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Supervisors’ Foreword

The following thesis by Dr. Álvaro Díaz Fernández was performed at the Materials
Physics Department of the Complutense University of Madrid from 2016 to 2019.
The subject of research addressed by Álvaro falls into the new field of topological
condensed matter physics. This thesis is definitely an outstanding piece of work in
terms of physical significance and the clarity of writing.

Symmetry-protected topological phases of matter are gapped phases which
cannot be adiabatically connected to the vacuum without breaking the symmetries.
A particularly relevant example is that of topological insulators. These cannot be
connected to ordinary band insulators without closing the gap unless time-reversal
symmetry is broken. The most striking manifestation of the time-reversal symmetry
protection of the topologically insulating phase is that, when a finite material is
considered, gapless surface states with well-defined helicities emerge. Moreover,
such gapless excitations are Dirac cones, thereby setting topological insulators as an
example of Dirac quantum matter. Some of their characteristics are predicted to
have a strong impact on transport properties at the nanoscale. Therefore, a deep
understanding of such characteristics is crucial for future functioning devices.

With this in mind, Álvaro pursued a clear goal during his Ph.D. research: analyse
the effect of external fields on the robustness of the exotic properties of topological
insulators and search for different approaches to manipulate them in favour of
quantum transport. With such a well established but not straightforward objective,
he was able to prove that an electric field perpendicularly applied to the surface of a
topological insulator preserves the Dirac cones, while altering the Fermi velocity as
a function of the field’s intensity. Moreover, Álvaro extended the scope of his
research to graphene, a Dirac material of great relevance, to show that this phe-
nomenon could also be observed in metallic armchair nanoribbons. This seems to
be a clear indication that the effect should be observable in other Dirac materials as
well. As a particular realization of the proposal, Álvaro proposed the usage of the
built-in field created by a d-layer of impurities near the surface. This proved to be
particularly relevant to show that the surface states where robust and would coexist
with a Rashba-split two-dimensional electron gas.

ix



In order to explore the effects of a magnetic field, Álvaro considered different
orientations. Although a magnetic field breaks time-reversal symmetry, if applied
with a particular orientation it may preserve the mirror symmetry of the
Hamiltonian. This is particularly relevant when considering dual topological
insulators, that is, those which display both topologically insulating and topological
crystalline insulating behaviours. The latter are topological insulators protected by
crystal symmetries. If time-reversal symmetry is broken but mirror symmetry is not,
the topological state will not deform into a trivial state. In combination with electric
fields, Álvaro could show that the dispersion relation is greatly altered without
gapping out the surface states.

Finally, Álvaro concluded his Ph.D. research by extending his analysis into the
realm of periodically driven topological insulators. These can be addressed by
means of Floquet theory. As he could show by considering the full
three-dimensional Hamiltonian, there is an interplay between bulk and surface
states which leads to similar behaviours as with the static case. However, there is an
extra handle in the polarization of the applied field. This can lead to time-reversal
symmetry breaking, as occurs for circularly polarized fields, or no symmetry
breaking, as with linearly polarizing fields. In the former case, a gap opens up in the
quasienergy spectrum, whereas in the latter there is no gap opening. Additionally,
by tuning the field strength, the slope of the Dirac cones could also be altered, in
similarity to the static situation.

Álvaro made an invaluable effort to build a bridge connecting the field of
topology and symmetries in theoretical physics to the relevance of topological
materials in condensed matter physics. His thesis begins with a clear accessible
account for postgraduate students and non-expert researchers of symmetry pro-
tected topological phases and its relevance for quantum transport at the nanoscale.
Indeed, it reveals as a crucial reference textbook to fill up the gap between the
academic graduate knowledge and the basics needed for an introduction into
research studies on this field. We are truly delighted to have Álvaro as one of our
Ph.D. students and to witness that he has become a first-class researcher.

Madrid, Spain
June 2020

Francisco Domínguez-Adame Acosta
Elena Díaz García
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Abstract

Quantum mechanics was in all its splendour at the beginning of the twentieth century
with the great minds of Schrödinger, Heisenberg, Dirac, Pauli and many others. The
concepts introduced by then were truly revolutionary, even more than Einstein’s
relativity, one would dare say. One may have a feeling that nowadays we only
exploit the consequences of quantum mechanics to build devices such as transistors
or light-emitting diodes, which on the other hand have changed the world we live in
beyond imagination. With regard to the theoretical front, it may seem that one only
has to turn the mathematical handle to work out consequences of quantum
mechanics, although no new concepts are in sight. However, nothing could be
farther from the truth. We are privileged to live in what has been dubbed as a second
quantum revolution. It is the era of entanglement. One may argue that entanglement
comes from the old era with Einstein’s attempts to show the apparent inconsistencies
of quantum mechanics. However, it is now that we are starting to understand
entanglement and are exploring its far-reaching consequences. A particularly rele-
vant example is that of topological quantum matter. If entanglement is supplemented
with symmetries, a new class of phases emerges known as symmetry protected
topological phases. In such phases, topological behaviour occurs whenever certain
symmetries are preserved. Topological insulators are a paradigmatic example of
symmetry protected topological phases. The gapped ground state of these materials
is degenerate with that of ordinary band insulators. However, both systems belong to
different topological sectors, which is observed macroscopically on the fact that the
former displays edge or surface states. These edge or surface excitations are actually
very special: they behave like massless Dirac fermions with well-defined helicities.
The peculiar dispersion of topological insulators is shared by other so-called Dirac
materials, the most prominent of which is graphene.

On the other hand, it is well known that the Fermi velocity plays a crucial role in
quantum transport and by manipulating it one can reshape the transport properties
of a bare system. In ordinary semiconductors, one only needs to shift the Fermi
energy to achieve such a manipulation. However, this is not the case in a Dirac cone
spectrum since the velocity is the same everywhere (it is the slope of the cone). In
order to exploit the full power of these novel materials, it becomes interesting to be
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able to have control on the Fermi velocity. Additionally, it is interesting to study
how robust topological surface states are against disorder, which naturally occurs in
real systems upon cleavage and later exposure to the environment. The purpose of
this thesis is two-fold: dynamically tune the Fermi velocity by using external fields
and observe the robustness against a thin layer of impurities at the interface between
a topological and a trivial insulator. Previous to embarking on such a journey, an
extensive chapter is included to cover basic ideas of the systems under study. The
thesis is organized in seven chapters, the first one being a brief historical intro-
duction and the last one a short set of conclusions. The content of the remaining five
chapters could be briefly summarized in the following ideas:

• Chapter 2: Two-Band Models

A fairly extensive account of basic ideas of topology and models built by means
of symmetry arguments. In this chapter, we set the foundations for the following
chapters, which represent the core of the thesis.

• Chapter 3: Reshaping of Dirac Cones by Electric Fields

By applying uniform electric fields to topological surface states and metallic
graphene armchair nanoribbons, we are able to change the Fermi velocity in a
fully dynamical and experimentally feasible way. The topological protection
of the Dirac cones is discussed, along with hand-waving arguments that relate to
the quantum-confined Stark effect, allowing us understand the physics behind
these results.

• Chapter 4: Reshaping of Dirac Cones by Magnetic Fields

Magnetic fields are known to break time-reversal symmetry and represent the
destruction of the topological insulating phase. However, for specific orienta-
tions of the field that preserve crystalline symmetries such as mirror symmetry,
the topological signature of surface states can survive the magnetic field. As we
are able to observe, a suitably oriented magnetic field, complemented with an
electric field perpendicular to the surface, renders the Dirac cones anisotropic,
thereby leading to an anisotropic Fermi velocity.

• Chapter 5: Surface States in d-doped Topological Boundaries

Experiments have demonstrated that the topological surface states are protected
regardless of impurities, as long as these are non-magnetic. Moreover, they have
been shown to coexist with a Rashba-split two-dimensional electron gas, that
occurs due to structural inversion asymmetry and a built-in electric field due to
the impurities. In this chapter, we propose a method to achieve further control of
this effect by evaporating a d-layer of donor atoms during growth. In this case,
the impurity concentration can be controlled in a very precise fashion. As we
will show by means of an exactly solvable model, the Dirac state indeed survives
the d-layer, while coexisting with a Rashba-split two-dimensional electron gas
with non-trivial spin textures.
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• Chapter 6: Floquet Engineering of Dirac Cones

The use of periodic drivings to achieve greater control of quantum states is
becoming more and more relevant. Indeed, it provides with a level of tunability
that is far beyond the limits of the static case. In this thesis, we propose to apply
external ac fields to a topological boundary and graphene. Although such sce-
narios have already been discussed in the literature by using surface effective
Hamiltonians and perturbation theory, we show that even with the bulk states the
Dirac cones in the quasienergy spectrum remain robust. Moreover, features from
the static regime are also observed in this case, with the extra handle of polar-
ization. In particular, a change in the slope of the cones is observed.

In summary, this thesis aims at exploring basic, fundamental properties of
topological surface states and Dirac cones when exposed to different perturbations.
We expect to add value to the unprecedented quantum transport properties of
topological insulators for their future implementation in devices. More importantly,
we expect to unravel and confirm properties that are ascribed to these materials by
exploring the most elementary situations, such as applying uniform electric and
magnetic fields.
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Chapter 1
Introduction

Condensed Matter Physics is by far the vastest field of Physics. The amount of
phenomena it encompasses is in fact overwhelming. Its success relies on the ability
to make astoundingly accurate predictions about the world around us. Not only that,
it has led to major breakthroughs that have changed the world we live in, the most
conspicuous example possibly being the transistor.

In the last few decades, a truly abstract field of Mathematics is permeating all
of modern Condensed Matter Physics: Topology. It is now mainstream to read the
words Topological Matter, Topological Phase Transitions and other concepts alike.
The field started with the pioneering works of David J. Thouless, F. Duncan M.
Haldane and J. Michael Kosterlitz, who shared the Nobel Prize in Physics 2016 for
their theoretical discoveries on this topic. These seminal contributions took place
around the 1980’s. Although they had an impact on the community at the time, it was
the discovery of topological insulators in 2004 by Charles Kane and Eugene Mele
that really boosted the field. Since then, the area of topological matter has increased
exponentially. The Nobel Lecture by Haldane is a delightful read about the evolution
and some key discoveries in this field [1].

This introduction is not aimed to provide a detailed account of the field of topo-
logical matter. The reader is referred to Refs. [2–10] for excellent reviews on the
subject. Instead, we shall present a few details of the historical development that led
to the materials of our interest: topological insulators and graphene. We will be brief,
however, since the first chapter of this Thesis consists on a detailed account of the
models and the topological features that underly these systems. Moreover, we shall
consider only single-particle physics, since it will be the regime of interest in this
Thesis. Without further ado, let us start.

The story begins in February 5th, 1980 at the High Magnetic Field Laboratory
in Grenoble. At two in the morning, a young Klaus von Klitzing was performing
measurements in silicon MOSFET1 devices in an attempt to understand how to
improve the mobility of electrons in such devices [11]. What he found was radically

1Metal-oxide-semiconductor field-effect transistor.
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shocking. Upon applying strong magnetic fields to the samples and performing Hall
measurements, he discovered that the Hall resistance did not follow what Drude’s
theory predicted. Instead of increasing linearly with magnetic field, it developed a
series of plateaus where it remained constant for a range of fields. Moreover, the Hall
conductance was quantized in multiples of e2/h, with e the elementary charge and h
Planck’s constant [12]. This result is truly astonishing: it is the perfect quantization
of a macroscopic quantity. Additionally, when the Hall resistance sat on a plateau,
the longitudinal resistance dropped to zero, a sign of dissipationless transport. Von
Klitzing was awarded the Nobel Prize in Physics 1985 for the discovery of the
quantum Hall effect.

Only a year later, Robert B. Laughlin provided a truly elegant argument to explain
the physics of the quantum Hall effect that relied on gauge invariance and static
disorder [13]. Later that year, Bertrand I. Halperin [14] realized that Laughlin’s
argument was incomplete or, rather, that it relied on some assumptions that where
key to the understanding of the effect and that had not been pointed out by Laughlin.
Most notably, Halperin pointed out the existence of edge states in the mobility gap
that arises due to static disorder. These states formed one-dimensional chiral wires
that carried current dissipationlessly andwhere responsible for the sharp quantization
of the conductance.Without knowing it, Halperin had found one of the first signatures
of topological matter: edge states.

Aswe said, the physics of the quantumHall effect relied verymuchon the presence
of static disorder and the presence of edges. However, as Thouless and coworkers
pointed out in 1982, such arguments seem to leave a gap to the understanding of why
the conductance is quantized irrespective of the geometry of the sample. It seemed
that such a quantization should stem from the bulk material. Dealing with arbitrary
disorder was, however, rather tricky. To circumvent such a problem, Thouless pro-
posed the usage of a periodic potential in a square lattice threaded by a perpendicular
magnetic field. The electron energy levels of such a system had already been obtained
in 1976 by Douglas R. Hofstadter [15] while doing his Ph. D. Thesis. Such energy
levels as a function of the flux threading a unit cell form a fractal structure known
as the Hofstadter butterfly. Using the Kubo formula and the Hofstadter model as a
prototypical example, Thouless was indeed able to show that the conductivity was
quantized in integer multiples of e2/h [16]. The next year, Barry Simon [17] made
a connection with the recently discovered Berry phase by Michael V. Berry [18], the
integer obtained by Thouless and coworkers and the mathematical theory of topol-
ogy. He noted that the integer found by Thouless and collaborators was the first
Chern number. This number is what is called a topological invariant. Topological
invariants are truly useful in topology to be able to decide whether two objects can
be continuously connected or not [19]. As a result, they are insensitive to details
and provide information about global properties of such objects. The paradigmatic
example is the difference between a sphere and torus. Locally they are very similar;
globally they are completely different, as it can be told by the latter having a hole
and the former not having one. In this case, the number of holes, also known as the
genus, is a topological invariant. Since the Chern number is a topological invariant,
it cannot change under small perturbations. As a result, the quantized conductivity
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must also be protected by topology. In order to be able to define the Chern number
in the quantum Hall scenario, however, it was shown that the Fermi energy must
lie within an energy gap or a mobility gap for that matter. That is, the system had
to be an insulator in the bulk. When bulk extended states are found at the Fermi
energy, the Chern number becomes ill-defined and the conductivity is not quantized
anymore. Upon pushing the Fermi energy back again into an energy gap, the con-
ductivity becomes quantized once more [20]. The transition from one plateau to the
next where the Chern number changes is known as a topological phase transition.

A few years later, in 1988, Haldane made a seminal contribution [21] where he
showed that the only true requirement for obtaining a nontrivial quantum Hall con-
ductance was to break time-reversal symmetry. It is only then that the Chern number
is nonzero. In his model, which consisted on a sheet of graphene (at the time known
as a two-dimensional single sheet of graphite), Haldane proposed a tight-binding
model with complex next-nearest-neighbor hoppings. As had been shown by Philip
R. Wallace [22], graphene showed a semimetallic spectrum where the conduction
and valence bands touch at isolated points of the Brillouin zone. By breaking time-
reversal symmetry, Haldane was able to open up a gap and render the system an
insulator, one of the key requirements to observing quantum Hall physics. In this
scenario, Haldane obtained that the conductivity was indeed quantized. Moreover,
if such a model is solved on a strip instead of being solved in the bulk, chiral edge
states appear whenever time-reversal symmetry is broken. This is one of the first
clear connections between topology and edge state excitations. In 1993, Yasuhiro
Hatsugai established such a connection formally, leading to what is known as the
bulk-boundary correspondence [23].

Although there were a lot more developments in the years to follow in the field
of topological matter, we shall jump directly to the ones that are most interesting
to this Thesis. We come straight to 2004. That year, Charles L. Kane and Eugene
J. Mele from Penn University made a contribution that would boost the field of
topological matter [24, 25]. They realized that spin-orbit interaction in graphene,
although small, would lead to two time-reversed copies of theHaldanemodel, one for
each spin. In this case where time-reversal symmetry is unbroken, the Chern number
is identically zero and one does not find a quantized Hall conductivity. However,
each spin subspace shows an opposite non-zero Chern number and their difference is
therefore nonzero. This implies that one can obtain a quantized spinHall conductivity
response. This argument can be generalized to non-conserving spin terms and the
resulting topological invariant is commonly referred to as a Z2 invariant since it is a
binary quantity. Taking into account that different spin subspaces are time-reversed
Haldane partners, at the edges one finds helical spin currents. The system found by
Kane and Mele is commonly referred to as a quantum spin Hall insulator and it is
the first example of a topological insulator.

An experimental observation of the quantum spin Hall effect in bare graphene is
very complicated. This is due to the fact that spin-orbit interactions are very small in
graphene due to the lightness of carbon [3]. B.AndreiBernevig, Taylor L.Hughes and
Shou-Cheng Zhang [26] proposed that the same effect would occur by employing
heavier elements where spin-orbit interactions where stronger. In particular, they
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considered HgTe. However, HgTe is a semimetal in bulk. One way to open an energy
gap is to grow nanostructures to reduce the symmetry of the system, so they proposed
using a quantum well. Their seminal contribution showed that such a system indeed
hosted the same physics as that proposed by Kane and Mele a year earlier. Crucially,
only one year later the group of Laurens W. Molenkamp in Würzburg was able
to perform measurements on HgTe quantum wells [27], confirming the predictions
made by Bernevig, Hughes and Zhang.

By then, it was clear that the quantum spinHall effect was a time-reversal symmet-
ric quantumHall analog of phenomena that occurs in two-dimensional systems.How-
ever, there ismore to the story. Based on theworks done in 1997 byAlexanderAltland
and Martin R. Zirnbauer on the classification of random matrices [28], Andreas P.
Schnyder, Shinsei Ryu and collaborators [8, 29–31], andAlexeiKitaev [32] proposed
what is commonly referred to as the ten-fold way or periodic table of topological
insulators and superconductors. In this periodic table, ten symmetry classes based on
the presence or absence of fundamental symmetries (time-reversal, particle-hole and
chiral symmetries) are considered. As these researchers were able to show, depend-
ing on the symmetry class and the spatial dimension, the ground states of gapped
phases of single-particle Hamiltonians obeying the symmetries of such a class could
be characterized by a topological invariant. Such topological invariants could be triv-
ial, meaning that all ground states within that class were topologically equivalent,
or they could be Z or Z2 numbers, meaning that there where a countably infinite
number of classes or only two distinct classes, respectively. The gapped phases of
the symmetry class where the quantumHall effect belongs to hadZ invariants only in
even dimensions. In all other cases, such phases would be trivial and no quantumHall
phase is expected to be observed in odd dimensions. Hence, there can be no three-
dimensional quantum Hall effect.2 On the other hand, the symmetry class where the
quantum spin Hall effect belongs to showed non-trivial Z2 invariants both in two
and three dimensions. Hence, it was expected to find three-dimensional analogs of
the quantum spin Hall effect with topological surface states. In 2008, the first three
dimensional topological insulator was observed by means of angle-resolved photoe-
mission spectroscopy in Bi1−xSbx compounds [33]. The review by M. Zahid Hasan
and C. L. Kane provides great detail on the history of this material and the experi-
ments associated to the detection of its topological surface states [3]. However, we
aremore interested inwhat are called second generationmaterials [34–36] since they
can be described with the models utilized in this Thesis, whereas the former cannot.
These include Bi2Se3, Bi2Te3 and Sb2Te3, three materials that are well-known for
their thermoelectric properties. The surface states of these materials have massless
Dirac-like dispersions. Moreover, their energy gap is rather larger, making them suit-
able for exploiting their topological properties even at room temperature. By using
symmetry arguments, one can see that these materials can be modeled by means of
a 3+ 1 Dirac equation, as is shown in the first chapter of this Thesis. Finally, it has

2There can be three-dimensional quantum Hall states in theory, although these would be obtained
by stacking two-dimensional layers of the quantum Hall state and there is no topological protection
in such a case.
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been demonstrated that the Altland-Zirnbauer classification could be enriched by
adding crystalline symmetries. As a result, materials that would be trivial according
to such a classification can be nontrivial by displaying symmetries such as mirror
symmetry. Although less robust than regular three-dimensional topological insula-
tors, these crystalline topological insulators [7, 37, 38] have also been extensively
investigated and experiments have unraveled their existence. More importantly to us,
the model behind these systems is also a 3+ 1 Dirac equation.

On a different note, even though graphene has already been mentioned when dis-
cussing the Haldane and Kane–Mele models, it is also interesting to make a few
notes on aspects related to this Thesis. An excellent review of graphene can be found
in Ref. [39] for further details. It was already known that graphene, even without
spin-orbit or time-reversal-symmetry-breaking perturbations, could host edge states
depending on the edge termination [40, 41].Armchair nanoribbons displayed no edge
states and the spectrumwas very size-dependent, which could render the nanoribbons
metallic or semiconducting. In the former case, the low energy excitations showed
massless Dirac-like spectra. Zigzag and bearded nanoribbons, in contrast, hosted
non-dispersive edge states, irrespective of the system size, suggesting that these
should stem from some kind of bulk-edge correspondence. The works of Hatsugai
and Ryu [42] showed that this was indeed the case and that the edge states of zigzag
and bearded nanoribbons where topological in origin. As a result, metallic armchair
nanoribbons can be gapped out quite easily by adding perturbations. However, as
was pointed out by Juergen Wurm and collaborators [43], a low energy description
exhibits topological properties related to a hidden pseudovalley structure, and there-
fore no gap openings are expected to occur for sufficiently smooth space-dependent
potentials.

Before we conclude, we would like to point out a few motivating aspects of this
Thesis, although we shall not be exhaustive and leave most details to the introduction
of each chapter. As the title of this Thesis suggests, we are mostly interested in
manipulating the Dirac cones of topological insulators and graphene. One of the
key properties that is related to quantum transport is the Fermi velocity, which in
these systems corresponds merely to the slope of the cone. Hence, in contrast to
regular semiconductors, by simply shifting the Fermi level one does not change the
Fermi velocity. In this Thesis, we propose to dynamically modify such a velocity by
applying external fields. In graphene, there exist several proposals towardsmodifying
such defining property [44–49]. However, none of these proposals allow to alter the
Fermi velocity in a dynamical way. For instance, the Fermi velocity can be altered by
interaction with a substrate. However, this substrate is fixed and, in order to change
the Fermi velocity, one would need to change the substrate. In our proposal, the
Fermi velocity becomes field dependent and, therefore, it can tuned on the fly. The
potential interest ofmodifying theFermi velocity is the great impact it has onquantum
transportmeasurements. As an example, it has been proposed that a sheet of graphene
on top of a patterned substrate, which would in turn create a patterned configuration
of velocities, can lead to a complete suppression of the transmission [50].
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In any case, even if applications are absent or far in the future, we may conclude
this introduction by quoting Duncan Haldane on a telephone interview that followed
the announcement of the 2016 Nobel Prize in Physics:

It’s very difficult to know whether something is useful or not, but one can know
that it’s exciting.
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Chapter 2
Two-Band Models

The Dirac equation [1] is commonly referred to as the relativistic equation for the
electron [2]. Although this view is compelling since the equation satisfies Lorenz
covariance, it leads to the correct energy-momentum relation for the electron and it
incorporates spin in a very naturalway, it has its drawbacks. In particular, the equation
should correspond to a single particle equation, that for the electron. However, in
order to be stabilized, it requires the ad hoc introduction of a Dirac sea that is
completely full. In order to circumvent this problem, quantum field theory must
be used and the wavefunction in the Dirac equation is to be reinterpreted rather as a
quantum field [3].

In contrast to its counterpart inHighEnergy Physics, in CondensedMatter Physics
the Dirac equation arises as a low energy description of Dirac materials such as
graphene or topological insulators. Therefore, there is no such problem as to giving
an interpretation for an unbounded spectrum from below since the model is only
valid for low energies. Also, the problem of an infinite negative charge due to the
completely full Dirac sea is not present, not only because of the previous argument
but also because the ionic charge neutralizes this effect. The final purpose of this
chapter will be to derive the Dirac equation that is encountered in the two systems
considered in this Thesis: topological insulators and graphene. Typically this is done
by means of what is known as k · p theory [4–7]. However, we shall approach the
subject from the so-called method of invariants, which states that the Hamiltonian
has to be invariant under the symmetries of the the system [7–10]. Before we tackle
that problem, it is worth to describe briefly what topology is and its relation to
symmetries, as we do in the following section.
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2.1 Topology and Symmetries

In this section, we will provide a brief motivation to the concepts of topology and
symmetry, that will prove useful to our understanding in the next sections. In partic-
ular, we will introduce the concept of topological invariant and why it is important
in two specific physical applications.

2.1.1 Homotopy and Winding Numbers

Topology is the branch of mathematics that deals with continuity. An important con-
cept in topology is that of homeomorphism. Loosely speaking, a homeomorphism is
a transformation from an object1 to another such that it preserves the global prop-
erties of the former and vice versa. The canonical example is that where a coffee
cup is continuously deformed into a doughnut. These two are said to be homeomor-
phic or topologically equivalent. However, it is usually somehow difficult to find if
two objects are homeomorphic. Rather, we make use of the so-called topological
invariants. These are quantities that we can compute and compare: if the topological
invariant of one object is different from that of another, then the two objects are not
homeomorphic [11]. Notice that the converse need not be true, that is, if two objects
share a few topological invariants then they might not be homeomorphic. This is
because, up to date, there is no knowledge of all the topological invariants that exist
and, therefore, it is not possible to compare them all. In the case of the coffee cup
and the doughnut, the topological invariant is the number of holes. Then, we can
conclude that an orange an a doughnut cannot be homeomorphic since they have a
different number of holes.

In the quantumworld, there are also topological invariants to compute.Most of the
times, one canunderstand these invariants by analysing thewinding in the phase of the
wavefunction around special points of the parameter space. In order to understand the
following statements a little better, we shall give a short introduction to homotopy, but
we shall restrict to a basic introduction, leaving the mathematical details to specific
books on the subject [11]. Let us consider some topological space, Y . Examples of
topological spaces are the real line R, or more generally, the Euclidean space R

n , the
circle S1, the torus T = S1 × S1, and many more examples. We can view paths in Y
as continuous mappings from some other topological space X into Y , that is, a path
is a continuous mapping α : X → Y . If two such paths can be deformed into one
another, they are said to be homotopic or homotopically equivalent. As a result, we
can define equivalence classes known as homotopy classes denoted by [α], where all
paths equivalent to the path α fit in. Given two paths α and β, such that the end point
of α coincides with the starting point of β, we may construct a product path, γ = αβ.
In the case where X is a segment X = [0, 1] or the unit circle S1, this is achieved by
simply pasting the starting point of β to the final point of α. This product naturally

1More formally, a topological space.



2.1 Topology and Symmetries 11

translates into a product between equivalent classes,

[α][β] = [αβ] . (2.1.1)

Let {X, Y } be the set of all homotopy classes of maps from X to Y . That set, together
with the multiplication law above, satisfies the four axioms of a group. If X = Sn is
the nth sphere, then such group is called the nth homotopy group of Y , πn(Y ). For
n = 1, this is also known as the fundamental group, π1(Y ). Particularly interesting
is to find which groups are isomorphic to the homotopy groups, that is, those groups
that can be mapped one-to-one to the homotopy groups. Let us consider for instance
Y = R

n . Since all loops inR
n are contractible to a point, all loops belong to the same

equivalence class. Therefore, there is only one element in πn(R
m), which means that

πn(R
m) is trivial, πn(R

m) ∼= {e}, where e is the identity element. We say that R
n is

simply connected. On the other hand, if Y = Sn , then we find that πn(Sn) ∼= Z. That
is, the nth homotopy group of the nth sphere is isomorphic to the group of integers
under addition. We can understand this easily by considering the n = 1 case. Each
equivalence class can be identified by an integer, namely, the number of times the
loops in that class wind around the circle, say m times. We call such an integer a
winding number. It is then clear that the product of two equivalence classes with
winding numbers m and n lead to the equivalence class of winding number m + n.
Therefore, Z has the same structure as π1(S1) and, therefore, they are isomorphic.
The same applies to πn(Sn). We can see that the winding numbers provide us with
an interesting result, namely, that two loops of different winding numbers belong to
disjoint classes and, therefore, they cannot be continuosly deformed into one another.
Hence, the winding number is our first encounter with a topological invariant.

Let us consider two examples where the winding number arises: the Aharonov–
Bohm effect [3, 12] and the Su-Schrieffer–Heeger model [13]. We shall consider
� = 1 hereafter. Let us start with the Aharonov–Bohm effect, which consists on the
following: imagine a charged particle moving in free space. Now, place an infinite
solenoid of radius R along the Z -axis, carrying a steady current which, in turn,
generates a nonzero magnetic field inside the solenoid, B. Outside, the magnetic
field is zero. However, the vector potential A is not zero outside the solenoid. Indeed,
in order to have

� =
∮
C

A · dr , (2.1.2)

where � is the flux threading the solenoid and C is a path enclosing the latter, we
must have in cylindrical coordinates

A = �

2πr
êφ , (2.1.3)

in the region outside the solenoid, r > R. Notice that ∇ × A = 0 outside the
solenoid, as it should be because B = 0 in that region. TheHamiltonian for a charged
particle in the background of a gauge field A is given by
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H = 1

2m
( p − q A)2 , (2.1.4)

where m is the mass of the particle and q is its charge, p is the momentum operator.
We can remove the vector potential by means of a gauge transformation of the form

ψ(r) → exp

(
i q

∫ r

A · dr ′
)

ψ(r) , (2.1.5)

where the integral is along any path. In the field-free regionwhere the charged particle
is allowed to move, we can write A = ∇λ, where

λ(φ) = �

2π
φ . (2.1.6)

We can also write this equation in a slightly more cumbersome manner which will
nevertheless prove to be useful afterwards

λ(φ) = �

2π i
log [η(φ)] , η(φ) = exp(iφ) . (2.1.7)

Then, the phase factor acquired along a trajectory starting at φi and finishing at φ f

would be

γ = −i
�

�0
log

[
η(φ f )

η(φi )

]
, (2.1.8)

where �0 = 2π/q is the Dirac flux quantum. If the path is a closed loop, then γ

corresponds to a phase difference and it affects an interference measurement. In that
case, φ f = φi + 2π N , where N is the number of times the path winds around the
solenoid and, therefore,

γAB

2π
= N

�

�0
. (2.1.9)

In this calculation, the actual shape of the path is irrelevant, as long as it encloses the
solenoid N times. This phase is known as the Aharonov–Bohm phase. Notice that if
� is an integer multiple of �0, the system is gauge invariant, since γ would be an
integer multiple of 2π and, therefore, the interference pattern resulting from having
or not a flux would remain the same. Related to our discussion about topology, N is
the winding number. Indeed, it arises from considering the mappings

η : S1 → U (1)

φ �→ η(φ) = exp(iφ) .
(2.1.10)

Since the group space of U (1) is S1, then these mappings are characterized by the
fundamental group π1(S1) ∼= Z. In this case, the winding number can be given the
geometrical interpretation that we have found of the number of times a path winds
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around the solenoid. This is because the configuration space is R
2 − {0}, that is, a

plane with a hole at the position of the solenoid, whose first homotopy group is also
Z. We say that both topological spaces, R

2 − {0} and S1, are of the same homotopy
type.

The second example will be the Su-Schrieffer–Heeger (SSH) model. This is a
model for polyacetylene, a polymer of carbon and hydrogen atoms, (CH)x . Atomic
theory predicts that the ground state for carbon is 2s22p2. However, when forming
compounds, carbon excites to 2s12p3 so that the four unpaired orbitals can hybridize.
For instance, one can form four sp3 orbitals where the carbon atom sits in the middle
of a tetrahedron. That way, it is possible to maximize the overlap between orbitals
when forming a crystal lattice which, as a result, compensates the increase in energy
for carbon being excited in the first place. In this case, the resulting system is dia-
mond. These strong covalent σ -bonds are responsible for most of the mechanical
properties of diamond. Also, since there are no free electrons to roam around the
crystal, the system is an insulator. However, there are also other possible hybridiza-
tions, most notably the sp2 hybridization. Here, the carbon atom sits at the center of
a triangle, each of the three sp2 orbitals pointing from that position to each vertex
of the triangle. The extra unhybridized p orbital is perpendicular to such triangle.
With this arrangement, we can form an array of carbon atoms by overlapping one sp2

orbital from one carbon atom to another sp2 orbital from another carbon atom. The
third sp2 orbital is then bonded to hydrogen. The perpendicular p orbitals weakly
couple to each other forming π bonds. Since all p orbitals form π bonds with each
other, the result is a π band. Each carbon atom donates a single electron to that band
and, therefore, it is half-filled because the band is degenerate in spin. The system is
then expected to be metallic. However, as Rudolf Peierls pointed out, this situation
is not possible at low temperatures [14, 15]. Instead, he proposed the lattice to be
distorted, reducing the discrete translational symmetry of the lattice. Let every other
atom come closer to its neighbour, so that the strength of the overlap between neigh-
bouring atoms becomes staggered. As a result of this symmetry reduction, the unit
cell now contains two atoms instead a single atom and, therefore, the Brillouin zone
is halved. The effect of the perturbation in the nearly free electron model is to open
up a gap at the boundaries of the Brillouin zone. The net result is that all electrons
fully occupy a π band that is lower in energy with respect to the original π band,
consequently reducing the energy of the system. Thus, the system becomes an insu-
lator. There are details to this model that are not to our interest but can be consulted
in the original reference by SSH [13]. For our purposes, suffices to say that we can
consider a tight-binding model with staggered hoppings for the p orbitals [16].

Let us denote the two atoms in the unit cell by A and B. In the following, we shall
measure distances in units of the lattice constant, a. The distance between atoms in
the unit cell will be 0 < δ < 1. Therefore, positions of the A atoms will be given by
RA = m and those of the B atoms will be given by RB = m + δ. See Fig. 2.1.

On each atom, we have a localized p orbital, φ(x − Rα) = 〈x |Rα〉. For conve-
nience of calculations, we shall consider that these orbitals form an orthonormal
basis, that is, 〈Rα|R′

β〉 = δαβδR R′ . Also, for convenience of notation, we can write
|Rα〉 ≡ |m, α〉 = |m〉 ⊗ |α〉. We can then build any state in that basis as follows
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Fig. 2.1 SSH chain. The lattice constant is a = 1 and the separation between A and B atoms
within a blue oval is δ. The hoppings are staggered and take values t1 and t2. A unit cell is shown
in yellow

|ψ〉 =
(

1√
N

∑
n

cn|n〉
)

⊗
(

1√
2

∑
α

ϕα|α〉
)

, (2.1.11)

where N is the total number of unit cells and cn, ϕα ∈ C. We assume hereafter that
|ψ〉 is normalized. The Hamiltonian we shall consider is a nearest-neighbour tight-
binding Hamiltonian

H =
∑

n

[t1|n, A〉〈n, B| + t2|n + 1, A〉〈n, B| + h.c.] , (2.1.12)

where the intracell hopping is t1 and the intercell hopping is t2 and we take them to
be real, which can always be done for one-dimensional systems, and h.c. denotes the
Hermitian conjugate. Here we have fixed the onsite energy to zero for convenience.
We can equivalently write this Hamiltonian as follows

H = t11N ⊗ σx + t2
[
T1 ⊗ σ+ + T−1 ⊗ σ−

]
, (2.1.13)

where 1d is the d-dimensional identity matrix and we have introduced the translation
operators in the lattice subspace

Td =
∑

n

|n + d〉〈n| , (2.1.14)

and the lowering and raising operators in the cell subspace

σ± = 1

2

(
σx ± i σy

)
, (2.1.15)

where σi with i = x, y, z are the three standard Pauli matrices. This Hamiltonian
is manifestly translationally invariant and, as such, we can choose |ψ〉 to be an
eigenstate of the translation operators. This in turn allows us to introduce a quantum
number, the quasimomentum k, such that the coefficients in the lattice expansion,
cn , are given by cn = exp(i kn). That is,
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|ψk〉 =
(

1√
N

∑
n

ei kn|n〉
)

⊗
(

1√
2

∑
α

ϕα|α〉
)

≡ |φk〉 ⊗ |μ〉 . (2.1.16)

Clearly, |ψk〉 is an eigenstate of Td ⊗ 12 with eigenvalue exp(−i kd). Therefore, if
we apply H to |ψk〉 it is straightforward to obtain

H |ψk〉 = |φk〉 ⊗ [
t1σx + t2

(
e−i kσ+ + ei kσ−

)] |μ〉 . (2.1.17)

The term in brackets is easily computed

[
t1σx + t2

2

(
e−i kσ+ + ei kσ−

)] |μ〉 = 1√
2

[
δ∗(k)ϕB |A〉 + δ(k)ϕA|B〉] , (2.1.18)

where we have defined

δ(k) = t1 + t2 exp (i k) = |δ(k)| exp [i θ(k)] . (2.1.19)

Therefore, we finally find that

〈ψk |H |ψk〉 = 1

2

[
δ∗(k)ϕ∗

AϕB + δ(k)ϕ∗
BϕA

]
. (2.1.20)

We will now make use of the variational theorem, which states that the optimum ϕα

are those that minimize the energy. That is, we must minimize

E(k) = 〈ψk |H |ψk〉
〈ψk |ψk〉 , (2.1.21)

with respect to ϕ∗
α . Since

〈ψk |ψk〉 = 1

2

[
ϕ∗

AϕA + ϕ∗
BϕB

]
, (2.1.22)

applying the above prescription we find that

(
0 δ∗(k)

δ(k) 0

) (
ϕA

ϕB

)
= E(k)

(
ϕA

ϕB

)
. (2.1.23)

As it is now, it is fairly easy to obtain the dispersion relation and the amplitudes by
diagonalizing the matrix above, which we shall denote by the Bloch Hamiltonian
H(k) hereafter,

Es(k) = s|δ(k)| , χ s(k) ≡
(

ϕA(k)

ϕB(k)

)
s

=
(

se−i θ(k)

1

)
, (2.1.24)
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where s = ±1. Notice that, unless t1 = t2, the spectrum possesses an energy gap
given by 2|t1 − t2|. The eigenstates, however, are defined up to an arbitrary phase
exp [iφ(k)]. If chosen to be such that φ(k) = θ(k)/2, the eigenstates above are
written as follows

χ s(k) = R [θ(k)]χ0
s , (2.1.25)

where

R [θ(k)] = exp

(
−i

θ(k)

2
σz

)
, χ0

s =
(

s
1

)
. (2.1.26)

The matrix R [θ(k)] resembles that of a spin rotation about the Z -axis of angle
θ(k) [17]. Just like with spin, a rotation of 2π leads to a minus sign. Equivalently, the
state acquires a phase of π upon θ(k) completing a full rotation. This is very similar
to the Aharonov–Bohm effect, where the mapping η(φ) = exp(iφ) is now given by a
more complicatedmapping exp [i θ(k)] that is not simply given by exp(i k). However,
it is still a mapping from S1 (the Brillouin zone is periodic) to U (1). Therefore, we
can introduce once again the notion of winding numbers, which we shall denote by
ν. Nevertheless, it may be not so straightforward to visualize the winding in this case,
so it makes sense to delve a little more into this mapping. It is defined as

θ(k) = arg {t1 + t2 exp (i k)} . (2.1.27)

Let us take a look at three extreme cases:

• t2 = 0, t1 �= 0 ,
• t1 = 0, t2 �= 0 ,
• t1 = t2 �= 0 .

In the first case, it is immediately clear that θ(k) = 0 for all values of k. That is,
θ(k) does not wind around the unit circle as k winds around the unit circle itself.
Therefore, the winding number is ν = 0 in that case. In the second case, the argument
is directly k, so, similar to the Aharonov–Bohm case, a winding of k around S1 leads
to a winding around S1 for θ(k). The winding number is therefore ν = 1. In the third
case, however, the winding number cannot be defined because a closed path for k
around S1 does not lead to a closed path around S1 in this case, but rather to an open
path. Indeed, in such a case θ(k) = k/2. This has to do with the fact that the t1 = t2
line is that where the two bands touch at the edge of the Brillouin zone or, more
precisely, it corresponds to the artificial folding of a one-dimensional chain with a
single atom per unit cell. Therefore, that line, t1 = t2, corresponds to what is known
as a topological phase transition. All other paths where t2 < t1 can be continuously
connected to those where t2 = 0, t1 �= 0, whereas all paths where t2 > t1 can be
connected to those where t1 = 0, t2 �= 0. The three cases are summarized in Fig. 2.2.
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Fig. 2.2 Topology in the SSH model. Dispersion relations of the SSH chain for three extreme
cases: a t1 = 1, t2 = 0, b t1 = t2 and c t1 = 0, t2 = 1. Mappings θ(k) from S1 to S1 with their
corresponding winding numbers corresponding to the dispersion relation shown above each of
these figures: d the loop is a single point and, therefore, has ν = 0, e there is no closed loop so we
cannot define a winding number and f the loop wraps around the circle, so ν = 1. These maps have
been enlarged in comparison to the black circles where they live for visualization purposes only

2.1.2 Zero Modes and the Bulk-Boundary Correspondence

In order to explore the consequences of having nonzero winding numbers, we will
consider the envelope function approximation [5], which we shall also refer to as
the low energy continuum description [18]. Except for the critical case, t1 = t2, the
electronic dispersion displays two bands separated by an energy gap. As explained
above, each carbon atom provides with one electron and, due to spin degeneracy
of the band, the lower band is fully filled and the upper band is completely empty,
leading to a regime known as half filling.We shall then be interested in those electrons
closest to the Fermi energy, which in this case corresponds to those at the edge of
the Brillouin zone, Q = π . Recall that distances are measured in units of the lattice
spacing, a, so that crystal momenta are measured in units of 1/a. With this in mind,
let us rewrite Eq. (2.1.16) as follows

|ψk〉 =
∑

α

(∑
n

ei Qn F Q
α (n)|n〉

)
⊗ |α〉 . (2.1.28)

In order to coincide with Eq. (2.1.16), F Q
α (n) would have wavevector q = k − Q. If

we want to explore the vicinity of Q, then q is a small number and, therefore, F Q
α (n)

is a slowly-varying function of n around Q [19]. We shall see the consequences of



18 2 Two-Band Models

this statement shortly. Before doing so, we act with H upon |ψk〉 and multiply on
the left by a generic 〈l, β|, which leads to

t1
∑
α �=β

F Q
α (n) − t2

[
F Q

B (n − 1)δβ,A + F Q
A (n + 1)δβ,B

]
= E F Q

β (n) , (2.1.29)

where we have taken into account that exp(±i Q) = −1. Here is where the slowly-
varying nature of Fα comes into play. Taking advantage of such a property, we can
switch to a continuum description

F Q
α (n) → F Q

α (x) , F Q
α (n ± 1) → F Q

α (x) ± ∂x F Q
α (x) ≡ (1 ± i q) F Q

α (x) ,

(2.1.30)
where q = −i∂x . Therefore, combining Eqs. (2.1.29) and (2.1.30) we find that

(
0 t1 − t2 + i t2q

t1 − t2 − i t2q 0

) (
F Q

A (x)

F Q
B (x)

)
= E

(
F Q

A (x)

F Q
B (x)

)
. (2.1.31)

Notice that this equation is exactly the same as that for the amplitudes, ϕα(k), given
in Eq. (2.1.23) when doing k = q + Q and expanding around q = 0. This is the
usual approach to obtain such a low energy Hamiltonian in a faster way from the
microscopic, tight-binding description [18]. In order to keep the notation clearer and
to study the effect of a small distortion, we shall denote t1 = t + δt and t2 = t − δt ,
where 4|δt | � t is the bulk energy gap. Notice that δt can be either positive or
negative. If negative, it corresponds to a nonzero bulk winding number, as discussed
earlier in the text, and otherwise if positive. Let us denote by m = 2δt and vF = t .
Then, we can write the previous equation as follows

(
mσx − vFσyq

)
FQ(x) = E FQ(x) , FQ(x) =

(
F Q

A (x)

F Q
B (x)

)
. (2.1.32)

In order to make this equation more familiar, we can perform a rotation such that
σx → σy and σy → −σx . We do so with exp(−iπ σz/4). Hence,

(
vFσx q + mσy

)
FQ(x) = E FQ(x) . (2.1.33)

For clarity, we have chosen not to rename the rotated FQ . This is a Dirac equation in
1 + 1 dimensions, where the speed of light is replaced by the Fermi velocity and the
mass is replaced by the bulk energy gap. We will use this model to explore the conse-
quences of the topology in the SSH chain. Since themodel has two equivalent ground
states, that is, one where δt > 0 and another where δt < 0 (both of same magnitude
|δt |), one would expect the appearance of domain walls. That is, a region where the
hopping sequence inverts. For instance, . . . , t1t2t1t2 t1 t1t2t1 . . . . See Fig. 2.3.

In essence, it is a region where m changes from being 2δt to −2δt . Assuming
δt > 0, this means that the bulk region with m = 2δt corresponds to a sector with
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Fig. 2.3 Domain wall in the SSH chain. A chain with ordering t2t1 abruptly changes to t1t2. The
yellow spot corresponds to the location of the domain wall and it will be a place for finding a zero
mode

winding number ν = 0 and the bulk region with m = −2δt corresponds to a sector
with winding number ν = 1. Since the domain wall connects two regions of different
winding numbers, we say that it is a topological boundary [20]. The consequence,
which translates to many other examples of topological phases with invariants differ-
ent from thewinding number [21–23], will be the presence of topologically protected
states at the boundary. This is known as the bulk-boundary correspondence [16, 23–
25]. Let us explicitly derive this by introducing a mass that changes sign in the Dirac
equation. Although this could be done smoothly, for our purposes we can assume the
interface to be abrupt and propose m = |m|sgn (x). As is customary with the Dirac
equation, in order to find the spectrum we study the squared Hamiltonian

[−v2
F∂2

x + m2 + 2vF |m|σzδ(x)
]

FQ(x) = E2 FQ(x) . (2.1.34)

The solution to this equation is given by

FQ(x) = exp (−k|x |) � , k2 = m2 − E2

v2
F

, (2.1.35)

where � is a constant vector which, due to continuity, it is the same on both sides
of the domain wall, and we have taken k > 0. Notice that this solution implies that
the energy of the topological boundary mode has to be within the bulk energy gap.
Integrating Eq. (2.1.34) we can obtain the other boundary condition

− v2
F

[
∂x F(0+) − ∂x F(0−)

] + 2vF |m|σz F(0) = 0 , (2.1.36)

or, equivalently,

σz� = −kvF

|m| � . (2.1.37)

This can be thought of as an eigenvalue problem and we can take as eigenvectors
those of σz . However, there is also the restriction that k > 0, which only allows
us to consider the eigenvalue −1 with eigenvector � = (0, 1)T . Therefore, we find
that kvF = |m| which, taking into account Eq. (2.1.35), it implies the existence of a
non-degenerate, zero-energy mode, E = 0, localized at the interface

FQ(x) = exp

(
−|mx |

vF

)(
0
1

)
, E = 0 . (2.1.38)
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Fig. 2.4 Zero mode at a
domain wall in the SSH
chain. In the continuum
description, the domain wall
amounts to a change in the
mass term of the Dirac
equation

This zero-energymodewas obtained by SSH [13], and a similar result from a seminal
paper by Jackiw and Rebbi was obtained in the context of field theory [26]. We show
the zero mode schematically in Fig. 2.4.

