0

LK

DR

PA

PP

MO

CL

OL

Lock with Key

Door Resistance Sensor

Approach Sensor

Presence Sensor

Manual Open PB

Close Limit Switch

Open Limit Switch

Locked

Door resistance Ú 15 lb

Person/object approach

Person/object in door

Manual open

Door fully closed

Door fully open

Unlocked

Door resistance < 15 lb

No person/object approach

No person/object in door

No manual open

Door not fully closed

Door not fully open

Output

Symbol

Name

Meaning for Value 1

Meaning for Value 0

BT

CD

OD

Bolt

Close Door

Open Door

Bolt closed

Close door

Close door

Bolt open

Null action

Null action

262 CHAPTER 4 / SEQUENTIAL CIRCUITS

indicates that a person is within the doorframe. But this is included to cause the door to

open in case of a PA failure. Both the lock and sensor conditions must be present for

the door to open, so they are ANDed together to give the transition condition on the

arrow from state Closed to state Open, the state in which the opening of the door occurs.

If LK is 1 or all of PA, PP, and MO are 0, then the door is to remain closed. This gives

the transition conditions LK + PA·PP·MO for remaining in state Closed. LK is also

the output condition for BT. Because of this, two transition conditions are needed, LK
and PA·PP·MO . CD is to be activated for PA·PP·MO, CL and for BT not activated,

i.e., for LK. This can be realized by the existing transition condition PA·PP·MO plus

output condition LK·CL as shown in Figure 4-28. The state remains Open and OD is 1

as long as the door is not fully open as indicated by limit switch value OL. When this

input condition changes to OL, the door is fully open and the new state is Opened. Note

that there is no monitoring of the sensor inputs other than OL in Open since it is

assumed that the door will fully open regardless of whether the person or object

remains within sensor view. If at least one of the inputs that opened the door is 1, then

the door will be held open by remaining in state Opened. The expression representing

this condition is PA + PP + MO. To insure that the door is held open, the limit switch

value OL which indicates the door is not fully open is ANDed with PA + PP + MO

to produce an output condition that activates door opening output OD. If all of the

input values that opened the door are 0, then the door is to be closed. This transition

condition is represented by PA·PP·MO which causes a transition from Opened to new

Default: BT = 0, CD = 0, OD = 0

Closed

OD

Reset

 Open

 Opened

 CD
 Close

LK·(PA + PP + MO)

OL

OL

PA + PP + MO + DR

PA·PP·MO

PA + PP + MO

CL·PA·PP·MO·DR

CL·PA·PP·MO·DR

LK,
PA·PP·MO

BT

OL/OD

LK· CL/CD

 FIGURE 4-28
State- Machine Diagram for the Automatic Sliding Door

4-6 / State-Machine Diagrams and Applications 263

state Close with output CD. In state Close, if any of the four sensors PA, PP, MO, or DR
have value 1, represented by PA + PP + MO + DR, the door must reopen and the

next state becomes Open. In state Close, because the door is closing, DR needs to be

included here to indicate that the door may be blocked by a person or object. The form

of the input conditions for the Close state differs from those for the Open state since

door closure is to halt even if only partially completed when PA, PP, MO, and DR have

value 1. In a similar manner to the use of the OL sensor for the Open state, we add the

transition to the Closed state for transition condition CL # PA·PP·MO·DR. A value of

0 on CL and on all of the sensor signals causing opening is represented by the transition

condition CL·PA·PP·MO·DR that causes the Close state to remain unchanged. This

completes the development of the diagram. The necessary analysis to verify the transi-

tion and output condition constraints is left to the reader in Problem 4-37(b). Note that

all of the output conditions for OD and CD to be 0 are implicit and not shown, a fact

that must be taken into account when verifying the output constraints.

The state table derived from the state- machine diagram is shown in Table 4-11.

The next step in the design is to make the state assignment. Since there are just four

states, we choose a two- bit code, the Gray code. The state code information has been

added to the state- machine table in Table 4-11. With the state assignment in place, we

can now write the next state and output equations for the circuit. Because of the

number of input variables, map optimization is not feasible, but some multilevel

optimization can be applied to obtain efficient realizations. The equations to be writ-

ten from Table 4-11 are based on the 1 values for the next state variables. For exci-

tation equations, products are formed from the state and input condition

combinations for each 1 present with the state combinations replaced by state

variable products, e.g., 01 becomes Y1
Y2. The product term for the third row of the

table is Y1·Y2·(LK (PA + PP + MO). The product terms for each of the 1 values

 TABLE 4-11
Modified State Table for the Automatic Sliding Door

State

State

Code Input Condition

Next

State

State

Code

 Non- Zero Outputs

(Including TCD and TOCD

Output Actions and Output

Conditions*)

Closed 00 LK Closed 00 BT*
00

00
PA·PP·MO

LK # (PA + PP + MO)

Closed

Open

00

01
LK·CL/CD*

Open 01 OD
01

01
OL

OL

Open

Opened

01

11
Opened 11 PA + PP + MO Opened 11 OL/OD*

11 PA·PP·MO Close 10
Close 10 CD

10

10

10

CL·PA·PP·MO·DR

CL·PA·PP·MO·DR

PA + PP + MO + DR

Close

Closed

Open

10

00

01

264 CHAPTER 4 / SEQUENTIAL CIRCUITS

can then be ORed together to form an excitation equation. The expression

PA + PP + MO and its complement PA·PP·MO are transition conditions for

TOCD output actions and appear frequently as factors in other transition condi-

tions. As useful factors, these expressions will be denoted by X and X, respectively.

The excitation equations are:

 X = PA + PP + MO

 Y1(t + 1) = Y1 # Y2 # OL + Y1 # Y2 + Y1 # Y2 # CL # X # DR

 Y2(t + 1) = Y1 # Y2 # LK # X + Y1 # Y2 + Y1 # Y2 # X + Y1 # Y2 # (X + DR)

For the output equations, products are formed from the state combinations

and state combination- Mealy output conditions for each output listed. As for the

excitation equations, state combinations are replaced by state variable products. The

products are ORed for each of the output variables. The resulting output equations

with multilevel optimization applied are:

 BT = Y1 # Y2 # LK

 CD = Y1 # Y2 + Y1 # Y2 # LK # CL # X

 = (Y1 + LK # CL # X) # Y2

 OD = Y1 # Y2 + Y1 # Y2 # OL # X

 = (Y1 + OL # X) # Y2

By using these six equations, the final circuit can be construction from the combina-

tional logic represented along with the two flip- flops for Y
1
 and Y

2
 with their resets

connected. ■

Our introduction to design based on state- machine diagrams and state- machine

tables is now complete. In Chapter 6, we will use these tools to describe systems

including register transfers. This will lead to methods for designing datapaths made

up of register transfer hardware and state- based controls.

ASYNCHRONOUS INTERFACES, SYNCHRONIZATION, AND SYNCHRONOUS CIRCUIT PITFALLS In

this section, we have applied signals such as those coming from sensors, buttons, and

switches that are not synchronized with the clock to synchronous sequential circuits.

This is a practice that can cause catastrophic failure because of timing problems.

These issues and problems are addressed in Sections 4-11, 4-12, and 4-13.

4-7 HDL REPRESENTATION FOR SEQUENTIAL
 CIRCUITS— VHDL
In Chapters 2 and 3, VHDL was used to describe combinational circuits. Likewise,

VHDL can describe storage elements and sequential circuits. In this section, descrip-

tions of a positive- edge- triggered D flip- flop and a sequence recognizer circuit

 illustrate such uses of VHDL. These descriptions involve new VHDL concepts, the

4-7 / HDL Representation for Sequential Circuits— VHDL 265

most important of which is the process. Thus far, concurrent statements have de-

scribed combinations of conditions and actions in VHDL. A concurrent statement,

however, is limited in the complexity that can be represented. Typically, the sequen-

tial circuits to be described are complex enough that description within a concurrent

statement is very difficult. A process can be viewed as a replacement for a concurrent

statement that permits considerably greater descriptive power. Multiple processes

may execute concurrently, and a process may execute concurrently with concurrent

statements.

The body of a process typically implements a sequential program. Signal val-

ues, however, which are assigned during the process, change only when the process is

completed. If the portion of a process executed is

B <= A;

C <= B;

then, at the completion of the process, B will contain the original contents of A, and C

will contain the original contents of B. In contrast, after execution of these two state-

ments in a program, C would contain the original contents of A. To achieve

 program- like behavior, VHDL uses another construct called a variable. In contrast

to a signal which evaluates after some delay, a variable evaluates immediately. Thus,

if B is a variable in the execution of

B := A;

C := B;

B will instantaneously evaluate to the contents of A, and C will evaluate to the

new contents of B, so that C finally contains the original contents of A. Variables

 appear only within processes. Note the use of := instead of <= for variable

 assignment.

EXAMPLE 4-12 VHDL for Positive- Edge- Triggered D Flip- Flop with Reset

The basic process structure is illustrated by an example process describing the archi-

tecture of a positive- edge- triggered D flip- flop in Figure 4-29. The process begins

with the keyword process. Optionally, process can be preceded by a process

name followed by a colon. Following in parentheses are two signals, CLK and RE-

SET. This is the sensitivity list for the process. If either CLK or RESET changes, then

the process is executed. In general, a process is executed whenever a signal or

variable in its sensitivity list changes. It is important to note that the sensitivity list is

not a parameter list containing all inputs and outputs. For example, D does not ap-

pear, since a change in its value cannot initiate a possible change in the value

of Q. Following the sensitivity list at the beginning of the process is the keyword be-
gin, and at the end of the process the keyword end appears. The word process

following end is optional.

Within the body of the process, additional VHDL conditional structures can

appear. Notable in the Figure 4-29 example is if- then- else. The general struc-

ture of an if- then- else in VHDL is

266 CHAPTER 4 / SEQUENTIAL CIRCUITS

if condition then
 sequence of statements

{elsif condition then
 sequence of statements}

else
 sequence of statements

end if;

The statements within braces {} can appear from zero to any number of times. The

 if- then- else within a process is similar in effect to the when else concurrent

assignment statement. Illustrating, we have

if A = '1' then
 Q <= X;

elsif B = '0' then
 Q <= Y;

else
 Q <= Z;

end if;

If A is 1, then flip- flop Q is loaded with the contents of X. If A is 0 and B is 0, then

 flip- flop Q is loaded with the contents of Y. Otherwise, Q is loaded with the contents

of Z. The end result for the four combination of values on A and B is

 FIGURE 4-29
VHDL Process Description of Positive- Edge- Triggered Flip- Flop with Reset

-- Positive- Edge- Triggered D Flip- Flop with Reset:

-- VHDL Process Description

library ieee;
use ieee.std_logic_1164.all;
entity dff is

port(CLK, RESET, D : in std_logic;
 Q : out std_logic);

end dff;

architecture pet_pr of dff is
-- Implements positive- edge- triggered bit state storage

-- with asynchronous reset.

begin
process (CLK, RESET)

begin
if (RESET = '1') then

Q <= '0';

elsif (CLK'event and CLK = '1') then
Q <= D;

 end if;
end if;

end process;
end;

4-7 / HDL Representation for Sequential Circuits— VHDL 267

A = 0, B = 0 Q <= Y

A = 0, B = 1 Q <= Z

A = 1, B = 0 Q <= X

A = 1, B = 1 Q <= X

More complex conditional execution of statements can be achieved by nesting

 if- then- else structures, as in the following code:

if A = '1' then
 if C = '0' then
 Q <= W;

 else
 Q <= X;

 end if;
elsif B = '0' then
 Q <= Y;

else
 Q <= Z;

end if;

The end result for the eight combinations of values on A, B, and C is

A = 0, B = 0, C = 0 Q <= Y

A = 0, B = 0, C = 1 Q <= Y

A = 0, B = 1, C = 0 Q <= Z

A = 0, B = 1, C = 1 Q <= Z

A = 1, B = 0, C = 0 Q <= W

A = 1, B = 0, C = 1 Q <= X

A = 1, B = 1, C = 0 Q <= W

A = 1, B = 1, C = 1 Q <= X

With the information introduced thus far, the positive- edge- triggered D
 flip- flop in Figure 4-29 can now be studied. The sensitivity list for the process includes

CLK and RESET, so the process is executed if either CLK or RESET or both change

value. If D changes value, the value of Q is not to change for an edge- triggered

 flip- flop, so D does not appear on the sensitivity list. Based on the if- then- else, if

RESET is 1, the flip- flop output Q is reset to 0. Otherwise, if the clock value changes,

which is represented by appending 'event to CLK, and the new clock value is 1,

which is represented by CLK = '1', a positive edge has occurred on CLK. The result

of the positive- edge occurrence is the loading of the value on D into the flip- flop so

that it appears on output Q. Note that, due to the structure of the if- then- else,

RESET equal to 1 dominates the clocked behavior of the D flip- flop, causing the out-

put Q to go to 0. Similar simple descriptions can be used to represent other flip- flop

types and triggering approaches. ■

EXAMPLE 4-13 VHDL for the Sequence Recognizer

A more complex example in Figures 4-30 and 4-31 represents the sequence- recognizer

state diagram in Figure 4-18(d). The architecture in this description consists of three

268 CHAPTER 4 / SEQUENTIAL CIRCUITS

-- Sequence Recognizer: VHDL Process Description

-- (See Figure 4-18(d) for state diagram)

library ieee;
use ieee.std_logic_1164.all;
entity seq_rec is

port(CLK, RESET, X: in std_logic;
Z: out std_logic);

end seq_rec;

architecture process_3 of seq_rec is
type state_type is (A, B, C, D);
signal state, next_state : state_type;

begin

-- Process 1 - state_register: implements positive- edge- triggered

-- state storage with asynchronous reset.

state_register: process (CLK, RESET)
begin

if (RESET = '1') then
state <= A;

elsif (CLK’event and CLK = '1') then
state <= next_state;

end if;
end process;

-- Process 2 - next_state_function: implements next state as

-- a function of input X and state.

next_state_func: process (X, state)
begin

case state is
when A =>

if X = '1' then
next_state <= B;

else
next_state <= A;

end if;
when B =>

if X = '1' then
next_state <= C;

else
next_state <= A;

end if;

 FIGURE 4-30
VHDL Process Description of a Sequence Recognizer

4-7 / HDL Representation for Sequential Circuits— VHDL 269

distinct processes, which can execute simultaneously and interact via shared signal

values. New concepts included are type declarations for defining new types and case

statements for handling conditions.

The type declaration permits us to define new types analogous to existing types

such as std_logic. A type declaration begins with the keyword type followed by

the name of the new type, the keyword is, and, within parentheses, the list of values

for signals of the new type. Using the example from Figure 4-30, we have

type state_type is (A, B, C, D);

The name of the new type is state_type and the values in this case are the names

of the states in Figure 4-18(d). Once a type has been declared, it can be used for

declaring signals or variables. From the example in Figure 4-30,

-- Sequence Recognizer: VHDL Process Description (continued)

when C =>
if X = '1' then

next_state <= C;

else
next_state <= D;

end if;
when D =>

if X = '1' then
next_state <= B;

else
next_state <= A;

end if;
end case;

end process;

-- Process 3 - output_function: implements output as function

-- of input X and state.

output_func: process (X, state)
begin

case state is
when A =>

Z <= '0';

when B =>
Z <= '0';

when C =>
Z <= '0';

when D =>
if X = '1' then

Z <= '1';

else
Z <= '0';

end if;
end case;

end process;
end;

 FIGURE 4-31
VHDL Process Description of a Sequence Recognizer (continued)

270 CHAPTER 4 / SEQUENTIAL CIRCUITS

signal state, next_state : state_type;

indicates that state and next_state are signals that are of the type state_

type. Thus, state and next state can have values A, B, C, and D.

The basic if- then- else (without using the elsif) makes a two- way decision

based on whether a condition is TRUE or FALSE. In contrast, the case statement can

make a multiway decision based on which of a number of statements is TRUE.

A simplified form for the generic case statement is

case expression is
 {when choices =>
 sequence of statements;}

end case;

The choices must be values that can be taken on by a signal of the type used in the

expression. The case statement has an effect similar to the with- select concur-

rent assignment statement.

In the example in Figures 4-30 and 4-31, Process 2 uses a case statement to

define the next- state function for the sequence recognizer. The case statement makes

a multiway decision based on the current state of the circuit, A, B, C, or D. If- then- else

statements are used for each of the state alternatives to make a binary decision based

on whether input X is 1 or 0. Concurrent assignment statements are then used to assign

the next state based on the eight possible combinations of state value and input value.

For example, consider the state alternative when B. If X equals 1, then the next state

will be C; if X equals 0, then the next state will be A. This corresponds to the two transi-

tions out of state B in Figure 4-18(d). For more complex circuits, case statements can

also be used for handing the input conditions.

With this brief introduction to the case statement, the overall sequence recog-

nizer can now be studied. Each of the three processes has a distinct function, but the

processes interact to provide the overall sequence recognizer. Process 1 describes

the storage of the state. Note that the description is like that of the

 positive- edge- triggered flip- flop. There are two differences, however. First, the sig-

nals involved are of type state_type instead of type std_logic. Second, the

state that results from applying RESET is state A rather than state 0. Also, since we

are using state names such as A, B, and C, the number of state variables (i.e., the num-

ber of flip- flops) is unspecified and the state codes are unknown. Process 1 is the

only one of the three processes that contains storage.

Process 2 describes the next- state function, as discussed earlier. The sensi-

tivity list in this case contains signals X and state. In general, for describing combi-

national logic, all inputs must appear in the sensitivity list, since, whenever an input

changes, the process must be executed.

Process 3 describes the output function. The same case statement framework

as in Process 2 with state as the expression is used. Instead of assigning state names

to next state, values 0 and 1 are assigned to Z. If the value assigned is the same for both

values 0 and 1 on X, no if- then- else is needed, so an if- then- else appears only

4-7 / HDL Representation for Sequential Circuits— VHDL 271

-- Testbench for sequence recognizer example

library ieee;
use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all;

entity seq_rec_testbench is
end seq_rec_testbench;

architecture testbench of seq_rec_testbench is
signal clock, X, reset, Z: std_logic;
signal test_sequence : std_logic_vector(0 to 10)

:= "01110101100";

constant PERIOD : time := 100 ns;

component seq_rec is
port(CLK, RESET, X: in std_logic;

Z: out std_logic);
end component;

begin
u1: seq_rec port map(clock, reset, X, Z);

-- This process applies reset and

-- then applies the test sequence to input X

apply_inputs: process
begin

reset <= '1';
X <='0';
-- ensure that inputs are applied

-- away from the active clock edge

wait for 5*PERIOD/4;
reset <= '0';
for i in 0 to 10 loop

X <= test_sequence(i);
wait for PERIOD;

end loop;
wait; --wait forever

end process;

-- This process provides the clock pulses

generate_clock: process
begin

clock <= '1';
wait for PERIOD/2;
clock <= '0';

wait for PERIOD/2;
end process;

end testbench;

 FIGURE 4-32
 Testbench for VHDL Sequence Recognizer Model

272 CHAPTER 4 / SEQUENTIAL CIRCUITS

for state D. If there are multiple input variables, more complex if- then- else combi-

nations or a case statement, as illustrated earlier, can be used to represent the condi-

tioning of the outputs on the inputs. This example is a Mealy state machine in which the

output is a function of the circuit inputs. If it were a Moore state machine, with the out-

put dependent only on the state, input X would not appear on the sensitivity list, and

there would be no if- then- else structures in the case statement.

Figure 4-32 shows a testbench for verifying the VHDL sequence recognizer.

As with the testbenches in earlier chapters, the entity has no ports and the archi-

tecture declares the device under test, the signals to be connected to it, and then

instantiates it. But in contrast to earlier testbenches, this testbench uses more than

one process to provide stimulus to the inputs of the sequence recognizer. The

apply_inputs process applies the RESET and X inputs, while the generate_

clock process provides a periodic clock signal. The apply_inputs process uses

the test sequence that was described in Example 4-8, which is stored in the std_

logic_vector test_sequence. At the beginning of simulation, the process

activates RESET to put the state machine in a known state. After deactivating

RESET, the process applies the X input values stored in the test_sequence

array using a for loop statement. The input values are applied shortly after the

positive edge of the clock to ensure that there is sufficient time before the next

positive edge that the timing conditions for storage elements are met, which will

be described later in this chapter.

This testbench provides a template for verifying VHDL models of simple finite

state machines: using multiple processes to generate a clock signal and to apply reset

and other inputs. For more complex circuits, testbenches may read inputs from a file

and compare the outputs of the device under test to known good outputs, automati-

cally flagging erroneous outputs. The language constructs for supporting the file

read/write and user input/output necessary for such behavior are beyond the scope

of this introductory text, but interested readers will easily find them in one of the

many fine books dedicated to the VHDL language. ■

A common pitfall is present whenever an if- then- else or case statement

is employed. During synthesis, unexpected storage elements in the form of latches or

 flip- flops appear. For the simple if- then- else used in Figure 4-29, using this pit-

fall gives a specification that synthesizes to a flip- flop. In addition to the two input

signals, RESET and CLK, the signal CLK'event is produced by applying the pre-

defined attribute 'event to the CLK signal. CLK'event is TRUE if the value of CLK

changes. All possible combinations of values are represented in Table 4-12. Whenever

RESET is 0 and the CLK is fixed at 0 or 1 or has a negative edge, no action is specified.

In VHDL, it is assumed that, for any combinations of conditions that have unspeci-

fied actions in if- then- else or case statements, the left- hand side of an assign-

ment statement remains unchanged. This is equivalent to Q <= Q, causing storage to

occur. Thus, all combinations of conditions must have the resulting action specified

when no storage is intended. If this is not a natural situation, an others can be used

in the if- then else or case. If binary values are used in the case statement, just

as in Section 2-9, an others must also be used to handle combinations including the

seven values other than 0 and 1 permitted for std_logic.

4-8 / HDL Representation for Sequential Circuits— Verilog 273

Together, the three processes used for the sequence recognizer describe the state

storage, the next- state function, and the output function for a sequential circuit. Since

these are all of the components of a sequential circuit at the state- diagram level, the

description is complete. The use of three distinct processes is only one methodology for

sequential circuit description. Pairs of processes or all three processes can be combined

for more elegant descriptions. Nevertheless, the three- process description is the easiest

for new users of VHDL and also works well with synthesis tools.

To synthesize the circuit into actual logic, a state assignment is needed, in addi-

tion to a technology library. Many synthesis tools will make the state assignment

independently or based on a directive from the user. It is also possible for the user to

specify explicitly the state assignment. This can be done in VHDL by using an enu-

meration type. The encoding for the state machine in Figures 4-30 and 4-31 can be

specified by adding the following after the type state_type declaration:

attribute enum_encoding: string;
attribute enum_encoding of state_type:
type is "00, 01, 10, 11";

This is not a standard VHDL construct, but it is recognized by many synthesis tools.

Another option is not to use a type declaration for the states, but to declare the state

variables as signals and use the actual codes for the states. In this case, if states appear

in the simulation output, they will appear as the encoded state values.

4-8 HDL REPRESENTATION FOR SEQUENTIAL
CIRCUITS— VERILOG

In Chapters 2 and 3, Verilog was used to describe combinational circuits. Likewise,

Verilog can describe storage elements and sequential circuits. In this section, de-

scriptions of a positive- edge- triggered D flip- flop and a sequence- recognizer circuit

illustrate such uses of Verilog. These descriptions will involve new Verilog concepts,

the most important of which are the process and the register type for nets.

 TABLE 4-12
 Illustration of Generation of Storage in VHDL

Inputs Action

RESET = 1 CLK = 1 CLK’ event

FALSE FALSE FALSE Unspecified

FALSE FALSE TRUE Unspecified

FALSE TRUE FALSE Unspecified

FALSE TRUE TRUE Q 6 = D

TRUE — — Q 6 = '0'

274 CHAPTER 4 / SEQUENTIAL CIRCUITS

Thus far, continuous assignment statements have been used to describe combi-

nations of conditions and actions in Verilog. A continuous assignment statement is

limited in what can be described, however. A process can be viewed as a replacement

for a continuous assignment statement that permits considerably greater descriptive

power. Multiple processes may execute concurrently and a process may execute con-

currently with continuous assignment statements.

Within a process, procedural assignment statements, which are not continuous

assignments, are used. Because of this, the assigned values need to be retained over

time. This retention of information can be achieved by using the register type rather

than the wire type for nets. The keyword for the register type is reg. Note that just

because a net is of type reg does not mean that an actual register is associated with

its implementation. Additional conditions need to be present to cause an actual reg-

ister to exist. The type reg is intended for storing values in variables, which may

represent either combinational or sequential logic when implemented in hardware.

There are two basic types of processes, the initial process and the always

process. The initial process executes only once, beginning at t = 0. The always

process also executes at t = 0, but executes repeatedly thereafter. To prevent ram-

pant, uncontrolled execution, some timing control is needed in the form of delay or

 event- based waiting. The # operator followed by an integer can be used to specify

delay. The @ operator can be viewed as “wait for event.” @ is followed by an expres-

sion that describes the event or events, the occurrence of which will cause the pro-

cess to execute.

The body of a process is like a sequential program. The process begins with

the keyword begin and ends with the keyword end. Procedural assignment

statements make up the body of the process. These assignment statements are

classified as blocking or nonblocking. Blocking assignments use = as the assign-

ment operator and nonblocking assignments use <= as the operator. Blocking
assignments are executed sequentially, much like a program in a procedural lan-

guage such as C. Nonblocking assignments evaluate the right- hand side, but do

not make the assignment until all right- hand sides have been evaluated. Blocking

assignments can be illustrated by the following process body, in which A, B, and C

are of type reg:

begin
B = A;

C = B;

end

The first statement transfers the contents of A into B. The second statement then

transfers the new contents of B into C. At process completion, C contains the original

contents of A.

Suppose that the same process body uses nonblocking assignments:

begin
B <= A;

C <= B;

end

4-8 / HDL Representation for Sequential Circuits— Verilog 275

The first statement transfers the original contents of A into B and the second state-

ment transfers the original contents of B into C. At process completion, C contains

the original contents of B, not those of A. Effectively, the two statements have exe-

cuted concurrently instead of in sequence. For reasons that are beyond the scope of

this introductory text, when developing Verilog models that are meant to be synthe-

sized, the following guidelines should be used to ensure that the synthesized hard-

ware behaves in the same way as simulation:

Blocking assignments should be used for statements that are meant to create

combinational logic.

Nonblocking assignments should be used for statements that are meant to cre-

ate sequential logic.

Blocking and nonblocking assignments should not be used in the same always

block.

Assignments to a particular variable (type reg) should be made in only one

always block.

As a result of these guidelines, synthesizable Verilog models of finite state machines

are generally arranged as two or three always blocks: One always block for the

sequential logic (state registers) using nonblocking assignments, and one or two

always blocks for the combinational logic (next state and output signals) using

blocking assignments. Depending upon the complexity of the state machine, the next

state and output combinational logic may be combined into one always block if they

are simple, or described in separate blocks if they are more complex.

EXAMPLE 4-14 Verilog for Positive- Edge- Triggered D Flip- Flop with Reset

These new concepts can now be applied to the Verilog description of a

 positive- edge- triggered D flip- flop given in Figure 4-33. The module and its inputs

and outputs are declared. Q is declared as of type reg, since it will store information.

The process begins with the keyword always. Following is @(posedge CLK or
posedge RESET). This is the event control statement for the process that initiates

process execution if an event (i.e., a specified change in a specified signal) occurs. For

the D flip- flop, if either CLK or RESET changes to 1, then the process is executed. It is

important to note that the event control statement is not a parameter list containing

all inputs. For example, D does not appear, since a change in its value cannot initiate

a possible change in the value of Q. Following the event control statement at the be-

ginning of the process is the keyword begin, and at the end of the process the key-

word end appears.

Within the body of the process, additional Verilog conditional structures can

appear. Notable in the Figure 4-33 example is if- else. The general structure of an

 if- else in Verilog is

if (condition)
 begin procedural statements end
{else if (condition)

276 CHAPTER 4 / SEQUENTIAL CIRCUITS

 begin procedural statements end}
{else
 begin procedural statements end}

If there is a single procedural statement, then begin and end are unnecessary:

if(A == 1)
 Q <= X;

else if (B == 0)
 Q <= Y;

else
 Q <= Z;

Note that a double equals signs is used in conditions. If A is 1, then flip- flop Q is

loaded with the contents of X. If A is 0 and B is 0, then flip- flop Q is loaded with the

contents of Y. Otherwise, Q is loaded with the contents of Z. The end result for the

four combination of values on A and B is

A = 0, B = 0 Q <= Y

A = 0, B = 1 Q <= Z

A = 1, B = 0 Q <= X

A = 1, B = 1 Q <= X

The if- else within a process is similar in effect to the conditional operator in

a continuous assignment statement introduced earlier. The conditional operator can

be used within a process, but the if- else cannot be used in a continuous assign-

ment statement.

More complex conditional execution of statements can be achieved by nesting

 if- else structures. For example, we might have

// Positive- Edge- Triggered D Flip- Flop with Reset:

// Verilog Process Description

module dff_v(CLK, RESET, D, Q);
input CLK, RESET, D;
output Q;
reg Q;

always @(posedge CLK or posedge RESET)
begin

if (RESET)
Q <= 0;

else
Q <= D;

end
endmodule

 FIGURE 4-33
 Verilog Process Description of Positive- Edge- Triggered Flip- Flop with Reset

4-8 / HDL Representation for Sequential Circuits— Verilog 277

if(A == 1)
 if(C == 0)
 Q <= W;

 else
 Q <= X;

else if (B == 0)
 Q <= Y;

 else
 Q <= Z;

In this type of structure, an else is associated with the closest if preceding it that

does not already have an else. The end result for the eight combinations of values

on A, B, and C is

A = 0, B = 0, C = 0 Q <= Y

A = 0, B = 0, C = 1 Q <= Y

A = 0, B = 1, C = 0 Q <= Z

A = 0, B = 1, C = 1 Q <= Z

A = 1, B = 0, C = 0 Q <= W

A = 1, B = 0, C = 1 Q <= X

A = 1, B = 1, C = 0 Q <= W

A = 1, B = 1, C = 1 Q <= X

Returning to the if- else in the positive- edge- triggered D flip- flop shown in

Figure 4-33, assuming that a positive edge has occurred on either CLK or RESET, if

RESET is 1, the flip- flop output Q is reset to 0. Otherwise, the value on D is stored in

the flip- flop so that Q equals D. Due to the structure of the if- else, RESET equal

to 1 dominates the clocked behavior of the D flip- flop, causing the output Q to go to

0. Similar simple descriptions can be used to represent other flip- flop types and trig-

gering approaches. ■

EXAMPLE 4-15 Verilog for the Sequence Recognizer

A more complex example in Figure 4-34 represents the sequence- recognizer state

diagram in Figure 4-18(d). The architecture in this description consists of three dis-

tinct processes that can execute simultaneously and interact via shared signal values.

New concepts included are state encoding and case statements for handling

 conditions.

In Figure 4-34, the module seq_rec_v and input and output variables CLK,

RESET, X, and Z are declared. Next, registers are declared for state and next_

state. Note that since next_state need not be stored, it could also be declared as

a wire, but, since it is assigned within an always block, it must be declared as a reg.

Both registers are two bits, with the most significant bit (MSB) numbered 1 and the

least significant bit (LSB) numbered 0.

Next, a name is given to each of the states taken on by state and next_

state, and binary codes are assigned to them. This can be done using a parameter

statement or a compiler directive define. We will use the parameter statement, since

the compiler directive requires a somewhat inconvenient ' before each state

278 CHAPTER 4 / SEQUENTIAL CIRCUITS

// Sequence Recognizer: Verilog Process Description

// (See Figure 4-18(d) for state diagram)

module seq_rec_v(CLK, RESET, X, Z);
input CLK, RESET, X;
output Z;
reg [1:0] state, next_state;
parameter A = 2'b00, B = 2'b01, C = 2'b10, D = 2'b11;
reg Z;

// state register: implements positive edge- triggered

// state storage with asynchronous reset.

always @(posedge CLK or posedge RESET)
begin

if (RESET)
state <= A;

else
state <= next_state;

end
//.te function: implements next state as function

// of X and state

always @(X or state)
begin

case (state)
A: next_state = X ? B : A;
B: next_state = X ? C : A;
C: next_state = X ? C : D;
D: next_state = X ? B : A;

endcase
end

// output function: implements output as function

// of X and state

always @(X or state)
begin

case (state)
A: Z = 1'b0;
B: Z = 1'b0;
C: Z = 1'b0;
D: Z = X ? 1'b1 : 1'b0;

endcase
end
endmodule

 FIGURE 4-34
 Verilog Process Description of a Sequence Recognizer

4-8 / HDL Representation for Sequential Circuits— Verilog 279

throughout the description. From the diagram in Figure 4-18(d), the states are A, B, C,

and D. In addition, the parameter statements give the state codes assigned to each of

these states. The notation used to define the state codes is 2'b followed by the binary

code. The 2 denotes that there are two bits in the code and the 'b denotes that the

base of the code given is binary.

The if- else (without using the else if) makes a two- way decision based

on whether a condition is TRUE or FALSE. In contrast, the case statement can

make a multiway decision based on which one of a number of statements is TRUE. A

simplified form for the generic case statement is

case expression
 {case expression : statements}

endcase

in which the braces { } represent one or more such entries.

The case expression must have values that can be taken on by a signal of the

type used in expression. Typically, there are sequences of multiple statements. In the

example in Figure 4-34, the case statement for the next- state function makes a mul-

tiway decision based on the current state of the circuit, A, B, C, or D. For each of the

case expressions, conditional statements of various types are used to make a binary

decision based on whether input X is 1 or 0. Blocking assignment statements are then

used to assign the next state based on the eight possible combinations of state value

and input value. For example, consider the expression B. If X equals 1, then the next

state will be C; if X equals 0, then the next state will be A. This corresponds to the two

transitions out of state B in Figure 4-18(d).

With this brief introduction to the case statement, the overall sequence recog-

nizer can now be understood. Each of the three processes has a distinct function, but

the processes interact to provide the overall sequence recognizer. The first process

describes the state register for storing the sequence- recognizer state. Note that the

description resembles that of the positive- edge- triggered flip- flop. There are two dif-

ferences, however. First, there are two bits in the state register. Second, the state that

results from applying RESET is state A rather than state 0. The first process is the only

one of the three processes that has storage (sequential logic) associated with it.

Following the coding guidelines provided earlier in this section, this always block

uses nonblocking assignments.

The second process describes the next- state function as discussed earlier. The

event control statement contains signals X and state. In general, for describing

combinational logic, all inputs must appear in the event control statement, since,

whenever an input changes, the process must be executed. Since the next state logic

is combinational, this process uses blocking assignments.

The final process describes the output function and uses the same case state-

ment framework as in the next- state function process, again using blocking assignments

because the process describes combinational logic. Instead of assigning state names,

values 0 and 1 are assigned to Z. If the value assigned is the same for both values 0 and 1

on X, no conditional statement is needed, so a conditional statement appears only for

state D. If there are multiple input variables, more complex if- else combinations, as

illustrated earlier, can be used to represent the conditioning of the outputs on the inputs.

280 CHAPTER 4 / SEQUENTIAL CIRCUITS

This example is a Mealy state machine in which the output is a function of the circuit

inputs. If it were a Moore state machine, with the output dependent only on the state,

input X would not appear on the event control statement and there would be no condi-

tional structures within the case statement.

Figure 4-35 shows a testbench for verifying the Verilog sequence recognizer.

As with the testbenches in earlier chapters, the module has no ports, and the

// Testbench for Verilog sequence recognizer

module seq_req_v_testbench();
wire Z;
reg clock, X, reset;

reg [0:10] test_sequence = 11'b011_1010_1100;
integer i;
parameter PERIOD = 100;

seq_rec_v DUT(clock, reset, X, Z);

// This initial block initializes the clock, applies reset,

// and then applies the test sequence to input X.

initial
begin

reset = 1'b1;
X = 1'b0;
// Ensure that inputs are applied

// away from the active clock edge

#(5*PERIOD/4);
reset = 1'b0;
for (i = 0; i < 11; i = i+1)
begin

X = test_sequence[i];
#PERIOD;

end
// Stop the simulation after all the inputs

// in the sequence have been applied

$stop;
end

// This always block provides the clock pulses

always
begin

clock = 1'b1;
#(PERIOD/2);
clock = 1'b0;
#(PERIOD/2);

end
endmodule

 FIGURE 4-35
 Testbench for Verilog Sequence Recognizer Model

4-8 / HDL Representation for Sequential Circuits— Verilog 281

 TABLE 4-13
 Illustration of Generation of Storage in Verilog

Inputs Action

posedge RESET

 and RESET = 1 posedge CLK

FALSE FALSE Unspecified

FALSE TRUE Q 6 = D

TRUE FALSE Q 6 = 0

TRUE TRUE Q 6 = 0

module declares the device under test, the wire and regs to be connected to it,

and then instantiates it. But in contrast to earlier testbenches, this testbench uses

more than one process to provide stimulus to the inputs of the sequence recog-

nizer. The first process applies the reset and X inputs, while second process pro-

vides a periodic clock signal. The first process uses the test sequence that was

described in Example 4-8, which is stored in the reg array test_sequence. At

the beginning of simulation, the process activates reset to put the state machine

in a known state. After deactivating reset, the process applies the X input values

stored in the test_sequence array using a for loop statement. The input val-

ues are applied shortly after the positive edge of the clock to ensure that there is

sufficient time before the next positive edge that the timing conditions for storage

elements are met, which will be described later in this chapter.

This testbench provides a template for verifying Verilog models of simple finite

state machines: using multiple processes to generate a clock signal and to apply reset

and other inputs. For more complex circuits, testbenches may read inputs from a file

and compare the outputs of the device under test to known good outputs, automati-

cally flagging erroneous outputs. The language constructs for supporting the file

read/write and user input/output necessary for such behavior are beyond the scope

of this introductory text, but interested readers will easily find them in one of the

many fine books dedicated to the Verilog language. ■

A common pitfall is present whenever an if- else or case statement is

employed. During synthesis, unexpected storage elements in the form of latches or

 flip- flops appear. For the very simple if- else used in Figure 4-33, this pitfall is

employed to give a specification that synthesizes to a flip- flop. In addition to the two

input signals, RESET and CLK, events posedge CLK and posedge RESET are pro-

duced, which are TRUE if the value of the respective signal changes from 0 to 1. Selected

combinations of values for RESET and the two events are shown in Table 4-13.

Whenever RESET has no positive edge, or RESET is 0 and CLK is fixed at 0 or 1 or has a

negative edge, no action is specified. In Verilog, the assumption is that, for any

282 CHAPTER 4 / SEQUENTIAL CIRCUITS

combination of conditions with unspecified actions in if- else or case statements,

the left- hand side of an assignment statement will remain unchanged. This is equiva-

lent to Q <= Q, causing storage to occur. Thus, all combinations of conditions must

have the resulting action specified when no storage is intended. To prevent undesir-

able latches and flip- flops from occurring, for if- else structures, care must be

taken to include else in all cases if storage is not desired. In a case statement, a

default statement which defines what happens for all choices not specified should

be added. Within the default statement, a specific next state can be specified,

which in the example could be state A.

Together, the three processes used for the sequence recognizer describe the

state storage, the next- state function, and the output function for the sequential cir-

cuit. Since these are all of the components of a sequential circuit at the state- diagram

level, the description is complete. The use of three distinct processes is only one

methodology for sequential circuit description. For example, the next- state and out-

put processes could be easily combined. Nevertheless, the three- process description

is the easiest for new users of Verilog and also works well with synthesis tools.

4-9 FLIP- FLOP TIMING

Timing parameters are associated with the operation of both pulse- triggered (master–

 slave) and edge- triggered flip- flops. These parameters are illustrated for a master– slave

SR flip- flop and for a negative- edge- triggered D flip- flop in Figure 4-36. The parame-

ters for the positive- edge- triggered D flip- flop are the same, except that they are

 referenced to the positive rather than the negative clock edge.

The timing of the response of a flip- flop to its inputs and clock C must be taken

into account when using the flip- flops. For both flip- flops, there is a minimum time called

the setup time, ts, for which the S and R or D inputs must be maintained at a constant

value prior to the occurrence of the clock transition that causes the output to change.

Otherwise, the master could be changed erroneously in the case of the master– slave

 flip- flop or be at an intermediate value at the time the slave copies it in the case of the

 edge- triggered flip- flop. Similarly, there is a minimum time called the hold time, th, for

which the S and R or D inputs must not change after the application of the clock transi-

tion that causes the output to change. Otherwise, the master might respond to the input

change and be changing at the time the slave latch copies it. In addition, there is a mini-

mum clock pulse width tw, to insure that the master has time enough to capture the

input values correctly. Among these parameters, the one that differs most between the

 pulse- triggered and edge- triggered flip- flops is the setup time, as shown in Figure 4-36.

The pulse- triggered flip- flop has its setup time equal to the clock pulse width, whereas

the setup time for the edge- triggered flip- flop can be much smaller than the clock pulse

width. As a consequence, edge triggering tends to provide faster designs, since the

 flip- flop inputs can change later with respect to the upcoming triggering clock edge.

The propagation delay times, t
PHL

, t
PLH

, or t
pd

, of the flip- flops are defined as the

interval between the triggering clock edge and the stabilization of the output to a

new value. These times are defined in the same fashion as those for an inverter,

except that the values are measured from the triggering clock edge rather than the

inverter input. In Figure 4-36, all of these parameters are denoted by t
p-

 and are given

4-10 / Sequential Circuit Timing 283

minimum and maximum values. Since the changes of the flip- flop outputs are to be

separated from the control by the flip- flop inputs, the minimum propagation delay

time should be longer than the hold time for correct operation. These and other

parameters are specified in manufacturers’ data books for specific integrated circuit

products.

Similar timing parameters can be defined for latches and direct inputs, with

additional propagation delays needed to model the transparent behavior of latches.

4-10 SEQUENTIAL CIRCUIT TIMING

In addition to analyzing the function of a circuit, it is also important to analyze its

performance in terms of the maximum input- to- output delay and the maximum clock
frequency, f

max
, at which it can operate. First of all, the clock frequency is just the in-

verse of the clock period t
p
 shown in Figure 4-37. So, the maximum allowable clock

frequency corresponds to the minimum allowable clock period t
p
. To determine how

small we can make the clock period, we need to determine the longest delay from

the triggering edge of the clock to the next triggering edge of the clock. These delays

are measured on all such paths in the circuit down which changing signals propagate.

ts th

tp-,min

tp-,max

C

D

Q

(b) Edge-triggered (negative edge)

thts

tp-,min

tp-,max

C

Q

S/R

(a) Pulse-triggered (positive pulse)

twH � twH,min

twH � twH,min

twL � twL,min

twL � twL,min

 FIGURE 4-36
 Flip- Flop Timing Parameters

284 CHAPTER 4 / SEQUENTIAL CIRCUITS

Each of these path delays has three components: (1) a flip- flop propagation delay,

t
pd, FF

, (2) a combinational logic delay through the chain of gates along the path,

t
pd, COMB

, and (3) a flip- flop setup time, t
s
. As a signal change propagates down the path,

it is delayed successively by an amount equal to each of these delays. Note that we

have used t
pd

, instead of the more detailed values, t
PLH

 and t
PHL

, for both the flip- flops

and combinational logic gates to simplify the delay calculations. Figure 4-37 summa-

rizes the delay picture for both the edge- triggered and pulse- triggered flip- flops.

After a positive edge on a clock, if a flip- flop is to change, its output changes

at time t
pd,FF

 after the clock edge. This change enters the combinational logic path

and must propagate down the path to a flip- flop input. This requires an additional

time, t
pd,COMB

, for the signal change to reach the second flip- flop. Finally, before the

next positive clock edge, this change must be held on the flip- flop input for setup

time t
s
. This path, P

FF,FF
 and other possible paths are illustrated in Figure 4-38. For

paths P
IN,FF

 driven by primary inputs, t
pd,FF

 is replaced by t
i
, which is the latest time

that the input changes after the positive clock edge. For a path P
FF,OUT

 driving pri-

mary outputs, t
s
 is replaced by t

o
, which is the latest time that the output is permit-

ted to change prior to the next clock edge. Finally, in a Mealy model circuit,

combinational paths from input to output, P
IN,OUT

, that use both t
i
 and t

o
 can

appear. Each path has a slack time, t
slack

, the extra time allowed in the clock period

beyond that required by the path. From Figure 4-38, the following equation for a

path of type P
FF,FF

 results:

tp = tslack + (tpd,FF + tpd,COMB + ts)

In order to guarantee that a changing value is captured by the receiving flip- flop, t
slack

must be greater than or equal to zero for all of the paths. This requires that

tp Ú max (tpd,FF + tCOMB + ts) = tp,min

where the maximum is taken over all paths down which signals propagate from flip- flop

to flip- flop. The next example presents representative calculations for paths P
FF,FF

.

(a) Edge-triggered (positive edge)

tp

tpd,FF tCOMB tslackts

C

(b) Pulse-triggered (negative edge)

tp

tpd,FF tCOMB tslack ts

C

 FIGURE 4-37
 Sequential Circuit Timing Parameters

4-10 / Sequential Circuit Timing 285

EXAMPLE 4-16 Clock Period and Frequency Calculations

Suppose that all flip- flops used are the same and have tpd = 0.2 ns (nanosecond =

10-9seconds) and ts = 0.1 ns. Then the longest path beginning and ending with a

 flip- flop will be the path with the largest t
pd

,
COMB

. Further, suppose that the largest

t
pd,COMB

 is 1.3 ns and that t
p
has been set to 1.5 ns. From the previous equation for t

p
,

we can write

1.5 ns = tslack + 0.2 + 1.3 + 0.1 = tslack + 1.6 ns

Solving, we have tslack = -0.1 ns, so this value of t
p
 is too small. In order for t

slack

to be greater than or equal to zero for the longest path, tp Ú tp,min = 1 .6 ns . The

maximum frequency fmax = 1/1.6 ns = 625 MHz (megahertz = 106 cycles per

second). We note that, if t
p
 is too large to meet the circuit specifications, we must

either employ faster logic cells or change the circuit design to reduce the problem-

atic path delays through the circuit while still performing the desired function. ■

It is interesting to note that the hold time for a flip- flop, t
h
, does not appear in

the clock- period equation. It relates to another timing- constraint equation dealing

with one or both of two specific situations. In one case, output changes arrive at the

inputs of one or more flip- flops too soon. In the other case, the clock signals reaching

one or more flip- flops are somehow delayed, a condition referred to as clock skew.

Clock skew also can affect the maximum clock frequency.

Combinational
logic

tpd, COMB

tpd, COMB

tpd, COMB

tpd, COMB

tpd, FF

ts

toti

Flip-flops

Clock

Q D

C

PIN,OUT

PIN,FF

PFF,OUT

PFF,FF

 FIGURE 4-38
 Sequential Circuit Timing Paths

286 CHAPTER 4 / SEQUENTIAL CIRCUITS

4-11 ASYNCHRONOUS INTERACTIONS

The synchronous circuits studied thus far have their state- variable changes synchro-

nized by a special input signal called a clock. An asynchronous circuit has one or

more state- variable changes that occur without being directly synchronized by the

special clock input. Instead, an asynchronous circuit may change state in response to

any of its inputs. Here we briefly study some aspects of the interactions between

asynchronous and synchronous circuits. In addition, we study interactions between

two synchronous circuits having clocks that are unrelated to each other, i.e. have no

specified timing relationships to each other. In this sense, these synchronous circuits

are asynchronous with respect to each other due to the lack of a defined relationship

between their respective clocks.

Philosophically, every flip- flop or latch we have considered can be modeled as an

asynchronous circuit if the clock is regarded as just another input rather than a special

clock input for synchronization. In fact, asynchronous circuit design can be used to

design latches and flip- flops. The presentation here, however, does not dwell upon the

details of asynchronous circuit design. Our reason for avoiding asynchronous design as

it is presented in most textbooks is that it is very difficult to insure correct operation

and, therefore, is to be avoided. The correct operation of such circuits is heavily depen-

dent upon a myriad of timing relationships and timing constraints on changing of

inputs, requiring delay control of the designed circuits. The use of clocks in synchro-

nous circuits, however, is troublesome in terms of both speed of operation and power

consumption. In response to this, more contemporary methods for asynchronous cir-

cuit design are being explored in a number of research and advanced development

projects. These methods use significantly different design approaches that more easily

insure correct operation compared to typical textbook approaches.

We focus here on solving problems that arise for the synchronous circuit

designer in dealing with asynchronous circuits or asynchronous interfaces. The inter-

faces to be considered are shown in Figure 4-39.

The problems of driving an asynchronous circuit with the outputs of a synchro-

nous circuit as in Figure 4-39(a) are due primarily to combinational circuit hazards.

This is important because we deal with asynchronous circuits as components, partic-

ularly in the memory and input– output regions of systems. Because of space limita-

tion, however, this problem is treated in a Companion Website supplement.

COMBINATIONAL HAZARDS A supplement entitled Combinational Hazards is avail-

able on the text Companion Website.

We next consider the problem of an asynchronous circuit, driving a synchro-

nous circuit as shown in Figure 4-39(b). The asynchronous circuit can be as simple as

a latch that deals with a phenomenon called contact bounce generated by manually

operated pushbuttons or switches. It is obvious that signals originating from a push-

button are not synchronized with an internal electronic clock and can occur at any

time. The same problem can also come from a synchronous circuit having a clock

signal X unrelated to the clock Y of the circuit being driven as in Figure 4-39(c). In

such a case, the signals entering the driven circuit are asynchronous with respect to

4-12 / Synchronization and Metastability 287

clock Y. Both of these cases can cause circuit malfunction, so we offer the synchro-

nizing of such signals as a solution. In line with the perverse nature of asynchronous

behavior, this solution isn’t perfect, but suffers from a troublesome phenomenon

referred to as metastability, a topic treated briefly here.

Our final topic that affects the synchronous circuit designer, but not in an inter-

face problem, is “I thought this was a synchronous circuit; after all, it does have a

clock controlling state changes.” Here we illustrate how a circuit designer can easily

fall into the pitfall of unknowingly producing an asynchronous design, bringing into

play timing- dependent factors controlling correct or incorrect operation.

4-12 SYNCHRONIZATION AND METASTABILITY

We now turn our attention to asynchronous signals driving synchronous circuits, the

case shown in Figures 4-39(b) and (c). Initially, we look at the problem that occurs if

an asynchronous signal is applied directly to the synchronous circuit without special

treatment. Then we offer a solution but find that there is an additional problem with

the solution, which we also attempt to remedy.

The circuit in Figure 4-40 can illustrate erroneous behavior due to an input sig-

nal not synchronized with the clock. The circuit is initialized by using the Reset sig-

nal which sets the state of the circuit to S0 (y0, y1, y2 = 1, 0, 0). As long as RDY = 1,

the circuit cycles through the states S0 (1, 0, 0) and S1 (0, 1, 0) and S2(0, 0, 1). If

Synchronous
circuit

Asynchronous
circuit

Asynchronous
circuit

Synchronous
circuit

Synchronous
circuit

Synchronous
circuit

(a) Synchronous to asynchronous

Asynchronous signals

Clock X Clock Y

(b) Asynchronous to synchronous

(c) Synchronous circuits with unrelated clocks

Asynchronous signals

 FIGURE 4-39
 Examples of Synchronous/Asynchronous Interfaces

288 CHAPTER 4 / SEQUENTIAL CIRCUITS

RDY = 0, then the circuit waits in state S0 until RDY = 1 causes it to go to state S1.

Also, the state can change from S1 to S2 and from S2 to S0 with RDY = 0. All other

combinations of state variables are invalid during the normal operation of the

circuit.

Now suppose that RDY is asynchronous with respect to Clock. This means that

it can change any time during the clock period. In Figure 4-41(a), the signal RDY
changes well away from the positive clock edge, so that the setup and hold times for

 flip- flops y0 and y1 are easily met. The circuit operates normally. When RDY goes to

0 and the circuit reaches state S0, it waits in state S0 until RDY goes to 1. At the next

positive clock edge, the stage changes to S1. The circuit then proceeds to state S2 and

back to S0.

In Figures 4-41(b) and (c), the change in signal RDY from 0 to 1 reaches two

 flip- flops. The change arrives at the flip- flop inputs very near the positive clock edge

within the setup- time, hold- time interval. This violates the specified operating condi-

tions of the flip- flops. Instead of responding as if they correctly saw opposite values

at their D inputs, the flip- flops may respond as if they saw the same inputs yielding

circuit states (0, 0, 0) or (1, 1, 0).

In Figure 4-41(b), y0 resets to 0, but y1 fails to set to 1, giving state (0, 0, 0).

Since there is no 1 to circulate among the flip- flops, the state remains at (0, 0, 0). The

circuit is locked in this state and has failed.

In Figure 4-41(c), y1 sets and y0 fails to reset, giving state (1, 1, 0). There are

now two 1s circulating among the flip- flops, giving state sequence 110, 011, 101. These

(a) State diagram

(b) Logic diagram

Reset

Clock

RDY
Z

S
D

C

y0
D

C
R R

y1
D

C

y2

RDY � 0, 1
S2/0

RDY � 0

RDY � 1

RDY � 0, 1

S0/1 S1/0

 FIGURE 4-40
 Example Circuit for Illustration of Synchronization

4-12 / Synchronization and Metastability 289

are all invalid states and give an incorrect output sequence. Thus, the circuit has again

failed. Whether or not these failures occur depends upon circuit delays, the setup

and hold times, and the detailed behavior of the flip- flops. Since none of these can be

tightly controlled, we need a solution to prevent these failures that is independent of

these parameters. Such a solution is the use of a synchronizing flip- flop.

SYNCHRONIZING FLIP- FLOP In Figure 4-42(a), a D flip- flop has been added to the

example circuit. The asynchronous signal RDY enters the D flip- flop and RDY_S,

its output, is synchronous with signal Clock in the sense that RDY_Schanges one

 flip- flop delay after the positive edge. Since the asynchronous signal RDY enters the

circuit through this single synchronizing flip- flop, the behavior exhibited when RDY
reached two flip- flops is avoided. RDY_S cannot cause such behavior, since it does

not change during the setup- time, hold- time interval for the normal circuit flip- flops.

Clock

RDY

y0

(a) Correct circuit response to RDY

(b) Incorrect circuit response to RDY: invalid state (0, 0, 0) results.

y0 resets

y1 fails to set

y0 fails to reset

y1 sets

(c) Incorrect circuit response to RDY: invalid state (1, 1, 0), (0, 1, 1) and (1, 0, 1) results.

y1

y2

Clock

RDY

y0

y1

y2

Clock

RDY

y0

y1

y2

 FIGURE 4-41
 Behavior of Example Circuit

290 CHAPTER 4 / SEQUENTIAL CIRCUITS

A remaining question is, how does the synchronizing flip- flop behave when

RDY changes during the setup- time, hold- time interval. Basically, either the flip- flop

sees the change or it doesn’t. If it doesn’t see it, then the change is seen at the next

positive clock edge, one clock period later. Note that this can happen only if the

changes in the asynchronous signal are separated by a minimum- interval. It is the

designer’s responsibility to insure that this minimum interval specification is met by

the asynchronous input. The behavior discussed in this paragraph is illustrated in

Figure 4-43. The case in which the change in RDY is immediately sensed by the

 flip- flop and the case in which RDY is not sensed until the next positive clock edge

are shown. In the latter case, the response to the change in RDY is delayed by an

extra clock period. Since RDY is asynchronous, the fact that the times at which state

changes occur due to changes in RDY may vary by a clock period should be of no

consequence. If it is critical, then the circuit specifications may not be realizable.

METASTABILITY At this point, it seems as if we have a solution that deals with the

 asynchronous- input- signal problem. Unfortunately, our solution is imperfect. Latch-

es used to construct flip- flops actually have three potential states: stable 1, stable

0, and metastable. These states can best be described by the mechanical analogy in

Figure 4-44. The state of the latch is represented by the position of a ball on a hilly

surface. If the ball is in the left valley, then the state is a 0. If the ball is in the right val-

ley, then the state is a 1. In order to move the ball between the valleys, say from state

0 to state 1, it is necessary to push the ball up the hill and over the top. This requires a

certain amount of energy expenditure. If the energy runs out with the ball in position

M, it just stays there, halfway between 0 and 1. In fact, however, it will eventually, at

some nondeterministic time, go on to 1 or back to 0, due to some mechanical “noise”

such as wind, a minor earthquake, or disturbance by some creature. The analogy

of this situation in a latch is as follows. When an input to the cross- coupled pair of

latch gates changes in just the right timing relationship with the clock edge, a narrow

pulse can be generated. The pulse may have just enough energy to change the latch

Reset

Clock

S
D

C

y0

D

C
R

RDY_SRDY

D

C
R R

y1
D

C

y2

 FIGURE 4-42
 Example Circuit with Synchronizing D Flip- flop Added

4-12 / Synchronization and Metastability 291

state to the metastable point where both gates have equal output values with volt-

ages between 1 and 0. Like the mechanical system, the latch and hence the flip- flop

containing it will eventually go to either 0 or 1 due to a tiny electronic “noise” distur-

bance. The length of time it remains in the metastable state is nondeterministic. The

interval during which a change in the input will cause metastable behavior is very

narrow, of the order of a few tens of picoseconds. Thus the behavior is unlikely, but

it can happen. When it does, it is unknown how long the metastable state will persist.

Clock

RDY

RDY_S

y0

(a) Circuit response to RDY with sensing at the Clock edge where RDY changes

(b) Circuit response to RDY with sensing at the next Clock edge where RDY changes

y1

y2

Clock

RDY

RDY_S

y0

y1

y2

 FIGURE 4-43
 Behavior of Example Circuit with Synchronizing Flip- flop on RDY

M

0 1

 FIGURE 4-44
 Mechanical Analogy for Latch States.

292 CHAPTER 4 / SEQUENTIAL CIRCUITS

If it does persist for a clock period, then the two flip- flops in our example will see a

value on the synchronizing flip- flop output RDY_S that is between 0 and 1. Response

by the two flip- flops to such a value is unpredictable, so there is a good chance that

the circuit will fail.

This phenomenon was discovered by two electrical engineering faculty mem-

bers at Washington University in St. Louis. In the late 1960s, the second author of

this text attended a presentation they made at Wisconsin. They had pictures of oscil-

loscope traces showing the metastable behavior. At about the same time, a commer-

cial computer manufacturer was experiencing infrequent, unexplained failures in

their new, faster computers. You can probably guess the cause! The nature of meta-

stable behavior for a particular CMOS D flip- flop used as a synchronizing flip- flop is

shown in Figure 4-45; this data was gathered over 30 minutes. The normal delay from

the Clock to Q is 13 ns as indicated by the dotted line. But by carefully controlling

the timing of the changes in D and the Clock, the flip- flop is forced into its metasta-

ble region. In that region, the best flip- flop delay seen is 30 ns and the worst is 45 ns.

Thus, if the clock period is less than 45 ns, a metastable event that can adversely

affect the behavior of two or more flip- flops within the circuit being driven by the

synchronizing flip- flop occurs many times in 30 minutes. Actually, although not

shown in the figure, the changes in Q closer to 30 ns are much more frequent than

those close to 45 ns. So the shorter the clock period, the worse the problem gets. If

the sampling interval were 50 hours instead of 30 minutes, there would be only a few

events appearing as late as 55 ns. The value between 1 and 0 that occurs for a time

D

Clock

Q

13 ns

45 ns

30 ns

 FIGURE 4-45
 Metastable Behavior

4-13 / Synchronous Circuit Pitfalls 293

inside the flip- flop in this experiment is converted to a longer delay by the output

buffer of the flip- flop and so is not visible at the output.

So what can be done about this problem? Many solutions have been proposed,

some of them ineffective. A simple one is to use a series of synchronizing flip- flops,

i.e., a small shift register. The likelihood of the second flip- flop in the series going

metastable because the first one applies a metastable or delayed input to it is less

than that of the first flip- flop going metastable, and so on. Some commercial designs

have used as many as six flip- flops in series to deal with this problem. More common

is the use of three or so flip- flops in series. The more flip- flops, the more the circuit

response to a change is delayed and the less likely the circuit is to fail due to metasta-

bility. But the probability never goes to zero. Some degree of uncertainty for incor-

rect operation always remains, however small. For a much more detailed discussion

of metastability, see Wakerly’s Digital Design: Principles and Practices, 4th ed., 2006.

4-13 SYNCHRONOUS CIRCUIT PITFALLS

Just because there is a clock does not mean that a circuit is synchronous. For example,

in a ripple counter, such as in Figure 6-12, the clock drives at most one flip- flop clock

input directly. All other clock inputs driving the flip- flops are actually state variables.

So the changes in the state variables that are the outputs of these flip- flops are not

synchronous with the clock. For a 16-bit ripple counter, in the worst case where all

 flip- flops change state, the most significant bit changes 16 flip- flop delays after the

clock edge on the first flip- flop.

Also, consider the synchronous counter in Figure 4-46. The 4-bit synchronous

binary counter counts up by 1 whenever a positive edge occurs on Clock. When the

count reaches 1111, the count up results in 0000. The binary counter also has an

Asynchronous reset with drives the four asynchronous reset inputs to the internal

 flip- flops. When the reset shown becomes 0, it clears all four flip- flops to 0 with only

the inherent time delays, i.e., independent of the positive clock edge. Due to the

attached NAND gate and its connections, when the count become 0110 (6) in

response to a positive edge, the NAND produces a 0, causing the four flip- flops to be

cleared, giving 0000 (0). So the counter is supposed to count 0, 1, 2, 3, 4, 5, 0, But

suppose that A2 goes to 0 a bit earlier than A1. Then the output of the NAND can go

Clock
1

A3 A2 A1 A0

Binary counterCount
Asynchronous
reset

 FIGURE 4-46
 Example of an Asynchronous Circuit

294 CHAPTER 4 / SEQUENTIAL CIRCUITS

to a 1 before all flip- flops in the counter have been reliably reset. If flip- flop A1 is

slow enough and A2 fast enough, the state 0010 could result instead of 0000. We

have actually seen this type of incorrect behavior in the laboratory. Because this

counter “kills itself” back to value zero, it is called a suicide counter. Unfortunately,

using it is more like committing “job suicide.”

The suicide counter is just one example of a sneaky class of asynchronous cir-

cuits posing as synchronous ones. If you use the direct inputs, clear or preset, to a

 flip- flop for anything other than power- up reset and overall system reset, you have

designed an asynchronous circuit, because flip- flop state changes are no longer occur-

ring just in response to the clock signal present at the flip- flop clock input. Further,

with the complexity of flip- flops plus whatever logic you may have added, you have

no idea what sort of hazard problems or other timing problems you may have.

In summary, there are certainly situations where you must use asynchronous

circuits to get the desired behavior. But these situations are far fewer than the cases

where someone thinks they need an asynchronous circuit or a synchronous circuit

that is really asynchronous. So try to avoid them whenever you can.

As for synchronizing flip- flops, their use is essential in making the transition

from asynchronous signals to a synchronous circuit. Care must be taken to deal with

metastability. There is a lot more to synchronization than we have presented here.

For example, if the timing of a set of asynchronous signals is known relative to

another particular asynchronous signal, only the latter signal may need to be

synchronized.

4-14 CHAPTER SUMMARY

Sequential circuits are the foundation upon which most digital design is based.

 Flip- flops are the basic storage elements for synchronous sequential circuits. Flip-

flops are constructed of more fundamental elements called latches. By themselves,

latches are transparent and, as a consequence, are very difficult to use in synchro-

nous sequential circuits using a single clock. When latches are combined to form

 flip- flops, nontransparent storage elements very convenient for use in such circuits

are formed. Two triggering methods are used for flip- flops: pulse and edge triggering.

In addition, there are a number of flip- flop types, including D, SR, JK, and T.

Sequential circuits are formed using these flip- flops and combinational logic.

Sequential circuits can be analyzed to find state tables and state diagrams that repre-

sent the behavior of the circuits. Also, analysis can be performed by using logic

simulation.

These same state diagrams and state tables can be formulated from verbal

specifications of digital circuits. By assigning binary codes to the states and finding

 flip- flop input equations, sequential circuits can be designed. The design process also

includes issues such as finding logic for the circuit outputs, resetting the state at

 power- up, and controlling the behavior of the circuit when it enters states unused in

the original specification. Finally, logic simulation plays an important role in verify-

ing that the circuit designed meets the original specification.

In order to deal with more complex, realistic designs, state- machine diagrams

and state tables are introduced. The goal of this notation is to minimize the

References 295

complexity of descriptions, maximize the flexibility of representation, permit the use

of default conditions, and provide a model that facilitates modeling of pragmatic

designs. In addition, this model builds toward the use of hardware description lan-

guages to model sequential circuits.

As an alternative to the use of logic diagrams, state diagrams, and state tables,

sequential circuits can be defined in VHDL or Verilog descriptions. These descrip-

tions provide a powerful, flexible approach to sequential circuit specification for

both simulation and automatic circuit synthesis. These representations involve pro-

cesses that provide added descriptive power beyond the concurrent assignment

statements of VHDL and the continuous assignment statement of Verilog. The pro-

cesses, which permit program- like coding and use if- then- else and case conditional

statements, can also be used to efficiently describe combinational logic.

Finally, the timing parameters associated with flip- flops were presented, and

the relationship between path delay in sequential circuits and clock frequency was

established. Following this description, the important topics of synchronization of

asynchronous signals, and metastability in synchronizing circuits were covered.

REFERENCES

 1. Bhasker, J. A Verilog HDL Primer, 2nd ed. Allentown, PA: Star Galaxy Press,

1999.

 2. Ciletti, M. Advanced Digital Design with Verilog HDL. Upper Saddle River,

NJ: Pearson Prentice Hall, 2003.

 3. Ciletti, M. Starter’s Guide to Verilog 2001. Upper Saddle River, NJ: Pearson

Prentice Hall, 2004.

 4. Clare, C. R. Designing Logic Systems Using State Machines. New York:

 McGraw- Hill Book Company, 1973.

 5. High- Speed CMOS Logic Data Book. Dallas: Texas Instruments, 1989.

 6. IEEE Standard VHDL Language Reference Manual (ANSI/IEEE Std 1076-

1993; revision of IEEE Std 1076-1987). New York: The Institute of Electrical

and Electronics Engineers, 1994.

 7. IEEE Standard Description Language Based on the Verilog Hardware
Description Language (IEEE Std 1364-1995). New York: The Institute of

Electrical and Electronics Engineers, 1995.

 8. Katz, R. H. and G. Borriello. Contemporary Logic Design, 2nd ed. Upper

Saddle River, NJ: Pearson Prentice Hall, 2005.

 9. Mano, M. M. Digital Design, 3rd ed. Upper Saddle River, NJ: Pearson Prentice

Hall, 2002.

10. Palnitkar, S. Verilog HDL: A Guide to Digital Design and Synthesis, 2nd ed.

Upper Saddle River, NJ: Pearson Prentice Hall, 2003.

11. Pellerin, D. and D. Taylor. VHDL Made Easy! Upper Saddle River, NJ:

Prentice Hall PTR, 1997.

12. Smith, D. J. HDL Chip Design. Madison, AL: Doone Publications, 1996.

296 CHAPTER 4 / SEQUENTIAL CIRCUITS

13. Stefan, S. and L. Lindh. VHDL for Designers. London: Prentice Hall Europe,

1997.

14. Thomas, D. and P. Moorby. The Verilog Hardware Description Language,

5th ed. New York: Springer, 2002.

15. Wakerly, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle

River, NJ: Pearson Prentice Hall, 2006.

16. Yalamanchili, S. VHDL Starter’s Guide, 2nd ed. Upper Saddle River, NJ:

Pearson Prentice Hall, 2005.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

4-1. Perform a manual or computer- based logic simulation similar to that given in

Figure 4-5 for the S R latch shown in Figure 4-6. Construct the input sequence,

keeping in mind that changes in state for this type of latch occur in response

to 0 rather than 1.

 4-2. Perform a manual or computer- based logic simulation similar to that given in

Figure 4-5 for the SR latch with control input C in Figure 4-7. In particular,

examine the behavior of the circuit when S and R are changed while C has the

value 1.

 4-3. A popular alternative design for a positive- edge- triggered D flip- flop is

shown in Figure 4-47. Manually or automatically simulate the circuit to

determine whether its functional behavior is identical to that of the circuit in

Figure 4-10.

C

D

S

R

Q

Q

 FIGURE 4-47
 Circuit for Problem 4-3

Problems 297

 4-4. Clock and D waveforms, a D latch and an edge- triggered D flip- flop are

shown in Figure 4-48. For both the latch and the flip- flop, carefully sketch the

output waveform, Qi, obtained in response to the input waveforms. Assume

that the propagation delay of the storage elements is negligible. Initially, all

storage elements store 0.

 4-5. A sequential circuit with a D flip- flop A, two inputs X and Y, and one output

Z is specified by the following input equations:

Z = AY + X YA, + AX

(a) Draw the logic diagram of the circuit.

(b) Derive the state table.

(c) Derive the state diagram.

(d) Is this a Mealy or a Moore machine?

 4-6. A sequential circuit with two D flip- flops A and B and input X and output Y is

specified by the following input equations:

Y = A + B, DA = X + B, DB = X # A

(a) Draw the logic diagram of the circuit.

(b) Derive the state table.

(c) Derive the state diagram.

(d) Is this a Mealy or a Moore machine?

 4-7. *A sequential circuit has three D flip- flops A, B, and C, and one input X. The

circuit is described by the following input equations:

D

C

Triggered D

D

C

D with 1 Control

Q1

Q2

D

C

 FIGURE 4-48
 Waveforms and Storage Element for Problem 4-4

298 CHAPTER 4 / SEQUENTIAL CIRCUITS

 DA = (BC + BC)X + (BC + B C)X

 DB = A

 DC = B

(a) Derive the state table for the circuit.

(b) Draw two state diagrams, one for X = 0 and the other for X = 1.

 4-8. A sequential circuit has one flip- flop Q, two inputs X and Y, and one output S.

The circuit consists of a D flip-flop with S as its output and logic

implementing the function

D = S ⊕(X + Y)

with D as the input to the D flip- flop. Derive the state table and state dia-

gram of the sequential circuit.

 4-9. Starting from state 00 in the state diagram of Figure 4-15(a), determine the

state transitions and output sequence that will be generated when an input

sequence of 10011011110 is applied.

 4-10. Draw the state diagram of the sequential circuit specified by the state table in

Table 4-14.

 TABLE 4-14
 State Table for Circuit of Problem 4-10

Present State Inputs Next State Output

A B X Y A B Z

0 0 0 0 1 0 0
0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 0 1 1 1 1 1

0 1 0 0 0 1 1

0 1 0 1 0 0 0

0 1 1 0 0 0 1

0 1 1 1 0 0 0

1 0 0 0 1 1 1

1 0 0 1 0 1 1

1 0 1 0 0 1 0

1 0 1 1 1 0 0

1 1 0 0 0 0 0

1 1 0 1 0 1 0

1 1 1 0 1 0 1

1 1 1 1 1 1 1

 4-11. A sequential circuit has two D flip- flops, one input X, and one output Y. The

logic diagram of the circuit is shown in Figure 4-49. Derive the state table and

state diagram of the circuit.

 4-12. A sequential circuit is given in Figure 4-13.

(a) Add the necessary logic and/or connections to the circuit to provide an

asynchronous reset to state A = 1, B = 0 for signal Reset = 0.

(b) Add the necessary logic and/or connections to the circuit to provide a

synchronous reset to state A = 0, B = 0 for signal Reset = 1.

 4-13. *Design a sequential circuit with two D flip- flops A and B and one

input X. When X = 0, the state of the circuit remains the same. When X = 1,

the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to

00, and then repeats.

 4-14. The state diagram for a sequential circuit appears in Figure 4-50.

 FIGURE 4-49
Circuit for Problem 4-11, Problem 4-40, Problem 4-41, Problem 4-49, Problem 4-50, and
Problem 4-59

00/0, 11/0
01/0, 10/1

00/0, 01/0

00/1,01/0 01/1, 10/0

10/1, 11/0

00/1, 11/1

10/1, 11/1

A B

C D

Reset

X1X2/Z

 FIGURE 4-50
 State Diagram for Problem 4-14

Problems 299

300 CHAPTER 4 / SEQUENTIAL CIRCUITS

(a) Find the state table for the circuit.

(b) Make a state assignment for the circuit using 2-bit codes and find the

encoded state table.

(c) Find an optimized circuit implementation using D flip- flops, NAND

gates, and inverters.

(d) Repeat parts (b) and (c) using one- hot encoding for the state assignment.

 4-15. The state diagram for a sequential circuit appears in Figure 4-51.

(a) Find the state table for the circuit.

(b) Make a state assignment for the circuit using 3-bit codes for the six states;

make one of the code bits equal to the output to save logic, and find the

encoded state table. The next states and outputs are don’t cares for the

two unused state codes.

(c) Find an optimized circuit implementation using D flip- flops, NAND

gates, and inverters.

(d) Repeat parts (b) and (c) using one- hot encoding for the state assignment.

 4-16. The circuit given in Figure 4-52 is to be redesigned to cut its cost.

(a) Find the state table for the circuit and replace the state codes with

 single- letter identifiers. States 100 and 111 were unused in the original

design.

(b) Check for and combine equivalent states.

(c) Make a state assignment such that the output is one of the state variables.

(d) Find the gate- input costs of the original circuit and your circuit, assuming

that the gate- input cost of a D flip- flop is 14. Is the cost of the new circuit

reduced?

0 B

C D

Reset

E F

1
0

1

0

1

0

1
0

1

0
1

0

0

11

1

Input X
Output Z

A
0

 FIGURE 4-51
 State Diagram for Problem 4-15

 4-17. A sequential circuit for a luggage lock has ten pushbuttons labeled 0, 1, 2, 3, 4, 5,

6, 7, 8, and 9. Each pushbutton 0 through 9 produces a 1 on Xi, i = 0 through 9,

respectively, with all other values on variable Xj, j ≠ i, equal to 0. Also, these

ten pushbuttons produce a positive pulse on the clock C for clocking the

 flip- flops in the circuit. The circuitry that produces the Xi signals and the clock

C has already been designed. The lock opens in response to a sequence of

four Xi values, i = 0, . . . , 9, set by the user. The logic for connecting the four

selected Xi values to variables X
a
, X

b
, X

c
, and X

d
 has also been designed. The

circuit is locked and reset to its initial state by pushing pushbutton Lock,

which provides L, the asynchronous reset signal for the circuit. The lock is to

unlock in response to the sequence X
a
, X

b
, X

c
, X

d
, regardless of all past inputs

applied to it since it was reset. The circuit has a single Moore type output U
which is 1 to unlock the lock, and 0 otherwise. Design the circuit with inputs

X
a
, X

b
, X

c
, and X

d
, reset L, clock C, and output U. Use a one- hot code for the

state assignment. Implement the circuit with D flip- flops and AND gates, OR

gates, and inverters.

 4-18. *A serial 2s complementer is to be designed. A binary integer of arbitrary

length is presented to the serial 2s complementer, least significant bit first, on

input X. When a given bit is presented on input X, the corresponding output

bit is to appear during the same clock cycle on output Z. To indicate that a

sequence is complete and that the circuit is to be initialized to receive another

sequence, input Y becomes 1 for one clock cycle. Otherwise, Y is 0.

Clock

Z

X

Reset

D

C
R

D

C
R

D

C
R

Y1

Y2

Y1

Y3

Y2

Y2

Y3

Y1

Y3

Y2
Y3

Y3

 FIGURE 4-52
 Circuit for Problem 4-16

Problems 301

302 CHAPTER 4 / SEQUENTIAL CIRCUITS

(a) Find the state diagram for the serial 2s complementer.

(b) Find the state table for the serial 2s complementer.

(c) Write an HDL description for the state machine for the

 using Example 4-13 (VHDL) or Example 4-15 (Verilog)

as a template.

 4-19. A serial odd parity generator is to be designed. A binary sequence of

arbitrary length is presented to the parity generator on input X. When a given

bit is presented on input X, the corresponding odd parity bit for the binary

sequence is to appear during the same clock cycle on output Z. To indicate

that a sequence is complete and that the circuit is to be initialized to receive

another sequence, input Y becomes 1 for one clock cycle. Otherwise, Y is 0.

(a) Find the state diagram for the serial odd parity generator.

(b) Find the state table for the serial odd parity generator.

(c) Write an HDL description for the state machine for the odd parity

generator using Example 4-13 (VHDL) or Example 4-15 (Verilog) as a

template.

 4-20. A Universal Serial Bus (USB) communication link requires a circuit that

produces the sequence 00000001. You are to design a synchronous sequential

circuit that starts producing this sequence for input E = 1. Once the

sequence starts, it completes. If E = 1, during the last output in the sequence,

the sequence repeats. Otherwise, if E = 0, the output remains constant at 1.

(a) Draw the Moore state diagram for the circuit.

(b) Find the state table and make a state assignment.

(c) Design the circuit using D flip- flops and logic gates. A reset should be

included to place the circuit in the appropriate initial state at which

E is examined to determine if the sequence of constant 1s is to be

produced.

 4-21. Repeat Problem 4-20 for the sequence 01111110 that is used in a different

communication network protocol.

 4-22. +The sequence in Problem 4-21 is a flag used in a communication network

that represents the beginning of a message. This flag must be unique. As a

consequence, at most five 1s in sequence may appear anywhere else in the

message. Since this is unrealistic for normal message content, a trick called

zero insertion is used. The normal message, which can contain strings of 1s

longer than 5, enters input X of a sequential zero- insertion circuit. The circuit

has two outputs, Z and S. When a fifth 1 in sequence appears on X, a 0 is

inserted in the stream of outputs appearing on Z and the output S = 1,

indicating to the circuit supplying the zero- insertion circuit with inputs that it

must stall and not apply a new input for one clock cycle. This is necessary

because the insertion of 0s in the output sequence causes it to be longer than

the input sequence without the stall. Zero insertion is illustrated by the

following example sequences:

Sequence on X without any stalls: 01111100111111100001011110101

Sequence on X with stalls: 0111111001111111100001011110101

Sequence on Z: 0111110001111101100001011110101

Sequence on S: 0000001000000010000000000000000

(a) Find the state diagram for the circuit.

(b) Find the state table for the circuit and make a state assignment.

(c) Find an implementation of the circuit using D flip- flops and logic gates.

 4-23. In many communication and networking systems, the signal transmitted on

the communication line uses a non- return- to- zero (NRZ) format. USB uses a

specific version referred to as non- return- to- zero inverted (NRZI). A circuit

that converts any message sequence of 0s and 1s to a sequence in the NRZI

format is to be designed. The mapping for such a circuit is as follows:

(a) If the message bit is a 0, then the NRZI format message contains an

immediate change from 1 to 0 or from 0 to 1, depending on the current

NRZI value.

(b) If the message bit is a 1, then the NRZI format message remains fixed at

0 or 1, depending on the current NRZI value.

This transformation is illustrated by the following example, which assumes

that the initial value of the NRZI message is 1:

Message: 10001110011010

NRZI Message: 10100001000110

(a) Find the Mealy model state diagram for the circuit.

(b) Find the state table for the circuit and make a state assignment.

(c) Find an implementation of the circuit using D flip- flops and logic gates.

 4-24. +Repeat Problem 4-23, designing a sequential circuit that transforms an

NRZI message into a normal message. The mapping for such a circuit is as

follows:

(a) If a change from 0 to 1 or from 1 to 0 occurs between adjacent bits in the

NRZI message, then the message bit is a 0.

(b) If no change occurs between adjacent bits in the NRZI message, then the

message bit is a 1.

 4-25. A pair of signals Request (R) and Acknowledge (A) is used to coordinate

transactions between a CPU and its I/O system. The interaction of these signals

is often referred to as a “handshake.” These signals are synchronous with the

clock and, for a transaction, are to have their transitions always appear in the

order shown in Figure 4-53. A handshake checker is to be designed that will

verify the transition order. The checker has inputs, R and A, asynchronous reset

signal, RESET, and output, Error (E). If the transitions in a handshake are in

order, E = 0. If the transitions are out of order, then E becomes 1 and

remains at 1 until the asynchronous reset signal (RESET = 1) is applied to

the CPU.

Problems 303

304 CHAPTER 4 / SEQUENTIAL CIRCUITS

(a) Find the state diagram for the handshake checker.

(b) Find the state table for the handshake checker.

 4-26. A serial sequence detector is to be designed for some serial communication

line that is able to detect a bit pattern of three consecutive 1s. The circuit is

connected with serial communication line and has output Z and input X.

When the input has three consecutive 1s, then the output Z = 0; in all other

case, it will be zero. Once the output Z = 1, it will remain in 1 state until some

zero comes. Whenever X = 0, the circuit reset. The circuit always remains in 0

states in all other bit sequence condition. Say after a bit sequence of 0110, the

circuit will go to initial state at the end of the last zero, i.e., whenever it detects

some zero.

(a) Find the state diagram for the serial leading-1s detector.

(b) Is this a Mealy or a Moore machine.

 4-27. *A sequential circuit has two flip- flops A and B, one input X, and one

output Y. The state diagram is shown in Figure 4-54. Design the circuit with D
 flip- flops using a one- hot state assignment.

R

A

E

CLK

 FIGURE 4-53
 Signals for Problem 4–25

0

1

00/1
0

1

01/0

0

11/0

0

10/0

1

1

 FIGURE 4-54
 State Diagram for Problem 4–27

 4-28. Repeat Problem 4-27 with D flip- flops using a Gray- code assignment.

 4-29. +The state table for a 3-bit twisted ring counter is given in Table 4-15. This

circuit has no inputs, and its outputs are the uncomplemented outputs of the

 flip- flops. Since it has no inputs, it simply goes from state to state whenever a

clock pulse occurs. It has an asynchronous reset that initializes it to state 000.

(a) Design the circuit using D flip- flops and assuming that the unspecified

next states are don’ t- care conditions.

(b) Add the necessary logic to the circuit to initialize it to state 000 on

 power- up master reset.

(c) In the subsection “Designing with Unused States” of Section 4-5, three

techniques for dealing with situations in which a circuit accidentally

enters an unused state are discussed. If the circuit you designed in parts

(a) and (b) is used in a child’s toy, which of the three techniques given

would you apply? Justify your decision.

(d) Based on your decision in part (c), redesign the circuit if necessary.

(e) Repeat part (c) for the case in which the circuit is used to control engines

on a commercial airliner. Justify your decision.

(f) Repeat part (d) based on your decision in part (e).

 4-30. Do an automatic logic simulation- based verification of your design in

Problem 4-14. The input sequence used in the simulation should include all

transitions in Figure 4-50. The simulation output should include the input X
and the state variables A, B, and output Z.

 4-31. *Generate a verification sequence for the circuit described by the state table

in Table 4-14. To reduce the length of the simulation sequence, assume that

the simulator can handle X inputs and use X’s whenever possible. Assume

that a Reset input is available to initialize the state to A = 0, B = 0 and that

all transitions in the state diagram must be exercised.

 TABLE 4-15
 State Table for Problem 4-29

Present State Next State

ABC ABC

000 100
100 110

110 111

111 011

011 001

001 000

Problems 305

306 CHAPTER 4 / SEQUENTIAL CIRCUITS

 4-32. Design the circuit specified by Table 4-14 and use the sequence from Problem

4-31 (either yours or the one posted on the text website) to perform an

automatic logic simulation- based verification of your design.

 4-33. The state table for a sequential circuit is given in Table 4-16.

(a) Draw the state diagram for the circuit.

(b) Implement the circuit using D flip- flops and minimal input functions for

each flip- flop. Reset is asynchronous and active low (RESET = 0), and

initializes the state to A = 0, B = 0.

 4-34. Design a negative-edge-triggered flip-flop. The flip flop has three inputs; these

are Data, Clock, and Enable. If, at the negative edge of the clock, the enable

input equals to 0, then the state at Data input is stored in the flip-flop. If, at the

negative edge of clock, Enable is in 1 state, then the current stored value in

the flip-flop is held. Design the flip-flop using only SR latches, AND gates, and

NOT gates.

 4-35. Find a state- machine diagram that is equivalent to the state diagram in

Figure 4-55. Reduce the complexity of the transition conditions as much as

possible. Attempt to make outputs unconditional by changing Mealy outputs

to Moore outputs. Make a state assignment to your state- machine diagram

 TABLE 4-16
 State Table for Problem 4-33

Present State Input Next State Output

A B Y A B Z

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 1

1 1 1 1 0 1

Reset
Input X, Y
Output Z A B DC

01/1, 10/1
00/1, 10/0

10/0, 11/1

00/0, 01/0
00/1, 11/1

00/0,01/101/1, 11/010/0, 11/0

 FIGURE 4-55
 State Diagram for Problem 4–35

and find an implementation for the corresponding sequential circuit using D
 flop- flops, AND gates, OR gates, and inverters.

 4-36. Design the sequential circuit for the state- machine diagram from Problem

4-35. Use a one- hot state assignment, D flip- flops and AND gates, OR gates,

and inverters.

 4-37. (a) Verify that the transitions in the state- machine diagram in Figure 4-27

obey the two transition conditions for state diagrams. (b) Repeat part (a) for

the state-machine diagram in Figure 4-28.

 4-38. *You are to find the state- machine diagram for the following electronic

vending-machine specification. The vending machine sells jawbreaker candy, one

jawbreaker for 25¢. The machine accepts N (nickels = 5¢), D (dimes = 10¢), and

Q (quarters = 25¢). When the sum of the coins inserted in sequence is 25¢ or

more, the machine dispenses one jawbreaker by making DJ equal to 1 and

returns to its initial state. No change is returned DJ equals 0 for all other states.

If anything less than 25¢ is inserted and the CR (Coin Return) pushbutton is

pushed, then the coins deposited are returned through the coin return slot by

making RC equal to 1, after which the machine returns to its initial state. RC
equals 0 in all other states. Use Moore outputs for your design.

 4-39. You are to find the state- machine diagram for the following electronic

 vending- machine specification. The vending machine sells soda for $1.50 per

bottle. The machine accepts only D ($1 bills) and Q (quarters = 25¢). When

the sum of money is greater than $1.50, i.e., two $1 bills, the machine returns

change in the coin return (two quarters). When $1.50 has been paid, the

machine lights an LED to indicate that a soda flavor may be selected. The

choices by pushbutton are C (Cola), L (Lemon soda), O (Orange soda), and

R (Root Beer). When one pushbutton is pushed, the selected soda is

dispensed and the machine returns to its initial state. One other feature is that

an LED comes on to warn the user that two quarters are not available for

change, so if a second $1 bill is inserted, no change will be given.

(a) Find the state- machine diagram for the soda vending machine as

specified.

(b) The specification as given is not very user friendly. Rewrite it to provide a

remedy for every possible situation that the user might encounter in

using the machine.

All files referred to in the remaining problems are available in ASCII form

for simulation and editing on the Companion Website for the text. A VHDL

or Verilog compiler/simulator is necessary for the problems or portions of

problems requesting simulation. Descriptions can still be written, however,

for many of the problems without using compilation or simulation.

 4-40. Write a gate- level structural VHDL description for the circuit from Problem

4-11. Use the VHDL model for a D flip- flop from Figure 4-29. Use the

package func_prims in library lcdf_vhdl for the logic gate components.

Problems 307

308 CHAPTER 4 / SEQUENTIAL CIRCUITS

 4-41. Write a behavioral VHDL description for the circuit from Problem 4-11 using

a process to describe the state diagram.

 4-42. *Although this chapter has introduced VHDL processes to describe

sequential circuits, combinational circuits can also be described using

processes. Write a VHDL description for the multiplexer in Figure 3-25 by

using a process containing a case statement rather than the continuous

assignment statements as shown in Section 3-7.

 4-43. Repeat Problem 4-42 by using a VHDL process containing if- then- else

statements.

 4-44. +Write a VHDL description for the sequential circuit with the state diagram

given by Figure 4-19(d). Include an asynchronous RESET signal to initialize

the circuit to state Init. Compile your description, apply an input sequence

to pass through every transition of the state diagram at least once, and verify

the correctness of the state and output sequence by comparing them to the

state diagram.

 4-45. Write a VHDL description for the circuit specified in Problem 4-14.

 4-46. Write a VHDL description for the circuit specified in Problem 4-15.

 4-47. Write a VHDL description for the state- machine diagram for the batch

mixing system derived in Example 4-10.

 4-48. Write a VHDL description for the state- machine diagram for the jawbreaker

vending machine described in Problem 4-38. You may obtain the

 state- machine diagram by either solving Problem 4-38 or finding its solution

on the textbook website.

 4-49. Write a gate- level structural Verilog description for the circuit from Problem

4-11. Use the Verilog model for a D flip- flop from Figure 4-33.

 4-50. Write a behavioral Verilog description for the circuit from Problem 4-11 using

a process to describe the state diagram.

 4-51. Although this chapter has introduced Verilog processes to describe

sequential circuits, combinational circuits can also be described using

processes. Write a Verilog description for the multiplexer in Figure 3-25 by

using a process containing a case statement rather than the continuous

assignment statements as shown in Section 3-7.

 4-52. *Repeat Problem 4-51 by using a Verilog process containing if- else

statements.

 4-53. +Write a Verilog description for the sequential circuit given by the state

diagram in Figure 4-19(d). Include an asynchronous RESET signal to

initialize the circuit to state Init. Compile your description, apply an input

sequence to pass through every arc of the state diagram at least once, and

verify the correctness of the state and output sequence by comparing them to

the state diagram.

 4-54. Write a Verilog description for the circuit specified in Problem 4-14.

 4-55. Write a Verilog description for the circuit specified in Problem 4-15.

 4-56. Write a Verilog description for the state- machine diagram for the batch

mixing system derived in Example 4-10.

 4-57. Write a Verilog description for the state- machine diagram for the jawbreaker

vending machine derived in Problem 4-38. You may obtain the state- machine

diagram by either solving Problem 4-38 or finding its solution on the textbook

website. In the parameter statement use a one- hot state assignment.

 4-58. A set of waveforms applied to two D flip- flops is shown in Figure 4-56. These

waveforms are applied to the flip- flops shown along with the values of their

timing parameters.

(a) List the time(s) at which there are timing violations in signal D1 for

 flip- flop 2.

(b) List the time(s) at which there are timing violations in signal D2 for

 flip- flop 2.

 4-59. *A sequential circuit is shown in Figure 4-49. The timing parameters for the

gates and flip- flops are as follows:

Inverter: tpd = 0.01 ns

XOR gate: tpd = 0.04 ns

 Flip- flop: tpd = 0 .08 ns, ts = 0 .02 ns, and th = 0 .01 ns

(a) Find the longest path delay from an external circuit input passing

through gates only to an external circuit output.

0 4 8 12 16 20 24 28 32 t(ns)

Clock

D1

D2

ts � 1.0 ns
th � 0.5 ns

ts � 1.0 ns
th � 0.5 ns

D

C

D1

Clock

D

C

D2

Clock

 FIGURE 4-56
 Circuit for Problem 4-58.

Problems 309

310 CHAPTER 4 / SEQUENTIAL CIRCUITS

(b) Find the longest path delay in the circuit from an external input to

positive clock edge.

(c) Find the longest path delay from positive clock edge to output.

(d) Find the longest path delay from positive clock edge to positive clock

edge.

(e) Determine the maximum frequency of operation of the circuit in

megahertz (MHz).

 4-60. Repeat Problem 4-59, assuming that the circuit consists of two copies of the

circuit in Figure 4-49 with input X of the second circuit copy driven by output

Y of the first circuit copy.

 4-61. Write a gate- level HDL description of the circuit from Problem 4-59

including delays for each component. Show that the circuit operates

incorrectly when operated at a frequency greater than the maximum

frequency you found as your answer for Problem 4-59.

 311 311

C H A P T E R

Digital Hardware
Implementation

5

5-1 THE DESIGN SPACE

For a given design, there is typically a target implementation technology that speci-

fies the primitive elements available and their properties. The design space describes

the target technologies and the parameters used to characterize them.

Integrated Circuits

Digital circuits are constructed with integrated circuits. An integrated circuit (abbre-

viated IC) is a silicon semiconductor crystal, informally called a chip, containing the

To this point, we have studied the basics of design of combinational and sequential

understanding of contemporary design. It begins by characterizing logic gates

and circuits with a particular focus on complementary metal oxide semiconductor

(CMOS) technology. Then basic programmable logic device (PLD) technologies are

covered. This coverage includes read- only memories (ROMs), programmable logic

arrays (PLAs), programmable array logic (PAL®), and Field Programmable Gate Array

(FPGA) devices.

forms the foundation for realization of most of the integrated circuits. Finally,

feature is updating of the operating system (OS) stored in programmable ROM in smart

phones and other embedded devices, and the BIOS (Basic Input Output System) in a

laptop computer.

312 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

electronic components for the digital gates and storage elements. The various com-

ponents are interconnected on the chip. The chip is mounted in a ceramic or plastic

container, and connections are welded from the chip to the external pins to form

the integrated circuit. The number of pins may range from 14 on a small IC package

to several hundred on a large package. Each IC has an alphanumeric designation

printed on the surface of the package for identification. Each vendor publishes

datasheets or a catalog containing the description and all the necessary information

about the ICs that it manufactures. Typically, this information is available on vendor

websites.

LEVELS OF INTEGRATION As IC technology has improved, the number of gates present

in a single silicon chip has increased considerably. Customary reference to a pack-

age as being either a small-, medium-, large-, or very- large- scale integrated device

is used to differentiate between chips with just a few internal gates and those with

thousands to hundreds of millions of gates.

 Small- scale integrated (SSI) devices contain several independent primitive

gates in a single package. The inputs and outputs of the gates are connected directly

to the pins in the package. The number of gates is usually less than 10 and is limited

by the number of pins available on the IC.

 Medium- scale integrated (MSI) devices have approximately 10 to 100 gates in a

single package. They usually perform specific elementary digital functions, such as

the addition of four bits. MSI digital functions are similar to the functional blocks

described in Chapter 3.

 Large- scale integrated (LSI) devices contain between 100 and a few thousand

gates in a single package. They include digital systems such as small processors, small

memories, and programmable modules.

 Very- large- scale integrated (VLSI) devices contain several thousand to hun-

dreds of millions of gates in a single package. Examples are complex microprocessor

and digital signal- processing chips. Because of their small transistor dimensions, high

density, and comparatively low cost, VLSI devices have revolutionized digital system

and computer design. VLSI technology enables designers to create complex struc-

tures that previously were not economical to manufacture.

CMOS Circuit Technology

Digital integrated circuits are classified not only by their function, but also by their

specific implementation technology. Each technology has its own basic electronic

device and circuit structures upon which more complex digital circuits and functions

are developed. The specific electronic devices used in the construction of the basic

circuits provide the name for the technology. Currently, silicon- based complementa-

ry metal oxide semiconductor (CMOS) technology dominates due to its high circuit

density, high performance, and low power consumption. Some manufacturers are

now using SOI (silicon on insulator) technology, which is a variant of CMOS in

which an insulating material (silicon dioxide) isolates the transistors from the base

silicon wafer. Alternative technologies based on gallium arsenide (GaAs) and sili-

con germanium (SiGe) are also used selectively for very high- speed circuits.

5-1 / The Design Space 313

So far we have dealt largely with implementing logic circuits in terms of gates.

Here we diverge briefly into electronic circuits made of electronic devices called

transistors that implement the gates. For very high- performance logic or logic with

specialized properties, CMOS electronic- circuit- level design is important, since to

achieve the very highest performance, it is sometimes necessary to design directly

from the Boolean equations to the circuit level, bypassing the logic- gate level. Also,

it is important to realize that there is a circuit design process that is critical to pro-

duction of the logic gates used in design.

CMOS TRANSISTOR The foundation for CMOS technology is the MOS (metal- oxide

semiconductor) transistor. Transistors and the interconnections between them are

fabricated as elements of an integrated circuit die, less formally referred to as a chip.

Each rectangular die is cut from a very thin slice of crystalline silicon called a wafer.

In the most modern fabrication facilities for making integrated circuits, wafers are

typically 300 mm (about one foot) in diameter.

A sketch of a transistor is shown in Figure 5-1(a). In this sketch, the transistor

has been sliced on a vertical plane through the integrated circuit chip on which it lies.

In addition, the fabrication steps that form the interconnections between transistors

and the protective covering over the chip have not yet occurred, leaving the transis-

tor exposed. The substrate is the basic wafer material. The fabrication process has

modified the substrate to be highly conductive in the source and the drain regions of

the transistor. The conductive polysilicon gate has been deposited on top of a very

thin insulating layer of silicon dioxide. The resulting structure consists of two identi-

cal conductive regions, the source and the drain, with a gap in between that lies under

the gate. This gap is referred to as the channel. To give a sense of the size of the tran-

sistor, the channel length in Intel’s most recent technology is 14 nanometers

(14 * 10-9 meters), with 10 nanometer technology expected to be available in the

near future. This ranges from approximately 1/1200 to 1/13000 of the diameter of a

human hair, depending on the variability of the hair size.

In the normal operation of an n- channel MOS transistor, the drain is by defini-

tion at a higher voltage than the source. When the gate voltage is at least the thresh-

old voltage of the transistor above the source voltage, and the drain voltage is

sufficiently above the source voltage, a thin layer of the substrate just below the thin

gate insulation becomes a conducting layer between the source and the drain. This

permits a current to flow between the source and the drain. In this case, the transistor

is said to be ON. If the gate- to- source voltage is less than the threshold voltage, the

channel will be absent, blocking significant current flow. Under this condition, the

transistor is said to be OFF. The use of ON and OFF refers to the present or absence

of current flow between the source and the drain, respectively. Use of this terminol-

ogy brings to mind the ON/OFF behavior of a switch. As a consequence, a switchlike

behavior is a good first- order model for an MOS transistor.

CMOS TRANSISTOR MODELS The behavior of the MOS transistor model depends on

the transistor type. CMOS technology employs two types of transistor: n- channel and

 p- channel. The behavior described in the preceding paragraph is that of an n- channel

transistor. The two transistor types differ in the characteristics of the semiconductor

314 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

S (Source) D (Drain)
G (Gate)

Substrate

X

(b)

G

D

S

X: X

(d)

X:

(c)

(a) Transistor geometry

Transistor symbols and models: n-channel

Transistor symbols and models: p-channel

X:

(f)

X: X

(g)

X

(e)

G

D

S

Channel
length Location of

conducting
layer

 FIGURE 5-1
MOS Transistor, Symbols, and Switch Models

materials used in their implementation and in the mechanism governing the conduc-

tion of a current through them. Most important to us, however, is their difference in

behavior. We will model this behavior using switches controlled by voltages corre-

sponding to logic 0 and logic 1. Such a model ignores the complexity of electronic

devices and captures only logical behavior.

The symbol for an n- channel transistor is shown in Figure 5-1(b). The transistor

has three terminals: the gate (G), the source (S), and the drain (D), as shown. Here

we make the usual assumption that a 1 represents the H voltage range and a 0 rep-

resents the L voltage range. The notion of whether a path for current to flow exists is

easily modeled by a switch, as shown in Figure 5-1(c). The switch consists of two

fixed terminals corresponding to the S and D terminals of the transistor. In addition,

there is a movable contact that, depending on its position, determines whether the

switch is open or closed. The position of the contact is controlled by the voltage

5-1 / The Design Space 315

applied to the gate terminal G. Since we are looking at logic behavior, this control

voltage is represented on the symbol by the input variable X on the gate terminal.

For an n- channel transistor, the contact is open (no path exists) for the input variable

X equal to 0 and closed (a path exists) for the input variable X equal to 1. Such a con-

tact is traditionally referred to as being normally open, that is, open without a posi-

tive voltage applied to activate or close it. Figure 5-1(d) shows a shorthand notation

for the n- channel switch model with the variable X applied. This notation represents

the fact that a path between S and D exists for X equal to 1 and does not exist for X
equal to 0.

The symbol for a p- channel transistor is shown in Figure 5-1(e). The positions

of the source S and drain D are seen to be interchanged relative to their positions in

the n- channel transistor. The voltage applied between the gate G and the source S

determines whether a path exists between the drain and source. Note that the nega-

tion indicator or bubble appears as a part of the symbol. This is because, in contrast

to the behavior of an n- channel transistor, a path exists between S and D in the

 p- channel transistor for input variable X equal to 0 (at value L) and does not exist for

input variable X equal to 1 (at value H). This behavior is represented by the model in

Figure 5-1(f), which has a normally closed contact through which a path exists for X
equal to 0. No path exists through the contact for X equal to 1. In addition, the short-

hand notation of the p- channel switch model with variable X applied is given in

Figure 5-1(g). Since a 0 on input X causes a path to exist through the switch and a 1 on

X produces no path, the literal shown on the switch is X instead of X.

CIRCUITS OF SWITCHES A circuit made up of switches that model transistors can be

used to design CMOS logic. The circuit implements a function F if there is a path

through the circuit for F equal to 1 and no path through the circuit for F equal to 0.

A simple circuit of p- channel transistor switch models is shown in Figure 5-2(a). The

function G
1
 implemented by this circuit can be determined by finding the input com-

binations for which a path exists through the circuit. In order for the path to ex-

ist through G1, both switches must be closed—that is, the path exists for X and Y

both 1. This implies that X = 0 and Y = 0. Thus, the function G1 of the circuit is

X # Y = X + Y—in other words, the NOR function. In Figure 5-2(b), for function G2,

a path exists through the n- channel switch model circuit if either switch is closed—

 that is, for X = 1 or Y = 1. Thus, the function G2 is X + Y.

X: X

(a)

Y: Y

X: X Y: Y

G2G1

(b)

 FIGURE 5-2
Example of Switch Model Circuits

316 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

In general, switches in series give an AND function and switches in parallel an

OR function. (The function for the preceding circuit that models p- channel transis-

tors is a NOR function because of the complementation of the variables and the

application of DeMorgan’s law.) By using these circuit functions to produce paths in

a circuit that attach logic 1 (H) or logic 0 (L) to an output, we can implement a logic

function on the output, as discussed next.

FULLY COMPLEMENTARY CMOS CIRCUITS The subfamily of CMOS circuits that we will

now consider has the general structure shown in Figure 5-3(a). Except during transi-

tions, there is a path to the output of the circuit F either from the power supply +V

(logic 1) or from ground (logic 0). Such a circuit is called static CMOS. In order to

have a static circuit, the transistors must implement circuits of switches for both

function F and function F. In other words, both the 0s and the 1s of the function F
must be implemented with paths through circuits. The switch circuit implementing F
is constructed using p- channel transistors and connects the circuit output to logic 1.

We use p- channel transistors because they conduct logic- 1 values better than logic-

 0 values. The switch circuit implementing F is constructed using n- channel transis-

tors and connects the circuit output to logic 0. Here n- channel transistors are used

 because they conduct logic- 0 values better than logic- 1 values. Note that the same

input variables enter both the p- channel and n- channel switch circuits.

To illustrate a fully complementary circuit, we use transistors corresponding to

the circuits G1 and G2 from Figure 5-2(a) and (b) as the p- channel implementation

of G and the n- channel implementation of G, respectively, in Figure 5-3(b). A path

exists through G1 for X + Y = 1, which means that a path exists in Figure 5-3(b)

from logic 1 to the circuit output, making G = 1 for X + Y = 1. This provides the

1s on the output for the function G. A path exists through G2 for X + Y = 1,

which means that a path exists in Figure 5-3(b) from logic 0 to the output for

X + Y = X + Y = 1. This path makes G = 0 for the complement of X + Y. Thus,

the n- channel circuit implements G. This provides the 0s on the output for func-

tion G. Since both the 1s and 0s are provided for G, we can say that the circuit output

G = X + Y, which is a NOR gate. This is the standard static CMOS implementation

for a NOR.

Since the NAND is just the dual of the NOR, we can implement the CMOS

NAND by simply replacing the + by · in the equations for G1 and G2. In terms of

the switch circuit, the dual of switches in series is switches in parallel and vice versa.

This duality applies to the transistors that are modeled as well, giving the NAND

implementation in Figure 5-3(c). The final gate in Figure 5-3(d) is the implementa-

tion of the NOT.

Note that all of the circuits in Figure 5-3 implement inverting functions under

DeMorgan’s laws. This inversion property is characteristic of CMOS gates. In fact, as

we look at a general design procedure, we assume that functions are implemented

using F = F. This avoids working directly with p- channel switches, which involve

complementing variables. Thus, we will design the n- channel circuit for F and take

the dual to get the p- channel circuit for F. For functions more complex than NAND,

NOR, and NOT, the resulting circuits are called complex gates.

