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Preface

Speech has remained the most desirable medium of communication between
humans. Nevertheless, analogue telecommunication of speech is a cumber-
some and inflexible process when transmission power and spectral utilization,
the foremost resources in any communication system, are considered. Dig-
ital transmission of speech is more versatile, providing the opportunity of
achieving lower costs, consistent quality, security and spectral efficiency in
the systems that exploit it. The first stage in the digitization of speech involves
sampling and quantizations. While the minimum sampling frequency is lim-
ited by the Nyquist criterion, the number of quantifier levels is generally
determined by the degree of faithful reconstruction (quality) of the signal
required at the receiver. For speech transmission systems, these two limita-
tions lead to an initial bit rate of 64 kb/s – the PCM system. Such a high bit
rate restricts the much desired spectral efficiency.

The last decade has witnessed the emergence of new fixed and mobile
telecommunication systems for which spectral efficiency is a prime mover.
This has fuelled the need to reduce the PCM bit rate of speech signals. Digital
coding of speech and the bit rate reduction process has thus emerged as
an important area of research. This research largely addresses the following
problems:

• Although it is very attractive to reduce the PCM bit rate as much as
possible, it becomes increasingly difficult to maintain acceptable speech
quality as the bit rate falls.

• As the bit rate falls, acceptable speech quality can only be maintained by
employing very complex algorithms, which are difficult to implement in
real-time even with new fast processors with their associated high cost and
power consumption, or by incurring excessive delay, which may create
echo control problems elsewhere in the system.

• In order to achieve low bit rates, parameters of a speech production and/or
perception model are encoded and transmitted. These parameters are
however extremely sensitive to channel corruption. On the other hand,
the systems in which these speech coders are needed typically operate
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on highly degraded channels, raising the acute problem of maintaining
acceptable speech quality from sensitive speech parameters even in bad
channel conditions. Moreover, when estimating these parameters from
the input, speech contaminated by the environmental noise typical of
mobile/wireless communication systems can cause significant degradation
of speech quality.

These problems are by no means insurmountable. The advent of faster and
more reliable Digital Signal Processor (DSP) chips has made possible the easy
real-time implementation of highly complex algorithms. Their sophistication
is also exploited in the implementation of more effective echo control, back-
ground noise suppression, equalization and forward error control systems.
The design of an optimum system is thus mainly a trading-off process of many
factors which affect the overall quality of service provided at a reasonable
cost.

This book presents some existing chapters from the first edition, as well
as chapters on new speech processing and coding techniques. In order
to lay the foundation of speech coding technology, it reviews sampling,
quantizations and then the basic nature of speech signals, and the theory and
tools applied in speech coding. The rest of the material presented has been
drawn from recent postgraduate research and graduate teaching activities
within the Multimedia Communications Research Group of the Centre for
Communication Systems Research (CCSR), a teaching and research centre
at the University of Surrey. Most of the material thus represents state-of-
the-art thinking in this technology. It is suitable for both graduate and
postgraduate teaching. For lecturing purposes, electronic versions of the
figures are available at ftp://ftp.wiley.co.uk/pub/books/kondoz. It is hoped
that the book will also be useful to research and development engineers for
whom the hands-on approach to the base band design of low bit-rate fixed
and mobile communication systems will prove attractive.

Ahmet Kondoz
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1
Introduction

Although data links are increasing in bandwidth and are becoming faster,
speech communication is still the most dominant and common service in
telecommunication networks. The fact that commercial and private usage of
telephony in its various forms (especially wireless) continues to grow even
a century after its first inception is obvious proof of its popularity as a form
of communication. This popularity is expected to remain steady for the fore-
seeable future. The traditional plain analogue system has served telephony
systems remarkably well considering its technological simplicity. However,
modern information technology requirements have introduced the need for
a more robust and flexible alternative to the analogue systems. Although the
encoding of speech other than straight conversion to an analogue signal has
been studied and employed for decades, it is only in the last 20 to 30 years
that it has really taken on significant prominence. This is a direct result of
many factors, including the introduction of many new application areas.

The attractions of digitally-encoded speech are obvious. As speech is con-
densed to a binary sequence, all of the advantages offered by digital systems
are available for exploitation. These include the ease of regeneration and
signalling, flexibility, security, and integration into the evolving new wire-
less systems. Although digitally-encoded speech possesses many advantages
over its analogue counterpart, it nevertheless requires extra bandwidth for
transmission if it is directly applied (without compression). The 64 kb/s
Log-PCM and 32 kb/s ADPCM systems which have served the many early
generations of digital systems well over the years have therefore been found
to be inadequate in terms of spectrum efficiency when applied to the new,
bandwidth limited, communication systems, e.g. satellite communications,
digital mobile radio systems, and private networks. In these and other sys-
tems, the bandwidth and power available is severely restricted, hence signal
compression is vital. For digitized speech, the signal compression is achieved
via elaborate digital signal processing techniques that are facilitated by the
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2 Introduction

rapid improvement in digital hardware which has enabled the use of sophis-
ticated digital signal processing techniques that were not feasible before. In
response to the requirement for speech compression, feverish research activ-
ity has been pursued in all of the main research centres and, as a result, many
different strategies have been developed for suitably compressing speech for
bandwidth-restricted applications. During the last two decades, these efforts
have begun to bear fruit. The use of low bit-rate speech coders has been
standardized in many international, continental and national communication
systems. In addition, there are a number of private network operators who
use low bit-rate speech coders for specific applications.

The speech coding technology has gone through a number of phases starting
with the development and deployment of PCM and ADPCM systems. This
was followed by the development of good quality medium to low bit-rate
coders covering the range from 16 kb/s to 8 kb/s. At the same time, very
low bit-rate coders operating at around 2.4 kb/s produced better quality
synthetic speech at the expense of higher complexity. The latest trend in
speech coding is targeting the range from about 6 kb/s down to 2 kb/s by
using speech-specific coders, which rely heavily on the extraction of speech-
specific information from the input source. However, as the main applications
of the low to very low bit-rate coders are in the area of mobile communication
systems, where there may be significant levels of background noise, the
accurate determination of the speech parameters becomes more difficult.
Therefore the use of active noise suppression as a preprocessor to low bit-rate
speech coding is becoming popular.

In addition to the required low bit-rate for spectral efficiency, the cost
and power requirements of speech encoder/decoder hardware are very
important. In wireless personal communication systems, where hand-held
telephones are used, the battery consumption, cost and size of the portable
equipment have to be reasonable in order to make the product widely
acceptable.

In this book an attempt is made to cover many important aspects of low bit-
rate speech coding. In Chapter 2, the background to speech coding, including
the existing standards, is discussed. In Chapter 3, after briefly reviewing the
sampling theorem, scalar and vector quantization schemes are discussed and
formulated. In addition, various quantization types which are used in the
remainder of this book are described.

In Chapter 4, speech analysis and modelling tools are described. After
discussing the effects of windowing on the short-time Fourier transform
of speech, extensive treatment of short-term linear prediction of speech is
given. This is then followed by long-term prediction of speech. Finally,
pitch detection methods, which are very important in speech vocoders, are
discussed.
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It is very important that the quantization of the linear prediction coefficients
(LPC) of low bit-rate speech coders is performed efficiently both in terms of
bit rate and sensitivity to channel errors. Hence, in Chapter 5, efficient quan-
tization schemes of LPC parameters in the form of Line Spectral Frequencies
are formulated, tested and compared.

In Chapter 6, more detailed modelling/classification of speech is studied.
Various pitch estimation and voiced – unvoiced classification techniques are
discussed.

In Chapter 7, after a general discussion of analysis by synthesis LPC coding
schemes, code-excited linear prediction (CELP) is discussed in detail.

In Chapter 8, a brief review harmonic coding techniques is given.
In Chapter 9, a novel hybrid coding method, the integration of CELP and

harmonic coding to form a multi-modal coder, is described.
Chapters 10 and 11 cover the topics of voice activity detection and speech

enhancements methods, respectively.





2
Coding Strategies
and Standards

2.1 Introduction

The invention of Pulse Code Modulation (PCM) in 1938 by Alec H. Reeves
was the beginning of digital speech communications. Unlike the analogue
systems, PCM systems allow perfect signal reconstruction at the repeaters of
the communication systems, which compensate for the attenuation provided
that the channel noise level is insufficient to corrupt the transmitted bit
stream. In the early 1960s, as digital system components became widely
available, PCM was implemented in private and public switched telephone
networks. Today, nearly all of the public switched telephone networks
(PSTN) are based upon PCM, much of it using fibre optic technology which
is particularly suited to the transmission of digital data. The additional
advantages of PCM over analogue transmission include the availability of
sophisticated digital hardware for various other processing, error correction,
encryption, multiplexing, switching, and compression.

The main disadvantage of PCM is that the transmission bandwidth is
greater than that required by the original analogue signal. This is not desirable
when using expensive and bandwidth-restricted channels such as satellite
and cellular mobile radio systems. This has prompted extensive research into
the area of speech coding during the last two decades and as a result of this
intense activity many strategies and approaches have been developed for
speech coding. As these strategies and techniques matured, standardization
followed with specific application targets. This chapter presents a brief review
of speech coding techniques. Also, the requirements of the current generation
of speech coding standards are discussed. The motivation behind the review
is to highlight the advantages and disadvantages of various techniques. The
success of the different coding techniques is revealed in the description of the
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6 Coding Strategies and Standards

many coding standards currently in active operation, ranging from 64 kb/s
down to 2.4 kb/s.

2.2 Speech Coding Techniques

Major speech coders have been separated into two classes: waveform approx-
imating coders and parametric coders. Kleijn [1] defines them as follows:

• Waveform approximating coders: Speech coders producing a recon-
structed signal which converges towards the original signal with decreasing
quantization error.

• Parametric coders: Speech coders producing a reconstructed signal which
does not converge to the original signal with decreasing quantization error.

Typical performance curves for waveform approximating and parametric
speech coders are shown in Figure 2.1. It is worth noting that, in the past,
speech coders were grouped into three classes: waveform coders, vocoders
and hybrid coders. Waveform coders included speech coders, such as PCM
and ADPCM, and vocoders included very low bit-rate synthetic speech
coders. Finally hybrid coders were those speech coders which used both of
these methods, such as CELP, MBE etc. However currently all speech coders
use some form of speech modelling whether their output converges to the

Poor

Good

Fair

Excellent

Quality

Bit rate (kb/s)

4 8 16 32 641 2

Waveform approximating coders

Parametric coders

Figure 2.1 Quality vs bit rate for different speech coding techniques
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original (with increasing bit rate) or not. It is therefore more appropriate to
group speech coders into the above two groups as the old waveform coding
terminology is no longer applicable. If required we can associate the name
hybrid coding with coding types that may use more than one speech coding
principle, which is switched in and out according to the input speech signal
characteristics. For example, a waveform approximating coder, such as CELP,
may combine in an advantageous way with a harmonic coder, which uses a
parametric coding method, to form such a hybrid coder.

2.2.1 Parametric Coders

Parametric coders model the speech signal using a set of model parameters.
The extracted parameters at the encoder are quantized and transmitted to the
decoder. The decoder synthesizes speech according to the specified model.
The speech production model does not account for the quantization noise
or try to preserve the waveform similarity between the synthesized and the
original speech signals. The model parameter estimation may be an open loop
process with no feedback from the quantization or the speech synthesis. These
coders only preserve the features included in the speech production model,
e.g. spectral envelope, pitch and energy contour, etc. The speech quality of
parametric coders do not converge towards the transparent quality of the
original speech with better quantization of model parameters, see Figure 2.1.
This is due to limitations of the speech production model used. Furthermore,
they do not preserve the waveform similarity and the measurement of signal
to noise ratio (SNR) is meaningless, as often the SNR becomes negative when
expressed in dB (as the input and output waveforms may not have phase
alignment). The SNR has no correlation with the synthesized speech quality
and the quality should be assessed subjectively (or perceptually).

Linear Prediction Based Vocoders

Linear Prediction (LP) based vocoders are designed to emulate the human
speech production mechanism [2]. The vocal tract is modelled by a linear
prediction filter. The glottal pulses and turbulent air flow at the glottis are
modelled by periodic pulses and Gaussian noise respectively, which form
the excitation signal of the linear prediction filter. The LP filter coefficients,
signal power, binary voicing decision (i.e. periodic pulses or noise excitation),
and pitch period of the voiced segments are estimated for transmission
to the decoder. The main weakness of LP based vocoders is the binary
voicing decision of the excitation, which fails to model mixed signal types
with both periodic and noisy components. By employing frequency domain
voicing decision techniques, the performance of LP based vocoders can be
improved [3].
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Harmonic Coders

Harmonic or sinusoidal coding represents the speech signal as a sum of sinu-
soidal components. The model parameters, i.e. the amplitudes, frequencies
and phases of sinusoids, are estimated at regular intervals from the speech
spectrum. The frequency tracks are extracted from the peaks of the speech
spectra, and the amplitudes and frequencies are interpolated in the synthesis
process for smooth evolution [4]. The general sinusoidal model does not
restrict the frequency tracks to be harmonics of the fundamental frequency.
Increasing the parameter extraction rate converges the synthesized speech
waveform towards the original, if the parameters are unquantized. However
at low bit rates the phases are not transmitted and estimated at the decoder,
and the frequency tracks are confined to be harmonics. Therefore point to
point waveform similarity is not preserved.

2.2.2 Waveform-approximating Coders

Waveform coders minimize the error between the synthesized and the origi-
nal speech waveforms. The early waveform coders such as companded Pulse
Code Modulation (PCM) [5] and Adaptive Differential Pulse Code Mod-
ulation (ADPCM) [6] transmit a quantized value for each speech sample.
However ADPCM employs an adaptive pole zero predictor and quantizes
the error signal, with an adaptive quantizer step size. ADPCM predictor
coefficients and the quantizer step size are backward adaptive and updated
at the sampling rate.

The recent waveform-approximating coders based on time domain analysis
by synthesis such as Code Excited Linear Prediction (CELP) [7], explicitly
make use of the vocal tract model and the long term prediction to model
the correlations present in the speech signal. CELP coders buffer the speech
signal and perform block based analysis and transmit the prediction filter
coefficients along with an index for the excitation vector. They also employ
perceptual weighting so that the quantization noise spectrum is masked by
the signal level.

2.2.3 Hybrid Coding of Speech

Almost all of the existing speech coders apply the same coding principle,
regardless of the widely varying character of the speech signal, i.e. voiced,
unvoiced, mixed, transitions etc. Examples include Adaptive Differential
Pulse Code Modulation (ADPCM) [6], Code Excited Linear Prediction (CELP)
[7, 8], and Improved Multi Band Excitation (IMBE) [9, 10]. When the bit rate
is reduced, the perceived quality of these coders tends to degrade more
for some speech segments while remaining adequate for others. This shows
that the assumed coding principle is not adequate for all speech types.
In order to circumvent this problem, hybrid coders that combine different
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coding principles to encode different types of speech segments have been
introduced [11, 12, 13].

A hybrid coder can switch between a set of predefined coding modes.
Hence they are also referred to as multimode coders. A hybrid coder is an
adaptive coder, which can change the coding technique or mode according
to the source, selecting the best mode for the local character of the speech
signal. Network or channel dependent mode decision [14] allows a coder to
adapt to the network load or the channel error performance, by varying the
modes and the bit rate, and changing the relative bit allocation of the source
and channel coding [15].

In source dependent mode decision, the speech classification can be based
on fixed or variable length frames. The number of bits allocated for frames of
different modes can be the same or different. The overall bit rate of a hybrid
coder can be fixed or variable. In fact variable rate coding can be seen as an
extension of hybrid coding.

2.3 Algorithm Objectives and Requirements

The design of a particular algorithm is often dictated by the target application.
Therefore, during the design of an algorithm the relative weighting of
the influencing factors requires careful consideration in order to obtain a
balanced compromise between the often conflicting objectives. Some of the
factors which influence the choice of algorithm for the foreseeable network
applications are listed below.

2.3.1 Quality and Capacity

Speech quality and bit rate are two factors that directly conflict with each
other. Lowering the bit rate of the speech coder, i.e. using higher signal
compression, causes degradation of quality to a certain extent (simple para-
metric vocoders). For systems that connect to the Public Switched Telephone
Network (PSTN) and associated systems, the quality requirements are strict
and must conform to constraints and guidelines imposed by the relevant
regulatory bodies, e.g. ITU (previously CCITT). Such systems demand high
quality (toll quality) coding. However, closed systems such as private com-
mercial networks and military systems may compromise the quality to lower
the capacity requirements. Although absolute quality is often specified, it is
often compromised if other factors are allocated a higher overall rating. For
instance, in a mobile radio system it is the overall average quality that is often
the deciding factor. This average quality takes into account both good and
bad transmission conditions.
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2.3.2 Coding Delay

The coding delay of a speech transmission system is a factor closely related
to the quality requirements. Coding delay may be algorithmic (the buffering
of speech for analysis), computational (the time taken to process the stored
speech samples) or due to transmission. Only the first two concern the speech
coding subsystem, although very often the coding scheme is tailored such that
transmission can be initiated even before the algorithm has completed pro-
cessing all of the information in the analysis frame, e.g. in the pan-European
digital mobile radio system (better known as GSM) [16] the encoder starts
transmission of the spectral parameters as soon as they are available. Again,
for PSTN applications, low delay is essential if the major problem of echo is to
be minimized. For mobile system applications and satellite communication
systems, echo cancellation is employed as substantial propagation delays
already exist. However, in the case of the PSTN where there is very little
delay, extra echo cancellers will be required if coders with long delays are
introduced. The other problem of encoder/decoder delay is the purely sub-
jective annoyance factor. Most low-rate algorithms introduce a substantial
coding delay compared with the standard 64 kb/s PCM system. For instance,
the GSM system’s initial upper limit was 65 ms for a back-to-back configura-
tion, whereas for the 16 kb/s G.728 specification [17], it was a maximum of
5 ms with an objective of 2 ms.

2.3.3 Channel and Background Noise Robustness

For many applications, the speech source coding rate typically occupies only
a fraction of the total channel capacity, the rest being used for forward error
correction (FEC) and signalling. For mobile connections, which suffer greatly
from both random and burst errors, a coding scheme’s built-in tolerance to
channel errors is vital for an acceptable average overall performance, i.e. com-
munication quality. By employing built-in robustness, less FEC can be used
and higher source coding capacity is available to give better speech quality.
This trade-off between speech quality and robustness is often a very difficult
balance to obtain and is a requirement that necessitates consideration from
the beginning of the speech coding algorithm design. For other applications
employing less severe channels, e.g. fibre-optic links, the problems due to
channel errors are reduced significantly and robustness can be ignored for
higher clean channel speech quality. This is a major difference between the
wireless mobile systems and those of the fixed link systems.

In addition to the channel noise, coders may need to operate in noisy back-
ground environments. As background noise can degrade the performance of
speech parameter extraction, it is crucial that the coder is designed in such a
way that it can maintain good performance at all times. As well as maintaining
good speech quality under noisy conditions, good quality background noise
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regeneration by the coder is also an important requirement (unless adaptive
noise cancellation is used before speech coding).

2.3.4 Complexity and Cost

As ever more sophisticated algorithms are devised, the computational com-
plexity is increased. The advent of Digital Signal Processor (DSP) chips [18]
and custom Application Specific Integrated Circuit (ASIC) chips has enabled
the cost of processing power to be considerably lowered. However, complex-
ity/power consumption, and hence cost, is still a major problem especially in
applications where hardware portability is a prime factor. One technique for
overcoming power consumption whilst also improving channel efficiency is
digital speech interpolation (DSI) [16]. DSI exploits the fact that only around
half of speech conversation is actually active speech thus, during inactive
periods, the channel can be used for other purposes, including limiting the
transmitter activity, hence saving power. An important subsystem of DSI is
the voice activity detector (VAD) which must operate efficiently and reliably
to ensure that real speech is not mistaken for silence and vice versa. Obvi-
ously, a voice for silence mistake is tolerable, but the opposite can be very
annoying.

2.3.5 Tandem Connection and Transcoding

As it is the end to end speech quality which is important to the end user,
the ability of an algorithm to cope with tandeming with itself or with
another coding system is important. Degradations introduced by tandeming
are usually cumulative, and if an algorithm is heavily dependent on certain
characteristics then severe degradations may result. This is a particularly
urgent unresolved problem with current schemes which employ post-filtering
in the output speech signal [17]. Transcoding into another format, usually
PCM, also degrades the quality slightly and may introduce extra cost.

2.3.6 Voiceband Data Handling

As voice connections are regularly used for transmission of digital data, e.g.
modem, facsimile, and other machine data, an important requirement is an
algorithm’s ability to transmit voiceband data. The waveform statistics and
frequency spectrum of voiceband data signals are quite different from those
of speech, therefore the algorithm must be capable of handling both types.
The consideration of voiceband data handling is often left until the final
stages of the algorithm development, which may be a mistake as end users
expect nonvoice information to be adequately transported if the system is
employed in the public network. Most of the latest low bit-rate speech coders
are unable to pass voiceband data due to the fact they are too speech specific.
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Other solutions are often used. A very common one is to detect the voiceband
data and use an interface which bypasses the speech encoder/decoder.

2.4 Standard Speech Coders

Standardization is essential in removing the compatibility and conforma-
bility problems of implementations by various manufacturers. It allows for
one manufacturer’s speech coding equipment to work with that of others.
In the following, standard speech coders, mostly developed for specific
communication systems, are listed and briefly reviewed.

2.4.1 ITU-T Speech Coding Standard

Traditionally the International Telecommunication Union Telecommunica-
tion Standardization Sector (ITU-T, formerly CCITT) has standardized speech
coding methods mainly for PSTN telephony with 3.4 kHz input speech band-
width and 8 kHz sampling frequency, aiming to improve telecommunication
network capacity by means of digital circuit multiplexing. Additionally,
ITU-T has been conducting standardization for wideband speech coders to
support 7 kHz input speech bandwidth with 16 kHz sampling frequency,
mainly for ISDN applications.

In 1972, ITU-T released G.711 [19], an A/µ-Law PCM standard for 64 kb/s
speech coding, which is designed on the basis of logarithmic scaling of
each sampled pulse amplitude before digitization into eight bits. As the
first digital telephony system, G.711 has been deployed in various PSTNs
throughout the world. Since then, ITU-T has been actively involved in
standardizing more complex speech coders, referenced as the G.72x series.
ITU-T released G.721, the 32 kb/s adaptive differential pulse code modulation
(ADPCM) coder, followed by the extended version (40/32/24/16 kb/s),
G.726 [20]. The latest ADPCM version, G.726, superseded the former one.
Each ITU-T speech coder except G.723.1 [21] was developed with a view
to halving the bit rate of its predecessor. For example, the G.728 [22] and
G.729 [23] speech coders, finalized in 1992 and 1996, were recommended at
the rates of 16 kb/s and 8 kb/s, respectively. Additionally, ITU-T released
G.723.1 [21], the 5.3/6.3 kb/s dual-rate speech coder, for video telephony
systems. G.728, G.729, and G.723.1 principles are based on code excited linear
prediction (CELP) technologies. For discontinuous transmission (DTX), ITU-T
released the extended versions of G.729 and G.723.1, called G.729B [24] and
G.723.1A [25], respectively. They are widely used in packet-based voice
communications [26] due to their silence compression schemes. In the past
few years there has been standardization activities at 4 kb/s. Currently there
two coders competing for this standard but the process has been put on
hold at the moment. One coder is based on the CELP model and the other
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Table 2.1 ITU-T narrowband speech coding standards

Bit rate Noise Delay
Speech coder (kb/s) VAD reduction (ms) Quality Year

G.711 (A/µ-Law PCM) 64 No No 0 Toll 1972

G.726 (ADPCM) 40/32/24/16 No No 0.25 Toll 1990

G.728 (LD-CELP) 16 No No 1.25 Toll 1992

G.729 (CSA-CELP) 8 Yes No 25 Toll 1996

G.723.1 6.3/5.3 Yes No 67.5 Toll/ 1995

(MP-MLQ/ACELP) Near-toll

G.4k (to be determined) 4 – Yes ∼55 Toll 2001

is a hybrid model of CELP and sinusoidal speech coding principles [27, 28].
A summary of the narrowband speech coding standards recommended by
ITU-T is given in Table 2.1.

In addition to the narrowband standards, ITU-T has released two wideband
speech coders, G.722 [29] and G.722.1 [30], targeting mainly multimedia
communications with higher voice quality. G.722 [29] supports three bit rates,
64, 56, and 48 kb/s based on subband ADPCM (SB-ADPCM). It decomposes
the input signals into low and high subbands using the quadrature mirror
filters, and then quantizes the band-pass filtered signals using ADPCM with
variable step sizes depending on the subband. G.722.1 [30] operates at the
rates of 32 and 24 kb/s and is based on the transform coding technique.
Currently, a new wideband speech coder operating at 13/16/20/24 kb/s is
undergoing standardization.

2.4.2 European Digital Cellular Telephony Standards

With the advent of digital cellular telephony there have been many speech
coding standardization activities by the European Telecommunications Stan-
dards Institute (ETSI). The first release by ETSI was the GSM full rate (FR)
speech coder operating at 13 kb/s [31]. Since then, ETSI has standardized
5.6 kb/s GSM half rate (HR) and 12.2 kb/s GSM enhanced full rate (EFR)
speech coders [32, 33]. Following these, another ETSI standardization activity
resulted in a new speech coder, called the adaptive multi-rate (AMR) coder
[34], operating at eight bit rates from 12.2 to 4.75 kb/s (four rates for the
full-rate and four for the half-rate channels). The AMR coder aims to provide
enhanced speech quality based on optimal selection between the source and
channel coding schemes (and rates). Under high radio interference, AMR is
capable of allocating more bits for channel coding at the expense of reduced
source coding rate and vice versa.

The ETSI speech coder standards are also capable of silence compres-
sion by way of voice activity detection [35–38], which facilitates channel
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Table 2.2 ETSI speech coding standards for GSM mobile communications

Bit rate Noise Delay
Speech coder (kb/s) VAD reduction (ms) Quality Year

FR (RPE-LTP) 13 Yes No 40 Near-toll 1987

HR (VSELP) 5.6 Yes No 45 Near-toll 1994

EFR (ACELP) 12.2 Yes No 40 Toll 1998

AMR (ACELP) 12.2/10.2/7.95/ Yes No 40/45 Toll 1999

7.4/6.7/5.9/ ∼ Communi-
5.15/4.75 cation

interference reduction as well as battery life time extension for mobile com-
munications. Standard speech coders for European mobile communications
are summarized in Table 2.2.

2.4.3 North American Digital Cellular Telephony Standards

In North America, the Telecommunication Industries Association (TIA) of
the Electronic Industries Association (EIA) has been standardizing mobile
communication based on Code Division Multiple Access (CDMA) and Time
Division Multiple Access (TDMA) technologies used in the USA. TIA/EIA
adopted Qualcomm CELP (QCELP) [39] for Interim Standard-96-A (IS-96-A),
operating at variable bit rates between 8 kb/s and 0.8 kb/s controlled by a
rate determination algorithm. Subsequently, TIA/EIA released IS-127 [40],
the enhanced variable rate coder, which features a novel function for noise
reduction as a preprocessor to the speech compression module. Under noisy
background conditions, noise reduction provides a more comfortable speech
quality by enhancing noisy speech signals. For personal communication
systems, TIA/EIA released IS-733 [41], which operates at variable bit rates
between 14.4 and 1.8 kb/s. For North American TDMA standards, TIA/EIA
released IS-54 and IS-641-A for full rate and enhanced full rate speech coding,
respectively [42, 43]. Standard speech coders for North American mobile
communications are summarized in Table 2.3.

2.4.4 Secure Communication Telephony

Speech coding is a crucial part of a secure communication system, where
voice intelligibility is a major concern in order to deliver the exact voice
commands in an emergency.

Standardization has mainly been organized by the Department of Defense
(DoD) in the USA. The DoD released Federal Standard-1015 (FS-1015) and FS-
1016, called 2.4 kb/s LPC-10e and 4.8 kb/s CELP coders, respectively [44–46].
The DoD also standardized a more recent 2.4 kb/s speech coder [47], based
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Table 2.3 TIA/EIA speech coding standards for North American CDMA/TDMA
mobile communications

Bit rate Noise Delay
Speech coder (kb/s) VAD reduction (ms) Quality Year

IS-96-A (QCELP) 8.5/4/2/0.8 Yes No 45 Near-toll 1993

IS-127 (EVRC) 8.5/4/2/0.8 Yes Yes 45 Toll 1995

IS-733 (QCELP) 14.4/7.2/3.6/1.8 Yes No 45 Toll 1998

IS-54 (VSELP) 7.95 Yes No 45 Near-toll 1989

IS-641-A (ACELP) 7.4 Yes No 45 Toll 1996

Table 2.4 DoD speech coding standards
Bit rate Noise Delay

Speech coder (kb/s) VAD reduction (ms) Quality Year

FS-1015 (LPC-10e) 2.4 No No 115 Intelligible 1984

FS-1016 (CELP) 4.8 No No 67.5 Communication 1991

DoD 2.4 (MELP) 2.4 No No 67.5 Communication 1996

STANAG (NATO) 2.4/1.2 No Yes >67.5 Communication 2001

2.4/1.2 (MELP)

on the mixed excitation linear prediction (MELP) vocoder [48] which is based
on the sinusoidal speech coding model. The 2.4 kb/s DoD MELP speech
coder gives better speech quality than the 4.8 kb/s FS-1016 coder at half the
capacity. A modified and improved version of this coder, operating at dual
rates of 2.4/1.2 kb/s and employing a noise preprocessor, has been selected
as the new NATO standard. Parametric coders, such as MELP, have been
widely used in secure communications due to their intelligible speech quality
at very low bit rates. The DoD standard speech coders are summarized in
Table 2.4.

2.4.5 Satellite Telephony

The international maritime satellite corporation (INMARSAT) has adopted
two speech coders for satellite communications. INMARSAT has selected
4.15 kb/s improved multiband excitation (IMBE) [9] for INMARSAT M sys-
tems and 3.6 kb/s advanced multiband excitation (AMBE) vocoders for
INMARSAT Mini-M systems (see Table 2.5).

2.4.6 Selection of a Speech Coder

Selecting the best speech coder for a given application may involve extensive
testing under conditions representative of the target application. In general,
lowering the bit rate results in a reduction in the quality of coded speech.
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Table 2.5 INMARSAT speech coding standards

Bit rate Noise Delay
Speech coder (kb/s) VAD reduction (ms) Quality Year

IMBE 4.15 No No 120 Communication 1990

AMBE 3.6 No No – – –

Quality measurements based on SNR can be used to evaluate coders that
preserve the waveform similarity, usually coders operating at bit rates above
16 kb/s. Low bit-rate parametric coders do not preserve the waveform simi-
larity and SNR-based quality measures become meaningless. For parametric
coders, perception-based subjective measures are more reliable. The Mean
Opinion Score (MOS) [49] scale shown in Table 2.6 is a widely-used subjective
quality measure.
Table 2.7 compares some of the most well-known speech coding standards
in terms of their bit rate, algorithmic delay and Mean Opinion Scores and
Figure 2.2 illustrates the performance of those standards in terms of speech
quality against bit rate [50, 51].

Linear PCM at 128 kb/s offers transparent speech quality and its A-law
companded 8 bits/sample (64 kb/s) version (which provides the standard
for the best (narrowband) quality) has a MOS score higher than 4, which
is described as Toll quality. In order to find the MOS score for a given

FS1015

G.728
G.711G.726

Linear PCM

G.729
G.723.1

ITU 4

GSM FR

FS1016

Poor
2 4 8 16 32 64 128

Good

Fair

Excellent

Quality

Bit rate (kb/s)

In-M
New FS 2.4

JDC
JDC/2 IS96

IS54
GSM/2

GSM EFR

Figure 2.2 Performance of telephone band speech coding standards (only the top
four points of the MOS scale have been used)
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Table 2.6 Mean Opinion Score (MOS) scale

Grade (MOS) Subjective opinion Quality

5 Excellent Imperceptible Transparent

4 Good Perceptible, but not annoying Toll

3 Fair Slightly annoying Communication

2 Poor Annoying Synthetic

1 Bad Very annoying Bad

Table 2.7 Comparison of telephone band speech coding standards

Standard Year Algorithm Bit rate (kb/s) MOS∗ Delay+

G.711 1972 Companded PCM 64 4.3 0.125

G.726 1991 VBR-ADPCM 16/24/32/40 toll 0.125

G.728 1994 LD-CELP 16 4 0.625

G.729 1995 CS-ACELP 8 4 15

G.723.1 1995 A/MP-MLQ CELP 5.3/6.3 toll 37.5

ITU 4 – – 4 toll 25

GSM FR 1989 RPE-LTP 13 3.7 20

GSM EFR 1995 ACELP 12.2 4 20

GSM/2 1994 VSELP 5.6 3.5 24.375

IS54 1989 VSELP 7.95 3.6 20

IS96 1993 Q-CELP 0.8/2/4/8.5 3.5 20

JDC 1990 VSELP 6.7 commun. 20

JDC/2 1993 PSI-CELP 3.45 commun. 40

Inmarsat-M 1990 IMBE 4.15 3.4 78.75

FS1015 1984 LPC-10 2.4 synthetic 112.5

FS1016 1991 CELP 4.8 3 37.5

New FS 2.4 1997 MELP 2.4 3 45.5
∗ The MOS figures are obtained from formal subjective tests using varied test material (from the literature).
These figures are therefore useful as a guide, but should not be taken as a definitive indication of codec
performance.
+ Delay is the total algorithmic delay, i.e. the frame length and look ahead, and is given in milliseconds.

coder, extensive listening tests must be conducted. In these tests, as well
as the 64 kb/s PCM reference, other representative coders are also used for
calibration purposes. The cost of extensive listening tests is high and efforts
have been made to produce simpler, less time-consuming, and hence cheaper,
alternatives. These alternatives are based on objective measures with some
subjective meanings. Objective measurements usually involve point to point
comparison of systems under test. In some cases weighting may be used to
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give priority to some system parameters over others. In early speech coders,
which aimed at reproducing the input speech waveform as output, objective
measurement in the form of signal to quantization noise ratio was used.
Since the bit rate of early speech coders was 16 kb/s or greater (i.e. they
incurred only a small amount of quantization noise) and they did not involve
complicated signal processing algorithms which could change the shape of
the speech waveform, the SNR measures were reasonably accurate. However
at lower bit rates where the noise (the objective difference between the original
input and the synthetic output) increases, the use of signal to quantization
noise ratio may be misleading. Hence there is a need for a better objective
measurement which has a good correlation with the perceptual quality of the
synthetic speech. The ITU standardized a number of these methods, the most
recent of which is P.862 (or Perceptual Evaluation of Speech Quality). In this
standard, various alignments and perceptual measures are used to match the
objective results to fairly accurate subjective MOS scores.

2.5 Summary

Existing speech coders can be divided into three groups: parametric coders,
waveform approximating coders, and hybrid coders. Parametric coders are
not expected to reproduce the original waveform; they reproduce the per-
ception of the original. Waveform approximating coders, on the other hand,
are expected to replicate the input speech waveform as the bit rate increases.
Hybrid coding is a combination of two or more coders of any type for the
best subjective (and perhaps objective) performance at a given bit rate.

The design process of a speech coder involves several trade-offs between
conflicting requirements. These requirements include the target bit rate, qual-
ity, delay, complexity, channel error sensitivity, and sending of nonspeech
signals. Various standardization bodies have been involved in speech coder
standardization activities and as a result there have been many standard
speech coders in the last decade. The bit rate of these coders ranges from
16 kb/s down to around 4 kb/s with target applications mainly in cellular
mobile radio. The selection of a speech coder involves expensive testing under
the expected typical operating conditions. The most popular testing method is
subjective listening tests. However, as this is expensive and time-consuming,
there has been some effort to produce simpler yet reliable objective measures.
ITU P.862 is the latest effort in this direction.
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3
Sampling and Quantization

3.1 Introduction

In digital communication systems, signal processing tools require the input
source to be digitized before being processed through various stages of the
network. The digitization process consists of two main stages: sampling the
signal and converting the sampled amplitudes into binary (digital) code-
words. The difference between the original analogue amplitudes and the
digitized ones depend on the number of bits used in the conversion. A 16 bit
analogue to digital converter is usually used to sample and digitize the input
analogue speech signal. Having digitized the input speech, the speech coding
algorithms are used to compress the resultant bit rate where various quan-
tizers are used. In this chapter, after a brief review of the sampling process,
quantizers which are used in speech coders are discussed.

3.2 Sampling

As stated above, the digital conversion process can be split into sampling,
which discretizes the continuous time, and quantization, which reduces the
infinite range of the sampled amplitudes to a finite set of possibilities. The
sampled waveform can be represented by,

s(n) = sa(nT) − ∞ < n < ∞ (3.1)

where sa is the analogue waveform, n is the integer sample number and T is the
sampling time (the time difference between any two adjacent samples, which
is determined by the bandwidth or the highest frequency in the input signal).

Digital Speech. A. Kondoz
 2004 John Wiley & Sons, Ltd ISBN 0-470-87007-9 (HB)
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The sampling theorem states that if a signal sa(t) has a band-limited Fourier
transform Sa(jω) given by,

Sa(jω) =
∫ ∞

−∞
sa(t)e−jωtdt (3.2)

such that Sa(jω) = 0 for |ω| ≥ 2πW then the analogue signal can be recon-
structed from its sampled version if T ≤ 1/2W. W is called the Nyquist
frequency.

The effect of sampling is shown in Figure 3.1. As can be seen from
Figures 3.1b and 3.1c, the band-limited Fourier transform of the analogue
signal which is shown in Figure 3.1a is duplicated at every multiple of the
sampling frequency.

This is because the Fourier transform of the sampled signal is evaluated at
multiples of the sampling frequency which forms the relationship,

S(ejωT) = 1
T

∞∑
n=−∞

Sa(jω + j2πn/T) (3.3)

This can also be interpreted by looking into the time domain sampling process
where the input signal is regularly (at every sampling interval) multiplied
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Figure 3.1 Effects of sampling: (a) original signal spectrum, (b) over sampled signal
spectrum and (c) under sampled signal spectrum
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with a delta function. When converted to the frequency domain, the multi-
plication becomes convolution and the message spectrum is reproduced at
multiples of the sampling frequency.

We can clearly see that if the sampling frequency is less than twice the
Nyquist frequency, the spectra of two adjacent multiples of the sampling
frequencies will overlap. For example, if 1

T = fs < 2W the analogue signal
image centred at 2π/T overlaps into the base band image. The distortion
caused by high frequencies overlapping low frequencies is called aliasing. In
order to avoid aliasing distortion, either the input analogue signal has to be
band-limited to a maximum of half the sampling frequency or the sampling
frequency has to be increased to at least twice the highest frequency in the
analogue signal.

Given the condition 1/T > 2W, the Fourier transform of the sampled
sequence is proportional to the Fourier transform of the analogue signal in
the base band as follows:

S(ejωT) = 1
T

Sa(jω) |ω| <
π

T
(3.4)

Using the above relationship, the original analogue signal can be obtained
from the sampled sequence using interpolation given by [1],

sa(t) =
∞∑

n=−∞
sa(nT)

sin[π(t − nT)/T]
π(t − nT)/T

(3.5)

which can be written as,

sa(t) =
∞∑

n=−∞
sa(nT)sinc(φ) (3.6)

where φ = π(t − nT)/T.
Therefore, if the sampling frequency is at least twice the Nyquist frequency,

the analogue signal can be recovered completely from its sampled version
by adding together sinc functions centred on each sampling point and scaled
by the sampled value of the analogue signal. The sinc(φ) function in the
above equation represents an ideal low pass filter. In practice, the front
end band limitation before sampling is usually achieved by a low pass
filter which is less than ideal and may cause aliasing distortion due to its
roll-off characteristics. In order to avoid aliasing distortion, the sampling
frequency is usually chosen to be higher than twice the Nyquist frequency.
In telecommunication networks the analogue speech signal is band-limited
to 300 to 3400 Hz and sampled at 8000 Hz. This same band limitation and
sampling is used throughout this book unless otherwise specified.
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3.3 Scalar Quantization

Quantization converts a continuous-amplitude signal (usually 16 bit, rep-
resented by the digitization process) to a discrete-amplitude signal that is
different from the continuous-amplitude signal by the quantization error
or noise. When each of a set of discrete values is quantized separately the
process is known as scalar quantization. The input–output characteristics of
a uniform scalar quantizer are shown in Figure 3.2.

Each sampled value of the input analogue signal, which has an infinite
range (16 bit digitized), is compared against a finite set of amplitude values
and the closest value from the finite set is chosen to represent the amplitude.
The distance between the finite set of amplitude levels is called the quantizer
step size and is usually represented by �. Each discrete amplitude level xi
is represented by a codeword c(n) for transmission purposes. The codeword
c(n) indicates to the de-quantizer, which is usually at the receiver, which
discrete amplitude is to be used.

Assuming all of the discrete amplitude values in the quantizer are repre-
sented by the same number of bits B and the sampling frequency is fs, the
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Figure 3.2 The input–output characteristics of a uniform quantizer
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channel transmission bit rate is given by,

Tc = Bfs bits/second (3.7)

Given a fixed sampling frequency, the only way to reduce the channel bit
rate Tc is by reducing the length of the codeword c(n). However, a reduced
length c(n) means a smaller set of discrete amplitudes separated by larger �

and, hence, larger differences between the analogue and discrete amplitudes
after quantization, which reduces the quality of reconstructed signal. In order
to reduce the bit rate while maintaining good speech quality, various types
of scalar quantizer have been designed and used in practice. The main aim of
a specific quantizer is to match the input signal characteristics both in terms
of its dynamic range and probability density function.

3.3.1 Quantization Error

When estimating the quantization error, we cannot assume that �i = �i+n if
the quantizer is not uniform [2]. Therefore, the signal lying in the ith interval,

xi − �i

2
≤ s(n) < xi + �i

2
(3.8)

is represented by the quantized amplitude xi and the difference between the
input and quantized values is a function of �i. The instantaneous squared
error, for the signal lying in the ith interval is (s(n) − xi)

2. The mean squared
error of the signal can then be written by including the likelihood of the signal
being in the ith interval as,

E2
i =

∫ xi+�i
2

xi−�i
2

(x − xi)
2p(x)dx (3.9)

where s(n) has been replaced by x for ease of notation and p(x) represents the
probability density function of x. Assuming the step size �i is small, enabling
very fine quantization, we can assume that p(x) is flat within the interval
xi − �

2 to xi + �
2 . Representing the flat region of p(x) by its value at the centre,

p(xi), the above equation can be written as,

E2
i = p(xi)

∫ �i
2

−�i
2

y2dy = �3
i

12
p(xi) (3.10)

The probability of the signal falling in the ith interval is,

�i =
∫ xi+�i

2

xi−�i
2

p(x)dx = p(xi)�i (3.11)
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The above is true only if the quantization levels are very small and, hence,
p(x) in each interval can be assumed to be uniform. Substituting (3.11) into
(3.10) for p(xi) we get,

E2
i = �2

i
12

�i (3.12)

The total mean squared error is therefore given by,

E2 = 1
12

N∑
i=1

�i�
2
i (3.13)

where N is the total number of levels in the quantizer. In the case of a uniform
quantizer where each step size is the same, �, the total mean squared error
becomes,

E2 = �2

12

N∑
i=1

�i = �2

12
(3.14)

where we assume that the signal amplitude is always in the quantizer range
and, hence,

∑N
i=1 �i = 1.

3.3.2 Uniform Quantizer

The input–output characteristics of a uniform quantizer are shown in
Figure 3.2. As can be seen from its input–output characteristics, all of the
quantizer intervals (steps) are the same width. A uniform quantizer can be
defined by two parameters: the number of quantizer levels and the quantizer
step size �. The number of levels is generally chosen to be of the form 2B,
to make the most efficient use of B bit binary codewords. � and B must be
chosen together to cover the range of input samples. Assuming |x| ≤ Xmax
and that the probability density function of x is symmetrical, then,

2Xmax = �2B (3.15)

From the above equation it is easily seen that once the number of bits to be
used, B, is known, then the step size, �, can be calculated by,

� = 2Xmax

2B (3.16)

The quantization error eq(n) is bounded by,

−�

2
≤ eq(n) ≤ �

2
(3.17)
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In a uniform quantizer, the only way to reduce the quantization error is
by increasing the number of bits. When a uniform quantizer is used, it is
assumed that the input signal has a uniform probability density function
varying between ±Xmax with a constant height of 1

2Xmax
. From this, the power

of the input signal can be written as,

Px =
∫ Xmax

−Xmax

x2p(x)dx = X2
max

3
(3.18)

Using the result of (3.14), the signal to noise ratio can be written as,

SNR = Px

Pn
= X2

max/3
�2/12

(3.19)

Substituting (3.16) for � we get,

SNR = Px

Pn
= 22B (3.20)

Taking the log,

SNR(dB) = 10 log10(2
2B) = 20B log10(2) = 6.02B dB (3.21)

The above result is useful both in determining the number of bits needed in
the quantizer for certain signal to quantization noise ratio and in estimating
the performance of a uniform quantizer for a given bit rate.

3.3.3 Optimum Quantizer

When choosing the levels of a quantizer, positioning of these levels has to be
selected so that the quantization error is minimized. In order to maximize the
ratio of signal to quantization noise for a given number of bits per sample,
levels of the quantizer must be selected to match the probability density
function of the signal to be quantized. This is because speech-like signals
do not have a uniform probability density function, and the probability of
smaller amplitudes occurring is much higher than that of large amplitudes.
Consequently, to cover the signal dynamic range as accurately as possible,
the optimum quantizer should have quantization levels with nonuniform
spacing. The input–output characteristics of a typical nonuniform quantizer
where the step size of the quantizer intervals is increasing for higher input
signal values is shown in Figure 3.3. The noise contribution of each interval
depends on the probability of the signal falling into a certain quantization
interval. The nonuniform spacing of the quantization levels is equivalent to
a nonlinear compressor C(x) followed by a uniform quantizer. The nonlinear
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Figure 3.3 The input–output characteristics of a nonuniform quantizer

compressor, C(x), compresses the input samples depending on their statistical
properties. In other words, the less likely higher sample values are compressed
more than the more likely low amplitude samples. The compressed samples
are then quantized using a uniform quantizer. The effect of compression
is reversed at the receiver by applying the inverse C−1(x) expansion to the
de-quantized samples. The compression and expansion processes do not
introduce any signal distortions.

It is quite important to select the best compression–expansion combination
for a given input signal probability density function. Panter and Dite [3]
used analysis based on the assumption that the quantization is sufficiently
fine and that the amplitude probability density function of the input samples
is constant within the quantization intervals. Their results show significant
improvement in the signal to noise ratio over uniform quantization if the
input samples have a peak to root mean squared (rms) ratio greater than 4.

In designing an optimum quantizer, Max [4] discovered how to optimally
choose the output levels for nonuniform input quantizer levels. His analysis
required prior knowledge of the probability density function together with the
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Table 3.1 Max quantizer input and output levels for 1, 2, 3, 4, and 5 bit quantizers

Max quantizer thresholds

1 bit 2 bit 3 bit 4 bit 5 bit

i/p o/p i/p o/p i/p o/p i/p o/p i/p o/p

0.0000 0.7980 0.0000 0.4528 0.0000 0.2451 0.0000 0.1284 0.0000 0.0659

0.9816 1.5100 0.5006 0.7560 0.2582 0.3881 0.1320 0.1981

1.0500 1.3440 0.5224 0.6568 0.2648 0.3314

1.7480 2.1520 0.7996 0.9424 0.3991 0.4668

1.0990 1.2560 0.5359 0.6050

1.4370 1.6180 0.6761 0.7473

1.8440 2.0690 0.8210 0.8947

2.4010 2.7330 0.9718 1.0490

1.1300 1.2120

1.2990 1.3870

1.4820 1.5770

1.6820 1.7880

1.9080 2.0290

2.1740 2.3190

2.5050 2.6920

2.9770 3.2630

variance, σ 2
x , of the input signal but made no assumption of fine quantization.

The quantizer input–output threshold values for 1–5 bit Max quantizers are
tabulated in Table 3.1 [4]. The quantizers in Table 3.1 are for a unit variance
signal with a normal probability density function. Each quantizer has the
same threshold values in the corresponding negative side of the quantizer.

Nonuniform quantization is advantageous in speech coding, both in coarse
and fine quantization cases, for two reasons. Firstly, a nonuniform quantizer
matches the speech probability density function better and hence produces
higher signal to noise ratio than a uniform quantizer. Secondly, lower ampli-
tudes, which contribute more to the intelligibility of speech, are quantized
more accurately in a nonuniform quantizer.

In speech coding, Max’s quantizer [4] is widely used to normalize the
input samples to unit variance, which guarantees the input dynamic range. In
many other cases, specific nonuniform quantizers are designed by optimizing
the quantizer intervals using a large number of samples of the signal to be
quantized. Although, these specific quantizers are not generally applicable,
they give the best performance for a given signal with a given probability
density function and variance. In cases where the variance of the signal has
a large dynamic range, the variance of the signal is transmitted separately at
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known time intervals enabling a unit variance nonuniform quantizer to be
used. These quantizers are called forward adaptive nonuniform quantizers.

3.3.4 Logarithmic Quantizer

As was discussed above, an optimum quantizer is advantageous if the
dynamic range (or variance) of the input signal is fixed to a small known
range. However, the performance of such a quantizer deteriorates rapidly
as the power of the signal moves away from the value that the quantizer
is designed for. Although, this can be controlled by normalizing the input
signal to unit variance, this process requires the transmission of the signal
variance at known time intervals for correct scaling of the de-quantized signal
amplitudes.

In order to cater for the wide dynamic range of the input speech signal,
Cattermole [2] suggested two companding laws called A-Law and µ-Law
Pulse Code Modulation (PCM). In both schemes, the signal to quantization
noise performance can be very close to that of a uniform quantizer, but their
performances do not change significantly with changing signal variance and
remain relatively constant over a wide range of input speech levels. When
compared with uniform quantizers, companded quantizers require fewer
bits per input sample for a specified signal dynamic range and signal to
quantization noise ratio. In a companding quantizer, quantizer levels are
closely spaced for small amplitudes which progressively increase as the
input signal range increases. This ensures that, when quantizing speech
signals where the probability density function is zero mean and maximum
at the origin, the frequently occurring small amplitudes are more accurately
quantized than the less frequent large amplitudes, achieving a significantly
better performance than a uniform quantizer.

The A-Law compression is defined by:

ALaw(x) = Ax
1 + log10(A)

for 0 ≤ x ≤ 1
A

(3.22)

ALaw(x) = 1 + log10(Ax)

1 + log10(A)
for

1
A

≤ x ≤ 1 (3.23)

where A is the compression parameter with typical values of 86 for 7 bit (North
American) PCM and 87.56 for 8 bit (European) PCM speech quantizers.

The µ-Law compression on the other hand is defined by:

µLaw(x) = sign(x)

Vo log10

[
1 + µ|x|

Vo

]
log10[1 + µ]

(3.24)
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where Vo is given by Vo = Lσx in which L is the loading factor and σx is the
rms value of the input speech signal.

A typical value of the compression factor µ is 255. The above expressions
show that the A-Law is a combination of a logarithmic curve for large ampli-
tudes and a linear curve for small amplitudes. The µ-Law on the other hand is
not exactly linear or logarithmic in any range but it is approximately linear for
small amplitudes and logarithmic for large amplitudes. A comparison made
in [5] between a µ-Law quantizer and an optimum quantizer showed that
the optimum quantizer can be as much as 4 dB better. However, an optimum
quantizer may have more background noise when the channel is idle and
its dynamic range is limited to a smaller input signal range. For these two
reasons, logarithmic quantizers are usually preferred.

3.3.5 Adaptive Quantizer

As we have seen from the already discussed quantization schemes, the
dynamic range of the input signal plays a crucial role in determining the
performance of a quantizer. Although, the probability density function of
speech can easily be estimated and used in a quantizer design process, the
variations in its dynamic range, which can be as much as 30 dB, reduces
the performance of any quantizer. This can be overcome by controlling the
dynamic range of the input signal. As was briefly mentioned earlier, one way
of achieving this is by estimating the variance of the speech segment prior
to quantization and hence, adjusting the quantizer levels accordingly. The
adjustment of the quantizer levels is equivalent to designing the quantizer
for unit variance and normalizing the input signal before quantization. This
is called forward adaptation. A forward adaptive quantizer block diagram
is shown in Figure 3.4. Assuming the speech is stationary during K samples,
the rms is given by:

σx =
√√√√ 1

K

K∑
n=1

x(n)2 (3.25)

where the speech samples in the block are represented by x(n) and mean is
assumed to be zero. However, the choice of block length K is very important
because the probability density function of the normalized input signal can
be affected by K. As K increases the probability density of the normalized
speech signal changes from Gaussian (K ≤ 128) to Laplacian (K > 512 ) [6].
This method requires the transmission of the speech block variances to the
de-quantizer for correct signal amplitude adjustment. In order to make the
normalization and de-normalization compatible, a quantized version of the
speech rms, σx, is used at both the quantizer and the de-quantizer.
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Figure 3.4 Block diagram of a forward adaptive quantizer

Another adaptation scheme which does not require transmission of the
speech variance to the de-quantizer is called backward adaptation. Here,
before quantizing each sample, the rms of the input signal is estimated from
N previously quantized samples. Thus, the normalizing factor for the nth

sample is:

σx(n) =
√√√√a1

N

N∑
i=1

x̂2(n − i) (3.26)

where x̂ represents the quantized values of the past samples and a1 is a tuning
factor [6].

It has been shown [7] that for a band-limited stationary zero-mean Gaussian
input, as the period N increases, the obtained signal to noise ratio tends to an
asymptotic maximum. However, N must be such that the power of the signal
is fairly constant during the samples of estimation. On average, the backward
adaptive quantizer has 3–5 dB more signal to noise ratio compared with a
logarithmic quantizer. A block diagram of a backward adaptive quantizer is
shown in Figure 3.5.

An adaptation scheme called one word memory [8] has also been suggested.
It looks at only one previously quantized sample and either expands or
compresses the quantizer intervals as shown in Figure 3.6. Thus at the
(n + 1)th sample the value of the quantizer step size � is:

�n+1 = �nMi(|x̂(n)|) (3.27)

where, Mi is one of i fixed coefficients corresponding to quantizer levels
which control the expansion–compression processes.
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For large quantized previous samples, multiplier values are greater than
one and for small previously quantized samples multiplier values are less
than one. A typical set of step size multiplier values for 2, 3 and 4 bit quantizers
are shown in Table 3.2.
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Table 3.2 Step size multiplier values for 2,
3, and 4 bit quantizers [9]

Adaptation multiplier values

Previous
o/p levels 2 bit 3 bit 4 bit

L1 0.60 0.85 0.80

L2 2.20 1.00 0.80

L3 1.00 0.80

L4 1.50 0.80

L5 1.20

L6 1.60

L7 2.00

L8 2.40

The recommended step size multiplier values [9] do not, in general, consti-
tute critical target values. As can be seen from Table 3.2 [9], the middle values
are fairly constant. What is critical, however, is that the step size increase
should be more rapid than its decrease. This is very important for preventing
quantizer overload.

3.3.6 Differential Quantizer

In a differential quantizer, the final quantized signal, r(n) is the difference
between the input samples x(n) and their estimates xp(n).

r(n) = x(n) − xp(n) (3.28)

and

xp(n) =
p∑

k=1

x̂(n − k)ak (3.29)

where ak is the weighting used for the previously quantized (n − k)th sample
and p is the number of previously quantized samples considered in the
estimation process.

The reason for this preprocessing stage to form the prediction residual
(prediction error signal) before quantization is that, in speech signals, there is
a strong correlation between adjacent samples and, hence, by removing some
of the redundancies that speech signals possess, the signal variance is reduced
before quantization. This reduces the quantization noise by employing a
smaller quantizer step size �. Block diagrams of typical adaptive differential
quantizers are shown in Figures 3.7 and 3.8.
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In order to show the advantage of a differential quantizer over a nondif-
ferential quantizer, consider the following example: Assume that K input
samples are to be quantized with a nondifferential quantizer with a total of
K.B1 bits. Consider also the same K samples are to be differentially quantized,
in which case K error samples ei are quantized to B2 bits/sample accuracy.
In a differential quantizer, the weighting coefficients ak can be calculated
using backward or forward techniques as shown in Figures 3.7 and 3.8. When
backward estimation of the ak parameters is used, the quantizer does not
need to send extra information to the de-quantizer. However, in the case of
forward estimation of the ak parameters, the differential quantizer would also
require K.B3 bits to transmit the ak parameters to the de-quantizer for correct
recovery of the quantized signal. As the correlation between the input speech
samples is usually high, the variance of the error signal to be quantized by
the differential quantizer is much smaller than that of the original speech
samples. Therefore, for the same accuracy of quantization, B2 < B1 and in
general B3 � B2 which means K.B1 > K(B2 + B3). This shows that the main
advantage of a differential over a nondifferential quantizer is due to the
reduction in the speech dynamic range to be quantized.

The performance of a differential quantizer can be approximately defined
by its prediction gain (the amount of signal reduction before quantization)
and the performance of the residual error quantizer. Assuming that the
same type of quantizer is used for both the differential and nondifferential
quantization schemes, the difference in performance will depend on the
accuracy of the predictor. For simplicity, if we assume a predictor depth of 1,
and x̂(n − 1) � x(n − 1) the residual error signal is obtained as,

r(n) = x(n) − ax(n − 1) (3.30)

where a is the weighting coefficient used on the previous sample to predict
the current sample. The squared error is then given by,

r2(n) = [x(n) − ax(n − 1)]2 (3.31)

or,

r2(n) = x2(n) + a2x2(n − 1) − 2ax(n)x(n − 1) (3.32)

Assuming, a is updated every N samples,

N∑
n=1

r2(n) =
N∑

n=1

x2(n) +
N∑

n=1

a2x2(n − 1) − 2a
N∑

n=1

x(n)x(n − 1) (3.33)

which can simply be written as,

σ 2
r = σ 2

x + a2σ 2
x − 2a

N∑
n=1

x(n)x(n − 1) (3.34)
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Substituting ρ =
∑N

n=1 x(n)x(n−1)∑N
n=1 x2(n)

(first order normalized autocorrelation coeffi-

cient) in (3.34) gives,

σ 2
r = σ 2

x + a2σ 2
x − 2aσ 2

x ρ (3.35)

The prediction gain Gp is then found as,

Gp = σ 2
x

σ 2
r

= 1
1 + a2 − 2aρ

(3.36)

To maximize the prediction gain, the denominator of equation (3.36) should
be minimized with respect to a, hence,

∂(1 + a2 − 2aρ)

∂a
= 0 = (0 + 2a − 2ρ) (3.37)

which gives,

a = ρ (3.38)

Substituting a = ρ in (3.36)

Gp = 1
1 + ρ2 − 2ρρ

= 1
1 − ρ2 (3.39)

The above result shows that if the correlation between the adjacent samples
is high, then a differential quantizer will perform significantly better than a
nondifferential quantizer. In fact, if the signal to be quantized is a nonvarying
DC signal, where ρ = 1, the gain of the prediction process will be infinite, i.e.
no residual error will be left and, hence, no residual information will need to
be transmitted. A typical ρ for speech is between 0.8 and 0.9 which may result
in 4–7 dB signal reduction before quantization, hence achieving significant
increase in quantization performance.

3.4 Vector Quantization

When a set of discrete-time amplitude values is quantized jointly as a single
vector, the process is known as vector quantization (VQ), also known as block
quantization or pattern-matching quantization. A block diagram of a simple
vector quantizer is shown in Figure 3.9.

If we assume x = [x1, x2, . . . ., xN]T is an N dimensional vector with real-
valued, continuous-amplitude (short or float representation is assumed to
be continuous amplitude) randomly varying components xk, 1 ≤ k ≤ N (the
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Figure 3.9 Block diagram of a simple vector quantizer

superscript T denotes transpose in vector quantization), this vector is matched
with another real-valued, discrete-amplitude, N dimensional vector y. Hence,
x is quantized as y, and y is used to represent x. Usually, y is chosen from
a finite set of values Y = yi, 1 ≤ i ≤ L, where yi = [yi1, yi2, . . . ., yiN]T. The set
Y is called the codebook or reference templates where L is the size of the
codebook, and yi are the codebook vectors. The size of the codebook may be
considered to be equivalent to the number of levels in a scalar quantizer. In
order to design such a codebook, N dimensional space is partitioned into L
regions or cells Ci, 1 ≤ i ≤ L and a vector yi is associated with each cell Ci.
The quantizer then assigns the codebook vector yi if x is in Ci,

q(x) = yi if x ε Ci (3.40)

The codebook design process is also known as training or populating
the codebook. Figure 3.10 shows an example of the partitioning of a two-
dimensional space (N = 2 ) for the purpose of vector quantization. The filled
region enclosed by the bold lines is the cell Ci. During vector quantization,
any input vector x that lies in the cell Ci is quantized as yi. The other codebook
vectors corresponding to the other cells are shown by dots.

If the vector dimension, N, equals one vector quantization reduces to scalar
quantization. Scalar quantization has the special property that whilst cells
may have different sizes (step sizes) they all have the same shape. In vector
quantization, however, cells may have different shapes which gives vector
quantization an advantage over scalar quantization.

When x is quantized as y, a quantization error results and, to measure
the performance of a specific codebook, an overall distortion measure D is
defined as,

D = 1
M

M∑
i=1

di[x, y] (3.41)
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Figure 3.10 Partitioning of a two-dimensional space into 18 cells

where di[x, y] is the distortion due to the ith vector in the database given by,

di[x, y] = 1
N

N∑
k=1

d[xik, ymk] (3.42)

where M is the number of vectors in the database and ym is the quantized
version of xi. For transmission purposes, each vector yi is encoded using
a codeword of binary digits of length Bi bits. The transmission rate T is
given by,

T = BFc bits/second (3.43)

where,

B = 1
M

M∑
i=1

Bi bits/vector (3.44)

is the average codeword length (usually B = Bi), Bi is the number of bits
used to encode vector yi and Fc is the number of codewords transmitted per
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second. The average number of bits per vector dimension (sample) is,

R = B
N

bits/sample (3.45)

When designing a compression system, one tries to design a quantizer
in which the distortion between the original and the quantized vectors is
minimized for a given digital transmission rate. Therefore, during the design
of a quantizer it is important to decide which type of distortion measure is
likely to minimize the subjective distortion.

3.4.1 Distortion Measures

A distortion measure should be subjectively relevant, so that the differences in
distortion values can be used to indicate similar differences in speech quality.
However, a few dB decrease in the distortion may be quite perceptible by the
ear in one case but not in another. Whilst objective distortion measures are
necessary and useful tools in the design of speech coding systems, decisions
on the direction for improving coder performance should be made using
subjective quality testing.

Mean Squared Error

The most common distortion measure is the mean squared error (MSE)
defined as,

d[x, y] = 1
N

(x − y)(x − y)T = 1
N

N∑
k=1

[xk − yk]2 (3.46)

The popularity of the MSE is due to its simplicity.

Weighted Mean Squared Error

In the mean squared error method, it is assumed that the distortion con-
tributed by each element of the vector x is weighted equally. In general,
unequal weights can be introduced to render contributions of certain elements
to the distortion more important than others. Hence, a general weighted mean
squared error is defined by,

dw[x, y] = (x − y)W(x − y)T (3.47)

where W is a positive weighting matrix.

Perceptually Determined Distortion Measures

For high bit rates and hence small distortions, reasonable distortion measures,
including the two mentioned above, perform well with similar performances.
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Furthermore, they correlate well with subjective judgements of speech quality.
However, as the bit rate decreases and distortion increases, simple distortion
measures may not be related to the subjective quality of speech. Since the
main application of vector quantization is expected to be at low bit-rates,
it is very important to develop and use distortion measures that are better
correlated with human auditory behaviour. A number of perceptually based
distortion measures have been developed [10, 11, 12]. Since the main aim is to
produce the highest speech quality possible at a given bit rate, it is essential
to use a distortion measure that correlates well with human perception.

3.4.2 Codebook Design

When designing an L level codebook, N dimensional space is partitioned into
L cells Ci, 1 ≤ i ≤ L, and each cell Ci is assigned a vector yi. The quantizer
chooses the codebook vector yi if x is in Ci. To optimize a quantizer, the
distortion in equation (3.41) is minimized over all L levels. There are two
necessary conditions for optimality. The first condition is that the optimum
quantizer finds a matching vector for every input vector by minimizing the
distortion criterion. That is, the quantizer chooses the codebook vector that
results in the minimum distortion with respect to x [13].

q(x) = yi if d[x, yi] ≤ d[ x, yj], j �= i, 1 ≤ j ≤ L. (3.48)

The second necessary condition for optimality is that each codebook vector
yi is optimized to give the minimum average distortion in cell Ci.

Di = E{[d(x, yi)| xεCi]} =
∫

xεCi

d[x, yi]p(x)dx (3.49)

where p(x) is the probability density function of vectors that result in the
quantized vector yi in cell (cluster) Ci.

Vector yi is called the centroid of the cell Ci. Optimization of the centroid
of a particular cell depends on the definition of the distortion measure. For
either the mean squared error or the weighted mean squared error, distortion
in each cell is minimized by,

yin = 1
Mi

Mi∑
k=1

xkn xεCi (3.50)

where yin {n = 1, 2, . . . , N} is the nth element of the centroid yi of the cluster Ci.
That is, yi is simply the sample mean of all the training vectors Mi contained
in cell Ci. One of the most popular methods for codebook design is an iterative
clustering algorithm known as the K-means algorithm [13] (also known as
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Lloyd’s algorithm [14]). The algorithm divides the set of training vectors into
L clusters Ci in such a way that the two necessary conditions for optimality
are satisfied.