2.1.3 Symmetries and the Altland–Zirnbauer Classification

Up to now, we have only discussed topology and two particular setups where one
can define winding numbers. However, the title of this section also contains the word
symmetry. This is particularly relevant to our last example. These symmetries are
present in the microscopic model and transfer directly to the continuum model as
well.2 The following discussion will prove to be useful also for constructing low-
energy Hamiltonians with the method of invariants [10]. The argument is as follows:
let H(K) be a Hamiltonian of a system depending on a general tensor operator, K,
which may depend on the crystal momentum, electric and magnetic fields, strain,
and the spin of the electrons [27]. Then, if the system is invariant under an element
g of a symmetry group G, then the Hamiltonian must also be invariant under such a
symmetry, that is [10]

D(g)H(K)D−1(g) = H(gK) , (2.1.39)

whereD(g) is the matrix representation of the group element g. A theorem in group
theory states that we can always choose such a matrix representation to be uni-
tary [28]. It is also important to consider time-reversal invariance, T . In that case,
we have

�H(K)�−1 = H(ζK) , (2.1.40)

where ζ = +1 for strain and electric field and ζ = −1 for crystal momentum, spin
and magnetic field. That is, under time-reversal symmetry, the strain tensor or the

2The continuum model may display more symmetries than the microscopic model does due to
restricting terms to lowest order in momenta. We shall see examples of this throughout the text.
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electric field are unaffected, whereas momentum is inverted (thus inverting the group
velocity) and also are the spin and the magnetic field, because these two are pseu-
dovectors. Here, � is the operator representing the operation of T . However, in con-
trast to the matrix representationsD(g), � cannot be chosen to be unitary. Although
the argument can be made rigorous [17], we shall keep it simple: time-reversal sym-
metry does not affect position, but it changes the sign of momentum. Consider the
canonical commutator

� [x, p] |ψ〉 = �i |ψ〉 , (2.1.41)

where |ψ〉 is an arbitrary state. Then, if �−1 exists, we can insert the identity and
write

� [x, p]�−1�|ψ〉 = �i |ψ〉 . (2.1.42)

As we said earlier, time reversal inverts momentum but not position, so� [x, p]�−1

= [x,−p] = − [x, p]. Hence,

− [x, p]�|ψ〉 = �i |ψ〉 . (2.1.43)

If � were linear, then �c|ψ〉 = c�|ψ〉, where c is a complex number. This in turn
would not leave the commutator invariant. Instead, we require � to be antilinear, so
that �c|ψ〉 = c∗�|ψ〉. As a result,

[x, p]�|ψ〉 = i�|ψ〉 . (2.1.44)

Therefore, [x, p] acting upon the time-reversed, arbitrary state�|ψ〉, still leads to the
same i . Therefore, if � is antilinear and �−1 exists, the canonical commutator stays
invariant under time-reversal symmetry. Moreover,� has to be such that the norm of
|ψ〉 is invariant under its action. An operator satisfying these three conditions is said
to be antiunitary [6, 17]. The actual form of � will depend on the representation,
but we may generally write it as the product of a unitary operator, U , and complex
conjugation, K, which would satisfy all the requirements stated before. Hence, we
write

� = UK . (2.1.45)

Two particular realizations of U are of importance. One is that for spinless particles
and the other is that for spinful particles. For simplicity, we shall restrict the fol-
lowing discussion to the case where the orbital variables are given in the coordinate
representation and spin will be in the representation where Sz is diagonal. Other rep-
resentations (e.g. the momentum representation), can be considered for the orbital
variables [17], but the coordinate representation is particularly useful because the
basis states are unaffected by �. In such a case, the unitary operator is therefore
just the identity. For particles with spin, however, spin has to change sign under
time-reversal symmetry, as discussed above. Therefore, complex conjugation alone
only changes the sign of Sy , which is imaginary in the chosen representation for the
spin variables. Hence, we need a unitary operator that changes the sign of Sx and
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Sz , while leaving Sy untouched. Also, the unitary operator must only act on the spin
subspace, so that it does not affect the orbital variables, which are already taken care
of by complex conjugation. We can achieve such a result by means of a π rotation
in the spin space around the Sy axis. That is, U must be given by [17]

U = exp
(−iπ Sy

)
. (2.1.46)

In the case of spin-1/2 particles, where Sy = σy/2, using the property that σ 2
y = 12,

it is particularly simple to show that

U = −i σy . (2.1.47)

It is also particularly interesting to study the square of �, since one would normally
argue that applying � twice should be equivalent to the identity. Surprisingly, this is
not the case. Indeed, since i Sy is real, then U and K commute and we find that

�2 = exp
(−i 2π Sy

)
. (2.1.48)

As we can see, �2 is unitary and its eigenvalues are either +1 or −1 depending
on whether we have integer or half-integer spins, respectively. There are important
consequences to these that we will explore in due time. As of now, let us come back
to the SSH system. Let us first start with the more conventional symmetry groups.
In this case, the only symmetry we find is space inversion,3 I , about the center
of an arbitrary bond center (remember we are considering the infinite chain). This
symmetry takes A to B and vice versa within a unit cell, so in order to hold A and B
must actually be chemically equivalent atoms, as is the case because A and B are both
carbon atoms. Hence, a unitary matrix representation of inversion that exchanges A
and B can be taken to be D(I ) = σx . We also need to know the action of I on the
general tensor,K. In this case, we are neglecting strain, electric and magnetic fields,
and spin. Therefore, we are only left with the crystal momentum, k, which changes
sign under inversion. Hence, space inversion is finally written as follows

σxH(k)σx = H(−k) . (2.1.49)

Let us now turn our attention to time-reversal symmetry. Since we are considering
spinless particles or, equivalently, spin-polarized, then � = K. Hence, taking into
account that k changes sign under time-reversal, we can write

H∗(k) = H(−k) . (2.1.50)

Consequently, the two symmetries would hold if

3We have already exploited translational symmetry to block-diagonalize the tight-binding Hamil-
tonian. That is, we have block-diagonalized the Hamiltonian according to the irreducible (one-
dimensional) representations of the translation operator.
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σxH∗(k)σx = H(k) . (2.1.51)

If we write a generic two-band Hamiltonian as follows,

H(k) = d(k) · σ , (2.1.52)

we can see that the combination of the two symmetries leads to dz(k) = 0. On
the other hand, separately these symmetries lead to dx (k) = dx (−k) and dy(k) =
−dy(−k). In the microscopic model of the SSH chain given by Eq. (2.1.23), the d(k)

vector is given by

d(k) = (Re [δ(k)] , Im [δ(k)] , 0) = (t1 + t2 cos(k), t2 sin(k), 0) . (2.1.53)

Notice that, indeed, the two symmetries that we have discussed hold in this scenario.
This system has two more symmetries that are somehow more subtle, but it is their
presence that leads to the peculiar topological behaviour of the SSH model. The
first symmetry is a unitary operator, but it does not behave as a usual unitary, in the
sense that it does not commute with the Hamiltonian. Rather, it anticommutes. This
is known as chiral or sublattice symmetry, �, which is such that

�H(k)� = −H(k) . (2.1.54)

Before we apply this to the SSH model, let us pause and ponder on the implications
of this symmetry. Let |ψ〉 be an eigenstate of the Hamiltonian, with energy E . Then,
due to the anticommutation of the chiral operator with the Hamiltonian, there will be
another eigenstate �|ψ〉 to the Hamiltonian with energy−E , enforcing the spectrum
to be symmetric around E = 0. However, it is possible that |ψ〉 turns out to be an
eigenstate of �, in which case |ψ〉 and �|ψ〉 are actually the same state. This seems
to contradict our discussion that chiral symmetry enforces states to come in pairs
(E,−E). Therefore, the only option for a state to be its own chiral partner is to
be at zero energy, that is, to be a zero-energy mode. As a result, as long as there
are no chiral-symmetry-breaking perturbations, the zero-energy mode will remain
at zero energy. In the SSH model, we can see that � is realized in σz . Therefore,
as long as there are no diagonal terms in the Hamiltonian, chiral symmetry will be
preserved. Notice that constant diagonal terms proportional to the identity are valid,
since those can be absorbed in the energy. However, if there are terms proportional
to the identity but depending on k, they cannot be absorbed in a redefinition of
the energy. Those terms break chiral symmetry, and they would naturally appear
when including second-nearest-neighbour hoppings. Let us continue our discussion
ignoring such terms. We said that there were two more symmetries apart from space
and time reversal, one of them being chiral symmetry. The other symmetry is an
antiunitary operator that is obtained as the product of time-reversal symmetry and
chiral symmetry and it is commonly referred to asparticle-holeor charge conjugation
symmetry. Therefore,

PH(K)P−1 = −H(ζK) , (2.1.55)
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Table 2.1 Altland–Zirnbauer (AZ) classification of topological matter. Single particle Hamil-
tonians are categorized depending on the presence or absence of time-reversal, T , particle-hole
P and chiral, C, symmetries. Absence of a symmetry is indicated with a 0. Presence of T or P
is labeled with ±1, depending on the value of the corresponding squared operators. Presence of
chiral symmetry is indicated by 1. Depending on spatial dimension (1, 2, 3), the space of ground
states may be trivial, as indicated by a dash. It may be divisible into a countably infinite number of
topological sectors, each of which is labeled by an integer Z. Finally, there may be only two distinct
topological sectors, allowing us to label them with a binary or Z2 quantity [33]

AZ class Symmetry Dimension

T P C 1 2 3

A 0 0 0 − Z −
AI +1 0 0 − − −
AII −1 0 0 − Z2 Z2

AIII 0 0 1 Z − Z

BDI +1 +1 1 Z − −
CII −1 −1 1 Z − Z2

D 0 +1 0 Z2 Z −
C 0 −1 0 − Z −
DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 − − Z

whereP = ��. Just like with time-reversal symmetry,P can also square to±1 [29].
In our case P2 = 1. It is important to notice that all these symmetries that we have
discussed are also present in the continuum Hamiltonian.

With all this knowledge, we can try to find a place for the SSH model in the
Altland–Zirnbauer classification [29–33]. That classification does something similar
to our discussion of homotopy. However, it is rather involved and we shall restrict
to say that, in that classification, the homotopy groups of Hamiltonians are given
according to the spatial dimension and the symmetries. As a result, each ground
state of the Hamiltonian is labeled with a topological invariant. Hence, different
gapped ground states of different topological invariants cannot be connected because
they belong to different sectors. In total, there are ten symmetry classes resulting
from the different combinations of having or not time-reversal, particle-hole and
chiral symmetries and whether the former two square to +1 or −1. A table with
all such symmetries and the corresponding homotopy groups for spatial dimensions
d = 1, 2, 3 is shown in Table 2.1 [30, 33]. Whenever the symbolZ appears it implies
that there is a countably infinite number of topological sectors, each of which can be
labeled by an integer. If Z2 appears instead, there are only two distinct topological
sectors that can be labeled with a binary quantity. In our case, we have time-reversal
and particle-hole symmetries, both squaring to +1, and chiral symmetry. Therefore,
we can place the SSH model in the BDI class. In that case, the space of ground
states is partitioned into sectors with different Z invariant. As we have obtained, the
phases with t1 > t2 and t1 < t2 are both ground states of the Hamiltonian with the
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same energy gap of 2|t1 − t2|, but they are topologically distinct, since the former
has winding number ν = 0 and the latter has ν = 1. That is, it is not possible to
continuously connect both ground states without undergoing a topological phase
transition at t1 = t2. One can access other ground states with higher winding numbers
in the BDI class by allowing only odd-neighbour hoppings [34]. In that case, all
symmetries are preserved and we are still in the BDI class. Notice that this is far
from realistic, since one would expect that in reality there should also be even-
neighbour hoppings, which break both chiral and particle-hole symmetries, placing
the SSH model in the AI class, which is trivial in one dimension. In this case, all
gapped ground states are topologically equivalent and one can continuously shift
from one to the other without closing the gap. Indeed, if we allow for a constant term
dz(k) = λ, the spectrum would become

E(k) = ±
√

t21 + t22 + 2t1t2 cos(k) + λ2 , (2.1.56)

which at k = π would lead to

E(Q) = ±
√

(t1 − t2)2 + λ2 . (2.1.57)

Hence, if λ �= 0, we can shift from t1 > t2 to t1 < t2 without closing the gap and, as a
result, the two ground states are topologically equivalent. If we create a domain wall
and proceed as before, the state at zero energymoves to E = λ. Since chiral symmetry
is absent, there is no need for an E = −λ state to stabilize the former. Assuming
λ > 0, as it increases keeping m fixed, the state moves higher up in energy until it
reaches the continuum of states and becomes delocalized. This very simple model of
a perturbation of the form λσz is known as the Rice–Mele model [35, 36]. By solving
it on a finite system, it is possible to observe the aforementioned disappearance of
the zero modes into the bulk.

2.2 Method of Invariants

The method of invariants allows us to obtain low-energy continuum Hamiltonians as
the one we obtained for the SSH model by taking into account the symmetries of the
system.A detailed account of thismethod can be found in Refs. [7–10]. Although it is
a truly powerful method for obtaining Hamiltonians for arbitrary tensor operatorsK,
we shall restrict ourselves to the casewhereK contains only the crystalmomentum, k,
and spin. Using group-theoretical arguments, one can obtain the symmetry-allowed
terms of the Hamiltonian by means of what is known as an invariant expansion. In
order to apply the method, we first need to choose a basis and explore how does it
transform under the symmetries of the system. For the SSH model, we choose as a
basis {ψA(x), ψB(x)}. The system possesses inversion symmetry, I , which in this
representation amounts to
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ψA(x) → ψA(−x) = ψB(x) , (2.2.1a)

ψB(x) → ψB(−x) = ψA(x) . (2.2.1b)

Therefore, the basis functions transform according to the representationD(I ) = σx .
On the other hand, since the wavenumber k transforms under inversion as k → −k,
the invariance condition requires that [cf. (2.1.40)]

σxH(k)σx = H(−k) . (2.2.2)

On the other hand, spinless time-reversal symmetry requires that

H(k) = H∗(−k) . (2.2.3)

Let hi j (k) be the matrix elements ofH(k)with i, j = 1, 2. Inversion symmetry leads
to the following constraints to the matrix elements

h22(k) = h11(−k) , h21(k) = h12(−k) . (2.2.4)

Time-reversal symmetry, on the other hand, requires that hi j (k) = h∗
i j (−k). Since

the matrix has to be Hermitian as well, the diagonal coefficients have to be real and,
therefore, even in k, that is, h11(k) = h11(−k). Inversion symmetry also implies that
the diagonal entries contribute to a term proportional to the identity, but not to σz .
The off-diagonal entries are complex in general, but to ensure Hermiticity they are
such that h12(k) = h∗

21(k). Time-reversal symmetry requires that h12(k) = h∗
12(−k).

As a result, there are no restriction to the evenness or oddness as a function of k for
h12(k), as long as such restriction is fulfilled. Therefore, with this knowledge we can
expand the matrix coefficients as follows

h11(k) � a11 + b11k2 + O(k4) , (2.2.5a)

h12(k) � a12 + b12k + c12k2 + O(k3) , (2.2.5b)

where the constant coefficients will be real in h11(k). In h12(k), however, they will
be real for even powers of k and purely imaginary for odd powers of k. Restricting
the expansion to the lowest powers in k, we find that H(k) is given by

H(k) � a1112 + a12σx + |b12|k σy . (2.2.6)

Let us give the coefficients in the expansion an interpretation. In order to do so, we
can diagonalize the Hamiltonian to obtain

E(k) = a11 ±
√

a2
12 + |b12|2k2 . (2.2.7)

If k = 0, we should obtain the two band edges, that is, the minimum and maximum
of the conduction and valence bands, respectively. Therefore, a11 + a12 = εc and
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a11 − a12 = εv , where εc and εv are the band-edge energies. If ε0 is the gap center and
2m is the energy gap, we can write εc = ε0 + m and εv = ε0 − m. Hence, a11 = ε0
and a12 = m. On the other hand, when m = 0 the system becomes metallic and we
should be able to expand the true dispersion relation linearly around the Fermi energy.
That is, E(k) � ε0 ± vF k. Hence, |b12| = vF . Finally, we can write the Hamiltonian
as follows

H(k) = ε012 + mσx + vF k σy , (2.2.8)

which is exactly theHamiltonianwe obtained for the SSH chain bymeans of the k · p
approximation, now using only symmetry arguments. The only difference between
the two is the constant term ε012, which can be absorbed in the energy.

We will now proceed to find the low-energy Hamiltonian for graphene and for the
three-dimensional topological insulators that will be the subject of this thesis.

2.2.1 Graphene Low-Energy Hamiltonian

Let us start with graphene (see Ref. [37] for a review on the electronic properties
of graphene). The formation of the graphene lattice is very similar to that of poly-
acetylene that we discussed earlier for the SSH model. The only difference is that,
instead of placing hydrogen atoms in the unpaired sp2 orbital, we place another sp2

orbital. The result is a honeycomb lattice or, rather, a triangular Bravais lattice with
a double basis. We shall denote the atoms in the basis as A and B, respectively.
Just like in the SSH chain, the pz orbitals weakly couple forming π bonds and, as a
consequence of the large number of orbitals involved in the bulk crystal, these form a
π and a π∗ band. There are also σ bands from the σ bonds between the sp2 orbitals,
but these are far below or above the Fermi energy and we shall not be interested in
those. As of now, the system is very similar to the SSH model, in the sense that we
have these two π and π∗ bands coming from the out-of-plane pz orbitals belonging
to the two sublattices. In fact, since each carbon atom carries one electron on each
pz orbital, the π band is fully occupied and the π∗ band is empty. However, there
are important differences between the two systems, as we will see shortly. For the
following discussion it is convenient to have Fig. 2.5 in mind. The lattice vectors,
shown in Fig. 2.5a, in units of the lattice constant a are given by

a1 = 1

2

(√
3, 1

)
, a2 = (0, 1) . (2.2.9)

The positions of the A atoms will be linear combinations of these two vectors with
integer coefficients, that is,

RA = ma1 + na2 . (2.2.10)

The B atoms are connected to the A atoms by a vector δ = (−1/
√
3, 0), so that

the positions of the B atoms are RB = RA + δ. The resulting honeycomb lattice is



28 2 Two-Band Models

Fig. 2.5 Crystallography of the honeycomb structure. a Triangular lattice underlying the hon-
eycomb structure. The lattice vectors, a1 and a2 are shown, together with a choice for the unit cell
(shaded rhombus). On the right-hand side the basis formed by A and B is shown, together with the
vector δ that links the two. b Honeycomb lattice, resulting from placing the basis of A and B atoms
on each of the points of the triangular lattice. Solid lines have been used to emphasize the basis,
whereas black dashed lines are shown to complete the hexagons. c Reciprocal lattice (grey dots)
spanned by the reciprocal lattice vectors, b1 and b2, are shown along with the hexagonal Brillouin
zone (blue-shaded area) and the high-symmetry points,�, M, K , K ′. The irreducible Brillouin zone
is shown in yellow

shown in Fig. 2.5b. The reciprocal lattice vectors are easily obtained by the standard
procedures and we find

b1 = 2π√
3
(2, 0) , b2 = 2π√

3
(1,

√
3) . (2.2.11)

Linear combinations of these two with integer coefficients create the reciprocal lat-
tice. Since we are in two-dimensions, the reciprocal lattice is obtained easily from
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the direct lattice by simply rotating π/2 and scaling appropriately. Therefore, the
reciprocal lattice is also a triangular lattice and, as a result, the Brillouin zone is a
hexagon rotated π/2 with respect to the original hexagonal Wigner–Seitz cell. The
high-symmetry points of the Brillouin zone are the �, M , K and K ′ points, and
the triangular wedge �M K� defines the irreducible Brillouin zone. The recipro-
cal lattice, along with the Brillouin zone and the high-symmetry points is shown in
Fig. 2.5c. Of special importance to us are the K and K ′ points, which correspond to
two consecutive corners of the Brillouin zone. Those two points cannot be joined by
a reciprocal lattice vector G = hb1 + lb2, just like the position of a B atom cannot
be reached by means of the direct lattice vectors. Taking into account the geometry
of the hexagon, we can also choose for the K and K ′ points to be located in opposite
sides of the hexagon

K = −K ′ = 4π

3
(0, 1) . (2.2.12)

A very simple nearest-neighbour tight-binding model can be proposed for graphene
working in the basis |Rα〉 ≡ |m, n〉 ⊗ |α〉

H = −t
[
1N ⊗ σx + (

Tx + Ty
) ⊗ σ+ + (

T−x + T−y
) ⊗ σ−

]
, (2.2.13)

where we have introduced the translation operators in the lattice subspace

T±x =
∑
m,n

|m ± 1, n〉〈m, n| , T±y =
∑
m,n

|m, n ± 1〉〈m, n| , (2.2.14)

and σ± are the raising and lowering operators in the cell subspace. Proceeding in the
same manner as with he SSH model we obtain a very similar result

(
0 �∗(k)

�(k) 0

) (
ϕA

ϕB

)
= E(k)

t

(
ϕA

ϕB

)
, (2.2.15)

where k = (kx , ky) and

�(k) = 1 + exp (i k · a1) + exp (i k · a2) . (2.2.16)

The dispersion is therefore given by

E(k) = ±t |�(k)| , (2.2.17)

and it is shown in Fig. 2.6.
In the SSH model, the spectrum is gapped unless t1 = t2, which is a situation

that would never occur because it is unstable. However, in graphene, the undistorted
honeycomb lattice is the most stable one, which is why we have set all nearest-
neighbour hoppings to be equal to t . However, in contrast to the SSH model, we can
find a value of k where the two bands touch, that is, where |�(k)| = 0. The reason is



30 2 Two-Band Models

Fig. 2.6 Graphene
dispersion relation. The two
π -bands touch at the K and
K ′ points of the Brillouin
zone and the spectrum is
linear around those points

that we have two equations for this to happen, Re[�(k)] = 0 and Im[�(k)] = 0,with
two unknowns, kx and ky , so there is a possibility to find such degeneracies. The fact
that there are no terms in the diagonal of the Hamiltonian allows us to circumvent
the Wigner–von-Neumann theorem, which states that accidental degeneracies can
only be achieved by fine-tuning of three parameters [38, 39]. In fact, the degeneracy
of the SSH model when t1 = t2 is accidental, in the sense that it is not due to any
symmetries. Indeed, that degeneracyoccurs at k = π ,when the hoppings are identical
and the elements in the diagonal are set to zero. In graphene, the degeneracies where
|�(k)| = 0 come in pairs and appear at the K and K ′ points or valleys, respectively,
whichwe shall callDirac points for reasons that will become clear shortly. One could
then argue that this result is in fact accidental, because it is peculiar to the honeycomb
lattice. However, this is not the case. Indeed, one could set a third-neighbour hopping
term, t ′, such that one can study the cases where t ′ = 0 (honeycomb lattice) up to
t ′ = t (square lattice). It can be shown that in that range of t ′ the degeneracies persist,
meaning that the degeneracies must result from a symmetry and not from the fact that
we have a honeycomb lattice [40, 41]. The symmetry involved is chiral symmetry
like in the SSH chain, since there is a unitary operator � such that the Hamiltonian
anticommutes with such an operator and it is also such that �2 = 12. This operator is
realized here in σz and it implies that the d(k) vector of the two-band Hamiltonian is
restricted to a plane. This key fact allows us to understand the topological protection
of the Dirac points and why they must appear in pairs. The argument is as follows:
in general, d(k) is a mapping from the Brillouin zone torus into three-dimensional
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Fig. 2.7 Topology of bulk graphene.�(k) in the complex plane as k is taken through the Brillouin
zone. In the figure, we have discretized ky and let kx vary. In truth, plotting for all values of ky leads
to a flat surface, as described in the text. The yellow circles are the only ones that touch the origin,
which do so at the K and K ′ points [42]

space. Since the torus is periodic, the tip of d(k) traces out the image of a compact,
oriented surface. Chiral symmetry then flattens that surface and, if it encloses the
origin, then there will be two points of the original surface which come through the
origin [42]. We can see this by plotting �(k) on the complex plane as k is evolved
through the Brillouin zone. The result is shown in Fig. 2.7. Having k to fully traverse
the Brillouin zone leads to a flat surface, as expected. The yellow circles are the only
ones that touch the origin and correspond to setting ky = ±4π/3 and letting kx vary,
the origin being touched when kx = 0. That is, the intersection between those two
circles and the origin correspond to the Dirac points.

The only way to get rid of the Dirac points is by merging them, which occurs at
the boundary of the flattened surface. After merging, the spectrum becomes gapped.
We can also gap the spectrum by breaking chiral symmetry. Doing so, we can then
try to find the topological classification of such a system in the Altland–Zirnbauer
classification (see Table 2.1) [29–33]. If we consider spinless fermions and preserve
time-reversal symmetry, then the system belongs to the so-called orthogonal or AI
class and it is topologically trivial. An example of this is hexagonal boron nitride,
where the atoms in the two sublattices are chemically different [43]. If we break
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Fig. 2.8 Symmetries of graphene. On the left is shown the Wigner–Seitz cell and on the right
the Brillouin zone. Rx corresponds to reflection about the X Z plane (thick black line) and C6
corresponds to a π/3 rotation about the Z -axis

time-reversal symmetry, the system belongs to the unitary or A class and there is an
integer invariant that characterizes the ground states of the Hamiltonian. This is the
quantum anomalous Hall or Chern insulator proposed by Haldane in 1988 [21], and
it is achieved by introducing complex second-neighbour hoppings. Finally, we can
take into account that electrons are actually spin-1/2 particles and if time-reversal
symmetry is preserved but it is such that T 2 = −1, then the system is in the symplectic
or AII class and there is a Z2 index to classify the different ground states. This is
the quantum spin Hall or Z2 topological insulator, proposed by Kane and Mele in
2005 [22, 44] and it relies on spin-orbit coupling. Each of these discoveries would
deserve far more than a single section for their review and the reader is referred to
the references cited above or those found in Refs. [45–50]. We will discuss however
the Z2 topological insulator in three dimensions after our discussion of graphene.

Although we could use k · p theory to obtain the low-energy description of
graphene [19, 37, 51], we will make use of the method of invariants in its sim-
plest form. That is, we will focus on the terms to lowest order in momenta and will
not include the effects of strain, electric or magnetic fields. A detailed account of
the method applied to the full problem can be found in Ref. [27]. In order to explore
the symmetries, we shall consider the graphene lattice to be rotated by π/2 with
respect to that shown in Fig. 2.5b, so that our results coincide with those presented
in Ref. [52]. Hence, the Wigner–Seitz unit cell and the Brillouin zone now look as
in Fig. 2.8.

Momenta closest to the Fermi energy are the K and K ′ points, so we shall use
as a basis

{
ψ K

A (r), ψ K
B (r), ψ K ′

B (r), ψ K ′
A (r)

}
. In the following, we will not consider

intervalley scattering, that is, off-diagonal blocks in the Hamiltonian will be set to
zero, for simplicity. Therefore, we can write the Hamiltonian in that basis as follows
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H(k) =
(

HK (k) 02

02 HK ′(k)

)
, (2.2.18)

where HK (K ′)(k) are 2 × 2 blocks that we have to determine exploiting the symme-
tries of graphene and 0n is the n-dimensional null matrix. Taking into account the
orientation we have chosen for graphene, reflection about the X Z -plane takes A to
B, (kx , ky) → (kx ,−ky) and it leaves the K and K ′ points untouched [see Fig. 2.8].
Therefore, in this basis we can choose

D(Rx ) = τ0 ⊗ σx , (2.2.19)

where the Pauli matrices τi and σi act upon the valley and sublattice degrees of
freedom, respectively, and the subscript 0 indicates the identity matrix, that is, τ0 =
σ0 = 12. Therefore, the Hamiltonian must satisfy

D(Rx )H(kx , ky)D−1(Rx ) = H(kx ,−ky) . (2.2.20)

Another symmetry is rotation about the Z -axis ofπ/3,C6. That symmetry exchanges
A and B, K and K ′ and rotates k as follows

(kx , ky) → (
kx cosϕ + ky sin ϕ,−kx sin ϕ + ky cosϕ

)
, (2.2.21)

particularized to ϕ = π/3. It is easier to express the rotation of k if we express it
instead as (k+, k−), where k± = kx ± i ky . Indeed, after the rotation, k± change to
exp(∓iπ/3)k±. Since we have to exchange K and K ′, we can use an operator of
the form τx ⊗ σ0. Notice that this operator also swaps A and B in the basis we have
chosen. However, it is not swapping A and B at the same K point, but rather that
of the K point with the other of the K ′ point. In order to keep the symmetry, we
must add a phase factor of exp(±i 2π/3) accordingly. We do so with the opera-
tor τ0 ⊗ exp

[
i (2π/3)σz

]
. Therefore, the action of C6 is captured by the following

representation [52]
D(C6) = τx ⊗ exp

[
i (2π/3)σz

]
, (2.2.22)

and it is such that

D(C6)H(k+, k−)D−1(C6) = H
(
e−iπ/3k+, eiπ/3k−

)
. (2.2.23)

Finally, we must consider time-reversal symmetry. Since we are considering spinless
particles (or, rather, spin polarized), it must be such that it squares to the identity. One
could be tempted to choose again � = K. However, this is not the proper operator
in the basis we have chosen [27]. We know that more generally � = UK, where U
is a unitary operator, fixed by the chosen representation. On the one hand, K and
K ′ = −K are time-reversed partners, so the operator must exchange the valleys.
Just like with our discussion of the previous symmetry, we do this with τx ⊗ σ0. On
the other hand, taking into account the ordering in the basis, after this operation we
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must also exchange the A and B sublattices with an operator τ0 ⊗ σx . As a result,
the unitary operator U is given by U = τx ⊗ σx . Hence, � is given by

� = (τx ⊗ σx )K , (2.2.24)

which squares to the identity. The action of time-reversal on k is to invert it to −k,
as we already know, and therefore the action on the Hamiltonian is such that [cf.
Eq. (2.1.40)]

�H(k)�−1 = H(−k) . (2.2.25)

With this in mind, let us explore the restrictions imposed by these symmetries on
the matrix elements of the Hamiltonian. Reflection is probably the easiest, since it is
diagonal in the valley subspace and leads to the following two equations

σx HK (K ′)(kx , ky)σx = HK (K ′)(kx ,−ky) . (2.2.26)

This in turn implies the following restrictions on the matrix elements of HK (K ′),
which we shall denote as hK (K ′)

i j ,

hK (K ′)
22 (kx , ky) = hK (K ′)

11 (kx ,−ky) h
K (K ′)
12 (kx , ky) = hK (K ′)

12 (kx ,−ky) , (2.2.27)

where we have used the overline in h to express complex conjugation, that is, h ≡ h∗.
As a result, the K and K ′ blocks take the form

HK (K ′)(kx , ky) =
(

hK (K ′)
11 (kx , ky) hK (K ′)

12 (kx , ky)

hK (K ′)
12 (kx ,−ky) hK (K ′)

11 (kx ,−ky)

)
. (2.2.28)

Time-reversal symmetry requires on the other hand that

σx HK ′(kx , ky)σx = H∗
K (−kx ,−ky) . (2.2.29)

For the matrix elements of the blocks this implies that

hK ′
11 (kx , ky) = hK

11(−kx , ky) , hK ′
12 (kx , ky) = hK

12(−kx ,−ky) . (2.2.30)

Therefore, the two blocks can be written as follows

HK (kx , ky) =
(

hK
11(kx , ky) hK

12(kx , ky)

hK
12(kx ,−ky) hK

11(kx ,−ky)

)
, (2.2.31a)

HK ′(kx , ky) =
(

hK
11(−kx , ky) hK

12(−kx ,−ky)

hK
12(−kx , ky) hK

11(−kx ,−ky)

)
. (2.2.31b)
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In order to explore the C6 rotational symmetry, it is convenient to express the two
blocks in terms of k±. Hence, we will make the correspondence (kx , ky) → (k+, k−).
The two blocks would then take the form

HK (k+, k−) =
(

hK
11(k+, k−) hK

12(k+, k−)

hK
12(k−, k+) hK

11(k−, k+)

)
, (2.2.32a)

HK ′(k+, k−) =
(

hK
11(−k−,−k+) hK

12(−k+,−k−)

hK
12(−k−,−k+) hK

11(−k+,−k−)

)
. (2.2.32b)

If we denote byR = exp
[
i (2π/3)σz

]
, then the C6 rotational symmetry implies that

RHK ′(k+, k−)R−1 = HK
(
e−iπ/3k+, eiπ/3k−

)
. (2.2.33)

This requires for the matrix elements to satisfy

hK
11(k+, k−) = hK

11

(−eiπ/3k−,−e−iπ/3k+
)

, (2.2.34a)

h12(k+, k−) = −e−iπ/3h12(−e−iπ/3k+,−eiπ/3k−) . (2.2.34b)

With these two requirements, we can obtain the form of these matrix elements to
lowest order in kx , ky . For the diagonal elements, it is clear that the only allowed
terms to lowest order are

hK
11(k+, k−) � a11 + b11k+k− = a11 + b11k2 ≡ ε(k) , (2.2.35)

where k = |k|. Since those terms are in the diagonal of the Hamiltonian, the coeffi-
cients have to be real to ensure Hermiticity. On the other hand, for the off-diagonal
element h12, we can observe that the only allowed terms that preserve the symmetries
are proportional to k− to first order

hK
12(k+, k−) � a12k− . (2.2.36)

From the condition (2.2.27), we obtain that a12 has to be real. In summary, the two
blocks would now look like so

HK (k+, k−) =
(

ε(k) a12k−
a12k+ ε(k)

)
= ε(k)σ0 + a12

(
σx kx + σyky

)
, (2.2.37a)

HK ′(k+, k−) =
(

ε(k) −a12k−
−a12k+ ε(k)

)
= ε(k)σ0 − a12

(
σx kx + σyky

)
. (2.2.37b)

The full Hamiltonian can then be written in a very succinct way

H(k) = ε(k)τ0 ⊗ σ0 + τz ⊗ (a12σ⊥ · k) , (2.2.38)
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where σ⊥ = (σx , σy). To lowest order, ε(k) is independent of k and can be absorbed
in the definition of the energy. In such a case, we have that each valley is described by
a Weyl equation (i.e. a massless Dirac equation), and therefore the spectrum is that
of a Dirac cone, E(k) = ±a12k. Thus, a12 is to be interpreted in the present context
as the Fermi velocity. Finally, the Hamiltonian is written as follows

H(k) = vFτz ⊗ (σ⊥ · k) . (2.2.39)

It must be noted that upon application of external fields or strain, a lot more terms
must be added to the Hamiltonian [27], many of which depend on spin, which we
have neglected. In fact, the quantum spin Hall effect includes one such term which
has driven the revolution in the field of topological insulators [22, 44]. In any case,
however, we shall keep our system to be spinless, so that we will not consider such
terms.

2.2.2 Topological Insulators Low-Energy Hamiltonian

The last model that we will explore using the method of invariants is that of three-
dimensional topological insulators. In particular, we shall consider those presented
in Ref. [53], namely Bi2Se3, Bi2Te3 and Sb2Te3. These materials are insulators and
they present time-reversal symmetry (i.e. they are non-magnetic). Considering spin,
the time-reversal operator then satisfies the restriction for spin-1/2 systems, that is,
�2 = −1. We shall begin by exploring the main consequence of having �2 = −1
in a Bloch Hamiltonian. But first, let us observe what is the prediction according to
the Altland–Zirnbauer classification (see Table 2.1) [29–33]. Considering only time-
reversal symmetry and the fact that it squares to minus the identity, we can only place
such gapped phases in the AII class. In two or three dimensions, the classifications
predicts that gapped ground states can be classified according to a nontrivial Z2

index. We shall see that this is indeed the case and will provide a method to compute
such invariants. Remember that a Bloch Hamiltonian satisfies

�H(k)�−1 = H(−k) . (2.2.40)

Taking into account that the Brillouin zone is a torus, there are special points where
k and −k are equivalent, that is, they are related by a reciprocal lattice vector. Those
time-reversal invariant momenta (TRIM), which we shall denote as qi , where i runs
through all possible TRIM, are then such that

�H(qi )�
−1 = H(qi ) . (2.2.41)

A particular example is the � point, qi = 0. In two dimensions, there are four TRIM,
whereas in three dimensions there are eight TRIM [49, 54]. As we can observe, at
those particular points, the Hamiltonian commutes with �, meaning that |ψ〉 and
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�|ψ〉 are eigenstates of the Hamiltonian with the same energy. The question now
is if these states are actually the same state or if they are degenerate. If they are the
same state, then we can write�|ψ〉 = c|ψ〉, where c is a complex number. However,
if we apply � and take into account that it is antilinear, we find �2|ψ〉 = c∗�|ψ〉 =
|c|2|ψ〉. Now, for spin-1/2 systems, �2 = −1, implying that |c|2 = −1, which is
obviously impossible. Therefore, |ψ〉 and�|ψ〉 are actually degenerate at the TRIM.
This is known as Kramers’ degeneracy and the two states are commonly referred to
as Kramers’ pairs. Away from the TRIM, the degeneracy splits. With this in mind,
Kane and Mele derived a Z2 invariant in terms of the Pfaffian of an antisymmetric
matrix by taking scalar products between states |ψ〉 and �|ψ〉 at the TRIM [44].
We shall not be interested in such a computation and will limit ourselves to a rather
simpler version of the invariant which applies to systems with inversion symmetry,
such as the ones mentioned before. In fact, we will not detail the derivation of such
calculations, but rather give the final result, the details of which can be found in the
original paper by Fu and Kane [54]. Since we are considering insulators (gapped
phases), there are a number of fully occupied bands, let us call it 2N , where the extra
factor of 2 comes from Kramers’ degeneracy. It must be restated that there is no
Kramers’ degeneracy out of the TRIM, but it is convenient to say that we have 2N
occupied bands. It is also common to find in the literature the name Kramers’ pairs
of bands to denote those bands that arise from the degenerate Kramers’ pair at the
TRIM. The interesting bit of considering inversion symmetry is that it allows us to
label the eigenstates by their parity. Let ξ2m(qi ) be the parity of the 2mth band at the
TRIM qi , which coincides with the parity of its Kramers’ partner [49], ξ2m−1(qi ).
Fu and Kane proposed that the Z2 invariant, ν, can be obtained from the product of
these such parities for the 2N occupied bands as follows

(−1)ν =
∏

i

δi , δi =
N∏

m=1

ξ2m(qi ) . (2.2.42)

This expression has a direct implication: if a system undergoes a band inversion
where the parities of the bands are inverted at an odd number of TRIM with respect
to a system with opposite ordering, then ν → ν + 1 in going from one system to the
other, meaning that they belong to different topological sectors. If inversion occurs at
an even number of TRIM, then ν does not change at all and the two systems belong
to the same topological sector.

With this knowledge, let us exploreBi2Se3, Bi2Te3, Sb2Se3 and Sb2Te3. In order to
follow Refs. [53, 55], we shall consider Bi2Se3 as a representative of such a family of
materials, all of which present a similar crystal structure, shown in Fig. 2.9. The unit
cell contains five atoms, two of which are equivalent atoms of Se (denoted by Se1 and
Se1’ and both with the same colouring), two equivalent atoms of Bi (Bi1 and Bi1’)
and one nonequivalent atom of Se (dubbed Se2). Those atoms arrange themselves
into planes forming triangular lattices. These planes are strongly bonded forming
quintuple layers. Coupling between quintuple layers is weaker, since it is a Van der
Waals bond. There are various symmetries that we will explore later on, but for
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Fig. 2.9 Crystallography of Bi2Se3. a The crystal lattice is orthorhombic, the primitive cell is the
parallelepiped enclosed by the arrows, which denote the primitive vectors a1, a2, a3. Each primitive
cell contains 5 atoms, two equivalent Se atoms (Se1 and Se1’), one inequivalent Se atom (Se2) and
two equivalent Bi atoms (Bi and Bi’). Each type of atom is arranged forming layers that consist
on triangular lattices parallel to the XY plane. Bonding between different layers is such that it is
possible to form quintuple layers of strongly bonded layers, each quintuple layer bonded to the next
via weak Van der Waals bonds. b First Brillouin zone of the bulk crystal (top) and the (111) surface
Brillouin zone (bottom), displaying the reciprocal lattice vectors b1, b2, b3 and the high-symmetry
points [55]

Table 2.2 Z2 invariant in antimony and bismuth chalcogenides. Parities of fourteen bands at
the �-point below the Fermi level are shown on the middle column. The Z2 invariant is simply
obtained from the product of parities at the �-point and Eq. (2.2.42), since it is the only TRIM
where parity inversion occurs [53]

Material Parities ν

Sb2Se3 + − + − + − + − + − + − − − +1

Sb2Te3 + − + − + + − + − + − − − + −1

Bi2Se3 + − + − + − + − + − + − − + −1

Bi2Te3 + − + − + − + + − + − − − + −1

now we can observe that taking Se2 as the inversion center [55], the system displays
inversion symmetry and we can use the results that we discussed earlier regarding the
Z2 invariant. Ab-initio density functional theory calculations performed in Ref. [53]
have shown that the product of parities for the fourteen occupied bands at the � point
is −1 for Bi2Se3, Bi2Te3 and Sb2Te3, whereas it is +1 at Sb2Se3 [cf. Table 2.2].
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The ab-initio calculations of Ref. [53] show that in Bi2Se3, Bi2Te3 and Sb2Te3,
before turning on the spin-orbit interaction, the product of parities renders +1, as in
Sb2Se3. As a result, the spin-orbit interaction is responsible for a band inversion at
the �-point. In fact, the authors of Ref. [53] have been able to observe that inversion
occurs exclusively at the �-point [55], which implies from Table 2.2 and Eq. (2.2.42)
that the Z2 invariant is ν = 1 for Bi2Se3, Bi2Te3 and Sb2Te3 and ν = 0 for Sb2Se3.
Hence, the first three chalcogenides are topological insulators and the last one is a
trivial insulator. Moreover, the ab-initio calculations of Ref. [53] also show that, as
expected, the systems with non-trivial topology display topological surface states,
whereas Sb2Se3 does not.

In order to obtain the low-energyHamiltonian around the� point using themethod
of invariants, we must explore the symmetries in a given basis. Finding such a basis,
however, is not as straightforward as in graphene, and it pays off to consider the
evolution of the orbitals from Bi and Se as different terms in the Hamiltonian are
turned on, schematically. This is shown in Fig. 2.10 for the levels at the �-point.
Although Fig. 2.10 is schematic, it can be shown quantitatively that the evolution of
atomic levels occurs as displayed in such a figure, as discussed in [55]. However,
we shall consider only the more intuitive picture to understand the appearance of
topology in these systems. It is important to recall that bonding within a quintuple
layer is strong, whereas there is weak Van der Waals between quintuple layers.
Therefore, one can focus on a single quintuple layer to understand the evolution of
the isolated atomic energy levels as different effects are included in the system. These
effects are included in progression with respect to their associated energy scale, a
quantitative discussion of which is found in [55]. The electron configuration of Bi is
6s26p3 and that of Se is 4s24p4, which implies that one can focus on the outermost
p orbitals and disregard the s orbitals. Each Se and Bi atom contributes three p
orbitals, px , py, pz . Since there is a total of five atoms within a unit cell, there are
15 orbitals in total, 9 from Se and 6 from Bi. As it can be observed from Fig. 2.9,
layers of Bi and Se alternate within a quintuple layer, meaning that the strongest
coupling occurs due to chemical bonding between neighbouring layers of Bi and Se.
This coupling leads to hybridization and, as a result, to level repulsion of the atomic
orbitals and corresponds to the first stage in Fig. 2.10. The resulting six hybrid orbitals
of Bi are denoted as Bx,y,z and B ′

x,y,z , where x, y, z corresponds to px , py, pz , and
those of Se are denoted as Sx,y,z , S′

x,y,z and S0x,y,z . In order to take advantage of
inversion symmetry, it is convenient to rearrange the p orbitals of the three Se atoms
so as to obtain states of well-defined parity [55], thereby leading to two odd states,
P0−

x,y,z and P2−
x,y,z , and an even state, P2+

x,y,z for each p orbital, where ± indicates
the parity eigenvalue. The same applies to Bi, leading to an even, P1+

x,y,z and an
odd state P1−

x,y,z for each p orbital. It is important to bear in mind that states of
opposite parity cannot be coupled as long as inversion symmetry is preserved and
parity is a well-defined quantity. We will therefore observe that there are no ± signs
simultaneously on a given level. States of opposite parity split, making those of even
parity move downwards in energy and those of odd parity move upwards, similar to
the formation of bonding and antibonding states. This corresponds to the second stage
in Fig. 2.10. States closest to the Fermi level are therefore P1+

x,y,z and P2−
x,y,z , as
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shown in the figure. We focus on these and disregard all other states in what follows.
The next stage corresponds to the fact that the system is not spherically symmetric,
that is, the Z direction is different from the X and Y directions, resulting in crystal
field splitting. That is, the degeneracy between x, y and z orbitals splits apart due to
the interaction with the field created by neighbouring atoms, as shown in the third
stage of Fig. 2.10. After splitting, the two states closest to the Fermi level are two pz

levels of opposite parity, P1+
z and P2−

z . Finally, the last stage corresponds to turning
on the spin-orbit coupling. Up to now, we have not taken into account the fact that all
these orbitals are doubly degenerate due to spin since we had not included any terms
that couple spin to other degrees of freedom. However, spin-orbit coupling causes
the orbital angular momentum and spin to couple, so that the four orbitals in P1+

x,y

and P2−
x,y evolve into states with well defined total angular momentum, P1+

x±i y,↑↓
and P2+

x±i y,↑↓, where x ± i y denotes px ± i py and ↑↓ denotes the spin eigenvalue.
If m J denotes the eigenvalue of the Z -component of total angular momentum, states
of the same m J will couple due to spin-orbit coupling, leading to level repulsion.
This implies that P1+

x+i y,↓ and P1+
z,↑, which have m J = 1/2, will couple into two

new levels which will repel. Each level will have a stronger contribution from either
P1+

x+i y,↓ or P1+
z,↑. In order to ease notation,we shall denote the levelwithmore P1+

z,↑
weight as P1+

z,1/2 and that with more P1+
x+i y,↓ weight as P1+

1/2. The same applies to
P1+

x−i y,↑ and P1+
z,↓ with m J = −1/2, which will couple into P1+

z,−1/2 and P1+
−1/2.