5-1 / The Design Space 317

+
V

lo
gi

c
1

lo
gi

c
0

F

+
V

X Y

+
V

X

+
V

X Y

(a
)

G
en

er
al

 s
tr

uc
tu

re

Fr
om

 G
1

Fr
om

 G
2

F us
in

g
p-

ty
pe

tr
an

si
st

or
s

F us
in

g
n-

ty
pe

tr
an

si
st

or
s

(b
)

N
O

R

G
 =

 X
 +

 Y

(c
)

N
A

N
D

(d
)

N
O

T

X
 �Y

X

X
1

X
2

X
n

 F
IG

U
R

E
 5

-3

F
u

ll
y
 C

o
m

p
le

m
e
n

ta
ry

 C
M

O
S

 G
a
te

 S
tr

u
ct

u
re

 a
n

d
 E

x
a
m

p
le

s

318 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

Design of complex gates, using a general design procedure, and transmission gates

and their applications are covered in the supplement entitled More CMOS Circuit-
 Level Design appearing on the text Companion Website.

Technology Parameters

For each specific implementation technology, there are details that differ in their

electronic circuit design and circuit parameters. The most important parameters

used to characterize an implementation technology follow:

 Fan- in specifies the number of inputs available on a gate.

 Fan- out specifies the number of standard loads driven by a gate output. Maxi-
mum fan- out for an output specifies the fan- out that the output can drive with-

out impairing gate performance. Standard loads may be defined in a variety of

ways depending upon the technology.

Noise margin is the maximum external noise voltage superimposed on a nor-

mal input value that will not cause an undesirable change in the circuit output.

Cost for a gate specifies a measure of its contribution to the cost of the inte-

grated circuit containing it.

Propagation delay is the time required for a change in value of a signal to prop-

agate from input to output. The operating speed of a circuit is inversely related

to the longest propagation delays through the gates of the circuit.

Power consumption (dissipation) is the power drawn from the power supply

and consumed by the gate. The power consumed is dissipated as heat, so the

power dissipation must be considered in relation to the operating temperature

and cooling requirements of the chip. For battery- powered systems such as

smart phones, the power consumption of the integrated circuits will determine

the battery life of the system.

Although all of these parameters are important to the designer, further details on

only selected parameters are provided here. Because of their major importance to

the design process, propagation delay and circuit timing have already been discussed

in Chapters 2 and 4.

 FAN- IN For high- speed technologies, fan- in, the number of inputs to a gate, is of-

ten restricted on gate primitives to no more than four or five. This is primarily due

to electronic considerations related to gate speed. To build gates with large fan- in,

interconnected gates with lower fan- in are used during technology mapping. A map-

ping for a 7-input NAND gate illustrated in Figure 5-4 is made up of two 4-input

NANDs and an inverter.

 FIGURE 5-4
Implementation of a 7-Input NAND Gate Using
NAND Gates with Four or Fewer Inputs

5-1 / The Design Space 319

 FAN- OUT One approach to measuring fan- out is the use of a standard load. Each

input on a driven gate provides a load on the output of the driving gate which is

measured in standard load units. For example, the input to a specific inverter can

have a load equal to 1.0 standard load. If a gate drives six such inverters, then the

 fan- out is equal to 6.0 standard loads. In addition, the output of a gate has a max-

imum load that it can drive, called its maximum fan- out. The determination of the

maximum fan- out is a function of the particular logic family. Our discussion will

be restricted to CMOS, currently the most popular logic family. For CMOS gates,

the loading of a gate output by the integrated circuit wiring and the inputs of other

gates is modeled as a capacitance. This capacitive loading has no effect on the logic

levels, as loading often does for other families. Instead, the load on the output of a

gate determines the time required for the output of the gate to change from L to

H and from H to L. If the load on the output is increased, then this time, called the

transition time, increases. Thus, the maximum fan- out for a gate is the number of

standard loads of capacitance that can be driven with the transition time no greater

than its maximum allowable value. For example, a gate with a maximum fan- out of

8 standard loads could drive up to 8 inverters that present 1.0 standard load on each

of their inputs.

Both fan- in and fan- out must be dealt with in the technology- mapping step of

the design process. Gates with fan- ins larger than those available for technology

mapping can be implemented with multiple gates. Gates with fan- outs that either

exceed their maximum allowable fan- out or produce too high a delay need to be

replaced with multiple gates in parallel or have buffers added at their outputs.

COST For integrated circuits, the cost of a primitive gate is usually based on the

area occupied by the layout cell for the circuit. The layout- cell area is proportional to

the size of the transistors and the wiring in the gate layout. Ignoring the wiring area,

the area of the gate is proportional to the number of transistors in the gate, which in

turn is usually proportional to the gate- input cost. If the actual area of the layout is

known, then a normalized value of this area provides a more accurate estimation of

cost than gate- input cost.

From a system standpoint, as important as the manufacturing cost per primi-

tive logic gate is the overall cost to design, verify, and test the integrated circuit.

Designing an integrated circuit with millions of transistors and bringing it to market

requires a large team of engineers and considerable non- recurring engineering

(NRE) costs, one- time costs that will be incurred no matter how many units of the

product are manufactured. In contrast to NRE costs, production costs are those costs

that are incurred for each unit of the product that is built, based upon the labor,

materials, and energy required to manufacture the unit. The NRE costs are amortized

over the product volume, which is the total number of units that are manufactured.

For a low volume product, the NRE costs of designing the integrated circuit can be

much larger than the per- unit production costs. As an alternative to a custom inte-

grated circuit, low volume products are often based on programmable logic devices,

described in Section 5-2. The NRE costs for the programmable devices are much

lower than for custom integrated circuits, as is the time required to bring the device

to market. The disadvantages of programmable devices relative to custom integrated

circuits include larger propagation delays (lower performance) and higher per- unit

320 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

cost. Consequently, choosing between a fully custom integrated circuit and a pro-

grammable device requires understanding the required performance and the esti-

mated product volume in order to design a product that will be profitable.

5-2 PROGRAMMABLE IMPLEMENTATION TECHNOLOGIES

Thus far, we have introduced implementation technologies that are fixed in the sense

that they are fabricated as integrated circuits or by connecting together integrated

circuits. In contrast, programmable logic devices (PLDs) are fabricated with struc-

tures that implement logic functions and structures that are used to control connec-

tions or to store information specifying the actual logic functions implemented.

These latter structures require programming, a hardware procedure that determines

which functions are implemented. The next four subsections deal with four types of

basic programmable logic devices (PLDs): the read- only memory (ROM), the pro-

grammable logic array (PLA), the programmable array logic (PAL®) device, and the

field programmable gate array (FPGA).

Before treating PLDs, we deal with the supporting programming technologies.

The oldest of the programming technologies include fuses and anti- fuses. Fuses

which are initially CLOSED are selectively “blown out” by a higher than normal

voltage to established OPEN connections. The pattern of OPEN and CLOSED fuses

establishes the connections defining the logic. Anti- fuses, the opposite of fuses, con-

tain a material that is initially nonconducting (OPEN). Anti- fuses are selectively

CLOSED by applying a higher- than- normal voltage to provide a pattern of OPEN

and CLOSED anti- fuses to define the logic.

A third programming technology for controlling connections is mask program-
ming, which is done by the semiconductor manufacturer during the last steps of the

chip fabrication process. Connections are made or not made in the metal layers serv-

ing as conductors in the chip. Depending on the desired function for the chip, the

structure of these layers is determined by the fabrication process.

All three of the preceding connection technologies are permanent. The devices

cannot be reprogrammed, because irreversible physical changes have occurred as a

result of device programming. Thus, if the programming is incorrect or needs to be

changed, the device must be discarded.

The fourth programming technology which is very popular in large VLSI PLDs

is a single- bit storage element driving the gate of an MOS n- channel transistor at the

programming point. If the stored bit value is a 1, then the transistor is turned ON,

and the connection between its source and drain forms a CLOSED path. For the

stored bit value equal to 0, the transistor is OFF, and the connection between its

source and drain is an OPEN path. Since storage element content can be changed

electronically, the device can be easily reprogrammed. But in order to store values,

the power supply must be available. Thus, the storage element technology is volatile—

that is, the programmed logic is lost in the absence of the power- supply voltage.

The fifth and final programming technology we are considering is control of

transistor switching. This popular technology is based on storing charge on a floating

gate. The latter is located below the regular gate within an MOS transistor and is com-

pletely isolated by an insulating dielectric. Stored negative charge on the floating gate

5-2 / Programmable Implementation Technologies 321

makes the transistor impossible to turn ON. The absence of stored negative charge

makes it possible for the transistor to turn ON if a HIGH is applied to its regular gate.

Since it is possible to add or remove the stored charge, these technologies can permit

erasure and reprogramming.

Two approaches using control of transistor switching are called erasable and

electrically erasable. Programming applies combinations of voltage higher- than-

 normal power- supply voltages to the transistor. Erasure uses exposure to a strong

ultraviolet light source for a specified amount of time. Once this type of chip has been

erased, it can be reprogrammed. An electrically erasable device can be erased by a

process somewhat similar to the programming process, using voltages higher than the

normal power- supply value. A third approach is flash technology, which is very widely

used in flash memories. Flash technology is a form of electrically erasable technology

that has a variety of erase options, including the erase of stored charge from individ-

ual floating gates, all of the floating gates, or specific subsets of floating gates.

Some, but not all, programmable- logic technologies have high fan- in gates. In

order to show the internal logic diagram for such technologies in a concise form, we

use a special gate symbology applicable to array logic. Figure 5-5 shows the conven-

tional and array logic symbols for a multiple- input OR gate. Instead of having multiple

input lines to the gate, we draw a single line to the gate. The input lines are drawn per-

pendicular to this line and are selectively connected to the gate. If an x is present at the

intersection of two lines, there is a connection (CLOSED). If an x is not present, then

there is no connection (OPEN). In a similar fashion, we can draw the array logic for an

AND gate.

We next consider three distinct programmable device structures. We will

describe each and indicate which of the technologies is typically used in its imple-

mentation. These types of PLDs differ in the placement of programmable connec-

tions in the AND- OR array. Figure 5-6 shows the locations of the connections for the

three types. Programmable read- only memory (PROM) as well as flash memory has

a fixed AND array constructed as a decoder and programmable connections for the

output OR gates. This forms what appears to be a structure for implementing sum-

 of- minterm equations for the outputs. It also can be thought of as implementing

a truth table (connections to OR gates for 1s and no connections to an OR gates

for 0s). Also the ROM can be viewed as a memory in which the outputs provide

words of binary data that are selected by the inputs applied to the decoder. The pro-

grammable array logic (PAL®) device has a programmable connection AND array

and a fixed OR array. The AND gates are programmed to provide the product terms

for the Boolean functions, which are logically summed in each OR gate. The most

flexible of the three types of PLD is the programmable logic array (PLA), which has

programmable connections for both AND and OR arrays. The product terms in the

(b) Array logic symbol(a) Conventional symbol

 FIGURE 5-5
Conventional and Array Logic Symbols for OR Gate

322 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

AND array may be shared by any OR gates to provide the required sum- of- products

implementations. The names PLA and PAL® emerged for devices from different

vendors during the development of PLDs.

 Read- Only Memory

A read- only memory (ROM) is essentially a device in which “permanent” binary

information is stored. The information must be specified by the designer and is then

embedded into the ROM to form the required interconnection or electronic device

pattern. Once the pattern is established, it stays within the ROM even when power is

turned off and on again—that is, ROM is nonvolatile.

A block diagram of a ROM device is shown in Figure 5-7(a). There are k inputs

and n outputs. The inputs provide the address for the memory, and the outputs give

the data bits of the stored word that is selected by the address. The number of words

in a ROM device is determined from the fact that k address input lines can specify 2k

words. Note that ROM does not have data inputs, because it does not have a write

operation. Integrated circuit ROM chips have one or more enable inputs and come

with three- state outputs to facilitate the construction of large arrays of ROM.

Permanent and reprogrammable ROMs are also included in VLSI circuits including

processors.

Consider, for example, a 32 * 8 ROM. The unit consists of 32 words of 8 bits

each. There are five input lines that form the binary numbers from 0 through 31 for

the address. Figure 5-7(b) shows the internal logic construction of this ROM. The

five inputs are decoded into 32 distinct outputs by means of a 5– to– 32-line decoder.

(a) Programmable read-only memory (PROM)

Inputs
Fixed

AND array
(decoder)

Programmable
OR array

Outputs
Programmable

Connections

(b) Programmable array logic (PAL) device

Inputs Programmable
AND array

Fixed
OR array

Outputs
Programmable

Connections

(c) Programmable logic array (PLA) device

Inputs Programmable
OR array

Outputs
Programmable
Connections

Programmable
Connections

Programmable
AND array

 FIGURE 5-6
Basic Configuration of Three PLDs

5-2 / Programmable Implementation Technologies 323

Each output of the decoder represents a memory address. The 32 outputs are con-

nected through programmable connections to each of the eight OR gates. The dia-

gram uses the array logic convention used in complex circuits. (See Figure 5-5.) Each

OR gate must be considered as having 32 inputs. Each output of the decoder is con-

nected by a programming technology to one of the inputs of each OR gate. The

ROM in Figure 5-7(b) is programmed with the word 10010011 in memory address 1.

Since each OR gate has 32 internal programmable connections, and since there are

eight OR gates, the ROM contains 32 * 8 = 256 programmable connections. In

general, a 2k * n ROM will have an internal k– to– 2 k– line decoder and n OR gates.

Each OR gate has 2k inputs, which are connected through programmable connec-

tions to each of the outputs of the decoder.

Depending on the programming technology and approaches, read- only memo-

ries have different names:

1. ROM— mask programmed,

2. PROM— fuse or anti- fuse programmed,

3. EPROM— erasable floating gate programmed,

k inputs (address) n outputs (data)2k x n ROM

0

1

2

3

28

29

30

31

A0A1A2A3A4A5A6A7

5–to–32
decoder

.

.

.

x xx x

(a)

(b)

1 10 000 1 1

I0

I1

I2

I3

I4

 FIGURE 5-7
Block Diagram and Internal Logic of a ROM

324 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

4. EEPROM or E2 PROM— electrically erasable floating gate programmed, and

5. FLASH Memory— electrically erasable floating gate with multiple erasure

and programming modes.

The choice of programming technology depends on many factors, including the num-

ber of identical ROMs to be produced, the desired permanence of the programming,

the desire for reprogrammability, and the desired performance in terms of delay.

ROM programming typically uses programming software that isolates the user

from the details. A ROM stores computer programs, in which case the binary code

produced by the usual programming tools such as compilers and assemblers is placed

in the ROM. Otherwise, it can be programmed by tools that accept input, such as

truth tables, Boolean equations, and hardware description languages. It can also, as

in the case of FLASH memory, accept binary patterns representing, for example,

photographs taken by a digital camera. In all of these cases, the input is transformed

to a pattern of OPEN and CLOSED connections to the OR gates needed by the

programming technology.

Programmable Logic Array

The programmable logic array (PLA) is similar in concept to the ROM, except that

the PLA does not provide full decoding of the variables and does not generate all

the minterms. The decoder is replaced by an array of AND gates that can be pro-

grammed to generate product terms of the input variables. The product terms are

then selectively connected to OR gates to provide the sum of products for the

 required Boolean functions.

The internal logic of a PLA with three inputs and two outputs is shown in

Figure 5-8. Such a circuit is too small to be cost effective but is presented here to

demonstrate the typical logic configuration of a PLA. The diagram uses the array

logic graphics symbols for complex circuits. Each input goes through a buffer and an

inverter, represented in the diagram by a composite graphics symbol that has both

the true and the complement outputs. Programmable connections run from each

input and its complement to the inputs of each AND gate, as indicated by the inter-

sections between the vertical and horizontal lines. The outputs of the AND gates

have programmable connections to the inputs of each OR gate. The output of the

OR gate goes to an XOR gate, where the other input can be programmed to receive

a signal equal to either logic 1 or logic 0. The output is inverted when the XOR input

is connected to 1 (since X ⊕ 1 = X). The output does not change when the XOR

input is connected to 0 (since X ⊕ 0 = X). The particular Boolean functions imple-

mented in the PLA of the figure are

 F1 = AB + AC + ABC

 F2 = AC + BC

The product term is determined by the CLOSED connections from the input or

their complements to the AND gates. The output of an OR gate gives the logic

sum of the selected product terms as determined by the CLOSED connections

5-2 / Programmable Implementation Technologies 325

from the AND gate outputs to the OR gate inputs. The output may be comple-

mented or left in its true form, depending on the programming of the connection

associated with the XOR gate. Due to this structure, the PLA implements sum- of-

 products or complemented sum- of- products functions. Product terms can be

shared between the functions, since the same AND gate can be connected to

multiple OR gates.

The size of a PLA is specified by the number of inputs, the number of product

terms, and the number of outputs. For n inputs, k product terms, and m outputs, the

internal logic of the PLA consists of n buffer- inverter gates, k AND gates, m OR

gates, and m XOR gates. There are 2n * k programmable connections between the

inputs and the AND array, k * m programmable connections between the AND

and OR arrays, and m programmable connections associated with the XOR gates.

The information needed to program a PLA are the CLOSED connections

from true or complemented inputs, the CLOSED connections between AND gates

and OR gates, and whether or not the sum of products form is inverted or not. As

with the ROM, a variety of input forms may be acceptable to the tools that generate

this information. Here we focus on implementing logic, so we consider only inverted

or noninverted sum- of- products equations as the user input.

X Closed

Open

A

B

C

X X

XX

X X

XX X X

X

X

X

X AC

BC

AB

ABC

C C B B A A X

X

0

1

F1

F2

1

2

3

4

 FIGURE 5-8
PLA with Three Inputs, Four Product Terms, and Two Outputs

326 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

COMBINATIONAL CIRCUIT IMPLEMENTATION USING A PLA A careful investigation must be

undertaken in order to reduce the number of distinct product terms, so that the size

of the PLA can be minimized. Fewer product terms can be achieved by simplifying

the Boolean function to a minimum number of terms. The number of literals in a

term is less important, since all the input variables are available to each term anyway.

It is wise, however, to avoid extra literals, as these may cause problems in testing the

circuit and may reduce the speed of the circuit. An important factor in obtaining

a minimum number of product terms is the sharing of terms between the outputs.

Both the true and complement forms of each function should be simplified to see

which one can be expressed with fewer product terms and which one provides prod-

uct terms that are common to other functions. So, in terms of preparing equations

to be implemented in a PLA, multiple- output, two- level function optimization is the

approach needed and often incorporated in PLA design software. While we have not

covered this process formally, we can informally illustrate it by using K- maps. This

process is illustrated in Example 5-1.

EXAMPLE 5-1 Implementing a Combinational Circuit Using a PLA

Implement the following two Boolean functions with a PLA:

 F1(A, B, C) = Σm(3, 5, 6, 7)

 F2(A, B, C) = Σm(1, 2, 3, 7)

In Figure 5-9, using K- maps, two- level single- output optimization is applied to

functions F1 and F2 with the resulting prime implicants used appearing in black. The

resulting equations appear directly below the two maps. Product term BC can be

shared between the two functions, so a total of five product terms are required. By

considering the complement of F1 and the true form of F2, one discovers that there

are two nonprime implicants, shown as blue squares, that can be used in both func-

tions. The solutions that share these terms are given on the next line below the maps.

Using the implicants in blue, the solution obtained is:

 F1 = A BC + ABC + B C

 F2 = A BC + ABC + BC

0

C

0

0

0

1 1

00 01 11 10
BC

A

1

B

1

1A

F1 � AB � AC � BC
F1 � ABC � ABC � BC

F2 � AB � AC � BC
F2� ABC � ABC � BC

0

C

0

0

1 1

1 0

00 01 11 10
BC

A

0

B

1A

0 1

F2F1

 FIGURE 5-9
 K- Maps and Expressions for PLA Example 5-1

5-2 / Programmable Implementation Technologies 327

Because of the bar over all of F1, a 1 must be applied to the control input of the

output XOR gate. This solution requires only four AND gates. It requires both

the use of an output inversion and multiple- output, two- level optimization to

achieve this minimum- cost solution. The two implicants that are shared would nor-

mally result from the process of generating prime implicants for multiple- output

optimization. ■

Programmable Array Logic Devices

The programmable array logic (PAL®) device is a PLD with a fixed OR array and a

programmable AND array. Because only the AND gates are programmable and

cannot be shared by multiple functions, design for the PAL device is easier, but is not

as flexible as that for the PLA. Figure 5-10 presents the logic configuration of a typi-

cal programmable array logic device. The particular device shown has four inputs

and four outputs. Each input has a buffer- inverter gate, and each output is generated

by a fixed OR gate. The device has four sections, each composed of a three- wide

 AND- OR array, meaning that there are three programmable AND gates in each

section. Each AND gate has ten programmable input connections, indicated in the

diagram by ten vertical lines intersecting each horizontal line. The horizontal line

symbolizes the multiple- input configuration of an AND gate. One of the outputs

shown is connected to a buffer- inverter gate and then fed back into the inputs of the

AND gates through programmed connections. This is often done with all device out-

puts. Since the number of AND terms is not large, these paths permit the output of a

PAL AND- OR circuit to be used as inputs to other PAL AND- OR circuits. This pro-

vides the capability to implement a limited variety of multiple- level circuits, which

among other advantages increases the number of AND gates available for a given

function.

Commercial PAL devices contain more gates than the one shown in Figure

5-10. A small PAL integrated circuit may have up to eight inputs, eight outputs,

and eight sections, each consisting of an eight- wide AND- OR array. Each PAL

device output is driven by a three- state buffer and also serves as an input.

These input/outputs can be programmed to be an input only, an output only, or

bidirectional with a variable signal driving the three- state buffer enable signal.

 Flip- flops are often included in a PAL device between the array and the three-

 state buffer at the outputs. Since each output is fed back as an input through a

 buffer- inverter gate into the AND programmed array, a sequential circuit can be

easily implemented.

COMBINATIONAL CIRCUIT IMPLEMENTATION WITH A PAL DEVICE In designing with a PAL

device, because of the inability to share AND gates within a basic circuit, single-

 output, two- level optimization applies. But because of the connections from out-

puts to inputs, multilevel functions are easy to implement, so limited multilevel

optimization and the sharing of sum- of- products forms and the complement of sum-

of- products forms applies also. Unlike the arrangement in the PLA, a product term

cannot be shared among two or more OR gates. Manual execution of optimization

for a PAL device is illustrated in Example 5-2.

328 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

AND gates inputs

A C W
Product
term

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

W

X

All Closed
(always � 0)

Y

Z

X Closed
� Open

X

X

A B B C D D W

A C WA B B C D D W

X

X

X

X

X

XXXX

X

X X

X

XX

X

X

XX

X

X

X

XX X

 FIGURE 5-10
PAL Device Structure with Connection Map for
PAL® Device for Example 5-2

EXAMPLE 5-2 Implementing a Combinational Circuit Using a PAL

As an example of a PAL device incorporated into the design of a combinational cir-

cuit, consider the following Boolean functions, given in sum- of- minterms form:

 W(A, B, C, D) = gm(2, 12, 13)

 X(A, B, C, D) = gm(7, 8, 9, 10, 11, 12, 13, 14, 15)

 Y(A, B, C, D) = gm(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)

 Z(A, B, C, D) = gm(1, 2, 8, 12, 13)

Simplifying the four functions to a minimum number of terms results in the follow-

ing Boolean functions:

 W = ABC + A BCD

 X = A + BCD

5-2 / Programmable Implementation Technologies 329

 Y = AB + CD + B D

 Z = ABC + A BCD + A C D + A B CD

 = W + A C D + A B C D

Note that the all four equations are the result of two- level optimization. But the

function for Z has four product terms. The logical sum of two of these terms is equal

to W. Thus, by using W, it is possible to reduce the number of terms for Z from four

to three, so that the equations above can fit into the PAL device in Figure 5-10. Even

if W were not present as an output, the PAL device structure would permit the factor

W to be designed and used to implement Z. In this case, however, the output at W
would not be useful for implementing any other function but W. ■

Field Programmable Gate Array

The most common form of programmable logic device currently available is the field

programmable gate array (FPGA). While FPGA devices from different manufactur-

ers have a wide variety of features, most FPGA devices have three programmable

elements in common: programmable logic blocks, programmable interconnect, and

programmable input/output pins, as illustrated in Figure 5-11. In addition to these

three common elements, many FPGAs have specialized blocks of dedicated logic

such as memories, arithmetic components, and even microprocessors. This section

focuses on the basic features of FPGAs, which should provide sufficient background

 FIGURE 5-11
The Three Programmable Features of Most FPGA Devices:
Logic Blocks, Interconnect, and Input/Output

330 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

for readers who are interested in a particular FPGA to understand the data manuals

from the manufacturer.

The advantage of the FPGA relative to other programmable logic families is

the availability of configurable combinational logic and flip- flops, and ease of

 re- configuration. Most FPGA families are configured using static random access

memory (SRAM), which will be more fully explained in Chapter 7. Other technolo-

gies for configuring FPGAs include Flash memory and anti- fuses (similar to the

PROM described earlier in this section). FPGAs that use SRAM for their configura-

tion are volatile, meaning that they lose their configuration when power is removed

and the configuration must be loaded whenever power is re- applied. Regardless of

the configuration technology, each configuration bit in the FPGA controls the behav-

ior of a programmable element. Configuring the FPGA requires setting all of the

configuration bits for the programmable logic blocks, routing, and I/O.

The first programmable feature common to many FPGAs that we will describe

is the programmable logic block. A programmable logic block contains combina-

tional and sequential logic that can be configured to implement many different func-

tions. Many FPGA families have programmable logic blocks based upon a look- up

table (LUT) to implement combinational functions. A look- up table is a 2k * 1

memory that implements the truth table for a function of k variables, referred to as a

 k- LUT. Figure 5-12(a) illustrates a 2-input LUT. Any of the sixteen possible Boolean

functions of two variables can be implemented by setting the SRAM configuration

bits in the figure to the truth table for the desired function of a and b, as described

in Section 3-7. To implement functions of more than k variables, several k- LUTs

can be connected together with multiplexers, as shown in Figure 5-12(b). Combining

the smaller LUTs with a multiplexer uses Shannon’s expansion theorem, which

states that any Boolean function f (x1, x2, x3, c , xk) can be expressed as

f (x1, x2, x3, c , xk) = xk
f (x1, x2, x3, c , 1) + xk

f (x1, x2, x3, c , 0)

(a) (b)

SRAM
bit

a

b

af(a, b)

2-LUT
f(a, b, 0)

2-LUT
f(a, b, 1)

b

c

f(a, b) f(a, b, c)SRAM
bit

SRAM
bit

SRAM
bit

 FIGURE 5-12
(a) A 2-Input Look- Up Table, (b) Implementing a 3-Input Function with Two 2-LUTs
and a Multiplexer

5-2 / Programmable Implementation Technologies 331

In Figure 5-12(b), the Boolean function f (a,b,c) has been implemented using the

variable c on the select line of the multiplexer to choose between the two functions

f (a,b,0) and f (a,b,1). Example 5-3 illustrates implementing a combinational func-

tion using a LUT and Shannon’s expansion theorem.

EXAMPLE 5-3 Implementing a Combinational Circuit Using a Look- Up Table

Implement the following Boolean function with the look- up table circuit shown in

Figure 5-12(b):

F(A, B, C) = gm(3, 5, 6, 7)

The minterms of the function where C = 1 are m3, m5, and m7, so

F(A, B, 1) = AB + AB + AB = A + B. The minterms of the function where C = 0

is m6, so F(A, B, 0) = AB. The truth tables for each of these two functions would then

be stored into configuration bits of the appropriate 2-LUT of the circuit in the figure. ■

In addition to LUTs, programmable logic block typically have multiplexers, flip-

 flops and other logic to provide the ability to configure the block to implement a wide

variety of functions. Figure 5-13 shows an example of a programmable logic block. The

logic block has five major features: 1) A pair of 2-LUTs to implement combinational

functions, 2) a D flip- flop for sequential functions, 3) addition logic that allows the block

to implement a 1-bit full adder, 4) a set of multiplexers for selecting which functionality

appears at the output, and 5) a set of SRAM configuration bits that control the behav-

ior of the LUTs and multiplexers, denoted by squares numbered from 0 to 10.

2-LUT carry_in

carry_out

out

addition
logic

sum0
1
2
3

4

8

5
6
7

2-LUT

D Q

clock

MUX2

9
10

MUX1
MUX3

MUX4

a

b

c

 FIGURE 5-13
An Example of a Programmable Logic Block

332 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

In Figure 5-13, the multiplexer labeled MUX1, in combination with the pair of

2-LUTs, enables the logic block to implement any Boolean function of up to three

variables, as was illustrated in Figure 5-12. Multiplexer MUX2 selects whether the

third of the three variables is the logic block’s c input or the flip- flop output.

Multiplexer MUX3 selects between the output of the LUT logic or the addition logic

for the input of the flip- flop and MUX4. Finally, MUX4 selects whether the logic

block’s output is the output of the flip- flop or combinational (the output of MUX3).

The three gates of the addition logic allow the efficient implementation of

common digital functions based upon arithmetic. While it would be possible to

implement an adder without having the addition logic included in the logic block,

doing so would require two logic blocks to implement each bit of addition: one block

for the sum and one block for the carry since the logic block would have only one

output. But by including the three gates of the addition logic, one logic block can

implement a one- bit full adder by configuring the upper 2-LUT to be the function

f (a,b) = a ⊕ b and the lower 2-LUT to be the function f (a, b) = ab. Then the sum

signal is equal to a ⊕ b ⊕ carry_in and the carry_out signal is equal to

ab + carry_in(a ⊕ b). Consequently, an n- bit ripple carry adder could be imple-

mented with n logic blocks, whereas without the addition logic the adder would

require 2n logic blocks. Similarly, in many of the commercially available FPGA fam-

ilies, the programmable logic block contains dedicated logic for implementing com-

mon arithmetic functions while requiring fewer logic resources and often with higher

performance than would be possible without the dedicated logic. Rather than using

a ripple carry adder as in this simple logic block, commercially available FPGAs

use more complex, higher performance techniques for arithmetic such as carry

 lookahead addition that are beyond the scope of this introductory text.

Configuring the programmable logic block requires setting the eleven configu-

ration bits to achieve the desired functionality. Configuration bits 0 through 7 set the

truth tables to be implemented by the LUTs, bit 8 selects between the input c or the

 flip- flop output controlling the LUT output, bit 9 selects whether or not the addition

logic is used, and bit 10 selects the output of the flip- flop or the combinational output

of the LUTs or addition logic. The overall behavior of the logic block depends upon

the settings of all of the configuration bits. For example, returning to the discussion

of addition in the previous paragraph, implementing a full adder requires both

selecting the sum output with MUX3 (configuration bit 9) and setting the 2-LUTs to

the proper functions of inputs a and b (configuration bits 0–7). As another example, if

MUX3 (configuration bit 9) is set to select the output of MUX1, depending upon the

settings of MUX2 and MUX4 (configuration bits 8 and 10), the output signal can be

either a combinational function of a, b, and c; a Moore machine; or a Mealy machine.

While the reset logic for the D flip- flop is omitted from this example for simplicity, in

most commercial FPGAs, the flip- flop’s set/reset behavior is also configurable.

The functionality included in the programmable logic block is a trade- off

between the number of logic blocks required to implement a given function and the

propagation delay through the logic block. As the functionality increases, the num-

ber of logic blocks required to implement a given function (and the number of logic

blocks on the critical path) tends to decrease. But as the functionality increases, the

propagation delay through an individual logic block also increases. The overall delay

5-2 / Programmable Implementation Technologies 333

is a function of both the delay through the individual logic blocks as well as the delay

through the connections between the logic blocks.

The connections between the logic blocks are the second programmable feature

common to FPGAs. A programmable interconnection network provides the wiring

between the logic blocks to create circuits that are too large to fit into a single logic

block. The programmable interconnection network is made up of a set of wires and pro-

grammable switches. A programmable switch usually consists of a single n- channel

MOS transistor as described in the programming technology discussion at the begin-

ning of this section. As with the programmable logic blocks, the gate of this transistor is

controlled using a configuration bit. The programmable interconnection must allow the

FPGA to implement a wide range of circuit types, and thus must provide connections

between logic blocks that are physically close as well as those that are physically distant.

Furthermore, the interconnection network must allow the circuit’s desired functionality

to be implemented while meeting design goals for propagation delay, power, and cost.

To meet these constraints, most FPGAs provide a hierarchical set of interconnec-

tions. Although approaches to designing the interconnections vary across manufacturers,

typically the programmable interconnection network provides a large number of short

connections between physically close logic blocks, with a smaller number of longer con-

nections to distant logic blocks. Because of the electrical properties of the programmable

switch, two wires connected by a switch have a larger propagation delay than one longer

wire of the same total length. FPGA manufacturers have designed the set of program-

mable interconnections to reduce the average number of switches through which signals

must travel between logic blocks for most designs. The computer- aided design tools for

programming the FPGAs are also designed to place the design on the available pro-

grammable logic blocks in such a way that interconnection delays are reduced.

In addition to the programmable interconnection network, there are usually

dedicated wiring resources for clock and reset signals that are shared globally

throughout the circuit. The dedicated wiring resources are designed to minimize the

propagation delay and skew, which can create synchronization issues for sequential

circuits, as described in Chapter 4. In addition to the global signals, dedicated wires

are provided locally between adjacent logic blocks for connecting the dedicated

arithmetic logic such as the carry chains in the example programmable logic block of

Figure 5-13. This local wiring improves the speed of the dedicated logic circuitry

while reducing the demands on the programmable interconnections.

The third programmable feature common to FPGAs is a set of programmable

input/output (I/O) pins. The FPGA must be connected with the outside world. In

particular, an FPGA must be capable of providing a broad range in the number of

inputs and outputs depending upon the circuit that is to be implemented, and the

FPGA must be compatible with the speed and voltage requirements of the other

electrical components to which it will be connected. As a consequence of these two

requirements, most FPGAs provide a large number of pins that can be configured to

be either inputs or outputs, and that can be configured to support a number of differ-

ent electrical interface standards. The electrical interface standards have require-

ments with respect to the voltages considered to be a logical 0 or 1, the electrical

current sourced or sunk, the speed with which a signal can change, and many other

electrical properties of the I/O signal. The FPGAs may also provide capabilities for

334 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

synchronizing an input signal with the internal clock to deal with the metastability

issues described in Chapter 4. The manufacturer’s choice of which electrical stan-

dards to support depends largely upon the intended application market.

5-3 CHAPTER SUMMARY

This chapter presented a number of topics, all important to the designer. First, the

CMOS transistor was introduced. Switch models for CMOS were provided and

 employed in modeling electronic circuits for gates. Various parameters for character-

izing gate technology were introduced. Important technology parameters discussed

including, fan- in, fan- out, noise margin, power dissipation, and propagation delays.

Finally, a discussion of fundamentals of basic programmable implementation technol-

ogies was provided. This discussion included ROMs, PLAs, PAL and FPGA devices.

REFERENCES

 1. ALTERA® CORPORATION, Altera FLEX 10KE Embedded Programmable
Logic Device Family Data Sheet, ver. 2.4 (http://www.altera.com/literature/ds/

dsf10ke.pdf). Altera Corporation, © 1995–2002.

 2. KATZ, R. H., AND G. BORRIELLO. Contemporary Logic Design, 2nd ed.

Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

 3. KUON, I., R. TESSIER, AND J. ROSE. “FPGA Architecture: Survey and

Challenges,” Foundations and Trends in Electronic Design Automation, Vol. 2,

Issue 2, 2007, pp. 135–253. (http://www.nowpublishers.com/articles/ foundations-

 and- trends- in-electronic-design-automation/EDA-005).

 4. LATTICE SEMICONDUCTOR CORPORATION. Lattice GALs® (http://

www.latticesemi.com/products/spld/GAL/index.cfm). Lattice Semiconductor

Corporation, © 1995–2002.

 5. SMITH, M. J. S. Application- Specific Integrated Circuits. Boston: Addison-

 Wesley, 1997.

 6. TRIMBERGER, S. M., ED. Field- Programmable Gate Array Technology.
Boston: Kluwer Academic Publishers, 1994.

 7. WAKERLY, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle

River, NJ: Pearson Prentice Hall, 2004.

 8. XILINX, INC., Xilinx Spartan™-IIE Data Sheet (http://direct.xilinx.com/

bvdocs/publications/ds077_2.pdf). Xilinx, Inc. © 1994–2002.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the text website.

5-1. *Find the Boolean function that corresponds to the closed paths through

each of the given switch model networks in Figure 5-14.

5-2. Find the CMOS switch model networks for the following functions:

Problems 335

(a) 2-input AND gate.

(b) 2-input OR gate.

5-3. An integrated circuit logic family has AND gates with a fan-out of 12

standard loads and buffers with a fan-out of 20 standard loads. Sketch a

schematic showing how the output signal of a single AND gate can be applied

to 88 other gate inputs, using as few buffers as possible. Assume that each

input is one standard load.

5-4. (a) Given a 1024 3 8 ROM chip with an enable input, show the external

connections necessary to construct a 4K 3 32 ROM with eight chips and a

decoder.

(b) How many 4K 3 8 ROM chips would be required to construct a 32K 3 64

ROM?

5-5. *A * 8 ROM converts a 6-bit binary number to its corresponding two-

 digit BCD number. For example, binary 100001 converts to BCD 0011 0011

(decimal 33). Specify the truth table for the ROM.

5-6. Specify the size of a ROM (number of words and number of bits per word)

that will accommodate the truth table for the following combinational circuit

components:

(a) An 8-bit ripple carry adder with Cin and Cout.

(b) A 16-bit adder–subtractor with Cin and Cout.

(c) A code converter from a 5-digit BCD number to a binary number.

(d) An 8 * 8 multiplier.

5-7. Tabulate the truth table for an 8 * 3 ROM that implements the following four

Boolean functions:

 A(X, Y, Z) = gm(0, 6, 7)

 B(X, Y, Z) = gm(1, 2, 3, 4, 5)

(a) (b)

C: C D: DC: C

D: D

A: A B: B A: A B: B

 FIGURE 5-14
Switch Networks for Problem 5-1

336 CHAPTER 5 / DIGITAL HARDWARE IMPLEMENTATION

 C(X, Y, Z) = gm(1, 5)

 D(X, Y, Z) = gm(0, 1, 2, 3, 5, 6)

5-8. Obtain the PLA equations for programming the four Boolean functions

listed in Problem 5–7. Minimize the number of product terms. Be sure to

attempt to share product terms between functions that are not prime

implicants of individual functions and to consider the use of complemented

outputs.

5-9. Derive the PLA equations for the combinational circuit that convert one

digit BCD number to 4-bit Gray code. Minimize the number terms. Find the

optimize equations with minimum number of terms. If possible share product

terms between functions that are not prime implicants of individual functions

and consider the use of complemented outputs.

5-10. List the PLA equations for programming a BCD– to– excess- 3 code converter.

If necessary to reduce product terms, share product terms between functions

that are not prime implicants of individual functions and consider the use of

complemented outputs.

5-11. *Repeat Problem 5-10, using a PAL device.

5-12. The following is the truth table of a three- input, four- output combinational

circuit. Obtain the equations for programming the PAL device shown in

Figure 5-10.

Inputs Outputs

X Y Z A B C D

0 0 0 0 1 0 0

0 0 1 1 1 1 1

0 1 0 1 0 1 1

0 1 1 0 1 0 1

1 0 0 1 0 1 0

1 0 1 0 0 0 1

1 1 0 1 1 1 0

1 1 1 0 1 1 1

5-13. The following equations are to be implemented in the PAL device shown in

Figure 5-10. Find the equations for programming the PAL.

 F = AB + CD + ABCD + ABC + ABCD

 G = AB + BCD + BCD + ABC

5-14. Use Shannon’s expansion theorem to express the following functions in terms

of C and C.

(a) F(A, B, C) = A B + BC + AC

(b) F(A, B, C) = gm(0, 2, 3, 5, 6)

5-15. (a) Design a 4-to-1 multiplexer using two 4-LUTs.

 (b) Implement the following function in 4-input LUT form with 16-to-1

multiplexer.

 F = AB + AC + CD

5-16. For the programmable logic block shown in Figure 5-13, show the necessary

configuration settings to implement each of the following types of circuits.

You can assume that the upper data input of each multiplexer is chosen with

a select input of 0.

(a) A combinational function of inputs a, b, and c.

(b) A Moore machine

(c) A Mealy machine

5-17. For the programmable logic block shown in Figure 5-13, what functions

should be entered into the 2-LUTs to implement a 1-bit 2s complement

subtractor performing the operation a - b?

5-18. Implement the Moore state machine described by the following state table

using the programmable logic block shown in Figure 5-13. Your answer

should include the configuration bits for the logic block.

Present State

Inputs

Next State Output Zin1 in2

State0 0 0 State1 0

State0 0 1 State0 0

State0 1 0 State0 0

State0 1 1 State1 0

State1 0 0 State0 1

State1 0 1 State0 1

State1 1 0 State1 1

State1 1 1 State1 1

Problems 337

 339 339

C H A P T E R

Registers and
Register Transfers

6

In Chapter 3, we studied combinational functional blocks, and in Chapter 4 we examined

sequential circuits. Now, we bring the two ideas together and present sequential

functional blocks, generally referred to as registers and counters. In Chapter 4, the

circuits that were analyzed or designed did not have any particular structure, and

structure, with multiple stages or cells that are identical or close to identical, making

expansion very simple. Registers are particularly useful for storing information during the

processing of data, and counters assist in sequencing the processing.

In a digital system, a datapath and a control unit are frequently present at the upper

levels of the design hierarchy. A datapath consists of processing logic and a collection of

registers that performs data processing. A control unit is made up of logic that determines

microoperations.

Register transfers move information between registers, between registers and memory,

and through processing logic. Dedicated transfer hardware using multiplexers and shared

transfer hardware called buses implement these movements of data. The design of the

control unit for controlling register transfers is also covered in this chapter. A design

procedure for digital systems as combinations of register transfer logic and control logic

brings together much of what we have studied thus far.

In the generic computer at the beginning of Chapter 1, registers are used

extensively for temporary storage of data in areas aside from memory. Registers of this

kind are often large, with at least 32 bits. Overall, sequential functional blocks are used

widely in the generic computer. In particular, the CPU and FPU parts of the processor

each contain large numbers of registers that are involved in register transfers and

execution of microoperations. It is in the CPU and the FPU that data transfers, additions,

subtractions, and other microoperations take place. Finally, the connections shown

between various electronic parts of the computer are buses, which we discuss for the

340 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

6-1 REGISTERS AND LOAD ENABLE

A register includes a set of flip-flops. Since each flip-flop is capable of storing one bit

of information, an n-bit register, composed of n flip-flops, is capable of storing n bits

of binary information. By the broadest definition, a register consists of a set of flip-

flops, together with gates that implement their state transitions. This broad definition

includes the various sequential circuits considered in Chapter 4. More commonly,

the term register is applied to a set of flip-flops, possibly with added combinational

gates, that perform data-processing tasks. The flip-flops hold data, and the gates

determine the new or transformed data to be transferred into the flip-flops.

A counter is a register that goes through a predetermined sequence of states

upon the application of clock pulses. The gates in the counter are connected in a way

that produces the prescribed sequence of binary states. Although counters are a spe-

cial type of registers, it is common to differentiate them from registers.

Registers and counters are sequential functional blocks that are used exten-

sively in the design of digital systems in general and in digital computers in particu-

lar. Registers are useful for storing and manipulating information; counters are

employed in circuits that sequence and control operations in a digital system.

The simplest register is one that consists of only flip-flops without external

gates. Figure 6-1(a) shows such a register constructed from four D-type flip-flops.

The common Clock input triggers all flip-flops on the rising edge of each pulse, and

the binary information available at the four D inputs is transferred into the 4-bit reg-

ister. The four Q outputs can be sampled to obtain the binary information stored in

the register. The Clear input goes to the R inputs of all four flip-flops and is used to

clear the register to all 0s prior to its clocked operation. This input is labeled Clear

rather than Clear, since a 0 must be applied to reset the flip-flops asynchronously.

Activation of the asynchronous R inputs to flip-flops during normal clocked opera-

tion can lead to circuit designs that are highly delay dependent and that can, there-

fore, malfunction. Thus, we maintain Clear at logic 1 during normal clocked

operation, allowing it to be logic 0 only when a system reset is desired. We note that

the ability to clear a register to all 0s is optional; whether a clear operation is pro-

vided depends upon the use of the register in the system.

The transfer of new information into a register is referred to as loading the reg-

ister. If all the bits of the register are loaded simultaneously with a common clock

pulse, we say that the loading is done in parallel. A positive clock transition applied

to the Clock input of the register of Figure 6-1(a) loads all four D inputs into the flip-

flops in parallel.

Figure 6-1(b) shows a symbol for the register in Figure 6-1(a). This symbol

permits the use of the register in a design hierarchy. It has all inputs to the logic

circuit on its left and all outputs from the circuit on the right. The inputs include

the clock input with the dynamic indicator to represent positive-edge triggering

of the flip-flops. We note that the name Clear appears inside the symbol, with a

bubble in the signal line on the outside of the symbol. This notation indicates that

application of a logic 0 to the signal line activates the clear operation on the flip-

flops in the register. If the signal line were labeled outside the symbol, the label

would be Clear.

6-1 / Registers and Load Enable 341

Register with Parallel Load

Most digital systems have a master clock generator that supplies a continuous train

of clock pulses. The pulses are applied to all flip-flops and registers in the system. In

effect, the master clock acts like a heart that supplies a constant beat to all parts of

the system. For the design in Figure 6-1(a), the clock can be prevented from reaching

the clock input to the circuit if the contents of the register are to be left unchanged.

Thus, a separate control signal is used to control the clock cycles during which clock

pulses are to have an effect on the register. The clock pulses are prevented from

reaching the register when its content is not to be changed. This approach can be

implemented with a load control input Load combined with the clock, as shown in

(d) Timing diagram

Clock

Load

C inputs

(b) Symbol

REG

Clear

D0 Q0

D2 Q2

D3 Q3

D1 Q1

(c) Load control input

C inputs (clock inputs
of flip-flops)

Load
Clock

(a) Logic diagram

D

C

R

D

C

R

D

C

D

C

R

R

D0

D1

D2

D3

Q0

Q1

Q2

Q3

Clock

Clear

 FIGURE 6-1
4-Bit Register

342 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

Figure 6-1(c). The output of the OR gate is applied to the C inputs of the register flip-

flops. The equation for the logic shown is

C inputs = Load + Clock

When the Load signal is 1, C inputs = Clock, so the register is clocked normally, and

new information is transferred into the register on the positive transitions of the clock.

When the Load signal is 0, C inputs = 1. With this constant input applied, there are no

positive transitions on C inputs, so the contents of the register remain unchanged. The

effect of the Load signal on the signal C inputs is shown in Figure 6-1(d). Note that the

clock pulses that appear on C inputs are pulses to 0, which end with the positive edge

that triggers the flip-flops. These pulses and edges appear when Load is 1 and are

replaced by a constant 1 when Load is 0. In order for this circuit to work correctly,

Load must be constant at the correct value, either 0 or 1, throughout the interval when

Clock is 0. One situation in which this occurs is if Load comes from a flip-flop that is

triggered on a positive edge of Clock, a normal circumstance if all flip-flops in the sys-

tem are positive-edge triggered. Since the clock is turned on and off at the register C

inputs by the use of a logic gate, the technique is referred to as clock gating.

Inserting gates in the clock pulse path produces different propagation delays

between Clock and the inputs of flip-flops with and without clock gating. If the clock

signals arrive at different flip-flops or registers at different times, clock skew is said to

exist. But to have a truly synchronous system, we must ensure that all clock pulses

arrive simultaneously throughout the system so that all flip-flops trigger at the same

time. For this reason, in routine designs, control of the operation of the register with-

out using clock gating is advisable. Otherwise, delays must be controlled to drive the

clock skew as close to zero as possible. This is applicable in aggressive low-power or

high-speed designs.

A 4-bit register with a control input Load that is directed through gates

into the D inputs of the flip-flops, instead of through the C inputs, is shown in

Figure 6-2(c). This register is based on a bit cell shown in Figure 6-2(a) consisting

of a 2-to-1 multiplexer and a D flip-flop. The signal EN selects between the data bit

D entering the cell and the value Q at the output of the cell. For EN = 1, D is

selected and the cell is loaded. For EN = 0, Q is selected and the output is loaded

back into the flip-flop, preserving its current state. The feedback connection from

output to input of the flip-flop is necessary because the D flip-flop, unlike other

flip-flop types, does not have a “no change” input condition: With each clock pulse,

the D input determines the next state of the output. To leave the output unchanged,

it is necessary to make the D input equal to the present value of the output. The

logic in Figure 6-2(a) can be viewed as a new type of D flip-flop, a D flip-flop with
enable, having the symbol shown in Figure 6-2(b).

The register is implemented by placing four D flip-flops with enables in par-

allel and connecting the Load input to the EN inputs. When Load is 1, the data on

the four inputs is transferred into the register with the next positive clock edge.

When Load is 0, the current value remains in the register at the next positive clock

edge. Note that the clock pulses are applied continuously to the C inputs. Load

determines whether the next pulse accepts new information or leaves the informa-

tion in the register intact. The transfer of information from inputs to register is

6-2 / Register Transfers 343

done simultaneously for all four bits during a single positive pulse transition. This

method of transfer is traditionally preferred over clock gating, since it avoids clock

skew and the potential for malfunctions of the circuit.

6-2 REGISTER TRANSFERS

A digital system is a sequential circuit made up of interconnected flip-flops and gates.

In Chapter 4, we learned that sequential circuits can be specified by means of state

tables. To specify a large digital system with state tables is very difficult, if not impos-

sible, because the number of states is prohibitively large. To overcome this difficulty,

digital systems are designed using a modular, hierarchical approach. The system is

partitioned into subsystems or modules, each of which performs some functional

task. The modules are constructed hierarchically from functional blocks such as reg-

isters, counters, decoders, multiplexers, buses, arithmetic elements, flip-flops, and

primitive gates. The various subsystems communicate with data and control signals

to form a digital system.

In most digital system designs, we partition the system into two types of mod-

ules: a datapath, which performs data-processing operations, and a control unit,

D

C
EN

(b)(a)

D

C
D Flip-flop with enable

EN
D
C

Q

(c)

D

C
EN

D

C
EN

D

C
EN

D

C
EN

Q0

Q1

Q2D2

D1

D0

Q3D3

Load
Clock

 FIGURE 6-2
4-Bit Register with Parallel Load

344 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

which determines the sequence of those operations. Figure 6-3 shows the general

relationship between a datapath and a control unit. Control signals are binary signals

that activate the various data-processing operations. To activate a sequence of such

operations, the control unit sends the proper sequence of control signals to the data-

path. The control unit, in turn, receives status bits from the datapath. These status

bits describe aspects of the state of the datapath. The status bits are used by the con-

trol unit in defining the specific sequence of the operations to be performed. Note

that the datapath and control unit may also interact with other parts of a digital sys-

tem, such as memory and input–output logic, through the paths labeled data inputs,

data outputs, control inputs, and control outputs.

Datapaths are defined by their registers and the operations performed on

binary data stored in the registers. Examples of register operations are load, clear,

shift, and count. The registers are assumed to be basic components of the digital sys-

tem. The movement of the data stored in registers and the processing performed on

the data are referred to as register transfer operations. The register transfer opera-

tions of digital systems are specified by the following three basic components:

1. the set of registers in the system,

2. the operations that are performed on the data stored in the registers, and

3. the control that supervises the sequence of operations in the system.

A register has the capability to perform one or more elementary operations

such as load, count, add, subtract, and shift. For example, a right-shift register is a

register that can shift data to the right. A counter is a register that increments a num-

ber by one. A single flip-flop is a 1-bit register that can be set or cleared. In fact, by

this definition, the flip-flops and closely associated gates of any sequential circuit can

be called registers.

An elementary operation performed on data stored in registers is called a

microoperation. Examples of microoperations are loading the contents of one reg-

ister into another, adding the contents of two registers, and incrementing the con-

tents of a register. A microoperation is usually, but not always, performed in

parallel on a vector of bits during one clock cycle. The result of the microoperation

may replace the previous binary data in the register. Alternatively, the result may

be transferred to another register, leaving the previous data unchanged. The

Control
inputs

Data
inputs

Data
outputs

Datapath

Control
outputs

Control signals

Status signalsControl
unit

 FIGURE 6-3
Interaction Between Datapath and Control Unit

6-3 / Register Transfer Operations 345

sequential functional blocks introduced in this chapter are registers that imple-

ment one or more microoperations.

The control unit provides signals that sequence the microoperations in a pre-

scribed manner. The results of a current microoperation may determine both the

sequence of control signals and the sequence of future microoperations to be executed.

Note that the term “microoperation,” as used here, does not refer to any particular way

of producing the control signals: specifically, it does not imply that the control signals

are generated by a control unit based on a technique called microprogramming.

This chapter introduces registers, their implementations and register transfers

using a simple register transfer language (RTL) to represent registers and specify the

operations on their contents. The register transfer language uses a set of expressions

and statements that resemble statements used in HDLs and programming languages.

This notation can concisely specify part or all of a complex digital system such as a com-

puter. The specification then serves as a basis for a more detailed design of the system.

6-3 REGISTER TRANSFER OPERATIONS

We denote the registers in a digital system by uppercase letters (sometimes followed

by numerals) that indicate the function of the register. For example, a register that

holds an address for the memory unit is usually called an address register and can be

designated by the name AR. Other designations for registers are PC for program

counter, IR for instruction register, and R2 for register 2. The individual flip-flops in

an n-bit register are typically numbered in sequence from 0 to n - 1, starting with 0

in the least significant (often the rightmost) position and increasing toward the most

significant position. Since the 0 bit is on the right, this order can be referred to as

 little-endian. The reverse order, with bit 0 on the left, is referred to as big-endian.

Figure 6-4 shows representations of registers in block-diagram form. The most

common way to represent a register is by a rectangular box with the name of the reg-

ister inside, as in part (a) of the figure. The individual bits can be identified as in part

(b). The numbering of bits represented by just the leftmost and rightmost values at

the top of a register box is illustrated by a 16-bit register R2 in part (c). A 16-bit pro-

gram counter, PC, is partitioned into two sections in part (d) of the figure. In this

case, bits 0 through 7 are assigned the symbol L (for low-order byte), and bits 8

through 15 are assigned the symbol H (for high-order byte). The label PC(L), which

R

(a) Register R

R2

(c) Numbering of 16-bit register

15 0

(b) Individual bits of 8-bit register

01234567

PC (H)

(d) Two-part 16-bit register

15 08 7

PC (L)

 FIGURE 6-4
Block Diagrams of Registers

346 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

may also be written PC(7:0), refers to the low-order byte of the register, and PC(H)

or PC(15:8) refers to the high-order byte.

Data transfer from one register to another is designated in symbolic form by

means of the replacement operator (d). Thus, the statement

R2 d R1

denotes a transfer of the contents of register R1 into register R2. Specifically, the

statement designates the copying of the contents of R1 into R2. The register R1 is

referred to as the source of the transfer and the register R2 as the destination. By

definition, the contents of the source register do not change as a result of the transfer—

only the contents of the destination register, R2, change.

A statement that specifies a register transfer implies that datapath circuits are

available from the outputs of the source register to the inputs of the destination reg-

ister and that the destination register has a parallel load capability. Normally, we

want a given transfer to occur not for every clock pulse, but only for specific values

of the control signals. This can be specified by a conditional statement, symbolized by

the if-then form

if (K1 = 1) then (R2 d R1)

where K
1
 is a control signal generated in the control unit. In fact, K

1
 can be any

Boolean function that evaluates to 0 or 1. A more concise way of writing the if-then

form is

K1: R2 d R1

This control condition, terminated with a colon, symbolizes the requirement that the

transfer operation be executed by the hardware only if K1 = 1.

Every statement written in register-transfer notation presupposes a hardware

construct for implementing the transfer. Figure 6-5 shows a block diagram that

depicts the transfer from R1 to R2. The n outputs of register R1 are connected to the

n inputs of register R2. The letter n is used to indicate the number of bits in the regis-

ter-transfer path from R1 to R2. When the width of the path is known, n is replaced

by an actual number. Register R2 has a load control input that is activated by the

control signal K
1
. It is assumed that the signal is synchronized with the same clock as

the one applied to the register. The flip-flops are assumed to be positive-edge

K1

Clock

Transfer occurs here

t

K1

Clock

R1 R2

Load

n

 FIGURE 6-5
Transfer from R1 to R2 when K1 = 1

6-4 / Register Transfers in VHDL and Verilog 347

triggered by this clock. As shown in the timing diagram, K
1
 is set to 1 on the rising

edge of a clock pulse at time t. The next positive transition of the clock at time t + 1

finds K1 = 1, and the inputs of R2 are loaded into the register in parallel. In this case,

K
1
 returns to 0 on the positive clock transition at time t + 1, so that only a single

transfer from R1 to R2 occurs.

Note that the clock is not included as a variable in the register-transfer state-

ments. It is assumed that all transfers occur in response to a clock transition. Even

though the control condition K
1
 becomes active at time t, the actual transfer does not

occur until the register is triggered by the next positive transition of the clock, at

time t + 1.

The basic symbols we use in register-transfer notation are listed in Table 6-1.

Registers are denoted by an uppercase letter, possibly followed by one or more

uppercase letters and numerals. Parentheses are used to denote a part of a register

by specifying the range of bits in the register or by giving a symbolic name to a por-

tion of the register. The left-pointing arrow denotes a transfer of data and the direc-

tion of transfer. A comma is used to separate two or more register transfers that are

executed at the same time. For example, the statement

K3: R2 d R1, R1 d R2

denotes an operation that exchanges the contents of two registers simultaneously for a

positive clock edge at which K3 = 1. Such an exchange is possible with registers made

of flip-flops but presents a difficult timing problem with registers made of latches.

Square brackets are used in conjunction with a memory transfer. The letter M desig-

nates a memory word, and the register enclosed inside the square brackets provides the

address of the word in memory. This is explained in more detail in Chapter 8.

6-4 REGISTER TRANSFERS IN VHDL AND VERILOG

Although there are some similarities, the register-transfer language used here dif-

fers from both VHDL and Verilog. In particular, different notation is used in each

of the three languages. Table 6-2 compares the notation for many identical or simi-

lar register-transfer operations in the three languages. As you study this chapter

and others to follow, this table will assist you in relating descriptions in the text

RTL to the corresponding descriptions in VHDL or Verilog.

 TABLE 6-1
Basic Symbols for Register Transfers

Symbol Description Examples

Letters (and numerals) Denotes a register AR, R2, DR, IR

Parentheses Denotes a part of a register R2(1), R2(7:0), AR(L)

Arrow Denotes transfer of data R1 d R2

Comma Separates simultaneous transfers R1 d R2, R2 d R1

Square brackets Specifies an address for memory DR d M[AR]

348 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

6-5 MICROOPERATIONS

A microoperation is an elementary operation performed on data stored in registers

or in memory. The microoperations most often encountered in digital systems are of

four types:

1. Transfer microoperations, which transfer binary data from one register to an-

other.

2. Arithmetic microoperations, which perform arithmetic operations on data in

registers.

3. Logic microoperations, which perform bit manipulation on data in registers.

4. Shift microoperations, which shift data in registers.

A given microoperation may be of more than one type. For example, a 1s comple-

ment operation is both an arithmetic microoperation and a logic microoperation.

Transfer microoperations were introduced in the previous section. This type

of microoperation does not change the binary data bits as they move from the

source register to the destination register. The other three types of microopera-

tions can produce new binary data and, hence, new information. In digital systems,

basic sets of operations are used to form sequences that implement more compli-

cated operations. In this section, we define a basic set of microoperations, sym-

bolic notation for these microoperations, and descriptions of the digital hardware

that implements them.

 TABLE 6-2
Textbook RTL, VHDL, and Verilog Symbols for Register Transfers

Operation Text RTL VHDL Verilog

Combinational

assignment

= 6 = (concurrent) assign = (nonblocking)

Register transfer d 6 = (concurrent) 6 = (nonblocking)

Addition + + +
Subtraction - - -
Bitwise AND ¿ and &

Bitwise OR ¡ or |

Bitwise XOR ⊕ xor ^

Bitwise NOT – (overline) not ∼
Shift left (logical) Sl sll <<

Shift right (logical) Sr srl >>

Vectors/registers A(3:0) A(3 down to 0) A[3:0]

Concatenation || & { , }

6-5 / Microoperations 349

Arithmetic Microoperations

We define the basic arithmetic microoperations as add, subtract, increment, decre-

ment, and complement. The statement

R0 d R1 + R2

specifies an add operation. It states that the contents of register R2 are to be added

to the contents of register R1 and the sum transferred to register R0. To implement

this statement with hardware, we need three registers and a combinational compo-

nent that performs the addition, such as a parallel adder. The other basic arithmetic

operations are listed in Table 6-3. Subtraction is most often implemented through

complementation and addition. Instead of using the minus operator, we can specify

2s complement subtraction by the statement

R0 d R1 + R2 + 1

where R2 specifies the 1s complement of R2. Adding 1 to R2 gives the 2s comple-

ment of R2. Finally, adding the 2s complement of R2 to the contents of R1 is equiva-

lent to R1 - R2.

The increment and decrement microoperations are symbolized by a plus-one

and minus-one operation, respectively. These operations are implemented by using a

special combinational circuit, an adder–subtractor, or a binary up–down counter

with parallel load.

Multiplication and division are not listed in Table 6-3. Multiplication can be

represented by the symbol * and division by /. These two operations are not

included in the basic set of arithmetic microoperations because they are assumed

to be implemented by sequences of basic microoperations. However, multiplica-

tion can be considered as a microoperation if implemented by a combinational

circuit. In such a case, the result is transferred into a destination register at the

clock edge after all signals have propagated through the entire combinational

circuit.

 TABLE 6-3
Arithmetic Microoperations

Symbolic Designation Description

R0 d R1 + R2 Contents of R1 plus R2 transferred to R0

R2 d R2 Complement of the contents of R2 (1s complement)

R2 d R2 + 1 2s complement of the contents of R2

R0 d R1 + R2 + 1 R1 plus 2s complement of R2 transferred to R0 (subtraction)

R1 d R1 + 1 Increment the contents of R1 (count up)

R1 d R1 - 1 Decrement the contents of R1 (count down)

350 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

There is a direct relationship between the statements written in register-transfer

notation and the registers and digital functions required for their implementation. To

illustrate, consider the following two statements:

 XK1: R1 d R1 + R2

 XK1: R1 d R1 + R2 + 1

Control variable K
1
 activates an operation to add or subtract. If, at the same time,

control variable X is equal to 0, then XK1 = 1,and the contents of R2 are added to

the contents of R1. If X is equal to 1, then XK1 = 1, and the contents of R2 are sub-

tracted from the contents of R1. Note that the two control conditions are Boolean

functions and reduce to 0 when K1 = 0, a condition that inhibits the execution of

both operations simultaneously.

A block diagram, showing the implementation of the preceding two state-

ments, is given in Figure 6-6. An n-bit adder–subtractor, similar to the one shown in

Figure 3-45, receives its input data from registers R1 and R2. The sum or difference is

applied to the inputs of R1. The Select input S of the adder–subtractor selects the

operation in the circuit. When S = 0, the two inputs are added, and when S = 1, R2

is subtracted from R1. Applying the control variable X to the S input activates the

required operation. The output of the adder–subtractor is loaded into R1 on any pos-

itive clock edge at which XK1 = 1 or XK1 = 1. We can simplify this to just K
1
, since

XK1 + XK1 = (X + X)K1 = K1

Thus, the control variable X selects the operation, and the control variable K
1
 loads

the result into R1.

X

R2

Adder–Subtractor
Select (S)

Cn–1

Cn

V K1

n
n

n

R1C Load

 FIGURE 6-6
Implementation of Add and Subtract Microoperations

6-5 / Microoperations 351

Based on the discussion of overflow in Section 3-11, the overflow output is

transferred to flip-flop V, and the output carry from the most significant bit of the

adder–subtractor is transferred to flip-flop C, as shown in Figure 6-6. These transfers

occur when K1 = 1 and are not represented in the register-transfer statements;—if

desired, we could show them as additional simultaneous transfers.

Logic Microoperations

Logic microoperations are useful in manipulating the bits stored in a register. These

operations consider each bit in the register separately and treat it as a binary vari-

able. The symbols for the four basic logic operations are shown in Table 6-4. The

NOT microoperation, represented by a bar over the source register name, comple-

ments all bits and thus is the same as the 1s complement. The symbol ¿ is used to

denote the AND microoperation and the symbol ¡ to denote the OR microopera-

tion. By using these special symbols, we can distinguish between the add microoper-

ation represented by a + and the OR microoperation. Although the + symbol

has two meanings, we can distinguish between them by noting where the symbol

occurs. If the + occurs in a microoperation, it denotes addition. If the + occurs in

a control or Boolean function, it denotes OR. The OR microoperation will always

use the ¡ symbol. For example, in the statement

(K1 + K2): R1 d R2 + R3, R4 d R5 ¡ R6

the + between K
1
 and K

2
 is an OR operation between two variables in a control con-

dition. The + between R2 and R3 specifies an add microoperation. The OR microop-

eration is designated by the symbol ¡ between registers R5 and R6. The logic

microoperations can be easily implemented with a group of gates, one for each bit

position. The NOT of a register of n bits is obtained with n NOT gates in parallel. The

AND microoperation is obtained using a group of n AND gates, each receiving a pair

of corresponding inputs from the two source registers. The outputs of the AND gates

are applied to the corresponding inputs of the destination register. The OR and exclu-

sive-OR microoperations require a similar arrangement of gates.

The logic microoperations can change bit values, clear a group of bits, or insert

new bit values into a register. The following examples show how the bits stored in the

16-bit register R1 can be selectively changed by using a logic microoperation and a

logic operand stored in the 16-bit register R2.

 TABLE 6-4
Logic Microoperations

Symbolic

Designation Description

R0 d R1 Logical bitwise NOT (1s complement)

R0 d R1 ¿ R2 Logical bitwise AND (clears bits)

R0 d R1 ¡ R2 Logical bitwise OR (sets bits)

R0 d R1 ⊕ R2 Logical bitwise XOR (complements bits)

352 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The AND microoperation can be used for clearing one or more bits in a regis-

ter to 0. The Boolean equations X # 0 = 0 and X # 1 = X dictate that, when ANDed

with 0, a binary variable X produces a 0, but when ANDed with 1, the variable

remains unchanged. A given bit or group of bits in a register can be cleared to 0 if

ANDed with 0. Consider the following example:

10101101 10101011 R1 (data)

00000000 11111111 R2 (mask)

00000000 10101011 R1 d R1 ¿ R2

The 16-bit logic operand in R2 has 0s in the high-order byte and 1s in the low-

order byte. By ANDing the contents of R2 with the contents of R1, it is possible

to clear the high-order byte of R1 and leave the bits in the low-order byte

unchanged. Thus, the AND operation can be used to selectively clear bits of a reg-

ister. This operation is sometimes called masking out the bits, because it masks or

deletes all 1s in the data in R1, based on bit positions that are 0 in the mask

 provided in R2.

The OR microoperation is used to set one or more bits in a register. The

Boolean equations X + 1 = 1 and X + 0 = X dictate that, when ORed with 1, the

binary variable X produces a 1, but when ORed with 0, the variable remains

unchanged. A given bit or group of bits in a register can be set to 1 if ORed with 1.

Consider the following example:

10101101 10101011 R1 (data)

11111111 00000000 R2 (mask)

11111111 10101011 R1 d R1 ¡ R2

The high-order byte of R1 is set to all 1s by ORing it with all 1s in the R2 oper-

and. The low-order byte remains unchanged because it is ORed with 0s.

The XOR (exclusive-OR) microoperation can be used to complement one

or more bits in a register. The Boolean equations X ⊕ 1 = X and X ⊕ 0 = X

dictate that, when a binary variable X is XORed with 1, it is complemented, but

when XORed with 0, the variable remains unchanged. By XORing a bit or group

of bits in register R1 with 1s in selected positions in R2, it is possible to comple-

ment the bits in the selected positions in R1. Consider the following example:

10101101 10101011 R1 (data)

11111111 00000000 R2 (mask)

01010010 10101011 R1 d R1 ⊕ R2

The high-order byte in R1 is complemented after the XOR operation with R2, and

the low-order byte is unchanged.

6-6 / Microoperations on a Single Register 353

Shift Microoperations

Shift microoperations are used for lateral movement of data. The contents of a

source register can be shifted either right or left. A left shift is toward the most

significant bit, and a right shift is toward the least significant bit. Shift microopera-

tions are used in the serial transfer of data. They are also used for manipulating

the contents of registers in arithmetic, logical, and control operations. The desti-

nation register for a shift microoperation may be the same as or different from the

source register. We use strings of letters to represent the shift microoperations

defined in Table 6-5. For example,

R0 d sr R0, R1 d sl R2

are two microoperations that respectively specify a one-bit shift to the right of the

contents of register R0 and a transfer of the contents of R2 shifted one bit to the left

into register R1. The contents of R2 are not changed by this shift.

For a left-shift microoperation, we call the rightmost bit of the destination

register the incoming bit. For a right-shift microoperation, we define the leftmost

bit of the destination register as the incoming bit. The incoming bit may have dif-

ferent values, depending upon the type of shift microoperation. Here we assume

that, for sr and sl, the incoming bit is 0, as shown in the examples in Table 6-5. The

outgoing bit is the leftmost bit of the source register for the left-shift operation

and the rightmost bit of the source register for the right-shift operation. For the

left and right shifts shown, the outgoing bit value is simply discarded. In Chapter

9, we will explore other types of shifts that treat incoming and outgoing bits

differently.

6-6 MICROOPERATIONS ON A SINGLE REGISTER

This section covers the implementation of one or more microoperations with a

single register as the destination of all primary results. The single register may

also serve as a source of an operand for binary and unary operations. Due to the

close ties between a single set of storage elements and the microoperations, the

 TABLE 6-5
Examples of Shifts

Eight-Bit Examples

Type

Symbolic

Designation Source R2

After Shift:

Destination R1

Shift left R1 d sl R2 10011110 00111100

Shift right R1 d sr R2 11100101 01110010

354 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

combinational logic implementing the microoperations is assumed to be a part of

the register and is called dedicated logic of the register. This is in contrast to logic

which is shared by multiple destination registers. In this case, the combinational

logic implementing the microoperations is called shared logic for the set of desti-

nation registers.

The combinational logic implementing the microoperations described in the

previous section can use one or more functional blocks from Chapter 3 or can be

designed specifically for the register. Initially, functional blocks will be used in

combination with D flip-flops or D flip-flops with enable. A simple technique

using multiplexers for selection is introduced to allow multiple microoperations

on a single register. Next, single- and multiple-function registers that perform

shifting and counting are designed.

Multiplexer-Based Transfers

There are occasions when a register receives data from two or more different

sources at different times. Consider the following conditional statement having an

if-then-else form:

if (K1 = 1) then (R0 d R1) else if (K2 = 1) then (R0 d R2)

The value in register R1 is transferred to register R0 when control signal K
1
 equals 1.

When K1 = 0, the value in register R2 is transferred to R0 when K
2
 equals 1.

Otherwise, the contents of R0 remains unchanged. The conditional statement may

be broken into two parts using the following control conditions:

K1: R0 d R1, K1K2: R0 d R2

This specifies hardware connections from two registers, R1 and R2, to one common

destination register R0. In addition, making a selection between two source registers

must be based on values of the control variables K
1
 and K

2
.

The block diagram for a circuit with 4-bit registers that implements the condi-

tional register-transfer statements using a multiplexer is shown in Figure 6-7(a). The

quad 2-to-1 multiplexer selects between the two source registers. For K1 = 1, R1 is

loaded into R0, irrespective of the value of K
2
. For K1 = 0 and K2 = 1, R2 is loaded

into R0. When both K
1
 and K

2
 are equal to 0, the multiplexer selects R2 as the input

to R0, but, because the control function, K2 + K1, connected to the LOAD input of

R0 equals 0, the contents of R0 remain unchanged.

The detailed logic diagram for the hardware implementation is shown in

Figure 6-7(b). The diagram uses functional block symbols based upon detailed

logic for the registers in Figure 6-2 and for a quad 2-to-1 multiplexer from

Chapter 3. Note that since this diagram represents just a part of a system, there

are inputs and outputs that are not yet connected. Also, the clock is not shown in

the block diagram, but is shown in the detailed diagram. It is important to relate

the information given in a block diagram such as Figure 6-7(a) with the detailed

6-6 / Microoperations on a Single Register 355

wiring connections in the corresponding logic diagram in Figure 6-7(b). In order

to save space, we often omit the detailed logic diagrams in designs. However, it is

possible to obtain a logic diagram with detailed wiring from the corresponding

block diagram and a library of functional blocks. In fact, such a procedure is per-

formed by computer programs used for automated logic synthesis.

R2

R1

MUX

S
0

1
R0

Load

4

4

4

K2

K1

(a) Block diagram

Clock

K2
K1

D0

D1

D2
D3

Q0

Q1

Q2

Q3

C

REGISTER
LOAD

D0

D1

D2

D3

Q0

Q1

Q2

Q3

C

REGISTER
LOAD

D0

D1

D2

D3

Q0

Q1

Q2

Q3

C

REGISTER
LOAD

A0

A1

A2

A3
Y0

Y1

Y2

Y3

S

2–to–1 MUX

B0

B1
B2

B3

R2

R1

R0

(b) Detailed logic

 FIGURE 6-7
Use of Multiplexers to Select Between Two Registers

356 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The preceding example can be generalized by allowing the multiplexer to

have n sources and these sources to be register outputs or combinational logic

implementing microoperations. This generalization results in the block diagram

shown in Figure 6-8. The diagram assumes that each source is either the outputs of

a register or of combinational logic implementing one or more microinstructions.

In those cases in which the microoperations are dedicated to the register, the cor-

responding dedicated logic is included as a part of the register. In Figure 6-8, the

first k sources are dedicated logic and the last n - k sources are either registers or

shared logic. The control signals that select a given source are either a single con-

trol variable or the OR of all control signals corresponding to the microoperations

associated with the source. To force R0 to load for a microoperation, these control

signals are ORed together to form the Load signal. Since it is assumed that only

one of the control signals is 1 at any time, these signals must be encoded to provide

the selection codes for the multiplexer. Two modifications to the given structure

are possible. The control signals could be applied directly to a 2 * n AND-OR cir-

cuit (i.e., a multiplexer with the decoder deleted). Alternatively, the control signals

could already be encoded, omitting the use of the all-zero code, so that the OR

gate still forms the Load signal correctly.

Shift Registers

A register capable of shifting its stored bits laterally in one or both directions is

called a shift register. The logical configuration of a shift register consists of a

chain of flip-flops, with the output of one flip-flop connected to the input of

Dedicated
logic 0 Encoder

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

MUX

Sm S0

k

Load

...

. . .

. . .

K0

Registers or
shared logic

4

4

4

4

R0
4

0

 FIGURE 6-8
Generalization of Multiplexer Selection for n Sources

6-6 / Microoperations on a Single Register 357

the next flip-flop. All flip-flops have a common clock-pulse input that activates

the shift.

The simplest possible shift register uses only flip-flops, as shown in Figure 6-9(a).

The output of a given flip-flop is connected to the D input of the flip-flop at its right.

The clock is common to all flip-flops. The serial input SI is the input to the leftmost flip-

flop. The serial output SO is taken from the output of the rightmost flip-flop. A symbol

for the shift register is given in Figure 6-9(b).

Sometimes it is necessary to control the register so that it shifts only on select

positive clock edges. For the shift register in Figure 6-9, the shift can be controlled by

connecting the clock through the logic shown in Figure 6-1(c), with Shift replacing

Load. Again, due to clock skew, this is usually not the most desirable approach. Thus,

we learn next that the shift operation can be controlled through the D inputs of the

flip-flops rather than through the clock inputs C.

SHIFT REGISTER WITH PARALLEL LOAD If all flip-flop outputs of a shift register are

accessible, then information entered serially by shifting can be taken out in parallel

from the flip-flop outputs. If a parallel load capability is also added to a shift register,

then data entered in parallel can be shifted out serially. Thus, a shift register with

accessible flip-flop outputs and parallel load can be used for converting incoming

parallel data to outgoing serial data and vice versa.

The logic diagram for a 4-bit shift register with parallel load and the symbol for

this register are shown in Figure 6-10. There are two control inputs, one for the shift

and the other for the load. Each stage of the register consists of a D flip-flop, an OR

gate, and three AND gates. The first AND gate enables the shift operation. The sec-

ond AND gate enables the input data. The third AND gate restores the contents of

the register when no operation is required.

(b) Symbol

Sl

SRG 4
Clock

SO

(a) Logic diagram

D

C

Serial
input SI

Clock

D

C

D

C

D

C

Serial
output SO

 FIGURE 6-9
4-Bit Shift Register

358 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The operation of this register is specified in Table 6-6 and is also given by the

register transfers:

 Shift: Q d sl Q

Shift # Load: Q d D

D
C

D

C

D

C

D

C

(b) Symbol

SHR 4

Shift
Load
Sl
D0

D1

D2

D3

Q0

Q1

Q2

Q3

Shift

Load

Serial
input

D0

D1

D2

D3

Clock

Q0

Q1

Q2

Q3

 FIGURE 6-10
Shift Register with Parallel Load

 TABLE 6-6
Function Table for the Register of Figure 6-10

Shift Load Operation

0 0 No change (Hold)

0 1 Load parallel data

1 * Shift left (down) from Q
0
 to Q

3

6-6 / Microoperations on a Single Register 359

The “No change” operation, also called “Hold”, is implicit if neither of the condi-

tions for transfers is satisfied. When both the shift and load control inputs are 0, the

third AND gate in each stage is enabled, and the output of each flip-flop is applied

to its own D input. A positive transition of the clock restores the contents to the

register, and the output is unchanged. When the shift input is 0 and the load input

is 1, the second AND gate in each stage is enabled, and the input Di is applied to

the D input of the corresponding flip-flop. The next positive clock transition trans-

fers the parallel input data into the register. When the shift input is equal to 1, the

first AND gate in each stage is enabled and the other two are disabled. Since the

Load input is disabled by the Shift input on the second AND gate, we mark it with

a don’t-care condition in the Shift row of the table. When a positive edge occurs on

the clock, the shift operation causes the data from the serial input SI to be trans-

ferred to flip-flop Q
0
, the output of Q

0
 to be transferred to flip-flop Q

1
, and so on

down the line. Note that because of the way the circuit is drawn, the shift occurs in

the downward direction. If we rotate the page a quarter-turn clockwise, the regis-

ter shifts from right to left.

Shift registers are often used to interface digital systems that are distant from

each other. For example, suppose it is necessary to transmit an n-bit quantity between

two points. If the distance is large, it is expensive to use n lines to transmit the n bits

in parallel. It may be more economical to use a single line and transmit the informa-

tion serially, one bit at a time. The transmitter loads the n-bit data in parallel into

a shift register and then transmits the data serially along the common line. The

receiver accepts the data serially into a shift register. When all n bits are accumu-

lated, they can be taken in parallel from the outputs of the register. Thus, the transmitter

performs a parallel-to-serial conversion of data, and the receiver does a serial-

to-parallel conversion.

BIDIRECTIONAL SHIFT REGISTER A register capable of shifting in only one direction is

called a unidirectional shift register. A register that can shift in both directions is a

bidirectional shift register. It is possible to modify the circuit of Figure 6-10, by adding

a fourth AND gate in each stage, for shifting the data in the upward direction. An

investigation of the resultant circuit will reveal that the four AND gates, together

with the OR gate in each stage, constitute a multiplexer with the selection inputs

controlling the operation of the register.

One stage of a bidirectional shift register with parallel load is shown in

Figure 6-11(a). Each stage consists of a D flip-flop and a 4–to–1-line multiplexer.

The two selection inputs S
1
 and S

0
 select one of the multiplexer inputs to apply to

the D flip-flop. The selection lines control the mode of operation of the register

according to Table 6-7 and the register transfers:

 S1 # S0: Q d sl Q

 S1 # S0: Q d sr Q

 S1 # S0: Q d D

360 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The “No Change” operation is implicit if none of the conditions for transfers is

satisfied. When the mode control S1S0 = 00, input 0 of the multiplexer is selected.

This forms a path from the output of each flip-flop into its own input. The next

clock transition transfers the current stored value back into each flip-flop, and no

change of state occurs. When S1S0 = 01, the terminal marked 1 on the multiplexer

 TABLE 6-7
Function Table for the Register of Figure 6-11

Mode Control
Register

Operation
S

1
S

0

0 0 No change (Hold)

0 1 Shift left

1 0 Shift right

1 1 Parallel load

(b) Symbol

SHR 4

S1

S0

LSI

D0

D1

D2

D3

Q0

Q1

Q2

Q3

RSI

Mode S1

Mode S0

Left serial input

Right serial input

Clock

(a) Logic diagram of one typical stage

D

C

D

C

D

C

S1

S0

Di

MUX

S1

S0

0

1

2

3

Clock

Qi

 FIGURE 6-11
Bidirectional Shift Register with Parallel Load

6-6 / Microoperations on a Single Register 361

has a path to the D input of each flip-flop. These paths cause a shift-left operation,

with the bits being moved toward the most significant bit (down in the figure). The

serial input is transferred into the first stage, and the content of each stage, Qi - 1,

is transferred into stage Qi. When S1S0 = 10, a shift-right operation results in a

second serial input that enters the last stage. In addition, the value in each stage

Qi+1 is transferred into stage Qi (up in the figure). Finally, when S1S0 = 11, the

binary information on each parallel input line is transferred into the correspond-

ing flip-flop, resulting in a parallel load.

Figure 6-11(b) shows a symbol for the bidirectional shift register from

Figure 6-11(a). Note that both a left serial input (LSI) and a right serial input

(RSI) are provided. If serial outputs are desired, Q
3
 is used for left shift and Q

0

for right shift.

Ripple Counter

A register that goes through a prescribed sequence of distinct states upon the

application of a sequence of input pulses is called a counter. The input pulses may

be clock pulses or may originate from some other source, and they may occur at

regular or irregular intervals of time. In our discussion of counters, we assume

clock pulses, but other signals can be substituted for the clock. The sequence of

states may follow the binary number sequence or any other prescribed sequence

of states. A counter that follows the binary number sequence is called a binary
counter. An n-bit binary counter consists of n flip-flops and can count in binary

from 0 through 2n - 1.

Counters are available in two categories: ripple counters and synchronous

counters. In a ripple counter, the flip-flop output transitions serve as the sources for

triggering the changes in other flip-flops. In other words, the C inputs of some of the

flip-flops are triggered not by the common clock pulse, but rather by the transitions

that occur on other flip-flop outputs. In a synchronous counter, the C inputs of all

flip-flops receive the common clock pulse, and the change of state is determined

from the present state of the counter. Synchronous counters are discussed in the next

two subsections. Here we present the binary ripple counter and explain its

operation.

The logic diagram of a 4-bit binary ripple counter is shown in Figure 6-12.

The counter is constructed from D flip-flops connected such that the applica-

tion of a positive edge to the C input of each flip-flop causes the flip-flop to

 complement its state. The complemented output of each flip-flop is connected to

the C input of the next most significant flip-flop. The flip-flop holding the

least significant bit receives the incoming clock pulses. Positive-edge triggering

makes each flip-flop complement its value when the signal on its C input goes

through a positive transition. The positive transition occurs when the comple-

mented output of the previous flip-flop, to which C is connected, goes from 0 to 1.

A 1-level signal on Reset driving the R inputs clears the register to all zeros

asynchronously.

362 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

D

D

Reset

Clock pulse

D

R
C
R

C
R

C
R

C
R

D

 FIGURE 6-12
4-Bit Ripple Counter

To understand the operation of a binary ripple counter, let us examine the

upward counting sequence given in the left half of Table 6-8. The count starts at

binary 0 and increments by one with each count pulse. After the count of 15, the

counter goes back to 0 to repeat the count. The least significant bit (Q
0
) is comple-

mented by each count pulse. Every time that Q
0
 goes from 1 to 0, Q0 goes from 0 to 1,

complementing Q
1
. Every time that Q

1
 goes from 1 to 0, it complements Q

2
. Every

time that Q
2
 goes from 1 to 0, it complements Q

3
, and so on for any higher-order bits

in the ripple counter. For example, consider the transition from count 0011 to 0100.

Q
0
 is complemented with the count pulse positive edge. Since Q

0
 goes from 1 to 0, it

triggers Q
1
 and complements it. As a result, Q

1
, goes from 1 to 0, which complements

Q
2
, changing it from 0 to 1. Q

2
 does not trigger Q

3
, because Q2 produces a negative

transition, and the flip-flops respond only to positive transitions. Thus, the count from

0011 to 0100 is achieved by changing the bits one at a time. The counter goes from

0011 to 0010 (Q
0
 from 1 to 0), then to 0000 (Q

1
 from 1 to 0), and finally to 0100 (Q

2

from 0 to 1). The flip-flops change one at a time in quick succession as the signal

propagates through the counter in a ripple fashion from one stage to the next.

A ripple counter that counts downward gives the sequence in the right half of

Table 6-8. Downward counting can be accomplished by connecting the true output

of each flip-flop to the C input of the next flip-flop.

The advantage of ripple counters is their simple hardware. Unfortunately, they

are asynchronous circuits and, with added logic, can become circuits with delay

6-6 / Microoperations on a Single Register 363

dependence and unreliable operation. This is particularly true for logic that provides

feedback paths from counter outputs back to counter inputs. Also, due to the length

of time required for the ripple to finish, large ripple counters can be slow circuits. As

a consequence, synchronous binary counters are favored in all but low-power

designs, where ripple counters have an advantage. (See Problem 6-9.)

Synchronous Binary Counters

Synchronous counters, in contrast to ripple counters, have the clock applied to the C

inputs of all flip-flops. Thus, the common clock pulse triggers all flip-flops simultane-

ously rather than one at a time, as in a ripple counter. A synchronous binary counter

that counts up by 1 can be constructed from the incrementer in Figure 3-52 and D

flip-flops, as shown in Figure 6-13(a). The carry output CO is added by not placing an

X value on the C
4
 output before the contraction of an adder to the incrementer in

Figure 3-52. Output CO is used to extend the counter to more stages.

Note that the flip-flops trigger on the positive-edge transition of the clock. The

polarity of the clock is not essential here, as it was for the ripple counter. The syn-

chronous counter can be designed to trigger with either the positive or the negative

clock transition.

SERIAL AND PARALLEL COUNTERS We will use the synchronous counter in Figure 6-13

to demonstrate two alternative designs for binary counters. In Figure 6-13(a), a chain

of 2-input AND gates is used to provide information to each stage about the state of

the prior stages in the counter. This is analogous to the carry logic in the ripple carry

adder. A counter that uses such logic is said to have serial gating and is referred to

 TABLE 6-8
Counting Sequence of Binary Counter

Upward Counting Sequence Downward Counting Sequence

Q
3

Q
2

Q
1

Q
0

Q
3

Q
2

Q
1

Q
0

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 0
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0

364 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

as a serial counter. The analogy to the ripple carry adder suggests that there might

be counter logic analogous to the carry lookahead adder. Such logic can be derived

by contracting a carry lookahead adder, with the result shown in Figure 6-13(b). This

logic can simply replace that in the blue box in Figure 6-13(a) to produce a counter

with parallel gating, called a parallel counter. The advantage of parallel gating logic is

that, in going from state 1111 to state 0000, only one AND-gate delay occurs instead

of the four AND-gate delays that occur for the serial counter. This reduction in delay

allows the counter to operate much faster.

If we connect two 4-bit parallel counters together by connecting the CO output

of one to the EN input of the other, the result is an 8-bit serial-parallel counter. This

counter has two 4-bit parallel parts connected in series with each other. The idea can

be extended to counters of any length. Again, employing the analogy to carry looka-

head adders, additional levels of gating logic can be introduced to replace the serial

(c) Symbol

CTR 4

EN
Q1
Q2
Q3

CO

Q0

(a) Logic diagram—serial gating

D

C

D

C

D

C

D

C

Count enable EN

Clock

Carry
output CO

Q0

Q1

Q2

Q3

(b) Logic diagram—parallel gating

EN

Q0

Q1

C1

Q2

C2

C3

CO

Q3

 FIGURE 6-13
4-Bit Synchronous Binary Counter

6-6 / Microoperations on a Single Register 365

connections between the 4-bit segments. The added reduction in delay that results is

useful for constructing large, fast counters.

The symbol for the 4-bit counter using positive-edge triggering is shown in

Figure 6-13(c).

UP–DOWN BINARY COUNTER A synchronous count-down binary counter goes through

the binary states in reverse order from 1111 to 0000 and back to 1111 to repeat the

count. The logic diagram of a synchronous count-down binary counter is similar to

the circuit for the binary up-counter, except that a decrementer is used instead of

an incrementer. The two operations can be combined to form a counter that can

count both up and down, which is referred to as an up–down binary counter. Such

a counter can be designed by contracting the adder–subtractor in Figure 3-45 into

an incrementer–decrementer and adding the D flip-flops. The counter counts up for

S = 0 and down for S = 1.

Alternatively, an up–down counter with ENABLE can be designed directly

from counter behavior. It needs a mode input to select between the two operations.

We designate this mode select input by S, with S = 0 for up-counting and S = 1 for

down-counting. Let variable EN be a count enable input, with EN = 1 for normal

up- or down-counting and EN = 0 for disabling both counts. A 4-bit up–down

binary counter can be described by the following flip-flop input equations:

 DA0 = Q0 ⊕ EN

 DA1 = Q1 ⊕ ((Q0
S + Q0

S) # EN)

 DA2 = Q2 ⊕ ((Q0
Q1

S + Q0
Q1

S) # EN)

 DA3 = Q3 ⊕ ((Q0
Q1

Q2
S + Q0

Q1
Q2

S) # EN)

The logic diagram of the circuit can be easily obtained from the input equations but

is not included here. It should be noted that the equations, as written, provide paral-

lel gating using distinct carry logic for up-counting and down-counting. It is also

possible to use two distinct serial gating chains. In contrast, the counter derived

using the incrementer–decrementer uses only a single carry chain. Overall, the logic

cost is similar.

BINARY COUNTER WITH PARALLEL LOAD Counters employed in digital systems quite

often require a parallel-load capability for transferring an initial binary number into

the counter prior to the count operation. Two inputs control the operation, Load and

Count. These inputs can take on four combinations, but only three operations are

provided: Load (10), Count (01), and Hold (00). The effect of the remaining input

combination (11) will be considered shortly. The implementation uses an increment-

er plus 2n + 1 ENABLEs, a NOT gate, and n 2-input OR gates as shown in Figure

6-14. The first n ENABLEs with enable input Load are used to enable and disable

the parallel load of input data, D. The second n ENABLEs with enable input Load

on the incrementer outputs are used to disable both the count and hold operations

when Load = 1. When Load = 0, both count and hold are enabled. Without the ad-

ditional ENABLE, Count = 1, causes counting, and Count = 0, the hold operation

366 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

occurs. What about the (11) combination? Counting is disabled by the Load signal

and loading is enabled by Load. But what about the output CO? With Count = 1,

the carry chain for the incrementer is active and can produce CO equal to 1. But CO

should not be active outside of the counting operation. To deal with this problem,

Count is enabled using Load. With Load = 1, then Load = 0, which disables Count
from going into the carry chain and forces CO to 0. Thus, for (11), a load occurs. This

is sometimes described as Load overriding Count. When 4-bit counters are concat-

enated to form 4n-bit counters, for the first state, a count control input is attached

to Count in the least significant stage. For all other stages, CO from the prior state is

attached to Count. Counters with parallel load are very useful in the design of digital

computers. In subsequent chapters, we often refer to them as registers with load and

increment operations.

D0 D

C

Q0

D1 D

C

Q1

D2 D

C

Q2

D3 D

C

Q3

Load

Count

Clock

Carry
Output CO

 FIGURE 6-14
4-Bit Binary Counter with Parallel Load

6-6 / Microoperations on a Single Register 367

The binary counter with parallel load can be converted into a synchronous

BCD counter (without load input) by connecting an external AND gate to it, as

shown in Figure 6-15. The counter starts with an all-zero output, and the count input

is always active. As long as the output of the AND gate is 0, each positive clock edge

increments the counter by 1. When the output reaches the count of 1001, both Q
0

and Q
3
 become 1, making the output of the AND gate equal to 1. This condition

makes Load active—so on the next clock transition, the counter does not count, but

is loaded from its four inputs. Since all four inputs are connected to logic 0, 0000 is

loaded into the counter following the count of 1001. Thus, the circuit counts from

0000 through 1001, followed by 0000, as required for a BCD counter.

Other Counters

Counters can be designed to generate any desired number of states in sequence. A

divide-by-N counter (also known as a modulo-N counter) is a counter that goes

through a repeated sequence of N states. The sequence may follow the binary count

or may be any other arbitrary sequence. In either case, the design of the counter fol-

lows the procedure presented in Chapter 4 for the design of synchronous sequential

circuits. To demonstrate this procedure, we present the design of two counters: a

BCD counter and a counter with an arbitrary sequence of states.

BCD COUNTER As shown in the previous section, a BCD counter can be obtained

from a binary counter with parallel load. It is also possible to design a BCD count-

er directly using individual flip-flops and gates. Assuming D-type flip-flops for the

counter, we list the present states and corresponding next states in Table 6-9. An

output Y is included in the table. This output is equal to 1 when the present state is

1001. In this way, CO can enable the count of the next decade while its own decade

switches from 1001 to 0000.

The flip-flop input equations for D are obtained from the next-state values

listed in the table and can be simplified by means of K-maps. The unused states for

CTR 4

Load

Count

D0

D1

D2

D3

Q0

Q1

Q2

Q3

CO

Clock

1

(Logic 0)

Q0

Q1

Q2

Q3

 FIGURE 6-15
BCD Counter

368 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

minterms 1010 through 1111 are used as don't-care conditions. The simplified input

equations for the BCD counter are

 D1 = Q1

 D2 = Q2 ⊕ Q1Q8

 D4 = Q4 ⊕ Q1Q2

 D8 = Q8 ⊕ (Q1Q8 + Q1Q2Q4)

 CO = Q1Q8

Synchronous BCD counters can be cascaded to form counters for decimal

numbers of any length. The cascading is done by replacing D
1
 with D1 = Q1 ⊕ CI,

where CI is an input driven by CO from the next lower BCD counter. Also, CI needs

to be ANDed with the product terms to the right of each of the XOR symbols in

each of the equations for D
2
 through D

8
.

ARBITRARY COUNT SEQUENCE Suppose we wish to design a counter that has a repeated

sequence of six states, as listed in Table 6-10. In this sequence, flip-flops B and C repeat

the binary count 00, 01, 10, while flip-flop A alternates between 0 and 1 every three

counts. Thus, the count sequence for the counter is not straight binary, and two states,

011 and 111, are not included in the count. The D flip-flop input equations can be sim-

plified using minterms 3 and 7 as don’t-care conditions. The simplified functions are

 DA = A ⊕ B

 DB = C

 DC = B C

 TABLE 6-9
State Table and Flip-Flop Inputs for BCD Counter

Present State Next State Output

D8 = D4 = D2 = D1 =
Q8 Q4 Q2 Q1 Q8(t + 1) Q4(t + 1) Q2(t + 1) Q1(t + 1) Y

0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0

0 0 1 0 0 0 1 1 0

0 0 1 1 0 1 0 0 0

0 1 0 0 0 1 0 1 0

0 1 0 1 0 1 1 0 0

0 1 1 0 0 1 1 1 0

0 1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 1 0

1 0 0 1 0 0 0 0 1

6-6 / Microoperations on a Single Register 369

The logic diagram of the counter is shown in Figure 6-16(a). Since there are

two unused states, we analyze the circuit to determine their effect. The state diagram

obtained is drawn in Figure 6-16(b). This diagram indicates that if the circuit ever

goes to one of the unused states, the next count pulse transfers it to one of the valid

states, and the circuit then continues to count correctly.

(b)

000

011

ABC

Reset

110 001

111101 010

100

(a)

A

Clock

D

C

D

C

D

C

B

C

Reset

 FIGURE 6-16
Counter with Arbitrary Count

 TABLE 6-10
State Table and Flip-Flop Inputs for Counter

Present State Next State

DA = DB = DC =
A B C A(t + 1) B(t + 1) C(t + 1)

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 0 0 0

370 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

6-7 REGISTER-CELL DESIGN

In Section 3-8, we discussed iterative combinational circuits. In this chapter, we con-

nect such circuits to flip-flops to form sequential circuits. A single-bit cell of an itera-

tive combinational circuit, connected to a flip-flop that provides the output, forms a

two-state sequential circuit called a register cell. We can design an n-bit register with

one or more associated microoperations by designing a register cell and making n

copies of it. Depending on whether the output of the flip-flop is an input to the itera-

tive circuit cell, the register cell may have its next state dependent on its present state

and inputs or on its inputs only. If the dependency is only on inputs, then cell design

for the iterative combinational circuit and attachment of the iterative circuit to flip-

flops is appropriate. If, however, the state of the flip-flop is fed back to the inputs of

the iterative circuit cell, sequential design methods can also be applied. The next

example illustrates simple register-cell design in such a case.

EXAMPLE 6-1 Register-Cell Design

A register A is to implement the following register transfers:

AND: A d A ¿ B
EXOR: A d A ⊕ B
OR: A d A ¡ B

Unless specified otherwise, we assume that

1. Only one of AND, EXOR, and OR is equal to 1, and

2. For all of AND, EXOR, and OR equal to 0, the content of A remains unchanged.

A simple design approach for a register cell with conditions 1 and 2 uses a reg-

ister with parallel load constructed from D flip-flops with Enable (EN = LOAD)

from Figure 6-2. For this approach, the expression for LOAD is the OR of all control

signals that cause a transfer to occur. The expression for Di consists of an OR of the

AND of each control signal with the operation on the right-hand side of the corre-

sponding transition.

For this example, the resulting equations for LOAD and Di are

LOAD = AND + EXOR + OR

Di = A(t + 1)i = AND # AiBi + EXOR # (AiBi + AiBi) + OR # (Ai + Bi)

The equation for Di has an implementation similar to that used for the selection part

of a multiplexer in which a set of ENABLE blocks drive an OR gate. AND, EXOR,

and OR are enabling signals, and the remaining part of the respective terms in Di

consists of the function enabled.

A more complex approach is to design directly for D flip-flops using a sequen-

tial circuit design approach rather than the ad hoc approach based on parallel load

flip-flops.

We find a coded state table with A as the state variable and output, and AND,

EXOR, OR, and B as inputs, as shown in Table 6-11. The assumption that at most one

6-7 / Register-Cell Design 371

of the three control variables AND, EXOR, and OR is 1 is instrumental in defining

the column headings. From the table, the equation for Di can be written as:

Di = A(t + 1)i = AND # Ai
Bi + EXOR # (AiBi + AiBi) + OR # (Ai + Bi)

 + AND # EXOR # OR # Ai

In attempting to simplify this equation, it is important to note that factors involving

only the control variables can be shared between register cells since they are the

same for each cell. On the other hand, factors including variables A
i
 or B

i
 are imple-

mented in each cell, so the gate-input cost is multiplied by n, the number of cells. In

order to easily separate out the factors involving condition variables only, we rewrite

D
i
 in terms of minterms of variables A

i
 and B

i
:

Di = (AND + OR + AND # EXOR # OR)(AiBi) + (EXOR + OR
 + AND # EXOR # OR)(AiBi) + (EXOR + OR)(AiBi)

 = (AND + OR + EXOR)(AiBi) + (EXOR + OR
 + AND)(AiBi) + (EXOR + OR)(AiBi)

The terms OR + AND + EXOR, EXOR + OR, and (EXOR + OR) + AND do

not depend on the values Ai and Bi associated with any of the cells. The logic for

these terms can be shared by all of the register cells. Using C
1
, C

2
, and C

3
 as interme-

diate variables, the following set of equations results:

 C1 = OR + AND + EXOR
 C2 = OR + EXOR
 C3 = C2 + AND
 Di = C1AiBi + C3AiBi + C2AiBi

The logic shared by all of the cells and the logic for register cell i are given in Figure

6-17. Before comparing these results with those from the simple approach, we can

apply similar simplification and logic sharing to the results of the simple approach:

 C1 = OR + AND

 C2 = OR + EXOR

 TABLE 6-11
State Table and Flip-Flop Inputs for Example 6-1

Present

State A Next State A(t + 1)

(AND = 0)

(EXOR = 0)

(OR = 0)

(OR = 1)

(B = 0)

(OR = 1)

(B = 1)

(EXOR = 1)

(B = 0)

(EXOR = 1)

(B = 1)

(AND = 1)

(B = 0)

(AND = 1)

(B = 1)

0 0 0 1 0 1 0 0

1 1 1 1 1 0 0 1

372 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

 Di = C1AiBi + C2AiBi + C2AiBi

 LOAD = C1 + C2

 Di,FF = LOAD # Di + LOAD # Ai

If these equations are used directly the cost of the simple approach for a 16-cell

design is about 40% higher. So by designing a custom register cell using a D flip-flop

rather than finding input logic for a D flip-flop with enable, the cost can be reduced.

Further, with the decrease in the number of levels of logic, the delay may also be

reduced. ■

In the preceding example, there are no lateral connections between adjacent

cells. Among the operations requiring lateral connections are shifts, arithmetic

operations, and comparisons. One approach to the design of these structures is to

combine combinational designs given in Chapter 3 with selection logic and flip-

flops. A generic approach for multifunctional registers using flip-flops with parallel

load is shown in Figure 6-8. This simple approach bypasses register-cell design but, if

directly implemented, can result in excessive logic and too many lateral connec-

tions. The alternative is to do a custom register-cell design. In such designs, a critical

factor is the definition of the lateral connection(s) needed. Also, different opera-

tions can be defined by controlling input to the least significant cell of the cell

OR

EXOR

AND

Shared Logic

C1

C2

C3

Bi

AiD

CClock

Cell i

C1 C3 C2

 FIGURE 6-17
Logic Diagram—Register-Cell Design Example 6-1

6-7 / Register-Cell Design 373

cascade. The custom design approach is illustrated in the next example by the design

of a multifunctional register cell.

EXAMPLE 6-2 Register-Cell Design

A register A is to implement the following register transfers:

SHL: A d sl A
EXOR: A d A ⊕ B
ADD: A d A + B

Unless specified otherwise, we assume that

1. Only one of SHL, EXOR, and ADD is equal to 1, and

2. For all of SHL, EXOR, and ADD equal to 0, the content of A remains un-

changed.

A simple approach to designing a register cell with conditions 1 and 2 is to use

a parallel load with enable EN equal to LOAD. For this approach, the expression for

LOAD is the OR of all control signals that cause a transfer to occur. The implemen-

tation for Di consists of an AND-OR, with each AND having a control signal and the

logic for the operation on the right-hand side as its inputs.

For this example, the resulting equations for LOAD and Di are

 LOAD = SHL + EXOR + ADD

 Di = A(t + 1)i = SHL # Ai- 1 + EXOR # (Ai ⊕ Bi) + ADD # ((Ai ⊕ Bi) ⊕ Ci)

 Ci+ 1 = (Ai ⊕ Bi)Ci + AiBi

These equations can be used without modification or can be optimized.

Now, suppose, that we do a custom design assuming that all of the register cells

are identical. This means that the least and most significant cells will be the same as

those internal to the cell chain. Because of this, the value of C
0
 must be specified and

the use, if any, of Cn must be determined for each of the three operations. For the left

shift, a zero fill of the vacated rightmost bit is assumed, giving C0 = 0. Since C
0
 is not

involved in the EXOR operation, it can be assumed to be a don’t-care. Finally, for the

addition, C
0
 either can be assumed to be 0 or can be left as a variable to permit a

carry from a previous addition to be injected. We assume that C
0
 equals 0 for addi-

tion, since no additional carry-in is specified by the register transfer statement.

Our first formulation goal is to minimize lateral connections between cells.