K-means Algorithm

Given that m is the iteration index and Cim is the ith cluster at iteration m with
yim its centroid:

1. Initialization: Set m = 0 and choose a set of initial codebook vectors yi0 ,
1 ≤ i ≤ L.

2. Classification: Partition the set of training vectors xn, 1 ≤ n ≤ M, into the
clusters Ci by the nearest neighbour rule,

xεCim if d[x, yim] ≤ d[x, yjm] for all j �= i.

3. Codebook updating: m → m + 1. Update the codebook vector of every
cluster by computing the centroid of training vectors in each cluster.

4. Termination test: If the decrease in the overall distortion at iteration m
relative to m − 1 is below a certain threshold, stop; otherwise go to step 2.

Any other reasonable termination test may be used for step 4.
The above algorithm converges to a local optimum [14, 15]. Furthermore,

any such solution is in general not unique [16]. Global optimality may
be achieved approximately by initializing the codebook vectors to different
values and repeating the above algorithm for several sets of initializations and
then choosing the codebook that results in the minimum overall distortion.

3.4.3 Codebook Types

Vector quantization can offer substantial performance over scalar quantiza-
tion at very low bit-rates. However, these advantages are obtained at con-
siderable computational and storage costs. In order to compromise between
the computation and storage costs, and quantizer performance, a number
of codebook types have been developed. Some codebooks are precomputed
and do not change while being used; others may be updated during quanti-
zation. Here, we will briefly explain some of the widely-used codebooks in
speech coding.

Full Search Codebook

A full search codebook is one where during the quantization process each
input vector is compared against all of the candidate vectors in the codebook.
This process is called full search or exhaustive search. The computation and
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storage requirements of a typical full search codebook can be calculated as
follows. If each vector in a full search codebook is represented by B = RN bits
for transmission, then the number of vectors in the codebook is given by,

L = 2B = 2RN (3.51)

where N is the vector dimension in the codebook. In many applications,
computing the absolute value of the quantization error may not be necessary
as the main concern is to select the best performing vector. So a relative
performance rather than the absolute error is required. It is therefore possible
to compute the similarity rather than the difference between the input vector
and the codebook vectors. Therefore, assuming that the cross-correlation of
the input vector with each of the codebook candidates is computed and
the one resulting in the highest cross-correlation value is selected as the
quantized value of the input vector, the computation cost (assuming that
all the vectors are normalized, as differences in the energy levels will give
misleading cross-correlation values) is given by,

Comfs = N2RN multiply − add per input vector (3.52)

From this, we can also calculate the storage required for the codebook
vectors as,

Mfs = NL = N2B = N2RN locations (3.53)

It can be seen from the above expressions that the computation and storage
requirements of a full search codebook are exponentially related to the
number of bits in the codewords.

For a 16-bit fixed point processor the storage Mfs in bytes is given by 2×Mfs
and for a 32-bit floating point implementation, storage is 4 × Mfs. In general,
the storage is defined by the required number of words each corresponding to
a location. For example if N = 10 and R = 1 the number of codebook vectors
L will be 2NR = 1024. The number of multiply–add operations needed will be
N2RN = 10×1024 = 10 240 per input vector. Assuming a sampling frequency
of 8 kHz, the number of vectors per second will be 8000/10 = 800. Therefore,
the computation cost will be 800 × 10 240 = 8.192 × 106 multiply–add per
second. The storage requirement will be N2RN = 10 × 210 = 10 240 words
(locations).

Using the K-means algorithm, a full search codebook can be optimized
(trained) in two possible ways.

• Method 1: The process starts with two initial vectors which may be
chosen randomly or calculated as centroids of the two halves of the
large training database. The K-means algorithm is used to optimize the
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initial vectors. After the optimization of each of the two initial vectors
v1 = [v11, v12, v13, . . . , v1N] and v2 = [v21, v22, v23, . . . , v2N] with dimensions
N, each is split into two further vectors as,

v3 = v1 − ε1, v4 = v1 + ε1, v5 = v2 − ε2, v6 = v2 + ε2,

where ε1 = [e11, e12, e13, . . . , e1N] and ε2 = [e21, e22, e23, . . . , e2N]. In most
cases ε1 = ε2.
The vectors from the second stage are again optimized using the K-
means algorithm and split into further vectors and so on until the number
of optimized vectors is equal to the desired number. The optimization
process can also be terminated by comparing the overall quantization
noise performance of the codebook against a threshold.
During the optimization of a full search codebook using the above method,
it is important to check that all of the optimized vectors are in the densely-
populated areas and do not diverge into outer areas where their use will
be wasted. In such cases the perturbation vector ε is modified to change
the direction of the resultant vector.

• Method 2: The second method of optimization starts with randomly-
selected vectors from the training database. The number of initial vectors is
larger than the final desired number of vectors in the codebook. Using the K-
means algorithm these vectors are optimized. After the first optimization
process, the least used vectors are discarded from the codebook. The
remaining vectors are then optimized and the least used vectors are again
discarded from the optimized codebook. This process continues until the
final size of the codebook is reached. Here, the number of vectors discarded
at each stage and the number of optimization iterations may vary with the
application but the initial size of the codebook should at least be 1.5 times
the final size and the number of discarding stages should not be fewer
than five or six. The number of vectors discarded in each stage should be
reduced to increase the accuracy of optimization.

Binary Search Codebook

Binary search [17], known in the pattern recognition literature as hierarchical
clustering [14], is a method for partitioning space in such a way that the search
for the minimum distortion code-vector is proportional to log2 L rather than
L. In speech coding literature, binary search codebooks are also called tree
codebooks or tree search codebooks.

In a binary search codebook, N dimensional space is first divided into two
regions (using the K-means algorithm with two initial vectors), then each of
the two regions is further divided into two subregions, and so on, until the
space is divided into L regions or cells. Here, L is restricted to be a power
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Figure 3.11 Binary splitting into eight cells

of 2, L = 2B, where B is an integer number of bits. Each region is associated
with a centroid. Figure 3.11 shows the division of space into L = 8 cells. At
the first binary division v1 and v2 are calculated as the centroids of the two
halves of the total space to be covered. At the second binary division four
centroids are calculated as v3 to v6. The centroids of the regions after the
third binary division are the actual codebook vectors yi. An input vector x is
quantized, searching the tree along a path that gives the minimum distortion
at each node in the path. Again assuming N multiply–adds for each distortion
computation, the computation cost will be,

Combs = 2N log2 L = 2NB multiply − add per input vector (3.54)

At each stage, the input vector is compared against only two candidates.
This makes the computation cost a linear function of the number of bits in the
codewords.

The total storage cost, on the other hand, has gone up significantly,

Mbs = 2N(L − 1) locations (3.55)

or,

Mbs = N
B∑

i=1

2i locations (3.56)

A tree search codebook need not be a binary search codebook. In other
words the number of splitting stages may be less than the number of bits, B, in
the codeword. In this case, each vector from the previous stage may point to
more than two vectors in the current stage. This can be seen as a compromise
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between the extreme cases of low computation cost with high storage (binary
codebook) and high computation cost with low storage requirement (full
search codebook).

During the training of a binary codebook, at each stage of splitting using
the K-means algorithm and method 1, the resultant optimum codebooks are
stored. The database is also split into sections represented by each of the
resultant vectors. When the vectors are further split, each new pair of vectors
is optimized using the section of the database represented by their mother
vector. This process continues until the final size codebook is reached and
optimized.

Cascaded Codebooks

The major advantage of a binary search codebook is the substantial decrease
in its computational cost, relative to a full search codebook, with a relatively
small decrease in performance. However, the storage required for a binary
search codebook relative to a full search codebook is nearly doubled. Cascaded
vector quantization is a method intended to reduce storage as well as
computational costs [18, 13]. A two-stage cascaded vector quantization is
shown in Figure 3.12. Cascaded vector quantization consists of a sequence of
vector quantization stages, each operating on the error signal of the previous
stage. The input vector x is first quantized using a B1 bit L1 level vector
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x(n) x e

yi
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Figure 3.12 A two-stage cascaded vector quantizer
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quantizer and the resulting error signal is then used in the input to a B2 bit L2
level second vector quantizer. The sum of the two quantized vectors results
in the quantized value of the input vector x.

The computation and storage costs for a k -stage cascaded vector quantiza-
tion are respectively,

Comcc = N(L1 + L2 + . . . + Lk) multiply − add per input vector (3.57)

Mcc = N(L1 + L2 + . . . + Lk) locations (3.58)

Assuming L1 = 2B1 , L2 = 2B2 and Lk = 2Bk and the total number of bits per
input vector B = B1 + B2 . . . + Bk, we can see that the number of candidate
vectors searched in a cascaded codebook for each input vector is less than in
a full search codebook,

k∑
n=1

2Bn < 2B if B =
k∑

n=1

Bn and k > 1 (3.59)

We can also see that the storage of a cascaded codebook is less than that
required by a binary codebook,

N


 k∑

n=1

2Bn


 < N

( B∑
i=1

2i

)
for k > 1 (3.60)

Given the condition that the total number of bits used at various stages of a
cascaded codebook is B, both computation and storage requirements reduce
with an increase in the number of stages.

Split Codebooks

In all of the above codebook types an N dimensional input vector is directly
matched with N dimensional codebook entries. In a split vector quantization
scheme, an N dimensional input vector is first split into P parts where P > 1.
For each part of the split vector a separate codebook is used and each part may
be vector quantized independently of the other parts using Bp bits. Assuming
a vector is split into P equal parts and vector quantized using Bp bits for each
part, the computation and storage requirements can be calculated as follows:

Comss = N
P

(L1 + L2 + . . . + LP) multiply − add per input vector (3.61)

where Lp = 2Bp for p = 1, 2, . . . , P. Similarly, the storage is given by:

Mss = N
P

(L1 + L2 + . . . + LP) locations (3.62)
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The usefulness of a split vector quantization is in its flexibility in choosing
the dimension of each split part and in the allocation of the overall bits per
input vector to these parts according to the perceptual importance of the
vector elements contained in each split part.

Gain Shape Codebooks

In the earlier discussion of scalar quantization, it was mentioned that the
variance of the input speech signal affected the performance of the quantizer.
This is also true in the case of a vector quantizer. For example, if the input
signal variance is fixed at a certain value, all of the codebook entries will
have the same variance and differ only in the shape of vector elements.
In addition, if we assume that the same number of shape combinations is
repeated with another variance level at the input, the number of codebook
entries would have to be doubled to cover the vector shapes at two different
energy levels. Therefore, if the input vectors have a large dynamic range,
the required codebook size may be too large for practical implementation in
both computation and storage. This problem can be overcome by using the
same idea that is used in scalar quantization: each input vector is normalized
to a certain variance level (usually unity), and then its unit variance shape
is vector quantized using a shape codebook containing candidate vectors
with unity variance. The original variance of the input vector is separately
quantized and transmitted to the de-quantizer for correct scaling. This process
is called gain-shape vector quantization. A block diagram of a gain-shape
vector quantizer is shown in Figure 3.13. The gain of the input vector is
usually calculated and quantized using a scalar quantizer either before or
during the search of the shape codebook.

If the gain of the input vector is to be calculated and quantized before
finding its shape then the quantized gain is calculated as:

σ̂x = Q




√√√√ 1
N

N∑
i=1

x2
i


 (3.63)
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Figure 3.13 Gain-shape vector quantizer
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where

Q[.]

denotes quantization operation. The shape codebook is then searched and
the codebook vector which minimizes the expression,

Dk =
N∑

i=1

(xi − σ̂xyki)
2 k = 1, 2, . . . , L (3.64)

is chosen for transmission. This search scheme, called open loop, is not
optimum. Better performance can be achieved with a closed loop scheme
where the shape is first found and then the corresponding gain is quantized
before computing the final error. Here, we assume an optimum gain σk to be
used for each of the L shape codebook entries and compute the corresponding
distortion Dk as:

Dk =
N∑

i=1

(xi − σkyki)
2 k = 1, 2, . . . , L (3.65)

We wish to find a vector yk from the shape codebook with a gain value of σk
such that the corresponding distortion Dk is minimized. However, we have
two unknowns, namely, yk and σk. To find σk in terms of yk we differentiate
(3.65) with respect to σk and set it to zero for minimum error gain. This gives
the following σk for the codebook vector yk in relation to an input vector x,

σk =

N∑
i=1

(xiyki)

N∑
i=1

y2
ki

(3.66)

If we substitute (3.66) into (3.65) we can write the distortion Dk independently
of σk as,

Dk =
N∑

i=1

(xi)
2 −

( N∑
i=1

xiyki

)2

N∑
i=1

y2
ki

k = 1, 2, . . . , L (3.67)

The first term of Dk in equation (3.67) does not change with k, and
hence it is not computed during the search of the shape. The shape is
found by maximizing only the second term in (3.67). During the codebook
search process, the most likely shape values are found by maximizing the
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second term in equation (3.67). Then, corresponding gain values given by
(3.66) are computed and quantized. Finally, each shape vector scaled by its
quantized gain is compared with the input vector. This whole process can be
simplified with only a small increase in the quantization error by computing
the second part of equation (3.67) for all k to select the best shape vector
without quantizing its gain (assuming that gain quantization noise will not,
in general, render other vectors more favourable). In this case only one shape
vector is considered which does not require further comparisons after the
gain quantization process.

Adaptive Codebooks

The above discussed codebooks do not vary with time. Therefore, it is
extremely important to train these codebooks for optimal performance with
varying time and hence varying input vector characteristics. One way of
making a codebook track the input vector characteristics with time is to
make the codebook adaptive. As in the case of an adaptive scalar quantizer,
the adaptation of a codebook can be achieved using either forward or
backward schemes.

In a forward adaptive vector quantizer, the codebook is updated with
respect to the input vectors before the quantization process, which requires
some side information to be transmitted to the de-quantizer for compatible
adaptation necessary for correct recovery of the signal.

In the case of a backward adaptive quantizer, the codebook is updated by
the appropriately transformed most recent quantizer output vectors. In this
case, no side information is needed since the same update process can be
performed at the de-quantizer using the previously recovered vectors.

An adaptive codebook is usually used in cascade with other (generally,
fixed) codebooks, which provide the initial vectors to the adaptive codebook
as well as helping to speed up adaptation when significant signal variations
occur. An adaptive codebook in a two-stage cascaded vector quantizer is
shown in Figure 3.14. The first stage can be an adaptive codebook followed
by a fixed second stage codebook. The adaptive codebooks used in these
configurations are called predictor codebooks and the whole process is called
predictive or differential vector quantization.

3.4.4 Training, Testing and Codebook Robustness

An important part of the codebook design is the training process used to
populate the codebook. The training process simply optimizes a codebook
for given training data by calculating the centroids of the cells. Because the
K-means algorithm is not guaranteed to result in a codebook that is globally
optimum, it is often suggested that one repeats the algorithm with a number
of different initial sets of codebook vectors [19].
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Figure 3.14 Adaptive vector quantizer in a cascaded setup

After designing a codebook to match a given set of training data, it is
important to test the performance of that codebook on data that was not
used in the training. Testing only on the training data will always give better
performance than the codebook will actually give in practice.

The robustness of a codebook can be measured by measuring its perfor-
mance on data whose distribution is different from that of the training data.
In practice, one cannot usually predict all of the situations under which a
quantizer will be used and so the distribution of the actual data may be
different from that of the training data. There are two major types of variation
that affect the design and operational performance of a codebook: input signal
variability and digital transmission channel errors.

Signal variability can be further classified as speaker variability and envi-
ronmental variability. Speaker variability covers the changes in the input
signal due to a change in the speaker’s voice and may, for example, be due
to multiple speakers or the health conditions of each speaker. Environmental
variability, on the other hand, refers to the background noise level and type.
For a given bit rate and speaker, a speaker-dependent codebook performs
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better than a speaker-independent codebook. One method of maximizing the
performance of a codebook is to design a speaker-independent codebook
initially and then, as the system is used, have it adapt to the speech of new
speakers [20]. In such a system, automatic adaptation to the background noise
environment of the speaker is also possible.

As in the case of a scalar quantizer transmission channel errors affects
the performance of a vector quantizer. Channel errors translate directly into
distortion at the output, depending on the channel error rate. In general,
vector quantization systems tend to be less robust to random channel errors
than scalar quantizers, as a single bit error can cause all of the values
represented by that vector to be in error.

3.5 Summary

Many quantization schemes have been designed and deployed in practice.
With the advancement in the DSP technology which allowed more process-
ing power as well as storage, vector quantization techniques have become
widespread. Vector quantization schemes are very effective in reducing the
bit rate of the signal that is being quantized at the expense of increased imple-
mentation complexity. It is however crucial that the codebooks are trained
to match the incoming signal. As the training processes are usually applied
off-line they can be allowed to run for a long time so that the best codebooks
are obtained. In parallel with significant advances in the DSP technology, the
implementation cost of various codebooks has been optimized by developing
intelligent search algorithms as well as different types of codebook.
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4
Speech Signal Analysis
and Modelling

4.1 Introduction

The speech signal has been studied for various reasons and applications by
many researchers for many years. Some studies broke down the speech signal
into its smallest portions called phonemes. Here, we will describe the speech
signal in terms of its general characteristics. Speech signals can be classified
into voiced or unvoiced. A voiced speech segment is known by its relatively
high energy content but, more importantly, it contains periodicity which is
called the pitch of voiced speech. The unvoiced part of speech on the other
hand looks more like random noise with no periodicity. However, there are
some parts of speech that are neither voiced nor unvoiced, but a mixture of the
two. These are usually called the transition regions, where there is a change
either from voiced to unvoiced or unvoiced to voiced. The amplitude versus
time plots of typical voiced and unvoiced speech are shown in Figure 4.1
(Note: The unvoiced sound has been amplified five times).

In some speech coding schemes the frequency domain representation of the
speech signal is necessary. For this purpose, the short-time Fourier transform
is very useful. The short-time spectral transformation is also important to
look at a segment of the speech signal and determine features that are not
obvious from the time domain representation.

4.2 Short-Time Spectral Analysis

The short-time Fourier transform plays a fundamental role in frequency
domain analysis of the speech signal. It is used to represent the time-
varying properties of the speech waveform in the frequency domain. A

Digital Speech. A. Kondoz
 2004 John Wiley & Sons, Ltd ISBN 0-470-87007-9 (HB)
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Figure 4.1 Voiced and unvoiced speech waveforms (unvoiced amplified by 5)

useful definition of the time-dependent Fourier transform is [1],

Sk(ejω) =
∞∑

n=−∞
w(k − n)s(n)e−jωn (4.1)

where w(k − n) is a real window sequence used to isolate the portion of
the input signal that will be analysed at a particular time index, k. During
the analysis of speech signals, the shape and length of the window can
affect the frequency representation of speech (or any other signal). Various
types of window have been studied by researchers, producing window
shapes and characteristics suitable for various applications. In the following,
a brief description of windowing and its effects on the short-time Fourier
representation are given.

4.2.1 Role of Windows

The window, w(n), determines the portion of the speech signal that is to be
processed by zeroing out the signal outside the region of interest. The ideal
window frequency response has a very narrow main lobe which increases
the resolution and no side lobes (or frequency leakage). Since such a window
is not possible in practice, a compromise is usually selected for each specific
application. There are many possible windows (e.g. Rectangular, Bartlett,
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Hamming, Hanning, Blackman, Kaiser, etc.), some of which are defined as
follows:

Rectangular:

w(n) =
{

1 ; 0 ≤ n ≤ N − 1
0 ; otherwise (4.2)

Bartlett:

w(n) =




2n
N − 1

; 0 ≤ n ≤ N − 1
2

2 − 2n
N − 1

; N − 1
2

≤ n ≤ N − 1

0 ; otherwise

(4.3)

Hamming:

w(n) =

 0.54 − 0.46 cos

(
2π

n
N − 1

)
; 0 ≤ n ≤ N − 1

0 ; otherwise
(4.4)

Hanning:

w(n) =

 0.5 − 0.5 cos

(
2π

n
N − 1

)
; 0 ≤ n ≤ N − 1

0 ; otherwise
(4.5)

Blackman:

w(n)=

0.42 − 0.5 cos

(
2π

n
N − 1

)
+0.08 cos

(
2π

2n
N − 1

)
; 0 ≤ n ≤ N − 1

0 ; otherwise
(4.6)

Kaiser:

w(n) =




I0


β

√
1 −

(
2n

N − 1
− 1

)2



I0(β)
; 0 ≤ n ≤ N − 1

0 ; otherwise

(4.7)
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Figure 4.2 Time plots of various window functions

where I0 is a zero order Bessel function given by,

I0(β) =
∞∑

k=0

β
2

2k

(k!)2 (4.8)

The time and frequency domain shapes of these window functions are illus-
trated in Figures 4.2 and 4.3 respectively. As can be seen in Figure 4.3, the rect-
angular window has the highest frequency resolution, as it has the narrowest
main lobe, but the largest frequency leakage. On the other hand, the Black-
man window has the lowest resolution and the smallest frequency leakage.
The effect of these windows on the time-dependent Fourier representation of
speech can be illustrated by discussing the properties of two representative
windows, e.g. the rectangular window and the Hamming window.

The effects of using the Hamming and rectangular windows for speech
spectral analysis are shown in Figures 4.4, 4.5 and 4.6. In each figure, plots
(a) and (b) show the windowed signal s(n)w(k − n) and log magnitude of the
Fourier transform, Sk(ω), respectively, of the rectangular window. Similarly,
plots (c) and (d) show the windowed signal and log magnitude spectrum
of the Hamming window. In Figure 4.4, the results for a window duration
of 220 samples (27.5 ms for 8 kHz sampling rate) for a section of voiced
speech is shown. When compared, the periodicity of the signal is clearly seen
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Figure 4.3 Frequency responses of various window functions: (a) Rectangular, (b)
Bartlet, (c) Hamming, (d) Hanning, (e) Kaiser β = 7.8, and (f) Blackman

in both Figures 4.4b and 4.4d. However the harmonics peaks at multiples
of the fundamental frequency are narrower and sharper in the rectangular
windowed speech. Also noticeable in Figures 4.4b and 4.4d is the formant
(speech sample) structure which consists of a strong first formant peak at
about 500 Hz and three broader peaks at about 1350 Hz, 2300 Hz and 3400 Hz,
as well as a tendency to fall off at higher frequencies due to the low-pass
nature of the glottal pulse spectrum.

Although Figures 4.4b (rectangular window) and 4.4d (Hamming window)
show considerable overall similarity in terms of the pitch harmonics, formant
structure, and gross spectral shape, the pitch harmonics of Figure 4.4b are
sharper, due to the greater frequency resolution of the rectangular window
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Figure 4.4 Effects of window types on voiced speech with a 220 sample window
length: (a) and (b) show the time and frequency plots of speech using a rectangular
window, and (c) and (d) show the time and frequency plots of speech using a
Hamming window

relative to that produced by the Hamming window. However the high
frequency leakage produced by the larger side lobes makes rectangular
windowed speech look more noisy. This undesirable high frequency leakage
between adjacent harmonics tends to offset the benefits of the flat time domain
response (greater frequency resolution) of the rectangular window. As a
result, rectangular windows are not usually used in speech spectral analysis.

The effect of windowing unvoiced speech is shown in Figure 4.5. Again
the spectra are slowly varying with a series of sharp peaks and valleys.
The noisy appearance of the spectrum (for both windows) however, is due
to the random nature of unvoiced speech. Although the signal itself is
random, again the Hamming window produces a smoother spectrum than
the rectangular window.
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Figure 4.5 Effects of window types on unvoiced speech with a 220 sample window
length: (a) and (b) show the time and frequency plots of speech using a rectangular
window, and (c) and (d) show the time and frequency plots of speech using a
Hamming window

In order to see the effect of varying the window length, consider the example
in Figure 4.6 where a block of 40 sample (5 ms) long voiced speech is shown.
In this case, the time domain speech s(n) w(k − n) shown in Figures 4.6a and
4.6c do not show the signal periodicity accurately. This is also true for the
signal spectra shown in Figures 4.6b and 4.6d. When compared with Figure
4.4, the spectra of Figure 4.6 show only a few rather broad peaks at about
500, 1350, 2300, and 3400 Hz corresponding to the formants of the speech
contained within the window.

The effects of Hamming and rectangular windowing are still visible in
the spectra of Figures 4.6b and 4.6d. If windows of 5 ms duration were to
be positioned at the beginning and end of the 27.5 ms interval they would
show different spectral characteristics. Therefore, good temporal resolution
requires a short window while good frequency resolution of speech requires
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Figure 4.6 Effects of window types on voiced speech with a 40 sample window
length: (a) and (b) show the time and frequency plots of speech using a rectangular
window, and (c) and (d) show the time and frequency plots of speech using a
Hamming window

a longer window (with a narrower main lobe). Since the attenuation of
windows is essentially independent of the window duration, increasing the
length, N, simply decreases the bandwidth (main lobe). If N is small, e.g.
40 samples, the short-time energy will change very rapidly. If N is too large
on the other hand, e.g. on the order of several pitch periods, the short-time
energy will be averaged over a long time, and hence will not adequately
reflect the changing properties of the speech signal. This implies that there is
no satisfactory value N which can be chosen because the duration of a pitch
period varies from about 16 samples for a high pitched female or a child,
up to 160 samples for a very low pitched male voice. Therefore, in practice
a compromise is made by setting a suitable practical value for N between
120 and 240 samples (i.e. 15–30 ms duration). The size of the window is also
determined by practical factors. That is, when speech is analysed, some form
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of parametric information is extracted for transmission, which would require
a higher bit rate for a smaller window size (more frequent update rate). In
addition, during the analysis of speech, it is necessary to have a window
length which will represent the harmonic structure fairly accurately (i.e. to
have more than one or two pitch periods in each window).

4.3 Linear Predictive Modelling of Speech Signals

One of the most powerful speech analysis methods is the method of linear
prediction analysis [2, 3], or LPC analysis as it is commonly called. In LPC
analysis, the short-term correlations between speech samples (formants) are
modelled and removed by a very efficient short order filter. As LPC is a
short term prediction process, the latest speech coders also call it a short
term predictor (STP). Another equally powerful and related method is pitch
prediction [4, 5]. In pitch prediction, the long-term correlation of speech
samples are modelled. In the following sections these linear prediction
techniques will be examined and discussed.

4.3.1 Source Filter Model of Speech Production

Before parameters can be extracted from a speech signal, it is necessary to
have a theoretical model for our analysis. In speech processing, the source-
filter model of speech production is generally used as a means of analysis.
A simplified block diagram of this model [1] is shown in Figure 4.7. In
this model the driving input, or excitation signal, is modelled as either an
impulse train (for voiced speech) or random noise (for unvoiced speech). The
combined spectral contributions of the glottal flow, the vocal tract, and the
radiation of the lips are represented by a time-varying digital filter with a

LPC Coefficients

Output
Speech s(n)

x(n)

G
Random

Noise
Generator

Impulse
Train

Generator

Voiced/
Unvoiced

Switch

Pitch Period

r(n) Time
Varying
Filter

Figure 4.7 Block diagram of the simplified source-filter model of speech production
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steady state system function as given by,

H(z) = S(z)
X(z)

(4.9)

=
G


1 −

M∑
j=1

bjz−j




1 −
N∑

i=1

aiz−i

(4.10)

In (4.10), both poles and zeros exist in the transfer function. However, if the
order of the denominator is high enough, H(z) can be approximated by an
all-pole model as given by,

H(z) = G

1 −
p∑

j=1

ajz−j

= G
A(z)

(4.11)

where,

A(z) = 1 −
p∑

j=1

ajz−j (4.12)

Transforming equation (4.11) into the sampled time domain we obtain,

s(n) = Gx(n) +
p∑

j=1

ajs(n − j) (4.13)

Equation (4.13) is the well-known LPC difference equation which states
that the value of the present output, s(n), may be determined by summing the
present input, Gx(n), and a weighted sum of the past output samples. Hence,
in LPC analysis the problem can be stated as follows: given the measurements
of the signal, s(n), determine the parameters aj, j = 1, . . . , p which minimize
Gx(n). The resulting parameters are then assumed to be the parameters of
our model system transfer function H(z).

If αj represents the estimates of aj, the error or residual is given by,

e(n) = s(n) −
p∑

j=1

αjs(n − j) (4.14)
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It is now possible to determine the estimates by minimizing the mean squared
error, i.e.

E{e2(n)} = E




s(n) −

p∑
j=1

αjs(n − j)




2

 (4.15)

Setting the partial derivatives of the above with respect to αj to zero for
j = 1, . . . , p we get,

E




s(n) −

p∑
j=1

αjs(n − j)


 s(n − i)


 = 0, for i = 1, . . . , p (4.16)

That is, e(n) is orthogonal to s(n − i) for i = 1, . . . , p. Equation (4.16) can be
rearranged to give,

p∑
j=1

αjφn(i, j) = φn(i, 0), for i = 1, . . . , p (4.17)

where

φn(i, j) = E{s(n − i)s(n − j)} (4.18)

In the derivation of equation (4.17), a major assumption is that the signal
of our model is stationary. For speech, this is obviously untrue over a long
duration. However, for short segments of speech the assumption that it is
stationary is reasonable. Consequently, our expectations in equation (4.18)
are replaced by finite summations over a short length of speech samples.

In this section the equation for LPC analysis was derived from the Least
Mean Square approach. An equally valid result can be obtained using the
Maximum Likelihood method and other formulations [6]. An interesting
aspect of LPC analysis is that it applies not only to speech processing, but also
to a wide range of other fields such as control and radar. However, it is in
speech processing that LPC analysis has been perhaps the most successful, as
it allows very accurate representation of speech with a small set of parameters.

4.3.2 Solutions to LPC Analysis

As mentioned above, in order to model the time-varying nature of the speech
signal whilst staying within the constraint of our LPC analysis, i.e. a stationary
signal, it is necessary to limit our analysis to short blocks of speech. This is
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achieved by replacing the expectations of equation (4.17) by summations over
finite limits, i.e.

φn(i, j) = E{s(n − i)s(n − j)}
=

∑
m

sn(m − i)sn(m − j), for i = 1, . . . , p, j = 0, . . . , p (4.19)

There are two approaches to interpret equation (4.19), and these lead to two
methods, namely the Autocorrelation and Covariance methods [1, 7].

The Autocorrelation Method

For the Autocorrelation Method (AM), the waveform segment, sn(m), is
assumed to be zero outside the interval 0 ≤ m ≤ N − 1 where N is the length
of the sample sequence. Since for N ≤ m ≤ N + p we are trying to predict
zero sample values (which are not actually zero) the prediction error for these
samples will not be zero. Similarly, the beginning of the current frame will
be affected by the same inaccuracy incurred in the previous frame. The limits
for equation (4.19) can be expressed as,

φn(i, j) =
N−1−|(i−j)|∑

m=0

sn(m)sn(m + |i − j|), 1 ≤ i ≤ p, 0 ≤ j ≤ p (4.20)

Equation (4.20) can be reduced to the short-time autocorrelation function
given by,

φn(i, j) = Rn(| i − j |), for i = 1, . . . , p j = 0, . . . , p (4.21)

where,

Rn(j) =
N−1−j∑

m=0

sn(m)sn(m + j) (4.22)

Using the AM, equation (4.17) can be expressed as

p∑
j=1

αjRn(| i − j |) = Rn(i), 1 ≤ i ≤ p (4.23)

or in matrix form by,


Rn(0) Rn(1) . Rn(p − 1)

Rn(1) . . Rn(p − 2)
...

...
...

...

Rn(p − 1) . . Rn(0)







α1
α2
...

αp


 =




Rn(1)

Rn(2)
...

Rn(p)
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The above matrix has the property that it is symmetrical and all the
elements along a given diagonal are equal, i.e. it is a Toeplitz matrix.
Equation (4.23) can be solved by inversion of the p × p matrix, however
this is not usually performed as computational errors, such as finite pre-
cision, tend to accumulate. By exploiting the Toeplitz characteristic how-
ever, very efficient recursive procedures have been devised. The most
widely used is perhaps Durbin’s algorithm, which is a recursive process
as follows:

E(0)
n = Rn(0) (4.24)

ki =
[

Rn(i) −
i−1∑
j=1

αi−1
j Rn(i − j)

]/
E(i−1)

n 1 ≤ i ≤ p (4.25)

α
(i)
i = ki (4.26)

α
(i)
j = α

(i−1)

j − kiα
(i−1)

i−j 1 ≤ j ≤ i − 1 (4.27)

E(i)
n = (1 − k2

i )E
(i−1)
n (4.28)

After solving equations (4.25) to (4.28) recursively for i = 1, 2, . . . , p, the αj
are given by,

αj = α
(p)

j 1 ≤ j ≤ p (4.29)

Consider an example where the order, p = 2,
[

Rn(0) Rn(1)

Rn(1) Rn(0)

] [
α1
α2

]
=

[
Rn(1)

Rn(2)

]

Then, for i = 1,

E(0)
n = Rn(0)

k1 = Rn(1)

Rn(0)

α
(1)
1 = Rn(1)

Rn(0)

E(1)
n =

[
1 − R2

n(1)

R2
n(0)

]

Rn(0) = R2
n(0) − R2

n(1)

Rn(0)
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and for i = 2,

k2 = [Rn(2) − α
(1)
1 Rn(1)]/E(1)

n = Rn(2)Rn(0) − R2
n(1)

R2
n(0) − R2

n(1)

α
(2)
2 = k2

α
(2)
1 = α

(1)
1 − k2α

(1)
1 = Rn(1)Rn(0) − Rn(1)Rn(2)

R2
n(0) − R2

n(1)

and, from this,

α1 = α
(2)
1 , and α2 = α

(2)
2 .

The Covariance Method

For the Covariance Method (CM), the opposite approach to the AM is taken.
Here the interval over which the mean squared error is computed is fixed, i.e.

E =
N−1∑
m=0

e2
n(m) (4.30)

Equation (4.19) can be written as,

φn(i, j) =
N−1∑
m=0

sn(m − i)sn(m − j), 1 ≤ i ≤ p, 0 ≤ j ≤ p (4.31)

Changing the summation index,

φn(i, j) =
N−i−1∑
m=−i

sn(m)sn(m + i − j), 1 ≤ i ≤ p, 0 ≤ j ≤ p (4.32)

The expression given by equation (4.32) is slightly different to equation (4.20)
used in the AM as it requires the use of samples in the interval −p ≤ m ≤ N−1.
In effect, equation (4.31) is not a true autocorrelation function, but rather the
cross-correlation between two very similar but not identical, finite-length
sampled sequences. Using equation (4.31), our original LPC equation (4.17)
can be expressed as,

p∑
j=1

αjφn(i, j) = φn(i, 0), 1 ≤ i ≤ p (4.33)
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or in matrix form,


φn(1, 1) φn(1, 2) · φn(1, p)

φn(2, 1) · · φn(2, p)
...

...
...

...

φn(p, 1) · · φn(p, p)







α1
α2
...

αp


 =




φn(1, 0)

φn(2, 0)
...

φn(p, 0)




A solution to equation (4.33) is not as straightforward as for the equivalent
AM. This is because the covariance matrix, φn(i, j) = φn(j, i), but the p × p
matrix φ is not Toeplitz. However, efficient matrix inversion solutions such
as Cholesky decomposition can be applied where φ is expressed as [1]:

φ = VDVT (4.34)

V is a lower triangular matrix whose main diagonal elements are 1s and D
is a diagonal matrix. The elements of the V and D matrices are determined
from equation (4.34) as follows:

φn(i, j) =
j∑

m=1

VimdmVjm 1 ≤ j ≤ i − 1 (4.35)

or equivalently,

Vijdj = φn(i, j) −
j−1∑

m=1

VimdmVjm 1 ≤ j ≤ i − 1 (4.36)

and for the diagonal elements of D,

φn(i, i) =
i∑

m=1

VimdmVim (4.37)

or,

di = φn(i, i) −
i−1∑

m=1

V2
imdm for i ≥ 2 (4.38)

and,

d1 = φn(1, 1) (4.39)
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Lattice Methods

As shown in the previous sections, the solution to the LPC equation involves
two basic steps: (i) computation of a matrix of correlation values, φn(i, j),
and (ii) solution of a set of linear equations. Although the two steps are
already very efficient, another class of autocorrelation based methods, called
Lattice Methods (LM), have been developed which combine the two steps
to compute the LPC parameters. The basic idea behind the LM is that
knowledge of the forward and backward prediction errors are incorporated
during the calculation of the intermediate stages of the predictor parameters.
A major incentive for using the LM is that the computed parameters are
guaranteed to form a stable filter, a feature which neither the AM nor the
CM possess.

Consider the ith stage of Durbin’s algorithm where the set of coefficients
α

(i)
j , j = 1, 2, . . . , i are the optimum linear prediction coefficients of an ith order

filter. The inverse filter A(z) based on these i optimum coefficients will be,

A(i)(z) = 1 −
i∑

j=1

α
(i)
j z−j (4.40)

and the prediction error e(i)
n (m) (or for simplicity e(i)(m)) will be,

e(i)(m) = s(m) −
i∑

j=1

α
(i)
j s(m − j) (4.41)

In a z-transform notation, the above equation becomes,

E(i)(z) = A(i)(z)S(z) (4.42)

By combining (4.27) and (4.40) we have

A(i)(z) = 1 −
i−1∑
j=1

[α(i−1)

j − kiα
(i−1)

i−j ]z−j − α
(i)
i z−i (4.43)

but α
(i)
i = ki and hence,

A(i)(z) = 1 −
i−1∑
j=1

α
(i−1)

j z−j + ki

i−1∑
j=1

α
(i−1)

i−j z−j − kiz−i (4.44)

A(i)(z) = A(i−1)(z) − ki


z−i −

i−1∑
j=1

α
(i−1)

i−j z−j


 (4.45)
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Using (4.42) and (4.45),

E(i)(z) = A(i−1)(z)S(z) − ki


z−i −

i−1∑
j=1

α
(i−1)

i−j z−j


 S(z) (4.46)

The first term in equation (4.46) represents the prediction error for an (i − 1)th

order predictor employing the s(m − 1), s(m − 2), . . . , s(m − i + 1) samples to
predict s(m). Since the output of the filter

∑i−1
j=1 α

(i−1)

i−j z−j operating on S(z)
is αi−1sm−1 + αi−2sm−2 + . . . + α1sm−i+1 the second term of equation (4.46)
represents the backward prediction error of the same predictor attempting to
predict s(m − i) from the i samples s(m − i + j), j = 1, 2, 3, . . . , i that follow
s(m− i). The prediction error sequence e(i)

m can therefore be expressed in terms
of the forward and backward error sequences as,

e(i)(m) = e(i−1)(m) − kib(i−1)(m − 1) (4.47)

It can also be shown that the ith stage backward prediction error b(i)(m) can
be expressed as,

b(i)(m) = b(i−1)(m − 1) − kie(i−1)(m) (4.48)

Equations (4.47) and (4.48) provide the forward and backward prediction
error sequences for an ith order filter, in terms of the corresponding errors of
a (i − 1)th order filter. Note that

e(0)(m) = n(0)(m) = s(m) (4.49)

i.e, the zero order filter error equals the original input. Furthermore, the
ki parameters can be directly computed from the forward and backward
prediction errors as [8],

ki =

N−1∑
m=0

e(i−1)(m)b(i−1)(m − 1)

√√√√N−1∑
m=0

[e(i−1)(m)]2 ×
N−1∑
m=0

[b(i−1)(m − 1)]2

(4.50)

without using the prediction coefficients αj. From the above expression, it
is clear that the ki parameters represent the normalized cross-correlation
function between the forward and backward error sequences. It is for this
reason the ki parameters are known as the partial correlation (PARCOR)
coefficients [8].
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A popular lattice implementation of LPC analysis is that developed by
Burg [3]. Burg derived the ki parameters by minimizing the sum of the mean
squared forward and backward prediction errors, i.e.

Ê(i) =
N−1∑
m=0

[
(e(i)(m))2 + (b(i)(m))2

]
(4.51)

Ê(i) is differentiated with respect to ki and then is set to zero to give,

ki =
2

N−1∑
m=0

e(i−1)(m)b(i−1)(m − 1)

N−1∑
m=0

[e(i−1)(m)]2 +
N−1∑
m=0

[b(i−1)(m − 1)]2

(4.52)

It can also be shown [8] that the above equation results in ki parameters,
−1 ≤ ki ≤ 1. Burg’s algorithm operates as follows [3]:

1. Set e(0)(m) = s(m) = b(0)(m)

2. Compute k1 = α
(1)
1

3. Determine e(1)(m) and b(1)(m) using (4.47) and (4.48)
4. Set i = 2
5. Find ki = α

(i)
i using (4.52)

6. Find α
(i)
j for j = 1, 2, . . . , i − 1 using (4.27)

7. find e(i)(m) and b(i)(m) using (4.47) and (4.48)
8. Set i = i + 1
9. If i ≤ p go to step 5

10. End

4.3.3 Practical Implementation of the LPC Analysis

In the practical implementation of the LPC analysis, several important groups
of factors need to be addressed. The first group comprises the performance,
efficiency and stability factors, which are not too dissimilar for all three
methods, although the LM is preferred in real-time systems where guaranteed
stability is very important. However, with careful choice of windowing and
fine precision arithmetic, the AM and CM are equivalent to the LM for
stability. As quantization is usually applied to the coefficients, stability can
always be maintained to some extent. The second group involves the choice of
the filter order, p, and the analysis frame size, N. Speech is usually sampled at
8 kHz, thus giving a 4 kHz spectrum for analysis. Within the 4 kHz spectrum,
the maximum number of formants displayed is usually four, thus indicating
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Figure 4.8 LPC prediction gain versus LPC order

that the filter order needs to be at least eight. Usually, a 10-pole filter is used
so that formant resonances and general spectral shape is modelled accurately.
(However, much higher order filters have been used in elaborate schemes
such as the proposed ITU 16 kb/s G.728 standard [9], where a 50-order LPC
filter is used!). The LPC filter prediction gain versus the order of the filter is
shown in Figure 4.8 (note that the plot in this figure was obtained over a small
number of speech samples and it is only indicative, the LPC gain may vary
from sample to sample), and in Figure 4.9 the spectral envelope of various
filter orders is illustrated.

As for the frame size, the stationarity constraint applies, thus it is necessary
for us to choose a size which will conform to this. This usually implies
a frame size of 16–32 ms. Another related factor is the partitioning points
of the analysis frame. The position of the analysis window may affect
significantly the performance of the LPC analysis. In order to reduce the
effect of window positioning some common preprocessing stages include the
use of pre-emphasis of the signal prior to the LPC analysis, and the use of
overlapping windowed frames. Overlapping frames try to overcome some
of the block-edge effects of the frame-based LPC analysis. The amount of
overlap is typically around 10–20 % of the frame size. Interpolation of the
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Figure 4.11 (a) the original speech spectral envelope, (b) the original speech
spectrum and (c) the LPC residual spectrum

LPC coefficients from one frame to the next is also commonly applied to
smooth out transitional effects.

After the LPC inverse filtering, the resultant signal, e(n), should have a
much lower spectral variation than the original, s(n). This is illustrated in
Figures 4.10 and 4.11 where the time and frequency domain representation of
a typical frame of s(n) and e(n) are shown. Clearly, the error signal spectrum
is much flatter. This result is not surprising since LPC can be viewed as a
method of short-time spectrum estimation.

Also illustrated in Figure 4.11 is the frequency response or spectral envelope
of the LPC filter. A feature that can be observed is that the LPC spectral
envelope matches the signal spectrum much better in the spectral peaks than
the spectral valleys. This can be expected as our model transfer function,
H(z), has poles only to model the formant peaks and no zeros to model the
spectral valleys.

4.4 Pitch Prediction

4.4.1 Periodicity in Speech Signals

In the previous section, the ability of LPC analysis to remove the adjacent
or neighbouring sample correlations present in speech was described. As
observed, this was equivalent to removing the spectral envelope in the signal
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spectrum. However, as can be seen from Figure 4.11, after the LPC analysis
and inverse filtering there are still considerable variations in the spectrum,
i.e. it is far from white. Looking at the residual signal in Figure 4.10, it is
clear that long-term correlations, especially during voiced regions, still exist
between samples. The most evident of these are the sharp periodic pulses of
the excitation signal, which is hardly surprising as our original source-filter
model assumes this type of input signal. This also explains why the LPC
analysis, which models our vocal tract, cannot adequately remove them.

To remove the periodic structure of the residual or excitation signal, a
second stage of prediction is required. The objective of this second stage is
again to spectrally flatten our signal, i.e. to remove the periodic fine structure.
But unlike LPC analysis, it exploits correlation between speech samples that
are one or more ‘pitch’ periods away. For this reason, the pitch prediction
(filter) is usually called the long-term prediction (LTP) and the filter delay is
called the lag.

4.4.2 Pitch Predictor (Filter) Formulation

Before discussing methods of pitch or long-term prediction, it is perhaps
worth considering what our objectives are. Our aim is to model the long-term
correlation left in the speech residual signal after LPC inverse filtering (or in
the original speech signal) such that when the model parameters are used
in a filter, it will remove the long-term correlation as much as possible, or
spectrally flatten our signal. There are no obvious reasons why we must
use the LPC residual and not the original signal to model the long-term
correlation in the speech signal, as long as the effects of the formants are
taken into account during the determination of the long-term delay (pitch) in
our model. Indeed, in Atal’s original formulations in APC [10] (and in other
APC-related schemes), the pitch predictor was applied before the LPC. The
order in which they are combined is not too critical if the combination is
carefully optimized, e.g. block edge effects must be carefully compensated to
avoid ‘clicking’ type distortions. It is worth noting that the prediction gain of
the combined system will always be less than the sum of the gains in systems
employing the pitch and LPC filters in isolation. This is because in reality
the vocal tract and excitation are not completely separable as assumed in our
model, but are interconnected. The pitch filter can be interpreted as

P(z) = 1

1 −
I∑

j=−I

bjz−(j+T)

(4.53)

where T is the ‘pitch period’, and bj are the ‘pitch gain’ coefficients which
reflect the amount of correlation between the distant samples. Referring
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Figure 4.12 A typical pitch–LPC formulation model

to Figure 4.12, the combined analysis model can be represented by a time
domain difference equation,

s(n) = Gx(n) +
I∑

j=−I

bjr(n − T − j) +
p∑

j=1

ajs(n − j) (4.54)

where r(n) is the past excitation (LPC residual) signal. Following a similar
procedure to that of LPC analysis, our goal is to determine estimates (βj, τ , αj)

of the model parameters (bj, T, aj). Then, the prediction error is given by
(e(n) = Gx(n)),

e(n) = s(n) −
I∑

j=−I

βjr(n − τ − j) −
p∑

j=1

αjs(n − j) (4.55)

The mean squared error solution to equation (4.55) is not as straightforward
as for the LPC analysis due to the presence of the delay factor τ . In order to
overcome this hurdle two suboptimal approaches can be taken:

• One-Shot Optimization: If one assumes that the pitch spectrum infor-
mation of the residual r(n) is close to the pitch spectrum information of
the input speech s(n), then we can solve for αj as before and use the
residual from the LPC inverse filter to determine (βj, τ). Thus during the
first iteration, the LPC coefficients are estimated to minimize the interme-
diate residual energy. The pitch filter coefficients are then found using this
intermediate residual signal. This procedure can be considered to be near
optimal provided the long-term lag, τ , is greater than the analysis frame
size, i.e. τ > N.

• Iterative Sequential Approach: An analysis similar to the One-Shot method
described above is first performed. During subsequent iterations, the LPC
is re-optimized with the previously-determined pitch filter coefficients
[11]. Also, the pitch filter parameters are recalculated based on the newly-
formed intermediate residual. This iteration process can be continued until
a certain threshold is reached or for a fixed number of iterations.

For practical reasons, the one-shot method is usually preferred as it only
requires one iteration. In the iterative sequential method the main difficulty is
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in setting a suitable threshold for the termination of the iteration run. Overall,
it is substantially more complicated. However, the iterative method has been
reported to give a better prediction gain and better perceptual performance
[5]. This is usually achieved with a shifting of the LPC prediction gain to
the pitch prediction gain. Here, only the one-shot method is considered
as follows:

By removing the LPC effect in equation (4.55), we obtain,

e(n) = r(n) −
I∑

j=−I

βjr(n − τ − j) (4.56)

The estimates can now be determined by minimizing the mean squared
error, i.e.

E = E{e2(n)} = E




r(n) −

I∑
j=−I

βjr(n − τ − j)




2

 (4.57)

Replacing the expectation with finite summations, we get

E =
∑

m

e2
n(m) =

∑
m


rn(m) −

I∑
j=−I

βjrn(m − τ − j)




2

(4.58)

By setting ∂E/∂βj to zero, we obtain

I∑
j=−I

βjV(i, j) = R(τ + i) − I ≤ i ≤ I (4.59)

which can be written in matrix form as,


V(−I, −I) · · · V(−I, I)
...

...
...

V(I, −I) · · · V(I, I)







β−I
...

βI


 =




R(τ − I)
...

R(τ + I)




where,

R(τ + i) =
N−1∑
m=0

r(m − τ − i)r(m) (4.60)

V(i, j) =
N−1∑
m=0

r(m − τ − i)r(m − τ − j), − I ≤ i ≤ I, −I ≤ j ≤ I (4.61)
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The βj coefficients can now be solved by inverting V(i, j), e.g. using Cholesky
decomposition. In the above formulation, a ‘fix-up’ may be used to ensure
that the filter so formed is stable, e.g. by adding a small noise source into
the formulation, the matrix inversion to obtain [V(i, j)]−1 can be made more
reliably. However, a stable pitch filter is not a pre-condition for the pitch
analysis as rapid transitions are sometimes desired.

In the above formulation it is assumed that the pitch lag, τ , has already been
found and that βj = βj,τ . In order to determine τ , various pitch measurement
algorithms can be used. These include the Autocorrelation [12], average
magnitude difference function (AMDF) [13], Cepstrum [14] and Maximum
Likelihood [15]. These methods exhibit different characteristics especially
with a noisy input signal.

As the preceding analysis to determine βj has shown, pitch analysis is
performed on a block containing N samples. However, the size of our
window in which the block is taken is required to be considerably longer
than the analysis frame length, N. This is because our pitch value, τ , can
vary between a minimum, τmin, of around 16 samples to a maximum, τmax,
of around 160 samples. Therefore, our ideal analysis window is significantly
greater in length (N + τmax ≥ 200 samples) such that it contains more than
one complete pitch period.

For simplicity, consider a 1-tap pitch filter, i.e. (I = 0),

P1(z) = 1
1 − βz−τ

(4.62)

Thus,

β = R(τ )

V(0, 0)
(4.63)

=

N−1∑
m=0

r(m)r(m − τ)

N−1∑
m=0

r2(m − τ)

τmin ≤ τ ≤ τmax (4.64)

Substituting this into equation (4.58),

E =
N−1∑
m=0

r2(m) −

[N−1∑
m=0

r(m)r(m − τ)

]2

N−1∑
m=0

r2(m − τ)

(4.65)
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Figure 4.13 Time domain plots of original, LPC and pitch residuals

In order to determine the optimum τ , values of the lags are tested between
τmin and τmax, and the lag which minimizes the error E is the optimal value.
Having found τ , the gain β can be found. A plot of the LPC residual and the
signal after pitch inverse filtering is shown in Figure 4.13. It is clear that the
pitch residual (secondary excitation) no longer possesses the sharp pulse-like
characteristics of the residual, i.e. it looks much whiter than the LPC residual.
Similar formulations can also be given for multiple-tap pitch filters.

A typical plot of τ and β for a block of voiced, unvoiced and transitional
speech is shown in Figures 4.14 and 4.15. As can be observed, during voiced
regions (refer to the steady regions in Figure 4.14), β stays close to unity,
whereas during transitional regions β fluctuates significantly.

As well as a single-tap filter, the three-tap pitch filter given by equation (4.66)
is commonly used. Here I = 1 which forms the pitch prediction based on
three past samples at τ − 1, τ , τ + 1.

P3(z) = 1

1 −
1∑

j=−1

βjz−(j+τ )

(4.66)

A multiple-tap pitch filter tends to provide better performance than the
single-tap, but with increased complexity and larger capacity requirement
for the extra two filter taps β−1 and β1.
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Figure 4.14 Pitch lag variation with time
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4.5 Summary

Speech signal is a highly-correlated signal which possesses both short- and
long-term similarities. These similarities or redundancies can easily be mod-
elled by very compact LPC and pitch filter formulations. The redundancies
are usually removed at the analysis stage so as to reduce the bit rate required
for transmitting the remaining residual signal. During the analysis of speech
to obtain the short- and long-term filter coefficients, reasonable lengths of
samples are needed, which introduces some delay into the analysis process.
A typical block length of samples required for good analysis performance
is around 20–30 ms which corresponds to 160–240 samples at 8 kHz sam-
pling. The assumption is that the samples contained in the block do not vary
significantly and hence can be analysed reasonable accurately. A 10th-order
short-term LPC filter updated every 20 ms and a single-order long-term pitch
filter updated every 5 ms give good performance.
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5
Efficient LPC Quantization
Methods

5.1 Introduction

Linear predictive coding is a very powerful analysis technique and is used
in many speech processing systems. In speech coding and synthesis systems,
the analysis techniques for obtaining the LP coefficients (LPC), e.g. autocorre-
lation, covariance, lattice, and the quantization of the LPC are very important
aspects of LPC analysis as minimization of coding capacity is the ultimate
aim in these applications. The main objective of the quantization procedure
is to code the LPC with as few bits as possible without introducing audible
spectral distortion. Whilst perfect reconstruction is not possible, subjective
transparency is achievable. Quantization of the LPC is usually performed by
transforming the LPC to other forms which enables predictive coding and
allows an easy filter stability check. The most popular LPC transformation is
the use of Line Spectrum Pairs (LSP), related to the Line Spectral Frequency
(LSF) representation of the LPC [1, 2]. In this chapter, the LSF representation
of the LPC will be described, followed by various LPC quantization schemes
using LSF transformation.

5.2 Alternative Representation of LPC

As was shown in Chapter 4, the LPC filter is given by

H(z) = 1

1 +
p∑

i=1

αiz−i

(5.1)

where p is the order of LPC filter.

Digital Speech. A. Kondoz
 2004 John Wiley & Sons, Ltd ISBN 0-470-87007-9 (HB)



88 Efficient LPC Quantization Methods

The αi coefficients are the direct form of LPC. The filter H(z) is stable if it
is minimum phase, i.e. all the roots of the equation (5.1) are within the unit
circle. If αi were quantized directly, the stability of the filter H(z) is not easily
guaranteed as the roots of equation (5.1) are not usually computed to check
for stability. Thus a more useful parameter, the PARCOR (partial correlation)
coefficients, ki, are usually used for quantization. The distribution plots of
PARCOR parameters for a 10th-order LPC filter are shown in Figure 5.1. The
forward and backward transformation are given below [3].

LPC to PARCOR:

ap
j = αj 1 ≤ j ≤ p

For i = p, p − 1, . . . , 1 (5.2)

ai−1
j = (ai

j + ai
ia

i
i−j)/(1 − k2

i ), 1 ≤ j ≤ i − 1

ki−1 = ai−1
i−1

PARCOR to LPC:

For i = 1, 2, . . . , p

ai
i = ki (5.3)

ai
j = ai−1

j − kia
i−1
i−j , 1 ≤ j ≤ i − 1

αj = ap
j , 1 ≤ j ≤ p

The LPC filter is stable if |ki| ≤ 1.0. Although ki can easily be checked for
stability, they are not suitable for quantization because they possess a nonflat
spectral sensitivity, i.e. values of ki near unity require more quantization
accuracy than those away from unity. Thus, nonlinear functions of ki are
required, with the Log-Area Ratio (LAR) and inverse sine (IS) functions
being the most widely used [4]. For LAR and IS, the forward and backward
transformation are given below:

PARCOR to LAR:

gi = log
(

1 − ki

1 + ki

)
, 1 ≤ i ≤ p (5.4)

LAR to PARCOR:

ki =
(

1 − 10gi

1 + 10gi

)
, 1 ≤ i ≤ p (5.5)
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Figure 5.1 The distribution plots of PARCOR LPC
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PARCOR to IS:

si = sin−1(ki), 1 ≤ i ≤ p (5.6)

IS to PARCOR:

ki = sin(si), 1 ≤ i ≤ p (5.7)

The distribution plots of LAR and IS parameters for a 10th order LPC filter
are shown in Figures 5.2 and 5.3 respectively.

Although it is possible to design good performance quantizers using the
LAR and IS representations, the frame-to-frame correlation of LPC (which
evidently exists for slowly-varying parts of speech) is not highlighted in
either LAR or IS representations, i.e. it is difficult to predict frame-to-frame
parameter values. Thus, not all the redundancies are fully exploitable.

In view of the shortcomings of LAR and IS representation, the line spectral
pairs (LSP) or frequencies (LSF) representations of LPC have been investigated
[2]. The concept of LSF was introduced by Itakura, but it remained almost
dormant until its usefulness was re-examined in the latest speech coding
standards. LSFs encode speech spectral information in the frequency domain
and have been found to be capable of improving the coding efficiency by
more than other transformation techniques, especially when incorporated into
predictive quantization schemes. For use in conventional scalar quantization,
it has been shown by Cox [4] and others that LSF is not significantly better
than LAR or IS, but it does have other properties which are desirable, as
will be discussed in later sections. The fact that LSF representation is in the
frequency domain means that quantization can easily incorporate spectral
features known to be important in perceiving speech signals. In addition,
LSFs lend themselves to frame-to-frame interpolation with smooth spectral
changes because of their intimate relationship with format frequencies.

5.3 LPC to LSF Transformation

An all-pole digital filter for speech synthesis, H(z), can be derived from linear
predictive analysis and is given by

H(z) = 1/Ap(z) (5.8)

where,

Ap(z) = 1 +
p∑

k=1

αkz−k (5.9)
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Figure 5.2 The distribution plots of LAR parameters
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Figure 5.3 The distribution plots of inverse sine parameters (horizontal axis is
in radians)
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Figure 5.4 PARCOR structure of LPC synthesis

The PARCOR representation is an equivalent version and its digital form is
as shown in Figure 5.4, where,

Ap−1(z) = Ap(z) + kpBp−1(z) (5.10)

Bp(z) = z−1[Bp−1(z) − kpAp−1(z)] (5.11)

where A0(z) = 1 and B0(z) = z−1, and

Bp(z) = z−(p+1)Ap(z−1) (5.12)

The PARCOR representation as shown in Figure 5.4 is stable for |ki| < 1 for
all i. In Figure 5.4, the transfer function, TF, from X to Y is Hp(z), and from Y
to Z is Bp(z), therefore the TF from X to Z is given by equation (5.13) where
Rp(z) is the ratio filter,

Rp = Bp(z)/Ap(z) (5.13)

The PARCOR synthesis process can be viewed as sound wave propagation
through a lossless acoustic tube, consisting of p sections of equal length but
nonuniform cross sections. The acoustic tube is open at the terminal corre-
sponding to the lips and each section is numbered from the lips. Mismatching
between the adjacent sections p and (p + 1) causes wave propagation reflec-
tion. The reflection coefficients are equal to the pth PARCOR coefficient kp.
Section p + 1, which corresponds to the glottis, is terminated by a matched
impedance. The excitation signal applied to the glottis drives the acoustic
tube.

In PARCOR analysis, the boundary condition at the glottis is impedance-
matched. Now consider a pair of artificial boundary conditions where the
acoustic tube is completely closed or open at the glottis. These conditions
correspond to kp+1 = 1 and kp+1 = −1, a pair of extreme values for the



94 Efficient LPC Quantization Methods

artificially-extended PARCOR coefficients which correspond to perfectly loss-
less tubes. The value Q of each resonance becomes infinite and the spectrum
of distributed energy is concentrated in several line spectra. The feedback
conditions for kp+1 = −1 correspond to a perfect closure at the input (glottis)
and for kp+1 = 1 correspond to an opening to infinite free space. To derive
the line spectra or line spectrum frequencies (LSF), we proceed as follows
(it is assumed that the PARCOR filter is stable and the order is even). Ap(z)
may be decomposed to a set of two transfer functions, one having an even
symmetry and the other having an odd symmetry. This can be accomplished
by taking a difference and sum between Ap(z) and its conjugate functions.
Hence the transfer functions with kp+1 = ±1 are denoted by Pp+1(z) and
Qp+1(z).

For kp+1 = 1, Pp+1(z) = Ap(z) − Bp(z) (Difference filter)

For kp+1 = −1, Qp+1(z) = Ap(z) + Bp(z) (Sum filter)
(5.14)

⇒ Ap(z) = 1
2

[Pp+1(z) + Qp+1(z)] (5.15)

Substituting equation (5.12) into (5.14),

Pp+1(z) = Ap(z) − z−(p+1)Ap(z−1) (5.16)

= 1 + (α1 − αp)z−1 + . . . + (αp − α1)z−p − z−(p+1)

= z−(p+1)

p+1∏
i=0

(z + ai)

where ai is generally complex. Similarly,

Qp+1(z) = z−(p+1)

p+1∏
i=0

(z + bi) (5.17)

As we know that two roots exist (kp+1 = ±1), the order of Pp+1(z) and Qp+1(z)
can be reduced, i.e.

P′(z) = Pp+1(z)
(1 − z)

(5.18)

= A0zp + A1z(p−1) + . . . + Ap
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and,

Q′(z) = Qp+1(z)
(1 + z)

(5.19)

= B0zp + B1z(p−1) + . . . + Bp

where,

A0 = 1 (5.20)

B0 = 1 (5.21)

Ak = (αk − αp+1−k) + Ak−1 (5.22)

Bk = (αk + αp+1−k) − Bk−1 (5.23)

for k = 1, . . . , p

The LSFs are the angular positions of the roots of P′(z) and Q′(z) with
0 ≤ ωi ≤ π . The roots occur in complex conjugate pairs and have the
following properties:

1. All roots of P′(z) and Q′(z) lie on the unit circle.
2. The roots of Q′(z) and P′(z) alternate with each other on the unit circle, i.e.

the following is always satisfied, 0 ≤ ωq,0 < ωp,0 < ωq,1 < ωp,1 . . . , ≤ π .

5.3.1 Complex Root Method

The roots of equation (5.18) can be solved using complex arithmetic. This
will give complex conjugate roots on the unit circle and the frequencies are
then given by the inverse tangent of the roots. This method is obviously very
complex as it involves solving two polynomials of pth order using complex
arithmetic. Also, as it uses an iteration procedure for determining the roots,
the time required for this method is not deterministic which is undesirable
for real-time implementations.

5.3.2 Real Root Method

As the coefficients of P′(z) and Q′(z) are symmetrical the order of equation
(5.18) can be reduced to p/2.

P′(z) = A0zp + Ap−1
1 + . . . + A1z1 + A0 (5.24)

= zp/2[A0(zp/2 + z−p/2) + A1(z(p/2−1) + z−(p/2−1)) + . . . + Ap/2]
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Similarly,

Q′(z) = B0zp + Bp−1
1 + . . . + B1z1 + B0 (5.25)

= zp/2[B0(zp/2 + z−p/2) + B1(z(p/2−1) + z−(p/2−1)) + . . . + Bp/2]

As all roots are on the unit circle, we can evaluate equation (5.24) on the unit
circle only.

Let z = ejω then z1 + z−1 = 2 cos(ω) (5.26)

P′(z) = 2e jpω/2
[

A0 cos
(p

2
ω

)
+ A1 cos

(
p − 2

2
ω

)
+ . . . + 1

2
Ap/2

]
(5.27)

Q′(z) = 2e jpω/2
[

B0 cos
(p

2
ω

)
+ B1 cos

(
p − 2

2
ω

)
+ . . . + 1

2
Bp/2

]
(5.28)

By making the substitution x = cos(ω), equations (5.27) and (5.28) can be
solved for x. For example, with p = 10, the following is obtained:

P′
10(x) = 16A0x5 + 8A1x4 + (4A2 − 20A0)x3 + (2A3 − 8A1)x2

+(5A0 − 3A2 + A4)x + (A1 − A3 + 0.5A5) (5.29)

and similarly,

Q′
10(x) = 16B0x5 + 8B1x4 + (4B2 − 20B0)x3 + (2B3 − 8B1)x2

+(5B0 − 3B2 + B4)x + (B1 − B3 + 0.5B5) (5.30)

The LSFs are then given by:

LSF(i) = cos−1(xi)

2πT
, for 1 ≤ i ≤ p (5.31)

The distribution plots of LSFs for a 10th order LPC filter are shown in
Figure 5.5 and a typical LSF plot is shown in Figure 5.6, where the first half
is active speech and the second half is silence. Notice that during silent
regions the frequencies are evenly spread between 0 and fs/2 where fs is the
sampling frequency. This method is obviously considerably simpler than the
complex root method, but it still suffers from indeterministic computation
time. However, a faster root search can be accomplished by noting that the
change from one LSF vector to the next is not too drastic in most cases. Thus
by using the previous values as the starting estimates of the roots, the number
of iterations required per root is considerably reduced, e.g. typically from 5
to 10 iterations.
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Figure 5.5 The distribution plots of LSF parameters (horizontal axis is in Hz)
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Figure 5.6 Typical LSF trajectories for voiced and unvoiced speech

5.3.3 Ratio Filter Method

The expression for the ratio filter is given by equation (5.32). The phase
response, φ(kfs), of the ratio filter is given by equation (5.34). The frequency
corresponding to a multiple of −π and −2π radians are the lower and upper
line spectra of the LSF [5].

Rp(z) = z−(n+1)Ap(z−1)

Ap(z)
(5.32)

where,

Ap(z) = 1 −
n∑

i=1

βiz−i (5.33)
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and βi = −αi where αi are the LPC.

φ(kfs) = −(n + 1)(2πTkfs)

−2 tan−1




n∑
i=1

βi sin(2π iTkfs)

1 −
n∑

i=1

βi cos(2π iTkfs)




(5.34)

where T is the sampling period, fs is the frequency step, and k = 1, 2, 3, . . . ,
Kmax.

By performing a Discrete Fourier Transform (DFT) on the coefficient
sequence, Ak and Bk, ωi can be solved as the zero-valued frequencies of a
power spectrum. A typical plot, showing the partial minima of the spectrum,
is shown in Figure 5.7.