Similarly, P2−
x+i y,↓↑ and P2−

z,↑↓, that will couple into P2−
±1/2 and P2−

z,±1/2. It is
important to remember that states from Bi with the same m J as those of Se will
not couple since they have opposite parity. The states P1+

x±i y,↑↓ and P2−
x±i y,↑↓ with

m J = ±3/2 do not couple with other states, so we will just relabel them as P1+
±,±3/2

and P2−
±,±3/2 respectively. On the other hand, spin-orbit coupling also breaks the

degeneracy between J = 3/2 and J = 1/2, leading to a splitting between P2+
±,±3/2

and P2+
±,±1/2 pushing the states with J = 3/2 upwards in energy and lowering

the states with J = 1/2. Identically happens for P1−
±,±3/2 and P1−

±,±1/2. Notice,
however, that a double degeneracy is still present since states of opposite m J do not
split since angular momentum in the Z -direction is still a good quantum number [55].
The net result of this stage is that, due to spin-orbit coupling, levels of opposite parity
closest to the Fermi energy are inverted and, in consequence, the total parity below
the Fermi level changes sign. Since we are performing this analysis at the � point (a
TRIM in the Brillouin zone) and this inversion occurs exclusively at this point, the
system becomes topologically non-trivial, as discussed above. Also notice that, as it
should be, all states are still doubly degenerate due to Kramers’ theorem. This same
evolution of the energy levels occurs for Bi2Se3, Bi2Te3 and Sb2Te3, but in Sb2Se3
spin-orbit coupling is not strong enough (Se is a much lighter element compared to
Te) and there is no parity inversion, so the system remains a trivial insulator.

Knowing that states closest to the Fermi level are P1+
z,±1/2 and P2−

z,±1/2 we can
construct our low-energy Hamiltonian using a basis containing those four orbitals.
It is common to abuse of terminology and refer to spin instead of total angular
momentum [20, 53, 56]. This is understandable, since these two states come mainly
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Fig. 2.10 Evolution of atomic levels into band edges at the � point in Bi2Se3. Chemical bonding
makes p orbitals fromBi and Se to hybridize; inversion symmetry allows us to label states according
to their parity and states of opposite parity split; crystal field splitting occurs due to anisotropy
between the X, Y and Z directions; spin-orbit coupling couples spin and angularmomentum,mixing
states of same total angular momentum and leading to level repulsion. A black frame encloses those
levels closest to the Fermi level (dashed blue line). The net result is that two there is an inversion
of parity on the last stage [55]

from P1+
z,↑(↓) and P2−

z,↑(↓). Indeed, the crystal field splitting is quite strong, thereby
separating very much in energy the states P1+

z,↑(↓) and P2−
z,↑(↓) from those they

couple to due to spin-orbit coupling, as shown in the third stage of Fig. 2.10. Hence,
after spin orbit coupling, even though there will be an increased repulsion, P1+

z,±1/2

and P2−
z,±1/2 will come mostly from P1+

z,↑(↓) and P2−
z,↑(↓) respectively. This is why

they are linked by dashed lines in Fig. 2.10 in going from the third to the last stage.We
will therefore abuse of terminology aswell and denote them hereafter by P1+

z,↑(↓) and
P2−

z,↑(↓) respectively. We shall then use as a basis
{

P1+
z,↑ , P2−

z,↑ , P1+
z,↓ , P2−

z,↓
}
.

Equivalently, we will say that we are working in the spin-orbital basis, {σ, τ }, so that
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Pauli matrices σ and τ act on the spin and orbital degrees of freedom, respectively.
It is important to remark that the point group of � is identical to the point group
of the crystal [57], which implies that we can focus on how the symmetries act on
the real lattice. This is in contrast to the case of graphene, where we had to observe
how did the K and K ′ points transform under the symmetry operations. By looking
at Fig. 2.9, we can see that the system possesses threefold rotation symmetry, Cz

3,
along the Z -direction. Hence, we have to perform a rotation of spin about the Z -axis
by an angle of 2π/3, which we do by using exp

[
i (2π/3)σz/2

] ⊗ τ0. In contrast to
graphene, we have three components for k. The z-component will not change under
rotation about the z-axis, so kz → kz under rotation, but the in-plane momentum,
k⊥ = (kx , ky, 0), will be such that k± → exp(∓i 2π/3)k±, where k± = kx ± i ky .
Therefore, under the action of Cz

3, the Hamiltonian must transform as follows

D(Cz
3)H(k+, k−, kz)D−1(Cz

3) = H(e−i 2π/3k+, ei 2π/3k−, kz) , (2.2.43)

where
D(Cz

3) = exp
[
i (π/3)σz

] ⊗ τ0 . (2.2.44)

Another symmetry, which was key to our discussion of topology in this system, is
inversion symmetry, I , about the Se2 atom in the quintuple layer. Since the orbitals
have a well-defined parity, the orbitals are eigenstates of the inversion operator and
are labeled by the parity eigenvalue. Hence, taking into account that states in the
basis are ordered as (+,−,+,−) with respect to parity, we can use as the inversion
operator σ0 ⊗ τz . Since upon inversion k → −k, the Hamiltonian must satisfy

D(I )H(k)D−1(I ) = H(−k) , (2.2.45)

with
D(I ) = σ0 ⊗ τz . (2.2.46)

The crystal also exhibits twofold rotational symmetry about the Y axis. We
therefore have to rotate spin around the Y -axis an angle of π , which is done via
exp

(
iπσy/2

) ⊗ τ0 = i σy ⊗ τ0. This symmetry takes (kx , ky, kz) → (−kx , ky,−kz).
Therefore, the Hamiltonian must satisfy

D(C y
2 )H(kx , ky, kz)D−1(C y

2 ) = H(−kx , ky,−kz) , (2.2.47)

where
D(C y

2 ) = i σy ⊗ τ0 . (2.2.48)

Finally, there is time-reversal symmetry. In contrast to the case of graphenewhere one
has to find a unitary operator that exchanges the two valleys, the unitary operator in
the orbital subspace can in this case be chosen as the identity, like in the SSH model.
In the spin subspace we need to include the i σy term. Therefore, the unitary operator
in time-reversal symmetry would be i σy ⊗ τ0. Under time-reversal, k → −k, so the
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Hamiltonian must satisfy
�H(k)�−1 = H(−k) , (2.2.49)

where
� = (

i σy ⊗ τ0
)
K . (2.2.50)

With all this knowledge, we can proceed to obtain our low-energy Hamiltonian, in a
similar manner as to what we did in graphene. Let us denote the four blocks of the
Hamiltonian as hi j (k) with i, j = 1, 2, hii = h†

i i and h21 = h†
12. On the one hand,

time-reversal symmetry requires that

h22(k) = h∗
11(−k) , h12(k) = −hT

12(−k) . (2.2.51)

Hence, wemust onlyworry about two of the three independent blocks, a property that
we will take into account when studying the other symmetries.Cz

3 rotation symmetry
requires that

h11(k+, k−, kz) = h11(e
−i 2π/3k+, ei 2π/3k−, kz) ,

h12(k+, k−, kz) = e−i 2π/3h11(e
−i 2π/3k+, ei 2π/3k−, kz) .

(2.2.52)

On the other hand, inversion symmetry implies that

τzhi j (k)τz = hi j (−k) . (2.2.53)

Finally, C y
2 rotational symmetry imposes the following conditions

h11(kx , ky, kz) = h∗
11(kx ,−ky, kz) ,

h12(kx , ky, kz) = h∗
12(kx ,−ky, kz) .

(2.2.54)

The conditions imposed by Cz
3 imply that h11 can only have terms to lowest order

proportional to kz, k+k−, k2
z and h12 can have terms proportional to k−. However,

inversion symmetry implies that the diagonal terms of both blocks have to be even
in k and the off-diagonal terms have to be odd in k. Therefore, h11 can have terms
proportional to k+k− and k2

z in the diagonal and proportional to kz in the off-diagonal,
whereas h12 can only have terms in the off-diagonal proportional to k− and it is
traceless. Thus,

h11(k) =
(

a11 + b11k+k− + c11k2
z a12kz

a∗
12kz a22 + b22k+k− + c22k2

z

)
, (2.2.55)

where the coefficients in the diagonal are real. For h12(k) we have

h12(k) =
(

0 d12k−
e12k− 0

)
. (2.2.56)
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From C y
2 , we obtain that a12 = a∗

12, d12 = d∗
12 and e12 = e∗

12, so all those coefficients
are also real. Finally, time-reversal symmetry requires that d12 = e12. Hence, we can
write the two blocks as follows

h11(k) =
(

a11 + b11k+k− + c11k2
z a12kz

a12kz a22 + b22k+k− + c22k2
z

)
, (2.2.57)

h12(k) = d12k−τx , (2.2.58)

where all the coefficients are real. Another way of writing h11(k) is the following

h11(k) = ε(k) + M(k)τz + a12kzτx , (2.2.59)

where

ε(k) = 1

2

[
a11 + a22 + k2

⊥(b11 + b22) + k2
z (c11 + c22)

]
,

M(k) = 1

2

[
a11 − a22 + k2

⊥(b11 − b22) + k2
z (c11 − c22)

]
.

(2.2.60)

In conclusion, the low energy Hamiltonian of this system can be written as follows

H(k) =

⎛
⎜⎜⎝

ε(k) + M(k) a12kz 0 d12k−
a12kz ε(k) − M(k) d12k− 0
0 d12k+ ε(k) + M(k) −a12kz

d12k+ 0 −a12kz ε(k) − M(k)

⎞
⎟⎟⎠ . (2.2.61)

In a more compact form, we can also write

H(k) = ε(k)14 + M(k)σ0 ⊗ τz + a12kzσz ⊗ τx + d12kxσx ⊗ τx + d12kyσy ⊗ τx .

(2.2.62)
As it is, this equation may not be familiar yet. However, let us rearrange the basis,
so that we work in the orbital-spin basis, {τ, σ }, instead of the spin-orbital basis in
which H(k) is currently written. This amounts to exchanging the positions of the
operators in the products above, that is,

H(k) = ε(k)14 + M(k)τz ⊗ σ0 + a12kzτx ⊗ σz + d12kxτx ⊗ σx + d12kyτx ⊗ σy .

(2.2.63)
This Hamiltonian is nothing but a Dirac Hamiltonian in 3+1 dimensions, with a
momentum dependent mass term and an additional term proportional to the identity,
ε(k). Recalling that the Dirac matrices are defined as

αi = τx ⊗ σi , β = τz ⊗ σ0 , (2.2.64)

we can immediately write the low-energy Hamiltonian as follows
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H(k) = ε(k)14 + M(k)β + d12α⊥ · k⊥ + a12αzkz , (2.2.65)

where the subscript ⊥ in a vector indicates the nullification of the z component,
u⊥ = (ux , uy, 0). We can then try to give an interpretation for the terms appearing
in the Hamiltonian. If we consider k = 0, then the Hamiltonian reads

H(0) = ε(0)14 + M(0)β . (2.2.66)

This Hamiltonian is diagonal and its energies must then correspond directly to the
band-edge energies at the � point. Hence, ε(0) + M(0) is the conduction band-edge
energy and ε(0) − M(0) is the valence band-edge energy. Therefore, 2M(0) = EG

is the energy gap and ε(0) ≡ VC is the position of the gap center. On the other
hand, for low momenta, ε(k) and M(k) are independent of k and the Hamiltonian
strictly becomes a Dirac Hamiltonian with anisotropy in the velocity. That is, the
coefficients d12 and a12 can be interpreted as the equivalent to the speed of light
in the Dirac equation. We shall write them as d12 = v⊥ and a12 = vz . Therefore, to
lowest order in k the low-energy Hamiltonian reads

H(k) = v⊥α⊥ · k⊥ + vzαzkz + 1

2
EGβ + VC14 . (2.2.67)

This Hamiltonian is particularly interesting to understand the topology that we dis-
cussed earlier. Indeed, if we diagonalize this Hamiltonian, the dispersion is that of
massive Dirac fermions

E(k) = ±
√

(v⊥k⊥)2 + (vzkz)2 + 1

4
E2
G . (2.2.68)

This equation predicts the same gapped ground state for either positive or negative
EG. However, since EG is the energy difference between the P1+

z,↑(↓) and P2+
z,↑(↓),

having a positive or a negative value of EG leads to topologically distinct behaviour.
Indeed, under band inversion it changes sign. Hence, the two ground states cannot
be topologically equivalent, even though they have the same energy. This is one of
the key features of topological matter, which appeared also in the SSH model: two
ground states may have the same energy, but they may be topologically distinct.
Therefore, the spectrum alone cannot convey all the physics contained in a given
material. Since EG changes sign under band inversion, we may just as well identify
the Z2 index as the sign of EG, that is [20],

Z2 = sgn (EG) . (2.2.69)

In a similar manner as to the SSH model, we would expect at an interface between
two materials of opposite index (say a topological insulator and a vacuum or trivial
insulator) the existence of gapless surface states as a result of the bulk-boundary



46 2 Two-Band Models

correspondence. We shall see in the next section that this is indeed the case. In fact,
those gapless states will be the subject of most of this Thesis.

Finally, before we move on to the next section, it is worth it to say a few more
words about this low-energy Hamiltonian. Although it has been recently discov-
ered to describe the aforementioned three-dimensional topological insulators, it was
already known to describe a particular kind of so-called narrow gap semiconduc-
tors: Pb1−xSnxTe. In this family of ternary compounds, upon variation of the Sn
fraction, x , the bands undergo band-inversion at the L-points of the Brillouin zone,
leading to an inversion of the L+

6 and L−
6 band edges, and therefore to an inversion

of parity. A low-energy Hamiltonian with exactly the same form as the one we have
obtained for the three-dimensional topological insulators was found by Dimmock et
al. in 1964 [58] and got further attention for more than 20 years after that [59–67].
However, the word topological was not a buzz word by then. There is, however, an
important point to make here. There are four inequivalent L points in the Brillouin
zone of these compounds, whichmeans that band inversion occurs at an even number
of TRIM of the Brillouin zone [54]. Therefore, according to our discussion of the
Z2 index, there will be no change in sign in the total parity and, therefore, the sys-
tem before and after band inversion is topologically trivial. The first response in the
scientific community when the topological insulators were discovered was to regard
these materials as being uninteresting in the new sense of the topologically nontriv-
ial matter [45, 54], even though they were known to host surface states as well [62,
66]. However, just a few years after, a seminal paper in 2011 by Fu [68] proposed
that there may exist another category of topological insulators protected by point-
group symmetries, which were given the name of topological crystalline insulators.
Leaded by Fu, in 2012 Hsieh et al. [69] showed experimentally the predictions done
by Fu in Pb1−xSnxTe, in particular, that SnTe was a topological crystalline insulator,
whereas PbTe is trivial. In this case, the symmetry involved is mirror symmetry. The
Z2 invariant is zero, but mirror symmetry allows for the introduction of yet another
invariant: the mirror Chern number [70]. We shall not discuss this invariant in this
section, but the idea is as follows: mirror symmetry allows us to separate the Hilbert
space into two subspaces characterized by the two eigenvalues of such symmetry.
After that, one can compute the Chern number in each of these two subspaces and
the difference between the two Chern numbers is the mirror Chern number [49].
The Chern number in general is a topological invariant [11], which is particularly
important for time-reversal-symmetry-breaking phases, such as the quantum Hall
effect, in which case it is the integer that quantizes the Hall conductance [71]. In
time-reversal-symmetry-preserving phases, it is shown to be exactly zero [45]. How-
ever, in the case of systems with mirror symmetry, we can make the decomposition
that we discussed above and find nonzero Chern numbers for each mirror-symmetry
subspace. Their sum, the total Chern number, must still be zero, but their difference
(the mirror Chern number) may be nonzero [49, 70, 72].
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2.3 Topological Boundaries and Nanoribbons

In this section, wewill discuss the two systems that are considered within this Thesis,
the most prevalent of which is the topological boundary.

2.3.1 Topological Boundary

A topological boundary is formedwhen two systems of opposite topological invariant
are put together to form a boundary. The bulk-boundary correspondence predicts the
existence of edge states (in two-dimensions) or surface states (in three-dimensions).
In our case, we can place two insulators of opposite gap in the Dirac low-energy
Hamiltonian described above. This is very much like what we did in the SSH chain to
find the zero-energymodes. Doing the same in band-inverted junctions was proposed
in the 80s in a series of seminal papers by Volkov and Pankratov [62, 63, 66]. For
simplicity, we may assume the interface to be a sharp interface, so that we can take
the energy gap to be defined as a piece-wise function. This way, we will miss the
now called Volkov–Pankratov states [73, 74], which appear when the junction is
smoother, but we will still find the topological surface state. All in all, the problem
we have to solve is therefore the following

[
v⊥α⊥ · k⊥ + vzαzkz + �(z)β + VC(z)

]
�(r) = E�(r) , (2.3.1)

where �(z) = EG(z)/2. We will take the interface to be at z = 0. Notice that there
are continuous translational and rotational symmetries in the XY -plane. The former
implies that k⊥ is a good quantum number (we can choose the eigenstates to be
eigenstates of the in-plane momentum, i.e. plane waves of the form exp [i k⊥ · r]),
which allows us to label the solutions to this problem; the latter implies that the
energy (not the state) can only depend on powers of k⊥ = |k⊥|, but not on kx , ky ,
separately. Therefore, in the following, we will write the bispinor as a function of
z only, �(z), remembering that the actual bispinor is actually exp(i k⊥ · r)�(z), in
virtue of translational symmetry. Since we are taking the interface to be abrupt, �(z)
and VC(z) take the following form

f (z) = fR�(z) + fL�(−z) , (2.3.2)

where f = �, VC, the subscripts R and L indicate right and left and �(z) is the
Heaviside step function. In order to have band inversion, we require that�R�L < 0.
For concreteness, we shall take�R > 0.We shall refer to the casewhere V R

C = V L
C as

the centered junction and the case where also�R = −�L as the symmetric junction.
Taking into account that both � and VC share the same profile, it is convenient to
write them as follows
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�(z) = � + λsgn (z) , VC(z) = V0 + γ�(z) , (2.3.3)

where we have introduced

� = 1

2
(�R + �L) , λ = 1

2
(�R − �L) , (2.3.4a)

γ = V R
C − V L

C

2λ
, V0 = V L

C − γ�L = V R
C − γ�R . (2.3.4b)

Let us introduce the following quantities

d = vz

λ
, ξ = z

d
, κ = v⊥

vz
d k⊥ , δ = �

λ
, ε = E − V0

λ
. (2.3.5)

Then, we can write the Dirac equation as H�(ξ) = (ε − γ δ)�(ξ), where

H = H0 + (β + γ ) sgn(ξ) , (2.3.6)

and
H0 = −i αz∂ξ + α⊥ · κ + δβ . (2.3.7)

with ∂ξ = d/dξ . We have not absorbed the term γ δ in ε on purpose, as we shall see
that it simplifies the final results. As is customary with the Dirac equation and as
we did in the SSH chain, we will square the Hamiltonian. Taking into account that
H�(ξ) = (ε − γ δ)�(ξ), we obtain

[−∂2
ξ + π2(ξ) + U (ξ)

]
�(ξ) = 0 , (2.3.8)

where
π2(ξ) = κ2 + [

δ + sgn(ξ)
]2 − [

ε − γ sgn(ξ) − γ δ
]2

, (2.3.9)

and
U (ξ) = −2i αz(β + γ )δ(ξ) . (2.3.10)

From the form of π2(ξ), it is now clear that the energy can only depend on powers
of k⊥, as was already apparent from rotational symmetry. We can solve Eq. (2.3.8)
on both sides of ξ = 0, where U (ξ) = 0 and π(ξ) is a constant. Doing so, we obtain

�(ξ) = exp [−π(ξ)|ξ |]� , (2.3.11)

where we have assumed π(ξ) > 0 so that we can find bound-state solutions and we
have already exploited the fact that�(ξ) has to be continuous at ξ = 0, which allows
us to set the same constant vector � on both sides. By integrating Eq. (2.3.8) around
ξ = 0, we obtain a discontinuity on the derivative of the bispinor
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− ∂ξ�(ξ)|ξ=0+ + ∂ξ�(ξ)|ξ=0− = 2i αz (β + γ )�(0) . (2.3.12)

Taking into account the form of �(ξ), this equation can be written as follows

2i αz (β + γ )� = [
π+ + π−]

� , (2.3.13)

withπ± ≡ π(0±). This equation can be interpreted to be an eigenvalue problem. The
four eigenvalues of the matrix on the left are ±2

√
1 − γ 2, each of which is doubly

degenerate. However, since we have chosen π(ξ) to be positive, then we have to
disregard the two negative eigenvalues. Also notice that we have chosen π(ξ) to be
real, which implies that |γ | < 1 or, equivalently, |�R − �L| > |VL − VR|. That is,
the gaps on either side of the junction must overlap in order to have bound states. All
in all, we obtain that

π+ + π− = 2
√
1 − γ 2 , (2.3.14)

with double degeneracy. This equation can be solved for the energies to give

ε± = ±
√
1 − γ 2 κ . (2.3.15)

This is nothing but a Dirac cone, very much like those that appear in bulk graphene.
As expected from the bulk-boundary correspondence, we have a topological surface
state at the boundary. The fact that the dispersion is a Dirac cone can be understood
from the fact that there is time-reversal symmetry, as we shall see in a moment. The
two normalized eigenvectors corresponding to the two positive eigenvalues are

�a = 1√
2

⎛
⎜⎜⎝

−i
√
1 − γ

0√
1 + γ

0

⎞
⎟⎟⎠ , �b = 1√

2

⎛
⎜⎜⎝

0
i
√
1 − γ

0√
1 + γ

⎞
⎟⎟⎠ . (2.3.16)

These two eigenvectors are related by time-reversal symmetry. Indeed, if we apply
T = (

τ0 ⊗ i σy
)
K to �a we obtain �b and vice versa. That is, �b = T �a . There-

fore, �a and �b form a Kramers’ pair. Notice that these two eigenvectors are
k-independent. As a consequence, we see that �(ξ) = exp [−π(ξ)|ξ |]�α , with
α = a, b, does not satisfy the Dirac equation (this can be seen by mere substitu-
tion into the equation), unless κ = 0. This is what we would expect from time-
reversal symmetry, since the only time-reversal-symmetric-momentum of this model
is κ = 0. Therefore, we only expect Kramers’ pairs to exist at κ = 0. Away from
κ = 0, the degeneracy breaks down and the two states split apart. As a result, away
from κ = 0, the vector in�(ξ) is no longer�a or�b, but rather a linear combination
of the two. Let us then rename �a as �0 and write �b simply as T �0. Then, away
from κ = 0, the eigenvectors will be given by

�κ = a �0 + b T �0 . (2.3.17)
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These of course still satisfy Eq. (2.3.13). Let us consider the symmetric junction for
simplicity, in which caseπ(ξ) = 1. If we apply theDiracHamiltonian to�(ξ) taking
as constant vector �κ , we are led to the following equation

[α⊥ · κ]�κ = ε�κ . (2.3.18)

In order to obtain the coefficients a and b, we can project on the left with �0 and
T �0, which leads to

(
�

†
0 [α⊥ · κ]�0 �

†
0 [α⊥ · κ] T �0

(T �0)
† [α⊥ · κ]�0 (T �0)

† [α⊥ · κ] T �0

) (
a
b

)
= ε

(
a
b

)
. (2.3.19)

We can interpret this equation as though we were applying first order degenerate per-
turbation theory. If the off-diagonal terms are non-zero, this means that the Kramers’
pair mix and there is a degeneracy breaking. This equation can also be interpreted
as the Hamiltonian in the subspace of the surface states, which is why the matrix on
the left is commonly referred to as the Hamiltonian for the surface states [53]. If we
perform the calculations, the resulting matrix is given by

HS = κyσx − κxσy = (σ × κ)z , (2.3.20)

with eigenvalues the two Dirac cones (positive and negative) that we obtained earlier
and we obtain that b = ∓i a exp (i θκ), where the upper sign corresponds to the upper
cone, ε+ = κ , and the lower sign corresponds to the lower cone, ε− = −κ . Here,
θκ = arg

(
κx + i κy

)
. From normalization, we obtain that |a|2 = 1/2, which leaves

an arbitrary phase to a. We will choose it to be exp(−i θκ/2). As a result, the two
eigenstates ofHS can be written as follows

χ s = Rz (θκ) χ0
s , (2.3.21)

where s = ± and

Rz (θκ) = exp

(
−i

θκ

2
σz

)
, χ0

s =
(

1
−si

)
. (2.3.22)

This result is verymuch like the onewe obtained in the SSH chain [cf. Eq. (2.1.26)]. It
means that upon a 2π rotation in κ-space, the state acquires a phase ofπ , showing the
non-trivial topologyof these states. It is also important to note that theHamiltonian for
the surface states is a Rashba Hamiltonian without quadratic terms. The consequence
of having such a Hamiltonian is that the surface states are spin-momentum-locked
and the states of the two cones have opposite helicities [20]. In order to see this, we
can calculate the spin texture by evaluating 〈σ 〉, taking into account the form of the
states in Eq. (2.3.21). If we do so, the result is the following

〈σ 〉 = ± (sin θκ ,− cos θκ , 0) , (2.3.23)



2.3 Topological Boundaries and Nanoribbons 51

Fig. 2.11 Topological surface state localized at the interface where band inversion occurs. The
localized state on the left corresponds the Dirac point on the right, marked by a black dot at
the vertex of the cones. The Dirac point is protected by time-reversal symmetry. Away from it,
Kramers’ degeneracy no longer holds and the states at the Dirac point split apart, leading to the
Dirac cones. These cones have opposite helicities, which are perpendicular to momentum at all
times, as schematically indicated by the curved arrows

which implies that 〈σ 〉 and κ are perpendicular to each other, which corresponds to
the feature of having spin-momentum-locking, sometimes referred to as helical spin
polarization [49]. The ± signs correspond to the two opposite Dirac cones, which
implies that they have opposite helicities. Themain implication is that back-scattering
from κ to −κ is forbidden (if a non-spin dependent perturbation is applied), since
that would oblige to change sign of 〈σ 〉.

To conclude with the topological boundary, let us summarize what we have learnt
about the surface states of topological insulators. Time-reversal symmetry requires,
by virtue of Kramers’ theorem, to have a pair of degenerate states at κ = 0. Away
from κ = 0, Kramers’ theorem does not hold anymore and the two Kramers’ pairs
hybridize due to spin-orbit coupling, splitting to form the two Dirac cones. Finally,
these surface states have the feature of being helical, meaning that spin is always
perpendicular to momentum. Moreover, the upper and lower cones have opposite
helicities. This summary is schematically displayed in Fig. 2.11. It is important to
make a final remark. Although we have not stated this explicitly, it is important to
make a distinction upon where the interface is with respect to the quintuple layers.
In our case, we implicitly considered the surface parallel to the quintuple layers,
which corresponds to the (111) surface [cf. Fig. 2.9]. The results for the surface
states change if other directions are chosen [20], but there is always an (elliptical)
Dirac cone and spin-momentum-locking.
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Fig. 2.12 Zigzag and bearded nanoribbons. The vertical direction is taken to be periodic and
the transverse direction is finite. The left-hand side represents a bearded termination, whereas the
right-hand side represents a zigzag termination. Ovals show ways to arrange the red and blue
atoms depending on the desired edges, the red and blue ovals corresponding to bearded and zigzag
terminations, respectively. A supercell is shown in yellow. The lattice vectors are a1 and a2

2.3.2 Graphene Nanoribbons

Let us turn our attention to graphene nanoribbons, where the system is periodic in
only one of the two directions. There are several types of nanoribbons, depending on
their termination.Wewill be interested in zigzag,bearded andarmchair nanoribbons.

Zigzag and Bearded Nanoribbons
Let us begin with zigzag and bearded nanoribbons. We shall choose the lattice with
the orientation shown inFig. 2.12. The system is taken to be periodic along the vertical
direction. Due to translational symmetry, there is a conserved momentum along that
direction, k. In the transverse direction, themomentum is not a good quantumnumber
anymore. Rather, it gets quantized, although not in a straightforward manner, as we
shall see. Since the lattice constant is still that of bulk graphene, a = 1, then k
is restricted to live within k ∈ [−π, π). Let us consider a first-nearest-neighbour
tight-binding model for the zigzag nanoribbon. For that matter, let us introduce the
following two vectors

a1 = 1

2

(
1,

√
3
)

, a2 = (0, 1) . (2.3.24)
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Linear combinations of these with integer coefficients allow to build the lattice.
However, one has to take care with the fact that the lattice is finite in the transverse
direction

Rm,n = ma1 + na2 , m = 1, . . . , Nx , n ∈ Z . (2.3.25)

The two atoms in the ovals of Fig. 2.12 are linked by the vectors

δz = 1

2
√
3

(
1,

√
3
)

, δb = − 1√
3

(1, 0) , (2.3.26)

where z stands for zigzag and b for bearded. The position of the A atoms (blue in
the figure) will be given by RA = Rm,n and those of the B atoms (red) by RB =
Rm,n + δz/b. We will then say that an atom is at position (m, n) and it is of type
A, B. In the zigzag nanoribbon, an A atom in position (m, n) is connected to the
B atoms at (m, n), (m, n − 1), (m − 1, n), whereas in the bearded nanoribbon an A
atom in (m, n) is connected to the B atoms at (m, n), (m + 1, n) and (m + 1, n − 1).
By hopping from A in (m, n) to B in (m, n + q), with q an integer, we accumulate a
phase factor of exp(i qk), since the process amounts to translation by q-units in the
vertical direction. On the other hand, hopping from A in (m, n) to B in (m + q, n)

does not involve the inclusion of phase factors, sincewe arewithin the same supercell.
Therefore, a simple tight-binding model for the zigzag nanoribbon can be written as
follows (t = 1)

(
1 + e−i k

)
ψB(m) + ψB(m − 1) = EψA(m) , (2.3.27a)

ψA(m + 1) + (
1 + ei k

)
ψA(m) = EψB(m) , (2.3.27b)

and that of a bearded nanoribbon can be written as

ψB(m) + (
1 + e−i k

)
ψB(m + 1) = EψA(m) , (2.3.28a)

ψA(m) + (
1 + ei k

)
ψA(m − 1) = EψB(m) , (2.3.28b)

If we had bulk graphene, we would be allowed to introduce a conserved transverse
momentumaswell, andwouldhaveψα(m) ∼ exp (imk · a1). In turn, from the zigzag
and bearded nanoribbons’ equations we would obtain

(
0 �z/b(k)

�∗
z/b(k) 0

) (
A
B

)
= E

(
A
B

)
. (2.3.29)

where

�z(k) = 1 + e−i k1 + e−i k2 , �b(k) = 1 + ei k1 + ei (k1−k2) , (2.3.30)
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Fig. 2.13 Topology of zigzag and bearded nanoribbons. a �z(k) and b �b(k) in the complex
plane. Each of the circles corresponds to a fixed value of k2, as k1 is varied from 0 to 2π . Yellow
circles touch the origin and correspond to k2 = ±2π/3. The teal-coloured circles correspond to a
k2 < |2π/3| and b k2 > |2π/3| and do not enclose the origin, whereas the dark red circles enclose
the origin and correspond to a k2 > |2π/3| and b k2 < |2π/3| [42]

with ki = k · ai . Obviously, both equations lead to the same dispersion, that is,
|�z(k)| = |�b(k)|. However, we already know the importance of studying �(k)

as k is evolved throughout the Brillouin zone. Since we will be interested in finite
systems afterwards, it is convenient to think about the evolution of�α(k) as k1 is var-
ied from 0 to 2π , keeping k2 ∈ [−π, π) fixed. For�z(k), it is then clear that for each
value of k2 we have a circle of radius R = 1, centered at C(k2) = 1 + exp (−i k2).
We have then three options: the circle encloses the origin (|C(k2)| < R), it goes
straight through it (|C(k2)| = R) or it does not enclose it (|C(k2)| > R). By looking
at C(k2), we can see that k2 = ±2π/3 corresponds to having the two corresponding
circles going through the origin. Since we are looking at circles, these can only go
through the origin once each. Touching the origin implies that �z(k) = 0. There-
fore, these two touching points are the two Dirac points of the Brillouin zone, K
and K ′. If |k2| > 2π/3, then |C(k2)| < R and the circles enclose the origin and oth-
erwise if |k2| < 2π/3. We shall see the importance of these results shortly, which
are shown in Fig. 2.13a. In the case of �b(k), we can observe that the curves cor-
respond once again to circles but this time they have a fixed center, C = 1, and a
radius R(k2) = |1 + exp (−i k2) |. Therefore, the radius and the center have swapped
places with respect to the zigzag nanoribbon and the arguments we just presented
are inverted. That is, the circles enclose the origin if |k2| < 2π/3 and they do not if
|k2| > 2π/3. The results are shown in Fig. 2.13b.

Let us turn our attention to the equations for the finite systems. If we assume that
E �= 0, from both sets of equations [cf. Eqs. (2.3.27), (2.3.28)] we find
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[| f (k)|2 + 1
]
ψA(m) + f (k)ψA(m + 1) + f ∗(k)ψA(m − 1) = E2ψA(m) ,

(2.3.31)
and ψB(m) can be obtained from

ψB(m) = 1

E

[
ψA(m + 1) + f ∗(k)ψA(m)

]
, (2.3.32)

for the zigzag nanoribbon and

ψB(m) = 1

E

[
ψA(m) + f ∗(k)ψA(m − 1)

]
, (2.3.33)

for the bearded nanoribbon. Here we have introduced f (k) = 1 + exp(−i k). It is
important to notice the fact that Eq. (2.3.31) is the same for both types of edges, which
implies that the energies resulting from this equation cannot be edge states, since its
only the bulk of zigzag and bearded nanoribbons that is the same. From Eq. (2.3.31)
we also see that the spectrum will be symmetric around E = 0. Indeed, the spectrum
corresponding to this equation for a large nanoribbon of Nx = 200 corresponds to
the khaki lines in Fig. 2.14a. A bulk state is shown in green in Fig. 2.14b, where it
can be seen that the probability density spreads throughout the ribbon and is zero at
the edges.

Let us now explore the case where E = 0. In that case, the equations for the zigzag
and bearded nanoribbons [cf. Eqs. (2.3.27), (2.3.28)] imply that

|ψB(m + 1)|2 = | f (k)|−2m |ψB(1)|2 ,

|ψA(m + 1)|2 = | f (k)|2m |ψA(1)|2 .
(2.3.34)

If | f (k)| < 1, |ψB(m + 1)|2 > |ψB(1)|2 and |ψA(m + 1)|2 < |ψA(1)|2. The oppo-
site happenswith | f (k)| > 1.Which onewe choose, either | f (k)| > 1 or | f (k)| < 1,
depends on the boundary conditions.Azigzagnanoribbon requires that [seeFig. 2.12]
ψB(0) = ψA(Nx + 1) = 0, which implies that we must choose | f (k)| < 1, since it
implies that |ψB |2 is exponentially localized on the right and |ψA|2 is on the left. On
the other hand, a bearded nanoribbon requires that ψA(0) = 0 and ψB(Nx + 1) = 0,
so we must choose | f (k)| > 1 in that case. The region where | f (k)| < 1 and
| f (k)| > 1 correspond, respectively, to k > |2π/3| and k < |2π/3|. In Fig. 2.14a,
we have plotted in dark blue the zero energy states corresponding to the bearded
nanoribbon and in light coral those corresponding to the zigzag nanoribbon. At the
point where | f (k)| = 1, the edge states become degenerate with the bulk, as is appar-
ent from that figure.

It is important to mention that if the ribbon is sufficiently narrow, then the edge
states can hybridize with the bulk states that are closest in energy, that is, those
around k = |2π/3|, and those states will gap out. However, a little further away
from k = |2π/3|, the states are sufficiently far from bulk states and they are zero
energy modes. This is why in Fig. 2.14a we have chosen a ribbon of Nx = 200 sites.
In Fig. 2.14b we show two edge states for the zigzag nanoribbon, left- and right-
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Fig. 2.14 Dispersion, edge and bulk states of zigzag and bearded nanoribbons. a Dispersion
for a nanoribbon of Nx = 200, where bulk states are shown in khaki and coincide for both kinds
of ribbons. Zero energy dark blue and light coral lines correspond to edge states in bearded and
zigzag nanoribbons, respectively. Filled circles correspond to the states that are plotted in b with the
probability densities for the bulk state in green, |ψb|2, and the edge states in blue and red, |ψe|2. The
index m indicates the site, odd and even numbers corresponding to A and B atoms, respectively.
Insets show how the edge states have all their weight in either one of the two atoms (A for the left
edge, B for the right edge)

hand sides, corresponding to the blue and red dots in Fig. 2.14a, respectively. As
we can see in the inset, the probability takes only non-zero values on the A sites
(odd numbered in the figure) for the left-hand side of the ribbon and on the B sites
(even numbered) for the right-hand side. This explains the flatness of the bands:
indeed, since the weight on atoms of the opposite sublattice is exactly zero, there
is no way for tunneling into those sites and spreading into the bulk, so there can
be no dispersion. It is possible to understand the presence of these edge states from
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Fig. 2.15 Armchair nanoribbon. The longitudinal direction is taken to be periodic and the trans-
verse direction is finite. Ovals show a way to arrange the A and B atoms. A supercell is shown in
yellow. The lattice vectors are a1 and a2

topology arguments. Indeed, we have just obtained that the zigzag nanoribbon hosts
edge states if | f (k)| < 1, whereas the bearded nanoribbon does if | f (k)| > 1. In our
analysis of the bulk Hamiltonian when we have seen that �z,b(k) describes circles
enclosing the origin precisely when | f (k)| < 1 for zigzag nanoribbons and likewise
for bearded nanoribbons if | f (k)| > 1. Therefore, the existence of these edge states
stems from a bulk-boundary correspondence [42, 75, 76], very much like in the SSH
chain and the topological boundary.

Armchair Nanoribbons
Let us now turn our attention to armchair nanoribbons, as shown in Fig. 2.15, where
the horizontal direction is taken to be periodic and the transverse direction is finite.
Notice that the lattice constant is now

√
3 times larger than that of bulk graphene,

so the conserved momentum along the horizontal direction will be restricted to a
Brillouin zone that is

√
3 times smaller. In any case, we will take here the lattice

constant to be equal to 1, so that the bulk lattice constant is 1/
√
3. The lattice is then

generated by the two vectors

a1 = (1, 0) , a2 = 1

2
√
3

(√
3,−1

)
, (2.3.35)

so that a position in the lattice is given by

Rm,n = ma1 + na2 , m ∈ Z , n = 1, . . . , Ny . (2.3.36)

The A and B atoms inside an oval (see Fig. 2.15) are linked by a vector δ = (1/3, 0).
This way, the position of the A atoms is RA = Rm,n and that of the B atoms is
RB = Rm,n + δ. Just like with the zigzag and bearded lattices, we will say that an
atom is at position (m, n) and is of type A, B.

Since the lattice is periodic along the horizontal direction, there is a good quan-
tum number along that direction, k, restricted to k ∈ [−π, π). Recall that we are
expressing everything in units of the lattice constant for this nanoribbon, which is√
3 times larger than that of bulk graphene. In the figure, we can see that an A atom in

(m, n) is connected to a B atom in (m, n), (m, n − 1) and (m − 1, n + 1). Similarly
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to the zigzag and bearded ribbons, on hopping from (m, n) to (m + q, n), with q
an integer, we accumulate a phase factor of exp(i qk) since the process amounts to
a translation by q-units in the horizontal direction, whereas hopping from (m, n)

to (m, n + q) does not involve any phase factors because we are within the same
supercell. Therefore, the nearest-neighbour tight-binding model is written as follows

ψB(n) + ψB(n − 1) + e−i kψB(n + 1) = EψA(n) (2.3.37a)

ψA(n) + ψA(n + 1) + ei kψA(n − 1) = EψB(n) . (2.3.37b)

If we do the same as with the other ribbons, in the bulk we would have ψα(n) ∝
exp(i nk · a2) and the relevant quantity to look at would be

�a(k) = 1 + e−i k2 + e−i (k1−k2) , (2.3.38)

where again k1 = k · a1 and k2 = k · a2. Following the same procedure as with the
other nanoribbons, we want to see the evolution of �a(k) in the complex plane as
we vary k2 ∈ [0, 2π) while keeping k1 fixed since now k1 is the one that will be a
good quantum number in the nanoribbon. In order to visualize what would happen,
it is convenient to write �a(k) as follows

�a(k) = 1 + 2e−i k1/2 cos

(
k1
2

− k2

)
. (2.3.39)

Consider the case where k1 = 0. In that case, there is only a real part and, as we vary
k2 ∈ [0, 2π), �a will take values from −1 to 3. Hence, if k1 = 0 we have a segment
that passes through the origin and 1. This segment is actually an elliptical loop of
major axis equal to 2 and minor axis of size 0, which resembles a segment of size
4 when plotted. Therefore, it passes through the origin twice, when k2 = π/2 and
3π/2. Now, let us consider the case where k1 = ±π . In that case, the real part is 1
and the imaginary part is ∓2 cos (k1/2 − k2). We therefore have a vertical segment
(loop) that passes through 1 and extends from −2 i to 2 i . All other cases where
k1 �= 0 or π can be obtained just by tilting the elliptic loop by an angle of −k1/2,
measured from the horizontal axis to the major axis of the ellipse. Hence, we see
that, in contrast to the other two ribbons, there are no loops enclosing the origin,
except for the loop that touches it twice, the loop at k1 = 0, which correspond to the
two Dirac points in bulk graphene. As we will see, there will be no edge states in
consequence of the bulk-boundary correspondence. This discussion is summarized
in Fig. 2.16.

Let us then turn our attention to the finite ribbon. This model can be solved by
performing a gauge transformation such that

ψA(n) → exp

(
i k

n − 1

2

)
ψA(n) , ψB(n) → exp

(
i k

n

2

)
ψB(n) , (2.3.40)



2.3 Topological Boundaries and Nanoribbons 59

Fig. 2.16 Topology of armchair nanoribbons. �a(k) in the complex plane. Each of the circles
corresponds to a fixed value of k1, as k2 is varied from 0 to 2π . Lines here are actually elliptic loops
of minor axis of size zero. That is, they are not open paths but loops. The yellow lines touch the
origin and correspond to k1 = 0, which occurs twice due to the looped nature of these lines. The
teal-coloured ellipses correspond to k1 �= 0, non of which can enclose the origin due to having zero
minor axis

which transforms the set of Eqs. (2.3.37) to

ei k/2ψB(n) + ψB(n − 1) + ψB(n + 1) = EψA(n) (2.3.41a)

e−i k/2ψA(n) + ψA(n + 1) + ψA(n − 1) = EψB(n) . (2.3.41b)

The boundary conditions require that the amplitudesψA(n) andψB(n) both vanish at
n = 0 and n = Ny + 1 [see Fig. 2.15]. Notice that the gauge transformed amplitudes
satisfy exactly the same requirement. If we use the following ansatz

ψA(n) = A+ei qn + A−e−i qn , ψB(n) = B+ei qn + B−e−i qn , (2.3.42)

the boundary conditions at n = 0 imply that A+ = −A− ≡ A and B+ = −B− ≡ B.
Therefore

ψA(n) = 2i A sin(qn) , ψB(n) = 2i B sin(qn) . (2.3.43)

The boundary condition at Ny + 1 implies on the other hand the quantization of q
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Fig. 2.17 Subbands in armchair graphene nanoribbons. a Semiconducting nanoribbon of Ny =
30 and b metallic nanoribbon of Ny = 29

q = pπ

Ny + 1
, p = 1, . . . , Ny . (2.3.44)

Upon substitution ofψA(n) andψB(n) into Eq. (2.3.41) we can find that the spectrum
is given by

E(k) = ±
√
1 + 2εq cos

(
k

2

)
+ ε2q , (2.3.45)

where εq = 2 cos(q). This result is in agreement to that discussed in Ref. [77]. An
example for Ny = 30 is shown in Fig. 2.17a.