Two of the three operations, left shift and addition, require a lateral connection to

the left (i.e., toward the most significant end of the cell chain). Our goal is to use one

signal for both operations, say, C
i
. It already exists for the addition but must be rede-

fined to handle both the addition and the left shift. Also in our custom design, the

parallel load flip-flop will be replaced by a D flip-flop. We can now formulate the

state table for the register cell shown in Table 6-12:

 Di = A(t + 1)i = SHL # EXOR # ADD # Ai + SHL # Ci + EXOR # (Ai ⊕Bi)

+ ADD # (Ai ⊕Bi ⊕Ci)

 Ci+ 1 = SHL # Ai + ADD # ((Ai ⊕ Bi)Ci +AiBi)

374 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The term A
i
 ⊕ B

i
 appears in both the EXOR and ADD terms. In fact, if Ci = 0

during the EXOR operation, then the functions for the sum in ADD and for EXOR

can be identical. In the Ci+ 1 equation, since SHL and ADD are both 0 when EXOR

is 1, Ci is 0 for all cells in the cascade except the least significant one. For the least

significant cell, the specification states that C0 = 0. Thus, input values Ci are 0 for all

cells in register A. So we can combine the ADD and EXOR operations as follows:

EXOR
ADD

SHL

Shared Logic

E1

E2

ADD

Cell i

D

CClock

SHLE1Bi

Ci

Ai

E2

 FIGURE 6-18
Logic Diagram—Register-Cell Design Example 6-2

 TABLE 6-12
State Table and Flip-Flop Inputs for Register-Cell Design in Example 6-2

Present

State A
i

Inputs Next State Ai(t + 1)/Output Ci+1

 SHL = 0

 EXOR = 0

 ADD = 0

 SHL = 1 1 1 1

 Bi = 0 0 1 1

 Ci = 0 1 0 1

 EXOR = 1 1

 Bi = 0 1

 ADD = 1 1 1 1

 Bi = 0 0 1 1

 Ci = 0 1 0 1

0 0/X 0/0 1/0 0/0 1/0 0/X 1/X 0/0 1/0 1/0 0/1

1 1/X 0/1 1/1 0/1 1/1 1/X 0/X 1/0 0/1 0/1 1/1

6-8 / Multiplexer and Bus-Based Transfers for Multiple Registers 375

Di = A(t + 1)i = SHL # EXOR # ADD # Ai + SHL # Ci

+ (EXOR + ADD) # ((Ai ⊕Bi)⊕Ci)

The expressions SHL # EXOR # ADD and EXOR + ADD, which are independent

of A
i
, B

i
, and C

i
, can be shared by all cells. The resulting equations are

 E1 = EXOR + ADD

 E2 = E1 + SHL

 Di = E2
Ai + SHL # Ci + E1

((Ai ⊕ Bi) ⊕ Ci)

 Ci+ 1 = SHL # Ai + ADD # ((Ai ⊕ Bi)Ci + AiBi)

The resulting register cell appears in Figure 6-18. Comparing this result with the reg-

ister cell for the simple design, we note the following two differences:

1. Only one lateral connection between cells exists instead of two.

2. Logic has been very efficiently shared by the addition and the EXOR operation.

The custom cell design has produced connection and logic savings not present in the

block-level design with or without optimization. ■

6-8 MULTIPLEXER AND BUS-BASED TRANSFERS
FOR MULTIPLE REGISTERS

A typical digital system has many registers. Paths must be provided to transfer data

from one register to another. The amount of logic and the number of interconnec-

tions may be excessive if each register has its own dedicated set of multiplexers. A

more efficient scheme for transferring data between registers is a system that uses a

shared transfer path called a bus. A bus is characterized by a set of common lines,

with each line driven by selection logic. Control signals for the logic select a single

source and one or more destinations on any clock cycle for which a transfer occurs.

In Section 6-4, we saw that multiplexers and parallel load registers can be used

to implement dedicated transfers from multiple sources. A block diagram for such

transfers between three registers is shown in Figure 6-19(a). There are three n-bit

2-to-1 multiplexers, each with its own select signal. Each register has its own load

signal. The same system based on a bus can be implemented by using a single n-bit

3-to-1 multiplexer and parallel load registers. If a set of multiplexer outputs is shared

as a common path, these output lines are a bus. Such a system with a single bus for

transfers between three registers is shown in Figure 6-19(b). The control input pair,

Select, determines the contents of the single source register that will appear on the

multiplexer outputs (i.e., on the bus). The Load inputs determine the destination

register or registers to be loaded with the bus data.

In Table 6-13, transfers using the single-bus implementation of Figure 6-19(b)

are illustrated. The first transfer is from R2 to R0. Select equals 10, selecting input R2

to the multiplexer. Load signal L0 for register R0 is 1, with all other loads at 0, caus-

ing the contents of R2 on the bus to be loaded into R0 on the next positive clock

transition. The second transfer in the table illustrates the loading of the contents of

R1 into both R0 and R2. The source R1 is selected because Select is equal to 01. In

376 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

this case, L2 and L0 are both 1, causing the contents of R1 on the bus to be loaded

into registers R0 and R2. The third transfer, an exchange between R0 and R1, is

impossible in a single clock cycle, since it requires two simultaneous sources, R0 and

R1, on the single bus. Thus, this transfer requires at least two buses or a bus combined

with a dedicated path from one of the registers to the other. Note that such a transfer

can be executed on the dedicated multiplexers in Figure 6-19(a). So, for a single-bus

system, simultaneous transfers with different sources in a single clock cycle are

(a) Dedicated multiplexers (b) Single bus

Select
S0

Load
L0

S0

1
2-to-1
MUX

n

R0

S0

1

n

R1

S0

1

n

R2

n

n

n

2-to-1
MUX

2-to-1
MUX

S2S1 L2L1

0

Bus

R0

R1

R2

S1
0

1 3-to-1
MUX

S0

Select

n

n

n

n

n

n

n

S1
0

1

2

Load
L0 L2L1

 FIGURE 6-19
Single Bus versus Dedicated Multiplexers

 TABLE 6-13
Examples of Register Transfers Using the Single Bus
in Figure 6-19(b)

Select Load

Register Transfer S1 S0 L2 L1 L0

R0 d R2 1 0 0 0 1

R0 d R1, R2 d R1 0 1 1 0 1

R0 d R1, R1 d R0 Impossible

6-8 / Multiplexer and Bus-Based Transfers for Multiple Registers 377

impossible, whereas for the dedicated multiplexers, any combination of transfers is

possible. Hence, the reduction in hardware that occurs for a single bus in place of

dedicated multiplexers results in limitations on simultaneous transfers.

If we assume that only single-source transfers are needed, then we can use

Figure 6-19 to compare the complexity of the hardware in dedicated versus bus-

based systems. First of all, assume a multiplexer design, as in Figure 3-27. In Figure 6-

19(a), there are 2n AND gates and n OR gates per multiplexer (not counting

inverters), for a total of 9n gates. In contrast, in Figure 6-19(b), the bus multiplexer

requires only 3n AND gates and n OR gates, for a total of 4n gates. Also, the data

input connections to the multiplexers are reduced from 6n to 3n. Thus, the cost of the

selection hardware is reduced by about half.

High-Impedance Outputs

Another method for constructing a bus involves a type of gate called a three-state buf-
fer. Thus far, we have considered gates that have only output values logic 0 and logic 1.

In this section, we introduce an important structure, the three-state buffer, that pro-

vides a third output value referred to as the high-impedance state and denoted by Hi-Z

or just plain Z or z. The Hi-Z value behaves as an open circuit, which means that, look-

ing back into the circuit, we find that the output appears to be disconnected internally.

Thus, the output appears not to be there at all and, thus, is incapable of driving any

attached inputs. Gates with Hi-Z output capability have two very useful properties.

First of all, Hi-Z outputs can be connected together, provided that no two or more

gates drive the line at the same time to opposite 0 and 1 values. In contrast, gates with

only logic 0 and logic 1 outputs cannot have their outputs connected together. Second,

an output in the Hi-Z states, since it appears as an open circuit, can have an input

attached to it internally, so that the Hi-Z output can act as both an output and an input.

This is referred to as a bidirectional input/output. Instead of carrying signals in just one

direction, interconnections between Hi-Z outputs can carry information in both direc-

tions. This feature reduces significantly the number of interconnections required.

High-impedance outputs may appear on any gate, but here we restrict consid-

eration to a primitive gate structure with a single data input, a three-state buffer. As

the name implies, a three-state logic output exhibits three distinct states. Two of the

“states” are the logic 1 and logic 0 of conventional logic. The third “state” is the Hi-Z

value, which, for three-state logic, is referred to as the Hi-Z state.

The graphic symbol and truth table for a 3-state buffer are given in Figure 6-20(a).

The symbol in Figure 6-20(a) is distinguished from the symbol for a normal buffer by

the enable input, EN, entering the bottom of the buffer symbol. From the truth table in

(b) Truth table

EN IN OUT

0
1
1

X
0
1

Hi-Z
0
1

(a) Logic symbol

IN

EN

OUT

 FIGURE 6-20
Three-State Buffer

378 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

Figure 6-20(b), if EN = 1, OUT is equal to IN, behaving like a normal buffer. But for

EN = 0, the output value is high impedance (Hi-Z), regardless of the value of IN.

Three-state buffer outputs can be connected together to form a multiplexed

output line. Figure 6-21(a) shows two 3-state buffers with their outputs connected to

form output line OL. We are interested in the output of this structure in terms of the

four inputs EN1, EN0, IN1, and IN0. The output behavior is given by the truth table

in Figure 6-21(b). For EN1 and EN0 equal to 0, both buffer outputs are Hi-Z. Since

both appear as open circuits, OL is also an open circuit, represented by a Hi-Z value.

For EN1 = 0 and EN0 = 1, the output of the top buffer is IN0 and the output of

bottom buffer is Hi-Z. Since the value of IN0 combined with an open circuit is just

IN0, OL has value IN0, giving the second and third rows of the truth table. A corre-

sponding, but opposite, case occurs for EN1 = 1 and EN0 = 0, so OL has value

IN1, giving the fourth and fifth rows of the truth table. For EN1 and EN0 both 1, the

situation is more complicated. If IN1 = IN0, then their mutual value appears at OL.

But if IN1 ≠ IN0, then their values conflict at the output. The conflict results in an

electrical current flowing from the buffer output that is at 1 into the buffer output

that is at 0. This current is often large enough to cause heating and may even destroy

the circuit, as symbolized by the “smoke” icons in the truth table. Clearly, such a situ-

ation must be avoided. The designer must ensure that EN0 and EN1 never equal 1 at

the same time. In the general case, for n 3-state buffers attached to a bus line, EN can

equal 1 for only one of the buffers and must be 0 for the rest. One way to ensure this

IN1

X

X

X

0

1

0

1

0

1

X

IN0

0

1

X

X

0

1

1

0

OLEN1

0

(S) 0

0

1

1

1

1

1

1

Hi-Z

0

1

0

1

0

1

EN0

0

1

0

0

1

1

1

1

(S) 1

(b) Truth table

(a) Logic Diagram

IN0

EN0

IN1

EN1

(S)

(S)

OL

 FIGURE 6-21
Three-State Buffers Forming a Multiplexed Line OL

6-8 / Multiplexer and Bus-Based Transfers for Multiple Registers 379

is to use a decoder to generate the EN signals. For the two-buffer case, the decoder is

just an inverter with select input S, as shown in dotted lines in Figure 6-21(a). It is

interesting to examine the truth table with the inverter in place. It consists of the

shaded area of the table in Figure 6-21(b). Clearly, the value on S selects between

inputs IN0 and IN1. Further, the circuit output OL is never in the Hi-Z state.

Three-State Bus

A bus can be constructed with the three-state buffers introduced above instead of

multiplexers. This has the potential for additional reductions in the number of con-

nections. But why use three-state buffers instead of a multiplexer, particularly for

 implementing buses? The reason is that many three-state buffer outputs can be con-

nected together to form a bit line of a bus, and this bus is implemented using only

one level of logic gates. On the other hand, in a multiplexer, such a large number of

sources means a high fan-in OR, which requires multiple levels of OR gates, intro-

ducing more logic and increasing delay. In contrast, three-state buffers provide a

practical way to construct fast buses with many sources, so they are often preferred

in such cases. More important, however, is the fact that signals can travel in two

directions on a three-state bus. Thus, the three-state bus can use the same intercon-

nection to carry signals into and out of a logic circuit. This feature, which is most

important when crossing chip boundaries, is illustrated in Figure 6-22(a). The figure

(c) Three-state bus using
registers with bidirectional
lines

Bus

Load
L2 L1 L0

Enable
E2 E1 E0

R0
n

EN

R1
n

EN

R2
n

EN

n

n

(b) Multiplexer bus

Bus

Select

n

n

n

n

n

n

n

Load
L0 L1 L2

R0

R1

R2

3–to–1
MUX

2

(a) Register with bidirectional
input–output lines and symbol

R

LOAD

Load

n n

n

EN

R

Load

n

EN

 FIGURE 6-22
Three-State Bus versus Multiplexer Bus

380 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

shows a register with n lines that serve as both inputs and outputs lying across the

boundary of the shaded area. If the three-state buffers are enabled, then the lines are

outputs; if the three-state buffers are disabled, then the lines can be inputs. The sym-

bol for this structure is also given in the figure. Note that the bidirectional bus lines

are represented by a two-headed arrow. Also, a small inverted triangle denotes the

three-state outputs of the register.

Figures 6-22(b) and (c) show a multiplexer-implemented bus and a three-state

bus, respectively, for comparison. The symbol from Figure 6-22(a) for a register with

bidirectional input–output lines is used in Figure 6-22(c). In contrast to the situation

in Figure 6-19, where dedicated multiplexers were replaced by a bus, these two imple-

mentations are identical in terms of their register–transfer capability. Note that, in

the three-state bus, there are only three data connections to the set of register blocks

for each bit of the bus. The multiplexer-implemented bus has six data connections

per bit to the set of register blocks. This reduction in the number of data connections

by half, along with the ability to easily construct a bus with many sources, makes the

three-state bus an attractive alternative. The use of such bidirectional input–output

lines is particularly effective between logic circuits in different physical packages.

6-9 SERIAL TRANSFER AND MICROOPERATIONS

A digital system is said to operate in a serial mode when information in the system is

transferred or manipulated one bit at a time. Information is transferred one bit at a

time by shifting the bits out of one register and into a second register. This transfer

method is in contrast to parallel transfer, in which all the bits of the register are trans-

ferred at the same time.

The serial transfer of information from register A to register B is done with shift

registers, as shown in the block diagram of Figure 6-23(a). The serial output of register

A is connected to the serial input of register B. The serial input of register A receives 0s

while its data is transferred to register B. It is also possible for register A to receive

(b) Timing diagram

T1 T2 T3 T4

Clock

Shift
C inputs

Register B
SRG 4

Register A
SRG 4

(a) Block diagram

SI

C

SO0 SI

C

SO

Shift
Clock

 FIGURE 6-23
Serial Transfer

6-9 / Serial Transfer and Microoperations 381

other binary information, or if we want to maintain the data in register A, we can con-

nect its serial output to its serial input so that the information is circulated back into

the register. The initial content of register B is shifted out through its serial output and

is lost unless it is transferred back into register A, to a third shift register, or to other

storage. The shift control input Shift determines when and how many times the regis-

ters are shifted. The registers using Shift are controlled by means of the logic from

Figure 6-23(a), which allows the clock pulses to pass to the shift register clock inputs

only when Shift has the value logic 1.

In Figure 6-23, each shift register has four stages. The logic that supervises the

transfer must be designed to enable the shift registers, through the Shift signal, for a

fixed time of four clock pulses. Shift register enabling is shown in the timing diagram

for the clock gating logic in Figure 6-23(b). Four pulses find Shift in the active state,

so that the output of the logic connected to the clock inputs of the registers produces

four pulses: T
1
, T

2
, T

3
, and T

4
. Each positive transition of these pulses causes a shift in

both registers. After the fourth pulse, Shift changes back to 0 and the shift registers

are disabled. We note again that, for positive-edge triggering, the pulses on the clock

inputs are 0, and the inactive level when no pulses are present is a 1 rather than a 0.

Now suppose that the binary content of register A before the shift is 1011, that

of register B is 0010, and the SI of register A is logic 0. Then the serial transfer from

A to B occurs in four steps, as shown in Table 6-14. With the first pulse T
1
, the right-

most bit of A is shifted into the leftmost bit of B, the leftmost bit of A receives a 0

from the serial input, and at the same time, all other bits of A and B are shifted one

position to the right. The next three pulses perform identical operations, shifting the

bits of A into B one at a time while transferring 0s to A. After the fourth shift, the

logic supervising the transfer changes the Shift signal to 0 and the shifts stop. Register

B contains 1011, which is the previous value of A. Register A contains all 0s.

The difference between serial and parallel modes of operation should be

apparent from this example. In the parallel mode, information is available from all

bits of a register, and all bits can be transferred simultaneously during one clock

pulse. In the serial mode, the registers have a single serial input and a single serial

output, and information is transferred one bit at a time.

Serial Addition

Operations in digital computers are usually done in parallel because of the faster

speed attainable. Serial operations are slower, but have the advantage of requiring

 TABLE 6-14
Example of Serial Transfer

Timing Pulse Shift Register A Shift Register B

Initial value 1 0 1 1 0 0 1 0

After T
1

0 1 0 1 1 0 0 1

After T
2

0 0 1 0 1 1 0 0

After T
3

0 0 0 1 0 1 1 0

After T
4

0 0 0 0 1 0 1 1

382 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

less hardware. To demonstrate the serial mode of operation, we will show the opera-

tion of a serial adder. Also, we compare the serial adder to the parallel counterpart

presented in Section 3-9 to illustrate the time–space trade-off in design.

The two binary numbers to be added serially are stored in two shift registers.

Bits are added, one pair at a time, through a single full-adder (FA) circuit, as shown

in Figure 6-24. The carry out of the full adder is transferred into a D flip-flop. The

output of this carry flip-flop is then used as the carry input for the next pair of signif-

icant bits. The sum bit on the S output of the full adder could be transferred into a

third shift register, but we have chosen to transfer the sum bits into register A as the

contents of the register are shifted out. The serial input of register B can receive a

new binary number as its contents are shifted out during the addition.

The operation of the serial adder is as follows: Register A holds the augend,

register B holds the addend, and the carry flip-flop has been reset to 0. The serial

outputs of A and B provide a pair of significant bits for the full adder at X and Y. The

output of the carry flip-flop provides the carry input at Z. When Shift is set to 1, the

OR gate enables the clock for both registers and the flip-flop. Each clock pulse shifts

both registers once to the right, transfers the sum bit from S into the leftmost flip-

flop of A, and transfers the carry output into the carry flip-flop. Shift control logic

enables the registers for as many clock pulses as there are bits in the registers (four

pulses in this example). For each pulse, a new sum bit is transferred to A, a new carry

is transferred to the flip-flop, and both registers are shifted once to the right. This

process continues until the shift control logic changes Shift to 0. Thus, the addition is

accomplished by passing each pair of bits and the previous carry through a single

full-adder circuit and transferring the sum, one bit at a time, back into register A.

Reset

Reset

Reset FA

X S

Y

Z C

Full Adder
(Figure 5-4)

Carry

C

D

R

Shift
Clock

Serial
input

Register B

SRG 4

SI

Clear

SO

C

Register A

SRG 4

SI

Clear

SO

C

 FIGURE 6-24
Serial Addition

6-10 / Control of Register Transfers 383

Initially, we can reset register A, register B, and the Carry flip-flop to 0. Then

we shift the first number into B. Next, the first number from B is added to the 0 in A.

While B is being shifted through the full adder, we can transfer a second number to it

through its serial input. The second number can be added to the contents of register

A at the same time that a third number is transferred serially into register B. Serial

addition may be repeated to form the addition of two, three, or more numbers, with

their sum accumulated in register A.

A comparison of the serial adder with the parallel adder described in Section

3-9 provides an example of space–time trade-off. The parallel adder has n full adders

for n-bit operands, whereas the serial adder requires only one full adder. Excluding

the registers from both, the parallel adder is a combinational circuit, whereas the

serial adder is a sequential circuit because it includes the carry flip-flop. The serial

circuit also takes n clock cycles to complete an addition. Identical circuits, such as the

n full adders in the parallel adder, connected together in a chain constitute an exam-

ple of an iterative logic array. If the values on the carries between the full adders are

regarded as state variables, then the states from the least significant end to the most

significant end are the same as the states appearing in sequence on the flip-flop out-

put in the serial adder. Note that in the iterative logic array the states appear in

space, but in the sequential circuit the states appear in time. By converting from one

of these implementations to the other, one can make a space–time trade-off. The

parallel adder in space is n times larger than the serial adder (ignoring the area of the

carry flip-flop), but it is n times faster. The serial adder, although it is n times slower,

is n times smaller in space. This gives the designer a significant choice in emphasizing

speed or area, where more area translates into more cost.

6-10 CONTROL OF REGISTER TRANSFERS

In Section 6-2, we divided a digital system into two major components, a datapath

and a control unit. Likewise, the binary information stored in a digital computer can

be classified as either data or control information. As we saw earlier in this chapter,

data is manipulated in a datapath by using microoperations implemented with regis-

ter transfers. These operations are implemented with adder–subtractors, shifters, reg-

isters, multiplexers, and buses. The control unit provides signals that activate the

 various microoperations within the datapath to perform the specified processing

tasks. The control unit also determines the sequence in which the various actions are

performed. This separation of a system into two components and separation of the

tasks performed carries over to the design process. The datapath and control unit are

usually designed separately, but in close coordination with each other.

Generally, the timing of all registers in a synchronous digital system is con-

trolled by a master clock generator. The clock pulses are applied to all flip-flops and

registers in the system, including those in the control unit. To prevent clock pulses

from changing the state of all registers on every clock cycle, some registers have a

load control signal that enables and disables the loading of new data into the register.

The binary variables that control the selection inputs of multiplexers, buses, and pro-

cessing logic and the load control inputs of registers are generated by the control unit.

The control unit that generates the signals for sequencing the microoperations

is a sequential circuit with states that dictate the control signals for the system. At

384 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

any given time, the state of the sequential circuit activates a prescribed set of micro-

operations. Using status conditions and control inputs, the sequential control unit

determines the next state. The digital circuit that acts as the control unit provides a

sequence of signals for activating the microoperations and also determines its own

next state.

Based on the overall system design, there are two distinct types of control units

used in digital systems, one for a programmable system and the other for a nonpro-

grammable system.

In a programmable system, a portion of the input to the processor consists of

a sequence of instructions. Each instruction specifies the operation that the sys-

tem is to perform, which operands to use, where to place the results of the opera-

tion, and, in some cases, which instruction to execute next. For programmable

systems, the instructions are usually stored in memory, either in RAM or in ROM.

To execute the instructions in sequence, it is necessary to provide the memory

address of the instruction to be executed. This address comes from a register

called the program counter (PC). As the name implies, the PC has logic that per-

mits it to count. In addition, in order to change the sequence of operations using

decisions based on status information from the datapath, the PC needs parallel

load capability. So, in the case of a programmable system, the control unit con-

tains a PC and associated decision logic, as well as the necessary logic to interpret

the instruction. Executing an instruction means activating the necessary sequence

of microoperations in the datapath required to perform the operation specified by

the instruction.

For a nonprogrammable system, the control unit is not responsible for obtain-

ing instructions from memory, nor is it responsible for sequencing the execution of

those instructions. There is no PC or similar register in such a system. Instead, the

control unit determines the operations to be performed and the sequence of those

operations, based on its inputs and the status bits from the datapath.

This section focuses on nonprogrammable system design. It illustrates the use

of state machine diagrams for control unit design. Programmable systems are cov-

ered in Chapters 8 and 10.

Design Procedure

There are many possible design procedures for designing a datapath and control

unit. Here, we will take an approach in which the actions of both the datapath and

the control unit are described in a combined fashion using a state machine dia-

gram or a combination of a state machine diagram with a register transfer table.

Also, this procedure assumes that there may be some register transfer hardware

in the control unit. Examples of such hardware are an iteration counter for imple-

mentation of an iterative algorithm, a program counter for a computer, or a set of

register transfers to reduce the number of states in a state machine diagram. Here

we use the term system to describe the target of the design; this term can be

replaced with circuit if desired. This procedure assumes only one state machine

diagram in the control unit. If desired, VHDL or Verilog can be used for any steps

of the procedure.

6-10 / Control of Register Transfers 385

REGISTER-TRANSFER SYSTEM DESIGN PROCEDURE

1. Write a detailed system specification.

2. Define all external data and control input signals, all external data, control,

and status output signals, and the registers of the datapath and control unit.

3. Find a state machine diagram for the system including the register transfers in

the datapath and in the control unit.

4. Define internal control and status signals. Use these signals to separate output

conditions and actions, including register transfers, from the state diagram flow

and represent them in tabular form.

5. Draw a block diagram of the datapath including all control and status inputs

and outputs. Draw a block diagram of the control unit if it includes register

transfer hardware.

6. Design any specialized register transfer logic in both the control and datapath.

7. Design the control unit logic.

8. Verify the correct operation of the combined datapath and control logic. If

verification fails, debug the system and reverify it.

The next two examples provide the details of register-transfer system design.

The concepts illustrated are very central to contemporary system design. These

examples will cover the first seven of the eight steps, then step 8 will be briefly

discussed.

EXAMPLE 6-3 DashWatch

The DashWatch is a very inexpensive stopwatch, intended only for runners in very

short races referred to as dashes, e.g., the 100-yard dash.

1. The DashWatch times intervals less than or equal to 99.99 seconds. In addition

to the stopwatch action, it also has a feature which permits the best performance

(least time) to be stored in a register. The front of the stopwatch is shown in

 Figure 6-25(a). The primary stopwatch inputs are START and STOP. The START

button causes a timer to reset to 0 and then starts the timer, and the STOP button

stops the timer. After pressing STOP, the latest dash time is displayed on the

4-digit LCD (liquid crystal display). In addition, the CSS (compare and store

shortest) pushbutton causes: (1) the last dash value to be compared with the

stored minimum dash value so far in this session, (2) the least value to be stored

as the minimum dash value, and (3) the minimum dash value to be displayed.

The RESET button initializes the storage register to 10011001.10011001, the

maximum possible value, and the BCD equivalent of 99.99. These reset actions

also occur in response to turning the power on with a switch on the back of the

DashWatch. The output is displayed in BCD on a seven-segment LCD which

displays four digits, B
1
, B

0
, B

–1
, B

–2
, each of which has seven bits a, b, c, d, e, f, and

g, for the seven segments. There is also an input to the display DP which is con-

nected to the power supply. It provides the decimal point between B
0
 and B

–1
,

and also acts as a power-on indicator.

386 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

2. The external control input signals, external data output signals, and registers

are listed Table 6-15. The first four signals, provided through signal condition-

ing logic from pushbuttons on the face of the DashWatch, are 1 if the button is

pushed and 0 if it is not pushed. The remaining signals are the 6-segment LCD

display inputs for the four digits from left to right and the decimal point DP.

DP is always 1 when the power is on. These five vectors are combined into the

29-bit vector B that drives the LCD. By looking at the specification in 1, we

can conclude that two registers are needed. One is a timer, TM, that times the

current dash, and the other SD, that stores the value of the shortest dash. The

timer register needs to count up every 0.01 seconds, the period of the circuit

clock. There are two choices for an up-counter: 1) a binary counter with a suf-

ficient number of bits to be accurate to 0.01 seconds in decimal, or 2) a 4-digit

BCD counter that counts in 0.01-second intervals. In this case, we have chosen

the BCD counter to save on hardware required to convert from binary to BCD

for the output display. The SD register has to be initialized to (99.99)
BCD

 and to

be loaded with the contents of TM. Thus a 4-digit (16-bit) parallel load register

is required. The registers are shown in Figure 6-25(b).

3. The state machine diagram is given in Figure 6-26. In the formulation of this

diagram, Moore model outputs were chosen, so all outputs are functions of state.

Just after power-up or manual RESET, the DashWatch circuit is in state S1 in

START

STOP

CSS RESET

(a)

(b)

4-Digit BCD Counter

16-Bit Parallel
Load Register

TM

SD

 FIGURE 6-25
(a) External Appearance and (b) Register Requirements for DashWatch

6-10 / Control of Register Transfers 387

which the register SD is synchronously reset to 0. The circuit proceeds to S2

to wait for START = 1. As long as START = 0, as indicated by START on

a self-loop in state S2, the state remains S2. In state S2, TM is reset to 0 using

a synchronous reset signal. If we use an asynchronous flip-flop input to change

the state of one or more flip-flops buried in the midst of a synchronous design,

we are violating the synchronous assumption that all state changes in normal

operation must be synchronized with the clock at the flip-flop inputs. Under this

assumption, asynchronous inputs are to be used only for power-up reset and

master reset of the system to its required initial state.

By using an asynchronous input on the flip-flops to change flip-flop states,

a designer might be caught by a timing problem that causes circuit failure, but

is not easily detected during design and manufacturing.

START = 1 causes a transition to state S3 in which TM is enabled to

count upward once every 0.01 seconds (the clock frequency is 100 Hz). The

counting continues and is displayed (DIS = TM) while STOP = 0. When

STOP becomes 1, the state becomes S4, and the dash time stored in TM is

displayed.

In state S4, the user can choose to time a new dash (CSS # START = 1),

returning the state to S2, or to compare the dash time to the stored smallest dash

time (CSS = 1), advancing the state to S5. Until one of these input events occurs,

the state remains S4 due to CSS # START. Note that instead of just START as a

transition condition, CSS # START is used. This is to meet the mutually exclusive

constraint, constraint 1 of the two transition constraint conditions for a state ma-

chine diagram.

In state S5, TM is compared to SD. If TM is less than SD, then the value

in SD is replaced by TM. This operation occurs in state S6, after which the next

 TABLE 6-15
Inputs, Outputs, and Registers of the DashWatch

Symbol Function Type

START

STOP

CSS

RESET

B1

B0

DP

B-1

B-2

B

Initialize timer to 0 and start timer

Stop timer and display timer

Compare, store, and display shortest dash time

Set shortest value to 10011001

Digit 1 data vector a, b, c, d, e, f, g to display

Digit 0 data vector a, b, c, d, e, f, g to display

Decimal point to display (= 1)

Digit -1 data vector a, b, c, d, e, f, g to display

Digit -2 data vector a, b, c, d, e, f, g to display

The 29-bit display input vector (B1, B0, DP, B-1, B-2)

Control input

Control input

Control input

Control input

Data output vector

Data output vector

Data output

Data output vector

Data output vector

Data output vector

TM

SD

4-Digit BCD counter

Parallel load register

16-Bit register

16-Bit register

388 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

state becomes S7. If TM is greater than or equal to SD, then SD is unchanged,

and the state becomes S7. In state S7, the smallest dash time stored in SD is

displayed until START is pushed to cause the state to change to S2, beginning

the timing of another dash.

4. The next step is the separation of the datapath from the control, including the

definition of the control and status signals that connect them together. The

datapath actions can be read from the state machine diagram. The actions are

grouped based on the destinations represented by the left-hand side of transfer

statements (d) or connection statements (=). Also, notation indicating status

generation in the datapath needs to be interpreted and status signals named.

The end results of these groupings are shown in Table 6-16 in the left column.

For the two register transfers into SD, the variable UPDATE is assigned to

select the source of the transfers, and LSR is assigned to control the loading

of SD. For TM, RSTM is assigned as the synchronous reset signal for zeroing

the register contents, and ENTM (which will drive the carry C0 into the least

significant digit of the BCD counter) is used to govern whether the count is up

by 1 or 0. Signal DS has been assigned to select the register to be displayed.

Finally, ALTB is assigned as the status signal to indicate whether or not TM is

less than SD. The variable names in true and complement form from Table 6-16

SD TM

TM (0000)BCD

SD (9999)BCD

RESET

S1

S3

S4

S5

S6

S2

S7

TM (TM � 1)BCD, DIS � TM

DIS = TM

DIS � SD

START

START

STOP

STOP

CSS

CSS�START

TM � SDTM � SD

START

START

CSS�START

 FIGURE 6-26
State Machine Diagram for DashWatch

6-10 / Control of Register Transfers 389

replace the output actions and status-based input conditions in Figure 6-26 to

form the state diagram in Figure 6-27(b).

5. Next, we develop the block diagram of the datapath given in Figure 6-27(a). The

two registers defined earlier appear in the diagram with their control terminals

and signals from the control unit added. RSTM is the synchronous input for the

zeroing of TM, and ENTM is applied to the carry input C
0
. In order to supply

the status signal ALTB, an A < B comparator is required with the TM output as

its A input and the SD output as its B input. The loading of SD needs selection

hardware to select from either TM or 1001100110011001 as its input. A 16-bit

2-to-1 multiplexer with input S driven by UPDATE is used. In order to deliver the

information to the LCD for display, it is necessary to select between TM and SD

as the source. A 16-bit 2-to-1 multiplexer with select signal DS is used to produce

the 16-bit signal DIS. Finally, this signal must be converted to the four vectors of

variables a, b, c, d, e, f, g to control the LCD segments for the four digits. These

vectors were previously labeled as B
1
, B

0
, B

–1
, and B

–2
 data outputs. Placing the

decimal point DP in between B
0
 and B

–1
, and combining all 29 bits, we obtain the

output B that drives the LCD.

6. A number of components of the block diagram developed are already avail-

able to us. The BCD counter digit was already developed in Section 6-6. The

4-digit BCD counter can be constructed by connecting four of the digit count-

ers together. A modification is required to provide the synchronous reset func-

tion for the counter. A 2-input AND gate is placed between the logic for each

bit and the D input to the corresponding flip-flop. The second input on the

AND gate is connected to RSTM. When RSTM is 0, the circuit is normal. When

 TABLE 6-16
Datapath Output Actions and Status Generation with Control and Status Signals

Action or Status

Control

or

Status

Signals Meaning for Values 1 and 0

TM d (0000)BCD RSTM 1: Reset TM to 0 (synchronous reset)

0: No reset of TM

TM d (TM + 1)BCD ENTM 1: BCD count up TM by 1, 0: hold TM value

SD d (9999)BCD UPDATE 0: Select 1001100110011001 for loading SD

LSR 1: Enable load SD, 0: disable load SD

SD d TM UPDATE 1: Select TM for loading SD

LSR Same as above

DIS = TM DS 0: Select TM for DIS

DIS = SD 1: Select SD for DIS

TM 6 SD ALTB 1: TM less than SD

TM Ú SD 0: TM greater than or equal to SD

390 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

(a)

4-Digit BCD Counter
SRST

A < B Comparator

Storage Register

16-Bit 2-to-1 MUX

ALTB

C0

LOAD

RESET

UPDATE

ENTM

RSTM

LSR

RESET

1001100110011001Contracted

16-Bit 2-to-1 MUX
D1 D0

D1 D0S

DS S

4-Digit BCD-to-7
Segment Converter

4-Digit LCD Display
DP 1

TM

SD

DIS
D

RESET

S4

S5

S6

S3

S7

START

START

STOP

STOP

CSS

ALTB

START

(b)

START

S1

S2

LSR

RSTM

ENTM

UPDATE, LSR

DS

Defaults: All outputs = 0

 FIGURE 6-27
(a) Datapath Block Diagram and (b) Control State-Machine Diagram for DashWatch

6-10 / Control of Register Transfers 391

RSTM is 1, all inputs to the flip-flops are 0, and the flip-flops are reset to all 0s

on the next clock.

The parallel load register is a 16-bit version of the register in Figure 6-2.

The A 6 B comparator can be designed easily as an iterative logic circuit.

Assuming a carry that goes from right to left, the equation for each cell is

Ci = AiBi + (Ai + Bi)Ci- 1 and the incoming carry C0 = 1. This represents

the carries in an unsigned binary 2s complement subtractor using the circuit

shown in Figure 3-45 with S = 1 to perform A - B. For this circuit, the result

A - B = A + (2n - 1 - B) + 1 = 2n + (A - B). If A - B Ú 0, then the

results is greater than or equal to 2n, and Cn (the carry out of the MSB) is 1. If

A - B 6 0, then the result is less than 2n, and Cn = 0. Thus for A 6 B,Cn = 0

and ALTB = Cn.

The multiplexer for loading SD is constructed based on the concept used

for the quad 4-to-1 multiplexer in Figure 3-27. It uses one 1–to–2-line decod-

er driven by the S input and 16 pairs of enable circuits for handling the two

16-bit data vectors. The same multiplexer can be used for the formation of the

16-bit DIS data vector. The final circuit is the 4-digit BCD–to–7-segment code

converter which can be constructed of four copies of the 1-digit BCD–to–7-

segment code converter designed in Example 3-18.

Aside from one issue, this completes the design of the datapath. Because

its input data vector on D
0
 is a constant, the 16-bit 2-to-1 multiplexer for select-

ing the input to SD can be substantially reduced by applying contraction from

Chapter 3. Doing this, for a bit with a data value of 0,

Yi = (S # D0i + S # D1i) 	D0i=0 = S # D1i

For a bit with a data value of 1,

Yi = (S # D0i + S # D1i) 	D0i = 1 = S + D 1i

The design of the datapath is now complete. There is no register transfer hard-

ware to be designed for the control unit.

7. The next step is to design the control-unit hardware. For simplicity of design,

we select a one-hot state assignment. For the state diagram in Figure 6-27, this

assignment permits each of the states Si to be represented by a single state

variable Si which is 1 when in the state Si and 0 otherwise. The next state func-

tions (flip-flop input equations) are:

 DS1 = S1(t + 1) = 0

 DS2 = S2(t + 1) = S1 + S2 # START + S4 # CSS # START + S7 # START

 DS3 = S3(t + 1) = S2 # START + S3 # STOP

 DS4 = S4(t + 1) = S3 # STOP + S4 # CSS # START

 DS5 = S5(t + 1) = S4 # CSS

 DS6 = S5 # ALTB

 DS7 = S7(t + 1) = S5 # ALTB + S6 + S7 # START

392 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The output functions (output equations) are:

 LSR = S1 + S6

 RSTM = S2

 ENTM = S3

 UPDATE = S6

 DS = S7

Note that DS1 = 0. The reason is that this state is entered only by power-up or

master reset. It is never entered synchronously. As a consequence, there is no

need for any value to be loaded into the flip-flop. It is, however, necessary to have

this flip-flop reset to a state (output) having a 1 value due to the one-hot code

used. If this is not possible with the inputs and outputs provided, this can be done

with just an asynchronous reset R and an inverter added to the flip-flop output in

this application.

With the one-hot state assignment, there are 128 - 7 = 121 unused state

codes that were treated as don’t-cares. In the event of a failure that causes one of

these states to occur, the circuit behavior is unknown. Is this a critical issue? This

is an inexpensive consumer product bordering on a toy. For such a device, an

infrequent failure is not particularly damaging. So this situation will be ignored.

For more critical applications, the behavior in these states would need to be

 investigated. ■

EXAMPLE 6-4 Handheld Game: PIG

The goal of this example is to design a handheld game implementing a one-die ver-

sion of the Game of PIG. The eight design steps are provided next for this simple

game with a not-so-simple design.

1. PIG is a dice game that is used as a learning tool for instruction in probabil-

ity. In contrast to the most prevalent versions that use two dice, this version

of PIG is played with a single die that has 1 to 6 dots on its six faces (see

Figure 3-57). During each turn, the player rolls the die one or more times

until a) a 1 is rolled or b) the player chooses to hold. For each roll, the value

rolled, except for a 1, is added to a subtotal for the current turn. If a 1 is

rolled, the subtotal becomes 0, and the player’s turn is ended. At the end

of each turn, the subtotal is added to the player’s overall total, and the play

passes to the other player. The first player to reach or exceed 100 wins. On-

line versions of PIG can be found by searching the web for: Game of PIG.

The exterior view of the game is shown in Figure 6-28(a). There are

three 2-digit decimal LCDs. The displays from left to right are driven by

signal vectors TP1, ST, and TP2, respectively. TP1 controls the total score

display for player 1 and TP2 controls the total score display for player 2.

During a turn, ST controls the subtotal display for the active player. There

are four pushbuttons, ROLL, HOLD, NEW_GAME, and RESET, which

produce conditioned signals with the same names. There is an LED array

6-10 / Control of Register Transfers 393

displaying the die value controlled by DDIS and two LEDs that indicate

the active player. The left LED is controlled by signal P1 and the right one

by P2. When it is a player’s turn, the LED for the player turns on and re-

mains on for the remainder of the turn. When a player wins, the LED for the

player flashes. When ROLL is pushed, the die begins rolling. When ROLL

is released, the die stops rolling, and the rolled value is added to the current

subtotal. If a 1 is rolled, ST becomes 0, 0 is added to the player’s total, and

the LED for the other player lights. When HOLD is pushed, the player’s

subtotal is added to the player’s total, and the LED for the other player

lights. When a player’s total equals or exceeds 100, the player’s LED flashes.

A new game may be started at any time by pushing NEW_GAME. As long

as the power remains on and RESET is not pushed, the new game will begin

with the opposite player from the one starting the prior game. If the power

has been off, Player 1 will be first. The external inputs and outputs for the

game are shown in Table 6-17.

2. Next, we give consideration to the registers required in the PIG datapath.

The die is represented by a 3-bit register DIE which counts from 1 to 6

repeatedly. This register must have an enable input, and is reset to 001 using

RESET. It generates a “random number” depending on an arbitrary initial

state and the time that ROLL is held down. The two totals and the subtotal

(b)

ROLL HOLD

 NEW
GAME

RESET

Player 1 Player 2
TurnTotal

(a)

3-Bit 1-to-6
Counter

DIE

7-Bit Parallel
LoadRegister

SUR

7-Bit Parallel
LoadRegister

TR1

7-Bit Parallel
LoadRegister

TR2

Datapath Registers Control Registers

FF

FF

FP

CP

 FIGURE 6-28
PIG: (a) Exterior View of PIG, (b) PIG Registers

394 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

each require a 7-bit register. These registers will be named TR1, TR2, and

SR. Each of these three registers must have a synchronous reset and a load

enable.

In addition to the datapath registers, a 2-bit control register stores 1)

the first player in the current game, FP, and 2) the current player in the

game, CP. The goal of separately storing this information is significant sim-

plification of the control state machine. Otherwise, states would need to be

duplicated for each player. The datapath and control registers for PIG are

shown in Table 6-17.

3. The state machine diagram for PIG appears in Figure 6-29. In contrast with

the prior example, Mealy outputs that depend on both state and input are per-

mitted. It is helpful before developing the diagram to consider a number of

situations that will exist in order to help define the states:

a. A power-up or manual RESET has occurred.

b. A new game is requested.

 TABLE 6-17
Inputs, Outputs, and Registers of PIG

Symbol Name/Function Type

ROLL

HOLD

NEW_GAME

RESET

DDIS

SUB

TP1

TP2

P1

P2

1: Starts die rolling, 0: Stops die rolling

1: Ends player turn, 0: Continues player turn.

1: Starts new game, 0: Continues current game

1: Resets game to INIT state, 0: No action

7-Bit LED die display array

14-Bit 7-segment pair (a, b, c, d, e, f, g) to Turn Total display

14-Bit 7-segment pair (a, b, c, d, e, f, g) to Player 1 display

14-Bit 7-segment pair (a, b, c, d, e, f, g) to Player 2 display

1: Player 1 LED on, 0: Player 1 LED off

1: Player 2 LED on, 0: Player 2 LED off

Control input

Control input

Control input

Control input

Data output

vector

Data output

vector

Data output

vector

Data output

vector

Data output

Data output

DIE

SUR

TR1

TR2

FP

CP

Die value—specialized counter to count 1,...,6,1,...

Subtotal for active player—parallel load register

Total for Player 1—parallel load register

Total for Player 2—parallel load register

First player—flip-flop 0: Player 1, 1: Player 2

Current player—flip-flop 0: Player 1, 1: Player 2

3-Bit data register

7-Bit data register

7-Bit data register

7-Bit data register

1-Bit control

register

1-Bit control

register

6-10 / Control of Register Transfers 395

c. One of the players is active and begins playing.

d. The active player may roll a 1.

e. The active player may select between ROLL and HOLD.

f. The active player needs to have the HOLD result tested for a win.

g. The active player has won.

Each of these situations may require a state and certain outputs. For situ-

ation a, we need to establish what must be reset by the RESET and estab-

lish the state that results from a RESET. In Figure 6-29, for starting out, we

initialize DIE to 000, determine who plays first by initializing FP to 0, and

choose a name of the reset state (INIT). Situation b, the start of a new game,

whether the first game or a subsequent game, requires that registers TP1

and TP1 be reset. SUR needs to be set upon the change of players, so it can

RESET

INIT

WIN

ROLL

ROLL

DIE = 1

NEW_GAME

NEW_GAME

TR1 0, TR2 0, CP FP

ROLL ROL

ROLL

DIE = 1

BEGIN

ONE

ROLL

TEST

ROH

SUR 0

DIE 000, FP 0

FP FP

CP CP

CP CP

 FIGURE 6-29
State Machine Diagram for PIG

396 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

wait. Since these resets must occur for subsequent games, they should not be

asynchronous, but be done synchronously in INIT. Also, we need to inform

the player who is to become the active player, so CP is loaded with FP. At

this point, a play turn can begin, so the state becomes BEGIN, representing

the beginning of situation c. Since the active player is ready to begin accu-

mulating points, SUR is synchronously reset to 0. The state remains BEGIN

and the reset of SUR repeats, but this is not harmful. When a player pushes

ROLL, the state becomes ROL, and addition of 1 to DIE is repeated as

long as ROLL is 1. When ROLL becomes 0, DIE stops incrementing. Per

situation d, a check on whether or not the player rolled a 1 is needed. So

ROLL = 0 changes the state to ONE where this test occurs. If DIE = 1,

then the player’s turn is over, the other player becomes the active player

(CP d CP), and the state returns to BEGIN. If DIE ≠ 1, DIE is added to

SUR, and the state becomes ROH (Roll or Hold). Then the player may roll

the die again by selecting ROLL, returning to ROL. Otherwise, the player

may select HOLD, which causes SUR to be added to TR1 or TR2, depending

on the value of CP. (Note that in order to satisfy the mutual exclusion part of

the transition condition constraints, ROLL has been ANDed with HOLD.)

The next state becomes TEST, in which a test is performed on TR1 or TR2,

again depending on the value of CP, to determine whether or not the player

has won. If the player has not won, then the other player becomes active and

the state becomes BEGIN. If the player has won, the state becomes WIN. In

state WIN the player’s LED, as selected by CP, blinks due to the alternating

BLINK signal. The state remains WIN until NEW_GAME is pushed, sending

the play back to state INIT, with FP inverted to select the player not first in

this game to be first in the new game.

4. In this step, we separate the datapath from the control and define the control

and status signals that connect them together. The datapath actions can be

read from the state machine diagram. The actions are grouped based on the

destinations represented by the left-hand side of transfer statements (d) or

connection statements (=). Also, notation indicating status generation in the

datapath needs to be interpreted and status signals generated. The end result

of the groupings is shown in Table 6-18 in the left column. Synchronous resets

are used for all registers except for DIE and FP, which have asynchronous

resets. For the additions, the control signal is simply a load of the correspond-

ing register, since aside from asynchronous reset, there are no other transfers

on the involved registers. For P1 and P2, note that the stated default values are

used for the 0 inputs. Other default values are implicitly 0, hold stored values,

or no action. Beginning with DIE = 1, the remainder of the table is for status

conditions. Note how CP is used to select the total register TRi for the active

player in determining a win. The variable names in true and complement form

6-10 / Control of Register Transfers 397

 TABLE 6-18
Datapath Output Actions and Control and Status Signals for PIG

Action or Status

Control or

Status Signals Meaning for Values 1 and 0

TR1 d 0

TR1 d TR1 + SUR

RST1

LDT1

1: Reset TR1 (synchronous reset), 0: No action

1: Add SUR to TR1, 0: No action

TR2 d 0

TR2 d TR2 + SUR

RST2

LDT2

1: Reset TR2 (synchronous reset), 0: No action

1: Add SUR to TR2, 0: No action

SUR d 0

SUR d SUR + DIE

RSSU

LDSU

1: Reset SUR (synchronous reset), 0: No action

1: Add DIE to SUR, 0: No action

DIE d 000

if (DIE = 110)

DIE d 001

else DIE d DIE + 1

RESET

ENDI

1: Reset DIE to 000 (asynchronous reset)

1: Enable DIE to increment, 0: Hold DIE value

P1 = BLINK BP1 1: Connect P1 to BLINK, 0: Connect P1 to 1

P2 = BLINK BP2 1: Connect P2 to BLINK, 0: Connect P2 to 1

CP d FP

CP d CP

CPFI

LDCP

CPFI

LDCP

1: Select FP for CP

1: Load CP, 0: No action

0: Select CP for CP

1: Load CP, 0: No action

FP d 0

FP d FP

RESET

FPI

Asynchronous reset

1: Invert FP, 0: Hold FP

DIE = 1

DIE ≠ 1

DIE1 1: DIE equal to 1

0: DIE not equal to 1

TR1 Ú 1100100 CP

WN
0: Select TR1 for Ú 1100100

1: The selected TRi Ú 1100100

0: The selected TRi 6 1100100

TR2 Ú 1100100 CP

WN
1: Select TR2 for Ú 1100100

1: The selected TRi Ú 1100100

0: The selected TRi 6 1100100

398 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

from Table 6-18 replace the output actions and status-based input conditions in

Figure 6-29 to form the state diagram in Figure 6-30.

5. The information in Table 6-18 also serves as a basis for developing the block dia-

gram of the datapath given in Figure 6-31. The datapath registers shown in Table

6-17 anchor the datapath design. In addition to being added to SUR, DIE drives

the Die Dot Display through a specialized decoder and must be tested for the

value 001. The registers SUR, TR1, and TR2 are all identical with a signal for

enabling loading and a synchronous reset. These three registers load from 7-bit

ripple carry adders. The outputs from these registers each drive a 7-bit binary-

to-BCD converter and a 2-digit BCD–to–7-segment converter in order to drive

the corresponding 2-digit LCD display. In order to detect a win, a 7-bit 2-to-1

multiplexer selects the output of TR1 or TR2 as input to a circuit which detects

whether the value is greater than or equal to 1100100 (decimal 100).

RESET

INIT

WIN

ROLL

ROLL

NEW_GAME

NEW_GAME

RST1, RST2, CPFI, LDCP

ROLL ROL

ROLL

BEGIN

CP/BP1, CP/BP2

ONE

ROLL
CP/LDT1, CP/LDT2

TEST

ROH

RSSU

ENDI

LDSU

LDCP

DIE1

DIE1

WN

WN

LDFP

LDCP

 FIGURE 6-30
Control State-Machine Diagram for PIG

6-10 / Control of Register Transfers 399

3-bit 1-to-6
Counter

D = 1 Comparator

Parallel Load Reg
with Sync Reset

EN

EN

R

ENDI

7-Bit 2-to-1 MUX
D1D0

S

DIE

SUR
D

7-bit Ripple
Carry Adder

2-Digit BCD-to-7
Segment Converter

2-Digit LCD Display

Binary-to-BCD
Code Converter

Binary-to-LED
Die Dots Decoder

2-Digit BCD-to-7
Segment Converter

2-Digit LCD Display

Binary-to-BCD
Code Converter

D

Die Dot Display

Parallel Load Reg
with Sync Reset

EN

R

TR1

2-Digit BCD-to-7
Segment Converter

2-Digit LCD Display

Binary-to-BCD
Code Converter

EN

R

TR2

RST1

LDT1

RST2

LDT2

CP

D
WN

DIE1

D

7-bit Ripple
Carry Adder

7-bit Ripple
Carry Adder

D
Parallel Load Reg
with Sync Reset

R

EN
EN

0

MUX
1

FP
CP

FP CP

D
D

S

CPFI

LDFP

LDCP

Control Registers

RSSU

LDSU

0000

RESET

R RESET

 FIGURE 6-31
Datapath and Control Registers for PIG

400 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The remainder of the diagram is the logic for controlling the contents of FP and

CP in the control unit. FP is reset asynchronously with RESET and enabled

for load of FP by LDFP. CP is initialized by loading from FP through the mul-

tiplexer with CPF = 1 and LDCP = 1. When CPF = 0 and LDCP = 1, CP

is loaded with CP.

6. The detailed logic for the control transfers on FP and CP has already been

designed, and most of the datapath logic consists of components for which

designs are already available. Logic in the form of AND gates with an

inverted R on the second input needs to be added at the inputs to the D

flip-flops in the parallel load register design in this chapter to implement the

synchronous reset. The designs of DIE, the D = 1 comparator, the binary-

to-BCD code converters, and the D ≥ 1100100 comparator designs are given

as problems in this chapter. The binary-to-LED die dots decoder is given as

a problem in Chapter 3 and the BCD-to-7-segment converter is designed in

Chapter 3.

7. The detailed design of the control unit is given as a problem at the end of the

chapter. ■

Omitted in these examples, verification in step 8 has only been touched upon

so far for simple circuits. The complexity of thoroughly verifying even the small sys-

tems given in the previous two examples is much more difficult and beyond the

scope of what we can cover here. Rudimentary testing can be done by functional

testing to see if the circuit performs its function correctly. This involves applying

input sequences and using simulation to observe the outputs. The question now

becomes, “What test sequence should be applied to make sure that the verification is

thorough enough to place high confidence in the correctness of the circuit?” To illus-

trate the difficulty of answering this question, the average designer spends 40 per-

cent or more of the design time doing verification.

6-11 HDL REPRESENTATION FOR SHIFT REGISTERS
AND COUNTERS—VHDL
Examples of shift register and a binary counter illustrate the use of VHDL in repre-

senting registers and operations on register content.

EXAMPLE 6-5 VHDL for a 4-Bit Shift Register

The VHDL code in Figure 6-32 describes a 4-bit left shift register at the behavioral

level. A RESET input is present that directly resets the register contents to zero. The

shift register contains flip-flops and so has a process description resembling that of a

D flip-flop. The four flip-flops are represented by the signal shift, of type std_

logic_vector of size four. Q cannot be used to represent the flip-flops, since it is an

output and the flip-flop outputs must be used internally. The left shift is achieved by

applying the concatenation operator & to the right three bits of shift and to shift

input SI. This quantity is transferred to shift, moving the contents one bit to the

6-11 / HDL Representation for Shift Registers and Counters—VHDL 401

left and loading the value of SI into the rightmost bit. Following the process that

performs the shift are two statements, one which assigns the value in shift to out-

put Q and the other which defines the shift out signal SO as the contents of the left-

most bit of shift. ■

EXAMPLE 6-6 VHDL for a 4-Bit Counter

The VHDL code in Figure 6-33 describes a 4-bit counter at the behavioral level. A

RESET input is present that directly resets the counter contents to zero. The counter

contains flip-flops and, therefore, has a process description resembling that of a D

flip-flop. The four flip-flops are represented by the signal count, of type std_logic_

vector and of size four. Q cannot be used to represent the flip-flops, since it is an

output and the flip-flop outputs must be used internally. Counting up is achieved by

adding 1 in the form of "0001" to count. Since addition is not a normal operation on

type std_logic_vector, it is necessary to use an additional package from the ieee

library, std_logic_unsigned.all, which defines unsigned number operations on

type std_logic. Following the process that performs reset and counting are two

statements, one which assigns the value in count to output Q and the other which

// 4-Bit Left Shift Register with Reset

library ieee;
use ieee.std_logic_1164.all;

entity srg_4_r is
 port(CLK, RESET, SI : in std_logic;
 Q : out std_logic_vector(3 downto 0);
 SO :˙ out std_logic);
end srg_4_r;

architecture behavioral of srg_4_r is
signal shift : std_logic_vector(3 downto 0);
begin
process (RESET, CLK)
begin
 if (RESET = '1') then
 shift <= "0000";

 elsif (CLK’event and (CLK = '1')) then
 shift <= shift(2 downto 0) & SI;
 end if;
end process;
 Q <= shift;

 SO <= shift(3);

end behavioral;

 FIGURE 6-32
Behavioral VHDL Description of 4-Bit Left Shift Register with Direct Reset

402 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

defines the count out signal CO. A when-else statement is used in which CO is set to 1

only for the maximum count with EN equal to 1. ■

6-12 HDL REPRESENTATION FOR SHIFT REGISTERS
AND COUNTERS—VERILOG

Examples of a shift register and a binary counter illustrate the use of Verilog in rep-

resenting registers and operations on register content.

EXAMPLE 6-7 Verilog Code for a Shift Register

The Verilog description in Figure 6-34 describes a left shift register at the behavioral

level. A RESET input is present that directly resets the register contents to zero. The shift

register contains flip-flops, so has a process description beginning with always resem-

bling that of a D flip-flop. The four flip-flops are represented by the vector Q, of type reg

with bits numbered 3 down to 0. The left shift is achieved by applying { } to concate-

nate the right three bits of Q and shift input SI. This quantity is transferred to Q, moving

the contents one bit to the left and loading the value of SI into the rightmost bit. Just

// 4-bit Binary Counter with Reset

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity count_4_r is
 port(CLK, RESET, EN : in std_logic;
 Q : out std_logic_vector(3 downto 0);
 CO : out std_logic);
end count_4_r;

architecture behavioral of count_4_r is
signal count : std_logic_vector(3 downto 0);
begin
process (RESET, CLK)
begin
 if (RESET = '1') then
 count <= "0000";

 elsif (CLK'event and (CLK = '1') and (EN = '1')) then
 count <= count + "0001";

 end if;
end process;
Q <= count;

CO <= '1' when count = "1111" and EN = '1' else '0';
end behavioral;

 FIGURE 6-33
Behavioral VHDL Description of 4-Bit Binary Counter with Direct Reset

6-12 / HDL Representation for Shift Registers and Counters—Verilog 403

prior to the process that performs the shift is a continuous assignment statement that

assigns the contents of the leftmost bit of Q to the shift output signal SO. ■

EXAMPLE 6-8 Verilog Code for a Counter

The Verilog description in Figure 6-35 describes a 4-bit binary counter at the behav-

ioral level. A RESET input is present that directly resets the register contents to zero.

 // 4-bit Left Shift Register with Reset

module srg_4_r_v (CLK, RESET, SI, Q,SO);
 input CLK, RESET, SI;
 output [3:0] Q;
 output SO;

reg [3:0] Q;

 assign SO = Q[3];

always @(posedge CLK or posedge RESET)
begin
 if (RESET)
 Q <= 4'b0000;

 else
 Q <= {Q[2:0], SI};

end
endmodule

 FIGURE 6-34
Behavioral Verilog Description of 4-Bit Left Shift Register with Direct Reset

// 4-bit Binary Counter with Reset

module count_4_r_v (CLK, RESET, EN, Q, CO);
 input CLK, RESET, EN;

 output [3:0] Q;

 output CO;

reg [3:0] Q;

assign CO = (count == 4'b1111 && EN == 1’b1) ? 1 : 0;
always @(posedge CLK or posedge RESET)
 begin
 if RESET)
 Q <= 4'b0000;

 else if (EN)
 Q <= Q + 4'b0001;

 end
endmodule

 FIGURE 6-35
Behavioral Verilog Description of 4-Bit Binary Counter with Direct Reset

404 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

The counter contains flip-flops and, therefore, the description contains a process

resembling that for a D flip-flop. The four flip-flops are represented by the signal Q of

type reg and size four. Counting up is achieved by adding 1 to Q. Prior to the process

that performs reset and counting is a conditional continuous assignment statement

that defines the count out signal CO. CO is set to 1 only for the maximum count and EN

equal to 1. Note that logical AND is denoted by &&. ■

6-13 MICROPROGRAMMED CONTROL

A control unit with its binary control values stored as a group of bits, which are

referred to as words, in memory is called a microprogrammed control. Each word in

the control memory contains a microinstruction that specifies one or more microoper-

ations for the system. A sequence of microinstructions constitutes a microprogram.

The microprogram is usually fixed at the system design time and so is stored in ROM.

Microprogramming involves placing representations for combinations of values of

control variables in words of ROM. These representations are accessed via successive

read operations for use by the rest of the control logic. The contents of a word in ROM

at a given address specify the microoperations to be performed for both the datapath

and the control unit. A microprogram can also be stored in RAM. In this case, it is

loaded at system startup from some form of nonvolatile storage, such as a magnetic

disk. With either ROM or RAM, the memory in the control unit is called control
 memory. If RAM is used, the memory is referred to as writable control memory.

Figure 6-36 shows the general configuration of a microprogrammed control.

The control memory is assumed to be a ROM within which all control micropro-

grams are permanently stored. The control address register (CAR) specifies the

address of the microinstruction. The control data register (CDR), which is optional,

may hold the microinstruction currently being executed by the datapath and the

control unit. One function of the control word is to determine the address of the next

microinstruction to be executed. This microinstruction may be the next one in

sequence, or it may be located somewhere else in the control memory. Therefore,

one or more bits that specify the method for determining the address of the next

microinstruction are present in the current microinstruction. The next address may

also be a function of status and external control inputs. When a microinstruction is

executed, the next-address generator produces the next address. This address is trans-

ferred to the CAR on the next clock pulse and is used to read the next microinstruc-

tion to be executed from ROM. Thus, the microinstructions contain bits for activating

microoperations in the datapath and bits that specify the sequence of microinstruc-

tions executed.

The next-address generator, in combination with the CAR, is sometimes

called a microprogram sequencer, since it determines the sequence of instructions

read from control memory. The address of the next microinstruction can be speci-

fied in several ways, depending on the sequencer inputs. Typical functions of a

microprogram sequencer are incrementing the CAR by one and loading the CAR.

Possible sources for the load operation include an address from control memory,

an externally provided address, and an initial address to start control-unit

operation.

6-13 / Microprogrammed Control 405

The CDR holds the present microinstruction while the next address is com-

puted and the next microinstruction is read from memory. The CDR breaks up the

long combinational delay paths through the control memory followed by the dat-

apath. Its presence allows the system to use a higher clock frequency and process

information faster. The inclusion of a CDR in a system, however, complicates the

sequencing of microinstructions, particularly when decisions are made based on

status bits. For simplicity in our brief discussion, we omit the CDR and take the

microinstructions directly from the ROM outputs. The ROM operates as a combi-

national circuit, with the address as the input and the corresponding microinstruc-

tion as the output. The contents of the specified word in ROM remain on the

output lines as long as the address value is applied to the inputs. No read/write

signal is needed, as it is with RAM. Each clock pulse executes the microopera-

tions specified by the microinstruction and also transfers a new address to the

CAR. In this case, the CAR is the only component in the control that receives

clock pulses and stores state information. The next-address generator and the

control memory are combinational circuits. Thus, the state of the control unit is

given by the contents of the CAR.

Sequencer

Control address

Control
inputs Status signals from datapath

Next-address
generator

Control address
register

Address

Control
memory
(ROM)

Data

Control data register
(optional)

Next-address
information

Control
outputs

Control signals
to datapath

Microinstruction

 FIGURE 6-36
Microprogrammed Control Unit Organization

406 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

Microprogrammed control has been a very popular alternative implemen-

tation technique for control units for both programmable and nonprogrammable

systems. However, as systems have become more complex and performance specifi-

cations have increased the need for concurrent parallel sequences of activities, the

lockstep nature of microprogramming has become less attractive for control-unit

implementation. Further, a large ROM or RAM tends to be much slower than the

corresponding combinational logic. Finally, HDLs and synthesis tools facilitate the

design of complex control units without the need for a lockstep programmable

design approach. Overall, microprogrammed control for the design of control units,

particularly direct datapath control in CPUs, has declined significantly. However, a

new flavor of microprogrammed control has emerged, for implementing legacy com-

puter architectures. These architectures have instruction sets that do not follow con-

temporary architecture principles. Nevertheless, such architectures must be

implemented due to massive investments in software that uses them. Further, con-

temporary architecture principles must be used in the implementations to meet per-

formance goals. The control for these systems is hierarchical, with microprogrammed

control selectively used at the top level for complex instruction implementation and

hardwired control at the lower level for implementing simple instructions and steps

of complex instructions at a very rapid rate. This flavor of microprogramming is cov-

ered for a complex instruction set computer (CISC) in Chapter 10.

Information on the more traditional flavor of microprogrammed control, derived

from past editions of this text, is available in a supplement, Microprogrammed
Control, on the Companion Website for the text.

6-14 CHAPTER SUMMARY

Registers are sets of flip-flops, or interconnected sets of flip-flops, and combinational

logic. The simplest registers are flip-flops that are loaded with new contents from

their inputs on every clock cycle. More complex are registers in which the flip-flops

can be loaded with new contents under the control of a signal on only selected clock

cycles. Register transfers are a means of representing and specifying elementary pro-

cessing operations. Register transfers can be related to corresponding digital system

hardware, both at the block-diagram level and at the detailed logic level. Microoper-

ations are elementary operations performed on data stored in registers. Arithmetic

microoperations include addition and subtraction, which are described as register

transfers and are implemented with corresponding hardware. Logic microopera-

tions—that is, the bitwise application of logic primitives such as AND, OR, and

XOR, combined with a binary word—provide masking and selective complement-

ing on other binary words. Left- and right-shift microoperations move data laterally

one or more bit positions at a time. Shift registers, counters, and buses implement

particular register transfers that are widely used in digital systems.

In this chapter, the control of register transfers provided the final major compo-

nent of digital systems design. Finally, all of the background material was present to

define a procedure for designing register-transfer systems, one of the most general

classes of digital systems. The details for the design procedure were illustrated by two

extensive examples that are key to understanding the foundation of digital design.

Problems 407

REFERENCES

1. Clare, C. R. Designing Logic Systems Using State Machines. New York:

McGraw-Hill, 1973.

2. IEEE Standard VHDL Language Reference Manual (ANSI/IEEE Std 1076-

1993; revision of IEEE Std 1076-1987). New York: The Institute of Electrical

and Electronics Engineers, 1994.

3. IEEE Standard Description Language Based on the VerilogTM Hardware
Description Language (IEEE Std 1364-1995). New York: The Institute of

Electrical and Electronics Engineers, 1995.

4. Mano, M. M. Digital Design, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 2002.

5. Thomas, D. E. and P. R. Moorby. The Verilog Hardware Description Language,

5th ed. New York: Springer, 2002.

6. Wakerly, J. F. Digital Design: Principles and Practices, 4th ed. Upper Saddle

River, NJ: Prentice Hall, 2006.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

6-1. Assume that registers R1 and R2 in Figure 6-6 hold two unsigned numbers.

When select input X is equal to 1, the adder–subtractor circuit performs the

arithmetic operation “R1 + 2s complement of R2.” This sum and the output

carry Cn are transferred into R1 and C when K1 = 1 and a positive edge

occurs on the clock.

(a) Show that if C = 1, then the value transferred to R1 is equal to R1 - R2,

but if C = 0, the value transferred to R1 is the 2s complement of R2 - R1.

(b) Indicate how the value in the C bit can be used to detect a borrow after

the subtraction of two unsigned numbers.

(c) How does the behavior of the C bit change if R1 and R2 hold signed 2s

complement numbers?

6-2. *Perform the bitwise logic AND, OR, and XOR of the two 8-bit operands

10011001 and 11000011.

6-3. Find suitable operand and logical micro-operations for the 8-bit operand

1101 0100 (assume bit positions are 7 through 0 from left to right.)

(a) to complement left most 4 bits.

(b) to clear the left most bit.

(c) to set left most 4 bits to 1.

6-4. *Starting from the 8-bit operand 11001010, show the values obtained after

applying each shift microoperation given in Table 6-5.

408 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

6-5. *Modify the register of Figure 6-11 so that it will operate according to the

following function table, using mode selection inputs S
1
 and S

0
:

S
1

S
0

Register Operation

0 0 No change

0 1 Load parallel data

1 0 Shift left (down)

1 1 Clear register to 0

6-6. *A ring counter is a shift register, as in Figure 6-9, with the serial output

connected to the serial input.

(a) Starting from an initial state of 1000, list the sequence of states of the four

flip-flops after each shift.

(b) Beginning in state 10…0, how many states are there in the count sequence

of an n-bit ring counter?

6-7. A switch-tail counter (also called twisted ring counter, Johnson counter) uses

the complement of the serial output of a right shift register as its serial input.

(a) Starting from an initial state of 000, list the sequence of states after each

shift until the register returns to 000.

(b) Beginning in state 00…0, how many states are there in the count sequence

of an n-bit switch-tail counter?

(c) Design a decoder to be driven by the counter that produces a one-hot code

output for each of the states. Make use of the don’t-care states in your design.

6-8. How many flip-flop values are complemented in a 4-bit binary ripple down

counter to reach the next count value after:

(a) 0011? (b) 1000? (c) 0000?

6-9. + For the CMOS logic family, the power consumption is proportional to the

sum of the changes from 1-to-0 and 0-to-1 on all gate inputs and outputs in

the circuit. When designing counters in very low-power circuits, ripple

counters are preferred over regular synchronous binary counters.

Carefully count the numbers of changing inputs and outputs, including

those related to the clock for a complete cycle of values in a 4-bit ripple

counter versus a regular synchronous counter of the same length. Based on

this examination, explain why the ripple counter is superior in terms of

power consumption.

6-10. (a) Construct a 4-bit ripple down counter that uses a binary code counting

sequence.

(b) Count the number of state (1-to-0 and 0-to-1) changes on all gate input

and output, for the binary ripple down counter and for a 4-bit regular

synchronous binary counter.

6-11. Construct a 16-bit serial-parallel counter, using two 8-bit parallel counters.

Suppose that all added logic is AND gates and that serial connections are

employed between the two counters. What is the maximum number of AND

gates in a chain that a signal must propagate through in the 16-bit counter?

6-12. (a) Using the synchronous binary counter of Figure 6-14 and an AND gate,

construct a counter that counts from 0000 through 1010.

(b) Repeat for a count from 0000 to 1110. Minimize the number of inputs to

the AND gate.

6-13. Using two binary counters of the type shown in Figure 6-14 and logic gates,

construct a binary counter that counts from decimal 11 through decimal 233.

Also, add an additional input and logic to the counter to initialize it

synchronously to 11 when the signal INIT is 1.

6-14. *Verify the flip-flop input equations of the synchronous BCD counter

specified in Table 6-9. Draw the logic diagram of the BCD counter with a

count enable input.

6-15. *Use D flip-flops and gates to design a binary counter with each of the

following repeated binary sequences:

(a) 0, 1, 2 (b) 0, 1, 2, 3, 4, 5

6-16. Use D-type flip-flops and gates to design a counter with the following

repeated binary sequence: 0, 2, 4, 6, 8, 10, 12, and 14.

6-17. Draw the logic diagram of a 4-bit register with mode selection inputs S
1
 and

S
0
. The register is to be operated according to the function table below.

S
1

S
0

Register Operation

0 0 No change

0 1 Parallel load

1 0 Shift left

1 1 Clear register to 0

6-18. Represent the following conditional control statement by two register

transfer statements with control functions:

If (A = 1) then (R0 d R1) else if (B = 1) then (R0 d R2) else if (C = 1)

then (R0 d R1 ¿ R 2)

6-19. *Show the diagram of the hardware that implements the register transfer

statement

C3: R2 d R1, R1 d R2

Problems 409

410 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

6-20. The outputs of registers R0 and R1 are connected through a 4-to-1

multiplexer to the inputs of a third register, R2. Each register is 8 bits long.

The required transfers, as dictated by four control variables, are:

 C0: R2 d R2

 C1: R2 d R0

 C2: R2 d R1

 C3: R2 d R1

The control variables are mutually exclusive (i.e., only one variable can be

equal to 1 at any time) while the other three are equal to 0. Also, no transfer

into R4 is to occur for all control variables equal to 0. Using registers and a

multiplexer, draw a detailed logic diagram of the hardware that implements a

single bit of these register transfers. Also draw a logic diagram of the simple

logic that maps the control variables as inputs to three outputs: the two select

variables for the multiplexer and the load signal for the register R2.

6-21. Construct a digital circuit that can implement the following operations under

the control of only two multiplexer select inputs, using two 4-bit registers R0

and R1, three 2-to-1 multiplexers, and logic gates. Show diagram for one bit of

operation.

 S1 # S0: R0 d R0 ¿ R1

 S1 # S0: R0 d R0 ¡ R1

 S1 # S0: R0 d R0 ¡ R1

 S1 # S0: R0 d R0 ¿ R1

6-22. *Using two 4-bit registers R1 and R2, and AND gates, OR gates, and

inverters, draw one bit slice of the logic diagram that implements all of the

following statements:

 C0: R2 d 0 Clear R2 synchronously with the clock

 C1: R2 d R2 Complement R2

 C2: R2 d R1 Transfer R1 to R2

The control variables are mutually exclusive (i.e., only one variable can be

equal to 1 at any time) while the other two are equal to 0. Also, no transfer

into R2 is to occur for all control variables equal to 0.

6-23. A register cell is to be designed for an 8-bit register A that has the following

register transfer functions:

 C0: A d A ¿ B

 C1: A d A ¡ B

Find optimum logic using AND, OR, and NOT gates for the D input to the D

flip-flop in the cell.

6-24. A register cell is to be designed for 8-bit registers R0 and R1

that has the

following register transfer functions. Use add-sub block and show diagram

for one bit of operation.

 S1 # S0: R1 d R0 + R1

 S1 # S0: R0 d R0 + R1

 S1 # S0: R1 d R0 - R1

 S1 # S0: R0 d R0 - R1

6-25. A register cell is to be designed with registers R0 and R1 that has the

following register transfers:

 S1 # S0: R1 d R0 + R1, S1 # S0: R0 d R0 + 1

 S1 # S0: R1 d R0 - R1, S1 # S0: R0 d R0 - 1

Use AND, OR, NOT gates and adder-subtract for the operation.

6-26. Logic to implement transfers among three registers, R0, R1, and R2, is to be

implemented. Use the control variable assumptions given in Problem 6–20.

The register transfers are as follows:

 CA: R1 d R0

 CB: R0 d R1, R2 d R0

 CC: R1 d R2, R0 d R2

Using registers and dedicated multiplexers, draw a detailed logic diagram of

the hardware that implements a single bit of these register transfers.

Draw a logic diagram of simple logic that converts the control variables

CA, CB, and CC as inputs to outputs that are the SELECT inputs for the

multiplexers and LOAD signals for the registers.

6-27. *Two register transfer statements are given (otherwise, R1 is unchanged):

 C1: R1 d R1 + R2 Add R2 to R1

 C1 C2: R1 d R1 + 1 Increment R1

Problems 411

412 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

(a) Using a 4-bit counter with parallel load as in Figure 6-14 and a 4-bit

adder as in Figure 4-5, draw the logic diagram that implements these

register transfers.

(b) Repeat part (a) using a 4-bit adder as in Figure 3-43 plus external gates as

needed. Compare with the implementation in part (a).

6-28. Repeat Problem 6-26 using one multiplexer-based bus and one direct

connection from one register to another instead of dedicated multiplexers.

6-29. (a) Construct an AND gate by interconnecting two three-state buffers and

one inverters.

(b) Implement function H = WZX + WYZ + WV using four three-state

buffers and two inverters.

6-30. Draw a logic diagram of a circuit similar to the one shown in Figure 6-7, but

use three-state buffers and a decoder instead of the multiplexers.

6-31. *A system is to have the following set of register transfers, implemented

using buses:

 Ca: R0 d R1

 Cb: R3 d R1, R1 d R4, R4 d R0

 Cc: R2 d R3, R0 d R2

 Cd: R2 d R4, R4 d R2

(a) For each destination register, list all of the source registers.

(b) For each source register, list all of the destination registers.

(c) With consideration for which of the transfers must occur simultaneously,

what is the minimum number of buses that can be used to implement

the set of transfers? Assume that each register will have a single bus as

its input.

(d) Draw a block diagram of the system, showing the registers and buses and

the connections between them.

6-32. The following register transfers are to be executed in, with minimum clock

cycles:

 S1 # S0: R3 d R0, R1 d R2

 S1 # S0: R2 d R0, R1 d R3

 S1 # S0: R3 d R1, R0 d R2

 S1 # S0: R2 d R1, R0 d R3

(a) What is the minimum number of buses required? Construct the register

transfer operations so that the transfers can occur in one clock indicate

the individual load line for each of the registers.

(b) Draw a block diagram connecting registers and multiplexers to implement

the transfers.

6-33. Construct a registar transfer system, with one 4-to-1 multiplexer, and one bus

and minimum number of clock cycles to perform the following set of register

transfers:

 R3 d R0, R5 d R0

 R1 d R2, R6 d R4

 R3 d R7, R5 d R4

Assume that only one bus can be attached to a register input and that any net

connected to a register input is counted as a bus.

6-34. *The content of a 4-bit register is initially 0101. The register is shifted eight

times to the right, with the sequence 10110001 as the serial input. The

leftmost bit of the sequence is applied first. What is the content of the register

after each shift?

6-35. *The serial adder of Figure 6-24 uses two 4-bit registers. Register A holds the

binary number 0111 and register B holds 0101. The carry flip-flop is initially

reset to 0. List the binary values in register A and the carry flip-flop after each

of four shifts.

6-36. *A state diagram of a sequential circuit is given in Figure 6-37. Find the

corresponding state machine diagram using a minimum amount of notation.

The inputs to the circuit are X1 and X2, and the outputs are Z1 and Z2.

S0
00

S1
01

S2
10

10, 11 01, 10

00, 01

01, 10, 11

00, 11

00

 FIGURE 6-37
State Diagram for Problem 6-36

Problems 413

414 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

6-37. *Find the response for the state machine diagram in Figure 6-38 to the

following sequence of inputs (assume that the initial state is STA):

W: 0 1 1 0 1 1 0 1

X: 1 1 0 1 0 1 0 1

Y: 0 1 0 1 0 1 0 1

State: STA

Z:

6-38. A state machine diagram is given in Figure 6-38. Find the state table for the

corresponding sequential circuit.

6-39. Find the state machine diagram corresponding to the following description:

There are three states A, B, and C, two inputs X and Y, and an output Z. If in

state A and X = 1, then the next state is A. If in state A and X = 0, then the

next state is B. If in state B, Y = 0, then the next state is B. If in state B, Y = 1,

then the next is C. If in state C and input X = 0, then the next state is C. If in

state C and input Y = 0, then next the state is A. At state C, Z = 1.

 6-40. *Find the state machine diagram for a circuit that detects a difference in value

in an input signal X at two successive positive clock edges. If X has different

values at two successive positive clock edges, then output Z is equal to 1 for

the next clock cycle. Otherwise, output Z is 0.

 6-41. + The state machine diagram for a synchronous circuit with clock CK for a

washing machine is to be developed. The circuit has three external inputs,

START, FULL, and EMPTY (which are 1 for at most a single clock cycle and

are mutually exclusive), and external outputs, HOT, COLD, DRAIN, and

TURN. The datapath for the control consists of a down-counter, which has

three inputs, RESET, DEC, and LOAD. This counter synchronously

decrements once each minute for DEC = 1, but can be loaded or

synchronously reset on any cycle of clock CK. It has a single output, ZERO,

which is 1 whenever the counter contains value zero and is 0 otherwise.

RESET

STA

STC

STB

Z

W

W

X, X Y

X Y

Default: Z = 0

Z

 FIGURE 6-38
State Machine Diagram for Problems 6-37, 6-38, 6-43, 6-57, and 6-58

In its operation, the circuit goes through four distinct cycles, WASH, SPIN,

RINSE, and SPIN, which are detailed as follows:

WASH: Assume that the circuit is in its power-up state IDLE. If START is 1

for a clock cycle, HOT becomes 1 and remains 1 until FULL = 1, filling the

washer with hot water. Next, using LOAD, the down-counter is loaded with a

value from a panel dial which indicates how many minutes the wash cycle is to

last. DEC and TURN then become 1 and the washer washes its contents. When

ZERO becomes 1, the wash is complete, and TURN and DEC become 0.

SPIN: Next, DRAIN becomes 1, draining the wash water. When EMPTY be-

comes 1, the down-counter is loaded with 7. DEC and TURN then become

1 and the remaining wash water is wrung from the contents. When ZERO

becomes 1, DRAIN, DEC, and TURN return to 0.

RINSE: Next, COLD becomes 1 and remains 1 until FULL = 1, filling the

washer with cold rinse water. Next, using LOAD, the down-counter is loaded

with value 10. DEC and TURN then become 1 and the washer rinses its con-

tents. When ZERO becomes 1, the rinse is complete, and TURN and DEC

become 0.

SPIN: Next, DRAIN becomes 1, draining the rinse water. When EMPTY be-

comes 1, the down-counter is loaded with 8. DEC and TURN then become 1 and

the remaining rinse water is wrung from the contents. When ZERO becomes

1, DRAIN, DEC, and TURN return to 0 and the circuit returns to state IDLE.

(a) Find the state machine diagram for the washer circuit.

(b) Modify your design in part (a) assuming that there are two more inputs,

PAUSE and STOP. PAUSE causes the circuit, including the counter, to

halt and all outputs to go to 0. When START is pushed, the washer

resumes operation at the point it paused. When STOP is pushed, all

outputs are reset to 0 except for DRAIN, which is set to 1. When EMPTY

becomes 1, the state returns to IDLE.

 6-42. Find a state machine diagram for a traffic light controller that works as

follows: A timing signal T is the input to the controller. T defines the yellow

light interval, as well as the changes of the red and green lights. The outputs to

the signals are defined by the following table:

Output Light Controlled

GN Green Light, North/South Signal

YN Yellow Light, North/South Signal

RN Red Light, North/South Signal

GE Green Light, East/West Signal

YE Yellow Light, East/West Signal

RE Red Light, East/West Signal

Problems 415

416 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

While T = 0, the green light is on for one signal and the red light for the

other. With T = 1, the yellow light is on for the signal that was previously

green, and the signal that was previously red remains red. When T becomes

0, the signal that was previously yellow becomes red, and the signal that was

previously red becomes green. This pattern of alternating changes in color

continues. Assume that the controller is synchronous with a clock that chang-

es much more frequently than input T.

6-43. *Implement the state machine diagram in Figure 6-38 by using one flip-flop

per state assignment.

6-44. Implement the state machine diagram derived in Problem 6-40 by using a

Gray-code state assignment.

 6-45. Do two designs for the DIE circuit for the Game of PIG and compare the

gate-input costs of your two designs using information from Figure 6-14. Note

that the register transfer description of DIE is:

 if (Reset) DIE d 000 else

 if (END1) (if (DIE = 110) DIE d 001 else DIE d DIE + 1)

(a) Perform the design by using the technique given for the BCD counter

design in Figure 6-15.

(b) Perform the design by using a state diagram and doing a custom circuit

design with the next state for state 111 a don’t-care state.

 6-46. Design the following combinational circuits for the Game of PIG datapath

given in Figure 6-31:

(a) D = 1 comparator.

(b) D Ú 1100100 comparator.

Use AND gates, OR gates, and inverters. Assume the maximum gate fan-in

is four.

 6-47. Design the 2-digit binary-to-BCD code converter in the datapath for the

Game of PIG. Design the least significant digit as a function of (B
3
, B

2
, B

1
, B

0
)

without an incoming carry C
0
. The outputs are to be C

4
, D

3
, D

2
, D

1
, D

0
. Design

the same circuit with an incoming carry C
0
 fixed to 1. For the most significant

digit combine the results of these two designs to handle the actual case in

which the incoming carry C
0
 can be both 0 and 1. Minimize the combined

result for the most significant digit.

6-48. (a) Show the details of a check of the constraints given on transition

conditions as applied to Figure 6-30.

(b) Implement the state machine diagram for the Game of PIG in Figure 6-30

using a one-hot state assignment D flip-flops, and gates.

 6-49. + Find the state machine diagram in the form of Figure 6-29 for a Game of

PIG using two dice. Also, add the following rule: If a pair of 1s is rolled, then

the player’s total score becomes 0. The two dice create an interesting

problem: How do you make sure that the values rolled on the two dice are not

correlated with each other? The current scheme of having the die roll for the

interval of time between the pushing and release will cause the values on the

two dice to advance the same amount so that the values will be correlated

from turn to turn. This will give only six of the 36 possible pairs of rolls of the

two dice! You will need to devise a scheme to insure that all of the pairs are

equally likely. Include a well-justified scheme in your solution.

6-50. *Design a digital system with three 16-bit registers AR, BR, and CR and 16-

bit data input IN to perform the following operations, assuming a 2s

complement representation and ignoring overflow:

(a) Transfer two 16-bit signed numbers to AR and BR on successive clock

cycles after a go signal G becomes 1.

(b) If the number in AR is positive but nonzero, multiply the contents of BR

by two and transfer the result to register CR.

(c) If the number in AR is negative, multiply the contents of AR by two and

transfer the result to register CR.

(d) If the number in AR is zero, reset register CR to 0.

All files referred to in the remaining problems are available in ASCII form for sim-

ulation and editing on the Companion Website for the text. A VHDL or Verilog

compiler/simulator is necessary for the problems or portions of problems requesting

simulation. Descriptions can still be written, however, for many problems without

using compilation or simulation.

6-51. Write a Verilog description for the 4-bit binary counter in Figure 6-13(a)

using a register for the D flip-flops and Boolean equations for the logic.

Compile and simulate your description to demonstrate correctness.

6-52. *Write a behavioral VHDL description for the 4-bit register in Figure 6-1(a).

Compile and simulate your description to demonstrate correctness.

6-53. Repeat Problem 6-52 for the 4-bit register with parallel load in Figure 6-2.

6-54. Write a VHDL description for the 4-bit binary counter in Figure 6-13(a),

using a register for the D flip-flops and Boolean equations for the logic.

Compile and simulate your description to demonstrate correctness.

6-55. *Write a behavioral Verilog description for the 4-bit register in Figure 6-1(a).

Compile and simulate your description to demonstrate correctness.

6-56. Repeat Problem 6-55 for the 4-bit register with parallel load in Figure 6-2.

6-57. *Write, compile, and simulate a VHDL description for the state machine

diagram shown in Figure 6-38. Use a simulation input that passes through

all paths in the state machine diagram, and include both the state and

output Z as simulation outputs. Correct and resimulate your design if

necessary.

Problems 417

418 CHAPTER 6 / REGISTERS AND REGISTER TRANSFERS

6-58. *Write, compile, and simulate a Verilog description for the state machine

diagram in Figure 6-38. Use code 00 for state STA, 01 for state STB, and 10

for state STC. Use a simulation input that passes through all paths in the

state-machine diagram and include both the state and Z as simulation

outputs. Correct and resimulate your design if necessary.

 419 419

C H A P T E R

Memory Basics

7

7-1 MEMORY DEFINITIONS

In digital systems, memory is a collection of cells capable of storing binary informa-

tion. In addition to these cells, memory contains electronic circuits for storing and

retrieving the information. As indicated in the discussion of the generic computer,

memory is used in many different parts of a modern computer, providing temporary

or permanent storage for substantial amounts of binary information. In order for

Memory is a major component of a digital computer and is present in a large

proportion of all digital systems. Random-access memory (RAM) stores data

temporarily, and read-only memory (ROM) stores data permanently. ROM is

one form of a variety of components called programmable logic devices (PLDs) that

Our study of RAM begins by looking at it in terms of a model with inputs, outputs,

and signal timing. We then use equivalent logical models to understand the internal

workings of RAM chips. Both static RAM and dynamic RAM are considered. The

various types of dynamic RAM used for movement of data at high speeds between the

CPU and memory are surveyed. Finally, we put RAM chips together to build simple

RAM systems.

In many of the previous chapters, the concepts presented were broad, pertaining

to much of the generic computer at the beginning of Chapter 1. In this chapter, for the

components. Beginning with the processor, the internal cache is very fast static RAM.

Outside the CPU, the external cache is fast static RAM. The RAM subsystem, by its

information about the screen image in the video adapter. RAM appears in disk cache in

the disk controller, to speed up disk access. Aside from the highly central role of the

in most subsystems of the generic computer.

420 CHAPTER 7 / MEMORY BASICS

this information to be processed, it is sent from the memory to processing hardware

consisting of registers and combinational logic. The processed information is then

returned to the same or to a different memory. Input and output devices also interact

with memory. Information from an input device is placed in memory so that it can be

used in processing. Output information from processing is placed in memory, and

from there it is sent to an output device.

Two types of memories are used in various parts of a computer: random-access
memory (RAM) and read-only memory (ROM). RAM accepts new information for

storage to be available later for use. The process of storing new information in mem-

ory is referred to as a memory write operation. The process of transferring the stored

information out of memory is referred to as a memory read operation. RAM can

perform both the write and the read operations, whereas ROM, as introduced in

Section 6-8, performs only read operations. RAM sizes may range from hundreds to

billions of bits.

7-2 RANDOM-ACCESS MEMORY

Memory is a collection of binary storage cells together with associated circuits

needed to transfer information into and out of the cells. Memory cells can be

accessed to transfer information to or from any desired location, with the access tak-

ing the same time regardless of the location, hence the name random-access mem-
ory. In contrast, serial memory, such as is exhibited by a hard drive, takes different

lengths of time to access information, depending on where the desired location is

relative to the current physical position of the disk.

Binary information is stored in memory in groups of bits, each group of which

is called a word. A word is an entity of bits that moves in and out of memory as a

unit—a group of 1s and 0s that represents a number, an instruction, one or more

alphanumeric characters, or other binary-coded information. A group of eight bits is

called a byte. Most computer memories use words that are multiples of eight bits in

length. Thus, a 16-bit word contains two bytes, and a 32-bit word is made up of four

bytes. The capacity of a memory unit is usually stated as the total number of bytes

that it can store. Communication between a memory and its environment is achieved

through data input and output lines, address selection lines, and control lines that

specify the direction of transfer of information. A block diagram of a memory is

shown in Figure 7-1. The n data input lines provide the information to be stored in

memory, and the n data output lines supply the information coming out of memory.

The k address lines specify the particular word chosen among the many available.

The two control inputs specify the direction of transfer desired: the Write input

causes binary data to be transferred into memory, and the Read input causes binary

data to be transferred out of memory.

The memory unit is specified by the number of words it contains and the num-

ber of bits in each word. The address lines select one particular word. Each word in

memory is assigned an identification number called an address. Addresses range

from 0 to 2k - 1, where k is the number of address lines. The selection of a specific

word inside memory is done by applying the k-bit binary address to the address lines.

A decoder accepts this address and opens the paths needed to select the word

7-2 / Random-Access Memory 421

specified. Computer memory varies greatly in size. It is customary to refer to the

number of words (or bytes) in memory with one of the letters K (kilo), M (mega), or

G (giga). K is equal to 210, M to 220, and G to 230. Thus, 64K = 216, 2M = 221, and

4G = 232.

Consider, for example, a memory with a capacity of 1K words of 16 bits each.

Since 1K = 1024 = 210, and 16 bits constitute two bytes, we can say that the mem-

ory can accommodate 2048, or 2K, bytes. Figure 7-2 shows the possible contents of

the first three and the last three words of this size of memory. Each word contains 16

bits that can be divided into two bytes. The words are recognized by their decimal

addresses from 0 to 1023. An equivalent binary address consists of 10 bits. The first

address is specified using ten 0s, and the last address is specified with ten 1s. This is

because 1023 in binary is equal to 1111111111. A word in memory is selected by its

binary address. When a word is read or written, the memory operates on all 16 bits as

a single unit.

The 1K * 16 memory of the figure has 10 bits in the address and 16 bits in each

word. The number of address bits needed in memory is dependent on the total

k address lines

Read

Memory unit

2k words

n bits per word

n data input lines

n data output lines

Write

 FIGURE 7-1
Block Diagram of Memory

Memory Address

Binary

0000000000
0000000001
0000000010

1111111101
1111111110
1111111111

Memory Contents

10110101 01011100
10101011 10001001
00001101 01000110

10011101 00010101
00001101 00011110
11011110 00100100

.

.

.

.

.

Decimal

0
1
2

1021
1022
1023

.

.

.

.

.

 FIGURE 7-2
Contents of a 1024 * 16 Memory

422 CHAPTER 7 / MEMORY BASICS

number of words that can be stored and is independent of the number of bits in each

word. The number of bits in the address for a word is determined from the relation-

ship 2k Ú m, where m is the total number of words and k is the minimum number of

address bits satisfying the relationship.

Write and Read Operations

The two operations that a random-access memory can perform are write and read.

A write is a transfer into memory of a new word to be stored. A read is a transfer

of a copy of a stored word out of memory. A Write signal specifies the transfer-in

operation, and a Read signal specifies the transfer-out operation. On accepting

one of these control signals, the internal circuits inside memory provide the

desired function.

The steps that must be taken for a write are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Apply the data bits that must be stored in memory to the data input lines.

3. Activate the Write input.

The memory unit will then take the bits from the data input lines and store them in

the word specified by the address lines.

The steps that must be taken for a read are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Activate the Read input.

The memory will then take the bits from the word that has been selected by the

address and apply them to the data output lines. The contents of the selected word

are not changed by reading them.

Memory is made up of RAM integrated circuits (chips), plus additional logic cir-

cuits. RAM chips usually provide the two control inputs for the read and write opera-

tions in a somewhat different configuration from that just described. Instead of having

separate Read and Write inputs to control the two operations, most integrated circuits

provide at least a Chip Select that selects the chip to be read from or written to, and a

Read/Write that determines the particular operation. The memory operations that

result from these control inputs are shown in Table 7-1.

 TABLE 7-1
Control Inputs to a Memory Chip

Chip Select

CS

Read/Write

R/W Memory Operation

0 * None

1 0 Write to selected word

1 1 Read from selected word

7-2 / Random-Access Memory 423

The Chip Select is used to enable the particular RAM chip or chips containing

the word to be accessed. When Chip Select is inactive, the memory chip or chips are

not selected, and no operation is performed. When Chip Select is active, the

Read/Write input determines the operation to be performed. While Chip Select

accesses chips, a signal is also provided that accesses the entire memory. We will call

this signal the Memory Enable.

Timing Waveforms

The operation of the memory unit is controlled by an external device, such as a CPU.

The CPU is synchronized by its own clock pulses. The memory, however, does not

employ the CPU clock. Instead, its read and write operations are timed by changes

in values on the control inputs. The access time of a memory read operation is the

maximum time from the application of the address to the appearance of the data at

the Data Output. Similarly, the write cycle time is the maximum time from the appli-

cation of the address to the completion of all internal memory operations required

to store a word. Memory writes may be performed one after the other at the inter-

vals of the cycle time. The CPU must provide the memory control signals in such a

way as to synchronize its own internal clocked operations with the read and write

operations of memory. This means that the access time and the write cycle time of

the memory must be related within the CPU to a period equal to a fixed number of

CPU clock periods.

Assume, as an example, that a CPU operates with a clock frequency of 50 MHz,

giving a period of 20 ns (1 ns = 10- 9 s) for one clock pulse. Suppose now that the

CPU communicates with a memory with an access time of 65 ns and a write cycle

time of 75 ns. The number of clock pulses required for a memory request is the inte-

ger value greater than or equal to the larger of the access time and the write cycle

time, divided by the clock period. Since the period of the CPU clock is 20 ns, and the

larger of the access time and write cycle time is 75 ns, it will be necessary to devote at

least four clock pulses to each memory request.

The memory cycle timing shown in Figure 7-3 is for a CPU with a 50 MHz

clock and memory with a 75 ns write cycle time and a 65 ns access time. The write

cycle in part (a) shows four pulses T1, T2, T3, and T4 with a cycle of 20 ns. For a

write operation, the CPU must provide the address and input data to the memory.

The address is applied, and Memory Enable is set to the high level at the positive

edge of the T1 pulse. The data, needed somewhat later in the write cycle, is applied

at the positive edge of T2. The two lines that cross each other in the address and

data waveforms designate a possible change in value of the multiple lines. The

shaded areas represent unspecified values. A change of the Read/Write signal to 0

to designate the write operation is also at the positive edge of T2. To avoid

destroying data in other memory words, it is important that this change occur

after the signals on the address lines have become fixed at the desired values.

Otherwise, one or more other words might be momentarily addressed and acci-

dentally written over with different data. The Read/Write signal must stay at 0

long enough after application of the address and Memory Enable to allow the

write operation to complete. Finally, the address and data signals must remain

424 CHAPTER 7 / MEMORY BASICS

stable for a short time after the Read/Write goes to 1, again to avoid destroying

data in other memory words. At the completion of the fourth clock pulse, the

memory write operation has ended with 5 ns to spare, and the CPU can apply the

address and control signals for another memory request with the next T1 pulse.

The read cycle shown in Figure 7-3(b) has an address for the memory that is

provided by the CPU. The CPU applies the address, sets the Memory Enable to 1,

and sets Read/Write to 1 to designate a read operation, all at the positive edge of T1.

The memory places the data of the word selected by the address onto the data out-

put lines within 65 ns from the time that the address is applied and the memory

enable is activated. Then, the CPU transfers the data into one of its internal registers

during the positive transition of the next T1 pulse, which can also change the address

and controls for the next memory request.

(a) Write cycle

Clock

Address

Memory
enable

Read/
Write

Data
input

20 ns

T1 T2 T3 T4 T1

Address valid

Data valid

75 ns

(b) Read cycle

Clock

Address

Memory
enable

Read/
Write

Data
output

20 ns

T1 T2 T3 T4 T1

Address valid

65 ns

Data valid

 FIGURE 7-3
Memory Cycle Timing Waveforms

7-3 / SRAM Integrated Circuits 425

Properties of Memory

Integrated-circuit RAM may be either static or dynamic. Static RAM (SRAM) consists

of internal latches that store the binary information. The stored information remains

valid as long as power is applied to the RAM. Dynamic RAM (DRAM) stores the

binary information in the form of electric charges on capacitors. The capacitors are

accessed inside the chip by n-channel MOS transistors. The stored charge on the capaci-

tors tends to discharge with time, and the capacitors must be periodically recharged by

refreshing the DRAM. This is done by cycling through the words every few milliseconds,

reading and rewriting them to restore the decaying charge. DRAM offers reduced power

consumption and larger storage capacity in a single memory chip, but SRAM is easier to

use and has shorter read and write cycles. Also, no refresh is required for SRAM.

Memory units that lose stored information when power is turned off are said to

be volatile. Integrated-circuit RAMs, both static and dynamic, are of this category,

since the binary cells need external power to maintain the stored information. In

contrast, a nonvolatile memory, such as magnetic disk, retains its stored information

after the removal of power. This is because the data stored on magnetic components

is represented by the direction of magnetization, which is retained after power is

turned off. Another nonvolatile memory is ROM, discussed in Section 5-2.

7-3 SRAM INTEGRATED CIRCUITS

As indicated earlier, memory consists of RAM chips plus additional logic. We will

consider the internal structure of the RAM chip first. Then we will study combina-

tions of RAM chips and additional logic used to construct memory. The internal

structure of a RAM chip of m words with n bits per word consists of an array of mn

binary storage cells and associated circuitry. The circuity is made up of decoders to

select the word to be read or written, read circuits, write circuits, and output logic.

The RAM cell is the basic binary storage cell used in the RAM chip, which is typi-

cally designed as an electronic circuit rather than a logic circuit. Nevertheless, it is

possible and convenient to model the RAM chip using a logic model.

A static RAM chip serves as the basis for our discussion. We first present RAM

cell logic for storing a single bit and then use the cell in a hierarchy to describe the

RAM chip. Figure 7-4 shows the logic model of the RAM cell. The storage part of the

Select

B

RAM cell

C

C

B

S

R

Q

Q

 FIGURE 7-4
Static RAM Cell

426 CHAPTER 7 / MEMORY BASICS

cell is modeled by an SR latch. The inputs to the latch are enabled by a Select signal. For

Select equal to 0, the stored content is held. For Select equal to 1, the stored content is

determined by the values on B and B. The outputs from the latch are gated by Select to

produce cell outputs C and C. For Select equal to 0, both C and C are 0, and for Select

equal to 1, C is the stored value and C is its complement.

To obtain simplified static RAM diagrams, we interconnect a set of RAM cells

and read and write circuits to form a RAM bit slice that contains all of the circuitry asso-

ciated with a single bit position of a set of RAM words. The logic diagram for a RAM

bit slice is shown in Figure 7-5(a). The portion of the model representing each RAM cell

(a) Logic diagram

Select

S

R

Q

Q

B

RAM cell

C

C
B

SelectWord
Select
2n � 1

Word
Select
2n � 1

Word
Select
0

Word
Select
1

S

R

Q

Q
RAM cell

X

Word
Select
0

Data In

Write Logic

Read/
Write

Bit
Select

S

R

Q

Q

X

X

X

Read/Write
Logic

Data In
Data Out

Read/
Write

Bit
Select

(b) Symbol

RAM cell

RAM cell

RAM cell

Data outRead Logic

 FIGURE 7-5
RAM Bit Slice Model

7-3 / SRAM Integrated Circuits 427

is highlighted in blue. The loading of a cell latch is now controlled by a Word Select

input. If this is 0, then both S and R are 0, and the cell latch contents remain unchanged.

If the Word Select input is 1, then the value to be loaded into the latch is controlled by

two signals B and B from the Write Logic. In order for either of these signals to be 1 and

potentially change the stored value, Read/Write must be 0 and Bit Select must be 1.

Then the Data In value and its complement are applied to B and B, respectively, to set

or reset the latch in the RAM cell selected. If Data In is 1, the latch is set to 1, and if

Data In is 0, the latch is reset to 0, completing the write operation.

Only one word is written at a time. That is, only one Word Select line is 1, and

all other Word Select lines are 0. Thus, only one RAM cell attached to B and B is

written. The Word Select also controls the reading of the RAM cells, using shared

Read Logic. If Word Select is 0, then the stored value in the SR latch is prevented by

the AND gates from reaching the pair of OR gates in the Read Logic. But if Word

Select is 1, the stored value passes through to the OR gates and is captured in the

Read Logic SR latch. If Bit Select is also 1, the captured value appears on the Data

Out line of the RAM bit slice. Note that for this particular Read Logic design, the

read occurs regardless of the value of Read/Write.

The symbol for the RAM bit slice given in Figure 7-5(b) is used to represent

the internal structure of RAM chips. Each Word Select line extends beyond the bit

slice, so that when multiple RAM bit slices are placed side by side, corresponding

Word Select lines connect. The other signals in the lower portion of the symbol may

be connected in various ways, depending on the structure of the RAM chip.

The symbol and block diagram for a 16 * 1 RAM chip are shown in Figure 7-6.

Both have four address inputs for the 16 one-bit words stored in RAM. There are

also Data Input, Data Output, and Read/Write signals. The Chip Select at the chip

level corresponds to the Memory Enable at the level of a RAM consisting of multi-

ple chips. The internal structure of the RAM chip consists of a RAM bit slice having

16 RAM cells. Since there are 16 Word Select lines to be controlled such that one and

only one has the value logic 1 at a given time, a 4–to–16-line decoder is used to

decode the four address bits into 16 Word Select bits.

The only additional logic in the figure is a triangular symbol with one normal

input, one normal output, and a second input on the bottom of the symbol. This sym-

bol is a three-state buffer that allows construction of a multiplexer with an arbitrary

number of inputs. Three-state outputs are connected together and properly con-

trolled using the Chip Select inputs. By using three-state buffers on the outputs of

RAM chips, these outputs can be connected together to provide the word from the

chip being read on the bit lines attached to the RAM outputs. The enable signals in

the preceding discussion correspond to the Chip Select inputs on the RAM chips. To

read a word from a particular RAM chip, the Chip Select value for that chip must be

1, and for all other chips attached to the same output bit lines, the Chip Select must

be 0. These combinations containing a single 1 can be obtained from a decoder.

Coincident Selection

Inside a RAM chip, the decoder with k inputs and 2k outputs requires 2k AND gates

with k inputs per gate if a straightforward design approach is used. In addition, if the

428 CHAPTER 7 / MEMORY BASICS

number of words is large, and all bits for one bit position in the word are contained in

a single RAM bit slice, the number of RAM cells sharing the read and write circuits

is also large. The electrical properties resulting from both of these situations cause

the access and write cycle times of the RAM to become long, which is undesirable.

The total number of decoder gates, the number of inputs per gate, and the number

of RAM cells per bit slice can all be reduced by employing two decoders with a coinci-
dent selection scheme. In one possible configuration, two k/2-input decoders are used

Word Select

Read/Write
Logic

Data In

Data Out

Read/
Write

Bit
Select

(b) Block diagram

RAM cell

RAM cell

RAM cell

Data Input

Chip Select

Read/Write

Data
Output

A3

A2

A1

A0

23

22

21

20

4-to-16
Decoder 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A3

A2

A1

A0

Data
Input

Data
Output

(a) Symbol

Read/
Write

Memory
enable

 FIGURE 7-6
16-Word by 1-Bit RAM Chip

7-3 / SRAM Integrated Circuits 429

instead of one k-input decoder. One decoder controls the word select lines and the other

controls the bit select lines. The result is a two-dimensional matrix selection scheme. If

the RAM chip has m words with 1 bit per word, then the scheme selects the RAM cell at

the intersection of the Word Select row and the Bit Select column. Since the Word Select

is no longer strictly selecting words, its name is changed to Row Select. An output from

the added decoder that selects one or more bit slices is referred to as a Column Select.
Coincident selection is illustrated for the 16 * 1 RAM chip with the struc-

ture shown in Figure 7-7. The chip consists of four RAM bit slices of four bits each

and has a total of 16 RAM cells in a two-dimensional array. The two most signifi-

cant address inputs go through the 2–to–4-line row decoder to select one of the

four rows of the array. The two least significant address inputs go through the

Data input

Read/Write

X XX

A1 A0

RAM cell
0

RAM cell
4

RAM cell
8

RAM cell
12

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

RAM cell
1

RAM cell
5

RAM cell
9

RAM cell
13

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

RAM cell
2

RAM cell
6

RAM cell
10

RAM cell
14

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

RAM cell
3

RAM cell
7

RAM cell
11

RAM cell
15

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

Column
decoder

2-to-4 Decoder
with enable

21 20

0 1

Column Select

2

Enable

3

Chip Select

Data
output

Row
Select

Row decoder

A2

A3

X

2-to-4
Decoder

20

21

1

2

3

0

 FIGURE 7-7
Diagram of a 16 * 1 RAM Using a 4 * 4 RAM Cell Array

430 CHAPTER 7 / MEMORY BASICS

2–to–4-line column decoder to select one of the four columns (RAM bit slices) of

the array. The column decoder is enabled with the Chip Select input. When the

Chip Select is 0, all outputs of the decoder are 0 and none of the cells is selected.