If the spectrum were to be obtained directly, it would involve an enormous
number of computations. Fortunately, a number of computation reductions
can be made. The aim is to find the partial minima of the response, thus
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Figure 5.7 Zero frequency plot for one frame of the DFT–LSF method
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the absolute values of the response are not critical; only the locations of the
minima are vital. The spectrum is given by equation (5.35) where P is the
spectrum, W is the L × L DFT kernel, and S is the input sequence. L is the size
of the transform. 

 −
P
−


 =


 − − −

− W −
− − −





 −

S
−


 (5.35)

As the input sequences Ak and Bk are real, we can move them from the start
to the middle of S with zeros elsewhere. This will produce an even spectrum
which means that only fs/2 terms need to be computed. Also, the spectrum
will be real, thus only the cosine-terms in the kernel require computing. Since
the sequences Ak and Bk are even, only half of the values need to be computed,
i.e. A0 to Ap/2−1 and 1/2Ap/2, and similarly for Bk. With these savings the
number of multiply–adds is reduced to p/2 + 1 per spectrum point. The
cosine terms are fixed for a particular transform size, therefore they can be
pre-computed and stored in a lookup table.

Once the spectrum is found the partial minima need to be located and this
involves computationally expensive comparisons. As the LSF are naturally
ordered, i.e. the frequencies alternate between Q(z) and P(z), they can be
located in an efficient manner. The first Q(z) LSF starts at the origin, then the
first P(z) LSF starts from the previous Q(z) LSF location. Once the first P(z)
LSF is found the second Q(z) LSF is located, starting from the previous P(z)
location. This alternation is repeated until all LSFs are found. Thus in total
only one pass of the frequency range is made instead of two.

5.3.4 Chebyshev Series Method

Another step-wise method which requires no prior storage or calculation of
trigonometric functions is the Chebyshev Series Method [6]. By expanding
equation (5.24) with the Chebyshev polynomial set, the mapping x = cos(ω)

maps the upper semicircle in the z-plane to the real interval [+1, −1]. There-
fore, all the roots xi lie between −1 and +1, with the root corresponding to
the lowest frequency LSF being the one nearest to +1. Thus the basic task
is similar to the DFT method, i.e. we isolate the roots of P′(z) and Q′(z)
by searching incrementally for intervals in which the sign changes which is
refined by successive bisections of the root interval.

5.3.5 Adaptive Sequential LMS Method

All of the previously described methods for deriving the LSF parameters
required the intermediate step of calculating the LPC before proceeding
to the computation of the LSF parameters. However, using a Least Mean
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Squares adaptive method [7] the LSF parameters can be computed directly
from the speech samples themselves. The LMS algorithm aims to minimize
the mean-square value of the PARCOR lattice filter output, and thus flatten
its frequency spectrum by a ‘noisy steepest-descent’ procedure which uses
the squared value of a single output sample to approximate the mean-square
value. Thus the algorithm begins the sequential estimation using evenly-
distributed estimated LSFs and, as each sample of speech is processed, a
new LSF vector estimate is obtained. Depending on the adaptation rate
required, the algorithm converges to the correct value after around 100
samples of input.

The LMS method is very attractive because it requires no LPC analysis.
However, as it is a ‘learning’ type algorithm, it is susceptible to ‘out-lier’
input samples, i.e. samples which are different in character to the majority of
speech samples. The effect of these unusual inputs is to throw the algorithm
off its convergence curve; if this occurs at the end of a frame there will be no
time for correction before the final values are used.

5.4 LSF to LPC Transformation

There are two methods for the inverse transformation, neither of which
is as computationally intensive as the forward transformation. The two
methods are equivalent but the LPC synthesis method is perhaps more easily
visualized.

5.4.1 Direct Expansion Method

In all of the LPC to LSF methods above the aim is to find the roots of
equation (5.16), i.e. ai and bi. Having found these roots using any of the
methods, the LPC, αi, can be simply found by multiplying out the product
terms of equation (5.16), i.e.

Pp+1(z) = z−(p+1)[P′(z)(1 − z)] (5.36)

= z−(p+1)[(1 − z)(z − r0)(z − r∗
0) . . . (z − rp/2)(z − r∗

p/2]

= z−(p+1)[(1 − z)(z2 − 2u0z + t0) . . . (z2 − 2up/2z + tp/2)]

= S0 + S1z−1 + . . . + Spz−p + Sp+1z−(p+1) (5.37)

Similarly,

Qp+1(z) = T0 + T1z−1 + . . . + Tpz−p + Tp+1z−(p+1) (5.38)
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where,

ri = ui + jvi and r∗
i = ui − jvi

⇒ ri + r∗
i = 2ui and ri × r∗

i = u2
i + v2

i = ti
(5.39)

Equating the terms of equations (5.37) and (5.16),

S0 = 1 (5.40)

T0 = 1 (5.41)

Sp+1 = −1 (5.42)

Tp+1 = 1 (5.43)

αi = 1
2
(Ti + Si) (5.44)

αp+1−i = 1
2
(Ti − Si) (5.45)

for i = 1, . . . , P/2

5.4.2 LPC Synthesis Filter Method

An LPC synthesis can be constructed directly using the LSF coefficients. The
filter is derived from the following,

H(z) = 1/Ap(z) = 1/[1 + (Ap(z) − 1)] (5.46)

= 1
1 + 1/2[(Pp+1(z) − 1) + (Qp+1(z) − 1)]

i.e.

Ap(z) − 1 = 1/2[(Pp+1(z) − 1) + (Qp+1(z) − 1)] (5.47)

= 1/2


(1 − z)

p/2∏
i=1

(1 − 2 cos ωiz + z2) − 1

+(1 + z)
p/2∏
i=1

(1 − 2 cos θiz + z2) − 1


 (5.48)

Let ui = −2 cos ωi, vi = −2 cos θi
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where wi and θi are the even and odd number LSFs given by LSF(i)2πT.

Ap(z) − 1 = 1/2




p/2∏
i=1

(1 + uiz + z2) (5.49)

−z
p/2∏
i=1

(1 + uiz + z2) − 1




+1/2




p/2∏
i=1

(1 + viz + z2)

−z
p/2∏
i=1

(1 + viz + z2) − 1


 (5.50)

= z/2


(u1 + z) −

p/2∏
j=1

(1 + ujz + z2)

+
p/2−1∑

i=1

(ui+1 + z)
i∏

j=1

(1 + ujz + z2)




+ z/2


(v1 + z) −

p/2∏
j=1

(1 + vjz + z2)

+
p/2−1∑

i=1

(vi+1 + z)
i∏

j=1

(1 + vjz + z2)


 (5.51)

An 8th order inverse filter is shown in Figure 5.8. The LPC are simply the
impulse response of the filter.

5.5 Properties of LSFs

A very important LSF property, as mentioned earlier, is the natural ordering
of its parameters. This ordering property was already used to good effect
in speeding up the LPC to LSF transformation procedure. The ordering
property indicates that the LSFs within a frame, and from frame to frame, are
correlated. In order to illustrate the intra-frame correlation property of the
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Figure 5.8 Practical scheme of LSF inverse filter (ci = −2 cos ωi, for even i, and
ci = −2 cos θi, for odd i)

Table 5.1 Experimental conditions for
estimating � and �

Sampling Frequency 8 kHz

Frame Update 10 ms

Window 20 ms Hamming

Analysis order 10

Number of Frames 6000

LSF vector, ω, Table 5.2 presents the matrix � = {φi,j} where,

φi,j = ωn,i × ωn,j, i = 1, 2, . . . , p, j = 1, 2, . . . , p (5.52)

for the experimental conditions according to Table 5.1. The relatively high
correlation between neighbouring LSFs is clear. Similarly, to illustrate the
inter-frame correlation of the LSF parameters, Table 5.3 presents the matrix
� = {φi,k} where,

φi,k = ωn,i × ωn−k,i, i = 1, 2, . . . , p, k = 1, 2, . . . , p (5.53)

From Tables 5.2 and 5.3, it is clear that there is a strong correlation between
the LSFs of adjacent frames as well as neighbouring parameters in the same
frame. Therefore, any compression algorithm that effectively makes use of
these correlations can result in improved performance over those that do not
incorporate this correlation property.
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Table 5.2 Intra-frame correlation coefficients �

j

i 1 2 3 4 5 6 7 8 9 10

1 1.00 0.65 −0.30 −0.35 −0.41 −0.49 −0.39 −0.40 −0.36 −0.20

2 0.65 1.00 0.28 0.11 −0.07 −0.13 −0.07 −0.05 −0.06 −0.07

3 −0.30 0.28 1.00 0.72 0.50 0.53 0.46 0.54 0.39 0.28

4 −0.35 0.11 0.72 1.00 0.72 0.62 0.46 0.42 0.45 0.21

5 −0.41 −0.07 0.50 0.72 1.00 0.79 0.52 0.47 0.34 0.26

6 −0.49 −0.13 0.53 0.62 0.79 1.00 0.71 0.61 0.49 0.28

7 −0.39 −0.07 0.46 0.46 0.52 0.71 1.00 0.73 0.58 0.41

8 −0.40 −0.05 0.54 0.42 0.47 0.61 0.73 1.00 0.58 0.46

9 −0.36 −0.06 0.39 0.45 0.34 0.49 0.58 0.58 1.00 0.41

10 −0.20 −0.07 0.28 0.21 0.26 0.28 0.41 0.46 0.41 1.00

Table 5.3 Inter-frame correlation coefficients �

k

i 1 2 3 4 5 6 7 8 9 10

1 0.93 0.84 0.76 0.68 0.61 0.55 0.50 0.45 0.41 0.36

2 0.89 0.75 0.63 0.54 0.46 0.38 0.32 0.27 0.22 0.18

3 0.92 0.80 0.70 0.60 0.51 0.43 0.36 0.30 0.24 0.20

4 0.92 0.82 0.73 0.64 0.56 0.49 0.43 0.37 0.32 0.27

5 0.95 0.88 0.81 0.74 0.67 0.61 0.54 0.48 0.43 0.37

6 0.94 0.85 0.77 0.69 0.62 0.56 0.49 0.44 0.38 0.33

7 0.93 0.83 0.75 0.66 0.58 0.50 0.43 0.37 0.31 0.26

8 0.91 0.81 0.72 0.64 0.56 0.49 0.43 0.37 0.32 0.28

9 0.87 0.73 0.64 0.55 0.48 0.42 0.37 0.33 0.29 0.25

10 0.82 0.66 0.57 0.50 0.44 0.38 0.34 0.30 0.27 0.24

5.6 LSF Quantization

Most modern speech coders make use of LPC modelling during speech
processing. Although some coders use a backward-adaptive LPC filter [8],
most speech coders extract the LPC parameters from the input speech at
regular intervals, transform them into the LSF domain, and quantize them
for transmission to the decoder.

Low distortion LSF quantization is essential for the overall quality of
decoded speech, and the number of bits allocated to LSFs usually takes a
significant proportion of the overall bit rate, up to over 50 % for very low
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bit-rate speech coders. Therefore the overall success of a given speech coding
scheme depends greatly on the quality of the LSF quantizer used.

Scalar schemes can be used, as they present very low complexity and
storage requirements. However they cannot make use of the high intra-frame
correlation exhibited by LSF vectors and, hence, they are very rarely used due
to their poor performance. Vector quantization (VQ) schemes can be used
to exploit intra-frame correlations. VQ exploits the redundancies in the LSF
vector well and can provide high quality quantization for a relatively limited
number of bits per frame of speech. As a result, they are widely used in
modern speech coders. The following sections investigate the use of VQ for
LSF quantization and ways of maximizing the performance of such schemes
in several coder configurations.

5.6.1 Distortion Measures

In order to achieve good performance quantization of LSF parameters, it is
necessary to have a way of linking the quantization error to the distortion
in perceptual quality. Due to the complex relationship that exists between a
set of LSF coefficients and the frequency response of the corresponding LPC
filter, using a Mean-Square Error (MSE) measurement may not lead to an
optimal performance of the quantizer.

A widely-used technique for computing the distortion that exists between
the original set of LSFs and their quantized version is the Log Spectral
Distortion measure. However a Weighted Mean-Square Error (WMSE) mea-
surement may also lead to good results if an appropriate weighting function
is used.

5.6.2 Spectral Distortion

The mean square log spectral distortion, which will be referred to simply as
spectral distortion (SD), is defined as:

sd = 1
π

∫ π

0
[10 log10S(w) − 10 log10S′(w)]2 (5.54)

where S(w) and S′(w) are the frequency responses of the LPC filter derived
from the original and quantized LSFs, respectively. S(w) can therefore be
defined as:

S(w) = 1/ | A(w) |2 (5.55)

which leads to,

S(w) = 1/| 1 −
p∑

k=1

ake−jwk |2 (5.56)
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where ak are the LPC coefficients. This can be evaluated using an N-point
Fourier Transform, giving the following expression:

SD = 1
N/2

N/2−1∑
k=0

[
10 log10 | A′(k) |2 − 10 log10 | A(k) |2

]2
(5.57)

Moreover, it is common practice to restrict the computation of the distortion to
a limited portion of the spectrum, typically the 125–3100 Hz band. The reason
is that the portions of the spectrum below 125 Hz and above 3100 Hz usually
have perceptually little impact but may significantly affect the computed
spectral distortion, due to the use of the log function.

5.6.3 Average Spectral Distortion and Outliers

The spectral distortion (SD) measure gives a good indication of the perceptual
difference between two sets of LSFs. The overall distortion caused by a
quantization scheme can be computed by simply averaging the SD obtained
over a large sequence of LSF vectors. It is commonly accepted that an average
SD below 1 dB is necessary for an LSF quantizer to be transparent, i.e. not
to add any audible distortion to synthesized speech. However, the average
SD (aveSD) is not sufficient to determine the performance of a quantizer. The
human ear is very sensitive to occasional large quantization errors. Therefore
it is also important that the number of times the quantizer gives a large
distortion is kept to a minimum. It is customary to use the percentage of input
vectors giving spectral distortions above 2 dB and 4 dB as a quality measure.
These measures are referred to as outliers at 2 dB and 4 dB, respectively.

The set of requirements usually considered necessary to achieve good
quality speech is [9]:

• Average spectral distortion less than 1 dB
• Fewer than 2 % outliers at 2 dB
• No outliers at 4 dB

These three parameters need to be considered when evaluating the perfor-
mance of an LSF quantizer. However an optimization has to be carried out
to achieve the best overall performance for a given bit rate, i.e. accepting a
larger average spectral distortion in return for fewer outliers.

5.6.4 MSE Weighting Techniques

Although spectral distortion is a fairly accurate representation of how quan-
tization noise in the LSF is perceived, its high computational complexity
limits its use. In order to compare two sets of LSFs, two fairly large fast
Fourier Transforms (FFT) need to be computed and a logarithm must then be
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computed for every bin of each FFT output. This is, of course, not a problem
when estimating the performance of a quantizer off-line, but severely limits
its use in a real-time coder.

On the other hand, simple MSE techniques have much lower complexity
and can easily be implemented in real-time coders. However the basic MSE
methods do not take into account the different perceptual effect of each of the
LSFs, and this may lead to poor performance of the quantizer. One simple
way to reduce this problem is to introduce an appropriate weighting function
in the calculation of the MSE (WMSE). The WMSE between the LSF vector f
and the candidate vector f̂ (frequencies are in Hz) is given by:

d(f, f̂) = (f − f̂)TW(f − f̂) (5.58)

where W is a positive diagonal matrix. This is equivalent to:

d(f, f̂) =
p∑

n=1

wn( fn − f̂n)2 (5.59)

where w is a positive weighting vector.
The weighting vector renders contributions of certain elements more impor-

tant than others in the summation process. The weighting vector is usually a
function of the original LSF vector, and therefore needs to be computed only
once per quantization (i.e once for every frame). A correctly chosen weighting
function will improve the perceptual quality of the quantization but finding a
suitable weighting function is difficult, as it needs to be related to perceptual
quality. Various weighting functions have been investigated in the literature
and the most popular ones are presented here.

Paliwal–Atal

This LSF weighting method is based on the frequency response of the original
LPC filter [9]. The weights are calculated as:

wn = cn [P( fn)]τ (5.60)

where P( fn) is the LPC power spectrum associated with the original set of
LSFs, fn is the nth LSF. τ is a constant used to determine the relative importance
of the LSF and is experimentally set to 0.3. Finally, the fact that the human ear
cannot resolve high frequencies very well is used in introducing the factor cn,
which reduces the influence of the last two LSFs in the summation.

cn =



1.0 for 1 ≤ n ≤ 8
0.8 for n = 9
0.4 for n = 10

(5.61)
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EFR weighting

This weighting function is used in the GSM Enhanced Full Rate standard
(EFR) [10]. The weights are calculated as follows:

wn =




3.347 − 1.547
450

dn for dn ≤ 450

1.8 − 0.8
1050

(dn − 450) otherwise
(5.62)

where

dn = fn+1 − fn−1 (5.63)

and fn is the nth LSF, f0 = 0 and f11 = 4000.

LSF inverse distance

This method is based on the principle that the peaks in the LPC filter are
located where two consecutive LSFs are close to each other. The weighting is
given by:

wn = 4000
( fn − fn−1)

+ 4000
( fn+1 − fn)

(5.64)

Group Delays

This weighting is based on the group delay of the LPC filter and is defined as
[11]:

wn =




u( fn)

√
Dn

Dmax
1.375 ≤ Dn ≤ Dmax

u( fn)
Dn√

1.375 Dmax
Dn < 1.375

(5.65)

where

u( fn) =
{

1 fn < 1000

1 − 0.5
3000

(fn − 1000) 1000 ≤ fn ≤ 4000
(5.66)

Dn is the group delay of the LPC filter at the frequency fn in milliseconds
whilst Dmax is the maximum group delay, experimentally found to be around
20 ms.

The group delays of the filter are larger at the formant frequencies, therefore
the weighting will be higher for these frequencies. The factor u(fn) simply
reduces the weights for the higher frequencies to take into account the
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Figure 5.9 Example of various LSF weighting functions

lesser sensitivity of the ear to the spectral distortion above 1000 Hz. The
relationship between the position of the LSF and the peaks in the LPC
spectrum is illustrated in Figure 5.9. It can be seen that a peak in the LPC
spectrum usually corresponds to a pair of LSFs close to each other, which
justifies in particular the LSF inverse distance weighting method. The result
of each of the weighting functions described above is also plotted at each
LSF location, after normalization. It can be seen that although all have
similar overall characteristics close to the peaks, they vary significantly in
the importance they place on the LSFs situated in the valleys and the higher
frequencies.

5.7 Codebook Structures

In order to obtain good quality speech with a low bit-rate speech coder, it
is necessary for the LSF quantizer to fulfil the requirements on the spectral
distortion described in Section 5.6.3. This is usually achieved using a vec-
tor quantizer in order to maximize the quantization efficiency, and such a
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system typically requires 20 to 25 bits to represent a set of 10 LSF parameters
with the required accuracy. Such a large number of bits precludes the use
of straightforward vector quantization of the LSF vector, as the complexity
and storage requirements of such a system would be far too great to be
implemented on any reasonably priced device. Therefore, alternative subop-
timal methods have to be used, which add structure to the codebook in order
to reduce implementation costs. The two most common methods are split
vector quantization (SVQ) and multi-stage vector quantization (MSVQ).

5.7.1 Split Vector Quantization

Direct quantization of a set of LSF parameters with a typical vector quantizer
of 25 bits, would require a codebook with 1025 entries, which is not practical
from both the search complexity and memory point of view. An alternative
method is to use SVQ, where the 10-element LSF vector is split into a number
of smaller subvectors, each quantized independently using a small number
of bits. Since the complexity and storage requirements of a full-search vector
quantizer are exponential functions of the number of bits used to represent
the input vector, SVQ requires only a fraction of the complexity required by
a full search VQ.

In an SVQ system, an input vector f is represented by a vector f̂ given by:

f̂ = {{yi0
0 (0), .., yi0

0 (N0)}, .., {yiK−1
K−1(0), .., yiK−1

K−1(NK−1)}} (5.67)

where K is the number of subvectors, each of length Nk, yik
k (n) is the nth element

from the kth codebook, and ik is the codebook index for the kth subvector.
Obviously K and Nk are chosen so that the sum of Nk for k = 0, 1, . . . , K − 1 is
equal to the length of the input LSF vector.

Splitting the 10-element LSF vector can be performed in various ways and
some classic configurations are illustrated in Table 5.4. The split usually takes
into account some of the perceptual properties of the LSF vector, such as the
fact that lower frequency LSFs are usually more sensitive to distortion than
higher frequency ones. Therefore, a {4, 6} split would be preferred to a {5, 5}
split for instance. The configurations shown here have been chosen so that
they all have the same bit-rate of 24 bits. Complexity (in multiply–adds) and
memory storage (in words) for the typical SVQ configurations are presented
in Table 5.5. It can be seen that although the direct VQ approach is extremely
complex, the SVQ configurations are all practical. Even the most complex one
requires only 40 960 multiply–adds per input vector, which translates to only
2 MIPS if performed at a 20 ms update rate.
However, there are several drawbacks which relate to the efficiency of SVQ
quantization:
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Table 5.4 Typical examples of SVQ LSF quantizers (24
bits/frame)

Sub-vectors Elements per subvector Bit allocation

2 5,5 12,12

3 3,3,4 8,8,8

4 3,2,2,3 6,6,6,6

5 2,2,2,2,2 5,5,5,5,4

Table 5.5 Complexity and memory requirements for various SVQ
schemes

Sub-vectors Split Bits Complexity Memory storage

1 10 24 1.67 × 108 1.67 × 108

2 5,5 12,12 40 960 40 960

3 3,3,4 8,8,8 2560 2560

4 3,2,2,3 6,6,6,6 640 640

5 2,2,2,2,2 5,5,5,5,4 288 288

• The correlations between subvectors are not exploited. Therefore only a
fraction of the intra-frame correlation is used. In particular, a pair of LSFs
close to a peak in the spectrum may be split into two different subvectors
and, although there is a correlation between them, they are quantized
independently. As a result the quantization efficiency decreases greatly as
the size of the subvectors reduces.

• Some combinations of subvectors do not respect the ordering of the LSF,
or lead to neighbouring LSFs being too close to each other. As there is
a minimum spacing limit that a pair of adjacent LSFs are allowed to
have, this means that certain SVQ vector combinations will never be used,
which is a waste of bandwidth. This can however be alleviated to some
extent. For example, once the first subvector has been quantized, a simple
transformation such as an offset shift can be applied to the vectors that
violate the minimum distance in the second codebook, so as to make them
usable. However this is difficult to include in the training process, and the
resulting quantizer may not be optimal.

• The number of bits allocated to each subvector is fixed. The effect of the
weighting function will therefore be limited to within one subvector. If a
subvector contains only LSFs of relatively small importance, they will still
use all the bits allocated to this subvector, whereas a classic VQ would
effectively shift some of that bandwidth towards the more important LSFs,
through the weighting function. This effectively reduces the use of the
weighting function to the LSF within a given subvector and lowers the
overall quantization efficiency of an SVQ quantizer.
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5.7.2 Multi-Stage Vector Quantization

In an Multi-Stage Vector Quantizer (MSVQ), the input vector is quantized
as a sum of vectors from a number of codebooks. Each of these codebooks
can therefore be of relatively small size, making the storage requirements
reasonable. That is, an input vector f is represented by a vector f̂ given by:

f̂ = yi0
0 + yi1

1 + . . . + yiK−1
K−1 (5.68)

where K is the number of stages and ik is the codebook index for the kth stage.
It can easily be seen that SVQ systems are a particular type of MSVQ system,

where the codebook vectors for a given stage contain nonzero elements only
in the locations corresponding to the SVQ subvectors. This is illustrated in
the following example, where it is easily seen that an SVQ codebook can be
mapped onto an MSVQ codebook.

yi0
0 = {yi0

0 (0) yi0
0 (1) 0 0 . . . . . . 0 0}

yi1
1 = {0 0 yi1

1 (2) yi1
1 (3) . . . . . . 0 0}

... = {0 0 0 0
...

... 0 0}
yiK−1

K−1 = {0 0 0 0 . . . . . . yiK−1
K−1(p − 2) yiK−1

K−1(p − 1)}

This obviously implies that an MSVQ system will have a performance at least
equivalent to that of an SVQ system and probably much higher, as the SVQ
imposes a strong constraint on the structure of the codebook. On the other
hand, complexity and memory requirements for the MSVQ will be higher,
i.e. the sparse structure of the SVQ codebook significantly reduces the storage
requirement and a sequential search for each subvector is equivalent to an
exhaustive search, which is not the case for MSVQ. Examples of typical bit
allocations for MSVQ codebooks are illustrated in Table 5.6, including the bit
allocation for the 2.4 kb/s MELP coder [12].

Table 5.6 Typical examples of MSVQ LSF
quantizers (24–25 bits/frame)

Stages Bit allocation Total number of bits

2 12,12 24

3 8,8,8 24

4 6,6,6,6 24

4 7,6,6,6 25

5 5,5,5,5,4 24
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5.7.3 Search strategies for MSVQ

The usual search strategy for an SVQ codebook is straightforward: a full
search (FS) for each of the subvectors is applied. The structure of an MSVQ
quantizer, however, allows different types of search strategy depending on
the desired complexity. The simplest of the searches is the sequential search
(SS). In this search, the input vector f is first approximated by the ith0 vector
from the first codebook Y0 which minimizes:

d(f, f̂) =
p∑

n=1

wn

(
fn − (yi0

0 )n

)2
(5.69)

The index for the first codebook i0 is then fixed and the quantization error
f − yi0

0 is then quantized using the ith1 vector from the second codebook Y1
which minimizes:

d(f, f̂) =
p∑

n=1

wn

(
( fn − (yi0

0 )n) − (yi1
1 )n

)2
(5.70)

This process is repeated for each stage in the codebook. The complexity of this
search is the sum of the complexity of a full search through each codebook,
given by,

C = N
K∑

k=1

2Bk (5.71)

where K is the number of stages, each with Bk bits, and N is the length
of the input vector. This search is, however, nonoptimal as there is no
guarantee that the set of codebook vectors giving the lowest intermediate
distortion will also result in the best overall distortion. A better way to ensure
that the best performance is obtained is simply to perform a full search
on all codebooks jointly. That is, every combination of codebook vectors
x̂ = yi0

0 + yi1
1 + . . . + y

iK−1
K−1 is tested against the original input vector. This

guarantees optimal quantization, but at the cost of a very high complexity,
given by,

C = N 2
∑K

k=1 Bk (5.72)

This complexity is equal to that of a direct vector quantization of the LSF,
which is far too high for practical applications. The only advantage of
the full-search MSVQ over a standard full search vector quantizer is the
reduced storage requirement. However, it is possible to obtain most of the
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Figure 5.10 Steps in an M-best search

advantages of the full search over the sequential search, while still maintaining
a reasonable level of complexity, by using a tree-search algorithm (TS), such
as an M-best tree search.

An M-best tree search operates by exploring a certain number, M, of paths
in the quantizer tree. Starting with the first codebook, the M code-vectors
giving the lowest distortion when compared with the input are kept, as well
as the M quantization error vectors resulting from these vectors. The second
codebook is then searched M times, once for each of these error vectors,
and the M paths which achieve the lowest overall distortion are kept. This
procedure is performed for each stage of the codebook. Finally, for the last
stage, the path giving the lowest overall distortion is selected. This process
is illustrated in Figure 5.10. For this example, M has been set to 2 and the
codebook consists of three stages of 3 bits each. In Figure 5.10a, the first
codebook Y0 is searched to find the M vectors that best match the original
LSF vector. In Figure 5.10b, the second codebook is searched to best match
the difference between the original input LSFs and the selected vector from
the first codebook. This is performed for each of the M selected vectors in the
first codebook. The M best paths are selected for the next stage. Figure 5.10c
shows the same process repeated for the third and final codebook. Finally,
Figure 5.10d shows the final M best paths. Out of these, the path with the
lowest overall distortion is selected. Experiments show that such a tree search
can give performance close to that of a full search even with a small value of
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M (i.e. 8–16). The complexity of this search is given by:

C = N

(
2B0 + M

K∑
k=2

2Bk

)
(5.73)

Obviously for M = 1, this equates to the complexity of the sequential search.
It can be seen that the M factor does not apply to the complexity of the
first codebook search. This can be exploited in designing the structure of
the codebook. For example, if we have three stages for a total of 25 bits, it is
significantly less complex to have a {9, 8, 8} structure than a {8, 9, 8} structure,
whereas storage is the same and performance is expected to be similar. One
interesting improvement to the M-best search strategy is to use a complex
perceptual measure in the final stage only, to select which of the M final paths
are the best. Since this computation only needs to be performed M times, it
is possible to use much more complex distortion measures than the WMSE
normally used. It is also possible to compute this measure on only a subset
of the M best final paths, i.e. the ones which give the lowest WMSE. This
procedure significantly enhances the performance of the quantizer, partly
solving the problem that the WMSE is not such a good distortion measure
compared to the SD for example.

5.7.4 MSVQ Codebook Training

The basic codebook training algorithms usually cater for single-stage code-
books. It is however possible to adapt the algorithm for MSVQ codebook
training. The most basic technique is called sequential optimization. In this
method, the codebook for stage 1 of the MSVQ is first designed. The quanti-
zation errors for the training database are then computed and the codebook
for stage 2 is trained over the error vectors. This is then repeated for each
stage, until reaching the final codebook.

However sequential optimization does not provide the best performance, as
each codebook is optimized as if it was the last stage of the MSVQ quantizer. A
better alternative is iterative sequential optimization, where an initial codebook
is chosen for each stage. Each codebook is then optimized by assuming all the
other stages to be fixed and known, i.e. the quantization error is computed
using all the other stages except the current one, and training is used to
obtain an updated version of the current codebook. This process can then be
repeated until all of the codebooks have converged.

It is also possible to jointly optimize all codebooks using simultaneous
joint codebook design. This method gives slightly better results than the
previous methods but has a high computational cost, which is described
in [13].
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5.8 MSVQ Performance Analysis

In order to compare the relative performance of various MSVQs, quantizers
have been trained using the same training database, which has the following
characteristics:

• MIRS and FLAT filtered speech in various languages are included
• Only speech-active regions are included
• LSFs are extracted with an update rate of 20 ms, over a 200 sample Ham-

ming window
• A bandwidth expansion factor of 0.994 is applied to the LP coefficients

prior to LSF conversion
• 50 000 sets of LSF coefficients are included

The speech database used is rather small to produce quantizers with good
performance in real-life applications. Typically, a speech database of over
1 000 000 LSF vectors is used for training codebooks for actual applications.
However, for the purpose of comparing performances of various quantization
schemes, the smaller speech database is adequate in providing indicative
results. Additionally, it significantly reduces the time required to train the
quantizers, which is prohibitive for the bigger database (several weeks of
computing are usually required for typical codebook training with the larger
database).

5.8.1 Codebook Structures

For a given bit rate, MSVQ and SVQ codebooks can differ in the number
of stages and in the vector splits. The actual structure of the quantizer
affects complexity and memory storage, as discussed earlier, but also affects
performance. Typically, the more structure imposed on the codebooks, the
lower the complexity and storage, but also the poorer the performance.
All of the SVQ and MSVQ quantizers have been trained using 24 bits, for
various numbers of stages, from 2 to 5. The configurations used are shown in
Table 5.7. The results are plotted in Figure 5.11. As expected, the performance
is directly linked to the amount of structure present in the codebook.

5.8.2 Search Techniques

In order to compare the performance of various types of searches available
for a given codebook, an MSVQ codebook of 21 bits, using three stages of
7 bits each, has been trained. It uses no prediction and the search algorithm
used during training was a sequential search (SS). The performance of the
codebook was then measured using SS, FS, and TS with values of M from
2 to 32. The WMSE, average SD, and number of outliers at 2 dB are plotted
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Table 5.7 MSVQ and SVQ structures for Figure 5.11
Stages MSVQ SVQ

bit allocation Bit allocation Vector split

2 12,12 12,12 5,5

3 8,8,8 8,8,8 3,3,4

4 6,6,6,6 6,6,6,6 3,2,2,3

5 5,5,5,5,4 5,5,5,5,4 2,2,2,2,2
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Figure 5.11 Performance comparison of various SVQ and MSVQ codebook
structures

in Figure 5.12. Outliers at 4 dB have not been plotted, as they are zero for all
cases. The advantage of a TS over both SS and FS is evident in these graphs.
For M greater than or equal to eight, the performance of the TS is very close
to that of the FS, at a much reduced complexity. It is also significantly better
than that of SS, for a relatively small increase in complexity. The complexity
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Figure 5.12 Performance comparison of various search techniques

in multiply–adds per input vector is given in Table 5.8. It is to be noted that,
in the test, codebooks have been trained using the SS algorithm. Therefore,
they are only optimal for an SS search. Better performance for the TS and FS
cases can be obtained by using the same search in the training as the one used
during the operation of the quantizer. This is illustrated in Figure 5.13, where
WMSE, average SD and outliers at 2 dB are plotted for the original codebook
and the retrained codebooks, for SS and TS with values of M ranging from 2
to 32. Due to the very high complexity of the FS, it was not possible to fully
retrain the codebook using FS, although the results are expected to be similar
to that of TS with M = 32.

5.8.3 Perceptual Weighting Techniques

Several weighting techniques were described in Section 5.6.4. A good weight-
ing technique should give a distortion measure which is well correlated with
the spectral distortion measure, which is our reference here. For testing, we
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Table 5.8 Complexity of various
search strategies for a {7, 7, 7}
MSVQ codebook

Search type Complexity

SS 3840

TS: M = 2 6400

TS: M = 4 11 520

TS: M = 8 21 760

TS: M = 16 42 240

TS: M = 32 83 200

FS 20 971 520
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Figure 5.13 Performance comparison with and without codebook reoptimization

use a 21-bit MSVQ codebook with three stages of 7 bits each which has been
trained using the weighting methods listed below:

• W1: no weighting (all weights are equal to 1.0)
• W2: EFR weighting method
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Figure 5.14 Performance comparison of various weighting functions

• W3: LSF inverse distance method
• W4: Paliwal–Atal method
• W5: Group delays method

The results are shown in Figure 5.14. Only average SD and the number of
outliers at 2 dB are shown, as there are no outliers at 4 dB in any of the cases.
Figure 5.14 clearly shows the performance gain given by the use of weighting
over the simple MSE method. As indicated, a well-chosen weighting method
can give a reduction of up to 0.15 dB in average SD and up to 5 % in the
number of outliers. The figure also shows that some weighting methods
clearly outperform others. The weighting technique used in EFR and the LSF
inverse distance method are not the best. Better results are obtained with the
Paliwal–Atal method, however the best of all is the group delays method.
The main advantage of the group delays method is in the reduction in the
number of outliers at 2 dB (from 3 % to 1.8 %), whereas its average SD is
virtually identical to that of the Paliwal–Atal method.

5.9 Inter-frame Correlation

When quantizing LSF parameters, or any other parameter for that matter,
a good quantization scheme must make use of all the redundancies in the
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parameters to be quantized, so as to maximize the efficiency of the quantizer.
The MSVQ was shown above to provide better performance than the SVQ,
mostly because it makes better use of the correlations between the elements
of an LSF vector, i.e. the intra-frame correlations as shown in Table 5.2.
However, LSF vectors are extracted at a typical update rate of 20 ms and
speech characteristics often remain similar for longer than 20 ms. Therefore,
successive LSF vectors are correlated (see Table 5.3) and a good quantizer
should make use of these similarities to improve the quantization accuracy.
The inter-frame correlation can be exploited in various ways, the most
popular ones being the use of a predictor and joint quantization of several
sets of LSFs.

5.9.1 LSF Prediction

A popular approach to exploiting the inter-frame correlations of LSF vectors
is the use of prediction. Instead of quantizing an LSF vector directly, the
difference between a predicted vector and the actual LSF vector is quantized
and transmitted. If the predictor is good, then the residual signal should
be easier to quantize than the original LSF vector. It is common practice
to remove the long-term mean of each LSF before applying prediction. The
residual LSF is given by:

rn = fn − f̃n (5.74)

where f̃n is the prediction vector. The decoded LSF vector is then given by,

f̂n = r̂n + f̃n (5.75)

where r̂n is the quantized value of rn.
This obviously implies that the decoder should have knowledge of f̃n.

Therefore, the prediction used should be a function of some parameters
available at both the decoder and the encoder. One of the simplest predictors
assumes that a set of LSFs can be predicted using the previous quantized set
of LSFs, scaled by a weighting factor,

f̃ k
n = αn f̂ k−1

n (5.76)

This will be referred to as an LSF differential quantizer (LSF-DQ). The
computation of the prediction gain is made difficult by the fact that knowledge
of the quantizer (codebook) is necessary to compute the prediction. One way
around this problem is to assume that the final quantizer will be quite good
and therefore f̂ k−1

n can be approximated by f k−1
n in the equation above. The

optimal factors αn can then be determined by maximizing the prediction gain
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over a speech database. In order to increase the prediction accuracy, higher
order predictors can also be used. The prediction then becomes a weighted
sum of the LSF vectors for a given number of past frames. This increases the
performance of the predictor, at the small expense of slightly higher memory
requirements for storing the past values. Unfortunately this scheme has a
major drawback: the decoder must have correct knowledge of the prediction
used at the encoder. If a channel error occurs and corrupts the bitstream
for one frame, then the decoded LSF will be corrupted. Since the decoded
erroneous LSFs will be used for prediction, the LSF for the next frame will
also be corrupted and the error will then propagate indefinitely.

A better approach is to generate the prediction from the decoded codebook
entries, rather than the decoded LSFs which will limit error propagation.
Such predictors are called moving average (MA) predictors. A first-order MA
predictor is given by,

f̃ k
n = αn r̂k−1

n (5.77)

The decoded vector is then given by,

f̂ k
n = r̂k

n + αn r̂k−1
n (5.78)

Therefore if an error occurs, the only frames affected will be the frame where
the error occurs and the N following frames, where N is the order of the
predictor. For a first-order MA predictor, only one extra frame will be affected
compared with a quantizer not using prediction. Intuitively, an MA predictor
will not be as efficient as a DQ predictor, but its error resilience capabilities
are very significant. This makes the MA predictor a better choice for the
majority of applications.

Assuming all αn are chosen equal to a constant α, the prediction gains of
the DQ and MA predictors are plotted against α in Figure 5.15, for an update
rate of 20 ms. Experiments show that forcing all αn to be equal does not
significantly reduce the prediction gain over the ideal case.

Figure 5.15 shows that the DQ predictor can achieve a gain of up to 5 dB
with an α value of 0.8, whereas the MA predictor can achieve 3 dB for α

around 0.65. The MA predictor is not as efficient as the DQ predictor, but still
provides a useful prediction gain, which in turn can help improve the overall
performance of the quantizer. The prediction gains for both DQ and MA
predictors depend on the LSF update rate which directly affects correlation
between adjacent sets of parameters. A faster update rate will give a higher
prediction gain, as consecutive sets of LSFs will be more correlated, and it will
usually be achieved with a higher value of α. For example, an update rate of
10 ms gives an optimal α of around 0.8 for the MA predictor. In the following
sections, only the MA predictor will be considered as the DQ predictor is not
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Figure 5.15 Prediction gain of first order MA vs DQ Predictors (20 ms update rate)

suitable for a general purpose coder (with possible channel errors). However,
a DQ predictor may be applicable in cases where virtually no channel errors
are encountered, such as voice storage applications.

5.9.2 Prediction Order

MA prediction has been presented above for the case of a first-order predictor.
It is also possible to have a higher order MA predictor, where the prediction
is a weighted sum of the quantized residuals received in N previous frames.
An Nth-order predictor would exploit correlations between the current frame
n and the frames n − 1, n − 2, . . . , n − N. As a result, its performance is
expected to be greater than that of a first-order MA predictor. However,
the drawback of the improved performance is greater sensitivity to channel
errors as an error on one set of parameters will corrupt N + 1 frames of
speech. The optimal order of an MA predictor requires a trade-off between
prediction gain and error resilience. In order to estimate the optimal order to
be used in most applications, where channel errors are expected, the optimal
prediction factors have been derived for various orders. This was achieved by
computing the prediction gain for all possible combinations of the prediction
parameters, in steps of 0.05, over a database of 30 000 LSF, extracted at 20 ms
intervals with all silences removed. The results are shown in Table 5.9. It can
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Table 5.9 Prediction gain vs MA predictor order
Order Optimum prediction parameters Prediction gain (dB)

1 0.65 2.97

2 0.85,0.43 4.13

3 0.85,0.60,0.35 4.61

4 0.9,0.7,0.45,0.2 4.84

be seen from Table 5.9 that the increase in prediction gain when increasing
the order of the MA predictor from 1 to 2 is 1.16 dB. An increase in prediction
gain of 1.87 dB can be achieved by increasing the order from 1 to 4, whereas
the increase from order 0 (no prediction) to 1 is nearly 3 dB. Although higher
order predictors help to increase the prediction, the degradation in speech
quality due to channel errors is expected. If the order is 1, 40 ms of speech are
corrupted. With proper error concealment techniques, it is usually possible to
limit the distortion caused by the loss of LPC for 40 ms to an acceptable level.
However, for higher prediction orders, 60 ms or more are lost and the speech
degradation caused by such a loss is usually difficult to recover, affecting
the overall speech quality significantly. Therefore, for most applications with
a 20 ms parameters update rate which involve a noisy channel, it is better
to use a first-order MA prediction. In case of shorter update rates, or very
low bit error conditions, higher order prediction can be used to improve the
MA prediction performance. In the following discussion, only first-order MA
prediction is considered.

5.9.3 Prediction Factor Estimation

Figure 5.15 shows that the best prediction gain for a first order MA is achieved
with a value of 0.65. Therefore it would be reasonable to assume that a
prediction factor of 0.65 will give the best performance in a first-order MA
quantizer. Indeed, such a value is used in some speech coders such as EFR [10].
However, this value has been derived using the assumption that the original
residual rk

n is close enough to the quantized residual r̂k
n that it can be used

instead to obtain the curve shown in Figure 5.15. In a practical quantizer, there
is no guarantee that this assumption will be true. Therefore the only way to
determine the optimal prediction factor is by training quantizers with various
prediction factors and comparing their performances. Various first-order MA
quantizers have been trained for values of α ranging from 0.3 to 0.7 in 0.05
steps, for a 20 ms update rate. An MSVQ quantizer comprising three stages
of 8 bits each has been selected to quantize the residual, as it provides good
performance. The performance of these quantizers is plotted in Figure 5.16,
together with the performance of the quantizer without prediction. It can be
seen that the best overall performance of the quantizer is achieved for a value
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Figure 5.16 Performance of a MA-MSVQ Quantizer vs Prediction Factor

of α around 0.4, and not 0.65 as would be expected from Figure 5.15. WMSE
and average SD are lowest for 0.4, although outliers at 2 dB are slightly lower
at 0.3 than at 0.4. This is to be expected if the predictor does not work well,
at speech transitions for example. However this is not a problem as it is
possible to bias the training process towards producing fewer outliers with
only a small increase in the average SD. Moreover, the performance obtained
with 0.4 is significantly better than that of 0.65. This clearly shows that the
‘intuitive’ way of determining the prediction factor may not be correct.

5.9.4 Performance Evaluation of MA Prediction

In order to compare the performance of quantizers with and without MA
prediction, several codebooks have been trained with α = 0.4 for various
bit rates, using a 20 ms update rate. In order to make comparisons with the
previous graphs easier, the quantizers all have 3-stage MSVQ codebooks. The
bit rates range from 20 to 26 bits, and the codebook structures are detailed
in Table 5.10. The search algorithm is a tree search with a depth of 32. The
overall performances are shown in Figure 5.17. The gain provided by the MA
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Table 5.10 MSVQ
bit allocation for
Figure 5.17
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prediction is evident from the graphs, where similar performance is obtained
for the MA-MSVQ with around 3 bits less than for the MSVQ without
prediction. This 3 bits advantage is present for all performance measures.
Therefore it is possible to achieve a saving of 10–15 % in bit rate by using
MA prediction with an MSVQ quantizer, on top of the bit reduction already
obtained by using MSVQ instead of SVQ. The only cost of the MA prediction
is a slightly increased sensitivity to channel errors. However, during testing
of coders using such schemes, this extra sensitivity did not turn out to be a
significant problem as the prediction order is limited to one.

5.9.5 Joint Quantization of LSFs

Prediction is an efficient way of removing correlation from two or more
neighbouring sets of parameters. However it is a one-way only process where
information from frame k − 1 is used in the prediction and quantization of
frame k, but information from frame k is not used for the prediction and
quantization of frame k − 1. Indeed it is assumed that frame k is not known
when quantizing frame k − 1, in order to keep the delay to a minimum.
However, in some applications it is worth accepting a slight increase in delay
and using a quantization scheme which makes use of the extra redundancies.
A simple way of achieving this is to jointly quantize several sets of parameters.
For example, a 1.2 kb/s version of the SB-LPC coder jointly quantizes three
sets of parameters extracted at 20 ms intervals, giving a 60 ms frame size. This
enables the coder to quantize the three sets of parameters jointly, making
the best use of the redundancies existing between them. This quantizer will
be referred to as JQ-MSVQ, and the large frame composed of several speech
frames will be referred to as a meta-frame. JQ-MSVQ is also used in a 4 kb/s
version of the SB-LPC, where two sets of LSF extracted every 10 ms are
quantized jointly, forming a 20 ms meta-frame.

One significant issue with a JQ quantizer is that of weighting. Various
weighting functions have been discussed above and they can be used to
provide weights for each individual set of LSFs. However, all sets of LSFs in
a meta-frame are not usually of equal importance. For example, at a speech
onset, the first set can be in a nonspeech region, whereas the other sets can
be in a speech-active region. Therefore the weight vector should ideally take
this into consideration, so as to maximize the quantization efficiency for the
important sets and not waste bits on a set of LSFs which will have very
little influence on the speech quality. This can be achieved by including a
bias based on the relative energies of the speech for each set of LSFs and
multiplying the weights for the nonspeech LSFs by a factor smaller than one.
A value of 0.1 has been found to give good performance. It is risky to use a
smaller value, as problems can arise from interpolation at the decoder if the
‘not so important’ set of LSFs is too poorly quantized.
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Table 5.11 Comparative performance of JQ-MSVQ and
MA-MSVQ

JQ-MSVQ MA-MSVQ MA-MSVQ

Number of bits 44 15 18

Number of bits per 60 ms 44 45 54

Stages 8 3 3

Bit allocation 6,6,6,6,6,6,6,2 5,5,5 6,6,6

M 32 32 32

Complexity (per 60 ms) 374 400 62 400 124 800

Memory 13 560 960 1920

WMSE 1.541 e-04 2.574 e-04 1.594 e-04

Average SD (dB) 1.2576 1.6383 1.3053

Outliers at 2 dB (%) 4.6563 17.2014 4.3119

Outliers at 4 dB (%) 0.0 0.1159 0.0185

The performance of JQ-MSVQ is illustrated in Table 5.11. The LSF quantizer
used in the 1.2 kb/s coder, which quantizes three sets of LSFs jointly using
44 bits in an 8-stage JQ-MSVQ quantizer, is compared against a classic
MA-MSVQ quantizer of similar bit rate and one of similar performance.
Complexity and memory requirements are also indicated. In this example,
LSFs are extracted every 20 ms. The results clearly show the advantage of
JQ-MSVQ over MA-MSVQ in terms of performance. JQ-MSVQ has the same
performance at 44 bits as MA-MSVQ at 54 bits, and is far superior to the
MA-MSVQ at 45 bits. Complexity is higher for the JQ-MSVQ, but this may be
reduced by lowering the depth of the tree search M. Memory requirements are
also higher for the JQ-MSVQ, but again they can be reduced by adding more
structure to the codebook (more stages of smaller sizes) and accepting a slight
reduction in performance. Overall, JQ-MSVQ is very effective at providing
reasonable LSF quantization at very low bit-rates. At 1.2 kb/s, only 72 bits are
available every 60 ms for quantizing all speech parameters. Assuming that the
gain, pitch and voicing are quantized using 28 bits, only 44 bits are left for the
spectral parameters. As shown in Table 5.11, an MA-MSVQ quantizer would
not work well under those circumstances, giving significantly degraded
speech quality with over 17 % outliers at 2 dB. However the use of JQ-MSVQ
quantization makes a 1.2 kb/s coder a practical possibility, with only 4.6 %
outliers at 2 dB.

5.9.6 Use of MA Prediction in Joint Quantization

When using JQ-MSVQ, the redundancies between the jointly quantized sets
of LSFs are exploited. Using MA prediction within the meta-frame will not
therefore achieve any more gain. Indeed, a JQ codebook using MA from
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one set to the next can be transformed to a JQ codebook using no MA, by
simply adding the prediction to the predicted set. Therefore, MA prediction
is only useful if it uses correlation with a previously transmitted set of LSFs,
i.e. from one meta-frame to another. This means that the distance between
the predicted sets and the sets used to compute the prediction is usually
larger than in a nonJQ case, thereby reducing the efficiency of the prediction.
Moreover, a channel error on JQ-MSVQ quantizers using a first-order MA
will affect two meta-frames, instead of just two speech frames for a nonJQ
quantizer. For the 1.2 kb/s configuration with a 60 ms meta-frame described
above, this means an error will affect 120 ms of speech instead of 40 ms for a
nonJQ quantizer at the same update rate. As a result errors will have a much
greater impact on speech quality, as it is usually possible to limit the effect
of the loss of 40 ms of speech, but not the loss of 120 ms of speech. Therefore
MA prediction for JQ quantizers is mostly useful when the meta-frames are
relatively small.

For example, two sets of LSFs obtained at a 10 ms update rate can be jointly
quantized in a 20 ms meta-frame. The 20 ms meta-frame is small enough that
the MA prediction will give good prediction gain, while keeping the error
propagation down to a manageable level. For the prediction to be optimal,
it is better to predict both sets of LSFs in the meta-frame with the last set of
LSFs of the previous meta-frame. This way the time difference between the
predicting and predicted frames is kept to a minimum. However the optimal
prediction factors for both sets will not be the same, as the first set will be more
correlated with the predicting set than the second set. Experiments using a
10 ms update rate with two sets forming a meta-frame indicated that, for this
configuration, prediction factors of {0.5, 0.4} are suitable, i.e. the first set is
predicted with a factor of 0.5 and the second set with 0.4. The quantizer jointly
quantizes two sets of LSFs extracted every 10 ms using 36 bits. Codebooks
are organized in six stages of 6 bits each, using the group delays weighting
method and a tree search of depth 32. The results are shown in Table 5.12.
They show that the MA prediction gives a large performance gain over the
nonMA case, and that using both MA and JQ together allows two sets of
LSFs to be quantized accurately with only 36 bits, i.e. only 18 bits per set. The
performance gain given by the MA predictor in the JQ case is consistent with
that observed in the nonJQ case.

5.10 Improved LSF Estimation Through Anti-Aliasing Filtering

When estimating speech model parameters at about 50 Hz over a 20–30 ms
analysis window, speech is assumed to be locally stationary [14] within
this analysis window. When closely investigated however, one can see that
speech has considerable variation even within the analysis window. Speech
parameters in general, and LSFs in particular, may contain high frequency
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Table 5.12 Performance comparison of JQ-MSVQ and
MA-JQ-MSVQ

JQ-MSVQ MA-JQ-MSVQ

Number of bits per 20 ms 36

Number of bits per set 18

Stages 6

Bit allocation 6,6,6,6,6,6

M 32

WMSE 2.227 e-04 1.622 e-04

Average SD (dB) 1.0926 0.9335

Outliers at 2 dB (%) 1.8135 0.5627

Outliers at 4 dB (%) 0.0052 0.0052

variations which violate the Nyquist sampling criterion. Therefore the use
of an anti-aliasing filter with cut-off frequency adequate for the chosen LSF
sampling rate may be used to alleviate possible spectral overlapping of
the LSFs. It is confirmed [15] that this method offers an advantage over
the classic LSF extraction methods; during quantization, bit-saving and
significant reduction in the percentage of outliers have been possible.

5.10.1 LSF Extraction

Al-Naimi investigated the speech stationarity assumption over the analysis
window with regard to LSF vector extraction by calculating LSF vectors at
every sample [15]. The centre of the analysis window is shifted by one sample
at a time, leading to an LSF vector extraction rate of 8 kHz. Evolution of each
LSF parameter over time, also referred to as an LSF track, is then produced
from the over-sampled LSF vectors. Decimation without any filtering of
the LSF tracks at a given LSF vector transmission rate (i.e. 20, 10 or 5 ms)
should produce exactly the same LSF vectors as the classic methods. It is
therefore clear that LSF track frequency variations greater than half of the
LSF computation rate (frequency) will cause problems during the decimation
process i.e. by introducing aliasing distortion. Note that the LSF computation
rate need not be same as the frame transmission rate.

In order to measure the amount of aliasing introduced, the following test
was used:

1. Ten LPC parameters were calculated for every sample using Hamming
windowing over 200 samples and bandwidth expanded by 15 Hz, then
converted to LSFs.

2. The evolution of each LSF track fi over time was taken and FFT transformed.
The logarithmic magnitude of the FFT spectrum is shown in Figure 5.18.
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Figure 5.18 Spectral variations of LSF tracks calculated every sample

In Figure 5.18, we can see that most of the LSF tracks’ spectra have a
substantial amount of their energy in the low frequency band (below 100 Hz).
However, if a coder calculates its LSF vectors every 20 ms (i.e. 50 Hz sampling),
for example, then all the energy in the band greater than 25 Hz will be a source
of spectral overlapping, producing inaccurate LSF parameters. In order to
identify the source of these high frequencies, two further tests were carried
out.

• Window position test
A synthetic speech segment was prepared by repeating a whole pitch
cycle from a voiced speech segment. Using this as the input, LSF vectors
were calculated every sample, as before. The results showed that the LSF
tracks were not affected by the positioning of the window. Therefore the
conclusion was that as long as the window size is of sufficient length and
the speech contained in the window is stationary, the window position will
not be the source of the high frequency components evident in the spectra
of the LSF tracks.
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Figure 5.19 Low frequency region of the plots in Figure 5.18 expanded

• The wide-sense stationary assumption of speech
In general, a signal s(t) is said to be wide-sense stationary (WSS) if the
expectation, E {s(t)s(t + τ)}, is independent of time t and only dependent
on the time difference τ . In the window position test, the LSF tracks do not
contain high frequencies indicating that, for the synthetic speech file, the
WSS assumption is valid. In reality, speech is changing in characteristics
during the analysis frame. Therefore, the stationary assumption of our
speech segment within the analysis window is not strictly correct and
this is why high frequency variations are evident in the spectra of the
LSF tracks.

Table 5.13 shows the percentage of energies for three different bands com-
puted over four male and four female speakers each uttering eight seconds
from the NTT speech database. The band below 25 Hz corresponds to a 20 ms
LSF vector transmission rate whereas a band below 50 Hz corresponds to a
10 ms LSF vector transmission rate. Even though more than 92 % of the energy
is present in the band below 25 Hz, the remaining 8 % of the energy is enough
to produce higher LSF parameter variations in some specific speech sections
(Note that these figures are average over 32 seconds of speech and instanta-
neous variations are much larger.) Therefore, following from the discussion
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Table 5.13 Percentage of energy con-
tained in frequency bands: A<25 Hz,
25 Hz≤B<50 Hz, 50 Hz≤C<100 Hz and
D≥100 Hz

Frequency bandLSF
parameters A B C D

f1 94.52 4.24 1.07 0.17

f2 95.44 3.61 0.83 0.12

f3 96.67 2.71 0.54 0.08

f4 96.81 2.56 0.54 0.09

f5 98.10 1.51 0.33 0.05

f6 97.46 1.99 0.45 0.10

f7 96.36 2.88 0.64 0.12

f8 95.54 3.28 0.71 0.47

f9 94.64 4.41 0.98 0.24

f10 92.72 3.97 1.13 2.18

above, a low pass filtering as a preprocessing stage prior to decimation has
been proposed [15] to alleviate the possible spectral overlapping distortion.

Of course one may question the use of low-pass filtering when the same
can be achieved by increasing the analysis window length with overlapping.
Increasing the analysis window length, i.e. to greater than two and a half
times the average pitch, would increase the frequency resolution, but in the
time domain, the speech signal would have evolved considerably during a
longer analysis window. Even though a large window may result in smoothed
spectra, important details within the frame will not be modelled accurately.
In addition, even if the window length was increased there would still be no
guarantee that the high frequency components of the LSF tracks would not
be present. Al-Naimi’s proposal of the use of a low-pass filter with a cut-off
frequency that is dependent on the LSF vector transmission rate, is therefore
justifiable [15].
The following set-up has been used to show the effect of low-pass filtering
over 8 seconds of speech [15]. First the LSF vectors f were extracted every
frame from the tracks fi which are formed by calculating the LSFs every
sample. Next, filtering was applied in the frequency domain separately for
each LSF track, fi, with a cut-off frequency that is dependent on the LSF
vector transmission rate and another set of LSFs g = g1, g2, g3, . . . , gp were
extracted. In order to avoid the rectangular windowing effect at the edges of
the blocks, one large FFT transformation was used for whole of the 8 seconds.
Figures 5.20–5.23 show a section of the variations of certain LSF tracks for
both classic fi and low-pass filtered gi methods. It is evident in these figures
that significant variations exist in the LSF tracks produced by the classic
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Figure 5.20 LSF tracks f1 and g1 variations over time

method due to the weak stationarity assumption within the analysis window,
especially at transitions from voiced speech segments to unvoiced (offsets)
and vice versa (onsets). The low-pass filtered method, on the other hand,
produces smoother and more slowly evolving LSF tracks. The differences in
the LSF tracks are more evident in the higher LSF parameters (f7 and f10) as
shown in Figures 5.22 and 5.23.

Work in [16] showed that using a perceptually-smoothed power spectral
envelope leads to a significant increase in subjective performance. Addition-
ally, [17] showed that low-rate quantization is possible through smoothing
the LSF parameter evolution. An informal listening test comparing both the
classic, f, and low-pass filtered, g, LSF vectors used in a 4 kb/s SB-LPC coder
showed no difference in speech quality. An advantage during quantization is
therefore expected with regard to smoother evolution of the LSF tracks.

5.10.2 Advantages of Low-pass Filtering in Moving Average Prediction

Although using the unquantized LSF parameters for both the new and classi-
cal methods did not show any subjective quality difference, the new method
is expected to produce better performance under predictive quantization.
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Figure 5.22 LSF tracks f7 and g7 variations over time
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Figure 5.23 LSF tracks f10 and g10 variations over time

This advantage is shown in the following test. First, the classical method of
LSF extraction is applied at various update rates. Next, the low-pass filtered
method is used where LSFs are calculated at every sample. Each LSF track
is then filtered with a low-pass filter which had its cut off frequency suitably
selected to be half of the LSF transmission frequency. A subsampling is then
applied to get the required number of LSF vectors. Finally, the variance
for each set of LSF vectors is computed after a single-order MA prediction.
According to the earlier observations, the new method is expected to pro-
duce smaller prediction residual with a greater prediction coefficient owing
to its smoother evolution and hence higher correlation between successive
sets. Figure 5.26 shows that for a 20 ms update rate, the variance of the LSF
prediction residual is lower for the new method and the minimum variance
(best prediction) occurs at a higher value of prediction coefficient which
indicates that the new method produces LSF vectors that are more correlated.
Figures 5.24–5.28 show similar results for various other LSF vector transmis-
sion rates. It can be seen that the variance of the LSF prediction residual is
always less in the new method, regardless of the LSF vector rate. In order to
quantify the amount of prediction achieved, prediction gain, Pg, is computed
using,

Pg = x0 − xmin

x0
× 100 (5.79)
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Figure 5.24 Moving average LSF prediction residual variance for 5 ms LSF
vector rate
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Figure 5.25 Moving average LSF prediction residual variance for 10 ms LSF
vector rate
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Figure 5.26 Moving average LSF prediction residual variance for 20 ms LSF
vector rate
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Figure 5.27 Moving average LSF prediction residual variance for 30 ms LSF
vector rate
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Figure 5.28 Moving average LSF prediction residual variance for 40 ms LSF
vector rate

Table 5.14 Prediction gain for low-pass filtered
and classic LSF extraction methods at various vec-
tor rates

LSF vector transmission rate

40 ms 30 ms 20 ms 10 ms 5 ms

Pg for g 29.55 33.82 36.53 43.34 49.57

Pg for f 12.50 16.60 29.60 37.60 42.60

where x0 is the variance of LSF prediction residual when the prediction
factor is zero (the original LSF variance) and xmin is the minimum variance
of LSF prediction residual computed by selecting the optimum prediction
coefficient. Higher Pg is an indication of performance improvement that can
be achieved through MA prediction before quantization. Table 5.14 shows
the value of prediction gains at different LSF vector transmission rates. The



Improved LSF Estimation Through Anti-Aliasing Filtering 141

0.35 0.45 0.55 0.65 0.75

Prediction Parameter

6

8

10

12

14

W
M

S
E

 (
×1

0−5
)

f
g

Figure 5.29 WMSE performance curves for a range of MA prediction parameters

new method always has a higher prediction gain compared to the classic
extraction and, as expected, the difference between them becomes smaller for
higher LSF update rates.

In the MA predictor used above, the prediction is a function of the unquan-
tized LSF prediction residual from the preceding set. As shown before,
when used in a quantizer such as MSVQ, the prediction will be a function
of the quantized LSF prediction residual and, hence, it is expected to be
different.

Figures 5.29–5.31 show the effect of quantizing the prediction residual on
the moving average prediction coefficient. These results were obtained by
varying the prediction coefficient in steps of 0.05 and training a multi-stage
VQ with three stages of 7 bits each with M-best factor of eight. Table 5.15 gives
a summary of the comparative performance results for the classic and new
methods of LSF extraction where the low-pass filtered method significantly
outperforms the classical method.
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Figure 5.30 Average SD performance curves for a range of MA prediction
parameters

Table 5.15 Performance comparison of the new and classical
LSF extraction with quantization

Prediction Average 2 dB outlier 4 dB outlier WMSE
parameter SD (dB) (%) (%)

g 0.5 0.926 0.036 0 7.85E-05

f 0.4 1.031 0.23 0 9.66E-05

As the WMSE, average SD and percentage of 2 dB outliers is significantly
lower for the new method, bit savings can be achieved whilst maintaining the
same performance as the classic LSF VQ. The percentage of 4 dB outliers is not
shown since it was zero in all cases. Other bit combinations in a three-stage
MSVQ are shown in Table 5.16 where the new method has a clear advantage.
Figures 5.32–5.35 present the results obtained for WMSE, average SD (ASD)
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Figure 5.31 2 dB outliers performance curves for a range of MA prediction
parameters

Table 5.16 Bit allocation for MA-MSVQ codebooks
Total bit allocation Bits allocated per codebook stage

15 5,5,5

16 6,5,5

17 6,6,5

18 6,6,6

19 7,6,6

20 7,7,6

21 7,7,7

22 8,7,7

23 8,8,7

24 8,8,8
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Figure 5.32 WMSE performance curves for a range of codebook bit allocations
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Figure 5.33 Average SD performance curves for a range of codebook bit
allocations
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Figure 5.34 2 dB outliers performance curves for a range of codebook bit alloca-
tions
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Figure 5.35 2 dB outliers performance curves for codebook bit allocations ranging
from 20 to 24 bits
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and percentage of 2 dB outliers respectively. The percentage of 4 dB outliers is
shown in Table 5.17. For VQ bit allocation greater than 18 bits, the percentage
of 4 dB outliers is zero.

Informal listening tests also showed the superiority of the new method at
the expense of increased complexity.

Table 5.17 Percentage of 4 dB outliers
VQ bit allocation 15 bits 16 bits 17 bits 18 bits

g 0.0059 0.0059 0.0 0.0

f 0.0415 0.0119 0.0059 0.0

5.11 Summary

This chapter has presented the fundamental aspects of speech spectral repre-
sentation via linear prediction. Accurate spectral representation of speech is
crucial to the performance of low bit-rate speech coders, especially in sinu-
soidal coders where the simplified excitation model cannot compensate for
shortcomings in the LPC modelling. Various quantization techniques have
been investigated and have lead to the design of LSF quantization schemes
optimized for specific configurations. These schemes offer solutions to LPC
parameter quantization in the form of LSFs for several applications, with
varying degrees of performance at a given bit rate and implementation com-
plexity. A more fundamental approach to improving quantization by way
of anti-aliasing filtering has also been presented with increased quantization
performance.
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6
Pitch Estimation and
Voiced–Unvoiced
Classification of Speech

6.1 Introduction

Low bit-rate speech coders, traditionally called vocoders, rely heavily on
extracting the correct speech parameters from a given speech segment. The
three main speech features are the spectral envelope, the pitch and the
voiced–unvoiced classification. The spectral envelope is usually extracted by
a standard autocorrelation method which results in a linear predictive (LP)
parameters representation. However extracting the correct pitch and voicing
classification is not as straightforward and may require a combination of
methods.

When measuring the pitch, it is assumed that the voiced signals are formed
by passing quasi-periodic excitation signals through the LPC filter. The
duration between the pulses in the excitation signal is called the pitch period
T0 or fundamental frequency f0. Correct estimation of the pitch is essential
for good quality speech-coding. Incorrect estimation of the pitch period
can seriously degrade the quality of synthesized speech. Pitch determination
algorithms (PDAs) have been studied in both the time and frequency domains,
and a comparison is discussed in [1, 2]. Traditionally, autocorrelation-based
methods [3] and their variants [4, 5] have been intensively investigated
and widely applied to various speech coders [6–11]. Frequency domain
approaches [12–14], on the other hand, have become popular recently due
to the growing interest in sinusoidal speech coders, such as the multi-band
excitation (MBE) [13] and the sinusoidal transform coder (STC) [14], which
conduct pitch determination based on a spectral synthesis (SS) method.