At k = 0, which is where �a(k) touched the origin, we can write

E(0) = ±|1 + εq | . (2.3.46)

The system can become metallic if E(0) = 0, which occurs for specific values of
Ny . Indeed, for that matter we need q = 2π/3. This can be achieved whenever
Ny = 3r − 1 with r = 1, 2, . . . since p runs from 1 to Ny and 2r is within 1 and
3r − 1. This is shown in Fig. 2.17b for Ny = 29. Moreover, the dispersion of these
metallic states close to k = 0 is massless Dirac-like. Indeed, if we expand E(k)

around k = 0 for the metallic states (εq = −1), we obtain E(k) = ±k/2, a Dirac
cone. If we recall that k is expressed in units of the lattice constant and that E(k) is
expressed in units of t , we can write E(k) = ±vF k, where vF = 3tacc/2, with acc

the distance between neighbouring carbon atoms.
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The metallic states are not protected by topology since they do not occur from a
bulk-boundary correspondence. Instead, they occur due to choosing the right values
for Ny such that upon slicing the bulk dispersion due to quantization of the transverse
momentum we pass through the Dirac cone. However, since this Thesis focuses on
the reshaping of Dirac cones, we shall be interested in these states and not on the zero
energy modes that appear from topology in the zigzag and bearded nanoribbons. In
order to conclude this chapter, we will present the solution to the armchair nanorib-
bon within the low-energy description, since it will be of importance later on. The
discussion for the zigzag nanoribbon can be found in a number of Refs. [78–80].
We shall see that the low-energy description does provide a topological origin to the
appearance of metallic behaviour [81]. In order to follow Ref. [81], we will write
the low-energy Hamiltonian of the previous section in the slightly modified basis{
ψ K

A (x), ψ K
B (x),−ψ K ′

B (x), ψ K ′
A (x)

}
, which simply means to change τz to τ0 in the

valley part of the Hamiltonian. Also, we will allow for the presence of a potential
V (x), since it will be of interest in the following chapter. Therefore, the Hamiltonian
is written as follows

H = vFτ0 ⊗ (σ⊥ · k) + τ0 ⊗ σ0V (x) . (2.3.47)

It must be carefully remembered that k has to be considered as the momentum
operator, which can be directly substituted by the quantum number k in transla-
tionally invariant systems. Also, it must be remembered that this Hamiltonian was
obtained by rotating π/2 with respect to the lattice oriented as in Fig. 2.15. Hence,
we have to consider that when we refer to such a figure, the direction along which
the lattice is infinite corresponds to the Y -direction in our model and the direc-
tion along which it is finite corresponds to the X -direction [see Fig. 2.8]. Hence,
K = −K ′ = (4π/3)(1, 0). The important point here is how to impose the boundary
conditions. One would be inclined to set to zero the envelope functions ψ K (K ′)

α (r)
at the edges. However, one has to take into account that the total wavefunction is
actually written as follows [19] (cf. the k · p analysis of the SSH model)

�(r) =
∑

α=A,B

∑
Rα

φα(r)ϕ(r − Rα) , (2.3.48)

where ϕ(r − Rα) is an atomic pz orbital centered at Rα and φα(r) is written in terms
of the envelope functions [80]

φα(r) = ei K ·rψ K
α (r) + ei K ′ ·rψ K ′

α (r) . (2.3.49)

Notice the difference with the SSHmodel, where we expanded around Q = π . Here,
the K and K ′ points are degenerate and φα(r) has to take into account contributions
from both points. This is why we obtain a 4 × 4 low-energy Hamiltonian, despite
of having two bands only. Therefore, the proper boundary conditions in armchair
nanoribbons imply that φA(r) and φB(r) must be zero at the boundary. This is not
so for zigzag nanoribbons, where only one of the two sublattices has to be nullified
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at the boundary. A subtle point is where to precisely nullify the amplitudes φA and
φB . We will do exactly the same as with the tight-binding model, where we nullified
on a fictitious row of atoms right next to the proper boundary. As we said earlier, the
system will be finite along the X -direction and infinite along the Y -direction. That
allows us to have a good quantum number k along the Y -direction and therefore the
problem in that direction is trivially solved by a phase factor exp(i ky). As a result,
we will write φA and φB to depend only on x , always remembering that they actually
carry such a phase factor. Let us then call the position of the fictitious rows of atoms
xb, with b = 1, 2. In the nanoribbon shown in Fig. 2.15, this would correspond to
x1 = 0 and x2 = (Nx + 1)/2, in units of the bulk graphene lattice constant a = 1.
Notice that to agreewith the results obtained in the tight-binding calculations, one has
to make the substitution Ny → Nx in the results obtained earlier. Hence, φα(xb) = 0
implies that

ψ K
α (xb) = −e−i 2K xbψ K ′

α (xb) , (2.3.50)

where we have taken into account that K = −K ′. With this in mind, let us solve the
problem in the absence of a potential. In the basis we have chosen, the Hamiltonian
acts upon� = (ψ K

A , ψ K
B ,−ψ K ′

B , ψ K ′
A ),H� = E�. Let us considerV (x) = 0.Then,

if we square the Hamiltonian, we obtain

v2
F (−∂2

x + k2)�(x) = E2�(x) . (2.3.51)

Therefore, each of the four components of �(x) satisfies

v2
F (−∂2

x + k2)ψ K (K ′)
α (x) = E2ψ K (K ′)

α (x) . (2.3.52)

However, not all four can be independent, since that would lead to eight integration
constants instead of four. Indeed, the components within a valley subspace are actu-
ally coupled by σ⊥ · k. Hence, we can obtain ψ K

A and ψ K ′
A from (2.3.52) and the

other two would be obtained from

ψ
K (K ′)
B (x) = i (∓∂x + k) ψ

K (K ′)
A (x) , (2.3.53)

where the minus sign corresponds to K and the plus sign to K ′. We can propose the
following ansatz

ψ
K (K ′)
A (x) = AK (K ′)e

i qx + BK (K ′)e
−i qx , (2.3.54)

which implies that

ψ
K (K ′)
B (x) = (i k ± q) AK (K ′)e

i qx + (i k ∓ q) BK (K ′)e
−i qx . (2.3.55)

Upon substitution of the ansatz into Eq. (2.3.52) leads to the following dispersion

E = ±vF

√
k2 + q2 . (2.3.56)
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The allowed values for q are imposed by the boundary conditions. The boundary
condition for ψA at x1 = 0 implies that

AK + BK = −AK ′ − BK ′ . (2.3.57)

On the other hand, the boundary condition at x2 = (Nx + 1)/2 implies

AK ei (q+K )x2 + BK e−i (q−K )x2 = −AK ′ei (q−K )x2 − BK ′e−i (q+K )x2 . (2.3.58)

These two equations have to be complemented with those forψB , leading to a homo-
geneous system of equations with four unknowns. Upon imposing the determinant
to be zero, we can obtain the allowed values for q. One has to be careful with the case
q = 0, which has to be treated separately. Indeed, if q = 0, the term coming from the
derivative in ψB(x) is zero and, as a result, ψB(x) = i kψA(x). Hence, two of those
four equations would be redundant. In the case of having q = 0, it is straightforward
to obtain from the boundary conditions that one must have

exp (−i 2K x2) = 1 . (2.3.59)

Taking into account the value of K and x2, this is equivalent to

2(Nx + 1)

3
= n , n ∈ Z , (2.3.60)

which can only occur if Nx + 1 is an integer multiple of 3. That is, Nx = 3r − 1
with r = 1, 2, . . . . This result is in accordance to our results using the tight-binding
formalism. On the other hand, setting the determinant to zero, excluding the q = 0
solution due to the previous reasoning, leads to the following equation

sin [(q − K )x2] sin [(q + K )x2] = 0 . (2.3.61)

Since the equation is symmetric when q → −q, we can consider either one of the
two terms and set it to zero. This way, we obtain that q is quantized

qn = nπ

x2
− K , n ∈ Z . (2.3.62)

Notice that the case qn = 0 is contained in this set of solutions when Nx = 3r − 1
with r = 1, 2, . . . . We have therefore found that the dispersion given in Eq. (2.3.56)
forms a set of subbands

E = ±vF

√
k2 + q2

n , qn = nπ

x2
− K , n ∈ Z . (2.3.63)
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In general, qn �= 0 and E forms a series of massive Dirac-like subbands. Since qn

is squared in the dispersion relation, one can wonder if there is any possibility of
double degeneracy, that is, if there exists another integer n′ such that qn = −qn′ . If
we take into account the values that qn can take, this implies that

n + n′ = 4

3
(Nx + 1) , (2.3.64)

which is only satisfied if Nx = 3r − 1 with r = 1, 2, . . . , which is the condition for
having metallic behaviour. Hence, metallic nanoribbons are such that they have two
singly degeneratemasslessDirac bands corresponding toq = 0, E = ±k, and a set of
massive Dirac bands which are doubly degenerate. Semiconducting nanoribbons on
the other hand have a set of massive Dirac bands only and these are non-degenerate.
It is important to notice that this is only an effect that appears in the continuum
description of graphene, and will be key to explain the topological protection of the
Dirac cones in metallic nanoribbons when dealt with the Dirac equation. In the tight-
binding description, this degeneracy becomes increasingly more precise the larger
Nx is and the closer to k = 0 we are. This makes sense, since small values of Nx lead
to large quantized transverse momenta, so the effects of trigonal warping cannot
be neglected. These correspond to terms of order k2 in the bulk dispersion, which
are accompanied by sin(3θk), being θk = arctan(kx/ky) [37], which in turn lead to
the dispersion not being isotropic around the Dirac points. It has threefold rotational
symmetry, hence the adjective trigonal, but it breaks the symmetry between the K
and K ′ points. We will see the relevance of this discussion in the next chapter.

As of now, we can try to understand the difference between metallic and semicon-
ducting nanoribbons in the continuum description. One of such distinctions is that
semiconducting nanoribbons display nondegenerate massive Dirac bands, whereas
metallic nanoribbons have doubly degenerate massive Dirac bands and singly degen-
erate Dirac cones. We will show below that the degeneracy can be resolved due to
the presence of a pseudovalley degree of freedom [81]. In order to reach these con-
clusions, we must rewrite the boundary conditions in the following form

�(xb) = Mb�(xb) , (2.3.65)

where

Mb =
(

0 −i ei θb

i e−i θb 0

)
⊗ σy , (2.3.66)

and θb = −2K xb. This matrix can also be written as follows

Mb = ub · τ ⊗ σy , ub = (sin θb, cos θb, 0) . (2.3.67)

In our configuration, θ1 = 0 and θ2 = −4π(Nx + 1)/3. Metallic nanoribbons have
Nx + 1 = 3r with r ∈ Z

+, so that θ1 and θ2 are separated by an integer multiple of
4π . Therefore, M1 = M2 ≡ M = τy ⊗ σy in metallic nanoribbons. In this case,
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therefore, τy ⊗ σ0 commutes with the low-energy Hamiltonian including the poten-
tial term, but also with M. Therefore, we may choose solutions to be eigenstates
of τy ⊗ σ0, which in turn allows us to group them into two groups. Naively, one
may think that the degeneracy comes from the Kramers’ degeneracy between K and
K ′ that we find in the bulk Hamiltonian. Indeed, in the bulk the Dirac cones that
are obtained from the Hamiltonian, E(k) = ±vF |k| are doubly degenerate since the
Hamiltonian is a 4 × 4matrix. However, Kramers’ degeneracy comes from having an
antiunitary symmetry that squares to−1 and one has to take great care when carrying
the symmetries from the bulk into the finite systems. Indeed, for these symmetries
to continue holding in the finite system, they must respect the boundary conditions
as well. This amounts to having the boundary matrices Mb to commute with such
symmetries [81]. We know of one of these antiunitary symmetries from our obtain-
ing of the low-energy Hamiltonian, which is time-reversal symmetry. We wrote it as
� = (τx ⊗ σx )K, withK being complex conjugation. In the present basis, we have to
use rather�y = (τy ⊗ σy)K. However, this symmetry squares to+1, since we chose
it to be that for spinless fermions. Since the Hamiltonian is now diagonal in the valley
subspace, we can propose three more antiunitary symmetries by taking into account
that (U ⊗ σy)K with U a unitary operator will also commute with the Hamiltonian.
Hence, choosing U to be the remaining Pauli matrices, we have the following set of
antiunitary symmetries that commute withH upon changing k → −k

�i = (
τi ⊗ σy

)
K , i = 0, x, y, z . (2.3.68)

That is,
�iH(k)�−1

i = H(−k) , (2.3.69)

for all i = 0, x, y, z. Notice that the �i ’s square to −1, with the exception of i = y
which squares to +1, as we already pointed out. It must be noted that �0 and �z

are actually equivalent and belong to a larger class of intravalley operators differing
each on a phase [81]

�(θ) = (cos θτ0 + i sin θτz) ⊗ σyK . (2.3.70)

In the case of �0 and �z , these differ by a phase of π/2. Which one to choose from
the family of operators will depend on the actual boundary conditions. It is the fact
that�x squares to−1 that leads to the Kramers’ degeneracy of the two valleys in the
bulk. It must be noted that the operators �(θ) cannot be held responsible for such
a degeneracy in the bulk, since they are intravalley operators and, therefore, do not
mix the valley subspaces. With this in mind, we now have to check which of these
symmetries commute as well with the boundary matrices M1 and M2. Since the
symmetries have to commute with both boundary conditions, they have to commute
in particular withM1 = τy ⊗ σy , which allows us to disregard by inspection�x and
�z . In fact, it is easy to check that of the family �(θ), the only one that commutes
is �(0) = �0. �y also commutes with M1, so it remains to check if �0 and �y

also commute with M2. If we do so, we find that �y commutes with M2 for any
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value of θ2, whereas �0 only commutes withM2 if ux
2 = 0. This last condition can

only be fulfilled if θ2 is an integer multiple of 2π , which only occurs in metallic
nanoribbons. We can then conclude the following: both metallic and semiconduct-
ing nanoribbons preserve the proper time-reversal symmetry of the bulk, but only
the metallic nanoribbons carry another extra antiunitary symmetry from the bulk.
However, this antiunitary symmetry is not �x and, therefore, we cannot conclude
the degeneracy of the subbands or the emergence of a Dirac cone in the metallic
nanoribbons to be due to the Kramers’ degeneracy of the valleys. However, if we
check the product of these such symmetries, �y�0 = −τy ⊗ σ0, we see that it is
nothing but the matrix (up to an irrelevant minus sign) that we said to be commuting
with both the Hamiltonian and the boundary matrix in the case of metallic nanorib-
bons. Hence, it is the fact that we have these two symmetries that allows us to group
the solutions into two categories. These two categories can be labeled by a pseu-
dovalley index. In order to obtain it, we can notice that while the valley states are
eigenstates of τz ⊗ σ0, the pseudovalley states are eigenstates of τy ⊗ σ0, so the latter
can be obtained from a linear combination of the former. Therefore, if we want to
connect the known result from the bulk where K and K ′ are Kramers’ partners, that
is, EK (k) = EK ′(−k), we just have to perform a π/2 rotation so that we carry τy to
τz around the valley X -axis [81]. We do so by means of the following operator

R = exp
(
−i

π

4
τx

)
⊗ σ0 = 1√

2
(τ0 − i τx ) ⊗ σ0 . (2.3.71)

Upon rotation, �y remains unchanged, whereas �0 changes to

�R
0 = −i τx ⊗ σy K . (2.3.72)

On the other hand, the matrix τy ⊗ σ0 changes to σz ⊗ σ0, as we desired to. Finally,
the boundary matrix changes to

MR = τz ⊗ σy . (2.3.73)

Thus, if we denote the pseudovalley indices by KR and K ′
R, we can conclude that

the spectrum can be pseudovalley resolved

EKR(k) = EK ′
R(−k) . (2.3.74)

This implies that, if they exist, gapless Dirac-like modes are Kramers’ partners to one
another and are singly degenerate, whereas massive subbands are doubly degenerate.
A schematic depiction of the pseudovalley resolution is shown in Fig. 2.18.

The existence of gapless modes can be traced back to the form of MR. For that
matter, we have to discuss first what are called the infinite-mass boundary conditions.
These were introduced by Berry and Mondragon [82] when trying to work out the
problem of confinement of massless spin-1/2 particles. They showed that the way to
confine these was to introduce a mass or scalar potential term which tends towards
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Fig. 2.18 Pseudovalley resolved subbands in metallic armchair nanoribbons. A rotation R in
the valley subspace allows us to unravel a pseudovalley structure of the continuum model [81]

infinity outside the confinement region and is zero within it. Hence the name infinite-
mass boundary conditions. In the end, they showed that by requiring the probability
current to vanish outside the confinement region, one couldwrite at the boundary [83]

� = −Mb
∞� , Mb

∞ = τz ⊗ (
σ · [

nb × ẑ
])

, (2.3.75)

where nb is a vector normal to the boundary. In our case, n1 = −n2 = −x̂ which
would imply

M1
∞ = −M2

∞ = τz ⊗ σy . (2.3.76)

This has actually the same form asMR, but the crucial difference is thatMR is the
same on both sides, whereas the infinite-mass condition hasM∞ of opposite sign on
opposite boundaries. We may then conclude that the boundary conditions of metallic
armchair nanoribbons are infinite-mass conditions, with opposite masses on each
side [81]. This should sound familiar, since we have already encountered it twice,
once in the SSH and another at the topological boundary: a change in the sign of
the mass creates a domain wall and leads to gapless modes. In one dimension, these
were zero modes, in three dimensions these where two-dimensional Dirac cones.
Therefore, we may argue that the origin for the Dirac cones in metallic nanoribbons
is actually topological. What is more interesting is that this analysis holds even in
the presence of a potential V (r), meaning that the Dirac point will be protected even
in presence of a nonzero V (r). We shall see the importance of this result in the
following chapter.
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Chapter 3
Reshaping of Dirac Cones by Electric
Fields

In the previous chapter, we discussed how topology can be interwoven within the
physics of certain materials and how it produces nonstandard behaviours regarding
the dispersion of electrons in such materials. Indeed, we saw that by placing two
insulators of opposite Z2 invariant, creating a topological boundary, leads to the
presence of topological surface states at the boundary. The dispersion of such states
is a Dirac cone and the Dirac point is protected by time-reversal symmetry in three-
dimensional topological insulators. On the other hand, we discussed that armchair
graphene nanoribbons of certain width display also Dirac-like states at low energy
andwe could observe that, in the continuumdescription, these states are topologically
robust, even in the presence of a spatially dependent potential. The protection stems
from the presence of antiunitary symmetries that produce a pseudovalley structure,
the two pseudovalleys being Kramers’ partners.

In this chapter, we will consider those two systems when a uniform electric field is
applied perpendicularly to the conserved momenta. That is, the electric field will be
perpendicular to the surface of the topological insulator and itwill be containedwithin
the nanoribbon and pointing along its finite direction. We shall observe that such a
perturbation, which does not break time-reversal symmetry, nor does it break the
antiunitary symmetries of the nanoribbon, preserves the Dirac point, while widening
the cone, thereby modifying the Fermi velocity [1]. The starting point will be to
consider the effect of the electric field at a topological boundary by means of first
order perturbation theory. Next, we will focus on the centered-symmetric boundary
and will solve the problem under some approximations to the lowest non-zero order
in the electric field. Within these approximations, it also makes sense to tackle the
analysis of the effect of the electric field upon two topological boundaries, separated
a certain distance. In this case, the net effect is the same as with the H+

2 molecule,
where two localized orbitals are brought together and, upon overlapping, lead to
bonding and antibonding orbitals. Therefore, the Dirac dispersion will be gapped
out and the gap will be tunable by the electric field [2]. These two approximate
methods will shed light on the full problem and will allow us to obtain analytic
expressions of the dispersion relation for low enough fields. To conclude the part
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devoted to the topological boundary, we will present an exact solution for arbitrary
sized boundaries, which does not lead to analytic results, although it predicts the
exact same phenomenon of the approximate calculations in the limit of low fields [3].
After this thorough study, we will drive our attention to narrow metallic armchair
nanoribbons. As we know, the topological protection within the continuum model
will protect the Dirac point. The result of the electric field will be to widen the cone
and therefore alter the Fermi velocity, as with the other Dirac material studied. We
shall see that the same widening happens in the tight-binding description, although
the absence of topological protection here leads to a dispersion that is gapped out.
However, the fact that the ribbons are narrow implies that the subbands are well
separated from each other and we can go higher up in energy where the spectrum is
again linear, and compare with the results of the continuum model. The agreement
is noteworthy, as we shall observe.

3.1 Topological Boundary

3.1.1 Perturbation Theory

In the previous chapter, we saw that three dimensional topological insulators such as
Bi2Se3 and topological crystalline insulators such as SnTe, can be described by a low-
energy Hamiltonian that resembles the Dirac equation with a mass term given by half
the energy gap. We then saw that by placing such materials next to a trivial insulator
leads to the appearance of gapless, Dirac-like states at the surface. As we saw in that
chapter, after introducing several dimensionless variables, the Hamiltonian for the
topological boundary can be written as follows

H0 = −i αz∂ξ + α⊥ · κ + δβ + (β + γ ) sgn (ξ). (3.1.1)

For a reminder on the definition of the dimensionless variables and their relation
to the real material parameters, the reader is referred to the previous chapter, in
particular to the section devoted to the topological boundary. As a brief reminder, δ
and γ measure how different in size are the energy gaps and what is the separation
between their centres, with δ = γ = 0 corresponding to the same-sized, symmetric
system. ξ is the direction perpendicular to the surface and it is measured in units of
d = vz/λ, being λ the average gap. The energies, ε, are measured in units of λ. κ is
the in-plane momentummeasured in units of 1/d. Finally, the Hamiltonian is written
in the orbital-spin basis and it acts upon the bispinor �0(ξ) containing the envelope
functions

H0�
0(ξ) = (

ε0 − γ δ
)
�0(ξ). (3.1.2)

The superscript 0 indicates the unperturbed system. It is important to remember that
the actual bispinor carries a phase exp(i κ · r⊥) due to translational symmetry in the
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XY -plane (recall that κ is the in-plane momentum, so its Z -component is nullified).
This system hosts topological surface states that are localized at the surface

�0
κ,s(ξ) = exp [−π0(ξ)|ξ |]�0

κ,s, (3.1.3)

where s = ± and

π2
0 (ξ) = κ2 + (δ + sgn (ξ))2 − (

ε0κ,s − γ sgn (ξ) − γ δ
)2

. (3.1.4)

Notice that the decay lengths on both sides in units of d are given by

�R
κ,s = 1

π+
0 (κ, s)

, �Lκ,s = 1

π−
0 (κ, s)

, (3.1.5)

where π±
0 = π0(0±) and we have noted that, in general, π±

0 depends on κ and s. The
dispersion of the surface states is a single Dirac cone

ε0κ,s = s
√
1 − γ 2 κ. (3.1.6)

Remember that κ = |κ |. The double degeneracy at κ = 0 is due toKramers’ theorem,
since that is the only time-reversal-symmetric momentum of this model. Away from
κ = 0, Kramers’ theorem does not hold anymore, the degeneracy splits and leads to
the Dirac cone. In fact, the constant vector �0

κ,s is obtained as a linear superposition
of the time-reversed partners at κ = 0.

In order to understand future results in the case of an applied electric field, let
us discuss Eq. (3.1.6) and relate it with the decay lengths on both sides. The first
thing we notice is that for centered gaps, γ = 0, the decay lengths are independent
of κ . That is, all states decay in exactly the same manner, independent of κ , even the
Dirac point. They do not, however, decay equally fast on both sides, that depends
on δ. Indeed, if δ ∈ (0, 1), it will decay faster to the right, in order to guarantee the
normalization of the state, and the opposite will happen if δ ∈ (−1, 0). This makes
sense if we consider that the gap is given by

εG(ξ) = 2
[
δ + sgn (ξ)

]
. (3.1.7)

Hence, if δ > 0, |εG(0+)| > |εG(0−)|. The larger the energy gap is, the smaller
the decay length, and so �R < �L . The situation described above is schematically
shown in Fig. 3.1a. The reason for the decay lengths not to be dependent on κ can
be understood by considering the bulk and surface dispersions. Indeed, if γ = 0, the
bulk dispersion on each side would be

εbj = s
√

κ2 + (
δ + r j

)2
, j = L,R, (3.1.8)
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Fig. 3.1 Schematic decay of surface states in topological boundaries for different momenta.
a Centered, asymmetric scenario. Surface states decay faster on the largest-gap side, independent
of momentum. b Symmetric, off-centered situation. Surface states decay faster (slower) to the right
the higher (lower) we go in energy with respect to the decay to the left. In both a and b, above and
below the band edges, there is a continuum of states

with rL = −1 and rR = 1. It is clear that the surface state dispersion, ε0κ,s = sκ ,
would never cross the bulk dispersion, since at all times in the range δ ∈ (0, 1) we
have εbj > ε0κ,s .

Let us now consider the opposite situation, that with δ = 0 and γ �= 0. In this
case, we can observe that the decay lengths do depend on κ . Again, we can look at
the bulk dispersion, which in this case is given by
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εbj = r jγ + s
√

κ2 + 1. (3.1.9)

As we can observe, if γ > 0, the term r jγ is positive on the right and negative on
the left. Since the squared-root term tends asymptotically to κ , then there will be
a point where εbL < κ , meaning that the dispersions would cross. In order to avoid
such a situation, the less restrictive requirement is to ask for the cone to widen so
that εbL only touches the surface dispersion tangentially. For that matter, we write the
surface dispersion as ακ and find α. If we do so, we find that α = √

1 − γ 2. This is
precisely what we found earlier, see Eq. (3.1.6). This situation is achieved by having
κ-dependent decay lengths. If we consider γ ∈ (0, 1), positive energy states of larger
κ would be closer than states of lower κ to the crossing point with the bulk states on
the left. Therefore, the decay lengths of the former become larger on that side. The
opposite would happen for states of negative energies. In fact, it is only the Dirac
point states that decay exactly the same on both sides because its proximity to the
crossing points is the same with respect to both sides. However, if we consider the
range where γ ∈ (0, 1), states of larger momenta that are higher (lower) in energy
with respect to the Dirac point decay faster (slower) to the right than to the left. This
is shown schematically in Fig. 3.1b. In order to avoid the crossing with bulk states,
higher (lower) energy states will move towards lower (higher) energies. Notice that
states of larger momenta will suffer this fate more than states of lower momenta,
meaning that the displacement in energy depends on κ . However, momentum has to
be conserved and rotation symmetry still dictates that the energy has to depend only
on κ . The net result is a dispersion which is that of a Dirac cone for centered gaps
but widened, which in turn translates into having a Fermi velocity that is reduced by√
1 − γ 2. In fact, in the limiting case where γ → 1, the dispersion flattens since the

overlap between the gaps on both sides shrinks to zero. Notice that the same result
occurs if γ ∈ (−1, 0), which is why the reduction goes with γ 2.

After this discussion, let us introduce a uniformelectric field along the Z -direction.
That is, let us add a potential of the form V (ξ) = f ξ , where f is the electric field
strength measured in units of λ/ed. This allows us to introduce an electric length

�F = λ

e|F | , (3.1.10)

where F is the electric field strength with dimensions. Notice that f = sgn (F)d/�F .
Thisway, one can distinguish two regimes: lowfields, where �F � d, and high fields,
where �F � d. In fact, one can introduce a critical electric length, �CF , such that the
corresponding critical field, FC , leads to �CF = d. That is, FC = λ/ed. We shall focus
on the first regime, where the Dirac state is ensured to survive to the perturbation.
Indeed, �F corresponds to the length across which the potential drop is λ and, if this
is smaller than the critical electric length, the Dirac point will be far from the bulk
states and tunneling into the continuum will be exponentially suppressed. We shall
also see in the next section that this is indeed the case and that, in fact, it corresponds
to a sensible experimental regime.
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With this in mind, the Hamiltonian is now given by

H = H0 + f ξ. (3.1.11)

The first thing one may ask when using first-order perturbation theory is whether
we should use degenerate or non-degenerate perturbation theory. On the one hand,
there is Kramers’ degeneracy. Since the potential does not break time-reversal sym-
metry, this degeneracy is not affected by the potential. Moreover, the scattering ele-
ment 〈0|V |T 0〉 = 0, since V (ξ) is proportional to the identity and the Kramers’
partners, �0 and T �0, are orthogonal to each other. On the other hand, there is
the degeneracy that arises due to rotational symmetry, which is responsible for the
energy depending exclusively on κ . That is, the symmetry that leads to having an
isotropic cone. However, since the potential is dependent only on the coordinate per-
pendicular to the surface, states of different κ are not mixed by the potential. In other
words, plane waves of different in-plane momenta are orthogonal to each other and
are not mixed by a potential that only contains the coordinate perpendicular to such
momenta. Therefore, we can make use of first-order, non-degenerate perturbation
theory, in order to assess the effects of the potential V (ξ). Hence,

εκ,s = ε0κ,s + f 〈ξ 〉0κ,s . (3.1.12)

Notice that εκ,s still depends only on κ since rotational symmetry at the surface
is preserved. Since f = sgn (F)/�F (assuming �F in units of d), we can write the
equation above as

εκ,s = ε0κ,s + sgn (F〈ξ 〉0κ,s)
|〈ξ 〉0κ,s |

�F
. (3.1.13)

This equation is particularly appealing. In order to see this, let us start by analyzing the
sgn (F〈ξ 〉0κ,s). Assume that F > 0 and 〈ξ 〉0κ,s < 0 for a given state with momentum
κ in the branch s. In this case, sgn (F〈ξ 〉0κ,s) < 0 and the original energy level will
move downwards in energy. Let us try to understand why this is so. If we imagine the
band edges as tilting due to the electric potential, then the first assumption implies
that the band edges tilt with a positive slope. As a result, the continuum states on the
left of the interface will be lower in energy than those to the right of the interface. The
second assumption implies that we expect to find an electron in the state (κ, s) to be
on the lefthand side of the junction in the unbiased system. Hence, this corresponds
to a situation where the state decays slower to the left than to the right. From our
previous discussion of the unbiased system, this occurs whenever the state is closer
to a band edge on the left. For instance, in the centered, asymmetric scenario of
Fig. 3.1a it occurs both for positive and negative energies, whereas for the symmetric,
off-centered case of Fig. 3.1b it occurs for positive energies only. In either case, upon
band tilting, there will be continuum states at the same energy of the surface states
that they can resonate with on both sides of the interface. However, those on the
left will be closer and hybridization with these states becomes more likely. In order
to overcome this effect and protect the surface state, it will displace downwards in
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energy, so that it is farther apart from the states in the continuum. How much will it
displace depends on how asymmetric the probability density is, that is, on the size
of 〈ξ 〉0κ,s . This is because when an energy state moves in energy to compensate for
the proximity of the state to the bulk levels it has to pay the price of moving the
state closer to the bulk levels on the other side. Hence, if |〈ξ 〉0κ,s | is not too large,
meaning that it is approximately equally likely to find an electron in either side of
the interface, the change in energy cannot be too large for it would penalize the side
that was originally better off. In fact, the symmetric-centered scenario has no shift at
all precisely due to this effect. The shift in energy will also depend on how much the
band edges tilt. Indeed, a large tilt implies that the continuum states will be closer to
the Dirac point, as measured by the electric length �F . Hence, the displacement will
be inversely proportional to �F to first order.

All of these considerations explain the result of Eq. (3.1.13) in a heuristic manner.
In order to make it more clear, we shall calculate 〈ξ 〉0κ,s and apply the results to
the band edge configurations that we discussed in the unbiased system. If we write
π0(ξ) = π+

0 �(ξ) + π−
0 �(−ξ), where π±

0 = π0(0±) and�(ξ) is the Heaviside step
function, then the expectation values above can be analytically obtained and the result
is the following

〈ξ 〉0κ,s = �R
κ,s − �Lκ,s

2
. (3.1.14)

Aswe can see, the intuition behind 〈ξ 〉0κ,s is exactly the one given above and it is easily
thought of as the average between the decay lengths (with sign). We can understand
its magnitude and sign from a competition between �R

κ,s and �Lκ,s . As a result, we find

εκ,s = ε0κ,s + sgn (F)
�R

κ,s − �Lκ,s

2�F
. (3.1.15)

As we discussed previously, what is actually relevant in determining where will the
level go to is the sign of sgn (F)(�R

κ,s − �Lκ,s). Hence, we can set F > 0 without loss
of generality. The discussion for F < 0 will only be reversed with respect to that
of F > 0. Let us look at the same two cases as previously, starting with γ = 0. In
this case, as we saw, the decaying lengths are independent of κ , which implies that
the correction to the energy is just a constant offset. We already discussed that if
δ ∈ (0, 1), then �R

κ,s < �Lκ,s , which in this case would imply that the Dirac cone will
move downwards in energy. The opposite would happen if δ ∈ (−1, 0). In fact, an
expansion around δ → 0 allows us to write the dispersion as follows

εκ,s 
 ε0κ,s − f δ. (3.1.16)

Notice that, as we just said, it is the sign of δ or, equivalently, the sign of (�R
κ,s − �Lκ,s)

(remember we have chosen F > 0), what will determine where the cone will move
to. In Fig. 3.2, we show the shift |�ε| = |εκ,s − ε0κ,s |, obtained from the exact result
given by Eq. (3.1.15) and this last approximation for a value of δ = 0.2 and f ranging
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Fig. 3.2 Shift of the Dirac cone, |�ε| = |εκ,s − ε0κ,s |, as a function of f for δ = 0.2. The inset
shows also the shift in the vertical axis, as a function of δ for f = 1. Dots correspond to the exact
result (3.1.15) and solid lines to the approximation (3.1.16)

from 0 to 1. In the inset, f is fixed to 1 and δ is varied. In both cases γ = 0. As we
can see, the agreement is noteworthy.

Let us try to understand this result, considering δ > 0, the discussion being the
exact opposite for δ < 0. For that matter, imagine the tilting of the band edges due
to the electric field potential, as shown in Fig. 3.3. As we can observe, if δ > 0, upon
tilting the band edges the bulk states on the left become closer to the Dirac point
than those to the right. This means that the system would evolve so as to reduce
its proximity to the bulk states on the left, which implies a reduction in energy.
We can obtain this reduction heuristically by considering the crossing of the tilted
band edges with the zero energy line, where the Dirac point sits in the unperturbed
system. On the left, the conduction band-edge on the left would cross at −�F/�L

and the valence band-edge on the right would do so at �F/�R . The distance from
the Dirac point to the valence band edge on the left would then be �F/�L , which is
smaller than the distance to the right, �F/�R , as we anticipated. Since �L is already
larger than �R , the Dirac point moves downwards in energy in order to stay away
from the bulk states and remain protected. To lowest order in δ, we do so by reaching
a compromise where the distance to the left is increased by δ and decreased on the
right, also by δ. This is attained by moving the Dirac point downwards in energy by
− f δ. Since the decay lengths are independent of κ , all states will suffer the same
fate as the Dirac point and the whole Dirac cone will only be displaced downwards
in energy. Notice, however, that in contrast to the unperturbed situation, states of
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Fig. 3.3 Schematic decay of surface states in a centered, asymmetric topological boundary
for differentmomenta. Band edges tilt due to the electric field potential. Surface states decay faster
on the largest-gap side, independent of momentum. Above and below the band edges, there is a
continuum of states

higher momenta would be closer to the continuum on the left (positive energies) and
on the right (negative energies) than states of lower momenta, so the former should
be affected by the field more severely. However, since the first order approximation
considers the states as decaying just like if there was no perturbation and, in the case
of centered gaps, the decay length is independent of κ , there can be no κ-dependent
correction. This is a flaw of this first order approximation and shall be fixed in the
next section. As we shall see, a correction that goes with f 2 will be κ-dependent.
However, we shall observe when studying the exact solution to the problem that first
order perturbation theory correctly predicts a global offset to the energy given by
f δ.
Let us now explore the situation where δ = 0 and γ �= 0. As we explained above,

the decay lengths for the Dirac point in this case are the same on both sides. Thus,
since the crossing of the band edges with the zero energy line occurs at exactly the
same distance, (1 − γ )/ f , the Dirac point remains in place. However, in contrast to
the previous situation, these decay lengths do depend on κ in the manner described
above. That is, if γ > 0, states above the Dirac point will decay slower to the left than
to the right, and the opposite for those states below the Dirac point. In fact, the larger
the momenta is, the stronger this effect turns out to be, see the discussion above.
Upon introducing the electric field, the band edges tilt, as depicted schematically in
Fig. 3.4.

States above zero energy move downwards in energy so as to decrease the decay
length to the left. The same happens in the opposite direction for those states below
zero energy. Since in-plane momentum is conserved in this scenario as well, the
net result is, again, to reduce the Fermi velocity. Notice that there is an asymmetry
when the field is introduced, in contrast to the field-free case. Indeed, now the effect
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Fig. 3.4 Schematic decay of surface states in a symmetric off-centered topological boundary
for differentmomenta. Band edges tilt due to the electric field potential. Surface states decay faster
(slower) to the right the higher (lower) we go in energy with respect to the decay to the left. Above
and below the band edges, there is a continuum of states

depends on γ and not on γ 2. More precisely, it depends on f γ , since changing the
sign of both γ and f simultaneously would render the same situation, only inverting
the Z -axis. Therefore, if γ < 0 the opposite to having γ > 0 happens, since now the
conduction band edge on the right upon tilting is further up and the valence band
edge on the left is further down. Although the opposite happens to the conduction
and valence band edges on the left and right, respectively, these are further away
in energy and, at least for low momenta, the situation is the one we just described.
In turn, the Fermi velocity increases. In fact, a series expansion around γ → 0 and
κ → 0 renders the following expression for the dispersion relation

εκ,s 
 ε0κ,s (1 − f γ ) . (3.1.17)

As explained, if f γ > 0, the Fermi velocity decreases. Rather, if f γ < 0, it would
increase. In Fig. 3.5a, we show the change in the Fermi velocity, vF ( f ) as a function
of the field f for a fixed γ = 0.3, as obtained from the exact result in (3.1.15) and
the approximation (3.1.17). Velocities from the exact result have been obtained from
linear fits of the dispersion up to κ = 0.5, although it remains linear even up to κ = 1,
with only about 5% difference in the ratio ε(κ)/κ between these two values of κ for
f = 1. The inset shows the case where f = 1 and γ is varied. In both cases δ = 0
and the agreement is significant.

Similarly, Fig. 3.5b shows the exact same situation, except for having a negative
γ . As can be observed, the Fermi velocity increases in this case, as discussed. In
fact, as we already said, the results would be identical upon changing f → − f in
the second figure and extending the regime to f ∈ [−1, 1].
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Fig. 3.5 Fermi velocity vF ( f ) as a function of f . a γ = 0.3 and b γ = −0.3. vF (0) corresponds
to the field-free velocity. The inset shows the velocity in the vertical axis as well, now as a function of
γ for f = 1.Dots correspond to the exact result (3.1.15) and solid lines to the approximation (3.1.17)

Notice that the arguments given herein can only hold for small values of the field
and momenta. Indeed, if the field is too large, even though the states will try to
minimize the effect by reshaping the cone, there will come a point where the field
will be such that the tilting becomes sufficiently close so that the surface states will
unavoidably leak into the continuum. In fact, this situation is what happens in reality,
as we shall see next, and states become resonant or quasi-bound states, since they
acquire a finite lifetime due to such leakage. However, we shall observe that this
decay into the continuum is rather small for small enough fields and, therefore, it
can be neglected in practice, at least for low momenta.

3.1.2 Approximate Solution

In the last section, we could observe that first order perturbation theory predicted
that, for centered gaps, the correction to the dispersion was to displace the cone in
energy in order to minimize the effect of the field. In this section, we will present an
approximate solution to the problem of centered gaps. Since we already know that
the first order correction predicts a displacement of the Dirac point, we shall focus on
same-sized gaps in order to isolate the effect of the field on structures with centered
gaps. Hence, the unperturbed Hamiltonian reads

H0 = −i αz∂ξ + α⊥ · κ + sgn (ξ)β. (3.1.18)

In this case, the dispersion is simply

εκ,s = sκ, (3.1.19)
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with s = ±. Remember that ξ is distance measured in units of the decay length of the
surface states, d = vz/λ, κ is the in-plane momentum in units of d−1 and energies
are measured in units of the average gap, λ. In this case, the Fermi velocity directly
coincides with vz , so d = vF/λ. The full Hamiltonian will be given by

H = H0 + f z, (3.1.20)

where f is the electric field strength in units of λ/ed. Notice that, in this case, the
band edges cross the zero energy line at ±�F , with �F the electric length. Hence, as
long as �F � d, tunneling into the continuum should be exponentially suppressed.
We shall see that this is indeed the case. We then have to solve

H0χ(ξ) = (ε − f ξ)χ(ξ). (3.1.21)

As is customary with the Dirac equation, we applyH0 again on the left

H2
0χ(ξ) = ε(ε − f ξ)χ(ξ) − f (H0ξ)χ(ξ). (3.1.22)

We can writeH0ξ as follows

H0ξ = [H0, ξ ] + ξH0, (3.1.23)

where [A, B] = AB − BA is the commutator. Since [∂ξ , ξ ] = 1, we can see that

H0ξ = −i αz + ξH0. (3.1.24)

Hence, Eq. (3.1.22) can be written as follows

H2
0χ(ξ) = [

(ε − f ξ)2 + i f αz
]
χ(ξ). (3.1.25)

The termH2
0 is also easily evaluated taking into account that ∂zsgn (z) = 2δ(z). All

in all, we can write the following equation for χ(ξ)

[
− d2

dξ 2
+U (ξ) − i f αz + 2ε f ξ − f 2ξ 2 + ρ2

]
χ(ξ) = 0, (3.1.26)

where we have introduced

U (ξ) = 2i βαzδ(ξ), ρ2 = 1 + κ2 − ε2. (3.1.27)

Notice that ρ2 is nothing but π(ξ), which in the symmetric junction is independent
of ξ . The approximate solution that we shall present here considers low fields, f .
Equivalently, we are interested in the regime where the electric length, �F , is much
larger than the decay length of the surface states, d. Since d is of the order of
nanometers, as we discuss below, it is convenient to write �F as follows
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�F [nm] = 10
λ[meV]

eF[kV/cm] , (3.1.28)

which gives the electric length in nanometers when λ is given in meV and F is
given in kV/cm. Before we turn to real materials, it is interesting to have an estimate
for an intermediate λ 
 100 meV. In this case, an electric length of �F 
 10 nm
would correspond to an electric field of F 
 100 kV cm-1, which is not negligible
for experiments. Let us consider real materials. In Bi2Se3, λ 
 175 meV [4] and
vF 
 0.25 eV nm [5], which leads to d 
 1.43 nm and a value of FC 
 1220 kV
cm-1. On the other hand, typical values for narrow-gap IV-VI semiconductors [6]
such as SnTe are λ 
 75 meV and vF 
 0.34 eV nm, leading to d 
 4.5 nm and
a much lower but still large value of the critical field of about FC 
 170 kV cm-1.
Therefore, the approximation | f | � 1 is not only compelling from the theoretical
point of view, but also from the experimental one. In this approximation, we can
neglect the f 2ξ 2 term, arguing that the extent of the surface states is rather small
in comparison to 1/ f , that is, in comparison the electric length. Regarding the term
−i f αz , it can be brought into a diagonal form and be neglected in comparison to ρ2.
The reason is that ρ2 ≈ 1 since for small enough fields the energies cannot deviate
verymuch from theDirac-like spectrum. In the section dedicated to the exact solution
we shall see that this term can indeed be neglected. Therefore, we must solve the
following simplified problem

[
− d2

dξ 2
+U (ξ) + 2ε f ξ + ρ2

]
χ(ξ) = 0. (3.1.29)

This problem is very much like the one solved by Ludviksson of a particle in a tilted
potential trapped by a δ well at the origin [7–9], with the difference that U (ξ) is
not a scalar here. We know from the field-free case that the topological boundary
has two types of states: a continuum of states above and below the conduction and
valence band edges, and a bound state localized at the boundary. In this problem, we
still have a continuum of states above and below the tilted band edges. However, the
bound states now become quasi-bound [7] or resonant states, as we discussed above.
Indeed, due to the band tilting, the original bound state acquires a finite lifetime due
to the possibility of tunneling into the continuum. Since we are considering centered
and same-sized gaps, the discussion presented earlier would imply that the decay
lengths of the bound states on both sides would be the same, irrespective also of
κ . However, we already pointed out that that had to be a flaw of the first order
approximation. In fact, our intuition would tell us that for energies above ε = 0 the
resonant state will be more localized on the right of the boundary, because it will be
closer to the continuum states on the left, and vice versa for energies below ε = 0.
At ε = 0, however, it will be equally localized on both sides due to the symmetry
of the problem and, if the field is not strong enough, the Dirac point should remain
as if there was no field. In fact, at ε = 0, Eq. (3.1.29) becomes independent of the
field and, therefore, ε = 0 for κ = 0 is still an eigenenergy when the field is applied.
In other words, that state remains a stationary bound state. We shall see that this is
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indeed the case, when we discover that there is no gap opening at the Dirac point
and that it has an infinite lifetime, a fact that is ultimately linked to the fact that
time-reversal symmetry is preserved, as we discussed earlier in the text.

With this in mind, let us then continue solving this problem. In order to do so, it
is convenient to regard the termU (ξ) as a perturbation. The reason for this approach
will become clear shortly. The perturbation-free problem can be solved within the
Green function approach

[
− ∂2

∂ξ 2
+ 2ε f ξ + ρ2

]
G0(ξ, ξ ′; ε) = δ(ξ − ξ ′)14. (3.1.30)

Since the operator acting upon G0(ξ, ξ ′; ε) is a scalar, we can factorize the Green
function asG0(ξ, ξ ′; ε) = G0(ξ, ξ ′; ε)14.OnceG0(ξ, ξ ′; ε) is known,we canproceed
to use the homogeneous Lippman–Schwinger equation [10] to obtain χ(ξ) for the
quasi-bound state. Notice that we can use the homogeneous equation because we
are interested in the quasi-bound states, which do not belong to the spectrum of
the perturbation-free problem, for otherwise they would be bound states. We will
comment on this statement later on. As of now, it suffices to say that the Lippman–
Schwinger equation allows us to obtain χ(ξ) as follows

χ(ξ) = −
∫

dξ ′G0(ξ, ξ ′; ε)U (ξ ′)χ(ξ ′). (3.1.31)

Generally, the form of U (ξ) does not allow for an exact solution to this integral
equation and it has to be addressed perturbatively. However, the functional form of
U (ξ) in our present case allows us to perform the integral and we obtain

χ(ξ) = −G0(ξ, 0; ε)2i βαzχ(0). (3.1.32)

Taking into account that G0(ξ, ξ ′; ε) is proportional to the identity matrix, we can
write for the probability density

|χ(ξ)|2 = 4|G0(ξ, 0; ε)|2|χ(0)|2, (3.1.33)

where |χ(ξ)|2 = χ†(ξ)χ(ξ). Therefore, the probability density profile can be studied
by studying the absolute squared value ofG0(ξ, 0; ε). Both Eqs. (3.1.32) and (3.1.33)
have to hold for all values of ξ and, in particular, they must hold for ξ = 0. From
Eq. (3.1.33) we find that in order to have nontrivial solutions, the following must be
required

4|G0(0, 0; ε)|2 = 1. (3.1.34)

This equation has to be solved for ε and it would provide us with the energies of the
quasi-bound states. However, it is also interesting to take a look at Eq. (3.1.32) when
particularized for ξ = 0
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χ(0) = −G0(0, 0; ε)2i βαzχ(0). (3.1.35)

The meaning of this equation is the following: we have to find those values of ε

for which the eigenvalues of −G0(0, 0; ε)2i βαz are equal to one. The eigenvalues
of such a matrix, taking into account that G0(0, 0; ε) is proportional to the identity
matrix, are given by

γG = ±2G0(0, 0; ε), (3.1.36)

each of which is doubly degenerate. The requirement that γG = 1 implies that

1 = ±2G0(0, 0; ε) , (3.1.37)

which, if taken the squared absolute value, leads to Eq. (3.1.34). However, this equa-
tion tells us more than Eq. (3.1.34). Indeed, it is telling us that ε has to be within
a range where G0(0, 0; ε) is real. Not only that, it is also telling us that the abso-
lute value in Eq. (3.1.34) can be removed and the square suffices. We shall see the
consequences of this shortly. This equation is also telling us that if G0(0, 0; ε) is
positive (negative) we can rule out the two other eigenvectors. The similarity with
the fact that we could get rid of two eigenvectors when calculating the surface states
in the second chapter is not accidental. Indeed, the condition we just found is totally
equivalent to that found in the previous chapter.

Before we move on to obtaining G0(ξ, ξ ′; ε) for the electric field problem, let us
ponder on the results thus far and how would they apply for the field-free problem.
As they are, Eq. (3.1.35) and those thereafter apply to the field-free case as well.
Therefore, we should be able to obtain the same results that we obtained in the
previous chapter. Indeed we do, because the Green function in that case can be
shown to be [10]

G0(ξ, ξ ′; ε) = 1

2ρ
exp(−ρ|ξ − ξ ′|), (3.1.38)

where ρ > 0 is still given by Eq. (3.1.27). From Eq. (3.1.37) to hold we must ask for
ρ2 = 1, which in turn leads to theDirac cone, ε = ±κ . Also,G(0, 0; ε) is positive, so
we can consider only those eigenvectors that correspond to the positive eigenvalue of
one. Those eigenvectors are the Kramers’ pairs we obtained in the previous chapter.