This prevents writing into any RAM cell in the array. With Chip Select at 1, a sin-

gle bit in the RAM is accessed. For example, for the address 1001, the first two

address bits are decoded to select row 10 of the RAM cell array. The second two

address bits are decoded to select column 01 of the array. The RAM cell accessed,

in row 2 and column 1 of the array, is cell 9 (102012). With a row and column

selected, the Read/Write input determines the operation. During the read opera-

tion (Read/Write = 1), the selected bit of the selected row goes through the OR

gate to the three-state buffer. Note that the gate is drawn according to the array

logic established in Figure 5-5. Since the buffer is enabled by Chip Select, the

value read appears at the Data Output. During the write operation

(Read/Write = 0), the bit available on the Data Input line is transferred into the

selected RAM cell. Those RAM cells not selected are disabled, and their previous

binary values remain unchanged.

The same RAM cell array is used in Figure 7-8 to produce an 8 * 2 RAM

chip (eight words of two bits each). The row decoding is unchanged from that in

Figure 7-7; the only changes are in the column and output logic. Since there are

just three address bits, and two are handled by the row decoder, the column

decoder has only one address bit and Chip Select as inputs and produces just two

Column Select lines. Since two bits at a time are to be written or read, the Column

Select lines go to adjacent pairs of RAM bit slices. Two input lines, Data Input 0

and Data Input 1, each go to a different bit in all of the pairs. Finally, correspond-

ing bits of the pairs share output OR gates and three-state buffers, giving output

lines Data Output 0 and Data Output 1. The operation of this structure can be

illustrated by the application of the address 3 (0112). The first two bits of the

address, 01, access row 1 of the array. The final bit, 1, accesses column 1, which

consists of bit slices 2 (102) and 3 (112). So the word to be written or read lies in

RAM cells 6 and 7 (011 02 and 011 12), which contain bits 0 and 1, respectively, of

word 3.

We can demonstrate the savings of the coincident selection scheme by con-

sidering a more realistic static RAM size, 32K * 8. This RAM chip contains a

total of 256K bits. To make the number of rows and columns in the array equal,

we take the square root of 256K, giving 512 = 29. So the first nine bits of the

address are fed to the row decoder and the remaining six bits to the column

decoder. Without coincident selection, the single decoder would have 15 inputs

and 32,768 outputs. With coincident selection, there is one 9–to–512-line decoder

and one 6–to–64-line decoder. The number of gates for a straightforward design

of the single decoder would be 32,800. For the two coincident decoders, the num-

ber of gates is 608, reducing the gate count by a factor of more than 50. In addi-

tion, although it appears that there are 64 times as many Read/Write circuits, the

column selection can be done between the RAM cells and the Read/Write cir-

cuits, so that only the original eight circuits are required. Because of the reduced

number of RAM cells attached to each Read/Write circuit at any time, the access

time of the chip is also improved.

7-4 / Array of SRAM ICs 431

A0 Chip Select

Data input 0

X

X

X

Column
decoder

1-to-2 Decoder
with enable

20

0

Column Select Data
output 0

X

Enable
Data

output 1

Data input 1

Read/Write

1

RAM cell
0

RAM cell
4

RAM cell
8

RAM cell
12

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

RAM cell
1

RAM cell
5

RAM cell
9

RAM cell
13

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

RAM cell
2

RAM cell
6

RAM cell
10

RAM cell
14

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

RAM cell
3

RAM cell
7

RAM cell
11

RAM cell
15

Read/Write
logic

Data in

Data out

Read/
Write

Bit
Select

Row
Select

Row decoder

A1

A2

2-to-4
Decoder

20

21

1

2

3

0

 FIGURE 7-8
 Block Diagram of an 8 * 2 RAM Using a 4 * 4 RAM Cell Array

7-4 ARRAY OF SRAM ICS

Integrated-circuit RAM chips are available in a variety of sizes. If the memory unit

needed for an application is larger than the capacity of one chip, it is necessary to

combine a number of chips in an array to form the required size of memory. The

capacity of the memory depends on two parameters: the number of words and

the number of bits per word. An increase in the number of words requires that we

increase the address length. Every bit added to the length of the address doubles the

number of words in memory. An increase in the number of bits per word requires

that we increase the number of data input and output lines, but the address length

remains the same.

432 CHAPTER 7 / MEMORY BASICS

To illustrate an array of RAM ICs, let us first introduce a RAM chip using

the condensed representation for inputs and outputs shown in Figure 7-9. The

capacity of this chip is 64K words of 8 bits each. The chip requires a 16-bit address

and 8 input and output lines. Instead of 16 lines for the address and 8 lines each

for data input and data output, each is shown in the block diagram by a single line.

Each line has a slash across it with a number indicating the number of lines repre-

sented. The CS (Chip Select) input selects the particular RAM chip, and the R/W

(Read/Write) input specifies the read or write operation when the chip is selected.

The small triangle shown at the outputs is the standard graphics symbol for three-

state outputs. The CS input of the RAM controls the behavior of the data output

lines. When CS = 0, the chip is not selected, and all its data outputs are in the

high-impedance state. With CS = 1, the data output lines carry the eight bits of

the selected word.

Suppose that we want to increase the number of words in the memory by using

two or more RAM chips. Since every bit added to the address doubles the binary

number that can be formed, it is natural to increase the number of words in factors of

two. For example, two RAM chips will double the number of words and add one bit

to the composite address. Four RAM chips multiply the number of words by four

and add two bits to the composite address.

Consider the possibility of constructing a 256K * 8 RAM with four 64K * 8

RAM chips, as shown in Figure 7-10. The eight data input lines go to all the chips. The

three-state outputs can be connected together to form the eight common data out-

put lines. This type of output connection is possible only with three-state outputs.

Just one Chip Select input will be active at any time, while the other three chips will

be disabled. The eight outputs of the selected chip will contain 1s and 0s, and the

other three will be in a high-impedance state, presenting only open circuits to the

binary output signals of the selected chip.

The 256K-word memory requires an 18-bit address. The 16 least significant bits

of the address are applied to the address inputs of all four chips. The two most signif-

icant bits are applied to a 2 * 4 decoder. The four outputs of the decoder are applied

to the CS inputs of the four chips. The memory is disabled when the EN input of the

decoder, Memory Enable, is equal to 0. All four outputs of the decoder are then 0,

and none of the chips is selected. When the decoder is enabled, address bits 17 and 16

determine the particular chip that is selected. If these bits are equal to 00, the first

Input data

Address

Chip Select

Output data
8

16
DATA

ADRS

CS

8

64K 	 8 RAM

Read/Write R/W

 FIGURE 7-9
 Symbol for a 64K * 8 RAM Chip

7-4 / Array of SRAM ICs 433

RAM chip is selected. The remaining 16 address bits then select a word within the

chip in the range from 0 to 65,535. The next 65,536 words are selected from the sec-

ond RAM chip with an 18-bit address that starts with 01 followed by the 16 bits from

the common address lines. The address range for each chip is listed in decimal under

its symbol in the figure.

Input
data

DATA

Address

ADRS

CS

Output data

8

8

Read/
Write R/W

Memory
enable

DATA

ADRS

CS

DATA

ADRS

CS

DATA

ADRS

CS

Lines Lines 0–15
17 16

2-to-4
Decoder

EN

0123

16

0–65,535

65,536–131,071

131,072–196,607

196,608–262,143

R/W

R/W

R/W

 FIGURE 7-10
 Block Diagram of a 256K * 8 RAM

434 CHAPTER 7 / MEMORY BASICS

It is also possible to combine two chips to form a composite memory contain-

ing the same number of words, but with twice as many bits in each word. Figure 7-11

shows the interconnection of two 64K * 8 chips to form a 64K * 16 memory. The

16 data input and data output lines are split between the two chips. Both receive the

same 16-bit address and the common CS and R/W control inputs.

The two techniques just described may be combined to assemble an array of

identical chips into a large-capacity memory. The composite memory will have a

number of bits per word that is a multiple of that for one chip. The total number of

words will increase in factors of two times the word capacity of one chip. An external

decoder is needed to select the individual chips based on the additional address bits

of the composite memory.

To reduce the number of pins on the chip package, many RAM ICs provide

common terminals for the data input and data output. The common terminals are

said to be bidirectional, which means that for the read operation they act as outputs,

and for the write operation they act as inputs. Bidirectional lines are constructed

with three-state buffers and are discussed further in Section 6-8. The use of bidirec-

tional signals requires control of the three-state buffers by both Chip Select and

Read/Write.

7-5 DRAM ICS

Because of its ability to provide high storage capacity at low cost, dynamic RAM

(DRAM) dominates the high-capacity memory applications, including the primary

RAM in computers. Logically, DRAM in many ways is similar to SRAM. However,

8

8

8

16

16
DATA

ADRS

CS

DATA

ADRS

CS

8

16 Input data lines

8

Address

Chip Select

16 Output data lines

16

R/WR/WRead/Write

8

8

8

 FIGURE 7-11
 Block Diagram of a 64K * 16 RAM

7-5 / DRAM ICs 435

because of the electronic circuit used to implement the storage cell, its electronic

design is considerably more challenging. Further, as the name “dynamic” implies, the

storage of information is inherently only temporary. As a consequence, the informa-

tion must be periodically “refreshed” to mimic the behavior of static storage. This

need for refresh is the primary logical difference in the behavior of DRAM com-

pared to SRAM. We explore this logical difference by examining the dynamic RAM

cell, the logic required to perform the refresh operation, and the impact of the need

for refresh on memory system operation.

DRAM Cell

The dynamic RAM cell circuit is shown in Figure 7-12(a). It consists of a capacitor C

and a transistor T. The capacitor is used to store electrical charge. If sufficient charge is

stored on the capacitor, it can be viewed as storing a logical 1. If insufficient charge

is stored on the capacitor, it can be viewed as storing a logical 0. The transistor acts

much like a switch, as described in Section 5-1. When the switch is “open,” the charge

on the capacitor roughly remains fixed—in other words, is stored. But when the switch

is “closed,” charge can flow into and out of the capacitor from the external Bit (B)

line. This charge flow allows the cell to be written with a 1 or 0 and to be read.

In order to understand the read and write operations for the cell, we will use a

hydraulic analogy with charge replaced by water, the capacitor by a small storage

tank, and the transistor by a valve. Since the bit line has a large capacitance, it is repre-

sented by a large tank, and pumps which can fill and empty this tank rapidly. This

analogy is given in Figures 7-12(b) and (c) with the valve closed. Note that in one case

the small storage tank is full, representing a stored 1, and in the other case it is empty,

representing a stored 0. Suppose that a 1 is to be written into the cell. The valve is

opened and the pumps fill up the large tank. Water flows through the valve, filling the

(a) (c)

Select

D

C

QB

DRAM cell
model

C

(f) (g)(h)

Select

B
T

C
DRAM cell

To Pump

(b)

(d) (e)

 FIGURE 7-12
Dynamic RAM cell, hydraulic analogy of cell operation, and cell model

436 CHAPTER 7 / MEMORY BASICS

small storage tank, as shown in Figure 7-12(d). Then the valve is closed, leaving the

small tank full, which represents a 1. A 0 can be written using the same sort of opera-

tions, except that the pumps empty the large tank as shown in Figure 7-12(e).

Now, suppose we want to read a stored value and that the value is a 1 corre-

sponding to a full storage tank. With the large tank at a known intermediate level,

the valve is opened. Since the small storage tank is full, water flows from the small

tank to the large tank, increasing the level of the water surface in the large tank

slightly as shown in Figure 7-12(f). This increase in level is observed as the reading of

1 from the storage tank. Correspondingly, if the storage tank is initially empty, there

will be a slight decrease in the level in the large tank in Figure 7-12(g), which is

observed as the reading of a 0 from the storage tank.

In the read operation just described, Figures 7-12(f) and (g) show that, regardless

of the initial stored value in the storage tank, it now contains an intermediate value

which will not cause enough change in the level of the external tank to permit a 0 or 1

to be observed. So the read operation has destroyed the stored value; this is referred to

as a destructive read. To be able to read the original stored value in the future, we must

restore it (i.e., return the storage tank to its original level). To perform the restore for a

stored 1 observed, the large tank is filled by the pumps and the small tank fills through

the open valve. To perform the restore for a stored 0 observed, the large tank is emp-

tied by the pumps, and the small tank drains through the open valve.

In the actual storage cell, there are other paths present for charge flow. These

paths are analogous to small leaks in the storage tank. Due to these leaks, a full small

storage tank will eventually drain to a point at which the increase in the level of the

large tank on a read cannot be observed as an increase. In fact, if the small tank is

less than half full when read, it is possible that a decrease in the level of the large

tank may be observed. To compensate for these leaks, the small storage tank storing

a 1 must be periodically refilled. This is referred to as a refresh of the cell contents.

Every storage cell must be refreshed before its level has declined to a point at which

the stored value can no longer be properly observed.

Through the hydraulic analogy, the DRAM operation has been explained. Just as

for the SRAM, we employ a logic model for the cell. The model shown in Figure 7-12(h)

is a D latch. The C input to the D latch is Select and the D input to the D latch is B. In

order to model the output of the DRAM cell, we use a three-state buffer with Select as

its control input and C as its output. In the original electronic circuit for the DRAM cell

in Figure 7-12(a), B and C are the same signal, but in the logical model they are separate.

This is necessary in the modeling process to avoid connecting gate outputs together.

DRAM Bit Slice

Using the logic model for the DRAM cell, we can construct the DRAM bit-slice

model shown in Figure 7-13. This model is similar to that for the SRAM bit slice in

Figure 7-5. It is apparent that, aside from the cell structure, the two RAM bit slices

are logically similar. However, from the standpoint of cost per bit, they are quite dif-

ferent. The DRAM cell consists of a capacitor plus one transistor. The SRAM cell

typically contains six transistors, giving a cell complexity roughly three times that of

the DRAM. Therefore, the number of SRAM cells in a chip of a given size is less

7-5 / DRAM ICs 437

than one-third of those in the DRAM. The DRAM cost per bit is less than one-third

the SRAM cost per bit, which justifies the use of DRAM in large memories.

Refresh of the DRAM contents remains to be discussed. But first, we need to

develop the typical structure used to handle addressing in DRAMs. Since many DRAM

chips are used in a DRAM, we want to reduce the physical size of the DRAM chips.

Large DRAMs require 20 or more address bits, which would require 20 address pins on

each DRAM chip. To reduce the number of pins, the DRAM address is applied serially

in two parts with the row address first and the column address second. This can be done

(b) Symbol

(a) Logic diagram

Select

B

Select

Word
Select
0

Word
Select
2n � 1

Word
Select
2n � 1

Data in

WriteLogic

Bit
Select

Data OutRead Logic

D

C

Q

DRAM cell
model

D

C

Q

DRAM cell
model

C

Sense
amplifier

Read/Write
Logic

Data In
Data Out

Bit
Select

DRAM cell

DRAM cell

DRAM cell

Word
Select
0

Word
Select
1

Read/
Write

Read/
Write

 FIGURE 7-13
DRAM Bit-Slice Model

438 CHAPTER 7 / MEMORY BASICS

since the row address, which performs the row selection, is actually needed before the

column address, which reads out the data from the row selected. In order to hold the

row address throughout the read or write cycle, it is stored in a register, as shown in

Figure 7-14. The column address is also stored in a register. The load signal for the row

address register is RAS (Row Adress Strobe) and for the column addresses is CAS

(Column Address Strobe). Note that in addition to RAS and CAS, control signals for

the DRAM chip include R/W (Read/Write) and OE (Output enable). Note that this

design uses signals active at the LOW (0) level.

The timing for DRAM write and read operation appears in Figure 7-15(a). The

row address is applied to the address inputs, and then RAS changes from 1 to 0, load-

ing the row address into the row address register. This address is applied to the row

address decoder and selects a row of DRAM cells. Meanwhile, the column address is

applied, and then CAS changes from 1 to 0, loading the column address into the col-

umn address register. This address is applied to the column address decoder, which

selects a set of columns of the RAM array of size equal to the number of RAM data

bits. The input data with Read/Write = 0 is applied over a time interval similar to

that for the column address. The data bits are applied to the set of bit lines selected

by the column address decoder, which in turn apply the values to the DRAM cells in

the selected row, writing the new data into the cells. When CAS and RAS return to 1,

the write cycle is complete and the DRAM cells store the newly written data. Note

that the stored data in all of the other cells in the addressed row has been restored.

DRAM
bit

slice

DRAM
bit

slice

DRAM
bit

slice

Input/output logic

Column decoder

R
ow

 d
ec

od
er

Column address
register

Column timing
logic

Row address
register

Refresh
counter

Refresh
controller

Row timing
logic

Data in/
Data out

RAS

CAS

OE
R/W

Row
address

Column
address

.

.

. . . .

. . .

. . .

 FIGURE 7-14
Block Diagram of a DRAM Including Refresh Logic

7-5 / DRAM ICs 439

The read operation timing shown in Figure 7-15(b) is similar. Timing of the

address operations is the same. However, no data is applied and Read/Write is 1

instead of 0. Data values in the DRAM cells in the selected row are applied to the bit

(a) Write cycle

20 ns

T1 T2 T3 T4 T1

Data valid

75 ns

Read/
Write

Data
input

Clock

Row
Address

Column
Address

RAS

CAS

Address

Output
enable

(b) Read cycle

20 ns

T1 T2 T3 T4 T1

Data valid

65 ns

Hi-Z

Read/
Write

Data
output

Clock

Row
Address

Column
Address

RAS

CAS

Address

Output
enable

 FIGURE 7-15
Timing for DRAM Write and Read Operations

440 CHAPTER 7 / MEMORY BASICS

lines and sensed by the sense amplifiers. The column address decoder selects the val-

ues to be sent to the Data output, which is enabled by Output enable. During the

read operation, all values in the addressed row are restored.

To support refresh, additional logic shown in color is present in the block dia-

gram in Figure 7-14. There is a Refresh counter and a Refresh controller. The Refresh

counter is used to provide the address of the row of DRAM cells to be refreshed. It is

essential for the refresh modes that require the address to be provided from within

the DRAM chip. The refresh counter advances on each refresh cycle. Due to the

number of bits in the counter, when it reaches 2n - 1, where n is the number of rows

in the DRAM array, it advances to 0 on the next refresh. The standard ways in which

a refresh cycle can be triggered and the corresponding refresh types are as follows:

1. RAS-only refresh. A row address is placed on the address lines and RAS is

changed to 0. In this case, the refresh addresses must be applied from outside

the DRAM chip, typically by an IC called a DRAM controller.

2. CAS-before-RAS refresh. The CAS is changed from 1 to 0 followed by a

change from 1 to 0 on RAS. Additional refresh cycles can be performed by

changing RAS without changing CAS. The refresh addresses for this case come

from the refresh counter, which is incremented after the refresh for each cycle.

3. Hidden refresh. Following a normal read or write, CAS is left at 0 and RAS is

cycled, effectively performing a CAS-before-RAS refresh. During a hidden

refresh, the output data from the prior read remains valid. Thus, the refresh is

hidden. Unfortunately, the time taken by the hidden refresh is significant, so a

subsequent read or write operation is delayed.

In all cases, note that the initiation of a refresh is controlled externally by using

the RAS and CAS signals. Each row of a DRAM chip requires refreshing within a

specified maximum refresh time, typically ranging from 16 to 64 milliseconds (ms).

Refreshes may be performed at evenly spaced points in the refresh time, an approach

called distributed refresh. Alternatively, all refreshes may be performed one after the

other, an approach called burst refresh. For example, a 4M * 4 DRAM has a refresh

time of 64 ms and has 4096 rows to be refreshed. The length of time to perform a sin-

gle refresh is 60 ns, and the refresh interval for distributed refresh is 64 ms/4096 = 15.6

microseconds (ms). A total time out for refresh of 0.25 ms is used out of the 64 ms

refresh interval. For the same DRAM, a burst refresh also takes 0.25 ms. The DRAM

controller must initiate a refresh every 15.6 μs for distributed refresh and must initiate

4096 refreshes sequentially every 64 ms for burst refresh. During any refresh cycle, no

DRAM reads or writes can occur. Since use of burst refresh would halt computer

operation for a fairly long period, distributed refresh is more commonly used.

7-6 DRAM TYPES

Over the last two decades, both capacity and speed of DRAM have increased signifi-

cantly. The quest for speed has resulted in the evolution of many types of DRAM.

Several are listed with brief descriptions in Table 7-2. Of the memory types listed, the

first two have largely been replaced in the marketplace by the more advanced

SDRAM and RDRAM approaches. Since we have chosen to provide a discussion of

7-6 / DRAM Types 441

error-correcting codes (ECC) for memories on the text website, our discussion of

memory types here will omit the ECC feature and focus on synchronous DRAM,

double-data-rate synchronous DRAM, and Rambus® DRAM. Before considering

these, we briefly cover some underlying concepts.

First, all three of these DRAM types work well because of the particular environ-

ment in which they operate. In modern high-speed computer systems, the processor

 TABLE 7-2
DRAM Types

Type Abbreviation Description

Fast page mode DRAM FPM DRAM Takes advantage of the fact that, when a row

is accessed, all of the row values are available

to be read out. By changing the column

address, data from different addresses can be

read out without reapplying the row address

and waiting for the delay associated with

reading out the row cells to pass if the row

portions of the addresses match.

Extended data output

DRAM

EDO DRAM Extends the length of time that the DRAM

holds the data values on its output,

permitting the CPU to perform other tasks

during the access, since it knows the data

will still be available.

Synchronous DRAM SDRAM Operates with a clock rather than being

asynchronous. This permits a tighter

interaction between memory and CPU,

since the CPU knows exactly when the

data will be available. SDRAM also takes

advantage of the row value availability and

divides memory into distinct banks,

permitting overlapped accesses.

Double-data-rate

synchronous DRAM

DDR SDRAM The same as SDRAM except that data

output is provided on both the negative

and the positive clock edges.

Rambus® DRAM RDRAM A proprietary technology that provides

very high memory access rates using a

relatively narrow bus.

Error-correcting code ECC May be applied to most of the DRAM

types above to correct single-bit data

errors and often detect double errors.

442 CHAPTER 7 / MEMORY BASICS

interacts with the DRAM within a memory hierarchy. Most of the instructions and data

for the processor are fetched from two lower levels of the hierarchy, the L1 and L2

caches. These are comparatively smaller SRAM-based memory structures that are cov-

ered in detail in Chapter 12. For our purposes, the key issue is that most of the reads

from the DRAM are not directly from the CPU, but instead are initiated to bring data

and instructions into these caches. The reads are in the form of a line (i.e., some number

of bytes in contiguous addresses in memory) that is brought into the cache. For exam-

ple, in a given read, the 16 bytes in hexadecimal addresses 000000 through 00000F

would be read. This is referred to as a burst read. For burst reads, the effective rate of

reading bytes, which is dependent upon reading bursts from contiguous addresses,

rather than the access time is the important measure. With this measure, the three

DRAM types we are discussing provide very fast performance.

Second, the effectiveness of these three DRAM types depends upon a very

fundamental principle involved in DRAM operation, the reading out of all of the

bits in a row for each read operation. The implication of this principle is that all of

the bits in a row are available after a read using that row if only they can be accessed.

With these two concepts in mind, the synchronous DRAM can be introduced.

Synchronous DRAM (SDRAM)

The use of clocked transfers differentiates SDRAM from conventional DRAM. A

block diagram of a 16-megabyte SDRAM IC appears in Figure 7-16. The inputs and

outputs differ little from those for the DRAM block diagram in Figure 7-14 with the

exception of the presence of the clock for synchronous operation. Internally, there are

a number of differences. Since the SDRAM appears synchronous from the outside,

Memory cell arrayControl
logic

I/O logic

A
dd

re
ss

 r
eg

is
te

r

R
ef

re
sh

 c
ou

nt
er

R
ow

 a
dd

re
ss

 m
ux

R
ow

 a
dd

re
ss

 la
tc

he
s

R
ow

 d
ec

od
er

D
at

a
in

pu
t r

eg
is

te
r

D
at

a
ou

tp
ut

 r
eg

is
te

r

Column decoder

Col address counter

CLK

CS
WE

RAS

CAS

A(11:0)

D(7:0)

 FIGURE 7-16
Block Diagram of a 16 MB SDRAM

7-6 / DRAM Types 443

there are synchronous registers on the address inputs and the data inputs and outputs.

In addition, a column address counter has been added, which is key to the operation of

the SDRAM. While the control logic may appear to be similar, the control in this case

is much more complex, since the SDRAM has a mode control word that can be loaded

from the address bus. Considering a 16 MB memory, the memory array contains

134,217,728 bits and is almost square, with 8192 rows and 16,384 columns. There are 13

row address bits. Since there are 8 bits per byte, the number of column addresses is

16,384 divided by 8, which equals 2048. This requires 11 column address bits. Note that

13 plus 11 equals 24, giving the correct number of bits to address 16 MB.

As with the regular DRAM, the SDRAM applies the row address first, followed

by the column address. The timing, however, is somewhat different, and some new ter-

minology is used. Before performing an actual read operation from a specified column

address, the entire row of 2048 bytes specified by the applied row address is read out

internally and stored in the I/O logic. Internally, this step takes a few clock cycles. Next,

the actual read step is performed with the column address applied. After an additional

delay of a few clock cycles, the data bytes begin appearing on the output, one per clock

period. The number of bytes that appear, the burst length, has been set by loading a

mode control word into the control logic from the address input.

The timing of a burst read cycle with burst length equal to four is shown in

Figure 7-17. The read begins with the application of the row address and the row

address strobe (RAS), which causes the row address to be captured in the address

register and the reading of the row to be initiated. During the next two clock periods,

CLK

CS

WE

RAS

CAS

ADDRESS

DATA

ROW COL

B1 B2 B3 B0

tRC

tCLK

 FIGURE 7-17
Timing Diagram for an SDRAM

444 CHAPTER 7 / MEMORY BASICS

the reading of the row is taking place. During the third clock period, the column

address and the column address strobe are applied, with the column address cap-

tured in the address register and the reading of the first data byte initiated. The data

byte is then available to be read from the SDRAM at the positive clock edge occur-

ring two cycles later. The second, third, and fourth bytes are available for reading on

subsequent clock edges. In Figure 7-17, note that the bytes are presented in the order

1, 2, 3, 0. This is because, in the column address identifying the byte immediately

needed by the CPU, the last two bits are 01. The subsequent bytes appear in the

order of these two bits counted up modulo (burst length) by the column address

counter, giving addresses ending in 01, 10, 11, and 00, with all other address bits fixed.

It is interesting to compare the byte rate for reading bytes from SDRAM to that

of the basic DRAM. We assume that the read cycle time tRC for the basic DRAM is

60 ns and that the clock period tCLK for the SDRAM is 7.5 ns. The byte rate for the

basic DRAM is one byte per 60 ns, or 16.67 MB/s. For the SDRAM, from Figure 7-17, it

requires 8.0 clock cycles, or 60 ns, to read four bytes, giving a byte rate of 66.67 MB/s. If

the burst is eight instead of four bytes, a read cycle time of 90 ns is required, giving a

byte rate of 88.89 MB/s. Finally, if the burst is the entire 2048-byte row of the SDRAM,

the read cycle time becomes 60 + (2048 - 4) * 7.5 = 15,390 ns, giving a byte rate of

133.07 MB, which approaches the limit of one byte per 7.5 ns clock period.

Double-Data-Rate SDRAM (DDR SDRAM)

The second DRAM type, double-data-rate SDRAM (DDR SDRAM) overcomes

the preceding limit without decreasing the clock period. Instead, it provides two

bytes of data per clock period by using both the positive and negative clock edges. In

Figure 7-17, four bytes are read, one per positive clock edge. By using both clock

edges, eight bytes can be transferred in the same read cycle time tRC. For a 7.5 ns

clock period, the byte rate limit doubles in the example to 266.14 MB/s.

Additional basic techniques can be applied to further increase the byte rate.

For example, instead of having single byte data, an SDRAM IC can have the data

I/O length of four bytes (32 bits). This gives a byte rate limit of 1.065 GB/s with a

7.5 ns clock period. Eight bytes give a byte rate limit of 2.130 GB/s.

The byte rates achieved in the examples are upper limits. If the actual accesses

needed are to different rows of the RAM, the delay from the application of the RAS

pulse to read out the first byte of data is significant and leads to performance well

below the limit. This can be partially offset by breaking up the memory into multiple

banks, where each bank performs the row read independently. Provided that the row

and bank addresses are available early enough, row reads can be performed on one

or more banks while data is still being transferred from the currently active row.

When the column reads from the currently active row are complete, data can poten-

tially be available immediately from other banks, permitting an uninterrupted flow

of data from the memory. This permits the actual read rate to more closely approach

the limit. Nevertheless, due to the fact that multiple row accesses to the same bank

may occur in sequence, the maximum rate is not reached.

More recent versions of DDR memory include DDR2 and DDR3, with DDR4

expected to become available in 2014. While none of the versions of DDR are com-

patible with each other due to differences in electrical properties and timing, all of

7-6 / DRAM Types 445

the versions depend on the same principle of transferring data on both the rising

and the falling edges of the memory bus clock. Each succeeding version has increased

the number of data transfers per memory bus clock cycle.

RAMBUS® DRAM (RDRAM)

The final DRAM type to be discussed is RAMBUS DRAM (RDRAM). Although no

longer widely available, we include a description of RDRAM to illustrate its alterna-

tive design for the memory interface. RDRAM ICs are designed to be integrated into

a memory system that uses a packet-based bus for the interaction between the

RDRAM ICs and the memory bus to the processor. The primary components of the

bus are a 3-bit path for the row address, a 5-bit path for the column address, and a 16-bit

or 18-bit path for data. The bus is synchronous and performs transfers on both clock

edges, the same property possessed by the DDR SDRAM. Information on the three

paths mentioned above is transferred in packets that are four clock cycles long, which

means that there are eight transfers/packet. The number of bits per packet for each of

the paths is 24 bits for the row address packet, 40 bits for the column address packet,

and 128 bits or 144 bits for the data packet. The larger data packet includes 16 parity

bits for implementing an error-correcting code. The RDRAM IC employs the concept

of multiple memory banks mentioned earlier to provide capability for concurrent

memory accesses with different row addresses. RDRAM uses the usual row-activate

technique in which the addressed row data of the memory is read. From this row data,

the column address is used to select byte pairs in the order in which they are to be

transmitted in the packet. A typical timing picture for an RDRAM read access is

shown in Figure 7-18. Due to the sophisticated electronic design of the RAMBUS

CLK

CS

WE

DATA

ROW ROW

COL

DATA

tCLK

tPACK

tRC

 FIGURE 7-18
Timing of a 16 MB RDRAM

446 CHAPTER 7 / MEMORY BASICS

 system, we can consider a clock period of 1.875 ns. Thus, the time for transmission of a

packet is tPACK = 4 * 1.875 = 7.5 ns. The cycle time for accessing a single data

packet of 8 byte pairs or 16 bytes is 32 clock cycles or 60 ns, as shown in Figure 7-18. The

corresponding byte rate is 266.67 MB/s. If four of the byte packets are accessed from

the same row, the rate increases to 1.067 GB/s. By reading an entire RDRAM row of

2048 bytes, the cycle time increases to 60 + (2048 - 64) * 1.875/4 = 990 ns or a

byte rate limit of 2048/(990 * 10-9) = 2.069 MB/s, approaching the ideal limit of

4/1.875 ns or 2.133 GB/s.

7-7 ARRAYS OF DYNAMIC RAM ICS

Many of the same design principles used for SRAM arrays in Section 7-4 apply to

DRAM arrays. There are, however, a number of different requirements for the con-

trol and addressing of DRAM arrays. These requirements are typically handled by a

DRAM controller, which performs the following functions:

1. controlling separation of the address into a row address and a column address,

and providing these addresses at the required times,

2. providing the RAS and CAS signals at the required times for read, write, and

refresh operations,

3. performing refresh operations at the necessary intervals, and

4. providing status signals to the rest of the system (e.g., indicating whether the

memory is busy performing refresh).

The DRAM controller is a complex synchronous sequential circuit with the external

CPU clock providing synchronization of its operation.

7-8 CHAPTER SUMMARY

Memory is of two types: random-access memory (RAM) and read-only memory

(ROM). For both types, we apply an address to read from or write into a data

word. Read and write operations have specific steps and associated timing param-

eters, including access time and write cycle time. Memory can be static or dynamic

and volatile or nonvolatile. Internally, a RAM chip consists of an array of RAM

cells, decoders, write circuits, read circuits, and output circuits. A combination of a

write circuit, read circuit, and the associated RAM cells can be logically modeled

as a RAM bit slice. RAM bit slices, in turn, can be combined to form two-dimen-

sional RAM cell arrays, which, with decoders and output circuits added, form the

basis for a RAM chip. Output circuits use three-state buffers in order to facilitate

connecting together an array of RAM chips without significant additional logic.

Due to the need for refresh, additional circuitry is required within DRAMs, as

well as in arrays of DRAM chips. In a quest for faster memory access, a number of

new DRAM types have been developed. The most recent forms of these high-

speed DRAMs employ a synchronous interface that uses a clock to control mem-

ory accesses.

Problems 447

Error-detection and correction codes, often based on Hamming codes, are used to

detect or correct errors in stored RAM data. Material from Edition 1 covering these

codes is available on the Companion Website for the text.

REFERENCES

1. Micron Technology, Inc. Micron 64Mb: * 32 DDR SDRAM. www.micron.com,

2001.

2. Micron Technology, Inc. Micron 256Mb: * 4, : 8, * 16 SDRAM. www.micron.com,

2002.

3. Rambus, Inc. Rambus Direct RDRAM 128/144-Mbit (256 * 16/18 * 32s)—
Preliminary Information, Document DL0059 Version 1.11.

4. Sobelman, M. “Rambus Technology Basics,” Rambus Developer Forum.
Rambus, Inc., October 2001.

5. Weste, N. H. E. and K. Eshraghian. Principles of CMOS VLSI Design:
A Systems Perspective, 2nd ed. Reading, MA: Addison-Wesley, 1993.

PROBLEMS
The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

 7-1. *The following memories are specified by the number of words times the

number of bits per word. How many address lines and input–output data

lines are needed in each case? (a) 48K * 8, (b) 512K * 32, (c) 64M * 64,

and (d) 2G * 1.

 7-2. (a) Word number (835)10 in the memory shown in Figure 7-2 contains the

binary equivalent of (15,103)10. List the 10-bit address and the 16-bit

memory contents of the word.

(b) Repeat part (a) for word number (513)10 containing the binary equivalent

of (44,252)10.

 7-3. *A 64K * 16 RAM chip uses coincident decoding by splitting the internal

decoder into row select and column select. (a) Assuming that the RAM cell

array is square, what is the size of each decoder, and how many AND gates

are required for decoding an address? (b) Determine the row and column

selection lines that are enabled when the input address is the binary

equivalent of (32000)10.

 7-4. (a) How many address and data lines are needed for memory chips with the

following organization?

(1) 256 * 4

(2) 512 * 8

(3) 1K * 16

(4) 32K * 8

448 CHAPTER 7 / MEMORY BASICS

(b) Design an address decoder for two RAM chips and two ROM chips

each organized as 1K * 8 chip. Assume that a 20-bit address is

available. Use gates for the decoding circuitry and specify the address

range of each chip.

 7-5. A DRAM has 8 address lines on which row and column addresses are placed

one after the other. What is the memory capacity of the DRAM?

 7-6. Two DRAM chips of 8K capacity are used to obtain a total memory of

16K * 16. How many address and data lines will each chip have assuming

that the row X column matrix is a square, for addresses?

 7-7. A DRAM has a refresh interval of 64 ms and has 8192 rows. What is the interval

between refreshes for distributed refresh? What is the total time required out of

the 64 ms for a refresh of the entire DRAM? What is the minimum number of

address pins on the DRAM?

 7-8. *(a) How many 128K * 16 RAM chips are needed to provide a memory

capacity of 2 MB?

 (b) How many address lines are required to access 2 MB? How many of

these lines are connected to the address inputs of all chips?

 (c) How many lines must be decoded to produce the chip select inputs?

Specify the size of the decoder.

 7-9. Draw a decoding circuitry for 32K * 8 RAM using an OR gate for address

decoding. The number of address lines to be decoded is 20. What is the

address map obtained with this decoding scheme? The address range of this

memory chip is 00000 to 07FFFH.

7-10. Why is a refresh cycle needed for DRAMs? Name one standard method used

for doing “refreshing”.

7-11. What are the features that an SDRAM possesses that makes it superior to

asynchronous DRAM?

 449 449

C H A P T E R

Computer
Design Basics

8

I

450 CHAPTER 8 / COMPUTER DESIGN BASICS

8-1 INTRODUCTION

Computers and their design are introduced in this chapter. The specification for a

computer consists of a description of its appearance to a programmer at the lowest

level, its instruction set architecture (ISA). From the ISA, a high- level description of

the hardware to implement the computer, called the computer architecture, is formu-

lated. This architecture, for a simple computer, is typically divided into a datapath

and a control. The datapath is defined by three basic components:

1. a set of registers,

2. the microoperations performed on data stored in the registers, and

3. the control interface.

The control unit provides signals that control the microoperations performed

in the datapath and in other components of the system, such as memories. In addi-

tion, the control unit controls its own operation, determining the sequence of events

that occur. This sequence may depend upon the results of current and past microop-

erations executed. In a more complex computer, typically multiple control units and

datapaths are present.

To build a foundation for considering computer designs, initially, we extend the

ideas in Chapter 6 to the implementation of computer datapaths. Specifically, we

consider a generic datapath, one that can be used, in some cases in modified form, in

all of the computer designs considered in the remainder of the text. These future

designs show how a given datapath can be used to implement different instruction

set architectures by simply combining the datapath with different control units.

8-2 DATAPATHS

Instead of having each individual register perform its microoperations directly, computer

systems often employ a number of storage registers in conjunction with a shared opera-

tion unit called an arithmetic/logic unit, abbreviated ALU. To perform a microoperation,

the contents of specified source registers are applied to the inputs of the shared ALU. The

ALU performs an operation, and the result of this operation is transferred to a destina-

tion register. With the ALU as a combinational circuit, the entire register transfer oper-

ation from the source registers, through the ALU, and into the destination register is

performed during one clock cycle. The shift operations are often performed in a sep-

arate unit, but sometimes these operations are also implemented within the ALU.

Recall that the combination of a set of registers with a shared ALU and inter-

connecting paths is the datapath for the system. The rest of this chapter is concerned

with the organization and design of computer datapaths and associated control units

used to implement simple computers. The design of a particular ALU is undertaken

to show the process involved in implementing a complex combinational circuit. We

also design a shifter, combine control signals into control words, and then add con-

trol units to implement two different computers.

The datapath and the control unit are the two parts of the processor, or CPU, of

a computer. In addition to the registers, the datapath contains the digital logic that

implements the various microoperations. This digital logic consists of buses, multi-

plexers, decoders, and processing circuits. When a large number of registers is

8-2 / Datapaths 451

included in a datapath, the registers are most conveniently connected through one or

more buses. Registers in a datapath interact by the direct transfer of data, as well as

in the performance of the various types of microoperations. A simple bus- based

data path with four registers, an ALU, and a shifter is shown in Figure 8-1. The

MD select 0 1
MUX D

V

C

N

Z

n

n

n

n

n

n

n

n
n n

n

2 2

n

n

A data B data

Register file

1 0

MUX B Address
out
Data
out

Bus A
Bus B

n
n

Function unit

A B n
G select

4

Zero Detect

MF select

nn

n
F

MUX F

H select
2

n

A B
S2:0 || Cin

Arithmetic/logic
unit (ALU)

G

B
S

Shifter

H

MUX

0

1
2

3

MUX

0
1
2
3

0 1 2 3

Decoder

Load

Load

Load

Load

Load enable

Write
D data

D address
2

Destination select

Constant in

MB select

A select

A address

B select

B address

R3

R2

R1

R0

Bus Dn

Data in

ILIR0 0

0 1

 FIGURE 8-1
Block Diagram of a Generic Datapath

452 CHAPTER 8 / COMPUTER DESIGN BASICS

shading and blue signal names relate to Figure 8-10 and will be discussed in

Section 8-5. The black signal names are used here to describe the details in Figure 8-1.

Each register is connected to two multiplexers to form ALU and shifter input buses

A and B. The select inputs on each multiplexer select one register for the corre-

sponding bus. For Bus B, there is an additional multiplexer, MUX B, so that con-

stants can be brought into the datapath from outside using Constant in. Bus B also

connects to Data out, to send data outside the datapath to other components of the

system, such as memory or input– output. Likewise, Bus A connects to Address out,

to send address information outside of the datapath for memory or input– output.

Arithmetic and logic microoperations are performed on the operands on the A

and B buses by the ALU. The G select inputs select the microoperation to be per-

formed by the ALU. The shift microoperations are performed on data on Bus B by

the shifter. The H select input either passes the operand on Bus B directly through to

the shifter output or selects a shift microoperation. MUX F selects the output of the

ALU or the output of the shifter. MUX D selects the output of MUX F or external

data on input Data in to be applied to Bus D. The latter is connected to the inputs of

all the registers. The destination select inputs determine which register is loaded with

the data on Bus D. Since the select inputs are decoded, only one register Load signal

is active for any transfer of data into a register from Bus D. A Load enable signal

that can force all register Load signals to 0 using AND gates is present for transfers

that are not to change the contents of any of the four registers.

It is useful to have certain information, based on the results of an ALU operation,

available for use by the control unit of the CPU to make decisions. Four status bits are

shown with the ALU in Figure 8-1. The status bits, carry C and overflow V, were explained

in conjunction with Figure 3-46. The zero status bit Z is 1 if the output of the ALU con-

tains all zeros and is 0 otherwise. Thus, Z = 1 if the result of an operation is zero, and

Z = 0 if the result is nonzero. The sign status bit N (for negative) is the leftmost bit of

the ALU output, which is the sign bit for the result in signed- number representations.

Status values from the shifter can also be incorporated into the status bits if desired.

The control unit for the datapath directs the information flow through the

buses, the ALU, the shifter, and the registers by applying signals to the select inputs.

For example, to perform the microoperation

R1 d R2 + R3

the control unit must provide binary selection values to the following sets of control

inputs:

1. A select, to place the contents of R2 onto A data and, hence, Bus A.

2. B select, to place the contents of R3 onto the 0 input of MUX B; and MB select,
to put the 0 input of MUX B onto Bus B.

3. G select, to provide the arithmetic operation A + B.

4. MF select, to place the ALU output on the MUX F output.

5. MD select, to place the MUX F output onto Bus D.

6. Destination select, to select R1 as the destination of the data on Bus D.

7. Load enable, to enable a register— in this case, R1—to be loaded.

8-3 / The Arithmetic/Logic Unit 453

The sets of values must be generated and must become available on the corre-

sponding control lines early in the clock cycle. The binary data from the two source

registers must propagate through the multiplexers and the ALU and on into the

inputs of the destination register, all during the remainder of the same clock cycle.

Then, when the next positive clock edge arrives, the binary data on Bus D is loaded

into the destination register. To achieve fast operation, the ALU and shifter are con-

structed with combinational logic having a limited number of levels.

8-3 THE ARITHMETIC/LOGIC UNIT

The ALU is a combinational circuit that performs a set of basic arithmetic and logic

microoperations. It has a number of selection lines used to determine the operation

to be performed. The selection lines are decoded within the ALU, so that k selection

lines can specify up to 2k distinct operations.

Figure 8-2 shows the symbol for a typical n- bit ALU. The n data inputs from

A are combined with the n data inputs from B to generate the result of an operation

at the G outputs. The mode- select input S
2
 distinguishes between arithmetic and

logic operations. The two Operation select inputs S
1
 and S

0
 and the Carry input C

in

specify the eight arithmetic operations with S
2
 at 0. Operand select input S

0
 and C

in

specify the four logic operations with S
2
 at 1.

We perform the design of this ALU in three stages. First, we design the arith-

metic section. Then we design the logic section, and finally, we combine the two sec-

tions to form the ALU.

Arithmetic Circuit

The basic component of an arithmetic circuit is a parallel adder, which is constructed

with a number of full- adder circuits connected in cascade, as shown in Figure 3-43. By

n-bit
arithmetic/
logic
unit
(ALU)

A0

A1

An–1

B0

B1

Cin

S0

S1

S2

Bn–1

Data
input A

Data
input B

Carry input

Operation
select

Mode select

G0

G1

Gn–1

Cout

Data
output G

Carry output

 FIGURE 8-2
Symbol for an n- Bit ALU

454 CHAPTER 8 / COMPUTER DESIGN BASICS

controlling the data inputs to the parallel adder, it is possible to obtain different types

of arithmetic operations. The block diagram in Figure 8-3 demonstrates a configuration

in which one set of inputs to the parallel adder is controlled by the select lines S
1
 and S

0
.

There are n bits in the arithmetic circuit, with two inputs A and B and output G. The n

inputs from B go through the B input logic to the Y inputs of the parallel adder. The

input carry C
in
 goes in the carry input of the full adder in the least- significant- bit posi-

tion. The output carry C
out

 is from the full adder in the most- significant- bit position. The

output of the parallel adder is calculated from the arithmetic sum as

G = X + Y + Cin

where X is the n- bit binary number from the inputs and Y is the n- bit binary number

from the B input logic. C
in
 is the input carry, which equals 0 or 1. Note that the symbol +

in the equation denotes arithmetic addition.

Table 8-1 shows the arithmetic operations that are obtainable by controlling

the value of Y with the two selection inputs S
1
 and S

0
. If the inputs from B are ignored

S1

S0

B
n

B input
logic

n
A

n

X

Cin

Y

n

Cout

n-bit
parallel
adder

inG � X � Y � C

 FIGURE 8-3
Block Diagram of an Arithmetic Circuit

 TABLE 8-1
Function Table for Arithmetic Circuit

Select Input G = (A + Y + C
in
)

S
1

S
0

Y C
in
 = 0 C

in
 = 1

0 0 all 0s G = A (transfer) G = A + 1 (increment)

0 1 B G = A + B (add) G = A + B + 1

1 0 B G = A + B G = A + B + 1 (subtract)

1 1 all 1s G = A - 1 (decrement) G = A (transfer)

8-3 / The Arithmetic/Logic Unit 455

and we insert all 0s at the Y inputs, the output sum becomes G = A + 0 + Cin. This

gives G = A when Cin = 0 and G = A + 1 when Cin = 1. In the first case, we have

a direct transfer from input A to output G. In the second case, the value of A is incre-

mented by 1. For a straight arithmetic addition, it is necessary to apply the B inputs

to the Y inputs of the parallel adder. This gives G = A + B when Cin = 0.

Arithmetic subtraction is achieved by applying the complement of inputs B to the Y

inputs of the parallel adder, to obtain G = A + B + 1 when Cin = 1. This gives A

plus the 2s complement of B, which is equivalent to 2s complement subtraction. All

1s is the 2s complement representation for -1. Thus, applying all 1s to the Y inputs

with Cin = 0 produces the decrement operation G = A - 1.

The B input logic in Figure 8-3 can be implemented with n multiplexers. The

data inputs to each multiplexer in stage i for i = 0, 1, c , n - 1 are 0, B
i
, Bi, and 1,

corresponding to selection values S
1
S

0
: 00, 01, 10, and 11, respectively. Thus, the arith-

metic circuit can be constructed with n full adders and n 4- to- 1 multiplexers.

The number of gates in the B input logic can be reduced if, instead of using

4- to- 1 multiplexers, we go through the logic design of one stage (one bit) of the B

input logic. This can be done as shown in Figure 8-4. The truth table for one typical

stage i of the logic is given in Figure 8-4(a). The inputs are S
1
, S

0
, and B

i
, and the out-

put is Y
i
. Following the requirements specified in Table 8-1, we let Yi = 0 when

S1S0 = 00, and similarly assign the other three values of Y
i
 for each of the combina-

tions of the selection variables. Output Yi is simplified in the map in Figure 8-4(b)

to give

Yi = BiS0 + BiS1

where S
1
 and S

0
 are common to all n stages. Each stage i is associated with input B

i

and output Y
i
 for i = 0, 1, 2, c , n -1. This logic corresponds to a 2- to- 1 multi-

plexer with B
i
 on the select input and S

1
 and S

0
 on the data inputs.

Figure 8-5 shows the logic diagram of an arithmetic circuit for n = 4. The four

 full- adder (FA) circuits constitute the parallel adder. The carry into the first stage is the

input carry C
in
. All other carries are connected internally from one stage to the next.

Inputs Output

S1

0
0

0
0

1
1

1
1

S0

0
0

1
1

0
0

1
1

Bi

0
1

0
1

0
1

0
1

Yi

0
0

0
1

1
0

1
1

0

1

S0

Bi

S1 1

00 01 11 10

1 1

1

(a) Truth table
s

 FIGURE 8-4
B Input Logic for One Stage of Arithmetic Circuit

456 CHAPTER 8 / COMPUTER DESIGN BASICS

The selection variables are S
1
, S

0
, and C

in
. Variables S

1
 and S

0
 control all Y inputs of the

full adders according to the Boolean function derived in Figure 8-4(b). Whenever C
in
 is

1, A + Y has 1 added. The eight arithmetic operations for the circuit as a function of

S
1
, S

0
, and C

in
 are listed in Table 8-2. It is interesting to note that the operation G = A

appears twice in the table. This is a harmless by- product of using C
in
 as one of the con-

trol variables while implementing both increment and decrement instructions.

Logic Circuit

The logic microoperations manipulate the bits of the operands by treating each bit in

a register as a binary variable, giving bitwise operations. There are four commonly

used logic operations— AND, OR, XOR (exclusive- OR), and NOT— from which

others can be conveniently derived.

Figure 8-6(a) shows one stage of the logic circuit. It consists of four gates and a

4- to- 1 multiplexer, although simplification could yield less complex logic. Each of

the four logic operations is generated through a gate that performs the required

Cin

S1

S0

A0
B0

A1
B1

A2
B2

A3
B3

C0

G0

X0

Y0

FA

C1

G1

X1

Y1

FA

C2

G2

X2

Y2

FA

C3

G3

X3

Y3

FA

C4
Cout

 FIGURE 8-5
Logic Diagram of a 4-Bit Arithmetic Circuit

8-3 / The Arithmetic/Logic Unit 457

logic. The outputs of the gates are applied to the inputs of the multiplexer with two

selection variables S
1
 and S

0
. These choose one of the data inputs of the multiplexer

and direct its value to the output. The diagram shows a typical stage with subscript i.
For the logic circuit with n bits, the diagram must be repeated n times, for

i = 0, 1, 2, c , n-1. The selection variables are applied to all stages. The function

table in Figure 8-6(b) lists the logic operations obtained for each combination of the

selection values.

 TABLE 8-2
Function Table for ALU

Operation Select

S
2

S
1

S
0

C
in

Operation Function

0 0 0 0 G = A Transfer A

0 0 0 1 G = A + 1 Increment A

0 0 1 0 G = A + B Addition

0 0 1 1 G = A + B + 1 Add with carry input of 1

0 1 0 0 G = A + B A plus 1s complement of B

0 1 0 1 G = A + B + 1 Subtraction

0 1 1 0 G = A - 1 Decrement A

0 1 1 1 G = A Transfer A

1 X 0 0 G = A ¿ B AND

1 X 0 1 G = A ¡ B OR

1 X 1 0 G = A ⊕ B XOR

1 X 1 1 G = A NOT (1s complement)

 FIGURE 8-6
One Stage of Logic Circuit

S1

0
0
1
1

S0

0
1
0
1

Output

^̂

Operation

AND
OR
XOR
NOT

S0

S1

Ai

Bi

S0

S1

4-to-1
MUX

0

1

2

3

Gi

(b) Function table

(a) Logic diagram

458 CHAPTER 8 / COMPUTER DESIGN BASICS

Arithmetic/Logic Unit

The logic circuit can be combined with the arithmetic circuit to produce an ALU. The

configuration for one stage of the ALU is illustrated in Figure 8-7. The outputs of the

arithmetic and logic circuits in each stage are applied to a 2- to- 1 multiplexer with

selection variable S
2
. When S2 = 0, the arithmetic output is selected, and when

S2 = 1, the logic output is selected. Note that the diagram shows just one typical

stage of the ALU; the circuit must be repeated n times for an n- bit ALU. The output

carry C
i+1

 of a given arithmetic stage must be connected to the input carry C
i
 of the

next stage in sequence. C
0
, the input carry to the first stage, is the input carry C

in
 for

the ALU, as well as a selection variable for logic operations instead of using S
1
.This

somewhat strange use of C
in
 provides a more systematic encoding of the control vari-

ables when the shifter is added later.

The ALU specified in Figure 8-7 provides eight arithmetic and four logic oper-

ations. Each operation is selected through the variables S
2
, S

1
, S

0
, and C

in
. Table 8-2

lists the 12 ALU operations. The first eight are arithmetic operations and are selected

with S2 = 0. The next four are logic operations and are selected with S2 = 1.

Selection input S
1
 has no effect during the logic operations and is marked with X to

indicate that its value may be either 0 or 1. Later in the design, it is assigned value 0

for logic operations.

The ALU logic we have designed is not as simple as it could be and has a fairly

high number of logic levels, contributing to propagation delay in the circuit. With the

use of logic simplification software, we can simplify this logic and reduce the delay.

For example, it is quite easy to simplify the logic for a single stage of the ALU. For

realistic n, a means of further reducing the carry propagation delay in the ALU, such

as the carry lookahead adder, described in a Website Supplement, is usually

necessary.

Ci

One stage of
arithmetic

circuit

One stage of
logic circuit

2-to-1
MUX0

1
S

Ai

Bi

S0

S1

Ci Ci�1

Ai

Bi

S0

S1

Ai

Bi

S0

S1

S2

Gi

Cin

C0 � Cin

 FIGURE 8-7
One Stage of ALU

8-4 / The Shifter 459

8-4 THE SHIFTER

The shifter shifts the value on Bus B, placing the result on an input of MUX F. The

basic shifter performs one of two main types of transformations on the data: right

shift and left shift.

A seemingly obvious choice for a shifter would be a bidirectional shift register

with parallel load. Data from Bus B can be transferred to the register in parallel and

then shifted to the right, the left, or not at all. A clock pulse loads the output of Bus B

into the shift register, and a second clock pulse performs the shift. Finally, a third clock

pulse transfers the data from the shift register to the selected destination register.

Alternatively, the transfer from a source register to a destination register can

be done using only one clock pulse if the shifter is implemented as a combinational

circuit as done in Chapter 3. Because of the faster operation that results from the use

of one clock pulse instead of three, this is the preferred method. In a combinational

shifter, the signals propagate through the gates without the need for a clock pulse.

Hence, the only clock needed for a shift in the datapath is for loading the data from

Bus H into the selected destination register.

A combinational shifter can be constructed with multiplexers as shown in

Figure 8-8. The selection variable S is applied to all four multiplexers to select the

type of operation within the shifter. S = 00 causes B to be passed through the shifter

unchanged. S = 01 causes a right- shift operation and S = 10 causes a left- shift oper-

ation. The right shift fills the position on the left with the value on serial input IR. The

left shift fills the position on the right with the value on serial input IL. Serial outputs

are available from serial output R and serial output L for right and left shifts,

respectively.

The diagram of Figure 8-8 shows only four stages of the shifter, which has n

stages in a system with n- bit operands. Additional selection variables may be

 FIGURE 8-8
4-Bit Basic Shifter

B3

IR IL

S

Serial
output L

Serial
output R

2

B2 B1 B0

H0H1H2H3

S
M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2
S

M
U
X

0 1 2

460 CHAPTER 8 / COMPUTER DESIGN BASICS

employed to specify what goes into IR and IL during a single bit- position shift. Note

that to shift an operand by m 7 1 bit positions, this shifter must perform a series of

m 1-bit position shifts, taking m clock cycles.

Barrel Shifter

In datapath applications, often the data must be shifted more than one bit position in a

single clock cycle. A barrel shifter is one form of combinational circuit that shifts or ro-

tates the input data bits by the number of bit positions specified by a binary value on a

set of selection lines. The shift we consider here is a rotation to the left, which means

that the binary data is shifted to the left, with the bits coming from the most significant

part of the register rotated back into the least significant part of the register.

A 4-bit version of this kind of barrel shifter is shown in Figure 8-9. It consists of

four multiplexers with common select lines S
1
 and S

0
. The selection variables deter-

mine the number of positions that the input data will be shifted to the left by rota-

tion. When S1S0 = 00, no shift occurs, and the input data has a direct path to the

outputs. When S1S0 = 01, the input data is rotated one position, with D
0
 going to Y

1
,

D
1
 going to Y

2
, D

2
 going to Y

3
, and D

3
 going to Y

0
. When S1S0 = 10, the input is

rotated two positions, and when S1S0 = 11, the rotation is by three bit positions.

Table 8-3 gives the function table for the 4-bit barrel shifter. For each binary value of

the selection variables, the table lists the inputs that go to the corresponding output.

Thus, to rotate three positions, S
1
S

0
 must be equal to 11, causing D

0
 to go to Y

3
, D

1
 to

go to Y
0
, D

2
 to go to Y

1
, and D

3
 to go to Y

2
. Note that, by using this left- rotation barrel

shifter, one can generate all desired right rotations as well. For example, a left rota-

tion by three positions is the same as a right rotation by one position in this 4-bit

barrel shifter. In general, in a 2n -bit barrel shifter, i positions of left rotation are the

same as 2n - i bits of right rotation.

D3

S0

3 S1 S0

M
U
X

D2 D1 D0

Y0Y1Y2Y3

S1

012 3 S1 S0

M
U
X

012 3 S1 S0

M
U
X

012 3 S1 S0

M
U
X

012

 FIGURE 8-9
4-Bit Barrel Shifter

8-5 / Datapath Representation 461

A barrel shifter with 2n input and output lines requires 2n multiplexers, each hav-

ing 2n data inputs and n selection inputs. The number of positions for the data to be

rotated is specified by the selection variables and can be from 0 to 2n − 1 positions. For a

large n, the fan- in to gates is too large, so larger barrel shifters consist of layers of multi-

plexers, as shown in Section 10-3, or of special structures designed at the transistor level.

8-5 DATAPATH REPRESENTATION

The datapath in Figure 8-1 includes the registers, selection logic for the registers, the

ALU, the shifter, and three additional multiplexers. With a hierarchical structure, we

can reduce the apparent complexity of the datapath. This reduction is important,

since we frequently use this datapath. Also, as illustrated by the register file to be

discussed next, the use of a hierarchy allows one implementation of a module to be

replaced with another, so that we are not tied to specific logic implementations.

A typical datapath has more than four registers. Indeed, computers with 32 or

more registers are common. The construction of a bus system with a large number of

registers requires different techniques. A set of registers having common microopera-

tions performed on them may be organized into a register file. The typical register file

is a special type of fast memory that permits one or more words to be read and one or

more words to be written, all simultaneously. Functionally, a simple register file con-

tains the equivalent of the logic shaded in blue in Figure 8-1. Due to the memory- like

nature of register files, the A select, B select, and Destination select inputs in the figure

become three addresses. As shown in Figure 8-1 in blue and on the register file sym-

bol in Figure 8-10, the A address accesses a word to be read onto A data, the B address

accesses a second word to be read onto B data, and the D address accesses a word to

be written into from D data. All of these accesses occur in the same clock cycle. A

Write input corresponding to the Load Enable signal is also provided. When at 1, the

Write signal permits registers to be loaded during the current clock cycle, and when at

0, prevents register loading. The size of the register file is 2m * n, where m is the num-

ber of register address bits and n is the number of bits per register. For the datapath in

Figure 8-1, m = 2, giving four registers, and n is unspecified.

Since the ALU and the shifter are shared processing units with outputs that are

selected by MUX F, it is convenient to group the two units and the MUX together to

 TABLE 8-3
Function Table for 4-Bit Barrel Shifter

Select Output

S1 S0 Y3 Y2 Y1 Y0 Operation

0 0 D
3

D
2

D
1

D
0

No rotation

0 1 D
2

D
1

D
0

D
3

Rotate one position

1 0 D
1

D
0

D
3

D
2

Rotate two positions

1 1 D
0

D
3

D
2

D
1

Rotate three positions

462 CHAPTER 8 / COMPUTER DESIGN BASICS

form a shared function unit. Gray shading in Figure 8-1 highlights the function unit,

which can be represented by the symbol given in Figure 8-10. The inputs to the function

unit are from Bus A and Bus B, and the output of the function unit goes to MUX D. The

function unit also has the four status bits V, C, N, and Z as added outputs.

In Figure 8-1, there are three sets of select inputs: the G select, H select, and MF
select. In Figure 8-10, there is a single set of select inputs labeled FS, for “function

select.” To fully specify the function unit symbol in the figure, all of the codes for MF
select, G select, and H select must be defined in terms of the codes for FS. Table 8-4

defines these code transformations. The codes for FS are given in the left column.

From Table 8-4, it is apparent that MF is 1 for the leftmost two bits of FS both equal

to 1. If MF select = 0, then the G select codes determine the function on the output

 FIGURE 8-10
Block Diagram of Datapath Using the Register File and Function Unit

Address out

Data out

Constant in

MB select

Bus A

Bus B

FS

V

C

N

Z

MD select

n

D data
Write

D address

2m 	 n
Register file

A address B address

A data B data

m

m m

n n
n

n

n

A B

Function
unit

F

4

MUX B
1 0

MUX D
0 1

n n
Data in

8-6 / The Control Word 463

of the function unit. If MF select = 1, then the H select codes determine the function

on the output of the function unit. To show this dependency, the codes that deter-

mine the function- unit outputs are highlighted in blue in the table. From Table 8-4,

the code transformations can be implemented using the Boolean equations:

MF = F3
F2,G3 = F3,G2 = F2,G1 = F1,G0 = F0,H1 = F1, and H0 = F0.

The status bits are assumed to be meaningless when the shifter is selected,

although in a more complex system, shifter status bits can be designed to replace those

for the ALU whenever a shifter microoperation is specified. Note that the status bit

implementation depends on the specific implementation that has been used for the

arithmetic circuit. Alternative implementations may not produce the same results.

8-6 THE CONTROL WORD

The selection variables for the datapath control the microoperations executed

within the datapath for any given clock pulse. For the datapath in Section 8-5, the

selection variables control the addresses for the data read from the register file,

the function performed by the function unit, and the data loaded into the register

file, as well as the selection of external data. We will now demonstrate how these

control variables select the microoperations for the datapath. The choice of con-

trol variable values for typical microoperations will be discussed, and a simulation

of the datapath will be illustrated.

 TABLE 8-4
G Select, H Select, and MF Select Codes Defined
in Terms of FS Codes

FS(3:0)

MF

Select

G

Select(3:0)

H

Select(3:0) Microoperation

0 0 0 0 0 0 0 0 0 XX F = A

0 0 0 1 0 0 0 0 1 XX F = A + 1

0 0 1 0 0 0 0 1 0 XX F = A + B

0 0 1 1 0 0 0 1 1 XX F = A + B + 1

0 1 0 0 0 0 1 0 0 XX F = A + B

0 1 0 1 0 0 1 0 1 XX F = A + B + 1

0 1 1 0 0 0 1 1 0 XX F = A - 1

0 1 1 1 0 0 1 1 1 XX F = A

1 0 0 0 0 1 X0 0 XX F = A ¿ B

1 0 0 1 0 1 X0 1 XX F = A ¡ B

1 0 1 0 0 1 X1 0 XX F = A ⊕ B

1 0 1 1 0 1 X1 1 XX F = A

1 1 0 0 1 XXXX 0 0 F = B

1 1 0 1 1 XXXX 0 1 F = sr B

1 1 1 0 1 XXXX 1 0 F = sl B

464 CHAPTER 8 / COMPUTER DESIGN BASICS

A block diagram of a datapath that is a specific version of the datapath in

Figure 8-10 is shown in Figure 8-11(a). It has a register file with eight registers, R0

through R7. The register file provides the inputs to the function unit through

Bus A and Bus B. MUX B selects between constant values on Constant in and

register values on B data. The ALU and zero- detection logic within the function

unit generate the binary data for the four status bits: V (overflow), C (carry),

(b) Control word

DA AA BA M
B

FS M
D

R
W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10
8

14

0

13

11

Bus D

Constant in
n

n

MUX B
1 0

D dataWrite

D address

A address B address

A data B data

A B

Function
unit

n

n
n

MUX D

0 1

n n
Data in

Bus A
Bus B

RW

12
AA

15
DA

n

BA
9

Address out

Data out

V
C
N
Z

7

MD 1

MB 6

4 FS

5

3
2

(a) Block diagram

 FIGURE 8-11
Datapath with Control Variables

8-6 / The Control Word 465

N (sign), and Z (zero). MUX D selects the function unit output or the data on

Data in as input for the register file.

There are 16 binary control inputs. Their combined values specify a control
word. The 16-bit control word is defined in Figure 8-11(b). It consists of seven parts

called fields, each designated by a pair of letters. The three register fields are three

bits each. The remaining fields have one or four bits. The three bits of DA select one

of eight destination registers for the result of the microoperation. The three bits of

AA select one of eight source registers for the Bus A input to the ALU. The three

bits of BA select a source register for the 0 input of the MUX B. The single MB bit

determines whether Bus B carries the contents of the selected source register or a

constant value. The 4-bit FS field controls the operation of the function unit. The FS

field contains one of the 15 codes from Table 8-4. The single bit of MD selects the

function unit output or the data on Data in as the input to Bus D. The final field, RW,

determines whether a register is written or not. When applied to the control inputs,

the 16-bit control word specifies a particular microoperation.

The functions of all meaningful control codes are specified in Table 8-5. For

each field a binary code for each function is given. The register selected by each of

the address fields DA, AA, and BA is the one with the decimal equivalent equal to

the binary number for the code. MB selects either the register selected by the BA

field or a constant from outside the datapath on Constant in. The ALU operations,

the shifter operations, and the selection of the ALU or shifter outputs are all speci-

fied by the FS field. The field MD controls the information to be loaded into the

 TABLE 8-5
Encoding of Control Word for the Datapath

 DA, AA, BA MB FS MD RW

Function Code Function Code Function Code Function Code Function Code

R0 000 Register 0 F = A 0000 Function 0 No Write 0

R1 001 Constant 1 F = A + 1 0001 Data in 1 Write 1

R2 010 F = A + B 0010

R3 011 F = A + B + 1 0011

R4 100 F = A + B 0100

R5 101 F = A + B + 1 0101

R6 110 F = A - 1 0110

R7 111 F = A 0111

F = A ¿ B 1000

F = A ¡ B 1001

F = A ⊕ B 1010

F = A 1011

F = B 1100

F = sr B 1101

F = sl B 1110

466 CHAPTER 8 / COMPUTER DESIGN BASICS

register file. The final field, RW, has the functions No Write, to prevent writing to any

registers, and Write, to signify writing to a register.

The control word for a given microoperation can be derived by specifying the

value of each of the control fields. For example, a subtraction given by the statement

R1 d R2 + R3 + 1

specifies R2 for the A input of the ALU and R3 for the B input of the ALU. It also

specifies function unit operation F = A + B + 1 and selection of the function unit

output for input into the register file. Finally, the microoperation selects R1 as the

destination register and sets RW to 1 to cause R1 to be written. The control word for

this microinstruction is specified by its seven fields, with the binary value for each

field obtained from the encoding listed in Table 8-5. The binary control word for this

subtraction microoperation, 001_010_011_0_0101_0_1 (with underline “_” used for

convenience to separate the fields), is obtained as follows:

Field: DA AA BA MB FS MD RW

Symbolic: R1 R2 R3 Register F = A + B + 1 Function Write

Binary: 001 010 011 0 0101 0 1

The control word for the microoperation and those for several other microoperations

are given in Table 8-6 using symbolic notation and in Table 8-7 using binary codes.

The second example in Table 8-6 is a shift microoperation given by the statement

R4 d sl R6

This statement specifies a shift left for the shifter. The content of register R6, shifted

to the left, is transferred to R4. Note that because the shifter is driven by Bus B, the

source for the shift is specified in the BA rather than the AA field. From the knowl-

edge of the symbols in each field, the control word in binary is derived as shown in

Table 8-7. For many microoperations, neither the A data nor the B data from the reg-

ister file is used. In these cases, the respective symbolic field is marked with a dash.

 TABLE 8-6
Examples of Microoperations for the Datapath, Using Symbolic Notation

Micro-

operation DA AA BA MB FS MD RW

R1 d R2 - R3 R1 R2 R3 Register F = A + B + I Function Write

R4 d sl R6 R4 — R6 Register F = sl B Function Write

R7 d R7 + 1 R7 R7 — — F = A + 1 Function Write

R1 d R0 + 2 R1 R0 — Constant F = A + B Function Write

Data out d R3 — — R3 Register — — No Write

R4 d Data in R4 — — — — Data in Write

R5 d 0 R5 R0 R0 Register F = A ⊕ B Function Write

8-6 / The Control Word 467

Since these values are unspecified, the corresponding binary values in Table 8-7 are

Xs. Continuing with the last three examples in Table 8-6, to make the contents of a

register available to an external destination only, we place the contents of the register

on the B data output of the register file, with RW = No Write (0) to prevent the reg-

ister file from being written. To place a small constant in a register or use a small con-

stant as one of the operands, we place the constant on Constant in, set MB to Constant,

and pass the value from Bus B through the ALU and Bus D to the destination regis-

ter. To clear a register to 0, Bus D is set to all 0s by using the same register for both A

data and B data with an XOR operation specified (FS = 1010) and MD = 0. The

DA field is set to the code for the destination register, and RW is Write (1).

It is apparent from these examples that many microoperations can be per-

formed by the same datapath. Sequences of such microoperations can be realized by

providing a control unit that produces the appropriate sequences of control words.

To complete this section, we perform a simulation of the datapath in Figure 8-11.

The number of bits in each register, n, is equal to 8. An unsigned decimal representa-

tion, which is most convenient for reading the simulation output, is used for all multiple-

 bit signals. We assume that the microoperations in Table 8-7, executed in sequence,

provide the inputs to the datapath and that the initial content of each register is its

number in decimal (e.g., R5 contains (0000 0101)2 = (5)10). Figure 8-12 gives the result

of this simulation. The first value displayed is the Clock with the clock cycles numbered

for reference. The inputs, outputs, and state for the datapath are given roughly in the

order of the flow of information through the path. The first four inputs are the primary

 control- word fields, which specify the register addresses that determine the register file

outputs and the function selection. Next are inputs Constant in and MB, which control

the input to Bus B. Following are the outputs Address out and Data out, which are the

outputs from Bus A and Bus B, respectively. The next three variables— Data in, MD,

and RW— are the final three inputs to the datapath. They are followed by the content of

the eight registers and the Status bits, which are given as a vector (V, C, N, Z). The initial

content of each register is its number in decimal. The value 2 is applied to Constant only

in cycle 4, where MB equals 1. Otherwise, the value on Constant in is unknown, as indi-

cated by X. Finally, Data in has value 18. In the simulation, this value comes from a

 TABLE 8-7
Examples of Microoperations from Table 8-6, Using Binary Control Words

Micro-

operation DA AA BA MB FS MD RW

R1 d R2 - R3 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1

R4 d sl R6 1 0 0 XXX 1 1 0 0 1 1 1 0 0 1

R7 d R7 + 1 1 1 1 1 1 1 XXX X 0 0 0 1 0 1

R1 d R0 + 2 0 0 1 0 0 0 XXX 1 0 0 1 0 0 1

Data out d R3 XXX XXX 0 1 1 0 XXXX X 0

R4 d Data in 1 0 0 XXX XXX X XXXX 1 1

R5 d 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1

468 CHAPTER 8 / COMPUTER DESIGN BASICS

memory that is addressed by Address out and that has value 18 in location 0 with

unknown values in all other locations. The resulting value, except when Address out is 0,

is represented by a line midway between 0 and 1, indicating the value is unknown.

Of note in the simulation results is that changes in registers as a result of a partic-

ular microoperation appear in the clock cycle after that in which the microoperation

is specified. For example, the result of the subtraction in clock cycle 1 appears in regis-

ter R1 in clock cycle 2. This is because the result is loaded into flip- flops on the positive

edge of the clock at the end of the clock cycle 1. On the other hand, the values on the

Status bits, Address out, and Data out appear in the same clock cycle as the microoper-

ation controlling them, since they do not depend on a positive clock edge occurring.

Since no combinational delay is specified in the simulation, these values change at the

same time as the register values. Finally, note that eight clock cycles of simulation are

used for seven microoperations so that the values in the registers that result from the

last microoperation executed can be observed. Although Status bits appear for all

microoperations, they are not always meaningful. For example, for the microopera-

tions, R3=Data out and R4 ← Data in, in clock cycles 5 and 6, respectively; the value of

the status bits does not relate to the result, since the Function unit is not used in these

operations. Finally, for R5 ← R0 ⊕ R0 in clock cycle 7, the arithmetic unit is not used,

1 4 7 1 0 4 5

2 0 7 0

3 6 0 3 0

X X

2 0 7 0

3 6 0 2 3 0

14 1 2 0 10

2 0 0 1 X

18 18

1 255 2

2

3

4 12 18

5 0

6

7 8

Clock

DA

1 4

AA

2

BA

3 6

Constant_in 2

MB

Address_out

Data_out

FS

5

Status_bits

Data_in

MD

RW

reg0 0

reg1

reg2

reg3

reg4

reg5

reg6

reg7

7 8

5

 FIGURE 8-12
Simulation of the Microoperation Sequence in Table 8-7

8-7 / A Simple Computer Architecture 469

so the values of V and C from that unit are irrelevant, but the values for N and Z do

represent the status of the result as a signed 2s complement integer.

8-7 A SIMPLE COMPUTER ARCHITECTURE

We introduce a simple computer architecture to obtain an initial understanding of

computer design and to illustrate control designs for programmable systems. In a

programmable system, a portion of the input to the processor consists of a sequence

of instructions. Each instruction specifies an operation the system is to perform,

which operands to use for the operation, where to place the results of the operation,

and/or, in some cases, which instruction to execute next. For the programmable sys-

tem, the instructions are usually stored in memory, which is either RAM or ROM. To

execute the instructions in sequence, it is necessary to provide the address in memo-

ry of the instruction to be executed. In a computer, this address comes from a register

called the program counter (PC). As the name implies, the PC has logic that permits

it to count. In addition, to change the sequence of operations using decisions based

on status information, the PC needs parallel load capability. So, in the case of a pro-

grammable system, the control unit contains a PC and associated decision logic, as

well as the necessary logic to interpret the instruction in order to execute it. Execut-
ing an instruction means activating the necessary sequence of microoperations in the

datapath (and elsewhere) required to perform the operation specified by the instruc-

tion. In contrast to the preceding, note that for a nonprogrammable system, the

 control unit is not responsible for obtaining instructions from memory, nor is it

 responsible for sequencing the execution of those instructions. There is no PC or

similar register in such a system. Instead, the control unit determines the operations

to be performed and the sequence of those operations, based on only its inputs and

the status bits.

We show how the operations specified by instructions for the simple computer

can be implemented by microoperations in the datapath, plus movement of informa-

tion between the datapath and memory. We also show two different control struc-

tures for implementing the sequences of operations necessary for controlling

program execution. The purpose here is to illustrate two different approaches to

control design and the effects that such approaches have on datapath design and

system performance. A more extensive study of the concepts associated with instruc-

tion sets for digital computers is presented in detail in the next chapter, and more

complete CPU designs are undertaken in Chapter 10.

Instruction Set Architecture

The user specifies the operations to be performed and their sequence by the use

of a program, which is a list of instructions that specifies the operations, the oper-

ands, and the sequence in which processing is to occur. The data processing per-

formed by a computer can be altered by specifying a new program with different

instructions or by specifying the same instructions with different data. Instruc-

tions and data are usually stored together in the same memory. By means of the

techniques discussed in Chapter 10, however, they may appear to be coming from

different memories. The control unit reads an instruction from memory and

470 CHAPTER 8 / COMPUTER DESIGN BASICS

 decodes and executes the instruction by issuing a sequence of one or more

 microoperations. The ability to execute a program from memory is the most im-

portant single property of a general- purpose computer. Execution of a program

from memory is in sharp contrast to the nonprogrammable control units consid-

ered earlier in Examples 6-3 and 4, which execute fixed operations sequenced by

inputs and status signals only.

An instruction is a collection of bits that instructs the computer to perform a

specific operation. We call the collection of instructions for a computer its instruction
set and a thorough description of the instruction set its instruction set architecture

(ISA). Simple instruction set architectures have three major components: the stor-

age resources, the instruction formats, and the instruction specifications.

Storage Resources

The storage resources for the simple computer are represented by the diagram in

Figure 8-13. The diagram depicts the computer structure as viewed by a user pro-

gramming it in a language that directly specifies the instructions to be executed. It

gives the resources which the user sees available for storing information. Note that

the architecture includes two memories, one for storage of instructions and the other

for storage of data. These may actually be different memories, or they may be the

same memory, but viewed as different from the standpoint of the CPU as discussed

in Chapter 10. Also visible to the programmer in the diagram is a register file with

eight 16-bit registers and the 16-bit program counter.

Program counter
(PC)

Instruction
memory
215 	 16

Data
memory
215 	 16

Register file
8 	 16

 FIGURE 8-13
Storage Resource Diagram for a Simple Computer

8-7 / A Simple Computer Architecture 471

Instruction Formats

The format of an instruction is usually depicted by a rectangular box symbolizing the

bits of the instruction, as they appear in memory words or in a control register. The

bits are divided into groups or parts called fields. Each field is assigned a specific

item, such as the operation code, a constant value, or a register file address. The vari-

ous fields specify different functions for the instruction and, when shown together,

constitute an instruction format.

The operation code of an instruction, often shortened to “opcode,” is a

group of bits in the instruction that specifies an operation, such as add, subtract,

shift, or complement. The number of bits required for the opcode of an instruc-

tion is a function of the total number of operations in the instruction set. It must

consist of at least m bits for up to 2m distinct operations. The designer assigns a

bit combination (a code) to each operation. The computer is designed to accept

this bit configuration at the proper time in the sequence of activities and to sup-

ply the proper control- word sequence to execute the specified operation. As a

specific example, consider a computer with a maximum of 128 distinct opera-

tions, one of them an addition operation. The opcode assigned to this operation

consists of seven bits 0000010. When the opcode 0000010 is detected by the con-

trol unit, a sequence of control words is applied to the datapath to perform the

intended addition.

The opcode of an instruction specifies the operation to be performed. The

operation must be performed using data stored in computer registers or in mem-

ory (i.e., on the contents of the storage resources). An instruction, therefore, must

specify not only the operation, but also the registers or memory words in which

the operands are to be found and the result is to be placed. The operands may be

specified by an instruction in two ways. An operand is said to be specified explic-
itly if the instruction contains special bits for its identification. For example, the

instruction performing an addition may contain three binary numbers specifying

the registers containing the two operands and the register that receives the result.

An operand is said to be defined implicitly if it is included as a part of the defini-

tion of the operation itself, as represented by the opcode, rather than being given

in the instruction. For example, in an Increment Register operation, one of the

operands is implicitly +1.

The three instruction formats for the simple computer are illustrated in

Figure 8-14. Suppose that the computer has a register file consisting of eight regis-

ters, R0 through R7. The instruction format in Figure 8-14(a) consists of an opcode

that specifies the use of three or fewer registers, as needed. One of the registers is

designated a destination for the result and two of the registers sources for oper-

ands. For convenience, the field names are abbreviated DR for “Destination

Register,” SA for “Source Register A,” and SB for “Source Register B.” The num-

bers of register fields and registers actually used are determined by the specific

opcode. The opcode also specifies the use of the registers. For example, for a sub-

traction operation, suppose that the three bits in SA are 010, specifying R2, the

three bits in SB are 011, specifying R3, and the three bits in DR are 001,

472 CHAPTER 8 / COMPUTER DESIGN BASICS

specifying R1. Then the contents of R3 will be subtracted from the contents of R2,

and the result will be placed in R1. As an additional example, suppose that the

operation is a store (to memory). Suppose further, that the three bits in SA spec-

ify R4 and the three bits in SB specify R5. For this particular operation, it is

assumed that the register specified in SA contains the address and the register

specified in SB contains the operand to be stored. So the value in R5 is stored in

the memory location given by the value in R4. The DR field has no effect, since

the store operation prevents the register file from being written.

The instruction format in Figure 8-14(b) has an opcode, two register fields,

and an operand. The operand is a constant called an immediate operand, since it is

immediately available in the instruction. For example, for an add immediate opera-

tion with SA specified as R7, DR specified as R2, and operand OP equal to 011, the

value 3 is added to the contents of R7, and the result of the addition is placed in R2.

Since the operand is only three bits rather than a full 16 bits, the remaining 13 bits

must be filled by using either zero fill or sign extension, as discussed in Chapter 3.

In this ISA, zero fill is specified for the operand.

The instruction format in Figure 8-14(c), in contrast to the other two formats,

does not change any register file or memory contents. Instead, it affects the order in

which the instructions are fetched from memory. The location of an instruction to be

fetched is determined by the program counter, denoted by PC. Ordinarily, the pro-

gram counter fetches the instructions from sequential addresses in memory as the

program is executed. But much of the power of a processor comes from its ability to

change the order of execution of the instructions based on results of the processing

performed. These changes in the order of instruction execution are based on the use

of instructions referred to as jumps and branches.

(a) Register

Opcode
Destination

register (DR)
Source reg-
ister A (SA)

Source reg-
ister B (SB)

15 9 8 6 5 3 2 0

(b) Immediate

Opcode
Destination

register (DR)
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

(c) Jump and branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

 FIGURE 8-14
Three Instruction Formats

8-7 / A Simple Computer Architecture 473

The example format given in Figure 8-14(c) for jump and branch instruc-

tions has an operation code, one register field SA, and a split address field AD. If

a branch (possibly based on the contents of the register specified) is to occur, the

new address is formed by adding the current PC contents and the contents of the

6-bit address field. This addressing method is called PC relative and the 6-bit

address field, referred to as an address offset, is treated as a signed 2s complement

number. To preserve the 2s complement representation, sign extension is applied

to the 6-bit address to form a 16-bit offset before the addition. If the leftmost bit

of the address field AD is a 1, then the 10 bits to its left are filled with 1s to give a

negative 2s complement offset. If the leftmost bit of the address field is 0, then the

10 bits to its left are filled with 0s to give a positive 2s complement offset. The off-

set is added to the contents of the PC to form the location from which the next

instruction is to be fetched. For example, with the PC value equal to 55, suppose

that a branch is to occur to location 35 if the contents of R6 is equal to zero. The

opcode would specify a branch- on- zero instruction, SA would be specified as R6,

and AD would be the 6-bit, 2s complement representation of -20. If R6 is zero,

then PC contents becomes 55 + (-20) = 35, and the next instruction will be

fetched from address 35. Otherwise, if R6 is nonzero, the PC will count up to 56,

and the next instruction will be fetched from address 56. This addressing method

alone provides branch addresses within a small range below and above the PC

value. The jump provides a broader range of addresses by using the unsigned con-

tents of a 16-bit register as the jump target.

The three formats in Figure 8-14 are used for the simple computer to be dis-

cussed in this chapter. In Chapter 9, we present and discuss more generally other

instruction types and formats.

Instruction specifications describe each of the distinct instructions that can be

executed by the system. For each instruction, the opcode is given along with a

shorthand name called a mnemonic, which can be used as a symbolic representa-

tion for the opcode. This mnemonic, along with a representation for each of the

additional instruction fields in the format for the instruction, represents the no-

tation to be used in specifying all of the fields of the instruction symbolically.

This symbolic representation is then converted to the binary representation of

the instruction by a program called an assembler. A description of the operation

performed by the instruction execution is given, including the status bits that are

affected by the instruction. This description may be text or may use a register

 transfer- like notation.

The instruction specifications for the simple computer are given in Table 8-8.

The register transfer notation introduced in previous chapters is used to describe the

operation performed, and the status bits that are valid for each instruction are

 indicated. In order to illustrate the instructions, suppose that we have a memory

with 16 bits per word with instructions having one of the formats in Figure 8-14.

474 CHAPTER 8 / COMPUTER DESIGN BASICS

Instructions and data, in binary, are placed in memory, as shown in Table 8-9. This

stored information represents the four instructions illustrating the distinct formats.

At address 25, we have a register format instruction that specifies an operation to

subtract R3 from R2 and load the difference into R1. This operation is represented

symbolically in the rightmost column of Table 8-9. Note that the 7-bit opcode for

subtraction is 0000101, or decimal 5. The remaining bits of the instruction specify

the three registers: 001 specifies the destination register as R1, 010 specifies the

source register A as R2, and 011 specifies the source register B as R3.

In memory location 35 is a register format instruction to store the contents of

R5 in the memory location specified by R4. The opcode is 0100000, or decimal 32,

and the operation is given symbolically, again, in the rightmost column of the figure.

Suppose R4 contains 70 and R5 contains 80. Then the execution of this instruction

will store the value 80 in memory location 70, replacing the original value of 192

stored there.

 TABLE 8-8
Instruction Specifications for the Simple Computer

Instruction Opcode

Mne-

monic Format Description

Status

Bits

Move A 0000000 MOVA RD, RA R[DR] d R[SA]* N, Z

Increment 0000001 INC RD, RA R[DR] d R[SA] + 1* N, Z

Add 0000010 ADD RD, RA, RB R[DR] d R[SA] + R[SB]* N, Z

Subtract 0000101 SUB RD, RA, RB R[DR] d R[SA] - R[SB]* N, Z

Decrement 0000110 DEC RD, RA R[DR] d R[SA] - 1* N, Z

AND 0001000 AND RD, RA, RB R[DR] d R[SA] ¿ R[SB]* N, Z

OR 0001001 OR RD, RA, RB R[DR] d R[SA] ¡ R[SB]* N, Z

Exclusive OR 0001010 XOR RD, RA, RB R[DR] d R[SA] ⊕ R[SB]* N, Z

NOT 0001011 NOT RD, RA R[DR] d R[SA]* N, Z

Move B 0001100 MOVB RD, RB R[DR] d R[SB]*

Shift Right 0001101 SHR RD, RB R[DR] d sr R[SB]*

Shift Left 0001110 SHL RD, RB R[DR] d sl R[SB]*

Load

 Immediate

1001100 LDI RD, OP R[DR] d zf OP*

 Add Immediate 1000010 ADI RD, RA, OP R[DR] d R[SA] + zf OP* N, Z

Load 0010000 LD RD, RA R[DR] d M[SA]*

Store 0100000 ST RA, RB M[SA] d R[SB]*

Branch on Zero 1100000 BRZ RA, AD if (R[SA] = 0) PC d PC + se AD,

if (R[SA] ≠ 0) PC d PC + 1

N, Z

Branch on

 Negative

1100001 BRN RA, AD if (R[SA] 6 0) PC d PC + se AD,

if (R[SA] Ú 0) PC d PC + 1

N, Z

Jump 1110000 JMP RA PC d R[SA]*

* For all of these instructions, PC d PC + 1 is also executed to prepare for the next cycle.

8-7 / A Simple Computer Architecture 475

 TABLE 8-9
Memory Representation of Instructions and Data

Decimal

Address Memory Contents

Decimal

Opcode Other Fields Operation

25 0000101 001 010 011 5 (Subtract) DR:1, SA:2, SB:3 R1 ← R2 – R3

35 0100000 000 100 101 32 (Store) SA:4, SB:5 M[R4] ← R5

45 1000010 010 111 011 66 (Add

Immediate)

DR:2, SA:7, OP:3 R2 ← R7 + 3

55 1100000 101 110 100 96 (Branch

on Zero)

AD: 44, SA:6 If R6 = 0,

PC ← PC − 20

70 00000000011000000 Data = 192. After execution of instruction in 35,

Data = 80.

At address 45, an immediate format instruction appears that adds 3 to the con-

tents of R7 and loads the result into R2. The opcode for this instruction is 66, and the

operand to be added is the value 3 (011) in the OP field, the last three bits of the

instruction.

In location 55, the branch instruction previously described appears. The

opcode for this instruction is 96, and source register A is specified as R6. Note that

AD (Left) contains 101 and AD (Right) contains 100. Putting these two together

and applying sign extension, we obtain 1111111111101100, which represents -20 in

2s complement. If register R6 is zero, then -20 is added to the PC to give 35. If reg-

ister R6 is nonzero, the new PC value will be 56. Notice our assumption that the

addition to the PC content occurs before the PC has been incremented, which

would be the case in the simple computer. In real systems, however, the PC has

sometimes been incremented to point to the next instruction in memory. In such a

case, the value stored in AD needs to be adjusted accordingly to obtain the right

branch address, in this case, -19.

The placement of instructions in memory as shown in Table 8-9 is quite arbi-

trary. In many computers, the word length is from 32 to 64 bits, so the instruction

formats can hold much larger immediate operands and addresses than those we have

given. Depending on the computer architecture, some of the instruction formats may

occupy two or more consecutive memory words. Also, the number of registers is

often larger, so the register fields in the instructions must contain more bits.

At this point, it is vital to recognize the difference between a computer opera-
tion and a hardware microoperation. An operation is specified by an instruction

stored in binary, in the computer’s memory. The control unit in the computer uses

the address or addresses provided by the program counter to retrieve the instruction

from memory. It then decodes the opcode bits and other information in the instruc-

tion to perform the required microoperations for the execution of the instruction. In

476 CHAPTER 8 / COMPUTER DESIGN BASICS

contrast, a microoperation is specified by the bits in a control word in the hardware

which is decoded by the computer hardware to execute the microoperation. The exe-

cution of a computer operation often requires a sequence or program of microoper-

ations, rather than a single microoperation.

8-8 SINGLE- CYCLE HARDWIRED CONTROL

The block diagram for a computer that has a hardwired control unit and that fetches

and executes an instruction in a single clock cycle is shown in Figure 8-15. We refer to

this computer as the single- cycle computer. The storage resources, instruction for-

mats, and instruction specifications for this computer are given in the previous sec-

tion. The datapath shown is the same as that in Figure 8-11 with m = 3 and n = 16.

The data memory M is attached to the Address out, Data out, and Data in by connec-

Bus A Bus B
Address out

Data out
MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA

AA

Constant
in

BA

MB

FS
V
C
N
Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

D
Register

fileA B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Jump Address

 FIGURE 8-15
Block Diagram for a Single- Cycle Computer

8-8 / Single-Cycle Hardwired Control 477

tions to the datapath. It has a single control signal MW, which is 1 to write the mem-

ory, and 0 otherwise.

The Control unit appears on the left in Figure 8-15. Although not usually

thought of as part of the control unit, the instruction memory, together with its address

inputs and instruction outputs, is shown for convenience within the control unit. We

do not write to the instruction memory during the execution of a program, making it

appear in this model to be a combinational rather than a sequential component. As

previously discussed, the PC provides the instruction address to the instruction mem-

ory, and the instruction output from the instruction memory goes to the control logic,

which in this case is the instruction decoder. The output from the instruction memory

also goes to Extend and Zero fill, which provide the address offset to the PC and the

constant input, Constant in, to the datapath, respectively. Extension appends the left-

most bit of the 6-bit address offset field AD to the left of AD, preserving its 2s com-

plement representation. Zero fill appends 13 zeros to the left of the operand (OP)

field of the instruction to form a 16-bit unsigned operand for use in the datapath. For

example, operand value 110 becomes 0000000000000110 or +6.

The PC is updated in each clock cycle. The behavior of the PC, which is a com-

plex register, is determined by the opcode, N, and Z, since C and V are not used in

this control- unit design. If a jump occurs, the new PC value becomes the value on

Bus A. If a branch is taken, then the new PC value is the sum of the previous PC

value and the sign- extended address offset, which in 2s complement can be either

positive or negative. Otherwise, the PC is incremented by 1. A jump occurs for bit 13

in the instruction equal to 1. For bit 13 equal to 0, a conditional branch occurs. The

status bit that is the condition for the branch is selected by bit 9 of the instruction.

For bit 9 equal to 1, N is selected and, for bit 9 equal to 0, Z is selected.

All parts of the computer that are sequential are shown in blue. Note that there

is no sequential logic in the control part other than the PC. Thus, aside from provid-

ing the address to the instruction memory, the control logic is combinational in this

case. That fact, combined with the structure of the datapath and the use of separate

instruction and data memories, allows the single- cycle computer to obtain and exe-

cute an instruction from the instruction memory, all in a single clock cycle.

Instruction Decoder

The instruction decoder is a combinational circuit that provides all of the control

words for the datapath, based on the contents of the fields of the instruction. A num-

ber of the fields of the control word can be obtained directly from the contents of the

fields in the instruction. Looking at Figure 8-16, we see that the control- word fields

DA, AA, and BA are equal to the instruction fields DR, SA, and SB, respectively.

Also, control field BC for selection of the branch condition status bits is taken direct-

ly from the last bit of Opcode. The remaining control- word fields include datapath

and data memory control bits MB, MD, RW, and MW. There are two added bits for

the control of the PC: PL and JB. If there is to be a jump or branch, PL = 1, loading

the PC. For PL = 0, the PC is incremented. With PL = 1, JB = 1 calls for a jump,

and JB = 0 calls for a conditional branch. Some of the single- bit control- word fields

require logic for their implementation. In order to design this logic, we divide the

478 CHAPTER 8 / COMPUTER DESIGN BASICS

various instructions possible for the simple computer into different function types

and then assign the first three bits of the opcode to the various types. The instruction

function types shown in Table 8-10 are based on the use of specific hardware resourc-

es in the computer, such as MUX B, the Function unit, the Register file, Data memo-

ry, and the PC. For example, the first function type uses the ALU, sets MUX B to use

the Register file source, sets MUX D to use the Function unit output, and writes to

the Register file. Other instruction function types are defined as various combina-

tions of use of a constant input instead of a register, Data memory reads and writes,

and manipulation of the PC for jumps and branches.

By looking at the relationship between the instruction function types and the

necessary control- word values needed for their implementation, bits 15 through 13

and bit 9 were assigned as shown in Table 8-10. This assignment attempted to mini-

mize the logic required to implement the decoder. To perform the design of the

decoder, the values for all of the single- bit fields in the control word were deter-

mined from the function types and entered into Table 8-10. Note that there are a

number of don’ t- care (X) entries. Treating Table 8-10 as a truth table and optimizing

the logic functions, the logic for the single- bit outputs of the instruction decoder in

 FIGURE 8-16
Diagram of Instruction Decoder

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

8-8 / Single-Cycle Hardwired Control 479

Figure 8-16 results. In the optimization, the four unused codes for bits 15, 14, 13, and

9 were assumed to have X values for all of the single bit fields. This implies that if one

of these codes occurs in a program, the effect is unknown. A more conservative

design specifies RW, MW, and PL all zero for these four codes to insure that the stor-

age resource state is unchanged for these unused codes. The optimization results in

the logic in Figure 8-16 for implementing MB, MD, RW, MW, PL, and JB.

The remaining logic in the decoder deals with the FS field. For all but the con-

ditional branch and unconditional jump instructions, bits 9 through 12 are fed

directly through to form the FS field. During conditional branch operations, such as

Branch on Zero, the value in source register A must be passed through the ALU so

that the status bits N and Z can be evaluated. This requires FS = 0000. The use of

bit 9, however, for status- bit selection for conditional branches requires at times that

bit 9, which controls the rightmost bit of FS, be a 1. The contradiction in values

between bit 9 and FS is resolved by adding an enable on bit 9 that forces FS0 to zero

whenever PL = 1, as shown in Figure 8-16.

Sample Instructions and Program

Six instructions for the single- cycle computer are listed in Table 8-11. The

 symbolic names associated with the instructions are useful for listing programs

in symbolic form rather than in binary code. Because of the importance of in-

struction decoding, the rightmost six columns of the table show critical control-

 signal values for each instruction, based on the values obtained using the logic in

Figure 8-16.

Now suppose that the first instruction, “Add Immediate” (ADI), is present on

the output of the instruction memory shown in Figure 8-15. Then, on the basis

 TABLE 8-10
Truth Table for Instruction Decoder Logic

 Instruction Bits Control- Word Bits

Instruction Function Type 15 14 13 9 MB MD RW MW PL JB BC

 Function- unit operations using

registers

0 0 0 X 0 0 1 0 0 X X

Memory read 0 0 1 X 0 1 1 0 0 X X

Memory write 0 1 0 X 0 X 0 1 0 X X

 Function- unit operations using

register and constant

1 0 0 X 1 0 1 0 0 X X

Conditional branch on zero (Z) 1 1 0 0 X X 0 0 1 0 0

Conditional branch on negative (N) 1 1 0 1 X X 0 0 1 0 1

Unconditional jump 1 1 1 X X X 0 0 1 1 X

480 CHAPTER 8 / COMPUTER DESIGN BASICS

 T
A

B
L

E
 8

-1
1

Si
x

In
st

ru
ct

io
ns

 fo
r

th
e

 Si
ng

le
- C

yc
le

 C
om

pu
te

r

O
p

e
ra

ti
o

n

C
o

d
e

S
y
m

b
o

li
c

N
a
m

e
F

o
rm

a
t

D
e

s
c

ri
p

ti
o

n
F

u
n

c
ti

o
n

M
B

M
D

R
W

M
W

P
L

J
B

B
C

1
0

0
0

0
1
0

A
D

I
Im

m
e
d

ia
te

A
d

d
 i

m
m

e
d

ia
te

o
p

e
ra

n
d

R
[D

R
]

d
R

[S
A

]
+

 z
f

I(
2
:0

)
1

0
1

0
0

0
0

0
0

1
0

0
0

0
L

D
R

e
g
is

te
r

L
o

a
d

 m
e
m

o
ry

co
n

te
n

t
in

to

re
g
is

te
r

R
[D

R
]←

M
[R

[S
A

]]
0

1
1

0
0

1
0

0
1
0

0
0

0
0

S
T

R
e
g
is

te
r

S
to

re
 r

e
g
is

te
r

co
n

te
n

t
in

m
e
m

o
ry

M
[R

[S
A

]]
←

R
[S

B
]

0
1

0
1

0
0

0

0
0

0
1
1
1
0

S
L

R
e
g
is

te
r

S
h

if
t

le
ft

R
[D

R
]←

sl
 R

[S
B

]
0

0
1

0
0

1
0

0
0

0
1
0

1
1

N
O

T
R

e
g
is

te
r

C
o

m
p

le
m

e
n

t

re
g
is

te
r

R
[D

R
]

d
R

[S
A

]
0

0
1

0
0

0
1

1
1
0

0
0

0
0

B
R

Z
Ju

m
p

/B
ra

n
ch

If
 R

[S
A

]
=

0
, b

ra
n

ch

to
 P

C
+

se
 A

D
If

 R
[S

A
]
=

0
,

P
C

 ←
 P

C
 s

e
 A

D

If
 R

[S
A

]
≠

0
,

P
C

d
P

C
+

1

1
0

0
0

1
0

0

8-8 / Single-Cycle Hardwired Control 481

of the first three bits of the opcode, 100, the outputs of the instruction decoder

have the values MB = 1, MD = 0, RW = 1, and MW = 0. The last three bits of

the instruction, OP2 - 0, are extended to 16 bits by zero fill. We denote this in a reg-

ister transfer statement by zf. Since MB is 1, this zero- filled value is placed on

Bus B. With MD equal to 0, the function unit output is selected, and since the last

four bits of the opcode, 0010, specify field FS, the operation is A + B. So the zero-

 filled value on Bus B is added to the contents of register SA, with the result pre-

sented on Bus D. Since RW = 1, the value on Bus D is written into

register DR. Finally, with MW = 0, no write into memory occurs. This entire oper-

ation takes place in a single clock cycle. At the beginning of the next cycle, the

destination register is written and, since PL = 0, the PC is incremented to point to

the next instruction.

The second instruction, LD, is a load from memory with opcode 0010000. The

first three bits of this opcode, 001, give control values MD = 1, RW = 1, and

MW = 0. These values, plus the register source field SA and register destination

field DR, fully specify this instruction, which loads the contents of the memory

address specified by register SA into register DR. Again, since PL = 0, the PC is

incremented. Note that the values of JB and BC are ignored, since this is neither a

jump nor a branch instruction.

The third instruction, ST, stores the contents of a register in memory. The

first three bits of the opcode, 010, give control signal values MB = 0, RW = 0,

and MW = 1. MW = 1 causes a memory write operation, with the address and

data from the register file. RW = 0 prevents the register file from being written.

The address for the memory write comes from the register selected by field SA,

and the data for the memory write comes from the register selected by SB, since

MB = 0. The DR field, although present, is not used, since no write occurs to a

register.

Because this computer has load and store instructions and does not combine

loading and storing of data operands with other operations, it is referred to as having

a load/store architecture. The use of such an architecture simplifies the execution of

instructions.

The next two instructions use the Function unit and write to the Register file

without immediate operands. The last four bits of the opcode, the value for the FS

field of the control word, specify Function unit operation. For these two instructions,

only one source register, R[SA] for the NOT and R[SB] for the shift left, and a desti-

nation register are involved.

The final instruction is a conditional branch and manipulates the PC value. It

has PL = 1, causing the program counter to be loaded instead of incremented, and

JB = 0, causing a conditional branch rather than a jump. Since BC = 0, register

R[SA] is tested for a value of zero. If R[SA] equals zero, the PC value becomes PC +

se AD, where se stands for sign extend. Otherwise, PC is incremented. For this

instruction, the DR and SB fields become the 6-bit address field AD, which is sign

extended and added to the PC.

To demonstrate how instructions such as these can be used in a simple pro-

gram, consider the arithmetic expression 83 - (2 + 3). The following program

performs this computation, assuming that register R3 contains 248, location 248 in

482 CHAPTER 8 / COMPUTER DESIGN BASICS

data memory contains 2, location 249 contains 83, and the result is to be placed in

location 250:

LD R1, R3 Load R1 with contents of location 248 in memory (R1 = 2)

ADI R1, R1, 3 Add 3 to R1 (R1 = 5)

NOT R1, R1 Complement R1

INC R1, R1 Increment R1 (R1 = -5)

INC R3, R3 Increment the contents of R3 (R3 = 249)

LD R2, R3 Load R2 with contents of location 249 in memory (R2 = 83)

ADD R2, R2, R1 Add contents of R1 to contents of R2 (R2 = 78)

INC R3, R3 Increment the contents of R3 (R3 = 250)

ST R3, R2 Store R2 in memory location 250 (M[250] = 78)

The subtraction in this case is done by taking the 2s complement of (2 + 3) and adding

it to 83; the subtraction operation SUB could have been used as well. If a register field is

not used in executing an instruction, its symbolic value is omitted. The symbolic values

for the register- type instructions, when the latter are present, are in the order DR, SA,

and SB. For immediate types, the fields are in the order DR, SA, and OP. To store this

program in the instruction memory, it is necessary to convert all of the symbolic names

and decimal numbers used to their corresponding binary codes.

 Single- Cycle Computer Issues

Although there may be instances in which single- cycle computer timing and control

strategy is useful, it has a number of shortcomings. One is in the area of performing

complex operations. For example, suppose that an instruction is desired that executes

unsigned binary multiplication using a multiplication algorithm that processes one bit

of the multiplier at a time. With the given datapath, this cannot be accomplished by a

microoperation that can be executed in a single clock cycle. Thus, a control organiza-

tion that provides multiple clock cycles for the execution of instructions is needed.

Also, the single- cycle computer has two distinct 16-bit memories, one for

instructions and one for data. For a simple computer with instructions and data in

the same 16-bit memory, two read accesses of memory are required to execute an

instruction that loads a data word from memory into a register. The first access

obtains the instruction, and the second access, if required, reads or writes the data

word. Since two different addresses must be applied to the memory address inputs,

at least two clock cycles, one for each address, are required for obtaining and execut-

ing the instruction. This can also be accomplished easily with multiple- cycle control.