Digital Speech. A. Kondoz
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In addition to correct pitch estimation, correct voiced–unvoiced estima-
tion is also crucial for good quality speech synthesis. Traditional vocoders,
which have been in use for many years, classify the input speech signal
either as voiced or unvoiced. A voiced speech segment is known by its
relatively high energy content but, more importantly, it contains periodicity.
The unvoiced part of speech on the other hand looks more like random
noise with no periodicity. However, there are some parts of speech that are
neither voiced nor unvoiced, but a mixture of the two. These are usually
called the transition regions, where there is a change either from voiced
to unvoiced or unvoiced to voiced. In low bit-rate speech coding, correct
classification of speech blocks (usually frames or subframes 20 ms long, or
shorter) is very critical for good quality speech synthesis. If voiced speech
is classified as unvoiced, the synthesized output will sound rough and less
intelligible. If, on the other hand, unvoiced speech is classified as voiced,
the synthesized speech will sound annoyingly metallic or robotic. In older
versions of vocoders, a hard decision voicing was used and the transitions
were classified into either fully voiced or fully unvoiced. In newer vocoders,
such as sinusoidal based coders (IMBE, MELP, etc.), soft decision voic-
ing is employed: a third class, in which both voiced and unvoiced exists
together, has been defined. This mix of voiced and unvoiced decision is
usually carried out in the frequency domain where voiced and unvoiced
frequencies are appropriately selected to represent the mixed signal. As a
result, better quality synthesized speech is produced. In this chapter we
review some of the advanced techniques which are used in extracting the
correct pitch and subsequently estimating the correct voicing in each speech
segment.

6.2 Pitch Estimation Methods

The excitation model used in source-filter vocoders relies heavily on the
correct determination of the pitch parameter. Incorrect pitch estimation may
significantly degrade the speech quality, and in particular its intelligibility,
by introducing artifacts into the synthetic speech. Moreover, other parameter
estimations such as voicing and spectral amplitudes in vocoders often assume
accurate pitch determination, and are severely affected by pitch errors.
Therefore, the reliability of the pitch determination algorithm (PDA) used
has a dramatic effect on the quality of the synthesized speech.

Pitch period is defined as the time interval between two consecutive voiced
(periodic) excitation cycles. Although, this interval may vary from cycle to
cycle, it usually evolves slowly, and therefore it can be estimated. Estimating
the pitch period is generally easy for highly periodic sounds, but some speech
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segments do not exhibit such characteristics. In some parts of speech as well
as having the pitch period varying the speech may contain a mixture of voiced
(periodic) and unvoiced (random) signals which may cause estimation errors.
Formant interaction can also be a problem as the speech may become highly
resonant and this may cause incorrect pitch estimation. Onsets and offsets
are also problem areas. Finally, large amounts of background noise present
in the signal can also complicate the task of the PDA.

PDAs are generally classified in two main categories: time or frequency
domain techniques. However in the last few years more complicated tech-
niques which use both time and frequency domain characteristics of speech
have been developed. These are summarized below.

6.2.1 Time-Domain PDAs

The most obvious feature of periodic signals is the similarity of the waveform
at different times. The main principle of pitch detection algorithms (PDAs)
which rely on time-domain waveform similarities is to find the pitch period by
comparing the similarity between the original signal and its shifted version.
If the shifted distance is equal to the pitch period, the two signal waveforms
should have the greatest similarity. The majority of existing PDAs are based
on this concept. Among them, the average magnitude difference function
(AMDF) and the autocorrelation (AC) method are the two most widely
used.

Average Magnitude Difference Method

A simple way to compare the current speech with its time-delayed version is
to compute the average magnitude difference function (AMDF) [4] given by:

A(τ ) =
N−1∑
n=0

|s(n) − s(n − τ)| (6.1)

where τ is the lag. This function is computed over a given pre-determined
range for τ and the value of τ minimizing A(τ ) is selected as the pitch
period. The value of N is typically 160 samples, corresponding to a 20 ms
speech frame. A plot of the AMDF function against the speech signal is
shown in Figure 6.1. The main advantage of the AMDF function is that
it only requires additions and subtractions, making it very suitable for
hardware implementation. However, current DSPs normally offer a one-cycle
multiply–add instruction, making this less significant. The performance of
the AMDF function is relatively poor and, in particular, it does not cater for
variations in the energy of the speech.
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Figure 6.1 AMDF and speech signal: the minima of the AMDF corresponding to the
pitch values are indicated by circles

Autocorrelation Method

The direct distance measurement is the most popular criterion examining the
similarity between two waveforms; it can be expressed as,

E(τ ) = 1
N

N−1∑
n=0

[s(n) − s(n + τ)]2 (6.2)

Equation (6.2) assumes that the average signal level is fixed. However, at
speech onsets and offsets this is not true, hence, the use of the normalized
similarity criterion which considers the effect of nonstationarity of speech
signals,

E(τ ) = 1
N

N−1∑
n=0

[s(n) − βs(n + τ)]2 (6.3)

where β is a scaling factor, or the pitch gain, controlling the changes in signal
level. Under the assumption that the signal is stationary (i.e. s(n) = s(n + τ)),
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the error criterion of equation (6.2) can be written as,

E(τ ) = [R(0) − R(τ )] (6.4)

where

R(τ ) =
N−1∑
n=0

s(n)s(n + τ) (6.5)

The minimization of the estimation error, E(τ ), in equation (6.2) is equivalent
to maximizing the autocorrelation (or cross-correlation) R(τ ). The variable τ

is called lag, or delay, and the pitch is equal to the value of τ which results
in the maximum R(τ ). Although the autocorrelation computation involves
a large number of multiplications, it is very easy to implement these in
real-time due to its regular form of computation, i.e. multiply–adds. With
today’s modern DSPs, multiply–add operations are very easily computed
in one instruction. Another advantage of autocorrelation PDA is that it is
phase-insensitive. Hence, it performs well in detecting the pitch of speech
which may suffer some degree of phase distortion.

Nguyen generalized the direct similarity measure [15] as,

E(τ ) = 1
N

{N−1∑
n=0

|s(n) − s(n + τ)|k
} 1

k

(6.6)

where k is a constant. Although k can be arbitrary, Nguyen proved that k
values of 1, 2 and 3 are appropriate. In his experimental investigation, he
showed that 2 is the most appropriate value for speech signals, implying that
the autocorrelation method is superior to the AMDF. A typical autocorrelation
function is shown in Figure 6.2.

Speech in the long-term is a nonstationary signal and the direct similarity
criterion may exhibit large errors, implying fewer similarities in positions
where the shift is equal to the real pitch period. Figure 6.3b illustrates the
direct autocorrelation function which indicates more similarities in the triple
pitch period as the amplitude increases. The normalized similarity criterion
of equation (6.3) is derived under the consideration of such a nonstationary
process. Setting ∂E(τ , β)/∂β = 0 in equation (6.3) the optimum normalization
coefficient (pitch gain) can be calculated using,

β =

N−1∑
n=0

s(n)s(n + τ)

N−1∑
n=0

s2(n + τ)

(6.7)
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By substituting the optimum gain back into the error function of equation
(6.3), the pitch can be estimated by minimizing

E(τ , β) =
N−1∑
n=0

s2(n) −

[N−1∑
n=0

s(n)s(n + τ)

]2

N−1∑
n=0

s2(n + τ)

(6.8)

This is equivalent to maximizing the second term on the right hand side,

R2
n(τ ) =

[N−1∑
n=0

s(n)s(n + τ)

]2

N−1∑
n=0

s2(n + τ)

(6.9)

Direct use of the above equation may result in some errors. This is because
the square of the autocorrelation may result in a maximum even if the
correlation is negative, forcing possible pitch-halving errors. In order to
eliminate this problem, the square root of equation (6.9) is taken to remove
the square from the correlation and, hence, eliminate the possibility of
lags with negative correlation from being selected as the pitch. The final
normalized autocorrelation function is therefore given by,

Rn(τ ) =

N−1∑
n=0

s(n)s(n + τ)

√√√√N−1∑
n=0

s2(n + τ)

(6.10)

The normalized autocorrelation function, shown in Figure 6.3c, shows much
better performance than the direct (un-normalized) autocorrelation method.

6.2.2 Frequency-Domain PDAs

Although most waveform similarity methods have their frequency domain
equivalents, the frequency domain PDAs directly operate on the speech
spectrum. The main frequency domain feature of a periodic signal is the har-
monic structure, with the distance between harmonics being the fundamental
frequency or the frequency equivalent of the pitch period. The main draw-
back of frequency-domain methods is their high computational complexity.
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However, modern DSP techniques make the computational complexity of
frequency-domain PDAs insignificant, making them very popular in sinu-
soidal coders. In the following, we briefly explain two frequency-domain
PDAs.

Harmonic Peak Detection

An obvious way of determining the pitch in the frequency domain would be to
extract the spectral peak at the fundamental frequency. This requires the first
harmonic to be present, which cannot, in general, be expected because of the
front-end filtering. A more practical method is to detect all of the harmonic
peaks and then measure the fundamental frequency (pitch frequency) as
either the common divisor of these harmonics or the spacing of the adjacent
harmonics. This can be done using a comb filter given by

C(ω, ω0) =
{

W(kω0) ; ω = kω0, k = 1, 2, . . . �m
ω0

0 ; otherwise
(6.11)

and correlating it with the speech spectrum. The output of the correlation,
Ac(ω0), is the summation of weighted comb peaks as,

Ac(ω0) = ω0

�m

�m/ω0∑
k=1

S(kω0)W(kω0)
2π

τmax
≤ ω0 ≤ 2π

τmin
(6.12)

where �m is the maximum frequency considered in the speech spectrum.
If ω0 is equal to the fundamental frequency, the comb response will match
the harmonic peaks, and the maximum output will be obtained as shown in
Figure 6.4. In order to obtain better subjective quality, a weighting coefficient
can be applied to the individual teeth, normally decreasing weights with
increasing frequency [16].

Spectrum Similarity

This method assumes that the spectrum is fully voiced and is composed only
of a number of harmonics each located at multiples of the pitch frequency. A
synthetic spectrum is reconstructed using this assumption for each possible
pitch frequency candidate and is compared to the original spectrum. The
pitch frequency leading to the best matching reconstructed spectrum is then
selected [13] as the fundamental or pitch frequency. The speech spectrum is
assumed to be composed of voiced harmonics only, located at multiples of
the candidate pitch frequency ω0. Therefore the synthetic spectrum Ŝ(m, ω0)

is an approximation of the convolution of pulses located at multiples of the
candidate pitch frequency ω0, by the spectrum W of the window used on
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Figure 6.4 Harmonic peak matching method

the original speech prior to its Fourier transformation. The pulses are scaled
by a factor Al(ω0) so as to provide the best possible match with the original
spectrum. The synthetic spectrum Ŝ(m, ω0) is defined by:

Ŝ(m, ω0) =




A0(ω0) W
(

2π
M m

)
A1(ω0) W

(
2π
M m − ω0

)
...

Al(ω0) W
(

2π
M m − l ω0

)
...

(6.13)

where M is the length of the DFT and Al(ω0) is defined as:

Al(ω0) =

bl∑
m=al

S(m)W
(

2π

M
m − l ω0

)

bl∑
m=al

∣∣∣∣W
(

2π

M
m − l ω0

)∣∣∣∣
2

(6.14)

Al(ω0) is such that the scaled harmonic lobe spectrum Al(ω0)W(2π
M m − lω0)

is the best possible match for S(m), using an MSE criterion. The harmonic
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boundaries al and bl are defined as:

al =
⌈

M
2π

(
l − 1

2

)
ω0

⌉
(6.15)

bl =
⌊

M
2π

(
l + 1

2

)
ω0

⌋
= al+1 − 1 (6.16)

Finally, the synthetic spectrum Ŝ(m, ω0) for candidate pitch frequency ω0 is
compared with the speech spectrum S(m) through an MSE measure, given
by:

E(ω0) =
M−1∑
m=0

(
S(m) − Ŝ(m, ω0)

)2
(6.17)

The value of ω0 minimizing E(ω0) is then selected as the pitch frequency. Typ-
ical original and synthetic spectra with correct pitch are shown in Figure 6.5.

6.2.3 Time- and Frequency-Domain PDAs

Pitch Estimation using Spectral Autocorrelation

The time domain autocorrelation (temporal autocorrelation, or TA) has been
used in various PDAs. Given a segment of speech signals s(n), 0 ≤ n ≤ N − 1,
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Figure 6.5 Original and synthesized speech spectra used in the spectrum-similarity
PDA method
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the normalized TA for a pitch candidate τ is given by

RT(τ ) =

N−τ−1∑
n=0

s(n)s(n + τ)

√√√√N−τ−1∑
n=0

s2(n)

N−τ−1∑
n=0

s2(n + τ)

(6.18)

which differs from the autocorrelation method discussed earlier in the limits
of the summations (the earlier method was more like a cross-correlation). The
TA has been widely used for PDAs due to its relatively good performance
especially over noisy speech signals [2]. Autocorrelation can also be used in
the frequency domain to bring out spectral similarities which are mainly due
to the pitch frequency spacing of the harmonics. If the spectrum of windowed
speech is given by S(m) = A(m)ejθ(m) for 0 ≤ m ≤ M − 1, where A(m) and
θ(m) are the magnitude and phase of the normalized spectral autocorrelation
(SA), RS(τ ) can be defined as

RS(τ ) =

�M/2�−ωτ∑
m=0

Az(m)Az(m + ωτ )

√√√√�M/2�−ωτ∑
m=0

A2
z(m)

�M/2�−ωτ∑
m=0

A2
z(m + ωτ )

, for T(l)
0 ≤ τ ≤ T(u)

0 (6.19)

where ωτ = �M/τ + 0.5�, and T(l)
0 and T(u)

0 are the lower and upper limits
for the pitch search. In equation (6.19), the zero-crossing spectrum Az(m) is
given by

Az(m) = A(m) − gA(m) (6.20)

where A(m) is the spectral envelope of A(m). The envelope may be estimated
using the peak-picking method [17, 18]. The magnitude spectrum, A(m), is
converted into the zero-crossing spectrum Az(m) to make it feasible for the
autocorrelation defined in equation (6.19). The gain, g, is calculated as:

g =
�M/2�∑
m=0

A(m)A(m)/

�M/2�∑
m=0

A(m)A(m) (6.21)

In equation (6.20), the logarithmic spectrum can also be considered to obtain
a zero-crossing spectrum. However, the SA with the logarithmic spectrum
produces a high correlation ratio for large lags, τ , close to T(u)

0 (small
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Figure 6.6 An example of (a) speech signal of T0 = 34-sample (Fs = 8 kHz), (b)
magnitude spectrum, (c) zero-crossing spectrum, and (d) spectral autocorrelation

overlapping area) corresponding to very small ωτ , i.e. �M/T(u)
0 + 0.5� ≤

ωτ << �M/(2T0) + 0.5�. Thus, the linear magnitude spectrum is used instead
of the logarithmic one.

Figure 6.6 shows an example illustrating the characteristics of SA. For a
speech segment in Figure 6.6a, the magnitude and its zero-crossing spectra
are shown in Figures 6.6b and 6.6c, respectively. Finally, the spectral autocor-
relation is shown in Figure 6.6d, indicating a prominent peak at the pitch lag.
The TA over a periodic signal produces high correlation for integer multiples
of the pitch period T0. This means that the spectral autocorrelation, RS(τ ) in
equation (6.19), has peaks for the integer submultiples of T0, i.e. τ = T0/k,
for 1 ≤ k ≤ �T0/T(l)

0 �. Figure 6.7 shows an example featuring high SAs for
pitch period submultiples. Thus, the TA-based PDA may result in detecting
an unwanted pitch period multiple, and the SA-based PDA may result in
pitch-halving. The pitch period multiple and submultiple problems can be
compensated for by combining the two autocorrelation methods, TA and SA,
in an advantages way. Hence, the spectro-temporal autocorrelation (STA) is
defined as [19],

RST(τ ) = αRT(τ ) + (1 − α)RS(τ ) (6.22)
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Figure 6.7 An example of (a) speech signal of T0 = 59-sample (Fs = 8 kHz), (b)
magnitude spectrum, (c) zero-crossing spectrum, and (d) spectral autocorrelation

where α is a weighting factor, 0 ≤ α ≤ 1. The cases of α = 0 and α = 1 reduce
the STA to SA and TA, respectively. The estimated pitch period T̂0 using the
STA is the argument maximizing (6.22) as:

T̂0 = arg maxτ {RST(τ )} (6.23)

Because of the dual relation between the temporal and the spectral autocorre-
lations, it is found that the STA has a useful property for pitch estimation. For
a segment of periodic signal with a pitch period T0, T(l)

0 ≤ T0 ≤ T(u)
0 , RST(τ )

in (6.22) has the strongest peak at τ = T0 compared with the integer multiple
and submultiple periods of T0, i.e. τ = pT0 and T0/p for 2 ≤ p ≤ �T(u)

0 /T0� and
2 ≤ p ≤ �T0/T(l)

0 �. In (6.22), RS(τ ) and RT(τ ) terms suppress the undesirable
high peaks for the multiples and submultiples of T0 excluding τ = T0. Con-
sequently, the STA for τ = T0 remains relatively more prominent compared
with those for the rest.

The range of the pitch period can be split into three groups as high (short
pitch period), mid, and low (long pitch period), based on the expected number
of prominent peaks in TA and SA. The minimum pitch period producing a
pitch period submultiple in SA is 2T(l)

0 . The SA can only rarely produce pitch
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Figure 6.8 Comparison of TA, SA, and STA (α = 0.5) for 32-sample (left column),
59-sample (middle column), and 100-sample (right column) speech signals

period submultiples for short pitch period signals, i.e T(l)
0 ≤ T0 ≤ 2T(l)

0 − 1.
On the other hand, in TA, the maximum pitch period generating the pitch
period multiple is T(u)

0 /2. Thus, for T(u)
0 /2+1 ≤ T0 ≤ T(u)

0 , TA can be relatively
robust against pitch multiple errors. However, STA gives robust results for
the whole pitch range by combining the two functions. Examples comparing
the characteristics of TA, SA, and STA for speech signals with various pitch
periods are shown in Figure 6.8. As can be seen from the figure, STA has a
prominent peak regardless of the pitch period.
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Spectral Synthesis–Spectral Autocorrelation PDA

The frequency spectrum of windowed speech can be decomposed into its
spectral envelope and the fine structure spectra. The spectral envelope is the
smoothed version of the speech spectrum. Spectral fine details (the excitation
spectrum), on the other hand, exhibit harmonics for voiced components in
which each harmonic typically has the shape of a sinc function corresponding
to the applied window frequency response. Spectral synthesis (SS) methods
[13, 14] determine the pitch so as to minimize the distortion between the
original and synthesized spectra. The synthesized spectrum is generated by
shifting the centre frequency of the sync function spectrum to harmonic
frequencies.

In [14], McAulay’s SS-based PDA, the metric for pitch determination is
given by,

	(τ) =
H(τ )∑
h=1

A
(

hK
τ

) 


K/2∑
k=1

A(k)D
(

k
K

− h
τ

)
− 1

2
A

(
hK
τ

)
 (6.24)

where H(x) = �x/2� and D(x) = sin(2πx)/(2πx). The performance of the
above PDA has been improved against the spectral formant effect by incor-
porating an energy-based metric ϕ(τ) [20, 17], given by,

ϕ(τ) =

N∑
k=0

|dτ (k)|

N∑
k=0

|eτ (k)|
(6.25)

where eτ (n) = ∑τ
k=0 s2(n−�τ/2�+k) and dτ (n) = 0.95dτ (n−1)+eτ (n)−eτ (n−1)

with dτ (0) = 0. The improved SS-based metric is defined as,

	ϕ(τ) = 	(τ)

ϕ(τ)
(6.26)

in which 	ϕ(τ), if not positive, is bounded to a small positive value.
The SS-based PDA can be further improved by incorporating the spectral

autocorrelation metric given in (6.19) to reduce pitch multiple effects which
may occur in 	ϕ(τ). Hence, SS incorporating SA (called SS–SA [19]), is defined
as:

	SA(τ ) = {
	ϕ(τ)

}β

{
RS(τ ) + 1

2

}1−β

(6.27)
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Figure 6.9 Comparison of SS and SS–SA (β = 0.25) for the high-, mid-, and low-
pitched signals shown in Figures 6.8a–c

where β is a weighting factor, 0 ≤ β ≤ 1, controlling the effect of SA. The
SS–SA becomes SS when β = 1 and SA when β = 0. Examples examining
the characteristics of 	ϕ(τ) and 	ST(τ ), are shown in Figure 6.9; the measured
value of each subfigure is normalized by each maximum value. The input
speech signals used in Figure 6.9 are the same as the ones used in the
analysis of the STA. For the high-pitched signals (short pitch periods) in
Figure 6.8a, the lag corresponding to the pitch period double has a strong
peak in Figure 6.9a, which seems to be even stronger than the peak at the
correct pitch. The SS–SA alleviates this problem as shown in Figure 6.9d
where the peak at the correct pitch lag becomes prominent in comparison
with other peaks. For the mid- and low-pitched (long pitch period) signals in
Figures 6.8b and 6.8c, the maximum peaks of 	ϕ(τ) and 	ST(τ ) are relatively
obvious as illustrated in Figures 6.9b, 6.9c, 6.9e, and 6.9f.

Comparison

An objective test was conducted to determine various tuning factors. The
performance of the PDAs was measured in terms of pitch error rates (Ep).
The speech test material, sampled at 8 kHz and filtered through the modified
intermediate response system (MIRS) [21], was composed of 56 seconds each
of male and female speech, each uttered by eight speakers. The reference
pitch periods were manually marked for each 10 ms frame.
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The range of the pitch search was limited to between 15 and 150 samples.
Spectral analysis was conducted using a 240-sample Hamming window and a
256-point FFT with 16-sample zero padding. When computing the TA, a 240-
sample rectangular or Hamming window was applied to the input signals.
Pitch error decisions were checked in each frame by comparing the detected
pitch period with the reference. A frame was classified as erroneous if the
absolute difference between the reference and the detected pitch periods was
more than 1 ms (8-sample) as in [1]. Extra processing, such as pitch tracking
using the pitch history of the past frames, was not incorporated in order
to evaluate only the main algorithmic contributions. Although the unvoiced
speech regions were not taken into account, transitions were included in the
performance evaluations as these regions are perceptually very important.

• Analysis of the STA Weighting Factor
The effect of the STA rate α in terms of Ep is shown in Figure 6.10. The
results show that the STA gives improved performance compared with
the TA and the SA, corresponding to α = 1 and α = 0, respectively. The
lowest Ep was obtained when α = 0.5 for both the female and male speech
samples.

• Analysis of the SS–SA Weighting Factor
The weighting factor β of SS–SA in equation (6.27) was analysed by varying
β between 0 and 1 (see Figure 6.11). As in STA, the SS–SA also shows much
less Ep in comparison with those of the SS and the SA, corresponding to
β = 1 and β = 0, respectively. Additionally, the lowest Ep values were
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error rate; the formant weighting factor γ is 0.9
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Figure 6.11 Analysis of the effect of the SS–SA weighting factor β in terms of the
pitch error rate. Here, the formant weighting factor γ is 0.9

obtained when β = 0.1 for the female speech and β = 0.3 for the male
speech, which means that the optimum β differs slightly depending on
the pitch period of the signal. Higher performance can be achieved by
weighting the SA more during shorter pitch period speech and less during
longer pitch period speech.

Examples of pitch contours of the various PDAs are illustrated in Figures
6.12 and 6.13 in which the rectangular window is applied to the TA and STA.
It shows that pitch errors in strongly-voiced regions are reduced considerably
by the combination of time and frequency domain PDAs. Most of the errors
were caused at speech onset and offset regions where irregular pitch pulse
sequences are present.

6.2.4 Pre- and Post-processing Techniques

In addition to the main pitch determination processes described previously,
there are several important pre- and post-processing techniques which can
significantly improve the pitch determination performance. These techniques
supplement the PDAs and are used before or after the pitch determination
process. Hence, they are usually called preprocessing or post-processing
stages.

Spectrum Flattening

Although the pitch of a voiced speech segment can be directly estimated
from the original speech, the first formant frequency may affect the accuracy
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Figure 6.12 Comparison of pitch contours of PDAs for (a) female speech. (b)
Reference; (c) TA, (d) WTA, (e) STA, (f) SS, (g) WSS, and (h) SS–SA-based PDAs

of the estimation. Several methods have been proposed to flatten the speech
spectrum in order to avoid the formant interaction effect [20, 5, 22, 23]. The
speech spectrum is first flattened by removing the formants (by either linear
or nonlinear methods) before the pitch estimation process can begin.

The linear spectrum-flattening method uses the LPC inverse filter to remove
the formants from the speech signal. The main drawback of this method is that
for high-pitched speech, like that of females and children, the first complex
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Figure 6.13 Comparison of pitch contours of PDAs for (a) male speech (b) Refer-
ence; (c) TA, (d) WTA, (e) STA, (f) SS, (g) WSS, and (h) SS–SA-based PDAs

zero of the inverse filter may be adjusted to become the first harmonic,
and the second complex zero to the second harmonic. This may destroy
the entire periodicity information in the residual signals [16, 1]. Thus, a
formant weighting filter [24] is adopted as a preprocessor to control the de-
emphasizing factor of the formants while keeping the harmonics structure.
As described in the equation below, it is, effectively, a process of obtaining the
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Figure 6.14 Analysis of the effect of the formant weighting factor γ in terms of the
pitch error rate; α and β defined in the STA and SS–SA functions are 0.5 and 0.25,
respectively, and the rectangular window is applied to TA calculation in the STA

intermediate signal between the original speech and its LPC residual signals.

Sf (z) = A(z)
A(z/γ )

S(z) (6.28)

where S(z), Sf (z), and A(z) are the z-transform of the input speech signal
s(n), the formant-suppressed signal, and the inverse filter, respectively. The
parameter γ is the formant weighting factor, 0 ≤ γ ≤ 1. For the case of γ = 1,
the filtered signal is identical to the original speech signal. On the other hand,
γ = 0 makes the filtered signal equal to the LPC residual of s(n). It can be
seen that Sf (z) is the intermediate spectrum between the original and residual
spectra for 0 < γ < 1. The effect of the formant weighing factor γ in equation
(6.28) was observed over the STA and SS–SA-based PDAs and the results
are shown in Figure 6.14. It can be seen that the value around 0.7 ∼ 0.9 gives
improved performance.

The effect of the flattening filter is shown in Figure 6.15. The formant
influence has been greatly reduced but not completely eliminated, while the
harmonic structure is well-preserved. A better performance may be obtained
by making the spectral-flattening factor a function of the average pitch
(tracked pitch) as shown in Figure 6.16.

Nonlinear spectrum-flattening is usually achieved by centre-clipping the
speech signal. The first centre-clipping PDA was proposed by Sondhi [22] in
1968 and various centre-clippers for autocorrelation PDAs were investigated
by Rabiner [3] in 1976. The characteristics of three types of centre-clipping
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functions used for flattening the spectrum are shown in Figure 6.17 where,

y = clc(x) =



x + CL ; x ≤ −CL
x − CL ; x ≥ CL
0 ; −CL < x < CL

(6.29)
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Figure 6.17 Clipper functions

y = clp(x) =
{

x ; −CL ≥ x ≥ CL
0 ; −CL > x < CL (6.30)

y = sgn(x) =



1 ; x ≥ CL
−1 ; −CL ≥ x
0 ; −CL > x < CL

(6.31)

The centre clipped signal y(n) is generally defined as:

y(n) = f [s(n)] (6.32)

The clipper function f [.] can be any one of the functions in equations
(6.29)–(6.31). For the autocorrelation method, the clipped autocorrelation
function Rc(τ ) is defined as:

Rc(τ ) =
N−1∑
n=0

y(n)y(n + τ) =
N−1∑
n=0

f [s(n)] f [s(n + τ)] (6.33)

More generally, these two clipper functions can have any combination, e.g.

Rc(τ ) =
N−1∑
n=0

f1[s(n)] f2[s(n + τ)] (6.34)

A set of typical combinations of f1(n) and f2(n) are listed in Table 6.1. It has
been shown that[3, 16]:

• For high-pitch speakers, the differences in performance scores between the
various clipping combinations are small and probably insignificant.

• For low-pitch speakers, fairly significant differences in performance scores
exist. Combination 1 in Table 6.1 gives the worst performance for all
utterances in this class. Combinations 4, 5, and 6 (those involving one
unprocessed component) are also poor in their overall performances.
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Table 6.1 Combinations of
clipper functions

Type f1(n) f2(n)

1 s(n) s(n)

2 clc[s(n)] clc[s(n)]

3 clp[s(n)] clp[s(n)]

4 s(n) clc[s(n)]

5 s(n) clps(n)

6 s(n) sgns(n)

7 clcs(n) sgns(n)

8 clps(n) sgns(n)

9 clps(n) clcs(n)

10 sgns(n) sgns(n)

• Differences in the performance of the remaining six combinations are not
consistent, thus any one of these correlators can be applied for flattening
the spectrum.

• The performance is improved if the nonlinear processing is performed
before low-pass filtering. This applies especially to band-limited signals,
where the weakly-attenuated waveform of the first formant is often the
only information available for periodicity detection after low-pass filtering.

The key problem in centre clipping is the choice of the clipping threshold.
Sondhi proposed a method based on a short time interval (5 ms), where the
threshold for clipping was set at 30 % of the maximum absolute signal value
within the block [22]. In Rabiner’s method, the threshold was set to be a fixed
percentage (68 %) of the smaller of the maximum absolute signal value over
the first and last 10 ms of the analysis frame, which is normally 30 ms [25].

Pitch Tracking

The principle of pitch tracking is based on the continuity characteristic of pitch,
i.e. once a voiced sound is established, its pitch varies within a limited narrow
range. The pitch tracking principle can be used in two ways, one operating
after the main pitch determination process as an error-checking function
and the another within the main pitch determination process ensuring the
estimation follows the correct route.

The first method of pitch tracking is also called pitch smoothing because
it forces the pitch contour to be smooth. Pitch smoothing is a passive way
of utilizing the continuity characteristic. The risk in using this method is
that some abrupt changes in pitch are smoothed out, as there are occasional
instances of dramatic change.
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Figure 6.18 Forward pitch tracking: (a) Setting search range limits and (b) Possible
tracked pitch candidates

The active way of using pitch tracking is to apply it at the beginning of
the main processing. Thus, the pitch is not estimated in isolation but by
considering the neighbouring frames. With this pitch-tracking method, the
pitch is estimated as a minimum path error overall. Path error refers to an
accumulated error for a number of adjacent frames, also called the path
penalty. For instance, if a pitch path consists of τ0, τ1, τ2 (see Figure 6.18), the
path penalty is the accumulated error on the path given by:

Epath = E0(τ0) + E1(τ1) + E2(τ2) (6.35)

where Ei(τj) is the estimated error for candidate τj in the ith frame. Constraint
conditions must be applied to the possible pitch paths so that the continuity
characteristic can be maintained. Pitch-tracking constraints are as follows:

(1 − α)τ0 ≤ τ1 ≤ (1 + α)τ0

(1 − α)τ1 ≤ τ2 ≤ (1 + α)τ1 (6.36)
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Figure 6.19 A two trace-tracking scheme

where α is chosen according to the short-time analysis (frame duration) or
path step. Since the frame duration is equivalent to the interval between
two consecutive pitch analysis blocks, as the frame gets larger, the next
pitch could be expected to have more deviation. According to the data by
Sundberg [26], the maximum rate of change of fundamental frequency is in
the order of 1 %/ms. For a 20 ms frame size, the maximum frequency change
would be 20 % which corresponds to a pitch range from 0.8ω0 to 1.2ω0. In the
time domain, the corresponding range is 0.8τ0 to 1.2τ0, approximately, with
α = 0.2.

In order to take into account the effects of both continuous pitch and
changing pitch, two pitch paths should be considered (see Figure 6.19). One
traces the pitch from previous frames to the current frame, and the other
traces the pitch from the current frame to incoming or future frames that
forecast a new pitch trace. If the future path penalty is less, it is assumed that
a new pitch trace is starting; if the path penalty with the previous frames is
smaller, then the existing pitch is assumed to continue into the current frame.
Since future pitch tracking requires the storage of the future frames, extra
delay is unavoidable. The pitch-tracking procedure using three frames can be
described as follows:

• Forward Tracker

1. For each candidate pitch (τ0) in the current frame, find E0(τ0).
2. Find the joint minimum E1(τ1)+E2(τ2) under the constraints of equation

(6.36).
3. Add E0(τ0) to the corresponding minimum E1(τ1) + E2(τ2) to form each

candidate’s accumulated forward path error.
4. Search for the minimum accumulated error and find the forward pitch.
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• Backward Tracker

1. Add E−2(τ−2) and E−1(τ−1) corresponding to the pitch periods of the
two previous frames to find the accumulated error up to the current
frame.

2. Find the minimum E0(τ0) under the constraint that 0.8τ−1 ≤ τ0 ≤ 1.2τ−1.
3. Add E0(τ0) to the backward-accumulated error to find the backward

pitch-tracking error.

Finally the forward and backward path errors are compared and the
optimum pitch τopt is selected.

It can be seen from the above description that the forward pitch-tracking
procedure is equivalent to a full search scheme for a given path boundary
which makes it very complex to implement in real-time. Although dynamic
programming techniques can reduce this procedure to a sequential search, it
is still very complex and thus not widely used in practice. However, using
the fact that the search ranges are heavily overlapped, a fast algorithm has
been developed that reduces the computations significantly [27].

If we assume Ri is the search range in the next frame for the candidate pitch
τi in the current frame and similarly, Rj defines the search range of τj, then
according to the definition, we have

Ri = {τ i
b, τ i

b + p, τ i
b + 2p, τ i

b + 3p, . . . , τ i
e} (6.37)

Rj = {τ j
b, τ

j
b + p, τ

j
b + 2p, τ

j
b + 3p, . . . , τ j

e} (6.38)

where τ i
b and τ i

e are the first and last pitch values in the range Ri and similarly

τ
j
b and τ

j
e are the first and last pitch values in the range Rj, p is the pitch

resolution or the step size and,

τ k
b =




τmin if (1 − α)τk < τmin

(1 − α)τk otherwise

τ k
e =




τmax if (1 + α)τk > τmax

(1 + α)τk otherwise

It can be shown that all possible search ranges can be divided into three
main groups. The first and third cases, in Figures 6.20a and 6.20c respectively,
have the same characteristic in that one range is fully overlapped by the next,
i.e. Ri ∈ Rj. In these cases, it is not necessary to search through all these ranges
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Figure 6.20 Three possible pitch-lag search ranges

separately. The smaller range is fully searched and then its minimum error
value is compared with the new candidates in the next bigger range.

The second case (Figure 6.20b) is not as easy as the other two, because
the ranges are only partially overlapping. Assuming the error function is as
sketched in Figure 6.21a, the two search ranges should be fully searched to
prevent the incorrect pitch being selected. However each partly-overlapped
range, Ri, can be split into two fully overlapped subranges, R′i and R′i, as
shown in Figure 6.21b.

R′4 ∈ R′3 ∈ R′2 ∈ R′1 (6.39)

R′1 ∈ R′2 ∈ R′3 ∈ R′4 (6.40)

τi

τ1 τ2 τ3 τ4

τj

E(P)

R’4

R’1

R’2
R’3

R"4
R"3

R"2
R"1

right to left search left to right search

(a)

(b)

Figure 6.21 Partially-overlapped search schematics
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The whole search, therefore, is divided into two procedures: subrange search
and subrange comparison. Since these subranges are all fully overlapped,
searching over the subranges only need be done twice, from left to right and
from right to left. We start with the range R′′1 and compare its minimum with
the nonoverlapped part of R′′2 and so on until all of the right hand side is
completed. The same procedure is applied to the left hand side starting with
R′4. Finally, the left hand and right hand side minima are compared and the
overall minimum is selected. We can also see that the number of comparisons
during the search is independent of the size of the pitch search ranges and is
equal to three times the number of pitch candidates.

Multiple Pitch and Half Pitch Errors

Almost all PDAs have a peak detector which decides the pitch by the peak
position. In time-domain methods for example, the peak to be detected is
not only positioned at the correct pitch lag, but also at its integer multiples.
Therefore it is possible that a multiple of the real pitch may be chosen. In
order to find the desired peak among the peaks, a complicated procedure
is normally needed. The basic idea for solving this problem includes two
steps: picking the maximum peak; checking the submultiple positions to see
if there is a comparable peak. However, since there is no fixed solution to this
problem, tuned comparison thresholds are generally used.

For example, in the case of the cross-correlation pitch estimation method,
the comparison is made by looking at the ratio R(τ0/i)/R(τ0) where i is
an integer, which produces pitch submultiples greater than or equal to the
minimum expected pitch. The smallest submultiple which may produce a
ratio greater than the set threshold is selected as the pitch.

In frequency-domain methods, such as the spectrum similarity method,
a similar procedure can be applied. In this case, the average sum of the
harmonics in the signal may be used in the comparison. At every submultiple,
the average sum of harmonic magnitudes are computed by

Av(ωk) = 1
Lk

Lk∑
i=1

A(iωk) ; k = 1, 2, 3, . . . , n. (6.41)

where Lk is the total number of harmonics in a 4 kHz speech bandwidth,
A(iωk) are harmonic magnitudes and ωk = 2π

τ0/k is the fundamental frequency
of the kth submultiple of the initial pitch. The ratio between the Av(ωk) of the
smallest submultiple and the initial pitch, τ0, is then computed and compared
with a threshold which may vary for each submultiple. If this ratio is bigger
than the corresponding threshold, then the smallest submultiple is selected as
the pitch estimate. Otherwise the next largest submultiple is checked against
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the above procedure and it is selected as the pitch estimate if it satisfies
the condition. This process continues until all submultiples have been tested
against this condition. If none of the submultiples of the initial pitch satisfy
the condition, then the initial τ0 becomes the final pitch estimate.

In some cases, where the decision threshold is wrongly exceeded, a multiple
or submultiple of the correct pitch may be selected. This may cause significant
performance degradations. Therefore, when designing a vocoder that requires
accurate pitch estimation, other measures which can reduce the effects of these
occasional pitch errors should be considered.

6.3 Voiced–Unvoiced Classification

The voicing is another very important parameter which must be estimated
correctly for good quality speech reproduction. In the old vocoders, a single
(binary) voicing decision was made by classifying the frame (or half the
frame) as either voiced or unvoiced. However, it is well known that the
transitions are very important for good quality speech synthesis and most
of the time the transitions are a mixture of voiced and unvoiced signals.
Therefore a mixed decision of voicing has been developed and used in many
of the latest vocoders. In the following, we review and discuss both binary
(hard) and mix (soft) decision voicing.

6.3.1 Hard-Decision Voicing

Voiced and unvoiced sounds have very well-known characteristics which can
be used to classify them reasonably correctly. Some of the most distinctive of
these characteristics are discussed below.

Periodic Similarity

The most prominent characteristic that separates voiced speech from unvoiced
speech is its regularity and fairly well-defined pitch. During voiced speech,
samples in one pitch period look very similar to the samples in the adjacent
pitch period. Hence, measuring the similarity between samples in consecutive
pitch cycles can give a reasonably good idea if the speech is voiced or
unvoiced. The measurement of similarity, Ps, can be computed by

Ps =

[ N∑
i=1

s(i)s(i − T)

]2

N∑
i=1

s2(i)
N∑

i=1

s2(i − T)

(6.42)
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Figure 6.22 Original speech waveform and the corresponding pitch similarity plot
with a possible voicing threshold of 0.5 (shown by the dashed line)

which has a value between 0 and 1, indicating no similarity and 100 %
similarity, respectively. Time plots of typical voiced and unvoiced speech
against pitch similarity are shown in Figure 6.22. As can be seen from the
figure the voiced parts of speech clearly have higher pitch similarity than
the unvoiced parts. This is expected since two adjacent unvoiced speech
segments do not possess noticeable similarities.

Peakiness of Speech

Periodic or voiced speech contains regular pulses which do not appear in
unvoiced speech. This feature is described as peakiness of speech and it can
be used to identify voiced speech when it has a relatively high value. In order
to enhance the peakiness, the LPC residual can be used to compute its value.

Pk =

√√√√ 1
N

N∑
i=1

r2(i)

1
N

N∑
i=1

|r(i)|
(6.43)
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Figure 6.23 LPC residual and corresponding peakiness plots with a possible voicing
threshold of 1.4 (shown by the dashed line)

where r(i) is the LPC residual signal. Plots of LPC residual and the corre-
sponding peakiness measure are shown in Figure 6.23. Although the voiced
speech is clearly peaky, there are some unvoiced parts which contain a major
spike. In these cases, the peakiness measure may incorrectly indicate the
frame as voiced instead of unvoiced. In order to avoid this problem, a second
peakiness measure can be computed by excluding the largest magnitude
sample and its immediate neighbours from the computation. If the two peak-
iness measures are significantly different, then the frame is not really voiced
but contains a spike.

Zero Crossing

Unvoiced speech has random characteristics, which means that the number of
times the signal crosses the zero line (i.e. that the sign changes) is significantly
higher than with the voiced part of speech, which has a much slower zero-
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Figure 6.24 Speech waveform and its zero-crossing rate with a possible voicing
threshold of 60 (shown by the dashed line)

crossing rate. The simple logic shown below can be used to compute the
zero-crossing rate:

count=0;
for(i=1;i<N;i++)

{
if((data[i] x data[i-1]) < 0.0)
count = count + 1
}

Zc=count

A speech waveform and its corresponding zero-crossing rate is shown in
Figure 6.24. The zero-crossing rate also depends on the pitch of the signal (if
voiced). For example, the zero-crossing rate of voiced female speech (with
a short pitch period) is higher than that of voiced male speech (with a long
pitch period). A small pitch weighting can be used to weight the decision
threshold.
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Spectrum Tilt

Voiced speech has higher energy in low frequencies and unvoiced speech
usually has higher energy in high frequencies resulting in opposite spec-
tral tilts. The spectral tilt can be represented by the first-order normalized
autocorrelation or first reflection coefficient.

St =

N∑
i=1

s(i)s(i − 1)

N∑
i=1

s2(i)

(6.44)

This is a very reliable parameter especially for plosive detection and to avoid
individual spikes in low-level signals. As can be seen from Figure 6.25,
its ability to indicate unvoiced and voiced sounds in general is also very
accurate.

Figure 6.25 Speech waveform and its spectral tilt with a possible voicing threshold
of 0.25 (shown by the dashed line)
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Pre-emphasized Energy Ratio

Voiced and unvoiced speech can be discriminated by normalized pre-
emphasized energy.

Pr =

N∑
i=1

|s(i) − s(i − 1)|

N∑
i=1

|s(i)|
(6.45)

The variance of the difference between adjacent samples is usually much
lower in voiced regions than in unvoiced regions. The first-order correlation
of voiced samples is around 0.85 but that of unvoiced samples is nearly
zero, which is a clear indication of the voiced–unvoiced discriminatory
characteristic of this parameter. A speech waveform and its corresponding
normalized pre-emphasized energy is shown in Figure 6.26.

Figure 6.26 Speech waveform and its normalized pre-emphasized energy with a
possible voicing threshold of 0.9 (shown by the dashed line)
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Low-Band to Full-Band Energy Ratio

Voiced speech usually has a higher low-frequency energy than unvoiced
speech. Therefore the energy ratio of the first 1 kHz to the full-band energy
can give a good indication whether the speech is voiced. When voiced, the
energy ratio is close to one and when unvoiced, since the low-band energy is
significantly smaller, the ratio will be less than one.

LF =

N∑
i=1

s2
lpf (i)

N∑
i=1

s2(i)

(6.46)

where slpf (i) is low-pass filtered speech at 1 kHz. A speech waveform and its
corresponding low-band to full-band energy ratio is shown in Figure 6.27.

Figure 6.27 Speech waveform and its low-band to full-band energy ratio with a
possible voicing threshold of 0.4 (shown by the dashed line)
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Frame Energy

Voiced speech usually has a higher energy than unvoiced speech. However,
the actual value of the energy in each frame also depends on the dynamic
range of the signal. Therefore a more useful measure is to have a comparison
of current frame energy with the tracked maximum and minimum energies.
The voiced speech should ideally be closer to the maximum track energy and
unvoiced speech should be closer to the minimum track energy (excluding
silences). The maximum track energy must go up quickly and come down
slowly and the minimum tracked energy must come down quickly and go
up slowly.

Emax(n) =
{

αEmax(n − 1) + (1 − α)E0 ; if E0 > Emax(n − 1)

γ Emax(n − 1) + (1 − γ )E0 ; otherwise (6.47)

where E0 is the current frame energy and Emax(n−1) is the previously tracked
maximum energy. Typically α = 0.5 and γ = 0.98 enables the maximum
energy to go up fast and come down slowly.

Emin(n) =
{

ζEmin(n − 1) + (1 − ζ )E0 ; if E0 < Emin(n − 1)

βEmin(n − 1) + (1 − β)E0 ; otherwise (6.48)

where Emin(n) and Emin(n−1) are the current and previously tracked minimum
energies. Typical values of ζ = 0.55 and β = 0.98 are selected so that the
minimum energy can come down fast and go up slowly. In addition to the
above tracked maximum and minimum energies, the average energy of the
speech signal may also be tracked by,

Eav(n) = 0.75Eav(n − 1) + 0.25E0 (6.49)

The current frame energy, tracked average energy and tracked minimum
energy will be low in the unvoiced regions. In the voiced regions, on the other
hand, current frame energy will be close to the tracked maximum. A speech
waveform with its corresponding maximum, minimum and average tracked
energies, and the frame energy are shown in Figure 6.28. The following piece
of logic can be used to indicate voiced or unvoiced,

if ((E0 + th1 > Emax)||(E0 > Eave))

Fe = voiced
else if (E0 < th2 + Emin)

Fe = unvoiced
else

Fe = notsure

(6.50)

where th1 and th2 are tuning tolerance thresholds.
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Figure 6.28 Speech waveform and (top) maximum, (middle) average, and (bot-
tom) minimum tracked energies, and the frame energy (shown by the dotted line);
energies have been shifted up

Decision-Making

Having computed the most useful voicing indicators, a combined decision
has to be made. The simplest decision-making rule is to use a majority
vote. A better decision rule could be to use a weighted combination of the
voicing indicators. Two types of weighting can be applied to produce a
combined decision. Different parameters have different degrees of reliability
in indicating the correct voicing and the weighting could be used to reflect
these variations in reliability. The weighting of parameters such as periodic
similarity and spectral tilt can be higher to reflect their greater reliability.
In addition, a second set of weightings can be used to reflect the difference
of each parameter from the optimum decision threshold. For example, the
variations of each parameter can be normalized to be ±1 around the optimum
threshold and these values can be used in a summation with the appropriate
weights which reflect the importance of the corresponding parameter. The
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normalized parameters are given by,

Ps′ =
{

(Ps − Thps)/(Psmax − Thps) ; if Ps > Thps
(Ps − Thps)/(Thps − Psmin) ; if Ps < Thps

(6.51)

Pk′ =
{

(Pk − Thpk)/(Pkmax − Thpk) ; if Pk > Thpk
(Pk − Thpk)/(Thpk − Pkmin) ; if Pk < Thpk

(6.52)

Zc′ =
{

(Thzc − Zc)/(Thzc − Zcmin) ; if Zc < Thzc
(Thzc − Zc)/(Zcmax − Thzc) ; if Zc > Thzc

(6.53)

St′ =
{

(St − Thst)/(Stmax − Thst) ; if St > Thst
(St − Thst)/(Thst − Stmin) ; if St < Thst

(6.54)

LF′ =
{

(LF − Thlf )/(LFmax − Thlf ) ; if LF > Thlf
(LF − Thlf )/(Thlf − LFmin) ; if LF < Thlf

(6.55)

Pr′ =
{

(Thpr − Pr)/(Thpr − Prmin) ; if Pr < Thpr
(Thpr − Pr)/(Prmax − Thpr) ; if Pr > Thpr

(6.56)

Fe′ =



(E0 − Thv)/(Emax − Thv) ; if voiced
(E0 − Thuv)/(Thuv − Emin) ; if unvoiced
0 ; if not sure

(6.57)

where Thps, Thpk, Thzc, Thst, Thlf and Thpr are fixed voicing thresholds for the
pitch similarity, peakiness, zero crossing, spectral tilt, low-band to full-band
energy ratio, and pre-emphasized energy ratio respectively, and Thv and Thuv
are adaptive voiced and unvoiced thresholds used to compare the frame
energy. The overall voicing indicator V is then computed by combining the
contributions of all indicators.

V = w1Ps′ + w2Pk′ + w3Zc′ + w4St′ + w5LF′ + w6Pr′ + w7Fe′ (6.58)

The weights w1, . . . , w7 are chosen according to the reliability of each indica-
tor. The sign of the voicing V will indicate voiced when positive and unvoiced
when negative. If V is close to zero it will indicate an unsure case, and the
voicing of the previous frame could be used to increase reliability. Further-
more, in cases where V = ±δ where δ has a small value (indicating an unsure
case), individual voicing parameters can be checked to see if one or more of
them has a clear indication of voiced or unvoiced. This can be achieved by
selecting two further thresholds for each parameter, one indicating voiced
and the other unvoiced. These thresholds must be selected by carrying out
long simulations. Typically Ps can be above 0.7 for voiced and below 0.3 for
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Figure 6.29 Clean (top) and 10 dB SNR noisy (bottom) speech waveforms

unvoiced. The St can have values above 0.6 for voiced and below 0.2 for
unvoiced. Similarly Zc can have values below 40 and above 90 out of 160 for
voiced and unvoiced respectively.

The above hard-decision voicing method works very well with clean
background speech signals. However when speech is mixed with background
noise, the set thresholds may not be valid anymore. Hence a more careful
decision-making logic needs to be employed. Waveforms of original speech
and 10 dB SNR heavy vehicle noise are shown in Figure 6.29. As can be seen
from the figure, most unvoiced and some voiced sounds have been submerged
in the noise, making it very difficult to see them. Under noisy conditions,
voicing parameters are expected to differ considerably. The variations of
three voicing parameters (spectrum tilt, pre-emphasized energy ratio and
pitch similarity) are shown in Figure 6.30.

When there is a transition from voiced to unvoiced or unvoiced to voiced,
even during clean speech conditions, a frame can be mistakenly declared
as voiced or unvoiced since both voiced and unvoiced exist together in
that frame. It is therefore necessary to refine the voicing decision further
by introducing a mixed frame type in addition to completely voiced and
unvoiced frames. The all-important question is what proportion of the frame
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Figure 6.30 Reading from the top: St, Pr, and Ps voicing parameters (dotted for
noisy speech), and the original and noisy speech waveforms

will be voiced and unvoiced? This leads to an adaptive mixed-voicing decision
process which has been used in MBE, MELP, etc.

6.3.2 Soft-Decision Voicing

Although fully voiced and fully unvoiced frames can be identified in the
time domain by using the voicing parameters discussed above, in the case
of noisy speech this becomes more difficult and more mistakes are made.
In order to avoid this problem and to deal with the mixed frames in one
process, a frequency-domain voicing-decision process is more appropriate.
The mixed voicing-decision process usually makes use of the harmonic and
random structures of voiced and unvoiced sounds in the frequency domain.
For example, in MBE-based coders, a synthetic spectrum (constructed by
using the measured pitch of the frame) tests the degree of match with the
original spectrum. Better-matched frequencies are declared voiced and the
rest are classified as unvoiced. In the case of MELP, the input frame is first
split into subbands and the long-term correlation in each band is measured to
classify the band as voiced (high correlation) or unvoiced (low correlation).
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MBE Mixed Voicing

The voicing decision is made by examining the normalized distance Dk
between the original and estimated speech spectra in frequency bands,

Dk =

bk∑
m=ak

|S(m) − Ŝ(m, ω0)|2

bk∑
m=ak

|S(m)|2
(6.59)

where ω0 is the refined fundamental frequency, ak and bk are the first and last
harmonic in the kth band, S(m) is the original speech spectrum, and Ŝ(m, ω0)

is the reconstructed speech spectrum which is calculated using:

Ŝ(m, ω0) = Al(ω0)W(m) 1 ≤ l ≤ L, �al	 ≤ m < �bl	 (6.60)

where al = (l − 0.5)ω0, bl = (l + 0.5)ω0, �.	 means the nearest integer greater
than or equal to, L is the number of harmonics within the 4 kHz speech
bandwidth, W(m) is the frequency response of a suitable window centred at
the lth harmonic of the fundamental frequency (see Figure 6.31) and Al(ω0) is
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Figure 6.31 Frequency response of the Hamming window
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the lth harmonic amplitude which is computed using:

Al(ω0) =

�bl	∑
m=�al	

S(m)W(m)

�bl	∑
m=�al	

|W(m)|2
(6.61)

When creating the synthetic spectrum, it is very important to adjust the
position of W(m) and the size of the transform used, to make sure that
the peak of the window is centred on the harmonic and dies down to a
very small value at ±0.5 ω0 around each harmonic. As can be seen from
the formulation above, the synthetic spectrum is assumed to be all voiced.
However, the speech spectrum is not all voiced and, although the synthetic
spectrum will be very similar to the original spectrum in the voiced regions, it
will have larger differences in the unvoiced regions. Therefore, this similarity
(or dissimilarity) measure can be used to make a reasonably correct voicing
decision by comparing it against a pre-determined threshold. The value of
the threshold is set to give the proper mix of voiced and unvoiced energy.
Listening tests can be used to set the adaptive threshold function to values
where the ratio of voiced and unvoiced energy is perceptually optimum. To
determine the voicing decisions, the normalized error, Dk, for each frequency
band is compared with this adaptive threshold, �k(ω0) given by [28]

�k(ω0) = (α + βω0) [1.0 − ε(k − 1)ω0] M(E0, Eav, Emin, Emax) (6.62)

where α = 0.35, β = 0.557, and ε = 0.4775 are the factors that give good
subjective quality and,

M(E0, Eav, Emin, Emax) =




0.5 ; Eav < 200
(E0 + Emin)(2E0 + Emax)

(E0 + µEmax)(E0 + Emax)
; Eav ≥ 200 and

Emin < µEmax
1.0 ; otherwise

(6.63)

is the adaptation factor that controls the decision threshold for voicing
decisions, and µ = 0.0075. The parameters Eav, Emax, and Emin roughly
correspond to the local average energy, the local maximum energy and the
local minimum energy respectively. These three parameters are updated
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Figure 6.32 The relationship between the energy levels used in determining voiced
and unvoiced speech

every speech frame according to [28],

Eav(n) = 0.7Eav(n − 1) + 0.3E0 (6.64)

Emax(n) =
{

0.5Emax(n − 1) + 0.5E0 ; if E0 > Emax(n − 1)

0.99Emax(n − 1) + 0.01E0 ; otherwise (6.65)

Emin(n) =



0.5Emin(n − 1) + 0.5E0 ; if E0 ≤ Emin(n − 1)

0.975Emin(n − 1) + 0.025E0 ; if Emin(n − 1) ≤ E0 < 2Emin(n − 1)

1.025Emin(n − 1) ; otherwise

(6.66)

Relative variations of these energy levels are illustrated in Figure 6.32. The
voicing decision for each band is made by comparing the normalized error
for the band with the value of the threshold function which is computed
using the above procedure. If the normalized error is less than the threshold
function, the corresponding frequency band is declared voiced; otherwise,
the frequency band is declared unvoiced. The variations of the threshold and
the corresponding error function are shown in Figure 6.33.
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Figure 6.33 The error and threshold functions for one frame

Split-Band Mixed Voicing

Correct estimation of the threshold level for each band is the most important
stage in MBE mixed-voicing estimation. The other important factor is that
more than one bit will be needed during the coding of the mixed-voicing
decision estimate. Since each band will require one bit, more bands will mean
higher accuracy but an increased bit rate. When closely examined however,
we see that if a spectrum contains an unvoiced band between two voiced
bands, the unvoiced signal in the middle is usually relatively small and if
it is declared as voiced, subjectively it would not make much difference.
This is very important because it saves bits when coding the mixed voicing-
decision. In this case a single point in the frequency spectrum can be used to
identify the voiced (low frequency) and unvoiced (high frequency) regions.
There may be several ways to obtain the single frequency marker or cut-off
point which separates the voiced and unvoiced parts. For example, using
MBE mixed-voicing, above, one can assume that the spectrum is voiced up
to the highest frequency voiced band. Alternatively, the total number of
voiced bands obtained in MBE mixed-voicing can be counted and used to
set the same number of low frequency bands to voiced. In this case, some
high-frequency voiced bands will be swapped with low-frequency unvoiced
bands. Although these methods may give good quality in the majority of
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mixed-signal frames, they still rely on hard-decision voicing in individual
bands. A more reliable approach is to consider the actual voicing value or
voicing likelihood in each band. This can be measured by the degree of
harmonic structure in each frequency band. If a harmonic band is voiced,
then its content will have a shape similar to the spectral shape of the window
used prior to the Fourier transform, while unvoiced bands will be random in
nature. Hence the level of voicing in a frequency band can be measured by
the normalized correlation between the content of a frequency band and the
spectral shape of the window positioned on each harmonic bin.

V(l) =

[
ω0∑

m=l

S(m − lω0 + 0.5 ω0)W(m)

]2

ω0∑
m=l

W2(m)

ω0∑
m=l

S2(m − lω0 + 0.5 ω0)

(6.67)

where S(m) is speech spectrum and W(m) is the Fourier transform of the
analysis window. W(m) is usually up-sampled by computing its Fourier
transform using a larger transform size (compared to S(m)) and then down-
sampled with respect to the fundamental frequency, so as to have the same
number of points within each harmonic region of S(m). The voicing V(l)
has a value between 0.0 and 1.0, which indicate fully unvoiced and voiced
respectively. Similar to MBE mixed-voicing, V(l) is compared against a
threshold in each band. Since the voicing probability varies in each band as
well as in each frame, the threshold value needs to be adaptive. This threshold
can be computed by combining the voicing indicators, such as pitch similarity,
zero crossing, peakiness, low-band to high-band energy ratio, E0/Emax, etc.
Having computed V(l) and the threshold T(l) for each band, we need to make
a decision to choose the best cut-off frequency. Since this cut-off point will be
quantized before transmission, it is more convenient to test each quantizer
level against a measure so that the selected cut-off frequency is also quantized.
For each quantizer value i, a matching measure M(i) can be computed as
given below:

M(i) =
L∑

l=1

(V(l) − T(l)vi(l)E(l)B(l) (6.68)

This takes into account the energy of each harmonic, E(l), and a biasing,
B(l), which represents the perceptual weighting. For a given quantizer level
i, individual voicings vi(l) will have values of +1 up to the cut-off i and
−1 for the higher harmonics. The weighting, B(l), is usually set to 1.0 when
unvoiced (T(l) > V(l)) and higher for voiced. The above voicing process takes
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into account the difference between V(l) (the voicing likelihood) and the
threshold T(l), which replaces the hard decision used in MBE mixed-voicing
with a soft decision in each band. An example of a voicing likelihood and
threshold function is shown in Figure 6.34.

It is also possible to use this weighted-sum approach on the voicing measure
used in MBE. However, the MBE approach requires the computation and
generation of a synthetic spectrum, as described above. This is not required for
the voicing likelihood method discussed here. However, as for the MBE and
MELP voicing-decision algorithms, the most important stage during split-
band voicing estimation is the calculation of the threshold function. Using
a limited number of speech characteristics for the threshold computation
does not lead to good voicing determination. For example, the energy alone
is not a reliable enough voicing indicator, since there can be high-energy
unvoiced speech segments and low-level voiced speech. The peakiness factor
is not entirely reliable either: single spikes can lead to high peakiness, but
they should be declared as unvoiced for optimal speech quality. Likewise,
the periodic similarity measure has its limits: when the pitch varies, the
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normalized autocorrelation may be quite low whereas the speech is clearly
voiced. It is therefore necessary to make full use of the speech characteristics
described above to generate a good threshold function. In split-band voicing,
the threshold function is generated as follows [29]:

1. An initial linear threshold function is generated which starts at 0.4 and
goes up to 0.55. The value of the threshold is increased for harmonics
which correspond to the unvoiced harmonics in the previous frame. If the
previous frame is completely unvoiced the threshold increases to 0.55–0.65
(increasing the chance of an unvoiced decision in the current frame).

2. The voicing-threshold function is biased using the following individual
parameters:

• Low- to full-band energy ratio
• Pre-emphasis energy ratio
• Zero-crossing rate
• Frame energy

These parameters have their high and low thresholds set and, if they are
triggered, the voicing threshold function is biased towards either voiced
or unvoiced.

3. The voicing-threshold function is biased using the pitch value. A high
number of harmonics present in the speech implies that the harmonic
bands are narrow and contain a small number of frequency bins. As
a result, the voicing likelihood tends to increase, as the matching is
performed on fewer points. The voicing threshold function needs to be
biased to compensate for this effect.

4. Finally, very specific cases detected in individual speech characteristics
are used to bias the threshold. For example, very high periodic similarity
is used to increase the voiced likelihood and very high zero-crossing rate
(in clean conditions) is used to increase the unvoiced likelihood.

This voicing determination method provides very robust detection accuracy,
even under significant background noise conditions.

6.4 Summary

Developments in the field of fast DSP technology have allowed the use of more
and more sophisticated algorithms required for accurate pitch estimation and
voiced–unvoiced classification. With the new multi-domain (frequency and
time) pitch estimation, it is possible to get good performance even under noisy
conditions. However, even the latest and most complex pitch estimation algo-
rithms are not perfect. In some speech segments, the pitch is not well-defined
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and some errors are inevitable. Overall performance of the pitch-estimation
algorithms, however, can be considered to be pretty good. Voiced–unvoiced
classification, on the other hand, has moved from a single (binary) indicator,
where each block of speech was classified either as voiced or unvoiced, to
more elaborate frequency-domain mixed decisions. This has increased the
quality of synthetic speech dramatically. The performance of voicing estima-
tion under noisy conditions has also been improved with developments in
mixed-voicing classification.
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7
Analysis by Synthesis
LPC Coding

7.1 Introduction

The broad classification of speech coding techniques that attempt to reproduce
the original speech waveform as best as possible can be split into two
basic groups, namely analysis-and-synthesis (AaS) schemes and analysis-by-
synthesis (AbS) schemes. Although AaS schemes, such as APC [1, 2], ATC [3]
and SBC [4], have been successful at rates around 16 kb/s and above, below
16 kb/s they can no longer reproduce good quality speech. In addition, AaS
coders that have been used at bit rates of around 9.6–16 kb/s can not achieve
true toll quality performance (MOS≥4). There are two main reasons for their
shortcomings: first, the coded speech is not analysed to see if the coding
procedure is operating efficiently, i.e. there is no check on or control over the
distortions of the reconstructed speech; and secondly, in adaptive schemes,
the errors accumulated from previous frames are not usually considered in
the current frame of analysis, hence the errors propagate into the following
frames without any form of resetting. In AbS schemes, particularly AbS-LPC
schemes [5, 6], these two factors are incorporated in the coding process.
In AbS-LPC coding systems, a closed-loop optimization procedure is used
to determine the excitation signal, which produces a perceptually optimum
synthesized speech signal when used to excite the model filter. It is this
closed-loop approach which enables AbS-LPC coding schemes to be far more
successful at 4.8 to 16 kb/s than conventional AaS schemes such as APC and
SBC.

The method of AbS is not unique to speech coding, but is a general
technique used in other areas of estimation and identification. The basic idea
behind AbS is as follows. First it is assumed that the signal can be observed
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Figure 7.1 General block diagram of analysis-by-synthesis closed-loop analysis

and represented in some form, e.g. the time or frequency domain. Then a
theoretical form of the signal production model is assumed, as depicted in
Figure 7.1. The model has a number of parameters which can be varied to
produce different variations of the observable signal. In order to derive a
representation of the model that is of the same form as the true signal model,
a trial and error procedure can be applied. By varying the parameters of
the model in a systematic way, it is possible to find a set of parameters that
can produce a synthetic signal which matches the real signal with minimum
possible error (assuming the model is valid to begin with). Therefore, when
such a match is calculated, the parameters of the model are assumed to be the
parameters of the true signal.

The AbS procedure outlined above was applied to speech processing in the
earlier days of formant estimation [7] but, because of its obvious complexity, it
was not re-applied until Atal outlined the basis of Multi-pulse LPC (MPLPC)
in [8] for low bit-rate coding. In Atal’s work, the time-domain representation
of speech was used and a model very similar to the conventional source-filter
model was selected. However, AbS with other domains and models are
equally applicable [9]. In the following sections a unified presentation of the
various AbS-LPC schemes using Atal’s modelling is described.

7.2 Generalized AbS Coding

The basic structure of an AbS-LPC coding system is illustrated in Figure 7.2.
There are basically three blocks in the model that can be varied to match our
true model and, hence, obtain a good synthesized speech signal: time-varying
filter, excitation signal and perceptually-based error minimization procedure. As our
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model requires frequent updating of the parameters to yield a good match
with the original signal, the analysis procedure of the system is carried out
in blocks, i.e. the input speech is partitioned into suitable blocks of samples.
The update rate of the analysis block or frame determines the bit rate or
capacity of the coding schemes. The basic operation of an AbS-LPC scheme
is as follows:

1. Initialize the contents of the time-varying filter (LPC and pitch) to pre-
determined values (usually zero or low level random noise).

2. A frame of speech samples is buffered and a set of LPC coefficients are
computed, using LPC analysis on the frame.

3. As the LPC analysis frame is usually too large for efficient analysis to
determine the excitation, the frame is subdivided into a subframes.

4. For each subframe:
(a) Using the computed LPC coefficients (usually interpolated for each

subframe) in the LPC filter, its memory effect (filter-ringing response)
is computed and subtracted from the original signal, which is usually
perceptually weighted.