Let us now turn our attention to the electric field problem. We have to solve
Eq. (3.1.30), subject to the boundary conditions thatG0(ξ, ξ ′; ε) is bounded as |ξ | →
∞. From our previous discussion, we saw that ε = 0 is still an eigenenergy of the
system for κ = 0. Let us then focus on the problem for ε �= 0. We can make the
assumption that, for lowenergies, the imaginary part of ε, which provides information
about the lifetime of a given state, is vanishingly small. In other words, if we write
ε = |ε| exp(i θε), the fact that the imaginary part is small allows us to write ε ≈ sε|ε|,
where sε = sgn [Re(ε)]. We shall do this approximation only for the factor that
accompanies ξ in Eq. (3.1.30). That is, when applying the boundary conditions we
will take into account the fact that ρ2 is complex. Let us introduce then the following
definitions
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μ = (2|ε| f )1/3 , η = sεμξ + ρ2

μ2
, G̃0 = μG0. (3.1.39)

Then, Eq. (3.1.30) may be written as follows

[
− ∂2

∂η2
+ η

]
G̃0(η, η′; ε) = δ(η − η′). (3.1.40)

Whenη �= η′, this equation corresponds to theAiry equation [11], so two independent
solutions are given by the Airy functions Ai (η) and Bi (η). In order to find the Green
function, we must make linear combinations of these two such that they satisfy the
boundary conditions. On the one hand, Ai (η) satisfies the boundary condition at
η → ∞, for any value of Im(ρ2). On the other hand, Ci ±(η) = Bi (η) ± i Ai (η)

satisfy the boundary condition at η → −∞ if sgn
[
Im(ρ2)

] = ∓1, the upper sign
corresponding to Ci +(η) and the lower sign to Ci −(η). Let sρ = −sgn

[
Im(ρ2)

]
.

Then, we can write Ci sρ (η) = Bi (η) + sρ i Ai (η). As a result, the Green function is
given by

G̃
sρ
0 (η, η′; ε) = 1

W
[
Ci sρ (η),Ai (η)

]

{
Ci sρ (η′)Ai (η), if η′ ≤ η,

Ci sρ (η)Ai (η′), if η′ ≥ η,
(3.1.41)

where we have made explicit the dependence of sρ on G̃ and we have denoted the
Wronskian asW [ f (η), g(η)] = f (η)∂ηg(η) − g(η)∂η f (η). In this case, the Wron-
skian is simply [11]

W
[
Ci sρ (η),Ai (η)

] = − 1

π
. (3.1.42)

Therefore, the Green function is given by

G̃
sρ
0 (η, η′; ε) = −π

[
�(η − η′)Ci sλ (η′)Ai (η)

+ �(η′ − η)Ci sρ (η)Ai (η′)
]
,

(3.1.43)

where �(x) is the Heaviside step function. Undoing the change of variables defined
in (3.1.39), we can write

G
sρ
0 (ξ, ξ ′; ε) = −π

μ

{
�

[
sε(ξ − ξ ′)

]
Ai (η(ξ))Ci sρ (η(ξ ′))

+ �
[
sε(ξ

′ − ξ)
]
Ai (η(ξ ′))Ci sρ (η(ξ))

]
,

(3.1.44)

where η(ξ) is given in Eq. (3.1.39). Let us discuss these results before we move on.
In Eq. (3.1.44) we have shifted from a single G0(ξ, ξ ′; ε) to two options that depend
on sρ . Therefore, there seems to be an inconsistency in our calculations. Indeed,
Eq. (3.1.31) truly holds if we are dealing with bound states, when the spectrum of
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the continuum and that of the bound states do not coincide. However, in our case,
these two spectra do coincide due to the band tilting, which allows an electron in a
quasi-bound state to tunnel into the continuum. This is of course the reason for their
being called quasi-bound or resonant states. However, if the fields are small enough,
an approximation that we have already discussed to be sensible, this leakage into
the continuum is rather small, at least within a narrow energy window around zero
energy. That is, quasi-bound states are almost pure bound states. In that case, we
can forget about the imaginary part of ε and both G+

0 and G−
0 would be equivalent

by substituting Ci ±(ξ) by Bi (ξ). However, it is interesting to obtain the imaginary
part of ε to show that, indeed, it is rather small and, therefore, we are making a good
approximation when considering that quasi-bound states are almost bound states.
There is an alternative way to approach this problem, which is by considering the
total Green function of the problem via the Dyson equation, as described in [1]. In
that reference, it is shown that the results are totally equivalent to the ones presented
in this section. Having said this, there is yet another point to notice. Equation (3.1.34),
a consequence of (3.1.33), can only lead to real energies. Indeed, it derives from the
fact that the equation it comes from is for true bound states, with no imaginary part
in the energy. However, if we take into account Eq. (3.1.37) and we square it, we end
up with a less strict condition as that given in Eq. (3.1.34)

4 [G0(0, 0; ε)]2 = 1. (3.1.45)

Now we may raise an objection. Indeed, this equation also comes from the homo-
geneous Lippman–Schwinger equation, so it must lead to the same results as those
from (3.1.34). This is in fact the case, when we consider that there is no imaginary
part to the energy and G+

0 = G−
0 . However, it turns out that this precise equation

comes about when studying the poles of the total Green function when we allow
for an imaginary part in the energy. That is, Eq. (3.1.45) also holds for G±

0 [1]. As
said earlier, for small enough fields, the results obtained from using such an equation
with G0 or G

±
0 are essentially the same. Indeed, when f � 1, we can approximate

Ci sρ (η(0)) 
 Bi (η(0)). The reason for this is that, at low fields, ρ2 
 1, because
the dispersion should not change very much from being a Dirac cone as the field
is adiabatically turned on. Hence, the quotient ρ2/μ2 increases with decreasing f ,
meaning that the argument η(0) increases with decreasing f . Due to the properties
of the Airy functions, this means that Ci sρ (η(0)) 
 Bi (η(0)). Nevertheless, it is
interesting to use that equation with either G+

0 or G−
0 to obtain the level width and

observe that, indeed, it is truly small for small fields. Hence, we may focus on the
following equation to obtain analytical results at low fields

4π2

μ2

[
Ai

(
ρ2

μ2

)
Ci sρ

(
ρ2

μ2

)]2

= 1. (3.1.46)

There is one crucial fact here: G
sρ
0 does not satisfy the boundary conditions for −sρ ,

which is why it has to be separated depending on sρ in the first place. As a result,
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the simple poles of the total Green function appear when we analytically continue
from sρ to −sρ . Consequently, the previous equation, that provides the poles of the
total Green function [1], holds when studying the regime where we have −sρ for
a given sρ in the superscript of Ci sρ (ξ). In order to make this clearer, consider the
previous equation for a particular choice of sρ in the superscript of Ci , say sρ = 1.
Then, Eq. (3.1.46) reads

4π2

μ2

[
Ai

(
ρ2

μ2

)
Ci +

(
ρ2

μ2

)]2

= 1. (3.1.47)

The comments that we havemade prior to this equationmean that the solutions to this
equation will be such that sρ = −1, that is, sgn

[
Im(ρ2)

]
> 0. In other words, it will

have that the real and imaginary parts of ε will satisfy that Re(ε)Im(ε) < 0. Hence, if
we let � > 0 be the imaginary part of ε, we will be able to write ε = εr ± i�, where
the positive sign stands for εr < 0 and the negative sign for εr > 0. The opposite is
true if we choose instead Ci − in the previous equation. With this in mind, we can
push further the low-field limit by making asymptotic expansions around f → 0.
For that matter, let us rewrite Eq. (3.1.47) as follows

4π2

μ2
Ai 2(x)Bi 2(x)

[
1 + i

Ai (x)

Bi (x)

]2

= 1, (3.1.48)

where we have introduced

x = ρ2

μ2
. (3.1.49)

Wewill also introduce the asymptotic expansions [11] ofAi (x) andBi (x) as x → ∞,
which corresponds in our case to f → 0 (recall that, in that limit, ρ2 remains finite
and close to 1),

Ai (x) 
 1

2
√

π

e−φ

x1/4
L(−φ), Bi (x) 
 1√

π

eφ

x1/4
L(φ), (3.1.50)

where

φ = 2

3
x3/2, L(φ) = 1 +

∞∑

�=1

u�

φ�
, u� = �(3� + 1/2)

54�l!�(� + 1/2)
, (3.1.51)

being �(x) the � function. Taking into account that Ai (x) � Bi (x) if x → ∞,
Eq. (3.1.48) can be approximated to

4π2

μ2
Ai 2(x)Bi 2(x)

[
1 + 2i

Ai (x)

Bi (x)

]

 1. (3.1.52)
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If the asymptotic expansions are taken into account, we see that the previous equation
can be rewritten as follows

ρ2 
 L2(φ)L2(−φ)

[
1 + i e−2φ L(−φ)

L(φ)

]
. (3.1.53)

We can further approximate this equation by keeping only terms up to φ−2

ρ2 

[
1 + 5

36φ2

] [
1 + i e−2φ

] 
 1 + 5

36φ2
+ i e−2φ. (3.1.54)

Taking into account the definition of φ, we can finally write

ρ2 
 1 + 5

4

(|ε| f )2
ρ6

+ i exp

(
−4

3

ρ3

μ3

)
. (3.1.55)

At this stage, we have to make a few more approximations. First, since for low fields
the imaginary part of the energy should be small, thenwewill approximate |ε| 
 |εr |.
On the other hand, as we stated above, ρ2 
 1, so we shall approximate to one the
factor of ρ6 in the denominator of the expression above and ρ3 in the exponential.
Finally, in the expression for ρ2, we will approximate ε2 
 ε2r ± 2i εr�, where the
positive sign stands for εr < 0 and the negative sign for εr > 0, as explained above.
With all these considerations, we find that we can write

κ2 − ε2r ∓ 2i εr� 
 5

4
ε2r f

2 + i exp

(
− 2

3|εr | f
)

. (3.1.56)

Identically,

εr 
 ±κ

(
1 + 5

4
f 2

)−1/2

, � 
 ∓ 1

2εr
exp

(
− 2

3|εr | f
)

. (3.1.57)

Notice that this is consistent. Indeed, � > 0 always, because εr < 0 corresponds to
the upper, negative sign, whereas εr > 0 corresponds to the lower, positive sign. On
the other hand, the low field limit can be carried even further, allowing us to write

εr 
 ±κ

(
1 − 5

8
f 2

)
, � 
 1

2κ
exp

(
− 2

3κ f

)
. (3.1.58)

These are the main results of this section. On the one hand, we can observe that there
is no gap opening, as expected since Kramers’ degeneracy protects the Dirac point,
but also because at κ = 0, the state remained an eigenstate of ε = 0. That is further
supported by the fact that� tends to zero at κ = 0, meaning that the zero energy level
has zero width or, equivalently, infinite lifetime. This in turn implies what we said
earlier in the text: the Dirac point states are still pure bound states. The other result
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that is most interesting is the fact that the Fermi velocity decreases with increasing
field

vF ( f )

vF (0)
= 1 − 5

8
f 2, (3.1.59)

where vF (0) is the Fermi velocity in the absence of the electric field. This is precisely
the result we were looking for in the previous section. Indeed, on the one hand we
observe that there are no terms linear in the field, as it should be since we already
ruled out those from first order perturbation theory in the symmetric setup. On the
other, it leads to the increased reduction in the energy for states of larger momenta,
which was absent from the analysis of the previous section for centered gaps. We
also discussed that the Dirac state is sharp, that it has an infinite lifetime, but it is also
interesting to observe that the level width increases with κ (recall that κ is small, we
are dealing with a low energy description), which is related to the fact that states that
are located higher (lower) in energy with respect to the Dirac cone are also closer
to the conduction (valence) band edge on the left (right) and can therefore leak into
the continuum more easily. In Fig. 3.6, we show the dispersion for two values of the
field, dots being the numerical solution to Eq. (3.1.47), solid lines to the approximated
dispersion as given in Eq. (3.1.58). As it can be drawn from the figure, by increasing
the field the cone widens and, as the field gets closer to the critical field only energies
of lower momenta keep a linear behaviour and deviate from the approximated result.

In Fig. 3.7a, it is shown the Fermi velocity as a function of the electric field
strength as obtained by fitting the dispersion to a line up to κ = 0.2. The agreement
with the approximated results at small fields is noteworthy. In Fig. 3.7b we show
the level width as a function of the field for two values of momenta, dots being the
numerical solution to Eq. (3.1.47), solid lines corresponding to the approximation in
Eq. (3.1.58). As was predicted, the level width increases with the field and is also
larger for larger momenta since these are closer to the band edges. In both cases,
however, it is exponentially small for low fields, as discussed.

Before finishing up this section,we conclude by recapitulating themain physics. In
the unbiased boundary, the Dirac point is protected by time-reversal symmetry. Away
from the Dirac point, states are not Kramers’ degenerate and split forming a Dirac
cone. When we introduce the electric field, time-reversal symmetry is preserved and
theDirac point remains protected.However, the band edges tilt, thereby allowing bulk
states to come closer to states at the surface, this effect being more pronounced for
those states of higher momenta. In order to minimize the overlap with the bulk states,
all states above and below the Dirac point move towards it. States of higher momenta
experience a larger displacement than those of lower momenta for the reason we just
stated. However, in-plane momentum conservation implies that a state of a given
momentum remains at that same momentum. Therefore, states moving towards the
Dirac cone have to do it in such a way as to preserve that conservation. All in all,
the resulting effect is a widening of the Dirac cone, thereby effectively reducing the
Fermi velocity. This is shown schematically in Fig. 3.8.
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Fig. 3.6 Dispersion relation of a topological boundary under a perpendicular electric field.
Two values of the electric field are shown. Solid lines correspond to the approximate result (3.1.58).
Dispersion grows faster than linear only at high fields. The inset shows the electric field being
applied perpendicular to the boundary between a normal insulator (NI) and topological insulator
(TI), where the Dirac cones live

Fig. 3.7 Fermi velocity and level width as a function of electric field strength. a Fermi veloc-
ity obtained by fitting the numerical dispersions to a line up to κ = 0.2. Solid line displays the
approximated reduction of the velocity as predicted by (3.1.59). b Level width as a function of
the inverse of the electric field for two values of the in-plane momenta. Solid lines depict the
approximation (3.1.58)
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Fig. 3.8 Fermi velocity
reduction. The field-free
cone is shown in red and the
cone reshaped by the field in
blue. The field does not
break time-reversal
symmetry and the Dirac
point remains protected.
Meanwhile, states of higher
momenta are closer to states
in the bulk and move towards
the Dirac point to minimize
the effect. The reduction, δε,
is different for different
momenta, but momentum
conservation applies and,
therefore, the net effect is a
widening of the cone

Although all the approximations that have been discussed thus far seem reasonable
and lead to the physics that we would expect, in Sect. 3.1.4 we will solve the problem
exactly. In that case, the solution is rather involved and does not provide us with
analytical results. However, as we shall observe, for low fields the agreement with
the approximate solution is noteworthy. Nevertheless, it is interesting to consider
within the approximated scheme what would happen if two topological boundaries
are placed close to one another forming a thin film, which we do in the next section.

3.1.3 Topological Insulators Thin Film

Consider a single boundary, with a localized topological surface state. If we approach
another boundary of the same type, there will be a gap opening and the massless
fermions would becomemassive and doubly degenerate. Let us first try to understand
this by thinking about the decay of the surface states out of the surface. If the two
boundaries are sufficiently close, the overlap between surface states will not be
negligible. Therefore, the two states hybridize as in the H+

2 molecule and a gap opens
up. Since each boundary contributes with a singly degenerate Dirac cone, the result
is a doubly degenerate massive Dirac spectrum. However, this phenomenon is only
relevant if the two surfaces are really close, since the decay length of the surface
states is of the order of a few nanometers. Hence, this behaviour is important in
thin films of topological insulators [12–18]. We can also understand the gap opening
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from a topological point of view. Indeed, consider an interface where the gap changes
from−λ to λ, with λ > 0. This case corresponds to the one discussed in the previous
chapter and the Hamiltonian for the surface states was given by

HS = (σ × κ)z . (3.1.60)

The spectrum is a Dirac cone, εκ = ±κ and the corresponding spin textures are
perpendicular to κ and go in opposite directions in the upper and lower cones (see
the previous chapter)

〈σ 〉 = ± (sin θκ ,− cos θκ , 0) , (3.1.61)

where the positive (negative) sign corresponds to the upper (lower) cone. Since
momentum and spin are interrelated and are orthogonal, we said that this system
exhibits spin-momentum locking. Moreover, we argued that the opposite signs for
〈σ 〉 corresponded to opposite helicities [19]. Let us now consider an interface where
the gap changes from λ to −λ. In this case, following the same procedure discussed
in the previous chapter, we obtain the following surface Hamiltonian

H′
S = − (σ × κ)z . (3.1.62)

As we can observe, the two surface Hamiltonians are related by κ → −κ . Hence,
the spin texture also changes sign, since θκ → θκ + π . Therefore, the helicities are
inverted with respect to the case where we change from −λ to λ. If we now consider
a film, the gap will change from −λ to λ and then from λ to −λ, so we will have that
each surface is characterized by topological surface states of opposite helicities, as
schematically depicted in Fig. 3.9. This change in sign in the helicity allows for anni-
hilation of the two Dirac cones, leading to the massive doubly degenerate spectrum
that we discussed above. In other words, states from different helicities mix and a
gap opens up.

In this scenario, it seems that it would be interesting to try to minimize the gap.
For that matter, we can apply the mechanism that we considered for the topological
boundary. Namely, we can apply an electric field to achieve such a result. Indeed,
say we have a boundary at ξ = −a that changes from λ to −λ and another boundary
at ξ = a that changes from−λ to λ. Then, when applying the electric field potential,
f ξ , the cones of each isolated boundary will widen (not considering the overlap yet),
thereby reducing the Fermi velocity. Since the decay length is about vF/λ, then by
decreasing vF we also decrease the decay length and, in consequence, the overlap
between the two states. This results in a reduction of the energy gap. Hence, the
electric field allows us to reduce this gap while maintaining the same width of the
film.Wemay say that it behaves as an effective thickness. Let us explore this situation
within the approximations of the single boundary. In this case, the only change to
the differential equation resides on the perturbation term U (ξ)

U (ξ) = 2iβαz [δ(ξ − a) − δ(ξ + a)] . (3.1.63)
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Fig. 3.9 Two topological
boundaries hosting surface
states of opposite helicities
(curved arrows in opposite
directions for the two cones).
When brought close
together, the spectrum
becomes doubly degenerate
and massive. See main text
for details

Using the Lippman–Schwinger equation we find

χ(z) = −2i βαz [G0(ξ, a; ε)χ(a) − G0(ξ,−a; ε)χ(−a)] , (3.1.64)

where we have already assumed G0 to be a scalar function as in the previous section.
Let us denote byG±± = G0(±a,±a). Then, ifweparticularize the previous equation
to ξ = ±a, we find that

(14 + 2iG++βαz)χ(a) = 2iG+−βαzχ(−a), (3.1.65a)

(14 − 2iG−−βαz)χ(−a) = −2iG−+βαzχ(a). (3.1.65b)

The asymptotic cases of a → 0 and a → ∞ in the field-free cases are readily
understood from these two equations. In the first case, ρ 
 0 and χ(a) = χ(−a),
which implies thatχ(z) 
 0 in that case. That is, when the two boundaries of opposite
chiralities coincide, the surface states are fully anihilated. The other situation has
ρ 
 1 and decouples the two equations above, meaning that the two surfaces are
uncoupled and the dispersion is that of Dirac cones. Intermediate situations can be
explored by operating a little to obtain the following eigenvalue problem

χ(a) = Nχ(a), (3.1.66)
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where

N = − 1

4G+−G−+

[
14 (1 − 4G++G−−) − 2i αzβ (G++ − G−−)

]
. (3.1.67)

We must then retain only those eigenvalues ofN that are equal to one. At this point,
we can already see that in the field-free problem where G++ = G−− the matrix is
proportional to the identity. Hence, its four eigenvalues are fourfold degenerate and
we must keep all four of them. This is in contrast to the topological boundary, where
we only kept two eigenvalues. With this in mind, if we take into account the form of
G±±, we can then write straightforwardly that

ε2 = κ2 + exp (−4ρa) . (3.1.68)

Notice that we recover the asymptotic behaviours mentioned previously: the Dirac
cone solutions ε = ±κ only holds if a → ∞, that is, if the two boundaries do not
see each other, and the surface states melt within the bulk when a → 0. For an
intermediate situation of a film that is not too narrow, we can approximate ρa 
 a
in the exponential and write

ε = ±√
κ2 + exp (−4a). (3.1.69)

As we can observe, the dispersion is now that of a massive Dirac fermion with a
width-dependent mass, as expected,

λ0 = exp (−2a) . (3.1.70)

We can connect this result to what we said earlier about the helicities being coupled
by using the surface effective Hamiltonians. Indeed, the Hamiltonian for the two
helicities would in that case be given by [18]

H = τz ⊗ (σ × k)z + mτx ⊗ σ0, (3.1.71)

where the τ matrices act on the helicity subspace and m simulates the coupling
between the two surface states. Notice that such a coupling is compliant with time-
reversal symmetry

� = τ0 ⊗ i σyK, (3.1.72)

which takes k → −k, and rotational symmetry about the Z -axis

R(θ) = τ0 ⊗ exp

(
i
θ

2
σz

)
, (3.1.73)

which takes k± → exp(∓i θ)k±, as we saw in the previous chapter. The spectrum is
easily obtained by squaring the Hamiltonian,
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ε = ±
√

κ2 + m2, (3.1.74)

where each of the twomassive Dirac bands are doubly degenerate. Since the strength
of m depends on the overlap between the surface states and these are exponentially
localized, it is plausible to argue that the hibridization gap, 2m, should decay as
well m 
 exp(−2a). This way, the two approaches coincide. In order to tackle the
problem of the electric field, we need the eigenvalues of N , which in this case is
no longer diagonal since G++ �= G−− in general. Such a matrix has two doubly
degenerate eigenvalues and the requirement that they be equal to 1 implies

± 2
[
G++ − G−−

] = 1 − 4G+−G−+ − 4G++G−−. (3.1.75)

Itmust be noted that theDyson equation leads to the same result [2]. Taking advantage
of the fact that we know from the single boundary that the level widths are negligible,
we will approximate Ci ±(x) 
 Bi (x), which will only render the real part of the
energy. If we take into account the asymptotic expansions for the Airy functions
introduced in the previous section, after some tedious algebra we arrive to

ε2 
 κ2 + exp (−4ρa) ∓ 2|ε| f a
ρ

. (3.1.76)

For not too narrow films, we may approximate ρ 
 1 and the equation can be solved
to give

εgκ,s 
 s

[√
( f a)2 + κ2 + λ2

0 − f a

]
, (3.1.77)

and

εeκ,s 
 s

[√
( f a)2 + κ2 + λ2

0 + f a

]
, (3.1.78)

with s = ±1. Notice that the electric field is breaking the double degeneracy of the
Dirac massive spectrum. Indeed, if f = 0, then we obtain the two doubly degenerate
bands, since ε

g
± = εe± in that case.We show in Fig. 3.10 the two bands, as obtained by

numerically solving Eq. (3.1.75), for two values of f and a. Additionally, we show
in that same plot the corresponding approximate bands, as given by Eqs. (3.1.77) and
(3.1.78). As it can be observed in panel (a), corresponding to a = 0.5, the agreement
for low fields is significant, particularly for the lower band. However, it is even more
noteworthy in panel (b), corresponding to a = 1. For low fields, the agreement holds
perfectly for both bands, while the upper band is not correctly captured for high fields
by the approximation.

In any case, we observe two main features. First, as we just said, the electric field
leads to a splitting of the bands, which increases linearly with the field. This is shown
in Fig. 3.11a, where the numerical result given in Eq. (3.1.75) is compared with the
approximate level splitting as obtained from
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Fig. 3.10 Dispersion in a thin film with a perpendicular electric field applied. Two widths are
considered, a a = 0.5 and b a = 1, for two values of the field. Solid lines depict the approximation
given by Eqs. (3.1.77) and (3.1.78). As we can see in both panels, there are two bands that split
apart with a splitting that increases with the field. Instead, the energy gap decreases with the field.
The agreement is noteworthy for low fields and not too narrow widths

δ f = 2 f a. (3.1.79)

As we can observe, the agreement is noteworthy for a = 1.
The second main observation and probably the most important of the two is the

behaviour of the energy gap. Indeed, it decreases with a, as it should do, but more
interestingly it decreases with the field, as discussed earlier in this section. In fact,
the approximated result (3.1.77) at κ = 0 predicts that the gap 2λ f decreases with
the field in the following fashion

λ f =
√

( f a)2 + λ2
0 − f a. (3.1.80)

We can further distinguish two regimes: f a < λ0, where the gap decreases linearly
with the fieldλ f 
 λ0 − f a, and the regimewhere f a > λ0,where the gap decreases
with the inverse of the field, that is, λ f 
 λ2

0/2 f a. We show in Fig. 3.11b the gap
obtained from the numerical solution of (3.1.75) and that obtained from (3.1.80). As
we can see, the gap does indeed decrease with the field and is smaller the larger a
is. It is interesting to observe that, in the case where a = 0.5, there is no agreement
between the approximation and the exact result at f = 0, where one would imagine
that both should agree. However, one must bear in mind that the approximations
hold only for not too narrow films where ρ 
 1, in which case the energy gap of
the unbiased system is given by 2λ0. If instead one considers Eq. (3.1.76) where no
approximations concerning the width of the films have been made, the agreement at
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Fig. 3.11 Level splitting and energy gap as a function of the field. Two values of the width, a, are
considered. a Splitting between the otherwise degenerate bands of a thin film at κ = 0. Solid lines
depict the approximation given by Eq. (3.1.79). As we can see, the splitting does increase linearly
with the field, the agreementwith the approximated result being significant fora = 1.bGapbetween
the two massive Dirac bands closest to zero energy. Solid lines depict the approximation given by
Eq. (3.1.80). It can be observed that the gap decreases with the field notably, the agreement with
the approximated result being significant for a = 1. The inset shows the gap as a function of a
for a very small field of 0.01FC obtained by numerically solving (3.1.75). Solid line depicts the
approximation given in (3.1.80) and dashed line depicts the solution to (3.1.76). It can be drawn that
the latter coincides perfectly with the numerical solution at all distances and all three approaches
coincide when the width is sufficiently large

f = 0 is restored. In fact, when a � 0.7 the approximated result (3.1.77) coincides
with the exact result (3.1.75) and the approximation that does not make assumptions
on the width (3.1.76). This is shown in the inset of Fig. 3.11b.

3.1.4 Exact Solution

In the previous sections, we have made a number of approximations that, in turn,
have enabled us to find simple analytic solutions to complete our understanding of
the phenomenon. However, it would be interesting to see if the exact solution of the
problem predicts the same behaviour. As we shall see, this solution does not allow
us to obtain analytic expressions for the energies, but it does indeed predict the same
physics as the ones presented in the topological boundary section. Moreover, we
shall consider arbitrary-sized gaps. The equation we must then solve is

{−i αz∂ξ + α⊥ · κ + [δ + s(ξ)]β + γ s(ξ) − [
ε − γ δ + f ξ

]}
χ(ξ) = 0,

(3.1.81)
where s(ξ) = sgn (ξ). Notice that we have changed f → − f with respect to the
previous discussions. This should be taken into consideration when analysing the
results of this section. The boundary conditions that we will apply will be: continuity
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at the interface, χ(0−) = χ(0+), and the condition of vanishing of the current prob-
ability at some distance larger than the typical decay length of surface states, L � 1.
This last condition is nothing but the infinite-mass condition that we talked about
in the previous chapter in discussing the topological protection of Dirac cones in
graphene armchair nanoribbons when using the continuum description. In this case,
the infinite-mass condition is written very similarly to that case [20]

χ(ξb) = Mb
∞χ(ξb), Mb

∞ = τy ⊗ (σ · nb) , (3.1.82)

where we are assuming a static boundary, b, with normal vector nb pointing in the
direction of the outgoing current. In our case, we have a boundary at ξ1 = −L and
another at ξ2 = L , so n1 = −ẑ and n2 = ẑ. All in all, the boundary matrices read

M1
∞ = −M2

∞ = −τy ⊗ σz . (3.1.83)

With this in mind, let us solve the problem at hand. In order to do so, it proves
convenient to perform a rotation of π about the τz axis in the orbital subspace, so
that (τx , τy, τz) → (−τx ,−τy, τz), followed by a rotation of π/2 about the τy axis,
so that (−τx ,−τy, τz) → (τz,−τy, τz). All in all, both operations exchange τx and
τz and change the sign of τy : (τx , τy, τz) → (τz,−τy, τx ). The operator that allows
us to achieve such a transformation would therefore be

U = exp
(
−i

π

4
τy

)
τz ⊗ σ0. (3.1.84)

Notice that we have used the fact that τz itself allows us to perform the operation
of a rotation of π about the τz axis. This way, the α · κ part of the Hamiltonian
will become block diagonal. Although we will pay the price of not having β to be
diagonal, it will prove to be useful to consider the transformed Hamiltonian. That is,

HU = τz ⊗ H0 + [
γ s(ξ) − f ξ

]
τ0 ⊗ σ0 + [δ + s(ξ)] τx ⊗ σ0, (3.1.85)

where
H0 = −i σz∂ξ + σ⊥ · κ . (3.1.86)

Hence, we have to solve

{
τz ⊗ H0 − √

f x(ξ) + [δ + s(ξ)] τx ⊗ σ0

}
�(ξ) = 0, (3.1.87)

where �(ξ) = U−1χ(ξ) and

x(ξ) = 1√
f

[
ε − γ δ − γ s(ξ) + f ξ

]
. (3.1.88)

If we write � as follows
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� =
(

�u

�l

)
, (3.1.89)

then �u satisfies [
∂2
x + x2 − i σz − 4μ2

]
�u = 0, (3.1.90)

where

μ2(ξ) = 1

4 f

{
κ2 + [δ + s(ξ)]2

}
. (3.1.91)

In order to arrive to Eq. (3.1.90), we have to take into account that we will solve on
both sides of ξ = 0, where the sign function is constant. We can then obtain �l from
�u

�l = − 1

δ + s(ξ)

[
−√

f (i ∂xσz + x) + σ⊥ · κ
]
�u, (3.1.92)

where x is given in Eq. (3.1.88).
Before we move on, it is interesting to notice that κ is coupling each of the two

components of �l with the other two components of �u . That is, if κ = 0, then each
component of �l is related to a single component of �u . This is a manifestation of
Kramers’ theorem. It must be observed that the two independent solutions for the
upper component of �u correspond to the same solutions but complex conjugated
for the lower component of �u . Similarly, one can obtain the lower component of
�l by taking complex conjugates of the upper component of �l and taking care of
the integration constants. It is then immediately shown that

�u = (
P, σx P

∗) · C, (3.1.93)

where C is a constant vector of four components and P(x) is a matrix defined as

P(x) =
(
F∗(x) G(x)
0 0

)
, (3.1.94)

and

F(x) = M

(
−iμ2,

1

2
, i x2

)
e−i x2/2, (3.1.95a)

G(x) = −2iμx M

(
1 − iμ2,

3

2
, i x2

)
e−i x2/2, (3.1.95b)

whereM(a, b, z) areKummer’s functions [11]. The functions F(x) andG(x) satisfy
the useful relations

(i ∂x + x) F∗(x) = 2μG(x), (3.1.96a)

(i ∂x + x)G(x) = 2μF(x). (3.1.96b)
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Using these relations and Eqs. (3.1.92) and (3.1.93), we find

�l = (
τ P∗σx + ησx P τσx Pσx + η∗P∗)C, (3.1.97)

where we have introduced

τ = 2μ
√

f

δ + s(ξ)
, η = −κx + i κy

δ + s(ξ)
. (3.1.98)

Finally, � can be expressed as

�(x) = F(x)C, F(x) =
(

P σx P∗
τ P∗σx + ησx P τσx Pσx + η∗P∗

)
. (3.1.99)

We must now impose the boundary conditions at the interface and at ξ = ±L . We
have 4 constants encoded in C, and there are two such vectors on both sides of
the interface. Hence, there are 8 constants. Continuity at the interface leads to 4
equations. There are another 4 equations at L and at −L , leading to a total of 12
equations. However, there are redundancies in the equations at ±L , which reduce
the number of equations to 8 in total. Hence, we obtain a homogeneous system of
equations, which has to be such that the determinant of the matrix of coefficients
vanishes to discard trivial solutions. After some tedious algebra, we arrive at the
following condition [3]

det

[(
F(x+

0 ) −F(x−
0 )

P+(x+
L ) (τx ⊗ σ0)P−(x−

L )

)]
= 0, (3.1.100)

with x±
0 = x(ξ = 0±), x±

L = x(ξ = ±L) and

P±(x) =
(

(ησx ± i σz) P + τ P∗σx
(
η∗ ∓ σy

)
P∗ + τσx Pσx

02 02

)
. (3.1.101)

The method described in this section, although being the most general one, has its
subtleties. On the one hand, in the absence of field, the energies of the states in
the continuum cannot take values within the gap. However, when the field is turned
on, the band edges tilt and these states can have energies that are within the gap,
although being well separated from the surface states for small fields. On the other
hand, placing the system in a box leads to a quantization of the continuum energies,
which in turn leads to subbands. Therefore, in order to extract meaningful data from
the surface states, one can observe which energies are unaffected when changing the
size of the box. Indeed, the quantization of the subbands in the continuum results from
quantum confinement in the Z -direction, but the surface states are already confined
and have a rapid decay. Thus, if the system has a length L � 1 with L in units of
d, one will observe a set of energies for different values of κ that do not change
upon changing L , whereas the remaining energies do change. The latter corresponds
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Fig. 3.12 Dispersion and Fermi velocity as a function of the external field. a Dispersion for an
asymmetric-centered scenario with �R = −1.2�L for both zero and nonzero fields. We have sub-
stracted the correction obtained from first order perturbation theory, f δ. Solid lines are a guide to the
eye. b Fermi velocity as a function of the field for centered-symmetric (�R = −�L) and asymmet-
ric (�R = −1.2�L in this case) setups. Solid line corresponds to the approximated result (3.1.59)
and dashed line is a fit in even powers of f up to f 4

to the subbands, the former to the surface states. Hence, for small fields and large
values of L , one will observe perfect crossings between the cone and a large amount
of energies coming from the bulk. Since there are no energy gaps at these crossings,
one can affirm that the surface state remains well localized and does not hybridize
with states from the subbands. This, of course, only holds for small fields. Larger
fields lead to larger band-edge tiltings and, as a result, there will be hybridization.
In this case, extracting meaningful data is far more complicated, since all states get
mixed. Anyhow, it is the low field limit that is interesting as it is the experimentally
feasible.

With this result, we can now try to observe if the Fermi velocity is also reduced in
a centered junctionwith different-sized gaps, whichwas not captured by perturbation
theory. In Fig. 3.12a, we show the dispersion for two values of the field when the
gaps differ by a 20%, that is, �R = −1.2�L. Two main features can be observed.
First, the unbiased cone widens and moves downwards in energy when the field
is applied. This fact we knew from perturbation theory and it is accounted for by
removing f δ from the energy. This way, it is easier to observe the second feature,
that is, that the cone does indeed widen, leading to a reduction in the Fermi velocity.
In Fig. 3.12b, we show the reduction of the velocity in the centered symmetric and
asymmetric situations. First of all, it must be noted the perfect agreement with the
approximated result (3.1.59) in the case of a symmetric junction, which is shown as
a solid line. Second, the velocity decreases with even powers of f up to f 4 in the
asymmetric junction, as shown by the fitted dashed line. As was already apparent by
our discussion of the effect in the approximate solution for the centered-symmetric
system, one would have to extend perturbation theory to second order with terms
proportional to f 2 to capture the effect of a Fermi velocity reduction.
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Fig. 3.13 Armchair nanoribbon. The horizontal direction is taken to be periodic and the vertical
direction is finite. The ovals show a way to arrange the A and B atoms. A supercell is shown in
yellow. The lattice vectors are a1 and a2

3.2 Metallic Armchair Graphene Nanoribbons

In this section, we will consider the effect of an electric field across the transverse
direction of metallic armchair graphene nanoribbons. A quick reminder from the
second chapter is in order. For that matter, we reproduce the lattice shown in the
second chapter in Fig. 3.13.

The lattice is infinite along the longitudinal direction and finite along the trans-
verse direction. A supercell shown in yellow contains Ny pairs of A-B atoms. The
lattice constant is

√
3 times larger than that of bulk graphene, which is given by the

distance between next-nearest-neighbours in the honeycomb lattice. The lattice can
be generated by the following two vectors in units of the lattice constant

a1 = (1, 0), a2 = 1

2
√
3

(√
3,−1

)
, (3.2.1)

so that a position in the lattice is given by

Rm,n = ma1 + na2, m ∈ Z, n = 1, . . . , Ny . (3.2.2)

The A and B atomswithin an oval are linked by δ = (1/3, 0), such that A atoms are at
RA = Rm,n and B atoms at RB = Rm,n + δ. The wavevectors k live within the first
Brillouin zone, k ∈ [−π, π). As we know from the second chapter, a first-nearest
neighbours model renders a spectrum of subbands due to momentum quantization
resulting from quantum confinement along the vertical direction. In fact, the eigen-
states have the shape of standing waves. Quantization along the transverse direction
may or may not result in cutting or not through the Dirac point. The former case leads
to metallic nanoribbons and is achieved whenever Ny = 3r − 1 with r = 1, 2, . . . . It
is also important to remember that, in contrast to the zigzag and bearded nanoribbons,
there is no topological protection of the armchair nanoribbonwithin the tight-binding
description. Therefore, one would expect that upon applying an electric field would
open up a gap in the otherwise gapless Dirac-like spectrum of the lowest subband.
That happens indeed, the effect being more pronounced the wider the nanoribbon is,
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since this way there are more allowed subbands and these are closer to one another,
allowing for hybridizations [1]. However, for low enough fields, one can still consider
wider nanoribbons. Therefore, there is a trade-off between the field and the width,
as we shall see. In any case, in order to add an electric field term to the tight-binding
model, we have to include an onsite potential of the form

V (F) = eF ·
∑

m,n,α

Rα
m,n|m, n;α〉〈m, n;α|. (3.2.3)

Notice that, aswritten, eF is a dimensionless quantity, sincewe are considering a = 1
and the potential is written in units of t = 1. Since F points along the transverse
direction, there is still translational symmetry along the longitudinal direction, so we
can still make use of the good quantum number k along that direction. Moreover,
atoms within an oval feel the same potential since they are at the same transverse
position. In fact, the nontrivial part of V (F) will be simply given by

V (F) = − eF

2
√
3

∑

n

n|n〉〈n|. (3.2.4)

This is what we would expect by taking into account Fig. 3.13. Indeed, if we recall
that we are expressing distances in units of the lattice constant and that this is in turn√
3 times larger than the bulk lattice constant, a, this term is telling us that upon

moving from one row to the next there is a potential drop of eFa/2. Since we will
consider lattices with Ny = 3r − 1, which is an odd number, it is convenient to set
the potential to zero right at the middle row, n = (Ny + 1)/2. Alternatively, one can
redefine n to start at−(Ny + 1)/2 and end at (Ny + 1)/2. Doing so, the tight-binding
model can be written as follows

eF

2
√
3
n ψA(n) + ei k/2ψB(n) + ψB(n − 1) + ψB(n + 1) = EψA(n), (3.2.5a)

eF

2
√
3
n ψB(n) + e−i k/2ψA(n) + ψA(n + 1) + ψA(n − 1) = EψB(n). (3.2.5b)

It is important to remember that energies are expressed in units of the hopping,
t = 1, so that the Fermi velocity of the unbiased nanoribbon is vF = 1/2. In order to
compare different combinations for the fields andwidths, it is convenient to introduce
a few more quantities. Let W = (Ny − 1)/(2

√
3) be the width of the nanoribbon.

Since we nullify the wavefunction at fictitious sites at n = 0 and n = Ny + 1, the
width of the fictitious nanoribbon is W̃ = (Ny + 1)/(2

√
3). Then, it proves to be

convenient to write

f = F

FW
, FW = 1

2eW̃ 2
= 6

e(Ny + 1)2
. (3.2.6)
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Fig. 3.14 Dispersionof the lowest subbands of ananoribbonwith Ny = 11 for f = 0 and f = 5.
Solid lines correspond to nonlinear fits to massive Dirac-like spectra. Notice the gap opening at
k = 0 and the reduction of the Fermi velocity

This shows the trade-off that we were talking about previously: one can have
large values of Ny and small values of F and, similarly, have small values of Ny for
large values of F in order to have the same f . In other words, in order to have two
nanoribbons of different width with the same potential difference between the two
sides of the ribbon, the field has to change accordingly, as we would expect. With
this in mind, let us solve the tight-binding model numerically for a representative
nanoribbon of, say, Ny = 11, for two values of f . The results are shown in Fig. 3.14,
where the data are fit to massive Dirac dispersions

E2 = (αk)2 + m2. (3.2.7)

Notice that α is the Fermi velocity and � = 2m is the energy gap (in units of t). In
unbiased graphene, α = 1/2 and m = 0. However, in biased graphene, m �= 0 and
the nanoribbon becomes semiconducting.

From the fit, we can plot both the gap and the Fermi velocity as a function of f
for two values of Ny . As we can observe in Fig. 3.15a, the gap increases with f . It
is important not to draw wrong conclusions from this figure by forgetting that f is a
quantity that depends on Ny and it is not the electric field itself. That is, even though
in the plot the gap increases more slowly for Ny = 17 than Ny = 5, also the real
fields are smaller in the Ny = 17 case. The velocity reduction is also nicely observed
in Fig. 3.15b. Interestingly enough, there is not much dependence on Ny but rather
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Fig. 3.15 Gap and Fermi velocity of the massive Dirac-like spectra for two nanoribbons of
Ny = 5 and Ny = 17. a A gap opens and b the velocity is reduced due to the electric field

on f alone. As we shall see in the continuum description, this is in fact why we chose
to define f as we did.

Finally, before we move on to the continuum description, it is worth trying to
understand the reduction of the Fermi velocity in this setup. For that matter, we shall
consider the effect of the field on the eigenstates for the positive and negative energies
of a representative k. In particular, we shall consider Ny = 17, f = 5 and k = 0.3.
The states are displayed in Fig. 3.16. It is important to mention that the horizontal
axis does not correspond to the row. Rather, if n is the row index, then m = 2n − 1
is the position of the position of the A atoms and m = 2n is the position of the B
atoms. Notice that the probability density of A and B atoms of the same row is the
same, as it should from the symmetry of the nanoribbon.