Finally, the single- cycle computer has a lower limit on the clock period based

on a long worst- case delay path. This path is shown in blue in the simplified diagram

of Figure 8-17. The total delay along the path is 9.8 ns. This limits the clock frequency

to 102 MHz, which, although it may be adequate for some applications, is too slow for

a modern computer CPU. In order to have a higher clock frequency, either the delays

of the components on the path or the number of components in the path must be

reduced. If the delays of the components cannot be reduced, reducing the number of

components in the path is the only alternative. In Chapter 10, pipelining of the data-

path reduces the number of components in the longest combinational delay path and

8-9 / Multiple-Cycle Hardwired Control 483

permits the clock frequency to be increased. A pipelined datapath and control given

in Chapter 10 demonstrates the improved CPU performance that can be obtained.

8-9 MULTIPLE- CYCLE HARDWIRED CONTROL

To demonstrate multiple- cycle control, we use the architecture of the simple com-

puter, but modify its datapath, memory, and control. The goal of the modifications is

to demonstrate the use of a single memory for both data and instructions and to

demonstrate how more complex instructions can be implemented by using multiple

clock cycles per instruction. The block diagram in Figure 8-18 shows the modifica-

tions to the datapath, memory, and control.

The changes to the single- cycle computer can be observed by comparing Figures

8-15 and 8-18. The first modification, which is possible with, but not essential to,

 multiple- cycle operation, replaces the separate instruction memory and data memory

in Figure 8-15 with the single Memory M in Figure 8-18. To fetch instructions, the PC is

the address source for the memory, and to fetch data, Bus A is the address source. At

the address input to memory, multiplexer MUX M selects between these two address

sources. MUX M requires an additional control signal, MM, which is added to the

 control- word format. Since instructions from Memory M are needed in the control

unit, a path is added from its output to the instruction register IR in the control unit.

PC

Instruction
memory

Register file
(Read)

MUX B

Function
unit or

Data memory

MUX D

Register file 0.6 ns
(Write)

0.2 ns

4 ns

0.6 ns

0.2 ns

4 ns

0.2 ns

 FIGURE 8-17
 Worst- Case Delay Path in Single- Cycle Computer

484 CHAPTER 8 / COMPUTER DESIGN BASICS

In executing an instruction across multiple clock cycles, data generated during

the current cycle is often needed in a later cycle. This data can be temporarily stored

in a register from the time it is generated until the time it is used. Registers used for

such temporary storage during the execution of the instruction are usually not visible

to the user (i.e., are not part of the storage resources). The second modification pro-

vides these temporary storage registers by doubling the number of registers in the

register file. Registers 0 through 7 are storage resources and registers 8 through 15

are used only for temporary storage during instruction execution, so are not part of

the storage resources visible to the user. The addressing of 16 registers requires 4 bits,

and becomes more complex, since addressing of the first eight registers must be con-

trolled from the instruction, and the second eight registers, from the control unit.

This is handled by the Register address logic in Figure 8-18 and by modified DX, AX,

Sequence
control

Datapath
control

CONTROL

4

RW

4

4

4

16

IL

3 3 37

4

4

DATAPATH

MB1 0
MUX B

Bus B
Bus A MM

0 1
MUX M

Data
out

MW Address
out

Data in

A B

Function
unit

F

0 1
MUX D

MD
Bus D

FS
V
C
N
Z

Zero fill

PS

Extend

2

Register
address

logic

DR
SA

SB

3

3
3

4 4 4

Control Logic

4

4

PC

IR
Opcode DR SA SB

Control State

Data in Address

Memory
M

Data out

DA

AA

D

16 	 16
Register

file

A B
BA

N
S

P
S

I
L

D
X

A
X

B
X

M
B

F
S

M
D

R
W

M
M

M
W

AX BX DX

 FIGURE 8-18
Block Diagram for a Multiple- Cycle Computer

8-9 / Multiple-Cycle Hardwired Control 485

NS PS I
L

M
B

M
D

R
W

M
M

M
WDX AX BX FS

27 24 23 22 21 20 17 16 13 12 9 8 7 4 3 2 1 0

 FIGURE 8-19
 Control- Word Format for Multiple- Cycle Computer

and BX fields in the control word. The details of this change will be discussed later

when the control- word information is defined.

The PC is the only control unit component retained and it must also be modi-

fied. During the execution of a multiple- cycle instruction, the PC must be held at its

current value for all but one of the cycles. To provide this hold capability, as well as

an increment and two load operations, the PC is modified to be controlled by a 2-bit

 control- word field, PS. Since the PC is controlled completely by the control word,

the Branch control logic previously represented by BC is absorbed into the Control

Logic block in Figure 8-18.

Because of the multiple cycles of the modified computer, the instruction needs

to be held in a register for use during its execution since its values are likely to be

needed for more than just the first cycle. The register used for this purpose is the

instruction register IR in Figure 8-18. Since the IR loads only when an instruction is

being read from memory, it has a load- enable signal IL that is added to the control

word. Because of the multiple- cycle operation, a sequential control circuit, which can

provide a sequence of control words for microoperations used to interpret the

instruction is required and replaces the Instruction decoder. The sequential control

unit consists of the Control state register and the combinational Control logic. The

Control logic has the state, the opcode, and the status bits as its inputs and produces

the control word as its output. Conceptually, the control word is divided into two

parts, one for Sequence control, which determines the next state of the overall con-

trol unit, and one for Datapath control, which controls the microoperations executed

by the Datapath and Memory M as shown in Figure 8-18.

The 28-bit modified control word is given in Figure 8-19 and the definitions of the

fields of the control word are given in Tables 8-12 and 8-13. In Table 8-12, the fields DX,

AX, and BX control the register selection. If the MSB of one of these fields is 0, then the

corresponding register addresses DA, AA, or BA are that given by 0 || DR, 0 || SA, and 0

|| SB, respectively. If the MSB of one of these fields is 1, then the corresponding register

address is the contents of the field DX, AX, or BX. This selection process is performed

by the Register address logic, which contains three multiplexers, one for each of DA,

AA, and BA, controlled by the MSB of DX, AX, and BX, respectively. Table 8-12 also

gives the code values for the MM field, which determines whether Address out or PC

serves as the Memory M address. The remaining fields in Table 8-12, MB, MD, RW, and

MW, have the same functions as for the single- cycle computer.

In the sequential control circuit, the State control register has a set of states, just

as a set of flip- flops in any other sequential circuit has. At the level of our discussion,

we assume that each state has an abstract name which can be used as both the state

and the next- state value. In the design process, a state assignment needs to be made to

486 CHAPTER 8 / COMPUTER DESIGN BASICS

 TABLE 8-13
Control Information for Sequence Control

NS PS IL

Next State Action Code Action Code

Gives next state

of control state

register

Hold PC 00 No load 0

Inc PC 01 Load IR 1

Branch 10

Jump 11

 TABLE 8-12
 Control- Word Information for Datapath

DX AX BX Code MB Code FS Code MD RW MM MW Code

R[DR]R[SA]R[SB] 0XXX Register 0 F = A 0000 FnUt No

Write

Address

out

No

Write

0

R8 R8 R8 1000 Constant 1 F = A + 1 0001 Data in Write PC Write 1

R9 R9 R9 1001 F = A + B 0010

R10 R10 R10 1010 Unused 0011

R11 R11 R11 1011 Unused 0100

R12 R12 R12 1100 F = A+B+1 0101

R13 R13 R13 1101 F = A-1 0110

R14 R14 R14 1110 Unused 0111

R15 R15 R15 1111 F = A¿B 1000

F = A¡B 1001

F = A ⊕ B 1010

F = A 1011

F = B 1100

F = sr B 1101

F = sl B 1110

Unused 1111

these abstract states. Referring to Table 8-13, the field NS in the control word provides

the next state for the Control State register. We have assigned four bits for the state

code, but this can be modified as necessary, depending on the number of states needed

and the state assignment used in the design. This particular field could be considered

as integral to the control and sequential circuit and not part of the control word, but it

will appear in the state table of the control in any case. The 2-bit PS field controls the

program counter, PC. On a given clock cycle the PC holds its state (00), increments

its state by 1 (01), conditionally loads PC plus sign- extended AD (10), or uncondi-

tionally loads the contents of R[SA] (11). Finally, the instruction register is loaded

8-9 / Multiple-Cycle Hardwired Control 487

only once during the execution of an instruction. Thus, on any given cycle, either a

new instruction is loaded (IL = 1) or the instruction remains unchanged (IL = 0).

Sequential Control Design

The design of the sequential control circuit can be done using techniques from Chap-

ters 4 and 6. However, compared to the examples there, even for this comparatively

simple computer, the control is quite complex. Assuming there are four state variables,

the combinational Control logic has 15 input variables and 28 output variables. It turns

out that a condensed state table for the circuit is not too difficult to develop, but manual

design of the detailed logic is very complex, making the use of logic synthesis or a PLA

(programmed logic array), as discussed in Chapter 5, more viable options. As a conse-

quence, we focus on state table development rather than detailed logic implementation.

We begin by developing a state machine diagram that represents the instructions that

can be implemented with the minimum number of clock cycles. Extensions of this chart

can then be developed for implementation of instructions requiring more than the min-

imum number of clock cycles. The state machine diagrams provide the information

needed to develop the state table entries for implementing the instruction set. For in-

structions requiring a memory access for data as well as for the instruction itself, at least

two cycles are required. It is convenient to separate the cycles into two processing steps:

instruction fetch and instruction execution. On the basis of this division, the partial state

machine diagram for the two- cycle instructions is given in Figure 8-20. This is called a

partial state diagram, since there will be other pieces added to it, e.g., in Figures 8-21 and

8-22. The instruction fetch occurs in state INF at the top of the chart. The PC contains

the address of the instruction in Memory M. This address is applied to the memory, and

the word read from memory is loaded into the IR on the positive clock edge that ends

0000001

0000010
0000101

0000110

0001000
0001001

0001010

0001011

0001100

0010000

0100000
1001100

1000010
1100000 · Z

1100001 · N

0000000

EX0

INF

R[DR] R[SA]

R[DR] R[SA] + 1
R[DR] R[SA] + R[SB]

+ R[SB] +1R[DR] R[SA]

R[DR] R[SA] �1

R[DR] R[SA] R[SB]

R[DR] R[SA] � R[SB]

IR M[PC]

R[DR] R[SB]

R[DR] M[R[SA]]
M[R[SA]] R[SB]
R[DR] zf OP
R[DR] R[SA] + zf OP

R[DR] R[SA]

R[DR] R[SA] R[SB]

Opcode � Opcode �

1110000 PC R[SA]

PC PC + 1
Σ transition conditions on merged arcs

PC PC � se AD
1100000 · Z

1100001 · N
PC PC � se AD

 FIGURE 8-20
Partial State Machine Diagram for Multiple- Cycle Computer

488 CHAPTER 8 / COMPUTER DESIGN BASICS

state INF. The same clock edge causes the new state to become EX0. In state EX0, the

instruction is decoded and the microoperations executing all or part of the instruction

appear in Mealy- type outputs. If the instruction can be completed in state EX0, the next

state is INF in preparation for fetching of the next instruction. Further, for instructions

that do not change PC contents during their execution, the PC is incremented. If addi-

tional states are required for instruction execution, the next state is EX1. In each of the

execution states, 128 different input combinations are possible, based on the opcode.

Many of these opcodes will be unused. An unused opcode is one which does not appear

in any of the partial state diagrams for a particular control unit. We assume that these

opcodes will never appear and so will be don’ t- care inputs. An alternative assumption is

that if they do appear, they cause an exception that signals their presence. These and

other assumptions for unused opcodes must be taken into account when evaluating

constraint 2 of the transition condition constraints in Section 4-6.

Status bits are used with some operation codes, typically one at a time. In

Figure 8-20, N and Z appear for the branch instructions on the lower right as output

conditions and affect output actions only. In other cases, they may also affect

sequencing, appearing as transition conditions.

Next, we describe a sampling of the instruction executions specified by the

state machine diagram in Figure 8-20. The first opcode is 0000000 for the move A

(MOVA) instruction. This instruction involves a simple transfer from the source A

register to the destination register, as specified by the register transfer shown in state

EX0 for the instruction opcode. Although the status bits N and Z are valid, they are

not used in the execution of this instruction. The move action occurs and the PC is

incremented on the clock edge, ending state EX0. The incrementing of the PC is an

action that occurs for all but branch and jump instructions in the state machine dia-

gram. Note that due to the sharing of arcs by the transitions to state INF, the incre-

menting of the PC can be placed on the arc shared by all transitions rather than

being added to the output branch for each transition.

The third opcode is 0000010 for the ADD instruction with the register transfer

for addition shown. In this case, status bits V, C, N, and Z are valid, although not used.

R8 M[R[SA]]

R[DR] M[R8], PC PC � 1

Opcode = 0010001

Opcode = 0010001

EX1

EX0

To INF

From INF

 FIGURE 8-21
Partial State Machine Diagram for Register Indirect Instruction

8-9 / Multiple-Cycle Hardwired Control 489

The eleventh opcode, 0010000, is the load (LD) instruction, which uses the value in the

register specified by SA for the address and loads the data word from Memory M into

the register specified by DR. The twelfth opcode, 0100000, is for the store (ST) instruc-

tion, which stores the value in register SB into the location in Memory M specified by

the address from register SA. The fourteenth opcode, 1001100, is add immediate

(ADI), which adds the zero- filled value of the OP field, the rightmost three bits of the

instruction, to the contents of register SA and places the result in the register DR.

The sixteenth opcode, 1100001, is the branch on negative (BRN) instruction. The

decoding of this instruction causes the value in the register specified by SA to be passed

through the Function unit in order to evaluate status bits N and Z. The values N and Z

then propagate back to the Control logic, but no register load of the Function unit out-

put occurs. Based on the value of N, the branch is taken or not taken by adding the

extended address AD from the instruction to the value in the PC or incrementing the

PC, respectively. This is represented by the output action for N shown in Figure 8-20.

From this state machine diagram, the state table for the sequential control cir-

cuit can be developed as shown in Table 8-14. The present states are given as abstract

state names, and the opcodes and status bits serve as inputs. In the case of the status

bits, only those bits that are used in the instruction are specified. By using combina-

tions of bits and multiple status bit patterns, it is possible to specify functions of sta-

tus bits. Note that many of the entries in Table 8-14 contain Xs, symbolizing “don’t

From INF

To INF

Opcode = 0001101
R8 sl R8

R[DR] R8

EX1

EX2

EX0
Z · ((Opcode = 0001101) + (Opcode = 0001110))

Z · ((Opcode = 0001101)
 + (Opcode = 0001110))

Z · ((O
pcode = 0001101) + (Opcode = 0001110))

EX3
R8 sr R8

Opcode = 0001110

Z · ((Opcode = 0001101)
 + (Opcode = 0001110))

Z · ((Opcode = 0001101) + (Opcode = 0001110))

EX4

(Opcode = 0001101) + (Opcode = 0001110)

Z · ((Opcode = 0001101)
 + (Opcode = 0001110))

R9 zf OP

(Opcode = 0001101) + (Opcode = 0001110)/R8 R[SA]

 state-transition conditions
on merged arcs

((Opcode = 0001101)
 + (Opcode = 0001110))/

((Opcode = 0001101)
 + (Opcode = 0001110))/

 FIGURE 8-22
Partial State Machine Diagram for Right- Shift and Left- Shift Multiple Instructions

490 CHAPTER 8 / COMPUTER DESIGN BASICS

 T
A

B
L

E
 8

-1
4

St
at

e
Ta

bl
e

fo
r T

w
o-

 C
yc

le
 I

ns
tr

uc
ti

on
s

S
ta

te

In
p

u
ts

N
e
x
t

S
ta

te

O
u

tp
u

ts

C
o

m
m

e
n

ts
O

p
c
o

d
e

V
C

N
Z

I L

P S
D

X
A

X
B

X

M B
F

S

M D

R W

M M

M W

IN
F

X
X

X
X

X
X

X
X

X
X

X
E

X
0

1
0

0
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
0

1
0

IR

d

 M
[P

C
]

E
X

0
0
 0

 0
 0

 0
 0

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

X
X

X
X

X
0
 0

 0
 0

0
1

X
0

M
O

V
A

R
[D

R
]

d
R

[S
A

]*

E
X

0
0
 0

 0
 0

 0
 0

 1
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

X
X

X
X

X
0
 0

 0
 1

0
1

X
0

IN
C

R
[D

R
]

d
R

[S
A

]
+

1
*

E
X

0
0
 0

 0
 0

 0
 1

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

0
X

X
X

0
0
 0

 1
 0

0
1

X
0

A
D

D
R

[D
R

]
d

R
[S

A
]

+
 R

[S
B

]*

E
X

0
0
 0

 0
 0

 1
 0

 1
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

0
X

X
X

0
0
 1

 0
 1

0
1

X
0

S
U

B
R

[D
R

]
d

R
[S

A
]

+
 R

[S
B

]
+

 1
*

E
X

0
0
 0

 0
 0

 1
 1

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

X
X

X
X

X
0
 1

 1
 0

0
1

X
0

D
E

C
R

[D
R

]
d

R
[S

A
]

+
 (

-
1
)*

E
X

0
0
 0

 0
 1

 0
 0

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

0
X

X
X

0
1
 0

 0
 0

0
1

X
0

A
N

D
R

[D
R

]
d

R
[S

A
]
¿

 R
[S

B
]*

E
X

0
0
 0

 0
 1

 0
 0

 1
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

0
X

X
X

0
1
 0

 0
 1

0
1

X
0

O
R

R
[D

R
]

d
R

[S
A

]
¡

 R
[S

B
]*

E
X

0
0
 0

 0
 1

 0
 1

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

0
X

X
X

0
1
 0

 1
 0

0
1

X
0

X
O

R
R

[D
R

]
d

R
[S

A
]
⊕

 R
[S

B
]*

E
X

0
0
 0

 0
 1

 0
 1

 1
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

X
X

X
X

X
1
 0

 1
 1

0
1

X
0

N
O

T
R

[D
R

]
d

R
[S

A
] *

E
X

0
0
 0

 0
 1

 1
 0

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

X
X

X
X

0
X

X
X

0
1
 1

 0
 0

0
1

X
0

M
O

V
B

R
[D

R
]

d
R

[S
B

]*

E
X

0
0
 0

 1
 0

 0
 0

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

X
X

X
X

X
X

X
X

X
1

1
0

0
L

D
R

[D
R

]
d

M
[R

[S
A

]]
*

E
X

0
0
 1

 0
 0

 0
 0

 0
X

X
X

X
IN

F
0

0
1

X
X

X
X

0
 X

X
X

0
X

X
X

0
X

X
X

X
X

0
0

1
S

T
M

[R
[S

A
]]

d
R

[S
B

]*

E
X

0
1
 0

 0
 1

 1
 0

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

X
X

X
X

X
X

X
X

1
1
 1

 0
 0

0
1

0
0

L
D

I
R

[D
R

]
d

zf
 O

P
*

E
X

0
1
 0

 0
 0

 0
 1

 0
X

X
X

X
IN

F
0

0
1

0
 X

X
X

0
 X

X
X

X
X

X
X

1
0
 0

 1
 0

0
1

0
0

A
D

I
R

[D
R

]
d

R
[S

A
]

+
 z

f
O

P
*

E
X

0
1
 1

 0
 0

 0
 0

 0
IN

F
0

1
0

X
X

X
X

0
 X

X
X

X
X

X
X

X
0
 0

 0
 0

X
0

0
0

B
R

Z
P

C
d

P
C

+
se

 A
D

E
X

0
1
 1

 0
 0

 0
 0

 0
X

X
X

0
IN

F
0

0
1

X
X

X
X

0
 X

X
X

X
X

X
X

X
0
 0

 0
 0

X
0

0
0

B
R

Z
P

C

d
 P

C
 +

 1

E
X

0
1
 1

 0
 0

 0
 0

 1
IN

F
0

1
0

X
X

X
X

0
 X

X
X

X
X

X
X

X
0
 0

 0
 0

X
0

0
0

B
R

N
P

C
d

P
C

+
se

 A
D

E
X

0
1
 1

 0
 0

 0
 0

 1
X

X
0
X

IN
F

0
0

1
X

X
X

X
0
 X

X
X

X
X

X
X

X
0
 0

 0
 0

X
0

0
0

B
R

N
P

C

d
 P

C
 +

 1

E
X

0
1
 1

 1
 0

 0
 0

 0
X

X
X

X
IN

F
0

1
1

X
X

X
X

0
 X

X
X

X
X

X
X

X
0
 0

 0
 0

X
0

0
0

JM
P

P
C

d

 R
[S

A
]

*
 F

o
r

th
is

 s
ta

te
 a

n
d

 i
n

p
u

t
co

m
b

in
a
ti

o
n

, P
C

 d
 P

C
+

1
 a

ls
o

 o
cc

u
rs

.

8-9 / Multiple-Cycle Hardwired Control 491

cares.” For these entries, the input or resource is not used in the given microopera-

tion, or the specific bits of the code that are X are not used for controlling it. It is a

useful exercise to determine how each of the entries in Table 8-14 is obtained, based

on Tables 8-12, 8-13, and Figure 8-20.

It is interesting to briefly compare the timing of the execution of instructions in

this organization with that for the single- cycle computer. Each instruction requires

two clock cycles to fetch and execute, compared with one clock cycle for the single-

 cycle computer. Because the very long delay path from the PC through the

Instruction memory, Instruction decoder, datapath, and branch control is broken up

by the instruction register, the clock periods are somewhat shorter. Nevertheless,

due to setup time requirements for the added flip- flops in the IR and a potential

imbalance in delays for the various paths through the circuit, the overall time taken

to execute an instruction could be just as long as or longer than in the single- cycle

computer. So what is the benefit of this organization, other than ability to use a single

memory? The next two instructions give the answer.

The first instruction to be added is a “load register indirect” (LRI), with opcode

0010001. In this instruction, the contents of register SA address a word in memory.

The word, which is known as an indirect address, is then used to address the word in

memory that is loaded into register DR. This can be represented symbolically as

R[DR] d M[M[R[SA]]]

The partial state machine diagram for the execution of this instruction is given in

Figure 8-21. Following the instruction fetch, the state becomes EX0, the same EX0

used in Figure 8-20. In this state, R[SA] addresses the memory to obtain the indirect

address, which is then placed in temporary register R8. In the next state, EX1, a new

state that is added here, the next memory access occurs with the address from R8. The

operand obtained is placed in R[DR] to complete the operation, and the PC is incre-

mented. The state machine diagram then returns to state INF to fetch the next instruc-

tion. The state machine diagram portion for the execution of a given instruction must

have the opcode for the instruction appear on all transitions from states that have

opcodes for other instructions appearing, since the same states are used by the other

instructions for their execution. This applies across all of the partial state machine dia-

grams for the control unit. Clearly, with two accesses to Memory M, this instruction

could not be executed by the single- clock- cycle computer or by using two clock cycles

in the multiple- cycle computer. Also, to avoid disturbing the contents of registers R0

through R7 (except for R[SA]), the use of register R8 for temporary storage is essen-

tial. The LRI instruction requires three clock cycles for its execution. To accomplish the

same operation in the single- cycle computer requires two LD instructions, taking two

clock cycles. In the multiple- cycle computer, due to two instruction fetches and two

data accesses, it would require two LD instructions, but would take four clock cycles.

So the LRI instruction gives an improvement in execution time in the latter case.

The final two instructions to be added are “shift right multiple” (SRM) and

“shift left multiple” (SLM), with opcodes 0001101 and 0001110, respectively. These

two instructions can share most of the microinstruction sequence to be used. SRM

specifies that the contents of register SA are to be shifted to the right by the number

of positions given by the three bits of the OP field, with the result placed in regis-

ter DR. The partial state machine diagram for this operation (and for SLM) is given

492 CHAPTER 8 / COMPUTER DESIGN BASICS

in Figure 8-22. Register R9 stores the number of bit positions remaining to be shifted,

and the shifting is performed in register R8.

Initially, the contents of R[SA] to be shifted is placed in R8. As the contents are

loaded into R8, it passes through the ALU and is checked to see if it is 0 to determine

if shifting is needed or not. Note that this check could occur even if R8 was not loaded.

Likewise, the shift amount being loaded into R9 is checked to see whether it is 0, again

to determine if shifting is needed or not. If either case is satisfied, the instruction exe-

cution is complete, and the state machine flow returns to state INF. Otherwise, a right-

 shift operation is performed on the contents of register R8. R9 is decremented and

tested to see whether it will be 0. If R9 ≠ 0, then the shift and decrement are repeated.

If R9=0, then the contents of R8 have been shifted by the number of bit positions

specified by OP, so the result is transferred to R[DR] to complete the instruction exe-

cution, and the state machine flow returns to state INF.

If both the operand and the shift amount are nonzero, SRM, including fetch,

requires 2s+4 clock cycles, where s is the number of positions shifted. The range of

clock cycles required, including the instruction fetch, is from 6 to 18. If the same

operation were implemented by a program using the right- shift instruction plus

increment and branching, then 3s+3 instructions would be required, giving 6s+6

cycles. The improvement in the required number of clock cycles is 4s+2, so 6 to 30

clock cycles are saved in the multiple- cycle computer for a nonzero operand and

shift amount. Also, five fewer memory locations are required for storage of the SRM

instruction, in contrast to that for the program.

In the state machine diagram in Figure 8-22, the states INF and EX0 are the

same as those used for the two- cycle instructions in the state machine diagram in

Figure 8-20, and EX1 is the same as used for the LRI instruction in Figure 8-21. Also,

implementation of the left- shift multiple operation is shown in Figure 8-22, in which,

based on the opcode, the left shift of R8 replaces the right shift of R8. As a conse-

quence, the logic implementing the states used for implementation of these two

instructions can be shared. Further, the logic used for the sequencing of the states can

be shared between the SRM and SLM instruction implementations. The state table

specification in Table 8-15 is derived by using the information from the state machine

diagram in Figure 8-22, and Tables 8-12 and 8-13. The codes are derived from the reg-

ister transfer and sequencing action described in the comments on the right in the

same way that Table 8-14 was derived.

Implementation of the LRI and SRM instructions illustrates the flexibility

achieved using multiple- cycle control. Implementation of additional instructions is

explored in the problems at the end of the chapter.

8-10 CHAPTER SUMMARY

In the first part of the chapter, the concept of a computer datapath for implementing

computer microoperations was introduced. Among the major components of datap-

aths are register files, buses, arithmetic/logic units (ALUs), and shifters. The control

word provides a means of organizing the control of the microoperations performed

by the datapath. These concepts were combined to serve as a basis for exploring

computers in the remainder of the text.

In the second part of the chapter, control design for programmed systems was

introduced by examining two different implementations of basic control units for a

8-10 / Chapter Summary 493

 T
A

B
L

E
 8

-1
5

St
at

e
Ta

bl
e

fo
r

Il
lu

st
ra

ti
on

 o
f I

ns
tr

uc
ti

on
s

H
av

in
g

T
hr

ee
 o

r
M

or
e

C
yc

le
s

S
ta

te

In
p

u
ts

N
e
x
t

S
ta

te

O
u

tp
u

ts

C
o

m
m

e
n

ts

O
p

c
o

d
e

V
C

N
Z

I L
P

S
D

X
A

X
B

X
M

B
F

S
M

D
R

W
M

M

M W

E
X

0
0

0
1
0

0
0

1
X

X
X

X
E

X
1

0
0

0
1
 0

 0
 0

0
X

X
X

X
X

X
X

X
0

0
0

0
1

1
X

0
L

R
I

R
8

 d
 M

[R
[S

A
]]

,
S

 E
X

1

E
X

1
0

0
1
0

0
0

1
X

X
X

X
IN

F
0

0
1

0
X

X
X

1
 0

 0
 0

X
X

X
X

X
0

0
0

0
1

1
X

0
L

R
I

R
[D

R
]

d
M

[R
8
],

S
IN

F
*

E
X

0
0

0
0

1
1
0

1
X

X
X

0
E

X
1

0
0

0
1
 0

 0
 0

0
X

X
X

X
X

X
X

X
0

0
0

0
0

1
X

0
S

R
M

R
8

d
R

[S
A

],
 Z

:
S

E
X

1

E
X

0
0

0
0

1
1
0

1
X

X
X

1
IN

F
0

0
1

1
 0

 0
 0

0
X

X
X

X
X

X
X

X
0

0
0

0
0

1
X

0
S

R
M

R
8

d
R

[S
A

],
 Z

:
S

IN
F

*

E
X

1
0

0
0

1
1
0

1
X

X
X

0
E

X
2

0
0

0
1
 0

 0
 1

X
X

X
X

X
X

X
X

1
1
1
0

0
0

1
X

0
S

R
M

R
9

 d
zf

 O
P

,
 Z

:
S

E
X

2

E
X

1
0

0
0

1
1
0

1
X

X
X

1
IN

F
0

0
1

1
 0

 0
 1

X
X

X
X

X
X

X
X

1
1
1
0

0
0

1
X

0
S

R
M

R
9

d
zf

 O
P

,
 Z

:
S

IN
F

*

E
X

2
0

0
0

1
1
0

1
X

X
X

X
E

X
3

0
0

0
1
 0

 0
 0

X
X

X
X

1
 0

 0
 0

0
1
1
0

1
0

1
X

0
S

R
M

R
8

 d
sr

 R
8
,
S

E
X

3

E
X

3
0

0
0

1
1
0

1
X

X
X

0
E

X
2

0
0

0
1
 0

 0
 1

1
 0

 0
 1

X
X

X
X

X
0

1
1
0

0
1

X
0

S
R

M
R

9
d

R
9

-

1
,

 Z
:

S
E

X
2

E
X

3
0

0
0

1
1
0

1
X

X
X

1
E

X
4

0
0

0
1
 0

 0
 1

1
 0

 0
 1

X
X

X
X

X
0

1
1
0

0
1

X
0

S
R

M
R

9
d

R
9

-
1
,

 Z
:
S

E
X

4

E
X

4
0

0
0

1
1
0

1
X

X
X

X
IN

F
0

0
1

0
X

X
X

1
 0

 0
 0

X
X

X
X

X
0

0
0

0
0

1
X

0
S

R
M

R
[D

R
]

d
R

8
,
S

IN
F

*

E
X

0
0

0
0

1
1
1
0

X
X

X
0

E
X

1
0

0
0

1
 0

 0
 0

0
X

X
X

X
X

X
X

X
0

0
0

0
0

1
X

0
S

L
M

R
8

d
R

[S
A

],
 Z

:
S

E
X

1

E
X

0
0

0
0

1
1
1
0

X
X

X
1

IN
F

0
0

1
1
 0

 0
 0

0
X

X
X

X
X

X
X

X
0

0
0

0
0

1
X

0
S

L
M

R
8

d
R

[S
A

],
 Z

:
S

IN
F

*

E
X

1
0

0
0

1
1
1
0

X
X

X
0

E
X

2
0

0
0

1
 0

 0
 1

X
X

X
X

X
X

X
X

1
1
1
0

0
0

1
X

0
S

L
M

R
9

d
zf

 O
P

,
 Z

:
S

E
X

2

E
X

1
0

0
0

1
1
1
0

X
X

X
1

IN
F

0
0

1
1
 0

 0
 1

X
X

X
X

X
X

X
X

1
1
1
0

0
0

1
X

0
S

L
M

R
9

d
zf

 O
P

,
 Z

:
S

IN
F

*

E
X

2
0

0
0

1
1
1
0

X
X

X
X

E
X

3
0

0
0

1
 0

 0
 0

X
X

X
X

1
 0

 0
 0

0
1
1
1
0

0
1

X
0

S
L

M
R

8
d

sl
 R

8
,
S

E
X

3

E
X

3
0

0
0

1
1
1
0

X
X

X
0

E
X

2
0

0
0

1
 0

 0
 1

1
 0

 0
 1

X
X

X
X

X
0

1
1
0

0
1

X
0

S
L

M
R

9
d

R
9

-
1
,

 Z
:

S
E

X
2

E
X

3
0

0
0

1
1
1
0

X
X

X
1

E
X

4
0

0
0

1
 0

 0
 1

1
 0

 0
 1

X
X

X
X

X
0

1
1
0

0
1

X
0

S
L

M
R

9
d

R
9

-
1
,

 Z
:
S

E
X

4

E
X

4
0

0
0

1
1
1
0

X
X

X
X

IN
F

0
0

1
0
X

X
X

1
 0

 0
 0

X
X

X
X

X
0

0
0

0
0

1
X

0
S

L
M

R
[D

R
]

d
R

8
,
S

IF
*

*
 F

o
r

th
is

 s
ta

te
 a

n
d

 i
n

p
u

t
co

m
b

in
a
ti

o
n

, P
C

 d
 P

C
+

1
 a

ls
o

 o
cc

u
rs

.

494 CHAPTER 8 / COMPUTER DESIGN BASICS

simple computer architecture. We introduced the concept of instruction set architec-

tures and defined instruction formats and operations for the simple computer. The

first implementation of this computer is capable of executing any instruction in a

single clock cycle. Aside from having a program counter and its logic, the control unit

of this computer consists of a combinational decoder circuit.

Among the shortcomings of the single- cycle computer are limitations on the

complexity of the instructions that can be executed on it, problems with the interface

to a single memory, and the relatively low clock frequencies attained. To deal with

the first two of these shortcomings, we examined a multiple- cycle version of the

simple computer in which a single memory is used and instructions are implemented

using two distinct phases: instruction fetch and instruction execution. The remaining

issue of long clock cycles is dealt with in Chapter 10 by introducing pipelined datap-

aths and control.

REFERENCES

1. Hennessy, J. L. and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 5th ed. Amsterdam: Elsevier, 2011.

2. Mano, M. M. Computer Engineering: Hardware Design. Englewood Cliffs, NJ:

Prentice Hall, 1988.

3. Mano, M. M. Computer System Architecture, 3rd ed. Englewood Cliffs, NJ:

Prentice Hall, 1993.

4. Patterson, D. A. and J. L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface, 5th ed. Amsterdam: Elsevier, 2013.

PROBLEMS
The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

8-1. A datapath similar to the one in Figure 8-1 has 64 registers. How many

selection lines are needed for each set of multiplexers and for the decoder?

8-2. *Given an 8-bit ALU with outputs F
7
 through F

0
 and available carries C

8
 and

C
7
, show the logic circuit for generating the signals for the four status bits N

(sign), Z (zero), V (overflow), and C (carry).

8-3. *Design an arithmetic circuit with two selection variables S
1
 and S

0
 and two

 n- bit data inputs A and B. The circuit generates the following eight arithmetic

operations in conjunction with carry C
in
:

S1 S0 Cin = 0 Cin = 1

0 0 F = A + B (add) F = A + B + 1 (subtract A − B)

0 1 F = A + B F = A + B + 1 (subtract B − A)

1 0 F = A - 1 (decrement) F = A + 1 (increment)

1 1 F = A (1s complement) F = A + 1 (2s complement)

Draw the logic diagram for the two least significant bits of the arithmetic circuit.

Problems 495

8-4. *Design a 4-bit arithmetic circuit, with two selection variables S
1
 and S

0
, that

generates the arithmetic operations in the following table. Draw the logic

diagram for a typical single- bit stage and the LSB stage.

S1 S0 Cin = 0 Cin = 1

0 0 F = A + B (add) F = A + B + 1

0 1 F = A (transfer) F = A + 1 (increment)

1 0 F = B (complement) F = B + 1 (negate)

1 1 F = A + B F = A + B + 1 (subtract)

8-5. Draw the diagram of an ALU in which there are three bits allocated for

selecting the following operations, for two operands. The operations are

below. Draw a simple block diagram. Also, consider what should be done in

the case an invalid combination of selection bits appears.

(a) Add

(b) Subtract

(c) Logical OR

(d) Logical AND

(e) Logical XOR

8-6. *Design one bit of a digital circuit that performs the four logic operations of

 exclusive- OR, exclusive- NOR, NOR, and NAND on register operands A and

B with the result to be loaded into register A. Use two selection variables.

(a) Using a Karnaugh map, design minimum logic for one typical stage, and

show the logic diagram.

(b) Repeat (a), trying different assignments of the selection codes to the four

operations to see whether the logic for the stage can be simplified further.

8-7. +Design an ALU that performs the following operations:

A + B sr A
A + B + 1 A ¡ B
B sl A

B + 1 A ¿ B

Give the result of your design as the logic diagram for a single stage of

the ALU. Your design should have one carry line to the left and one carry

line to the right between stages and three selection bits. If you have access

to logic optimization software, apply it to the design to obtain reduced logic.

Model your ALU in an HDL and verify its operation by simulation.

8-8. *Find the output Y of the 4-bit barrel shifter in Figure 8-9 for each of the

following bit patterns applied to S
1
, S

0
, D

3
, D

2
, D

1
, and D

0
:

(a) 110101 (b) 101011

(c) 011010 (d) 001101

496 CHAPTER 8 / COMPUTER DESIGN BASICS

8-9. Specify the 16-bit control word that must be applied to the datapath of

Figure 8-11 to implement each of the following microoperations:

(a) R3 ← Data in (b) R4 ← 0

(c) R1 ← sr R4 (d) R3 ← R3 + 1

(e) R2 ← sl R2 (f) R1 d R2 ⊕ R4

(g) R7 ← R1 + R3 (h) R4 ← R5 – Constant in

8-10. *Given the following 16-bit control words for the datapath of Figure 8-11,

determine (a) the microoperation that is executed and (b) the change in

the contents of the register for each control word (assume that the registers

are 8-bit registers and that, before the execution of a control word, they

contain the value of their number (e.g., register R5 contains 05 in

hexadecimal)). Assume that Constant in has value 6 and Data in has value 1B,

both in hexadecimal.

(a) 101 100 101 0 1000 0 1 (b) 110 010 100 0 0101 0 1

(c) 101 110 000 0 1100 0 1 (d) 101 000 000 0 0000 0 1

(e) 100 100 000 1 1101 0 1 (f) 011 000 000 0 0000 1 1

8-11. Given the sequence of 16-bit control words below for the datapath in

Figure 8-11 and the initial ASCII character codes in 8-bit registers, simulate

the datapath to determine the alphanumeric characters in the registers after

the execution of the sequence. The result is a scrambled word: what is it?

011 011 001 0 0010 0 1 R0 00000000

100 100 001 0 1001 0 1 R1 00100000

101 101 001 0 1010 0 1 R2 01000100

001 001 000 0 1011 0 1 R3 01000111

001 001 000 0 0001 0 1 R4 01010100

110 110 001 0 0101 0 1 R5 01001100

111 111 001 0 0101 0 1 R6 01000001

001 111 000 0 0000 0 1 R7 01001001

8-12. A RISC computer has a 32-bit instruction format consisting of the following:

(1) Opcode: 8 bits

(2) 3 register fields, each of 4 bits

(3) A 4 bit field for “condition”

 The remaining bits are for information pertaining to the processor.

(a) What is the maximum number of operations possible?

(b) How many combinations of three registers are possible?

(c) How many conditions can be accommodated?

(d) How many registers are possible?

8-13. *A digital computer has a memory unit with a 32-bit instruction and a

register file with 64 registers. The instruction set consists of 130 different

operations. There is only one type of instruction format, with an opcode part,

a register file address, and an immediate operand part. Each instruction is

stored in one word of memory.

(a) How many bits are needed for the opcode part of the instruction?

(b) How many bits are left for the immediate part of the instruction?

(c) If the immediate operand is used as an unsigned address to memory, what

is the maximum number of words that can be addressed in memory?

(d) What are the largest and the smallest algebraic values of signed 2s comple-

ment binary numbers that can be accommodated as an immediate operand?

8-14. A RISC processor has the following format for its branch instruction:

31 28 27 26 25 24 23

COND 1 0 1 L Signed-immed_24

 The figure shows the offset of the target to use a signed immediate number

with 24 bits. What is the range to which control can branch to?

8-15. The single- cycle computer in Figure 8-15 executes the five instructions

described by the register transfers in the table that follows.

(a) Complete the following table, giving the binary instruction decoder

outputs from Figure 8-16 during execution of each of the instructions:

 Instruction— Register

Transfer DA AA BA BA FS MD RW MW PL JB

R[0] d R[7] ⊕ R[3]

R[1] d M[R[4]]

R[2] d R[5]+2

R[3] d sl R[6]

if (R([4] = 0)

PC d PC+se AD
else PC d PC+1

(b) Complete the following table, giving the instruction in binary for the

 single- cycle computer that executes the register transfer (if any field is not

used, give it the value 0):

 Instruction— Register Transfer Opcode DR SA SB or Operand

R[0] ← R[7]+R[6]

R[1] ← R[5]-1

R[2] ← sl R[4]

R[3] d R[3]

R[4] d R[2] ¡ R[1]

Problems 497

498 CHAPTER 8 / COMPUTER DESIGN BASICS

8-16. Using the information in the truth table in Table 8-10, verify that the design

for the single- bit outputs in the decoder in Figure 8-16 is correct.

8-17. Manually simulate the single- cycle computer in Figure 8-15 for the following

sequence of instructions, assuming that each register initially contains contents

equal to its index (i.e., R0 contains 0, R1 contains 1, and so on):

ADD R0, R1, R2

SUB R3, R4, R5

SUB R6, R7, R0

ADD R0, R0, R3

SUB R0, R0, R6

ST R7, R0

LD R7, R6

ADI R0, R6, 2

ADI R3, R6, 3

Give (a) the binary value of the instruction on the current line of the results

and (b) the contents of any register changed by the instruction, or the loca-

tion and contents of any memory location changed by the instruction on the

next line of the results. The results are positioned in this fashion because the

new values do not appear in a register or memory, due to the execution of an

instruction, until after a positive clock edge has occurred.

8-18. Some computers have different memory areas for storing data and

instructions. The single cycle computer described here is one such computer.

Obviously there are advantages as well as disadvantages of such a system.

(a) What is the name of such a type of computer architecture?

(b) What is the basic disadvantage of such a system?

(c) What is the advantage of using such a memory architecture?

8-19. List the control logic state table entries for the multiple- cycle computer (see

Tables 8-12, 8-13 and 8-15) that implement the following register transfer

statements. Assume that in all cases the present state is EX0. If an opcode is

needed, use a symbolic name based on the problem part— e.g., for part (a),

opcode_a.

(a) R3 ← R7 − R2, →EX1. Assume DR = 3, SA = 7, SB = 2.

(b) R8 ← sr R8, →INF. Assume DR = 5, SB = 5.

(c) if (Z = 0) then (PC → PC + se AD, → INF) else (PC → PC +1, → INF).

(d) R6 ← R6, C ← 0, → INF. Assume DR = SA = 6.

8-20. (a) What is the arithmetic operation that is the result of logical shifting left?

(b) Show what happens when the 0000 0000 1011 1000 is shifted left four times?

(c) What will the result if the above data is shifted right twice?

8-21. +In the SRM and SLM instructions, both the operand R[SA] and the shift

amount field OP are checked to see if either is 0 before the shifts begin.

(a) Redraw the state machine diagram for these operations with these checks

removed.

(b) Use the original diagram and the new diagram to compare the number of

clock cycles required for values of OP equal to 0 through 7. Assume that

the probability of each OP value for 1 through 6 is 1/8, for 0 is 1/4, and for

7 is 0. Assume that the likelihood of a 0 operand is 1/8. Perform calculations

to determine the best implementation (with checks or without checks)

based on the given probability information and comparative number of

clock cycles for the two implementations. Provide a convincing argument

for your selected answer.

8-22. A new instruction is to be defined for the multiple- cycle computer with

opcode 0010001. The instruction implements the register transfer

R[DR] d R[SB] + M[R[SA]]

Find the state machine diagram for implementing the instruction, assuming

that 0010001 is the opcode. Form the part of the control state table that im-

plements this instruction.

8-23. Repeat Problem 8-22 for the two instructions: Add and check OV (AOV),

described by the register transfer

R[DR] d R[SA] + R[SB], V:R8 d 1, V:R8 d 0

and branch on overflow (BRV), described by the register transfer

R8 d R8, V: PC d PC + se AD, V: PC d PC + 1

The opcode for AOV is 1000101 and for BRV is 1000110. Note that register

R8 is used as a “status” register that stores the overflow result V for the pre-

vious operation. All of the values N, Z, C and V could be stored in R8 to give

a complete status on the prior arithmetic or logic operation.

8-24. In a multiple-cycle computer, any instruction can take more than one cycle.

Delve into the different kinds of instructions available in such computers and

identify the different activities for each of these operations:

(a) Fetching an opcode from memory

(b) Fetching the operand from memory

(c) Adding the content of two registers.

(d) Storing the result in memory.

8-25. The multiple-cycle computer has the capacity for multiple register loading.

Take an example of 8 registers being loaded with data from 8 locations in

memory. Compare this to a case of multiple instructions for loading into the 8

registers. Does this reduce the execution time to one eighth of the latter case?

Substantiate with logical reasons.

8-26. +A new instruction, SMR (Store Multiple Registers), with symbolic opcode

name SMR, is to be implemented for the multiple- cycle computer. The

instruction stores the contents of eight registers in eight consecutive memory

locations. Register R[SA] specifies the address in memory M to which the first

Problems 499

500 CHAPTER 8 / COMPUTER DESIGN BASICS

register R[SB] is to be stored. The registers to be stored are R[SB], R[(SB+1)

modulo 8], . . ., R[(SB+7)modulo 8] in Memory M addresses R[SA], R[SA]

+1, . . ., R[SA]+7. Design this instruction presenting your final results in the

form shown in Table 8-15. [Hint: In order to address all eight registers, it is

necessary to provide eight values of SB in the Instruction Register. Since the

Instruction Register can only be loaded from memory, these “instructions”

must be placed in memory temporarily during the instruction execution and

loaded into the IR as data without using the usual instruction fetch.]

8-27. Using the mnemonics for the single-cycle computer, write instructions to

perform the following simple operations. Assume the following:

 The registers available are R1 and R2. Data memory location 120 has content

45, and address 121 has content 23. Registers R3 and R4 have the address of

these data, i.e., R3 = 121 and R4 = 23.

(a) Load the two numbers in memory locations into two registers.

(b) Add the number 20 to the content of one register.

(c) Add the sum to the content of the other register.

(d) Store the sum into a memory location.

 501

9-1 COMPUTER ARCHITECTURE CONCEPTS

The binary language in which instructions are defined and stored in memory is

 referred to as machine language. A symbolic language that replaces binary opcodes

and addresses with symbolic names and that provides other features helpful to the

programmer is referred to as assembly language. The logical structure of computers

 501

C H A P T E R

Instruction Set
Architecture

9

Up to this point, much of what we have studied has focused on digital system

design, with computer components serving as examples. In this chapter, we will

study more specialized material, dealing with instruction set architecture for

 general- purpose computers. We will examine the operations that the instructions

perform and focus particularly on how the operands are obtained and where the results

are stored. We will contrast two distinct classes of architectures: reduced instruction set

computers (RISCs) and complex instruction set computers (CISCs). We will classify

elementary instructions into three categories: data transfer, data manipulation, and

program control. In each of these categories, we elaborate on typical elementary

instructions.

Central to the material presented here are the general- purpose parts of the

microprocessor may be present for controlling keyboard and monitor functions,

and I/O components, the concepts studied apply less to other areas of the

components.

502 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

is normally described in assembly- language reference manuals. Such manuals

 explain various internal elements of the computer that are of interest to the pro-

grammer, such as processor registers. The manuals list all hardware- implemented

 instructions, specify the symbolic names and binary code format of the instructions,

and provide a precise definition of each instruction. In the past, this information

 represented the architecture of the computer. A computer was composed of its archi-

tecture, plus a specific implementation of that architecture. The implementation was

separated into two parts: the organization and the hardware. The organization con-

sists of structures such as datapaths, control units, memories, and the buses that inter-

connect them. Hardware refers to the logic, the electronic technologies employed,

and the various physical design aspects of the computer.

As computer designers pushed for higher and higher performance, and as

increasingly more of the computer resided within a single IC, the relationships

among architecture, organization, and hardware became so intertwined that a more

integrated viewpoint became necessary. According to this new viewpoint, architec-

ture as previously defined is more restrictively called instruction set architecture

(ISA), the structure of a particular hardware implementation of the ISA is referred

to as the microarchitecture or computer organization, and the term architecture is

used to encompass the whole of the computer, including instruction set architecture,

organization, and hardware. This unified view enables intelligent design trade- offs to

be made that are apparent only in a tightly coupled design process. These trade- offs

have the potential for producing better computer designs.

In this chapter, we focus on instruction set architecture. In the next, we will

look at two distinct instruction set architectures, with a focus on implementation

using two somewhat different architectures.

A computer usually has a variety of instructions and multiple instruction for-

mats. It is the function of the control unit to decode each instruction and provide the

control signals needed to process it. Simple examples of instructions and instruction

formats were presented in Section 8-7. We now expand this presentation by introduc-

ing typical instructions found in commercial general- purpose computers. We also

investigate the various instruction formats that may be encountered in a typical

computer, with an emphasis on the addressing of operands. The format of an instruc-

tion is depicted in a rectangular box symbolizing the bits of the binary instruction.

The bits are divided into groups called fields. The following are typical fields found in

instruction formats:

1. An opcode field, which specifies the operation to be performed.

2. An address field, which provides either a memory address or an address that

selects a processor register.

3. A mode field, which specifies the way the address field is to be interpreted.

Other special fields are sometimes employed under certain circumstances— for

example, a field that gives the number of positions to shift in a shift- type instruction

or an operand field in an immediate operand instruction.

9-1 / Computer Architecture Concepts 503

Basic Computer Operation Cycle

In order to comprehend the various addressing concepts to be presented in the next

two sections, we need to understand the basic operation cycle of the computer. The

computer’s control unit is designed to execute each instruction of a program in the

following sequence of steps:

1. Fetch the instruction from memory into the instruction register in the control

unit.

2. Decode the instruction.

3. Locate the operands used by the instruction.

4. Fetch operands from memory (if necessary).

5. Execute the operation in processor registers.

6. Store the results in the proper place.

7. Go back to Step 1 to fetch the next instruction.

As explained in Section 8-7, a register in the computer called the program
counter (PC) keeps track of the instructions in the program stored in memory. The

PC holds the address of the instruction to be executed next and is incremented each

time a word is read from the program in memory. The decoding done in Step 2 deter-

mines the operation to be performed and the addressing mode or modes of

the instruction. The operands in Step 3 are located from the addressing modes and

the address fields of the instruction. The computer executes the instruction, storing

the result, and returns to Step 1 to fetch the next instruction in sequence.

Register Set

The register set consists of all registers in the CPU that are accessible to the program-

mer. These registers are typically those mentioned in assembly- language programming

reference manuals. In the simple CPUs we have dealt with so far, the register set has

consisted of the programmer- accessible portion of the register file and the PC. The

CPUs can also contain other registers, such as the instruction register, registers in the

register file that are accessible only to hardware controls and/or microprograms, and

pipeline registers. These registers, however, are not directly accessible to the program-

mer and, as a consequence, are not a part of the register set, which represents the

stored information in the CPU that is visible to the programmer through the instruc-

tions. Thus, the register set has a considerable influence on instruction set architecture.

The register set for a realistic CPU is quite complex. In this chapter, we add

two registers to the set we have used thus far: the processor status register (PSR) and

the stack pointer (SP). The processor status register contains flip- flops that are selec-

tively set by status values C, N, V, and Z from the ALU and shifter. These stored sta-

tus bits are used to make decisions that determine the program flow, based on ALU

results, shifter results, or the contents of registers. The stored status bits in the

504 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

processor status register are also referred to as the condition codes or the flags.

Additional bits in the PSR will be discussed when we cover associated concepts in

this chapter.

9-2 OPERAND ADDRESSING

Consider an instruction such as ADD, which specifies the addition of two operands

to produce a result. Suppose that the result of the addition is treated as just another

operand. Then the ADD instruction has three operands: the addend, the augend, and

the result. An operand residing in memory is specified by its address. An operand

residing in a processor register is specified by a register address, a binary code of n

bits that specifies one of at most 2n registers in the register file. Thus, a computer with

16 processor registers, say, R0 through R15, has in its instructions one or more regis-

ter address fields of four bits. The binary code 0101, for example, designates regis-

ter R5.

Some operands, however, are not explicitly addressed, because their location is

specified either by the opcode of the instruction or by an address assigned to one of

the other operands. In such a case, we say that the operand has an implied address. If

the address is implied, then there is no need for a memory or register address field

for the operand in the instruction. On the other hand, if an operand has an address in

the instruction, then we say that the operand is explicitly addressed or has an explicit
address.

The number of operands explicitly addressed for a data- manipulation opera-

tion such as ADD is an important factor in defining the instruction set architecture

for a computer. An additional factor is the number of such operands that can be

explicitly addressed in memory by the instruction. These two factors are so import-

ant in defining the nature of instructions that they act a means of distinguishing

 different instruction set architectures. They also govern the length of computer

instructions.

We begin by illustrating simple programs with different numbers of explicitly

addressed operands per instruction. Since the explicitly addressed operands have up

to three memory or register addresses per instruction, we label the instructions as

having three, two, one, or zero addresses. Note that, of the three operands needed for

an instruction such as ADD, the addresses of all operands not having an address in

the instruction are implied.

To illustrate the influence of the number of operands on computer programs,

we will evaluate the arithmetic statement

X = (A + B)(C + D)

using three, two, one, and zero address instructions. We assume that the operands

are in memory addresses symbolized by the letters A, B, C, and D and must not be

changed by the program. The result is to be stored in memory at a location with

address X. The initial arithmetic operations to be used in the instructions are

addition, subtraction, and multiplication, with mnemonics ADD, SUB, and MUL,

respectively. Further, three operations needed to transfer data during the evalua-

tion are move, load, and store, denoted by MOVE, LD, and ST, respectively. LD

9-2 / Operand Addressing 505

moves an operand from memory to a register and ST from a register to memory.

Depending on the addresses permitted, MOVE can transfer data between regis-

ters, between memory locations, or from memory to register or register to

memory.

 Three- Address Instructions

A program that evaluates X = (A + B)(C + D) using three- address instructions is

as follows (a register transfer statement is shown for each instruction):

ADD T1, A, B M[T1] d M[A] + M[B]

ADD T2, C, D M[T2] d M[C] + M[D]

MUL X, T1, T2 M[X] d M[T1] * M[T2]

The symbol M[A] denotes the operand stored in memory at the address symbolized

by A. The symbol * designates multiplication. T1 and T2 are temporary storage

locations in memory.

This same program can use registers as the temporary storage locations:

ADD R1, A, B R1 d M[A] + M[B]

ADD R2, C, D R2 d M[C] + M[D]

MUL X, R1, R2 M[X] d R1 * R2

Use of registers reduces the data memory accesses required from nine to five. An

advantage of the three- address format is that it results in short programs for

evaluating expressions. A disadvantage is that the binary- coded instructions

require more bits to specify three addresses, particularly if they are memory

addresses.

 Two- Address Instructions

For two- address instructions, each address field can again specify either a possible

register or a memory address. The first operand address listed in the symbolic in-

struction also serves as the implied address to which the result of the operation is

transferred. The program is as follows:

MOVE T1, A M[T1] d M[A]

ADD T1, B M[T1] d M[T1] + M[B]

MOVE X, C M[X] d M[C]

ADD X, D M[X] d M[X] + M[D]

MUL X, T1 M[X] d M[X] * M[T1]

If a temporary storage register R1 is available, it can replace T1. Note that this pro-

gram takes five instructions instead of the three used by the three- address instruc-

tion program.

506 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

 One- Address Instructions

To perform instructions such as ADD, a computer with one- address instructions uses

an implied address— such as a register called an accumulator, ACC— for obtaining

one of the operands and as the location of the result. The program to evaluate the

arithmetic statement is as follows:

LD A ACC d M[A]

ADD B ACC d ACC + M[B]

ST X M[X] d ACC

LD C ACC d M[C]

ADD D ACC d ACC + M[D]

MUL X ACC d ACC * M[X]

ST X M[X] d ACC

All operations are done between the ACC register and a memory operand. In this

case, the number of instructions in the program has increased to seven and the num-

ber of memory data accesses is also seven.

 Zero- Address Instructions

To perform an ADD instruction with zero addresses, all three addresses in the in-

struction must be implied. A conventional way of achieving this goal is to use a stack,

which is a mechanism or structure that stores information such that the item stored

last is the first retrieved. Because of its “ last- in, first- out” nature, a stack is also called

a last- in, first- out (LIFO) queue. The operation of a computer stack is analogous to

that of a stack of trays or plates, in which the last tray placed on top of the stack is the

first to be taken off. Data- manipulation operations such as ADD are performed on

the stack. The word at the top of the stack is referred to as TOS. The word below it is

TOS-1. When one or more words are used as operands for an operation, they are re-

moved from the stack. The word below them then becomes the new TOS. When a

resulting word is produced, it is placed on the stack and becomes the new TOS. Thus,

TOS and a few locations below it are the implied addresses for operands, and TOS is

the implied address for the result. For example, the instruction that specifies an addi-

tion is simply

ADD

The resulting register transfer action is TOS d TOS + TOS-1. Thus, there are no

registers or register addresses used for data- manipulation instructions in a stack

architecture. Memory addressing, however, is used in such architectures for data

transfers. For instance, the instruction

PUSH X

9-2 / Operand Addressing 507

results in TOS d M[X], a transfer of the word in address X in memory to the top of

the stack. A corresponding operation,

POP X

results in M[X] d TOS, a transfer of the entry at the top of the stack to address X in

memory.

The program for evaluating the sample arithmetic statement for the zero-

 address situation is as follows:

PUSH A TOS d M[A]

PUSH B TOS d M[B]

ADD TOS d TOS + TOS-1

PUSH C TOS d M[C]

PUSH D TOS d M[D]

ADD TOS d TOS+TOS-1

MUL TOS d TOS * TOS-1

POP X M[X] d TOS

This program requires eight instructions— one more than the number required by

the previous one- address program. However, it uses addressed memory locations

or registers only for PUSH and POP and not to execute data- manipulation

instructions involving ADD and MUL. Note that memory data accesses may be

necessary, however, depending upon the stack implementation. Often, stacks uti-

lize a fixed number of registers near the top of the stack. If a given program can be

executed only within these stack locations, memory data accesses are necessary

for fetching the initial operands and storing the final result only. But, if the pro-

gram requires more temporary, intermediate storage, additional data accesses to

memory are required.

Addressing Architectures

The programs just presented change if the number of addresses to the memory in the

instructions is restricted or if the memory addresses are restricted to specific instruc-

tions. These restrictions, combined with the number of operands addressed, define

addressing architectures. We can illustrate such architectures with the evaluation of

an arithmetic statement in a three- address architecture that has all of the accesses to

memory. Such an addressing scheme is called a memory- to- memory architecture.

This architecture has only control registers, such as the program counter in

the CPU. All operands come directly from memory, and all results are sent directly

to memory. The formats of data transfer and manipulation instructions contain from

one to three address fields, all of which are used for memory addresses. For the previ-

ous example, three instructions are required, but if an extra word must appear in the

instruction for each memory address, then up to four memory reads are required to

508 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

fetch each instruction. Including the fetching of operands and storing of results, the

program to perform the arithmetic operation would require 21 accesses to memory.

If memory accesses take more than one clock cycle, the execution time would be in

excess of 21 clock periods. Thus, even though the instruction count is low, the execu-

tion time is potentially high. Also, providing the capability for all operations to ac-

cess memory increases the complexity of the control structures and may lengthen

the clock cycle. Thus, this memory- to- memory architecture is typically not used in

new designs.

In contrast, the three- address register- to- register or load/store architecture,

which allows only one memory address and restricts its use to load and store types

of instructions, is typical in modern processors. Such an architecture requires a

sizeable register file, since all data manipulation instructions use register oper-

ands. With this architecture, the program to evaluate the sample arithmetic state-

ment is as follows:

LD R1, A R1 d M[A]

LD R2, B R2 d M[B]

ADD R3, R1, R2 R3 d R1 + R2

LD R1, C R1 d M[C]

LD R2, D R2 d M[D]

ADD R1, R1, R2 R1 d R1 + R2

MUL R1, R1, R3 R1 d R1 * R3

ST X, R1 M[X] d R1

Note that the instruction count increases to eight compared to three for the

 three- address, memory- to- memory case. Note also that the operations are the

same as those for the stack case, except for the need for register addresses. By

using registers, the number of accesses to memory for instructions, addresses, and

operands is reduced from 21 to 18. If addresses can be obtained from registers

instead of memory, as discussed in the next section, this number can be further

reduced.

Variations on the previous two addressing architectures include three- address

instructions and two- address instructions with one or two of the addresses to mem-

ory. The program lengths and number of memory accesses tend to be intermediate

between the previous two architectures. An example of a two- address instruction

with a single memory address allowed is

ADD R1,A R1 d R1 + M[A]

This register- memory type of architecture remains common among the current

instruction set architectures, primarily to provide compatibility with older software

using a specific architecture.

The program with one- address instructions illustrated previously gives the

 single- accumulator architecture. Since this architecture has no register file, its single

address is for accessing memory. It requires 21 accesses to memory to evaluate the

9-2 / Operand Addressing 509

sample arithmetic statement. In more complex programs, significant additional

memory accesses would be needed for temporary storage locations in memory.

Because of its large number of memory accesses, this architecture is inefficient and

consequently, is restricted to use in CPUs for simple, low- cost applications that do

not require high performance.

The zero- address instruction case using a stack supports the concept of a stack
architecture. Data- manipulation instructions such as ADD use no address, since they

are performed on the top few elements of the stack. Single memory- address load

and store operations, as shown in the program to evaluate the sample arithmetic

statement, are used for data transfer. Since most of the stack is located in memory, as

discussed earlier, one or more hidden memory accesses may be required for each

stack operation. As register- register and load/store architectures have made strong

performance advances, the high frequency of memory accesses in stack architectures

has made them unattractive. However, stack architectures have begun to borrow

technological advances from these other architectures. These architectures store

substantial numbers of stack locations in the processor chip and handle transfers

between these locations and the memory transparently. Stack architectures are par-

ticularly useful for rapid interpretation of high- level language programs in which the

intermediate code representation uses stack operations.

Stack architectures are compatible with a very efficient approach to expression

processing which uses postfix notation rather than the traditional infix notation to

which we are accustomed. The infix expression

(A + B) * C + (D * E)

with the operators between the operands can be written as the postfix expression

A B + C * D E * +

Postfix notation is called reverse Polish notation (RPN), honoring the Polish mathe-

matician Jan Lukasiewicz, who proposed prefix (the reverse of postfix) notation;

 prefix was also known as Polish notation.

Conversion of (Α + Β) * C + (D * E) to RPN can be achieved graphi-

cally, as shown in Figure 9-1. When the path shown traversing the graph passes a

A B

C D E

 FIGURE 9-1
Graph for Example of Conversion from Infix to RPN

510 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

variable, that variable is entered into the RPN expression. When the path passes an

operation for the final time, the operation is entered into the RPN expression.

It is very easy to develop a program for an RPN expression. Whenever a

variable is encountered, it is pushed onto the stack. Whenever an operation is

encountered, it is executed on the implicit address TOS, or addresses TOS and

TOS-1, with the result placed in the new TOS. The program for the example RPN

expression is

PUSH A

PUSH B

ADD

PUSH C

MUL

PUSH D

PUSH E

MUL

ADD

The execution of the program is illustrated by the successive stack states shown in

Figure 9-2. As an operand is pushed on the stack, the stack grows by one stack loca-

tion. When an operation is performed, the operand in the TOS is popped off and

temporarily stored in a register. The operation is applied to the stored operand and

the new TOS operand, and the result replaces the TOS operand.

9-3 ADDRESSING MODES

The operation field of an instruction specifies the operation to be performed. This

operation must be executed on data stored in computer registers or memory words.

How the operands are selected during program execution is dependent on the ad-

dressing mode of the instruction. The addressing mode specifies a rule for interpret-

ing or modifying the address field of the instruction before the operand is actually

referenced. The address of the operand produced by the application of such a rule is

called the effective address. Computers use addressing- mode techniques to accom-

modate one or both of the following provisions:

A

A

B C

E

D

D

 FIGURE 9-2
Stack Activity for Execution of Example Stack Program

9-3 / Addressing Modes 511

1. To give programming flexibility to the user via pointers to memory, counters for

loop control, indexing of data, and relocation of programs.

2. To reduce the number of bits in the address fields of the instruction.

The availability of various addressing modes gives the experienced programmer the

ability to write programs that require fewer instructions. The effect, however, on

throughput and execution time must be carefully weighed. For example, the pres-

ence of more complex addressing modes may actually result in lower throughput

and longer execution time. Also, most machine- executable programs are produced

by compilers that often do not use complex addressing modes effectively.

In some computers, the addressing mode of the instruction is specified by a

distinct binary code. Other computers use a common binary code that designates

both the operation and the addressing mode of the instruction. Instructions may be

defined with a variety of addressing modes, and sometimes two or more addressing

modes are combined in one instruction.

An example of an instruction format with a distinct addressing- mode field is

shown in Figure 9-3. The opcode specifies the operation to be performed. The mode

field is used to locate the operands needed for the operation. There may or may not

be an address field in the instruction. If there is, it may designate a memory address

or a processor register. Moreover, as discussed in the previous section, the instruc-

tion may have more than one address field. In that case, each address field is associ-

ated with its own particular addressing mode.

Implied Mode

Although most addressing modes modify the address field of the instruction, one

mode needs no address field at all: the implied mode. In this mode, the operand is

specified implicitly in the definition of the opcode. It is the implied mode that pro-

vides the location for the two- operand- plus- result operations when fewer than three

addresses are contained in the instruction. For example, the instruction “comple-

ment accumulator” is an implied- mode instruction because the operand in the accu-

mulator register is implied in the definition of the instruction. In fact, any instruction

that uses an accumulator without a second operand is an implied- mode instruction.

For example, data- manipulation instructions in a stack computer, such as ADD, are

 implied- mode instructions, since the operands are implied to be on top of stack.

Immediate Mode

In the immediate mode, the operand is specified in the instruction itself. In other

words, an immediate- mode instruction has an operand field rather than an address

Opcode Mode Address or operand

 FIGURE 9-3
Instruction Format with Mode Field

512 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

field. The operand field contains the actual operand to be used in conjunction with

the operation specified in the instruction. Immediate- mode instructions are useful,

for example, for initializing registers to a constant value.

Register and Register- Indirect Modes

Earlier, we mentioned that the address field of the instruction may specify either a

memory location or a processor register. When the address field specifies a processor

register, the instruction is said to be in the register mode. In this mode, the operands

are in registers that reside within the processor of the computer. The particular regis-

ter is selected by a register address field in the instruction format.

In the register- indirect mode, the instruction specifies a register in the proces-

sor whose content gives the address of the operand in memory. In other words, the

selected register contains the memory address of the operand, rather than the oper-

and itself. Before using a register- indirect mode instruction, the programmer must

ensure that the memory address is available in the processor register. A reference to

the register is then equivalent to specifying a memory address. The advantage of

 register- indirect mode is that the address field of the instruction uses fewer bits to

select a register than would have been required to specify a memory address directly.

An autoincrement or autodecrement mode is similar to the register- indirect

mode, except that the register is incremented or decremented after (or before) its

address value is used to access memory. When the address stored in the register

refers to an array of data in memory, it is convenient to increment the register after

each access to the array. This can be achieved by using a separate register- increment

instruction. However, because it is such a common requirement, some computers

incorporate an autoincrement mode that increments the content of the register con-

taining the address after the memory data are accessed.

In the following instruction, an autoincrement mode is used to add the con-

stant value 3 to the elements of an array addressed by register R1:

ADD (R1)+ , 3 M[R1] d M[R1]+3, R1 d R1+1

R1 is initialized to the address of the first element in the array. Then the ADD instruc-

tion is repeatedly executed until the addition of 3 to all elements of the array has

occurred. The register transfer statement accompanying the instruction shows the

addition of 3 to the memory location addressed by R1 and the incrementing of R1 in

preparation for the next execution of the ADD on the next element in the array.

Direct Addressing Mode

In the direct addressing mode, the address field of the instruction gives the address of

the operand in memory in a data- transfer or data- manipulation instruction. An

example of a data- transfer instruction is shown in Figure 9-4. The instruction in mem-

ory consists of two words. The first, at address 250, has the opcode for “load to ACC”

and a mode field specifying a direct address. The second word of the instruction, at

address 251, contains the address field, symbolized by ADRS, and is equal to 500. The

PC holds the address of the instruction, which is brought from memory using two

9-3 / Addressing Modes 513

memory accesses. Simultaneously with or after the completion of the first access, the

PC is incremented to 251. Then the second access for ADRS occurs and the PC is

again incremented. The execution of the instruction results in the operation

ACC d M[ADRS]

Since ADRS = 500 and M[500] = 800, the ACC receives the number 800. After the

instruction is executed, the PC holds the number 252, which is the address of the

next instruction in the program.

Now consider a branch- type instruction, as shown in Figure 9-5. If the contents

of ACC equal 0, control branches to ADRS; otherwise, the program continues with

the next instruction in sequence. When ACC = 0, the branch to address 500 is

accomplished by loading the value of the address field ADRS into the PC. Control

then continues with the instruction at address 500. When ACC ≠ 0, no branch

occurs, and the PC, which was incremented twice during the fetch of the instruction,

holds the address 302, the address of the next instruction in sequence.

Sometimes the value given in the address field is the address of the operand,

but sometimes it is just an address from which the address of the operand is calcu-

lated. To differentiate among the various addressing modes, it is useful to distinguish

between the address part of the instruction, as given in the address field, and the

address used by the control when executing the instruction. Recall that we refer to

the latter as the effective address.

Indirect Addressing Mode

In the indirect addressing mode, the address field of the instruction gives the address

at which the effective address is stored in memory. The control unit fetches the

 instruction from memory and uses the address part to access memory again in order

Memory

Opcode Mode

ADRS

Next instruction

Program

800

Data

250

251

252

500

PC = 250

ACC

Opcode:
Mode:
ADRS:
Operation:

Load ACC
Direct address
500
ACC 800

 FIGURE 9-4
Example Demonstrating Direct Addressing for a Data- Transfer Instruction

514 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

to read the effective address. Consider the instruction “load to ACC” given in Fig-

ure 9-4. If the mode specifies an indirect address, the effective address is stored in

M[ADRS]. Since ADRS = 500 and M[ADRS] = 800, the effective address is 800.

This means that the operand loaded into the ACC is the one found in memory at

address 800 (not shown in the figure).

Relative Addressing Mode

Some addressing modes require that the address field of the instruction be added to

the content of a specified register in the CPU in order to evaluate the effective ad-

dress. Often, the register used is the PC. In the relative addressing mode, the effec-

tive address is calculated as follows:

Effective address = Address part of the instruction + Contents of PC

The address part of the instruction is considered to be a signed number that can be

either positive or negative. When this number is added to the contents of the PC, the

result produces an effective address whose position in memory is relative to the

address of the next instruction in the program.

To clarify this with an example, let us assume that the PC contains the number

250 and the address part of the instruction contains the number 500, as in Figure 9-6,

with the mode field specifying a relative address. The instruction at location 250 is read

from memory during the fetch phase of the operation cycle, and the PC is incremented

by 1 to 251. Since the instruction has a second word, the control unit reads the address

field into a control register, and the PC is incremented to 252. The computation of the

effective address for the relative addressing mode is 252 + 500 = 752. The result is

that the operand associated with the instruction is 500 locations away, relative to the

location of the next instruction.

Relative addressing is often used in branch- type instructions when the branch

address is in a location close to the instruction word. Relative addressing produces

 FIGURE 9-5
Example Demonstrating Direct Addressing in a Branch Instruction

Memory

Opcode Mode

ADRS

Next instruction

Program

Instruction

Program

300

301

302

500

PC = 300

ACC

Opcode:
Mode:
ADRS:
Operation:

Direct address
500

PC 302 if ACC
 0

9-3 / Addressing Modes 515

more compact instructions, since the relative address can be specified with fewer bits

than are required to designate the entire memory address. This permits the relative

address field to be included in the same instruction word as the opcode.

Indexed Addressing Mode

In the indexed addressing mode, the content of an index register is added to the ad-

dress part of the instruction to obtain the effective address. The index register may

be a special CPU register or simply a register in a register file. We illustrate the use of

indexed addressing by considering an array of data in memory. The address field of

the instruction defines the beginning address of the array. Each operand in the array

is stored in memory relative to the beginning address. The distance between the be-

ginning address and the address of the operand is the index value stored in the regis-

ter. Any operand in the array can be accessed with the same instruction, provided

that the index register contains the correct index value. The index register can be in-

cremented to facilitate access to consecutive operands.

Some computers dedicate one CPU register to function solely as an index reg-

ister. This register is addressed implicitly when an index- mode instruction is used. In

Memory

Opcode Mode

ADRS or NBR = 500

Next instruction

Opcode: Load to ACC

ACC

R1 = 400

PC = 250

700

800

600

300

250

251

252

400

500

752

800

900 200

 FIGURE 9-6
Numerical Example for Addressing Modes

516 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

computers with many processor registers, any CPU register can be used as an index

register. In such a case, the index register to be used must be specified with a register

field within the instruction format.

A specialized variation of the index mode is the base- register mode. In this

mode, the contents of a base register are added to the address part of the instruction

to obtain the effective address. This is similar to indexed addressing, except that the

register is called a base register instead of an index register. The difference between

the two modes is in the way they are used rather than in the way addresses are com-

puted: an index register is assumed to hold an index number that is relative to the

address field of the instruction; a base register is assumed to hold a base address, and

the address field of the instruction gives a displacement relative to the base address.

Summary of Addressing Modes

In order to show the differences among the various modes, we investigate the effect

of the addressing mode on the instruction shown in Figure 9-6. The instruction in

addresses 250 and 251 is “load to ACC,” with the address field ADRS (or an operand

NBR) equal to 500. The PC has the number 250 for fetching this instruction. The

content of a processor register R1 is 400, and the ACC receives the result after the

instruction is executed. In the direct mode, the effective address is 500, and the oper-

and to be loaded into the ACC is 800. In the immediate mode, the operand 500 is

loaded into the ACC. In the indirect mode, the effective address is 800, and the oper-

and is 300. In the relative mode, the effective address is 500 + 252 = 752, and the

operand is 600. In the index mode, the effective address is 500 + 400 = 900, assum-

ing that R1 is the index register. In the register mode, the operand is in R1, and 400 is

loaded into the ACC. In the register- indirect mode, the effective address is the con-

tents of R1, and the operand loaded into the ACC is 700.

Table 9-1 lists the value of the effective address and the operand loaded into the

ACC for the seven addressing modes. The table also shows the operation with a

 TABLE 9-1
Symbolic Convention for Addressing Modes

Addressing

Mode

Symbolic

Convention

Register

Transfer

Effective

Address

Contents

ACC

Direct LDA ADRS ACC d M[ADRS] 500 800

Immediate LDA #NBR ACC d NBR 251 500

Indirect LDA [ADRS] ACC d M[M[ADRS]] 800 300

Relative LDA $ADRS ACC d M[ADRS + PC] 752 600

Index LDA ADRS (R1) ACC d M[ADRS + R1] 900 200

Register LDA R1 ACC d R1 — 400

 Register- indirect LDA (R1) ACC d M[R1] 400 700

9-4 / Instruction Set Architectures 517

register transfer statement and a symbolic convention for each addressing mode.

LDA is the symbol for the load- to- accumulator opcode. In the direct mode, we use

the symbol ADRS for the address part of the instruction. The # symbol precedes the

operand NBR in the immediate mode. The symbol ADRS enclosed in square brack-

ets symbolizes an indirect address, which some compilers or assemblers designate

with the symbol @. The symbol $ before the address makes the effective address rela-

tive to the PC. An index- mode instruction is recognized by the symbol of a register

placed in parentheses after the address symbol. The register mode is indicated by giv-

ing the name of the processor register following LDA. In the register- indirect mode,

the name of the register that holds the effective address is enclosed in parentheses.

9-4 INSTRUCTION SET ARCHITECTURES

Computers provide a set of instructions to permit computational tasks to be carried

out. The instruction sets of different computers differ in several ways from each oth-

er. For example, the binary code assigned to the opcode field varies widely for differ-

ent computers. Likewise, although a standard exists (see Reference 2), the symbolic

name given to instructions varies for different computers. In comparison to these

minor differences, however, there are two major types of instruction set architec-

tures that differ markedly in the relationship of hardware to software: Complex in-
struction set computers (CISCs) provide hardware support for high- level language

operations and have compact programs; reduced instruction set computers (RISCs)

emphasize simple instructions and flexibility that, when combined, provide higher

throughput and faster execution. These two architectures can be distinguished by

considering the properties that characterize their instruction sets.

A RISC architecture has the following properties:

1. Memory accesses are restricted to load and store instructions, and data manip-

ulation instructions are register- to- register.

2. Addressing modes are limited in number.

3. Instruction formats are all of the same length.

4. Instructions perform elementary operations.

The goal of a RISC architecture is high throughput and fast execution. To achieve

these goals, accesses to memory, which typically take longer than other elementary

operations, are to be avoided, except for fetching instructions. A result of this view is

the need for a relatively large register file. Because of the fixed instruction length,

limited addressing modes, and elementary operations, the control unit of a RISC is

comparatively simple and is typically hardwired. In addition, the underlying organi-

zation is universally a pipelined design, as covered in Chapter 10.

A purely CISC architecture has the following properties:

1. Memory access is directly available to most types of instructions.

2. Addressing modes are substantial in number.

3. Instruction formats are of different lengths.

4. Instructions perform both elementary and complex operations.

518 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

The goal of the CISC architecture is to match more closely the operations used in

programming languages and to provide instructions that facilitate compact programs

and conserve memory. In addition, efficiencies in performance may result through a

reduction in the number of instruction fetches from memory, compared with the

number of elementary operations performed. Because of the high memory accessi-

bility, the register files in a CISC may be smaller than in a RISC. Also, because of the

complexity of the instructions and the variability of the instruction formats, micro-

programmed control is more likely to be used. In the quest for speed, the micropro-

grammed control in newer designs is likely to be controlling a pipelined datapath.

CISC instructions are converted to a sequence of RISC- like operations that are pro-

cessed by the RISC- like pipeline, as discussed in detail in Chapter 10.

Actual instruction set architectures range between those which are purely

RISC and those which are purely CISC. Nevertheless, there is a basic set of ele-

mentary operations that most computers include among their instructions. In this

chapter, we will focus primarily on elementary instructions that are included in

both CISC and RISC instruction sets. Most elementary computer instructions can

be classified into three major categories: (1) data- transfer instructions, (2) data-

 manipulation instructions, and (3) program- control instructions.

 Data- transfer instructions cause transfer of data from one location to another

without changing the binary information content. Data- manipulation instructions

perform arithmetic, logic, and shift operations. Program- control instructions provide

 decision- making capabilities and change the path taken by the program when exe-

cuted in the computer. In addition to the basic instruction set, a computer may have

other instructions that provide special operations for particular applications.

9-5 DATA- TRANSFER INSTRUCTIONS

 Data- transfer instructions move data from one place in the computer to another

without changing the data. Typical transfers are between memory and processor reg-

isters, between processor registers and input and output registers, and among the

processor registers themselves.

Table 9-2 gives a list of eight typical data- transfer instructions used in many com-

puters. Accompanying each instruction is a mnemonic symbol, the assembly- language

abbreviation recommended by an IEEE standard (Reference 2). Different computers,

however, may use different mnemonics for the same instruction name. The load

instruction is used to designate a transfer from memory to a processor register. The

store instruction designates a transfer from a processor register into a memory word.

The move instruction is used in computers with multiple processor registers to desig-

nate a transfer from one register to another. It is also used for data transfer between

registers and memory and between two memory words.

The exchange instruction exchanges information between two registers,

between a register and a memory word, or between two memory words. The push

and pop instructions are for stack operations described next.

Stack Instructions

The stack architecture introduced earlier possesses features that facilitate a number

of data- processing and control tasks. A stack is used in some electronic calculators

9-5 / Data-Transfer Instructions 519

and computers for the evaluation of arithmetic expressions. Unfortunately, because

of the negative effects on performance of having the stack reside primarily in memo-

ry, a stack in a computer typically handles only state information related to proce-

dure calls and returns and interrupts, as explained in Sections 9-8 and 9-9.

The stack instructions push and pop transfer data between a memory stack and

a processor register or memory. The push operation places a new item onto the top

of the stack. The pop operation removes one item from the stack so that the stack

pops up. However, nothing is really physically pushed or popped in the stack. Rather,

the memory stack is essentially a portion of a memory address space accessed by an

address that is always incremented or decremented before or after the memory

access. The register that holds the address for the stack is called a stack pointer (SP)

because its value always points to TOS, the item at the Top Of Stack. Push and pop

operations are implemented by decrementing or incrementing the stack pointer.

Figure 9-7 shows a portion of a memory organized as a stack that grows from

higher to lower addresses. The stack pointer, SP, holds the binary address of the item

that is currently on top of the stack. Three items are presently stored in the stack: A, B,

 TABLE 9-2
Typical Data Transfer Instructions

Name Mnemonic

Load LD

Store ST

Move MOVE

Exchange XCH

Push PUSH

Pop POP

Input IN

Output OUT

R1

C

B

A

100

101

102

103

104

Address

Memory

 FIGURE 9-7
Memory Stack

520 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

and C, in consecutive addresses 103, 102, and 101, respectively. Item C is on top of the

stack, so SP contains 101. To remove the top item, the stack is popped by reading the

item at address 101 and incrementing SP. Item B is now on top of the stack, since SP

contains address 102. To insert a new item, the stack is pushed by first decrementing SP

and then writing the new item on top of the stack using SP as the memory address. Note

that item C has been read out of the stack, but is not physically removed from it. This

does not matter as far as the stack operation is concerned, because when the stack is

pushed, a new item is written over it regardless of what was there before.

We assume that the items in the stack communicate with a data register R1 or a

memory location X. A new item is placed on the stack with the push operation sequence:

SP d SP - 1

M[SP] d R1

The stack pointer is decremented so that it points at the address of the next word. A

memory write microoperation inserts the word from R1 onto the top of the stack.

Note that SP holds the address of the top of the stack and that M[SP] denotes the

memory word specified by the address presently in SP. An item is deleted from the

stack with the pop operation pair:

R1 d M[SP]

SP d SP + 1

The top item is read from the stack into R1, and the stack pointer is incremented to

point at the next item in the stack, which is the new top of the stack. The two micro-

operations described in this case can be in parallel.

The two microoperations needed for either the push or the pop operation are

an access to memory through SP and an update of SP. In Figure 9-7, the stack grows

by decreasing the memory address. By contrast, a stack may be constructed to grow

by increasing the memory address. In such a case, SP is incremented for the push

operation and decremented for the pop operation. A stack may also be constructed

so that SP points to the next empty location above the top of the stack. In that case,

the order of execution of the microoperations must be modified.

A stack pointer is loaded with an initial value, which must be the bottom

address of an assigned stack in memory. From then on, SP is automatically decre-

mented or incremented with every push or pop operation. The advantage of a mem-

ory stack is that the processor can refer to it without having to specify an address,

since the address is always available and automatically updated in the stack pointer.

The final pair of data transfer instructions, input and output, depend on the

type of input- output used, as described next.

Independent versus Memory- Mapped I/O

Input and output (I/O) instructions transfer data between processor registers and

input and output devices. These instructions are similar to load and store instruc-

tions, except that the transfers are to and from external registers instead of memory

words. The computer has a number of input and output ports, with one or more ports

9-6 / Data-Manipulation Instructions 521

dedicated to communication with a specific input or output device. A port is typically

a register with input and/or output lines attached to the device. The particular port is

chosen by an address, in a manner similar to the way an address selects a word in

memory. Input and output instructions include an address field in their format, for

specifying the particular port selected for the transfer of data.

Port addresses are assigned in two ways. In the independent I/O system, the

address ranges assigned to memory and I/O ports are independent from each other.

The computer has distinct input and output instructions, as listed in Table 9-2, con-

taining a separate address field that is interpreted by the control and used to select a

particular I/O port. Independent I/O addressing isolates memory and I/O selection,

so that the memory address range is not affected by the port address assignment. For

this reason, the method is also referred to as an isolated I/O configuration.

In contrast to independent I/O, memory- mapped I/O assigns a subrange of the

memory addresses for addressing I/O ports. There are no separate addresses for han-

dling input and output transfers, since I/O ports are treated as memory locations in

one common address range. Each I/O port is regarded as a memory location, similar

to a memory word. Computers that adopt the memory- mapped scheme have no dis-

tinct input or output instructions, because the same instructions are used for manip-

ulating both memory and I/O data. For example, the load and store instructions used

for memory transfer are also used for I/O transfer, provided that the address associ-

ated with the instruction is assigned to an I/O port and not to a memory word. The

advantage of this scheme is the simplicity that results with the same set of instruc-

tions serving for both memory and I/O access.

9-6 DATA- MANIPULATION INSTRUCTIONS

 Data- manipulation instructions perform operations on data and provide the compu-

tational capabilities of the computer. In a typical computer, they are usually divided

into three basic types:

1. Arithmetic instructions.

2. Logical and bit- manipulation instructions.

3. Shift instructions.

A list of elementary data- manipulation instructions looks very much like the list of

microoperations given in Chapter 8. However, an instruction is typically processed

by executing a sequence of one or more microinstructions. A microoperation is an

elementary operation executed by the hardware of the computer under the control

of the control unit. In contrast, an instruction may involve several elementary opera-

tions that fetch the instruction, bring the operands from appropriate processor regis-

ters, and store the result in the specified location.

Arithmetic Instructions

The four basic arithmetic instructions are addition, subtraction, multiplication, and

division. Most computers provide instructions for all four operations. A list of typical

arithmetic instructions is given in Table 9-3. The increment instruction adds one to

522 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

the value stored in a register or memory word. A common characteristic of the incre-

ment operation, when executed on a computer word, is that a binary number of all 1s

produces a result of all 0s when incremented. The decrement instruction subtracts

one from a value stored in a register or memory word. When decremented, a number

of all 0s produces a number of all 1s.

The add, subtract, multiply, and divide instructions may be available for differ-

ent types of data. The data type assumed to be in processor registers during the exe-

cution of these arithmetic operations is included in the definition of the opcode. An

arithmetic instruction may specify unsigned or signed integers, binary or decimal

numbers, or floating- point data. The arithmetic operations with binary integers were

presented in Chapters 1 and 3. The floating- point representation is used for scientific

calculations and is presented in the next section.

The number of bits in any register is finite; therefore, the results of arithmetic

operations are of finite precision. Most computers provide special instructions to

facilitate double- precision arithmetic. A carry flip- flop is used to store the carry from

an operation. The instruction “add with carry” performs the addition with two oper-

ands plus the value of the carry from the previous computation. Similarly, the “sub-

tract with borrow” instruction subtracts two operands and a borrow that may have

resulted from a previous operation.

The subtract reverse instruction reverses the order of the operands, performing

B - A instead of A - B. The negate instruction performs the 2s complement of a

signed number, which is equivalent to multiplying the number by -1.

Logical and Bit- Manipulation Instructions

Logical instructions perform binary operations on words stored in registers or mem-

ory words. They are useful for manipulating individual bits or a group of bits that

represent binary- coded information. Logical instructions consider each bit of the op-

erand separately and treat it as a binary variable. By proper application of the logical

 TABLE 9-3
Typical Arithmetic Instructions

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with borrow SUBB

Subtract reverse SUBR

Negate NEG

9-6 / Data-Manipulation Instructions 523

instructions, it is possible to change bit values, to clear a group of bits, or to insert

new bit values into operands stored in registers or memory.

Some typical logical and bit- manipulation instructions are listed in Table 9-4.

The clear instruction causes the specific operand to be replaced by 0s. The set instruc-

tion causes the operand to be replaced by 1s. The complement instruction inverts all

the bits of the operand. The AND, OR, and XOR instructions produce the corre-

sponding logical operations on individual bits of two operands. Although logical

instructions perform Boolean operations, when used on words they often are viewed

as performing bit- manipulation operations. Three bit- manipulation operations are

possible. A selected bit can be cleared to 0, set to 1, or complemented. The three log-

ical instructions are usually applied to do just that.

The AND instruction is used to clear a bit or a selected group of bits of an

operand to 0. For any Boolean variable X, the relationship X # 0 = 0 dictates that a

binary variable ANDed with a 0 produces a 0; and similarly, the relationship

X # 1 = X dictates that the variable does not change when ANDed with a 1.

Therefore, the AND instruction is used to selectively clear bits of an operand by

ANDing the operand with a word that has 0s in the bit positions that must be cleared

and 1s in the bit positions that must remain the same. The AND instruction is also

called a mask because, by inserting 0s, it masks a selected portion of an operand.

AND is also sometimes referred to as a bit clear instruction.

The OR instruction is used to set a bit or a selected group of bits of an operand

to 1. For any Boolean variable X, the relationship X + 1 = 1 dictates that a binary

variable ORed with a 1 produces a 1; similarly, the relationship X + 0 = X dictates

that the variable does not change when ORed with a 0. Therefore, the OR instruc-

tion can be used to selectively set bits of an operand by ORing the operand with a

word with 1s in the bit positions that must be set to 1. The OR instruction is some-

times called a bit set instruction.

The XOR instruction is used to selectively complement bits of an operand.

This is because of the Boolean relationships X ⊕ 1 = X and X ⊕ 0 = X. A binary

variable is complemented when XORed with a 1, but does not change value when

 TABLE 9-4
Typical Logical and Bit- Manipulation Instructions

Name Mnemonic

Clear CLR

Set SET

Complement NOT

AND AND

OR OR

 Exclusive- OR XOR

Clear carry CLRC

Set carry SETC

Complement carry COMC

524 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

XORed with a 0. The XOR instruction is sometimes called a bit complement
instruction.

Other bit- manipulation instructions included in Table 9-4 can clear, set, or

complement the carry bit. Additional instructions can clear, set, or complement

other status bits or flag bits in a similar manner.

Shift Instructions

Instructions to shift the content of a single operand are provided in several varieties.

Shifts are operations in which the bits of the operand are moved to the left or to the

right. The incoming bit shifted in at the end of the word determines the type of shift.

Instead of using just a 0, as for sl and sr in Chapter 8, here we add further possibili-

ties. The shift instructions may specify either logical shifts, arithmetic shifts, or rotate-

 type operations.

Table 9-5 lists four types of shift instructions, both right and left versions. The

small diagrams shown in the right column show the bit movement for each of the shifts

in the Intel IA- 32 ISA. In all cases, the outgoing bit is copied into the carry status

bit C. The logical shifts insert 0 into the incoming bit position during the shift. Arithmetic

shifts conform to the rules for shifting 2s complement signed numbers. The arithmetic

shift right instruction uses sign extension, filling the leftmost position with its own value

during the shift. The arithmetic shift left instruction inserts 0 into the incoming bit in the

rightmost position and is identical to the logical shift left instruction.

The rotate instructions produce a circular shift: the values shifted out of the

outgoing bit are rotated back into the incoming bit. The rotate- with- carry instruc-

tions treat the carry bit as an extension of the register whose word is being rotated.

 TABLE 9-5
Typical Shift Instructions

Name Mnemonic Diagram

Logical shift right SHR 0 C

Logical shift left SHL 0C

Arithmetic shift right SHRA
C

Arithmetic shift left SHLA 0C

Rotate right ROR
C

Rotate left ROL
C

Rotate right with carry RORC
C

Rotate left with carry ROLC
C

9-7 / Floating-Point Computations 525

Thus, a rotate left with carry transfers the carry bit into the incoming bit in the right-

most bit position of the register, transfers the outgoing bit from the leftmost bit of

the register into the carry, and shifts the entire register to the left.

Most computers have a multiple- field format for the shift instruction that pro-

vides for shifting multiple, rather than just one, bit positions. One field contains the

opcode, and another contains the number of positions that an operand is to be

shifted. A shift instruction may include the following five fields:

OP REG TYPE RL COUNT

OP is the opcode field for specifying a shift, and REG is a register address that

specifies the location of the operand. TYPE is a 2-bit field that specifies one of the

four types of shifts (logical, arithmetic, rotate, and rotate with carry), while RL is a

1-bit field that specifies whether a shift is to the right or the left. COUNT is a k- bit

field that specifies shifts of up to 2k - 1 positions. With such a format, it is possible

to specify the type of shift, the direction of the shift, and the number of positions to

be shifted, all in one instruction.

Note that for shifts of greater than one position, the filling of the positions

vacated by the shift is consistent with the diagrams shown in Table 9-5. In the Intel IA-

 32 ISA, in addition to the use of the carry bit C, the N and Z condition code bits are

also set based on the shift results. The overflow bit, V, is defined only for 1-bit shifts.

9-7 FLOATING- POINT COMPUTATIONS

In many scientific calculations, the range of numbers is very large. In a computer, the

way to express such numbers is in floating- point notation. The floating- point number

has two parts, one containing the sign of the number and a fraction (sometimes called

a mantissa) and the other designating the position of the radix point in the number

and called the exponent. For example, the decimal number +6132.789 is represented

in floating- point notation as

Fraction Exponent

.6132789 04

The value of the exponent indicates that the actual position of the decimal point is

four positions to the right of the indicated decimal point in the fraction. This repre-

sentation is equivalent to the scientific notation + .6132789 * 10+4. Decimal floating-

 point numbers are interpreted as representing a number in the form

F * 10E

where F is the fraction and E the exponent. Only the fraction and the exponent are

physically represented in computer registers; radix 10 and the decimal point of the

fraction are assumed and are not shown explicitly. A floating- point binary number is

represented in a similar manner, except that it uses radix 2 for the exponent. For

example, the binary number +1001.11 is represented with an 8-bit fraction and 6-bit

exponent as

526 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

Fraction Exponent

01001110 000100

The fraction has a 0 in the leftmost position to denote a plus. The binary point of the

fraction follows the sign bit, but is not shown in the register. The exponent has the

equivalent binary number +4. The floating- point number is equivalent to

F * 2E = +(0.1001110)2 * 2+4

A floating- point number is said to be normalized if the most significant digit of

the fraction is nonzero. For example, the decimal fraction 0.350 is normalized, but

0.0035 is not. Normalized numbers provide the maximum possible precision for the

 floating- point number. A zero cannot be normalized because it does not have a non-

zero digit; it is usually represented in floating- point by all 0s in both the fraction and

the exponent.

 Floating- point representation increases the range of numbers that can be

accommodated in a given register. Consider a computer with 48-bit registers. Since

one bit must be reserved for the sign, the range of signed integers will be {(247 - 1),

which is approximately {1014. The 48 bits can be used to represent a floating- point

number, with one bit for the sign, 35 bits for the fraction, and 12 bits for the exponent.

The largest positive or negative number that can be accommodated is thus

{(1 - 2-35) * 2+2047

This number is derived from a fraction that contains 35 1s, and an exponent with a

sign bit and 11 1s. The maximum exponent is 211 - 1, or 2047. The largest number that

can be accommodated is approximately equivalent to decimal 10615. Although a

much larger range is represented, there are still only 48 bits in the representation. As a

consequence, exactly the same number of numbers are represented. Hence, the range

is traded for the precision of the numbers, which is reduced from 48 bits to 35 bits.

Arithmetic Operations

Arithmetic operations with floating- point numbers are more complicated than with

integer numbers, and their execution takes longer and requires more complex hard-

ware. Adding and subtracting two numbers require that the radix points be aligned,

since the exponent parts must be equal before adding or subtracting the fractions.

The alignment is done by shifting one fraction and correspondingly adjusting its ex-

ponent until it is equal to the other exponent. Consider the sum of the following

 floating- point numbers:

 .5372400 * 102

+ .1580000 * 10-1

It is necessary that the two exponents be equal before the fractions can be added. We

can either shift the first number three positions to the left or shift the second number

three positions to the right. When the fractions are stored in registers, shifting to the left

causes a loss of the most significant digits. Shifting to the right causes a loss of the least

9-7 / Floating-Point Computations 527

significant digits. The second method is preferable because it only reduces the precision,

whereas the first method may cause an error. The usual alignment procedure is to shift

the fraction with the smaller exponent to the right by a number of places equal to the

difference between the exponents. After this is done, the fractions can be added:

 .5372400 * 102

+ .0001580 * 102

 .5373980 * 102

When two normalized fractions are added, the sum may contain an overflow

digit. An overflow can be corrected by shifting the sum once to the right and incre-

menting the exponent. When two numbers are subtracted, the result may contain

most significant zeros in the fraction, as shown in the following example:

 .56780 * 105

- .56430 * 105

 .00350 * 105

A floating- point number that has a 0 in the most significant position of the fraction is

not normalized. To normalize the number, it is necessary to shift the fraction to the

left and decrement the exponent until a nonzero digit appears in the first position.

In the preceding example, it is necessary to shift left twice to obtain .35000 * 103. In

most computers, a normalization procedure is performed after each operation to

ensure that all results are in normalized form.

 Floating- point multiplication and division do not require an alignment of the

fractions. Multiplication can be performed by multiplying the two fractions and add-

ing the exponents. Division is accomplished by dividing the fractions and subtracting

the exponents. In the examples shown, we used decimal numbers to demonstrate

arithmetic operations on floating- point numbers. The same procedure applies to

binary numbers, except that the base of the exponent is 2 instead of 10.

Biased Exponent

The sign and fraction part of a floating- point number is usually a signed- magnitude

representation. The exponent representation employed in most computers is known

as a biased exponent. The bias is an excess number added to the exponent so that,

internally, all exponents become positive. As a consequence, the sign of the exponent

is removed from being a separate entity.

Consider, for example, the range of decimal exponents from -99 to +99. This is

represented by two digits and a sign. If we use an excess 99 bias, then the biased expo-

nent e will be equal to e = E + 99, where E is the actual exponent. For E = -99, we

have e = -99 + 99 = 0; and for E = +99, we have e = 99 + 99 = 198. In this way,

the biased exponent is represented in a register as a positive number in the range

from 000 to 198. Positive- biased exponents have a range of numbers from 099 to 198.

Subtraction of the bias, 99, gives the positive values from 0 to +99. Negative- biased

528 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

exponents have a range from 098 to 000. Subtraction of 99 gives the negative values

from -1 to -99.

The advantage of biased exponents is that the resulting floating- point numbers

contain only positive exponents. It is then simpler to compare the relative magnitude

between two numbers without being concerned with the signs of their exponents.

Another advantage is that the most negative exponent converts to a biased expo-

nent with all 0s. The floating- point representation of zero is then a zero fraction and a

zero biased exponent, which is the smallest possible exponent.

Standard Operand Format

Arithmetic instructions that perform operations with floating- point data often use

the suffix F. Thus, ADDF is an add instruction with floating- point numbers. There are

two standard formats for representing a floating- point operand: the single- precision

data type, consisting of 32 bits, and the double- precision data type, consisting of

64 bits. When both types of data are available, the single- precision instruction mne-

monic uses an FS suffix, and the double precision uses FL (for “ floating- point long”).

The format of the IEEE standard (see Reference 3) single- precision floating-

 point operand is shown in Figure 9-8. It consists of 32 bits. The sign bit s designates

the sign for the fraction. The biased exponent e contains 8 bits and uses an excess 127

number. The fraction f consists of 23 bits. The binary point is assumed to be immedi-

ately to the left of the most significant bit of the f field. In addition, an implied 1 bit is

inserted to the left of the binary point, which in effect expands the number to 24 bits

representing a value from 1.02 to 1.11c 12. The component of the binary floating-

 point number that consists of a leading bit to the left of the implied binary point,

together with the fraction in the field, is called the significand. Following are some

examples of field values and the corresponding significands:

f Field Decimal Equivalent

100 . . . 0 1.100 . . . 0 1.50

010 . . . 0 1.010 . . . 0 1.25

000 . . . 0 1.000 . . . 0* 1.00*

* Assuming the exponent is not equal to 00 . . . 0.

Even though the f field by itself may not be normalized, the significand is

always normalized, because it has a nonzero bit in the most significant position.

Since normalized numbers must have a nonzero most significant bit, this 1 bit is

not included explicitly in the format, but must be inserted by the hardware during

arithmetic computations. The exponent field uses an excess 127 bias value for

1 8 23

s e f

 FIGURE 9-8
IEEE Floating- Point Operand Format

9-7 / Floating-Point Computations 529

normalized numbers. The range of valid exponents is from -126 (represented as

00000001) through +127 (represented as 11111110). The maximum (11111111)

and minimum (00000000) values for the e field are reserved to indicate

 exceptional conditions. Table 9-6 shows the biased and actual values of some

exponents.

Normalized numbers are numbers that can be expressed as floating- point

operands in which the e field is neither all 0s nor all 1s. The value of the number is

derived from the three fields in the format of Figure 9-8 using the formula

(-1)s2e-127 * (1.f)

The most positive normalized number that can be obtained has a 0 for the sign bit

for a positive sign, a biased exponent equal to 254, and an f field with 23 1s. This gives

an exponent E = 254 - 127 = 127. The significand is equal to 1 + 1 - 2-23 =
2 - 2-23. The maximum positive number that can be accommodated is

+2127 * (2 - 2-23)

The smallest positive normalized number has a biased exponent equal to 00000001

and a fraction of all 0s. The exponent is E = 1 - 127 = -126, and the significand is

equal to 1.0. The smallest positive number that can be accommodated is +2-126. The

corresponding negative numbers are the same, except that the sign bit is negative. As

mentioned before, exponents with all 0s or all 1s (decimal 255) are reserved for the

following special conditions:

1. When e = 255 and f = 0, the number represents plus or minus infinity. The

sign is determined from the sign bit s.

2. When e = 255 and f ≠ 0, the representation is considered to be not a num-
ber, or NaN, regardless of the sign value. NaNs are used to signify invalid oper-

ations, such as the multiplication of zero by infinity.

3. When e = 0 and f = 0, the number denotes plus or minus zero.

 TABLE 9-6
Evaluating Biased Exponents

Exponent E

in decimal

Biased exponent e = E + 127

Decimal Binary

-126 -126 + 127 = 1 00000001

-001 -001 + 127 = 126 01111110

 000 000 + 127 = 127 01111111

+001 001 + 127 = 128 10000000

+126 126 + 127 = 253 11111101

+127 127 + 127 = 254 11111110

530 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

4. When e = 0 and f ≠ 0, the number is said to be denormalized. This is the

name given to numbers with a magnitude less than the minimum value that is

represented in the normalized format.

9-8 PROGRAM CONTROL INSTRUCTIONS

The instructions of a program are stored in successive memory locations. When pro-

cessed by the control, the instructions are read from consecutive memory locations

and executed one by one. Each time an instruction is fetched from memory, the PC is

incremented so that it contains the address of the next instruction in sequence. In

contrast, a program control instruction, when executed, may change the address val-

ue in the PC and cause the flow of control to be altered. The change in the PC as a

result of the execution of a program control instruction causes a break in the se-

quence of execution of instructions. This is an important feature of digital computers,

since it provides control over the flow of program execution and a capability of

branching to different program segments, depending on previous computations.

Some typical program control instructions are listed in Table 9-7. The branch

and jump instructions are often used interchangeably to mean the same thing,

although sometimes they are used to denote different addressing modes. For

example, the jump may use direct or indirect addressing, whereas the branch uses

relative addressing. The branch (or jump) is usually a one- address instruction. When

executed, the branch instruction causes a transfer of the effective address into

the PC. Since the PC contains the address of the instruction to be executed next, the

next instruction will be fetched from the location specified by the effective address.

Branch and jump instructions may be conditional or unconditional. An uncon-

ditional branch instruction causes a branch to the specified effective address without

any conditions. The conditional branch instruction specifies a condition that must be

met in order for the branch to occur, such as the value in a specified register being

negative. If the condition is met, the PC is loaded with the effective address, and the

next instruction is taken from this address. If the condition is not met, the PC is not

changed, and the next instruction is taken from the next location in sequence.

The call and return instructions are used in conjunction with procedures. Their

performance and implementation are discussed later in this section.

 TABLE 9-7
Typical Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Call procedure CALL

Return from procedure RET

Compare (by subtraction) CMP

Test (by ANDing) TEST

9-8 / Program Control Instructions 531

The compare instruction performs a comparison via a subtraction, with the dif-

ference not retained. Instead, the comparison causes a conditional branch, changes

the contents of a register, or sets or resets stored status bits. Similarly, the test instruc-

tion performs the logical AND of two operands without retaining the result and exe-

cutes one of the actions listed for the compare instruction.

Based on their three possible actions, compare and test instructions are viewed

to be of three distinct types, depending upon the way in which conditional decisions

are handled. The first type executes the entire decision as a single instruction. For

example, the contents of two registers can be compared and a branch or jump taken

if the contents are equal. Since two register addresses and a memory address are

involved, such an instruction requires three addresses. The second type of compare

and test instruction also uses three addresses, all of which are register addresses.