(b) The pitch filter delay (the pitch or its integer multiples) and its associ-
ated scaling factor (pitch gain) are then calculated. This calculation is
performed in such a way that the difference between the synthetically-
generated speech and the remaining original signal is minimized.

(c) Once the pitch filter parameters are found, the pitch and LPC synthesis
filter can be grouped together to form a cascaded filter. Using this
cascaded filter, the best secondary excitation is determined in such a
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way as to minimize the difference between the synthetically-generated
speech and the original speech.

5. The final synthetic speech is generated by passing the optimum secondary
excitation through the cascaded filter with all the initial memory contents
of the filters (left over from the previous subframe synthesis) restored.

6. Repeat steps 2 to 5 for subsequent frames.

Note that the synthetic speech is generated at both the encoder and decoder.
This is necessary in order to update the memory contents of the time-varying
filters such that both encoder and decoder possess replica conditions in
their filter memories. In fact, a major concern of AbS-LPC schemes is how
to preserve this identical condition at both encoder and decoder when the
transmitting medium is imperfect, e.g. in mobile radio links where the error
rates can be very high.

It can be observed from the above descriptions that the AbS-LPC scheme
is not truly analysis-by-synthesis. This is because the procedure is actually
sequential in nature, i.e. the LPC filter parameters are calculated and fixed,
then the pitch filter parameters are calculated, followed by the computation of
the secondary excitation. Consequently, although the secondary excitation is
obtained optimally with respect to the original reference signal, its optimality
is limited by the optimality of the filters it uses. The best combination of
the excitation and the filters is desired, which means optimizing all the
parameters in parallel. Obviously, this joint procedure is very complicated as
well as being very computationally intensive, thus it is split into the sequential
stages described above.

It is interesting to note that this model is very similar to that of the
classical source-filter vocoders [7]. However, there is one major difference
between basic vocoders and AbS-LPC coders. In classical vocoders, the source
excitation is classified into voiced (pulse excitation) and unvoiced (random
noise excitation), which is a major source of model inaccuracy. However, in
AbS-LPC, this categorization is not explicit and therefore the excitation signal
can be anything from pulse-like to noise-like in characteristic, thus enabling
much better quality speech to be synthesized.

7.2.1 Time-Varying Filters

The block representing the time-varying filter in our model is usually made of
two linear predictors, namely the LPC or short-term predictor (STP) and the
pitch or long-term predictor (LTP). The LPC models the short-term correlation
in the speech signal (the spectral envelope) and is given by,

1
A(z)

= 1

1 −
p∑

i=1

aiz−i

(7.1)
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where ai are the LPC coefficients and p is the filter order. It is made time-
varying to reflect the change in the speech spectrum with adaptation rates of
typically around 20–30 ms. The order of the filter, p, is usually chosen to be
around 8 to 12.

The pitch filter models the long-term correlation in speech (the fine spectral
structure) and is given by,

1
P(z)

= 1

1 −
I∑

i=−I

biz−(D+i)

(7.2)

where D is a pointer to long-term correlation which usually corresponds
to the pitch period or its multiples and bi are the pitch (or LTP) gain
coefficients. Again, this is a time-varying filter but it usually has higher
adaptation rates than the LPC, e.g. 5–10 ms. The number of filter taps typ-
ically takes the form I = 0, i.e. 1 tap, and I = 1, i.e. 3 taps. Note that
because of the recursive nature of the two filters, both contain memory in
their working buffers carried over from the previous frame of analysis.
The preservation and inclusion of this filter memory in the AbS analysis is
very important as it reflects the past history of the analysis, and includes
any errors incurred in the previous frames. Also, it provides a smooth-
ing effect to the distortions caused by the block-oriented analysis, such as
edge effects.

7.2.2 Perceptually-based Minimization Procedure

The AbS-LPC coder of Figure 7.2 minimizes the error between the orig-
inal s(n) and the synthesized signal ŝ(n) according to a suitable error
criterion, by varying the excitation signal and the LPC and pitch fil-
ters. As described earlier, this is achieved via a sequential procedure.
First the time-varying filter parameters are determined, then the excitation
is optimized.

The optimization criterion used for both procedures is the commonly
used mean squared error, which offers simplicity and adequate performance.
However, at low bit-rates there is one or fewer bit per sample coding capacity,
thus it is more difficult to match the waveform closely than in, say, higher than
16 kb/s schemes, where more than 1 bit/sample is available. Consequently,
the mean squared error between the original and reconstructed signal is less
meaningful and less than adequate. What is required is an error criterion
which is more in sympathy with human perception. Although much work
on auditory perception is in progress, no satisfactory error criterion has yet
emerged. In the meantime, however, a popular but not totally satisfactory
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method is the use of a weighting filter in AbS-LPC schemes. This weighting
filter is given by,

W(z) = A(z)
A(z/γ )

(7.3)

=
1 −

p∑
i=1

aiz−i

1 −
p∑

i=1

aiγ
iz−i

, 0 ≤ γ ≤ 1

This weighting filter is the same as that proposed by Atal [2] for APC
schemes and a typical plot of its frequency response is shown in Figure 7.3.
The effect of the factor γ does not alter the centre formant frequencies but
just broadens the bandwidth of the formants by �f given by,

�f = − fs
π

ln γ (Hz) (7.4)
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Figure 7.3 Typical plots of weighting filter spectra compared with the original
speech envelope
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Figure 7.4 Modified AbS-LPC encoder with the weighting filter moved to the two
branches of the error minimization procedure

where fs is the sampling frequency in Hz. As can be observed from Figure 7.3,
the weighting filter de-emphasizes the frequency regions corresponding to the
formants as determined by the LPC analysis. By allocating larger distortion
in the formant regions, noise that is more subjectively disturbing in the
formant nulls can be reduced. The amount of de-emphasis is controlled by
γ which introduces a broadening effect and must lie between 0 and 1. The
most suitable value of γ is selected subjectively by listening tests; for 8 kHz
sampling, γ is usually around 0.8 to 0.9.

Although the weighting filter can be used as it is in its normal position (after
subtraction of ŝ(n) from s(n)), it can also be modified in a computationally-
advantageous way by moving it to the two branches contributing to the
subtraction operation, as illustrated in Figure 7.4. This results in a block of
the input samples being weighted only once prior to the AbS search. At the
same time W(z) is combined with the LPC filter to form a modified all-pole
synthesis filter.

1
Aw(z)

= 1
A(z)

.W(z) (7.5)

= 1

1 −
p∑

i=1

aiγ
iz−i
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Note that, in the latest CELP coders, the above weighting filter has been
slightly changed by modifying its zeros (coefficients in the numerator) as well
as its poles.

W(z) = A(z/β)

A(z/γ )
(7.6)

=
1 −

p∑
i=1

aiβ
iz−i

1 −
p∑

i=1

aiγ
iz−i

0 ≤ γ ≤ β ≤ 1

If this structure is to be used then in Figure 7.4, 1/Aw(z) should contain both
the above weighting filter and the usual LPC synthesis filter.

7.2.3 Excitation Signal

The excitation signal represents the input to the AbS-LPC model and is
therefore an important block of the model shown in Figure 7.2. It provides
any residual structures that are not represented by the spectral model of
the time-varying filters, including pitch or long-term dependent structures
that exhibit significant correlation which is not covered by the pitch filter
and random structures that cannot be modelled efficiently by deterministic
methods. A proper excitation model is vital to the pitch-filtering efficiency
as the pitch filter memory is built up of its scaled versions. Therefore, the
excitation is usually represented by a shape vector with its associated gain or
scale factor. The various shapes that have been reported include multi-pulse,
regular-pulse, codebook, etc. Some mixtures of the above excitation schemes
have also been used.

Codebook Excitation

In codebook excitation (CELP) [10], the excitation vector is chosen from
a stored collection of C possible unity variance stochastic sequences with
an associated scaling or gain factor. In the AbS procedure, the C possible
sequences are systematically passed through the combined synthesis filter
(pitch, LPC and perceptual filters); the vector that produces the lowest error
is the desired sequence and is then scaled by its gain. Since the set of
sequences are present at both the encoder and the decoder, only an index to
the codebook and the gain level are required to be transmitted. Therefore,
less than 1 bit/sample coding is possible.

As the codebook is of finite dimension, it must be populated with represen-
tative vectors of the excitation. In Atal’s original proposal, unit-variance white
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Gaussian random numbers were used. This choice of population was reported
to give very good results, partly due to the fact that the probability-density
function of the prediction error samples, produced by inverse filtering the
speech through both the LPC and pitch filters, is very close to having a Gaus-
sian shape. Another popular choice of codebook entries are centre-clipped
Gaussian vectors, which reduce complexity and improve performance. How-
ever later developments in the codebook design such as VSELP and, more
significantly, ACELP structures reduce the codebook storage and search
complexity as well as improving the resultant speech quality.

Self-Excitation

Self-excitation (SELP) [11] can use the excitation signals derived from the past
history of the coded excitation function itself, using a structure similar to a
pitch filter in the form more than one long-term predictor (LTP). The self-
excitation LTP is ‘started’ by initially filling its memory with some random
contents. Then at each analysis-by-synthesis procedure, a sequence equal to
the block length L, indexed in time by k, is selected and passed through a
combined synthesis filter. The best vector with index kopt is the vector which
minimizes the difference error. When the best vector is found and used to
synthesize the current block, it is fed back into the LTP with the oldest L
samples discarded. The self-excitation LTP is effectively a CELP coder with
an adaptive codebook. However, in SELP, the C possible sequences are not
codebook entries but a windowed version of optimum excitations.

Multi-Pulse and Regular Pulse Excitation

Multi-pulse LPC (MPLPC) [8, 12] was the first of the AbS-LPC coding schemes.
In MPLPC, the rigorous division of the excitation into voiced and unvoiced
classes is avoided by making no prior assumptions about the nature of the
excitation signal. In MPLPC, rather than selecting an optimum sequence from
a codebook as in CELP, the excitation is specified by a small set of pulses with
different amplitudes located at nonuniformly-spaced intervals. The encoding
involves the determination of the pulse positions and the amplitudes of the
excitation which produce the minimum error. The only prior information
required is the number of pulses per analysis block (or an error threshold). A
typical pulse rate for good quality speech synthesis is around one pulse per
4–8 samples.

The MPLPC can be viewed as a CELP system with a very large codebook,
the size of which is determined by the number of pulses and the number of
bits used to quantize the pulse amplitudes and locations.

The MPLPC makes no restriction on the spacing or spread of the pulses
except that the number of pulses must be fixed in advance. This arrangement
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Figure 7.5 Typical make-up of an RPELPC pulse-positioning structure

obviously requires a large number of bits to encode the pulse positions.
Therefore, a more structured allocation of the pulses would be more desirable
both in terms of bit savings and complexity in determining the optimum
positions. A sparse codebook CELP is effectively an MPLPC with severe
restrictions on both the positions and amplitudes of the pulses. This is
obviously a very drastic compromise, but if structure is only imposed on
the pulse-positioning then the amplitudes can vary. This is the structure
of the regular pulse excited LPC (RPELPC) [13] shown in Figure 7.5. In an
RPELPC excitation frame, the pulses are equally spaced, with spacing N, and
their positions are specified completely by the position of the first pulse. In
Figure 7.5, the excitation frame size L is 40 and N is 4. The total number of
pulses per frame is M = L/N. Thus, in RPELPC, the N-sequences are passed
through combined synthesis filters and the sequence which minimizes the
error is chosen as the best sequence.

7.2.4 Determination of Optimum Excitation Sequence

In the previous section, the different forms of excitation signals were described
without any detailed description of their determination. While each of the
excitation techniques best models different types of structure that may exist
in the residual, the formulation for determining the optimum excitation
sequence for each is the same [6, 14]. The only difference is the function space
from which an optimum excitation can be chosen. In CELP, a sample space of
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random functions corresponding to the L-point Gaussian random sequences
contained in the codebook is searched. In MPLPC and RPELPC, the search
is in time, but through a set of delayed impulse response functions. For a
given technique, the criterion for finding the optimum excitation function is
the same. The objective is to determine the shape matrix X and the associated
gain g (assuming MPLPC and RPELPC have normalized shape vectors) so
that gX produces a synthetic signal that minimizes the weighted error e(n)

shown in Figure 7.4, i.e.
ek = sw − ŝk (7.7)

where sw is the weighted original reference signal, ŝk is the synthesized signal
(with pitch, LPC and perceptual-weighting filter contributions), and k denotes
the particular excitation.

Let H be an L × L matrix whose jth row contains the (truncated) combined
impulse response h(n) of the pitch, LPC and perceptual weighting filters
caused by a unit impulse δ(n − j), i.e.

H =




h(0) h(1) · · · h(L − 1)

0 h(0) · · · h(L − 2)
...

...
...

...

0 0 · · · h(0)


 (7.8)

If sm denotes the output of the cascaded filters with zero input, i.e. the memory
hangover from previously synthesized frames, then the reference signal s̃ to
be matched can be described as,

s̃ = sw − sm (7.9)

⇒ ek = s̃ − gkXkH (7.10)

= s̃ − gkŝk (7.11)

where,

ŝk = XkH (7.12)

and Xk and gk are the kth excitation shape and gain vectors. The criterion is
minimum-squared error, thus our objective is to minimize Ek where,

Ek = ekeT
k (7.13)

and T denotes transpose. The optimum amplitude vector gk for the kth

candidate excitation can be computed from equations (7.11) and (7.13) by
requiring the error ek to be orthogonal to our estimation ŝk, i.e.

ekŝT
k = 0 (7.14)
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Therefore,

(s̃ − gkŝk).ŝ
T
k = 0 (7.15)

⇒ gk = s̃ŝT
k [ŝkŝT

k ]−1 (7.16)

By substituting equation (7.16) into equation (7.11), equation (7.13) can be
rewritten as

Ek = s̃[I − ŝT
k [ŝkŝT

k ]−1ŝk]s̃T (7.17)

where I is the identity matrix. The vector gk and matrix Xk that yield the
minimum value of Ek over all k are then selected as the optimum excitation.

The above expression for Ek is generalized for all the possible forms
of excitations and is, therefore, rather more complicated than required in
practical cases. The [ŝkŝT

k ]−1 inversion, for instance, is unnecessary in most
cases, as illustrated below using codebook excitation.

ŝkŝT
k = σ (scalar) (7.18)

gk = s̃ŝT
k

σ
= gk (scalar) (7.19)

⇒ Ek = s̃s̃T − gkŝks̃T (7.20)

= s̃s̃T − Qk (7.21)

Rewriting equations (7.19) and (7.20) in time-domain samples form,

gk =

L−1∑
i=0

s̃(i)ŝk(i)

L−1∑
i=0

ŝ2
k(i)

(7.22)

Ek =
L−1∑
i=0

s̃2(i) − gk

L−1∑
i=0

ŝk(i)s̃(i) (7.23)

and, substituting gk into equation (7.23), we can rewrite equation (7.21) as,

Ek =
L−1∑
i=0

s̃2(i) −

[L−1∑
i=0

ŝk(i)s̃(i)

]2

L−1∑
i=0

ŝ2
k(i)

(7.24)
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and Qk is given by,

Qk =

[L−1∑
i=0

ŝk(i)s̃(i)

]2

L−1∑
i=0

ŝ2
k(i)

(7.25)

The scalar factor gk is simply the cross-correlation of the weighted speech
with the synthesized excitation response divided by the squared sum of
the synthesized excitation response. The squared error Ek is the difference
between the energy of the weighted speech and Qk. In practice, we find the
maximum of Qk to select the best excitation.

In MPLPC, the above procedure to determine the excitation shape is not
practical as it would involve searching for all possible combinations of pulse
location, e.g. for L = 40 and M = 4, the number of pulse position vectors is
91 390. Therefore to simplify computation, suboptimal strategies are usually
used. A simple and popular method involves locating one pulse at a time. The
optimum location for any of these pulses is found by computing the error for
all possible pulse locations in a given interval L and locating the minimum
error location. Once that location is known, the contribution of the pulse at
position k is subtracted from the reference signal (similarly to equation (7.9)),
and the procedure is repeated for the next pulse until all pulses are found.
This is summarized below:

Let s̃0 = sw − sm, where sm is the combined filter memory response, and Hk
be the combined impulse response scaled by the kth pulse.

For i = 1, . . . , M,

1. Find Ek
i = min{s̃i s̃T

i − gkHks̃T
i }, for k = 1, . . . , L

2. s̃i+1 = s̃i − gi,optHi

Finally, ŝmp =
M∑

i=1

gi,optHi

This pulse-at-a-time procedure is obviously suboptimal and procedures
which try to add more optimality have been extensively reported. For
example, a popular post-processing method is to re-optimize the pulse
amplitudes after the pulse positions are found by performing an M by M
matrix inversion. Most of these involve substantially more computations
with some reported improvements especially if M is large compared with
the size of the analysis block L. In RPELPC, the positions of the pulses are
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fixed, therefore there is no requirement to locate one pulse at a time. Thus
in RPELPC, the amplitude vector is jointly optimized in one step, repeated
N times (for the number of possible amplitude sequences), and the vector
that minimizes the mean squared error is chosen, also identifying the grid
position (phase position 0 ≤ k < N).

7.2.5 Characteristics of AbS-LPC Schemes

Before investigating AbS-LPC schemes in more detail in the form of code-
excited linear prediction (CELP), it is worthwhile to highlight some of
the similarities and differences in the way the different AbS-LPC schemes
operate. These mainly lie in the characteristics of the excitation behaviour as
described below.

CELP

In the CELP system, the objective is to select from the codebook the vector
which best matches the original reference vector. Typical plots of consecutive
vector searches are shown in Figures 7.6 and 7.7, where the output error (in
fact Qk for each codebook vector) is plotted. In Figure 7.6, the best matching
vector (v1) from the codebook is fairly distinct from the remaining vectors.
However, in Figure 7.7, we find that the error is less distinctive, as illustrated
by the similarity in the first, second, and third best matching vectors. The
mean squared error is clearly inadequate as a selection criterion in AbS-
LPC coding schemes (indeed, in speech coding in general): the selection
of an optimum candidate is by no means readily controllable. Although
the selection of v1 in Figure 7.6 is probably correct, even subjectively, the
selection of v1 in Figure 7.7 is not as clear-cut. What subjective difference
would result if, say, the second-best vector was selected instead? This test
was performed and, not surprisingly, the quality of the processed speech
was not noticeably degraded. This prompts the question as to whether
or not the codebook vectors can be better optimized such that there is a
clearer distinction, both objectively and subjectively, between the best and
the second-best vectors. Unfortunately, trained codebooks (whether multi-
pulse characteristic codebooks, glottal-pulse codebooks, or other types) have
been largely unsuccessful in this respect.

SELP

In SELP, the best excitation is generated from previous excitations. Here, we
assumed that the number of secondary long-term predictors was fixed at
one. As the secondary long-term prediction (LTP2) tries to model long-term
correlations not modelled by the primary (and previously much shorter)
excitation memory pitch filter (LTP1), it can be expected that some form of
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Figure 7.6 Typical example of a distinctive codebook vector selection for CELP
(a) Plot of error versus codebook index for CELP, and (b) Synthesized best codebook
entries compared with original

structure may exist in the selected time index for LTP2. Figure 7.8 shows a
plot of the distribution of the time-delay index for both LTP1 and LTP2 for
a female speaker. From the histogram of LTP1, it is clear that the speaker
used for the test had a pitch period peaking at around 42 samples. However,
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Figure 7.7 Example of a less distinctive codebook vector selection for CELP (a) Plot
of error versus codebook index for CELP, and (b) Synthesized best codebook entries
compared with original

from the similar plot for LTP2 very little structure can be deduced. It would
appear that if there were any extra long-term structure in the test speech
then the SELP did not model it properly. Alternatively, the assumption of the
existence of extra long-term structures as used in SELP could be at fault.
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of delays for LTP1 for SELP, and (b) Plot of the distribution of delays for LTP2 for SELP

MPLPC

In MPLPC the best set of randomly-placed pulses that minimizes the output
error is selected. In order to obtain the pulses, three search strategies are
generally applied:
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• Method 1: At stage j, all pulse amplitudes and locations up to stage j − 1
are assumed to be known and only the pulse location nj and the pulse
amplitude gj are computed.

• Method 2: At stage j, only the pulse locations n1, n2, . . . , nj−1 remain
constant and the pulse amplitudes up to gj−1 are optimized. As all the pulse
amplitudes can be modified to compensate for inaccuracies of previous
pulses, they remain accurate even when they are closely spaced.

• Method 3: Only after the last stage are all the amplitudes g1, g2, . . . , gM
re-optimized and the pulse locations remain constant.

As expected, method 2 gives the best performance both objectively and
subjectively depending on the analysis block size and the number of
pulses. However, the gain of method 2 reduces when quantization is intro-
duced. Therefore, from a complexity point of view, method 3 is prefer-
able as it is very similar in performance to method 2, but has only one
re-optimization loop.

The variation in the pulse amplitudes for method 2, normalized to unit
variance in each frame, are shown in Figure 7.9. As can be observed from
the plot without the pitch prediction (LTP) the histogram is bimodal with
little content around zero, and with most amplitudes lying within ±3σ .
This is expected as small pulses contribute little energy to the error mini-
mization process. For the amplitude plot with the LTP, the range is even
shorter. This is also expected as the majority of the large energy pulses
would have been removed by the LTP. The more confined spread of values
indicates that the quantization of the pulses in MPLPC with LTP can be
much more efficient than without LTP. This efficiency in pulse quantization
is very noticeable because, for similar bit-rate MPLPC schemes with and
without LTP, the MPLPC with LTP is generally preferred both objectively
and subjectively as the output speech with the LTP becomes smoother and
more natural.

The histograms of the pulse locations are also interesting (see Figure 7.10).
Note that pulse locations at the beginning of the frame are favoured more
than the other locations since these locations allow large errors inside the
frame to be reduced. In order to compensate for this uneven spread of pulse
positions due to the autocorrelation type of analysis used in the derivations,
the covariance form of analysis has been suggested. The covariance method
attempts to account for the block edge effects of the autocorrelation analysis
by taking into account the part of the impulse response of the cascaded filter
that spills outside the analysis block. The positions of the pulses also have an
impact on the choice of subframe sizes. Ideally, large subframe sizes are better
suited to MPLPC because the limited number of pulses can be put in the most
useful locations, e.g. pitch pulse locations. With small subframes, pulses are
assigned even for relatively unimportant details of the speech signal which
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lowers the coding efficiency. The disadvantage with large subframe sizes is
that the complexity is increased.

RPELPC

As described earlier, RPELPC is similar to MPLPC except that the pulse
locations are pre-structured. The amount of structuring obviously determines
the amount of freedom that the pulses have in estimating the reference signal.
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The effect of the decimation ratio on the performance of RPELPC is shown in
Figure 7.11 for analysis frames of 40 and 80 samples with and without LTP.
The relative SNR differences are partly dependent on the speech material but,
generally, the inclusion of the LTP improves the performance of the RPELPC
especially at higher decimation ratios. As can be observed from the plot, the
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Figure 7.11 SNR plot of RPELPC with different configurations

performance at a lower analysis frame size is better. This is because it has
more degrees of freedom to vary the excitation to match the reference vector.

7.3 Code-Excited Linear Predictive Coding

Amongst the variations of AbS-LPC schemes, the most widely-reported
scheme used at 8 kb/s and below is code-excited linear predictive coding
(CELP). As the name suggests, the excitation of the time-varying filters is
provided by a codebook. CELP operates as follows (see the simplified block
diagram in Figure 7.12):

1. The original speech, s(n), is partitioned into analysis frames of around
20–30 ms. LPC analysis is performed on the frame of s(n) to give a set of
LPC coefficients which are used in the short-term LPC predictor to model
the spectral envelope of the speech.

2. Having computed the LPC parameter, the frame is usually split into a
number of subframes (usually 40 or 60 samples long). The following
processing is carried out for each subframe.
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Figure 7.12 Block diagram of the standard CELP algorithm

(a) The memory of the combined LPC and perceptual weighting filters
(the initial conditions) is removed from the reference (the perceptually-
weighted original speech) to give a memoryless filter for subsequent
analysis.

(b) Pitch prediction proceeds to deal with the long-term redundancies.
The pitch analysis is performed by testing all possible pitch lags and
selecting the lag D that minimizes the difference between the reference
(the original speech remaining after the above step) and the speech
produced by passing the pitch excitation at each possible pitch delay
through memoryless LPC and perceptual weighting filters. Having
selected the best delay, D, its associated gain β, is then computed.
This process is computationally very complex. In order to simplify it, an
open-loop pitch may be computed first and only a limited range around
this open-loop pitch is searched. The open-loop pitch computation is



Code-Excited Linear Predictive Coding 221

usually carried out on the perceptually-weighted original speech to
obtain a good idea of the likely pitch period before a closed-loop search
is applied around this value. The pitch contribution is then subtracted
from the reference signal to update it for the next stage (the codebook
search). Since the pitch can change up to 1 %/ms, the pitch delay is
updated more frequently than the LPC for accurate voice periodicity
generation in the synthesized speech.

(c) Once the parameters of the two synthesis filters are found, the excitation
is determined. Each codebook vector is passed through the memoryless
LPC and perceptual weighting filters and the codebook vector which
gives the minimum squared difference between the output it produces
and the reference signal is selected and its corresponding scaling factor
is computed. Note that if the delay D in the pitch filter is greater
than the subframe size, it will not affect the synthesized codebook
vector. In addition, the pitch filter is usually implemented as an
adaptive codebook operating in parallel with the stochastic codebook
and, hence, its response is eliminated from the stochastic codebook
search loop.

(d) Finally the initial conditions (i.e. the memory) of the filters are restored,
and the synthetic speech is generated by filtering the scaled optimum
codebook sequence through the filters so as to update the filters for
processing the next subframe.

3. In the synthesizer (decoder), the initial conditions (i.e. the memory) of
the filters are restored and the synthetic speech is generated by filtering
the scaled optimum codebook sequence through the filters without any
perceptual weighting.

From the above description it is clear that the computation can be broken
down into three blocks: LPC analysis to compute the LPC parameters; pitch
analysis to compute the long-term predictor parameters; and a codebook
search to determine the shape and gain of the excitation vector.

7.3.1 LPC Prediction

The role of LPC prediction is to represent the general shape of the speech
spectrum. Therefore, in the CELP synthesizer, the (ideally flat) excitation is
shaped by the spectral envelope of the LPC filter. The LPC parameters can
be computed by a number of methods as discussed in Chapter 4. However,
most CELP coders use a 10th-order LPC filter based on autocorrelation
estimation. The speech signal, which is usually 20 ms long, is passed through
a Hamming window which is usually placed half a frame ahead so as to enable
accurate parameter interpolation for each subframe. However, many delay-
sensitive applications and standards use an asymmetric window to give more
weighting to the latest samples contained in the analysis frame. The delay
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problem can also be solved by employing backward forms of LPC analysis, i.e.
using quantized (or past) samples only, to estimate the LPC coefficients as in
the 16 kb/s LD-CELP (G.728) proposed for the ITU standard [15]. However,
such backward techniques can only operate successfully at around 16 kb/s,
because the prediction accuracy reduces rapidly with the increase in the
quantization noise of the encoded speech.

7.3.2 Pitch Prediction

Pitch prediction is an essential part of all CELP coders. Since the early versions
of CELP had Gaussian-noise-populated excitation codebooks, pitch filtering
was required to introduce the necessary pitch of the voiced speech parts. The
order of the pitch filter is usually less than the order of the LPC filter and is
given in its general form as,

P(z) = 1 −
I∑

i=−I

βiz(−D−i) (7.26)

The pitch predictor in CELP generates long-term correlation, either due to
the actual pitch excitation or other long-term similarities. Thus the term
’long-term predictor’ (LTP) is usually preferred to ‘pitch predictor’, which
is somewhat misleading in describing the action of this filter for unvoiced
speech and even, to some extent, for voiced speech when D is equal to
pitch multiples. In CELP and other AbS-LPC schemes, the LTP analysis
is usually performed in a closed loop [16] with single or multiple taps.
In CELP, one is interested in minimizing the error between the weighted
original and the synthesized output speech. By this definition, analysis of
the signal to derive the desired LTP parameters must minimize the error
between the weighted original and the synthesized speech, and not mini-
mize the LTP prediction error (or second residual) as is the case in older
analysis and synthesis systems. Assuming that the LPC parameters have
already been calculated, the remaining undetermined parameters are Gx(n),
D, and βk. Although these parameters can be obtained by exhaustively
searching for all Gx(n) as well as the LTP parameters, the procedure becomes
very computationally-intensive and thus suboptimal solutions have to be
used. One way of reducing the complexity is by obtaining the LTP and
Gx(n) in two sequential steps. First we assume Gx(n) is zero, and cal-
culate the LTP parameters such that e(n) is minimized. Next the LTP is
held constant and Gx(n) is computed. Thus, let the codebook excitation
be zero, i.e.

x(n) = 0, 0 ≤ n ≤ L − 1 (7.27)
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The synthetic speech is produced only by the LTP excitation passing through
the combined LPC and perceptual weighting filters.

⇒ ŝ(n) =
I∑

i=−I

βi

n∑
k=0

r̂(n − k − D − i)h(k) (7.28)

Then the weighted squared error E for the delay D is given by,

E(D) =
L−1∑
n=0

e2(n) =
L−1∑
n=0

(s̃(n) − ŝ(n))2 (7.29)

where,

s̃(n) = sw(n) − sm(n) (7.30)

and sm(n) is the memory response contribution of the combined LPC and
perceptual weighting filters, and sw(n) is perceptually weighted original
speech. Therefore,

∂E
∂βi

= 2


L−1∑

n=0

s̃(n) −
I∑

i=−I

βi

n∑
k=0

r̂(n − k − D − i)h(k)


 (7.31)

×
[
−

n∑
k=0

r̂(n − k − D − j)h(k)

]
= 0 (7.32)

Let Zi(n) =
n∑

k=0

r̂(n − k − D − i)h(k) (7.33)

⇒
L−1∑
n=0

s̃(n)Zj(n) −

 I∑

i=−I

βi

L−1∑
n=0

Zi(n)Zj(n)


 = 0, −I ≤ j ≤ I (7.34)

Hence, in matrix form, assuming a 3-tap filter,


 β−1

β0
β1


 =


 φ(−1, −1) φ(0, −1) φ(1, −1)

φ(−1, 0) φ(0, 0) φ(1, 0)

φ(−1, 1) φ(0, 1) φ(1, 1)




−1 
 B(−1)

B(0)

B(1)


 (7.35)

and for a single-tap filter where I = 0,

β0 = B(0)

φ(0, 0)
(7.36)
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where,

φ(i, j) =
L−1∑
n=0

Zi(n)Zj(n) (7.37)

B(i) =
L−1∑
n=0

s̃(n)Zi(n) (7.38)

Once the LTP gain coefficients are found, they are substituted back into
equation (7.29) and the delay D for which E(D) is a minimum gives the
optimum delay Dopt and the corresponding gains βi. The excitation Gx(n) can
then be found with Dopt and βopt fixed. In practice however, the optimum
delay Dopt is usually found before computing the gain coefficients.

There may be problems with the LTP when the delay D is less than the
subframe L, i.e. when the LTP recurses within the same analysis subframe
[16]. The basic problem in solving for the gain and delay coefficients for lags
less than the subframe size is that the weighted mean squared error equation
becomes nonlinear in the coefficients for D < L. Consider the case in which a
single LTP coefficient is being determined and the LTP lag lies in the interval
L/2 ≤ D ≤ L − 1. The signal takes one of two forms:

r̂(n) =
{

β r̂(n − D) 0 ≤ n ≤ D − 1
β2r̂(n − 2D) D ≤ n ≤ L − 1

(7.39)

The weighted squared error, E, can then be expressed as,

E =
L−1∑
n=0

e2(n) =
L−1∑
n=0

[s̃(n) − ŝ(n)]2 (7.40)

Defining,

ZD(n) =
n∑

k=0

r̂(n − k − D)h(k) (7.41)

we can expand the error equation as

E =
D−1∑
n=0

[
s̃2(n) + β2Z2

D(n) − 2β s̃(n)ZD(n)
]

+
L−1∑
n=D

[
β4Z2

D(n) − 2β2s̃(n)ZD(n)
]

(7.42)

where the first part of the right hand side is for the first D samples and the
second is for the recursive part (which may cause some difficulties). As can



Code-Excited Linear Predictive Coding 225

be seen from the above, when D = L the second term has no effect. To solve
the equation with respect to β we get:

∂E
∂β

= 2β3
L−1∑
n=D

Z2
D(n) + β

[D−1∑
n=0

Z2
D(n) − 2

L−1∑
n=D

s̃(n)ZD(n)

]
(7.43)

−
D−1∑
n=0

s̃(n)ZD(n) = 0

From the above we can see that the solution to E involves solving a cubic in
β. This is obviously very costly as it is required for every value of D less than
L. One solution to the above is to adopt a trial-and-error method based on
quantized values for β. In this method, the sum terms are precomputed, and
each of the possible quantized values of β is substituted into the equation.
The value of β which gives the smallest squared error is thus the desired
value. Obviously the computation involved is still quite large, e.g. if L = 50,
Dmin = 20, and β = 3 bits, the number of searches is 23 × (50 − 20) = 240,
with the addition for D > L.

A second method for D < L is to use an adaptive codebook formulation of
the LTP [17], to periodically repeat the past LTP output, i.e.

r̂(n) =




β r̂(n − D) 0 ≤ n ≤ D − 1
β r̂(n − 2D) D ≤ n ≤ 2D − 1
...

β r̂(n − aD) aD ≤ n ≤ L − 1

(7.44)

In other words, the previously undefined part of the LTP excitation in a
subframe is constructed by repeating its defined part with periodicity D.
Using this method only β terms needs to be solved. This scheme does not
allow for pitch pulses in a subframe to change amplitude from one period
to another. Using this adaptive method, the CELP synthesis procedure is as
shown in Figure 7.13, where the LPC and perceptual weighting filters have
been represented by a single short-term filter (STP).

Fractional-Delay LTP

In the above LTP computation, the matching of the reference signal with
the LTP contribution is achieved via a cross-correlation procedure. A major
restriction of this is the inherent sampling resolution of the signal, i.e. for
our cross-correlation to be most effective we would ideally like a continuous
signal such that the best instance of similarity between the reference and the
synthetic signal can be obtained. However, as our delay, D, is restricted to
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Figure 7.13 Block diagram illustrating pitch repetition for delays less than the opti-
mization interval

integer values of the sampling rate, the LTP is not able to cope with arbitrary
lag intervals without replacing, in some way, the optimum noninteger delay
by an integer value which may degrade the performance of the LTP in terms of
objective matching. As explained in the previous section, higher-order LTPs
can be used where its multiple coefficients can provide interpolation between
the adjacent samples around D even if the lag value does not correspond to
an integer number of samples. However, the disadvantage of higher-order
LTPs is the increased coding capacity required to code the additional gains.
Based on this observation, in order to achieve a greater LTP delay resolution
but to minimize coding capacity, an up-sampling procedure [18] can be used.

Increased Resolution by Up-sampling

The LTP delay, D, is expressed as an integer number of samples at sampling
rate fs. When trying to replace D by a real number, Dr, it is necessary to convert
the discrete time signal s(n), to a continuous time signal as noninteger values
are not defined by s(n). As our signal s(n) is sampled according to the
Nyquist rate, the continuous form, sc(t), can be recovered at any time instant
by filtering through an ideal noncausal low-pass filter,

sc(t) =
∞∑

k=−∞

s(k) sin(π(t − k))
π(t − k)

(7.45)

As we are only interested in the submultiples of D, the sc(t) signal is not
required, but a higher sampled signal, sup(m), is required. The ideal low-pass
prototype filter is replaced by a finite length filter. The up-sampling of s(n)
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Figure 7.14 Polyphase structure for implementing interpolation

to sup(m) is illustrated in Figure 7.14 where U is the up-sampling factor and a
polyphase structure is used.

From the up-sampling procedure a noninteger lag value of (D + d/U) at
sampling rate fs now corresponds to an integer delay of (UD + d) where
d = 0, 1, . . . , U − 1 at a rate of Ufs. Therefore, to implement a delay of
noninteger values, one simply takes the appropriate branch of the polyphase
structure of the interpolation filter (see Figure 7.14). An important aspect of
the interpolation process is the choice of the low-pass filter both in terms of
performance and complexity. As suggested by Kroon in [18], a simple but
effective filter design is to use a Hamming windowed sin(x)/x design, which
has three advantages:

1. The resultant FIR filter has exactly linear phase and a fixed delay.
2. The characteristics of the filter are adequate with only a short filter length,

i.e. the aliasing components are small.
3. The original signal can be obtained without any phase-shift, i.e. the top

branch of the polyphase structure in Figure 7.14. This means that the
number of filtering operations is decreased as the top branch is effectively
just a delay operation.

In order to obtain the above advantages, the filter length N must be chosen
such that the filter delay, (N −1)/2, at sampling rate Ufs is an integer multiple
of U, i.e.

N = 2IU + 1 (7.46)

where I is the delay of the low-pass filter at sampling rate fs.
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As for the integer delay LTP, there exists a problem when the candidate
delay is less than the optimization interval, as the filter then recurses. Again,
the technique of adaptive codebook structure, where the available part of the
LTP buffer can be repeated to form the missing part, is applicable.

Performance Comparison of LTP Methods

In order to assess the performance of the different LTP analysis methods, an
unquantized CELP has been used with the following LTPs:

• One-tap (CL1) and three-tap (CL3) using the closed-loop analysis method
with the adaptive codebook method when D < L.

• Modified CL3 (MCL3), where the delay is calculated by CL1 but the gain
coefficients are calculated by CL3.

• Fractional delay closed-loop (basically CL1 with up-sampling of the LTP)
with U = 2 (F2CL1) and U = 4 (F4CL1).

The configuration of the CELP coder is shown in Table 7.1. In order to
assess the performance of the LTP, the overall SNR of the CELP coder is
split into three parts (see Figure 7.15): (i) the LPC filter memory contribution,
shown as short-term prediction (STP), (ii) the LTP contribution, and (iii) the
codebook contribution. In this test no perceptual weighting filter is used.

Table 7.2 shows the result of the comparison between the different LTP
methods using the configuration in Table 7.1. Note that the SNRs given in
this table have been computed using only a few short speech sentences and
are intended to give a quick comparison for the LTP methods. The SNRs
are dependent on the input signal and may vary significantly for other
input samples, so we should only consider their relative variations. From
the comparison test and segmental SNR values shown in Table 7.2 several
interesting points can be gathered:

• As expected, the contribution from the memory of the LPC filter (the
short-term predictor) is more or less constant. A plot of the SNR values of

Table 7.1 CELP coder configuration
for the LTP comparison test

Sampling freq. 8 kHz

Parameters Update Rate

LPC order = 10 160 samples

LTP, various 40 samples

Codebook, 10-bit 40 samples

Weighting None
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Table 7.2 Breakdown of segmental SNR values for different LTPs

Scheme Delay range STP (dB) LTP (dB) Codebook (dB) Overall (dB)

CL1 20–147 1.76 7.28 2.74 11.77

CL3 21–146 1.81 9.13 2.33 13.26

MCL3 21–146 1.77 8.98 2.42 13.16

F2CL1 20–147 1.79 7.37 2.79 11.95

F4CL1 20–147 1.80 7.68 2.76 12.24

the LPC ringing is shown in Figure 7.16. It can be seen from the fluctuation
in the SNR that the LPC contribution does not always provide a positive
SNR to the overall total, i.e. the memory is actually making the rest of the
coding process work harder. This obviously reflects the past history of the
encoding process, i.e. if the previous subframe was poorly matched, then
the LPC memory will also be poor. This generally occurs during speech
transitions.

• The fractional resolution closed-loop LTPs objectively perform slightly
better than the integer resolution closed-loop LTPs. However, subjectively,
the improvements are more substantial than the SNR suggests. The speech
becomes cleaner, especially for female speakers. Only uniform spacing of
the delays have been investigated. The performance can be improved if
nonuniform spacing is used as reported in [18].

• From Table 7.2 we can see that the three-tap integer-delay closed-loop
LTPs provide significantly higher SNR than the one-tap integer and frac-
tional delay LTPs. The LTP contributions are significantly higher than the
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codebook contribution. This is due to the fact that the codebook provides
contribution to match the remaining signal after the LPC and LTP contri-
butions have been subtracted from the original target. So the higher the
matching in LTP, the lower the contribution of the codebook will be. In
order to fill in the remaining information, the 10-bit codebook can only
provide up to a certain threshold in the overall SNR. In order to provide
more contribution, the LTP and codebook can be jointly optimized [19], or
a better codebook excitation source can be used.

Limited informal subjective listening tests have also shown that three-tap
LTPs are generally better than one-tap LTPs, although the difference between
the three-tap integer delay and the one-tap fractional delay (up-sampling
four times) is not very noticeable.

7.3.3 Multi-Pulse Excitation

Early versions of CELP coding used multi-pulse excitation with and without
LTP to match the original input signal. As was briefly discussed earlier,
a low-complexity MPLPC coder sequentially determines the locations and
amplitudes of the excitation pulses so as to minimize the error between the
original and the synthesized speech. The optimum pulse locations are found
by computing the error for all possible pulse locations with their optimum
amplitudes in a given analysis block and selecting the allowable number of
locations and their amplitudes that result in the minimum error. A block
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diagram of a simple MPLPC is shown in Figure 7.17. Assuming that h(n) is
the impulse response of the combined LPC and perceptual weighting filters,
the squared error for a single pulse excitation at location mi with amplitude
gi can be written as,

E =
L−1∑
n=0

[s̃(n) − gih(n − mi)]2 (7.47)

where s̃(n) is the perceptually-weighted target signal with the combined
LPC and perceptual-weighting filter memory effect subtracted. The optimum
pulse location is obtained by differentiating equation (7.47) with respect to gi
and setting the derivative to zero,

∂E
∂gi

= −2
L−1∑
n=0

[s̃(n) − gih(n − mi)] × h(n − mi) = 0 (7.48)

This yields,

gi =

L−1∑
n=0

s̃(n)h(n − mi)

L−1∑
n=0

h2(n − mi)

(7.49)
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which in general can be written as,

gi = 	(mi)

φ(mimi)
(7.50)

where 	(mi) is the cross-correlation between the perceptually-weighted
target speech and the combined LP and perceptual-weighting filter impulse
response; φ(mimi) is the autocorrelation of the combined LPC and perceptual-
weighting filter impulse response at positions mi; and 0 ≤ i ≤ M − 1. Sub-
stituting equation (7.50) into (7.47) gives an expression for the perceptually-
weighted squared error in terms of the pulse locations,

E =
L−1∑
n=0

[
s̃2(n) − 	2(mi)

φ(mimi)

]
(7.51)

To minimize the error in equation (7.51), it can be seen that the best position for
a single pulse is that value of mi which maximizes the term, 	2(mi)/φ(mimi).
Once the search for the optimum pulse has finalized, the effect of this newly-
found pulse is removed from the perceptually-weighted input speech to give
a new reference signal to be used in determining the next pulse location.
Hence the updated reference speech is,

s̃i+1(n) = s̃i(n) − gih(n − mi) (7.52)

The steps carried out from equations (7.49)–(7.52) are repeated to find
the remaining pulse locations and amplitudes. Figure 7.18 shows a typi-
cal example of speech signal and the excitation signal produced in an AbS
manner, as discussed above. It can clearly be seen from Figure 7.18 that the
multi-pulse structure is very effective in producing a flexible excitation signal
in modelling the glottal characteristics, especially the pitch pulses.

Optimum Amplitude Excitation MPLPC

The sequential AbS method described is simple and fast but it has several
shortcomings. Successive optimization of individual pulses becomes inaccu-
rate when the number of pulses per frame increases. In order to improve the
performance one needs to consider the interactions amongst all the pulses
during optimization. To consider the interaction between the pulses, let the
weighted mean squared error after having placed M pulses at positions mi,
be given by,

E =
L−1∑
n=0

[
s̃(n) −

M−1∑
i=0

gih(n − mi)

]2

(7.53)
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Figure 7.18 Waveform illustrations of the MPLPC coder: (a) original speech, (b)
multi-pulse excitation, (c) synthesized speech, and (d) error signal

Differentiating the above equation with respect to the amplitudes gi gives a
solution for optimum amplitudes,

∂E
∂gi

= −2
L−1∑
n=0

[
s̃(n) −

M−1∑
i=0

gih(n − mi)

]
× h(n − mk) = 0 k = 0, 1, . . . , M − 1

(7.54)

or,

L−1∑
n=0

s̃(n)h(n − mk) =
L−1∑
n=0

[M−1∑
i=0

gih(n − mi)

]
× h(n − mk) k = 0, 1, . . . , M − 1

(7.55)

Rearranging the summation on the right hand side,

L−1∑
n=0

s̃(n)h(n − mk) =
M−1∑
i=0

gi

[L−1∑
n=0

h(n − mi)h(n − mk)

]
k = 0, 1, . . . , M − 1

(7.56)
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Now defining,

φ(k, i) =
L−1∑
n=0

h(n − k)h(n − i) (7.57)

and,

	(k) =
L−1∑
n=0

s̃(n)h(n − k) (7.58)

simplifies equation (7.56) to a form,

	(mk) =
M−1∑
i=0

giφ(mi, mk) k = 0, 1, . . . , M − 1 (7.59)

which can be written in the form of a correlation matrix as,


	(m0)

	(m1)
...

	(mM−1)


 =




g0
g1
...

gM−1







φ(m0m0) φ(m0m1) . . . φ(m0mM−1)

φ(m1m0) φ(m1m1) . . . φ(m1mM−1)
...

...
...

...

φ(mM−1m0) φ(mM−1m1) . . . φ(mM−1mM−1)




(7.60)

The optimum amplitudes gi can now be solved utilizing the Cholesky decom-
position of the correlation matrix.

Using the above analysis, two forms of pulse amplitude re-optimization
procedure can be used [12]. One can re-optimize the amplitudes after all
of the M pulses have been located within a subframe, or after each new
pulse is located. Of course the latter method has the greater computational
burden of the matrix inversion, but the overall quality compared to the
former method is superior. If amplitude re-optimization takes place once at
the end of each subframe, the required matrix inversion size is (M × M). If it
takes place after each new pulse is located, amplitude re-optimization occurs
M times with matrix sizes of (1 × 1) up to (M × M). Figure 7.19 shows the
variation of number of pulses versus segSNR for three different algorithms.
Curve (c) is for a basic sequential MPLPC coder. It shows increasing segSNR
as the number of pulses increases but, after 30 pulses per 160 samples, its
performance tends to saturate. Curves (b) and (a) are for the improved MPLPC
algorithms, i.e. amplitude re-optimization after all pulses have been located
and amplitude re-optimization after location of each new pulse respectively.
Objective results show curve (b) giving lower segSNR than (a), as expected.
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Figure 7.19 The number of pulses against the segmental SNR: (a) amplitude re-
optimization after each pulse, (b) amplitude re-optimization after all pulses, and (c)
sequential MPLPC with no amplitude re-optimization

Subjectively, curves (a) and (b) are superior only when a high number of
pulses (eight or more every 20 ms) are employed in the process of amplitude
re-optimization. This is expected since the re-optimization process improves
the performance of closely placed pulses. On average, five pulses per 4–5 ms
are adequate to achieve good speech quality. One major problem during
the search for the pulses is pulse-doubling. Pulse-doubling usually occurs in
voiced regions with greater than about eight pulses every 10 ms and involves
the re-selection of already-selected pulse positions. In order to avoid this
effect, the newly-found pulse amplitude is added to the existing amplitude
or the already-found pulse locations are excluded from further pulse position
selection. If joint pulse amplitude re-optimization is applied every time a new
pulse is positioned, pulse-doubling is eliminated automatically.

MPLPC with Pitch Prediction

A basic multi-pulse coder produces satisfactory speech quality at medium
bit rates. However as the bit rate is lowered, degradations in the speech
quality become noticeable. This is especially true for the higher-pitched
voiced regions which usually occur with female speakers. This is due to a
limited number of pulses being available, the majority of which are used to
model the fundamental pitch pulses and hence relatively few pulses remain
for the modelling of the remaining excitation signal. With the introduction of
a pitch predictor into the AbS loop as shown in Figure 7.20 such effects can
be reduced. In 1989, Singhal and Atal [12] proposed a closed-loop solution
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Figure 7.20 Block diagram of MPLPC AbS procedure with LTP
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Figure 7.21 Performance of MPLPC (a) with and (b) without a pitch predictor

which gave optimum values of the pitch predictor where the delay in the
predictor was integer multiples of the pitch. The aim of pitch prediction was
to model the long-term similarities in speech and hence it was also called
the long-term predictor (LTP). The most popular pitch prediction used in
MPLPC is the one-tap predictor. Figure 7.21 shows the objective performance
of the MPLPC with a (one-tap closed-loop) pitch predictor and without a
pitch predictor. It is clear that pitch prediction provides higher segSNR at all
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pulse rates. At high pulse rates, the subjective difference between the MPLPC
with and without LTP saturates, since at higher rates the pulses from the
multi-pulse excitation can model the fundamental pitch pulses accurately.

Pulse Position Coding

The coding of pulse positions is usually performed by enumerative source
coding techniques [6]. The number of possibilities for placing M pulses in a
subframe of L samples is given by,


 =
(

L
M

)
= L!

M!(L − M)!
(7.61)

Hence the minimum number of bits required for coding these positions is

Bmin = �(log2 
)� (7.62)

where �.� is the nearest integer greater than or equal to 
. Such methods
of pulse-position coding can be considered as a vector quantization of the
pulse positions. These techniques are not very favourable in bad channel
conditions and alternative coding methods are pursued. Another method is
the independent coding of the pulse positions. Although this method leads
to a higher bit rate, it is more robust to channel errors. The number of bits
required for independent pulse position coding is given by,

Bmin = M × �(log2 L)� (7.63)

Figure 7.22 shows the comparison between combinational and independent
coding of pulse positions for L = 32. Clearly, combinational coding is by far
the more efficient at very high pulse rates, but at very low number of pulses
the difference is small (i.e. 3 bits). At such coding rates, the disadvantage of
an extra few bits per analysis frame for independent coding is reflected in the
complexity and the coder robustness.

Pulse Amplitude Coding

Efficient normalization is necessary for coding of the pulse amplitudes,
because the pulse amplitudes have a large dynamic range and direct quan-
tization requires a large number of bits. Normalization can be carried out
by the rms of the amplitudes. In such methods, the rms value must also
be included in the transmission. This inevitably leads to higher bit rates.
In most MPLPC designs, quantization of the first pulse is accomplished by
incorporating a large number of nonuniform quantizer levels (usually five
bits or more) and the rest of the pulses in the subframe are normalized with
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Figure 7.22 Comparison between (a) independent and (b) combinational pulse-
position coding

the first pulse magnitude and coded using fewer quantization levels (typi-
cally three bits) [6]. This assumes that the first pulse usually has the largest
magnitude and, if independent pulse position coding is used, this can be
advantageous. Otherwise the largest magnitude pulse may be used to limit
the pulses within ±1.

7.3.4 Codebook Excitation

The vectors contained in the excitation codebook form a very important part
of the CELP coding algorithm. They serve two main purposes:

• They provide the start-up information to the LTP memory, including
any sudden changes in the speech not adequately tracked by the pitch
prediction.

• They supply the ‘filling-in’ information that the pitch predictor has omitted.
This is especially the case during unvoiced regions.

Thus, how the codebook of a CELP is populated and the method by which
the optimum vector is computed are very important issues as indicated by
the many publications on this subject [20–22]. Another related issue is the
computational cost and storage of the codebook search procedure. The search
process for the best vector in CELP can be broken down into four stages.
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1. Synthesis of the codebook vector to obtain the output ŝk(n).
2. Calculation of the cross-correlation between the reference s̃(n) (LPC, per-

ceptual weighting and pitch effects removed) and the synthetic estimate
ŝk(n).

3. Calculation of the autocorrelation of the synthetic estimate ŝk(n).
4. Testing for the minimum error, or the maximum normalized correlation.

To reduce complexity and memory, and improve quality, many versions
of the codebook excitations have been developed and used. Here, we will
consider three secondary excitation types.

Gaussian Excitation

Almost all of the early versions of CELP used a form of Gaussian code-
book as the source of secondary excitation. This is mainly because speech,
after inverse filtering with the LPC followed by the pitch, has residual
characteristics similar to Gaussian. One problem with this approach is the
size of the memory required to store the Gaussian codebook vectors. For
example, if a 10-bit codebook is used to match L reference samples, the
number of storage locations will be 210 × L. Assuming L = 40, this will
correspond to 40 960 storage locations, which can be very large for real-
time memory-restricted implementations. In order to overcome this problem,
the Gaussian vectors are represented as a one-dimensional array, where
most of the L samples of two consecutive vectors are common. The most
popular versions of this overlapping codebook are those with one or two
shifts. In other words, to generate a new vector, one or two samples at
the end of the previously-used vector are dropped and one or two new
samples are introduced at the beginning for one or two shifts respectively.
An overlapping codebook with single shift can be represented as an LTP
filter where the minimum and maximum delays are L − 1 and C + L − 1
respectively, assuming that the locations start from 0 and the size of the
codebook is C.

In some coders, a centre-clipped version is used with a clipping threshold
of 1.2 for a unit variance vector. This is found to produce sharper output
speech. One reason for this is that, when matching the codebook vectors with
the reference vector, a few higher-magnitude vector elements dominate the
selection causing errors in the lower-magnitude vector elements. By making
the smaller vector elements zero, as well as minimizing the error they cause,
the matching of the larger magnitude samples is improved in the absence of
the erroneous smaller samples in the vector.

Training Gaussian codebooks does not improve the quality significantly
if the codebook size is eight bits or more. Therefore, they can simply be
populated by using a Gaussian random number generator. Some applica-
tions [23] use ternary codebooks, where each Gaussian number amplitude
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is set to 1 if it is positive, left as zero if it is zero and set to −1 if it is
negative. This is especially useful in fixed point implementations. In addition
to the above versions, one other popular version of the standard codebooks
is called the sparse codebook, where each nonzero vector element is fol-
lowed by a fixed number of zeros. This is very similar to regular pulse
excited LPC.

Overlapping codebooks are useful in reducing the computation of the
codebook search as well as requiring less storage. The fact that the adjacent
vectors have similarities can be used to reduce the convolution (filtering)
process to generate the synthetic output. If h(n) represents the combined
impulse response of the LPC and perceptual-weighting filters, the synthesized
vector ŝk(n) due to the kth excitation vector xk(n) of a single shift codebook is,

ŝk(n) =
n∑

i=0

xk(n − i)h(i) (7.64)

(When the pitch filter is implemented as an adaptive codebook for D < L,
it can be assumed to be parallel with the fixed codebook since it is not
considered during the codebook search and hence will not affect the code-
book search process.) In a single shift codebook, the difference between two
consecutive vectors is only one sample at either end of the two vectors and
the synthesized vector ŝk+1 can be written in terms of ŝk as,

ŝk+1(n) = xk+1(0)h(n) + ŝk(n − 1) (7.65)

where ŝk(−1) = 0. As can be seen from the above expression, by shifting
the previous output by one sample and adding this to the impulse response
h(n) scaled by the new sample, most of the convolution computations can be
simplified. As the number of shifts in the codebook increases, however, com-
plexity increases, and when the shift equals the vector size, the overlapping
codebook becomes a standard codebook containing independent vectors.
Note that if centre-clipping is used, the zero values of xk(n) in equation (7.64)
will not need multiplication with h(i), and hence will reduce computational
complexity. However, once the first vector is fully synthesized, more sav-
ings will be made using equation (7.65). Every time a zero-valued excitation
sample helps to produce the new vector, the first term of equation (7.65)
will be zero, which means that the new synthetic vector is simply the shifted
version of the previous with its first sample set to zero. Using an unquantized
CELP coder as defined by Table 7.3, four different versions of the standard
Gaussian codebook were compared. The results are shown in Table 7.4 (the
overlapping codebooks have a two-sample shift). Subjective listening shows
that the speech quality is generally improved with centre-clipping compared
with standard Gaussian codebooks. The difference between the overlap-
ping and nonoverlapping codebooks of the same type is negligible. Coupled
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Table 7.3 CELP coder parameter
definition for the comparison test

Parameter Update rate

Sampling 8 kHz

LPC analysis 160 samples

LTP 1- & 3-tap 40 samples

10-bit codebook 40 samples

Weighting γ = 0.9

Table 7.4 Performance of four standard codebooks

Scheme 1-tap (dB) 3-tap (dB) Storage (words)

Gaussian 11.11 12.52 1024 × 40

Centre-clipped Gaussian 11.20 12.53 1024 × 40

Overlapping Gaussian 11.16 12.49 (2 × 1023) + 40

Overlapping centre-clipped Gaussian 11.18 12.55 (2 × 1023) + 40

with the objective results in Table 7.4, the overlapping centre-clipped Gaus-
sian codebook is very attractive for its reduced memory and computational
requirements.

Vector Sum Excitation

In the normal filtering approach of CELP, s̃(n) is matched by exhaustively
searching a finite number of sequences ŝk(n) and the best match, ŝopt(n), is
the sequence which gives the minimum mean square error between s̃(n)

and ŝk(n). How good a match between s̃(n) and ŝk(n) is determined by the
degree of freedom in ŝk(n), i.e. the size and characteristics of the codebook.
In the method previously described, the freedom in ŝk(n) was obtained by
synthesizing many versions of ŝk(n), i.e. the degree of freedom in ŝk(n) is
limited by x(n) at the residual side of the analysis. However, it can be noted
that if the same degree of freedom can be achieved at the synthetic signal side
of the analysis whilst retaining the fact that all candidate ŝk(n) are spectrally-
shaped by the LPC and perceptual-weighting filters, then less complexity
and equal performance could be obtained. Therefore, the aim is to limit the
amount of synthesis operations and perform the vector combinations to give
the necessary freedom in ŝk(n) at the output side of the analysis. One such
method is vector sum excitation (VSE) [24].

As for the majority of speech-coding analysis, in VSE, the mean squared
error approximation is used. The formulation of VSE to derive the opti-
mum excitation xopt(n) and hence ŝopt(n) is as follows. Let each candidate
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synthesized signal be given by,

ŝk(n) =
M∑

i=1

aiŝi(n), n = 0, 1, . . . , L − 1 (7.66)

where the sequences ŝi(n) are derived from exciting the combined LPC and
perceptual-weighting filter with M different excitation sequences, xi(n); ai are
variable scaling factors; and L is the excitation subframe size. An optimum
synthesized signal ŝopt(n) can be derived by choosing the set of coefficients
ai, i = 1, 2, . . . , M which minimizes the weighted mean squared error between
ŝ(n) and s̃(n) given by,

E =
L−1∑
n=0

[
s̃(n) − ŝk(n)

]2 =
L−1∑
n=0

[
s̃(n) −

M∑
i=1

aiŝi(n)

]2

(7.67)

This minimization is achieved by solving a set of equations produced by the
partial derivatives of equation (7.67), with respect to each of the variables ai,
to be zero,

∂

∂aj

[L−1∑
n=0

[s̃(n) −
M∑

i=1

aiŝi(n)]2

]
= 0 (7.68)

which can be simplified into,

M∑
i=1

aiR(i, j) = φ(j), j = 1, 2, . . . , M (7.69)

where,

R(i, j) =
L−1∑
i=0

ŝi(n)ŝj(n) (7.70)

and,

φ(j) =
L−1∑
n=0

s̃(n)ŝj(n) (7.71)

Assuming that the vectors ŝi(n) are made independent and orthogonal, si(n),
then,

R(i, j) =
L−1∑
n=0

si(n)sj(n)

{ = 0 for i �= j
�= 0 for i = j (7.72)
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Thus, substituting equation (7.72) into equation (7.69) and rearranging, the ai
can be calculated as,

ai = φ(i)/R(i, i), i = 1, 2, . . . , M (7.73)

The best estimate for s̃(n) is then given by,

ŝopt(n) =
M∑

i=1

aisi(n), n = 0, 1, . . . , L − 1 (7.74)

The above procedure comprises a minimum mean square error approximation
in which the optimum solution can be derived only if the set of sequences ŝi(n)

are linearly independent (i.e. form a basis) and are orthogonal to each other.
A popular method for achieving this orthogonalization is the Gram–Schmidt
procedure, summarized below.

Consider a set of m + 1 vectors pi(n) each of length L which form a basis.
The objective is to construct orthogonal vectors qi(n) so that

L−1∑
n=0

qi(n)qj(n)

{ = 0 for i �= j
�= 0 for i = j, i, j = 0, 1, . . . , m (7.75)

Let q0(n) = p0(n) and define q1(n) as a linear combination of q0(n) and p1(n),
then

q1(n) = p1(n) − α01q0(n) (7.76)

Then for q1(n) to be orthogonal to q0(n),

L−1∑
n=0

q1(n)q0(n) = 0 (7.77)

i.e.

L−1∑
n=0

p1(n)q0(n) −
L−1∑
n=0

α01q2
0(n) = 0 (7.78)

and the correlation α01 is given by,

α01 =

L−1∑
n=0

p1(n)q0(n)

L−1∑
n=0

q2
0(n)

(7.79)
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With this α01, the two functions q0(n) and q1(n) are now orthogonal. In order
to build the other functions qi(n), linearly independent pi(n) are added one at
a time until all are constructed. This can be formulated in general as

qk(n) = pk(n) −
k−1∑
j=0

αjkqj(n) (7.80)

where,

αjk =

L−1∑
n=0

pk(n)qj(n)

L−1∑
n=0

q2
j (n)

, j = 0, 1, . . . , k − 1 (7.81)

Therefore, the basic task in VSE is to obtain ŝopt(n) by deriving the set of
orthogonal vectors si(n) and their optimum scaling factors ai. The optimum
excitation xopt(n) can then be derived by passing ŝopt(n) through the combined
LPC and perceptual-weighting inverse filter.

In VSE, it is very important to construct the basis vectors in a perceptu-
ally advantageous way and training is required. As in CELP with Gaussian
excitation, in VSE linear prediction (VSELP), the pitch filter is treated as an
adaptive codebook for lag values less than the subframe size and, hence,
it is not included in the codebook search process. Finally, the total excita-
tion is obtained by adding the gain-scaled secondary excitation Gxopt(n) to
the pitch predictor excitation. A block diagram of vector processing of a
VSELP coder where the scaling factors ai are assumed to be ±1 is shown in
Figure 7.23.

The M basis vectors, [xi(n)]M
i=1, are first synthesized to give M synthetic

basis vectors [ŝi(n)]M
i=1. These are then made orthogonal to the pitch predictor

contribution signal via the Gram–Schmidt orthogonalization process to get
[si(n)]M

i=1. This ensures that the secondary excitation does not cover the vector
space that has already been covered by the pitch predictor contribution.
After orthogonalization, the individual basis vector scaling factors ai are
computed to form a Mth element vector, a. The vector a is then quantized
as ±1. The final synthetic signal from the excitation, ŝopt(n), is obtained by
first summing up the properly signed (±1) orthogonal basis vectors and
then gain scaling the summed vector. In order to obtain the quantized
secondary excitation, ŝopt(n) is then inverse-filtered with the combined LPC
and perceptual-weighting filters at the encoder. At the decoder, as there is
no need for the perceptual-weighting filtering, only the LPC inverse filtering
is used. The overall scaling factor is obtained as in standard CELP. The final
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Figure 7.23 Block diagram of VSELP vector processing

synthetic speech is obtained by adding the scaled secondary excitation and
the pitch predictor contribution and synthesizing this through the combined
LPC and perceptual-weighting filters with initial memories restored. Note
that the orthogonalization procedure and inverse filtering is required both at
the encoder and the decoder.

Algebraic Codebook Excitation

As discussed earlier multi-pulse excitation is very useful in tracking the
changes in speech accurately. Its main disadvantage is the number of bits
required to encode its pulse positions as well amplitudes. Regular pulse exci-
tation, on the other hand, is a very restricted version of multi-pulse excitation
in terms of pulse positions which may degrade speech quality if decimation
factors of five or more are used. The codebook types discussed above are
restrictive both in terms of pulse positions and amplitudes, i.e. the codebook
contains preset vectors. The VSE makes an attempt to modify the vectors by
the pitch predictor contribution but still has fixed basis vectors. Although
they are very efficient in coding capacity, they may suffer from quality
degradations especially in speech transitions where the pitch predictor fails
to perform its usual function adequately. Algebraic codebooks have over-
come these problems by cleverly representing excitation pulses where they
have some freedom in position [25, 26]. In algebraic codebooks, only a small
number of pulses are used and they are positioned in interleaved tracts (for
efficient coding); hence, although each pulse position is severely restricted,
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Table 7.5 Typical 5-pulse algebraic codebook
tracks for a 40-sample subframe

Track Pulse number Possible locations

1 i0 0,5,10,15,20,25,30,35

2 i1 1,6,11,16,21,26,31,36

3 i2 2,7,12,17,22,27,32,37

4 i3 3,8,13,18,23,28,33,38

5 i4 4,9,14,19,24,29,34,39

together they are able to form most of the combinations necessary for ade-
quate excitation. Since the selected pulse positions will usually correspond
to the remaining major pulses, which will usually have somewhat similar
magnitudes (expected after removing the pitch predictor contribution), the
pulse amplitudes are also restricted to having the same amplitude, usually set
to ±1. However, in order to have efficient coding of the formations (indices)
of the excitation vectors and enable fast search, the overall combination of the
nonzero samples is usually restricted to four or five interleaved tracks. Only
one or two nonzero pulses with either positive or negative signs are placed in
each track. Table 7.5 shows typical five-pulse interleaved track positions in a
40-sample excitation subframe. Using the possibilities shown in Table 7.5, the
codebook vector x(n) is formed by setting only five unity pulses in a possible
40-sample vector with all other locations being set to zero.

x(n) = s0δ(n − m0) + s1δ(n − m1) + s2δ(n − m2) + s3δ(n − m3) + s4δ(n − m4),

n = 0, . . . , 39 (7.82)

where si and mi are the sign and position of the ith pulse and δ(0) represents
unity pulse amplitude.