As it can be observed in the figure, the two eigenstates of positive and negative
energy of the unbiased nanoribbon (dashed lines) have the same probability ampli-
tudes. However, once the field is turned on, states of higher energies move towards
the left-hand side, where the electric potential is more negative, whereas states of
lower energies do the exact opposite. This is very much like what we discussed in
the previous section, where states try to redistribute their probability distributions
in order to minimize the effects of the electric field. As a result of moving towards
regions of lower potential, states of higher energies move down in energy, and the
opposite happens for states of lower energies. The effect is most notable for states
of larger momenta and, as in the topological boundary, momentum is conserved and
the net result is a reduction in energy of all states in such a way that we still get a
Dirac-like dispersion with a reduced Fermi velocity. In contrast to the topological
boundary, a gap opens up due to the lack of topological protection. We shall see
shortly that the continuum description, which is topologically protected as we dis-
cussed in the second chapter, does indeed protect the Dirac point, while reducing the
Fermi velocity as well.
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Fig. 3.16 Probability density for an unbiased (dashed lines, black) and a biased nanoribbon
(coloured curves). Here Ny = 17 and f = 5. The inset shows the dispersion and dots are the states
shown on the figure. Positive energies of the biased nanoribbon are dark-red coloured and negative
energies are blue coloured

Let us then explore the continuum model. For that matter, we will write the
Hamiltonian in the basis

{
ψK

A (x), ψK
B (x),−ψK ′

B (x), ψK ′
A (x)

}
, which leads to the

isotropic Hamiltonian for both valleys

H = τ0 ⊗ (σ⊥ · k) + τ0 ⊗ σ0V (x), (3.2.8)

where we have taken vF (0) = 1 to be the Fermi velocity in the absence of field.
Here, in contrast to the tight-binding model, X is the transverse direction instead
of Y . The physics will obviously be the same, just like in the previous chapter. We
will however write Nx instead of Ny and the results from the previous section are
recovered by writing Ny → Nx . This is of course not necessary, but we will do it to
stick to the conventions chosen in the previous chapter. As we know, the boundary
conditions do not require to nullify the envelope functions, but rather the coefficients
in the expansion of atomic orbitals (see previous chapter for details). The resulting
boundary condition is then

ψK
α (xb) = −�bψ

K ′
α (xb), �b = exp (−i 2Kxb) . (3.2.9)

where x1 = 0 and x2 = (Nx + 1)/2 are the boundary fictitious sites where nullifica-
tion takes place. Notice that we are expressing distances in units of the bulk lattice
constant, a = 1. Here, K = 4π/3. Taking into account that we are working with the
isotropic Hamiltonian, we can solve for either of the two valleys and obtain the other
one by simply changing the integration constants. Instead of continuing to work in
units of a, which in the continuum version does not make a lot of sense anyway, it is
convenient to express distances in units of W̃ . This way, the potential V (x) is written
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as follows
V (x) = f x, (3.2.10)

where f was defined in the tight-binding description as f = F/FW . In order to have
V (x1) = −V (x2), instead of having x1 = 0 and x2 = 1, we take x1 = −1/2 ≡ x−
and x2 = 1/2 ≡ x+. In this setting, momenta are expressed in units of 1/W̃ , so
K = 4π W̃/3. Remember that metallic nanoribbons have Ny + 1 = 3r with r ∈ Z

+,
which implies that K = 2πr . Hence, �+ = �− = 1 in metallic nanoribbons. Let us
consider the K valley. Then, we have to solve

(σ⊥ · k) �K (x) = (E − f x) �K (x). (3.2.11)

where �K = (ψK
A , ψK

B )T . We shall omit the superscript K hereafter. It is interesting
to perform a rotation in the sublattice space that takes σx to σz . We do so by rotating
π/2 around the σy axis with the operator

R = exp
(
−i

π

4
σy

)
. (3.2.12)

Hence, we have (−i ∂xσz + kσy
)
χ(x) = (E − f x) χ(x), (3.2.13)

where χ(x) = R−1�(x). Notice that this rotation does not mix the valley indices
since it is diagonal in that subspace. Therefore, we may still identify χ K and χ K ′

.
Let

z = 1√
f

(E − f x) , μ = k

2
√

f
. (3.2.14)

Then, we can write Eq. (3.2.13) as follows

(−i ∂zσz + 2μσy
)
χ(z) = zχ(z). (3.2.15)

If we act on the left with (−i ∂zσz + 2μσy), we obtain

[
∂2
z + z2 − 4μ2 − i

]
χ(z) = 0. (3.2.16)

As in the previous chapter, it may seem that the two components of χ are decoupled
and satisfy the same equation. However, the two are actually coupled by

χl = − 1

2iμ
(i ∂z + z) χu, (3.2.17)

where χ = (χu, χl)
T . Hence, we have to solve

[
∂2
z + z2 − 4μ2 − i

]
χu(z) = 0, (3.2.18)
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to obtain later χl from (3.2.17). This equation is already familiar to us from the exact
solution of the topological boundary. Indeed, two independent solutions are given in
terms of Kummer’s functions M(a, b, z) [11]

F(z) = M

(
−iμ2,

1

2
, i z2

)
e−i z2/2, (3.2.19a)

G(z) = 2iμzM

(
1 − iμ2,

3

2
, i z2

)
e−i z2/2. (3.2.19b)

Hence, χu(z) is given by

χu(z) = αF∗(z) + βG(z). (3.2.20)

In order to obtain χl , we can make use of the following useful relations

(i ∂z + z) F∗(z) = −2μG∗(z), (i ∂z + z)G(z) = −2μF(z). (3.2.21)

Thus, it is straightforward to obtain

χl(z) = −i αG∗(z) − i βF(z). (3.2.22)

Solutions for K ′ are obtained from these solutions by changing the integration con-
stants. Hence, we may write

χ K (K ′)(z) = P(z)CK (K ′), P(z) =
(

F∗(z) G(z)
−iG∗(z) −i F(z)

)
, (3.2.23)

where CK (K ′) is a constant vector of two components containing the integration
constants, αK (K ′) and βK (K ′). We now have to apply the boundary conditions. Notice
that a rotation in the sublattice space does not alter the boundary conditions. Indeed,
originally we had for the boundary conditions

�K (x±) = −i�±σy�
K ′

(x±), �± = exp

[
∓i

2π

3
(Nx + 1)

]
, (3.2.24)

where σy appears due to the ordering of the basis. Since the rotation is performed
around the σy axis, then σy is not affected by the rotation and we may write directly

χ K (z±) = −i�±σyχ
K ′

(z±), (3.2.25)

where z± = z(x±). These two equations (one for each sign) lead to the following
equation for CK

�2
−CK = T CK , (3.2.26)
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being
T = P−1(z+)σyP(z+)P−1(z−)σyP(z−). (3.2.27)

Here we have used the fact that �−1
+ = �−. Notice that we have assumed the exis-

tence of the inverse of P . However, this is always the case since we can prove the
determinant of P to be a constant for all z. That is, we want to prove

∂z [detP(z)] = 0. (3.2.28)

Taking into account the relations (3.2.21), it is straightforward to prove that

∂z|F(z)|2 = ∂z|G(z)|2 = 2iμ
[
F(z)G∗(z) − F∗G(z)

]
. (3.2.29)

Since
detP(z) = −i

(|F(z)|2 − |G(z)|2) , (3.2.30)

it is then clear that detP(z) is a constant. That is, the determinant is independent of
z, so we can calculate it for any z of our choice. Particularly simple is the case where
z = 0 since M(a, b, 0) = 1, which in turn leads to

detP(z) = −i . (3.2.31)

Therefore, we conclude that it is always possible to define the inverse of P . Equa-
tion (3.2.26) requires

det
[
�2

−12 − T
] = 0, (3.2.32)

Equivalently,
�4

− − Tr(T )�2
− + det T = 0. (3.2.33)

Taking into account the definition of T , we find that det T = 1 and, therefore,

(
�2

− + 1

�2−

)
= Tr(T ). (3.2.34)

Using the definition of �−, we find

cos

[
4π

3
(Nx + 1)

]
= 1

2
Tr(T ). (3.2.35)

It is interesting to make a few observations of this equation. If Nx = 3r − 1, with
r ∈ Z

+, that is, when the nanoribbon is metallic, then we have

1

2
Tr(T ) = 1. (3.2.36)
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In any other case, we find
Tr(T ) = −1. (3.2.37)

Since these equations are independent of Nx , it seems that the spectrum of subbands
will be the same for all values of Nx for all metallic and semiconducting nanoribbons.
However, this is not the case since momenta are expressed in units of 1/W̃ and do
depend on Nx . In any case, these two equations show the usefulness of working with
dimensionless variables, since it allows us to consider different sizes all at once. It
is not difficult to find that the trace of T is given by

Tr (T ) = 2� [(
F2

+ − G2
+
) (

(F∗
−)2 − (G∗

−)2
)] − 8� [

F+G∗
+
]� [

F−G∗
−
]
, (3.2.38)

where F± = F(z±) and G± = G(z±). Before we solve this equation numerically, it
is interesting to consider what happens at k = 0. Indeed, we argued in the second
chapter that the Dirac point should remain protected in the continuum model even
in presence of a potential V (x). If k = 0, then it is straightforward to show that

Tr(T ) = 2 cos
(
z2+ − z2−

)
. (3.2.39)

Since z2+ − z2− = −2E and it is independent of f , the energy should be the same at
all fields. Even though we cannot consider the case f = 0 since there is a singularity
at that point, the result holding for any f means that it holds for an f that is infinitely
close to f = 0, and by adiabatic continuity it must happen that the energy at f = 0
and at f → 0 coincide. Indeed, in metallic nanoribbons we find

E = nπ, n ∈ Z, (3.2.40)

so the Dirac point n = 0 remains a solution, as expected. Moreover, it can be shown
numerically that degenerate subbands above and below the Dirac non-degenerate
bands remain degenerate upon application of the field. That is, the perturbation does
not lift the pseudovalley degeneracy introduced in the second chapter. Indeed, we
can prove this generally by solving the problem numerically, but it is analytically
accesible in the k = 0 case. Metallic nanoribbons satisfy

1 − cos(z2+ − z2−) = 0. (3.2.41)

Since the term on the left is bounded to bewithin [0, 2], then E = nπ are double roots
and there is double degeneracy. In contrast, semiconducting nanoribbons satisfy

1 + 2 cos(z2+ − z2−) = 0. (3.2.42)

Here, the term on the left is bounded to be within [−1, 3], so the roots are single
roots and there is no degeneracy. Numerically, one can show that the subbands of
metallic nanoribbons remain degenerate away from k = 0, except for the Dirac band
which is non-degenerate, save for the Dirac point at k = 0 as we have just shown.
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Fig. 3.17 Dirac band ofmetallic armchair nanoribbons and Fermi velocity reduction. aAs the
electric field increases, the Dirac dispersion tilts while preserving the Dirac point. b Fermi velocity
reduction as a function of the field as obtained from tight-binding calculations (dots) for two values
of Ny and a low-energy Dirac-like Hamiltonian (solid line)

Finally, in Fig. 3.17a, we show the expected behaviour of preserving the Dirac
point while reducing the slope as the field is increased in metallic nanoribbons. What
is evenmore interesting is to compare the reduction of the Fermi velocity as predicted
by both the tight-binding and continuum approaches. This is shown in Fig. 3.17b,
where the agreement is noteworthy between both approaches.

3.3 Conclusions

In this chapter, the most prominent result is the ability to modify the Fermi velocity
of two paradigmatic Dirac systems, namely, a topological insulator and a metallic
armchair nanoribbon. The results shown in this chapter seem to indicate that this
behaviour is generic to other Dirac materials (see Ref. [21] for a detailed review on
Dirac matter). The Fermi velocity reduction has been exploited to reduce the energy
gap that occurs due to the hybridization of surface states in a thin film, ultimately
linked to the annihilation of opposite helicities. Although it has not been explicitly
mentioned throughout the text, the phenomena presented herein can be collectively
gathered in a class of quantum confined Stark effects [22, 23]. This effects are most
well-known from its presence in biased quantum wells, where upon applying an
electric field the electron levels experience a reduction of their energy that goes with
F2 at low field amplitude, F being the field amplitude. The phenomenon occurs due
to the fact that the wavefunction moves to regions of lower potential, very much like
what we have observed in graphene. Moreover, bound states in the quantum well can
tunnel into the continuum since there is a finite barrier that separates these two types
of states. As a result, these bound states are no longer bound states, but rather resonant
states, very much like those discussed in the topological boundary. It is interesting to
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observe that perturbation theory did not provide us any information about tunneling
into the continuum, also known as Fowler-Nordheim tunneling [23]. The presence of
tunneling is also absent when doing perturbation theory in the most simple setup of
an ordinary quantum well [23]. This is telling us that perturbation theory cannot be
applied to capture the full physics, and thus one has to solve the problem in full, as we
did in the section where we discussed an approximate solution. This problem is not
encountered in the case of graphene nanorribbons since the states have no continuum
states to resonatewith. Finally, beforewe conclude this chapter, it isworthmentioning
that the Fermi velocity reduction has also been observed to occur in metallic carbon
nanotubes [1]. It has also been confirmed in armchair graphene nanoribbons bymeans
of density functional theory, although it is not possible to quantitatively comparewith
the results presented herein due to the presence of electronic correlations, electric
polarizability and charge screening effects [1]. In the next chapter, we shall combine
the ideas of applying an electric field by introducing a magnetic field as well.

References

1. Díaz-Fernández A, Chico L, González JW, Domínguez- Adame F (2017) Tuning the Fermi
velocity in Dirac materials with an electric field. Sci Rep 7:8058

2. Díaz-Fernández A, Chico L, Domínguez-Adame F (2017) Electric control of the bandgap in
quantum wells with band-inverted junctions. J Phys: Condens Matter 29:475301

3. Díaz-Fernández A, Domínguez-Adame F (2017) Quantum confined Stark effect in band-
inverted junctions. Physica E: Low Dimens Syst Nanostruc 93:230

4. Black J, Conwell EM, Seigle L, Spencer CW (1957) Electrical and optical properties of some
MVI..B 2 NVI..B 3 semiconductors. J Phys Chem Solids 2:240

5. Tchoumakov S, Jouffrey V, Inhofer A, Plaçis B, Carpentier D, Goerbig MO (2017) Volkov-
Pankratov states in topological heterojunctions. Phys Rev B 96:201302

6. Korenman V, Drew HD (1987) Subbands in the gap in inverted-band semiconductor quantum
wells. Phys Rev B 35:6446

7. Ludviksson A (1987) A simple model of a decaying quantummechanical state. J Phys A:Math
Gen 20:4733

8. Emmanouilidou A, Reichl LE (2000) Scattering properties of an open quantum system. Phys
Rev A 62:022709

9. Jung J-W, Na K, Reichl LE (2009) Decay properties and photodetachment of the diatomic
oxygen ion O2 in a constant electric field. Phys Rev A 80:012518

10. Economou EN (2006) Green’s functions in quantum physics. Springer, Berlin
11. Abramowitz M, Stegun I (1972) Handbook of mathematical functions. Dover, New York
12. Zhou B, Lu H-Z, Chu R-L, Shen S-Q, Niu Q (2008) Finite size effects on helical edge states

in a quantum spin-hall system. Phys Rev Lett 101:246807
13. Linder J, Yokoyama T, Sudbo A (2009) Anomalous finite size effects on surface states in the

topological insulator Bi2Se3. Phys Rev B 80:205401
14. Liu C-X, Zhang H, Yan B, Qi X-L, Frauenheim T, Dai X, Fang Z, Zhang S-C (2010) Oscilla-

tory crossover from two-dimensional to threedimensional topological insulators. Phys Rev B
81:041307

15. Lu H-Z, Shan W-Y, Yao W, Niu Q, Shen S-Q (2010) Massive Dirac fermions and spin physics
in an ultrathin film of topological insulator. Phys Rev B 81:115407

16. Shan W-Y, Lu H-Z, Shen S-Q (2010) Effective continuous model for surface states and thin
films of three-dimensional topological insulators. New J Phys 12:043048



114 3 Reshaping of Dirac Cones by Electric Fields
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Chapter 4
Reshaping of Dirac Cones by Magnetic
Fields

The physics of electrons in a magnetic field led to the discovery of quantum Hall
phases in the 1980s and has led to three Nobel Prizes in Physics:

• 1985: Klaus von Klitzing, for the experimental discovery of the integer quantum
Hall effect [1].

• 1998: Daniel C. Tsui and Horst L. Störmer, for the experimental discovery of
the fractional quantum Hall effect [2] and Robert B. Laughlin, for theoretical
investigations on this effect [3].

• 2016: David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz for
theoretical discoveries on topological quantum matter. Among other phenomena,
the first two explored the physics of the quantum Hall effect and made seminal
contributions to it [4–7].

These discoveries boosted the field of topology in condensed matter up to this day.
In this chapter, we shall study the physics of topological surface states in a magnetic
field, focusing on the effect on the Dirac cones. Moreover, we shall introduce an
additional electric field perpendicular to the surface, in the spirit of the previous
chapter. Before doing so, we provide a brief introduction to the theory of Landau
levels.

If we think of electrons classically as rotating in a plane perpendicular to a uniform
magnetic field, we may describe such a rotation as two perpendicular harmonic
oscillators. Translated to the quantum world, kinetic energy gets quantized, leading
to a stair-like spectrum of so-called Landau levels

En = ωc

(
n + 1

2

)
, ωc = eB

m∗ , (4.0.1)

where B is themagnetic field strength andm∗ is the effectivemass.ωc is referred to as
the cyclotron frequency and coincides with the frequency of rotation in the classical
setup if electrons are given a mass m∗. Notice that we are considering electrons
confined to two dimensions or, alternatively, we are focusing on the lowest subband
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of a quantum well in the direction parallel to the field. The fact that the energies
depend on a single quantum number n is inconsistent with the fact that there are two
degrees of freedom. However, this is not the case if one takes into account that each
Landau level turns out to be macroscopically degenerate. As usual, this degeneracy
is a consequence of a symmetry. This symmetry cannot be the usual translational
symmetry, where translation operators form an Abelian group and, therefore, upon
performing a closed loop the wavefunction returns back to itself. Indeed, we know
that a particle in the background of a gauge potential acquires an Aharonov-Bohm
phase, so the translation operators would have to account for such a phase. This is
achieved by replacing the two ordinary translation operators by another two operators
such that they commute with the Hamiltonian, but not among themselves, so as to
produce the Aharonov-Bohm phase. These magnetic translation operators would
therefore form a non-Abelian group. This implies that we can find a common basis
of eigenstates for the Hamiltonian and only one of the two translation operators, but
not both at the same time. As a result, each of those eigenstates will be labeled by
the eigenvalue of the Hamiltonian, n, and the eigenvalue of the magnetic translation
operator of our choice, l. Therefore, a particular energy En is associated to a set of
eigenstates, each ofwhich is labeled by a distinct l. The total degeneracy can be found
by studying how many distinct values of l there are [8]. In any case, however, it is
simpler to provide with an intuitive explanation of the degeneracy. Let us imagine the
harmonic oscillator. As we know, there is a characteristic length, � = (mω)−1/2, such
that the position uncertainty is �X � �. In the case of a two dimensional electron
gas in a magnetic field, m is the effective mass m∗, ω is the cyclotron frequency, ωc,
and � is known as the magnetic length,

�B =
√

1

eB
. (4.0.2)

This is the characteristic length scale for all quantumeffectswheremagnetic fields are
involved. As it should, it diverges as the field goes to zero (in such a limit, momentum
is again a good quantum number). If the field is given in tesla, it is convenient
to write �B = 26 nm/

√
B. This implies that fields of the order of a tesla lead to

nanometer-sized magnetic lengths, where quantum effects are most prominent. If
we imagine placing the cyclotron orbit centered at a position (X,Y ), we may say
that such a position is encircled by an area of uncertainty of radius �B . Doing the
proper calculations, it turns out that the radius is not �B , but rather

√
2�B . The total

degeneracy can then be obtained by dividing the total area into sectors of area 2π�2B

D = A

2π�2B
. (4.0.3)

Since A is macroscopic (it is the sample’s area) and �B is nanoscopic, this degeneracy
is actually very large. There is another way as to interpret this degeneracy, which
allows for the introduction of the Dirac flux quantum that appeared in the second
chapter. Indeed, one can interpret the area 2π�2B as the area which, if threaded by a
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magnetic field, leads to the smallest possible flux, the flux quantum. That is,

�0 = 2π�2B B = 2π

e
. (4.0.4)

Hence, the degeneracy is counting the total number of flux quanta threading the
sample. Notice as well that if B becomes too large, then �B may reach the angstrom
scale, meaning that the underlying lattice can no longer be accounted for by simply
performing the substitution m → m∗. This implies the usage of extremely large
magnetic fields. Alternatively, one can create superlattices where there is an effective
lattice spacing that is much larger than the real lattice spacing [9–11], or by creating
optical lattices [12–15] where the lattice spacing can be made much larger. In any
case, solving a simple one-band tight-bindingmodel including amagnetic field, as the
flux increases the band splits forming a structure that resembles a Cantor set for each
value of the flux. Taking into account that the system is invariant under � → p�0,
where � is the flux through a unit cell and p is an integer, since in such a case the
Aharonov-Bohm phases around the unit cell equal the identity, we can think of � as
being periodic in�0. If the spectrum is plotted as a function of� ∈ [0,�0), the result
is a fractal-like structure named after its discoverer: the Hofstadter butterfly [16]. An
example of the Hofstadter butterfly for a square lattice is shown in Fig. 4.1. For small
values of the flux, the spectrum of Landau levels is recovered, as it can be seen in the
lower left corner of the figure, where the linear dependence with the field is observed.

For some specific values of the flux, one can enlarge the unit cell so that it contains
an integer multiple of flux quanta. In such a case, the Aharonov-Bohm phases around
such unit cells equals the identity and one can find translation operators that commute
among themselves and with the Hamiltonian, allowing to obtain energy bands as
in the field-free case. That is, one can imagine the lattice undergoing some kind
of renormalization upon where the new lattice has unit cells enclosing an integer
number of flux quanta. As a result, one can find two momenta to label the energies
as in the field-free problem and obtain a spectrum of energy bands. If the number of
unit cells gathered in the enlarged unit cell is q, then there must be q energy bands.
Indeed, the fact that the unit cell is now q times larger implies that the Brillouin zone
is q times smaller, leading to the so-called magnetic Brillouin zone. Therefore, each
band can accommodate N/q states, where N is the total number of unit cells of the
original lattice. In order to accommodate the total N states of the original band, there
must be q bands. As an example, when � = �0/2, one needs an enlarged unit cell
containing two original unit cells, so there should be two bands. Indeed, this is what
we observe in Fig. 4.1.

Let us now turn our attention to the case of relativistic fermions or, more appro-
priately in our settings, massless quasiparticles that satisfy the Dirac equation. In
this case, it is also possible to find a structure of Landau levels. However, the energy
scale here can no longer be ωc since m∗ = 0. Indeed, it has to be replaced by vF/�B .
More precisely [17],

ωc = √
2

vF

�B
. (4.0.5)



118 4 Reshaping of Dirac Cones by Magnetic Fields

Fig. 4.1 Hofstadter butterfly in a square lattice. For zero flux, the cosine band of the square
lattice ranging from −4 to 4 (hopping t = 1) is recovered. For low values of the flux at the lower
left corner, the spectrum of Landau levels dispersing linearly with magnetic field in the continuum
approximation is also recovered. The clearer regions are bulk energy gaps and the energies within
them correspond to edge states (the problem has been solved on a cylinder)

Moreover, since the energy goes with k instead of k2, we would expect the dispersion
to go with

√
n. This is indeed what happens. Let us study this for the topological

surface states by considering the effective Hamiltonian

HS = vF (σ × k)z . (4.0.6)

As long as �B is larger than the lattice spacing, we can still consider this continuum
approach. In order to include a magnetic field, one has to write the previous equation
in terms of the mechanical momentum

� = k + eA . (4.0.7)

By doing so, the Hamiltonian has the same form as it would in the absence of a
magnetic field

HB
S = vF (σ × �)z . (4.0.8)

Taking into account the definition of �, it is straightforward to show that its compo-
nents do not commute
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[
�x ,�y

] = −i
1

�2B
. (4.0.9)

The approach now is the same that one would follow with ordinary Landau levels:
introduce a pair of raising and lowering operators, a† and a, such that the mechanical
momenta are written as follows

�x = 1√
2�B

(
a† + a

)
, �y = 1

i
√
2�B

(
a† − a

)
. (4.0.10)

This way, the newly introduced operators satisfy

[
a, a†

] = 1 . (4.0.11)

Expressing the Hamiltonian in terms of these operators we find

HB
S = iωc

(
0 a

−a† 0

)
, (4.0.12)

where ωc is defined by Eq. (4.0.5). The effective Hamiltonian acts upon a spinor ψ

HB
S ψ = Eψ . (4.0.13)

If we square the Hamiltonian, we obtain the following result

ω2
c

(
1 + N 0

0 N

)
ψ = E2ψ , (4.0.14)

where N = a†a is the number operator. It is then clear that if we choose

ψ = α

(
φn−1

0

)
+ β

(
0
φn

)
, (4.0.15)

withφn an eigenstate of the number operator, Nφn = nφn with n ≥ 0, then the energy
is found to be E2 = (ωcn)2, that is,

En,s = sωc
√
n , (4.0.16)

with s = ±1. It is interesting to observe the presence of a zero energy Landau level,
which is totally absent from the ordinary Landau levels of a semiconductor andwhich
is independent of the magnetic field strength. In fact, this Landau level is special in
yet another sense: it has support only on the lower component of ψ, since φn = 0
for n < 0. It can also be shown [18] that the degeneracy of each Landau level is
still given by D [cf. Eq. (4.0.3)]. Hence, the Dirac point turns from being a point
of zero density of states to having a Landau level with a large degeneracy. This
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Fig. 4.2 Hofstadter butterfly in a honeycomb lattice. For zero flux, the π and π∗ bands of the
honeycomb lattice ranging from −3 to 3 (hopping t = 1) are recovered. For low values of the flux
and energies around E = 0, we observe the squared-root-like dependence with the field, as well as
the field-independent zero Landau level of the continuum approach. The clearer regions are bulk
energy gaps and the energies within them correspond to edge states (the problem has been solved
on a cylinder)

feature is common to other Dirac materials, most notably in graphene, where the
main consequence is the so-called anomalous integer quantum Hall effect. Although
we shall not go into the details, the presence of this Landau level leads to a large peak
in the longitudinal conductance at charge neutrality, which occurs right at the Dirac
point in graphene. This is because the Landau level contributes with extended states
that are available for transport. Hence, at the same time, right at charge neutrality
there is a jump in the transverse conductivity to reach a plateau when a mobility gap
is reached, thereby disregarding the possibility for a plateau at zero conductance, in
contrast to ordinary semiconductors. We shall not go into the details of the quantum
Hall effect in graphene and refer the reader to Refs. [17, 18]. This effect has also
been experimentally detected in Bi2Se3 [19, 20]. It is also interesting to compare the
continuum approximation with the tight-binding description in the case of graphene.
In doing so, we obtain another fractal-like structure [21], as shown in Fig. 4.2.

Coming back to our discussion, if we take into account the definition of ωc, we
can write the energy as follows
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En,s = svF

√
2eBn . (4.0.17)

This result is already interesting for our discussion. Indeed, if we consider the results
of the second chapter, one may argue that since the effect of the electric field is to
renormalize the Fermi velocity (at least to low fields andmomenta), while preserving
the cones, then it should be possible to use the effectiveHamiltonian thatwe have used
by changing vF → vF ( f ). Hence, we would expect that Landau level spectroscopy
as discussed in Refs. [19, 20] should unravel the veracity of our results. In fact,
in Refs. [22, 23], the authors discuss the case of graphene under a perpendicular
magnetic field and an in-plane electric field. As they argue in their paper using
arguments from special relativity, the presence of an electric field leads to the same set
of Landau levels of graphene in the absence of electric field, although with a reduced
effective magnetic field. This is precisely what is happening if we do vF → vF ( f ),
since we can write

EF
n,s = svF ( f )

√
2eBn = svF

√
2eB( f )n , (4.0.18)

where

B( f ) = B

(
1 − 5

8
f 2

)2

. (4.0.19)

Therefore, the magnetic field would be effectively reduced by the electric field, in
agreement to Refs. [22, 23].

4.1 General Formalism

In this chapter, we shall consider the setup to be a centered-symmetric topological
boundary upon which an electric field perpendicular to the boundary is applied, as in
the previous section. Additionally, we will include in-plane and out-of-plane mag-
netic fields. By performing the substitution of momentum tomechanical momentum,
the Hamiltonian reads

HB = α · � + βsgn (z) , (4.1.1)

where energies are measured in units of half the energy gap �, the mechanical
momentum is measured in units of the inverse decay length of unperturbed states
and d = vF/�, z is measured in units of d. Notice that, if A is the vector poten-
tial, the dimensionless version would be Ã = (1/dB)A. Hence, the dimensionless
mechanical momentum can be written as

� = p + b Ã , b = d2

�2B
. (4.1.2)
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Notice that the dimensionless magnetic field depends on the ratio between the decay
and magnetic lengths. Since d is of the order of a few nanometers, the continuum
approximation makes sense as long as b < 1. Instead of following an algebraic
approach as in the previous section, we will choose a specific gauge to work with.
Taking into account the geometry of our problem, it makes sense to consider two
different gauges: a symmetric and a Landau gauge. The former will be used when
studying the case of amagnetic field perpendicular to the boundary, in order to exploit
the cylindrical symmetry of the problem. The latter will be used when discussing
an in-plane magnetic field. Let B̂ be the direction of the magnetic field. Then, the
Landau gauge reads

Ã = x j
(
B̂ × x̂ j

)
, (4.1.3)

where there is no summation over repeated indices. Here, x1 = x , x2 = y, x3 = z,
and x̂ j is a unit vector along the j-th direction. Notice that there are two choices for
the Landau gauge, those where x̂ j and B̂ are perpendicular. We will choose the one
that simplifies our calculations. The symmetric gauge reads

Ã = 1

2

(
B̂ × r

)
, (4.1.4)

where r = (x, y, z).
The Hamiltonian acts on a bispinor �(r) such that

HB�(r) = (ε − f z)�(r) , (4.1.5)

where f is the electric field measured in units of FC = �/ed. Remember that we can
interpret f/2 as being the ratio between the potential drop across the decay length d
and the energy gap. As always, we square the Hamiltonian. We can reuse what we
have found in the previous chapter, except that studying the square of α · � has to
be done with a little care. In order to do so, it is interesting to take into account that

αiα j = δi jτ0 ⊗ σ0 + i εi jkτ0 ⊗ σk , (4.1.6)

and
B̂i = εi jk∂ j Ãk , (4.1.7)

where εi jk is the Levi-Civita symbol, B̂i and Ãi are the i-th components of B̂ and Ã,
respectively, and we are assuming sum over repeated indices. As a result, the squared
Hamiltonian leads to

[ (
p + b Ã

)2 + bτ0 ⊗ (
σ · B̂) + 1 − ε2 +U (z)

− i f αz + 2ε f z − f 2z2
]
�(r) = 0 ,

(4.1.8)

where
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U (z) = 2i βαzδ(z) . (4.1.9)

In the next sections, we will particularize this expression to the case of out-of-plane
and in-plane magnetic fields. We shall refer to the first situation as parallel fields and
the second situation as crossed fields.

4.2 Electron States Under Parallel Electric and Magnetic
Fields

In this section, we consider a magnetic field along the Z -direction, in order to see if
we obtain the result that we proposed in the introduction. That is, we aim to obtain
Landau levels with an electric-field dependent Fermi velocity. In order to do so,
we shall make use of the approximate solution that we presented in the previous
chapter, so we will disregard the term −i f αz and treat U (z) as a perturbation. This
way, Eq. (4.1.8) becomes diagonal and we find four uncoupled equations for the
components of � which can be solved by separation of variables. The symmetry of
the problem suggests the usage of cylindrical coordinates, where the vector potential
in the symmetric gauge takes the form

Ã = 1

2
ρ̂eφ . (4.2.1)

In this gauge, k and A commute and we find that

p · A + A · p = −i ∂φ ≡ Lz , (4.2.2)

wherewe have identified the Z -component of angularmomentum.Hence, Eq. (4.1.8)
can be written as follows

{
−

[
∂2

ρ + ρ−1∂ρ − ρ−2L2
z

]
+ bLz + b2

4
ρ2 + bτ0 ⊗ σz

− ∂2
z + 1 − ε2 − i f αz + 2ε f z − f 2z2

}
�(r) = 0 .

(4.2.3)

Notice that the operator acting upon�(r) commuteswith Lz , that is Lz is a conserved
quantity as a result of cylindrical symmetry.Hence,we can take�(r) to be eigenstates
of Lz with eigenvalue m, which allows us to write �(r) = exp(imφ)χ(ρ, z). It is
now convenient to expand�(r) in the basis of eigenstates of τ0 ⊗ σz .We shall denote
a generic eigenstate as ϕ j , with eigenvalue λ j = (−1) j+1, where j = 1, 2, 3 and 4.
Then,

χ(ρ, z) =
∑
j

h j (ρ, z)ϕ j . (4.2.4)
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As a result, we can write Eq. (4.2.3) as follows

{
−

[
∂2

ρ + ρ−1∂ρ + ρ−2m2
]

+ b2

4
ρ2 + λ j b

− ∂2
z + 1 − ε2 − i f αz + 2ε f z − f 2z2

}
h j (ρ, z) = 0 .

(4.2.5)

Notice that the upper line would correspond to the Hamiltonian of a two-dimensional
harmonic oscillator in polar coordinates of mass m and frequency ω = b, whereas
the lower line corresponds to the problem of the perpendicular electric field described
in the previous chapter. On the other hand, we see that h1(ρ, z) and h3(ρ, z) satisfy
the same equation, and the same comment applies to the other two components.
Moreover, the perturbation U (ξ) only mixes the components i and (i + 2) mod 4.
Hence, we can safely choose the functions h j to be eigenfunctions of the harmonic
oscillator operator, such that the problem would now read

[−∂2
z + 1 − ε2 + ν j − i f αz + 2ε f z − f 2z2

]
h j (ρ, z) = 0 , (4.2.6)

where

ν j = λ j b + 2b

(
n + 1

2

)
, n ≥ 0 . (4.2.7)

It is interesting to observe that it is only possible to have ν j = 0 if j = 2 or 4. This
is what we would expect, since it would correspond to the zero Landau level in the
absence of electric field and, as we saw in the introduction, it can only have support
for the spin-down components. Hence, we can write

ν = 2bn , (4.2.8)

with the knowledge that ν = 0 can only have support for the spin-down components
of the bispinor. With this result, the problem can therefore be considered to be the
same as that with the electric field, although instead of κ2 we have ν. Hence, we can
take the results of the previous chapter for the dispersion and change κ by

√
ν, that

is,

εBn,s = s
√
2bn

(
1 − 5

8
f 2

)
. (4.2.9)

Alternatively,
EB
n,s = svF ( f )

√
2eBn , (4.2.10)

as predicted in the introduction of this chapter.
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4.3 Electron States Under Crossed Electric and Magnetic
Fields

In this section, we will apply an in-plane magnetic field, together with an electric
field perpendicular to the boundary. We shall work in the Landau gauge, since it
simplifies the calculations in this geometry. Let B̂ = ŷ. This choice respects transla-
tional symmetry in the XY -plane, but breaks rotational symmetry. As we said earlier,
we have two main choices for the Landau gauge

Ãx = z
(
B̂ × ẑ

) = z x̂ , (4.3.1)

and
Ãz = x

(
B̂ × x̂

) = −x ẑ . (4.3.2)

These two are, as all choices of Ã are, connected by a gauge transformation. Indeed,
we can write

Ãx = Ãz + ∇g , g(x, z) = xz . (4.3.3)

We shall choose Ãx , so that we retain translational symmetry in the XY -plane,
parallel to the topological boundary. This way, κx and κy will still be good quantum
numbers. Notice, however, that rotational symmetry is broken, and we can no longer
expect the dispersion to depend only on powers of κ. It is interesting to observe that
the vector potential can only couple to the directions perpendicular to the magnetic
field, thereby leaving the direction parallel to the magnetic field unaltered. This
behaviour is the usual in magnetic fields, even classically, where the Lorentz force
in the direction of the field is zero. As a result, we expect that, in absence of electric
field, the cone will be preserved in the y-direction, regardless of the magnitude of b.
In this gauge, we can write Eq. (4.1.8) as follows

[
− ∂2

z + (κx + bz)2 + κ2
y + bτ0 ⊗ σy + 1 − ε2 +U (z)

− i f αz + 2ε f z − f 2z2
]
χ(z) = 0 ,

(4.3.4)

where we have already exploited translational symmetry in the XY -plane. Let

μ = (b2 − f 2)1/4 . (4.3.5)

Hereafter we shall consider b, f > 0. Then, we can introduce

s = −√
2μ (z − z0) , (4.3.6a)

p = 1

2μ2

[
ε2 − 1 − κ2 + μ4z20

]
, (4.3.6b)
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where

z0 = −κxb + ε f

μ4
. (4.3.7)

As a result, Eq. (4.3.4) can be written as follows

[
−∂2

s + s2

4
− p + M

]
χ(s) = δ(s − s0)Nχ(s) , (4.3.8)

where s0 = s(z = 0) and

M = i

2μ2
(bαx − f ) αz , N = i

√
2

μ
αzβ . (4.3.9)

Since we shall be interested in treating the term on the right as a perturbation, it is
convenient to diagonalize the matrixM, which has eigenvalues±1/2, each of which
is doubly degenerate. We can then find a matrix U such that UMU−1 = β/2. If we
do so, Eq. (4.3.8) transforms to

[
−∂2

s + s2

4
− p + 1

2
β

]
�(s) = δ(s − s0)W�(s) , (4.3.10)

whereW = UNU−1 and �(s) = Uχ(s). We will solve this problem using Green’s
functions, as in the previous chapter. Treating the term on the right of the previous
equation as a perturbation, we can use the Lippman-Schwinger equation to write

�(s) = G(s, s0)W�(s0) . (4.3.11)

The Green’s function satisfies

[
−∂2

s + s2

4
− p + 1

2
β

]
G(s, s ′) = δ(s − s0)14 . (4.3.12)

Since Eq. (4.3.11) has to hold for all s, it has to hold in particular for s = s0 and, in
order to have non-trivial solutions, we must ask

det [14 − G(s0, s0)W] = 0 . (4.3.13)

Taking into account that, formally, G(s, s ′) represents the inverse of the operator
acting on it and in this case the latter is diagonal, we can propose for G(s, s ′) to be
diagonal as well

G(s, s ′) =
(
g+(s, s ′) 0

0 g−(s, s ′)

)
⊗ 12 . (4.3.14)

As a result, it is straightforward to show that Eq. (4.3.13) implies that



4.3 Electron States Under Crossed Electric and Magnetic Fields 127

g+(s0, s0)g−(s0, s0) = μ2

2
, (4.3.15)

and g±(s, s ′) satisfies

[
−∂2

s + s2

4
− p±

]
g±(s, s ′) = δ(s − s0) , (4.3.16)

with p± = p ∓ 1/2. This is the equation for the Green’s function of a (non-
relativistic) harmonic oscillator only if b > f , in which case s is real. In fact, this
regime is the actual regime that can be assessed using the homogeneous Lippman-
Schwinger equation since this situation leads to bound states with G(s, s ′) → 0 as
|s|, |s ′| → ∞. Indeed, in the absence of electric field, we expect to obtain Landau
levels at a distance z0 = −κx�

2
B/d2 from the interface. Notice that this is exactly the

same that one would obtain for a two-dimensional electron gas in the Landau gauge.
That is, the two coordinates perpendicular to the magnetic field become linked by
relating the momentum of one to the position of the orbit in the other. As we shall
see, however, in contrast to the case of Landau levels in a two-dimensional electron
gas, the energies do depend on κx , becoming dispersive. Although z0 provides a
measure of the distance of the Landau orbits to the interface, �B provides a measure
of the extent of such orbits. Hence, in order to assess the effects of the boundary, one
would require z0 → 0, equivalently κx → 0, and �B to be larger than d. A detailed
account of other regimes in the absence of electric field is described in reference [24].
Finally, it is interesting to observe that the regime we are considering corresponds
to �F > �B > d, where �F is the electric length that was introduced in the previous
chapter. That is, we require the electric field potential to be smooth enough so as to
be almost constant on each Landau orbit, although affecting them separately.

The Green’s function for the harmonic oscillator is known and can be found in
Refs. [25, 26]. In our case, we have an oscillator of mass 1/2 and frequency 1, which
leads to

g±(s, s ′) = 1√
2π

�

(
1

2
− p±

)
Dp±−1/2(s>)Dp±−1/2(−s<) , (4.3.17)

where �(z) is the Gamma function, Dγ(z) is the parabolic-cylinder function [27],
s> = max

(
s, s ′) and s< = min

(
s, s ′). Using Eq. (4.3.15), we find an equation for

the energies

Dp(s0)Dp(−s0)Dp−1(s0)Dp−1(−s0) + πμ2

p�2(−p)
= 0 . (4.3.18)

This equation reduces to the one found by Agassi in reference [24] when f = 0.
As we can observe in this equation, the energies will only depend on two factors,
in agreement to our discussion above. Indeed, on the one hand they will depend on
the ratio between the distance to the interface, z0d, and the magnetic length through
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s0 = √
2z0d/�B . On the other, they will depend on the ratio between the surface state

decay length d and �B , μ = d/�B . It is instructive to consider first the effect of b
alone, as in [24]. We do so in what follows.

4.3.1 Topological Protection in the Absence of Electric Field

We shall be interested in z0 → 0 and �B > d for the reasons stated above, so we will
be interested in considering κx → 0 and b → 0. Let us first discuss however the case
of κx = 0, in order to observe if the Dirac cone remains unaltered in the Y -direction
regardless of the magnetic field. In this case, Eq. (4.3.18) is written as follows

[
Dp(0)Dp−1(0)

]2 + πμ2

p�2(−p)
= 0 . (4.3.19)

Taking into account that

Dp(0) = 2p/2

√
π

�
(
1
2 − p

2

) , (4.3.20)

using �(z + 1) = z�(z) and the Legendre duplication formula [27], �(2z) = 22z−1

�(z)�(z + 1/2)/
√

π, we obtain

1 + 2pμ2

p2�2(−p)
= 0 . (4.3.21)

There are now two possibilities: either the denominator goes to infinity or the
numerator goes to zero. The denominator goes to infinity whenever p is an inte-
ger different from zero. Indeed, �(−p) is not analytic for p ∈ Z

+
0 . However,

�(−p) = −1/p + O(p) when p → 0, which implies that the product p�(−p) →
−1 when p → 0. Therefore, the denominator goes to infinity whenever p ∈ Z

+.
Also, �(−p) → ∞ as p → −∞, so the denominator also goes to infinity when
z → −∞. The numerator, on the other hand, can only go to zero if p > 0. Hence,
p = 0 cannot be a solution to Eq. (4.3.21). As we said, if p < 0, both the numerator
and the denominator can lead to Eq. (4.3.21) to be satisfied. However, the numerator
can be strictly zero for arbitrary values of magnetic field, whereas p → −∞ requires
b → 0. Therefore, if p < 0, we have that 1 + 2pμ2 = 0, which taking into account
the definition of p [cf. Eq. (4.3.6b)] implies that

εs = sκy , (4.3.22)

with s = ±.
As expected, the Dirac dispersion is preserved regardless of the magnetic field.

However, our argument in favour of this result was saying that the physics in the
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direction of the field should be unaffected as occurs in ordinary two-dimensional
electron gases. Mathematically, this can be observed in the fact that, if f = 0, then
s0 becomes independent of ε and the only dependence is found in p, whereweobserve
ε2 − κ2

y . There is yet a deeper reasoning behind this result, linked to topology. We
know that the Dirac point is protected by time-reversal symmetry, but the magnetic
field breaks such a symmetry, so we must look in a different direction instead. One
extra symmetry of the bulk that was accounted for in our model although without
explicitly discussing it is mirror symmetry. Indeed, if we take a look at the lattice
of Bi2Se3 [cf. Chap. 2], we can observe that the X Z -plane is a mirror plane. That
is, if we take y → −y, the system stays the same. This symmetry is equivalent to
the product of inversion, I , and C2 symmetry about the Y axis, Cy

2 . In our model,
we asked for both symmetries to hold separately, which implies that, indeed, the
Hamiltonian is mirror-symmetric. Moreover, since we kept terms to lowest order in
κ, there is no distinction between the X and Y direction in our model. In fact, our
model is also symmetric if we perform a C2 rotation about the X axis, which is not
a true symmetry of the system. Of course, a model that includes more terms would
account for the fact that the two directions are not equivalent, leading to hexagonal
warping effects [28]. This implies that, in our case, it is not too important whether we
apply the magnetic field in the X or Y directions. In fact, in reference [24], the field is
applied along the X direction instead, and the same results are obtained. Moreover,
our model is actually invariant under continuous rotations about the Z axis, which
implies that any plane perpendicular to the XY -plane would be an equally valid
candidate for being a mirror plane.1 To be concrete, let us say that the mirror plane
is the X Z -plane, as it is in the real system. Then, the mirror symmetry operator can
be written as [cf. Chap. 2]

M = D(I )D(Cy
2 ) = i τz ⊗ σy , (4.3.23)

which takes (kx , ky, kz) → (kx ,−ky, kz). As we can see, M2 = −τ0 ⊗ σ0. That is,
similar to time-reversal symmetry, mirror symmetry when considering spin intro-
duces a minus sign when squared. In contrast to time-reversal, it is a unitary sym-
metry. As a result of squaring to −1, the eigenvalues of M are ±i , each doubly
degenerate. It is not difficult to see that the bulk Hamiltonian commutes with M in
the mirror plane, that is, when κy = 0. This allows to block-diagonalize the Hamilto-
nian, each block corresponding to one of the two eigenvalues ofM. Let uα± be the four
eigenvectors ofMwith eigenvalue ±i and α = 1, 2. Then, a unitary transformation
that brings M into a diagonal form is

U = [
u1

+, u2
+, u1

−, u2
−
]

. (4.3.24)

The operator M becomes M = i τz ⊗ σ0 and the Hamiltonian can be written as
follows

1In fact, this is what we have exploited when saying that the dispersion depends solely on κ in the
absence of fields.
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H = −s�τ0 ⊗ σz − κzτ0 ⊗ σx + κxτz ⊗ σy + κyτy ⊗ σy , (4.3.25)

where s� = sgn�, with � the energy gap. It is then clear that if κy = 0, then
[H,M] = 0 and both H and M can be simultaneously diagonalized. In fact, the
unitary transformation has already brought both M and H into diagonal form, the
latter when κy = 0. The two blocks of H are then straightforwardly found to be

Hη = −s�σz − κzσx + ηκxσy , (4.3.26)

where η = ±1 corresponds to the two subspaces of mirror symmetry defined by
its eigenvalues, ±i . These two blocks correspond to two dimensional massive Dirac
Hamiltonians. SuchHamiltonians are employed in describing the physics of so-called
Chern insulators. These Chern insulators where originally proposed by Haldane [7]
in graphene (by the time called two-dimensional graphite). Haldane’s idea was to
show that one can obtain quantum Hall physics without Landau levels, the only
requirement being breaking time-reversal symmetry. The model, which is absent
of any symmetries, belongs to the A class in the Altland-Zirnbauer classification
and topologically different ground states are classified by an integer. This integer
is known as the Chern number [29]. The Hamiltonian we have found is not exactly
that of Haldane, but one due to Qi, Wu and Zhang [30] in a square lattice that also
describes the physics of Chern insulators. Depending on the sign of the mass term,
the Chern number may be either zero (negative mass) or one (positive mass). In
order to see why this is so, one can reguilarize the two-dimensional massive Dirac
Hamiltonian in a square lattice

HL = d(κ) · σ , (4.3.27)

where

dx (κ) = − sin(κz) , (4.3.28a)

dy(κ) = η sin(κx ) , (4.3.28b)

dz(κ) = −s� − 2 + cos(κx ) + cos(κz) . (4.3.28c)

A non-zero Chern number is achieved if the vector d(κ) describes a closed surface
enclosing the origin upon varyingκ through the Brillouin zone [31] [cf. this approach
to that utilized for studying the topology of the SSH model and graphene in the
second chapter]. If s� = 1, then dz(κ) is always negative, d(κ) cannot enclose the
origin and the Chern number is zero. However, if s� = −1, then d(κ) encloses the
origin and the Chern number2 coincides with η. Therefore, the total Chern number

2There is an ambiguity on the sign of the Chern number, so we choose a definition such that it
coincides with η. However, it would be equally valid to say that the Chern number is −η. The
only important point is to stick to the chosen definition when calculating Chern numbers in a given
model. For concreteness, we use here [31]
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obtained by adding up the Chern numbers of the two mirror subspaces is clearly
zero in either case, since the two Chern numbers of the two mirror subspaces are
equal and opposite. However, it is possible to define a mirror Chern number as
the difference between Chern numbers of each subspace [32]. More precisely, if
n± is the Chern number of the mirror subspace ±, the mirror Chern number is
usually defined as nM = (n+ − n−)/2. In that case, the phase with s� = 1 which
has zero Chern number in both subspaces renders a mirror Chern number of zero
as well; however, the phase with s� = −1 with Chern numbers of ±1 for each
block leads to a mirror Chern number of 1. Therefore, even though the total Chern
number is zero, as expected for a time-reversal-symmetric phase, the two phases
are topologically distinct. Moreover, the Z2 invariant may also be zero, as occurs
in the case of SnTe, where there is parity inversion as in Bi2Se3 but it occurs at
an even number of TRIMs in the Brillouin zone. However, since SnTe displays
mirror symmetry, the discussion above is still valid and it can be characterized with
a mirror Chern number. Therefore, SnTe is not a topological insulator in the sense
that its Z2 index is zero, but it is a topological crystalline insulator, since it displays
topological behaviour as a consequence of crystalline symmetries. This is why the
model we are using is also valid for such materials [33, 34], as was briefly discussed
in the second chapter. Interestingly, Bi2Se3 also has mirror symmetry. This implies
that time-reversal-symmetry-breaking perturbations that preserve mirror symmetry
do not destroy the topology of Bi2Se3, despite having a trivialZ2 invariant. Therefore,
Bi2Se3 is said to be a dual topological insulator [35], in the sense that it can present
both a strong topological insulating regime (non-zero Z2 invariant), as well as a
crystalline topological insulating one.Hence, the topological behaviour ofBi2Se3 can
still survive even in presence of magnetic perturbations. However, such perturbations
have to be such that mirror symmetry is preserved. This means that an external
magnetic field has to be perpendicular to the mirror planes, since it is a pseudovector.
Since we have found a topologically nontrivial behaviour, from the bulk-boundary
correspondencewewould expect boundarymodes to occur at the interface of a system
where � changes sign. That is, if we consider Eq. (4.3.26) and have � = sgn (z),
then s� = sgn (z) and we want to solve

Hηψη(z) = εηψη(z) . (4.3.29)

We propose the following ansatz: ψη(z) ∝ exp(−|z|)φ with φ a constant vector.
Then, we obtain [−sgn (z) (σz + i σx) + ηκxσy

]
φ = εηφ . (4.3.30)

The z-dependent term disappears if we ask

n = 1

4π

∫
T2

d2κ d̂(κ) · (
∂x d̂(κ) × ∂z d̂(κ)

)
,

where d̂ = d/|d| is a unit vector that traces a closed surface when κ is carried through the Brillouin
zone torus, T2.
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(σz + i σx) φ = 0 , (4.3.31)

or, equivalently, we require that φ is an eigenstate of σy with eigenvalue +1. There-
fore, upon inserting that eigenstate into Eq. (4.3.30) we trivially obtain

εη = ηκx . (4.3.32)

For each value of η, this dispersion corresponds to a unidirectional-moving edge
mode, since the group velocity is nothing but η. These modes are often referred to
as chiral and are ubiquitous to quantum Hall effect phenomena. Since we have both
chiralities, which are realized in η = ±1, and these stem from mirror symmetry, we
refer to such a chirality as a mirror chirality [32]. The meaning of this result is that
the Dirac cones in our model can be understood either from time-reversal symmetry
or from mirror symmetry. Since this behaviour occurs due to having nonzero mirror
Chern numbers, we can say that mirror chirality is also a topological quantum num-
ber. This implies, as before, that perturbations that do not break mirror symmetry
cannot lead to gap openings. In our model, where we kept terms to lowest order
in κ, it is unimportant which direction the magnetic field points to, as long as it is
contained in the XY plane. However, if more terms are added to the Hamiltonian to
include hexagonal warping [28], as mentioned above, then only those directions of
the magnetic field that strictly preserve mirror symmetry do not lead to gap openings
in the spectrum [35].