Considering the same example, if the contents of the first two registers are equal, a 1

is placed in the third register. If the contents are not equal, a 0 is placed in the third

register. These two types of instructions avoid the use of stored status bits. In the first

case, no such bit is required, and in the second case, a register is used to simulate its

presence. The third type of compare and test has compare and test operations that

set or reset stored status bits. Branch or jump instructions are then used to condition-

ally change the program sequence. This third type of compare and test instruction is

discussed in the next subsection.

Conditional Branch Instructions

A conditional branch instruction is a branch instruction that may or may not cause a

transfer of control, depending on the value of stored bits in the processor status reg-

ister, PSR. Each conditional branch instruction tests a different combination of sta-

tus bits for a condition. If the condition is true, control is transferred to the effective

address. If the condition is false, the program continues with the next instruction.

Table 9-8 gives a list of conditional branch instructions that depend directly on

the bits in the PSR. In most cases, the instruction mnemonic is constructed with the

letter B (for “branch”) and a letter for the name of the status bit. The letter N (for

 TABLE 9-8
Conditional Branch Instructions Relating to Status
Bits in the PSR

Branch Condition Mnemonic Test Condition

Branch if zero BZ Z = 1

Branch if not zero BNZ Z = 0

Branch if carry BC C = 1

Branch if no carry BNC C = 0

Branch if minus BN N = 1

Branch if plus BNN N = 0

Branch if overflow BV V = 1

Branch if no overflow BNV V = 0

532 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

“not”) is included if the status bit is tested for a 0 condition. Thus, BC is a branch if

carry = 1, and BNC is a branch if carry = 0.

The zero status bit Z is used to check whether the result of an ALU operation or

shift is equal to zero. The carry bit C is used to check the carry after the addition or the

borrow after the subtraction of two operands in the ALU. It is also used in conjunction

with shift instructions to check the value of the outgoing bit. The sign bit N reflects the

state of the leftmost bit of the output from the ALU or shift. N = 0 denotes a positive

sign and N = 1 a negative sign. These instructions can be used to check the value of the

leftmost bit, whether it represents a sign or not. The overflow bit V is used in conjunc-

tion with arithmetic and shift operations with both signed and unsigned numbers.

As stated previously, the compare instruction performs a subtraction of two

operands, say, A - B. The result of the operation is not transferred into a destination

register, but the status bits are affected. The status bits provide information about

the relative magnitude between A and B. Some computers provide special branch

instructions that can be applied after the execution of a compare instruction. The

specific conditions to be tested depend on whether the two numbers are considered

to be unsigned or signed.

The relative magnitude between two unsigned binary numbers A and B can be

determined by subtracting A - B and checking the C and Z status bits. Most commer-

cial computers consider the C status bit as a carry after addition and a borrow after sub-

traction. A borrow occurs when A 6 B, because the most significant position must

borrow a bit to complete the subtraction. A borrow does not occur if A Ú B, because

the difference A - B is positive. The condition for borrowing is the inverse of the condi-

tion for carrying when the subtraction is done by taking the 2s complement

of B. Computers that use the C status bit as a borrow after a subtraction, complement

the output carry after adding the 2s complement of the subtrahend and call this bit a

borrow. The technique is typically applied to all instructions that use subtraction within

the functional unit, not just the subtract instruction. For example, it applies to compare

instructions.

The conditional branch instructions for unsigned numbers are listed in Table 9-9.

It is assumed that a previous instruction has updated status bits C and Z after a sub-

traction A - B or some other similar instruction. The words “above,” “below,” and

 TABLE 9-9
Conditional Branch Instructions for Unsigned Numbers

Branch Condition Mnemonic Condition Status Bits*

Branch if above BA A 7 B C + Z = 0

Branch if above or equal BAE A Ú B C = 0

Branch if below BB A 6 B C = 1

Branch if below or equal BBE A … B C + Z = 1

Branch if equal BE A = B Z = 1

Branch if not equal BNE A ≠ B Z = 0

*Note that C here is a borrow bit.

9-8 / Program Control Instructions 533

“equal” are used to denote the relative magnitude between two unsigned numbers.

The two numbers are equal if A = B. This is determined from the zero status bit Z,

which is equal to 1 because A = B. A is below B and the borrow C = 1 when

A - B = 0. For A to be below or equal to B (A 6 B), we must have C = 1 or

Z = 1 . The relationship (A … B), is the inverse of A 7 B and is detected from the

complemented condition of the status bits. Similarly, A … B is the inverse of A Ú B
, and A ≠ B is the inverse of A = B.

The conditional branch instructions for signed numbers are listed in Table 9-10.

Again, it is assumed that a previous instruction has updated the status bits N, V, and

Z after a subtraction A - B. The words “greater,” “less,” and “equal” are used to

denote the relative magnitude between two signed numbers. If N = 0, the sign of

the difference is positive, and A must be greater than or equal to B, provided that

V = 0, indicating that no overflow occurred. An overflow causes a sign reversal, as

discussed in Section 3-11. This means that if N = 1 and V = 1, there was a sign

reversal, and the result should have been positive, which makes A greater than or

equal to B. Therefore, the condition A Ú B is true if both N and V are equal to 0 or

both are equal to 1. This is the complement of the exclusive- OR operation.

For A to be greater than but not equal to B (A 7 B), the result must be

 positive and nonzero. Since a zero result gives a positive sign, we must ensure that

the Z bit is 0 to exclude the possibility that A = B. Note that the condition

(N ⊕ V) + Z = 0 means that both the exclusive- OR operation and the Z bit

must be equal to 0. The other two conditions in the table can be derived in a simi-

lar manner. The conditions BE (branch on equal) and BNE (branch on not equal)

given for unsigned numbers apply to signed numbers as well and can be deter-

mined from Z = 1 and Z = 0, respectively.

Procedure Call and Return Instructions

A procedure is a self- contained sequence of instructions that performs a given compu-

tational task. During the execution of a program, a procedure may be called to perform

its function many times at various points in the program, a procedure may be called to

perform its function many times at various points in the program. Each time the proce-

dure is called, a branch is made to the beginning of the procedure to start executing its

 TABLE 9-10
Conditional Branch Instructions for Signed Numbers

Branch Condition Mnemonic Condition Status Bits

Branch if greater BG A 7 B (N ⊕ V) + Z = 0

Branch if greater or equal BGE A Ú B N ⊕ V = 0

Branch if less BL A 6 B N ⊕ V = 1

Branch if less or equal BLE A … B (N ⊕ V) + Z = 1

Branch if equal BE A = B Z = 1

Branch if not equal BNE A ≠ B Z = 0

534 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

set of instructions. After the procedure has been executed, a branch is made again to

return to the main program. A procedure is also referred to as a subroutine.

The instruction that transfers control to a procedure is known by different names,

including call procedure, call subroutine, jump to subroutine, branch to subroutine, and

branch and link. We will refer to the routine containing the procedure call as the call-
ing procedure. The calling procedure is often referred to as the caller, and the proce-

dure being called is often referred to as the callee. The call procedure instruction has a

 one- address field and performs two operations. First, it stores the value of the PC,

which is the address following that of the call procedure instruction, in a temporary

location. This address is called the return address, and the corresponding instruction is

the continuation point in the calling procedure. Second, the address in the call proce-

dure instruction— the address of the first instruction in the procedure— is loaded into

the PC. When the next instruction is fetched, it comes from the called procedure.

The final instruction in every procedure must be a return to the calling proce-

dure. The return instruction takes the address that was stored by the call procedure

instruction and places it back in the PC. This results in a transfer of program execu-

tion back to the continuation point in the calling procedure.

Different computers use different temporary locations for storing the return

address. Some computers store it in a fixed location in memory, some store it in a pro-

cessor register, and some store it in a memory stack. The advantage of using a stack for

the return address is that, when a succession of procedures are called, the sequential

return address can be pushed onto the stack. The return instruction causes the stack to

pop, and the contents of the top of the stack are then transferred to the PC. In this way,

a return is always to the program that last called the procedure. A procedure call instruc-

tion using a stack is implemented with the following microoperation sequence:

SP d SP – 1 Decrement stack pointer

M[SP] d PC Store return address on stack

PC d Effective address Transfer control to procedure

The return instruction is implemented by popping the stack and transferring

the return address to the PC:

PC d M[SP] Transfer return address to PC

SP d SP + 1 Increment stack pointer

By using a procedure stack, all return addresses are automatically stored by the

hardware in the memory stack. Thus, the programmer does not have to be concerned

about managing the return addresses for procedures called from within procedures.

In addition to storing the return address, the program must also properly man-

age any parameter values transferred to the procedure and result values returned to

the calling procedure, as well as temporary values stored in registers required by

either the procedure or calling procedure. The method used by a programming lan-

guage or compiler to ensure that the values are properly managed is commonly

known as a calling convention. The calling convention will typically specify how

parameter values are provided to the procedure, how result values are returned to

the calling procedure, which registers may be overwritten by the procedure, and

9-9 / Program Interrupt 535

which registers must be preserved by the procedure so that their values can be used

by the calling procedure after the procedure returns control to it. A combination of

registers and the stack is often used as part of the calling convention to pass parame-

ter values to the procedure and return values to the calling procedure. The stack can

also be used to preserve register values across the procedure call.

9-9 PROGRAM INTERRUPT

A program interrupt is used to handle a variety of situations that require a departure

from the normal program sequence. A program interrupt transfers control from a

program that is currently running to another service program as a result of an exter-

nally or internally generated request. Control returns to the original program after

the service program is executed. In principle, the interrupt procedure is similar to a

call procedure, except in three respects:

1. The interrupt is usually initiated at an unpredictable point in the program by an

external or internal signal, rather than the execution of an instruction.

2. The address of the service program that processes the interrupt request is deter-

mined by a hardware procedure, rather than the address field of an instruction.

3. In response to an interrupt, it is necessary to store information that defines all or

part of the contents of the register set, rather than storing only the program counter.

After the computer has been interrupted and the appropriate service program

executed, the computer must return to exactly the same state that it was in before the

interrupt occurred. Only if this happens will the interrupted program be able to resume

exactly as if nothing had happened. The state of the computer at the end of an execu-

tion of an instruction is determined from the contents of the register set. In addition to

containing the condition codes, the PSR can specify what interrupts are allowed to

occur and whether the computer is operating in user or system mode. Most computers

have a resident operating system that controls and supervises all other programs. When

the computer is executing a program that is part of the operating system, the computer

is placed in system mode, in which certain instructions are privileged and can be exe-

cuted in the system mode only. The computer is in user mode when it executes user

programs, in which case it cannot execute the privileged instructions. The mode of the

computer at any given time is determined from a special status bit or bits in the PSR.

Some computers store only the program counter when responding to an interrupt.

In such computers, the program that performs the data processing for servicing the inter-

rupt must include instructions to store the essential contents of the register set. Other

computers store the entire register set automatically in response to an interrupt. Some

computers have two sets of processor registers, so that when the program switches from

user to system mode in response to an interrupt, it is not necessary to store the contents

of processor registers, because each computer mode employs its own set of registers.

The hardware procedure for processing interrupts is very similar to the execu-

tion of a procedure call instruction. The contents of the register set of the processor

are temporarily stored in memory, typically by being pushed onto a memory stack,

and the address of the first instruction of the interrupt service program is loaded into

the PC. The address of the service program is chosen by the hardware. Some com-

puters assign one memory location for the beginning address of the service program:

536 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

the service program must then determine the source of the interrupt and proceed to

service it. Other computers assign a separate memory location for each possible

interrupt source. Sometimes, the interrupt source hardware itself supplies the

address of the service routine. In any case, the computer must possess some form of

hardware procedure for selecting a branch address for servicing the interrupt.

Most computers will not respond to an interrupt until the instruction that is in

the process of being executed is completed. Then, just before going to fetch the next

instruction, the control checks for any interrupt signals. If an interrupt has occurred,

control goes to a hardware interrupt cycle. During this cycle, the contents of some

part or all of the register set are pushed onto the stack. The branch address for the

particular interrupt is then transferred to the PC, and the control goes to fetch the

next instruction, which is the beginning of the interrupt service routine. The last

instruction in the service routine is a return from the interrupt instruction. When this

return is executed, the stack is popped to retrieve the return address, which is trans-

ferred to the PC as well as any stored contents of the rest of the register set, which

are transferred back to the appropriate registers.

Types of Interrupts

The three major types of interrupts that cause a break in the normal execution of a

program are as follows:

1. External interrupts.

2. Internal interrupts.

3. Software interrupts.

External interrupts come from input or output devices, from timing devices,

from a circuit monitoring the power supply, or from any other external source.

Conditions that cause external interrupts are an input or output device requesting a

transfer of data, an external device completing a transfer of data, the time- out of an

event, or an impending power failure. A time- out interrupt may result from a pro-

gram that is in an endless loop and thus exceeds its time allocation. A power- failure

interrupt may have as its service program a few instructions that transfer the com-

plete contents of the register set of the processor into a nondestructive memory such

as a disk in the few milliseconds before power ceases.

Internal interrupts arise from the invalid or erroneous use of an instruction or

data. Internal interrupts are also called traps. Examples of interrupts caused by

internal conditions are an arithmetic overflow, an attempt to divide by zero, an

invalid opcode, a memory stack overflow, and a protection violation. A protection
violation is an attempt to address an area of memory that is not supposed to be

accessed by the currently executing program. The service programs that process

internal interrupts determine the corrective measure to be taken in each case.

External and internal interrupts are initiated by the hardware of the computer.

By contrast, a software interrupt is initiated by executing an instruction. The software

interrupt is a special call instruction that behaves like an interrupt rather than a pro-

cedure call. It can be used by the programmer to initiate an interrupt procedure at

any desired point in the program. Typical use of the software interrupt is associated

9-9 / Program Interrupt 537

with a system call instruction. This instruction provides a means for switching from

user mode to system mode. Certain operations in the computer may be performed by

the operating system only in system mode. For example, a complex input or output

procedure is done in system mode. In contrast, a program written by a user must run

in user mode. When an input or output transfer is required, the user program causes a

software interrupt, which stores the contents of the PSR (with the mode bit set to

“user”), loads new PSR contents (with the mode bit set to “system”), and initiates the

execution of a system program. The calling program must pass information to the

operating system in order to specify the particular task that is being requested.

An alternative term for an interrupt is an exception, which may apply only to inter-

nal interrupts or to all interrupts, depending on the particular computer manufacturer. As

an illustration of the use of the two terms, what one programmer calls interrupt- handling

routines may be referred to as exception- handling routines by another programmer.

Processing External Interrupts

External interrupts may have single or multiple interrupt input lines. If there are

more interrupt sources than there are interrupt inputs in the computer, two or more

sources are ORed to form a common line. An interrupt signal may originate at any

time during program execution. To ensure that no information is lost, the computer

usually acknowledges the interrupt only after the execution of the current instruc-

tion is completed and only if the state of the processor warrants it.

Figure 9-9 shows a simplified external interrupt configuration. Four external

interrupt sources are ORed to form a single interrupt input signal. Within the CPU is

an enable- interrupt flip- flop (EI) that can be set or reset with two program instruc-

tions: enable interrupt (ENI) and disable interrupt (DSI). When EI is 0, the interrupt

signal is neglected. When EI is 1 and the CPU is at the end of executing an instruction,

the computer acknowledges the interrupt by enabling the interrupt acknowledge out-

put INTACK. The interrupt source responds to INTACK by providing an interrupt

vector address IVAD to the CPU. The program- controlled EI flip- flop allows the pro-

grammer to decide whether to use the interrupt facility. If a DSI instruction to reset EI

has been inserted in the program, it means that the programmer does not want the

program to be interrupted. The execution of an ENI instruction to set EI indicates

that the interrupt facility will be active while the program is running.

The computer responds to an interrupt request signal if EI = 1 and execution

of the present instruction is completed. Typical microinstructions that implement the

interrupt are as follows:

SP d SP – 1 Decrement stack pointer

M[SP] d PC Store return address on stack

SP d SP – 1 Decrement stack pointer

M[SP] d PSR Store processor status word on stack

EI d 0 Reset enable – interrupt flip – flop

INTACK d 1 Enable interrupt acknowledge

PC d IVAD Transfer interrupt vector address to PC
 Go to fetch phase.

538 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

The return address available in the PC is pushed onto the stack, and the PSR

contents are pushed onto the stack. EI is reset to disable further interrupts. The pro-

gram that services the interrupt can set EI with an instruction whenever it is appro-

priate to enable other interrupts. The CPU assumes that the external source will

provide an IVAD in response to an INTACK. The IVAD is taken as the address of

the first instruction of the program that services the interrupt. Obviously, a program

must be written for that purpose and stored in memory.

The return from an interrupt is done with an instruction at the end of the ser-

vice program that is similar to a return from a procedure. The stack is popped, and

the return address is transferred to the PC. Since the EI flip- flop is usually included

in the PSR, the value of EI for the original program is returned to EI when the old

value of the PSR is returned. Thus, the interrupt system is enabled or disabled for the

original program, as it was before the interrupt occurred.

9-10 CHAPTER SUMMARY

In this chapter, we defined the concepts of instruction set architecture and the compo-

nents of an instruction and explored the effects on programs of the maximum address

count per instruction, using both memory addresses and register addresses. This led to

the definitions of four types of addressing architecture: memory- to- memory, register-

 to- register, single- accumulator, and stack. Addressing modes specify how the informa-

tion in an instruction is interpreted in determining the effective address of an operand.

Reduced instruction set computers (RISCs) and complex instruction set com-

puters (CISCs) are two broad categories of instruction set architecture. A RISC has

2

3

4

External interrupts

Interrupt vector
address

Central processing unit (CPU)

End of execution
of instruction

Enable-interrupt
flip-flop

Interrupt acknowledge

To memory
stackPC

EI

INTACK

IVAD

1

 FIGURE 9-9
Example of External Interrupt Configuration

as its goals high throughput and fast execution of instructions. In contrast, a CISC

attempts to closely match the operations used in programming languages and facili-

tates more compact programs.

Three categories of elementary instructions are data transfer, data manipula-

tion, and program control. In elaborating data transfer instructions, the concept of

the memory stack appears. Transfers between the CPU and I/O are addressed by two

different methods: independent I/O, with a separate address space, and memory-

 mapped I/O, which uses part of the memory address space. Data manipulation

instructions fall into three classes: arithmetic, logical, and shift. Floating- point for-

mats and operations handle broader ranges of operand values for arithmetic

operations.

Program control instructions include basic unconditional and conditional

transfers of control, the latter may or may not use condition codes. Procedure calls

and returns permit programs to be broken up into procedures that perform useful

tasks. Interruption of the normal sequence of program execution is based on three

types of interrupts: external, internal, and software. Also referred to as exceptions,

interrupts require special processing actions upon the initiation of routines to ser-

vice them and upon returns to execution of the interrupted programs.

REFERENCES

1. Hennessy, J. L. and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 5th ed. Amsterdam: Elsevier, 2011.

2. IEEE Standard for Microprocessor Assembly Language (IEEE Std 694-1985).

New York: The Institute of Electrical and Electronics Engineers.

3. IEEE Standard for Binary Floating- Point Arithmetic (ANSI/IEEE Std 754-

1985). New York: The Institute of Electrical and Electronics Engineers.

4. The Intel 64 and IA- 32 Architectures Software Developer’s Manual, Vols. 2A

and 2B. Intel Corporation, 1997–2006.

5. Mano, M. M. Computer Engineering: Hardware Design. Englewood Cliffs, NJ:

Prentice Hall, 1988.

6. Mano, M. M. Computer System Architecture, 3rd ed. Englewood Cliffs, NJ:

Prentice Hall, 1993.

7. Patterson, D. A. and J. L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface, 5th ed. Amsterdam: Elsevier, 2013.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

9-1. Based on operations illustrated in Section 9-2, write a program to evaluate

the arithmetic expression

X = (A + B - C) * (D - E)

Problems 539

540 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

Make effective use of the registers to minimize the number of MOVE or LD

instructions where possible.

(a) Assume a register- to- register architecture with three- address instructions.

The operand order for subtraction, SUB, is difference, minuend, subtrahend.

(b) Assume a memory- to- memory architecture with two- address instructions.

(c) Assume a single- accumulator computer with one- address instructions.

9-2. *Repeat Problem 9-1 for

Y = (A + B) * C , (D - E * F)

All operands are initially in memory. The operand order for divide, DIV, is

quotient, dividend, divisor.

9-3. *A program is to be written for a stack architecture for the arithmetic expression

X = (A - B) * (A + C) * (B - D)

(a) Find the corresponding RPN expression.

(b) Write the program using PUSH, POP, ADD, MUL, SUB, and DIV

instructions as appropriate for the operators in the expression.

(c) Show the contents of the stack after the execution of each instruction.

9-4. Repeat Problem 9-3 for the arithmetic expression

Y = (((A * B) + C) * D) , (E - (A * F))

9-5. (a) There are different ways of address calculation for instructions in which

one of the operands is in memory. Consider the case of address being

calculated before getting the second operand from memory (assuming

that the first operand is in one of the registers). How is the second

operand’s address calculated in the indexed and relative modes?

 (b) The length of an instruction is shortest if both operands are in registers.

Why?

9-6. *A two- word relative mode branch- type instruction is stored in memory at

locations 207 and 208 (decimal). The branch is made to an address equivalent

to decimal 195. Let the address field of the instruction (stored at address 208)

be designated by X.

(a) Determine the value of X in decimal.

(b) Determine the value of X in binary, using 16 bits. (Note that the number is

negative and must be in 2s complement notation. Why?)

9-7. Repeat Problem 9-6 for a branch instruction in locations 143 and 144 and a

branch address equivalent to 1000. All values are in decimal.

9-8. Consider the case of the following “two operand” instructions where the first

operand is the destination and the second is the source. “M” refers to an

address in memory.

(a) ADD R1, M

(b) ADD M, R1

 Illustrate the difference in the actions needed to get these instructions

executed.

9-9. Do address calculations (in hex format) for the following modes of addressing:

(a) Relative

(b) Relative Indexed

 The relative number is 1214H. The index register contains the number 0078H.

The instruction contains one constituent of the address in R1 as R1 = 5600H.

9-10. *A computer has a 32-bit word length, and all instructions are one word in

length. The register file of the computer has 16 registers.

(a) For a format with no mode fields and three register addresses, what is the

maximum number of opcodes possible?

(b) For a format with two register address fields, one memory field, and a

maximum of 100 opcodes, what is the maximum number of memory

address bits available?

9-11. Stacks are of two types: ascending and descending. Consider two stacks: one

which is descending and the other which is ascending. The value of SP for

both the stacks is 124. Refer to the figure below for the SP values for the two

kinds of stacks and where it points to.

Problems 541

 Draw the figures of the stack with the value of SP and where it points after

the following operations:

(a) Two PUSH operations where XX and YY are the data that are pushed in.

(b) One POP operation.

9-12. It is required to swap the data of two registers R1 and R2, which are part of

the architected set of registers.

(a) Write the code to do it using only PUSH and POP operations

(b) Write the code to do it by register transfer instructions.

(c) Compare the two methods and explain why one method is superior to the

other in terms of time expended.

Ascending stack Descending stack

Before PUSH

Stack
Stack

124

SP Value
Before PUSH

124

542 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

9-13. In I/O mapped input-output, the address of the port is needed to be specified

in the instruction. It uses only the IN and OUT instructions for accessing

peripherals.

(a) Write the code for inputting data from an input device with address 89.

(b) Write the code for outputting data to an output device with address 95.

(c) Write the code for doing both these operations using memory-mapped

I/O.

9-14. *Assume a computer with 8-bit words for the multiple- precision addition of

two 32-bit unsigned numbers,

1F C6 24 7B + 00 57 ED 4B

(a) Write a program to execute the addition, using add and add with carry

instructions.

(b) Execute the program for the given operands. Each byte is expressed as a

2-digit hexadecimal number.

9-15. How many operands does each of these instructions have at the minimum?

(a) Add with carry

(b) Increment

9-16. (a) What is the importance of “Arithmetic right shifting”?

 (b) Given the data 1001 0000 1100 1101, perform each of the below

 operations on it. The carry flag is reset.

(1) Arithmetic right shift once.

(2) Rotate Right with carry once.

(3) Logical shift left once.

9-17. *An 8-bit register contains the value 01101001, and the carry bit is equal to 1.

Perform the eight shift operations given by the instructions listed in Table 9-5

as a sequence of operations on this register.

9-18. Represent the following two numbers in two exponential forms of

representation.

(a) 6567

(b) 0.006789

9-19. *A 36-bit floating- point number consists of 26 bits plus sign for the fraction

and 8 bits plus sign for the exponent. What are the largest and smallest

positive nonzero quantities for normalized numbers?

9-20. *A 4-bit exponent uses an excess 7 number for the bias. List all biased binary

exponents from +8 through -7.

9-21. Floating point numbers are represented in single precision or in double

precision as the following figures show.

Problems 543

S E M

23-bit MantissaBiased
Exponent (8-bit)

Sign Bit

32 bits

S E M

52-bit MantissaBiased
Exponent (11-bit)

Sign Bit

64 bits

 Convert the number 230.25 into single precision and –6765.1875 into double

precision.

9-22. Convert the following double- and single-precision numbers to normal

decimal representation:

(a) Double precision

(1) 40AB0F8000000000

(2) 4056480000000000

(3) 416110027C000000

(b) Single precision

(1) 45587C00H

(2) 42B24000H

(3) 4B088013H

9-23. What is meant by the “fixed point” representation of floating point numbers?

How will the number 7.0301678 be rounded off if it is decided to have four

digits after the decimal point?.

9-24. The IEEE standard single- precision floating- point format shown in Figure

9-8 uses 32 bits.

(a) What is the 8-digit hexadecimal representation of the decimal number

-9.359375?

(b) What decimal number is represented by the hexadecimal value

41CBA000?

9-25. *It is necessary to branch to ADRS if the bit in the least significant position of

the operand in a 16-bit register is equal to 1. Show how this can be done with

the TEST (Table 9-7) and BNZ (Table 9-8) instructions.

9-26. (a) Find the status of the carry and sign flags after adding the following 8-bit

numbers, i.e., 0011 0101 and 1100 1111.

 (b) What is sum obtained? What is the size of the result?

544 CHAPTER 9 / INSTRUCTION SET ARCHITECTURE

 (c) Find the sum obtained adding the following 16-bit numbers 0100 0101

1110 1100 and 0111 0111 0010 0011.

 (d) What is the status of the carry, overflow, and Zero flags after the 16-bit

addition?

 (e) Write a few instructions that use the condition of flags as criteria for their

operation.

9-27. *The program in a computer compares two unsigned numbers A and B by

performing a subtraction A - B and updating the status bits. For operands

let A = 01011101 and B = 01011100,

(a) Evaluate the difference and interpret the binary result.

(b) Determine the values of status bits C (borrow) and Z (zero).

(c) List the conditional branch instructions from Table 9-9 that will have a

true condition.

9-28. The program in a computer compares two signed 2s complement numbers A

and B by performing subtraction A - B and updating the status bits. For

operands let A = 11011010 and B = 01110110,

(a) Evaluate the difference and interpret the binary result.

(b) Determine the value of status bits N (sign), Z (zero), and V (overflow).

(c) List the conditional branch instructions from Table 9-10 that will have a

true condition.

9-29. Repeat Problem 9-28 with A = 10100100 and B = 10101001.

9-30. *The top of a memory stack contains 5000. The stack pointer SP contains

4000. A two- word procedure call instruction is located in memory at address

2000, followed by the address field of 502 at location 2001. All of these are

decimal values. What are the contents of PC, SP, and the top of the stack (a)

before the call instruction is fetched from memory, (b) after the call

instruction is executed, and (c) after the return from the procedure?

9-31. In computer architecture literature, it is found that very few computers use

the concept of a link register. A link register saves the “return” address on the

event of a procedure calls.

(a) How is the idea of using a “link register” superior compared to

architectures that don’t have such a register?

(b) In architectures that don’t have a link register, the last instruction in a

procedure is RET. What is the last instruction for the case when a link

register is present?

9-32. “A procedure call has more overheads than a jump instruction.” Explain the

concept behind this statement.

9-33. *Give five examples of external interrupts and five examples of internal

interrupts. What is the difference between a software interrupt and a

procedure call?

9-34. Interrupts are very important in the scheme of computer activity. Answer the

following questions regarding interrupts:

(a) How are software interrupts initiated?

(b) Error induced interrupts are named “exceptions”. Give an example of an

exception.

(c) When the current program is interrupted, a new program is to be started.

What is this new program called?

(d) Where is this new program available?

(e) Does the stack have a role in interrupt processing?

9-35. The program counter (PC) is an important register for any computer. Answer

the following questions regarding the program counter:

(a) On what aspect of the computer’s architecture does the size of the PC

depend on?

(b) Can a computer with an 8-bit data bus have a 16-bit PC?

(c) When a call instruction is encountered, what happens to the value in PC?

(d) How does the PC get a new value when a jump instruction is encountered?

Problems 545

 547 547

C H A P T E R

Risc and Cisc Central
Processing Units

10

The central processing unit (CPU) is the key component of a digital computer. Its

purpose is to decode instructions received from memory and perform transfer,

arithmetic, logic, and control operations with data stored in internal registers,

memory, or I/O interface units. Externally, the CPU provides one or more buses for

transferring instructions, data, and control information to and from components

connected to it.

In the generic computer at the beginning of Chapter 1, the CPU is a part of the

processor. CPUs, however, may also appear elsewhere in computers. Small, relatively

simple computers called microcontrollers are used in computers and in other digital

systems to perform limited or specialized tasks. For example, a microcontroller is

present in the keyboard and in the monitor in the generic computer. In such

microcontrollers, the CPU may be quite different from those discussed in this chapter.

The word lengths may be short (e.g., eight bits), the number of registers small, and the

instruction sets limited. Performance, relatively speaking, is low, but adequate. Most

important, the cost of these microcontrollers is very low, making their use cost effective.

The approach in this chapter builds upon and parallels that in Chapter 8. It begins

by converting the datapath in Chapter 8 to a pipelined datapath and then adding a

pipelined control unit to form a reduced instruction set computer (RISC) analogous to

the single-cycle computer. Problems due to the use of pipelining are introduced and

solutions are offered for the RISC design. Next, the control unit is expanded to form a

complex instruction set computer (CISC) that is analogous to the multiple-cycle

computer. A brief overview of techniques to enhance pipelined processor performance

is presented. Finally, we consider PC microprocessors that use multiple processors on

a single chip.

548 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

10-1 PIPELINED DATAPATH

Figure 8-17 was used to illustrate the long delay path present in the single-cycle com-

puter and the resultant clock frequency limit. With a narrower focus, Figure 10-1(a)

illustrates maximum delay values for each of the components of a typical datapath.

A maximum of 0.8 ns (0.6 ns + 0.2 ns) is required to read two operands from the

register file or to read one operand from the register file and obtain a constant from

MUX B. A maximum of 0.8 ns is required to execute an operation in the functional

unit. Also, a maximum of 0.8 ns is required to write the result back into the register

file, including the delay of MUX D. Adding these delays, we find that 2.4 ns is

required to perform a single microoperation. The maximum rate at which the micro-

operations can be performed is the inverse of 2.4 ns (i.e., 416.7 MHz). This is the

maximum frequency at which the clock can be operated, since 2.8 ns is the smallest

clock period that will allow each microoperation to be completed with certainty. As

illustrated in Figure 8-17, delay paths that pass through both the datapath and the

control unit limit the clock frequency to an even smaller value. For the datapath

(a) Conventional

Function unit

MUX B

MUX D

Clock

0.6 ns

0.6 ns

0.2 ns

0.8 ns

0.2 ns

Register file

(b) Pipelined

MUX B

MUX D

Clock

Register file

Function unit

3

WB

OF

1

OF

EX

2

EX

WB

3

0.2 ns

0.6 ns

0.6 ns

0.2 ns

0.2 ns

0.8 ns

0.2 ns

 FIGURE 10-1
Datapath Timing

10-1 / Pipelined Datapath 549

alone and for the combination of the datapath and control unit in the single-cycle

computer, the execution of a microoperation constitutes the execution of an instruc-

tion. Thus, the rate of execution of instructions equals the clock frequency.

Now suppose that the datapath execution rate is not adequate for a particular

application, and that no faster components are available with which to reduce the

2.8 ns required to complete a microoperation. Still, it may be possible to reduce

the clock period and increase the clock frequency. This can be done by breaking

up the 2.8 ns delay path with registers. The resulting datapath, sketched in Figure 10-1(b),

is referred to as a pipelined datapath, or just a pipeline.

Three sets of registers break the delay of the original datapath into three parts.

These registers are shown crosshatched in blue. The register file contains the first set

of registers. Cross-hatching covers only the top half of the register file, since the

lower half is viewed as the combinational logic that selects the two registers to be

read. The two registers that store the A data from the register file and the output of

MUX B constitute the second set of registers. The third set of registers stores the

inputs to MUX D.

The term “pipeline,” unfortunately, does not provide the best analogy for the

corresponding datapath structure. A better analogy is a production line. A common

example is an automated car wash in which cars are pulled through a series of sta-

tions at which a particular step is performed:

1. Wash—Flush with hot, soapy water,

2. Rinse—Flush with plain warm water, and

3. Dry—Blow air over the surface.

The processing of a vehicle through the car wash consists of three steps and requires a

certain amount of time to complete. Analogously, the processing of an instruction by a

pipeline consists of n > 1 steps and requires a certain amount of time to complete. The

length of time required to process an instruction is called the latency time. In the car

wash, the latency time is the length of time it takes for a car to pass through the three

stations performing the three steps of the process. This time remains the same regard-

less of whether a single car or three cars are in the car wash at a given time.

Continuing this analogy, with the pipelined datapath corresponding to the car

wash, what corresponds to the nonpipelined datapath? It would be a car wash with

all of the steps available at a single station, with the steps performed serially. We now

can compare the analogies, thereby comparing the pipelined and nonpipelined data-

paths. For the multiple-station car wash and the single-station car wash, the latencies

are approximately the same. So, going to the multiple-station car wash does not,

decrease the time required to wash a car. However, suppose that we consider the

frequency at which a washed car emerges from the two types of car washes. For the

single-station car wash, this frequency is the inverse of the latency time. In contrast,

for the multiple-station car wash with three stages, a washed car emerges at a fre-

quency of three times the inverse of the latency time. Thus, there is a factor-of-three

improvement in the frequency or rate of delivery of washed cars. Based on the anal-

ogy to pipelined datapaths with n stages and nonpipelined datapaths, the former has

a processing rate or throughput for instructions that is n times that of the latter.

550 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

The desired structure, based on the nonpipelined, conventional datapath

described in Chapter 8, is sketched in Figure 10-1(b). The operand fetch (OF) is

stage 1, the execution (EX) is stage 2, and the write-back (WB) is stage 3. These

stages are labeled at their boundaries with appropriate abbreviations. At this point

the analogy breaks down somewhat, because the cars move smoothly through the

car wash while the data within the pipeline moves synchronously with a clock,

which controls the movement from stage to stage. This has some interesting impli-

cations. First of all, the movement of the data through the pipeline is in discrete

steps rather than continuous. Second, the length of time in each of the stages must

be the clock period and is the same for all stages. To provide the mechanism sepa-

rating the stages in the pipeline, registers are placed between the stages. These reg-

isters provide temporary storage for data passing through the pipeline and are

called pipeline platforms.
Returning to the pipelined datapath example in Figure 10-1(b), Stage 1 of the

pipeline has the delay required for reading the register file followed by selection by

MUX B. This delay is 0.6 plus 0.2 ns, or 0.8 ns. Stage 2 of the pipeline has the 0.2 ns

delay of the platform plus the 0.8 ns delay of the functional unit, giving 1.0 ns. Stage 3

has the 0.2 ns delay of the platform, the delay for the selection by MUX D, and the

delay for writing back into the register file. This delay is 0.2 + 0.2 + 0.6, for a total

of 1.0 ns. Thus, all flip-flop–to–flip-flop delays are at most 1.0 ns, allowing a minimum

clock period of 1.0 ns (assuming that the setup times for the flip-flops are zero) and a

maximum clock frequency of 1.0 GHz, compared with the 416.7 MHz for the

 single-stage datapath. This clock frequency corresponds to the maximum through-

put of the pipeline, which is 1 billion instructions per second, about 2.4 times that of

the nonpipelined datapath. Even though there are three stages, the improvement

factor is not three—for two reasons: (1) the additional delay contributed by the pipe-

line platforms and (2) the differences between the delay of the logic assigned to each

stage. The clock period is governed by the longest delay, rather than the average

delay assigned to any stage.

A more detailed diagram of the pipelined datapath appears in Figure 10-2. In

this diagram, rather than showing the path from the output of MUX D to the register

file input, the register file is shown twice—once in the OF stage, where it is read, and

once in the WB stage, where it is written.

The first stage, OF, is the operand fetch stage. The operand fetch consists of

reading register values to be used from the register file and, for Bus B, selecting

between a register value or a constant by using MUX B. Following the OF stage is

the first pipeline platform. The pipeline registers store the operand or operands for

use in the next stage during the next clock cycle.

The second stage of the pipeline is the execute stage, denoted EX. In this stage,

a function unit operation occurs for most microoperations. The results produced

from this stage are captured by the second pipeline platform.

The third and final stage of the pipeline is the write-back stage, denoted WB. In

this stage, the result saved from the EX stage, or the value on Data in, is selected by

MUX D and written back into the register file at the end of the stage. In this case, the

write part of the register file is the pipeline platform. The WB stage completes the

execution of each microoperation that requires writing to a register.

10-1 / Pipelined Datapath 551

Before leaving the car-wash analogy, we examine the cost of the single-stage

versus that of the three-stage car wash. First, even though the three-stage facility

washes vehicles three times as fast as the single-stage one, it costs three times as

much in terms of space. Plus, it has the overhead of the mechanism to move the cars

AA

Constant in

FS

V

C

N

Z

RW

DA

OF

OF

EX

EX

WB

Write-back (WB)

WB

Operand Fetch (OF)
1

2
Execute (EX)

3

Address out

Data out

Data in

Register
file

BA

MB

A data B data

A

Function
unit

F

MD 0

MUX B

MUX D

B

1

D data
Register

file (same
as above)

 FIGURE 10-2
Block Diagram of Pipelined Datapath

552 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

through the stages. So it, would appear to be less cost effective than three single-stage

wash stations operating in parallel. Nevertheless, from a business standpoint, it has

proven to be cost effective. In terms of the car wash, can you figure out why? In con-

trast, for the pipelined datapath, pipeline platforms cut a single datapath into three

pieces. Thus, a first-order estimate of the cost increase is mainly that of the pipeline

platforms.

Execution of Pipeline Microoperations

There are up to three operations at some stage of completion in the car wash at any

given time. By analogy, we should be able to have three microoperations at some

stage of completion in the pipelined datapath at any given time.

We now examine the execution of this sequence of microoperations with

respect to the stages of the pipeline in Figure 10-2. In clock period 1, microoperation

1 is in the OF stage. In clock period 2, microoperation 1 is in the EX stage, and micro-

operation 2 is in the OF stage. In clock period 3, microoperation 1 is in the WB stage,

microoperation 2 is in the EX stage, and microoperation 3 is in the OF stage. So at

the end of the third clock period, microoperation 1 has completed execution, micro-

operation 2 is two-thirds finished, and microoperation 3 is one-third finished. So we

have completed 1 + 2/3 + 1/3 = 2.0 microoperations in three clock periods, or 3 ns.

In the conventional datapath, we would have completed microoperation 1 only. So,

indeed, the pipelined datapath performance is superior in this example.

The procedure we have been using so far is somewhat tedious. So to finish ana-

lyzing the timing of the sequence, we will use a pipeline execution pattern diagram, as

shown in Figure 10-3. Each vertical position in this diagram represents a microoper-

ation to be performed, and each horizontal position represents a clock cycle. An

entry in the diagram represents the stage of processing of the microoperation. So, for

example, the execution (EX) stage of microoperation 4, which adds the constant 2 to

R0, occurs in clock cycle 5.

1 9

Clock cycle

OF EX WB

OF EX WB

OF EX WB

OF EX WB

OF EX WB

OF EX WB

OF EX WB

Microoperation

1

2

3

4

5

6

7

8765432

R4 sl R6

Data out R3

R4 Data in

R5 0

 FIGURE 10-3
Pipeline Execution Pattern for Microoperation Sequence

10-2 / Pipelined Control 553

We can see from the overall diagram that the sequence of seven microopera-

tions requires nine clock cycles to execute completely. The time required for execu-

tion is 9 * 1 = 9 ns, compared to 7 * 2.4 = 16.8 ns for the conventional datapath.

Thus, the sequence of microoperations is executed about 1.9 times faster using the

pipeline.

Now let us examine the pipeline execution pattern carefully. In the first two

clock cycles, not all of the pipeline stages are active, since the pipeline is filling. In

the next five clock cycles, all stages of the pipeline are active, as indicated in blue,

and the pipeline is fully utilized. In the last two clock cycles, not all stages of the

pipeline are active, since the pipeline is emptying. If we want to find the maximum

possible improvement of the pipelined datapath over the conventional one, we

compare the two when the pipeline is fully utilized. Over these five clock cycles, 3

through 7, the pipeline executes (5 * 3) , 3 = 5 microoperations in 5 ns. In the

same time, the conventional datapath executes 5/2.4 = 2.083 microoperations. So

the pipelined datapath executes at best 5 , 2.083 = 2.4 times as many microoper-

ations in a given time as the conventional datapath. In this ideal situation, we say

that the throughput of the pipelined datapath is 2.4 times that of the conventional

one. Note that filling and emptying reduce the pipeline speed below the maximum

of 2.4. Additional topics associated with pipelines—in particular, providing a con-

trol unit for a pipelined datapath and dealing with pipeline hazards—are covered

in the next two sections.

10-2 PIPELINED CONTROL

In this section, a control unit is specified to produce a CPU by using the datapath

from the last section. Since the instruction must be fetched from a memory as well as

executed, we add a stage to the analogous car wash used for illustration in that sec-

tion. Analogous to the instruction fetch from the instruction memory, the operations

in the car wash are specified by order sheets, produced by an attendant, that permit

the functions performed in the stages of the car wash to vary. The order sheet, which

is analogous to an instruction, accompanies the car as it moves down the line.

Figure 10-4 shows the block diagram of a pipelined computer based on the sin-

gle-cycle computer. The datapath is that of Figure 10-2. The control has an added

stage for instruction fetch that includes the PC and instruction memory. This

becomes stage 1 of the combined pipeline. The instruction decoder and register file

read are now in stage 2, the function unit and data memory read and write are in

stage 3, and the register file write is in stage 4. These stages are labeled at their

boundaries with appropriate abbreviations. In the figure, we have added registers to

the pipeline platforms between stages, as necessary, to pass the decoded instruction

information through the pipeline along with the data being processed. These addi-

tional registers serve to pass along the instruction information, just as order informa-

tion was passed along in the car wash.

The added first stage is the instruction fetch stage, denoted by IF, which lies

wholly in the control. In this stage, the instruction is fetched from the instruction

memory, and the value in the PC is updated. Due to additional complexities of han-

dling jumps and branches in a pipelined design, PC update is restricted here to an

554 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

IF

IF

DOF

Stage
1

Address

DOF

EX

EX

WB

Stage
2

Stage
3

AA BA

Register
file

A data B data

Zero fill

Instruction decoder
MUX B MB

Data A Data B

Address out
FS MW

FS
C
V
N
Z

A

Function
unit

MDDA RWStage
4

WB

F

MD MUX D

RW
DA

Data F Data I

Data in

Data out MW

Data out

Data
memory

Address

CONTROL DATAPATH

4

PC

IR

Instruction
memory

Instruction

B

D data
Register

file (same
as above)

Data
memory
(same as
above)

Data in Address

AA BAMB

 FIGURE 10-4
Block Diagram of Pipelined Computer

increment, with a more complete treatment provided in the next section. Between

the first stage and the second stage is an interstage pipeline platform that plays the

role of instruction register, so it has been labeled IR.

10-2 / Pipelined Control 555

In the second stage, DOF (decode and operand fetch), decoding of the IR into

control signals takes place. Among the decoded signals, the register file addresses

AA and BA and the multiplexer control signal MB are used in this stage for operand

fetch. All other decoded control signals are passed on to the next pipeline platform,

to be used later. Following the DOF stage is the second pipeline platform, whose

registers store control signals to be used later. The third stage of the pipeline is the

execution stage, denoted EX. In this stage, an ALU operation, a shift operation, or a

memory operation is executed for most instructions. Thus, the control signals used in

this stage are FS and MW. The read part of the data memory M is considered a part

of the stage. For a memory read, the value of the word addressed is read to Data out

from the data memory. All of the results produced from this stage, plus the control

signals for the last stage, are captured by the third pipeline platform. The write part

of data memory M is considered a part of this platform, so a memory write may

occur here. The control information held in the final pipeline platform consists of

DA, MD, and RW, which are used in the final write-back stage, WB.

The location of the pipeline platforms has balanced the partitioning of the

delays, so that the delays per stage are no more than 1.0 ns. This gives a potential

maximum clock frequency of 1 GHz, 3.4 times that of the single-cycle computer.

Note, however, that an instruction takes 4 * 1 = 4 ns to execute. This latency of 4 ns

compares to that of 3.4 ns for the single-cycle computer. So if only one instruction at

a time is being executed, even fewer instructions are executed per second than for

the single-cycle computer.

Pipeline Programming and Performance

If our hypothetical car wash is extended to four stages, there are up to four operations

at some stage of completion at any given time. By analogy, then, we should be able to

have four instructions at some stage of completion in the pipeline of our computer at

any given time. Suppose we consider a simple calculation: Load the constants 1 through

7 into the seven registers R1 through R7, respectively. The program to do this is as fol-

lows (the number on the left is a number to identify the instruction):

1 LDI R1, 1

2 LDI R2, 2

3 LDI R3, 3

4 LDI R4, 4

5 LDI R5, 5

6 LDI R6, 6

7 LDI R7, 7

Let us examine the execution of this program with respect to the stages of the

 pipeline in Figure 10-4. We employ the pipeline execution pattern diagram shown

in Figure 10-5. In clock period 1, instruction 1 is in the IF stage of the pipeline.

In clock period 2, instruction 1 is in the DOF stage and instruction 2 is the IF stage. In

clock period 3, instruction 1 is in the EX stage, instruction 2 is in the DOF stage, and

556 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

instruction 3 is in the IF stage. In clock period 4, instruction 1 is in the WB stage,

instruction 2 is in the EX stage, instruction 3 is in the DOF stage, and instruction 4 is

in the IF stage. So at the end of the fourth clock period, instruction 1 has completed

execution, instruction 2 is three-fourths finished, instruction 3 is half finished, and

instruction 4 is one-fourth finished. So we have completed 1 + 3/4 + 1/2 + 1/4 = 2.5

instructions in four clock periods, or 4 ns. We can see from the overall diagram that

the complete program of seven instructions requires 10 clock cycles to execute. Thus,

the time required is 10 ns, compared to 23.8 ns for the single-cycle computer, and the

program is executed about 2.4 times faster.

Now suppose that we examine the pipeline execution pattern carefully. In the

first three clock cycles, not all of the pipeline stages are active, since the pipeline is fill-
ing. In the next four clock cycles, all stages of the pipeline are active, as indicated in

blue, and the pipeline is fully utilized. In the last three clock cycles, not all stages of the

pipeline are active, since the pipeline is emptying. If we want to find the maximum pos-

sible improvement of the pipelined computer over the single-cycle computer, we com-

pare the two in the situation in which the pipeline is fully utilized. Over these four

clock cycles, or 4 ns, the pipeline executes 4 * 4 , 4 = 4.0 instructions. In the same

time, the single-cycle computer executes 4 , 3.4 = 1.18 instructions. So in the best

case, the pipelined computer executes 4 , 1.18 = 3.4 times as many instructions in a

given time as the single-cycle computer does. In this ideal situation, we say that the

throughput of the pipelined computer is 3.4 times that of the single-cycle computer.

Note that even though the pipeline has four stages, the pipelined computer is

not four times as fast as the single-cycle computer, because the delays of the latter

cannot be divided exactly into four equal pieces and because of the delays of the

added pipeline platforms. Also, filling and emptying the pipeline reduces its speed

enough that the speed of the pipelined computer is less than the ideal maximum

speed of 3.4 times as fast as the single-cycle computer.

The study of the pipelined computer here, along with the single-cycle computer

and multiple-cycle computer in Chapter 8, completes our examination of three

1

2

3

4

5

6

7

Instruction

1 2 3 4 5 6 7 8 9 10

Clock cycle

DOF EX WB

DOF EX WB

DOF EX WB

DOF EX WB

DOF EX WB

DOF EX WB

DOF EX WB

IF

IF

IF

IF

IF

IF

IF

 FIGURE 10-5
Pipeline Execution Pattern of Register Number Program

10-3 / The Reduced Instruction Set Computer 557

computer control organizations. Both the pipelined datapaths and the controls we

have studied here are simplified and have elements missing. Next we present two

CPU designs that illustrate combinations of architectural characteristics of the

instruction set, the datapath, and the control unit. The designs are top down, but

reuse prior component designs, illustrating the influence of the instruction set archi-

tecture on the datapath and control units, and the influence of the datapath on the

control unit. The material makes extensive use of tables and diagrams. Although we

reuse and modify component designs from Chapter 8, background information from

these chapters is not repeated here. Pointers, however, are given to earlier sections of

the book, where detailed information can be found.

The two CPUs presented are for a RISC using a pipelined datapath with a

hardwired pipelined control unit and a CISC based on the RISC using an auxiliary

microprogrammed control unit. These two designs represent two distinct instruction

set architectures with architectures using a common pipelined core that contributes

enhanced performance.

10-3 THE REDUCED INSTRUCTION SET COMPUTER

The first design we examine is for a reduced instruction set computer with a pipelined

datapath and control unit. We begin by describing the RISC instruction set architec-

ture, which is characterized by load/store memory access, four addressing modes, a sin-

gle instruction format length, and instructions that require only elementary operations.

The operations, resembling those that can be performed by the single-cycle computer,

can be performed by a single pass through the pipeline. The datapath for implement-

ing the ISA is based on the single-cycle datapath initially described in Figure 8-11 and

converted to a pipeline in Figure 10-2. In order to implement the RISC instruction set

architecture, modifications are made to the register file and the function unit. These

modifications represent the effects of a longer instruction-word length and the desire

to include multiple position shifts among the elementary operations. The control unit

is based on the pipelined control unit in Figure 10-4. Modifications include support for

the 32-bit instruction word and a more extensive program counter structure for deal-

ing with branches in the pipeline environment. In response to data and control hazards

associated with pipelined designs, additional changes will be made to both the control

and datapath to sustain the performance gain achieved by using a pipeline.

Instruction Set Architecture

Figure 10-6 shows the CPU registers accessible to the programmer in this RISC.

All registers are 32 bits. The register file has 32 registers, R0 through R31. R0 is a

special register that supplies the value zero when used as a source and discards

the result when used as a destination. The size of the programmer-accessible reg-

ister file is comparatively large in the RISC because of the load/store instruction

set architecture. Since the data-manipulation operations can use only register

operands, many active operands need to be present in the register file. Otherwise,

numerous stores and loads would be needed to temporarily save operands in the

data memory between data-manipulation operations. In addition, in many real

558 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

pipelines, these stores and loads require more than one clock cycle for their exe-

cution. To prevent these factors from degrading RISC performance, a larger regis-

ter file is required.

In addition to the register file, only a program counter, PC, is provided. If stack

pointer-based or processor status register-based operations are required, they are

simply implemented by sequences of instructions using registers.

Figure 10-7 gives the three instruction formats for the RISC CPU. The formats

use a single word of 32 bits. This longer word length is needed to hold realistic

address values, since additional instruction words for holding addresses are difficult

to accommodate in the RISC CPU. The first format specifies three registers. The two

registers addressed by the 5-bit source register fields SA and SB contain the two

operands. The third register, addressed by a 5-bit destination register field DR, spec-

ifies the register location for the result. A 7-bit OPCODE provides for a maximum of

128 operations.

R1

R31

Register file

Program counter

PC

 FIGURE 10-6
CPU Register Set Diagram for RISC

OPCODE DR Immediate

OPCODE DR Target offset

Three-register type

Two-register type

Branch

OPCODE DR

SA

SA

SA SB

31 25 24 20 19 15 14 10 9 0

 FIGURE 10-7
RISC CPU Instruction Formats

10-3 / The Reduced Instruction Set Computer 559

The remaining two formats replace the second register with a 15-bit con-

stant. In the two-register format, the constant acts as an immediate operand, and

in the branch format, the constant is a target offset. The target address is another

name for the effective address, particularly if the address is used in a branch

instruction. The target address is formed by adding the target offset to the con-

tents of the PC. Thus, branching uses relative addressing based on the updated

value of the PC. In order to branch backward from the current PC location, the

offset, regarded as a 2s complement number with sign extension, is added to the

PC. The branch instructions specify source register SA. Whether the branch or

jump is taken is based on whether the source register contains zero. The DR field

is used to specify the register in which to store the return address for the proce-

dure call. Finally, the rightmost 5 bits of the 15-bit constant are also used as the

shift amount SH for multiple bit shifts.

Table 10-1 contains the 27 operations to be performed by the instructions.

A mnemonic, an opcode, and a register transfer description are given for each

operation. All of the operations are elementary and can be described by a single

register transfer statement. The only operations that can access memory are

Load and Store. A significant number of immediate instructions help to reduce

data memory accesses and speed up execution when constants are employed.

Since the immediate field of the instruction is only 15 bits, the leftmost 17 bits

must be filled to form a 32-bit operand. In addition to using zero fill for logical

operations, a second method used is called sign extension. The most significant

bit of the immediate operand, bit 14 of the instruction, is viewed as a sign bit. To

form a 32-bit 2s complement operand, this bit is copied into the 17 bits. In Table

10-1, the sign extension of the immediate field is denoted by se IM. The same

notation, se IM, also represents the sign extension of the target offset field dis-

cussed previously.

The absence of stored versions of status bits is handled by the use of three

instructions: Branch if Zero (BZ), Branch if Nonzero (BNZ), and Set if Less Than

(SLT). BZ and BNZ are single instructions that determine whether a register oper-

and is zero or nonzero and branch accordingly. SLT stores a value in register R[DR]

that acts like a negative status bit. If R[SA] is less than R[SB], a 1 is placed in register

R[DR]; if R[SA] is greater than or equal to R[SB], a 0 is placed in R[DR]. The regis-

ter R[DR] can then be examined by a subsequent instruction to see whether it is

zero (0) or nonzero (1). Thus, using two instructions, the relative values of two oper-

ands or the sign of one operand (by letting R[SB] equal R0) can be determined.

The Jump and Link (JML) instruction provides a mechanism for implement-

ing procedures. The value in the PC after updating is stored in register R[DR], and

then the sum of the PC and the sign-extended target offset from the instruction is

placed in the PC. The return from a called procedure can use the Jump Register

instruction with SA equal to DR for the calling procedure. If a procedure is to be

called from within a called procedure, then each successive procedure that is

called will need its own register for storing the return value. A software stack that

moves return addresses from R[DR] to memory at the beginning of a called pro-

cedure and restores them to R[SA] before the return can also be used, as was

explained in Chapter 9.

560 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

Addressing Modes

The four addressing modes in the RISC are register, register indirect, immediate, and

relative. The mode is specified by the operation code, rather than by a separate mode

field. As a consequence, the mode for a given operation is fixed and cannot be varied.

 TABLE 10-1
RISC Instruction Operations

Operation

Symbolic

Notation Opcode Action

No Operation NOP 0000000 None

Move A MOVA 10000001 R[DR] d R[SA]

Add ADD 0000010 R[DR] d R[SA] + R[SB]

Subtract SUB 0000101 R[DR] d R[SA] + R[SB] + 1

AND AND 0001000 R[DR] d R[SA] ¿ R[SB]

OR OR 0001001 R[DR] d R[SA] ¡ R[SB]

Exclusive-OR XOR 0001010 R[DR] d R[SA] ⊕ R[SB]

Complement NOT 0001011 R[DR] d R[SA]

Add Immediate ADI 0100010 R[DR] d R[SA] + se IM
Subtract Immediate SBI 0100101 R[DR] d R[SA] + (se IM) + 1

AND Immediate ANI 0101000 R[DR] d R[SA] ¿ (0 } IM)

OR Immediate ORI 0101001 R[DR] d R[SA] ¡ (0 } IM)

Exclusive-OR

Immediate

XRI 0101010 R[DR] d R[SA] ⊕ (0 } IM)

Add Immediate

Unsigned

AIU 1000010 R[DR] d R[SA] + (0 } IM)

Subtract Immediate

Unsigned

SIU 1000101 R[DR] d R[SA] + (0 } IM) + 1

Move B MOVB 0001100 R[DR] d R[SB]

Logical Right Shift by

SH Bits

LSR 0001101 R[DR] d lsr R[SA] by SH

Logical Left Shift by

SH Bits

LSL 0001110 R[DR] d lsl R[SA] by SH

Load LD 0010000 R[DR] d M[R[SA]]

Store ST 0100000 M[R[SA]] d R[SB]

Jump Register JMR 1110000 PC d R[SA]

Set if Less Than2 SLT 1100101 If R[SA] 6 R[SB] then R[DR] = 1

Branch if Zero BZ 1100000 If R[SA] = 0, then PC d PC + 1 + se IM
Branch if Nonzero BNZ 1001000 If R[SA] ≠ 0, then PC d PC + 1 + se IM
Jump JMP 1101000 PC d PC + 1 + se IM
Jump and Link JML 0110000 PC d PC + 1 + se IM, R[DR] d PC + 1

1In the CISC, beginning with MOVA and ending with LSL, each instruction has an additional opcode

having a 1 in position 4 (with opcode bits numbered 0 through 6 from right to left). In addition to caus-

ing the usual operation to occur, these codes update the condition code bits.
2In the CISC, the SLT instruction is removed. Its function is replaced by branching on the status bits.

10-3 / The Reduced Instruction Set Computer 561

The three-operand data-manipulation instructions use register-mode addressing.

Register indirect, however, applies only to the load and store instructions, the only

instructions that access data memory. Instructions using the two-register format

have an immediate value that replaces register address SB. Relative addressing

applies exclusively to branch and jump instructions and so produces addresses only

for the instruction memory.

When programmers want to use an addressing mode not provided by the

instruction set architecture, such as indexed addressing, they must use a sequence of

RISC instructions. For example, for an indexed address for a load operation, the

desired transfer is

R15 d M[R5 + 0 		 I]

This transfer can be accomplished by executing two instructions:

AIU R9, R5, I

LD R15, R9

The first instruction, Add Immediate Unsigned, forms the address by appending 17

0s to the left of I and adding the result to R5. The resulting effective address is then

temporarily stored in R9. Next, the Load instruction uses the contents of R9 as the

address at which to fetch the operand and places the operand in the destination reg-

ister R15. Since, for indexed addressing, I is regarded as a positive offset in memory,

the use of unsigned addition is appropriate. Sequences of operations for implement-

ing addressing modes are the primary justification for having unsigned immediate

addition available.

Datapath Organization

The pipelined datapath in Figure 10-2 serves as the basis for the datapath here,

and we deal only with modifications. These modifications affect the register file,

the function unit, and the bus structure. The reader should also refer to the

 datapath in Figure 10-2 and the new datapath shown in Figure 10-8 in order to

understand fully the discussion that follows. We treat each modification in turn,

beginning with the register file.

In Figure 10-2, there are 16 16-bit registers, and all registers are identical

in function. In the new datapath, there are 32 32-bit registers. Also, reading regis-

ter R0 gives a constant value of zero. If a write is attempted into R0, the data will

be lost. These changes are implemented in the new register file in Figure 10-8. All

data inputs and the data output are 32 bits. To correspond to the 32 registers, the

address inputs are five bits. The fixed value of 0 in R0 is implemented by replacing

the storage elements for R0 with open circuits on the lines that were their inputs,

and with constant zero values on the lines that were their outputs.

A second major modification to the datapath is the replacement of the

 single-bit position shifter with a barrel shifter to permit multiple-position shifting.

This barrel shifter can perform a logical right or logical left shift of from 0 to 31

562 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

MD 0 1 2

MUX D

RW

RW

DA

MDDA 0
31

AAMA MB BA CS

MUX C
0 1 3 2

BrARAAPC

+1

Adder

BS PS MWFS SH

SH

CS
AA

MA MB

Bus A Bus B

RAA
Address

Data
memory

Data out
MW

BS0

BS1

PS
Z

Instruction decoder

Constant unit

BA

1 0 1 0

MUX A MUX B

SH
FS

Z

C

A B

Modified
function
unit

F

Bus D

BrA

5
5

IF
DOF

EX
WB

WB

IF

DOF
EX

D Data

IR

N

V

2

Address
Instruction
memory
Instruction

Data in Write

Address
Data
memory

 FIGURE 10-8
Pipelined RISC CPU

10-3 / The Reduced Instruction Set Computer 563

positions. A block diagram for the barrel shifter appears in Figure 10-9. The data

input is 32-bit operand A, and the output is 32-bit result G. Left/right, a control sig-

nal decoded from OPCODE, selects a left or right shift. The shift amount field

SH = IR (4:0) specifies the number of bit positions to shift the data input and takes

on values from 0 through 31. A logical shift of p bit positions involves inserting p

zeros into the result. In order to provide these zeros and simplify the design of the

shifter, we will perform both the left and right shift by using a right rotate. The input

to this rotate will be the input data A with 32 zeros concatenated to its left. A right

shift is performed by rotating the input p positions to the right; a left shift is per-

formed by rotating 64 - p positions to the right. This number of positions can be

obtained by taking the 2s complement of the 6-bit value of 0 || SH.

The 63 different rotates can be obtained by using three levels of 4-to-1 multiplex-

ers, as shown in Figure 10-8. The first level shifts by 0, 16, 32, or 48 positions, the second

level by 0, 4, 8, or 12 positions, and the third level by 0, 1, 2, or 3 positions. The number of

positions for A to be shifted, 0 through 63, can be implemented by representing 0 || SH

as a three-digit base-4 integer. From left to right, the digits have weights 42 = 16, 41 = 4,

and 40 = 1. The digit values in each of the positions are 0, 1, 2, and 3. Each digit controls

a level of the 4-to-1 multiplexers, the most significant digit controlling the first level, the

least significant the third level. Due to the presence of 32 zeros in the 64-bit input, fewer

than 64 multiplexers can be used in each level. A level requires the number of multi-

plexers to be 32 plus the total number of positions its output can be shifted by subse-

quent levels. The output of the first level can be shifted at most 12 + 3 = 15 positions

to the right. Thus, this level requires 32 + 15 = 47 multiplexers. The output of the sec-

ond level can be shifted at most three positions, giving 32 + 3 = 35 multiplexers. The

final level cannot be shifted further and so needs just 32 multiplexers.

SH0

47 4-to-1 multiplexers (rotate right 0, 16, 32, or 48 bit positions)

32 4-to-1 multiplexers (rotate right 0, 1, 2, or 3 bit positions)

G

Selective
2s complementS

Left/right

2 2 2

5

64

47

35

32

0 || A

35 4-to-1 multiplexers (rotate right 0, 4, 8, or 12 bit positions)

 FIGURE 10-9
32-Bit Barrel Shifter

564 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

In the function unit, the ALU is expanded to 32 bits, and the barrel shifter

replaces the single-position shifter. The resulting modified function unit uses the

same function codes as in Chapter 8, except that the two codes for shifts are now

labeled as logical shifts, and some codes are not used. The shift amount SH is a new

5-bit input to the modified function unit in Figure 10-8.

The remaining datapath changes are shown in Figure 10-8. Beginning at the

top of the datapath, zero fill has been replaced by the constant unit. The constant

unit performs zero fill for CS = 0 and sign extension for CS = 1. MUX A is added

to provide a path for the updated PC, PC-1, to the register file for implementation of

the Jump and Link (JML) instruction.

One other change in the figure helps implement the Set if Less Than (SLT)

instruction. This logic provides a 1 to be loaded into R[DA] if R[AA] - R[BA] 6 0

and a 0 to be loaded into R[DA] if R[AA] - R[BA] Ú 0. It is implemented by adding

an additional input to MUX D. The leftmost 31 bits of the input are 0; the rightmost

bit is 1 if N is 1 and V is 0 (i.e., if the result of the subtraction is negative and there is

no overflow). It is also 1 if N is 0 and V is 1 (i.e., if the result of the subtraction is pos-

itive and there is an overflow). These represent all cases in which R[AA] is greater

than R[BA] and can be implemented using an exclusive-OR of N and V.

A final difference in the datapath is that the register file is no longer edge trig-

gered and is no longer a part of a pipeline platform at the end of the write-back

(WB) stage. Instead, the register file uses latches and is written much earlier than the

positive clock edge. Special timing signals are provided that permit the register file to

be written in the first half and to be read in the last half of the cycle. In particular, in

the second half of the cycle, it is possible to read data written into the register file

during the first half of the same clock cycle. This is called a read-after-write register

file, and it both avoids added complexity in the logic used for handling hazards and

reduces the cost of the register file.

Control Organization

The control organization in the RISC is modified from that in Figure 10-4. The mod-

ified instruction decoder is essential to deal with the new instruction set. In Figure

10-8, SH is added as an IR field, a 1-bit CS field is added to the instruction decoder,

and MD is expanded to two bits. There is a new pipeline platform for SH, and

expanded 2-bit platforms for MD.

The remaining control signals are included to handle the new control logic for

the PC. This logic permits the loading of addresses into the PC for implementing

branches and jumps. MUX C selects from three different sources for the next value

of PC. The updated PC is used to move sequentially through a program. The branch

target address BrA is formed from the sum of the updated PC value for the branch

instruction and the sign-extended target offset. The value in R[AA] is used for the

register jump. The selection of these values is controlled by the field BS. The effects

of BS are summarized in Table 10-2. If BS0 = 0, then the updated PC is selected by

BS1 = 0, and R[AA] is selected by BS1 = 1. If BS0 = 1 and BS1 = 1, then BrA is

selected unconditionally. If BS0 = 1 and BS1 = 0, then, for PS = 0, a branch to

10-3 / The Reduced Instruction Set Computer 565

BrA occurs for Z = 1, and for PS = 1, a branch to BrA occurs for Z = 0. This

implements the two conditional branch instructions BZ and BNZ.

In order to have the value of the updated PC for the branch and jump instruc-

tions when they reach the execution stage, two pipeline registers, PC
−1

 and PC
−2

, are

added. PC
−2

 and the value from the constant unit are inputs to the dedicated adder

that forms BrA in the execution stage. Note that MUX C and the attached control

logic are in the EX stage, although shown above the PC. The related clock-cycle dif-

ference causes problems with instructions following branches, which we will deal

with in later subsections.

The heart of the control unit is the instruction decoder. This is combinational

circuitry that converts the operation code in the IR into the control signals necessary

for the datapath and control unit. In Table 10-3, each instruction is identified by its

mnemonic. A register transfer statement and the opcode are given for the instruc-

tion. The opcodes are selected such that the least significant four of the seven bits

match the bits in the control field FS whenever it is used. This leads to simpler decod-

ing. The register file addresses AA, BA, and DA come directly from SA, SB, and DR,

respectively, in the IR.

Otherwise, to determine the control codes, the CPU is viewed much as is the

single-cycle CPU in Figure 8-15. The pipeline platforms can be ignored in this deter-

mination—however, it is important to examine the timing carefully to be sure that

various parts of the register transfer statement for the operation take place in the

right stage of the pipeline. For example, note that the adder for the PC is in stage EX.

This adder is connected to MUX C and its attached control logic, and to the incre-

menter +1 for the PC. Thus, all of this logic is in the EX stage, and the loading of the

PC that begins the IF stage is controlled from the EX stage. Likewise, the input

R[AA] is in the same combinational block of logic and comes not from the A Data

output of the register file, but from Bus A in the EX stage, as shown.

Table 10-3 can serve as the basis for the design of the instruction decoder. It

contains the values for all control signals, except the register addresses from IR. In

contrast to the instruction decoder in Section 8-8, the logic is complex and is most

easily designed by using a computer-based logic synthesis program.

 TABLE 10-2
Definition of Control Fields BS and PS

Register Transfer

BS

Code

PS

Code Comments

PC d PC + 1 00 X Increment PC

Z: PC d BrA, Z: PC d PC + 1 01 0 Branch on Zero

Z: PC d BrA, Z: PC d PC + 1 01 1 Branch on Nonzero

PC d R[AA] 10 X Jump to Contents of R[AA]

PC d BrA 11 X Unconditional Branch

566 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

Data Hazards

In Section 10-1, we examined a pipeline execution diagram and found that filling and

flushing of the pipeline reduced the throughput below the maximum level achiev-

able. Unfortunately, there are other problems with pipeline operation that reduce

throughput. In this and the next subsection, we will examine two such problems: data

hazards and control hazards. Hazards are timing problems that arise because the

execution of an operation in a pipeline is delayed by one or more clock cycles from

the time at which the instruction containing the operation was fetched. If a subse-

quent instruction tries to use the result of the operation as an operand before the

result is available, it uses the old or stale value, which is very likely to give a wrong

result. To deal with data hazards, we present two solutions, one that uses software

and another that uses hardware.

Two data hazards are illustrated by examining the execution of the following

program:

 TABLE 10-3
Control Words for Instructions

Op

Code

Control Word Values

Symbolic

Notation Action RW MD BS PS MW FS MBMACS

NOP None 0000000 0 XX 00 X 0 XXXX X X X

MOVA R[DR] d R[SA] 1000000 1 00 00 X 0 0000 X 0 X

ADD R[DR] d R[SA] + R[SB] 0000010 1 00 00 X 0 0010 0 0 X

SUB R[DR] d R[SA] + R[SB] + 1 0000101 1 00 00 X 0 0101 0 0 X

AND R[DR] d R[SA] ¿ R[SB] 0001000 1 00 00 X 0 1000 0 0 X

OR R[DR] d R[SA] ¡ R[SB] 0001001 1 00 00 X 0 1001 0 0 X

XOR R[DR] d R[SA] ⊕ R[SB] 0001010 1 00 00 X 0 1010 0 0 X

NOT R[DR] d R[SA] 0001011 1 00 00 X 0 1011 X 0 X

ADI R[DR] d R[SA] + se IM 0100010 1 00 00 X 0 0010 1 0 1
SBI R[DR] d R[SA] + (se IM)+1 0100101 1 00 00 X 0 0101 1 0 1

ANI R[DR] d R[SA] ¿ zf IM 0101000 1 00 00 X 0 1000 1 0 0
ORI R[DR] d R[SA] ¡ zf IM 0101001 1 00 00 X 0 1001 1 0 0
XRI R[DR] d R[SA] ⊕ zf IM 0101010 1 00 00 X 0 1010 1 0 0
AIU R[DR] d R[SA] + zf IM 1000010 1 00 00 X 0 0010 1 0 0
SIU R[DR] d R[SA] + (zf IM) + 1 1000101 1 00 00 X 0 0101 1 0 0

MOVB R[DR] d R[SB] 0001100 1 00 00 X 0 1100 0 X X

LSR R[DR] d lsr R[SA] by SH 0001101 1 00 00 X 0 1101 X 0 X

LSL R[DR] d lsl R[SA] by SH 0001110 1 00 00 X 0 1110 X 0 X

LD R[DR] d M[R[SA]] 0010000 1 01 00 X 0 XXXX X 0 X

ST M[R[SA]] d R[SB] 0100000 0 XX 00 X 1 XXXX 0 0 X

JMR PC d R[SA] 1110000 0 XX 10 X 0 XXXX X 0 X

SLT If R[SA] 6 R[SB], then R[DR] = 1 1100101 1 10 00 X 0 0101 0 0 X

BZ If R[SA] = 0, then PC d PC + 1 + se IM 1100000 0 XX 01 0 0 0000 1 0 1
BNZ If R[SA] ≠ 0, then PC d PC + 1 + se IM 1001000 0 XX 01 1 0 0000 1 0 1
JMP PC d PC + 1 + se IM 1101000 0 XX 11 X 0 XXXX 1 X 1
JML PC d PC + 1 + se IM, R[DR] d PC + 1 0110000 1 00 11 X 0 0000 1 1 1

10-3 / The Reduced Instruction Set Computer 567

1 MOVA R1, R5

2 ADD R2, R1, R6

3 ADD R3, R1, R2

The execution diagram of this program appears in Figure 10-10(a). The MOVA instruc-

tion places the contents of R5 into R1 in the first half of WB in cycle 4. But, as shown by

the blue arrow, the first ADD instruction reads R1 in the last half of DOF in cycle 3, one

cycle before it is written. Thus, the ADD instruction uses the stale value in R1. The result

of this operation is placed in R2 in the first half of WB in cycle 5. The second ADD

instruction, however, reads both R1 and R2 in the second half of DOF in cycle 4. In the

case of R1, the value read was written in the first half of WB in cycle 4. So the value read

in the second half of cycle 4 is the new value. The write-back of R2, however, occurs in

the first half of cycle 5, after it is read by the next instruction during cycle 4. So R2 has

not been updated to the new value at the time it is read. This gives two data hazards, as

indicated by the blue arrows in the figure. The registers that are not properly updated to

new values are highlighted in blue in the program and in the register transfer state-

ments, both in the figure. In each of these cases, the read of the involved register occurs

one clock cycle too soon with respect to the write of that register.

(b) A program-based solution

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

Write R1

Write R2

First read R1

Second read R1

NOP

MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

NOP

IF DOF EX WB

IF DOF EX WB

Read R2

R2

R1 R5

R3

(a) T

1 3 4

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

Write R1

Write R2

First read R1

Second read R1

Read R2

MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

R1 R5

R2

5 62

he data-hazard problem

 FIGURE 10-10
Example of Data Hazard

568 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

One possible remedy for data hazards is to have the compiler or programmer

generate the machine code to delay instructions so that new values are available. The

program is written so that any pending write to a register occurs in the same or an

earlier clock cycle than a subsequent read from the register. To accomplish this, the

programmer or compiler needs to have detailed information on how the pipeline

operates. Figure 10-10(b) illustrates a modification of the simple three-line program

that solves the problem. No-operation (NOP) instructions are inserted between the

first and second instructions and between the second and third instructions to delay

the respective reads relative to the writes by one clock cycle. The execution diagram

shows that, at worst, this approach has writes and subsequent reads in the same clock

cycle. This is indicated by the pairs consisting of a register write and a subsequent

register read connected by a black arrow in the diagram. Because of the

 read-after-write assumption for the register file, the timing shown permits the pro-

gram to be executed on correct operands.

This approach solves the problem, but what is the cost? First of all, the program

is obviously longer, although it may be possible to place other, unrelated instructions

in the NOP positions instead of just wasting them. Also, the program takes two clock

cycles longer and reduces the throughput from 0.5 instruction per cycle to 0.375

instruction per cycle with the NOPs in place.

Figure 10-11 illustrates an alternative solution involving added hardware.

Instead of the programmer or compiler putting NOPs in the program, the hardware

inserts the NOPs automatically. When an operand is found at the DOF stage that has

not been written back yet, the associated execution and write-back are delayed by

stalling the pipeline flow in IF and DOF for one clock cycle. Then the flow resumes

with completion of the instruction when the operand becomes available, and a new

instruction is fetched as usual. The delay of one cycle is enough to permit the result

to be written before it is read as an operand.

When the actions associated with an instruction flowing through the pipe

are prevented from happening at a given point, the pipeline is said to contain a

IF DOF EX WB

IF DOF

IF DOF EX WB

R1 write and reads

R2 Write and read

R2 data hazard detected,
pipeline stalled, and
bubble launched.

MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

(ADD R2, R1, R6)

(ADD R3, R1, R2) IF DOF

IF DOF EX WB

1 2 3 4 5 6 7

R1 data hazard detected
pipeline stalled, and bubble launched

8

R1 R5

R2 R1 R6�

R2 R1 R6�

R3 R1 R2�

R3 R1 R2�

 FIGURE 10-11
Example of Data Hazard Stall

10-3 / The Reduced Instruction Set Computer 569

bubble in subsequent clock cycles and stages for that instruction. In Figure 10-11,

when the flow for the first ADD instruction is prevented beyond the DOF stage,

in the next two clock cycles a bubble passes through the EX and the WB stages,

respectively. The holding of the pipeline flow in the IF and DOF stages delays the

microoperations taking place in these stages for one clock cycle. In the figure,

this delay is represented by two diagonal blue arrows from the initial location in

which the completion of the microoperation is prevented to the location one

clock cycle later in which the microoperation is performed. When the pipeline

flow is held in IF and DOF for an extra clock cycle, the pipeline is said to be

stalled, and if the cause of the stall is a data hazard, then the stall is referred to as

a data hazard stall.
An implementation of data-hazard handling for the pipelined RISC that uses

data-hazard stalls is presented in Figure 10-12. The added or modified hardware is

shown in the areas shaded in light blue. For this particular pipeline stage arrange-

ment, a data hazard will occur for a register file read if there is a destination register

at the execution stage that is to be written back in the next clock cycle and that is to

be read at the current DOF stage as either of the two operands. So we have to deter-

mine whether such a register exists. This is done by evaluating the Boolean

equations

HA = MADOF
(DAEX = AADOF) # RWEX

a
4

i=0

(DAEX)i

HB = MBDOF
(DAEX = BADOF) # RWEX

a
4

i=0

(DAEX)i

and

DHS = HA + HB

The following events must all occur for HA, which represents a hazard for the A

data, to equal 1:

1. MA in the DOF stage must be 0, meaning that the A operand is coming from

the register file.

2. AA in the DOF stage equals DA in the EX stage, meaning that there is poten-

tially a register being read in the DOF stage that is to be written in the next

clock cycle.

3. RW in the EX stage is 1, meaning that register DA in the EX stage will defi-

nitely be written in WB during the next clock cycle.

4. The OR (Σ) of all bits of DA is 1, meaning that the register to be written is not

R0 and so is a register that must be written before being read. (R0 has the same

value 0 regardless of any writes to it.)

If all these conditions hold, there is a write pending for the next clock cycle to a reg-

ister that is the same as one being read and used on Bus A. Thus, a data hazard exists

for the A operand from the register file. HB represents the same combination of

events for the B data. If either of the HA or HB terms equals 1, there is a data hazard

and DHS is 1, meaning that a data-hazard stall is required.

570 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

The logic implementing the preceding equations is shown in the shaded area

in the center of Figure 10-12. The blocks marked “Comp” are equality compara-

tors that have output 1 if and only if the two 5-bit inputs are equal. The OR gate

with DA entering it ORs together the five bits of DA and has output 1 as long as

DA is not 00000 (R0).

Z

C

5
5

SH
FS

RAA

DHS
HA

HB

MUX C
0 1 3 2

BrA RAA

Adder

BS0

BS1

PS
Z

Constant unit

IR

PC

BrA

AAMA MB BA

RW DA MD

BS PS MW FS SH

RW
DA

Address
Data

memory
Data out

A data

1 0
MUX A MUX B

A B

Modified
function

unit

F

IF

DOF

EX

WB

WB

DOF

EX

D Data

MD 0 1 2
MUX D

Bus D

0 31

MW

Comp

Comp
SH

AA BA

MBMA
Bus A Bus B

CS

CS

IF

Instruction decoder

1 0

N

V

2

B data

DHS

Address
Instruction

memory
Instruction

Data in Write

Address

Data
memory

 FIGURE 10-12
Pipelined RISC: Data Hazard Stall

10-3 / The Reduced Instruction Set Computer 571

DHS is inverted and the inverted signal is used to initiate a bubble in the

pipeline for the instruction currently in the IR, as well as to stop the PC and IR

from changing. The bubble, which prevents actions from occurring as the instruc-

tion passes through the EX and WB stages, is produced by using AND gates to

force RW and MW to 0. These 0s prevent the instruction from writing the register

file and the memory. AND gates also force BS to 0, causing the PC to be incre-

mented instead of loaded during the EX stage for a jump register or branch

instruction affected by a data hazard. Finally, to prevent the data stall from con-

tinuing for the next and subsequent clock cycles, AND gates force DA to 0 so

that it appears that R0 is being written, giving a condition which does not cause a

stall. The registers to remain unchanged in the stall are the PC, the PC
−1

, PC
−2

,

and the IR. These registers are replaced with registers with load control signals

driven by DHS. When DHS goes to 0, requesting a stall, the load signals become

0 and these pipeline platform registers hold their contents unchanged for the

next clock cycle.

Returning to Figure 10-12, we see that in cycle 3 the data hazard for R1 is

detected, so that DHS goes to 0 before the next clock edge. RW, MW, BS, and DA

are set to 0, and at the clock edge, a bubble is launched into the EX stage for the

ADD. At the same clock edge, the IF and DOF stages are stalled, so the

 information in them now is associated with clock cycle 4 instead of 3. In clock

cycle 4, since DA
EX

 is 0, there is no stall, so the execution of the stalled ADD

instruction proceeds. The same sequence of events occurs for the next ADD. Note

that the execution diagram is identical to that in Figure 10-10(b), except that

the NOPs are replaced by stalled instructions, shown in parentheses. Thus,

although it removes the need for programming NOPs into the software, the

data-hazard stall solution has the same throughput penalty as the program with

the NOPs.

A second hardware solution, data forwarding, does not have this penalty. Data

forwarding is based on the answer to the following question: When a data hazard is

detected, is the result available somewhere else in the pipeline, so that it can be

used immediately in the operation having the data hazard? The answer is “almost.”

The result will be on Bus D, but it is not available until the next clock cycle. The

result is to be written into the destination register during that clock cycle. The infor-

mation needed to form the result, however, is available on the inputs to the pipeline

platform that provides the inputs to MUX D. All that is needed to form the result

during the current clock cycle is a multiplexer to select from the three values, just as

MUX D does. MUX D' is accordingly added to produce the result on Bus D'. In

Figure 10-13, instead of reading the operand from the register file, we use data for-

warding to replace the operand with the value on Bus D'. This replacement is imple-

mented with an additional input to MUX A and to MUX B from Bus D' as shown.

Essentially the same logic as before is used to detect the data hazard, except that

the separate detection signals HA and HB are used directly for A data and B data,

respectively, so that the replacement occurs for the operand that has the data

hazard.

572 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

The data-forwarding execution diagram for the three-instruction example

appears in Figure 10-14. The data hazard for R1 is detected in cycle 3. This causes the

value to go into R1 in the next cycle, to be forwarded from the EX stage of the first

instruction in cycle 3. The correct value of R1 enters the DOF/EX platform at the

next clock edge so that execution of the first ADD can proceed normally. The data

hazard for R2 is detected in cycle 4, and the correct value is forwarded from the

EX stage of the second instruction in that cycle. This gives the correct value in the

Z

C

5
5

SH
FS

HB

RAA

MUX C
0 1 3 2

BrA RAA

Adder

BS0

BS1

PS
Z

Constant unit

IR

PC

BrA

AAMA MB BA

RW DA MD

BS PS MW FS SH

RW
DA

Address
Data

memory
Data out

A data

1 0
MUX A MUX B

A B

Modified
function

unit

F

IF

DOF

EX

WB

WB

DOF

EX

D Data

Data in Write

Address

Data
memory

MD 0 1 2
MUX D

Bus D

0
31

MW

Comp

Comp
SH

AA BA

MBMA
Bus A Bus B

CS

CS

HA

IF

Instruction decoder

MUX D'
0 1 2

0
31

2 1 02 HBHA

Bus D'

N

V

2

B data

Address
Instruction

memory
Instruction

-

 FIGURE 10-13
Pipeline RISC: Data Forwarding

10-3 / The Reduced Instruction Set Computer 573

DOF/EX platform needed for the second ADD to proceed normally. In contrast to

the data-hazard stall method, data forwarding does not increase the number of clock

cycles required to execute the program and hence does not affect the throughput in

terms of the number of clock cycles required. It may, however, add combinational

delay, causing the clock period to be somewhat longer.

Data hazards can also occur with memory access, as well as with register access.

For the ST and LD instructions, it is not likely that a data memory read can be per-

formed after a write in a single clock cycle. Further, some memory reads may take

more than one clock cycle, in contrast to what we have assumed here. Thus, the

reduction in throughput for a data hazard may be increased due to a longer delay

before the data is available.

Control Hazards

Control hazards are associated with branches in the control flow of the program. The

following program containing a conditional branch illustrates a control hazard:

1 BZ R1, 18

2 MOVA R2, R3

3 MOVA R1, R2

4 MOVA R4, R2

20 MOVA R5, R6

The execution diagram for this program is given in Figure 10-15(a). If R1 is zero,

then a branch to the instruction in location 20 (recall that addressing is PC relative)

is to occur, skipping the instructions in locations 2 and 3. If R1 is nonzero, then the

instructions in locations 2 and 3 are to be executed in sequence. Assume that the

branch is taken to location 20 because R1 is equal to zero. The fact that R1 equals 0

is not detected until EX in cycle 3 of the first instruction in Figure 10-15(a). So the

1 3 4

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

R1 data hazard detected
and R1 value forwarded

R1 write and read

R2 data hazard detected
and R2 value forwarded

MOVA R1, R5

ADD R2, R1, R6

ADD R3, R1, R2

R1 R5 Write R2
2 5 6

R2 R1 R6�

R3 R1 R2�

 FIGURE 10-14
Example of Data Forwarding

574 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

PC is set to 20 on the clock edge at the end of cycle 3. But the MOVA instructions in

locations 2 and 3 are into the EX and DOF stages, respectively, after the clock edge.

Thus, unless corrective action is taken, these instructions will complete execution,

even though the programmer’s intention was for them to be skipped. This situation

is one form of a control hazard.

NOP instructions can be used to deal with control hazards just as they were

with data hazards. The insertion of NOPs is performed by the programmer or

compiler generating the machine-language program. The program must be writ-

ten so that only operations intended to be performed, regardless of whether the

branch is taken, are introduced into the pipeline before the branch execution

actually occurs. Figure 10-15(b) illustrates a modification of the simple three-line

program that satisfies this condition. Two NOPs are inserted after the branch

instruction BZ. These two NOPs can be performed regardless of whether the

branch is taken in the EX stage of BZ in cycle 3, with no adverse effects on the

correctness of the program. When control hazards in the CPU are handled in this

manner by programming, the branch hazard dealt with by the NOPs is referred

to as a delayed branch. Branch execution is delayed by two clock cycles in

this CPU.

(b) Program-based solution

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

R1 = 0 evaluated

PC set to 20

Instruction MOV R5, R6
fetched from target address

1 BZ R1, 18

3 NOP

2 NOP

20 MOV R5, R6 IF DOF EX WB

No change

No change

1 2 3 4 5 6 7

IF DOF EX WB

IF DOF EX WB

IF DOF EX WB

R1 = 0 evaluated

PC set to 20

Instruction MOV R5, R6
fetched from target address

1 BZ R1, 18

3 MOV R1, R2

2 MOV R2, R3

20 MOV R5, R6 IF DOF EX WB

Change in R2

Change in R1

1 2 3 4 5 6 7

(a) Branch-hazard problem

 FIGURE 10-15
Example of Control Hazard

10-3 / The Reduced Instruction Set Computer 575

The NOP solution in Figure 10-15(b) increases the time required to process the

simple program by two clock cycles, regardless of whether the branch is taken. Note,

however, that these wasted cycles can sometimes be avoided by rearranging the

order of instructions. Suppose that those instructions to be executed regardless of

whether the branch is taken can be placed in the two locations following the branch

instruction. In this situation, the lost throughput is completely recovered.

Just as in the case of the data hazard, a stall can be used to deal with the control

hazard. But, also as in the case of the data hazard, the reduction in throughput will be

the same as with the insertion of NOPs. This solution is referred to as a branch-
hazard stall and will not be presented here.

A second hardware solution is to use branch prediction. In its simplest form, this

method predicts that branches will never be taken. Thus, instructions will be fetched

and decoded and operands fetched on the basis of the addition of 1 to the value of the

PC. These actions occur until it is known during the execution cycle whether the branch

in question will be taken. If the branch is not taken, the instructions already in the pipe-

line due to the prediction will be allowed to proceed. If the branch is taken, the instruc-

tions following the branch instruction need to be canceled. Usually, the cancellation is

done by inserting bubbles into the execution and write-back stages for these instruc-

tions. This is illustrated for the four instruction program in Figure 10-16. On the basis of

the prediction that the branch will not be taken, the two MOVA instructions after BZ

are fetched, the first one is decoded, and its operands are fetched. These actions take

place in cycles 2 and 3. In cycle 3, the condition upon which the branch is based has been

evaluated, and it is found that R1 = 0. Thus, the branch is to be taken. At the end of

cycle 3, the PC is set to 20, and the instruction fetch in cycle 4 is performed using the

new value of the PC. In cycle 3, the fact that the branch is taken has been detected, and

bubbles are inserted into the pipeline for instructions 2 and 3. Proceeding through the

pipeline, these bubbles have the same effect as two NOP instructions. However, because

the NOPs are not present in the program, there is no delay or performance penalty

when the branch is not taken.

IF

IF

IF

IF

DOF

DOF

DOF

DOF

EX

EX

EX

WB

WB

WB

WB

R1 = 0 evaluated

PC set to 20

Instruction MOV R5, R6
fetched from target address

1 BZ R1, 18

3 MOVA R1 R2

2 MOVA R2 R3

20 MOVA R5 R6

No change

No change

1 2 3 4 5 6 7

Branch detected
and bubbles launched

 FIGURE 10-16
Example of Branch Prediction with Branch Taken

576 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

The branch-prediction hardware is shown in Figure 10-17. Whether a branch is

taken is determined by looking at the selection values on the inputs to MUX C. If

the pair of inputs is 01, then a conditional branch is being taken. If the pair is 10, then

0 1 2
MUX D

RW
DA

0
31

AAMA MB BA CS

RW DA MD

MUX C
0 1 23

BrA RAA
PC

ADDER

BS PS MW FS SH

SH

CS
AA

MA MB

Bus A Bus B

RAA

Address
Data
memory

Data out
MW

BS0
BS1

PS

Instruction decoder

Constant unit
Register file
with R0 = 0
A data B data BA

1 0 1 0
MUX A MUX B

SH
FS

Z

C

A B

Modified
function
unit

F

Bus D

BrA

5
5

IF
DOF

EX
WB

WB

IF

DOF
EX

D Data

Register file
with R0 = 0

Address
Data
memory

IR

2

N

V

Z

Address
Instruction

memory
Instruction

Data in Write

 FIGURE 10-17
Pipelined RISC: Branch Prediction

10-4 / The Complex Instruction Set Computer 577

an unconditional JMR is occurring. If the pair is 11, then an unconditional JMP or

JML is taking place. On the other hand, if the pair of inputs is 00, then no branch is

occurring. Thus, a branch occurs for all combinations other than 00 (i.e., for at least

one 1) on the pair of lines. Logically, this corresponds to the OR of the lines, as shown

in the figure. The output of the OR is inverted and then ANDed with the RW and

MW fields, so that the register file and the data memory cannot be written for the

instruction following the branch instruction if the branch is taken. The inverted out-

put is also ANDed with the BS field, so that a branch in the next instruction is not

executed. In order to cancel the second instruction following the branch, the inverted

OR output is ANDed with the IR output. This gives an instruction of all 0s, for which

the OPCODE field is defined as NOP. If the branch is not taken, however, the

inverted OR output is 1, and the IR and the three control fields remain unchanged,

giving normal execution of the two instructions following the branch.

Branch prediction can also be done on the assumption that the branch is taken.

In this case, the instructions and operands must be fetched down the path of the

branch target. Thus, the branch target address must be computed and used for fetch-

ing the instruction in the branch target location. In case the branch does not take

place, however, the updated value of the PC must also be saved. As a consequence,

this solution will require additional hardware to compute and store the branch target

address. Nevertheless, if branches are more likely to be taken than not, the “branch

taken” prediction may yield a more favorable cost–performance trade-off than the

“branch not taken” prediction.

For simplicity of presentation, we have treated the hardware solutions for deal-

ing with hazards one at a time. In an actual CPU, these solutions need to be com-

bined. In addition, other hazards, such as those associated with writing and reading

memory locations, need to be handled.

10-4 THE COMPLEX INSTRUCTION SET COMPUTER

CISC instruction set architectures are characterized by complex instructions that

are, at worst, impossible, and, at best, difficult to implement using a single-cycle

 computer or a single pass through a pipeline. A CISC ISA often employs a sizable

number of addressing modes. Further, the ISA often employs variable-length

instructions. The support for decision making via conditional branching is also more

sophisticated than the simple concepts of branch on zero register contents and set-

ting a register bit to 1 based on a comparison of two registers. In this section, a basic

architecture for a CISC is developed with the high-performance of a RISC for sim-

ple instructions and most of the characteristics of a CISC ISA as just described.

Suppose that we are to implement a CISC architecture, but we are interested in

approaching a throughput of one instruction per short RISC clock cycle for simple,

frequently used instructions. To accomplish this goal, we use a pipelined datapath

and a combination of pipelined and microprogrammed control as shown in Figure 10-18.

An instruction is fetched into the IR and enters the Decode and Operand Fetch

stage. If it is a simple instruction that executes completely in a single pass through

the normal RISC pipeline, it is decoded and operand fetch occurs as usual. On

the other hand, if the instruction requires multiple microoperations or multiple

578 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

memory accesses in sequence, the decode stage produces a microcode address for

the microcode ROM and replaces the usual decoder outputs with control values

from the microcode ROM. Execution of microinstructions from the ROM, selected

by the microprogram counter, continues until the execution of the instruction is

completed.

Recall that to execute a sequence of microinstructions, it is often necessary to

have temporary registers in which to store information. An organization of this type

will frequently supply temporary registers with a convenient mechanism for switch-

ing between temporary registers and the usual programmer-accessible register

resources.

The preceding organization supports an architecture that has combined

CISC–RISC properties. It illustrates that pipelines and microprograms can be

compatible and need not be viewed as mutually exclusive. The most frequent use

of such a combined architecture allows existing software designed for a CISC to

take advantage of a RISC architecture while preserving the existing ISA. The

CISC–RISC architecture is a combination of concepts from the multiple-cycle

computer in Chapter 8, the RISC CPU in the previous section, and the micropro-

gramming concept introduced briefly in Chapter 8. This combination of concepts

makes sense, since the CISC CPU executes instructions using multiple passes

through the RISC datapath pipeline. To sequence these multiple-pass instruction

implementations, a sequential control of considerable complexity is needed, so

microprogrammed control is chosen.

The development of the architecture begins with some minor modifications to

the RISC ISA to obtain some capabilities desirable in the CISC ISA. Next, the data-

path is modified to support the ISA changes. These include modification of the

Constant Unit, addition of a Condition Code register CC, and deletion of the hard-

ware for supporting the SLT instruction. Further, the Register file addressing logic is

modified to provide addressing for 16 temporary registers for multiple-pass use of

the datapath, with 16 registers remaining in the storage resources. This is in contrast

to the 32 registers in the storage resources for the RISC. The next step is to adapt the

Microprogram
counter

Control ROM

Instruction fetch

Decode and
operand fetch

Execute

Write-back

 FIGURE 10-18
Combined CISC–RISC Organization

10-4 / The Complex Instruction Set Computer 579

RISC control to work with the microprogrammed control in implementing the mul-

tiple pass instructions. Finally, the microprogrammed control itself is developed and

its operation is illustrated by the implementation of three CISC instructions that

characterize a CISC ISA.

The first modification to the RISC ISA is the addition of a new format for branch

instructions. In terms of the instructions provided in the CISC, it is desirable to have

the capability to compare the contents of two source registers and branch, indicating

the relationship between the contents of the two registers. To perform such a com-

parison, a format with two source register fields SA and SB and a target offset are

required. Referring to Figure 10-7, addition of the SB field to the branch format

reduces the length of the target offset from 15 bits to 10 bits. The resulting Branch 2

format added for the CISC instructions is shown in Figure 10-19. This format is used

by an illustration in Example 10-2 of a BLE instruction that compares the contents

of registers R[SA] and R[SB].

The second modification is to partition the Register file to provide addressing

for 16 temporary registers for multiple-pass use of the datapath. With the partition,

only 16 registers remain in the storage resources. Rather than modify all of the regis-

ter address fields in the instruction formats, we will simply ignore the most significant

bit of these fields. For example, only the rightmost four bits of the field DR will be

used. DR4 will be ignored.

The third modification to the RISC ISA is the addition of condition codes (also

called flags) as discussed in Chapter 9. The condition codes provided are designed

OPCODE DR SA Immediate

Three-register type

Two-register type

OPCODE DR SA Long target offsetBranch 1

OPCODE DR SA SB

31 25 24 20 19 15 14 10 9 0

OPCODE DR SA Short target offsetBranch 2 SB

 FIGURE 10-19
CISC CPU Instruction Formats

580 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

specifically to be used in combination with branch on zero and branch on nonzero in

implementing instructions that will provide a wide spectrum of decisions, such as

greater than, less than, less than or equal to, and so on for both signed and unsigned

integers. The codes are zero (Z), negative (N), carry (C), overflow (V), and less than

(L). The first four are stored versions of the status outputs of the Function Unit. The

less than (L) bit is the exclusive OR of Z and V, which is useful in easily implement-

ing particular decisions. The inclusion of the L bit in the condition codes eliminates

the need for the SLT instruction.

To make the most effective use of these condition codes, it is useful to con-

trol whether or not they are modified for a particular microoperation execution

from the instructions. Examination of the RISC instruction codes in Table 10-1

shows that bit 4 (third from the left) of the opcode is 0 for the operations MOVA

down through instruction LSL. This bit can be used for these instructions to con-

trol whether the condition codes are affected by the instruction. If the bit is 1,

then the condition-code values are affected by the execution of the instruction. If

it is 0, then the condition codes will not be affected. This adds an additional 17

new operation codes with a 1 in opcode position 4 and 17 new mnemonic codes to

the architecture. These opcodes must not overlap the existing operation codes,

and the mnemonics are formed by appending C to the current mnemonics in

Table 10-1. These modifications permit flexible use of the condition codes in mak-

ing decisions at both the ISA level and in the microcode. In both cases, the actual

control of condition-code loading is passed through a bit LD in the control words

for the RISC pipeline.

Several changes to the datapath are required to support the ISA modifications. These

changes will be covered beginning with the datapath components in the DOF stage

in Figure 10-20.

First, modifications are made to the Constant unit to handle the change in the

length of the target offset. Logic added to the Constant unit extracts a constant,

IMS = IR9:0, from constant IM. Sign extension is applied to IM
S
 to obtain a 32-bit

word. Also, for use in comparisons with condition-code values, an 8-bit constant CA

is provided from the microinstruction register, MIR, in the microprogrammed con-

trol. This constant is zero filled to form a 32-bit word. The CS control field for the

Constant unit is expanded to two bits to perform selection from among the four pos-

sible constant sources.

Second, the Register address logic from the multiple-cycle computer in

Chapter 8 is added to the address inputs of the Register file. The purpose of this

change is to support the ISA modification that provides 16 temporary registers and

16 registers that are a part of the storage resources. An additional mode supports the

use of DX as a register-file source address with BX as the corresponding register-file

destination address. This is necessary to capture the contents for R[DR] for use in

destination address mode calculations.

10-4 / The Complex Instruction Set Computer 581

Third, a number of changes are made to support the modification adding condi-

tion codes. In the DOF stage, an additional port is added on MUX A in order to provide

access to CC, the stored condition codes, for storage in temporary registers or compari-

son to constant values. In the EX stage, the condition-code bit L (less than) is imple-

mented and the condition-code register CC is added to the pipeline platform. The new

control signal LC determines whether CC is loaded for the execution of a specific

microoperation using a function unit operation. In the WB stage, the logic for support

of the SLT instruction is replaced by a zero-filled CC value, which is passed to the new

port on MUX A. Since the new condition-code structure provides support for the same

decision making as SLT did and more, support for SLT is no longer needed.

MD 0 1
MUX D

RW
FDA

0
27

AA BA

CS

RW MD

MUX C
0 1 3 2

BrA RAAPC

Instruction
memory
Instruction

Address

Adder

BS PS MW FS

CS

Bus A Bus B

RAA

Address
Data
memory

Data out
MW

BS0
BS1

PS
Z

IM = IR14:0

Instruction decoder

Constant unit 32 x 32
Register file
with R0 = 0

A data B data

1 0 1 0
MUX AMUX B

SH
FS

Z C

A B

Modified
function
unit

F

Bus D

BrA

5

5

IF

DOF

EX

WB

IF

DOF

EX

D Data

Register file

Data in Write

Address
Data
memory

IR

N V

2

5

5

Register
address
logic

AX
BX DX

AA

BA

DA

4

4

4 5

5

Z

L

WB

 IR4:0

01 MUX I

MIR30:0

AX BX

SA

CA

MI

MS

LC

LC

2

CC

To Mux A

From CC
DA

SH

FDA

DX

DFDA

DFDA

 FIGURE 10-20
Pipelined CISC CPU

582 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

The addition of a microprogrammed control to the control unit to support instruc-

tion implementation using multiple passes through the pipeline causes significant

changes to the existing control, as shown in Figure 10-20. The microprogrammed

control is a part of the instruction decoding hardware in the DOF stage, but it

interacts with other parts of the control as well. For convenience, it will be

described separately.

A quick overview of the execution of a multiple-pass instruction provides a

perspective for the control unit changes. The PC points to the instruction in the

Instruction memory. The instruction is fetched in the IF stage, and on the next

clock edge it is loaded into the IR and the PC is updated. The instruction is identi-

fied as a multiple-pass instruction from its opcode. Decoding of the opcode

changes signal MI to 1 to indicate that this instruction is to use the micropro-

grammed control. The decoder also produces an 8-bit starting address, SA, that

identifies the beginning of the microprogram in the Microcode ROM. Since multi-

ple passes through the pipeline are needed to implement the instruction, the load-

ing of subsequent instructions into the IR and further updating of the PC must be

prevented. A signal MS produced by the microprogrammed control logic becomes

1 and stalls the PC and the IR. This prevents the PC from incrementing, but per-

mits PC + 1 to continue down the pipeline into PC
–1

 and PC
–2

 for use in a branch.

This stall remains until the multiple-pass instruction has been executed or until

there is branch or jump action on the PC. Also, when MI = 1, most of the fields of

the decoded instruction are replaced with fields of the current microinstruction,

which is a decoded NOP (no operation). This 31-bit field replacement, performed

by MUX I, prevents the instruction itself from causing any direct actions. Some

changes have been made to the control word to control modified datapath

resources. Fields CS and MA have been expanded to two bits each, and field LC

has been added. At this point, the microprogrammed control is now controlling

the pipeline and supplies a series of microinstructions (control words) to imple-

ment the instruction execution. The control word format follows that for the mul-

tiple cycle computer and includes fields such as SH, AX, BX, and DX. DX is

modified to match the register address changes described for the datapath. In

addition, the microprogrammed control has to interact with the datapath in order

to perform decisions. This interaction includes application of the constant CA, use

of the condition codes CC, and use of the zero detect signal Z.

To support the operations just discussed, the following changes are made to the

control unit:

1. the addition of the stall signal MS to the PC, PC
−1

, and IR,

2. changes in the instruction decoder to produce MI and ST,

3. expansion of the fields CS and MA to two bits,

4. addition of MUX I, and

5. addition of control fields AX, BX, and DX, and LC.

10-4 / The Complex Instruction Set Computer 583

The definitions of new and modified control fields are given in Table 10-4.

Except for the addition of the microprogrammed control discussed in the next

section, this completes the changes to the control unit.

Microprogrammed Control

A block diagram for the microprogrammed control and the format for microinstruc-

tions appear in Figure 10-21. The control is centered about the Microcode ROM,

which has an 8-bit address and stores up to 256 41-bit microinstructions. The micro-

program counter MC stores the address corresponding to the current microinstruc-

tion stored in the microinstruction register, MIR. The address for the ROM is

 provided by MUX E, which selects from the incremented MC, the jump address

obtained from the microinstruction, CA, the prior value of the jump address, CA-1,

and the starting address from the instruction decoder in the control unit, SA. Table

10-5 defines the 2-bit select input ME for MUX E and stall bit, MS, in terms of the

new control field MZ plus other variables. This function is implemented by

the Microaddress Control logic. To set the context for the discussion, in location 0 of

 TABLE 10-4
Added or Modified Control Word (Microinstruction) Fields for CISC

Control Fields Register Fields CS MA LC

MZ

2b

CA

8h

BS

2b

P

S
Action

Code

5h
Action

Code

2b
Action

Code

2b
Action Code

See

Table

10-5

Next

Address

or

Con stant

See

Table

10-2

AX, BX

R[SA], R[SB] 0X

 R16 10

 R31 1F

zf IM

se IM

se IMS

zf CA

00

01

10

11

A Data

PC
–1

0 || CC

00

01

10

Hold CC
Load CC

0

1

DX

Source R[DR]

and Dest. R[SB]

 00

Dest R[DR]

with X ≠ 0
 0X

 R16 10

 R31 1F

584 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

the ROM, the IDLE state 0 for the microprogrammed control contains a microin-

struction that is a NOP consisting of all zeros. This microinstruction has MZ = 0 and

CA = 0. From Table 10-5, with MI = 0, the microprogram address is CA = 0, caus-

ing the control to remain in this state until MI = 1. With MI = 1, starting address

SA is applied to fetch the first microinstruction of the microprogram for the complex

instruction being held in IR. In the control unit, MI = 1 also switches MUX I from

the normal control word coming from the decoder to the 31-bit MIR portion that is a

NOP instruction. In addition, the output MS from the Microaddress control becomes

1, stalling the PC, PC
−1

, and the IR in the main control. At the next clock edge, the

microinstruction fetched from the starting address SA enters the MIR, and the pipe-

line is now controlled by the microprogram.