The total possible number of excitation vector combinations that an alge-
braic codebook can produce is quite large. Therefore full searching of
all possible excitations becomes prohibitive for real-time implementations.
However, algebraic codebooks are designed to reduce this complexity sig-
nificantly. Having got the synthetic output for each excitation vector, the
cross-correlation of the synthesized signal with the target signal (LPC and
perceptual-weighting filters’ memory response and the pitch predictor con-
tribution removed from weighted input speech) and the synthesized signal
energy need to be computed. The best excitation sequence is then selected by
maximizing:

Ak = (dtxk)
2

xt
k�xk

(7.83)
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where d = Hts̃ is the correlation matrix between the target signal s̃(n) and the
combined LPC and perceptual-weighting filter impulse response h(n), xk is
the kth excitation vector, H is the lower triangular Toeplitz convolution matrix
with diagonal h(0), h(1), . . . , h(39), and � = HtH is the matrix correlation of
h(n). Before the fixed codebook search starts, both d and � are computed,

d(n) =
39∑

i=n

s̃(i)h(i − n) ; n = 0, . . . , 39 (7.84)

φ(i, j) =
39∑

n=j

h(n − i)h(n − j) ; j ≥ i (7.85)

Once the correlation of the impulse response, h(n), and the target signal,
s̃(n), is computed for every possible pulse position, the overall correlation
(i.e. the numerator of equation (7.83)) becomes a simple summation of the
correlations at only nonzero excitation pulse positions.

C =
Np−1∑
i=0

pid(mi) (7.86)

where Np is the number of pulses, pi = siδ(0), in the excitation. The denomi-
nator of equation (7.83) is given by:

D =
Np−1∑
i=0

φ(mi, mi) + 2
Np−2∑
i=0

Np−1∑
j=i+1

pipjφ(mi, mj) (7.87)

However the above equation can be simplified significantly if we assume
that the pulses pi have unity amplitudes. Before the codebook search, d(n) is
decomposed into its absolute value |d(n)| and sign sign[d(n)]. Using the sign
information, φ is modified,

φ′(i, j) = sign[d(i)]sign[d(j)]φ(i, j), i = 0, . . . , 39, j = i + 1, . . . , 39. (7.88)

The main-diagonal elements of φ are scaled to remove the factor of two in
equation (7.87).

φ′(i, i) = 0.5φ′(i, i) i = 0, . . . , 39 (7.89)

The correlation in equation (7.86) can now be computed over the nonzero
pulses as (five nonzero pulses are assumed, to follow the example),

C = |d(m0)| + |d(m1)| + |d(m2)| + |d(m3)| + |d(m4)| (7.90)
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since the sign is separately coded, the absolute value of d(n) is used
in the above equation. The denominator of equation (7.83) expressed in
equation (7.87) can be computed by;

E/2 = φ′(m0, m0)

+φ′(m1, m1) + φ′(m0, m1)

+φ′(m2, m2) + φ′(m0, m2) + φ′(m1, m2)

+φ′(m3, m3) + φ′(m0, m3) + φ′(m1, m3) + φ′(m2, m3)

+φ′(m4, m4) + φ′(m0, m4) + φ′(m1, m4) + φ′(m2, m4) + φ′(m3, m4)

(7.91)

Having simplified the search process shown above, further reductions in
search complexity are achieved by a focused search approach. A precomputed
threshold is tested before entering the last loop (in a nested search to locate
the pulses in five tracks). The threshold determines if the first four pulses
have already produced a good combination and whether it is worthwhile
to continue into the last loop. The threshold is based on the correlation
C in equation (7.86). The maximum absolute correlation and the average
correlation produced by the first four pulses, max4 and av4, are used to
compute the threshold,

TH4 = av4 + K4(max4 − av4) ; 0 ≤ K4 < 1. (7.92)

The last loop is entered (to search for the fifth pulse) only if the absolute
correlation due to first four pulses exceeds TH4. K4 controls the percentage
of combinations searched (set to 0.4 in G.729 for the fourth loop where four
nonzero pulses are used). Since this will result in variable search computation,
the last loop is entered only a predetermined fixed number of times.

As explained above, an algebraic codebook is an excellent compromise
between the very restricted regular pulse excitation and multi-pulse exci-
tation. Algebraic codebooks are computationally very efficient as well as
producing good performance. However the combinations of the interleaved
track positions still require a large number of bits. For example in a 40-sample
subframe using five tracks with eight locations in each, the pulse positions
would require three bits each plus a sign bit, giving a total of 20 bits per
subframe. This will result in 20 × 8000

40 = 4 kb/s which is only applicable to bit
rates of around 6 kb/s and above. Algebraic codebooks have been extensively
used in many CELP coders such as G.729, EFR, G.723.1, etc.

Pitch Adaptive Mixed Excitation

In the case of Gaussian codebooks, it is assumed that the size of the codebook
is large enough to cater for both voiced and unvoiced speech excitations. In
the VSE case, orthogonalization with respect to the pitch predictor output
enables the secondary excitation vectors to cover the space that is not covered
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by the pitch prediction, resulting in a better system. However at low bit-rates
(increased vector sizes), during voiced onsets and transitions where the pitch
cannot build up fast enough to track the changes, the speech quality dete-
riorates significantly. The advantage of algebraic codebooks also reduces at
low bit-rates (i.e. at around 4.8 kb/s) as the number of pulse combinations
need to be severely restricted in order to allocate fewer bits for the secondary
excitation which results in distorted speech. Other important issue at low
bit-rates is the amount of noise added to speech from the secondary excitation
during steady state voiced regions. A constrained gain approach [27] helps to
produce cleaner voiced speech by limiting the power of secondary excitation
during steady state voiced regions. This section describes an adaptive code-
book excitation where the excitation pulse-positioning is made adaptive with
the pitch lag computed for the same subframe. This can be seen as a subset
of the algebraic codebook approach where the pulse positions are severely
restricted but made adaptive with respect to the pitch so as to increase their
chances of positioning them to locations where they are needed most.

In pitch adaptive mixed excitation (PAME), the static codebook is split into
two parts. The first part is made adaptive with respect to the pitch lag as
follows. The excitation buffer is filled with a unit sample amplitude every D
samples starting from the first location. The rest of the vector elements are set
to zero. During the search of the codebook, this vector is synthesized and its
phase position is determined by shifting its synthetic response one sample at
a time for D − 1 times. Each phase position is then treated as a new excitation
vector. In order to guard against pitch-doubling errors in the LTP search, if the
lag D is greater than 2Dmin the same process is applied again by placing the
excitation pulses every D/2 samples. The total number of excitation vectors
searched is then found by adding the total phase positions considered. This
is similar to regular pulse excitation with the decimation factor of D and D/2.
After selecting the best excitation vector from the pitch-adaptive section of
the codebook using Ca phase positions, the search continues in the second
part of the codebook which is fixed and contains centre-clipped overlapping
excitation. Here, a further Cf = C − Ca vectors are searched and the best
performing vector index from the overall search process is transmitted to
the receiver. At the receiver, after decoding the pitch lag, the corresponding
excitation vector is decoded.

By forcing the secondary excitation to have pitch structure, it is possible
to match voiced onsets more accurately. This is because the pitch predictor
memory builds more quickly to track the incoming periodicity more accu-
rately and the secondary excitation provides the required periodicity where
the pitch predictor fails. This, of course, depends on the accurate computation
of the periodicity by the pitch predictor in the first place. Many other adapta-
tion schemes may be used to accurately place the secondary excitation pulses
every pitch period. The pitch predictor lag adaptation is useful because it
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does not require extra computation or bits. Encoding and decoding processes
of the codebook index in this algorithm have three possibilities: D ≥ L;
L/2 ≤ D < L; and D < L/2, assuming Dmin < L/2. The total phase positions
considered in each possibility can be calculated as follows:

1. In the case of D ≥ L, there will be a single excitation pulse located in
the first position of the secondary excitation vector, hence, a possible L
phase positions will be considered. If the submultiple is also greater than
L, then the process stops. However, if D/2 < L, then L − D/2 more phase
positions will be considered where the excitation vector will have an extra
pulse located at position D/2. Therefore, the total phase positions will
be 2L − D/2.

2. In the case of L/2 ≤ D < L the secondary excitation vector will have two
pulses, placed at the first and Dth positions. Therefore, the total phase
positions to be considered is D. If D/2 ≥ Dmin then, a further D/2 phase
positions will be searched giving a total phase positions of 3D/2.

3. Finally, when D < L/2, the secondary excitation will have pulses at every
D samples starting from the first position, resulting in a possible D phase
positions. If, however, D/2 ≥ Dmin then a further D/2 phase positions are
considered giving a total of 3D/2.

The above possibilities are indicated to the receiver by the fixed subframe
size and the decoded pitch predictor lag D.

In informal listening comparisons of VSE, centre-clipped Gaussian and
PAME, PAME produced the best result by making the overall speech sharper.
This was the result of the periodic excitation part of the secondary excitation
matching voiced speech faster and hence more accurately. This is illustrated
in Figure 7.24 where, the pitch of a voiced onset is better reproduced by the
pitch adaptive excitation. In this figure we can also see that PAME tracks
voice changes much faster. It must be noted, however, that the performance
of PAME can be affected if the pitch predictor lag is chosen wrongly in
the first place. Therefore, it is important that during the LTP search, the
correct lag or its integer multiples are selected. The dependency of the PAME
performance on the pitch predictor lag can be removed if all the possible lags
(in a subframe) and phase positions are exhaustively searched. This, however,
requires more index values to be coded in the adaptive part of the codebook.
In this case, a set of primary excitation vectors are formed by placing a unit
amplitude pulse at the start of the excitation buffer x, and then after every P
samples. P is varied from Dmin (the smallest possible pitch) to L (the subframe
size) to get all primary vectors. Whilst Dmin is related to the minimum pitch,
it may also be varied to enhance fidelity. Therefore, for each P, the primary
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Figure 7.24 Speech waveforms of (a) original, (b) overlapping centre-clipped
Gaussian excited CELP output and, (c) PAME excited CELP output

candidate excitation is derived as follows:

xj(n) =
{

1 n = iP < L, i = 0, 1, 2, . . .
0 otherwise (7.93)

In order to form all possible phase positions, for each primary vector xj,
P − 1 further vectors xj+k, k = 1, 2, . . . , P − 1, are derived by shifting as,

xj+k(n) =
{

0 n = 0, 1, 2, . . . , k − 1
xj(n − k) n = k, k + 1, . . . , L − 1 (7.94)

It should be noted that the number of candidate excitation vectors Ca
depends on L and Dmin such that,

Ca = L +
L/2∑

I=Dmin

I +
L/2 −1∑

I=1

I (7.95)

Thus the number of bits required by the adaptive excitation index range is
I = �log2 Ca�. If Ca does not correspond to an integer power of 2, a further
2I − Ca vectors are then searched in the fixed codebook. As with all algebraic
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Figure 7.25 Typical CELP waveform plots: (a) codebook contribution, (b) LTP (pitch)
contribution, (c) LPC memory contribution, (d) total output, (e) original speech, and
(f) final error

codebooks, the above codebook type does not require codebook storage and
all codebook search simplifications are applicable. Typical CELP waveforms
which use the above excitation are shown in Figure 7.25. The overall rate of
this coder was around 4.8 kb/s.

7.3.5 Joint LTP and Codebook Excitation Computation

In the above analysis, where the pitch predictor contribution and secondary
excitations are computed sequentially, the final LPC excitation which is
formed by adding the pitch predictor contribution and secondary excitations
is suboptimum. When the pitch predictor is optimized, the effect of the
secondary excitation is assumed to be zero. Thus, when the secondary
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excitation is computed the pitch prediction excitation becomes suboptimum.
Since the whole idea of AbS is to compute an optimum excitation, the pitch
prediction and secondary excitations should ideally be computed jointly. As
this process would require a huge number of combination (or computation)
possibilities, it has not been applied in practice. However assuming that the
pitch delay D has been selected correctly during the pitch search (which
should be a reasonable assumption for voiced speech), an approximation to
joint optimization of pitch prediction contribution and codebook excitations
can be made by jointly computing their gains. Assuming a single-tap pitch
predictor, the weighted mean squared error for a subframe can be written as,

E(k, D) =
L−1∑
n=0

[
sw(n) − sm(n) −

n∑
i=0

gkxk(n − i)h(i) −
n∑

i=0

βDr̂(n − i − D)h(i)

]2

(7.96)
Since the zero input memory response of the LPC and perceptual-weighting
filter, sm(n), cannot be changed, and does not affect the selection of k and D,
we can substitute s̃(n) in the place of sw(n) − sm(n). Thus,

E(k, D) =
L−1∑
n=0

[
s̃(n) − gk

n∑
i=0

xk(n − i)h(i) − βD

n∑
i=0

r̂(n − i − D)h(i)

]2

(7.97)

The above equation is searched for Dmin ≤ D ≤ Dmax and 0 ≤ k ≤ C − 1. To
further simplify the above equation, substitute,

ZD(n) =
n∑

i=0

r̂(n − i − D)h(i) (7.98)

and,

Vk(n) =
n∑

i=0

xk(n − i)h(i) (7.99)

Thus,

E(k, D) =
L−1∑
n=0

[s̃(n) − gkVk(n) − βDZD(n)]2 (7.100)

In equation (7.100), the variables k and D should be jointly selected such that
with their optimum gains gk and βD, the overall error E(k, D) is minimized.
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To minimize E(k, D), we differentiate equation (7.100) with respect to gk and
βD which are functions of k and D respectively. Thus,

∂E(k, D)

∂gk
=

L−1∑
n=0

[s̃(n) − gkVk(n) − βDZD(n)] × (−2)Vk(n) = 0 (7.101)

and similarly,

∂E(k, D)

∂βD
=

L−1∑
n=0

[s̃(n) − gkVk(n) − βDZD(n)] × (−2)ZD(n) = 0 (7.102)

Rearranging the above equations we get

L−1∑
n=0

s̃(n)Vk(n) = gk

L−1∑
n=0

V2
k (n) + βD

L−1∑
n=0

ZD(n)Vk(n) (7.103)

L−1∑
n=0

s̃(n)ZD(n) = gk

L−1∑
n=0

Vk(n)ZD(n) + βD

L−1∑
n=0

Z2
D(n) (7.104)

In matrix form, [
gk
βD

]
=

[
G1 G2
G2 G3

]−1 [
K1
K2

]
(7.105)

where,

G1 =
L−1∑
n=0

V2
k (n) (7.106)

G2 =
L−1∑
n=0

ZD(n)Vk(n) (7.107)

G3 =
L−1∑
n=0

Z2
D(n) (7.108)

K1 =
L−1∑
n=0

s̃(n)Vk(n) (7.109)

K2 =
L−1∑
n=0

s̃(n)ZD(n) (7.110)
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The gains gk and βD can then be found by solving the above equation as,

gk = K1G3 − K2G2

G1G3 − G2
2

(7.111)

βD = K2G1 − K1G2

G1G3 − G2
2

(7.112)

The variables k and D are searched through all combinations using the
above analysis and the combination giving the minimum error is selected for
transmission. Even though, the speech quality increases significantly with
this joint computation of the pitch predictor and secondary excitations, the
search computation required is extremely high. Therefore the pitch lag D is
usually limited to a narrow range (i.e. ±2 samples) around the selected value
during the LTP search (and its submultiples) before the codebook vector is
selected in this joint optimization process.

7.3.6 CELP with Post-Filtering

As discussed earlier, the function of the perceptual weighting filter is to shape
the noise spectrum so as to hide it under the speech spectrum [2]. However,
at low rates such as 4.8 kb/s, where the average noise level is relatively large,
it is very difficult to suppress the noise below the masking threshold at all
frequencies. Therefore, in order to improve CELP speech quality at lower
bit rates (or, indeed, all rates), further subjective noise reduction techniques
are required.

As CELP is essentially a waveform type speech coder, the coded speech
can be considered to be the original speech corrupted by additive Gaussian-
type noise. Therefore, any speech enhancement technique that deals with
this problem can be used to reduce the noise. One such method is that of
post-filtering [28]. Adaptive post-filtering (APF) has been used successfully in
enhancing ADPCM-coded speech and APC-type schemes [29]. For AbS-LPC
coders, the APF as reported by Chen [30] and given by equation (7.113), has
been widely accepted.

Hapf (z) =
(1 − µz−1)

(
1 −

p∑
i=1

aiβ
iz−i

)
(

1 −
p∑

i=1

aiα
iz−i

) (7.113)

The function of the APF is to attenuate the components in the spectral
valleys. However, to achieve this successfully, the simple all-pole APF used
in earlier schemes is not adequate. If an all-pole APF is used alone, then,
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Figure 7.26 Block diagram of the adaptive post-filter

although the perceived noise level is lowered, the output speech is severely
low-pass, giving a muffling effect. In order to compensate for this low-pass
effect the spectral tilt of the all-pole APF can be modified such that its response
is somewhere between an all-pass response and the signal spectrum. The best
APF combination was found to be that shown in Figure 7.26.

The simple high-pass filter in the first stage provides a slightly high-pass
spectral tilt and thus helps to reduce muffling. The pole-zero second-stage
filter provides ‘shaping’ of the spectral envelope. Finally, a gain control is
added to scale the post-filtered speech such that it has roughly the same
power as the unfiltered noisy speech. This is necessary as the cascaded
filters are not unity gain filters. One technique used to normalize the output
signal power is to estimate the power of the un-filtered and filtered speech
separately, then determine an appropriate scaling factor based on the ratio
of the two estimated power values. The speech power is estimated by an
exponential-average gain estimator, i.e. the two estimated power values δ2

o
and δ2

p are given by,

δ2
o (n) = ζ δ2

o (n − 1) + (1 − ζ )ŝ2
o(n) (7.114)

δ2
p(n) = ζ δ2

p(n − 1) + (1 − ζ )ŝ2
p(n) (7.115)

where ŝo(n) is the original synthetic speech and ŝp(n) is the post-filtered
speech. A suitable leakage factor ζ is 0.96. At each sampling instant, δ2

o (n) and
δ2

p(n) are computed as above, then the ratio and the square root are computed

in order to obtain the gain factor g(n) =
√

δ2
o (n)/δ2

p(n). Therefore, the final
post-filtered speech is given by

ŝpo(n) = g(n)ŝp(n) (7.116)

The above procedure is quite computationally-intensive as it requires a
divide and square root operation per sample. Therefore, instead of the
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speech spectrum (µ = 0.3, β = 0.6, and α = 0.9)

sample-by-sample normalization, block-wise normalization can be used, i.e.
sum the values of δ2

o (n) and δ2
p(n) for a block and use the average. Small

block sizes (e.g. 10 samples) generally produce indistinguishable results. The
effect of the APF of Figure 7.26 can be seen in Figure 7.27 alongside a typical
example of the original LPC envelope.

Generally, the following parameter ranges have been found to give reason-
able subjective results:

0.2 ≤ µ ≤ 0.4 (7.117)

0.5 ≤ β ≤ 0.7 (7.118)

0.8 ≤ α ≤ 0.9 (7.119)

The factor µ controls the ‘brightness’ of the speech, and hence larger
values tend to bring in more high-frequency background noise. The factors
β and α control the degree of spectral filtering, and the difference between
the parameters determines the filtering effect. Subjectively, large differences
give quieter speech, but this is usually accompanied by an unnatural ‘deep’
voice effect. Applying APF with the correct subjectively-selected control
parameters to the coders produces significant subjective noise reduction
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with almost negligible distortion in the speech. The post-filtered speech is
characterized by its lack of background noise components (quiet room effect)
and increased smoothness for voiced speech. For lower-rate CELPs, this
enhancement to the subjective quality is particularly noticeable: the speech
sounds much cleaner and much more pleasant to listen to. As suggested
in [17], making the high-pass factor, µ, adaptive as

µ = ε|k1| (7.120)

where |k1| is the modulus of the first reflection coefficient computed from the
quantized LP parameters and ε is a tuning factor with a typical value of 0.3,
improves the speech quality.

7.4 Summary

Analysis by synthesis coding of speech in the form of MPLPC and CELP has
been very popular for the past couple of decades. At bit rates of 6 kb/s and
above they produce good performance and the various versions reported in
the literature differ mainly on the way the secondary (codebook) excitation
is generated or represented. In early days, random Gaussian numbers were
used to populate the codebooks, but they were complex to store and search
and did not produce the best quality. The use of vector sum excitation
improved the situation both in terms of the cost of implementation and the
overall speech quality. However the most successful CELP coders have been
produced after the invention of algebraic codebooks. ACELPs are currently
being used in many international standards.

Although ACELPs have been very dominant at bit rates of 6 kb/s and above,
they rely heavily on objective measures (although perceptual weighting is
used) and as the bit rate is lowered their quality deteriorates rapidly. It would
therefore be very difficult to produce a toll-quality 4 kb/s CELP coder unless
significant modifications are made to the basic structure described above.
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8
Harmonic Speech Coding

8.1 Introduction

A general sinusoidal analysis and synthesis concept was introduced by
McAulay [1] when he developed the Sinusoidal Transform Coder (STC) [2]
to demonstrate the applicability of the technique in low bit-rate speech
coding. Sinusoidal coding does not restrict the component sinusoids of the
synthesized speech to be harmonics of the fundamental frequency. The
frequency tracks of the sinusoids may vary independently of each other.
However in harmonic coding the higher frequency sinusoids are restricted
to be integer multiples of the fundamental frequency [3]. Therefore har-
monic coding can be seen as a subset of a generalized sinusoidal trans-
form coding. At low bit-rates, STC also restricts the frequency tracks to
be harmonics of the fundamental frequency, and deduces the harmonic
phases at the decoder, simply because the available bits are not suffi-
cient to encode the large number of parameters of the general sinusoidal
representation.

The STC was introduced as an alternative to the source filter model, and
its analysis and synthesis was directly applied to the original speech signal.
The binary voicing decision of the source filter model is one of its major
limitations. The STC employs a more general mixed-voicing scheme by
separating the speech spectrum into voiced and unvoiced components, using
a voicing transition frequency above which the spectrum is declared unvoiced.
However, one of the most recent harmonic coders operates in the LPC
residual domain, i.e. Split Band LPC (SB-LPC) [4]. SB-LPC replaces the binary
excitation of the source-filter model with a more general mixed excitation, and
filters the excitation signal using an LPC filter. The LPC residual has a simpler
phase spectrum than the original speech. The residual harmonic phases
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can be approximated by using the integrals of the component frequencies.
Moreover, LPC models the large variation in the speech magnitude spectrum
and simplifies the harmonic amplitude quantization.

8.2 Sinusoidal Analysis and Synthesis

Figure 8.1 depicts block diagrams of the sinusoidal analysis and synthesis
processes introduced by McAulay. The speech spectrum is estimated by
windowing the input speech signal using a Hamming window and then
computing the Discrete Fourier Transform (DFT). The frequencies, ampli-
tudes, and phases corresponding to the peaks of the magnitude spectrum
become the model parameters of the sinusoidal representation. Employing a
pitch-adaptive analysis window length of two and a half times the average
pitch improves the accuracy of peak estimation. The synthesizer generates
the sine waves corresponding to the estimated frequencies and phases, and
modulates them using the amplitudes. Then all the sinusoids are summed
to produce the synthesized speech. The block edge effects are smoothed
out by applying overlap and add, using a triangular window. Overlap and
add is effectively a simple interpolation technique and, in sinusoidal synthe-
sis, it requires parameter update rates of at least every 10–15 ms for good
quality speech synthesis. At lower frame rates the spectral peaks need to
be properly aligned between the analysis frames to form frequency tracks.
The amplitudes of the frequency tracks are linearly interpolated, and the
instantaneous phases are generated using a cubic polynomial [1] as shown in
Figure 8.2.
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8.3 Parameter Estimation

Low bit-rate sinusoidal coders estimate the amplitudes at the harmonics of
the fundamental frequency. At low bit-rates, the harmonic phases are not
transmitted. Instead the phases are deduced from the spectral envelope on the
assumption that it is the gain response of a minimum phase transfer function
and added to the integrals of the component frequencies. STC implements
the harmonic phases explicitly and LPC-based coders implement the phases
implicitly through the time-domain LPC synthesis filter. Improved multi-
band excitation (IMBE) coders do not use any kind of phase information
and the phases are evolved as the integrals of the component harmonic
frequencies. Restricting the component frequencies to the harmonics and
modelling the phases at the decoder is well suited for stationary voiced
segments of speech. However, in general, the speech signal is not stationary
voiced and consists of a mixture of voiced and unvoiced segments. When
those segments are synthesized with the phase models described above,
the synthesized speech sounds buzzy. In order to remove this ‘buzzyness’
the concept of frequency-domain voicing was introduced into low bit-rate
harmonic coders [5]. Frequency-domain voicing allows the synthesis of mixed
voiced signals, by separating the speech spectrum into frequency bands
marked as either voiced or unvoiced.

Frequency-domain voicing decisions are usually made for each harmonic
of the speech spectrum. Therefore, an accurate pitch estimate is a prerequisite
of harmonic amplitude and voicing determination. The frequency-domain
voicing determination techniques based on spectral matching need a high
precision pitch estimate for good performance. A small error in the pitch
will cause large deviations at the high frequency harmonics, and subse-
quent declaration of them as unvoiced. Furthermore, female voices with
short pitch periods are more sensitive to small pitch error. In order to
reduce the complexity of a high-precision pitch estimation, an initial pitch
estimate is usually further refined by performing a limited search around
the initial estimate. Having determined an accurate pitch the harmonic
coding usually proceeds with voicing and spectral amplitude estimation
processes.



264 Harmonic Speech Coding

8.3.1 Voicing Determination

There are many ways of performing the voicing classification of speech,
which was discussed in Chapter 6, but here we briefly summarize two
common techniques.

Multi-Band Approach
Harmonic voicing is estimated by computing the normalized mean squared
error of a synthetic voiced spectrum, Ŝw (ω, ω0), with respect to the speech
spectrum, Sw(ω), and comparing it against a threshold function for each
harmonic band [6]. The normalized mean squared error, Dk, of the kth

harmonic band is given by,

Dk =

(k+0.5)ω0∫
(k−0.5)ω0

[
Sw (ω) − Ŝw (ω, ω0)

]2
dω

(k+0.5)ω0∫
(k−0.5)ω0

S2
w (ω) dω

for k = 1, 2, . . . , K (8.1)

where K = �π/ω0� and ω0 is the normalized fundamental frequency.
Figure 8.3 illustrates Dk values of two speech spectra with the corresponding
synthetic spectra. If Dk is below the threshold function, i.e. a small error
and a good spectral match, the kth band is declared voiced. The initial multi-
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Figure 8.3 Two speech spectra: (a) original spectrum Sw(ω), (b) synthetic spectrum
Ŝw(ω, ω0), and (c) normalized Dk
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band excitation (MBE) coders used a constant threshold for all the bands.
However the most recent versions use several heuristic rules to obtain a
better performance [7], e.g. as the frequency increases the threshold function
is decreased, if the same band of the previous frame was unvoiced, if the
high-frequency energy exceeds the low-frequency energy, and if the speech
energy approaches the energy of the background noise.

Sinusoidal Model Approach

McAulay et al. proposed a different voicing determination technique for his
sinusoidal transform coder (STC) [2]. The speech spectrum is divided into
two bands, determined by a voicing transition frequency above which the
spectrum is declared unvoiced. This method estimates the similarity between
the harmonically-synthesized signal, ŝ(n, ω0), and the original speech signal
s(n). The signal to noise ratio (SNR), δ, between s(n) and ŝ(n, ω0) is given by,

δ =

N−1∑
n=0

s2 (n)

N−1∑
n=0

[
s (n) − ŝ (n, ω0)

]2

(8.2)

where N is the analysis frame length and ŝ(n, ω0) is given by

ŝ (n, ω0) =
K(ω0)∑
l=1

Al exp
(
jnlω0 + jθl

)
(8.3)

where the harmonic amplitudes, Al, are obtained from the spectral envelope
and θl are the harmonic phases. McAulay simplified equation (8.2) for reduced
computational complexity, and the simplified δ is given by,

δ =

L∑
l=1

A2
l

L∑
l=1

A2
l − 2Nρ (ω0)

(8.4)

where Al are the harmonic-frequency spectral amplitudes of the original
signal as shown below,

s (n) =
L∑

l=1

Al exp
(
jnωl + jφl

)
(8.5)
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and ρ (ω0) is given by,

ρ (ω0) =
K(ω0)∑
l=1

Al

{
maxl [AlD (ωl − kω0)] − 1

2
Al

}
(8.6)

where K (ω0) = �π/ω0�,

D (ωl − kω0) =
sin

(
2π

ωl−kω0
ω0

)

2π
ωl−kω0

ω0

for
∣∣ωl − kω0

∣∣ ≤ ω0

2
(8.7)

and D (ωl − kω0) = 0 otherwise.
The voicing level (probability), Lv(δ) (i.e. the ratio of the voiced bandwidth

to the speech bandwidth, 0 ≤ Lv (δ) ≤ 1), is defined as,

Lv (δ) =



1 δ > 13 dB
1
9 (δ − 4) 4 dB ≤ δ ≤ 13 dB

0 δ < 4 dB
(8.8)

The advantage of estimating the voicing for independent bands is that it essen-
tially removes the spectral tilt, i.e. all the components are equally weighted.
When the voicing is based on a single metric, i.e. δ, the large amplitudes
contribute more to the overall decision. If they have been corrupted by back-
ground noise, it may result in a large voicing error [2]. Therefore, the voicing
estimates based on independent bands are more robust against background
noise.

8.3.2 Harmonic Amplitude Estimation

The harmonic coding algorithms require the spectral amplitudes of the
harmonics, which can be estimated in a number of ways.

Peak-picking of the Magnitude Spectrum

Harmonic amplitudes may be estimated by simple peak-picking of the
magnitude spectrum and searching for the largest peak in each harmonic
band. The peak amplitude value, Sw(mk) should be normalized by a factor
depending on the window function used, as follows:

Ak = |Sw (mk)|
κ

for − ω0

2
<

2π

N
mk − kω0 <

ω0

2
and k = 1, 2, . . . , K (8.9)
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where ω0 is the normalized fundamental frequency, K = �π/ω0�, κ =
N−1∑
n=0

w (n), w(n) is the window function, N is the length of the window,

and Sw(m), the windowed speech spectrum, is given by,

Sw (m) =
N−1∑
n=0

s (n) w (n) e−j 2π
N mn for m = 0, 1, 2, . . . , N (8.10)

Spectral Correlation

Harmonic amplitudes may be estimated by computing the normalized cross-
correlation between the harmonic lobes of the speech spectrum and the main
lobe of the window spectrum. This method is based on the fact that the
spectrum of the windowed speech is equivalent to the convolution between
the speech spectrum and the window spectrum. It is also assumed that the
speech signal is stationary during the windowed segment and the spectral
leakage due to the side lobes of the window spectrum is negligible.

Ak =

bk−1∑
m=ak

Sw (m) W∗ (2πm/N − kω0)

bk−1∑
m=ak

W2 (2πm/N − kω0)

for k = 1, 2, . . . , K (8.11)

where ak = max
[⌈

N
2π

(
k − 1

2

)
ω0

⌉
, 0

]
and bk = min [ak+1, N/2], and W(ω) is

the spectrum of the window function, given by,

W (ω) =
N−1∑
n=0

w (n) e−jωn (8.12)

In practice, W(ω) is computed with a high-resolution FFT, e.g. 214 samples,
by zero-padding the window function, and stored in a lookup table. The
high-resolution FFT is required because, in general, the spectral samples m of
Sw(m) do not coincide with the harmonic locations, kω0, of the fundamental
frequency. Hence W(ω) is shifted to the harmonic frequency and down-
sampled to coincide with the corresponding spectral samples of Sw(m), as
shown in equation (8.11). W(ω) is pre-computed and stored in order to reduce
the computational complexity.

The spectral cross-correlation-based amplitude estimation gives the opti-
mum gain of the harmonic lobes with respect to the main lobe of the window
spectrum, hence it is a more accurate estimate than the simple peak-picking.
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However the cross-correlation-based method has a higher complexity and
requires a high-precision pitch estimate.

The unvoiced amplitudes are calculated as the rms spectral energy over the
unvoiced spectral bandwidth, given by,

Ak uv = 1
κ

√√√√√√√
bk∑

m=ak

S2
w (m)

bk − ak
(8.13)

The harmonic amplitude estimation techniques described may be applied to
either the speech spectrum or the LPC residual spectrum.

8.4 Common Harmonic Coders

This section describes three examples of low bit-rate harmonic coders: sinu-
soidal transform coding (STC) [2], improved multi-band excitation (IMBE) [8],
and split-band linear predictive coding (SB-LPC) [4]. The STC and IMBE apply
sinusoidal analysis and synthesis techniques to the original speech signal and
SB-LPC uses the LPC residual signal. All three examples restrict the synthesis
of sinusoidal components to be harmonics of the fundamental frequency.

8.4.1 Sinusoidal Transform Coding

The sinusoidal transform coding (STC) operating at 4.8 kb/s divides the
speech spectrum into two voicing bands using the sinusoidal model approach
described in Section 8.3.1. The lower part of the spectrum, which is declared
as voiced, is synthesized as follows:

ŝv (n) =
Lv∑

l=1

A(lωk
0) exp

(
jlφ0 (n) + jφs

(
lωk

0

))
for −N/2 ≤ n ≤N/2 (8.14)

where
φ0 (n) = nωk

0 + φk
0 (8.15)

and
φk

0 = φk−1
0 +

(
ωk−1

0 + ωk
0

)
N′/2 (8.16)

where N + 1 is the frame length, ωk
0 is the normalized fundamental frequency

of the kth frame, N′ is the duration between the analysis points, A(ω) is
the spectral envelope obtained by interpolating the selected peaks of the
magnitude spectrum, φs(ω) is the phase spectrum derived from the spectral
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envelope on the assumption that it is the gain response of a minimum phase
transfer function, and Lv is the harmonic just below the voicing transition
frequency.

The upper part of the spectrum, which is declared as unvoiced, is synthe-
sized as follows:

ŝuv (n) =
K

(
ωk

0

)
∑

l=Lv+1

A
(

lωk
0

)
exp

(
jlφ0 (n) + jφs

(
lωk

0

)
+ jU [−π , π ]

)
(8.17)

where K(ωk
0) =

⌊
π

/
ωk

0

⌋
and U [−π , π ] denotes a uniformly distributed ran-

dom variable in the range −π and π . When a frame is fully unvoiced the
pitch estimate is meaningless and pitch frequencies greater than 150 Hz may
degrade the perceptual quality of unvoiced speech. In order to synthesize
the noise-like unvoiced speech with adequate quality, the number of sinu-
soids with random phases should be sufficiently large. Therefore, the pitch
frequency is set to 100 Hz for unvoiced speech. The synthesized speech of the
kth frame is then given by,

ŝ (n) = ŝv (n) + ŝuv (n) (8.18)

The overlap and add method is used with a triangular window to produce
the final speech output. Therefore, the frame length is equal to twice the
duration between the analysis points, i.e. N = 2N′. The frequency response
of the spectral envelope is given by,

H (ω) = A (ω) exp
(
jφs (ω)

)
(8.19)

which is approximated by an all-pole model,

H (ω) ∼= g

1 −
p∑

i=1

aiz−i

for |z| = 1 (8.20)

where g is the gain and ai are the predictor coefficients. The conventional
time-domain all-pole LPC analysis is performed on the original speech signal
and the maximum filter order is usually limited to half the smallest pitch
period. The limitation is imposed so that the LPC models the formant spectral
envelope, since LPC filters with a large number of taps tend to resolve the
harmonic structure. However in the case of STC, all-pole modelling is applied
to the estimated spectral envelope. Hence, the filter order is not restricted
and can be increased depending only on the desired accuracy of the spectral
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envelope and the bit rate. The 4.8 kb/s STC uses a 14th-order all-pole model
and quantizes the predictor coefficients in the LSF domain. In addition to the
LSFs, the STC transmits gain, pitch, and voicing.

8.4.2 Improved Multi-Band Excitation, INMARSAT-M Version

Improved multi-band excitation (IMBE) operating at 4.15 kb/s for
INMARSAT-M divides the speech spectrum into several voiced and unvoiced
frequency bands, using the multi-band approach described in Section 8.3.1.
However, IMBE makes the voicing decisions for groups of three harmonics
and a single bit is allocated for each group. The total number of voicing bits
Bv is limited to a maximum of 12 and the harmonics beyond the coverage of
voicing are declared unvoiced. The refined pitch is transmitted using eight
bits. The frame length is 20 ms giving 83 bits per frame at 4.15 kb/s and the
remaining bits, i.e. 83−8−Bv, are allocated for spectral amplitudes. The voiced
amplitudes are estimated using equation (8.11) and the unvoiced amplitudes
are estimated using equation (8.13). The voiced bands are synthesized as
follows:

ŝv (n) =
∑

k=voiced

Ak cos (kφ0 (n)) for n = 0, 1, 2, . . . , N − 1 (8.21)

where N is the frame length and the fundamental phase evolution, φ0(n), is
defined by the following equations:

φ0 (n) = φ0 (n − 1) + ω0 (n) (8.22)

ω0 (n) = 1
N

(N − n) ωl−1
0 + nωl

0 (8.23)

where φ0(−1) is φ0(N − 1) of the previous frame and ωl
0 is the normalized

fundamental frequency estimated at the end of the lth frame. The amplitudes of
the voiced harmonics are linearly interpolated between the analysis points. If
the corresponding harmonic of one analysis point does not exist or is declared
unvoiced then its amplitude is set to zero and the harmonic frequency stays
constant (set to the frequency of the existing voiced harmonic). However
if the pitch estimate is not steady, neither the pitch nor the amplitudes are
interpolated for any harmonics; instead overlap and add method is used.

The unvoiced component is synthesized using filtered white Gaussian
noise. White noise is generated in the time domain and transformed into the
frequency domain; the bands corresponding to the voiced components are
set to zero; and the unvoiced bands are scaled according to the unvoiced
gain factors. The inverse Fourier transform of the modified spectrum gives
the unvoiced component, ŝuv(n), which is produced using the overlap and
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Figure 8.4 Harmonic speech synthesis: (a) original speech, (b) original harmonic
phases, and (c) IMBE

add method with the unvoiced part of the preceding frame. The synthesized
speech ŝ(n) is then given by,

ŝ (n) = ŝv (n) + ŝuv (n) (8.24)

An interesting feature of the IMBE coder is its simple phase model. The
fundamental phase is computed as the integral of the linearly-interpolated
pitch frequency, and the multiples of the fundamental phase are used as the
harmonic phases. The effect of this phase model is illustrated in Figure 8.4.
The coherent phase model used in IMBE concentrates the speech energy at
the phase locations corresponding to the multiples of 2π of the fundamental
phase. For reference, the speech waveforms synthesized using the original
harmonic phases are also shown and they are very similar to the original
speech waveforms.

8.4.3 Split-Band Linear Predictive Coding

The split-band linear predictive coding (SB-LPC) coder operating at 4 kb/s
employs time-domain LPC filtering and uses a multi-band type of excitation
signal. However the excitation signal of SB-LPC consists of only two bands,
separated by a frequency marker, below which the spectrum is declared
voiced and above which it is declared unvoiced. The estimation of the
frequency marker of SB-LPC is different from the technique used in STC.
The SB-LPC estimates a voicing decision for each harmonic band using
a similar multi-band approach described in Section 8.3.1. The estimated
voicing decisions are used to determine the voicing frequency marker, which
has eight possible equally-spaced locations in the spectrum, the first being
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fully unvoiced and the last being fully voiced. One method of deciding the
frequency marker is placing it at the end of the last voiced harmonic of
the spectrum, i.e. all the voiced harmonics are included in the voiced band
of the spectrum. A better solution for determining the frequency marker,
based on a soft decision process is described in [9]. The harmonic amplitudes
are estimated using equations (8.11) and (8.13) for voiced and unvoiced
harmonics respectively, however the LPC residual is used instead of the
speech signal. The LPC parameters are quantized and interpolated in the LSF
domain. The shape of the harmonic amplitudes is vector-quantized and the
gain is scalar-quantized separately.

At the receiving end, speech is synthesized with parameter interpolation
based on pitch cycle waveform (PCW). First, intermediate PCWs for the cur-
rent subframe are generated by interpolating the quantized model parameters
of the last and current subframes. The excitation signal ei(n), 0 ≤ n < T0,i, for
the ith PCW is produced as

ei(n + ni) =
Vc∑
l=1

Ae,i(l) cos{lω0,i(n − ni)}

+
H∑

l=Vc+1

Ae,i(l) cos{lω0,i(n − ni) + U[−π , π ]} (8.25)

where H is the total number of harmonics, ω0,i = 2π/T0,i and U[−π , π ]
denotes a random number with uniform distribution between −π and π . The
start position ni for the ith PCW is given by

ni = n0 +
i−1∑
j=0

T0,j (8.26)

where n0 is the start position corresponding to the last position of the previous
subframe. The interpolated pitch T0,i for the ith PCW is calculated as

T0,i = αiT
(t−1)
0 + (1 − αi)T

(t)
0 (8.27)

where T(t)
0 is the received pitch of the tth subframe. The interpolation factor αi

is defined as

αi = G(t)Ni

G(t−1)(N − Ni) + G(t)Ni
(8.28)

where N is the subframe size, G(·) is the received gain, and Ni is the PCW
position defined by,

Ni = ni + 0.25(T(t−1)
0 + T(t)

0 ) (8.29)
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The starting position n(t+1)
0 for the next subframe is updated as

n(t+1)
0 = (n(t)

I + T(t)
0,I)%N (8.30)

where % is the modulo operator and I is the total number of PCWs. The
voicing cut-off index, Vc, is given by

Vc = max{V(t−1)
c , V(t)

c } (8.31)

The interpolated amplitude, Ae,i(l), for the lth harmonic is computed as

Ae,i(l) =




αiA
(t−1)
e (l) + (1 − αi)A

(t)
e (l), if V(t−1)(l) = V(t)(l),

A(t−1)
e (l), if V(t−1)(l) = 1 & V(t)(l) = 0

A(t)
e (l), if V(t−1)(l) = 0 & V(t)(l) = 1

(8.32)
where V(·)(l) is the voicing information for the lth harmonic and 1 and 0 in
the voicing comparison denote voiced and unvoiced, respectively. The LPC
coefficient for the ith PCW is interpolated in the same way as, obtaining
the interpolated pitch. Finally, the normalized speech signal s̃i(n) is recon-
structed by exciting the LPC synthesis filter hi(n) with the signal ei(n) in
equation (8.25), as

s̃i(n) = ei(n) ∗ hi(n) (8.33)

where ∗ is the convolution operator. In calculation of s̃i(n), the required
memory for ei(n), n < 0, can be obtained from ei−1(n) or the excitation signal
of the last subframe. The synthesized speech signal si(n) for the ith PCW is
produced by compensating for the gain as

si(n) =
√√√√√√√

T0,i
T0,i−1∑
n=0

s̃2
i (n)

Gis̃i(n) (8.34)

where Gi is the interpolated gain based on the relative position of the PCW in
the subframe. Concatenation of each PCW in equation (8.34) forms the final
speech signal.

The above description of excitation generation is based on the sinusoidal
synthesis of voiced and random noise generation of unvoiced parts of the
excitation. However, in practice, a DFT-based method (with the DFT size
equal to the pitch period), where the unvoiced frequencies would have
random phases, can be used to generate both voiced and unvoiced parts
jointly [10, 11].
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Table 8.1 Bit allocation of 4 kb/s
SB-LPC coder for a 20 ms frame

Parameter Bits

LSFs 23

Pitch 5 + 7

Parity bit 1

Voicing 3 + 3

Gain 5 + 5

Harmonic amplitudes 14 + 14
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Figure 8.6 Harmonic speech synthesis: (a) original speech, and (b) SB-LPC

A block diagram of the SB-LPC decoder is shown in Figure 8.5 and the bit
allocation is shown in Table 8.1. Figure 8.6 illustrates the same waveforms
shown in Figure 8.4, but synthesized using the SB-LPC coder. The time-
domain LPC filter adds its phase response to the coherent excitation signal
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of SB-LPC and disperses the energy of the excitation pulses. However the
waveform shape of the synthesized speech is different from the original
speech.

8.5 Summary

The fundamental sinusoidal speech analysis and synthesis techniques have
been briefly discussed in this chapter. The basic sinusoidal model has been
modified to reduce the number of parameters in order to adapt it for low
bit-rates. At low bit-rates the frequencies of the sinusoids are restricted to
be harmonics of the pitch frequency and the harmonic phases are mod-
elled at the decoder. The concept of frequency-domain voicing is intro-
duced to achieve a compromise between the hoarseness and buzzyness of
harmonically-synthesized speech.

Three examples of low bit-rate harmonic coders have been presented:
sinusoidal transform coding (STC), improved multi-band excitation (IMBE),
and split-band linear predictive coding (SB-LPC). One of the main limitations
of low bit-rate harmonic coders is their inability to produce adequate quality
at the speech transitions.
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9
Multimode Speech Coding

9.1 Introduction

Harmonic coders extract the frequency-domain speech parameters and speech
is generated as a sum of sinusoids with varying amplitudes, frequencies and
phases. They produce highly intelligible speech down to about 2.4 kb/s
[1]. By using the unquantized phases and amplitudes, and by frequent
updating of the parameters, i.e. at least every 10 ms, they can even achieve
near transparent quality [2]. However this requires a prohibitive bit-rate,
unsuitable for low bit-rate applications. For example, the earlier versions
of multi-band excitation (MBE) coders (a typical harmonic coder) operated
at 8 kb/s with harmonic phase information [3]. However, harmonic coders
operating at 4 kb/s and below do not transmit phase information. The spectral
magnitudes are transmitted typically every 20 ms and interpolated during
the synthesis. The simplified versions used for low bit-rate applications are
well suited for stationary voiced segment coding. However at the speech
transitions such as onsets, where the speech waveform changes rapidly,
the simplified assumptions do not hold and degrade the perceptual speech
quality.

Figure 9.1 demonstrates two examples of harmonically-synthesized speech,
Figure 9.1a shows a stationary voiced segment and Figure 9.1b shows a
transitory speech segment. In both cases, (i) represents the original speech,
i.e. 128 kb/s linear pulse code modulation, and (ii) represents the synthesized
speech. The synthesized speech is generated using the split-band linear
predictive coding (SB-LPC) harmonic coder operating at 4 kb/s [4]. The
synthesized waveforms are shifted in the figures in order to compensate
for the delay due to look-ahead and the linear phase deviation due to loss
of phase information in the synthesis. The SB-LPC decoder predicts the
evolution of harmonic phases using the linearly interpolated fundamental
frequency, i.e. a quadratic phase evolution function. Low bit-rate harmonic

Digital Speech. A. Kondoz
 2004 John Wiley & Sons, Ltd ISBN 0-470-87007-9 (HB)
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Figure 9.1 Harmonically-synthesized speech

coders cannot preserve waveform similarity as illustrated in the figures,
since the phase information is not transmitted. However, in the stationary
voiced segments, phase information has little importance in terms of the
perceptual quality of the synthesized speech. Stationary voiced speech has
a strong, slowly-evolving harmonic content. Therefore extracting frequency
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domain speech parameters at regular intervals and interpolating them in the
harmonic synthesis is well suited for stationary voiced segments. However
at the transitions, where the speech waveform evolves rapidly, this low bit-
rate simplified harmonic model fails. As depicted in Figure 9.1b, the highly
nonstationary character of the transition has been smeared by the low bit-rate
harmonic model causing reduction in the intelligibility of the synthesized
speech.

CELP-type coders, such as ACELP [5, 6], encode the target speech wave-
form directly and perform relatively better at the transitions. However, at
low bit-rates, analysis-by-synthesis (AbS) coders fail to synthesize stationary
segments with adequate quality. As the bit rate is reduced, they cannot main-
tain clear periodicity of the stationary voiced segments [7]. CELP-type AbS
coders perform waveform-matching for each frame or subframe and select
the best possible excitation vector. This process does not consider the pitch
cycles of the target waveform, and consecutive synthesized pitch cycles show
subtle differences in the waveform shape. This artifact introduces granular
noise into the voiced speech, perceptible up to about 6 kb/s. Preserving the
periodicity of voiced speech is essential for high quality speech reproduction.
Figure 9.2a shows a stationary voiced segment and 9.2b shows a transitory
segment synthesized using ACELP at 4 kb/s. In Figure 9.2a, the consecu-
tive pitch cycles have different shapes, which degrades the slowly-evolving
periodicity of voiced speech, compared to Figure 9.1a. Therefore despite the
fact that waveform similarity is less in Figure 9.1a, harmonically-synthesized
voiced speech is perceptually superior to waveform-coded speech at low bit-
rates. Figure 9.2b shows that ACELP can synthesize the highly nonstationary
speech transitions better than harmonic coders (see Figure 9.1b). ACELP
may also introduce granular noise at the transitions. However, the speech
waveform changes rapidly at the transitions, masking the granular noise of
ACELP, which is not perceptible down to about 4 kb/s. The above observa-
tions suggest a hybrid coding approach, which selects the optimum coding
algorithm for a given segment of speech: coding stationary voiced segments
using harmonic coding and transitions using ACELP. Unvoiced and silence
segments can be encoded with CELP [8] or white-noise excitation.

Harmonic coders suffer from other potential problems such as voicing and
pitch errors that may occur at the transitions. The pitch estimates at the
transitions, especially at the onsets may be unreliable due to the rapidly-
changing speech waveform. Furthermore, pitch-tracking algorithms do not
have history at the onsets and should be turned off. Inaccurate pitch estimates
also account for inaccurate voicing decisions, in addition to the spectral
mismatches due to the nonstationary speech waveform at the transitions.
These voicing decision errors declare the voiced bands as unvoiced and
increase the hoarseness of synthetic speech. Encoding the transitions using
ACELP eliminates those potential problems of harmonic coding.
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Figure 9.2 Speech synthesized using ACELP

9.2 Design Challenges of a Hybrid Coder

The main challenges in designing a hybrid coder are reliable speech classifica-
tion and phase synchronization when switching between the coding modes.
Furthermore, most of the speech-coding techniques make use of a look-ahead
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and parameter interpolation. Interpolation requires the parameters of the
previous frame; when switched from a different mode, those parameters may
not be directly available. Predictive quantization schemes also require the
previous memory. Techniques which eliminate these initialization/memory
problems are required.

9.2.1 Reliable Speech Classification

A voice activity detector (VAD) can be used to identify speech and silence
segments [9], while classification of speech into voiced and unvoiced segments
can be seen as the most basic speech classification technique. However, there
are coders in the literature which use up to six phonetic classes [10]. The
design of such a phonetic classification algorithm can be complicated and
computationally complex, and a simple classification with two or three
modes is sufficient to exploit the relative merits of waveform and harmonic
coding methods. The accuracy of the speech classification is critical for the
performance of a hybrid coder. For example, using noise excitation for a
stationary voiced segment (which should operate in harmonic coding mode)
can severely degrade the speech quality, by converting the high-voiced
energy of the original speech into noise in the synthesized speech; use of
harmonic excitation for unvoiced segments gives a tonal artifact. ACELP can
generally maintain acceptable quality for all the types of speech since it has
waveform-matching capability. During the speech classification process, it is
essential that the above cases are taken into account to generate a fail-safe
mode selection.

9.2.2 Phase Synchronization

Harmonic coders operating at 4 kb/s and below do not transmit phase
information, in order to allocate the available bits for accurate quantization
of the more important spectral magnitude information. They exploit the fact
that the human ear is partially phase-insensitive and the waveform shape
of the synthesized speech can be very different from the original speech,
often yielding negative SNRs. On the other hand, AbS coders preserve the
waveform similarity. Direct switching between those two modes without
any precautions will severely degrade the speech quality due to phase
discontinuities.

9.3 Summary of Hybrid Coders

The hybrid coding concept has been introduced in the LPC vocoder [11],
which classifies speech frames into voiced or unvoiced, and synthesizes the
excitation using periodic pulses or white noise, respectively. Analysis-by-
synthesis CELP coders with dynamic bit allocation (DBA), which adaptively
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distribute the bits among coder parameters in a given frame while maintaining
a constant bit rate, by classifying each frame into a certain mode, have also
been reported [12]. However, we particularly focus here on hybrid coders,
which combine AbS coding and harmonic coding. The advantages and
disadvantages of harmonic coding and CELP, and the potential benefits of
combining the two methods have been discussed by Trancoso et al. [13].
Improving the speech quality of the LPC vocoder by using a form of multi-
pulse excitation [14] as a third excitation model at the transitions has also
been reported [15].

9.3.1 Prototype Waveform Interpolation Coder

Kleijn introduced prototype waveform interpolation (PWI) in order to
improve the quality of voiced speech [7]. The PWI technique extracts pro-
totype pitch cycle waveforms from the voiced speech at regular intervals of
20–30 ms. Speech is reconstructed by interpolating the pitch cycles between
the update points. The PWI technique can be applied either directly to the
speech signal or to the LPC residual. Since the PWI technique is not suit-
able for encoding unvoiced speech segments, unvoiced speech is synthesized
using CELP. Even though the motivation behind using two coding techniques
is different in the PWI coder (i.e. waveform coding is not used for transitions),
it combines harmonic coding and AbS coding. The speech classification of
the PWI coder is relatively easier, since it only needs to classify speech into
either voiced or unvoiced.

At the onset of a voiced section, the previously estimated prototype wave-
form is not present at the decoder for the interpolation process. Kleijn suggests
three methods to solve this problem:

• Extract the prototype waveform from the reconstructed CELP waveform
of the previous frame.

• Set to a single pulse waveform (filtered through LPC) with its amplitude
determined from the transmitted information.

• Use a replica of the prototype transmitted at the end of the current synthesis
frame.

The starting phase of the pitch cycles at the onsets can be determined
at the decoder from the CELP encoded signal. At the offsets, the linear
phase deviation between the harmonically synthesized and original speech
is measured and the original speech buffer is displaced, such that the AbS
coder begins exactly where the harmonic coder ended.

9.3.2 Combined Harmonic and Waveform Coding at Low Bit-Rates

This coder, proposed by Shlomot et al., consists of three modes: harmonic,
transition, and unvoiced [16, 17]. All the modes are based on the source filter
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model. The harmonic mode consists of two components: the lower part of
the spectrum or the harmonic bandwidth, which is synthesized as a sum of
coherent sinusoids, and the upper part of the spectrum, which is synthesized
using sinusoids of random phases. The transitions are synthesized using pulse
excitation, similar to ACELP, and the unvoiced segments are synthesized
using white-noise excitation.

Speech classification is performed by a neural network, which takes into
account the speech parameters of the previous, current, and future frames,
and the previous mode decision. The classification parameters include the
speech energy, spectral tilt, zero-crossing rate, residual peakiness, residual
harmonic matching SNRs, and pitch deviation measures. At the onsets,
when switching from the waveform-coding mode, the harmonic excitation
is synchronized by shifting and maximizing the cross-correlation with the
waveform-coded excitation. At the offsets, the waveform-coding target is
shifted to maximize the cross-correlation with the harmonically-synthesized
speech, similar to the PWI coder.

9.3.3 A 4 kb/s Hybrid MELP/CELP Coder

The 4 kb/s hybrid MELP/CELP coder with alignment phase encoding and
zero phase equalization proposed by Stachurski et al. consists of three modes:
strongly-voiced, weakly-voiced, and unvoiced [18, 19]. The weakly-voiced
mode includes transitions and plosives, which is used when neither strongly-
voiced nor unvoiced speech segments are clearly identified. In the strongly-
voiced mode, a mixed excitation linear prediction (MELP) [20, 21] coder
is used. Weakly-voiced and unvoiced modes are synthesized using CELP.
In unvoiced frames, the LPC excitation is generated from a fixed stochastic
codebook. In weakly-voiced frames, the LPC excitation consists of the sum of a
long-term prediction filter output and a fixed innovation sequence containing
a limited number of pulses, similar to ACELP.

The speech classification is based on the estimated voicing strength and
pitch. The signal continuity at the mode transitions is preserved by trans-
mitting an ‘alignment phase’ for MELP-encoded frames, and by using ‘zero
phase equalization’ for transitional frames. The alignment phase preserves
the time-synchrony between the original and synthesized speech. The align-
ment phase is estimated as the linear phase required in the MELP-encoded
excitation generation to maximize the cross-correlation between the MELP
excitation and the corresponding LPC residual. Zero-phase equalization
modifies the CELP target signal, in order to reduce the phase disconti-
nuities, by removing the phase component, which is not coded in MELP.
Zero phase equalization is implemented in the LPC residual domain, with a
Finite Impulse Response (FIR) filter similar to [22]. The FIR filter coefficients
are derived from the smoothed pitch pulse waveforms of the LPC residual
signal. For unvoiced frames the filter coefficients are set to an impulse so
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that the filtering has no effect. The AbS target is generated by filtering the
zero-phase-equalized residual signal through the LPC synthesis filter.

9.3.4 Limitations of Existing Hybrid Coders

PWI coders and low bit-rate coders that combine harmonic and waveform
coding use similar techniques to ensure signal continuity. At the onsets, the
initial phases of the harmonic excitation are extracted from the previous
excitation vector of the waveform-coding mode. This can be difficult at
rapidly-varying onsets, especially if the bit-rate of the waveform coder is low.
Moreover, inaccuracies in the onset synchronization will propagate through
the harmonic excitation and make the offset synchronization more difficult. At
the offsets, the linear phase deviation between the harmonically-synthesized
and original speech is measured and the original speech buffer is displaced,
such that the AbS coder begins exactly where the harmonic coder has ended.
This method needs the accumulated displacement to be reset during unvoiced
or silent segments, and may fail to meet the specifications of a system with
strict delay requirements.

Another problem arises when a transition occurs within a voiced speech
segment as shown in Figure 9.3, where there are no unvoiced or silent
segments after the transition to reset the accumulated displacement. Even
though the accumulated displacement can be minimized by inserting or
eliminating exactly complete pitch cycles, the remainder will propagate
into the next harmonic section. Furthermore, a displacement of a fraction
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Figure 9.3 A transition within voiced speech
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of a sample can introduce audible high frequency distortion, especially in
segments with short pitch periods. Consequently, the displacements should
be performed with a high resolution. The MELP/CELP coder preserves signal
continuity by transmitting an alignment phase for MELP-encoded frames and
using zero phase equalization for transitional frames. Zero phase equalization
may reduce the benefits of AbS coding by modifying the phase spectrum,
and it has been reported that the phase spectrum is perceptually important
[23–25]. Furthermore, zero phase equalization relies on accurate pitch pulse
position detection at the transitions, which can be difficult.

Harmonic excitation can be synchronized with the LPC residual by trans-
mitting the phases, which eliminates the above difficulties. However this
requires a prohibitive capacity making it unsuitable for low bit-rate appli-
cations. As a compromise, Katugampala [26] proposed a new phase model
for the harmonic excitation called synchronized waveform-matched phase
model (SWPM). SWPM facilitates the integration of harmonic and AbS coders,
by synchronizing the harmonic excitation with the LPC residual. SWPM
requires only two parameters and does not alter the perceptual quality of the
harmonically-synthesized speech. It also allows the ACELP mode to target
the speech waveform without modifying the perceptually-important phase
components or the frame boundaries.

9.4 Synchronized Waveform-Matched Phase Model

The SWPM maintains the time-synchrony between the original and the
harmonically-synthesized speech by transmitting the pitch pulse loca-
tion (PPL) closest to each synthesis frame boundary [27, 28, 26]. The SWPM
also preserves sufficient waveform similarity, such that switching between
the coding modes is transparent, by transmitting a phase value that indicates
the pitch pulse shape (PPS) of the corresponding pitch pulse. PPL and PPS are
estimated in every frame of 20 ms. SWPM needs to detect the pitch pulses only
in the stationary voiced segments, which is somewhat easier than detecting
the pitch pulses in the transitions as in [18]. The SWPM has the disadvantage
of transmitting two extra parameters (PPL and PPS) but the bottleneck of the
bit allocation of hybrid coders is usually in the waveform-coding mode. Fur-
thermore, in stationary voiced segments the location of the pitch pulses can
be predicted with high accuracy, and only an error needs to be transmitted.
The same argument applies to the shape of the pitch pulses.

In the harmonic synthesis, cubic phase interpolation [2] is applied between
the pitch pulse locations, setting the phases of all the harmonics equal
to PPS. This makes the waveform similarity between the original and the
synthesized speech highest in the vicinity of the selected pitch pulse locations.
However this does not cause difficulties, since switching is restricted to frame
boundaries and the pitch pulse locations closest to the frame boundaries
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are selected. Furthermore, SWPM can synchronize the synthesized excitation
and the LPC residual with fractional sample resolutions, even without up-
sampling either of the waveforms.

9.4.1 Extraction of the Pitch Pulse Location

The TIA Enhanced Variable Rate Coder (EVRC) [29], which employs relaxed
CELP (RCELP) [30], uses a simple method based on the energy of the LPC
residual to detect the pitch pulses. EVRC determines the pitch pulse locations
by searching for a maximum in a five-sample sliding energy window within
a region larger than the pitch period, and then finding the rest of the pitch
pulses by searching recursively at a separation of one pitch period. It is
possible to improve the performance of the residual-energy-based pitch
pulse location detection by using the Hilbert envelope of windowed LP
residual (HEWLPR) [31, 32]. A robust pitch pulse detection algorithm based
on the group delay of the phase spectrum has also been reported [33], however
this method has a very high computational complexity.

The SWPM requires a pitch pulse detection algorithm that can detect the
pulses at stationary voiced segments with a high accuracy and has a low
computational complexity. However the ability to detect the pitch pulses at
the onsets and offsets is beneficial, since this will increase the flexibility of
transition detection. Therefore an improved pitch pulse detection algorithm,
based on the algorithm used in EVRC, is developed for SWPM. Figure 9.4
depicts a block diagram of the pitch pulse location detection algorithm.
Initially, all the possible pitch pulse locations are determined by considering
the localized energy of the LPC residual and an adaptive threshold function,
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Figure 9.4 Block diagram of the pitch pulse detection algorithm
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t(n). The localized energy, e(n), of the LPC residual, r(n), is given by,

e (n) = 1
5

2∑
j=−2

∣∣r (
n + j

)∣∣ for 2 ≤ n < N − 2 (9.1)

where N = 240 is the length of the residual buffer.
The adaptive threshold function, t(n), is updated for each half pitch period,

by taking 0.7 of the maximum of e(n) in the pitch period symmetrically-
centred around the half pitch period chosen to calculate t(n), and t(n) is
given by,

t
(
nk − τ1/4 + nτ/2

) = 0.7 max
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e
(
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)]
for 0 ≤ nτ < τ1 and 0 ≤ nτ/2 < τ1/2 (9.2)
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, and τ is the pitch period.

The exceptions corresponding to the analysis frame boundaries are given in,

e (0) = e (1) = e (N − 2) = e (N − 1) = 0 (9.3)

t (m) = 0.7 max
[
e
(
τ1/2

)]
for 0 ≤ m < τ1/4 (9.4)

n⌊
2N
τ

⌋ = N − τ1 (9.5)

The sample locations, for which e(n) > t(n), are considered as the regions
which may contain pitch pulses. If e(n) > t(n) for more than eight consecutive
samples, those regions are ignored, since in those regions the residual energy
is smeared, which is not a feature of pitch pulses. The centre of the each
remaining region is taken as a possible pitch pulse location, np. If any of
the two candidate locations are closer than eight samples (i.e. half of the
minimum pitch), the one which has the higher e(np) is taken.

Applying an adaptive threshold to estimate the pitch pulse locations from
the localized energy e(n) is advantageous, especially for segments where the
energy of the LPC residual varies rapidly, giving rise to spurious pulses.
Figure 9.5 demonstrates this for a male offset and a female onset. The male
speech segment has a pitch period of about 80 samples and the two high-
energy irregular pulses which do not belong to the pitch contour are clearly
visible. The female speech segment has a pitch of about 45 samples, which
also contains two high-energy irregular pulses. The energy function e(n) and
the threshold function t(n) are also depicted in Figure 9.5, shifted upwards for
clarity. The figures also show that e(n) at the irregular pulses may be higher
than e(n) at the correct pitch pulses. Therefore selecting the highest e(n) to
detect a pitch pulse location as in [34] may lead to errors. Since e(n) > t(n),
for some of the irregular pulses as well as for correct pitch pulse locations,
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Figure 9.5 Irregular pulses at the onsets and offsets

further refinements are required. Moreover, the regions where e(n) > t(n),
gives only a crude estimation of the pitch pulse location. The algorithm relies
on the accuracy of the estimated pitch used for the computation of t(n) and
in the refinement process described below. However SWPM needs only the
pitch pulses in the stationary voiced segments, for which the pitch estimate
is reliable.
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For each selected location np, the probability of it being a pitch pulse is
estimated, using the pitch and the energy of the neighbouring locations.
First, a total energy metric, Ep0 for the candidate pulse at np0 is computed
recursively as follows,

Ep0 =
∑

l

e (nl) (9.6)

where l = p0 and any q which satisfies the condition,∣∣nl ± τ − nq
∣∣ < 0.15τ (9.7)

For each term, +τ and −τ , if more than one q satisfies equation (9.7), only
the one which minimizes

∣∣nl ± τ − nq
∣∣ is chosen. Then further locations nq

that satisfy equation (9.7) are searched recursively, with any nq which have
already satisfied equation (9.7) taken as nl in the next iteration. Therefore, Ep0
can be defined as the sum of e(np) of the pitch contour corresponding to the
location np0 . This process eliminates the high-energy irregular pulses, since
they do not form a proper pitch contour and equation (9.7) detects them as
isolated pulses. The probability of the candidate location, np0 , containing a
pitch pulse, �p0 , is given by,

�p0 = Ep0

max
[
Ep

] (9.8)

If pitch pulse locations were detected in the previous frame and any of the
current candidate pitch pulse locations form a pitch contour which is a con-
tinuation of the previous pitch contour, a history bias term is added. Adding
the history bias term enhances the performance at the offsets, especially at the
resonating tails. Furthermore, the history bias helps to maintain the continu-
ity of the pitch contour between the frames, at the segments, where the pitch
pulses become less significant, as shown in Figure 9.6. A discontinuity in the
pitch contour adds a reverberant character into voiced speech segments. The
biased term �′

l for any location nl which satisfies equations (9.10) or (9.11) is
given by,

�′
l = �l + 0.2 (9.9)

The initial value for l is given by equation (9.10), with ε being the minimum
possible integer value which satisfies equation (9.10). If more than one l
satisfies equation (9.10) with the same minimum ε, the one which maximizes
e(nl) is taken.

|nlst + ετ − nl| < 0.1τ (9.10)

where nlst is the pitch pulse location selected in the last analysis frame. Then
any location nq which satisfies equation (9.11) is searched and further nl are
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Figure 9.6 Some instances of difficult pitch pulse extraction

found recursively, with any nq which have already satisfied equation (9.11)
taken as nl in the next iteration. If more than one nq satisfies equation (9.11),
the one which minimizes

∣∣nl + τ + nq
∣∣ is chosen.∣∣nl + τ + nq

∣∣ < 0.15τ (9.11)

The final probability of the candidate location np0 containing a pitch pulse
�p0 is recalculated,

�p0 =
�′

p0

max
[
�′

p

] (9.12)

A set of positions, npw which have probabilities, �p > 0.8, are selected as
the pitch pulse locations, and they are further refined in order to select
the pitch pulse closest to the synthesis frame boundary. Figure 9.6 shows
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some instances of difficult pitch pulse detection along with the estimated
probabilities, �p, and the threshold value. In Figures 9.6c and 9.6d, the
resonating speech waveforms are also shown.