After this digression, let us explore the case with p > 0. In such a case, we
know that the denominator in Eq. (4.3.21) goes to infinity when p ∈ Z

+, where the
numerator stays finite. In such a case, taking into account the definition of p [cf.
Eq. (4.3.6b)], we obtain a series of relativistic Landau levels

εn,s = s
√
1 + 2nb + κ2

y , n ∈ Z
+ . (4.3.33)

These are the Landau levels of the bulk, which appear due to the confinement of the
harmonic potential in the growth direction created by the magnetic field. Notice that
these are relativistic Landau levels for massive Dirac fermions. However, there is
no n = 0 Landau level, meaning that the lowest energy is not at ε = 1, as it would
be in the bulk, but rather it is higher at

√
1 + 2b. This implies that, upon increasing

the magnetic field, the gap effectively widens at the interface. This widening can be
quite large. For b � 0.5, such a widening is of the order of 40% with respect to the
original gap. Agassi [24] interprets this result as the energy cost for an electron in
the bulk to cross the boundary (remember that κx = 0 corresponds to z0 = 0).

Let us now explore the case of κx → 0 and b → 0. We will assume that κx → 0
sufficiently fast so as to have s0 → 0. That is, we are considering the Landau orbits
to be close to the interface, z0 → 0, with a spatial �B extension such that they interact
with the boundary. The first thing to notice is that Eq. (4.3.18) is even in s0, which
implies that an expansion around s0 = 0 can only contain even powers of s0. In fact,
performing such an expansion leads to lowest order in s20



4.3 Electron States Under Crossed Electric and Magnetic Fields 133

1 + 2pμ2

p2�2(−p)
− [

D2
p(0) + pD2

p−1(0)
]2
s20 = 0 , (4.3.34)

where we have taken into account Eq. (4.3.21). Notice that the two terms in this
equation cannot vanish simultaneously. This is because if f = 0, then p becomes
independent of κx , meaning that the equation above is independent of κx except for
s0. If we require the two terms to vanish with s0 �= 0, we would obtain solutions that
are independent of κx and, therefore, should hold also for κx = 0. However, those
solutions are only provided by the first term and not by both. Therefore, it is the full
equation that has to be zero and not each term separately. Taking into account (4.3.20)
we can write

[
D2

p(0) + pD2
p−1(0)

]2 = π

2p�2(−p)

[
η(p) + 1

η(p)
+ 2

]
, (4.3.35)

where

η(p) = p

2

�2
(− p

2

)
�2

(
1−p
2

) . (4.3.36)

Combined with Eq. (4.3.34) we finally obtain

1

p2�2(−p)

{
1 + 2pμ2 − s20 p

[
η(p) + 1

η(p)
+ 2

]}
= 0 . (4.3.37)

Following a similar comment to the one above, for finite s0 we must require the term
in brackets to be zero, that is,

1 + 2pμ2 = s20 p

[
η(p) + 1

η(p)
+ 2

]
. (4.3.38)

Taking into account the definition of p, this equation can be written as follows

ε2 − κ2
y =

(κx

b

)2 (
ε2 − 1 − κ2

y

) [
η(p) + 1

η(p)
+ 2

]
. (4.3.39)

We can now analyze the two regimes discussed when κx = 0 for b → 0. Let us start
with the Dirac state. In this case, ε2 − κ2

y � 1 and p � −1/2b. In the limiting case
of b → 0, p → −∞ and we can expand the term in brackets in the equation above

η(p) + 1

η(p)
+ 2 = − 1

4p2

[
1 − 5

16p2

]
+ O(p−6) , (4.3.40)

leading to
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ε2 − κ2
y � − κ2

x

ε2 − 1 − κ2
y

[
1 − 5b2

4
(
ε2 − 1 − κ2

y

)2
]

. (4.3.41)

Since ε2 − κ2
y � 1, we may approximate the denominators to −1 and finally obtain

εs = s

√(
1 − 5b2

4

)
κ2
x + κ2

y , (4.3.42)

with s = ±. Interestingly, we have obtained an elliptic Dirac cone which, upon turn-
ing off the field, becomes the original Dirac cone. This result implies an anisotropic
renormalization of the Fermi velocity. Indeed, the cone is widened in the X -direction,
while remaining unaltered in the Y -direction. We shall explore the reasoning behind
this result shortly. However, let us first look at the bulk Landau levels. In that case,
we can expand around positive integers to write

η(p) + 1

η(p)
+ 2 � c(n)

(p − n)2
, n ∈ Z

+ , (4.3.43)

where c(n) is a constant that depends on n andwhich has no closed expression. A few
examples are c(1) = 2/π, c(2) = 1/π, c(3) = 3/2π . . . Combinedwith Eq. (4.3.39)
and to lowest order in κx , this expansion leads to

εs = s

√
1 + 2nb + κ2

y ±
√
8nbc(n)

1 + 2nb
κx . (4.3.44)

As we can observe, the Landau levels split apart when κx �= 0. In order to understand
these results, it pays off to solve Eq. (4.3.18) numerically. The results are shown in
Fig. 4.3 for b = 0.5.

Let us try to understand these results. For thatmatter, it is important to bear inmind
that the magnetic field links the momentum in the X -direction, κx , and the position
of the Landau orbits, z0. Indeed, z0 = −κx�

2
B , with �B in units of d. Hence, if κx = 0

[cf. panels (a) and (b) of Fig. 4.3], then the orbit center coincides with the position
of the topological boundary. As it can be observed, the presence of a Dirac-like state
inhibits the existence of a zero Landau level. Moving away from the boundary by
increasing κx [panels (a) and (c)], the doubly degenerate levels split apart and the
Dirac state evolves towards the bulk zero Landau level. Finally, far enough from the
boundary [panels (a) and (d)], the Landau levels of the bulk system are recovered,
with a singly degenerate zero Landau level, all other levels being doubly degenerate.
It is interesting to observe that, similarly to non-relativistic quantum mechanics,
Landau levels are only dispersive in the direction parallel to the field when the bulk
system is considered. However, the presence of the interface leads to a dispersion
and, therefore, to the possibility of defining nonzero group velocities in the in-plane
direction perpendicular to the field. As shown in the inset of panel (a), the dispersion
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Fig. 4.3 Landau levels and Dirac state in a topological boundary. a Energy levels for κy = 0.
Close to the boundary, κx → 0, the Dirac state coexists with dispersive Landau levels. Far from
the boundary, the levels evolve into bulk Landau levels, indexed by LLn . The continued Dirac
state (black dashed oblique lines) limit the region where the Landau levels are dispersive. Coloured
dashed lines correspond to the approximations (4.3.42) and (4.3.44). The inset shows the widening
of the Dirac cone (blue) with respect to the field-free system (black). b–dDispersion for three values
of κx linked to panel (a). The Dirac state evolves into the zero Landau level, the other Landau levels
splitting apart and then rejoining again to recover the double degeneracy in the bulk
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Fig. 4.4 Velocity reduction
in the X -direction. The
electric field is set to zero
and the velocity is reduced as
b increases. Dots correspond
to the numerical solution of
Eq. (4.3.18), solid line is
obtained from the
approximation (4.3.42)

(blue) as compared to the Dirac cone of the field-free system (black) widens, thereby
effectively reducing the Fermi velocity in that direction. A dependence of the Fermi
velocity with the field is shown in Fig. 4.4. This reduction can be understood from
the fact that z0 is inversely proportional to b. Hence, the larger b is, the larger κx

has to be in order to achieve the same critical z0 where the influence of the interface
becomes almost negligible. Moreover, we can see that it is right when the Dirac state
saturates into the zero Landau level that the splitting of the Landau levels disappears,
becoming non-dispersive. This can be observed by continuation of the Dirac-like
spectrum above and below the limits up to which it becomes the zero Landau level
(black oblique dashed lines stemming from zero energy). These roughly determine
the limits up to which the Landau levels are nondegenerate and where the interface
mostly affects the physics. Interestingly enough, the Landau levels split apart and
rejoin 2n − 1 times, with n the Landau index. Possibly this corresponds to avoided
crossings between different Landau levels, which in turn obliges these to approach
the bulk Landau levels.

4.3.2 Robustness Under Crossed Electric and Magnetic
Fields

In this section, we shall include the effect of an electric field. In contrast to the
previous section, we have been unable to obtain approximate results. In any case, we
would expect from the previous chapter that the Fermi velocity should be reduced
isotropically by the electric field. However, one has to be really careful with this
picture. Indeed, now κx is linked to real space and, therefore, the cone will not widen
isotropically since the electric potential is space dependent. We in fact expect that the
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Fig. 4.5 Anisotropic
velocity reduction. a The
velocity in the Y -direction is
reduced by the electric field
in the Z -direction in a slower
fashion as if there was no
magnetic field. b The
velocity in the positive
X -direction is reduced by
both the magnetic and the
electric fields. c The velocity
in the negative X -direction
increases due to the electric
field. In all these figures
b = 0.5

velocity will depend not only on even powers of f , but also on odd powers. Indeed,
since κx and position along the growth direction are linked, the asymmetry induced
by the electric potential along the Z -direction will be experienced by the cone itself.
In Figs. 4.5(b) and (c), we observe this behaviour, where solid lines are nonlinear fits
to the data on all powers of f up to f 2. In panel (b), we show the velocity along the
positive direction of κx , and the opposite in panel (c) for the upper cone. As it can be
observed, the velocity becomes highly anisotropic, increasing in the latter situation
and decreasing in the former. This occurs due to the tilting of the band edges, as
we shall see in a moment. On the other hand, we do expect an isotropic widening
along the Y -direction, which is unaffected by themagnetic field. Indeed that happens,
as shown in Fig. 4.5(a). The reasoning is the same as in the previous chapter: the
Dirac cone widens in order to avoid the surface states from hybridizing with states in
the bulk. It is interesting to observe, however, that the reduction is slower than that
predicted without the magnetic field (dashed line), which has to do with the fact that
the bulk levels are affected by the magnetic field, as we know.

The explanation for the changes in velocity along the X -direction is more clearly
understood by observing the energy levels as a function of κx in Fig. 4.6 for b = 0.5
and f = 0.3. By tilting the band edges, both the Landau levels and the Dirac state tilt
in response to such tiltings. In fact, this tilting is such that the bulk Landau levels far
from the boundary disperse exactly with the usual drift velocity E × B/B2, which
in this case would be −( f/b) x̂. This can be thought of as if each Landau level
experienced a local potential, that allows to still define the Landau levels locally,
while only shifting them in energy. This is what we would expect, as discussed
earlier in the text, in the regime where �F > �B > d, such that the electric field is
smooth enough to be almost constant for each Landau level. Interestingly enough, the
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Fig. 4.6 Landau levels tilted by the electric field. In the figure, the first few Landau levels are
shown, tilted by the electric field. Far from the boundary (large κx ), the bulk Landau levels disperse
with the usual velocity −( f/b)̂x. The splitted parts of the Landau levels are contained within the
anisotropic cone defined by the dashed lines, which are a continuation of the Dirac-like states. The
inset shows the anisotropic dispersion (blue) as compared to the field-free system (black). In this
figure, b = 0.5 and f = 0.3

number of crossings within each Landau level is still given by 2n − 1 and these are
still contained inwhatwould be the continuedDirac regime, as shownbydashed lines.
Also, different Landau levels do not hybridize. This can be explained by thinking
about slowly moving away from the boundary: if hybridizations were allowed, it
would not be possible to trace the evolution of Landau levels to the doubly degenerate
Landau levels in the bulk, just like in the systemwithout electric field. The anisotropy
in the velocity along the X -direction also becomes clear now. Indeed, since the zero
Landau levels (positive and negative) also have group velocity −( f/b)x̂ when far
from the boundary, then both levels must become parallel at some point in space. As
a result, the Dirac cone will have to curve and it will do so anisotropically. It is also
interesting to point out that the Dirac point remains robust also in this case, since an
electric field pointing in the Z -direction does not break mirror symmetry.

4.4 Conclusions

In this chapter, we have discussed the effect of magnetic and electric fields in a
topological boundary. On the one hand, we have been able to observe that, in the
case of fields perpendicular to the boundary, the surface Dirac cone evolves into the
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usual relativistic Landau levels with a renormalized velocity as that given in the pre-
vious chapter. On the other hand, we have discussed that, even though time-reversal
symmetry is broken by the presence of a magnetic field, our system is mirror sym-
metric and belongs to the topological crystalline insulator class. This class is absent
in the Altland-Zirnbauer classification since such classification only considers the
fundamental time-reversal, particle-hole and chiral symmetries. However, this clas-
sification can be enriched by exploiting other symmetries, as discussed. We have
observed that, in the absence of electric field, the velocity renormalizes in the per-
pendicular direction of the field. Also, we have observed that, due to the interaction
with the boundary, Landau levels behave very differently from those in the bulk,
splitting and dispersing. In the bulk, these levels are doubly degenerate and nondis-
persive, except for the zero Landau level which is singly degenerate, as we know.
However, close to the interface, this degeneracy breaks and the levels become dis-
persive, allowing to define the aforementioned velocity. Finally, upon applying the
electric field, the velocity renormalizes as well, although in a very anisotropic fash-
ion. Indeed, in the positive X -direction it lowers, while it increases in the negative
X -direction, so that the velocity of the bulk levels approach the usual drift velocity,
−( f/b) x̂. The velocity in the Y -direction decreases the same in both directions, in
accordance to the results of the previous chapter. However, this reduction is slower
than in the absence of electric field due to the effect of the magnetic field on the
bulk levels. In short, we can conclude that the physics of a topological boundary in
electric and magnetic fields is not at all trivial. In fact, we have observed that there
are a number of different effects that can occur and differ from the bulk system, as
we have recapitulated above.
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Chapter 5
Surface States in δ-doped Topological
Boundaries

We have discussed the stability of topological surface states in Bi2Se3 and other
materials alike against external perturbations. However, when exposed to environ-
mental conditions and room temperature, the fate of these states may not be so clear.
Indeed, the presence of impurities would ruin the properties of a trivial semicon-
ductor leading to backscattering processes. However, topological surface states are
robust against backscattering and this should not be a problem. Nevertheless, such
impurities would free electrons (if such impurities are donors), thereby leading to a
leftover of positively charged ions at the surface which will, in turn, create a built-
in electric field. Such an electric field will bend the band edges and, together with
surface confinement, it will form a quantum well for states in the bulk. As a conse-
quence, a two-dimensional electron gas will form at the surface. The natural question
to ask is whether the topological surface state can coexist with the quantum confined
bulk states and, if so, how are some essential properties modified with respect to not
having a topological surface state.

There has been notable experimental progress in this direction and theoretical
modeling has been put forward to explain such experiments. On the one hand, exper-
iments [1–7] based on angle resolved photoemission spectroscopy (ARPES) discuss
that upon cleaving Bi2Se3 and Bi2Te3 in different environments (vacuum cham-
bers, water vapor, air, N2, O2 and CO atmospheres) or upon intentionally doping
with donors such as Fe and Cu, the Dirac state can actually coexist with the two-
dimensional electron gas.Moreover, the latter shows a clear Rashba spin-split disper-
sion as a consequence of the potential gradient and inversion symmetry breaking at
the vacuum-material interface. Such dispersion is predicted to have a large effect on
spintronic devices due to the large spin-orbit interactions of the materials at play. The
surface state cannot be split, however, since it is nondegenerate, as we already know.
On the other hand, theoretical calculations [1, 3–6] rely mostly on ab initio calcu-
lations that consider coupled Schrödinger-Poisson schemes and density functional
techniques, together with tight-binding modeling.

This approach of relying on impurities stuck on the cleaved surface is far from
controllable. As an alternative, we propose to evaporate a thin layer of donor atoms
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during growth, forming a δ-layer of impurities at the topological boundary (see
Refs. [8, 9]). Instead of applying numeric machinery, we shall consider the Thomas-
Fermi approximation [10, 11], which will provide with an exactly solvable model
where the essential features of the experiments are obtained.

5.1 Thomas-Fermi Approximation

First of all, it must be remarked that this section is not at all a review on the Thomas-
Fermi approximation, for which the reader is referred to Refs. [12, 13]. Instead, it
focuses on the exactly solvable problem of a δ-layer, discussed by Ioratti [14]. Never-
theless, it is interesting to briefly state themain ideas. Donor impurities free electrons,
leaving behind a positively charged background. However, being negatively charged,
such electrons will roam around this positive background, screening the Coulomb
potential of the donors. As a result, in the single-particle description, an electron will
experience ameanfield causedby the donors and its neighbouring electrons. Letρi (r)
and ρe(r) be the ionic and electronic charge distributions. As we said, electrons will
gather close to the donors, whichmeans that ρi (r) creates a one-electron confinement
potential energy U (r). On the other hand, there are electron-electron interactions
which, in the single-particle approximation, amounts to a potential VH (r) created
by ρe(r) experienced by a single electron. Such a potential is the Hartree potential.
However, such an electron-electron interaction only accounts for electrostatics. One
should include in the theory the fact that electrons are fermions and should obey
Fermi-Dirac statistics. In doing so, one can work in the Hartree-Fock approximation
or, rather, in the density functional schemewith the inclusion of exchange-correlation
terms. The Thomas-Fermi approximation neglects such a contribution and we will
therefore not include it as well.1 If we denote the total potential in the single-particle
description by V (r) = U (r) + VH (r), then (1/e)∇V (r) would be the aforemen-
tioned mean field experienced by a single electron. Denoting the total charge density
as ρ(r) = ρi (r) + ρe(r), then V (r) is a solution to the Poisson equation

∇2 V (r) = eρ(r)
ε

, (5.1.1)

where ε is the dielectric permittivity of the host material where impurities are intro-
duced into. One requirement that ρ(r) has to fulfill and which, in turn, imposes a
boundary condition on the Poisson equation, is charge neutrality. That is,

∫
d3r ρ(r) = 0 . (5.1.2)

1Notice that this makes sense in the high-density limit, where the kinetic energy dominates over
the interactions [13]. This will be the regime of our interest, as we shall see.
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In order tomake further progress, wewill consider the positively charged background
created by the ions to be what is commonly referred to as a jellium [13]. That is, it
approximates ρi (r) to an average value. In the case of a δ layer, all impurities are
concentrated within the z = 0 plane. Denoting by nS the areal density of impurities,
then we can write in the jellium model

ρi (z) = enSδ(z) . (5.1.3)

Notice that we are assuming that impurities are donors, that all impurities are ionized
and that each impurity contributes with one electron. Also, it is important to observe
that this approximation only works in the limit of a large concentration of dopants,
so that their discrete distribution is unimportant. On the other hand, the mean field
potential will create distortions in the electron density of the otherwise homogeneous
electron gas, leading to an inhomogeneous electron gas. However, Thomas and Fermi
argue that, if such distortions occur in length scales much larger than the Fermi
wavelength, then one cannot locally distinguish the inhomogeneous electron gas
from the homogeneous one [10, 11, 13]. Therefore, one would expect the system in
equilibrium to have a constant Fermi energy, EF . In order to achieve such a situation,
let us imagine a distorted landscape thatwewant to fillwithwater. In order forwater to
be flat in such a landscape, more water will be found at the valley regions with respect
to the amount encountered in the mountain regions. In our case, such a landscape
is an energy landscape that we have to fill with electrons and the flatness condition
refers to the requirement of having a constant Fermi energy. Regions where V (r) is
negative are valleys, and otherwise for mountains. Hence, the electron density n(r)
at a given position r would be obtained by filling up all states of the local Fermi gas
from V (r) up to EF . That is, if we denote byD(E) the three-dimensional density of
states, then [15]

n(r) =
∫ EF

Ec+V (r)
dE D(E) , (5.1.4)

where Ec is the conduction band edge, which is usually set to zero but we will leave
it for convenience, as we shall see. In other words, the Thomas-Fermi approximation
considers a free electron gas with a spatially dependent band edge. The power of
this method is that Eq. (5.1.4) provides an equation for n(r) in terms of V (r). This
allows to effectively decouple the Schrödinger (Dirac) andPoisson equations. Indeed,
normally one would have to follow a self-consistent approach:

(1) propose a trial V (r),
(2) solve the Schrödinger equation with such V (r),
(3) obtain n(r) from the many-body wavefunction,
(4) solve the Poisson equation for such n(r) to obtain another V ′(r),
(5) if V ′(r) converges to V (r), then the algorithm is finished and the electron density

is n(r); else, run through steps (2) − (5) with V (r) → V ′(r).

In the Thomas-Fermi approximation, we do not go through such process, but rather
provide an approximation for n(r) to obtain the potential V (r) from the Poisson
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equation and then plug it into the one-electron Hamiltonian. In any case, taking into
account that the Fermi energy of a free electron gas is given by

EF = 1

2m∗ (3π2n)2/3 , (5.1.5)

we can see that Eq. (5.1.4) will modify this result to give

EF = 1

2m∗
[
3π2n(r)

]2/3 + Ec + V (r) . (5.1.6)

Here m∗ is the effective mass. Hence, we can obtain an equation for n(r) in terms of
V (r)

n(r) = 1

3π2

{
2m∗ [EF − Ec − V (r)]

}3/2
. (5.1.7)

Since ρe(r) = −en(r), we can write the Poisson equation as follows,

∇2 V (r) = e2

ε

{
nSδ(z) − 1

3π2

{
2m∗ [EF − Ec − V (r)]

}3/2}
. (5.1.8)

In our problem, since we have considered the ionic distribution to be uniform in the
XY -plane, the electron density n(r) can only depend on z, n(z), which implies that
V (r) is only dependent on z as well and we can write (5.1.8) as follows

∂2 V (z)

∂z2
= e2

ε

{
nSδ(z) − 1

3π2

{
2m∗ [EF − Ec − V (z)]

}3/2}
. (5.1.9)

As we can see, we have indeed succeeded in obtaining an equation for V (z) that
is decoupled from n(r) and, therefore, from the Schrödinger (Dirac) equation. This
equation can be solved to give [14]

V (z) = EF − Ec − γ 2

(γ |z|/a∗ + ω)4
Ry∗ , (5.1.10)

where

γ = 2

15π
, ω =

(
γ 3

πnS(a∗)2

)1/5

, (5.1.11)

being Ry∗ and a∗ the effective Rydberg and Bohr radius, respectively, which are
given by

Ry∗ = 1

2m∗(a∗)2
, a∗ = 4πε

e2m∗ . (5.1.12)

Notice that this potential is regularized at the origin thanks to the ω term in the
denominator and decays much faster than the bare Coulomb potential, as expected
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from the previously discussed screening. As examined in detail by Ioratti [14], this
potential describes neutral structures whenever EF = Ec, so that V (z) vanishes as
|z| → ∞. A one-band approximation (Ben Daniel-Duke [16]) with this potential
admits exact solutions in terms of Mathieu’s functions [17]. However, as pointed out
also in Ref. [14], finding the energy spectrum is extremely complex in this scenario.
Therefore, a two-band approximation (Dirac) with this potential is out of question.
It is then compelling to consider an approximate form for the potential that satisfies
the same boundary conditions as (5.1.10). Since we shall be interested in introducing
the resulting potential into the Dirac equation, it is interesting to express distances
in units of d = vz/	 and energies in units of 	. Hence, we write

∂2v(ξ)

∂ξ 2
= e2

ε

{
nSd

	
δ(ξ) − 	1/2

3π2

{
2m∗ [−v(ξ)]

}3/2}
. (5.1.13)

In this equation, v = V/	 and ξ = z/d. Thus,

∂2v(ξ)

∂ξ 2
= 8πRy	NSδ(ξ) − 8

3π

1

a2	Ry
1/2
	

[−v(ξ)]3/2 . (5.1.14)

where Ry	 = Ry∗/	 is the effective Rydberg in units of 	, a	 = a∗/d is the effec-
tive Bohr radius in units of d and NS = a	nSd2 is the number of impurities in a
square plaquette of side

√
a	d. Integrating this equation around ξ = 0, we get the

following boundary condition

∂v(ξ)

∂ξ

∣∣∣∣
0+

− ∂v(ξ)

∂ξ

∣∣∣∣
0−

= 8πRy	NS , (5.1.15)

which implies that the electric field at the boundary is discontinuous. However, it is
a finite discontinuity, in contrast to the electric field due to the Coulomb potential,
leading to a regularization at the origin. The other boundary condition is obtained
integrating in all the real line. In order to do so, let us rewrite the charge neutrality
condition. Since ρ(z) = enSδ(z) − en(z), we can write

∫ ∞

−∞
dz n(z) = nS . (5.1.16)

If we take into account that

(a∗)3n(z) = 1

3π2

1

Ry3/2	

[−v(z)]3/2 , (5.1.17)

then, the charge neutrality condition is written as

∫ ∞

−∞
dξ [−v(z)]3/2 = 3π2NSa

2
	Ry

3/2
	 . (5.1.18)
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It is then clear that by integrating equation (5.1.14) in the real line we obtain

∂v(ξ)

∂ξ

∣∣∣∣∞ − ∂v(ξ)

∂ξ

∣∣∣∣−∞
= 0 , (5.1.19)

which implies that the electric field has to vanish at ±∞. Indeed, the symmetry of
the problem implies that v(ξ) is even, which means that the two terms above have to
vanish identically. A clever choice of a potential that satisfies the boundary conditions
is a one-dimensional Yukawa potential [18, 19],

vapp(ξ) = −v0 exp

(
−|ξ |

η

)
, (5.1.20)

where the two constants v0, a > 0 have to be chosen to satisfy the boundary con-
ditions and we are assuming neutral structures (see above). Notice that this indeed
corresponds to a Yukawa potential since, upon Fourier transforming, the Fourier
components are of the form ṽ(q) ∝ (q2 + η−2)−1. The discontinuity at the origin
requires that

v0 = 4πηRy	NS . (5.1.21)

On the other hand, the potential already decays at±∞ (assuming a > 0). Therefore,
in order to obtain another equation that relates v0 and η, we introduce v(ξ) into the
charge neutrality condition (5.1.18), which leads to

v
3/2
0

4η

3
= 3π2NSa

2
	Ry

3/2
	 . (5.1.22)

Combining these two equations, we finally obtain

η =
(
34πa4	
45NS

)1/5

	 3

4

(
a4	
NS

)1/5

, (5.1.23a)

v0 = (
34π6a4	N

4
S

)1/5
Ry	 	 3π (a	NS)

4/5 Ry	 . (5.1.23b)

In order to compare the approximate potential (5.1.20) with the exact poten-
tial (5.1.10), we rewrite the exact potential as follows

vexac(ξ) = −v0
c1

(c2 + c3|ξ |/η)4
, (5.1.24)

where c1 	 43652.64, c2 	 14.72 and c3 	 3.96. In Fig. 5.1 we show a comparison
of vexac(ξ) and vapp(ξ) and the agreement is noteworthy.

In the following section, we will solve the topological boundary model with the
potential vapp(ξ) in order to explore the physics of the experiments mentioned in
the introduction. However, before doing so, it is interesting to have some estimates
of v0 and η in the materials of our interest, namely, three-dimensional topological
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Fig. 5.1 Screened Coulomb potential. A comparison between the exact screened potential,
(5.1.24), and the approximate Yukawa potential, (5.1.20), shows very good agreement

insulators and crystalline topological insulators. As a representative of the former,
we will take Bi2Se3, for which [1, 20] 	 	 175 meV, vF 	 250 meV nm, εr 	 113,
and m∗ 	 0.2m0, where εr is the relative permittivity and m0 is the bare electron
mass.2 As a result, d 	 1.4 nm, a∗ 	 30 nm and Ry∗ 	 0.2 meV. On the other
hand, typical parameters of IV-VI semiconductors, such as the topological crystalline
insulator SnTe, are [21, 22] 	 	 75 meV, vF 	 338 meV nm, εr 	 45 and m∗ 	
0.05m0. Hence, d 	 4.5 nm, a∗ 	 48 nm and Ry∗ 	 0.3 meV. Typically, impurity
concentrations are in the range of 1010 cm−2 to 1012 cm−2 [19]. Hence, it makes
sense to write nS = x 1010 cm−2 = 10−4 nm−2, with x ∈ [

1, 102
]
. As a result, for

Bi2Se3 one gets
η 	 26 x−1/5 , v0 	 1.6 × 10−3x4/5 , (5.1.25)

whereas for IV-VI materials one has

η 	 11 x−1/5 , v0 	 1.2 × 10−2x4/5 . (5.1.26)

Although the values are different in both materials, we are not so much interested
in obtaining quantitative values, since these are already accurately predicted by the
more elaborate methods discussed in [1, 3–6], but rather a more qualitative picture.
Hence, we will consider a compromise hereafter and set

η 	 15x−1/5 , v0 	 10−2x4/5 . (5.1.27)

2Notice that, in truth, 	,m∗ and vF are not independent, but are related via 	 = m∗v2F , as can be
deduced from the bulk dispersion.
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5.2 Surface States in δ-doped Boundaries

In this section, we plan to solve the problem of a topological boundary with a δ-layer
right at the interface, in order to explore the physics described in the introduction.
Therefore, we are facing the following problem

[−i αz∂ξ + α⊥ · κ + βχ(ξ) + v(ξ) − ε
]
�(ξ) = 0 , (5.2.1)

where we have dropped the subscript in vapp. The function χ(ξ) will be taken to
be such that we can describe both a topological boundary, particularizing χ(ξ) =
sgn (ξ), and a system without inversion, in which case χ(ξ) = 1. Rotational sym-
metry in the XY -plane allows us to introduce cylindrical coordinates, so that we can
write

κ⊥ = κ (cos θ, sin θ, 0) , (5.2.2)

and, as a result,
α⊥ · κ⊥ = κ � , � = τx ⊗ σρ , (5.2.3)

where σρ is the radial component of σ in cylindrical coordinates. That is,

σρ = σx cos θ + σy sin θ . (5.2.4)

In order to solve this problem, it will prove useful to abandon the orbital-spin basis,{
ψ

↑
c , ψ

↓
c , ψ↑

v , ψ↓
v

}
. Rather, we shall form linear combinations that mix the orbital

degree of freedom but do not mix the spins

� = U � = 1√
2

⎛
⎜⎜⎜⎝

ψ↑
v + ψ

↑
c

ψ↓
v − ψ

↓
c

ψ↑
v − ψ

↑
c

ψ↓
v + ψ

↓
c

⎞
⎟⎟⎟⎠ . (5.2.5)

We can see that the unitary transformation U is given by

U = 1√
2

⎛
⎜⎜⎝

1 0 1 0
0 −1 0 1

−1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ . (5.2.6)

This mixture no longer allows to separate the orbital and spin degrees of freedom and
it does not make sense to differentiate between τi and σi matrices and we shall use
simply σi . However, we do see that the first and third components still correspond to
↑, whereas the second and fourth correspond to ↓. This implies that it is interesting
to write
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� =
(

φu

φl

)
, φα =

(
φ↑

α

φ↓
α

)
, α = u, l . (5.2.7)

However, careful must be taken with this notation, since it seems to imply that one
can write φ as a product state φ = (φu, φl)

T ⊗ (↑,↓)T , which is not possible since
in this basis the orbital and spin degrees of freedom are entangled. That is, it is not
possible to write φs

α = φα ⊗ s with s =↑ / ↓.
Upon transforming the Hamiltonian, we can write Eq. (5.2.1) as

[−i σz ⊗ σ0∂ξ + i κσy ⊗ σzσρ − σx ⊗ σ0χ(ξ) + v(ξ) − ε
]
�(ξ) = 0 . (5.2.8)

Taking into account Eq. (5.2.7), we obtain the following two coupled equations

[−i ∂ξ + v(ξ) − ε
]
φu(ξ) = [

χ(ξ) − κσzσρ

]
φl(ξ) (5.2.9a)[

i ∂ξ + v(ξ) − ε
]
φl(ξ) = [

χ(ξ) + κσzσρ

]
φu(ξ) . (5.2.9b)

We will solve on both sides of ξ = 0 and then apply continuity at the boundary.
From Eq. (5.2.9a) we have

φl(ξ) = 1

1 + k2
[
χ(ξ) + κσzσρ

] [−i ∂ξ + v(ξ) − ε
]
φu(ξ) , (5.2.10)

where we have taken into account that χ2(ξ) = 1. We can then introduce φl(ξ) into
Eq. (5.2.9b) to obtain

[
∂2
ξ − λ2 + i ∂ξv(ξ) + v2(ξ) − 2εv(ξ)

]
φu(ξ) = 0 , (5.2.11)

where we have taken into account that χ(ξ) is independent of ξ when ξ �= 0 and we
have defined

λ2 = 1 + κ2 − ε2 . (5.2.12)

Notice that Eq. (5.2.11) corresponds to the one we studied in Chap. 3 particularizing
v(ξ) to f ξ . The term ∂ξv(ξ) corresponds to the electric field created by v(ξ). Notice
that solving for ξ > 0, one can then obtain the solution for ξ < 0 by doing ξ → −ξ

and taking the complex conjugate. Solutions for ξ > 0 are given by [18, 19]

φu(ξ) = exp
[−λξ − i v0ηe

−ξ/η
] [

A+ϕM(ξ) + B+ϕU (ξ)
]

, (5.2.13)

where A+ and B+ are two constant vectors and ϕM(ξ), ϕU (ξ) are given in terms of
Kummer’s functions M(a, b, z) and U (a, b, z) [17]

ϕM(ξ) = M
(
λη + i εη, 1 + 2λη, i 2v0ηe

−ξ/η
)

, (5.2.14a)

ϕU (ξ) = U
(
λη + i εη, 1 + 2λη, i 2v0ηe

−ξ/η
)

. (5.2.14b)
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Since we are interested in normalizable solutions and U (a, b, z) diverges as z → 0
(i.e. ξ → ∞), then we set B+ = 0. Hence, taking into account the previous comment
regarding solutions for ξ < 0, we finally find that

φu(ξ) = �(ξ)A+h(ξ) + �(−ξ)A−h∗(−ξ) , (5.2.15)

where �(ξ) is the Heaviside step function and

h(ξ) = exp
[−λξ − i v0ηe

−ξ/η
]
ϕM(ξ) . (5.2.16)

From Eq. (5.2.10) we can find φl . However, let us first impose continuity to
relate A+ and A−. Since the unitary transformation preserves continuity, we require
�(0−) = �(0+), which implies that

A− = e−i θ A+ , (5.2.17)

with
θ = 2v0η − 2 arg [M (λη + i εη, 1 + 2λη, i 2v0η)] . (5.2.18)

Therefore, if we define A ≡ exp(−i θ/2)A+, then φu can be written as follows

φu = p(ξ)q(ξ)A , (5.2.19)

where

p(ξ) = �(ξ)h(ξ) + �(−ξ)h∗(−ξ) , (5.2.20a)

q(ξ) = �(ξ)ei θ/2 + �(−ξ)e−i θ/2 . (5.2.20b)

Even though this looks like an unnecessarily complicated way of writing �u(ξ), we
shall see why it is interesting to write it like so shortly. Combining this result with
Eq. (5.2.10), we obtain φl(ξ)

φl(ξ) = ε − i λs(ξ)

1 + κ2
p∗(ξ)q(ξ)

[
χ(ξ) + κσzσρ

]
A . (5.2.21)

Continuity at the interface implies

[
μ∗ (

1 + κσzσρ

) − μ
(
ν + κσzσρ

)]
A = 0 , (5.2.22)

where we have defined
μ = (ε + i λ)e−i θ , (5.2.23)

and ν = 1 if there is no inversion, ν = −1 if there is. It is convenient to rewrite this
equation as follows
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(
μ − μ∗) κσzσρ A = (

μ∗ − μν
)
A . (5.2.24)

Although this equation is all we need to continue, it is interesting to rearrange this
equation a little bit further. On the one hand, we can notice that

κσzσρ = −i
(
κyσx − κxσy

) = −i (σ × κ)z . (5.2.25)

On the other hand

μ∗ − μν = �[μ](1 − ν) − i�[μ](1 + ν) . (5.2.26)

Finally, we can write

�[μ] (σ × κ)z A =
{
�[μ]1 − ν

2
− i�[μ]1 + ν

2

}
A . (5.2.27)

We can see that this way of writing Eq. (5.2.22) is already showing signatures of a
Rashba effect due to the term on the left-hand side. Let us however explore the two
cases of interest separately. Consider that there is no inversion, ν = 1. In this case,
we would have

�[μ] (σ × κ)z A = −i�[μ]A . (5.2.28)

This equation can only be satisfied non-trivially if �[μ] = 0. Indeed, if �[μ] �= 0,
then this equation would imply that A is an eigenvector of (σ × κ)z with eigenvalue
−i . However, the eigenvalues of (σ × κ)z are real and, therefore, �[μ] must vanish
identically. Hence, there will be a two-fold degeneracy and we can choose A ∼
(1, 0)T and A ∼ (0, 1)T to correspond to each degenerate eigenvalue. The use of ∼
indicates that the state must still be normalized. Since the upper (lower) component
of A only contains information about spin up (down), we may say that there will be
two spin-degenerate solutions. Taking into account the definition of μ, we can write
an equation for the energies

λ cos θ − ε sin θ = 0 . (5.2.29)

We will later show the resulting energies from numerically solving this equation.
However, it is interesting to have a comparison with the inverted system, so we first
proceed to discuss that situation. In this case, ν = −1 and Eq. (5.2.27) can be written
as

�[μ] (σ × κ)z A = �[μ]A . (5.2.30)

Notice that we cannot have �[μ] = 0 since that would require �[μ] = 0 for non-
trivial solutions and, therefore, μ = 0, which can never be zero as is evident from its
definition in Eq. (5.2.23). Hence we may write the previous equation as
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(σ × κ)z A = �[μ]
�[μ] A . (5.2.31)

We have finally found what we were looking for. Indeed, we have a Rashba Hamilto-
nian and, as such, there is a degeneracy breaking, except at κ = 0. Indeed, at κ = 0
wemust have Re[μ] = 0 doubly degenerate with A ∼ (1, 0)T and A ∼ (0, 1)T . This
is compliant with the fact that time-reversal symmetry imposes Kramers’ degeneracy
at κ = 0 and the δ layer preserves time-reversal symmetry. Away from κ = 0, the
degeneracy is broken. Before we continue, let us briefly recapitulate what we learnt
in Chap.2. For that matter, consider

(σ × κ)z u = �u , (5.2.32)

where � = ε for the topological surface states, but we shall leave it as a generic �

since it is of our interest right now. Since there is rotational symmetry, let us pick
any κ to our convenience, say κ = κy ŷ. Then, the previous equation is written as

κyσxu = �u . (5.2.33)

Let us denote the two eigenvectors of σx with eigenvalues ±1 as |+〉x and |−〉x .
Then, if κy = 0, the two eigenvectors are doubly degenerate with � = 0. On the
other hand, if κy �= 0, then we have �± = ±κy with corresponding eigenvectors
|±〉x . Since these are eigenvectors of σx , it is clear that 〈σ 〉± = ± x̂. Hence, we can
see that 〈σ 〉± is perpendicular to κ and that we have opposite 〈σ 〉± for each �±, that
is, 〈σ 〉+ = −〈σ 〉−. If we recall for a moment the case of topological surface states in
absence of perturbations, where� = ε, we can see that two branches forming the two
Dirac cones, ε = ±κy , have opposite 〈σ 〉±. The discussion, although particularized
to κ = κy ŷ is generic to any other direction due to rotational symmetry. This is then
what leads to the upper and lower cone having opposite helicities when all directions
of κ are considered.

With this in mind, let us apply it to the case where � = �[μ]/�[μ]. Taking into
account the previous comments about rotational symmetry, we shall denote by κ the
component of κ in a generic direction. That is, κ is not to be confused with |κ |, since
κ can also be negative. Hence, following the same procedure as before, we find

�[μ]
�[μ] = ±κ , (5.2.34)

where the ± signs are associated to 〈σ 〉±. The latter, as explained above, is perpen-
dicular to κ and 〈σ 〉+ = −〈σ 〉−. Taking into account the definition of μ, we can
write this equation as follows

tan θ = ±κλ − ε

λ ± εκ
. (5.2.35)
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Since θ and λ depend only on κ2, one can see that the solutions for the negative sign
can be obtained from those of the positive sign by simply changing κ → −κ .

Now that we have equations for the energies in both the inverted and non-inverted
regimes [cf. Eqs. (5.2.29) and (5.2.35)], we can proceed to solve them numerically.
The results are shown in Fig. 5.2, where blue colours correspond to the non-inverted
situation, orange and green to the inverted one. In panel (a), we show the evolution
of the state at κ = 0 as the density of donors is increased. The dimensionless electric
field close to the boundary is in the order of v0/η ∼ 10−3x , which implies that the
field is directly proportional to the number of donors per unit area. Aswe can observe,
as the number of donors increases, so does the electric field and, therefore, the number
of continuum levels sucked in by the Yukawa potential increases. The Dirac point
also moves downwards in energy and does so almost exactly by the amount −v0
(dashed line). That is, the Dirac point moves in such a way so as to remain right at
the middle of the effective gap at the surface. Very similar results where found in
Ref. [23] from a much more elaborate tight-binding model of Bi2Se3.

On the other hand, in panels (b) and (c) of Fig. 5.2, we can observe the dispersion
when nS = 5 × 1011 cm−2.We also depict the probability densities of states at κ = 0,
together with the profile of v(ξ). There are a number of features to observe in these
panels. First, as we pointed out before, the Dirac point is robust, as expected from
the topological arguments given above. On the other hand, the electric field leads
to a reduction in the Fermi velocity, although it is almost imperceptible since the
fields are truly small. In Fig. 5.3a the velocity reduction is shown, together with a
quadratic fit (solid line) of the form 1 − ζ x2, with ζ a fitting coefficient. This is
very much like the behaviour we predicted in Chap.3 for the uniform electric field,
since the field is proportional to x . Second, extended massive Dirac fermions of the
bulk become localized by the Yukawa potential. In panel (c), we can also observe
a Rashba splitting in the inverted case, as expected from our previous discussion.
Green lines correspond to the solutions of Eq. (5.2.35) with positive sign, thereby
corresponding to 〈σ 〉+, whereas orange coloured branches correspond to 〈σ 〉−. It
is important to make one important remark: the appearance of this Rashba splitting
needs two main ingredients. On the one hand, it requires the electric field derived
from the Yukawa potential. This is clearly observed in Fig. 5.3b, where we show the
splitting between the first Rashba split subbands, 	κ , as doping increases. As it can
be observed from a linear fit (solid line), the splitting is directly proportional to x
and, therefore, it is directly proportional to the field. This is what we would expect
from a Rashba interaction [24]. The second ingredient that is necessary is structural
inversion asymmetry [24]. This is the reason why only the topological boundary
displays Rashba splitting, even though both scenarios have a built-in electric field.
That is, the Rashba splitting observed here is not topological in origin and would
appear also if we considered a non-inverted system where the gaps on both sides of
the delta layer are different but not necessarily of opposite sign. Mathematically, this
can be observed in Eq. (5.2.27). It is only when ν = 1 that we are led to a situation
where only doubly degenerate solutions exist. However, if we considered ν �= 1,
then we would break the degeneracy. In fact, the inverted case with ν = −1 is only
a particular case that breaks the degeneracy. What is topological is the fact that only
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Fig. 5.2 δ-layer in non-inverted and inverted boundaries. a Evolution of the energy levels at
κ = 0 as the number of donors per unit area increases. Black dashed line corresponds to −v0
given in Eq. (5.1.27). Panels b–c display the dispersion and probability densities at κ = 0 when
nS = 5 × 1011 cm−2 with b corresponding to the non-inverted and c to the inverted regimes.
Coloured dashed lines indicate the energies at κ = 0, black dashed lines indicate the potential
profile. In panel c there is Rashba splitting of the massive Dirac fermions in the two-dimensional
electron gas, while the Dirac cone remains robust. Green lines in the dispersion correspond to 〈σ 〉+
and orange lines to 〈σ 〉−

when sgn (ν) = −1 do we find the topological surface states. Finally, we conclude
this section by looking at the probability densities in the non-inverted [cf. panel (b)]
and inverted systems [cf. panel (c)]. As we can see, in the absence of band inversion
the probability densities resemble those of a quantum well, like the bell-shaped
density profile of the lowest state in the well. However, if there is band inversion, the
peaked Dirac state prevents the first state of the quantum well to be bell-shaped to
ensure orthogonality. Moreover, the density profiles show a non-smooth behaviour
right at the boundary as a consequence of band inversion. It is also interesting to
observe that the subbands in the inverted regime enter the well in close pairs. This
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Fig. 5.3 Velocity reduction and Rashba splitting. a The built-in field leads to a slight velocity
reduction (the fields are truly small) and, as occurred in previous chapters, this reduction is propor-
tional to the squared field. Solid line is a quadratic fit of the form 1 − ζ x2, with ζ a fitting coefficient.
b The Rashba splitting, 	κ , is directly proportional to the density of donors, which implies that it
is directly proportional to the built-in field. Solid line corresponds to a linear fit to the data

behaviour is truly distinct from the trivial case. Indeed, in the trivial scenario the
levels come closer together as a result of the potential widening as we move up in
energy.