In Figure 10-21, two pipeline registers are required as a part of the micropro-

grammed control. The stored pipeline values, MZ
−1

 and CA
−1

, are required for the

execution of a conditional microbranch, since the value of Z to be tested occurs

during the execution cycle for the microbranch instruction, one clock cycle after it

enters the MIR.

During the execution of the microprogram, the microaddress is controlled by MZ,

MZ
−1

, MI, PS, and Z. For MZ
−1

 = 11, MZ = 01 since the microinstruction following a

MC

MIR

MIR30:0

SA

8 8 8

8

Microcode ROM

Address

Data

0 1
Mux E

ME Microaddress
control

MS
MI
MZ

PS
Z

2 3

CA

41

82 31
CA

DOF

EX

MZ

82

(a)

M
Z

40 39 38 31 30 29 25 24 23 22 21 20 19 16 15 14 13 12 11 7 6 2 1 0

R
W

P
S

M
W

L
C

M
A

M
B

C
S

M
D

CA DX BS FS AX BX

(b)

 FIGURE 10-21
Pipelined CISC CPU: Microprogrammed Control

10-4 / The Complex Instruction Set Computer 585

conditional microbranch must be a NOP. Under these conditions, the ME values are

controlled by PS and Z with MS = 1. For PS and Z having opposite values, a condi-

tional branch to the microaddress value from CA
−1

 occurs. Otherwise, for MZ
−1

 = 11

and MZ = 01, the next microaddress becomes the incremented value of MC.

For MZ
−1

 ≠ 11, MZ, MI, and PS control the microaddress. For MZ = 00,

the values of ME and MS are controlled by MI. For MI = 0, the next microad-

dress is CA and MS = 0, corresponding to the idle state for the microprogrammed

control. For MI = 1, the next microaddress is SA and MS = 1, selecting the next

microinstruction from the Microcode ROM and stalling the first two pipeline

platforms. For MZ = 01, the next microaddress is the incremented value of MC,

advancing execution to the next microinstruction in sequence. For MZ = 10, an

unconditional jump is performed in the microcode control and the value of MS is

controlled by PS. PS = 1 causes MS = 1, continuing microprogram execution.

PS = 0 forces MS = 0, removing the stall, and returning control to the pipeline.

This causes MI to become 0 (if the new instruction is not also a complex one). If

CA = 0, the microprogrammed control is locked the IDLE state until MI = 1. In

order for this to happen, the final instruction in the microprogram must have

MZ = 10, PS = 0, and CA = 0.

Microprograms for Complex Instructions

Three examples illustrate complex instructions implemented by using the CISC

capabilities provided by the design just completed. The resulting microprograms are

given in Table 10-6.

 TABLE 10-5
Address Control

Inputs Outputs

MZ
–1

MZ MI PS Z ME
1

ME
0

MS Register Transfer Due to ME

11 01 X 0 0 0 0 1 PS # Z: MC d MC + 1

11 01 X 0 1 0 1 1 PS # Z: MC d CA- 1

11 01 X 1 0 0 1 1 PS # Z: MC d CA- 1

11 01 X 1 1 0 0 0 PS # Z: MC d MC + 1

0X 01 X X X 0 0 1 MC d MC + 1

X0 01 X X X 0 0 1 MC d MC + 1

XX 00 0 X X 1 0 0 MC d CA

XX 00 1 X X 0 1 1 MC d ST

XX 10 X 0 X 1 0 0 PS: MC d CA

XX 10 X 1 X 1 0 1 PS: MC d CA

XX 11 X X X 0 0 1 MC d MC + 1

586 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

EXAMPLE 10-1 LD Instruction with Indirect Indexed Addressing (LII)

The LII instruction adds the target offset to the contents of a register that is being used

as an index register. In the indirection step, the indexed address formed is then used to

 TABLE 10-6
Example Microprograms for CISC Architecture

Microinstructions

Action Address MZ CA

R

W DX

M

D BS

P

S

M

W FS

L

C MA

M

B AX BX CS

Shared Microinstructions

MI: MC d ST, MI: MC d 00 IDLE 00 00 0 00 0 00 0 0 0 0 00 0 00 00 00

MC d MC + 1 (NOP) Arbitrary 01 XX 0 00 0 00 0 0 0 0 00 0 00 00 00

Load Indirect Indexed (LII)

R16 d R[SA] + zf IML LII0 01 00 1 10 0 00 0 0 2 0 00 1 00 00 00

MC d MC + 1 (NOP) LII1 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R17 d M[R16] LII2 01 00 1 11 1 00 0 0 0 0 00 0 10 00 00

MC d MC + 1 (NOP) LII3 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R[DR] d M[R17] LII4 10 IDLE 1 01 1 00 0 0 0 0 00 0 11 00 00

Compare Less Than or Equal To (BLE)

R[SA]-R[SB],

CC d L }Z }N }C }V
BLE0 01 00 0 01 0 00 0 0 5 1 00 0 00 00 00

MC d MC + 1 (NOP) BLE1 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R31 d CC^11000 BLE2 01 18 1 1F 0 00 0 0 8 0 10 1 00 00 11

MC d MC + 1 (NOP) BLE3 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00
if (R

31
 ≠ 0) MC d BLE7

 else MC d MC + 1

BLE4 11 BLE7 0 00 0 00 1 0 0 0 00 0 1F 00 00

MC d MC + 1 (NOP) BLE5 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00
MC d IDLE BLE6 00 IDLE 0 00 0 00 0 0 0 0 00 0 00 00 00

PC d (PC-1) + se IML,

 MC d IDLE
BLE7 10 IDLE 0 00 0 11 0 0 0 0 01 1 00 00 00

Move Memory Block (MMB)

R16 d R[SB] MMB0 01 00 1 10 0 00 0 0 C 0 00 0 00 00 00

MC d MC + 1 (NOP) MMB1 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

R16 d R16 -1 MMB2 01 01 1 10 0 00 0 0 5 0 00 1 00 00 11

R17 d R[DR] MMB3 01 00 1 00 0 00 0 0 C 0 00 0 00 11 00

R18 d R[SA] + R16 MMB4 01 00 1 12 0 00 0 0 2 0 00 0 00 10 00

R19 d R17 + R16 MMB5 01 00 1 13 0 00 0 0 2 0 00 0 11 10 00

R20 d M[R18] MMB6 01 00 1 14 1 00 0 0 0 0 00 0 12 00 00

MC d MC + 1 (NOP) MMB7 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00

M[R19] d R20 MMB8 01 00 0 00 0 00 0 1 0 0 00 0 13 14 00

if (R16 ≠ 0)MC d MMB2 MMB9 11 MMB2 0 00 0 00 1 0 0 1 00 0 10 00 00

MC d MC + 1 (NOP) MMB10 01 00 0 00 0 00 0 0 0 0 00 0 00 00 00
MC d IDLE MMB11 10 IDLE 0 00 0 00 0 0 0 0 00 0 00 00 00

10-4 / The Complex Instruction Set Computer 587

fetch the effective address from memory. Finally, the effective address is used to fetch

the operand from memory. The opcode for this instruction is 0110001, and the instruc-

tion uses the Immediate format with the SA register field and a 15-bit target offset.

When the LII instruction is fetched and appears in the IR, the instruction decoder sets

MI equal to 1 and provides the microcode address symbolically represented by LII0 in

Table 10-6. The first microinstruction to be executed is the one appearing in the IDLE

address. This microoperation executes a NOP in the datapath and memory, but in the

presence of MI = 1, the address control selects SA as the next microinstruction

address, thereby leaving the IDLE state. The LII0 microinstruction forms the indexed

address and increments the address in MC to fetch the next microinstruction LII1. This

causes the NOP microinstruction in address LII1 to be fetched for execution in the

pipeline. This NOP has been inserted, since the result of the microinstruction in LII0 is

not placed in R
16

 until the WB stage. The next microinstruction in LII2 fetches the

effective address from memory. A NOP is required next, due to the clockcycle delay in

writing the effective address to R
17

. The microinstruction in LII4 applies the effective

address to the memory to obtain the operand and place it in the destination register

R[DR]. Since this completes the LII implementation, the microprogrammed control

state in MC returns to IDLE and the next instruction following LII is fetched from the

instruction memory by using the address in the PC. ■

In Table 10-6, this sequence of microinstructions is described in the Action col-

umn by register transfer statements, and symbolic names are provided for the

addresses of the microinstructions in the Microcode ROM. The remainder of the col-

umns in the table provides the coding of the microinstruction fields. These codes are

selected from Tables 8-12, 10-2, 10-3, and 10-5, to implement the register transfers. Of

particular note is the appearance of MC = 10, PS = 0, and CA = IDLE (00) in

microinstruction LII4, causing the microprogram control to return to IDLE and

 program control to return to the pipeline control.

EXAMPLE 10-2 Branch on Less Than or Equal to (BLE)

The BLE instruction compares the contents of registers R[SA] and R[SB]. If R[SA]

is less than or equal to R[SB], then the PC branches to PC + 1 plus the sign-ex-

tended Short Target Offset (IMS). Otherwise, the incremented PC is used. The

opcode for the instruction is 1100101.

The register transfers for the instruction are given in the Action column of

Table 10-6. In microinstruction BLE0, R[SB] is subtracted from R[SA] and the con-

dition codes L through V are captured in register CC. Due to the one-cycle delay in

writing to CC, a NOP is required in microinstruction BLE1. R[SA] is less than or

equal to R[SB] if (L + Z) = 1 (+ is OR in this expression). Thus, of the five

 condition-code bits, only L and Z are of interest. So in microinstruction BLE2, the

least significant three bits of CC are masked out using the mask 11000 ANDed with

CC. The result is placed in register R
31

, and, in BLE3, another NOP is required wait-

ing for R
31

 to be written. In BLE4, a microbranch on R
31

 nonzero occurs. If R
31

 is

nonzero, then L + Z = 1, giving R[SA] less than or equal to R[SB]. Otherwise, both

L and Z are 0, indicating R[SA] is not less than or equal to R[SB]. Due to the micro-

branch, a NOP is required in BLE5. The connections to MUX E require only one

588 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

NOP after a microbranch instead of the two NOPs needed for the conditional branch

in the main control. If the branch is not taken, the next microinstruction BLE6 exe-

cutes, returning MC to IDLE and reactivating the pipeline control to execute the

next instruction. If the branch is taken, microinstruction BLE7 is executed, placing

PC + 1 + BrA into the PC for fetching the next instruction when the microinstruc-

tion reaches the EX stage. Note that such a branch on the PC can take place only

after MS becomes 0 and the pipeline is reactivated. In this regard, a control hazard

exists for this instruction in the main control, so it must be followed by a NOP. The

codes for the microinstruction fields appear in Table 10-6. ■

EXAMPLE 10-3 Move Memory Block (MMB)

The MMB instruction copies a block of information from one set of contiguous loca-

tions in memory to another. It has opcode 0100011 and uses the three-register type

format. Register R[SA] specifies address A, the beginning location of the source

block in memory, and register R[DR] specifies address B, the beginning location of

the destination block. R[SB] gives the number n of words in the block.

The register transfers for the instruction are given in the Action column of

Table 10-6. In microinstruction MMB0, R[SB] is loaded into R
16

. MMB1 contains a

NOP waiting for R
16

 to be written. In MMB2, R
16

 is decremented, providing an index

with n values, n - 1 down to 0, for use in addressing the copying of n words. Since

R[DR] is a destination register, it is ordinarily not available as a source. But to do

address manipulation for the destination locations, it is necessary for its value to be

placed in a register that can act as a source. Thus, in MMB3, the value of R[DR] is

copied to register R
17

 by using the register code DX = 00000, which treats R[DR] as

the source and the register specified in the BX field, R
17

, as the destination. In micro-

instructions MMB4 and MMB5, R
16

 is added to R[SA] and to R[SB] to serve as

pointers to the addresses in the blocks. Due to these operations, the words in the

blocks are transferred from the highest location first. In MMB6, the first word is

transferred from the first source address in memory to temporary register R
20

. In

MMB7, a NOP appears to permit the writing of the value in R20 by MMB6 before the

use of the value by MMB8. In MMB8, the first word is transferred from R
20

 to the

first destination address in memory. In MMB9, a branch on zero is done on the con-

tents of R
16

 to determine if all of the words in the block have been transferred. If not,

then MM2 is the next microaddress in which the next word transfer begins. If R
16

equals zero, the next microinstruction is the NOP placed in MMB10 due to the

branch. The final microinstruction in MMB11 returns MC to IDLE and returns exe-

cution back to the pipeline control.

The codes for the microinstructions appear in Table 10-6. The code consists of

simple register and memory transfers with a single branch to provide the looping

capability and NOPs to deal with data and control hazards. ■

10-5 MORE ON DESIGN

The two designs considered in this chapter represent two different ISAs and two

different supporting CPU architectures. The RISC architecture matches well with

the pipelined control organization because of the simplicity of the instructions. Due

10-5 / More on Design 589

to the need for high performance, the modern CISC architecture presented is built

upon the RISC foundation. In this section, we will deal with additional features for

speeding up the fundamental RISC pipeline.

Advanced CPU Concepts

Among the various methods used to design advanced CPUs are multiple units orga-

nized as a pipeline-parallel structure, superpipelines, and superscalar architectures.

Consider the case in which an operation takes multiple clock cycles to execute,

but the instruction fetch and write-back operations can be handled in a single cycle.

Then it is possible to initiate an instruction every clock cycle, but not possible to com-

plete the execution of an instruction every cycle. In such a situation, the performance of

the CPU can be substantially improved by having multiple execution units in parallel.

A high-level block diagram for this kind of system is shown in Figure 10-22. The instruc-

tion fetch, decoding, and operand fetch, and branches are carried out in the I-unit

D-UNIT

E-UNIT E-UNIT E-UNIT

I-UNIT

Register
file

 FIGURE 10-22
Multiple Execution Unit Organization

590 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

pipeline. When decoding of a nonbranch instruction has been completed, the instruc-

tion and operands are issued to the appropriate E-unit. When execution of the

 instruction is completed by the E-unit, the write-back to the register file occurs. If a

memory access is required, then the D-unit is used to execute the memory operation. If

the operation is a store, it goes immediately to the D-unit.

In all of the methods considered thus far, the peak throughput possible is one

instruction per clock cycle. With this limitation, it is desirable to maximize the clock

rate by minimizing the maximum pipeline stage delay. If, as a consequence, a large

number of pipeline stages is used, the CPU is said to be superpipelined. A superpipe-

lined CPU will generally have a very high clock frequency, in the range of a few to

several GHz. In such an organization, however, handling hazards effectively is criti-

cal, since any stalling or reinitialization of the pipeline will degrade the performance

of the CPU significantly. Also, as more pipeline stages are added, further dividing up

the combinational logic, the setup and propagation delay times of the flip-flops begin

to dominate the platform-to-platform delay and the speed of the clock. The improve-

ment achieved is less, and when hazards are taken into account, the performance

may actually become worse rather than better.

For fast execution, an alternative to superpipelining is the use of a super-
scalar architecture. Its goal is to have a peak rate of issuing instructions for execu-

tion in excess of one instruction per clock cycle. A superscalar CPU that fetches a

pair of instructions simultaneously by using a double-word wide path from

instruction memory is illustrated in Figure 10-23. The processor checks for haz-

ards among the instructions, as well as available execution units in the instruction

issue stage of the pipeline. If there are hazards or busy execution units corre-

sponding to the first instruction, then both instructions are held for later issuing.

If the first instruction has no hazard and its E-unit is available, but there is a haz-

ard or no available E-unit for the second instruction, then only the first instruc-

tion is issued. Otherwise, both instructions are issued in parallel. If a given

superscalar architecture is triple issue, then it has the ability to issue up to three

instructions simultaneously, and a peak execution rate of three instructions per

clock cycle. Note that the hazard checking for instructions in both the issue and

execution stages becomes very complex as the maximum number of instructions

issued simultaneously is increased.

Following are three methods for preventing hazards from stalling the pipeline

in superpipelined and superscalar processors.

Instead of waiting for a branch to be taken, a processor predicts which way a

branch is expected to go and proceeds to speculatively execute down that path. In

addition, execution continues in order to determine the path the branch actually

takes. When the result of the branch becomes available, if it does not match the

speculated direction, the speculated results are quashed and the actual branch

taken is followed. If the speculated direction is correct, then the pipeline delay

waiting for the branch to occur is eliminated, significantly improving performance.

Branch predictors must achieve a high rate of correct speculation in order to

achieve performance improvement. Branch prediction is based on various

approaches to recording the recent history of branches taken/not taken. In sophis-

ticated prediction schemes, results from multiple predictors are often combined

10-5 / More on Design 591

to achieve high rates of correct speculation, even with complex, and sometimes

irregular, branching patterns.

Instead of waiting to load data from memory until it is known that the data is

needed, speculative loading of data from memory is performed. The purpose is to

avoid the relatively long delay required to fetch an operand from memory. If the

data that is speculatively fetched turns out to be the data needed, then it will be

available and the computation can proceed immediately with no waiting for a mem-

ory access to get the data.

Extending this further, data speculation uses methods to predict data values and

use the predicted values to proceed with computation. When the actual value becomes

known and matches the predicted value, then the result produced from the predicted

value can be used to carry forward the computation. If the actual value and the pre-

dicted value differ, then the result based on the predicted value is discarded and the

actual value is used to continue computation. An example of data speculation is permit-

ting a value to be loaded from memory before a store into the same memory location

occurring earlier in the program has been executed. In this case, it is predicted that the

Instruction fetch

Instruction issue

Decode and
operand fetch

Decode and
operand fetch

Execute Execute 1

Write-back Execute 2

Execute 3

Write-back

Floating-point E-unit

Integer E-unit

 FIGURE 10-23
Superscalar Organization

592 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

store will not change the value of the data loaded from memory. If, at the time the store

executes, the loaded value is not valid, the result of computation using it is discarded.

Data speculation is often used in prefetching—executing loads before stores upon

which the loaded values may depend have been completed.

All of these techniques perform operations or sequences of operations for

which results are discarded with some frequency. Thus, there is “wasted” computa-

tion. To be able to do large amounts of useful computation, as well as the wasted

computation, more parallel resources, as well as specialized hardware for imple-

menting the techniques, are required. The payoff in return for the cost of these

resources is higher performance.

Recent Architectural Innovations

The techniques in the previous section all have the goal of exploiting instruction
level parallelism (ILP), which in conjunction with advancements in integrated

circuit technology resulted in the sustained rise in microprocessor performance

over the last three decades of the 20th century. All of the ILP advances, however,

have come with an increase in complexity, and, most notably, a seemingly nev-

er-ending increase in power needs. Around the millennium, it became very

apparent that further increases in performance due to ILP were diminishing.

This recognition, along with the continuing advancements in IC technology, have

combined to set a new direction for performance improvement to begin the 21st

century, namely, the use of multiple-CPU-processors on a single chip in servers

and desktop and laptop PCs. This section covers two of the directions in this

changing approach to performance, targeting two somewhat differing goals: gen-

eral-purpose applications and digital media applications.

MIMD AND SYMMETRIC ON-CHIP CORE MULTIPROCESSORS Multiple cores have ap-

peared in microprocessors for servers and, more recently, for the PC market.

These products resemble shared-memory symmetric (identical) multiproces-

sors, and are categorized as multiple-instruction-stream, multiple-data-stream

(MIMD) microprocessors. In such systems, advantages can be achieved by exe-

cuting in parallel (1) multiple programs and/or (2) multiple threads. (A thread is

a process that has its own data, instructions, and processor state.) Multiple cores

can execute a program by dedicating one of the CPUs to its execution or by exe-

cuting the program’s threads on multiple CPUs to improve performance over

single-CPU microprocessors. For example, a complex image-processing program

can run on a single CPU while word processing or web browsing takes place on

a second CPU. Alternatively, the image-processing program can be spread over

two cores by running the threads of the program distributed across two CPUs.

We use the Intel Core 2 Duo and the more recent Core i7 as an illustration of a

multicore microprocessor. These designs not only achieve performance improve-

ments via multiple CPUs, but also advancements in instruction-level parallelism

as well.

10-5 / More on Design 593

EXAMPLE 10-4 The Intel Core 2 Duo and Core i7 Microprocessors

The Core 2 Duo is a microprocessor product introduced by Intel in July 2006. The

dual symmetric processors each have their own level 1 (L1) instruction and data

caches1 and share a common unified level 2 (L2) cache of either 2 or 4 MB capacity,

depending on the particular Core 2 Duo product. The L2 cache is the pair of large

dark blocks at the bottom of the cover background. Each core is a superscalar pro-

cessor with a quad-issue 14-stage pipeline, a pipeline length decreased by 35 percent

from recent Intel microprocessor designs, showing a move away from focus on an

increase in clock rate based on a superpipeline. In addition, the number of execution

units in each processor has been increased significantly to support the four-issue

strategy and multimedia performance. Intel has also introduced macrofusion, in

which multiple machine-level instructions are issued within a single microinstruction

(called a μop by Intel), providing an increase in maximum instruction issue rate of

one beyond that achieved by the broader issue path alone. In order to achieve a high

memory bandwidth, the path from the L2 cache to each core is 256 bits wide. Fur-

ther, there is an elaborate data prefetch mechanism to improve the performance of

all three data caches. Prefetch is used to load data before it is needed for computa-

tion by predicting what data will be needed and whether or not the data will change

after it has been prefetched. If the latter is the case, then the data will need to be

loaded again after the store affecting its value has occurred. Memory disambiguation

is the term applied to doing prefetch and cleaning up the situation in the event that

stale data has been loaded into any of the caches.

Technologically, the Core 2 Duo has been fabricated using a 65 nm technology

(gate lengths of 35 nm) and has embedded temperature sensors in the chip that are

used to control the fan speed, power voltage values, and clock frequencies. Power

reduction is also achieved by clock and power gating of entire blocks and unused

portions of buses. These techniques have little impact on performance, while provid-

ing significantly reduced power consumption.

More recently, Intel has introduced a range of multicore microprocessors

called Core i3, Core i5, and Core i7, targeting different price-performance break-

points, with Core i3 intended for entry-level applications, Core i5 intended for mid-

range applications, and Core i7 intended for high-performance applications. Even

within each line, there are variants intended for desktop and mobile (low power)

markets. As of mid-2014, the Core i7 is available in 2-, 4-, and 6-core versions, with an

8-core version soon to be released. Unlike the Core 2 Duo, each Core i7 has its own

L2 cache and all of the processors share a common unified level 3 (L3) cache. The

Core i7 is currently constructed using a 22 nm technology. ■

SIMD AND VECTOR PROCESSING The history of single-instruction-stream, multi-

ple-data-stream (SIMD) processors and vector processing goes back to the 1960s

and 70s, with the beginnings of the Illiac IV project at the University of Illinois,

1For the basics on caches and multilevel caches, see Section 12-3.

594 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

and with two commercial vector-processing products announced in 1972. These were

followed over the next two decades by a number of supercomputers targeted pri-

marily at scientific applications. In response to the need for vector processing in PC

microprocessors for multimedia applications, Intel introduced the MMX extensions

to the Pentium instruction set in 1997 and Advanced Micro Devices (AMD) add-

ed 3DNow! to the Athalon instruction set in 1998. Multiple sets of SSE (streaming

SIMD extensions) have been added over time by Intel and AMD. IBM/Motorola

(Freescale) also introduced Altivec extensions in its PowerPC line. The basic ap-

proach in current microprocessors uses a set of 128-bit registers dedicated to these

SIMD/vector operations, with each instruction performing the same operations on

bytes, half-words, words, or double words within the 128-bit registers. Most recently,

SIMD has been central to the collaborative development by IBM, Sony, and Toshiba

of the Broadband Processor Architecture and its first-generation product, the Cell

processor for Sony’s Playstation 3 launched in November 2006. The following exam-

ple summarizes briefly the architecture of the Cell processor.

EXAMPLE 10-5 The STI Cell Processor

The Cell processor is based on the PowerPC architecture. It consists of nine cores

plus a very fast RAMBUS on-chip memory controller and a controller for a configu-

rable I/O interface. One of the cores is a 64-bit Power Processor Element (PPE) with

first-level instruction and data caches and 512 KB second-level caches. It supports

execution of two instruction threads by use of a dual multiprocessor with shared

dataflow. The integer pipeline has 23 stages. There are 128 128-bit registers per thread

for SIMD instructions handling 2 * 64, 4 * 32, 8 * 16, 16 * 8, and 128 * 1 ele-

ment widths. The remaining eight processors are Synergistic Processor Elements

(SPEs), each with (1) 128 * 128 bit register files with same element sizes as the PPE

and (2) a local store implemented in SRAM of 256 KB. The number of parallel

actions of the set of SPEs permits from 16 simultaneous parallel operations on 64-bit

operands to 1024 simultaneous parallel operations on 1-bit operands. The PPE and

SPEs are connected by a coherent on-chip Element Interconnection Bus (EIB)

using Direction Memory Access (DMA) communication on a very highspeed set of

four 128-bit wide bus rings. In the original Playstation 3, the chip is constructed with

an advanced high-speed, low-voltage, low-power, 90 nm silicon-on-insulator (SOI)

CMOS technology. Due to the need to carefully control the thermal environment of

the Cell chip, 11 temperature sensors are built into the chip that are used to provide

thermal protection and control the cooling system in the Playstation 3. The more

recent “slim” versions of the Playstation 3 use a Cell processor constructed using a

45 nm CMOS technology, resulting in power consumption that is less than 40% of

the original 90 nm version. To form a symmetric multiprocessor system, two Cell

processors can be connected together directly. Four Cell processors require a broad-

band switch to handle the four bidirectional broadband device interfaces. ■

GRAPHICS PROCESSING UNITS Related to the introduction of SIMD capabilities to

CPUs is the development of graphics processing units (GPUs), which grew from

the addition of functions for accelerating 2D and 3D graphics to video graphics

10-6 / Chapter Summary 595

controllers. GPUs are a distinct category from the CPUs that are the focus of this

text, with their own nomenclature and a narrower focus on graphics- and video-

related applications. GPUs are not intended to replace CPUs but rather to serve

as a co-processor for improved graphics. Despite this distinction, they are worthy

of note because, much as the increased vector functionality of CPUs has permitted

them to better handle graphics applications, the increased scalar functionality of

GPUs has allowed them to be used for non-graphics applications that can bene-

fit from high-performance vector processing, particularly in the area of scientif-

ic computing. Using GPUs for non-graphics applications, typically referred to as

general-purpose computing on graphics processing units (GPGPU), has benefited

from several efforts to develop general purpose programming languages for GPUs

instead of relying on graphics languages and application programming interfaces.

In terms of architectural approaches, GPUs do not fit cleanly into the MIMD/

SIMD categories described earlier in this section. GPUs exploit both thread-level

and data-level parallelism. For example, the GPU manufacturer Nvidia has intro-

duced the term Single Instruction Multiple Thread (SIMT) to describe the style

of program execution on their GPU architecture, in which multiple independent

threads concurrently execute the same instruction.

10-6 CHAPTER SUMMARY

The focus of this chapter was the design of two processors—one for a reduced

instruction set computer (RISC) and one for a complex instruction set computer

(CISC). As a prelude to the design of these processors, the chapter began with an

illustration of a pipelined datapath. The pipeline concept enables operations to be

performed with clock frequencies and throughput not achievable with the same pro-

cessing components in a conventional datapath. The pipeline execution pattern dia-

gram was introduced for visualizing the behavior of a pipeline and estimating its

peak performance. The problem of the low clock frequency of the single-cycle com-

puter was addressed by adding a pipelined control unit to the datapath.

Next, we examined a RISC design with a pipelined datapath and control unit.

Based on the single-cycle computer in Chapter 8, the RISC ISA is characterized by a

single instruction length, a limited number of instructions with only a few addressing

modes, and memory access restricted to load and store operations. Most RISC oper-

ations are simple in the sense that, in a conventional architecture, they can be exe-

cuted using a single microoperation.

The RISC ISA is implemented by using a modified version of the pipelined

datapath in Figure 10-2. Likewise, a modified version of the control unit in Figure 10-4

is used. Control changes were performed to accommodate the datapath changes and

to handle branches and jumps in a pipeline environment. After completion of the

basic design, consideration was given to data hazard and control hazard problems.

We examined each type of hazard, as well as software and hardware solutions

for each.

The ISA of the CISC has the potential for performing many distinct opera-

tions, with memory access supported by several addressing modes. The CISC also

has operations that are complex in the sense that they require many clock cycles for

596 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

their execution. The CISC also has complex conditional branching supported by

condition codes (status bits). Although, in general, a CISC ISA permits multiple

instruction lengths, this feature is not provided by the example architecture.

To provide high throughput, the RISC architecture serves as the core of the

CISC architecture. Simple instructions can be executed at the RISC throughput, with

complex instructions, executed by multiple passes through the RISC pipeline. RISC

datapath modification provided registers for temporary operand storage and condi-

tion code storage. Changes to the control unit were required to support these datapath

changes. The primary control unit modification, however, was the addition of the

microprogram control for execution of complex instructions. Added changes to the

RISC control unit were required to integrate the microprogram control into the con-

trol pipeline. Examples of microprograms for three complex instructions were

provided.

After completing the CISC and RISC designs, we touched on some advanced

concepts, including parallel execution units, superpipelined CPUs, superscalar

CPUs, and predictive and speculative techniques for high performance. Finally, we

considered, and illustrated with real-world examples, a recent major turn in PC

microprocessor design toward the use of multiple CPUs and elements rather than

increased clock frequencies and more aggressive instruction-level parallelism.

REFERENCES

1. De Gelas, J. Intel Core versus AMD’s K8 Architecture. AnandTech (http://www.

anandtech.com), May 1, 2006.

2. Hennessy, J. L. and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 5th ed. Amsterdam: Elsevier, 2011.

3. Kahle, J. A. et al. “Introduction to the Cell Multiprocessor”, IBM J. Res. & Dev.,
Vol. 49, No. 4/5 July/September 2005, pp. 589–604.

4. Kane, G. and J. Heinrich. MIPS RISC Architecture. Englewood Cliffs, NJ:

Prentice Hall, 1992.

5. Lindholm, E. et al. “NVIDIA Tesla: A Unified Graphics and Computing

Architecture,” IEEE Micro, Vol. 28, No. 2, March–April 2008, pp. 39–55.

6. Mano, M. M. Computer System Architecture, 3rd ed. Englewood Cliffs, NJ:

Prentice Hall, 1993.

7. Patterson, D. A. and J. L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface, 5th ed. Amsterdam: Elsevier, 2013.

8. Pham, D. et al. “The Design and Implementation of the CELL Processor,”

Digest of Technical Papers–2005 IEEE International Solid State Circuits Conf.,
IEEE, 2005, pp. 184–185.

9. Shen, J. P. and M. H. LIPASTI. Modern Processor Design: Fundamentals of
Superscalar Processors. New York: McGraw-Hill, 2005.

10. Sparc International, Inc. The SPARC Architecture Manual: Version 8.
Englewood Cliffs, NJ: Prentice Hall, 1992.

11. Wechler, O. Inside Intel Core Microarchitecture. White Paper, Intel Corporation,

2006 (www.intel.com).

12. Weiss, S. and J. E. Smith. POWER and PowerPC. San Mateo, CA: Morgan

Kaufmann, 1994.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

 10-1. A pipelined datapath is similar to that in Figure 10-1(b), but with the delays

from the top to the bottom replaced by the following values: 0.5 ns, 0.5 ns, 0.1 ns,

0.1 ns, 0.7 ns, 0.1 ns, and 0.1 ns. Determine (a) the maximum clock frequency, (b)

the latency time, and (c) the maximum throughput for this datapath.

 10-2. *A program consisting of a sequence of ten instructions without branch or

jump instructions is to be executed in an 8-stage pipelined RISC computer

with a clock period of 0.5 ns. Determine (a) the latency time for the pipeline,

(b) the maximum throughput for the pipeline, and (c) the time required for

executing the program.

 10-3. Consider an unpipelined processor with a clock period of 2 ns. This processor

is remodeled with a five-stage pipeline that adds a latency of 0.3 ns to the

clock period. The five stages of the pipeline are Fetch(IF), Decode (ID),

Execute(EX), Memory Read(MEM), and Write back (WB).

(a) Draw the five-stage pipeline.

(b) What is the ideal speedup obtained by pipelining?

(c) What is the actual speedup?

 10-4. For each of the RISC operations in Table 10-1, list the addressing mode or

modes used.

 10-5. Simulate the operation of the barrel shifter in Figure 10-9 for each of the

following shifts and A = 3DF3CB4A16. List the hexadecimal values on the

47 lines, 35 lines, and 32 lines out of the three levels of the shifter.

(a) Right, SH = 0F

(b) Left, SH = 1D

 10-6. *For the RISC CPU in Figure 10-8, manually simulate, in hexadecimal, the

processing of the instruction ADI R1 R16 2F01 located in PC = 10F.

Assume that R16 contains 0000001F. Show the contents of each of the

pipeline platforms and of the register file (the latter only when a change in

value occurs) for each of the clock cycles.

 10-7. Repeat Problem 10-6 for the instruction LSR R6 R2 001D with R6

containing 00000000 and R2 containing 01ABCDEF.

 10-8. Repeat Problem 10-6 for the instruction SLT R7 R3 R5 with R3 containing

0000F001 and R5 containing 0000000F.

Problems 597

598 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

 10-9. Refer to the five-stage pipeline introduced in Problem 10-3. Give an example,

with explanation, of a set of instructions that can cause a data hazard in this

pipeline.

 10-10. +Use a computer-based logic minimization program to design the instruction

decoder for a RISC from Table 10-3. Create an HDL model of your design

and verify its correctness in simulation.

 10-11. *For the RISC design, draw the execution diagram for the following RISC

program, and indicate any data hazards that are present:

1 MOVA R7, R6

2 SUB R8, R8, R6

3 AND R8, R8, R7

 10-12. For the RISC design, draw the execution diagram for the following RISC

program (with the contents of R7 nonzero after the subtraction), and indicate

any data or control hazards that are present:

1 SUB R7, R7, R2

2 BNZ R7, 000F

3 AND R8, R7, R4

4 OR R4, R8, R2

 10-13. *Rewrite the RISC programs in Problems 10-11 and 10-12, using NOPs to

avoid all data and control hazards, and draw the new execution diagrams.

 10-14. Draw the execution diagrams for the program in Problem 10-11, assuming

(a) RISC CPU with data stall given in Figure 10-12.

(b) RISC CPU with data forwarding in Figure 10-13.

 10-15. Simulate the processing of the program in Problem 10-12 using the RISC

CPU with data-hazard stall in Figure 10-12. Give the contents of each

pipeline platform and the register file (the latter only whenever a change

occurs) for each clock cycle. Initially, R2 contains 0000001016, R4 contains

0000002016, R7 contains 0000003016, and the PC contains 0000000116. Is the

data hazard avoided?

 10-16. *Repeat Problem 10-15 using the RISC CPU with data forwarding in

Figure 10-13.

 10-17. Draw the execution diagram for the program in Problem 10-12, assuming the

combination of the RISC CPU with branch prediction in Figure 10-17 and the

RISC CPU with data forwarding in Figure 10-13.

 10-18. Design the constant unit in the pipelined CISC CPU by using the information

given in Table 10-4 and multiple-bit multiplexers, AND gates, OR gates, and

inverters. Create an HDL model of your design and verify its correctness in

simulation.

 10-19. *Design the register address logic in the pipelined CISC CPU by using

information given in the register fields of Table 10-4 plus multiple-bit

multiplexers, AND gates, OR gates, and inverters.

 10-20. Design the address control logic described by Table 10-5 by using AND gates,

OR gates, and inverters.

 10-21. Write microcode for the execution part of each of the following CISC

instructions. Give both a register transfer description and binary or

hexadecimal representations similar to those shown in Table 10-6 for the

binary code for each microinstruction.

(a) Branch if overflow

(b) Branch if greater than zero

(c) Compare less than

 10-22. Repeat Problem 10-21 for the following CISC instructions that are specified

by register transfer statements.

(a) Push: R[SA] d R[SA] + 1 followed by M[R[SA]] d R[SB]. Assume

DR=SA.

(b) Pop: R[DR] d M[R[SA]] followed by R[SA] d R[SA] − 1. Assume

SB=SA.

 10-23. *Repeat Problem 10-22 for the following CISC instructions.

(a) Add with carry: R[DR] d R[SA] + R[SB] + C

(b) Subtract with borrow: R[DR] d R[SA] − R[SB] − B

Borrow B is defined as the complement of the carry out, C.

 10-24. Repeat Problem 10-22 for the following CISC instructions.

(a) Add Memory Indirect: R[DR] d R[SA] + M[M[R[SB]]]

(b) Add to Memory: M[R[DR]] d M[R[SA]] + R[SB]

 10-25. *Repeat Problem 10-21 for the CISC instruction, Memory Scalar Add. This

instruction uses the contents of R[SB] as the vector length. It adds the

elements of the vector with its least significant element in memory pointed to

by R[SA] and places the result in the memory location pointed to by R[DR].

 10-26. Repeat Problem 10-21 for the CISC instruction, Memory Vector Add. This

instruction uses the contents of R[SB] as the vector length. It adds the vector

with its least significant element in memory pointed to by R[SA] to the vector

with its least significant element in memory pointed to by R[DR]. The result

of the addition replaces the vector with its least significant element pointed to

by R[DR].

 10-27. PADDB (Add Packed Byte Integers) is the mnemonic for an SSE SIMD

instruction in the IA-32 architecture. In the RISC computer in this chapter,

Problems 599

600 CHAPTER 10 / RISC AND CISC CENTRAL PROCESSING UNITS

the equivalent instruction would add two 32-bit operands by adding the

corresponding pairs of four bytes independently, one byte taken from each

operand, with the result returned to the third operand, and without setting

any condition codes.

(a) For operands R[SA] and R[SB] and destination R[DR], write a register

transfer description of this instruction.

(b) What modifications would need to be made to the ALU in the RISC/

CISC computer to support this instruction?

 10-28. (a) In the Core 2 Duo, each core can perform a PMINSW (Minimum of

Packed Signed Word Integers) instruction with two 128-bit operands,

placing the result back in the first operand. For 16-bit words, how many

minimum words can be determined in parallel in the Core 2 Duo?

(b) In the Cell processor, each SPE can perform an “average bytes” instruction

on a pair of 128-bit registers RA and RB, with the resulting average

byte placed in register RT. How many byte averages can be produced in

parallel for all SPEs executing the same instruction?

 601 601

C H A P T E R

Input–Output and
Communication

11

11-1 COMPUTER I/O
The input and output subsystem of a computer provides an efficient mode of com-

munication between the CPU and the outside environment. Programs and data must

be entered into the memory for processing, and results obtained from computations

must be recorded or displayed. Among the input and output devices commonly

found in computer systems are keyboards, displays, printers, magnetic drives, com-

pact disc read-only memory (CD-ROM), and digital video disc read-only memory

In this chapter, we give an overview of selected aspects of computer input–output

(I/O) and communication between the CPU and external I/O devices. Because of the

wide variety of different I/O devices and the quest for faster handling of programs

and data, I/O is one of the most complex areas of computer design. As a consequence,

we are able to present only selected pieces of the I/O puzzle. We illustrate in detail just

three devices: a keyboard, a hard drive, and an LCD screen. We then introduce the I/O

bus and the I/O interfaces that connect to I/O devices. We look at the Universal Serial

Bus (USB), one of many solutions to the problem of accessing I/O devices. Finally, we

discuss three modes for performing data transfers: program-controlled transfer,

interrupt-initiated transfer, and direct memory access.

Interms of the generic computer at the beginning of Chapter 1, it is apparent that

I/O involves a very large part of the computer. Only the processor, external cache, and

RAM are not as highly involved, although they, too, are used extensively in directing

and performing I/O transfers. Even the generic computer, which has fewer I/O devices

electronic hardware for support.

602 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

(DVD-ROM) drives. Other input and output devices frequently encountered are

network devices or other communication interfaces, scanners, and sound cards with

speakers and microphones. Significant numbers of computers, such as those used in

automobiles, have analog-to-digital converters, digital-to-analog converters, and

other data-acquisition and control components.

The I/O facility of a computer is a function of its intended application. This

results in a wide diversity of attached devices and corresponding differences in the

needs for interacting with them. Since each device behaves differently, it would be

time consuming to dwell on the detailed interconnections needed between the com-

puter and each peripheral. We will, therefore, examine just three peripherals that

appear in most computers. In addition, we present some of the common characteris-

tics found in the I/O subsystem of computers, as well as the various techniques avail-

able for transferring data either in parallel, using many conducting paths, or serially,

through communication lines.

11-2 SAMPLE PERIPHERALS

Devices that the CPU controls directly are said to be connected online. These devices

communicate directly with the CPU or transfer binary information into or out of the

memory upon command from the CPU. Input or output devices attached to the

computer online are called peripherals. In this section, we examine three peripheral

devices: a keyboard, a hard drive, and a graphics display. We also use the keyboard as

an example to illustrate I/O concepts in a later section. We introduce the hard drive

both to motivate the need for direct memory access and to provide background for

the role of the device in Chapter 12 as a component in a memory hierarchy. We

include the graphics display to illustrate the very high potential transfer-rate require-

ments of contemporary applications.

Keyboard

The keyboard is among the simplest of the electromechanical devices attached to

the typical computer. Since it is manually controlled, it has one of the slowest data

rates of any peripheral.

The keyboard consists of a collection of keys that can be depressed by the user.

It is necessary to detect which of the keys have been depressed. To do this, a scan
matrix that lies beneath the keys is used, as shown in Figure 11-1. This two-

dimensional matrix is conceptually similar to the matrix used in RAM. The matrix

shown in the figure is 8 × 16, giving 128 intersections, so it can handle up to 128 keys.

A decoder drives the X lines of the matrix, which are analogous to the word lines of

a RAM. A multiplexer is attached to the Y lines of the matrix, which are analogous

to the bit lines of a RAM. The decoder and the multiplexer are controlled by a micro-

controller, a tiny computer that contains RAM, ROM, a timer, and simple I/O

interfaces.

The microcontroller is programmed to periodically scan all intersections in the

matrix by manipulating the control inputs of the decoder and multiplexer. If the key

is depressed at an intersection, a signal path is closed from an output of the X

11-2 / Sample Peripherals 603

decoder to an input of the Y multiplexer. The existence of this path is sensed at an

input to the microcontroller. The 7-bit control code applied to the decoder and mul-

tiplexer at the time identifies the key. To allow for “rollover” in typing, in which mul-

tiple keys are depressed before any of them is released, the microcontroller actually

identifies the depressing and release of the keys. Whether a key is depressed or

released, the control code at the time of the event is sensed and is translated by the

microcontroller into a K-scan code. When a key is depressed, a make code is pro-

duced; when a key is released, a break code is produced. Thus, there are two codes for

each key, one for when the key is depressed and one for when it is released. Note that

the scanning of the entire keyboard occurs hundreds of times per second, so there is

no danger of missing any depression or release of a key.

After presenting a number of I/O interface concepts, we will revisit the key-

board to see what happens to the K-scan codes before they are finally translated to

ASCII characters.

Hard Drive

The hard drive is the primary intermediate-speed, nonvolatile, writable storage

medium for most computers. The typical hard drive stores information serially on a

nonremovable disk, as shown in the upper right of the generic computer at the begin-

ning of Chapter 1. Each platter is magnetizable on one or both surfaces. There are

one or more read/write heads per recording surface. Each disk is divided into con-

centric tracks, as illustrated in Figure 11-2. The set of tracks that are at the same dis-

tance from the center of all disk surfaces is referred to as a cylinder. Each track is

divided into sectors containing a fixed number of bytes. The number of bytes per

sector typically ranges from 256 to 4K. In older hard drives, up to the mid-1990s, a

typical byte address included the cylinder number, head number, sector number, and

word offset within the sector. The addressing assumes that the number of sectors per

track is fixed. In modern, high-capacity drives, more sectors are included in the lon-

ger outer tracks than in the shorter inner tracks, referred to as zone bit recording. In

addition, a number of spare sectors are reserved to take the place of defective sec-

tors. Currently available hard drives use logical block addressing (LBA) in which

Micro-
controller

Multiplexer

D
ecoder

4

3

Y

X

 FIGURE 11-1
Keyboard Scan Matrix

604 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

each sector is addressed using a single integer, with sectors numbered sequentially.

The mapping from this address to the physical address is typically accomplished in

the drive controller or drive electronics.

To enable information to be accessed, the set of heads is mounted on an actu-

ator that can move the heads radially over the disks, as shown in the generic com-

puter drawing. The time required to move the heads from the current cylinder to

the desired cylinder is called the seek time. The time required to rotate the disk

from its current position to that having the desired sector under the heads is called

the rotational delay. In addition, a certain amount of time is required by the drive

controller to access and output information. This is the controller time. The time

required to locate a word on the disk is the disk access time, which is the sum of the

controller time, the seek time, and the rotational delay. Average values over all

possibilities are used for these four parameters. Words may be transferred singly,

but as we will see in Chapter 12, they are often accessed in blocks. The transfer rate

for a block of words, once the block has been located, is the disk transfer rate, typi-

cally specified in megabytes/second (MB/s). The transfer rate required by the

CPU-memory bus to transfer a sector from the drive is the number of bytes in

the sector divided by the length of time taken to read a sector from the drive. The

length of time required to read a sector is equal to the proportion of the cylinder

occupied by the sector divided by the rotational speed of the disks. For example,

with 63 sectors, 512 B per sector, a rotational speed of 5400 rpm, and allowance for

the gap between sectors, this time is about 0.15 ms, giving a transfer rate of

512/0.15 ms = 3.4 MB/s. The controller will store the information read from the

sector in its memory. The sum of the disk access time and the disk transfer rate

times the number of bytes per sector gives an estimate of the time required to

transfer the information in a sector to or from the hard drive.

Track

Sector

Head positioning

 FIGURE 11-2
Hard Disk Format

11-2 / Sample Peripherals 605

EXAMPLE 11-1 Hard Drive Parameters

This example presents parameters for an advanced desktop hard drive in 2014. The

drive is 4 TB (with 4 T = 4 * 1012, not 4 * 240). The drive has four disks and eight

heads. There are 4096 bytes per sector, and there is a 64 MB buffer in the drive. The

average read seek time is 68.5 ms, and the average write seek time is 69.5 ms. The

maximum sustained I/O transfer rate is 180 MB per second, with an average rate of

146 MB per second. ■

Liquid Crystal Display Screen

The Liquid Crystal Display (LCD) screen is the primary interactive output device

for both laptop and desktop computers. The display screen is defined in terms of pic-

ture elements called pixels. As this page is being written, it is displayed on a laptop

with an LCD screen array of 1366 * 768 pixels. The color display has three subpixels

associated with each pixel on the screen. These subpixels correspond to the primary

colors red, green, and blue (RGB). A drawing of one pixel for this LCD screen is

shown in Figure 11-3(a). The three subpixels are side-by side rectangles with a black

mask filling the space between them.

Initially, we examine the liquid crystal display technology by exploring a small

square portion of a pixel shown in Figures 11-3(b) and 11-3(c). In a temperature

range around room temperature, liquid crystals used in LCDs are in a state between

the usual solid and liquid states. In this state, they have crystal properties but are also

movable and can be bent, twisted, and so on. The specific liquid crystals used in

LCDs, called nematic liquid crystals, have limitations on the movements of the mole-

cules. They can be moved in any direction, but can only rotate or wiggle in a single

plane. In Figure 11-3(b) a one-molecule thick layer of liquid crystals is illustrated.

The molecules are elongated and rod shaped. The axis through the center of the mol-

ecules about which they can rotate is shown. The particular display illustrated uses

twisted nematic (TN) liquid crystals. The liquid crystal material is contained in a gap

between two substrates (glass plates) that are sealed at the panel edges. Crystal

properties are used to align the rod-shaped liquid crystal molecules. The inner sur-

faces of the substrates are coated and the coating is rubbed with a cloth to produce

fine grooves. The direction of the rubbing and the resulting grooves fixes the orienta-

tion of the molecules in contact with the coating. In Figure 11-3(b), the rear substrate

coating has vertical grooves (as illustrated by the small area at its lower left), and the

front substrate coating has horizontal grooves, as likewise illustrated. The liquid crys-

tal molecules align with the grooves they contact on the two substrates. Due to the

surrounding molecule structure, the molecules in between the contact layers form a

helix with a twist of 90 degrees, as shown in Figure 11-3(b).

To understand how the TN crystal can be used in a display, we need to consider

liquid crystal optics, particularly in the presence of polarized light. In general, light

waves vibrate in many planes perpendicular to their direction of propagation. Light

passing through a filter called a linear polarizer emerges as waves that propagate in a

single plane that aligns with the axis of the polarizer. In Figure 11-3(b), beginning at

the back of the display, light waves that vibrate in various directions are produced by

the backlight panel. The light passes through a linear polarizer with a vertical axis of

606 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

polarization on the back of the rear substrate. All light emitted from the polarizer

has its waves vibrating in the direction of the polarization axis, i.e., vertically. The

molecules at the rear of the liquid crystal are likewise oriented vertically. Optically, a

liquid crystal layer causes the plane of polarization of light to align with the orienta-

tion of its molecules around the axis of rotation. The liquid crystal helix rotates the

plane of polarization by 90 degrees, so that the light emerging from the liquid crystal

is now horizontal instead of vertical. These horizontal waves align with axis of polar-

ization of the front polarizer located on the front face of the front substrate and are

able to pass through it. Thus, the light appears, although much dimmer than the orig-

inal source, on the face of the display. In each subpixel area, the light has also been

colored by passing through a color filter positioned beneath the grooved coating on

the front substrate.

The liquid crystal molecules can be rotated by an electric field produced by

an applied voltage between electrodes deposited beneath the coatings on the

two substrates. In turn, the rotated molecules rotate the plane of polarization of

the light passing through the crystal. The total amount of rotation from the rear

substrate to the front substrate depends on the value of the voltage applied. In

Figure 11-3(c), the maximum voltage necessary has been applied to produce a

full 90-degree rotation. At the upper substrate, the plane of polarization is

Twisted nematic liquid
crystal molecules

Color filter

Backlight panel

Vertical polarizer

Horizontal polarizer
Front substrate

Rear substrate

Liquid crystal

R G B

(b) Twisted nematic LCD technology (c) Twisted nematic LCD with
 maximum voltage applied

(a) LCD screen pixel

 FIGURE 11-3
Liquid Crystal Screen Details

11-2 / Sample Peripherals 607

vertical, i.e., perpendicular to the axis of polarization of the polarizer, which is

horizontal. In this situation, none of the light waves will pass through the polar-

izer, giving a black pixel value. Assuming that the voltage applied to each sub-

pixel is obtained from an 8-bit digital signal using a D-to-A converter, 256 voltage

values are available to determine the brightness of the subpixel color. Since there

are three subpixels per pixel, 28 * 3 = 224 = 16,777,216 different colors available

for each pixel.

In Figure 11-4, three pixels consisting of nine subpixels are shown with the nec-

essary electronic circuitry within the LCD panel. Ignoring the liquid crystal sand-

wich for a moment, the remaining circuitry including the capacitance C, the

transistor, the gate lines, and the data lines looks exactly like a DRAM using coinci-

dent selection via rows and columns. The differences are: (a) there is the liquid crys-

tal subpixel connected across the storage capacitor C, (b) the input to the transistors

is a discrete analog signal rather than a digital signal, and (c) the entire circuit is

constructed between the two glass substrates using thin film technology rather than

a silicon substrate. The circuitry, is placed in a corner of each pixel on the surface of

the rear substrate facing the liquid crystal. The transistor, conductors and so on, are

separated from the liquid crystal by coating layers including the final one with the

fine grooves in it.

In terms of operation, the circuitry behaves much like a DRAM. To write the

lower row of elements, the voltage values to be applied are placed on Data Lines m,

m + 1, m + 2, and so on, a high voltage is placed on Gate Line n + 3, and 0 volts is

placed on all other Gate Lines. The voltage values are placed on the storage capaci-

tor C and on the upper surface of the subpixel. For technical reasons, the applied

C C C

C C C

C C CStorage
capacitor

TFT (Thin film transistor)

Gate line n

Gate line n � 3

Gate line n � 1

Gate line n � 2

Red subpixel
Pixel

Data
line m

Data
line m � 1

Data
line m � 2

Data
line m � 3

 FIGURE 11-4
Liquid Crystal Subpixel Array

608 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

voltages are inverted each time a row is written. When Gate Line 3 is returned to 0

volts, the transistor turns off and the voltage is stored on capacitance C. The rows of

the LCD are successively written one at a time, with a full panel write taking less

than a sixtieth of a second.

The inputs to the Data Lines and Gate Lines are provided by the driver cir-

cuitry for the LCD panel. In addition, there is a display controller that may be

combined with the driver circuitry. The display driver may be driven by digital

inputs or analog RGB inputs as used for the older cathode ray tube display

technology.

I/O Transfer Rates

An indicated earlier, the three peripheral devices discussed in this section give a

sense of the range of peak I/O transfer rates. The keyboard data transfer rate is less

than 10 bytes/s. For the hard drive, while the drive controller is capturing the data

arriving rapidly from the disc in the sector buffer, the transfer of data from the buffer

to main memory is impossible. Thus, in the case in which the next sector is to be read

immediately, all of the data from the sector buffer needs to be stored in main mem-

ory during the time the gap on the disc between the sectors passes under the disc

head. For current desktop hard drives, the peak sustained transfer rate is about

150 MB/s to 180 MB/s. For a 1366 * 768 display using 32-bit color (8 bits for each

RGB channel, plus 8 bits for an alpha channel for transparency effects), if the display

is to be changed entirely every sixtieth of a second, 4 MB of data must be delivered

to the video RAM from the CPU in that amount of time. This requires a data rate of

4 MB * 60 = 240 MB/s. Based on the preceding examples, we can conclude that

the peak data rates required by the particular peripherals we have considered have a

wide range. The bus system must be designed to handle the highest transfer rates

between peripherals and memory.

11-3 I/O INTERFACES

Peripherals connected to a computer need special communication links to interface

them with the CPU. The purpose of these links is to resolve the differences in the

properties of the CPU and memory and the properties of each peripheral. The major

differences are as follows:

1. Peripherals are often electromechanical devices whose manner of operation is

different from that of the CPU and memory, which are electronic devices.

Therefore, a conversion of signal values may be required.

2. The data-transfer rate of peripherals is usually different from the clock rate of

the CPU. Consequently, a synchronization mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in the CPU

and memory.

4. The operating modes of peripherals differ from each other, and each must be

controlled in a way that does not disturb the operation of other peripherals

connected to the CPU.

11-3 / I/O Interfaces 609

To resolve these differences, computer systems include special hardware compo-

nents between the CPU and the peripherals to supervise and synchronize all input

and output transfers. These components are called interface units, because they

interface between the bus from the CPU and the peripheral device. In addition,

each device has its own controller to supervise the operations of the particular

mechanism of that peripheral. For example, the controller in a printer attached to

a computer controls the motion of the paper, the timing of the printing, and the

selection of the characters to be printed.

I/O Bus and Interface Unit

A typical communication structure between the CPU and several peripherals is

shown in Figure 11-5. Each peripheral has an interface unit associated with it. The

common bus from the CPU is attached to all peripheral interfaces. To communi-

cate with a particular device, the CPU places a device address on the address bus.

Each interface attached to the common bus contains an address decoder that

monitors the address lines. When the interface detects its own address, it activates

the path between the bus lines and the device that it controls. All peripherals with

addresses that do not correspond to the address on the bus ignore the bus activity.

At the same time that the address is made available on the address bus, the CPU

provides a function code on the control lines. The selected interface responds to

the function code and proceeds to execute it. If data must be transferred, the

interface communicates with both the device and the CPU data bus to synchro-

nize the transfer.

In addition to communicating with the I/O devices, the CPU of a computer

must communicate with the memory unit through an address and data bus. There are

two ways that external computer buses communicate with memory and I/O. One

method uses common data, address, and control buses for both memory and I/O. We

Central
processing

unit
(CPU)

Interface

Keyboard

Input
device

Interface

CRT
display

Output
device

Interface

Printer

Output
device

Interface

Magnetic
disk

Input and output
device

Data bus

Address bus

Control

 FIGURE 11-5
Connection of I/O Devices to CPU

610 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

have referred to this configuration as memory-mapped I/O. The common address

space is shared between the interface units and memory words, each having distinct

addresses. Computers that adopt the memory-mapped scheme read and write from

interface units as if they were assigned memory addresses by using the same instruc-

tions that read from and write to memory.

The second alternative is to share a common address bus and data bus, but use

different control lines for memory and I/O. Such computers have separate read and

write lines for memory and I/O. To read or write from memory, the CPU activates

the memory read or memory write control. To perform input to or output from an

interface, the CPU activates the read I/O or write I/O control, using special instruc-

tions. In this way, the addresses assigned to memory and I/O interface units are inde-

pendent from each other and are distinguished by separate control lines. This method

is referred to as the isolated I/O configuration.

Example of I/O Interface

A typical I/O interface unit is shown in block diagram form in Figure 11-6. It consists

of two data registers called ports, a control register, a status register, a bidirectional

data bus, and timing and control circuits. The function of the interface is to translate

the signals between the CPU buses and the I/O device and to provide the needed

hardware to satisfy the two sets of timing constraints.

The I/O data from the device can be transferred into either port A or port B.

The interface may operate with an output device, with an input device, or with a

device that requires both input and output. If the interface is connected to a printer,

it will only output data; if it services a scanner, it will only input data. A hard drive

transfers data in both directions, but not at the same time—so the interface needs

only one set of I/O bidirectional data lines.

The control register receives control information from the CPU. By loading

appropriate bits into this register, the interface and the device can be placed in a

variety of operating modes. For example, a printer may be set in a mode that permits

cartridges to be changed. The bits in the status register are used for status conditions

and for recording errors that may occur during data transfer. For example, a status

bit may indicate that port A has received a new data item from the device, while

another bit in the status register may indicate that a parity error has occurred during

the transfer.

The interface registers communicate with the CPU through the bidirectional

data bus. The address bus selects the interface unit through the chip select input

and the two register select inputs. A circuit (usually a decoder or a gate) detects

the address assigned to the interface registers. This circuit sets the chip select (CS)

input when the interface is selected by the address bus. The two register select
inputs RS1 and RS0 are usually connected to the two least significant lines of the

address bus. These two inputs select one of the four registers in the interface, as

specified in the table accompanying the diagram in Figure 11-6. The contents of

the selected register are transferred into the CPU via the data bus when the I/O

read signal is set. The CPU transfers binary information into the selected register

via the data bus when the I/O write input is set.

11-3 / I/O Interfaces 611

The CPU, interface, and I/O device are likely to have different clocks that are

not synchronized with each other. Thus, these units are said to be asynchronous with

respect to each other. Asynchronous data transfer between two independent units

requires that control signals be transmitted between the units to indicate the time at

which data is being transmitted. In the case of CPU-to-interface communication,

control signals must also indicate the time at which the address is valid. We will look

at two methods for performing this timing: strobing, as it is called, and handshaking.

Initially, we will consider generic cases in which no addresses are involved— subsequently,

we will add addressing. The communicating units for the generic case will be referred

to as the source unit and destination unit.

Strobing

Data transfers using strobing are shown in Figure 11-7. The data bus between the two

units is assumed to be made bidirectional by the use of three-state buffers.

The transfer in Figure 11-7(a) is initiated by the destination unit. In the shaded

area of the data signal, the data is invalid. Also, a change in Strobe at the tail of each

arrow causes a change on the data bus at the head of the arrow. The destination unit

Bus
buffers

Bidirectional

data bus

Chip select

Register select

I/O read

I/O write

Timing
and

control

CS

RS1

RS0

RD

WR

In
te

rn
al

 b
us

Port A
register

I/O data

Port B
register

I/O data

Control
register

Control lines

Status
register

Status lines

To CPU To I/O device

RS1 RS0 Register selected

None: data bus in high-impedance state
Port A register
Port B register
Control register
Status register

0
1
0
1

0
0
1
1

CS

0
1
1
1
1

XX

 FIGURE 11-6
Example of I/O Interface Unit

612 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

changes Strobe from 0 to 1. When the value 1 on Strobe reaches the source unit, the

unit responds by placing the data on the data bus. The destination unit expects the

data to be available, at worst, a fixed amount of time after Strobe goes to 1. At that

time, the destination unit captures the data in a register and changes Strobe from 1 to

0. In response to the 0 value on Strobe, the source unit removes the data from the bus.

The transfer in Figure 11-7(b) is initiated by the source unit. In this case, the

source unit places the data on the data bus. After a short time required for the data

to settle on the bus, the source unit changes Strobe from 0 to 1. In response to Strobe

equal to 1, the destination unit sets up the transfer to one of its registers. The source

then changes Strobe from 1 to 0, which triggers the transfer into the register at the

destination. Finally, after a short time required to ensure that the register transfer is

done, the source removes the data from the data bus, completing the transfer.

Although simple, the strobe method of transferring data has several disadvan-

tages. First, when the source unit initiates the transfer, there is no indication to it that

the data was ever captured by the destination unit. It is possible, due to a hardware

failure, that the destination unit did not receive the change in Strobe. Second, when

the destination unit performs the transfer, there is no indication to it that the source

has actually placed the data on the bus. Thus, the destination unit could be reading

arbitrary values from the bus rather than actual data. Finally, the speeds at which the

various units respond may vary. If there are multiple units, the unit initiating a trans-

fer must wait for the delay of the slowest of the attached communicating units before

changing Strobe to 0. Thus, the time taken for every transfer is determined by the

slowest unit with which a given unit initiates transfers.

(b) Source-initiated transfer

Source unit

Data bus

Strobe

Destination unit

Data bus

Strobe

(a) Destination-initiated transfer

Destination unit Source unit

Data bus

Strobe

Data bus

Strobe

 FIGURE 11-7
Asynchronous Transfer Using Strobing

11-3 / I/O Interfaces 613

Handshaking

The handshaking method uses two control signals to deal with the timing of trans-

fers. In addition to the signal from the unit initiating the transfer, there is a second

control signal from the other unit involved in the transfer.

The basic principle of a two-signal handshaking procedure for data transfer is

as follows. One control line from the initiating unit is used to request a response

from the other unit. The second control line from the other unit is used to reply to

the initiating unit that the response is occurring. In this way, each unit informs the

other of its status, and the result is an orderly transfer through the bus.

Figure 11-8 shows data transfer procedures using handshaking. In Figure 11-8(a),

the transfer is initiated by the destination unit. The two handshaking lines are called

Request and Reply. In the initial state both Request and Reply are reset and in the 00

state. Subsequent states are 10, 11, and 01. The destination unit initiates the transfer by

enabling Request. The source unit responds by placing the data on the bus. After a short

(a) Destination-initiated transfer

Destination unit Source unit

Databus

Request

Reply

Data bus

Request

Reply

(b) Source-initiated transfer

Source unit

Data bus

Request
Destination unit

Reply

Data bus

Request

Reply

 FIGURE 11-8
Asynchronous Transfer Using Handshaking

614 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

time for settling of the data on the bus, the source unit activates Reply, to signal the

presence of the data. In response to Reply, the destination unit captures the data in a

register and resets Request. The source unit then resets Reply, and the system goes to

the initial state. The destination unit may not make another request until the source unit

has shown its readiness to provide new data by disabling Reply. Figure 11-8(b) rep-

resents handshaking for the source-initiated transfer. In this case, the source controls

the interval between when the data is applied and when Request changes to 1 and

between when Request changes to 0 and when the data is removed.

The handshaking scheme provides a high degree of flexibility and reliability,

because the successful completion of a data transfer relies on active participation by

both units. If one unit is faulty, the data transfer will not be completed. Such an error can

be detected by means of a time-out mechanism, which produces an alarm if the data

transfer is not completed within a predetermined time interval. The time-out is imple-

mented by means of an internal clock that starts counting time when the unit sets one of

its handshaking control signals. If the return handshake does not occur within a given

period, the unit assumes that an error occurred. The time-out signal can be used to

interrupt the CPU and execute a service routine that takes appropriate error recovery

action. Also, the timing is controlled by both units, not just the initiating unit. Within the

time-out limits, the response of each unit to a change in the control signal of the other

unit can take an arbitrary amount of time, and the transfer will still be successful.

The examples of transfers in Figures 11-7 and 11-8 represent transfers between

an interface and an I/O device and between a CPU and an interface. In the latter

case, however, an address will be necessary to select the interface with which the

CPU wishes to communicate and a register within the interface. In order to ensure

that the CPU addresses the correct interface, the address must have settled on the

address bus before the Strobe or Request signal changes from 0 to 1. Further, the

address must remain stable until the change in the strobe or request from 1 to 0 has

settled to 0 at the interface logic. If either of these conditions is violated, another

interface may be falsely activated, causing an incorrect data transfer.

11-4 SERIAL COMMUNICATION

The transfer of data between two units may be parallel or serial. In parallel data trans-

fer, each bit of the message has its own path, and the entire message is transmitted at

one time. This means that an n-bit message is transmitted in parallel through n separate

conductor paths. In serial data transmission, each bit in the message is sent in sequence,

one at a time. This method requires the use of one or two signal lines. Parallel transmis-

sion is faster, because multiple signal lines operate in parallel. It is used for short dis-

tances and when speed is important. Serial transmission is slower, but less expensive,

since it requires only one conductor. Serial connections are becoming increasingly

important because of the ease of connecting smaller cables and because as data rates

increase, signal skew from line-to-line becomes more problematic. For the serial case,

there are just one or two signals, so that skew is less of a problem. As an example of the

trend toward serial interfaces, in the last decade, the typical hard drive interface for

desktop computers has changed from the parallel ATA (PATA) interface with 40 wires

to the serial ATA (SATA) with only seven wires.

11-4 / Serial Communication 615

One way that computers and terminals that are remote from each other are

connected is via telephone lines. Since telephone lines were originally designed for

voice communication, but computers communicate in terms of digital signals, some

form of conversion is needed. The devices that do the conversion are called data sets

or modems (modulator–demodulators). There are various modulation schemes, as

well as several different grades of communication media and transmission speeds.

Serial data can be transmitted between two points in three different modes: simplex,

half duplex, or full duplex. A simplex line carries information in one direction only.

This mode is seldom used in data communication, because the receiver cannot com-

municate with the transmitter to indicate whether errors have occurred. Examples of

simplex transmission are radio and television broadcasting.

A half-duplex transmission system is capable of transmitting in both directions,

but in only one direction at a time. A pair of wires is needed for this mode. A common

situation is for one modem to act as the transmitter and the other as the receiver. When

transmission in one direction is completed, the roles of the modems are reversed to

enable transmission in the opposite direction. The time required to switch a half-

duplex line from one direction to the other is called the turnaround time.

A full-duplex transmission system can send and receive data in both directions

simultaneously. This can be achieved by means of a two-wire plus ground link, with a

different wire dedicated to each direction of transmission. Alternatively, a sin-

gle-wire circuit can support full-duplex communication if the frequency spectrum is

subdivided into two nonoverlapping frequency bands to create separate receiving

and transmitting channels in the same physical pair of wires.

The serial transmission of data can be synchronous or asynchronous. In syn-
chronous transmission, the two units share a common clock frequency, and bits are

transmitted continuously at that frequency. In long-distance serial transmission, the

transmitter and receiver units are each driven by separate clocks of the same fre-

quency. Synchronization signals are transmitted periodically between the two units

to keep their clock frequencies in step with each other. In asynchronous transmis-

sion, binary information is sent only when it is available, and the line remains idle

when there is no information to be transmitted. This is in contrast to synchronous

transmission, in which bits must be transmitted continuously to keep the clock fre-

quencies in both units synchronized.

ASYNCHRONOUS TRANSMISSION A supplement containing the subsection on asynchro-

nous transmission, a serial port protocol used less frequently in new designs, is avail-

able on the Companion Website.

Synchronous Transmission

The modems employed in synchronous transmission have internal clocks that are set to

the frequency at which bits are being transmitted. For proper operation, the clocks

of the transmitter and receiver modems must remain synchronized at all times. The

communication line, however, carries only the data bits, from which information on the

clock frequency must be extracted. Frequency synchronization is achieved by the

receiving modem from the signal transitions that occur in the data that is received. Any

616 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

frequency shift that may occur between the transmitter and receiver clocks is continu-

ously adjusted by maintaining the receiver clock at the frequency of the incoming bit

stream. In this way, the same rate is maintained in both the transmitter and the receiver.

Contrary to asynchronous transmission, in which each character can be sent

separately, synchronous transmission must send a continuous message in order to

maintain synchronism. The message consists of a group of bits that form a block of

data. The entire block is transmitted with special control bits at the beginning and

the end, in order to frame the block into one unit of information.

The Keyboard Revisited

To this point, we have covered the basic nature of the I/O interface and serial transmis-

sion. With these two concepts available, we are now ready to continue with the example

of the keyboard and its interface, as shown in Figure 11-9. The K-scan code produced by

the keyboard microcontroller is to be transferred serially from the keyboard through

the keyboard cable to the keyboard controller in the computer. In this case, however, a

signal Keyboard clock is also sent through the cable. Thus, the transmission is synchro-

nous with a transmitted clock signal, rather than asynchronous. These same signals are

used to transmit control commands to the keyboard. In the keyboard controller, the

microcontroller converts the K-scan code to a more standard scan code, which it then

places in the Input register, at the same time sending an interrupt signal to the CPU

indicating that a key has been pressed and a code is available. The interrupt-handling

routine reads the scan code from the input register into a special area in memory. This

area is manipulated by software stored in the Basic Input/Output System (BIOS) that

can translate the scan code into an ASCII character code for use by applications.

The Output register in the interface receives data from the CPU. The data can

be passed on to control the keyboard—for example, setting the repetition rate when

a key is held down. The Control register is used for commands to the keyboard con-

troller. Finally, the Status register reports specific information on the status of the

keyboard and the keyboard controller.

Power
Keyboard clock

Keyboard serial data

Ground

Keyboard

Microcontroller

Microcontroller

Input
register

Output
register

Control
register

Status
register

Keyboard controller
and interfaceI/O write

I/O read

Address bus

Data bus

Interrupt request

CPU

 FIGURE 11-9
Keyboard Controller and Interface

11-4 / Serial Communication 617

An interesting aspect of keyboard I/O is its high complexity. It involves two

microcontrollers executing different programs, plus the main processor executing

BIOS software (i.e., three different computers executing three distinct programs).

A Packet-Based Serial I/O Bus

Serial I/O, as described for the keyboard, uses a serial cable specifically dedicated to

communicating between the computer and the keyboard. Whether parallel or serial,

external I/O connections are typically dedicated. The use of these dedicated paths

often requires that the computer case be opened and cards inserted with electronics

and connectors specific to the particular I/O standard used for a given I/O device.

In contrast, packet-based serial I/O permits many different external I/O devices

to use a shared communication structure that is attached to the computer through just

one or two connectors. The types of devices supported include keyboards, mice, joy-

sticks, printers, scanners, and speakers. The particular packet-based serial I/O we will

describe here is the Universal Serial Bus (USB), which is becoming commonplace as

the connection approach of choice for slow-speed to medium-speed I/O devices.

The interconnection of I/O devices by using USB is shown in Figure 11-10. The

computer and attached devices can be classified as hubs, devices, or compound

Computer

Root Hub

Monitor Printer

Mouse Joystick

Scanner

Microphone Speaker Speaker

Keyboard

Hub Hub

Hub
Hub

 FIGURE 11-10
I/O Device Connection Using the Universal Serial Bus (USB)

618 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

devices. A hub provides attachment points for USB devices and other hubs. A hub

contains a USB interface for control and status handling, and a repeater for transfer-

ring information through the hub.

The computer contains a USB controller and the root hub. Additional hubs

may be a part of the USB I/O structure. If a hub is combined with a device such as

the keyboard shown in Figure 11-10, then the keyboard is referred to as a compound
device. Aside from such compound devices, a USB device contains only one USB

port to serve its function alone. The scanner is an example of a regular USB device.

Without USB, the monitor, keyboard, mouse, joystick, microphone, speakers, printer,

and scanner shown would all have separate I/O connections directly on the com-

puter. The monitor, printer, scanner, microphone, and speakers might all require spe-

cial cards to be inserted, as discussed previously. With USB, only two connections are

required.

The USB cables contain four wires: ground, power, and two data lines (D+

and D-) used for differential signaling. The power wire is used to provide small

amounts of power to devices such as keyboards so that they do not need their own

power supplies. To provide immunity to signal variation and noise, 0s and 1s are

transmitted by using the difference in voltage between D+ and D- . If the voltage

on D+ exceeds the voltage on D- by 200 millivolts or more, then the logic value is

a 1. If the voltage on D- exceeds the voltage on D+ by 200 millivolts or more, the

logic value is a 0. Other voltage relationships between D+ and D- are used as spe-

cial signal states as well.

The logic values used for signaling are not the actual logic values of the infor-

mation being transmitted. Instead, a Non-Return-to-Zero Inverted (NRZI) signal-

ing convention is used. A zero in the data being transmitted is represented by a

transition from 1 to 0 or 0 to 1 and a 1 is represented by a fixed value of 1 or 0. The

relationship between the data being transmitted and the NRZI representation is

illustrated in Figure 11-11. As is typical for I/O devices, there is no common clock

serving both the computer and the device. NRZI encoding of the data provides

edges that can be used to maintain synchronization between the arriving data and

the time at which each bit is sampled at the receiver. If there are a large number of 1s

in series in the data, there will be no transitions for some time in the NRZI encoding.

To prevent loss of synchronization, a 0 is “stuffed” in before every seventh bit posi-

tion in a string of 1s prior to NRZI encoding so that no more than six 1s appear in

series. The receiver must be able to remove these extra zeros when converting NRZI

data to normal data.

Data

NRZI

0 10 0 0 0 0 01 1 1 11 1

 FIGURE 11-11
Non-Return-to-Zero Inverted Data Representation

11-4 / Serial Communication 619

USB information is transmitted in packets. Each packet contains a specific

set of fields, depending on the packet type. Logical strings of packets are used to

compose USB transactions. For example, an output transaction consists of an Out

packet followed by a Data packet and a Handshake packet. The Out packet comes

from the USB controller in the computer and notifies the device that it is to receive

data. The computer then sends the Data packet. If the Data packet is received

without error, then the device responds with the Acknowledge Handshake packet.

Next, we detail the information contained in each of these packets.

Figure 11-12(a) shows a general format for USB packets and the formats for

each of the three packets involved in an output transaction. Note that each packet

begins with a synchronization pattern SYNC. This pattern is 00000001. Because of

the sequence of zeros, the corresponding NRZI pattern contains seven edges, which

provide a pattern to which the receiving clock can be synchronized. Since this pat-

tern is preceded by a specific signal voltage state referred to as Idle, the pattern also

signals the beginning of a new packet.

Following the SYNC, each packet format contains eight bits called the packet

identifier (PID). In the PID, the packet type is specified by four bits, with an addi-

tional four bits that are complements of the first four to provide an error check on

the type. A very large class of type errors will be detected by the repetition of the

type as its complement. The type is optionally followed by information specific to the

packet, which varies depending upon the packet type. Optionally, a CRC field

appears next. The CRC pattern consisting of five or 16 bits is a Cyclic Redundancy

Packet-specific data

(a) General packet format

EOPSYNC PID CRC

(b) Output packet

SYNC
8 bits

Type
4 bits
1001

Check
4 bits
0110

Endpoint
address

4 bits

Device
address

7 bits
CRC EOP

(c) Data packet (Data0 type)

SYNC
8 bits

Type
4 bits
1100

Check
4 bits
0011

CRCData
(Up to 1024 bytes) EOP

(d) Handshake packet (Acknowledge type)

SYNC
8 bits

Type
4 bits
0100

Check
4 bits
1011

EOP

 FIGURE 11-12
USB Packet Formats

620 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

Check pattern. This pattern is calculated at transmission of the packet from the pack-

et-specific data. The same calculation is performed when the data is received. If the

CRC pattern does not match the newly calculated pattern, then an error has been

detected. In response to the error, the packet can be ignored and retransmitted. In

the last field of the packet, an End of Packet (EOP) appears. This consists of D+ and

D- , both low for two bit times, followed by the Idle state for a bit time. As its name

indicates, this sequence of signal states identifies the end of the current packet. It

should be noted that all fields are presented least significant bit first.

Referring to Figure 11-12(b), for the Output packet, the Type and Check fields

are followed by a Device Address, an Endpoint Address, and a CRC pattern. The

Device Address consists of seven bits and defines the device that is to input data. The

Endpoint Address consists of four bits and defines which port of the device is to

receive the information in the Data packet to follow. For example, there may be a

port for data and one for control on a given device.

For the Data packet, the packet-specific data consists of 0 to 1024 data bytes.

Due to the length of the packet, complex errors are more likely, so the CRC pattern

is increased in length to 16 bits to improve its error-detection capability.

In the Handshake packet, the packet-specific data is empty. The response to

the receipt of the data packet is carried by the PID. PID 01001011 is an Acknowledge

(ACK) indicating that the packet was received without any errors detected. Absence

of any HANDSHAKE packet when one would normally appear is an indication of

an error. PID 01011010 is a No Acknowledge, indicating that the target is temporar-

ily unable to accept or return data. PID 01111000 is a Stall (STALL), indicating that

the target is unable to complete the transfer and that software intervention is

required to recover from the stall condition.

The preceding concepts illustrate the general principles underlying a packet-

based serial I/O bus and are specific to USB. USB supports other packet types and

many different kinds of transactions. In addition, the attachment and detachment of

devices is sensed and can trigger various software reactions. In general, there is sub-

stantial software in the computer to support the details of the control and operation

of the USB.

11-5 MODES OF TRANSFER

Binary information received from an external device is usually stored in memory for

later processing. Information transferred from the central computer into an external

device originates in the memory. The CPU merely executes the I/O instructions and

may accept the data temporarily, but the ultimate source or destination is the mem-

ory. Data transfer between the central computer and I/O devices may be handled in

a variety of modes, some of which use the CPU as an intermediate path, while others

transfer the data directly to and from the memory. Data transfer to and from periph-

erals may be handled in one of three possible modes:

1. Data transfer under program control.

2. Interrupt-initiated data transfer.

3. Direct memory access transfer.

11-5 / Modes of Transfer 621

Program-controlled operations are the result of I/O instructions written in the

computer program. Each transfer of data is initiated by an instruction in the pro-

gram. Usually, the transfer is to and from a CPU register and peripheral. Other

instructions are needed to transfer the data to and from the CPU and memory.

Transferring data under program control requires constant monitoring of the periph-

eral by the CPU. Once a data transfer is initiated, the CPU is required to monitor the

interface to see when a transfer can again be made. It is up to the programmed

instructions executed in the CPU to keep close tabs on everything that is taking

place in the interface unit and the external device.

In the program-controlled transfer, the CPU stays in a program loop called a

busy-wait loop until the I/O unit indicates that it is ready for data transfer. This is a

time-consuming process, since it keeps the processor busy needlessly. The loop can

be avoided by using the interrupt facility and special commands to inform the inter-

face to issue an interrupt request signal when the data is available from the device.

This allows the CPU to proceed to execute another program. The interface, mean-

while, keeps monitoring the device. When the interface determines that the device is

ready for data transfer, it generates an interrupt request to the computer. Upon

detecting the external interrupt signal, the CPU momentarily stops the task it is per-

forming, branches to a service program to process the data transfer, and then returns

to the original task. This interrupt-initiated transfer is the type used for the keyboard

controller shown in Figure 11-9.

Transferring of data under program control is performed through the I/O bus

and between the CPU and a peripheral interface unit. In direct memory access

(DMA), the interface unit transfers data into and out of the memory unit through

the memory bus. The CPU initiates the transfer by supplying the interface with the

starting address and the number of words needing to be transferred and then pro-

ceeds to execute other tasks. When the transfer is made, the interface requests mem-

ory cycles through the memory bus. When the request is granted by the memory

controller, the interface transfers the data directly into memory. The CPU merely

delays memory operations to allow the direct memory I/O transfer. Since the speed

of a peripheral is usually slower than that of a processor, I/O memory transfers are

infrequent compared with processor access to memory. DMA transfer is discussed in

more detail in Section 11-7.

Many computers combine the interface logic with the requirements for DMA

into one unit called an I/O processor (IOP). The IOP can handle many peripherals

through a DMA-and-interrupt facility. In such a system, the computer is divided into

three separate modules: the memory unit, the CPU, and the IOP.

Example of Program-Controlled Transfer

A simple example of data transfer from an I/O device through an interface into

the CPU is shown in Figure 11-13. The device transfers bytes of data one at a time

as they are available. When a byte is available, the device places it on the I/O bus

and sets Ready. The interface accepts the byte into its data register and sets

Acknowledge. The interface sets a bit in the status register, which we will refer to

as a flag. The device can now reset Ready, but it will not transfer another byte

622 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

until Acknowledge is reset by the interface, according to the handshaking proce-

dure established in Section 11-3.

Under program control, the CPU must check the flag to determine whether

there is a new byte in the interface data register. This is done by reading the contents

of the status register into a CPU register and checking the value of the flag. If the flag

is equal to 1, the CPU reads the data from the data register. The flag is then cleared

to 0 either by the CPU or the interface, depending on how the interface circuits are

designed. Once the flag is cleared, the interface resets Acknowledge, and the device

can transfer the next data byte.

A flowchart of a program written for the preceding transfer is shown in

Figure 11-14. The flowchart assumes that the device is sending a sequence of bytes

that must be stored in memory. The program continually examines the status of the

interface until the flag is set to 1. Each byte is brought into the CPU and transferred

to memory until all of the data have been transferred.

The program-controlled data transfer is used only in systems that are dedi-

cated to monitor a device continuously. The difference in information transfer

rate between the CPU and the I/O device makes this type of transfer inefficient.

To see why, consider a typical computer that can execute the instructions to read

the status register and check the flag in 100 ns. Assume that the input device trans-

fers its data at an average rate of 100 bytes/s. This is equivalent to one byte every

10,000 μs, meaning that the CPU will check the flag 100,000 times between each

transfer. Thus, the CPU is wasting time checking the flag instead of doing a useful

processing task.

Interrupt-Initiated Transfer

An alternative to having the CPU constantly monitor the flag is to let the inter-

face inform the computer when it is ready to transfer data. This mode of transfer

uses the interrupt facility. While the CPU is running a program, it does not check

the flag. However, when the flag is set, the computer is momentarily interrupted

from proceeding with the current program and is informed that the flag has been

set. The CPU drops what it is doing to take care of the input or output transfer.

CPU

Interface

Data register

Status
register

Flag

Data bus

Address bus

I/O read

I/O write

I/O bus

Ready

Acknowledge

I/O
device

 FIGURE 11-13
Data Transfer from I/O Device to CPU

11-5 / Modes of Transfer 623

After the transfer is completed, the computer returns to the previous program to

continue what it was doing before the interrupt. The CPU responds to the inter-

rupt signal by storing the return address from the program counter into a memory

stack or register, and then control branches to a service routine that processes the

required I/O transfer. The way that the processor chooses the branch address of

the service routine varies from one unit to another. In principle, there are two

methods for accomplishing this: vectored interrupt and nonvectored interrupt. In a

nonvectored interrupt, the branch address is assigned to a fixed location in mem-

ory. In a vectored interrupt, the source that interrupts supplies the branch address

to the computer. This information is called the vector address. In some computers,

the vector address is the first address of the service routine; in other comput-

ers, the vector address is an address that points to a location in memory where the

first address of the service routine is stored. The vectored interrupt procedure was

presented in Section 9-9 in conjunction with Figure 9-9.

Check flag bit

Flag

Read data register

Transfer data to memory

Continue
program

0

No

Yes

Read status register

1

Operation
complete?

 FIGURE 11-14
Flowchart for CPU Program to Input Data

624 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

11-6 PRIORITY INTERRUPT

A typical computer has a number of I/O devices attached to it that are able to origi-

nate an interrupt request. The first task of the interrupt system is to identify the source

of the interrupt. There is also the possibility that several sources will request service

simultaneously. In this case, the system must decide which device to service first.

A priority interrupt system establishes a priority over the various interrupt

sources to determine which interrupt request to service first when two or more are

pending simultaneously. The system may also determine which requests are permit-

ted to interrupt the computer while another interrupt is being serviced. Higher lev-

els of priority are assigned to requests that, if delayed or interrupted, could have

serious consequences. Devices with high-speed transfers such as hard drives are

given high priority, and slow devices such as keyboards receive the lowest priority.

When two devices interrupt the computer at the same time, the computer services

the device with the higher priority first.

Establishing the priority of simultaneous interrupts can be done by software or

hardware. Software uses a polling procedure to identify the interrupt source of high-

est priority. In this method, there is one common branch address for all interrupts.

The program at the branch address takes care of interrupts by polling the interrupt

sources in sequence. The priority of each interrupt source determines the order in

which it is polled. The source with the highest priority is tested first, and if its inter-

rupt signal is on, control branches to a routine which services that source. Otherwise,

the source with the next lower priority is tested, and so on. Thus, the initial service

routine for all interrupts pending consists of a program that tests the interrupt

sources in sequence and branches to one of many possible service routines. The par-

ticular service routine that is reached belongs to the highest-priority device among

all devices that interrupted the computer. The disadvantage of the software method

is that if there are many interrupts, the time required to poll all the sources can

exceed the time available to service the I/O device. In this situation, a hardware pri-

ority interrupt unit can be used to speed up the operation of the system.

A hardware priority interrupt unit functions as an overall manager in an inter-

rupt system environment. The unit accepts interrupt requests from many sources,

determines which request has the highest priority, and issues an interrupt request to

the computer based on this determination. To speed up the operation, each interrupt

source has its own interrupt vector address to access its own service routine directly.

Thus, no polling is required, because all the decisions are made by the hardware pri-

ority interrupt unit. The hardware priority function can be established either by a

serial or parallel connection of interrupt lines. The serial connection is also known as

the daisy chain method.

Daisy Chain Priority

The daisy chain method of establishing priority consists of a serial connection of all

devices that request an interrupt. The device with the highest priority is placed in the

first position, followed by devices of priority in descending order, down to the device

with the lowest priority, which is placed last in the chain. This method of connection

11-6 / Priority Interrupt 625

between three devices and the CPU is shown in Figure 11-15. Interrupt request lines

from all devices are ORed to form the interrupt line to the CPU. If any device has its

Interrupt request at 1, the interrupt line goes to 1 and enables the interrupt input of

the CPU. When no interrupts are pending, the interrupt line stays at 0, and no inter-

rupts are recognized by the CPU. The CPU responds to an interrupt request by

enabling Interrupt acknowledge. The signal produced is received by device 0 at its PI

(priority in) input. The signal then passes on to the next device through the PO (pri-

ority out) output only if device 0 is not requesting an interrupt. If device 0 has a

pending interrupt, it blocks the acknowledge signal from the next device by placing a

0 on the PO output and proceeds to insert its own interrupt vector address (VAD)

onto the data bus for the CPU to use during the interrupt cycle.

A device with a 0 on its PI input generates a 0 on its PO output to inform the

device with next lower priority that the acknowledge signal has been blocked. A

device that is requesting an interrupt and has a 1 on its PI input will intercept the

acknowledge signal by placing a 0 on its PO output. If the device does not have

pending interrupts, it transmits the acknowledge signal to the next device by placing

a 1 on its PO output. Thus, the device with PI = 1 and PO = 0 is the one with the

highest priority that is requesting an interrupt, and this device places its VAD on the

data bus. The daisy chain arrangement gives the highest priority to the device that

receives the Interrupt acknowledge signal from the CPU. The farther the device is

from the first position, the lower is its priority.

Figure 11-16 shows the internal logic that must be included within each device

connected in the daisy chain scheme. The device sets its RF latch when it is about to

interrupt the CPU. The output of the latch functionally enters the OR that drives the

interrupt line. If PI = 0, both PO and the enable line to VAD are equal to 0, irre-

spective of the value of RF. If PI = 1 and RF = 0, then PO = 1, the vector address

is disabled, and the acknowledge signal passes to the next device through PO. The

device is active when PI = 1 and RF = 1, which places a 0 on PO and enables the

vector address onto the data bus. It is assumed that each device has its own distinct

vector address. The RF latch is reset after a sufficient delay to ensure that the CPU

has received the vector address.

PI PO
Device 0

PI PO
Device 1

PI PO
Device 2

CPU data bus

VAD 0 VAD 1 VAD 2

To next
device

Interrupt request

Interrupt acknowledge

CPU

 FIGURE 11-15
Daisy Chain Priority Interrupt

626 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

Parallel Priority Hardware

The parallel priority interrupt method uses a register with bits set separately by the

interrupt signal from each device. Priority is established according to the position of

the bits in the register. In addition to the interrupt register, the circuit may include a

mask register to control the status of each interrupt request. The mask register can

be programmed to disable lower-priority interrupts while a higher-priority device is

being serviced. It can also allow a high-priority device to interrupt the CPU while a

lower-priority device is being serviced.

The priority logic for a system with four interrupt sources is shown in Figure 11-17.

The logic consists of an interrupt register with individual bits set by external condi-

tions and cleared by program instructions. Interrupt input 3 has the highest priority,

input 0 the lowest. The mask register has the same number of bits as the interrupt

register. By means of program instructions, it is possible to set or reset any bit in the

mask register. Each interrupt bit and its corresponding mask bit are applied to an

AND gate to produce the four inputs to a priority encoder. In this way, an interrupt

is recognized only if its corresponding mask bit is set to 1 by the program. The prior-

ity encoder generates two bits of the vector address, which is transferred to the CPU

via the data bus. Output V of the encoder is set to 1 if an interrupt request that is not

masked has occurred. This provides the interrupt signal for the CPU.

The priority encoder is a circuit that implements the priority function. The

logic of the priority encoder is such that, if two or more inputs are 1 at the same time,

the input having the highest priority takes precedence. The circuit of a 4-input prior-

ity encoder can be found in Section 3-6, and its truth table is listed in Table 3-6. Input

D
3
 has the highest priority, so, regardless of the values of other inputs, when this

input is 1 the output is A1A0 = 11. D
2
 has the next lower priority. The output is 10 if

PI

0
0

1
1

RF

0
1

0
1

PO

0
0

1
0

Enable

0
0

0
1

PI
Priority in

Enable Vector address

VAD

Priority out
PO

Delay

Interrupt
request
from device

RF
S

R

Interrupt request
to CPU

 FIGURE 11-16
One Stage of the Daisy Chain Priority Arrangement

11-7 / Direct Memory Access 627

D2 = 1, provided that D3 = 0, regardless of the values of the other two lower-

priority inputs. The output is 01 when D1 = 1, provided that the two higher-priority

inputs are equal to 0, and so on down the priority levels. The interrupt output labeled

V is equal to 1 when one or more inputs are equal to 1. If all inputs are 0, V is 0, and

the other two outputs of the encoder are not used. This is because the vector address

is not transferred to the CPU when V = 0.

The output of the priority encoder is used to form part of the vector address of

the interrupt source. The other bits of the vector address can be assigned any values.

For example, the vector address can be found by appending six zeros to the outputs

of the encoder. With this choice, the interrupt vectors for the four I/O devices are

assigned the 8-bit binary numbers equivalent to decimal 0, 1, 2, and 3.

11-7 DIRECT MEMORY ACCESS

The transfer of blocks of information between a fast storage device such as a hard

drive and the CPU can preoccupy the CPU and permit little, if any, other processing

to be accomplished. Removing the CPU from the path and letting the peripheral

device manage the memory buses directly relieves the CPU from many I/O opera-

tions and allow it to proceed with other processing. In this transfer technique, called

direct memory access (DMA), the DMA controller takes over the buses to manage

the transfer directly between the I/O device and memory. As a consequence, the

CPU is temporarily deprived of access to memory and control of the memory buses.

Interrupt
register

3

2

1

0 0

0

0

0

0

0

3

2

1

0

Highest
priority

Lowest
priority

Mask
register

D3

D2

D1

D0

Priority
encoder

A0

A1

Interrupt
acknowledge

from CPU

VAD

Interrupt
to CPU

V

Figure 4-12

 FIGURE 11-17
Parallel Priority Interrupt Hardware

628 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

DMA may capture the buses in a number of ways. One common method exten-

sively used in microprocessors is to disable the buses through special control signals.

Figure 11-18 shows two control signals in a CPU that facilitate the DMA transfer.

The bus request (BR) input is used by the DMA controller to request the CPU to

relinquish control of the buses. When BR input is active, the CPU places the address

bus, the data bus, and the read and write lines into a high-impedance state. After this

is done, the CPU activates the bus granted (BG) output to inform the external DMA

that it can take control of the buses. As long as the BG line is active, the CPU is

unable to proceed with any operations requiring access to the buses.

When the bus request input is reset by the DMA, the CPU returns to its nor-

mal operation, resets the BG output, and takes control of the buses. When the BG

line is set, the external DMA controller takes control of the bus system in order to

communicate directly with memory. The transfer can be made for an entire block of

memory words, suspending operation of the CPU until the entire block is trans-

ferred, a process referred to as burst transfer. Or the transfer can be made one word

at a time between executions of CPU instructions, a process called single-cycle trans-
fer or cycle stealing. The CPU merely delays its bus operations for one memory cycle

to allow the direct memory-I/O transfer to steal one memory cycle.

DMA Controller

The DMA controller needs the usual circuits of an interface to communicate with

the CPU and the I/O device. In addition, it needs an address register, a word-count

register, and a set of address lines. The address register and address lines are used for

direct communication with memory. The word-count register specifies the number of

words that must be transferred. The data transfer may be done directly between the

device and memory under control of the DMA.

Figure 11-19 shows the block diagram of a typical DMA controller. The unit

communicates with the CPU via the data bus and control lines. The registers in the

DMA are selected by the CPU through the address bus by enabling the DS (DMA

select) and RS (register select) inputs. The RD (read) and WR (write) inputs are

bidirectional. When the BG (bus granted) input is 0, the CPU can communicate with

the DMA registers through the data bus to read from or write to those registers.

When BG = 1, the CPU has relinquished the buses, and the DMA can communi-

cate directly with memory by specifying an address on the address bus and activating

the RD or WR control. The DMA communicates with the external peripheral

Bus request

Bus granted

BR

BG

AB

DB

RD

WR

Address bus

High impedance
(disabled)
if BG � 1

Data bus

Read

Write

CPU

 FIGURE 11-18
CPU Bus Control Signals

11-7 / Direct Memory Access 629

through the DMA request and DMA acknowledge lines by a prescribed handshak-

ing procedure.

The DMA controller has three registers: an address register, a word-count reg-

ister, and a control register. The address register contains an address to specify the

desired location of a word in memory. The address bits go through bus buffers onto

the address bus. The address register is incremented after each word is transferred to

memory. The word-count register holds the number of words to be transferred. This

register is decremented by one after each word transfer and internally tested for

zero. The control register specifies the mode of transfer. All registers in the DMA

appear to the CPU as I/O interface registers. Thus, the CPU can read from or write

to the DMA registers under program control via the data bus.

After initialization by the CPU, the DMA starts and continues to transfer data

between memory and the peripheral unit until an entire block is transferred. The

initialization process is essentially a program consisting of I/O instructions that

include the address for selecting particular DMA registers. The CPU initializes the

DMA by sending the following information through the data bus:

1. The starting address of the memory block in which data is available (for read-

ing) or data is to be stored (for writing).

2. The word count, which is the number of words in the memory block.

3. A control bit to specify the mode of transfer, such as read or write.

4. A control bit to start the DMA transfer.

The starting address is stored in the address register, the word count in the word-

count register, and the control information in the control register. Once the DMA is

In
te

rn
al

 b
us

Data bus
buffers

Control
logic

DS

RS

RD

WR

BR

BG

DMA select

Register select

Read

Write

Bus request

Bus granted

Interrupt
DMA request

DMA acknowledge to I/O device

Address bus
buffers

Address register

Word-count register

Control register

Data bus

Address bus

 FIGURE 11-19
Block Diagram of a DMA Controller

630 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

initialized, the CPU stops communicating with it unless the CPU receives an inter-

rupt signal or needs to check how many words have been transferred.

DMA Transfer

The position of the DMA controller among the other components in a computer sys-

tem is illustrated in Figure 11-20. The CPU communicates with the DMA through the

address and data buses, as with any interface unit. The DMA has its own address, which

activates the DS and RS lines. The CPU initializes the DMA through the data bus. Once

the DMA receives the start control bit, it can begin transferring data between the

peripheral device and memory. When the peripheral device sends a DMA request,

the DMA controller activates the BR line, informing the CPU that it is to relinquish the

buses. The CPU responds with its BG line, informing the DMA that the buses are dis-

abled. The DMA then puts the current value of its address register onto the address bus,

initiates the RD or WR signal, and sends a DMA acknowledge to the peripheral device.

When the peripheral device receives a DMA acknowledge, it puts a word on

the data bus (for writing) or receives a word from the data bus (for reading). Thus,

the DMA controls the read or write operation and supplies the address for memory.

The peripheral unit can then communicate with memory through the data bus for a

direct transfer of data between the two units while the CPU access to the data bus is

momentarily disabled.

Read control

Write control

Address bus

Interrupt

BG

BR

CPU

RD WR Address Data

Memory

RD WR Address Data

Address
decoder

I/O
peripheral

device

DMA
controller

DMA request

DMA acknowledge

DS

RS

BR

BG

Interrupt

Data bus

RD WR Address Data

 FIGURE 11-20
DMA Transfer in a Computer System

References 631

For each word that is transferred, the DMA increments its address register and

decrements its word-count register. If the word count has not reached zero, the DMA

checks the request line coming from the peripheral. In a high-speed device, the line will

be activated as soon as the previous transfer is completed. A second transfer is then ini-

tiated, and the process continues until the entire block is transferred. If the speed of the

peripheral is slower, the DMA request line may be activated somewhat later. In this

case, the DMA resets the bus request line so that the CPU can continue to execute its

program. When the peripheral requests a transfer, the DMA requests the buses again.

If the word count reaches zero, the DMA stops any further transfer and

removes its bus request. It also informs the CPU of the termination of the transfer by

means of an interrupt. When the CPU responds to the interrupt, it reads the contents

of the word-count register. A value of zero indicates that all the words were success-

fully transferred. The CPU can read the word-count register at any time, as well, to

check the number of words already transferred.

A DMA controller may have more than one channel. In this case, each channel has

a request and acknowledge pair of control signals that are connected to separate periph-

eral devices. Each channel also has its own address register and word-count register so

that channels with high priority are serviced before channels with lower priority.

DMA transfer is very useful in many applications, including the fast transfer of

information between hard drives and memory, and between memory and graphic

displays.

11-8 CHAPTER SUMMARY

In this chapter, we introduced I/O devices, typically called peripherals, and their

associated digital support structures, including I/O buses, interfaces, and controllers.

We studied the structure of a keyboard, a hard drive, and a graphics display. We

looked at an example of a generic I/O interface and examined the interface and I/O

controller for the keyboard. We introduced USB as an alternative solution to the

attachment of many I/O devices. We considered timing problems between systems

with different clocks and the parallel and serial transmission of information.

We also looked at modes of transferring information and saw how the more

complex modes came about, principally to relieve the CPU from extensive, perfor-

mance-robbing handling of I/O transfers. Interrupt-initiated transfers with multiple

I/O interfaces lead to means of establishing priority between interrupt sources.

Priority can be handled by software, serial daisy chain logic, or parallel interrupt-

priority logic. Direct memory access accomplishes the transfer of data directly

between an I/O interface and memory, with little CPU involvement.

REFERENCES

1. Hennessy, J. L. and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 5th ed. Amsterdam: Elsevier, 2011.

2. Fundamentals of Liquid Crystal Displays—How They Work and What They Do.

Fujitsu Microelectronics America, Inc., 2006. (http://www.fujitsu.com/downloads/

MICRO/fma/pdf/LCD_Backgrounder.pdf)

632 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

3. Messmer, H. P. The Indispensable PC Hardware Book, 2nd ed. Reading, MA:

Addison-Wesley, 1995.

4. MindShare, Inc. (Don Anderson). Universal Serial Bus System Architecture.

Reading, MA: Addison-Wesley Developers Press, 1997.

5. Van Gilluwe, F. The Undocumented PC. Reading, MA: Addison-Wesley, 1994.

6. What is TFT LCD? Avdeals America, 2006, (http://www.plasma.com/classroom/

what_is_tft_lcd.htm)

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

 11-1. *Find the formatted capacity of the hard drives described in the following table:

Drive

Heads

Cylinders

Sectors/

Track

Bytes/

Sector

A 1 1023 63 512

B 4 8191 63 512

C 16 16383 63 512

 11-2. Estimate the time required to transfer a block of 1 MB (220 B) from a hard

drive to memory given the following drive parameters: seek time, 8.5 ms;

rotational delay, 4.17 ms; controller time, negligible; transfer rate, 150 MB/s.

 11-3. Assume that your LCD screen has a maximum resolution of 1600 * 1200 by

virtue of its hardware capability. Your settings (done by the OS or manually

by you) denote a resolution of 800 * 600 resolution. What will be the effect

on a 1600 * 1200 picture displayed on it?

 11-4. The addresses assigned to the four registers of the I/O interface of Figure 11-6

are equal to hexadecimal CA, CB, CC, and CD. Show the external circuit that

must be connected between an 8-bit I/O address from the CPU and the CS,

RS0, and RS1 inputs of the interface.

 11-5. *How many I/O interface units of the type shown in Figure 11-6 can be

addressed by using a 16-bit address, assuming

(a) each of the chip select (CS) lines is attached to a different address line?

(b) address bits are fully decoded to form the chip select inputs?

 11-6. Interface units of the type shown in Figure 11-6 are connected to a CPU that

uses an I/O address of eight bits. Each one of the six chip select (CS) inputs is

connected to a different address line. Specifically, address line 0 is connected

to the CS input of the first interface unit, and address line 4 is connected to

the CS input of the sixth interface unit. Address lines 7 and 6 are connected to

the RS1 and RS0 inputs, respectively, of all six interface units. Determine the

8-bit address of each register in each interface (a total of 24 addresses).

 11-7. *A different type of I/O interface does not have the RS1 and RS0 inputs. Up to

two registers can be addressed by using a separate I/O read signal and I/O write

signal for each address available. Assume that 25 percent of the registers at the

interface with the CPU are read only, 25 percent of the registers are write only,

and 50 percent of the registers are both read and write (bidirectional). How

many registers can be addressed if the address contains eight bits?

 11-8. A commercial interface unit uses names different from those appearing in

this text for the handshake lines associated with the transfer of data from the

I/O device to the interface unit. The interface input handshake line is labeled

STB (strobe), and the interface output handshake line is labeled IBF (input

buffer full). A low-level signal on STB loads data from the I/O bus into the

interface data register. A high-level signal on IBF indicates that the data has

been accepted by the interface. IBF goes low after an I/O read signal from the

CPU when it reads the contents of the data register.

(a) Draw a block diagram showing the CPU, the interface, and the I/O device,

along with the pertinent interconnections between the three units.

(b) Draw a timing diagram for the handshaking transfer.

 11-9. *Assume that the transfers with strobing shown in Figure 11-7 are between a

CPU on the left and an I/O interface on the right. There is an address coming

from the CPU for each of the transfers, both of which are initiated by the CPU.

(a) Draw block diagrams showing the interconnections for the transfers.

(b) Draw the timing diagrams for the two transfers, assuming that the address

must be applied some time before the strobe becomes 1 and removed

some time after the strobe becomes 0.

 11-10. Assume that the transfers with handshaking shown in Figure 11-8 are between

a CPU on the left and an I/O interface on the right. There is an address coming

from the CPU for each of the transfers, both of which are initiated by the CPU.

(a) Draw block diagrams, showing interconnections for the transfers.

(b) Draw the timing diagrams, assuming that the address must be applied

some time before the request becomes 1 and removed some time after

the request becomes 0.