The problem illustrated in Figure 9.6b can be explained in both the time
and frequency domains. In speech segments with a short pitch period, the
short-term LPC prediction tends to remove some of the pitch correlation
as well, leaving an LPC residual without any clearly distinguishable peaks.
Shorter pitch periods in the time domain correspond to fewer harmonics in
the frequency domain. Hence the inter-harmonic spacing becomes wider and
the formants of the short-term predictor tend to coincide with some of the
harmonics (see Figure 9.7). The speech spectrum in Figure 9.7 is lowered by
80 dB in order to emphasize the coinciding points of the spectra. The excessive
removal of some of the harmonic components by the LPC filter disperses the
energy of the residual pitch pulses. It has been reported that large errors in
the linear prediction coefficients occur in the analysis of sounds with high
pitch frequencies [35]. In the case of nasal sounds, the speech waveform
has a very high low-frequency content (see Figure 9.6c). In such cases, the
LPC filter simply places a pole at the fundamental frequency. A pole in the
LPC synthesis filter translates to a zero in the inverse filter, giving rise to a
fairly random-looking LPC residual signal. The figures demonstrate that the
estimated probabilities, �p exceed the threshold value only at the required
pitch pulse locations, despite those difficulties.
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Figure 9.7 Speech and LPC spectra of a female vowel segment
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9.4.2 Estimation of the Pitch Pulse Shape

Figure 9.8 depicts a complete pitch cycle of the LPC residual, which includes
a selected pitch pulse, and the positive half of the wrapped phase spectrum
obtained from its DFT. The integer pitch pulse position is taken as the time
origin of the DFT, and the phase spectrum indicates that most of the harmonic
phases are close to an average value. This average phase value varies with
the shape of the pitch pulse, hence it is called pitch pulse shape (PPS). In the
absence of a strong pitch pulse, the phase spectrum becomes random and
varies between −π and π .

Figure 9.9 depicts a block diagram of the pitch pulse shape estimation
algorithm. This algorithm employs an AbS technique in the time domain to
estimate PPS. A prototype pulse, P(ns), is synthesized as follows:

p (ns) =
K∑

k=1

ak cos
(
kωns + αq

)
for − 4 ≤ ns ≤ 4 (9.13)

where ω = 2π/τ , τ is the pitch period, K is the number of harmonics, ak are the
harmonic amplitudes, and the candidate pitch pulse shapes, αq, are given by,

αq = 2πq/8 for 0 ≤ q < 8 (9.14)

Figure 9.10 depicts the synthesized pulses, p (ns), for two different candidate
pitch pulse shapes, i.e. values of αq. A simpler solution to avoid estimating
the spectral amplitudes, ak for equation (9.13) is to assume a flat spectrum.
However, the use of spectral amplitudes, ak, gives the relative weight for

0 20 40 60

samples

am
pl

itu
de

(a)

(b)

0 20 40 60

DFT samples

0

1

2

3

ph
as

e 
(r

ad
ia

ns
)

(c)

(d)

Figure 9.8 (a) a complete pitch cycle of the LPC residual, (b) the pitch pulse
synthesized using PPS, (c) the positive half of the phase spectrum obtained from the
DFT, and (d) the estimated PPS
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each harmonic, which is beneficial in estimating the pitch pulse shape. For
example, if a harmonic component which is relatively small in the LPC
residual signal is given equal weight in the prototype pulse, p(ns), this
may lead to inaccurate estimates in the subsequent AbS refinement process.
Considering the frequency domain, those relatively small amplitudes may be
affected by spectral leakage from the larger amplitudes, giving large errors in
the phase spectrum. However, since computing the spectral amplitudes for
each pitch pulse is a very intensive process, as a compromise, the same spectral
amplitudes are used for the whole analysis frame, and are also transmitted
to the decoder as the harmonic amplitudes of the LPC residual. Then the
normalized cross-correlation, Rj, and SNR, Ej, are estimated between the
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synthesized prototype pitch pulse p(ns) and each of the detected LPC residual
pitch pulses, at the locations np, where np ∈ npw . Rj and Ej are estimated for
each candidate pitch pulse shape, αq,

Rj =

4∑
ns=−4

r
(
np + ns + j

)
p (ns)

√√√√ 4∑
ns=−4

p2 (ns)

4∑
ns=−4

r2 (
np + ns + j

) for −3 ≤ j ≤ 3 (9.15)

Ej =

4∑
ns=−4

r2 (
np + ns + j

)
4∑

ns=−4

[
p (ns) − r

(
np + ns + j

)]2

for −3 ≤ j ≤ 3 (9.16)

The term j is introduced in Rj and Ej in order to shift the relative positioning
of the LPC residual pulse and the synthesized pulse. This compensates for the
approximate pitch pulse locations, np, estimated by the algorithm described
in Section 9.4.1, by allowing the initial estimates to shift around, with a
resolution of one sample. All the combinations of np, αq, and j for which
Ej ≤ 1.0 are excluded from any further processing. Ej ≤ 1.0 corresponds to
an SNR of less than or equal to 0 dB. Then probability of the candidate shape,
αq0 , being the pitch pulse shape is estimated,

�q0 = Nq0

max
[
Nq

] (9.17)

where Nq is the total number of residual pulses for a given q, for which
Rj > 0.5. If more than one j satisfies the condition Rj > 0.5, for a particular set
of q and np, Nq is incremented only once. The set of pitch pulse shape values,
αqw , which have probabilities, �q > 0.7 are chosen for further refinement.
If max

[
Nq

]
is zero, then all the �q are set to zero, i.e. no pitch pulses are

detected. Figure 9.11 shows the LPC residual of an analysis frame and the
estimated probability density function (PDF) of αq in the range −π ≤ αq < π .
The pitch pulses of the LPC residual in Figure 9.11a have similar shapes to
the shape of the synthesized pulse shown in Figure 9.10a. Consequently the
PDF is maximum around αq = 0, for the pitch pulse shape used to synthesize
the pulse shown in Figure 9.10a. If a history bias is used in pitch pulse
location detection, then the probability term, �q is not estimated. Instead
the pitch pulse shape search is limited to three candidates, αL, around the
pitch pulse shape of the previous frame. During the voiced segments, the



Synchronized Waveform-Matched Phase Model 295

0 100 200 300
samples

am
pl

itu
de

r(n)

centre of the
analysis frame

selected pulse

−4 −2 0 2

pitch pulse shape

(a) LPC residual (b) PDF of 

pd
f

4

qα

Figure 9.11 An analysis frame and the probability density function of αq

pitch pulse shape is fairly stationary and restricting the search range around
the previous value does not reduce the performance. Restricting the search
range has advantages such as reduced computational complexity and efficient
differential quantization of the pitch pulse shape. Furthermore, restricting the
search range avoids large variations in the pitch pulse shape. Large variations
in the pitch pulse shape introduce a reverberant character into the synthesized
speech.

αL = 2π
(
qL + δ

)
/8 for − 1 ≤ δ ≤ 1 (9.18)

where,

qL =
⌊

αlst

2π
8 + 1

2

⌋
for 0 ≤ αlst < 2π (9.19)

Then Rj and Ej are estimated as before, substituting αq with αL, and all the
combinations of np, αL, and j for which Ej ≤ 1.0 or Rj ≤ 0.5 are excluded
from any further refinements. If no combination of np, αL, and j are left, the
search is extended to all the αq, and �q is estimated as before, otherwise the
remaining αL are chosen for further refinement, i.e. the remaining αL form the
set αqw . The pitch pulse closest to the centre of the analysis frame, i.e. closest
to the synthesis frame boundary for which Rj > ξ is selected as the final pitch
pulse. The threshold value, ξ , is given by,

ξ = 0.7 max
[
Rj

]
for αq ∈ αqw (9.20)

If more than one set of j and αq satisfy the condition Rj > ξ for the same
pitch pulse closest to the synthesis frame boundary, the set of values which
maximizes Rj is chosen. The pitch pulse shape and the integer pitch pulse
location are given by the chosen, αq and np+j respectively. Figure 9.11a shows
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the centre of the analysis frame and the selected pitch pulse. It is also possible
to select the pitch pulse closest to the centre of the analysis frame from the
set npw and estimate the shape of the selected pulse. However estimating
the PDF of αq for the whole analysis frame and including it in the selection
process improves the reliability of the estimates, which enables the selection
of the most probable αq. Then the integer pitch pulse location is refined to a
0.125 sample accuracy, and the initial pitch pulse shape is refined to a 2π/64
accuracy. In the refinement process, a synthetic pulse pu(nu) is generated in
an eight times up-sampled domain, i.e. at 64 kHz. If the selected integer pitch
pulse location and shape are n0 and α0, respectively, then,

pu (nu) =
K∑

k=1

ak cos (kωunu + αi) for −40 ≤ nu < 40 (9.21)

where ωu = 2π/8τ , and αi is given by,

αi = α0 + 2π i/64 for −4 ≤ i ≤ 4 (9.22)

Then equation (9.23) is used to compute the normalized cross-correlation Ri,j
for all i and j, and the indices corresponding to the maximum Ri,j are used
to evaluate the refined PPS and PPL, as shown in equations (9.22) and (9.25)
respectively.

Ri,j =

4∑
nr=−4

r (n0 + nr) pj (nr)

√√√√ 4∑
nr=−4

p2
j (nr)

4∑
nr=−4

r2 (n0 + nr)

(9.23)

where pj(nr), is the shifted and down-sampled version of pu(nu) given by,

pj (nr) = pu
(
8nr + j

)
for − 8 ≤ j < 8 and − 4 ≤ nr ≤ 4 (9.24)

The final PPL, t0, refined to a 0.125 sample resolution is given by,

t0 = n0 − j/8 (9.25)

Fractional PPL is important for segments with short pitch periods and
when the pitch pulse is close to or at the synthesis frame boundary. When
the pitch period is short, a small variation in the pitch pulse location can
induce a large percentage pitch error. The pitch pulses closest to the synthesis
frame boundaries are chosen in SWPM in order to maximize the waveform
similarity at the frame boundaries, since the mode changes are limited to
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synthesis frame boundaries. However if the selected pitch pulse is on the
frame boundary or within a few samples of it, the pulse must be synthesized
smoothly across this boundary, in order to avoid audible artifacts. In such
cases, high resolution PPL and PPS are essential to maintain the phase
continuity across the frame boundaries. It is also possible to compute the
cross-correlation between pu(nu) and the eight times up-sampled residual
signal, in order to evaluate the best indices i and j. However this requires
more computations and an equally good result is obtained by shifting pu(nu)

in the up-sampled domain and then computing the cross-correlation in the
down-sampled domain, as shown in equations (9.23) and (9.24).

At the offsets, if no pitch pulses are detected, PPL is predicted from the PPL
of the previous frame using the pitch, and PPS is set to equal to the PPS of the
previous frame. This does not introduce any deteriorating artifacts, since the
encoder checks the suitability of the harmonic excitation in the mode selection
process. The prediction of PPL and PPS is particularly useful at offsets with a
resonant tail, where pitch pulse detection is difficult.

9.4.3 Synthesis using Generalized Cubic Phase Interpolation

In the synthesis, the phases are interpolated cubically, i.e. by quadratic inter-
polation of the frequencies. In [2], phases are interpolated for the frequencies
and phases available at the frame boundaries. But in the case of SWPM the
frequencies are available at the frame boundaries and the phases at the pitch
pulse locations. Therefore a generalized cubic phase interpolation formula is
used, to incorporate PPL and PPS.

The phase θk (n) of the kth harmonic of the i+1th synthesis frame is given by,

θk (n) = θki + kωin + αkn2 + βkn3 for 0 ≤ n < N (9.26)

where N is the number of samples per frame and θki and ωi are the phase of
the kth harmonic and the fundamental frequency, respectively, at the end of
synthesis frame i, and αk and βk are given by,(

t2
0 t3

0
2N 3N2

) (
αk
βk

)
=

(
θt0 − θki − kωit0 + 2πMk

kωi+1 − kωi

)
(9.27)

where t0 is the fractional pitch pulse location (PPL), θt0 is the PPS estimated at
t0, and Mk represents the phase unwrapping and is chosen according to the
‘maximally smooth’ criterion used by McAulay [2]. McAulay chose Mk such
that f (Mk) is a minimum,

f (Mk) =
T∫

0

[
θ̈k (t, Mk)

]2 dt (9.28)
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where θk (t, Mk) represents the continuous analogue form of θk(n), and
θ̈k (t, Mk) is the second derivative of θk (t, Mk) with respect to t. Although
Mk is integer-valued, since f (Mk) is quadratic in Mk, the problem is most
easily solved by minimizing f (xk) with respect to the continuous variable xk
and then choosing Mk to be an integer closest to xk. For the generalized case
of SWPM, f (xk) is minimized with respect to xk and xkmin is given by,

xkmin = 1
2π

(
θki − θt0 + kωit0 + k

(
ωi+1 − ωi

)
t2
0

2N

)
(9.29)

Mkmin = ⌊
xkmin + 0.5

⌋
is substituted in equation 9.27 for Mk to solve for αk and

βk and in turn to unwrap the cubic phase interpolation function θk(n).
The initial phase θki for the next frame is θk(N), and the above computations

should be repeated for each harmonic, i.e. k. It should be noted that there is
no need to synthesize the phases, θk(n) in the up-sampled domain, in order
to use the fractional pitch pulse location, t0. It is sufficient to use t0 in solving
the coefficients of θk(n), i.e. αk and βk.

9.5 Hybrid Encoder

A simplified block diagram of a typical hybrid encoder that operates on a fixed
frame size of 160 samples is shown in Figure 9.12. For each frame, the mode
that gives the optimum performance is selected. There are three possible
modes: scaled white noise coloured by LPC for unvoiced segments; ACELP
for transitions; and harmonic excitation for stationary voiced segments.
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Figure 9.12 Block diagram of the hybrid encoder
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Any waveform-coding technique can be used instead of ACELP. In fact
this hybrid model [27] does not restrict the choice of coding technique for
speech transitions, it merely makes the mode decision and defines the target
waveform. In white noise excited mode, the gain estimated from the LPC
residual energy is transmitted for every 20 ms. The LPC parameters are
common for all the modes and estimated every 20 ms (with a 25 ms window
length), which are usually interpolated in the LSF domain for every subframe
in the synthesis process. In order to interpolate the LSFs, the LPC analysis
window is usually centred at the synthesis frame boundary which requires a
look-ahead.

A two-stage speech classification algorithm is used in the above coder. An
initial classification is made based on the tracked energy, low-band to high-
band energy ratio, and zero-crossing rate, and determines whether to use the
noise excitation or one of the other modes. The secondary classification, which
is based on an AbS process, makes a choice between the harmonic excitation
or ACELP. Segments of plosives with high-energy spikes are synthesized
using ACELP. When the noise excitation mode is selected, there is no need
to estimate the excitation parameters of the other modes. If noise excitation is
not selected, the harmonic parameters are always estimated and the harmonic
excitation is generated at the encoder for the AbS transition detection. The
speech classification is described in detail in Section 9.6.

For simplicity, details of LPC and adaptive codebook memory update are
excluded from the block diagram. The encoder maintains an LPC synthesis
filter synchronized with the decoder, and uses the final memory locations for
ACELP and AbS transition detection in the next frame. Adaptive codebook
memory is always updated with the previous LPC excitation vector regardless
of the mode. In order to maintain the LPC and the adaptive codebook
memories, the LPC excitation is generated at the encoder, regardless of
the mode.

9.5.1 Synchronized Harmonic Excitation

In the harmonic mode, the pitch and harmonic amplitudes of the LPC residual
are estimated for every 20 ms frame. The estimation windows are placed at
the end of the synthesis frames, and a look-ahead is used to facilitate the
harmonic parameter interpolation. The pitch estimation algorithm is based
on the sinusoidal speech-model matching proposed by McAulay [36] and
improved by Atkinson [4] and Villette [37, 38]. The initial pitch is refined to
0.2 sample accuracy using synthetic spectral matching proposed by Griffin
[3]. The harmonic amplitudes are estimated by simple peak-picking of the
magnitude spectrum of the LPC residual.

The harmonic excitation eh (n) is generated at the encoder for the AbS tran-
sition detection and to maintain the LPC and adaptive codebook memories,
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which is given by,

eh (n) =
K∑

k=1

ak(n) cos (θk (n)) for 0 ≤ n < N (9.30)

where K is the number of harmonics. Since two analysis frames are inter-
polated to produce a synthesis frame, K is taken as the higher number of
harmonics out of the two analysis frames and the missing amplitudes of the
other analysis frame are set to zero. N is the number of samples in a synthesis
frame and θk(n) is given in equation (9.26) for continuing harmonic tracks,
i.e. each harmonic of an analysis frame is matched with the corresponding
harmonic of the next frame. For terminating harmonics, i.e. when the number
of harmonics in the next frame is smaller, θk(n) is given by,

θk (n) = θki + 2πkn/τi (9.31)

where θki is the phase of the harmonic k and τi is the pitch at the end of
synthesis frame i. For emerging harmonics, θk(n) is given by,

θk (n) = θt0 + 2πk(n − t0)/τi+1 (9.32)

where t0 is the PPL, θt0 is the corresponding PPS, and τi+1 is the pitch, all at
the end of synthesis frame i+1. Continuing harmonic amplitudes are linearly
interpolated,

ak (n) = aki +
(
aki+1 − aki

)
n

N
for 0 ≤ n < N (9.33)

where aki is the amplitude estimate of the kth harmonic at the end of synthesis
frame i. For terminating harmonic amplitudes a trapezoidal window, unity
for 55 samples and linearly decaying for 50 samples, is applied from the
beginning of the synthesis frame,

ak (n) = aki for 0 ≤ n < 55, ak (n) = aki

105 − n
50

for 55 ≤ n < 105

(9.34)
For emerging harmonic amplitudes a trapezoidal window, linearly rising for
50 samples and unity for 55 samples, is applied starting from the 56th sample
of the synthesis frame,

ak (n) = aki+1

n − 55
50

for 55 ≤ n < 105, ak (n) = aki+1 for 105 ≤ n < 160

(9.35)
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9.5.2 Advantages and Disadvantages of SWPM

Figure 9.13 shows some examples of waveforms synthesized using the
harmonic excitation technique described in Section 9.5.1. In each example,
(i) represents the LPC residual or the original speech signal and (ii) represents
the LPC excitation or the synthesized speech signal. Figure 9.13a shows the
LPC residual and the harmonic excitation of a segment which has strong
pitch pulses and Figure 9.13b shows the corresponding speech waveforms.
It can be seen that the synthesized speech waveform is very similar to the
original. Figure 9.13c shows the LPC residual and the harmonic excitation
of a segment which has weak or dispersed pitch pulses and Figure 9.13d
shows the corresponding speech waveforms. The synthesized speech is time-
synchronized with the original, however the waveform shapes are slightly
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Figure 9.13 synthesized voiced excitation and speech signals
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different, especially between the major pitch pulses. The waveform similarity
is highest at the major excitation pulse locations and decreases along the pitch
cycles. This is due to the fact that SWPM models only the major pitch pulses
and it cannot model the minor pulses present in the residual signal when
the LPC residual energy is dispersed. Furthermore, the dispersed energy of
the LPC residual, becomes concentrated around the major pitch pulses in the
excitation signal. The synthesized speech also exhibits larger variations in
the amplitude around the pitch pulse locations, compared with the original
speech.

In order to understand the effects on subjective quality due to the above
observations, an informal listening test was conducted by switching between
the harmonically-synthesized speech and the original speech waveforms at
desired synthesis frame boundaries. The informal listening tests showed
occasional audible artifacts at the mode transitions, when switching from
the harmonic mode to the waveform-coding mode. However there were
no audible switching artifacts when switching from waveform-coding to
harmonic-coding mode, i.e. at the onsets. It was found that this is due to
two reasons: difficulties in reliable pitch pulse detection and limitations
in representing the harmonic phases using the pitch pulse shape at some
segments. At some highly resonant segments, the LPC residual looks like
random noise and it is not possible even to define the pitch pulses. The
predicted pitch pulse location, assuming a continuing pitch contour, may be
incorrect at resonant tails. At such segments, the pitch pulse locations are
determined by applying AbS techniques in the speech domain, such that the
synthesized speech signal is synchronized with the original, as described in
the next subsection. In the speech segments illustrated using Figure 9.13c,
it is possible to detect dominant pitch pulses. However the LPC residual
energy is dispersed throughout the pitch periods, making the pitch pulses
less significant, as described in Section 9.4.1. This effect reduces the coherence
of the LPC residual harmonic phases at the pulse locations and the DFT phase
spectrum estimated at the pulse locations look random. Female vowels with
short pitch periods show these characteristics. A dispersed phase spectrum
reduces the effectiveness of the pitch pulse shape, since the concept of pitch
pulse shape is based on the assumption that a pitch pulse is the result of
the superimposition of coherent phases, which have the same value at the
pitch pulse location. This effect is illustrated in Figure 9.14. The synthesized
pitch pulse models the major pulse in the LPC residual pitch period and
concentrates the energy at the pulse location. This is due to the single phase
value used to synthesize the pulse, as opposed to the more random-looking
phase spectrum of the original pitch cycle. This phenomenon introduces
phase discontinuities, which accounts for the audible switching artifacts.
However the click and pop sounds present at the mode transitions in speech
synthesized with SWPM are less annoying than those in a conventional
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Figure 9.14 PPS at a dispersed pitch period: (a) a complete pitch cycle of the LPC
residual, (b) the pitch pulse synthesized using PPS, (c) the positive half of the phase
spectrum obtained from the DFT, and (d) estimated PPS
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Figure 9.15 Speech synthesized using PPS

zero-phase excitation, even if the pitch pulse locations are synchronized. This
is because SWPM has the additional flexibility of choosing the most suitable
phase value (PPS) for pitch pulses, such that the phase discontinuities are
minimized. Figure 9.15 illustrates the effect of PPS on the LPC excitation
and the synthesized speech signals. For comparison, it includes the original
signals and the signals synthesized using the SB-LPC coder [4] which assumes
a zero-phase excitation.

The absence of audible switching artifacts at the onsets is an interesting
issue. There are two basic reasons for the differences between switching
artifacts at the onsets and at the offsets: the nature of the excitation signal
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and the LPC memory. At the onsets, even though the pitch pulses may be
irregular due to the unsettled pitch of the vocal cords, they are quite strong
and the residual energy is concentrated around them. Resonating segments
and dispersed pulses do not occur at the onsets. Therefore the only difficulty
at the onsets is in identifying the correct pulses and, as long as the pulse
identification process is successful, SWPM can maintain the continuity of the
harmonic phases at the onsets. The pitch pulse detection algorithm described
is capable of accurate detection of the pitch pulses at the onsets as described
in Section 9.4.1. Furthermore at the onsets, waveform coding preserves the
waveform similarity, which also ensures the correct LPC memory, since LPC
memory contains the past synthesized speech samples. Therefore the mode
transition at the onsets is relatively easier and SWPM guarantees a smooth
mode transition at the onsets. However at the offsets, the presence of weak
pitch pulses is a common feature and the highly resonant impulse response
LPC filter carries on the phase changes caused by the past excitation signal,
especially when the LPC filter gain is high. Therefore, the audible switching
artifacts remain at some of the offset mode transitions. These need to be
treated as special cases.

At the resonant tails the LPC residual looks like random noise, and the
pitch pulses are not clearly identifiable. In those cases AbS techniques can be
applied directly on the speech signal to synchronize the synthesized speech.
This process is applied only for the frames, which follow a harmonic frame
and have been classified as transitions.

Synthesized speech is generated by shifting the pitch pulse location (PPL)
at the end of the synthesis frame, ±τ/2 around the synthesis frame boundary
with a resolution of one sample, where τ is the pitch period. The location
which gives the best cross-correlation between the synthesized speech and
the original speech is selected as the refined PPL. The pitch pulse shape
is set equal to the pitch pulse shape of the previous frame. The excitation
and the synthesized speech corresponding to the refined PPL are input to
the closed-loop transition detection algorithm, and form the harmonic signal
if the transition detection algorithm classifies the corresponding frame as
harmonic, otherwise waveform coding is used.

9.5.3 Offset Target Modification

The SWPM minimizes the phase discontinuities at the mode transitions, as
described in Section 9.5.2. However at some mode transitions such as the
offsets after female vowels, which have dispersed pulses, audible phase
discontinuities still remain. These discontinuities may be eliminated by trans-
mitting more phase information. This section describes a more economical
solution to remove those remaining phase discontinuities at the offsets,
which does not need the transmission of additional information. The pro-
posed method modifies some of the harmonic phases of the first frame of
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the waveform-coding target, which follows the harmonic mode. The remain-
ing phase discontinuities can be corrected within the first waveform-coding
frame, since SWPM keeps the phase discontinuities at a minimum and the
pitch periods are synchronized.

As a first approach the harmonic excitation is extended into the next frame
and the synthesized speech is linearly interpolated with the original speech
at the beginning of the frame in order to produce the waveform-coding
target. Listening tests were carried out with different interpolation lengths.
The waveform-coding target was not quantized, in order to isolate the
distortions due to switching. The tests were extended in order to understand
the audibility of the phase discontinuities with the frequency of the harmonics,
by manually shifting one phase at a time and synthesizing the rest of
the harmonics using the original phases. Phase shifts of π/2 and π are
used. Listening tests show that for various interpolation lengths the phase
discontinuities below 1 kHz are audible, and an interpolation length as small
as 10 samples is sufficient to mask distortions in the higher frequencies.
Furthermore, male speech segments with long pitch periods, around 80
samples and above, do not cause audible switching artifacts. Male speech
segments with long pitch periods have well-resolved short-term and long-
term correlations, and produce clear and sharp pitch pulses, which can be
easily modeled by SWPM. Therefore only the harmonics below 1 kHz of the
segments with pitch periods shorter than 80 samples are considered in the
offset target modification process.

The harmonic excitation is extended beyond the mode transition frame
boundary, and the synthesized speech is generated in order to estimate the
harmonic phases at the mode transition frame boundary. The phase of the kth

harmonic of the excitation is computed as follows:

θki+1 (n) = θki + 2πkn/τi for 0 ≤ n < N (9.36)

where θki is the phase of the kth harmonic and τi is the pitch at the end of
synthesis frame i. The excitation signal is given by,

ehi+1 (n) =
K∑

k=1

aki cos
(
θki+1 (n)

)
(9.37)

where K is the number of harmonics and aki is the amplitude of the kth

harmonic estimated at the end of the synthesis frame i. The excitation signal
is filtered through the LPC synthesis filter to produce the synthesized speech
signal, with the coefficients estimated at the end of the synthesis frame i.
The LPC memories after synthesizing the ith frame are used as the initial
memories. The speech samples synthesized for the ith and i + 1th frames are
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concatenated and windowed with a Kaiser window of 200 samples (β = 6.0)
centred at the frame boundary. The harmonic phases, ϕki , are estimated using
a 512 point FFT.

Having analysed the synthesized speech, the original speech is windowed
at three points: at the end of the synthesis frame i, at the centre of the synthesis
frame i+1, and at the end of the synthesis frame i+1, using the same window
function as before. The corresponding harmonic amplitudes, Aki , Aki+1/2 , Aki+1
and the phases φki , φki+1/2 , φki+1 are estimated using 512 point FFTs. Then
the signal component sl(n), which consists of the harmonics below 1 kHz, is
synthesized by,

sl (n) =
L∑

k=1

Ak (n) cos (k (n)) for 0 ≤ n < N (9.38)

where L is the number of harmonics below 1 kHz at the end of the ith synthesis
frame, Ak (n) is obtained by linear interpolation between Aki , Aki+1/2 , and Aki+1 ,
and k (n) is obtained by cubic phase interpolation [2] between φki , φki+1/2 ,
and φki+1 . Then the signal sm(n), which has modified phases is synthesized.

sm (n) =
L∑

k=1

Ak (n) cos (�k (n)) for 0 ≤ n < N (9.39)

and, finally, the modified waveform-coding target of the i + 1th synthesis
frame is computed by,

st (n) = s (n) − sl (n) + sm (n) (9.40)

where �k (n) is obtained by cubic phase interpolation between ϕki and
φki+1 . Thus the modified signal, sm(n) has the phases of the harmonically-
synthesized speech at the beginning of the frame and the phases of the original
speech at the end of the frame. In other words, ̇k (n) (the rate of change
of each harmonic phase) is modified such that the phase discontinuities are
eliminated, by keeping ̇k (n) equal to the harmonic frequencies at the frame
boundaries. There is a possibility that such phase modification operations
induce a reverberant character in the synthesized signals. However, large
phase mismatches close to π are rare, because SWPM minimizes the phase
discontinuities. Furthermore, the modifications are applied only for the
speech segments, which have pitch periods shorter than 80 samples, thus
a phase mismatch is smoothed out in a few pitch cycles. The listening
tests confirm that the synthesized speech does not possess a reverberant
character. Limiting the phase modification process for the segments with
pitch periods shorter than 80 samples also improves the accuracy of the
spectral estimations, which use a window length of 200 samples. Figure 9.16
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Figure 9.16 Offset target modification: (a) s(n), (b) st(n), (c) sl(n), and (d) sm(n)

illustrates the waveforms of equation (9.40). It can be seen that the phases
of the low frequency components of the original speech waveform, s(n), are
modified in order to obtain st(n). The waveforms in Figures 9.16c and 9.16d
depict sl(n) and sm(n), respectively, the low frequency components, which
have been modified. The phase relationships between the high-frequency
components account more for the perceptual quality of speech [25], and the
high-frequency phase components are unchanged in the process.

Some speech signals show rapid variations in the harmonic structure at the
offsets, which may reduce the efficiency of the phase modification process.
In order to limit those effects the spectral amplitude and phase estimation
process is not strictly confined to the harmonics of the fundamental frequency.
Instead the amplitude and phase corresponding to the spectral peak closest
to each harmonic frequency are estimated. The frequency of the selected
spectral peak is taken as the frequency of the estimated amplitude and phase.
When finding the spectral peaks closest to the harmonic frequencies, the
harmonic frequencies are determined by the fundamental frequency at the
end of the ith synthesis frame, since the pitch estimates at the transition
frame are less reliable. In fact the purpose of the offset target modification
process is to find the frequency components corresponding to the harmonics
of the harmonically-synthesized frame in the ith frame and change the phase
evolution of those components such that the discontinuities are eliminated.
Moreover, the same set of spectral peak frequencies and amplitudes are used
when synthesizing the terms sl(n) and sm(n), hence there is no need to restrict
the synthesis process to the pitch harmonics.
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Another important issue at the offsets is the energy contour of the syn-
thesized speech. The harmonic coder does not directly control the energy of
the synthesized speech, since it transmits the residual energy. However the
waveform coders directly control the energy of the synthesized speech, by
estimating the excitation gain using the synthesized speech waveform. This
may cause discontinuities at the offset mode transition frame boundaries,
especially when the LPC filter gain is high. The final target for the waveform
coder is produced by linear interpolation between the extended harmonically
synthesized speech and the modified target, st(n) at the beginning of the
frame for 10 samples. The linear interpolation ensures that the discontinuities
due to variations of the energy contour are eliminated as well as the phase
discontinuities, which are not accounted for in the phase modification process
described above.

9.5.4 Onset Harmonic Memory Initialization

The harmonic phase evolution described in Section 9.4.3 and the harmonic
excitation described in section 9.5.1 interpolate the harmonic parameters in
the synthesis process, and assume that the model parameters are available
at the synthesis frame boundaries. However, at the onset mode transitions,
when switching from the waveform-coding mode, the harmonic model
parameters are not directly available. The initial phases θki , the fundamental
frequency ωi in the phase evolution equation (9.26), and the initial harmonic
amplitudes aki in equation (9.33) are not available at the onsets. Therefore,
they should be estimated at the decoder from the available information. The
signal reconstructed by the waveform coder prior to the frame boundary
and the harmonic parameters estimated at the end of the synthesis frame
boundary are available at the decoder. The use of a waveform-coded signal
in estimating the harmonic parameters at the onsets may be unreliable
due to two reasons: the speech signal shows large variations at the onsets
and, at low bit-rates, the ACELP excitation at the onsets reduces to a few
dominant pulses, lowering the reliability of spectral estimates. Therefore the
use of waveform-coded signal in estimating the harmonic parameters should
be minimized. The waveform-coded signal is used only in initializing the
amplitude quantization memories.

Since preserving the waveform similarity at the frame boundaries is impor-
tant, the pitch is recomputed such that the previous pitch pulse location can
be estimated at the decoder. Therefore the transmitted pitch represents the
average over the synthesis frame. The other transmitted harmonic model
parameters are unchanged, and are estimated at the end of the synthesis
frame boundary. Let’s define the pitch, τi+1 and pitch pulse location, t0i+1 , at
the end of the i + 1th synthesis frame, and the pitch pulse location at the end
of the ith synthesis frame, t0i . The number of pitch cycles nc between t0i and
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t0i+1 is given by,

nc =
⌊

t0i+1 − t0i

τi+1
+ 1

2

⌋
(9.41)

The recomputed pitch, τr, is given by,

τr = t0i+1 − t0i

nc
(9.42)

Then τr and t0i+1 are transmitted, and t0i is computed at the decoder, as
follows,

t0i = t0i+1 − τr

⌊
t0i+1 − t′

τr
+ 1

2

⌋
(9.43)

where t′ is the starting frame boundary and t0i is the pitch pulse location
closest to t′. The pitch pulse shape, θ0i , at the end of the ith synthesis frame
is set equal to the pitch pulse shape, θ0i+1 , at the end of the i + 1th synthesis
frame. The initial phases θki in equation (9.26) are estimated as follows,

θki = θ0i − 2πkt0i

τr
(9.44)

Both fundamental frequency terms, ωi and ωi+1, in equation (9.27) are com-
puted using τr, i.e. ωi = ωi+1 = 2π/τr. The harmonic amplitudes aki in
equation (9.33) are set equal to aki+1. Therefore, the phase evolution of the
first harmonic frame of a stationary voiced segment becomes effectively linear
and the harmonic amplitudes are kept constant, i.e. not interpolated.

9.5.5 White Noise Excitation

Unvoiced speech has a very complicated waveform structure. ACELP can be
used to synthesize unvoiced speech and it essentially matches the waveform
shape. However, a large number of excitation pulses are required to synthesize
the noise-like unvoiced speech. Reducing the number of ACELP excitation
pulses introduces sparse excitation artifacts in noise-like segments [39]. The
synthesized speech also shows the sparse nature, and the pulse locations
are clearly identifiable even in the LPC-synthesized speech. In fact, during
unvoiced speech the short term correlation is small and the LPC filter gain
has little effect.

Sinusoidal excitation can also be used to synthesize unvoiced segments,
despite the fact that there is no harmonic structure. Speech synthesized by
generating the magnitude spectrum every 80 samples (100 Hz) and uniformly-
distributed random phases for unvoiced segments can achieve good quality
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[40]. This method suits sinusoidal coders using frequency domain voicing
without an explicit time-domain mode decision, since it facilitates the use
of the same general analysis and synthesis structure for both voiced and
unvoiced speech. However, this hybrid model classifies the unvoiced and
silence segments as a separate mode, and, hence, uses a simpler unvoiced
excitation generation model, which does not require any frequency-domain
transforms. It has been shown that scaled white noise coloured by LPC can
produce unvoiced speech with quality equivalent to µ-law logarithmic PCM
[41, 42], implying that the complicated waveform structure of unvoiced speech
has no perceptual importance. Therefore in terms of the perceptual quality, the
phase information transmitted by ACELP is redundant and higher synthesis
quality can be achieved at lower bit-rates using scaled white-noise excitation.
Figure 9.17 shows a block diagram of the unvoiced gain estimation process
and Figure 9.18 shows a block diagram of the unvoiced synthesis process. The
band pass filters used are identical and have cut-off frequencies of 140 Hz and
3800 Hz. The transfer function of the fourth-order infinite impulse response
(IIR) band pass filters is given by,

Hbp (z) = 0.8278 − 1.6556z−2 + 0.8278z−4

1 − 0.0662z−1 − 1.6239z−2 + 0.0451z−3 + 0.6855z−4 (9.45)

and the unvoiced gain, guv, is given by,

guv =

√√√√√√
N−1∑
n=0

r2
bp (n)

N
(9.46)

where rbp (n) is the band-pass-filtered LPC residual signal and N is the length
of the residual vector, which is 160 samples including a look-ahead of 80
samples to facilitate overlap and add synthesis at the decoder.
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White noise, u(n), is generated by a random number generator with a Gaus-
sian distribution (a Gaussian noise source has been found to be subjectively
superior to a simple uniform noise source). The scaled white-noise excitation,
us(n), is obtained by,

us (n) = ubp (n)
guv√√√√√

Z∑
n=0

ubp (n)

Z

(9.47)

where ubp(n) is the band-pass-filtered white noise and Z is the length of the
noise vector, 240 samples. For overlap and add, a trapezoidal window is used
with an overlap of 80 samples. For each synthesis frame the filtered noise
buffer, ubp, is shifted by 80 samples and a new 160 samples are appended,
this eliminates the need for energy compensation functions to remove the
windowing effects [43]. In fact the overlapped segments are correlated, and
the trapezoidal windows do not distort the rms energy.

No attempt is made to preserve the phase continuity when switching to
or from the noise excitation. When switching from a different mode, the
unvoiced gain, guv, of the previous frame is set equal to the current value.
The validity of these assumptions are tested through listening tests and the
results confirm that these assumptions are reasonable and do not introduce
any audible artifacts. The average bit rate can be further reduced by the
introduction of voice activity detection (VAD) and comfort noise generation
at the decoder for silence segments [9, 44].

9.6 Speech Classification

The speech classification or mode selection techniques can be divided into
three categories [45].

• Open-loop mode selection: Each frame is classified based on the obser-
vations of parameters extracted from the input speech frame without
assessing how the selected mode will perform during synthesis for the
frame concerned.

• Closed-loop mode selection: Each frame is synthesized using all the modes
and the mode that gives the best performance is selected.

• Hybrid mode selection: The mode selection procedure combines both
open-loop and closed-loop approaches. Typically, a subset of modes is first
selected by an open-loop procedure, followed by further refinements using
closed-loop techniques.
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Closed-loop mode selection has two major difficulties: high complexity
and difficulty in finding an objective measure which reflects the subjective
quality of synthesized speech [46]. The existing closed-loop mode selection
coders are based on CELP, and select the best configuration such that the
weighted MSE is minimized [47, 48]. Open-loop mode selection is based
on techniques such as: voice activity detection, voicing decision, spectral
envelope variation, speech energy, and phonetic classification [10]. See [49]
for a detailed description on acoustic phonetics.

In the following discussion, a hybrid mode selection technique is used, with
an open-loop initial classification and a closed-loop secondary classification.
The open loop initial classification decides to use either the noise excitation or
one of the other modes. The secondary classification synthesizes the harmonic
excitation and makes a closed loop decision to use either the harmonic
excitation or ACELP. A special feature of this classifier is the application of
closed-loop mode selection to harmonic coding. The SWPM [26] preserves
the waveform similarity of the harmonically-synthesized speech, making it
possible to apply closed-loop techniques in harmonic coding.

9.6.1 Open-Loop Initial Classification

The initial classification extracts the fully unvoiced and silence segments of
speech, which are synthesized using white-noise excitation. It is based on
tracked energy, the low-band to high-band energy ratio, and the zero-crossing
rate of the speech signal. The three voicing metrics are logically combined to
enhance the reliability, since a single metric alone is not sufficient to make
a decision with high confidence. The metric combinations and thresholds
are determined empirically, by plotting the metrics with the corresponding
speech waveforms. A statistical approach is not suitable for deciding the
thresholds, because the design of the classification algorithm should consider
that a misclassification of a voiced segment as unvoiced will severely degrade
the speech quality, but a misclassification of an unvoiced segment as voiced
can be tolerated. A misclassified unvoiced segment will be synthesized using
ACELP, however a misclassified voiced segment will be synthesized using
noise excitation.

The tracked energy of speech, te is estimated as follows:

te = 0.00025eh + e
0.01eh + e

(9.48)

where e is the mean squared speech energy, given by,

e =

N−1∑
n=0

s2 (n)

N
(9.49)
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where N, the length of the analysis frames, is 160 and eh is an autoregressive
energy term given by,

eh = 0.9eh + 0.1e if 8e > eh (9.50)

The condition 8e > eh ensures that eh is updated only when the speech energy
is sufficiently high and eh should be initialized to approximately the mean
squared energy of voiced speech. Figure 9.19a illustrates the tracked energy
over a segment of speech. The low-band to high-band energy ratio, γω, is
estimated as follows:

γω =

1/4∫
0

S2
(

ω

ωs

)
d
(

ω

ωs

)

1/2∫
1/4

S2
(

ω

ωs

)
d
(

ω

ωs

) (9.51)

where ωs is the sampling frequency and S(ω) is the speech spectrum. The
speech spectrum is estimated using a 512-point FFT, after windowing 240
speech samples with a Kaiser window of β = 6.0. Figure 9.19b illustrates the
low-band to high-band energy ratio over a segment of speech, where the
speech signal is shifted down for clarity.

The zero-crossing rate is defined as the number of times the signal changes
sign, divided by the number of samples used in the observation. Figure 9.20a
illustrates the zero-crossing rate over a segment of speech, where the speech
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signal is shifted down for clarity. Figure 9.20b depicts the voicing decision
made by the initial classification. Figure 9.21 depicts the three metrics used
and the final voicing decision over the same speech segment.

Even though the plosives have a significant amount of energy at high
frequencies and a high zero-crossing rate, synthesizing the high energy
spikes of the plosives using ACELP instead of noise excitation improves
speech quality. Therefore we need to detect the plosives, which are classified
as unvoiced by the initial classification, and switch them to ACELP mode.
A typical plosive is depicted at the beginning of the speech segment in
Figure 9.20b.



Speech Classification 315

9.6.2 Closed-Loop Transition Detection

AbS transition detection is performed on the speech segments [26, 27] that
are declared voiced by the open-loop initial classification. A block diagram of
the AbS classification process is shown in Figure 9.22. The AbS classification
module synthesizes speech using SWPM and checks the suitability of the
harmonic model for a given frame. The normalized cross-correlation and
squared error are computed in both the speech domain and the residual
domain for each of the selected pitch cycles within a synthesis frame. The
pitch cycles are selected such that they cover the complete synthesis frame.
The mode decision between harmonic and ACELP modes is then based on
the estimated cross-correlation and squared error values. The squared error
of the ith pitch cycle, Ei, is given by,

Ei =

T−1∑
j=0

[
s
(
iT + j

) − ŝ
(
iT + j

)]2

T−1∑
j=0

s2 (
iT + j

) for 0 ≤ i < I (9.52)

The normalized cross-correlation of the ith pitch cycle, Ri, is given by,

Ri =

T−1∑
j=0

s
(
iT + j

)
ŝ
(
iT + j

)
√√√√T−1∑

j=0

s2 (
iT + j

) T−1∑
j=0

ŝ2 (
iT + j

) for 0 ≤ i < I (9.53)

where T = �τ + 0.5�, τ is the pitch period, I = �N/τ + 1�, and N is the
synthesis frame length of 160 samples.
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In order to estimate the normalized residual cross-correlation, Rir , and
residual squared error, Eir , equations (9.52) and (9.53) are repeated with s(n)

and ŝ(n) replaced by r(n) and r̂(n) respectively. Figure 9.23 depicts Ei, Ri,
original speech s(n), and synthesized speech ŝ(n). Ei and Ri are aligned with
the corresponding pitch cycles of the speech waveforms, and the speech
waveforms are shifted down for clarity. Examples of the residual domain
signals, LPC residual r(n), LPC excitation r̂(n), Eir , and Rir are also shown in
the figure.

For stationary voiced speech, the squared error, Ei, is usually much lower
than unity and the normalized cross-correlation, Ri, is close to unity. How-
ever, the harmonic model fails at the transitions, which results in larger errors
and lower correlation values. The estimated normalized cross-correlation and
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squared error values are logically combined to increase the reliability of the
AbS transition detection. The combinations and thresholds are determined
empirically by plotting the parameters with the corresponding speech wave-
forms. This heuristic approach is superior to a statistical approach, because it
allows inclusion of the most important transitions, while the less important
ones can be given a lower priority. AbS transition detection compares the
harmonically synthesized speech with the original speech, verifies the accu-
racy of the harmonic model parameters, and decides to use ACELP when the
harmonic model fails.

The cross-correlation and squared error values are estimated on the pitch
cycle basis in order to determine the suitability of the harmonic excitation for
each pitch cycle. Estimating the parameters over the complete synthesis frame
may average out a large error caused by a sudden transition. In Figure 9.23a,
the speech waveform has a minor transition. The estimated parameters
also indicate the presence of such a transition. These minor transitions are
synthesized using the harmonic excitation, and the mode is not changed
to waveform coding. Changing the mode for these small variations leads to
excessive switching, which may degrade the speech quality, when the bit-rate
of the waveform coder is relatively low, due to the quantization noise of the
waveform coding. Moreover, the harmonic excitation is capable of producing
good quality speech despite those small variations in the waveform. In
addition to maintaining the harmonic mode across those minor transitions,
in order to limit excessive switching, the harmonic mode is not selected after
ACELP when the speech energy is rapidly decreasing. Rapidly-decreasing
speech energy indicates an offset and at some offsets the coding mode may
fluctuate between ACELP and harmonic, if extra restrictions are not imposed.
At such offsets, the accumulated error in the LPC memories through the
harmonic mode is corrected by switching to the ACELP mode, which in turn
causes a switch back to the harmonic mode. The additional measures taken
to eliminate those fluctuations are described below.

In order to avoid mode fluctuations at the offsets, extra restrictions are
imposed when switching to the harmonic mode after waveform coding. The
rms energy of the speech and the LPC residual are computed for each frame,
and a hysteresis loop is added using a control flag. The flag is set to zero
when the speech or the LPC residual rms energy is less than 0.75 times the
corresponding rms energy values of the previous frame. The flag is set to one
when the speech or the LPC residual rms energy is more than 1.25 times the
corresponding rms energy values of the previous frame. The flag is set to zero if
the pitch is greater than 100 samples, regardless of the energy. When switching
to harmonic mode after waveform coding, the control flag should be one, in
addition to the mode decision of closed-loop transition detection. The flag is
checked only at a mode transition, once the harmonic mode is initialized, the
flag is ignored. This process avoids excessive switching at the offsets.
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The pitch is used to change the control flag for different reasons. For male
speech with long pitch periods, ACELP produces better quality than the
harmonic coders even at stationary voiced segments. When the pitch period
is long, ACELP needs fewer pulses in the time domain to track the changes
in the speech waveform while the harmonic coders have to encode a large
number of harmonics in the frequency domain. Furthermore, it is well-known
that speech-coding schemes which preserve the phase accurately work better
for male speech, while the harmonic coders which encode only the amplitude
spectrum result in better quality for female speech [24].

9.6.3 Plosive Detection

The unvoiced synthesis process described in Section 9.5.5 updates the
unvoiced gain every 20 ms. While this is sufficient for fricatives, it reduces the
quality of the highly nonstationary unvoiced components such as plosives.
The listening tests show that synthesizing plosives using ACELP preserves
the sharpness of the synthesized speech and improves the perceptual quality.
Therefore a special case is required to detect the plosives, which are classified
as unvoiced by the initial classification, and synthesize them using ACELP.

Plosives are characterized by isolated pulse-like signals with a sharp rise
in energy, and this feature is used to distinguish them from the fricatives.
The rms energy, ej, of the speech signal is computed for every 10 samples as
follows:

ej =

√√√√√√
9∑

n=0

s2 (
10j + n

)
10

for 0 ≤ j < 15 (9.54)

A plosive detection metric, pj, is defined as,

pj = ej

8ej−1
(9.55)

where e−1 is the final energy term of the previous frame. A frame is classified
as containing a plosive if pj > 1 for at least one j. This algorithm may signal
a plosive even when the overall energy level is very low, for example at a
silence segment, if it detects a large fluctuation in energy. Those low-energy
segments are completely ignored when using the tracked energy term, te, in
the open-loop initial classification.

It should be noted that the scope of this plosive detection algorithm is
reduced to unvoiced segments, since the segments that include the unvoiced
plosives are already identified by the initial classification. The plosive detec-
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tion algorithm may erroneously identify the highly nonstationary onsets and
the speech signal near the glottal excitation of the long pitch period segments
as plosives, if applied to voiced speech. Figure 9.24a illustrates the plosive
detection metric pj and an example of a plosive. Figure 9.24b illustrates the
detected plosive synthesized using 4 kb/s SB-LPC and 3.7 kb/s ACELP (with-
out LTP). ACELP is used only for the frame that has the plosive and the rest of
the segment is synthesized using white-noise excitation. SB-LPC synthesizes
the speech segment using noise excitation, which cannot adequately represent
the plosive.

9.7 Hybrid Decoder

A simplified block diagram of the hybrid decoder is shown in Figure 9.25. The
decoder extracts the excitation parameters from the data bit stream according
to the mode and uses the appropriate excitation generation. The synthesized
excitation is then fed into the LPC synthesis filter, which produces the final
synthetic speech output. The LPC parameters are common for all the modes
and linearly interpolated in the LSF domain with an update interval of 5 ms.
The excitation vector is also fed into the ACELP excitation and harmonic
excitation generators. The ACELP excitation updates the long term predic-
tion (LTP) buffer with the previous LPC excitation. The harmonic excitation
uses the previous excitation at the onsets to initialize the interpolation and
prediction parameters. In Figure 9.26 the results are shown for the original
and synthesized speech together with the mode used for each synthesis
frame. The frame boundaries are also shown by dashed lines.
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9.8 Performance Evaluation

The hybrid coder [26] described above has been tested to evaluate its perfor-
mance. The major tasks were developing a reliable classification technique
and preserving the phase continuity when switching between the coding
modes. The classification algorithm is tested using 64 seconds of modified
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IRS-filtered speech, by comparing the mode decision against manually-
classified waveforms. Eight English sentence pairs uttered by four male and
four female speakers, taken from the Nippon Telegraph and Telephone [50]
speech database are used as the test material. The silence segments are
excluded from the analysis and synthesized using white-noise excitation.
The initial classification detects all the voiced frames. Therefore the worst
possible classification error, i.e. classifying a voiced frame as unvoiced, is
eliminated. More than 90 % of the unvoiced frames are also detected and the
rest of the unvoiced frames are misclassified as voiced. This bias towards
voiced is preferable to misclassifying voiced frames as unvoiced, since the
misclassified unvoiced frames will be classified as ACELP by the secondary
classification, while a misclassified voiced frame will be synthesized using
white-noise excitation. The plosive detection algorithm detects all the plosives
in the unvoiced frames and does not misclassify other unvoiced frames as
plosives.

The transition frames are manually marked by observing the waveforms,
in order to test the closed-loop transition detection algorithm. Speech frames
which have irregular pitch periods and show large variations in the energy
are identified as transitions. The closed-loop transition detection classifies the
frames already classified as voiced by the initial classification into transitory
and harmonic. Consequently, all the frames classified as voiced by the initial
classification are included in the test and the unvoiced frames that are
classified as voiced are marked as transitions, since they are expected to be
synthesized using ACELP. When testing the transition detection algorithm,
the use of waveform coding for pitch periods longer than 100 samples is not
activated. The transition detection algorithm detects more than 90 % of the
transition frames and the rest of the transitions are classified as harmonic
frames. It also detects more than 90 % of the harmonic frames and the rest of
the stationary voiced frames are classified as transitions.

Misclassifications may restrict the maximization of the speech quality
because of not choosing the best coding algorithm. However misclassifications
of the secondary classification do not degrade the speech quality, due to its
closed-loop nature. A misclassification of a stationary voiced segment as a
transition indicates a harmonic parameter estimation error and such frames
are synthesized using ACELP, perhaps a better solution than synthesizing
with the inaccurate harmonic parameters. A misclassification of a transition as
stationary voiced indicates that the harmonic mode is capable of synthesizing
the particular transitory frame. This may be possible at some transitions,
particularly offsets, which usually have a steady pitch contour and a smooth
energy variation, where the harmonic interpolation model can fit in.

The phase continuity is tested by listening to the synthesized speech,
without introducing quantization. The tests verify the validity of the hybrid
model and there are no perceptible discontinuities. The speech synthesized
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Table 9.1 Unquantized hybrid model vs 128 kb/s linear PCM

Better Slightly better Same Slightly worse Worse

Male (%) 0.0 19.3 51.9 26.9 1.9

Female (%) 0.0 5.8 69.2 17.3 7.7

Average (%) 0.0 12.5 60.6 22.1 4.8

Table 9.2 Unquantized hybrid model vs 8 kb/s G.729

Better Slightly better Same Slightly worse Worse

Male (%) 1.9 30.8 51.9 15.4 0.0

Female (%) 0.0 34.7 44.2 17.3 3.8

Average (%) 1.0 32.7 48.1 16.3 1.9

also indicates the upper bound of the quality achievable by the designed
hybrid model. An informal listening test was conducted using 128 kb/s linear
pulse code modulation (PCM), which is the best narrow-band speech quality,
and 8 kb/s ITU G.729, a toll-quality speech coder, as the reference coders
[26]. The speech material used for the test consists of eight sentences, four
from male and four from female talkers, filtered by the modified IRS filter
and a pair of headphones was used to conduct the test. Twelve listeners were
asked to indicate their preferences for the randomized pairs of synthesized
speech. Both experienced and inexperienced listeners participated in the test.
The subjective test results are shown in Tables 9.1 and 9.2. As indicated by
these results, the unquantized hybrid model performs better than G.729 and
worse than 128 kb/s linear PCM. Therefore the quality of the unquantized
hybrid model can be classified as being higher than toll quality and lower
than transparent quality. In general, the speech encoded and decoded with
unquantized hybrid coder model parameters does not sound too different
from the original speech material. The perceived speech quality shows only
a slight degradation, even after quantizing the harmonic mode parameters at
4 kb/s and white-noise excitation at 1.5 kb/s, with unquantized transitions (at
128 kb/s linear PCM). The hybrid coder achieves toll quality when transitions
are quantized with 6 kb/s ACELP.

9.9 Quantization Issues of Hybrid Coder Parameters

9.9.1 Introduction

The above hybrid speech-coding model can be adopted for various applica-
tions with different quality requirements by quantizing the model parameters
at different bit-rates. For applications which support variable bit rates, the
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model parameters of different modes may be quantized at different bit-rates,
allocating the minimum number of bits required for each mode to maintain
adequate quality.

In the example, here the LPC parameters are common for all the modes,
and quantized using a fixed number of bits per frame. This is advantageous
under noisy channel conditions, since the LPC parameters can be decoded
correctly even when the mode bits are in error. The LPC parameters are
quantized in the LSF domain using a multi-stage vector quantifier (MSVQ),
with a first order moving average (MA) prediction [37]. Having quantized
the LSFs, the excitation of the three modes are quantized differently.

9.9.2 Unvoiced Excitation Quantization

The hybrid coding algorithm synthesizes unvoiced speech using scaled white
Gaussian noise as the LPC excitation. Therefore, only a gain term is required
in addition to the LPC parameters to synthesize unvoiced speech. In order
to synthesize the unvoiced plosives with adequate quality, the gain term
should be updated at least every 5 ms. However listening tests show that
synthesizing plosives using ACELP gives better perceptual quality. Therefore
the plosives are synthesized using ACELP. The energy of the fricatives does
not show rapid fluctuations and updating at the frame rate of every 20 ms is
adequate to synthesize high-quality unvoiced fricatives.

The unvoiced gain guv is quantized using a logarithmic scalar quantizer.
The quantized unvoiced gain guvi is given by,

guvi = k
(

gmax + k
k

) i
N−1

− k for i = 0, 1, 2, . . . , N − 1 (9.56)

where N is the number of quantizer levels, gmax, defines the upper limit of guvi ,
and k is a constant which controls the gradient of the exponential function.
All the guv values larger than gmax are clipped at gmax. The constant k is set as
16 and 32 quantizer levels were sufficient to produce high quality unvoiced
speech. Hence five bits are required to transmit the quantized unvoiced gain,
guvi . Figure 9.27 depicts a typical plot of the unvoiced gain quantizer levels
where the maximum gmax = 904.

9.9.3 Harmonic Excitation Quantization

The stationary voiced speech segments are synthesized using the synchro-
nized harmonic excitation model described earlier. The model parameters
of the harmonic excitation with SWPM are pitch period, pitch pulse loca-
tion (PPL), pitch pulse shape (PPS), harmonic amplitudes, and gain. The
AbS transition detection algorithm synthesizes the harmonic excitation using
SWPM at the encoder to evaluate the suitability of the harmonic mode.
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Figure 9.27 Unvoiced gain quantizer levels

Therefore, quantized or unquantized harmonic parameters may be used for
the transition detection at the encoder. Generally, AbS algorithms include
the quantization in the error minimization loop, so that the quantization
noise is also accounted for in the parameter estimation process. However in
this case, the solution is not straightforward, since the decision is between
two modes, rather than the best set of parameters of a unimodal coder.
One solution to this problem is to perform a full closed-loop mode decision
with quantized parameters, i.e. synthesizing the speech frames with all the
modes and selecting the best mode. A weighting factor may be required
in the mode selection process, since the harmonic excitation with SWPM
may give superior perceptual quality even with a slightly lower SNR com-
pared to ACELP. However such a solution is computationally demanding,
since ACELP excitation should be computed for all the frames, excluding
the silence and unvoiced frames. Furthermore, defining a suitable weighting
factor which reflects the perceptual quality is a difficult task.

A more practical solution is to decide the inclusion of the harmonic
parameter quantization in the mode decision loop based on ACELP bit
rate. The inclusion of the harmonic quantization in the closed-loop mode
decision increases the number of ACELP mode frames. However, occasionally
switching to ACELP between harmonic frames may degrade the perceptual
quality, when the bit rate of the ACELP mode is below 8 kb/s, due to
the sudden discontinuities introduced in the voiced harmonics. In general,
ACELP operating at 8 kb/s or higher is capable of synthesizing perceptually-
superior speech compared to harmonic coding (with no phase transmission),
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even at the stationary voiced segments. Therefore the harmonic quantization
can be included in the closed-loop mode decision without worrying about
the quality of ACELP coded frames between the harmonic frames (except, of
course, the bit rate will be higher). However when the bit rate of ACELP mode
is low, the quantization noise becomes audible; hence, trying to eliminate
the quantization noise of the harmonic mode by switching to ACELP mode
does not improve the perceptual quality. Therefore, in all the tests described
here, harmonic parameter quantization is not included in the transition
detection loop.

The sensitivity of AbS transition detection is different for each parameter.
The sensitivity is high for the pitch period and PPL. Changes in these
parameters dramatically reduce the cross-correlation of the original and the
synthesized speech, due to the resulting time shifts. The spectral amplitudes
and the LPC parameters are least sensitive. In fact, quantized and unquantized
LPC parameters both produced the same classification decisions for the
test speech material. The LPC memory locations of the transition detection
algorithm are initialized for each frame with the memory locations of the LPC
synthesis filter. This avoids drifting the LPC synthesis filter of the transition
detection algorithm from the synthesized speech.

Pitch Quantization

The pitch period, τ , is quantized using a nonlinear scalar quantizer, reflecting
the high sensitivity of the human ear to the pitch deviations at shorter pitch
periods. A logarithmic scale is used for the pitch values from 16 to 60 samples
and a linear scale is used for the pitch values from 60 to 160 samples (see
Figure 9.28). The quantized pitch τi is given by,

τi = τmin

(
τ0

τmin

) i
N0−1

for i = 0, 1, 2, . . . , N0 − 1 (9.57)

τi = τ0 + τmax − τ0

N − N0
(i − N0 + 1) for i = N0, N0 + 1, . . . , N − 1 (9.58)

where τmin is 16, τmax is 160, τ0 is 60, N0 is 156, and N is 256. Therefore eight
bits are required to transmit the quantized pitch period.

Pitch Pulse Location Quantization

The pitch pulse location (PPL) is the location of the pitch pulse closest to the
centre of the analysis frame. PPL may be defined as the distance to the pitch
pulse concerned from the centre of the analysis frame, measured in samples.
Assuming that the maximum possible pitch is 160 samples, PPL varies
between −80 and 80. However the pitch pulse location may be normalized
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Figure 9.28 Pitch quantizer levels

with respect to the pitch so that the PPL varies between −0.5 and 0.5.
Normalization of the PPL with respect to the pitch ensures the efficient use
of quantizer dynamic range regardless of the pitch.

The accuracy of the PPL is more important when it is close to the centre
of the analysis frames or the synthesis frame boundaries, i.e. PPL values
close to zero. This is due to the fact that the mode changes between ACELP
and harmonic excitation may take place at the synthesis frame boundaries.
Preserving the continuity of the high-energy pitch pulses occurring at or close
to the switching frame boundaries is essential to eliminate audible switching
artifacts. Therefore the normalized PPL is quantized using a logarithmic scale,
quantizing the PPL values close to zero more accurately. The quantized PPL,
ti is given by,

ti = k
(

0.5 + k
k

) i−N/2−1
N/2

− k for i = N/2 − 1, N/2, . . . , N − 1 (9.59)

ti = tN−2−i for i = 0, 1, . . . , N/2 − 2 (9.60)

where N is the number of quantizer levels and k is a constant that controls the
gradient of the exponential function. The constant k is set to 0.125, and 128
quantizer levels are sufficient to eliminate audible switching artifacts. Hence
seven bits are required to transmit the quantized normalized PPL. PPL is
normalized using the quantized pitch so that the decoder can denormalize the
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Figure 9.29 PPL quantizer levels

received PPL value accurately. Figure 9.29 depicts a plot of the normalized
PPL quantizer levels.

Pitch Pulse Shape Quantization

Large variations in the PPS introduces a reverberant character into the
synthesized speech, regardless of the PPS value. Therefore, in terms of the
perceptual quality, all the PPS values are equally important and a linear
quantizer is employed to quantize the PPS using 16 values. The quantized
PPS, θi, is given by,

θi = 2π

N
i − π for i = 0, 1, . . . , N − 1 and − π ≤ θi < π (9.61)

where N, the number of quantizer levels, is 16 and four bits are required to
quantize PPS.

Harmonic Amplitude Quantization

Harmonic amplitudes of the LPC residual are quantized using Switched
Predictive Mel-scale-based Vector Quantization (SP-MVQ) [51]. SP-MVQ
(see block diagram in Figure 9.30) converts the variable-dimension spectral-
amplitude vectors into fixed-dimension vectors by warping the frequency
axis using a logarithmic scale. The warping process emphasizes the low
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frequencies, taking into account the perceptual preferences of the human
auditory system. The fixed dimension spectral vector, ẑ, is decomposed into
a predicted vector, ẑp, and a prediction residual vector, ẑr, as follows:

ẑ = ẑp + ẑr (9.62)

where the predicted vector, ẑp, is obtained using a first-order autoregressive
method, given by,

ẑp = �
(
ẑ−1 − ẑm

) + ẑm (9.63)

where ẑ−1 is the most recently quantized ẑ, ẑm is the mean vector, and �

denotes a diagonal matrix of prediction coefficients. The prediction residual,
ẑr is quantized using a typical vector quantizer such as MSVQ [52]. The
quantization becomes memoryless Mel-scale-based vector quantization (ML-
MVQ) if all the prediction coefficients are zero, and autoregressive predictive
MVQ (P-MVQ) otherwise. The predictive scheme is effective in stationary
regions, and may increase spectral distortion at the transitions; therefore, a
switching scheme is introduced to switch between P-MVQ and ML-MVQ. The
decision between P-MVQ and ML-MVQ is made using AbS techniques and
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based on a weighted spectral-distortion measure. Therefore the quantization
scheme is called switched predictive Mel-scale-based vector quantization
(SP-MVQ). Moreover, the switching scheme restricts error propagation under
noisy channel conditions.