5.3 Optical Transitions

As an application of the results found in this chapter, we proceed to take advantage
of the marked difference between the states in the trivial and topological settings. For
that matter, we shall study optical transitions from the first state in the quantum well
to the second state. Of course, the Thomas-Fermi approximation is inconsistent with
the possibility of observing such transitions, for it assumes that all levels are filled
up to the conduction band edge at infinity. In any case, it is interesting to consider
how would the oscillator strengths change from one situation to the other. These
quantities are key to studying optical absorption [25], since the latter is proportional
to the former. Oscillator strengths are independent of the populations and only care
about the difference in energies and the shapes of the eigenstates. We expect the
states not to change very much if a more complicated model is used instead, so
studying the oscillator strengths is interesting in any case. Let |i〉 be the initial state
with energy Ei and | j〉 the final state with energy E j . Then, the oscillator strength
is defined as [25]

f ji = 2m∗(E j − Ei )|〈 j |z|i〉|2 . (5.3.1)

The first factor of 2 is included to account for spin degeneracy. However, as we
know, Rashba splitting lifts such degeneracy except at the time-reversal invariant
momenta. In this case, at κ = 0. Hence, such a factor of 2 should be removed when
studying transitions frommomenta different from κ = 0 if structure inversion asym-
metry occurs. We will nevertheless focus exclusively on transitions from the first
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to the second state of the well when κ = 0, so we shall keep that factor of 2. In
Eq. (5.3.1) there is also implicit that only vertical transitions are allowed, since the
matrix element arises from considering electric fields normal to the quantum well,
which do not mix different momenta. If we take into account that m∗v2

F = 	, the
previous equation can be written in terms of the dimensionless quantities used in the
text as follows

f ji = 2
(
ε j − εi

) |〈 j |ξ |i〉|2 . (5.3.2)

In our case, a simple expression for the oscillator strength can be obtained after
somemanipulations. Let us denote by λi = λ(εi ) and θi = θ(εi ), these two quantities
being defined inEqs. (5.2.12) and (5.2.18), respectively. The normalization constants,
Ni = N (εi ) are given by

Ni = 1

2

[∫ ∞

0
dξ |hi (ξ)|2

]−1/2

, (5.3.3)

where hi (ξ) = h(ξ, εi ) is given in Eq. (5.2.16). If we introduce

I ji =
∫ ∞

0
dξ ξ h∗

j (ξ)hi (ξ) , (5.3.4)

then the oscillator strength is simply written as follows

f ji = 8
(
ε j − εi

) {�[G ji ]
}2

, (5.3.5)

where
G ji = N j Ni I ji

[
e−i θ j i − ei θ j i

(
ε j − i λ j

)
(εi + i λi )

]
, (5.3.6)

with θ j i = (θ j − θi )/2. Using this result, the oscillator strength related to transitions
from the first level of the well potential to the second level, f21, as a function of
the density of donors is shown in Fig. 5.4. The behaviour of the oscillator strengths
is notably different in both cases, which is understandable taking into account the
probability density profiles that we discussed previously. As we can see, f21 saturates
quite rapidly in the non-inverted situation (blue) and is close to one. The oscillator
strengths follow a sum rule [25]

∑
j, j �=i

f j i = 1 . (5.3.7)

Then, it is clear that the transition 1 → 2 will be much stronger than all other transi-
tions from 1 to other levels. In contrast, f21 increases steadily with the doping density
in the topological case.

Evidently, as we saw in the third chapter, including a field normal to the inter-
face leads to nontrivial behaviours, which are not accounted for in this simplified
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Fig. 5.4 Oscillator
strength of intraband
transitions from the first to
the second level in the
Yukawa potential. Blue and
orange colours correspond to
the non-inverted and inverted
scenarios, respectively

description of optical transitions. However, it is interesting to observe the striking
difference between the two scenarios, suggesting that optical studies could be con-
ducted in order to unravel the properties of topological insulators.

5.4 Conclusions

In this chapter, we have considered the effect of placing a dense δ layer of donor
impurities at a topological boundary. This perturbation does not break time-reversal
symmetry, implying the robustness of the Dirac cone. Notice that this is also applica-
ble to topological crystalline insulators, since this perturbation does not break mirror
symmetry about those planes perpendicular to the XY -plane. Microscopically, how-
ever, mirror symmetry would indeed be broken, although in the high-density limit the
possible gap opening at the Dirac point should be negligible. On the other hand, we
have observed how the screened Coulomb potential as obtained from Thomas-Fermi
localizes states of the continuum forming subbands. If structural inversion asymme-
try occurs, Rashba splitting takes place. Interestingly enough, the Dirac state coexists
with the Rashba-split two-dimensional electron gas. A schematic depiction is shown
(Fig. 5.5).

Finally, the oscillator strength gets reshaped dramatically upon having band inver-
sion with respect to the trivial case. Although the point where f21 saturates in the
trivial case an the growth rate in the topological case depend on the specific param-
eters chosen, the behaviour is still very different in any case. Indeed, in Ref. [26],
v0 	 2 × 10−2x4/5 and η 	 5.5x−1/5 and the results are different quantitatively, but
still a similar behaviour was observed.
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Fig. 5.5 Coexistence of
topological surface state
and Rashba
two-dimensional electron
gas. Arrows show the
spin-momentum locking of
this system, the direction of
which indicates the helicity
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Chapter 6
Floquet Engineering of Dirac Cones

In previous chapters, we have explored the physics of topological surface states under
external perturbations and doping. However, during the last decades it has become
apparent that the use of periodic drivings can lead to a plethora of new possibilities.
Indeed, the potential of such techniques has permeated not only the area of con-
densed matter physics and cold atomic systems [see Ref. [1] for a review], but also
acoustics [2] and photonics [3]. In this scenario, one invokes Floquet’s theory [4–
7]. To the most basic level, Floquet’s theory is nothing but Bloch’s theory in the
time-domain.1 A central concept of the theory is that of quasienergies [6]. Although
these may sound exotic, one may recall the quasimomentum in a periodic lattice.
Crudely speaking, quasimomentum is equivalent to ordinary momentum in that it is
conserved, the difference being that the conservation of the former is only modulo
a reciprocal lattice vector. In order to have conservation of total momentum in colli-
sions, the excess momentum is absorbed by the lattice itself. The idea is basically the
same with quasienergies and ordinary energy. In a system that is continuously trans-
lationally invariant in time, energy is conserved. When such invariance only occurs
discretely, then energy is not conserved anymore, but quasienergies are, modulo the
driving frequency. In this case, the excess energy is absorbed by the environment in
terms of emitted or absorbed photons, thereby leading to conservation of the total
energy. Hence, one can introduce Floquet-Brillouin zones and many concepts that
arise in time-independent systems are directly transferred to these setups. In partic-
ular, concepts of topology discussed in previous chapters also appear. Interestingly,
however, periodic drivings allow for extended tunability since the frequency, intensity
and polarization of the driving fields can be easily manipulated by external knobs. In
contrast, relying on the natural properties of a solid state system leads to limitations
that are hard to overcome otherwise.

In this chapter, far from exploring all the possibilities allowed by Floquet’s theory,
whichwould require awhole newThesis, we shall restrict to studying the quasienergy

1To be fair, Bloch’s theory is nothing but Floquet’s theory in the space of space-periodic systems,
for Floquet developed his theory in 1883 [4], much earlier than Felix Bloch was even born.
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spectrum of a topological boundary when a periodic driving is applied. The study
of topology in Floquet systems has been considered extensively throughout the past
years, see e.g. [8–14]. In particular, manipulating Dirac cones in the quasienergy
spectrum has received both theoretical [10, 11, 13, 15, 16] and experimental [17]
attention in surfaces of topological insulators and graphene. The results show that
in-plane circularly polarized light leads to gap openings in the otherwise gapless spec-
trum. In graphene, it has also been predicted that linear in-plane fields would lead to
anisotropic Dirac cones [15]. In our contribution, we shall consider other configura-
tions additional to the ones discussed in the literature. Moreover, the aforementioned
references focus on the effective Hamiltonian for the surface states, performing per-
turbation theory in the high-frequency limit [10]. In our case, we will also consider
such a limit, although using the full Hamiltonian of the topological boundary. This
allows for the introduction of out-of-plane fields that are not accounted for in the
previously mentioned works. Although we shall not discuss it in detail, the usage
of the full Hamiltonian allows us to observe the interplay between surface and bulk
states, which are not accessible to the effective surface Hamiltonian [18]. Finally, we
would like to remark that the author has recently shown that analytical expressions
obtained by means of high-frequency expansions up to second order perfectly match
the numerical calculations, providing further support to the results presented herein.
Moreover, the analytical expressions provide exact dependences on the driving field
parameters. However, since these results were derived after presenting this thesis,
they shall not be discussed in this chapter and the reader is encouraged to consult
Ref. [19].

6.1 Periodically-Driven Topological Boundary

In this section, we shall explore Floquet’s theory using the Hamiltonian for a
symmetric-centered topological boundary. In order to include the driving field, as
we did with the magnetic field in the fourth chapter, we perform the substitution

p → p + A(t) , (6.1.1)

where we consider A(t) = A(t + T ) independent of position, with T the driving
period. In other words, the sample’s size is sufficiently small so as to consider spatial
variations in the driving field to be negligible [16]. Hence, the resulting electric field
derived from this potential is simply F(t) = −∂t A(t). It is not particularly diffi-
cult to show that a unitary transformation links the description upon performing the
substitution (6.1.1) to the one considering a potential V (r, t) = r · F(t). Neverthe-
less, solving the problem turns out to be simpler by performing the aforementioned
substitution. Hence, the problem we are facing is the following

i ∂t�(r, t) = [
α · ( p + A(t)) + βsgn (z)

]
�(r, t) . (6.1.2)



6.1 Periodically-Driven Topological Boundary 163

Taking into account the periodicity of A(t) along with translational symmetry in the
XY plane, we ask for solutions of the form

�(r, t) = e−i εt ei κ ·r⊥�(z, t) , �(z, t) = �(z, t + T ) . (6.1.3)

Here ε is the quasienergy that we talked about in the introduction of this chapter.
Notice the similarity with the quasimomentum in a lattice. Indeed, from (6.1.3) it is
clear that ε is periodic and can be restricted to be within the first Floquet-Brillouin
zone ε ∈ [−ω/2, ω/2). If we Fourier expand �(z, t) and A(t), then Eq. (6.1.2) can
be written as

εϕl(ξ) = [
αz pzα⊥ · κ + βsgn (z) − lω

]
ϕl(z) +

∑

m

[α · Am]ϕl−m(z) , (6.1.4)

where ϕl(z) and Am are the Fourier components of �(z, t) and A(t), respectively.
The index l runs over the integers. As it is, the equation for the Fourier compo-
nents is generic to any time-dependent driving. The first thing that is already clear
is that if we set Am = 0, we obtain an infinite series of identical decoupled time-
independent topological boundary Hamiltonians with energies ε + lω. Therefore,
we would expect to see replicas of the spectrum of the topological boundary. If
we considered the first Floquet-Brillouin zone, we would see evenly spaced Dirac
cones where the spacing between Dirac points is ω. This result is identical to that
of artificially folding the parabolic band structure of a free electron gas into a first
Brillouin zone. On the other hand, whenever Am �= 0, then different Fourier com-
ponents become coupled depending on the form of the perturbation. The result that
we would expect would be avoided crossings right at the Floquet-Brillouin zone
edges [20]. Once again, if we considered the free electron gas picture, when we turn
on the crystal potential, at the edges of the Brillouin zone gaps are likely to appear.
In our case, it is clear from the form of the perturbation that this must occur since one
cannot choose ϕl(z) such that the Fourier components become decoupled. In order
to make further progress, let us particularize the driving to be

A(t) = aeiωt + a∗e−iωt , a j = f j
2ω

eiθ j , (6.1.5)

where f j is the field amplitude along the j-th direction and θ j is a phase. By choosing
different amplitudes and phases one can explore different polarizations and field
orientations. This form of the vector potential is particularly appealing since it is
such that only nearest-neighbouring Fourier components get mixed by it. Indeed, in
this case only A1 and A−1 are nonzero and Eq. (6.1.4) can be written as

εϕl(z) = H0
l ϕl(z) + Jϕl+1(z) + J †ϕl−1(z) , (6.1.6)

with J = α · a and
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H0
l = αz pz + α⊥ · κ + βsgn (z) − lω . (6.1.7)

As it can be observed, if there was no boundary, then Eq. (6.1.6) would correspond
to a nearest-neighbour tight-binding model in a one-dimensional chain with four
degrees of freedom per site. It is then clear that the Floquet formalism is introducing
an extra synthetic dimension to the driving-free problem. From this equation, one
can already make predictions on the robustness of the Dirac point. Indeed, let us
consider a linearly polarized field. In such a case, it is possible to choose the phases
to be zero, resulting in real-valued a’s and, therefore, Hermitian hopping matrices J .
Alternatively, one can write J = J̃ exp(i θ) with J̃ being Hermitian and remove the
phase factors via a gauge transformation of the formϕl → exp [−i (l − 1)θ ]ϕl . This
in turn implies that time-reversal symmetry is not broken in this situation and we
expect the Dirac point to be robust. On the other hand, if the polarization is circular,
these manipulations can no longer be done and, as a result, J is non-Hermitian in
general, thereby breaking time-reversal symmetry. However, if the field is out-of-
plane, then the projection onto the topological boundary is linearly polarized. Since
the Dirac state lives at the surface, it is expected that such a situation would preserve
the Dirac point as well.

Equation (6.1.6) has to be solved numerically. The details of the numerical imple-
mentation are left as an appendix. The idea is to place the system in a box of size
L > 1 in the Z -direction and discretize the real space variable in a one-dimensional
lattice. Instead of sampling all four components of the bispinor in every lattice site,
we follow Ref. [21] by sampling the components of the bispinor in an alternating
fashion. In particular, we will sample the first and last components of the bispinor
on the even sites and the middle components on the odd sites. At the same time, one
imposes a cutoff to the sideband or Fourier index. In dealing with this problem, one
has to take great care to separate the bulk to the surface physics. Indeed, since we
have placed the system in a box, the bands in the continuum will form subbands and
these will enter the first Floquet-Brillouin zone upon band folding. In order to see
whether the Dirac state remains localized at the boundary despite the application of
the external field, one can optimize the size of the box and the discretization step.
Indeed, if the box increases in size or the discretization step decreases in size, there
will be more bulk quasienergies within the first Floquet-Brillouin zone. However,
if upon doing so the Dirac state remains unaltered, then we can conclude that it is
localized at the boundary and it is well separated from the bulk states so that there is
no hybridization. We shall also consider the high-frequency limit. This limit implies
that we choose the frequencies to be larger than all other energy scales in the problem,
in this case the energy gap. That is, we assume the dynamics of the system to occur
in time scales much larger than the driving period, so that we obtain a quasi-static
behaviour. Hence, we set ω > 2. Additional to this requirement, we ask for the driv-
ing amplitudes to be small, in such a way that f/ω < 1 so that the perturbations a j

are also small. These requirements are such that one can observe similar physics as
with the driving-free system, such as the reshaping of the Dirac cones, with added
value from the different polarizations. In what follows, we will consider in-plane and
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out-of-plane fields, as well as linear and circular polarizations. The results will be
discussed within each subsection.

6.1.1 In-Plane Fields

In this subsection, we consider in-plane fields ( fz = 0) with linear and circular polar-
izations. As said previously, in order to assess the localization of the surface state, we
will solve for L = 3 and two different lattice constants of 0.300 and 0.375. Addition-
ally, we set a cutoff to the sideband index at l = 3. In both cases, we fix ω = 4. In the
linearly polarized case, we set fx = 2 and fy = 0, and in the circularly polarized case
we set fx = fy = 2 and θx = π/2, all other phases equal to zero. The quasienergy
spectrum is shown in Fig. 6.1.

There are a number of features to observe in this figure. First, upon decreasing the
discretization step, the number of bulk subbands increases, as expected. However,
the Dirac state is unchanged upon changing the step and the dispersions overlap.
Next, we can observe that there are avoided crossings at the edges of the Floquet-
Brillouin zone, except for the Dirac state in Fig. 6.1 (a). Following Ref. [20], this
can be understood from the fact that the perturbation fxαx commutes with α⊥ · κ

when κy = 0, whereas it does not when κx = 0. Hence, the perturbation does not
couple the Dirac sidebands in the first case. Another observation that can be made
is the fact that, due to the need to perform avoided crossings at the edges of the
Floquet-Brillouin zone, the slope of the Dirac spectrum is reduced for low momenta,
thereby revealing the same physics as in previous chapters. Hence, the dispersion
is an anisotropic cone, widening in the direction perpendicular to the perturbation,
very much like in the case of an in-plane magnetic field [cf. Chap. 4]. This result
is similar to what has been found for graphene in Ref. [15]. In our case, however,
we are proving that this also occurs in topological insulators, despite the presence of
bulk states. Hence, our results confirm that one may still utilize an effective surface
Hamiltonian tomodel the physics discussed here, since the bulk states and the surface
states remain uncoupled. In order to keep the same notation as in previous chapters,
we shall denote the slope of the cone by vF ( f ) and will be called the Fermi velocity
hereafter. In the right-hand panel of Fig. 6.2, a schematic depiction of the anisotropic
widening is shown. Additionally, the reduction of the Fermi velocity as a function
of f/ω for three values of ω is also shown in that figure, together with a quadratic
fit of the form 1 − ζ( f/ω)2, with ζ a fitting coefficient. As it can be observed, the
fit is noteworthy and shows that the behaviour explored herein is very similar to that
discussed in the static case. Here we have set L = 5, a = 0.5 and Nω = 3 and the
Fermi velocity is obtained from fitting the linear dispersion up to κ = 0.5.

In the case of circular polarization [cf. Fig. 6.1c, d],we can see that the dispersion is
isotropic and an energygap, 2δ, opens up at theDirac point, as expected frombreaking
time-reversal symmetry.As it can be observed, there are no avoided crossingswith the
states in the bulk, meaning that these remain essentially uncoupled from the massive
surface states. Once again, our results confirm the validity of using an effective
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Fig. 6.1 Quasienergy spectrum for in-plane fields. In all cases, ω = 4 and f = 2. Black lines
indicate the Dirac cone replicas in the absence of perturbation (there would be bulk states as
well). Blue-violet lines and dark-salmon lines correspond to lattice spacings of 0.375 and 0.300,
respectively. In all figures, avoided crossings occur at the Floquet-Brillouin zone edges for the bulk
states. Panels a and b correspond to linear polarization with the field along the X direction. The
Dirac cone along the direction of the field is unaltered, overlapping with the unperturbed Dirac
state, while it widens for low momenta in the perpendicular direction. Panels c and d correspond to
circular polarization. A gap opens up at the Dirac point and a widened massive dispersion occurs,
as observed in the inset

surface Hamiltonian to obtain results about the physics of the irradiated surface. It
is interesting to observe that, additionally to the gap opening, there is a reduction in
the slope as well. In fact, both quantities change with f/ω in a quadratic fashion, as
shown in Fig. 6.4. The system size, spacing and sideband index cutoff are the same as
before, the gap and the Fermi velocity being obtained from fitting the dispersion to a
massiveDirac spectrumup to κ = 0.5. Finally, beforewemove on to the next section,
it is interesting to observe how the energy gap changes as a function of polarization.
Indeed, if we denote by δxy the dephasing between the X and Y components of the
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Fig. 6.2 Anisotropic Dirac cones. The field is contained within the topological boundary and it
is linearly polarized. As observed in the schematic depiction, the original cone (red) widens in the
direction perpendicular to the field to form an anisotropic cone (blue). The panel on the left shows
the velocity reduction for different driving frequencies, together with quadratic fits (solid lines) of
the form 1 − ζ( f/ω)2, with ζ a fitting parameter

Fig. 6.3 Gap as a function of polarization. When the dephasing is an integer multiple of π ,
time-reversal symmetry is unbroken and the gap closes up. However, any dephasing within the
region (0, π) leads to gap openings, which reach a maximum at δxy = π/2 (circular polarization)
and increase upon increasing the field strength. In this figure ω = 5
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Fig. 6.4 Massive Dirac dispersion. The field is contained within the topological boundary and
it is circularly polarized. As observed in the schematic depiction, the original cone (red) widens
isotropically and a gap opens up at the Dirac point (blue). Panels a and b show the velocity reduction
and gap increase for different driving frequencies, together with quadratic fits (solid lines) of the
form 1 − ζ( f/ω)2, and λ( f/ω)2, respectively, with ζ and λ being fitting parameters

field, we expect that even the slightest deviation from zero in δxy should open up a
gap, reaching a maximum at δxy = π/2. This is indeed what happens, as depicted in
Fig. 6.3.

6.1.2 Out-of-Plane Fields

In this section, we consider the same settings, i.e. system size, lattice parameters
and frequency, as in the previous one, except that the fields will be out-of-plane.
In all cases, fx = 0. We set fy = 0 and fz = 2 for the linearly polarized case and
fy = fz = 2 and θx = π/2 for the circularly polarized case, all other phases equal
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Fig. 6.5 Quasienergy spectrum for out-of-plane fields. In all cases, ω = 4 and f = 2. Black
lines indicate the Dirac cone replicas in the absence of perturbation (there would be bulk states as
well). Blue-violet lines and dark-salmon lines correspond to lattice spacings of 0.375 and 0.300,
respectively. In all figures, avoided crossings occur at the Floquet-Brillouin zone edges for the bulk
states. Panels a and b correspond to linear polarizationwith the field along the Z direction. TheDirac
cone along the direction of the field widens for low momenta isotropically along both directions,
although there is hybridization with states of larger momenta. Panels c and d correspond to circular
polarization with the field contained in the Y Z plane. In this case, the dispersion is anisotropic, the
Dirac cone widening more along the X direction

to zero. In this case, we expect the Dirac point to be robust since there is no time-
reversal symmetry breaking. However, as shown in Fig. 6.5, there is hybridization
with states in the bulk for large momenta. This can be understood by appealing to
the static case, where hybridization is more likely to occur closer to the band edges
due to proximity to the bulk states, as we discussed in Chap.3. As the number of
bulk states increases due to decreasing of the lattice spacing, the avoided crossings
with the Dirac state occur closer to the Dirac point. One may argue that, however,
it is not possible to reduce the lattice spacing as much as one would like. Indeed,
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Fig. 6.6 Isotropic Dirac cones. The field is perpendicular to the topological boundary and it is
linearly polarized. As observed in the schematic depiction, the original cone (red) widens isotrop-
ically (blue). The panel on the left shows the velocity reduction for different driving frequencies,
together with quadratic fits (solid lines) of the form 1 − ζ( f/ω)2, with ζ a fitting parameter

the envelope functions vary along distances of a few nanometers, which imply that
the microscopic details can be ignored and a continuum description can instead be
used for long wavelengths (low momenta). Therefore, in order to continue with the
continuum description and avoid to consider the microscopic details, the spacing
cannot be too small. For instance, spacings 0.300 and 0.375 correspond to small
spacings yet sufficiently large to ignore the microscopic details. Therefore, one may
argue that the Dirac cone remains unaltered for low momenta, except for a widening
of the slope. This is in fact consistent with the observation that, for low momenta,
the Dirac dispersion for 0.300 and 0.375 overlap, as can be observed in Fig. 6.5.

With regard to the features at lowmomenta, we observe that there is a reduction in
the slope of the cone in both cases, similarly to what was obtained before. When the
field is linearly polarized and points along the Z -direction, the reduction is isotropic,
very much like in the static case. This is shown in Fig. 6.6, where the system size,
spacing and sideband index cutoff are the same as in the previous section and the
Fermi velocity is obtained froma linear fit up to κ = 0.5.Once again, a quadratic fit of
the form 1 − ζ( f/ω)2, with ζ a fitting parameter, provides perfect agreementwith the
data. Similarly, when the field is circularly polarized and contained in the Y Z -plane,
the cone widens anisotropically, with increased widening along the X -direction.
This can be understood by decomposing the circularly polarized field into a linearly
polarized component along the Y -direction and another along the Z -direction. As
we know, the first component will lead to a reduction only along the X -direction. In
contrast, the second component will do so isotropically in both directions. The net
result is an enhanced reduction along the X -direction with respect to that along the
Y -direction. This is shown in Fig. 6.7, together with fits of the form 1 − ζ( f/ω)2,
with ζ a fitting parameter. The Fermi velocity is obtained from a linear fit of the
dispersion up to κ = 0.5.
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Fig. 6.7 Anisotropic Dirac cones. The field is contained in the Y Z plane and it is circularly
polarized. As observed in the schematic depiction, the original cone (red) widens anisotropically
(blue), with an increased reduction along the X direction. Panels a and b show the reduction of
the Fermi velocity along the X and Y direction, showing the anisotropy. Solid lines correspond to
quadratic fits of the form 1 − ζ( f/ω)2, with ζ a fitting parameter

6.2 Irradiated Graphene

Although graphene has been studied extensively in the literature [8, 10, 13, 15,
16, 20, 22], we believe it to be useful to discuss briefly some of its properties
under driving. Indeed, we expect to observe a similar behaviour as in the topological
boundary. Namely, a reduction of the Fermi velocity both in linear and circular
polarizations, together with a gap opening at the Dirac point. In the bulk, we may
consider the two valleys to be uncoupled so we may focus on a single valley and
write the Weyl equation for irradiated graphene as

i ∂t�(t) = σ⊥ · [κ + A(t)]�(t) , (6.2.1)
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where t is in units of 1/ω, κ and A are the momentum and the vector potential in
units of ω/vF , with ω the driving frequency and vF the Fermi velocity. We can write
the vector potential as

A j = f j cos(t + θ j ) , j = x, y . (6.2.2)

Here, f j are related to the quantities with dimensions as f j = eFjvF/ω2, with e > 0
the elementary charge and Fj the field amplitude along the j-th direction. Hence, if
we write

V = σ⊥ · a , a j = f j
2

ei θ j , (6.2.3)

then
i ∂t�(t) = [

σ⊥ · κ + ei t V + e−i t V †
]
�(t) . (6.2.4)

There are some features that can already be observed in this equation. On the one
hand, let us consider linear polarization, so that we can choose V = V †. Let us also
assume that the field points along the X direction. In that case, V commutes with the
Hamiltonian if κy = 0 and it does not otherwise. According to the results presented in
the previous section, this suggests that the dispersion will remain unaltered along the
X direction. In particular, the Dirac point should be robust against this perturbation.
Indeed, time-reversal symmetry is not broken by a linear polarization, as we already
know, so the Dirac point is protected. This can be seen mathematically by solving
for κ = 0. In that case, Eq. (6.2.4) can be written as

i ∂t�(t) = f cos(t)σx�(t) . (6.2.5)

If we write �(t) in a basis of eigenstates of σx , which we shall denote by |±〉x , with
coefficients ϕ±(t), where the± stands for the sign of the eigenvalue±1, we can then
write

i ∂tϕ±(t) = ± f cos(t)ϕ±(t) , (6.2.6)

which is trivially solved and we finally obtain

�(t) = c+ exp [−i f sin (t)] |+〉x + c− exp [i f sin (t)] |−〉x , (6.2.7)

where c± are integration constants.We see that�(t + 2π) = �(t). However, accord-
ing to Floquet’s theorem, �(t + 2π) = exp(−i 2π ε)�(t). Combining both condi-
tions we obtain that ε = l, with l an integer. Here ε is the quasienergy in units of ω.
As we can see, there is no gap opening, as predicted, regardless of the intensity of
the field.

In the case of circularly polarized light, we can write Eq. (6.2.4) as follows

i ∂t�(t) = f
[
ei tσ+ + e−i tσ−

]
�(t) , (6.2.8)
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with σ± = (σx ± i σy)/2. In order to solve this equation, we perform a rotation of
angle t about the Z axis with

Rz(t) = exp
[
i σz(t/2)

]
. (6.2.9)

Hence, if we introduce
�(t) = Rz(t)�(t) , (6.2.10)

into Eq. (6.2.8), we obtain

i ∂t�(t) = (σz/2 + f σx )�(t) . (6.2.11)

This equation can be solved using the matrix exponential

�(t) = exp
[−i (σz/2 + f σx ) t

]
ϕ , (6.2.12)

withϕ a constant vector.We now need to impose the conditions of Floquet’s theorem.
However, careful must be taken since a rotation of 2π carries a minus sign, that is,
Rz(θ + 2π) = −Rz(θ). This in turn implies that

�(t + 2π) = −e−i 2πε �(t) . (6.2.13)

If we take into account that the eigenvalues of the matrix inside the exponential are
given by ±√

1 + 4 f 2/2, we immediately find

ε±
n = ±1

2

√
1 + 4 f 2 + n± + 1

2
, n± ∈ Z . (6.2.14)

If f 2 < 3/4, the two branches within the first Floquet-Brillouin zone will be

ε± = ±1

2

(√
1 + 4 f 2 − 1

)
. (6.2.15)

Hence, there is a quasienergy gap

2δ =
√
1 + (2 f )2 − 1 . (6.2.16)

Interestingly enough, for low enough fields� ∝ f 2, just like in the previous section.
Wewill show later that this is indeed the case when numerically solving the problem.
Notice that the gap increases with the field until the two branches hit the edges of
the Floquet-Brillouin zone when f 2 = 3/4. Upon increasing the field further and in
order to remain within the Floquet-Brillouin zone, the two branches move towards
zero quasienergy, closing up the gap when f 2 = 2. Alternatively, one can think
that the two original branches move into the nearest Floquet-Brillouin zones, while
branches from those neighbouring zones get inside the first one, thereby reducing the
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Fig. 6.8 Anisotropic Dirac cones. The field is in-plane and linearly polarized. As observed in the
schematic depiction, the original cone (red) widens in the direction perpendicular to the field to form
an anisotropic cone (blue). (a) Dispersion for different values of the field as indicated by the color
bar. As long as the field is nonzero, there are avoided crossings at the edge of the Floquet-Brillouin
zone and the slope for low momenta gets reduced. (b) Velocity reduction together with a quadratic
fit (solid line) of the form 1 − ζ( f/ω)2, with ζ a fitting parameter

gap until it becomes zero. Then, the process starts again. Hence, touching the edges
of the Brillouin zone occurs whenever

√
1 + 4 f 2 becomes an even integer, that is,

when f 2 = m2 − 1/4, with m ∈ Z
+. On the other hand, the gap closes whenever√

1 + 4 f 2 becomes an odd integer, that is, when f 2 = m(m − 1), with m ∈ Z
+.

In order to obtain the dispersion with κ , we can proceed as in the previous section.
In that case, using Floquet’s theorem, Eq. (6.2.4) is straightforwardly written in terms
of the Fourier components as

ε ϕl = [σ · k − l12]ϕl + Vϕl+1 + V †ϕl−1 . (6.2.17)

This problem is similar to a nearest-neighbours tight-binding model with two
degrees of freedom per site and a site-dependent energy. In contrast to the topological
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Fig. 6.9 Massive Dirac dispersion. The field is in-plane and circularly polarized. As observed in
the schematic depiction, the original cone (red) widens isotropically and a gap opens up at the Dirac
point to form a massive Dirac dispersion (blue). a Dispersion for different values of the field as
indicated by the color bar. As long as the field is nonzero, a gap opens up and increases in size with
the field, while reducing the slope of the dispersion for low momenta. bVelocity reduction together
with a quadratic fit (solid line) for low fields of the form 1 − ζ( f/ω)2, with ζ a fitting parameter.
c Quasienergy gap, together with the analytic result of Eq. (6.2.16) [orange line] and the quadratic
approximation for low fields

boundary, this equation is easily solved numerically since it corresponds directly to
a tridiagonal block matrix and we do not have to discretize along any direction.
If we consider a linearly polarized field with fx = f and fy = 0, we find that the
dispersion is unaffected along the X -direction. In contrast, it gets widened along the
Y -direction and the Dirac point is preserved, as we expected. Moreover, the velocity
decreases in good agreement with a reduction that scales with f 2, similarly to what
we obtained in the previous section for the topological boundary. These results are
summarized in Fig. 6.8. The sideband index has been limited to 10 on the basis that
we focus on low fields. As we can see, there is indeed a reduction on the velocity for
low momenta and avoided crossings occur at the edges of the Brillouin zone. The
results are very similar to those in the topological boundary. If we consider circular
polarization instead, there is a gap opening at the Dirac point that squares with the
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field, as predicted above, and a reduction of the velocity as well. Such a reduction
scales with f 2 for low fields. These results are summarized in Fig. 6.9 and are also
very similar to the ones we discussed in the topological boundary. As we can see,
the gap scales as predicted by Eq. (6.2.16), as it should do.

6.3 Conclusions

The understanding of the physics of Dirac materials under periodic drivings is under-
going a rapid development, both theoretically and experimentally, as discussed in
the introduction. It has been shown that properly oriented and suitably polarized
fields lead to gap openings in the quasienergy spectrum by breaking time-reversal
symmetry. In graphene, it has been predicted that such opening should lead to a
photo-induced Hall effect [8, 10]. In our work, we have been able to prove that some
predictions based on effective surface Hamiltonians and perturbation theory [10] are
confirmed when using a full Hamiltonian that includes bulk states. For instance, it
was shown [10] by such means that the gap increases with the square of the field
when an in-plane circularly polarized field is considered, and we have shown here
that is indeed the case even in the more elaborate models. Other configurations of
the fields render the cones anisotropic. The results are similar to those found in
the static case, although there is more degree of tunability due to the polarization.
All of our findings should be easily probed by means of time- and angle-resolved
photoemission spectroscopy, as discussed in Ref. [17].

References

1. Eckardt A (2017) Colloquium: atomic quantum gases in periodically driven optical lattices.
Rev Mod Phys 89:011004

2. Fleury R, Khanikaev AB, Al A.: u. Floquet topological insulators for sound. Nat Commun 7:
11744 (2016)

3. Rechtsman MC, Zeuner JM, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M,
Szameit A (2013) Photonic Floquet topological insulators. Nature 496:196

4. Floquet G (1883) Sur les équations différentielles linéaires ‘a coefficients périodiques. Ann Sci
Ecole Norm S 12:47

5. Zel’dovichYB (1967) The quasienergy of a quantum-mechanical system subjected to a periodic
action. Sov Phys JETP 24:1006

6. Grifoni M, Hänggi P (1998) Driven quantum tunneling. Phys Rep 304:229
7. Platero G, Aguado R (2004) Photon-assisted transport in semiconductor nanostructures. Phys

Rep 395:1
8. Oka T, Aoki H (2009) Photovoltaic Hall effect in graphene. Phys Rev B 79:081406
9. Kitagawa T, Berg E, Rudner M, Demler E (2010) Topological characterization of periodically

driven quantum systems. Phys Rev B 82:235114
10. Kitagawa T, Oka T, Brataas A, Fu L, Demler E (2011) Transport properties of nonequilibrium

systems under the application of light: photoinduced quantum Hall insulators without Landau
levels. Phys Rev B 84:235108



References 177

11. Lindner NH, Refael G, Galitski V (2011) Floquet topological insulator in semiconductor quan-
tum wells. Nat Phys 7:490

12. Gómez-León A, Platero G (2013) Floquet-bloch theory and topology in periodically driven
lattices. Phys Rev Lett 110:200403

13. Delplace P, Gómez-León A, Platero G (2013) Merging of Dirac points and Floquet topological
transitions in ac-driven graphene. Phys Rev B 88:245422

14. Nathan F, RudnerMS (2015) Topological singularities and the general classification of Floquet-
Bloch systems. New J Phys 17:125014

15. Syzranov SV, RodionovYa I, Kugel KI, Nori F (2013) Strongly anisotropicDirac quasiparticles
in irradiated graphene. Phys Rev B 88:241112

16. Usaj G, Perez-Piskunow PM, Torres LEF, Balseiro CA (2014) Irradiated graphene as a tunable
Floquet topological insulator . Phys Rev B 90: 115423

17. WangYH, Steinberg H, Jarillo-Herrero P, Gedik N (2013) Observation of Floquet-Bloch States
on the surface of a topological insulator. Science 342:453

18. Díaz-Fernández A, Díaz E, Gómez-León A, Platero G, Domínguez- Adame F (2019) Floquet
engineering of Dirac cones on the surface of a topological insulator. Phys Rev B 100:075412

19. Díaz-Fernández A (2020) Inducing anisotropies in Dirac fermions by periodic driving. J Phys:
Condens Matter 32:495501

20. Farrell A, Arsenault A, Pereg-Barnea T (2016) Dirac cones, Floquet side bands, and theory of
time-resolved angle-resolved photoemission. Phys Rev B 94:155304

21. Díaz E, Miralles K, Domínguez-Adame F, Gaul C (2014) Spin dependent terahertz oscillator
based on hybrid graphene superlattices. Appl Phys Lett 105:103109

22. Agarwala A, Bhattacharya U, Dutta A, Sen D (2016) Effects of periodic kicking on dispersion
and wave packet dynamics in graphene. Phys Rev B 93:174301



Chapter 7
Conclusions

In this Thesis, three-dimensional topological insulators and graphene are exposed
to perturbations, in order to explore the consequences of such perturbations on the
massless Dirac excitations of both systems. This chapter is devoted to gather con-
cluding remarks pointed out on each chapter, in order to restate the main results of
this Thesis.

The most salient feature of all chapters is the robustness of the Dirac point when
external perturbations that preserve the symmetries are applied. That is, topological
protection does indeed work when the system is exposed to the action of electric and
magnetic fields. In the case of electric fields [cf. Chap.3], we have been able to show
that a topological boundary and graphene metallic armchair nanoribbons lower their
Fermi velocity as the field strength is increased. Importantly, such a reduction cannot
be captured by means of first order perturbation theory. Our results seem generic to
other Diracmaterials and should have important consequences on quantum transport,
since the Fermi velocity is a crucial parameter to this regard. It is also interesting
to point out that this reduction can also be exploited to lower the energy gap that
arises at a thin film due to annihilation of opposite helicities. When a magnetic field
is applied perpendicular to a topological boundary, the Dirac cones evolve into a set
of relativistic Landau levels. Since the Fermi velocity enters directly into the spacing
between Landau levels in relativistic quantummaterials, upon applying both electric
and magnetic fields one should be able to control such a spacing. Therefore, a change
in the Fermi velocity would be measurable by magneto-transport techniques, apart
from the obvious angle-resolved photoemission spectroscopy.

If themagnetic field respectsmirror symmetry, even though it breaks time-reversal
symmetry, the topological insulator may host a topological crystalline insulating
phase [cf. Chap. 4]. This is exactly what occurs in the materials of our interest when
the magnetic field is contained within the topological boundary. We can observe
that, due to the presence of the topological boundary, the Landau orbits close to the
boundary become dispersive in the direction perpendicular to the magnetic field.
This is in contrast to usual bulk systems, where Landau levels are only dispersive
along the direction parallel to the field. Moreover, the velocity in the direction per-
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pendicular to the field is reduced with respect to the bare Fermi velocity, rendering an
anisotropic cone for low momenta. When an additional electric field perpendicular
to the boundary is applied, a local potential is experienced by the Landau levels and
their dispersion is notably anisotropic, while still preserving a massless Dirac-like
behaviour.

On a different note, topological surface states are said to be robust against disorder.
One way to observe if this is indeed true is by cleaving a topological insulator and
exposing it to different environments. Experiments have shown that the topological
surface state persists. Moreover, this surface state coexists with a two-dimensional
Rashba-split electron gas. The appearance of this electron gas takes place due to
band-bending effects that result from the electric potential created by the ionized
donor impurities and the electrons these have donated to the host material. As a
result from such band-bending effects, a quantum well is formed for states in the
continuum, which get sucked in by such a potential, leading to a quantization of
the transverse momentum, thereby forming subbands. The reason for having Rashba
splitting can be ascribed to the fact that there is structural inversion asymmetry,
together with an effective in-built electric field. Although these contributions are
truly relevant in proving a point, they are far from controllable. In this Thesis [cf.
Chap. 5], we propose instead to evaporate a δ-layer of donor atoms during growth.
A control of the density of impurities and thereby of the built-in electric field can
be achieved with noteworthy precision. A solvable Thomas-Fermi approximation to
obtain the built-in electric potential, along with a 3+ 1 Dirac equation to model the
topological insulators, allows us to obtain the Rashba-split spectrum analytically and
to confirm the spin textures predicted for such systems. Moreover, we show that the
oscillator strength, a measure of the optical absorption, gets largely reshaped by the
presence of the topological surface state in contrast to the trivial scenario.

The last chapter of this Thesis [cf. Chap. 6] deals with the application of periodic
drivings to a topological boundary and graphene. By means of Floquet theory and
working in the high-frequency limit, we observe that different polarizations and
orientations of the field lead to a reshaping of the Dirac cones in the quasienergy
spectra. In particular, we obtain that an in-plane, circularly polarized field leads
to a gap opening at the Dirac point due to time-reversal symmetry breaking. This
result was known to occur by means of perturbation theory using effective surface
Hamiltonians. We have been able to show that this phenomenon occurs even when
the bulk levels are considered in the numerical solution of the problem. Additionally,
our results show very similar behaviours as those observed in the static case. Namely,
we observe a reduction of the slope of the cones that follows exactly the same trend
as does the reduction of the Fermi velocity in the static case.

In summary, by means of external perturbations, we have been able to modify
intrinsic properties of topological insulators and graphene, such as the Fermi veloc-
ity. Moreover, some topological properties ascribed to these materials have been
confirmed, such as the robustness of the Dirac point in situations where time-reversal
and mirror symmetry are preserved. This should in turn have an impact on quantum
transport and we believe that experiments to measure the results presented herein
should be accesible.



Appendix
Floquet Matrix in a Topological Boundary

In Chap.6, we faced the following problem

εϕl(z) = H0
l ϕl(ξ) + Jϕl+1(z) + J †ϕl−1(z) , (A.1)

with J = α · a and

H0
l = αz pz + α⊥ · κ + βsgn (z) − lω . (A.2)

Details of the quantities above can be found in Chap.6. Here l is the sideband index
and runs from−Nω to Nω. Let us write Eq. (A.1) in component form. For that matter,
one has to take into account that the only non-zero components of the Dirac matrices
are

αμ,3−μ
x = 1 , αμ,3−μ

y = (−1)μ+1 i

αμ,(μ+2) mod 4
z = (−1)μ , βμ,μ = (−1)int(μ/2) ,

(A.3)

with μ = 0, 1, 2 and 3. Hence, Eq. (A.1) can be written as

[
ε−(−1)int(μ/2)g(z − Lz) + lω − Nωω

]
ϕ

μ

l (z)

=pxϕ
3−μ

l (z) + (−1)μ+1i pyϕ
3−μ

l (z) + (−1)μ pzϕ
(μ+2) mod 4
l (z)

+ axϕ
3−μ

l+1 (z) + (−1)μ+1iayϕ
3−μ

l+1 (z) + (−1)μazϕ
(μ+2) mod 4
l+1 (z)

+ a∗
xϕ

3−μ

l−1 (z) + (−1)μ+1ia∗
yϕ

3−μ

l−1 (z) + (−1)μa∗
z ϕ

(μ+2) mod 4
l−1 (z) .

(A.4)

Here, we have displaced the origin of the sideband index so that l runs from 0 to
2Nω and the origin in the position variable so that the system is inside a box from
z = 0 to z = 2Lz . The z-dependence implies that pz = −i ∂z . We will discretize on
a lattice of spacing d = Lz/Nz , with 2Nz + 1 the total number of sites. Instead of
sampling all four components of the bispinor in all the lattice sites, we will alternate
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and sample ϕ0 and ϕ3 in the even lattice sites and ϕ1 and ϕ2 in the odd lattice sites,
following reference [1]. In order to do so, we can do the following mapping

ϕ
μ

l ( jd) → Fα
l ( jd) , α = μ mod 2 , (A.5)

where j = 0, 1, . . . , 2Nz . Since α and μ have the same parity, all those terms with
(−1)μ are directly replaced by (−1)α . The mapping given in Eq. (A.5) implies that

ϕ
μ

l (z) → Fα
l, j , ϕ

3−μ

l (z) = F1−α
l, j ,

pzϕ
(μ+2) mod 4
l (z) → −i

1

2dz

[
Fα
l, j+1 − Fα

l, j−1

]
,

ϕ
(μ+2) mod 4
l (z) → 1

2

[
Fα
l, j+1 + Fα

l, j−1

]
,

(A.6)

where Fα
l, j = Fα

l ( jdz). Here we have taken into account that the (μ + 2) mod 4
components are alternated with the μ components, so that if μ is sampled in j , then
(μ + 2) mod 4 is sampled in j + 1 and j − 1. Hence, the last term is an interpolation
of these two. However, since (μ + 2) mod 4 shares the same parity as μ, both have
the same α. In contrast, 3 − μ has opposite parity to μ, so that if μ maps to α, 3 − μ

maps to 1 − α. The only term left to deal with is

(−1)int(μ/2) . (A.7)

For this term, we can see that μ = 0 and 1 lead to a +1 whereas μ = 2 and 3 lead
to a −1. On the other hand, μ = 0 and μ = 3 are sampled in the even lattice sites,
whereasμ = 1 andμ = 2 are sampled in the odd lattice sites. This means that j + α

is even for μ = 0 and 1 and for μ = 2 and 3 we have that j + α is odd. Therefore,
we can do the following

(−1)int(μ/2) → (−1) j+α . (A.8)

Since

z − Lz = jdz − Lz =
[

j

Nz
− 1

]
Lz = ( j − Nz)

Lz

Nz
, (A.9)

we can write
g(z − Lz) = g( j − Nz) ≡ g j , (A.10)

since g is the sign function and Lz/Nz is always a positive number. Finally, we can
write Eq. (A.4) as follows
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[
ε−(−1) j+αg j + lω − Nωω

]
Fα
l, j

=px F
1−α
l, j + (−1)α+1i py F

1−α
l, j + (−1)α+1 i

2d

[
Fα
l, j+1 − Fα

l, j−1

]

+ ax F
1−α
l+1, j + (−1)α+1iay F

1−α
l+1, j + (−1)α

az
2

[
Fα
l+1, j+1 + Fα

l+1, j−1

]

+ a∗
x F

1−α
l−1, j + (−1)α+1ia∗

y F
1−α
l−1, j + (−1)α

a∗
z

2

[
Fα
l−1, j+1 + Fα

l−1, j−1

]
.

(A.11)

We have three indices, α = 0, 1, j = 0, . . . , 2Nz and l = 0, . . . , 2Nω. By joining all
of those into a single index one can write a matrix for its later diagonalization to
obtain the quasienergies, ε.
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