 11-11. *Sketch the waveforms for the SYNC pattern used for USB and the

corresponding NRZI waveform. Explain why the pattern selected is a good

choice for achieving synchronization.

 11-12. (a) Draw the NRZI waveform corresponding to the raw data 10100110001,

which is to be sent using the USB protocol.

 (b) The USB system has a host and devices. Differentiate between the two.

 (c) List two input and two output devices that use the USB protocol.

Problems 633

634 CHAPTER 11 / INPUT–OUTPUT AND COMMUNICATION

 11-13. *The 8-bit ASCII word “Bye” is to be transmitted to a device address 39 and

endpoint 2. List the Output and Data 0 packets and the Handshake packet

for a Stall for this transmission prior to NRZI encoding.

 11-14. Repeat Problem 11-13 for the word “Hlo” and a Handshake packet of type

No Acknowledge.

 11-15. Explain why interrupt driven data transfer is preferred over the polling

method, even though the latter is simpler in concept and application.

 11-16. *What happens in the daisy chain priority interrupt shown in Figure 11-15

when device 0 requests an interrupt after device 2 has sent an interrupt request

to the CPU, but before the CPU responds with the interrupt acknowledge?

 11-17. (a) When there are many sources for interrupts, there is an extra hardware to

take care of interrupt processing. What are the capabilities needed for this

extra hardware?

 (b) What is the concept of an interrupt vector?

 (c) What is the idea behind the term “interrupt masking”?

 11-18. *What changes are needed in Figure 11-17 to make the four VAD values

equal to the binary equivalent of 024, 025, 026, and 027?

 11-19. Repeat Problem 11-18 for VAD values 122, 123, 124, and 125.

 11-20. *Design parallel priority interrupt hardware for a system with six interrupt

sources.

 11-21. A priority structure is to be designed that provides vector addresses.

(a) Obtain the condensed truth table of a 16 × 4 priority encoder.

(b) The four outputs w, x, y, z from the priority encoder are used to provide

an 8-bit vector address in the form 10wxyz01. List the 16 addresses,

starting from the one with the highest priority.

 11-22. (a) What is meant by DMA? Draw a conceptual diagram of DMA and

explain the role of the control signals used therein.

 (b) What does a DMA controller do?

 11-23. It is necessary to transfer 2048 words from a hard drive to a section of

memory starting from address 4096. The transfer is by means of DMA, as

shown in Figure 11-20.

(a) Give the initial values that the CPU must transfer to the DMA controller.

(b) Give the step-by-step account of the actions taken during the input of the

first two words.

 635 635

C H A P T E R

Memory Systems

12

12-1 MEMORY HIERARCHY

Figure 12-1 shows a generic block diagram for a memory hierarchy. The lowest level

of the hierarchy is a small, fast memory called a cache. For the hierarchy to function

well, a very large proportion of the CPU instruction and operand fetches are

In Chapter 7, we discussed basic RAM technology for implementing memory systems,

including SRAMs and DRAMs. In the current chapter, we probe more deeply into what

really constitutes a computer memory system. We begin with the premise that a fast,

large memory is desirable, and demonstrate that a straightforward implementation of such

a memory for the typical computer is too costly and too slow. As a consequence, we

slow) and the memory appears to be large. This solution employs two concepts: cache

memory and virtual memory. A cache memory is a small, fast memory with special control

CPU with an access time of the order of several CPU clock periods. Virtual memory,

implemented in software and hardware, using an intermediate-sized main memory

to the main memory for the vast majority of accesses. The actual storage medium for most

of the code and data in the virtual memory is a hard drive. Because there is a progression

of components in the memory system having larger and larger storage capability, but

term memory hierarchy is applied.

In the generic computer presented at the beginning of Chapter 1, a number of

components are heavily involved in the memory hierarchy. Within the processor, there

memory. Also in the processor, one or more internal caches appear. A larger cache

often appears outside the processor. Of course, the RAM is involved, and due to the

presence of virtual memory, the hard drive, the bus interface, and the drive controller all

have a role as parts of the memory system.

636 CHAPTER 12 / MEMORY SYSTEMS

 expected to be from the cache. At the next level upward in the hierarchy is the main
memory. The main memory serves directly most of the CPU instructions and oper-

and fetches not satisfied by the cache. In addition, the cache fetches all of its data,

some portion of which is passed on to the CPU, from the main memory. At the top

level of the hierarchy is the hard drive, which is accessed only in the very infrequent

cases where a CPU instruction or a operand fetch is not found in main memory.

With this memory hierarchy, since the CPU fetches most of the instructions

and operands from the cache, it “sees” a fast memory, most of the time. Occasionally,

when a word must come from main memory, a fetch takes somewhat longer. Very

infrequently, when a word must be fetched from the hard drive, the fetch takes a very

long time. In this last case, the CPU is likely to experience an interrupt that passes

execution to a program which brings in a block of words from the hard drive. On

balance, the situation is usually satisfactory, providing an average fetch time close to

that of the cache. Moreover, the CPU sees a memory address space considerably

larger than that of main memory.

Keeping in mind this general notion of a memory hierarchy, we will proceed to

consider an example that illustrates the potential power of such a hierarchy.

However, there is one issue to be clarified first. In most instruction set architectures,

the smallest of the objects that are addressed is a byte rather than a word. For a given

load or store operation, whether a byte or word is affected is typically determined by

the opcode. Addressing to bytes brings with it some assumptions and hardware

details that are important, but, if used up to this point in the text, would have unnec-

essarily complicated much of the material covered. Consequently, for simplicity, we

have assumed up to now that an addressed location contains a word. By contrast, in

this chapter we will assume that addresses are defined for bytes, to match current

practice. Nevertheless, we will still assume that data is moved around outside of the

CPU as words or sets of words, to avoid messy explanations relating to the manipu-

lation of bytes. This assumption simply hides some hardware details that would dis-

tract from the main focus of our discussion, but nevertheless must be handled by the

hardware designer. To accomplish the simplification, if there are 2b bytes per word,

Hard
drive

Main
memoryCacheCPU

 FIGURE 12-1
Memory Hierarchy

12-1 / Memory Hierarchy 637

we will ignore the last b bits of the address. Since these bits are not needed to address

a word, we show their values as 0s. For the examples we will present, a word is 4 bytes

and b is always equal to 2, so two 0s are shown.

In Section 10-3, the pipelined CPU had a memory address with 32 bits and was

able to access an instruction and data, if necessary, in each of the 1-ns clock cycles. Also,

we assumed that the instruction and the data were, in effect, fetched from two different

memories. To support this assumption in this chapter, we will suppose initially that the

memory is divided in half—one-half for instructions and one-half for data. Each half of

the memory must have an access time of 1 ns. In addition, if we utilize all the bits in the

32-bit address, then the memory can contain up to 232 bytes, or 4 gigabytes (GB), of

information. So the goal is to have two 2-GB memories, each with an access time of 1 ns.

Is such a memory realistic in terms of, say, 2014 computer technology? The typ-

ical memory is constructed of DRAM modules ranging in size from 256 MB to 8 GB.

The typical access time is about 10 ns. Thus, our two 2-GB memories would have an

access time of somewhat more than 10 ns per word. This kind of memory is both too

costly and too slow, operating at only one-tenth the desired speed. So our goal must

be achieved another way, leading us to explore a memory hierarchy.

We begin by assuming a hierarchy with two caches, one for instructions and

one for data, as shown in Figure 12-2. The use of these two caches permits one

instruction and one operand to be fetched, or one instruction to be fetched and one

result to be stored, in a single clock cycle if the caches are fast enough. In terms of the

generic computer, we assume that the caches are internal, so that they can operate at

speeds comparable to that of the CPU. Thus, fetches from the instruction cache, and

fetches from and stores to the data cache can be accomplished in 2 ns. Hence, most of

the fetches and stores for the CPU are from or to these caches and will take 2 CPU

clock cycles. Suppose, then, that we are satisfied with most—say, 95 percent—of the

memory accesses taking 2 ns. Suppose further that most of the remaining 5 percent

of the memory accesses take 10 ns. Then the average access time is

0.95 * 2 + 0 .05 * 10 = 2 .4 ns

Hard
disk

Main
memory

Instruction
cache

CPU

Data
cache

 FIGURE 12-2
Example of Memory Hierarchy

638 CHAPTER 12 / MEMORY SYSTEMS

This means that, on 19 out of every 20 memory accesses, the CPU operates at

full speed, while the CPU will have to wait for 10 clock cycles for 1 out of every 20

memory accesses. This wait can be accomplished by stalling the CPU pipeline. Thus,

we have accomplished our goal of “most” memory accesses taking 2 ns. But there is

still the problem of the cost of the large memory.

Now suppose that, in addition to infrequently accepting a wait for a word from

main memory that will take more than 10 ns, we are also willing to accept a very

infrequent wait for a hard disk access taking 13 ms = 1 .3 * 107 ns. Suppose that we

have data indicating that about 95 percent of the fetches will be from a cache and

about 4.999995 percent of the fetches will be from main memory. With this informa-

tion, we can estimate the average access time as

0.95 * 2 + 0.04999995 * 10 + 5 * 10-8 * 1.3 * 107 = 3.05 ns

Thus, the average access time is about 3 times the 1 ns CPU clock period, but is

about one-third of the 10 ns access time for main memory, again with 19 out of 20 of

the accesses taking place in 2 ns. So we have achieved an average access time of

about 3.05 ns for a memory structure with a capacity of 232 bytes, not far from the

original goal. Further, the cost of this memory hierarchy is tens of times smaller than

the large, fast memory approach.

It therefore appears that the original goal of the appearance of a fast, large

memory has been approached by the memory hierarchy at a reasonable cost. But

along the way, we made some assumptions, namely, that 95 percent of the time the

word desired would come from what we are now calling the cache and that 99.999995

percent of the time the words would come from either cache or main memory, with

the remainder from hard disk. In the rest of this chapter, we will explore why assump-

tions similar to these usually hold, and we will examine the hardware and associated

software components needed to achieve the goals of the memory hierarchy.

12-2 LOCALITY OF REFERENCE

In the previous section, we indicated that the success of the memory hierarchy is

based on assumptions that are critical to achieving the appearance of a large, fast

memory. We now deal with the foundation for making these assumptions, which is

called locality of reference. Here “reference” means reference to memory for access-

ing instructions and for reading or writing operands. The term “locality” refers to the

relative times at which instructions and operands are accessed (temporal locality)

and the relative locations at which they reside in main memory (spatial locality).

Let us consider first the nature of the typical program. A program frequently

contains many loops. In a loop, a sequence of instructions is executed many times

before the program exits the loop and moves on to another loop or straight-line code

not in a loop. In addition, loops are often nested in a hierarchy in which loops are

contained in loops, and so on. Suppose we have a loop of eight instructions that is to

be executed 100 times. Then for 800 executions, all instruction fetches will occur

from just eight addresses in memory. Thus, each of the eight addresses is visited 100

times during the time the loop is executed. This is an example of temporal locality in

the sense that an address which is accessed is likely to be accessed many times in the

12-2 / Locality of Reference 639

near future. Also, it is likely that the addresses of the instructions will be in sequen-

tial order. Thus, if an address is accessed for an instruction, nearby addresses are

going to be addressed during the execution of the loop. This is an example of spatial

locality.

In terms of accessing operands, similar temporal and spatial localities also

occur. For example, in a computation on an array of numbers, there are multiple vis-

its to the locations of many of the operands, giving temporal locality. Also, as the

computation proceeds, when a particular address is accessed for a number, sequen-

tial addresses near it are likely to be accessed for other numbers in the array, giving

spatial locality.

From the prior discussion, we can conjecture that there is significant locality of

reference in computer programs. To verify this decisively, we need to study the pat-

terns of execution of real programs. Such studies have demonstrated the presence of

significant temporal and spatial locality of reference and play an important role in

the design of caches and virtual memory systems.

The next question to answer is: What is the relation of locality of reference to

the memory hierarchy? To examine this issue, we consider again the instruction fetch

within a loop and look at the relationship between the cache and main memory.

Initially, we assume that instructions are present only in main memory and that the

cache is empty. When the CPU fetches the first instruction in a loop, it obtains the

instruction from main memory. But the instruction and a portion of its address called

the address tag are also placed in the cache. What then happens for the next 99 exe-

cutions of this instruction? The answer is that the instruction can be fetched from the

cache, which provides a much faster access. This is temporal locality at work:

The instruction that was fetched once will tend to be used again and is now present

in the cache for fast access.

Additionally, when the CPU fetches the instruction from main memory, the

cache fetches nearby instructions into its SRAM. Now suppose that the nearby

instructions include the entire loop of eight instructions presented in our example.

Then all of the instructions are in the cache. By bringing in such a block of instruc-

tions, the cache is able to exploit spatial locality: It takes advantage of the fact that

the execution of the first instruction implies the execution of instructions with

nearby addresses by making the latter instructions available for fast access.

In our example, each of the instructions is fetched from main memory exactly

once for the 100 executions of the loop. All other instruction fetches come from the

cache. Thus, in this particular example, at least 99 percent of the instructions being

executed are fetched from the cache, so that the rate of execution of instructions is

governed almost completely by the cache access time and CPU speed, and very little

by the main memory access time. Without temporal locality, many more accesses to

main memory would occur, slowing down the system.

A relationship similar to that between cache and the main memory can exist

between main memory and the hard drive. Again, both temporal and spatial locality

of reference are of interest, except this time on a much larger scale. Programs and

data are fetched from the hard drive, and data is written to the hard drive in blocks

that range from kilowords to megawords. Ideally, once the code and initial data for a

program reside in main memory, the hard drive need not be accessed except for

640 CHAPTER 12 / MEMORY SYSTEMS

storing final results of the program. But this can happen only if all of the code and

data, including intermediate data used by the program, reside fully in main memory.

If not, then it will be necessary to bring in code from the hard drive and to read and

write data from and to the hard drive during program execution. Words are read

from and written to the drive in blocks referred to as pages. If the movement of

pages between main memory and hard drive is transparent to the programmer, then

it will appear as if main memory is large enough to hold the entire program and all of

the data. Hence, this automated arrangement is referred to as virtual memory.

During the execution of the program, if an instruction to be executed is not in main

memory, the CPU program flow is diverted to bring the page containing the instruc-

tion into main memory. Then the instruction can be read from main memory and

executed. The details of this operation and the hardware and software actions

required for it will be covered in Section 12-4.

In summary, locality of reference is absolutely key to the success of the con-

cepts of cache memory and virtual memory. In the case of most programs, locality of

reference is present to a fairly high degree. But occasionally, one does encounter a

program that, for example, requires frequent access to a large body of data that can-

not be accommodated in main memory. In such a case, the computer spends almost

all of its time moving information between main memory and the hard drive and

does little other computation. Emanation of continuous sounds from the hard drive

as the heads move from track to track is a telltale sign of this phenomenon, referred

to as thrashing.

12-3 CACHE MEMORY

To illustrate the concept of cache memory, we assume a very small cache of eight 32-bit

words and a small main memory with 1 KB (256 words), as shown in Figure 12-3. Both

of these are too small to be realistic, but their size makes illustration of the concepts

easier. The cache address contains 3 bits, the memory address 10. Out of the 256 words

in main memory, only 8 at a time may lie in the cache. In order for the CPU to address

a word in the cache, there must be information in the cache to identify the address of

the word in main memory. Clearly, if we consider the example of the loop in the last

section, we find it desirable to contain the entire loop within the cache, so that all of the

instructions can be fetched from the cache while the program is executing most of the

passes through the loop. The instructions in the loop lie in consecutive word addresses.

Thus, it is desirable for the cache to have words from consecutive addresses in main

memory present simultaneously. A simple way to facilitate this feature is to make bits 2

through 4 of the main memory address be the cache address. We refer to these bits as

the index, as shown in Figure 12-3. Note that the data from address 0000001100 in

main memory must be stored in cache address 011. The upper 5 bits of the main mem-

ory address, called the tag, are stored in the cache along with the data. Continuing the

example, we find that for main memory address 0000001100, the tag is 00000. The tag

combined with the index (or cache address) and 00 byte field identify an address in

main memory.

Suppose that the CPU is to fetch an instruction from location 000001100 in

main memory. This instruction may actually come from either the cache or main

12-3 / Cache Memory 641

memory. The cache separates the tag 00000 from the cache address 011, internally

fetches the tag and the stored word from location 011 in the cache memory, and com-

pares the tag fetched with the tag portion of the address from the CPU. If the tag

fetched is 00000, then the tags match, and the stored word fetched from cache mem-

ory is the desired instruction. Thus, the cache control places this word on the bus to

the CPU, completing the fetch operation. This case in which the memory word is

fetched from cache is called a cache hit. If the tag fetched from cache memory is not

00000, then there is a tag mismatch, and the cache control notifies main memory that

it must provide the memory word, which is not available in the cache. This situation

is called a cache miss. For a cache to be effective, the slower fetches from main mem-

ory must be avoided as much as possible, making considerably more cache hits than

cache misses necessary.

When a cache miss occurs on a fetch, the word from main memory is not placed

just on the bus for the CPU. The cache also captures the word and its tag and stores

them for future access. In our example, the tag 00000 and the word from memory

Address

0000000000

0000000100

0000001000

0000001100

0000010000

0000010100

0000011000

0000011100

1111100000

1111100100

1111101000

1111101100

1111110000

1111110100

1111111000

1111111100

Data

Main memory

9 8 0

Tag Index Byte

(a) Memory address

Tag Data

Cache

Index

000

001

010

011

100

101

110

111

00000

(b) Cache mapping

1234567

 FIGURE 12-3
Direct Mapped Cache

642 CHAPTER 12 / MEMORY SYSTEMS

will be written in cache location 011 in anticipation of future accesses to the same

memory address. The handling of writes to memory will be dealt with later in the

chapter.

Cache Mappings

The example we just considered uses a particular association or mapping between

the main memory address and the cache address; namely, the last three bits of the

main memory word address are the cache address. Additionally, there is only one

location in the cache for the 25 locations in main memory that have their last three

bits in common. This mapping in Figure 12-3, in which only one specific location in

the cache can contain the word from a particular main memory location, is called

direct mapping.

Direct mapping for a cache, however, does not always produce the most desir-

able situation. In our loop instruction fetch example, suppose that instructions and

data are in the same cache and that data from location 1111101100 is frequently

used. Then when the instruction in 0000001100 is fetched, location 011 in the cache

is likely to contain the data from 1111101100 and tag 11111. A cache miss occurs and

causes tag 11111 to be replaced in the cache with tag 00000 and the data to be

replaced with the instruction. But the next time the data is needed, another cache

miss occurs, since the location in the cache is now occupied by the instruction.

Throughout the execution of the loop, both instruction fetch and data fetch cause

many cache misses, significantly slowing CPU processing. To solve this problem, we

explore alternative cache mappings.

In direct mapping, 25 addresses in main memory map to the single address in the

cache that matches their last three bits. These locations are highlighted in gray in

Figure 12-3 for index 001. As is illustrated, only one of the 25 addresses can have its

word in cache address 001 at any time. In contrast, suppose that we let locations in

main memory map into an arbitrary location in the cache. Then any location in mem-

ory can be mapped to any one of the eight addresses in the cache. This means that the

tag will now be the full main memory word address. We examine the operation of such

a cache having a fully associative mapping in Figure 12-4. Note that in this case there

are two main memory addresses, 0000010000 and 1111110000, with bits 2 through 4

equal to 100 among the cache tags. These two addresses cannot be present simultane-

ously in the direct-mapped cache, as they would both occupy the cache address 100.

Thus, a succession of cache misses due to alternate fetching of an instruction and data

with the same index is avoided here, since both can be in the cache.

Now suppose that the CPU is to fetch an instruction from location 0000010000

in main memory. This instruction may actually be returned from either the cache or

main memory. Since the instruction might lie in the cache, the cache must compare

00000100 to each of its eight tags. One way to do this is to successively read each tag

and the associated word from the cache memory and compare the tag to 00000100. If

a match occurs, as it will for the given address and cache location 000 in Figure 12-4, a

cache hit occurs. The cache control then places the word on the bus to the CPU, com-

pleting the fetch operation. If the tag fetched from the cache is not 00000100, then

there is a tag mismatch, and the cache control fetches the next successive tag and word.

12-3 / Cache Memory 643

In the worst case, for a match on the tag in cache address 111, eight fetches from the

cache are required before the cache hit occurs. At 2 ns a fetch, this requires at least

16 ns, about half the time it would take to obtain the instruction from main memory. So

successive reads of tags and words from the cache memory to find a match is not a very

desirable approach. Instead, a structure called associative memory implements the tag

portion of the cache memory.

Figure 12-5 shows an associative memory for a cache with 4-bit tags. The mech-

anism for writing tags into the memory uses a conventional write. Likewise, the tags

can be read from the memory using the conventional memory read. Thus, the asso-

ciative memory can use the bit-slice model for RAM presented in Chapter 7. In addi-

tion, each tag storage row has match logic. The implementation of this logic and its

connection to the RAM cells are shown in the figure. The match logic does an equal-

ity comparison or match between the tag T and the applied address A from the CPU.

The match logic for each tag is composed of an exclusive-OR gate for each bit and a

Address

0000000000

0000000100

0000001000

0000001100

0000010000

0000010100

0000011000

0000011100

1111100000

1111100100

1111101000

1111101100

1111110000

1111110100

1111111000

1111111100

Data

Main memory

9

Tag Byte

(a) Memory address

Tag Data

Cache

000

001

010

011

100

101

110

111

(b) Cache mapping

00000100

00000111

11111100

00000010

11111000

03 1245678

 FIGURE 12-4
Fully Associative Cache

644 CHAPTER 12 / MEMORY SYSTEMS

NOR gate that combines the outputs of the exclusive-ORs. If all of the bits of the tag

and the address match, then the outputs of all the exclusive-ORs are 0 and the NOR

output is a 1, indicating a match. If there is a mismatch between any of the bits in the

tag and the address, then at least one exclusive-OR has a 1 output, which causes the

output of the NOR gate to be 0, indicating a mismatch.

Since all tags are unique, only two situations can arise in the associative mem-

ory: there will be a match, with a 1 on the output of the match logic for one matching

tag and a 0 on the remaining match logic outputs; or there will be no match, and all of

the match logic outputs will be 0. With an associative memory holding the cache tags,

A3 A2 A1 A0

RAM cell

RAM cell

RAM cellRAM cellRAM cell

RAM cell

RAM cell

Read/write
logic

Data in
Data out

Read/
write

Bit
select

T3 A3 T2 A2 T1 A1 T0 A0

Match
logic

M

Read/write
logic

Data in
Data out

Read/
write

Bit
select

Read/write
logic

Data in
Data out

Read/
write

Bit
select

Read/write
logic

Data in
Data out

Read/
write

Bit
select

M0

M1

Match logic

Match logic

Match logic

RAM cell RAM cell

RAM cell RAM cell

RAM cell

Word
select

Word
select

1

Word
select

0

 FIGURE 12-5
Associative Memory for 4-Bit Tags

12-3 / Cache Memory 645

the outputs of the match logic drive the word lines for the data memory words to be

read. A signal must indicate whether a hit or a miss has occurred. If this signal is 1 for

a hit and 0 for a miss, then it can be generated by using the OR of the match outputs.

In the case of a hit, a 1 on Hit/miss places the word on the memory bus to the CPU;

in the case of a miss, a 0 on Hit/miss tells the main memory that it is to provide the

word addressed.

As in the case of the direct-mapped cache discussed earlier, the fully associa-

tive cache must capture the data word and its address tag and store them for future

accesses. But now a new problem arises: Where in the cache are the tag and data to

be placed? In addition to selecting a cache mapping, the cache designer must select a

replacement approach that determines the location in the cache to be used for the

incoming tag and data. One possibility is to select a random replacement location.

The 3-bit address can be read from a simple hardware structure that generates a

number which satisfies certain properties of random numbers. A somewhat more

thoughtful approach is to use a first-in, first-out (FIFO) location. In this case, the

location selected for replacement is the one that has occupied the cache for the lon-

gest time, based on the notion that the use of this oldest entry is likely to be finished.

An approach that appears to attack the replacement problem even more directly is

the least recently used (LRU) location approach. The goal of this approach is to

replace the entry that has been unused for the longest time—hence the least recently

used entry. The reason is that a cache entry that has not been used for the longest

time is least likely to be used in the future. Thus, it can be replaced by a new cache

entry. Although the LRU approach yields better results for caches, the difference

between it and the other approaches is not large, and full implementation is costly.

As a consequence, if used at all, the LRU approach is often only approximated.

There are also performance and cost issues surrounding the fully associative

cache. Although such a cache provides maximum flexibility and good performance,

it is not clear that the cost is justified. In fact, an alternative mapping that has better

performance and eliminates the cost of most of the matching logic is a compromise

between a direct-mapped cache and a fully associative cache. For such a mapping,

lower-order address bits act much as they do in direct mapping—however, for each

combination of lower-order address bits, instead of having one location, there is a set
of s locations. As with direct mapping, the tags and words are read from the cache

memory locations addressed by the lower-order address bits. For example, if the set
size s equals two, then two tags and the two accompanying data words are read

simultaneously. The tags are then simultaneously compared to the CPU-supplied

address using just two matching logic structures. If one of the tags matches the

address, then the associated word is returned to the CPU on the memory bus. If nei-

ther tag matches the address, then the two 0 matching values are used to send a miss

signal to the CPU and main memory. Since there are sets of locations, and associativ-

ity is used on sets, this technique is called set-associative mapping. Such a mapping

with a set size s is an s-way set-associative mapping.

Figure 12-6 shows a two-way set-associative cache. Eight cache locations are

arranged in four rows of two locations each. The rows are addressed by a 2-bit

index and contain tags made up of the remaining six bits of the main memory

address. The cache entry for a main memory address must lie in a specific row of

646 CHAPTER 12 / MEMORY SYSTEMS

the cache, but can be in either of the two columns. In the figure, the addresses are

the same as they are in the fully associative cache in Figure 12-4. Note that no

mapping is shown for main memory address 1111100000, since the two cache cells

in set 00 are already occupied by addresses 0000010000 and 1111110000. In order

to accommodate 1111100000, the set size would need to be at least three. This

example illustrates a case in which the reduced flexibility of a set-associative

cache, compared to a fully associative cache, has an impact. The impact declines as

the set size increases.

Figure 12-7 is a section of a hardware block diagram for the set-associative

cache of Figure 12-6. The index is used to address each row of the cache memory. The

two tags read from the tag memories are compared to the tag part of the address on

the address bus from the CPU. If a match occurs, then the three-state buffer on the

corresponding data memory output is activated, placing the data onto the data bus

to the CPU. In addition, the match signal causes the output of the Hit/miss OR gate

to become 1, indicating a hit. If a match does not occur, then Hit/miss is 0, informing

the main memory that it must supply the word to the CPU, and informing the CPU

that the word will be delayed.

Address

0000000000

0000000100

0000001000

0000001100

0000010000

0000010100

0000011000

0000011100

1111100000

1111100100

1111101000

1111101100

1111110000

1111110100

1111111000

1111111100

Data

Main memory

Tag Data

(b) Cache mapping

000001

000000

Tag Data

111111

000001

00

01

10

11

Index

Cache Cache

(a) Memory address

Tag ByteIndex
0123456789

 FIGURE 12-6
Two-Way Set-Associative Cache

12-3 / Cache Memory 647

Line Size

To this point, we have assumed that each cache entry consists of a tag and a single

memory word. In real caches, spatial locality is to be exploited, so additional words

close to the one addressed are included in the cache entry. Then, rather than a single

word being fetched from main memory when a cache miss occurs, a block of l words

called a line is fetched. The number of words in a line is a power of two, and the

words are aligned on address boundaries. For example, if four words are included in

a line, then the addresses of the words in the line differ only in bits 2 and 3. The use of

a block of words changes the makeup of the fields into which the cache divides the

address. The new field structure is shown in Figure 12-8(a). Bits 2 and 3, the Word

field, are used to address the word within the line. In this case, two bits are used, so

there are four words per line. The next field, Index, identifies the set. Here two bits

are used, so there are four sets of tags and lines. The remainder of the address word is

the Tag field, which contains the remaining four bits of the 10-bit memory address.

The resulting cache structure is shown in Figure 12-8(b). The tag memory has

eight entries, two in each of the four sets. Corresponding to each of the tag entries is a

line of four data words. To ensure fast operation, Index is applied to the tag memory to

read two tags, one for each of the set entries, simultaneously. At the same time, Index

and the Word address are applied to read out two words from the cache data memory

that correspond to the two tags. Matching logic provided for each of the two set ele-

ments compares each tag to the CPU-supplied address. If a match occurs, then the

associated cache data word already read is placed on the memory bus to the CPU.

Otherwise, a cache miss is signaled, and the word addressed is returned from main

memory to the CPU. The line containing the word and its tag is also loaded into the

cache. To facilitate loading the entire line of words, the width of the memory bus

between main memory and the cache, as well as the cache load path, is made more

than one word wide. Ideally, for our example the path is 4 * 32 = 128 bits wide. This

Tag
memory 1

Tag
memory 0

Data
memory 1

Data
memory 0

Address bus

Tag Index

Main memoryCPU

Main memory
Hit/ miss

CPU
Hit/ miss

Match logic Match logic

Data bus

 FIGURE 12-7
Partial Hardware Block Diagram for Set-Associative Cache

648 CHAPTER 12 / MEMORY SYSTEMS

allows the entire line to be placed in the cache in a single main memory read cycle. If

the path is narrower, then a sequence of several reads from main memory is required.

An additional decision that the cache designer has to make is to determine the

line size. A wide path to memory can affect both cost and performance, and a nar-

rower path can slow transfer of the line to the cache. These features encourage a

smaller cache line size, while spatial locality of reference encourages a larger line. In

current systems, however, use of synchronous DRAM facilitates reading or writing

large cache lines without the cost and performance issues associated with wide path.

The rapid writing to and reading from memory of consecutive words achieved by

using synchronous DRAM matches well the needs for transferring cache lines.

Cache Loading

Before any words and tags have been loaded into the cache, all locations contain

invalid information. If a hit occurs on the cache at this time, then the word fetched

and sent to the CPU cannot have come from main memory and is invalid. As lines

(b) Cache mapping

000000 0000

000000 0100

000000 1000

000000 1100

000001 0000

000001 0100

000001 1000

000001 1100

111110 0000

111110 0100

111110 1000

111110 1100

111111 0000

111111 0100

111111 1000

111111 1100

Main memory

Tag 0

0000

Data 0

0000

Word

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Tag 1 Data 1

0000

Word

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

1111

00

01

10

11

Index

Cache

(a) Memory address

Tag Index Word Byte
9 8 7 6 5 4 3 2 1 0

 FIGURE 12-8
Set-Associative Cache with 4-Word Lines

12-3 / Cache Memory 649

are fetched from main memory into the cache, cache entries become valid, but

there is no way to distinguish valid from invalid entries. To deal with this problem,

in addition to the tag, a bit is added to each cache entry. This valid bit indicates

that the associated cache line is valid (1) or invalid (0). It is read out of the cache

along with the tag. If the valid bit is 0, then a cache miss occurs, even if the tag

matches the address from the CPU, requiring the addressed word to be taken

from main memory.

Write Methods

We have focused so far on reading instructions and operands from the cache. What

happens when a write occurs? Recall that, up to now, the words in a cache have been

viewed simply as copies of words from main memory that are read from the cache to

provide faster access. Now that we are considering writing results, this viewpoint

changes somewhat. Following are three possible write actions from which we can

select:

1. Write the result into main memory.

2. Write the result into the cache.

3. Write the result into both main memory and the cache.

Various realistic cache write methods employ one or more of these actions. Such

methods fall into two main categories: write-through and write-back.

In write-through, the result is always written to main memory. This uses the

main memory write time and can slow down processing. The slowdown can be par-

tially avoided by using write buffering, a technique in which the address and word to

be written are stored in special registers called write buffers by the CPU so that it

can continue processing during the write to main memory. In most cache designs, the

result is also written into the cache if the word is present there—that is, if there is a

cache hit.

In the write-back method, also called copy-back, the CPU performs a write

only to the cache in the case of a cache hit. If there is a miss, the CPU performs a

write to main memory. There are two possible design choices for when a cache miss

occurs. One is to read the line containing the word to be written from main memory

into the cache, with the new word written into both the cache and main memory. This

is referred to as write-allocate. It is done with the hope that there will be additional

writes to the same block which will result in write hits and thus avoid writes to main

memory. The other choice on a write miss is simply to write to main memory. In what

follows, we will assume that write-allocate is used.

The goal of a write-back cache is to be able to write at the writing speed of

the cache whenever there is a cache hit. This avoids having all writes performed

at the slower writing speed of main memory. In addition, it reduces the number

of accesses to main memory, making it more accessible to DMA, an I/O proces-

sor, or another CPU in the system. A disadvantage of write-back is that main

memory entries corresponding to words in the cache that have been written are

invalid. Unfortunately, this can cause a problem with respect to I/O processors or

650 CHAPTER 12 / MEMORY SYSTEMS

another CPU in the system accessing the same main memory, due to “stale” data

in the memory.

The implementation of the write-back concept requires a write-back opera-

tion from the cache location to be used to store a new line being brought from

main memory on a read miss. If the location in the cache contains a word that has

been written into, then the entire line from the cache must be written back into

main memory in order to release the location for the new line. This write-back

requires additional time whenever a read miss occurs. To avoid a write-back on

every read miss, an additional bit is added to each cache entry. This bit, called the

dirty bit, is a 1 if the line in the cache has been written and a 0 if it has not been

written. Write-back must be performed only if the dirty bit is a 1. With write-

allocate used in a write-back cache, a write-back operation may also be required

on a write miss.

Many other issues affect the choice of cache design parameters, particularly in

the case of caches in a system in which the main memory may be read or written by a

device other than the CPU for which the cache is provided.

Integration of Concepts

We now put together the basic concepts we have examined to determine the block

diagram for a 256 KB, two-way set-associative cache with write-through. The mem-

ory address shown in Figure 12-9(a) contains 32 bits using byte addressing with line

size l = 16 bytes. The index contains 13 bits. Since four bits are used for addressing

words and bytes, and 13 bits are used for the index, the tag contains the remaining 15

bits of the 32-bit address. The cache contains 16,384 entries consisting of 213 = 8192

sets. Each cache entry contains 16 bytes of data, a 15-bit tag, and a valid bit. The

replacement strategy is random replacement.

Figure 12-9(b) gives the block diagram for the cache. There are two data

memories and two tag memories, since the cache is two-way set associative. Each

of these memories contains 213 = 8192 entries. Each entry in the data memory

consists of 16 bytes. Since 32-bit words are assumed, there are four words in each

data memory entry. Thus, each of the data memories consists of four 8192 * 32

memories in parallel with the index as their common address. In order to read a

single word from these four memories on a cache hit, a 4-to-1 selector using

three-state memory outputs selects the word, based on the two bits in the Word

field of the address. The two tag memories are 8192 * 15—in addition to them, a

valid bit is associated with each cache entry. These bits are stored in an 8192 * 2

memory and read out during a cache access with the data and tags. Note that the

path between the cache and main memory is 128 bits wide. This allows us to

assume that an entire cache line can be read from main memory in a single main

memory cycle. To understand the elements of the cache and how they work

together, we will look at three possible cases of reading and writing. For each

of these cases, we assume that the address from the CPU is 0F3F402416. This

gives Tag = 0000111100111112 = 079F16, Index = 10100000000102 = 140216, and

Word = 012.

12-3 / Cache Memory 651

First we assume a read hit—a read operation in which the data word lies in a

cache entry, as in Figure 12-10. The cache uses the Index field to read out two tag

entries from location 140216 in Tag memory 1 and Tag memory 0. The match logic

compares the tags of the entries, and in this case we assume that Tag 0 matches, caus-

ing Match 0 to be 1. This does not necessarily mean that we have a hit, since the cache

entry may be invalid. Thus, the Valid 0 from location 140216 bit is ANDed with Match

0. Also, the data can be placed on the CPU data bus only if the operation is a read.

Thus, Read is ANDed with the Match 0 bit and the Valid 0 bit to form the control

signal for three-state buffer 0. In this case, the control signal for the buffer 0 is 1. The

data memories have used the Index field to read out eight words from location

140216 at the same times the tags were read. The Word field selects the two of the

eight words with word = 012 to place on the data buses going into the three-state

buffers 1 and 0. Finally, with three-state buffer 0 turned on, the word addressed is

placed on the CPU data bus. Also, the Hit/miss signal sends a 1 to the CPU and the

main memory, notifying them of the hit.

In the second case, also shown in Figure 12-10, we assume a read miss—a read

operation in which the data word is not in a cache entry. As before, the Index field

Cache
control

Match logicMatch logic

Hit/miss

Read
Write

Match 1 Match 0

Read

CPU data bus

15

13

128

32

2

128

32

32

1 0 2 3

Tag
memory 1

Tag
memory 0

Hit/miss

Data
memory 1

Data
memory 0

Address bus

Read on
miss

4-to-1
MUX

Main
memory

Main
memory

Write

Word

Cache data bus
Tag

CPU

Index

Valid bits 1
Valid bits 0

(a) Memory address

Tag Index Byte

31 17 4 3 2 1 0

Word

16

(b) Cache diagram

 FIGURE 12-9
Detailed Block Diagram for 256K Cache

652 CHAPTER 12 / MEMORY SYSTEMS

address reads out the tag and valid entries, two tag comparisons are made, and two

valid bits are checked. For both entries, a miss has occurred and is signaled by

Hit/miss at 0. This means that the word must be fetched from main memory.

Accordingly, the cache control selects the cache entry to be replaced, and four words

read from main memory are applied simultaneously by the memory data bus to the

cache inputs and are written into the cache entry. At the same time, the 4-to-1 multi-

plexer selects the word addressed by the Word field and places it on the CPU data

bus using the three-state buffer 3.

In the third case in Figure 12-10, we assume a write operation. The word from the

CPU is fanned out to appear in all four of the word positions of the 128-bit memory

data bus. The address to which the word is to be written is provided by the address bus

to main memory for the write operation into the addressed word only. If the address

causes a hit on the cache, the word addressed is also written into the cache.

Instruction and Data Caches

In most of the designs in previous chapters, we assumed that it was possible to fetch

an instruction and to read an operand or write a result in the same clock cycle. To do

this, however, we need a cache that can provide access to two distinct addresses in a

single clock cycle. In response to this need, we discussed in a prior subsection an

instruction cache and a data cache. In addition to easily providing multiple accesses

per clock, the use of two caches permits caches that have different design parame-

ters. The design parameters for each cache can be selected to fit the different charac-

teristics of access for fetching instructions or reading and writing data. Because the

Cache
control

Match logic Match logic

Data
memory 0

Data
memory 1

Hit/
miss Hit/miss

Read
Write

Match 1 Match 0

Read

CPU data bus

15

13

128

32

2

128

32

32

1 0 2 3

Tag
memory 0

Tag
memory 1

Address bus

Read on
miss

4-to-1
MUX

Main
memory

Write

Word

Memory data busTag

CPU

Index

Valid bits 1
Valid bits 0

Write

Read hit
Read miss

Write

Read miss

 FIGURE 12-10
256K Cache: Read and Write Operations

12-4 / Virtual Memory 653

 demands on each of these caches are typically less than those on a single cache, a

simpler design can be used. For example, a single cache may require a four-way

set-association structure, whereas an instruction cache needs only direct mapping,

and a data cache may need only a two-way set-associative structure.

In other instances, a single cache for both instructions and data may be used.

Such a unified cache is typically as large as the instruction and data caches combined.

The unified cache allows cache entries to be shared by instructions and data freely.

Thus, at one time more entries can be occupied by instructions, and at another time

more entries can be occupied by data. This flexibility has the potential for increasing

the number of cache hits. This higher hit rate may be misleading, however, since the

unified cache supports only one access at a time, and separate caches support two

simultaneous accesses as long as one is for instructions and one is for data.

Multiple-Level Caches

It is possible to extend the depth of the memory hierarchy by adding additional lev-

els of cache. Two levels of cache, often referred to as L1 and L2, with L1 closest to the

CPU, are often used. In order to satisfy the demand of the CPU for instruction and

operands, a very fast L1 cache is needed. To achieve the necessary speed, the delay

that occurs when crossing IC boundaries is intolerable. Thus, the L1 cache is placed

in the processor IC together with the CPU and is referred to as the internal cache, as

in the generic computer processor. If the area in the IC is limited, L1 cache is typi-

cally small and not fully adequate as the only cache. Thus, a larger L2 cache is added

outside the processor IC. If more space is available in the IC, then the L2 cache can

also be an internal cache.

The design of a two-level cache is more complex than that of a single-level

cache. Two sets of parameters are specified. The L1 cache can be designed to specific

CPU access needs including the possibility of separate instruction and data caches.

Also, the constraint of external pins between the CPU and L1 cache is removed. In

addition to permitting faster reads, the path between the CPU and the L1 cache can

be quite wide, allowing, for example, multiple instructions to be fetched simultane-

ously. On the other hand, the L2 cache may occupy the typical external cache envi-

ronment. It differs, however, from the typical external cache in that, rather than

providing instructions and operands to a CPU, it primarily provides instructions and

operands to the first-level cache L1. Since the L2 cache is accessed only on L1 misses,

the access pattern is considerably different than that for a CPU, and the design

parameters are accordingly different.

12-4 VIRTUAL MEMORY

In our quest for a large, fast memory, we have achieved the appearance of a fast,

medium-sized memory through the use of a cache. In order to have the appearance

of a large memory, we now explore the relationship between main memory and hard

drive. Because of the complexity of managing transfers between these two media,

the control of such transfers involves the use of data structures and programs. Ini-

tially, we will discuss the most basic data structure used and the necessary hardware

654 CHAPTER 12 / MEMORY SYSTEMS

and software actions. Then we will deal with special hardware used to implement

time-critical hardware actions.

With respect to large memory, not only do we want the entire virtual address

space to appear to be main memory, but in most cases we would also like this com-

plete space to appear to be available to each program that is executing. Thus, each

program will “see” a memory the size of the virtual address space. Equally important

to the programmer is the fact that real address space in main memory and real drive

addresses are replaced by a single address space that has no restrictions on its use.

With this arrangement, virtual memory can be used not only to provide the appear-

ance of large main memory, but also to free up the programmer from having to con-

sider the actual locations of the program and data in main memory and on the hard

drive. The job of the software and hardware that implement virtual memory is to

map each virtual address for each program into a physical address in the main mem-

ory. In addition, with a virtual address space for each program, it is possible for a

virtual address from one program and a virtual address from another program to

map to the same physical address. This allows code and data to be shared by multiple

programs, thereby reducing the size of the main memory space and drive space

required.

To permit the software to map virtual addresses to physical addresses, and to

facilitate the transfer of information between main memory and hard drive, the

virtual address space is divided into blocks of addresses, typically of a fixed size.

These blocks, called pages, are larger than, but analogous to, lines in a cache. The

physical address space in memory is divided into blocks called page frames that

are the same size as the pages. When a page is present in the physical address

space, it occupies a page frame. For purposes of illustration, we assume that a

page consists of 4 KB (1K words of 32 bits). Further, we assume that there are 32

address bits in the virtual address space. There are 220 pages, maximum, in the vir-

tual address space, and assuming a main memory of 16 MB, there are 212 page

frames in main memory. Figure 12-11 shows the fields of virtual and physical

addresses. The portion of the virtual address used to address words or bytes within

a page is the page offset, which is the only part of the address that the virtual and

physical addresses share. Note that words are assumed to be aligned in terms of

their location with respect to their byte addresses such that each word address

ends in binary 00. Likewise, pages are assumed to be aligned with respect to the

byte addresses, such that the page offset of the first byte in the page is 00016 and

that of the last byte in the page is FFF16. The 20-bit portion of the virtual address

used to select pages from the virtual address space is the virtual page number. The

12-bit portion of the physical address used to select pages in main memory is the

page frame number. The figure shows a hypothetical mapping from the virtual

address space into the physical address space. The virtual and physical page num-

bers are given in hexadecimal. A virtual page can be mapped to any physical page

frame. Six mappings of pages from virtual memory to physical memory are shown.

These pages constitute a total of 24 KB. Note that no virtual pages are mapped to

physical page frames FFC and FFE. Thus, any data present in these pages is

invalid.

12-4 / Virtual Memory 655

Page Tables

In general, there may be a very large number of virtual pages, each of which must be

mapped to either main memory or hard drive. The mappings are stored in a data

structure called a page table. There are many ways to structure page tables and access

them; we assume that page tables themselves are also kept in pages. Assuming that

the representation of each mapping requires one word, 210, or 1K, mappings can be

contained in a 4 KB page. Thus, the mappings for the entire address space for a

 program of 222 bytes (4 MB) can be contained in one 4 KB page. A special table for

each program called a directory page provides the mappings used to locate the 4 KB

program page tables.

00000

00001

00002

00003

00004

00005

FFFFA

FFFFB

FFFFC

FFFFD

FFFFE

FFFFF

Virtual page

Main memory

Virtual address

Physical address

Virtual page number Page offset

Physical page
frame number Page offset

000

001

002

003

FFC

FFD

FFE

FFF

31 12 11 0

23 12 11 0

Physical page frame

 FIGURE 12-11
Virtual and Physical Address Fields and Mapping

656 CHAPTER 12 / MEMORY SYSTEMS

A sample format for a page table entry is given in Figure 12-12. Twelve bits are

used for the page frame number in which the page is located in main memory. In

addition, there are three single-bit fields: Valid, Dirty, and Used. If Valid is 1, then the

page frame in memory is valid; if Valid is 0, the page frame in memory is invalid,

meaning that it does not correspond to correct code or data. If Dirty is 1, then there

has been a write to at least one byte in the page since it was placed in main memory.

If Dirty is 0, there have been no writes to the page since it entered main memory.

Note that the Valid and Dirty bits correspond exactly to those in a cache which uses

write-back. When it is necessary for a page to be removed from main memory and

the Dirty bit is 1, then the page is copied back to the hard drive. If the Dirty bit is 0,

indicating that the page in main memory has not been written into, then the page

coming into the same page frame is simply written over the present page. This can be

done because the drive version of the present page is still correct. In order to use this

feature, the software keeps a record of the location of the page on the drive else-

where when it places the page in main memory. The Used bit is a simple mechanism

for implementing a crude approximation to an LRU replacement scheme. Some

additional bit positions in a page entry may be reserved for flags used by the com-

puter operating system. For example, a few flags might represent the read and write

protection status of a page and whether the page can be accessed in user mode or

supervisor mode.

The page table structure we have just described is shown in Figure 12-13. The

directory page pointer is a register that points to the location of the directory page in

main memory. The directory page contains the locations of up to 1K page tables

associated with the program that is executing. These page tables may be in main

memory or on the hard drive. The page table to be accessed is derived from the most

significant ten bits of the virtual page number, which we call the directory offset.
Assuming that the page table selected is in main memory, it can be accessed by the

page table page number. The least significant ten bits of the virtual page number,

which we call the page table offset, can be used to access the entry for the page to be

accessed. If the page is in main memory, the page offset is used to locate the physical

location of the byte or word to be accessed. If either the page table or the desired

page is not in main memory, it must first be fetched by software from the hard drive

to main memory before the word within it is accessed. Note that combining the off-

sets with register or table entries is done by simply setting the offset to the right of

the page frame number, rather than adding the two together. This approach requires

no delay, whereas addition would cause significant delay.

Validity bit

Dirty bit

Used bit

Physical page frame number

 FIGURE 12-12
Format for Page Table Entries

12-4 / Virtual Memory 657

Translation Lookaside Buffer

From the preceding discussion, we note that virtual memory has a considerable per-

formance penalty even in the best case, when the directory, the page table, and the

page to be accessed are in main memory. For our assumed page table approach, three

successive accesses to main memory occur in order to fetch a single operand or

instruction:

1. Access for the directory entry.

2. Access for the page table entry.

3. Access for the operand or instruction.

Note that these accesses are performed automatically by hardware that is part of the

MMU in the generic computer. Thus, to make virtual memory feasible, we need to dras-

tically reduce accesses to main memory. If we have a cache, and if all of the entries are in

the cache, then the time for each access is reduced. Nevertheless, three accesses to the

cache are needed. To reduce the number of accesses, we will employ yet another cache

for the purpose of translating the virtual address directly into a physical address. This

new cache is called a translation lookaside buffer (TLB). It holds the locations of

PagesDirectory

Page
table
page
number

Physical
page
number

Page offset
Page table offsetDirectory offset

Virtual page number

Directory page pointer

Page table

31 22 21 12 11 0

 FIGURE 12-13
Example of Page Table Structure

658 CHAPTER 12 / MEMORY SYSTEMS

recently addressed pages to speed access to cache or main memory. Figure 12-14 gives

an example of a TLB, which is typically fully associative or set associative, since it is nec-

essary to compare the virtual page number from the CPU with a number of virtual page

number tags. In addition to the latter, a cache entry includes the physical page number

for those pages in main memory and a Valid bit. If the page is in main memory, the Dirty

bit also appears. The Dirty bit serves the same function for a page in main memory as

discussed previously for a line in a cache.

We now briefly look at a memory access using the TLB in Figure 12-14. The vir-

tual page number is applied to the page number input to the cache. Within the cache,

this page number is compared simultaneously with all of the virtual page number tags.

If a match occurs and the Valid bit is a 1, then a TLB hit has occurred, and the physical

page frame number appears on the page number output of the cache. This operation

can be performed very quickly and produces the physical address required to access

memory or a cache. On the other hand, if there is a TLB miss, then it is necessary to

access main memory for the directory table entry and the page table entry. If there is a

physical page in main memory, then the page table entry is brought into the TLB cache

and replaces one of the entries there. Overall, three memory accesses are required,

including the one for the operand. If the physical page does not exist in main memory,

then a page fault occurs. In this case, a software-implemented action fetches the page

Virtual Address from CPU

Virtual page number Page offset

Page number input

Valid bit Fully associative or set-associative cache

Dirty bit
Tag Data

Virtual page number Physical page frame number

Page frame number output

Page frame number Page offset

Physical address to main memory

 FIGURE 12-14
Example of Translation Lookaside Buffer

12-5 / Chapter Summary 659

from its hard drive location to main memory. During the time required to complete

this action, the CPU may execute a different program rather than waiting until the

page has been placed in main memory.

Noting the prior hierarchy of actions based on the presentation of a virtual

address, we see that the effectiveness of virtual memory depends on temporal and

spatial locality. The fastest response is possible when the virtual page number is pres-

ent in the TLB. If the hardware is fast enough and a hit also occurs on the cache, the

operand can be available in as little as one or two CPU clock cycles. Such an event is

likely to happen frequently if the same virtual pages tend to get accessed over time.

Because of the size of the pages, if one operand is accessed from a page, then, due to

spatial locality, it is likely that another operand will be accessed on the same page.

With the limited capacity of the TLB, the next fastest action requires three accesses

to main memory and slows processing considerably. In the worst of all situations, the

page table and the page to be accessed are not in main memory. Then, lengthy trans-

fers of two pages—the page table and the page from hard drive—are required.

Note that the basic hardware for implementing virtual memory, the TLB, and

other optional features for memory access are included in the MMU in the generic

computer. Among the other features is hardware support for an additional layer of

virtual addressing called segmentation and for protection mechanisms to permit

appropriate isolation and sharing of programs and data.

Virtual Memory and Cache

Although we have considered the cache and virtual memory separately, in an actual

system they are both very likely to be present. In that case, the virtual address is con-

verted to the physical address, and then the physical address is applied to the cache.

Assuming that the TLB takes one clock cycle and the cache takes one clock cycle, in

the best of cases fetching an instruction or operand requires two CPU clock cycles. As

a consequence, in many pipelined CPU designs, two or more clock cycles are allowed

for an operand fetch. Since instruction fetch addresses are more predictable, it is possi-

ble to modify the CPU pipeline and consider the TLB and cache to be a two-stage

pipeline segment, so that an instruction fetch appears to require only one clock cycle.

12-5 CHAPTER SUMMARY

In this chapter, we examined the components of a memory hierarchy. Two concepts

fundamental to the hierarchy are cache memory and virtual memory.

Based on the concept of locality of reference, a cache is a small, fast memory that

holds the operands and instructions most likely to be used by the CPU. Typically, a cache

gives the appearance of a memory the size of main memory with a speed close to that of

the cache. A cache operates by matching the tag portion of the CPU address with the

tag portions of the addresses of the data in the cache. If a match occurs and other spe-

cific conditions are satisfied, a cache hit occurs, and the data can be obtained from the

cache. If a cache miss occurs, the data must be obtained from the slower main memory.

The cache designer must determine the values of a number of parameters, including the

mapping of main memory addresses to cache addresses, the selection of the line of

the cache to be replaced when a new line is added, the size of the cache, the size of the

660 CHAPTER 12 / MEMORY SYSTEMS

cache line, and the method for performing memory writes. There may be more than one

cache in a memory hierarchy, and instructions and data may have separate caches.

Virtual memory is used to give the appearance of a large memory—much larger

than the main memory—at a speed that is, on average, close to that of the main memory.

Most of the virtual address space is actually on the hard drive. To facilitate the move-

ment of information between the memory and the hard drive, both are divided up in

fixed-size address blocks called page frames and pages, respectively. When a page is

placed in main memory, its virtual address must be translated to a physical address. The

translation is done using one or more page tables. In order to perform the translation on

each memory access without a severe performance penalty, special hardware is

employed. This hardware, called a translation lookaside buffer (TLB), is a special cache

that is a part of the memory management unit (MMU) of the computer.

Together with main memory, the cache and the TLB give the illusion of a large, fast

memory that is, in fact, a hierarchy of memories of different capacities, speeds, and tech-

nologies, with hardware and software performing automatic transfers between levels.

REFERENCES

1. Baron, R. J. and L. Higbie. Computer Architecture. Reading, MA: Addison-

Wesley, 1992.

2. Handy, J. Cache Memory Book. San Diego: Academic Press, 1993.

3. Hennessy, J. L. and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 5th ed. Amsterdam: Elsevier, 2011.

4. Mano, M. M. Computer Engineering: Hardware Design. Englewood Cliffs, NJ:

Prentice Hall, 1988.

5. Mano, M. M. Computer System Architecture, 3rd ed. Englewood Cliffs, NJ:

Prentice Hall, 1993.

6. Messmer, H. P. The Indispensable PC Hardware Book, 2nd ed. Wokingham,

U.K.: Addison-Wesley, 1995.

7. Patterson, D. A. and J. L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface, 5th ed. Amsterdam: Elsevier, 2013.

8. Wyant, G. and T. Hammerstrom. How Microprocessors Work. Emeryville, CA:

Ziff-Davis Press, 1994.

PROBLEMS

The plus (+) indicates a more advanced problem and the asterisk (*) indicates that

a solution is available on the Companion Website for the text.

 12-1. A CPU produces the following sequence of read addresses in hexadecimal:

54, 58, 104, 5C, 108, 60, F0, 64, 54, 58, 10C, 5C, 110, 60, F0, 64.

Supposing that the cache is empty to begin with, and assuming an LRU

replacement, determine whether each address produces a hit or a miss for

each of the following caches: (a) direct mapped in Figure 12-3, (b) fully asso-

ciative in Figure 12-4, and (c) two-way set associative in Figure 12-6.

 12-2. Repeat Problem 12-1 for the following sequence of read addresses: 0, 4, 12, 8,

14, 1C, 1A, 28, 26, 2E, 36, 30, 3E 38, 46, 40, 4E, 48, 56, 50, 5E, 58.

 12-3. *A computer has a 32-bit address and a direct-mapped cache. Addressing is

to the byte level. The cache has a capacity of 1 KB and uses lines that are 32

bytes. It uses write-through and so does not require a dirty bit.

(a) How many bits are in the index for the cache?

(b) How many bits are in the tag for the cache?

(c) What is the total number of bits of storage in the cache, including the valid

bits, the tags, and the cache lines?

 12-4. A cache memory system, which contains 32-bit data, uses direct mapping

and has the following specifications:

There are 512 words (32 bits) in main memory, which are to be mapped to any

of the 64-word locations in a cache. This assumes that a cache block, i.e., cache

line has 4 bytes (words) only.

(a) In which location will the 0th word in main memory be mapped to?

(b) Which other words from main memory will be mapped to the same cache

location?

(c) Explain the meaning of the following statement: “At any time, the cache

contains only a copy of a portion of the main memory.”

 12-5. *Discuss the advantages and disadvantages of:

(a) instruction and data caches versus a unified cache for both.

(b) write-back cache versus a write-through cache.

 12-6. Give an example of a sequence of program and data memory read addresses

that will have a high hit rate for separate instruction and data caches and a

low hit rate for a unified cache. Assume direct-mapped caches with the

parameters in Figure 12-3. Both the instructions and data are 32-bit words,

and the address resolution is to bytes.

 12-7. *Give an example of a sequence of program and data memory read addresses

that will have a high hit rate for a unified cache and a low hit rate for separate

instruction and data caches. Assume that each of the instruction and data

caches is two-way set associative with parameters as in Figure 12-6. Assume

that the unified cache is four-way set associative with parameters as in

Figure 12-6. Both the instructions and the data are 32-bit words, and the

address resolution is to bytes.

 12-8. Differentiate between “write back” and “write through”, which are the write

policies used in cache systems.

 12-9. Consider the following case of a system with 2048 cache lines and 8192 main

memory blocks. Find where in the cache will the main memory blocks MMB-

19 and MMB-5031 be placed for the mapping policies of:

(a) direct mapping,

(b) fully associative mapping,

(c) 4-way set associative.

Problems 661

662 CHAPTER 12 / MEMORY SYSTEMS

 12-10. (a) Find the size of the tag, index, and offset for the two types of caches

specified below.

 (1) 16KB of data in a direct-mapped cache with 4-word blocks

 (2) 16KB of data in a 2-way set associative cache with 4-word blocks.

 (b) Why is fully associative mapping” never used?

 (c) Draw diagrams to compare one-way associativity, 2-way associativity, and

4-way associativity.

 12-11. *A cache memory has an access time from the CPU of 4 ns, and the main

memory has an access time from the CPU of 40 ns. What is the effective

access time for the cache–main memory hierarchy if the hit ratio is: (a) 0.91,

(b) 0.82, and (c) 0.96?

 12-12. Repeat Problem 12-11 if the cache access time from the CPU is 1 ns and the

main memory has an access time from the CPU of 20 ns.

 12-13. Redesign the cache in Figure 12-7 so that it is the same size, but is four-way set

associative rather than two-way set associative.

 12-14. +The cache in Figure 12-9 is to be redesigned to use write-back with write-

allocate rather than write-through. Respond to the following requests,

making sure to deal with all of the address and data issues involved in the

write-back operation.

(a) Draw the new block diagram.

(b) Explain the sequence of actions you propose for a write miss and for a

read miss.

 12-15. *A virtual memory system uses 4 KB pages, 64-bit words, and a 48-bit virtual

address. A particular program and its data require 4263 pages.

(a) What is the minimum number of page tables required?

(b) What is the minimum number of entries required in the directory page?

(c) Based on your answers to (a) and (b), how many entries are there in the

last page table?

 12-16. The figure below shows the format of a 32-bit address of a paged memory system.

31 22 21 12 11 0

DIR Page Offset

Calculate the amount of physical memory addressable with this paging system.

 12-17. The figure below gives a conceptual view of the TLB. Answer the below

questions regarding the necessity and functioning of TLBs.

Linear address (X) Physical address (Y)

X1 Y1

X2 Y2

X3 Y3

.

.

(a) Explain how this conceptual description matches an actual TLB

description.

(b) Why is a TLB necessary in a paged memory system?

(c) What is meant by a TLB miss?

(d) For a generic computer, is the TLB realized in hardware or software?

 12-18. (a) A TLB has a hit rate of 95 percent, and the TLB miss penalty T MISS = 150

cycles. On a TLB hit, the time for address translation is THIT = 0. What is

the average time for address translation?

 (b) What do the bits Dirty and Used indicate?

 (c) Page tables are stored in main memory and occupy space. How much is

the size of the page table of a 32-bit computer with 4K page size?

 12-19. Consider a system with 85 percent hit ratio, 60 ns to search in TLB, and 800 ns

to access main memory. Find the time to access a page and read a desired

word from the page for the following situations:

(a) When the page is found in the TLB.

(b) When there is a TLB miss.

(c) The average memory access time.

 12-20. *In caches, we use both write-through and write-back as potential writing

approaches. But for virtual memory, only an approach that resembles write-

back is used. Give a sound explanation of why this is so.

 12-21. In modern processors, there are many levels of caches. Make a study of cache

structures and describe the multi-level cache structure in a typical processor

used in desktop/laptop computers.

Problems 663

664

A
Abstraction layers in computer

design, 28–31
Addressing modes:

direct, 512–513
immediate mode, 511–512
implied mode, 511
indexed, 515–516
indirect, 513–514
register and register-indirect

modes, 512
relative, 514–515
summary of, 516–517
symbolic convention for, 516
techniques, 510–511

Advanced Micro Devices (AMD),
594

Algorithmic modeling, 107
Algorithms, 29
Alphanumeric codes:

ASCII character code, 42–45
parity bit, 45

Analog output devices, 24
Analog signal, 20
Analog-to-digital (A/D) converter,

24
AND gate, 56–57
AND microoperations, 351–352
AND operation, 66–67
Arithmetic functions, See also

Hardware description
languages (HDLs)

binary adders, 173–176
binary adder-subtractors,

181–193
binary subtraction, 177–181
contraction, 194–198
decrementing, 196
division by constants, 198
multiplication by constants,

196–198
sign extension, 198–199
zero fill, 198–199

Arithmetic microoperations, 349–351
Arithmetic operations:

Binary:
multiplication, 37
subtraction, 37
sum, 36–37

conversion:
of decimal fractions to

binary, 40

of decimal fractions to
octal, 40

of decimal integers to binary,
39

of decimal integers to octal,
39

from decimal to other bases,
39–40

with octal, hexadecimal, 37–38
Array of cells, 172
ASCII character code, 42–45

for error detection and
correction, 45–46

Asynchronous circuit, 286–287
Asynchronous reset, 293
Automatic braking system

(ABS), 26

B
Barrel shifter, 460–461
Big-endian, 345
Binary adders, 173–176

binary ripple carry adder,
175–176

4-bit adder, 176
4-bit ripple carry adder, 176
full adder, 173–175
half adder, 173–174

Binary adder-subtractors, 181–193
behavioral-level description,

190–191
electronic scale feature

(example), 186
4-bit adder–subtractor circuit,

182
HDL models, 188–193
overflow, 186–188
signed binary addition and

subtraction, 184–186
using 2s complement,

185–186
signed binary numbers, 182–184

Binary logic system, 54
Binary number, 24
Binary number system, 33–34
Binary reflected Gray code, 47
Binary ripple carry adder, 175–176
Binary subtraction, 177–181

complements, 178–180
of N, 179
1s complement subtract, 179
radix complement, 178

2s complement subtract, 178,
180–181

Binary-coded decimal (BCD),
41–42, 48

counters, 367–368
Boole, George, 54
Boolean algebra, 54, 61–71

algebraic manipulation, 67–70
basic identities of, 65–67
Boolean expression:

defined, 61
of 3-variable exclusive-

OR, 95
Verilog dataflow model

using, 164–165
Boolean function, 244, 331

algebraic expression for, 63
defined, 62
driver’s power window in a

car, 62–65
in equivalent Verilog and

VHDL models, 64
for full adder, 175
implementation with gates,

68
on a K-map, 80
in logic circuit diagrams, 63
multiple-output, 62
single-output, 62
in truth table, 65
two-level circuit

optimization, 77
complement of a function,

70–71, 74
by using duals, 71

consensus theorem, 69–70
dataflow descriptions, 106
DeMorgan’s theorem, 66–67,

70–71
duality principle of, 69
literals, 68–69
minterms and maxterms, 71–75
product of sums, 76–77
product terms, 71
sum-of-products form, 75–76
sum terms, 71

Boolean functions, 57
Branch on less than or equal to

(BLE) instruction,
587–588

Branch predictors, 590
Break code, 603

Index

Index 665

Burst reads, 442
Busy-wait loop, 621
Byte, 420

C
Cache memory, 640–653

data cache, 652–653
direct mapping for, 642
fully associative mapping,

642–643
instruction cache, 652–653
least recently used (LRU)

location, 645
line size, 647–648
loading, 648–649
mappings, 642–647
multiple-level caches, 653
random replacement location,

645
read and write operations,

649–650, 652
set-associative cache, 650–652
s-way set-associative mapping,

645–646
unified cache, 653
virtual memory and, 659
write-allocate, 649
write-back, 649–650

Central processing unit (CPU), 22,
424, 650–652

advanced, 589–592
bus and interface unit, 609–610
graphics processing units

(GPUs), 594–595
superpipelined, 590
superscalar, 590

Clock gating, 225
Clock skew, 225
Combinational logic circuits:

binary logic, 54–56
Boolean algebra, 61–71
defined, 65
exclusive-OR (XOR) operator

and gates, 94–96
gate propagation delay, 96–98
HDL representations of gates,

60–61
HDLs, 98–101

Verilog, 110–117
VHDL, 102–110

high-impedance outputs,
377–379

logic gates, 56–60
map manipulation, 87–93
standard forms, 71–77
two-level circuit optimization,

77–92
verilog primitives, 60–61

Combinational logic design:
arithmetic functions in, 193–199
binary adders, 173–176
binary adder-subtractors,

181–193
binary subtraction, 177–181
blocks, 130

combinational functional
blocks, 138

decoding, 144–152
enabling, 142–144
encoding, 153–156
formulation, 131
4-bit equality comparator, 131
functional blocks, 134, 138
hierarchical design, 130–134
inverting, 139–140
iterative combinational circuits,

171–173
medium-scale integrated (MSI)

circuits, 134
multiple-bit functions, 139–142
optimization, 132–134
rudimentary logic functions,

138–144
selecting, 156–171
specification, 131
technology mapping, 134–138
transferring, 139–140
value-fixing, 139–140

Complement operation, 54
Complex instruction set computers

(CISCs), 517–518,
577–588

BLE instruction, 587–588
combined CISC–RISC

organization, 578
Constant unit, 580
control unit modifications,

582–583
datapath modifications,

580–581
ISA, 578–580
LII instruction, 586–587
microprogrammed control,

583–585
microprograms for complex

instructions, 585–586
MMB instruction, 588
Register address logic, 580

Compound devices, 618
Computer architecture:

addressing modes:
direct, 512–513
immediate mode, 511–512
implied mode, 511
indexed, 515–516
indirect, 513–514
register and register-indirect

modes, 512
relative, 514–515
summary of, 516–517
symbolic convention for, 516
techniques, 510–511

assembly language, 501–502
basic operation cycle, 503
condition codes, 504
design trade-offs, 502
floating-point computations,

525–530
arithmetic operations with,

526–527

biased exponents, 527–528
binary number, 525–526
decimal point in, 525
standard operand format,

528–530
implementation of, 502
instruction of a program,

sequence of steps, 503
instruction set architecture

(ISA), 502, 517–518
AND instruction, 523
arithmetic instructions,

521–522
bit set instruction, 523
CISC and RISC, 517–518
data-manipulation, 518,

521–525
data-transfer, 518–519
input and output (I/O)

instructions, 520–521
logical and bit-manipulation

instructions, 522–524
OR instruction, 523
shift instructions, 524–525
stack instructions, 518–520
XOR instruction, 523–524

machine language, 501
operand addressing, 504–510

memory-to-memory,
507–508

register-memory, 508
register-to-register, 508
single-accumulator, 508–509
stack, 509

processor status register (PSR),
503

program control instructions,
530–535

program counter (PC), 503
program interrupt, 535–538
register set, 503–504
stack pointer (SP), 503
typical fields:

address, 502
mode, 502
opcode, 502

Computer-aided design (CAD)
tools, 98

Computer design, abstraction layers
in, 28–31

Computer design basics:
control unit, 450–453
control word, 463–469
datapath, 461–463

with control variables,
464–465

control word for, 465–466
register file, 461
sets of select inputs, 462–463

multiple-cycle hardwired
control unit, 483–492

simple computer architecture,
469

address offset, 473
arithmetic logic unit (ALU)

666 Index

Computer design basics (continued)
arithmetic circuit, 453–456
circuit, 458
function table for, 457
logic circuit, 456–457

assembler, 473
datapath, 450–453
immediate operand, 472
Increment Register

operation, 471
instruction formats, 471–473
instruction set architecture

(ISA), 450, 469–470
instruction specifications,

473–476
memory location, 474
memory representation of

instructions and data,
475

mnemonic, 473
operation code of an

instruction, 471–472
register transfer notation,

473
shifter, 459–461
barrel, 460–461
storage resources for, 470

single-cycle hardwired control
unit, 476–483

“Add Immediate” (ADI)
instruction, 479–481

computer timing and control,
482–483

instruction decoder,
477–479

sample instructions and
program, 479–482

Computer input–output (I/O),
601–602

handshaking, 611, 613–614
interfaces, 608–614

bus and interface unit,
609–610

in CPU-to-interface
communication, 611

parallel ATA (PATA)
interface, 614

ports, 610
registers, 610
serial ATA (SATA)

interface, 614
I/O transfer rates, 608
isolated I/O configuration, 610
memory-mapped, 610
strobing, 611–612

Computer peripherals:
hard drive, 603–605
keyboard, 602–603
Liquid Crystal Display (LCD)

screen, 605–608
Concatenation operator, 191
Contraction, 194–195

contraction cases for cells, 196
defined, 194
of full-adder equations, 194
rules for contracting equations,

194–195
Control address register (CAR),

404–405

Control data register (CDR),
404–405

Controller time, 604
Core i7 Microprocessors, 593
Counters:

binary-coded decimal (BCD),
367–368

count sequence for, 368–369
D flip-flop input equations, 368
divide-by-N counter, 367
logic diagram of, 369
program (PC), 384
state table and flip-flop inputs

for, 369
synchronous binary, 363–367
Verilog-based, 403–404
VHDL-based, 401–402

Counting order, 242
Cross-hatching, 549

D
D latch, 220, 222
DashWatch (example), 385–392

block diagram of datapath, 389
components, 389–391

BCD counter, 389
control-unit hardware,

391–392
multiplexer, 391
parallel load register, 391

external control input and
output signals, 386–387

separation of datapath from
control, 388

state machine diagram, 386–388
stopwatch inputs, 385

Data speculation, 591
Data transfer modes, 620–623

interrupt-initiated transfer,
622–623

nonvectored interrupt, 623
vectored interrupt, 623

program-controlled transfer,
621–622

Datapath, 450–453, 461–463, 485–486
block diagram of, 389
with control variables, 464–465
control word for, 465–466
control-word information for,

486
microoperations and, 466
PIG, handheld game (example),

393, 396–399
pipelined, 548–553
register file, 461
separation from control, 388
sets of select inputs, 462–463
timing, 549

Decimal codes, 41–42
Decimal number system, 31–33
Decoders:

AND gate inputs, 145
based combinational circuits,

151–152
BCD–to–seven-segment,

169–171, 173
with enabling, 148–149
general nature of, 144
n–to–m-line decoders, 144

1–to–2-line decoder, 145
and OR-gate implementation

of a binary adder bit,
151

6–to–64-line decoder, 146–148
state diagram for BCD– to–

excess-3 decoder,
239–241

3–to–8-line decoder, 145–146
2–to–4-line decoder, 145

Decoding, 144–152
Decrementing, 196
DeMorgan’s theorem, 66–67, 70–71
Demultiplexer, 148
Design space:

CMOS circuit technology,
312–318

channel, 313
circuit die, 313
complex gates, 316
drain, 313
fully complementary,

316–318
gallium arsenide (GaAs),

312
gate structure and examples,

317
NAND gate, 316
NOR gate, 316
silicon germanium (SiGe),

312
SOI (silicon on insulator)

technology, 312
source, 313
static, 316
switch circuit, 315–316
technology parameters,

318–320
transistor models, 313–315

defined, 311
integrated circuits, 311–312
programmable implementation

technologies, 320–334
Destructive read, 436
Device Under Test (DUT), 100, 109
D flip-flops, 225, 228

CMOS, 292
designing with, 243–246
input equations for, 247

Digital computer, 22
Digital design process, 30–31

formulation stage, 30
optimization stage, 30–31
specification stage, 30
technology mapping stage, 31
verification stage, 30–31

Digital logic gates, 56–57
Digital output devices, 24
Digital signal, 20
Digital signal processors (DSPs), 23
Digital systems:

digital computer, 22
information representation,

20–22
roles in medical diagnosis and

treatment, 26
temperature measurement and

display, 24–26
Digital value of temperature, 24, 26

Index 667

Direct memory access (DMA), 621,
627–631

controller, 628–630
transfer, 630–631

Direction Memory Access (DMA)
communication, 594

Directory offset, 656
Directory page pointer, 656
Disk access time, 604
Disk transfer rate, 604
Don’t-care conditions, 154, 246, 368,

478
Double-data-rate SDRAM (DDR

SDRAM), 444–445
D-type positive-edge-triggered flip-

flop, 222
Dynamic indicator, 224
Dynamic RAM (DRAM) ICs,

434–446, 607
arrays of, 446
bit slices, 436–440
cell, 435–436
controller, 446
cost per bit, 437
double-data-rate SDRAM

(DDR SDRAM),
444–445

RAMBUS, 445–446
Refresh counter and a Refresh

controller, 440
synchronous DRAM

(SDRAM), 442–444
types, 440–446
write and read operation,

438–439

E
Edge-triggered flip-flop, 222–223

positive, 222–223
Embedded software, 23
Embedded systems, 27

block diagram of, 23
ENABLE signal, 142, 144
Enable-interrupt flip-flop (EI), 537
Enabling, 142–144

car electrical control using,
143–144

circuits, 143
Encoders:

8–to–3-line, 153
expansion, 155–156
octal-to-binary, 153–154
priority, 154–155

Encoding, 153–156
Engine control unit (ECU), 26
Equivalence, 94
Essential prime implicants, 87–89
Even function, 96
Excess-3 code for a decimal digit, 239
Exclusive-NOR (XNOR) gate, 58
Exclusive-OR (XOR) gate, 58
Exclusive-OR (XOR) operator and

gates, 94–96
odd function, 94–96

F
Field programmable gate array

(FPGA), 99, 320,
329–334

functionality, 332–333
logic blocks of, 333
look-up table circuit, 330–332
programmable feature common

to, 333–334
SRAM configuration, 330

Flash memories, 321
Flash technology, 321
FlexRay, 26
Flip-flops, 220–226

circuits, 221
clock drives, 293
D, 225, 228, 340, 354

CMOS, 292
designing with, 243–246
input equations for, 247

direct inputs, 225–226
direct reset or clear, 225
direct set or preset, 225
edge-triggered, 222–223

positive, 222–223
input equation, 226
master–slave, 221–222
negative- edge-triggered D, 221
pulse-triggered, 222
standard graphics symbols,

223–225
synchronizing, 289–290
timing, 282–283

hold time, 282
parameters, 283
propagation delay times, 282
setup time, 282

triggers, 220–221
Floating-point computations,

525–530
arithmetic operations with,

526–527
biased exponents, 527–528
binary number, 525–526
decimal point in, 525
standard operand format,

528–530
Four-variable maps, 80–81, 85–87
FPU (floating-point unit), 27
Full adder, 173–175
Functional blocks, 134, 138

in very-large-scale integrated
(VLSI) circuits, 138

G
Gate delay, 57
Gate propagation delay, 96–98

calculation of, based on fan-
out, 98

high-to-low propagation time,
96

inertial delay, 96–97
low-to-high propagation time,

96
transport delay, 96

Gate-input cost, 78–79
General-purpose computing on

graphics processing
units (GPGPU), 595

Generic computer, 26–28
Graphics processing units (GPUs),

594–595
Gray, Frank, 47

Gray codes, 46–48, 80, 242
design for the sequence

recognizer, 244–245

H
Half adder, 173–174
Handshaking, 611, 613–614
Hard drive, 603–605

cylinder, 603
read/write heads, 603
sectors, 603
tracks, 603

Hardware description languages
(HDLs), 30, 98–101

binary adder-subtractors,
188–190

counters, 401–404
device under test (DUT), 100
elaboration, 99
initialization, 100
logic synthesis, 100–102
optimization/technology

mapping processes, 100
representation in sequential

circuits:
Verilog, 273–282
VHDL, 264–273

shift registers, 400–403
simulation, 100
as simulation input, 99–100
testbench, 100
Verilog, 99–100, 110–117
VHDL, 99, 102–110

Hierarchical design, 130–134
High-impedance outputs, 377–379

I
IEEE, positive edge-triggered flip-

flop, 225
IEEE standard, single-precision

floating-point operand,
528

Incrementing, 195–196
n-bit incrementer, 195

Input/output (I/O) bus, 28
Institute of Electrical and

Electronics Engineers
(IEEE), 99

Standard Graphic Symbols for
Logic Functions, 58

Instruction level parallelism (ILP),
592

Instruction set architecture (ISA),
469–470, 517–518

AND instruction, 523
arithmetic instructions, 521–522
bit set instruction, 523
CISC and RISC, 517–518
data-manipulation, 518,

521–525
data-transfer, 518–519
input and output (I/O)

instructions, 520–521
logical and bit-manipulation

instructions, 522–524
OR instruction, 523
shift instructions, 524–525
stack instructions, 518–520
XOR instruction, 523–524

668 Index

Integrated circuits, 54, 311–312
levels of, 312

Intel Core 2 Duo, 593
Inverter, 57
Inverting, 139–140
Iterative arrays, 173
Iterative circuit, 173
Iterative combinational circuits,

171–173
Iterative logic array, 383

K
Karnaugh map (K-map), 77, 80, 131,

243
Boolean function on, 80
for Gray-coded sequential

circuit with D flip-flops,
244

map manipulation, 87–93
don’t-care conditions, 91–93
essential prime implicants,

87–89
incompletely specified

functions, 92
nonessential prime

implicants, 87, 89
product-of-sums

optimization, 90–91
programmable logic array

(PLA) for, 326
3- and 4-variable, 80–81, 83–87
2-variable, 81–83

Keyboard, 602–603, 616–617
K-scan code, 603

L
Large-scale integrated (LSI) devices,

312
Latches:

D latch, 220, 222
in flip-flop switch, 220–226
NAND, 218–219
NOR, 218–219
set state and reset state of, 217
SR and SR[11], 217–220, 224

with control input, 219
logic simulation of, 218
with NAND gates, 219

standard graphics symbols,
223–225

Latency time, 549
LCD (liquid crystal display) screen,

28
LD instruction with indirect indexed

addressing (LII)
instruction, 586–587

Least significant digit (lsd), 32
Liquid Crystal Display (LCD)

screen, 605–608
Literals, 68–69

cost, 78
Little-endian, 345
Logic gates, commonly used, 59
Logic microoperations, 351–352
Logic simulator, 98
Logic synthesizers, 98
Logical AND operation, 54–55
Logical block addressing (LBA), 603
Logical OR operation, 54–55

M
Macrofusion, 593
Make code, 603
Map manipulation, 87–93

don’t-care conditions, 91–93
essential prime implicants,

87–89
incompletely specified

functions, 92
nonessential prime implicants,

87, 89
product-of-sums optimization,

90–91
Mask programming, 320
Master–slave flip-flop, 221–222
Maxterms, 71–75

product of, 74
for three variables, 73

M-bit binary code, 144
Mealy model circuit, 229–230, 232
Medium-scale integrated (MSI)

circuits, 134
Medium-scale integrated (MSI)

devices, 312
Memory:

cache, 640–653
cycle timing, 423–424
definitions, 419–420
error-correcting codes (ECC)

for, 441
hierarchy, 635–638
locality of reference, 638–640
random-access memory

(RAM), 420–425
Chip Select, 422–423
dynamic, 425
integrated-circuit, 425
nonvolatile, 425
properties, 425
static, 425
volatile, 425
write and read operations,

422–423
read-only memory

(ROM), 420
serial, 420
SRAM integrated-circuits,

425–431
virtual, 653–659

Memory address, 323
Microarchitecture, 29
Microcomputers, 23
Microcontroller, 23, 602–603
Microoperation, 475

AND, 351–352
arithmetic, 349–351
control word for, 463–469
for datapath, using symbolic

notation, 466
logic, 351–352
OR, 352
serial transfer and, 380–383

serial addition, 381–383
shift, 353, 466
on a single register, 353–369
transfer, 348
XOR (exclusive-OR), 352

Microprogram sequencer, 404
Microprogrammed control, 404–406

Minterms, 71–75, 171
defined, 79–80
don’t-care, 92–93
properties of, 74
sum of, 73–74

MMU (memory management
unit), 27

ModelSim¨ logic simulator
waveforms, 218

Moore model circuit, 229, 231–232,
252

Most significant digit (msd), 32
Move Memory Block (MMB)

instruction, 588
MTI Model-Sim simulator, 250
Multiple-cycle hardwired control

unit, 483–492
control-word information for

datapath, 486
datapath and control logic unit,

485–486
indirect address, 491
“load register indirect” (LRI),

491
multiple-cycle operations,

483–485
opcode, 488–489
partial state machine diagram,

491
registers, 484
sequential control circuit,

487–492
“shift left multiple”

(SLM), 491
“shift right multiple” (SRM),

491
state table for two-cycle

instructions, 490
Multiple-instruction-stream,

multiple-data-
stream (MIMD)
microprocessors, 592

Multiplexers, 156–166, 602
data selector, 158
dataflow description, 162,

164–165
formulation, 169
4–to–1-line, 157–158
4–to–1-line quad, 159–160
implementation of a binary-

adder bit, 166–168
implementation of 4-variable

function, 168–169
implemented bus-based

transfers for multiple
registers, 375–380

optimization, 170
security system sensor selection

using, 165–166
shifter and, 459
6–to–64-line, 158–159
specification, 169
2–to–1-line, 156–157
using when-else statement,

160–163
using with-select statement,

161–163
Verilog model for, 163–165
VHDL models for, 160–163

Index 669

N
NAND gate, 58

logical operations with, 60
NAND latch, 218–219
N-bit binary code, 41, 144
Negation indicator, 58
Negative- edge-triggered D flip-flop,

221, 224
Nematic liquid crystals, 605
Netlist, 60
Next-address generator, 404
Nonessential prime implicants, 87, 89
Non-Return-to-Zero Inverted

(NRZI) signaling,
618–619

Nonvectored interrupt, 623
NOR gate, 58
NOR latch, 218–219
Normalized numbers, 529
NOT gate, 56–57
NOT logic, 54
N–to–m-line decoders, 144
Number system:

binary, 33–34
conversion:

to base 10, 32
from binary to hexadecimal,

35
from binary to octal, 35
of a decimal number to

binary, 33–34
conversion from:

octal or hexadecimal to
binary, 36

decimal, 31–33
number ranges, 36
octal or hexadecimal, 34–36

O
Octal or hexadecimal number

system, 34–36
arithmetic operations, 37–38

Odd function, 94–96
Odd parity, 45
On-chip core multiprocessors, 592
On-chip Element Interconnection

Bus (EIB), 594
One-hot coded design for sequence

recognizer, 245–246
Optical shaft-angle encoder, 47
OR gate, 56–57
OR logic operation, 66
OR microoperations, 352
OR operation, 66–67

P
Packet identifier (PID), 619
Page table offset, 656
Page table page number, 656
Page tables, 655–657
PAL AND-OR circuit, 327
Parallel gating, 364
Parity bit, 45
Pentium instruction set, 594
Physical parameters, 20
PIG, handheld game (example),

392–400
control-unit hardware, 392
datapath actions, 393, 396–399

exterior view of, 392–393
inputs, outputs, and registers,

394
LEDs, 393
logic for control transfers, 400
reset state, 395–396
state machine diagram for,

394–395
Pipelined control, 553–557

programming and performance,
555–557

Pipelined datapath, 548–553
execution pattern, 552–553

emptying, 553, 556
filling, 553, 556

pipeline platforms,
550, 554

Positive edge-triggered flip-flop,
222–224

Positive logic, 21
Positive-edge-triggered D flip-flop:

VHDL representation of,
265–267

Postponed output indicator, 224
Power Processor Element

(PPE), 594
Prefetching, 592
Priority encoder, 154–155
Priority interrupts:

daisy chain, 624–626
parallel, 626–627

Processors, 26
Product terms, 71
Product-of-sums expression,

76–77
gate structure of, 77
optimized expression in,

90–91, 93
simplifying, 90–91

Program control instructions,
530–535

branch and jump instructions,
530

calling convention, 534–535
conditional branch instructions,

531–533
procedure call and return

instructions, 533–535
continuation point in calling

procedure, 534
return instruction, 534

Program interrupt, 535–538
disable interrupt (DSI), 537
enable interrupt (ENI), 537
exceptions, 537
external, 536–538
internal, 536
procedure, 535

hardware, 535
software, 536–537

Programmable array logic (PAL¨)
device, 320–322,
327–329

combinational circuit using,
327–329

Programmable implementation
technologies, 320–334

control of transistor switching,
320–321

erasable and electrically
erasable transistor
switching, 321

field programmable gate array
(FPGA), 320, 329–334

flash technology, 321
mask programming, 320
MOS n-channel transistor, 320
pattern of OPEN and

CLOSED fuses, 320
programmable array logic

(PAL¨) device, 320–322,
327–329

programmable logic array
(PLA), 320, 322,
324–327

read-only memory (ROM), 320,
322–324

Programmable logic array (PLA),
320, 322, 324–327

combinational circuit using,
326–327

K-maps and expressions for,
326

with three inputs, four product
terms, and two outputs,
325

Programmable read-only memory
(PROM), 321–322

Pulse-triggered flip-flop, 222

Q
Quantization error, 24

R
Radix point, 32
RAMBUS DRAM, 445–446
RAM (random-access memory), 27
Random access memory (RAM), 31,

602, 643
Read-only memory (ROM), 320,

322–324
Reduced instruction set computers

(RISCs), 517–518
addressing modes, 560–561
barrel shifter, 563
control hazards, 573–577
control organization in,

564–566
control words for instructions,

566
CPU, 562
data-forwarding execution

diagram, 571–572
data hazards, 566–573
datapath organization, 561–564
instruction set architecture

(ISA), 557–560
no-operation (NOP)

instructions, 568
read-after-write register, 564

Registers:
address, 345
block-diagram form, 345
cell design, 370–375
counters, 340
dedicated logic of, 354
defined, 340
D flip-flop with enable, 342

670 Index

Registers (continued)
function table for, 358, 360
loading, 340–343
microoperations, 348–353

AND, 351–352
arithmetic, 349–351
logic, 351–352
OR, 352
serial transfer and, 380–383
shift, 353
on a single register, 353–369
transfer, 348
XOR (exclusive-OR), 352

microprogrammed control,
404–406

multiplexer and bus-based
transfers for multiple,
375–380

n-bit, 340, 345
with parallel load, 341–343

4-bit register, 343
shared logic of, 354
shift, 356–361

bidirectional, 359–361
“No Change” operation,

359–360
with parallel load, 357–359
serial inputs, 361
stages, 381
unidirectional, 359

synchronous binary counters,
363–367

transfers, 343–345
big-endian, 345
conditional statement, 346
control of, 383–400
design procedures,

384–385
if-then form, 346, 354
little-endian, 345
multiplexer-based, 354–356
nonprogrammable system,

384
operations, 345–347
programmable system, 384
replacement operator, 346
symbols, 347
in VHDL and Verilog,

347–348
Register transfer language (RTL)

level, 99
Reverse Polish notation (RPN),

509–510
Ripple carry adder, 176
Rotational delay, 604
Rudimentary logic functions,

138–144
enabling, 142–144
inverting, 139–140
multiple-bit functions,

139–142
transferring, 139–140
value-fixing, 139–140

S
Schematic capture tools, 98
Seek time, 604
Segmentation, 659
Selection:

using multiplexer-based
combinational circuits,
166–171

using multiplexers, 156–166
Sequence recognizer:

Gray-coded design for the,
244–245

one-hot coded design for,
245–246

state assignment for, 243
verification of, 248–250
VHDL representation, 267–272

Sequential circuits:
analysis, 226–232
asynchronous interactions,

286–287
definitions, 214–216
design:

with D flip-flops, 243–246
finding state diagrams and

state tables, 235–241
flip-flop input equations, 235
formulation, 234
optimization, 235
output equations, 235
procedure, 234–235
specification, 234
state assignment, 234,

242–243
technology mapping, 235
with unused states, 246–248
verification, 235
verification with simulation,

248–250
flip-flops, 220–226

timing, 282–283
HDL representation:

Verilog, 273–282
VHDL, 264–273

input equations, 226–227
latches, 217–220
Mealy model circuits, 229–230,

232
metastability, 290–293
Moore model circuit, 229,

231–232
pitfalls, 293–294
simulation of, 232–234

functional, 233
state-variable values and

outputs, 233
timing, 233–234

state diagram, 229–232
equivalent states, 231–232
manner of representation,

231
state table, 227–229

manner of representation,
231

next-state section, 227–228
present-state section, 227

state-machine diagrams and
applications, 250–264

automatic sliding entrance
doors, 261–264

batch mixing system control,
256–260

constraints on transition
conditions, 254–256

input condition, 252–254
model, 252–254
output condition, 252–254
transition and output-

condition dependent
(TOCD) output
actions, 253

transition-condition
dependent (TCD)
Mealy output actions,
253

transition-condition
independent (TCI)
Mealy outputs, 253

transition condition (TC),
252–254

unconditional transition,
252–253

synchronization, 287–290
signal RDY, 288–290

synchronous counter, 293
timing, 283–285

clock period and frequency
calculations, 285

maximum input-to-output
delay, 283

Serial communication, 614–620
asynchronous transmission, 615
data sets or modems

(modulator–
demodulators) for, 615

full-duplex transmission, 615
half-duplex transmission, 615
keyboard, 616–617
packet-based serial I/O bus,

617–620
simplex line transmission, 615
synchronous transmission,

615–616
turnaround time, 615

Serial gating, 363
Shannon’s expansion

theorem, 331
Shift microoperations, 353
Shift registers, 356–361

bidirectional, 359–361
“No Change” operation,

359–360
with parallel load, 357–359
serial inputs, 361
stages, 381
unidirectional, 359
Verilog-based, 402–403
VHDL-based, 400–401

Shifter, 459–461
barrel, 460–461
combinational, 459
function table for, 461
multiplexers and, 459

Signal conditioning, 26
Significands, 528
Silicon-on-insulator (SOI) CMOS

technology, 594
Single Instruction Multiple Thread

(SIMT), 595
Single-cycle hardwired control unit,

476–483
“Add Immediate” (ADI)

instruction, 479–481

Index 671

computer timing and control,
482–483

instruction decoder, 477–479
sample instructions and

program, 479–482
Single-instruction-stream multiple-

data-stream (SIMD)
processors, 593–594

Small-scale integrated (SSI) devices,
312

Speculative loading, 591
SRAM integrated-circuits, 425–431

array of, 431–434
Bit Select column, 429
coincident selection, 427–431
RAM bit slice, 426
RAM cell, 425, 427–428
Read/Write circuits, 430
static RAM chip, 425–426
symbol and block diagram,

427–429, 431
Word Select lines, 427

Stability control unit (SCU), 26
Stack architectures, 509
Standard forms, 71–77
State assignment, 242–243

for sequence recognizer, 243
State diagram:

abstraction of sequence,
235–236

for BCD– to–excess-3 decoder,
239–241

construction of, 241
equivalent states, 231–232
manner of representation, 231
reset signal and initial state,

236–237
for sequence recognizer,

237–239
State table:

manner of representation, 231
next-state section, 227–228
present-state section, 227

Static random access memory
(SRAM), 330

STI Cell Processor, 594
Strobing, 611–612
Structural description, 60
Suicide counter, 294
Sum of minterms, 73–74
Sum terms, 71
Superpipelined CPU, 590
Superscalar CPU, 590
S-way set-associative mapping, 645
Synchronous binary counters,

363–367
AND-gate delays and, 364
parallel counters, 363–364
with parallel load, 365–367
serial counters, 363–364
up–down counter, 365

Synchronous DRAM (SDRAM),
442–444

Synergistic Processor Elements
(SPEs), 594

T
Technology library, 101
Technology mapping, 101

Technology mapping in
combinational logic
design, 134–138

advanced, 134–136
implementation:

with NAND gates, 134–136
with NOR gates, 134–135,

137–138
Testbench, 100
Three-state buffer, 377
Three-state bus, 379–380
Three-variable maps, 80–81, 83–85
Timing diagrams, 56–57
Transfer microoperations, 348
Transferring, 139–140
Transition regions, 56
Transitions, 56
Translation lookaside buffer (TLB),

657–659
Triggers, 220–221
Truth table, 55, 58, 63

BCD–to–seven-segment
decoder, 170

Boolean function in, 65
4–to–1-line multiplexer, 157
instruction decoder, 479
octal-to-binary encoder, 153
priority encoder, 154
2–to–1-line multiplexer, 156
2-variable function, 82
to verify DeMorgan’s

theorem, 66
Twisted nematic (TN) liquid

crystals, 605
Two-level circuit optimization,

77–92
Boolean expressions, 77
cost criteria, 77–79

gate-input, 78–79
literal, 78

map structures, 79–81
map manipulation, 87–93
3- and 4-variable, 80–81,

83–87
two-variable maps, 81–83

Two-variable K-map, 81–83

U
Universal gate, 58
Universal Serial Bus (USB), 617–619

V
Value-fixing, 139–140

lecture-hall lighting control
using (example),
140–142

Vector processing, 593–594
Vectored interrupt, 623
Verilog, 100, 110–117

behavioral descriptions, 114,
116

counters, 403–404
dataflow descriptions, 113–114
declaration of internal signals,

113
Device Under Test (DUT),

116–117
4-bit ripple carry adder,

192–193

behavioral-level description,
193

generation of storage in, 281
input and output declarations,

112
model for 4–to–1-line

multiplexer, 163–165
models for a 2–to–4-line

decoder, 150–151
module statement, 112
registers, 347–348
representation in sequential

circuits, 273–282
blocking assignments,

274–275
nonblocking assignments,

274–275
for positive-edge-triggered

D flip-flop, 275–277
procedural assignment

statements, 274–275
process, 274
for sequence-recognizer,

277–281
shift registers, 402–403
structural descriptions, 113
testbenches, 116–117
for a two-bit greater- than

circuit:
structural circuit description,

111–112
using a behavioral

description, 116
using behavioral model,

115–116
using conditional operator,

115
vectors, 112

Verilog bitwise logic operators, 62
Very-large-scale integrated (VLSI)

circuits, 138
Very-large-scale integrated (VLSI)

devices, 312
VHDL, 99, 102–110

architecture, 104–105
behavioral descriptions,

107–108
comment, 102
components, 105
counters, 401–402
dataflow descriptions, 106
delta times, 105
Device Under Test

(DUT), 109
entity, 102
entity declaration, 102
for a 4-bit ripple carry adder,

188–190
behavioral-level description,

191
generation of storage in, 273
library, 104
model for 4–to–1-line

multiplexer, 160–163
models for a 2–to–4-line

decoder, 149–150
packages, 104
port declaration, 104
registers, 347–348

672 Index

VHDL, (continued)
representation in sequential

circuits, 264–273
for positive-edge-triggered

D flip-flop, 265–267
process, 265
for sequence recognizer,

267–272
shift registers, 400–401
signals, 105
standard logic, 104
structural description, 104–105
tb process, 109
testbenches, 109
for a two-bit greater-than

comparator circuit,
102–103, 106–107

for a two-bit greater-than
comparator using
when-else, 107–108

for a two-bit greater-than
comparator using with-
select, 108–109

variables, 105

VHDL logic operator, 61

Virtual memory, 653–659

address space, 654

cache and, 659

page tables, 655–657

pages, 654

translation lookaside buffer
(TLB), 657–659

Voltage values, 20–21

W
Waveform, 21
Word, 420

X
Xilinx ISE 4.2 HDL Bencher, 250
Xilinx ISE 4.2 Schematic

Editor, 250
XOR (exclusive-OR)

microoperation, 352

Z
Zero fill, 198
Zone bit recording, 603

	Cover
	Logic and Computer Design Fundamentals
	Copyright

	Contents
	Preface
	Chapter 1: Digital Systems and Information
	Information Representation
	The Digital Computer
	Beyond the Computer
	More on the Generic Computer

	Abstraction Layers in Computer Systems Design
	An Overview of the Digital Design Process

	Number Systems
	Binary Numbers
	Octal and Hexadecimal Numbers
	Number Ranges

	Arithmetic Operations
	Conversion from Decimal to Other Bases

	Decimal Codes
	Alphanumeric Codes
	ASCII Character Code
	Parity Bit

	Gray Codes
	Chapter Summary
	References
	Problems

	Chapter 2: Combinational Logic Circuits
	Binary Logic and Gates
	Binary Logic
	Logic Gates
	HDL Representations of Gates

	Boolean Algebra
	Basic Identities of Boolean Algebra
	Algebraic Manipulation
	Complement of a Function

	Standard Forms
	Minterms and Maxterms
	Sum of Products
	Product of Sums

	Two-Level Circuit Optimization
	Cost Criteria
	Map Structures
	Two-Variable Maps
	Three-Variable Maps

	Map Manipulation
	Essential Prime Implicants
	Nonessential Prime Implicants
	Product-of-Sums Optimization
	Don’t-Care Conditions

	Exclusive-Or Operator and Gates
	Odd Function

	Gate Propagation Delay
	HDLs Overview
	Logic Synthesis

	HDL Representations—VHDL
	HDL Representations—Verilog
	Chapter Summary
	References
	Problems

	Chapter 3: Combinational Logic Design
	Beginning Hierarchical Design
	Technology Mapping
	Combinational Functional Blocks
	Rudimentary Logic Functions
	Value-Fixing, Transferring, and Inverting
	Multiple-Bit Functions
	Enabling

	Decoding
	Decoder and Enabling Combinations
	Decoder-Based Combinational Circuits

	Encoding
	Priority Encoder
	Encoder Expansion

	Selecting
	Multiplexers
	Multiplexer-Based Combinational Circuits

	Iterative Combinational Circuits
	Binary Adders
	Half Adder
	Full Adder
	Binary Ripple Carry Adder

	Binary Subtraction
	Complements
	Subtraction Using 2s Complement

	Binary Adder-Subtractors
	Signed Binary Numbers
	Signed Binary Addition and Subtraction
	Overflow
	HDL Models of Adders
	Behavioral Description

	Other Arithmetic Functions
	Contraction
	Incrementing
	Decrementing
	Multiplication by Constants
	Division by Constants
	Zero Fill and Extension

	Chapter Summary
	References
	Problems

	Chapter 4: Sequential Circuits
	Sequential Circuit Definitions
	Latches
	SR and SR Latches
	D Latch

	Flip-Flops
	Edge-Triggered Flip-Flop
	Standard Graphics Symbols
	Direct Inputs

	Sequential Circuit Analysis
	Input Equations
	State Table
	State Diagram
	Sequential Circuit Simulation

	Sequential Circuit Design
	Design Procedure
	Finding State Diagrams and State Tables
	State Assignment
	Designing with D Flip-Flops
	Designing with Unused States
	Verification

	State-Machine Diagrams and Applications
	State-Machine Diagram Model
	Constraints on Input Conditions
	Design Applications Using State- Machine Diagrams

	HDL Representation for Sequential Circuits—VHDL
	HDL Representation for Sequential Circuits—Verilog
	Flip-Flop Timing
	Sequential Circuit Timing
	Asynchronous Interactions
	Synchronization and Metastability
	Synchronous Circuit Pitfalls
	Chapter Summary
	References
	Problems

	Chapter 5: Digital Hardware Implementation
	The Design Space
	Integrated Circuits
	CMOS Circuit Technology
	Technology Parameters

	Programmable Implementation Technologies
	Read-Only Memory
	Programmable Logic Array
	Programmable Array Logic Devices
	Field Programmable Gate Array

	Chapter Summary
	References
	Problems

	Chapter 6: Registers and Register Transfers
	Registers and Load Enable
	Register with Parallel Load

	Register Transfers
	Register Transfer Operations
	Register Transfers in VHDL and Verilog
	Microoperations
	Arithmetic Microoperations
	Logic Microoperations
	Shift Microoperations

	Microoperations on a Single Register
	Multiplexer-Based Transfers
	Shift Registers
	Ripple Counter
	Synchronous Binary Counters
	Other Counters

	Register-Cell Design
	Multiplexer and Bus-Based Transfers for Multiple Registers
	High-Impedance Outputs
	Three-State Bus

	Serial Transfer and Microoperations
	Serial Addition

	Control of Register Transfers
	Design Procedure

	HDL Representation for Shift Registers and Counters—VHDL
	HDL Representation for Shift Registers and Counters—Verilog
	Microprogrammed Control
	Chapter Summary
	References
	Problems

	Chapter 7: Memory Basics
	Memory Definitions
	Random-Access Memory
	Write and Read Operations
	Timing Waveforms
	Properties of Memory

	SRAM Integrated Circuits
	Coincident Selection

	Array of SRAM ICs
	DRAM ICs
	DRAM Cell
	DRAM Bit Slice

	DRAM Types
	Synchronous DRAM (SDRAM)
	Double-Data-Rate SDRAM (DDR SDRAM)
	RAMBUS® DRAM (RDRAM)

	Arrays of Dynamic RAM ICs
	Chapter Summary
	References
	Problems

	Chapter 8: Computer Design Basics
	Introduction
	Datapaths
	The Arithmetic/Logic Unit
	Arithmetic Circuit
	Logic Circuit
	Arithmetic/Logic Unit

	The Shifter
	Barrel Shifter

	Datapath Representation
	The Control Word
	A Simple Computer Architecture
	Instruction Set Architecture
	Storage Resources
	Instruction Formats
	Instruction Specifications

	Single-Cycle Hardwired Control
	Instruction Decoder
	Sample Instructions and Program
	Single-Cycle Computer Issues

	Multiple-Cycle Hardwired Control
	Sequential Control Design

	Chapter Summary
	References
	Problems

	Chapter 9: Instruction Set Architecture
	Computer Architecture Concepts
	Basic Computer Operation Cycle
	Register Set

	Operand Addressing
	Three-Address Instructions
	Two-Address Instructions
	One-Address Instructions
	Zero- Address Instructions
	Addressing Architectures

	Addressing Modes
	Implied Mode
	Immediate Mode
	Register and Register-Indirect Modes
	Direct Addressing Mode
	Indirect Addressing Mode
	Relative Addressing Mode
	Indexed Addressing Mode
	Summary of Addressing Modes

	Instruction Set Architectures
	Data-Transfer Instructions
	Stack Instructions
	Independent versus Memory- Mapped I/O

	Data-Manipulation Instructions
	Arithmetic Instructions
	Logical and Bit- Manipulation Instructions
	Shift Instructions

	Floating-Point Computations
	Arithmetic Operations
	Arithmetic Operations
	Standard Operand Format

	Program Control Instructions
	Conditional Branch Instructions
	Procedure Call and Return Instructions

	Program Interrupt
	Types of Interrupts
	Processing External Interrupts

	Chapter Summary
	References
	Problems

	Chapter 10: Risc and Cisc Central Processing Units
	Pipelined Datapath
	Execution of Pipeline Microoperations

	Pipelined Control
	Pipeline Programming and Performance

	The Reduced Instruction Set Computer
	Instruction Set Architecture
	Addressing Modes
	Datapath Organization
	Control Organization
	Data Hazards
	Control Hazards

	The Complex Instruction Set Computer
	ISA Modifications
	Datapath Modifications
	Control Unit Modifications
	Microprogrammed Control
	Microprograms for Complex Instructions

	More on Design
	Advanced CPU Concepts
	Recent Architectural Innovations

	Chapter Summary
	References
	Problems

	Chapter 11: Input—Output and Communication
	Computer I/O
	Sample Peripherals
	Keyboard
	Hard Drive
	Liquid Crystal Display Screen
	I/O Transfer Rates

	I/O Interfaces
	I/O Bus and Interface Unit
	Example of I/O Interface
	Strobing
	Handshaking

	Serial Communication
	Synchronous Transmission
	The Keyboard Revisited
	A Packet-Based Serial I/O Bus

	Modes of Transfer
	Example of Program-Controlled Transfer
	Interrupt-Initiated Transfer

	Priority Interrupt
	Daisy Chain Priority
	Parallel Priority Hardware

	Direct Memory Access
	DMA Controller
	DMA Transfe

	Chapter Summary
	References
	Problems

	Chapter 12: Memory Systems
	Memory Hierarchy
	Locality of Reference
	Cache Memory
	Cache Mappings
	Line Size
	Cache Loading
	Write Methods
	Integration of Concepts
	Instruction and Data Caches
	Multiple-Level Caches

	Virtual Memory
	Page Tables
	Translation Lookaside Buffer
	Virtual Memory and Cache

	Chapter Summary
	References
	Problems

	Index