SP-MVQ quantizes spectral amplitudes every 10 ms using 14 bits. The har-
monic analysis/synthesis scheme described estimates the harmonic param-
eters every 20 ms. However there are sufficient bits for the allocation of
28 bits per 20 ms frame for spectral amplitudes at 4 kb/s (see Table 9.5).
Therefore the harmonic analysis/synthesis scheme is modified to update
the spectral amplitudes every 10 ms. However the pitch is transmitted only
every 20 ms, and linearly interpolated to compute the number of harmonics
corresponding to the centre of the synthesis frame or the first subframe,
at the decoder. The spectral amplitude quantization uses the quantized
(second subframe) or quantized and interpolated (first subframe) pitch to
compute the number of harmonics, in order to ensure the correct dequan-
tization of the spectral amplitude vectors. In the spectral amplitude quan-
tization of the first subframe, if the actual number of harmonics is greater
than the computed number of harmonics by interpolation, the higher har-
monics are ignored. If the actual number of harmonics is less than the
computed number of harmonics by interpolation, the amplitude vector is
zero-padded. Usually the pitch values of the stationary voiced segments are
fairly unchanged and linear interpolation of the number of harmonics gives
a good approximation.

Harmonic Gain Quantization

The spectral amplitude vectors are normalized before the quantization, in
order to improve the dynamic range. The shape components of the vectors
are quantized using SP-MVQ, as described above, and the gain component is
scalar quantized.

The normalized amplitude, akn , of the kth harmonic is given by,

akn = ak

g
(9.64)

where ak is the spectral amplitude estimated for the kth harmonic and g is the
normalization factor, given by,

g =

√√√√√√
K∑

k=1

a2
k

K
(9.65)
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where K is the total number of harmonics. Normalization factor of the second
subframe, g2, is quantized using a logarithmic scale, given by,

g2i = k
(

gmax − gmin + k
k

) i
N−1

− k + gmin for i = 0, 1, . . . , N − 1 (9.66)

where k is eight (which controls the gradient of the exponential function), N
(the number of quantizer levels) is 32, i.e. five bits are required to quantize
the gain of the second subframe, and gmax and gmin are the maximum and
minimum possible quantized normalization factors, respectively. The gain
values beyond gmax and gmin are clipped by the quantizer. The term gmin is
introduced in equation (9.66), because only the stationary voiced segments
are synthesized using the harmonic excitation and the minimum gain is
nonzero.

The normalization factor of the first subframe, g1, is differentially quantized
with respect to the mean of the adjacent two quantized g2 values, as follows:

δ = g1 − g2 + g2−1

2
(9.67)

where g2−1 is the gain of the second subframe of the previous frame, i.e. the
previous g2, and δ is quantized using three bits. Finally the spectral amplitude
vectors are denormalized by multiplying with the quantized normalization
factors.

Onset Harmonic Parameter Quantization

The harmonic synthesis process interpolates the parameters between the
synthesis frame boundaries. However, at the onsets, when switching from
waveform-coding mode, the harmonic parameters of the initial synthesis
frame boundary are not directly available. The pitch, PPL, and PPS are
estimated, as described in Section 9.5.4, and quantized as described in the
preceding sections.

The spectral amplitudes of the ACELP excitation signal used before the
harmonic mode are estimated by windowing it using an asymmetric window
function given by,

w (n) = 0.54 − 0.46 cos
(

π
n

n1 − 1

)
for 0 ≤ n < n1 (9.68)

w (n) = 0.08 + 0.92 cos
(

π

2
n − n1

n2 − 1

)
for n1 ≤ n < n1 + n2 (9.69)

where n1 is 140 and n2 is 20. The asymmetric window function emphasizes
the excitation signal close to the switching frame boundary.
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The spectral amplitude vector of the windowed ACELP excitation signal
is obtained by peak-picking of the magnitude spectrum, using the received
pitch value for the harmonic frame. The rms normalization factor of the
estimated spectral vector is used as g2−1 of the harmonic frame. The amplitude
quantization memory, ẑ−1 is initialized by quantizing the normalized shape
vector, while forcing SP-MVQ to use memoryless quantization.

9.9.4 Quantization of ACELP Excitation at Transitions

The transitions are quantized using algebraic code excited linear predic-
tion (ACELP). The pulse innovation of ACELP is capable of synthesizing
highly nonstationary transitions. The long term prediction (LTP) is not very
efficient at the onsets, since the LTP memory buffer has no information
regarding the onsets. However LTP is employed, because it reduces the
sparse excitation artifacts [39] and synthesizes a significant amount of the
excitation at the offsets. Moreover, at the resonance offsets, where the gain
of the excitation signal is small, the LTP gain acts as an adaptive gain term
and compensates for an inadequate gain quantization dynamic range of the
innovation pulses. Multi-tap and fractional delay LTP filters [53] are useful
only for stationary voiced segments, consequently, only integer delays and
single-tap filters are used to encode transitions.

The LTP gain is close to unity during the stationary voiced segments.
However at the transitions, LTP gain shows large variations, due to the large
variations in the speech energy. Therefore the LTP gain is quantized using
a larger dynamic range. A drawback in allowing gain values larger than
unity is that the LTP filter may become unstable under erroneous channel
conditions. The high-energy pulses of plosives are synthesized using only the
innovation sequence of ACELP. However the plosives are not classified as a
separate mode; instead, when a plosive is detected, the LTP gain is forced to
be zero.

9.10 Variable Bit Rate Coding

When using a 4 kb/s harmonic coder for steady state voiced segments and
unvoiced segments quantized at 1.5 kb/s (as detailed in Table 9.5) with
unquantized transitions, the synthesized speech quality shows only a slight
degradation when compared with using the unquantized model parameters,
which is nearly transparent. The quality versus the bit-rate limitation of this
hybrid coder is therefore dependent on transition quantization by ACELP.
Informal listening tests show that quantizing the transitions at 6 kb/s is
sufficient to achieve toll quality. Three versions of the coder are tested and
compared with standard coders by quantizing the transitions at 4, 6 and
8 kb/s.
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9.10.1 Transition Quantization with 4 kb/s ACELP

The 4 kb/s version uses 10 ms subframes. For each subframe the LTP delay,
LTP gain, locations, signs, and the gain of two innovation pulses are trans-
mitted. The innovation gain terms of the two subframes are normalized
with respect to the quantized rms energy of the speech signal and the nor-
malization factor is transmitted for each 20 ms frame. The normalization
reduces the dynamic range required to quantize the innovation sequence
gain. Table 9.5 shows the bit allocation of the 4 kb/s ACELP parameters.
The LTP delay range is from 20 to 147, and only integer delays are allowed,
needing seven bits for the index. The LTP gain is quantized using four bits
(see Table 9.3). The two innovation pulses cover only the first 64 locations of
each 80-sample subframe. Each pulse is chosen from 32 possible locations,
either even or odd, and five bits are required to transmit the location. The sign
of each pulse is transmitted using one bit. The pulse gain and the common
normalization factor of the frame are quantized using three bits each (see
Table 9.4).

9.10.2 Transition Quantization with 6 kb/s ACELP

The 6 kb/s version uses 5 ms subframes. For each subframe the LTP delay, LTP
gain, locations, signs, and the gain of two innovation pulses are transmitted.
The pulse gain terms of the four subframes are normalized with respect to
the quantized rms energy of the speech signal and the normalization factor
is transmitted for each 20 ms frame. Table 9.5 shows the bit allocation of the
6 kb/s ACELP parameters. The LTP delay and gain are quantized in the same
way to the 4 kb/s version, using seven bits and four bits respectively.

The two innovation pulses cover only the first 32 locations of each 40-
sample subframe. Each pulse is chosen from 16 possible locations, either even

Table 9.3 LTP Gain quantizer table

Index 0 1 2 3 4 5 6 7

LTP Gain 0.00 0.15 0.30 0.40 0.50 0.60 0.70 0.80

Index 8 9 10 11 12 13 14 15

LTP Gain 0.90 1.05 1.20 2.00 3.50 5.50 8.00 10.00

Table 9.4 Innovation pulse gain quantizer table

Index 0 1 2 3 4 5 6 7

Pulse Gain 0.0 0.3 0.7 1.1 1.6 2.1 2.7 3.5

rms Gain 10 40 90 176 325 584 1030 1800
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Table 9.5 Bit allocation for a 20 ms frame

Parameters White noise Harmonic ACELP 4k ACELP 6k

LPC 23 23 23 23

Pitch – 8 – –

PPL – 7 – –

PPS – 4 – –

Amplitudes – 14 + 14 – –

Gain 5 3 + 5 3 3

LTP Delay – – 7 + 7 7 + 7 + 7 + 7

LTP Gain – – 4 + 4 4 + 4 + 4 + 4

Pulse Locations – – 10 + 10 8 + 8 + 8 + 8

Pulse Signs – – 2 + 2 1 + 1 + 1 + 1

Pulse Gain – – 3 + 3 3 + 3 + 3 + 3

Mode 2 2 2 2

Total 30 80 80 120

or odd, and four bits are required to transmit the location. The signs of the
two pulses are forced to be opposite in the error minimization process, hence
only the sign of the first pulse is transmitted, using one bit. The pulse gain
and the common normalization factor of the frame are quantized using three
bits each (see Table 9.4).

9.10.3 Transition Quantization with 8 kb/s ACELP

The 8 kb/s version uses 5 ms sub frames. For each subframe the LTP delay,
LTP gain, locations, signs, and the gain of four innovation pulses are transmit-
ted. The pulse gain terms of the four subframes are normalized with respect
to the quantized rms energy of the speech signal and the normalization factor
is transmitted for each 20 ms frame. Table 9.8 shows the bit allocation of the
8 kb/s ACELP parameters. The LTP delay and gain are quantized in the same
way as the 4 kb/s version, using seven bits and four bits, respectively.

The locations and the signs of the four pulses are shown in Table 9.6.
The pulse gain of each subframe is quantized using four bits, as shown in
Table 9.7. The common normalization factor, i.e. the rms energy of the original
speech signal, in each frame is logarithmically quantized using seven bits,
and the quantized value, grmsi , is given by,

grmsi = k
(

gmax − gmin + k
k

) i
N−1

− k + gmin for i = 0, 1, . . . , N − 1 (9.70)
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Table 9.6 Structure of the 17-bit algebraic codebook

Pulse Amplitude Position Bits

0 ±1 0, 5, 10, 15, 20, 25, 30, 35 1 + 3

1 ±1 1, 6, 11, 16, 21, 26, 31, 36 1 + 3

2 ±1 2, 7, 12, 17, 22, 27, 32, 37 1 + 3

3 ±1 3, 8, 13, 18, 23, 28, 33, 38, 1 + 4

4, 9, 14, 19, 24, 29, 34, 39

Table 9.7 Innovation pulse gain quantizer table for 8 kb/s
ACELP

Index 0 1 2 3 4 5 6 7

Pulse Gain 0.0 0.15 0.3 0.45 0.6 0.8 1.0 1.2

Index 8 9 10 11 12 13 14 15

Pulse Gain 1.5 1.8 2.1 2.4 2.8 3.2 3.7 4.3

Table 9.8 Bit allocation of 8 kb/s ACELP
for a 20 ms frame

Parameters ACELP 8k

LPC 23

Gain 7

LTP Delay 7 + 7 + 7 + 7

LTP Gain 4 + 4 + 4 + 4

Pulse Locations 13 + 13 + 13 + 13

Pulse signs 4 + 4 + 4 + 4

Pulse Gain 4 + 4 + 4 + 4

Mode 2

Total 160

Where k (a constant which controls the gradient of the exponential function)
is 80, N (the number of quantizer levels) is 128, and gmax and gmin are 2720.5
and 0.5 respectively.

9.10.4 Comparison

Three informal listening tests were conducted to assess the speech quality of
the hybrid coder, with transitions quantized at 4 kb/s, 6 kb/s, and 8 kb/s. The
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synthesized speech was compared against that from 5.3 kb/s ITU G.723.1,
6.3 kb/s ITU G.723.1, and 8 kb/s ITU G.729 coders. In all the tests, stationary
voiced segments were quantized at 4 kb/s, and silence and unvoiced segments
are quantized at 1.5 kb/s. The speech material used for each test consists of
eight sentences, four from male and four from female talkers, filtered by
modified IRS filter; a pair of headphones was used to conduct the test.
Twelve listeners were asked to indicate their preferences for randomized
pairs of synthesized speech. Both experienced and inexperienced listeners
participated in the test. The subjective test results are shown in Tables 9.9,
9.10, and 9.11.

For the speech material used in the subjective tests, after discarding the
silence frames, about 64 % of the frames used harmonic excitation, 22 % used
ACELP, and 14 % used white-noise excitation. The 4 kb/s, 6 kb/s, and 8 kb/s
ACELP mode hybrid coders give average bit-rates of 3.65 kb/s, 4.1 kb/s, and
4.53 kb/s, respectively. The 4 kb/s ACELP version performs slightly better
than G.723.1 at 5.3 kb/s. The 6 kb/s ACELP version achieves similar quality
to G.723.1 at 6.3 kb/s. The quality of the 8 kb/s ACELP version is also similar
to G.729 at 8 kb/s, with an overall average bit rate of 4.53 kb/s.

Table 9.9 4 kb/s ACELP hybrid vs 5.3 kb/s G.723.1

Better Slightly better Same Slightly worse Worse

Male (%) 6.2 34.4 28.2 31.2 0.0

Female (%) 9.4 31.2 37.5 18.8 3.1

Average (%) 7.8 32.8 32.8 25.0 1.6

Table 9.10 6 kb/s ACELP hybrid vs 6.3 kb/s G.723.1

Better Slightly better Same Slightly worse Worse

Male (%) 0.0 31.3 43.7 18.8 6.2

Female (%) 6.3 28.1 37.5 21.9 6.2

Average (%) 3.2 29.7 40.6 20.3 6.2

Table 9.11 8 kb/s ACELP hybrid vs 8 kb/s G.729

Better Slightly better Same Slightly worse Worse

Male (%) 0.0 9.6 65.4 23.1 1.9

Female (%) 1.9 11.5 55.8 30.8 0.0

Average (%) 1.0 10.6 60.5 26.9 1.0
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9.11 Acoustic Noise and Channel Error Performance

Robustness to background noise and channel errors is an important factor for
any practical speech-coding algorithm. The speech coders designed for mobile
and military communication applications frequently encounter acoustic noise
and channel errors. The background noise may be suppressed before the
encoding process using a noise preprocessor [54]. However, this involves
additional complexity and delay, which may not be desirable for mobile
communication applications. Therefore the speech-coding algorithms are
expected to produce intelligible synthetic speech even in the presence of
background noise. Generally, AbS coders perform better than parametric
coders under noisy background conditions. This inherent robustness of AbS
coders is due to their waveform-matching process. The error minimization
process attempts to synthesize the input waveform regardless of its contents.
The model parameters estimated by the parametric coders may not be
accurate when the input speech signal is corrupted with noise. Inaccurate
model parameters may severely degrade the synthetic speech of a parametric
coder.

Channel errors are usually divided into two classes: random errors and
burst errors. A speech-coding algorithm should provide a reasonable output
even if a small proportion of the received bit stream is incorrect due to random
bit errors. Robustness against random channel errors can be increased by
means of index assignment algorithms [55, 56], through proper quantizer
design, and by adding redundancy into the transmitted information [57, 58,
59]. Unequal error protection techniques may be applied to provide a higher
degree of protection to the most sensitive bits. For example, in CELP coders,
the spectral envelope parameters are the most sensitive to errors, followed by
the fixed codebook gain, the adaptive codebook index, the adaptive codebook
gain, the sign of the fixed codebook gain, and the fixed codebook index [60]. In
the case of sinusoidal coders, the gain is the most sensitive to errors, followed
by the voicing, the pitch, the spectral envelope parameters, and the spectral
amplitudes [61].

In the case of burst errors, error detection schemes are used to classify each
frame of received bits as usable or unusable. A similar problem encountered
in packet voice communication systems is lost packets due to transmission
impairments and excessive delays. In order to reduce the annoying artifacts
due to lost frames, concealment techniques based on waveform substitution
can be used [62]. The burst errors may also be converted to occur in a
more random fashion using interleaving techniques. The performance issues
specific to a hybrid coding algorithm are the robustness of the classification
algorithm under acoustic noise and the channel bit error performance of the
coding mode; otherwise, the performance of hybrid coders will be similar to
either ACELP or harmonic coding.
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9.11.1 Performance Under Acoustic Noise

The classification algorithm was tested using 64 seconds of male and female
speech corrupted with either babble or vehicular noise. The SNR of the
corrupted speech is 10 dB.

Figure 9.31 depicts the classification of the female speech. The initial clas-
sification declares only the strongly-unvoiced segments as unvoiced and all
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Figure 9.31 Classification of female speech corrupted by babble noise (10 dB SNR):
A (ACELP), H (harmonic), and N (noise excitation)
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the other frames are left to be encoded using either ACELP or harmonic
excitation (compare Figures 9.31b and 9.32b). The weakly-unvoiced segments
which have lower energy than the noise level are not detected as unvoiced.
When corrupted with babble or vehicular noise, the silence and the low-
energy unvoiced segments do not have the properties of unvoiced speech.
It can be seen that the energy of the noise component is comparable with
unvoiced speech and it has a significant low-frequency component (see
Figure 9.35a). This is expected since babble noise is essentially attenuated
and superimposed speech components. Figure 9.33 shows the classification
of the male speech and Figure 9.34 shows the corresponding clean speech
segments.
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Figure 9.33 Classification of male speech corrupted by babble noise (10 dB SNR):
A (ACELP), H (harmonic), and N (noise excitation)

The secondary classification performs very similarly under the clean speech
conditions, except for the occasional classification of frames as ACELP, which
were originally classified as harmonic under the clean speech conditions
(compare Figures 9.31a and 9.32a). This is due to the inability of the harmonic
model to adequately synthesize the corrupted signal and the model parameter
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estimation errors. Therefore, in general, in the presence of acoustic noise the
speech classification algorithm declares more frames as ACELP. These include
the silence frames of the original clean speech, unvoiced segments with lower
energy than the noise level, and the stationary voiced frames with parameter
estimation and harmonic modelling difficulties.

Neither white-noise excitation nor harmonic excitation is suitable for syn-
thesizing the background noise. The spectra of babble and vehicular noise
are not white, even after discarding the spectral envelope. synthesizing them
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Figure 9.35 Typical acoustic noise spectra

using white-noise excitation will degrade the perceptual quality by intro-
ducing an unnaturally noisy background. Therefore, in fact, the classification
algorithm detects the most suitable mode, i.e. ACELP, to synthesize back-
ground noise. However the drawback is a high average bit-rate, which may
be reduced by using a robust voice activity detection (VAD) algorithm and
comfort noise generation at the decoder end [9].
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The correct classification of the stationary voiced segments as harmonic
mode under noisy background conditions confirms the robustness of SWPM,
since the AbS classification algorithm synthesizes speech using SWPM. There-
fore, it can be concluded that the pitch pulse location (PPL) and the pitch
pulse shape (PPS) detection algorithms described in Section 9.4 perform well
under noisy background conditions.

An informal listening test was conducted to compare the speech quality
of the hybrid coder under noisy background conditions with white noise,
harmonic excitation, and ACELP quantized at 1.5 kb/s, 4 kb/s, and 6 kb/s,
as discussed before. The synthesized speech was compared against the same
noisy speech files synthesized using the 6.3 kb/s ITU G.723.1 coder. The
speech material used for each test consists of eight sentences, four from
male and four from female talkers, four corrupted with vehicular noise
and four corrupted with babble noise (10 dB SNR); a pair of headphones
was used to conduct the test. Twelve listeners were asked to indicate their
preferences for the randomized pairs of synthesized speech. Both experienced
and inexperienced listeners were participated in the test. The test results are
shown in Table 9.12.

The informal listening test shows a clear preference for the 6.3 kb/s ITU
G.723.1 coder. It was found that this is due to the metallic character of the
stationary voiced speech synthesized by the harmonic excitation: it is cleaner,
however, there is a pronounced metallic character. The test confirms that
the listeners prefer more natural-sounding, noisy speech rather than metallic
speech.

The metallic character is not so pronounced in noisy speech synthesized
using a split-band LPC (SB-LPC) harmonic coder [4]. The SB-LPC coder
divides the speech spectrum into two bands using a voicing frequency
marker, where the upper band is declared unvoiced, and synthesized using a
filtered noise excitation. For clean stationary voiced speech, most of the spec-
trum is declared voiced. However in the case of stationary voiced segments
of noisy speech, some frequency bands are declared unvoiced. Therefore
the voicing decision of SB-LPC reduces quality, synthesizing metallic sounds
under noisy background conditions. The harmonic excitation model described
in Section 9.5.1 was designed to synthesize stationary voiced segments and
the complete spectrum is synthesized using harmonically related sinusoids.

Table 9.12 Hybrid vs 6.3 kb/s G.723.1 for noisy speech

Better Slightly better Same Slightly worse Worse

Male(%) 0.0 9.6 38.5 40.4 11.5

Female(%) 0.0 21.2 21.2 42.3 15.3

Average(%) 0.0 15.4 29.9 41.3 13.4
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Under noisy background conditions, there are strong spectral components
which are not related to the fundamental frequency of the speech. These noise
components change the harmonic amplitudes and are perceived as metallic
sounds in harmonically synthesized speech (see Figure 9.36). Introducing a
voicing frequency marker for the harmonic excitation, similar to SB-LPC,
improves the speech quality of the hybrid coder, especially in noisy back-
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Figure 9.36 Speech corrupted with babble noise (10 dB SNR)
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ground conditions. The hybrid coding algorithm described has three modes,
and two bits are allocated to transmit the mode. Therefore an additional
mode may be added to further improve the speech quality. The quality of
speech corrupted by acoustic noise can be improved by using the additional
mode as another harmonic mode with a constant voicing frequency marker,
e.g. 80 % of the spectrum is voiced. Figure 9.37 depicts the spectrum of speech
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Table 9.13 Hybrid vs 6.3 kb/s G.723.1 for noisy speech

Better Slightly better Same Slightly worse Worse

Male(%) 0.0 12.5 40.0 40.0 7.5

Female(%) 5.0 22.5 35.0 30.0 7.5

Average(%) 2.5 17.5 37.5 35.0 7.5

corrupted with babble noise (10 dB SNR) and the spectrum of the synthesized
speech, with 80 % of the spectrum declared voiced and the remaining high
frequency components synthesized using filtered and scaled Gaussian noise.

The same informal listening test was conducted to compare the speech
quality. The informal test results are shown in Table 9.13. Comparing with
the results shown in Table 9.12, the introduction of the harmonic voicing
significantly improves the performance under background noise which indi-
cates that there is still some room to retune the harmonic coder for the hybrid
coding operation. The same is perhaps true for ACELP, and it should be
designed specifically for hybrid operation.

9.11.2 Performance Under Channel Errors

The inherent robustness of the hybrid coder to mode bit errors was tested by
simulating all the possible mode errors. The hybrid coder has three modes,
hence there are six possible mode errors, i.e. each mode may be erroneously
decoded with the other two modes. The bit stream of the hybrid coder is
shown in Tables 9.14 and 9.15. For each parameter, the most significant bit
(MSB) is transmitted first. When erroneously decoding a lower-rate mode as
a higher-rate mode, e.g. decoding a white-noise excitation frame as harmonic,
the remaining bits are set to 1. Simulations show that setting the remaining
bits to 1 has the worst effect, since the higher indices are mapped to the
higher-energy levels in the gain quantizers. Using the LTP gain quantizer
shown in Table 9.3 results in blasts when the white noise or harmonic frames
are erroneously decoded as ACELP. Therefore the maximum LTP gain is
limited to 1.2.

All the modes quantize the LSFs using 23 bits, consequently they are
transmitted using the same bits. Therefore the LSFs are independent of the
mode and the mode bit errors can only affect the excitation parameters.
This is particularly attractive for the LSF interpolation and quantization with
first-order moving average prediction. The most significant bits of the gain
parameters are also transmitted using the same bits. However the gain of
each mode is estimated using different criteria. Hence the gain quantizers
of each mode have different dynamic ranges, and mode errors affect the
dequantization of the gain.



346 Multimode Speech Coding

Table 9.14 Transmission bit stream of the hybrid coder

Parameters White noise Harmonic ACELP 6k

Mode 1–2 1–2 1–2

LSF 3–25 3–25 3–25

Gain (2nd subframe) 26–30 26–30 26–28

Gain (1st subframe) – 31–33 –

Pitch – 34–41 –

PPL – 42–48 –

PPS – 49–52 –

Amplitudes 1st subframe – 53–66 –

Amplitudes 2nd subframe – 67–80 –

Table 9.15 Bit stream of 6 kb/s ACELP subframes

Parameters Subframe 1 Subframe 2 Subframe 3 Subframe 4

LTP Delay 29–35 52–58 75–81 98–104

LTP Gain 36–39 59–62 82–85 105–108

Pulse Sign 40 63 86 109

Pulse track 1 41–44 64–67 87–90 110–113

Pulse track 2 45–48 68–71 91–94 114–117

Innovation Gain 49–51 72–74 95–97 118–120

White Noise Excitation Mode Errors

Figure 9.38 illustrates erroneous decoding of white-noise excitation frames
as harmonic and ACELP. It shows that the errors are contained within the
frames which have mode errors. This is because the decoder does not inter-
polate the unvoiced gain at switching. The present gain is used to synthesize
the entire frame when switched from a different mode. However if the next
frame after decoding a noise excitation frame as ACELP is also ACELP, the
LTP memory propagates the errors, similar to the error propagation of CELP
coders [60]. The hybrid coding algorithm has the advantage of limiting the
error propagation, by switching to a different mode, which also refreshes the
LTP memory.

Harmonic Mode Errors

Figure 9.39 illustrates erroneous decoding of harmonic excitation frames as
unvoiced and ACELP. It shows that the errors are contained within the
frames which have mode errors. This is because the decoder reinitializes the
harmonic excitation memories when switched from a different mode, and
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Figure 9.38 Erroneous decoding of white-noise excitation frames: (i) Original
speech, (ii) synthesized speech: A (ACELP), H (harmonic), and N (noise excitation)

use of the previous excitation vector is minimized. However if the next frame
after decoding a harmonic excitation frame as unvoiced is also unvoiced, the
unvoiced overlap and add process spreads the incorrect gain into the next
frame.
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ACELP Mode Errors

Figure 9.40 illustrates erroneous decoding of ACELP frames as unvoiced
and harmonic. In Figure 9.40a the error is contained within the frame which
has the mode error. For the next frame the harmonic mode reinitializes the
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Figure 9.39 Erroneous decoding of harmonic excitation frames, (i) Original speech,
(ii) synthesized speech: A (ACELP), H (harmonic), and N (noise excitation)



Acoustic Noise and Channel Error Performance 349

excitation memories. However in Figure 9.40b, the next frame after decoding
an ACELP frame as harmonic is also harmonic. Hence, the error propagates
into the next frame, due to the harmonic interpolation process.

The LPC filter may propagate the errors, when the filter response is highly
resonant. However the bandwidth expansion of the LPC coefficients ensures
that the LPC impulse response dies away more quickly. Therefore all the mode
errors are localized and the output does not become unstable in the presence
of mode errors. This is mainly due to the independent memory initialization
procedures of the coding algorithm when switching between the modes.
The white-noise excitation mode always sets the previous gain equal to the
present one when switched from a different mode. The harmonic excitation
mostly depends on the received harmonic parameters when switched from a
different mode; only the amplitude quantizer memories are initialized using
the previous excitation vector. The LTP buffer is refreshed, regardless of the
mode, with the latest excitation vector.

9.11.3 Performance Improvement Under Channel Errors

During the experiments described in the preceding sections, the robustness
to mode-bit errors was improved by limiting the LTP gain to 1.2 and using
the same set of bits to transmit the LSFs of all the modes. The encoder and the
decoder cannot synchronize the random number generators at the presence
of mode-bit errors. This affects the performance of the LTP when switched
from white-noise excitation. However the exact content of the white-noise
excitation has no significance and can be represented by any noise excitation
vector. Therefore, the performance of the LTP was also improved by always
reinitializing the LTP buffer to a fixed stored noise excitation vector when
switching to ACELP from the white-noise excitation.

The robustness to mode-bit errors can be further improved by using error
detection and correction techniques. If a mode error is only detected and
not corrected, the concealment techniques based on waveform substitution
can be used to reduce the resulting annoying artifacts [62]. The decoded
parameters and the synthesized waveform may also be used to detect mode
errors. As can be seen in Figures 9.38, 9.39, and 9.40, mode errors generally
result in sudden changes in the waveform shape and the signal level, which
are unusual for speech signals. Moreover certain mode patterns are more
common than the others, e.g. for many speech utterances, ACELP to harmonic
and back to ACELP occur, while the silence segments before and after are
synthesized with the white-noise excitation. The transition from white noise to
harmonic mode is extremely rare, since generally the onsets request ACELP.
Consequently in order to assist in detecting mode errors, one can limit the
possible switching combinations.
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Figure 9.40 Erroneous decoding of ACELP frames, (i) Original speech,
(ii) synthesized speech: A (ACELP), H (harmonic), and N (noise excitation)

9.12 Summary

In this chapter the principle techniques behind an advanced hybrid coding
algorithm, which integrates harmonic coding and waveform coding, have
been presented. The two important design issues are speech classification
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and, when mode-switching, proper coder synchronization. Provided that
these two processing stages are carried out successfully, the quality of
speech produced by a hybrid coding method is of good to toll quality at
around 3.5–5 kb/s (average). Simple informal subjective listening test results
confirm that the hybrid model eliminates the limitations of the existing
single-model-based coders.

The robustness of the hybrid coding algorithm under acoustic noise and
channel error conditions is another important issue which requires significant
research effort. The difficulties specific to hybrid coders are the speech
classification under background noise, and the mode-bit errors due to random
channel errors. Although the classification algorithm is capable of selecting
the best mode under noisy background conditions, there is a significant bias
towards ACELP in the presence of noise compared to clean speech conditions.
This is due to the inability of the white-noise excitation or the harmonic
excitation to encode the corrupted signals. The noisy speech synthesized using
the harmonic mode sounds metallic, which can be improved by introducing
a proper voicing mixture classification when harmonic mode is selected.

The robustness of the hybrid coder to mode errors has been tested by
simulating all the possible mode errors. The coder is capable of isolating
the mode errors and return to normal decoding almost immediately. This is
mainly due to the independent memory reinitialization of the modes when
switched from a different mode.

Finally it is important that each element or coding mode of the hybrid model
is redesigned with the knowledge that the noise, ACELP and harmonic
excitation models will be used during noise (or silence), transitions, and
steady state voiced speech parts respectively. In this case the LPC parameters
of ACELP and harmonic modes will have different vector quantizer tables
which will be trained over transitional and steady state voiced speech only
respectively, thus improving the quantization performance. In addition, using
the LTP in ACELP mode at the onsets may not be necessary. Instead more
pulses with phase spreading may be used to improve quality.
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10
Voice Activity Detection

10.1 Introduction

In voice communications, speech can be characterized as a discontinuous
medium because of the pauses which are a unique feature compared to other
multimedia signals, such as video, audio and data. The regions where voice
information exists are classified as voice-active and the pauses between talk-
spurts are called voice-inactive or silence regions. An example illustrating
active and inactive voice regions for a speech signal is shown in Figure 10.1.

A voice activity detector (VAD) is an algorithm employed to detect the
active and inactive regions of speech. When inactive regions are detected,
transmission is generally stopped and only a general description of the
background information is transmitted. At the decoder end, inactive frames
are then reconstructed by means of comfort noise generation (CNG), which
gives natural background sounds with smooth transitions from talk-spurts
to pauses and vice versa. To enhance the naturalness of the generated back-
ground signal, regular updates of the average information on the background
signal (especially necessary during noisy communication environments) is
transmitted by the comfort noise insertion (CNI) module of the encoder. The
overall structure of the silence compression scheme employing a VAD, CNG,
and CNI is shown in Figure 10.2.

Speech communication systems which operate a VAD for compression
of inactive speech regions provide various benefits especially useful for
bandwidth-limited communication channels. These benefits can be summa-
rized as given in the following list:

• Co-channel interference reduction in cellular communications: It is possible
to suppress co-channel interference in cell-based wireless communication
systems by decreasing transmission power during inactive regions (speech
pauses).

Digital Speech. A. Kondoz
 2004 John Wiley & Sons, Ltd ISBN 0-470-87007-9 (HB)
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Figure 10.2 Overall structure of a speech coding system with silence compression

• Improvement of the soft channel capacity in the code division multiple
access (CDMA) system: The theoretical capacity of a CDMA system is usu-
ally defined by the possible combinations of the spreading code. However,
due to interference from other users, the CDMA capacity is limited to a
value smaller than this theoretical limit, i.e. due to interference from other
users, the error rates received by some users may be too high to enable
accurate decoding. By reducing the transmission power during speech
pauses, the interference on air can be reduced, which may automatically
allow more users on the system, hence achieving an increase in the CDMA
system’s capacity.

• Power-saving for mobile terminals: Mobile terminals do not have to trans-
mit radio signals during pauses. Thus, the battery life time of the terminals
can be extended by conserving power during speech inactive periods.
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• Increase in channel capacity by statistical multiplexing: A channel can be
granted just during talk-spurts and released during pauses. Once granted,
a user occupies a channel until the end of a talk-spurt and releases
it immediately after the last active speech frame. To get the channel
allocation again, the user makes a request at the start of the next talk-spurt.
This way the channel resources can be utilized in a more efficient way
by the statistical multiplexing scheme, which allows a number of users to
communicate at the same time over limited channel resources. Note: in
statistical multiplexing, there is a possibility that there are no free channel
slots when a user makes a request. In this case, the new user may be
rejected after a time-out, which may cause information loss resulting in
some quality degradations.

• Reduction in packet losses when transmitting voice over packet-based
networks: A packet-based system can be overloaded with more pack-
ets than it can handle. The congestion of packet-based systems can be
reduced during voice communication by producing packets only during
active speech regions and cutting out packets for the inactive speech
regions.

• Bit-rate reduction: In addition to the bit-rate reduction achieved by speech
compression techniques, the use of a VAD together with silence compres-
sion (cutting out the inactive speech regions) gives additional reduction in
the bit-rate regardless of speech coders.

The VAD usually produces a binary decision for a given speech segment
(usually 10–20 ms long) indicating either speech presence or absence, which is
quite easy for clean background speech. For example, by checking the energy
level of the input signal, it is possible to obtain a high speech/nonspeech
detection performance. However, in real environments, the input signal may
be mixed with noise characteristics which may be unknown and changing
with time. In some cases where the background noise is significantly high,
the speech may be obscured by this noise. Especially, the unvoiced sounds,
which are important for speech intelligibility, may be misdetected in such
noisy environments. Figure 10.1 shows an example for a noisy speech segment
with vehicle noise of 5 dB signal to noise ratio (SNR). As can be seen from the
figure, some low energy speech parts are fully submerged in noise, making
it very difficult to discriminate these talk-spurts even by visual inspection.
Incorrect classification of these talk-spurts can cause clipped sounds which
may result in significantly degraded speech quality. On the other hand, the
increase in false detection of silence loses the potential benefits of silence
compression. There is a trade-off in VAD performance, maximizing the
detection rate for active speech while minimizing the false detection rate of
inactive speech regions.
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10.2 Standard VAD Methods

In order to exploit the advantages of silence compression, a number of VAD
algorithms have been proposed, some of which have been selected by stan-
dards organizations including ITU-T, ETSI, and TIA/EIA. ITU-T released
G.729 Annex B (G.729B) [1] and G.723.1 Annex A (G.723.1A) [2] as exten-
sions to the 8 kb/s G.729 [3] and 5.3/6.3 kb/s G.723.1 [4] speech coders for
performing discontinuous transmission (DTX). ETSI recommended GSM-FR,
-HR, and -EFR VAD methods for European digital cellular systems [5–7].
Recently, ETSI released two more VADs, adaptive multi-rate VAD option
1 (AMR1) and option 2 (AMR2) [8], with a view to using it in UMTS
(the third generation mobile communications). The North American stan-
dards organisation, TIA/EIA, released two VADs one for IS-96 [9] and the
other for IS-127 [10] and IS-733 [11] (the VADs suggested for IS-127 and
IS-733 have the same structure). Table 10.1 shows standard VADs classi-
fied in terms of the input features mainly consisting of subband energies
and the spectral shape. For example, the TIA/EIA VADs use a small num-
ber of subbands whereas the IS-96 VAD uses the overall signal energy.
The IS-127 and IS-733 VAD, on the other hand, decomposes the input sig-
nal into two subbands only. Traditionally, ETSI VAD methods have been
based on a more accurate spectral shape of the input signal. The reason
behind this is that the energy of the predictive coding error increases when
the spectral shapes between the background and input signal mismatch
(i.e. when speech active). However, in the recent standard for AMR, ETSI
adopted two kinds of VAD algorithms both of which are based on the
spectral subband energies rather than the more accurate spectral shape.
The ITU-T VAD standards, G.729B and G.723.1A, conduct the detection
using four different features including both the spectral shape and subband
energies.

Table 10.1 Classification of standard VAD
methods depending on input features; the val-
ues in parentheses indicate the number of spec-
tral subbands

Main features VAD

Spectral shape GSM-FR, GSM-HR, GSM-EFR

Sub-band energies IS-96 (1), IS-127 (2), IS-733 (2)

AMR1 (9), AMR2 (16)

Others G.729B, G.723.1A
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10.2.1 ITU-T G.729B/G.723.1A VAD

As an extension to the G.729 speech coder, ITU-T SG16 released G.729 Annex
B in order to support DTX by means of VAD, CNI, and CNG. G.729B conducts
a VAD decision every frame of 10 ms, using four different parameters:

• a full-band energy difference, �Ef = Ef − Ef

• a low-band energy difference, �El = El − El
• a spectral distortion, �LSF = ∑9

i=0(LSFi − LSFi)
2

• a zero-crossing rate difference, �ZC = ZC − ZC

where Ef , El, LSFi, and ZC are the full-band energy, low-band energy, ith

line spectral frequency, and zero-crossing rate of the input signal. Ef , El,
LSFi, and ZC are the noise characterizing parameters updated using the
background noise.

The block diagram of G.729B VAD is shown in Figure 10.3. The input
parameters for the VAD can be obtained from the input signal or from
the intermediate values of the speech encoder. Subsequently, the difference
parameters, �Ef , �El, �LSF, and �ZC, are computed from the input and
noise parameters. A decision of voice activity is conducted over a four-
dimensional hyper-space, based on a region classification technique, followed
by a hangover scheme. The noise parameters are updated based on a first
order autoregressive (AR) scheme, if the full-band energy difference is less
than a certain fixed threshold. ITU-T G.723.1A VAD has a structure similar
to G.729B VAD.

10.2.2 ETSI GSM-FR/HR/EFR VAD

The VAD algorithms of ETSI GSM-FR, -HR, and -EFR have a common struc-
ture, in which the predictive residual energy is compared with an adaptive
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Figure 10.3 Block diagram of ITU-T G.729B VAD
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threshold. The predictive residual energy is computed using the current and
smoothed autocorrelation values which describe the spectral characteristics
of the signal. The assumption is that if the signal is background noise only,
which is fairly stationary, the average spectral shape will be similar to the
current frame’s shape and hence result in smaller residual signal energy.
The threshold for VAD decision is updated during noise-only regions using
the most recent noise signals in order to reflect up-to-date noise characteristics.
A block diagram of the GSM-FR/HR/EFR VAD is shown in Figure 10.4.

10.2.3 ETSI AMR VAD

AMR1 decomposes the input signal into nine nonuniform subbands using
filter banks where lower frequency bands have smaller bandwidths and
higher frequency bands have larger bandwidths. Then it calculates each
subband energy followed by its corresponding SNR estimate. The energy of
the background noise used in calculating the SNR is computed by an adaptive
method based on a first-order AR-model together with internal VAD logic.
Finally, VAD decision is conducted by comparing the sum of the subband
SNRs with an adaptive threshold, followed by a hangover. The block diagram
of AMR1 is shown in Figure 10.5.

AMR2 has a structure similar to AMR1 in that VAD is performed using
the subband energies together with the background noise energy. However,
AMR2 transforms the input signal into the frequency domain using FFT,
instead of the filter bank used in AMR1, and then calculates each subband
energy in which the number of bands is 16 with a nonlinear scale in band
grouping. Subsequently, SNRs for each subband are calculated using the input
and the background noise spectra. The background noise energy for each band
is adapted during noise frames using a first-order AR-based scheme. In order
to prevent being over sensitive to nonstationary background noise conditions,
AMR2 increases the threshold for final VAD decision for highly fluctuating
signals, measured by the variance of their instantaneous frame-to-frame SNRs.
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Furthermore, noise adaptation may not be accurately performed by measur-
ing the spectral deviation when subband energies fluctuate rapidly. Thus,
AMR2 changes the VAD threshold in an adaptive way together with the vari-
ation of burst and hangover counts. The hangover control is performed by
measuring the peak-to-average SNR, in which the average SNR is calculated
using AR-adaptation with the increased instantaneous SNR. In other words,
for an increase of the peak-to-average SNR, it decreases the hangover and burst
counts while increasing the VAD threshold. The block diagram of AMR2 is
shown in Figure 10.6.

10.2.4 TIA/EIA IS-127/733 VAD

CDMA-based digital cellular systems have a natural structure for incorporat-
ing VAD, called a rate determination algorithm (RDA), which gives substantial
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improvement in channel capacity by controlling the radio transmission power
to reduce co-channel interference. TIA/EIA released two kinds of RDA for IS-
96 and IS-127, called 8 kb/s Qualcomm code-excited linear prediction (QCELP)
and enhanced variable rate codec (EVRC), respectively. In the North Ameri-
can CDMA standard, IS-127 RDA supports three rates: 1, 1/2, and 1/8. Active
speech is encoded in 1 or 1/2 rate and background noise is encoded in 1/8
rate. The RDA of IS-733, called 13 kb/s QCELP, is the same as IS-127.

As input parameters, IS-127 RDA uses two subband energies with the
long-term prediction gain. Firstly, it calculates the smoothed subband energy
using a first-order AR-model. Subsequently, the signal and noise energies for
each subband are adapted depending on the long-term prediction gain. In
other words, the signal energy is actively adapted to the current input if the
prediction gain is relatively high. On the other hand, if the gain is relatively
low, it increases the noise adaptation rate. Using the two subband energies
of the signal and noise, each subband SNR is calculated. The final rate is
determined by comparing the SNRs with adaptive thresholds depending on
the level of background noise and the SNR of the previous frame, followed
by a hangover. The block diagram of IS-127 RDA is shown in Figure 10.7.

10.2.5 Performance Comparison of VADs

The five standard VAD algorithms have been evaluated in terms of detection
error rates for speech and silence. The test data was 96 seconds of speech,
filtered by the modified IRS, and then mixed with vehicle and babble noises
of 5, 10, 15, and 25 dB SNR. The active and inactive regions of the speech
material were marked manually. The proportions of the inactive and active
regions of the speech material were 0.43 and 0.57, respectively. The VAD
decision is carried out every 10 ms in the cases of G.729B and AMR2, and
every 20 ms in GSM-EFR, AMR1 and IS-127. With slight modification to
the AMR2 source code, it is possible to obtain 10 ms results because AMR2
basically conducts the detection every 10 ms and then returns 20 ms results
using a logical combination of the two 10 ms results. In handling the multiple
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Figure 10.7 Block diagram of TIA/EIA IS-127 RDA
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rates of IS-127, the upper two rates, 1 and 1/2, have been assumed to be voice
active and the lowest rate, 1/8, is treated as voice inactive.

Performance in a vehicle noise environment are shown in Figures 10.8
and 10.9, and performance for babble noise are shown in Figures 10.10
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Figure 10.8 Comparison of speech detection error rates against various vehicle
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and 10.11. G.729B exhibits the worst performance compared with other meth-
ods, especially for low SNRs. G.729B produces high speech detection errors,
which can cause severe clipping of speech. IS-127 exhibits relatively high error
rates for speech detection compared with those of ETSI VADs. However, it
produces quite reasonable performances in silence detection for babble noisy
speech. ETSI VAD methods, i.e. GSM-EFR, AMR1, and AMR2, exhibit similar
performances in speech detection, while giving quite variable performances
in silence detection. GSM-EFR produces the most desirable performances
for relatively high SNRs, i.e. greater than 15 dB. However, the error rates of
silence detection increase substantially for decreasing SNR. AMR2 produces
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Figure 10.12 Comparison of VAD results over vehicle noise of 15 dB SNR: (a) noisy
input speech, (b) clean speech, (c) G.729B, (d) IS-127, (e) GSM-EFR, (f) AMR1, and
(g) AMR2
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Figure 10.13 Comparison of VAD results over babble noise of 15 dB SNR: (a) noisy
input speech, (b) clean speech, (c) G.729B, (d) IS-127, (e) GSM-EFR, (f) AMR1, and
(g) AMR2

relatively consistent results regardless of the noise levels in silence detection
for vehicle noisy speech. The performance of AMR1 is between GSM-EFR and
AMR2. The characteristics of frame-wise voice activity decisions for various
noise sources and levels are shown in Figures 10.12 and 10.13.

10.3 Likelihood-Ratio-Based VAD

Sohn et al. have proposed a novel method which, unlike traditional VAD
methods, is based on a statistical model. They report that it can produce a
high detection accuracy [12]. The reason for the high performance is attributed
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to the adoption of Ephraim and Malah’s noise suppression rules [13] for the
voice activity decision rules.

A voice activity decision can be considered as a test of hypotheses: H0 and
H1, which indicate speech absence and presence, respectively. Assuming that
each spectral component of speech and noise has complex Gaussian distri-
bution [13], in which the noise is additive and uncorrelated with speech, the
conditional probability density functions (PDF) of a noisy spectral component
Yk, given H0,k and H1,k, are:

p(Yk|H0,k) = 1
πλN,k

exp

{
−|Yk|2

λN,k

}
(10.1)

p(Yk|H1,k) = 1
π(λN,k + λX,k)

exp

{
− |Yk|2

λN,k + λX,k

}
(10.2)

where k indicates the spectral bin index, and λN,k and λX,k denote the variances
of the noise and speech spectra, respectively.

The likelihood ratio (LR) of the kth spectral bin, �k, is defined from the
above two PDFs as [12]:

�k = p(Yk|H1,k)

p(Yk|H0,k)
= 1

1 + ξk
exp

{
(1 + γk)ξk

1 + ξk

}
(10.3)

where γk and ξk are the a posteriori and a priori SNRs defined as, γk =
|Yk|2/λN,k − 1 and ξk = λX,k/λN,k. Note that the definition of the a poste-
riori SNR is slightly different from the original one, γk = |Yk|2/λN,k [13].
The noise variance is assumed to be known through noise adaptation (see
Section 10.3.2). However, the variance of the speech is unknown, thus the a
priori SNR of the nth frame, ξ (n)

k , is estimated using the decision-directed (DD)
method [13] as:

ξ̂
(n)

k = α

∣∣∣X̂(n−1)

k

∣∣∣2

λ
(n−1)

N,k

+ (1 − α)MAX{γ (n)

k , 0} (10.4)

where α is a weighting term, e.g. 0.98, and the clean speech spectral amplitude,
|X̂k|, is estimated using the minimum mean square error of the log spectral
amplitude estimator [14]. The decision about the voice activity is performed
by the geometric mean of the �k over all spectral bins as:

� = exp

{
1
K

K∑
k=1

log �k

}
(10.5)

where K denotes the number of spectral bins.
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The a posteriori SNR γk fluctuates highly from frame to frame because of
the high fluctuation of the short-time spectral amplitude |Yk|. On the other
hand, the a priori SNR ξ̂k changes slowly due to the smoothing effect. As
the value of α increases, ξ̂k becomes smoother. The variations of γk and
ξ̂k balance each other in the calculation of �k and, consequently, result in
enhanced performance for the VAD. The DD estimator for the a priori SNR
is therefore useful not only for avoiding the musical noise phenomenon in
speech enhancement [15], but also for reducing the error rate in voice activity
detection.

10.3.1 Analysis and Improvement of the Likelihood Ratio Method

The behaviour of the LR in equation (10.3) with respect to the a priori and
a posteriori SNRs, is shown in Figure 10.14. The ML estimator [12] results
in lower performance in comparison with the DD estimator because of the
inherent high-fluctuation of the a posteriori SNR. The LR employing the DD
estimator has the following properties:

• If the a posteriori SNR is very high, i.e. γk � 1, and the range of the a priori
SNR is limited, the LR becomes very high, i.e. �k � 1.

• If the a posteriori SNR is low, i.e. γk < 1, the a priori SNR becomes a key
parameter in the calculation of the LR.
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Figure 10.14 Likelihood ratio vs a priori SNR vs a posteriori SNR (the solid lines from
the top represent a posteriori SNRs of 15, 10, 5, 0, −5, −10, and −15 dB, respectively)
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In practice, the threshold of the LR is set between 0.2 dB and 0.8 dB, and
both the a posteriori and the a priori SNRs are bounded between −15 dB
and 15 dB.

Assuming that the noise characteristics change slowly, delay in estimation
of the noise variance λ

(n−1)

N,k in equation (10.4) does not seriously affect the a

priori SNR ξ̂
(n)

k . However, the spectral amplitude of the speech signal may
change abruptly, particularly in onset and offset regions, in which the power
of the spectral bins can increase and decrease rapidly, respectively. At the
offset region, γk can be low but ξ̂k can be much higher than γk due to the delay
in |X̂(n−1)

k |2 as given in equation (10.4). Thus �k becomes too low, according to
the second property above, and, consequently, � may become lower than the
threshold of VAD. On the other hand, the delay rarely causes a problem at the
onset regions, according to the first property above, as γ

(n)

k in equation (10.3)
is usually large enough.

It is possible to consider an adaptive weighting factor in the estimation
of the a priori SNR in equation (10.4). In other words, a lower α can be
assigned for the active region, and a higher α for the inactive region. When
a low α is assigned at the offset region, it reduces the effect of the delay in
equation (10.4), producing a lower ξ̂k, and therefore may prevent the abrupt
decay of �k. However, it is not easy to design a generalized adaptive rule
that will result in good performance over various kinds of speech and noise
signals. Instead, Cho [16, 17] has suggested a smoothed likelihood ratio (SLR)
�

(n)

k which is defined as

�
(n)

k = exp
{
κ log �

(n−1)

k + (1 − κ) log �
(n)

k

}
(10.6)

where κ is a smoothing factor and �
(n)

k is defined in equation (10.3) for the nth

frame. The decision of the voice activity is finally carried out by computing,

�(n) = exp

{
1
K

K∑
k=1

log �
(n)

k

}
(10.7)

and comparing it against a threshold. An nth input frame is classified
as voice-active if �(n) is greater than a threshold and voice-inactive
otherwise.

Examples of the LR and the SLR over a segment of speech are shown in
Figure 10.15. The SLR seems to overcome the problem outlined for the LR. As
shown in Figure 10.15b, the SLR is relatively higher than the LR at the offset
regions. The comparison over inactive frames is also shown in Figure 10.15c,
which indicates that the SLR fluctuates less than the LR.
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Figure 10.15 The LR (solid line) and SLR (dotted line) of a segment of vehicle noise
signals of 5 dB SNR; the dotted horizontal-line indicates the VAD threshold and the
boxed regions in (a) are enlarged in figures (b) and (c)
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10.3.2 Noise Estimation Based on SLR

Depending on the characteristics of the noise source, the short-time spectral
amplitudes of the noise signal can fluctuate strongly from frame to frame. In
order to cope with time-varying noise signals, the variance of the noise spec-
trum is adapted to the current input signal by a soft decision-based method.
The speech absence probability (SAP) of the kth spectral bin, p(H0,k|Yk), can
be calculated by Bayes’ rule as:

p(H0,k|Yk) = p(H0,k)p(Yk|H0,k)

p(H0,k)p(Yk|H0,k) + p(H1,k)p(Yk|H1,k)
= 1

1 + p(H1,k)

p(H0,k)
�k

(10.8)

where p(H1,k) = 1 − p(H0,k), and the unknown a priori speech absence proba-
bility (PSAP), p(H0,k), is estimated in an adaptive manner given by:

p̂(H(n)

0,k ) = MIN{MAX{βp̂(H(n−1)

0,k ) + (1 − β)p(H(n)

0,k |Y(n)

k ), H(L)
0 }, H(U)

0 } (10.9)

where β is a smoothing factor, e.g. 0.65. The lower and upper limits, H(L)
0 and

H(U)
0 , of the PSAP are determined through experiments, e.g. 0.2 and 0.8. Note

that, for SLR, �k is applied to the calculation of the SAP instead of LR, �k.
The variance of the noise spectrum of the kth spectral component in the nth

frame, λ
(n)

N,k, is updated in a recursive way as:

λ
(n)

N,k = ηλ
(n−1)

N,k + (1 − η)E(|N(n)

k |2|Y(n)

k ) (10.10)

where η is a smoothing factor, e.g. 0.95. The expected noise power-spectrum
E(|N(n)

k |2|Y(n)

k ) is estimated by means of a soft-decision technique [18] as:

E(|N(n)

k |2|Y(n)

k ) = E(|N(n)

k |2|H0,k)p(H0,k|Y(n)

k ) + E(|N(n)

k |2|H1,k)p(H1,k|Y(n)

k )

= |Y(n)

k |2p(H0,k|Y(n)

k ) + λ
(n−1)

N,k p(H1,k|Y(n)

k ) (10.11)

where p(H1,k|Y(n)

k ) = 1 − p(H0,k|Y(n)

k ). During some tests, it is observed that
SLR-based adaptation is useful for the estimation of the noise spectra with
high variations, such as a babble noise source.

10.3.3 Comparison

The effect of the smoothing factor κ in equation (10.6) is shown in Figure 10.16.
Note that the case of κ = 0 reduces equation (10.6) to the LR-based method. It
is obvious from the results that the detection accuracy increases with increase
in κ , at the offset regions without serious degradations in the performance
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Figure 10.16 Analysis of the smoothing factor κ of the SLR with respect to detection
error rates; the noise level is 10 dB SNR and the noise sources are (a) vehicle and
(b) babble; SAS indicates speech active sections

at the onset regions for both vehicle and babble noisy signals. In the case
of vehicle noisy signals, as κ increases, the false alarm rate in the inactive
frames increases gradually for κ < 0.9, and then substantially for κ > 0.9.
However, in the case of babble noisy signals, it can be seen that the error rate
decreases gradually as κ increases for κ < 0.9, and then increases like the case
of the vehicle noisy signal, for κ > 0.9. Therefore, if κ is selected properly,
SLR-based method can give significantly improved performances over the
LR-based method.

Under various noise levels and sources, the performance of VAD methods
such as SLR-based VAD [16, 17], ITU-T G.729 annex B VAD (G.729B) [1], ETSI
AMR VAD option 2 (AMR2) [8], and LR-based VAD with and without the
hangover scheme [12] have been compared as shown in Table 10.2. Original
AMR2 produces the detection result every 20 ms by the logical OR operation
of two 10 ms detection results, thus the 10 ms result can be obtained easily
by slight modification of the original code. Taking into account the results
in Figure 10.16, κ = 0.9 is selected for SLR-based VAD. G.729B generates
considerably high error rates at the active regions in comparison with other
methods. It is important to note that frequent detection errors of speech
frames lead to serious degradation in speech quality, thus the error rate of
speech frame detection should be as low as possible. LR-based VAD gives
consistently superior performance to G.729B, but VAD without the hangover
scheme produces relatively high detection error rates in the active regions.
The hangover scheme can considerably alleviate this problem, but the speech
detection error rate is still somewhat high in comparison with the results of
both SLR-based VAD and AMR2. The performance of SLR-based VAD and
AMR2 seems to be comparable.
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Table 10.2 Comparison of speech and silence detection error rates of SLR-based,
LR-based, AMR2, and G.729B VADs

Detection error rate (%)

SNR Vehicle noise Babble noise

(dB) VAD Inactive Onset Offset SAS Inactive Onset Offset SAS

5 SLR 13.87 6.42 7.51 0.00 29.40 2.43 4.93 0.52

LR 4.49 12.88 30.92 0.00 46.25 6.90 27.77 2.49

LR + HO∗ 5.33 12.05 12.86 0.00 46.50 4.52 11.28 1.48

AMR2 18.64 9.13 0.00 0.00 41.66 4.75 0.26 0.00

G.729B 8.58 70.23 60.21 5.14 48.17 56.79 45.88 5.12

15 SLR 17.12 3.48 0.73 0.00 29.20 2.05 0.00 0.00

LR 5.07 5.34 19.85 0.00 41.76 3.70 16.83 0.08

LR + HO 7.52 4.75 6.80 0.00 42.67 3.32 4.18 0.00

AMR2 20.15 3.78 0.00 0.00 51.53 2.19 0.26 0.00

G.729B 8.57 31.19 39.41 0.00 49.79 25.90 32.73 0.00

25 SLR 23.01 2.82 0.00 0.00 30.77 1.54 0.00 0.00

LR 6.64 3.29 11.79 0.00 34.38 1.54 8.75 0.00

LR + HO 10.94 1.56 2.75 0.00 36.45 0.89 1.59 0.00

AMR2 20.28 2.68 0.00 0.00 20.61 2.31 0.12 0.00

G.729B 8.85 12.75 19.06 0.00 44.30 11.34 15.49 0.00

LR + HO means LR-based VAD with the hangover scheme

10.4 Summary

In this chapter, standard VAD techniques as well as LR- and SLR-based VAD
have been reviewed. Through performance evaluation of the standard VAD
methods, including G.729B, GSM-EFR, AMR1, AMR2, and IS-127, it has been
shown that both AMR1 and AMR2 produce relatively high and consistent
performances over various noise sources and levels. On the other hand,
statistical-model-based LR VAD, performs well but may have a problem at
the offset regions of speech signals which may be solved with a hangover
in the decision making. The SLR method newly-proposed by Cho [16, 17]
has overcome this problem without the need for a hangover. SLR VAD has
comparable performance to AMR2.
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11
Speech Enhancement

11.1 Introduction

In voice communications, speech signals can be contaminated by environmen-
tal noise and, as a result, the communication quality can be affected making
the speech less intelligible. Furthermore, compression of the noisy speech
with a low bit-rate vocoder may result in considerable quality degradation
due to frequent estimation errors of speech production model parameters
required by the vocoder. This problem can be reduced significantly by speech
enhancement (or noise cancellation), which may enable more pleasant voice
communication by suppressing the noise components in input signals.

Generally, it is assumed that the noisy speech signal is formed additively
by speech and noise signals in which the noise is generated by environ-
mental sources such as vehicles, street noise, babble, etc. Therefore, in real
environments, complete noise cancellation is not feasible as it is not possible
to completely track varying noise types and characteristics that change with
time. However, by assuming that the noise characteristics change slowly in
comparison with speech, it is possible to achieve significant reduction in
the background noise levels producing more pleasant and intelligible speech
quality. Speech enhancement techniques can help the speech model param-
eter extraction process used in low bit-rate vocoders and hence they are
becoming an integral part of low bit-rate speech coding systems.

Speech enhancement techniques can be classified, depending on the number
of available microphones, into single and multiple channels. In the case of
a single channel, the reference noise is not available explicitly. The noise
statistics are typically characterized during voice-inactive regions between
talk spurts using a voice activity detector. On the other hand, when dual
channels are available, one microphone senses the noisy speech, but the
other can be used mainly to catch the noise. By eliminating the noise factor
collected by the second microphone from the first, it would be possible to

Digital Speech. A. Kondoz
 2004 John Wiley & Sons, Ltd ISBN 0-470-87007-9 (HB)
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cancel the noise more efficiently. However, in real environments, the multiple
microphone scheme can be limited in its use. In the following, we consider
the single microphone case only.

Over the last three decades, many kinds of speech enhancement techniques
have been proposed [1–4], mostly based on transform domain techniques,
adaptive filtering, and model-based methods. The transform-based technique
transforms the time-domain signal into other domains, suppresses noise com-
ponents, and then applies the corresponding inverse transform to reconstruct
enhanced speech signals. Discrete Fourier transform (DFT), discrete cosine
transform (DCT), Karhunen–Loève transform (KLT), and wavelet trans-
form (WT) are widely-known transform methods. DFT-based techniques
have been intensively investigated based on short-time spectral amplitudes
(STSA). KLT-based techniques, called signal subspace-based methods [5],
decomposes the space into signal (or speech) and noise subspaces by means
of eigen decomposition, and then suppresses the noise component in the
eigenvalues. DCT-based techniques [6, 7] are of lower computational com-
plexity and higher frequency resolution than DFT-based methods. It is also
possible to consider WT-based methods in order to simultaneously exploit the
time and frequency characteristics of noisy speech signals. Adaptive filtering,
on the other hand, cancels the noise using adaptive filters such as the Kalman
filter. A Kalman filter models noisy speech signals in terms of state space
and observation equations, which represent the speech production process
and the noise addition model together with channel distortion, respectively
[4]. Kalman filters normally assume a white Gaussian noise distribution;
however, Gibson et al. proposed a generalization of Kalman-filtering over
coloured noise signals [8, 9]. Finally, model-based techniques classify the
noisy signal using an a priori speech model, such as hidden Markov and
voiced/unvoiced models, and then conducts the enhancement depending
on classified speech models [2]. This method can be useful for improving
noise reduction performance for various kinds of speech signals. However,
it requires extra training to build the model with intensive computation. In
addition, it may exhibit model selection errors which cause significant speech
quality degradation. Fundamentally, it is not easy to handle complicated
speech signals with a finite number of speech models.

Amongst the speech enhancement techniques, DFT (or STSA)-based meth-
ods have been well investigated in the forms of spectral subtraction, Wiener
filtering, maximum likelihood-STSA estimation, and minimum mean square
error STSA estimation. The reason for the popularity of STSA-based speech
enhancement is due not only to its computational simplicity but also to recent
technical advances in this technique producing significant speech quality
improvement. In the following section, details of some of the most used
STSA-based speech enhancement techniques are reviewed.
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11.2 Review of STSA-based Speech Enhancement

Assuming that the noise d(n) is additive to the speech signal x(n), the noisy
speech y(n) can be written as,

y(n) = x(n) + d(n), for 0 ≤ n ≤ K − 1 (11.1)

where n is the time index. The objective of speech enhancement is to find
the enhanced speech x̂(n) given y(n), with the assumption that d(n) is
uncorrelated with x(n). The time-domain signals can be transformed to the
frequency domain as,

Yk = Xk + Dk, for 0 ≤ k ≤ K − 1 (11.2)

where Yk, Xk, and Dk denote the short-time DFT of y(n), x(n), and d(n),
respectively. The STSA-based speech enhancement filters out the noise by
modifying the spectral amplitudes of Yk in equation (11.2). Therefore, the
enhanced spectrum X̂k can be written in terms of the modification factor
(gain) Gk and the noisy spectrum Yk as,

X̂k = GkYk, for 0 ≤ Gk ≤ 1 (11.3)

The gain Gk is a function of a posteriori SNR,

γk ≡ |Yk|2
E(|Dk|2)

(11.4)

and a priori SNR,

ξk ≡ E(|Xk|2)
E(|Dk|2)

(11.5)

where E(|Dk|2) and E(|Xk|2) are the statistical variances of the kth spectral
components of the noise and the speech, respectively. The function definition
of the gain Gk depends on specific enhancement methods. The a posteriori SNR
γk in equation (11.4) can be obtained easily as Yk is the input noisy spectrum
and E(|Dk|2) can be obtained through a noise adaptation procedure discussed
in Section 11.3. However, the speech variance E(|Xk|2) for the estimation of
ξk in equation (11.5) is not available. As a solution, Ephraim and Malah [10]
proposed the decision-directed (DD) method given by,

ξ̂
(t)
k = α

|X̂(t−1)|2
E(|D(t)

k |2)
+ (1 − α)MAX(γ

(t)
k − 1, 0) (11.6)

where 0 ≤ α < 1 and t is the frame index.



382 Speech Enhancement

Window

z−1

y(n) |Yk|

∠Yk

Gk E(|Dk|
2)

|X̂k|

|X̂k
(t−1)|

x̂(n) Overlap
& Add

DFT

DFT−1

Gain
Estimate

Noise
Adaptation×

Figure 11.1 Block diagram of general STSA-based speech enhancement method

The main aim of speech enhancement can be stated as an optimization
problem, where the residual noise is minimized while maintaining the speech
quality. The optimization process therefore requires a trade-off between noise
reduction and speech quality. For example, over-estimation of the noise
statistics may degrade the speech quality or intelligibility. On the other hand,
estimation of noise may not be accurate, leading to considerable residual
noise. The most typical residual noise in speech enhancement is musical
noise, also called tonal noise, which is composed of narrowband signals
appearing and disappearing with time-varying amplitudes and frequencies.

The overall block diagram of a generalized STSA-based speech enhance-
ment method is shown in Figure 11.1. The noisy speech, y(n), is first converted
into STSA, |Yk|, by a DFT with windowing. The enhanced spectral amplitude,
|X̂k|, is estimated by multiplying the noisy signal spectral components, Yk,
with their corresponding estimated gains, Gk. Enhanced speech, x̂(n), is then
reconstructed by applying the inverse DFT to the enhanced STSA, |X̂k|, with
the noisy speech phase, � Yk, followed by an appropriate overlap-and-add
procedure to compensate for the window effect and to alleviate abrupt sig-
nal changes between two consecutive frames. The most critical part of this
process is the accurate estimation of the gains, Gk, which is discussed next.

11.2.1 Spectral Subtraction

The noisy spectrum Yk in equation (11.2) can be converted to the power
spectrum as,

|Yk|2 = |Xk|2 + |Dk|2 + X∗
k Dk + XkD∗

k (11.7)

where X∗
k and D∗

k denote the complex conjugates of Xk and Dk, respectively.
In order to estimate |Xk|2 in equation (11.7), the statistically expected values
are applied since |Dk|2, X∗

k Dk, and XkD∗
k are not available. We therefore get,

|Yk|2 = |X̂k|2 + E(|Dk|2) + E(X∗
k Dk) + E(XkD∗

k) (11.8)
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where E(·) is the ensemble average and |X̂k|2 is the enhanced power spectrum.
The expected noise E(|Dk|2) can be estimated by a noise adaptation procedure
as shown in Section 11.3. Due to the assumption that x(n) is uncorrelated with
d(n), E(X∗

k Dk) = 0 and E(XkD∗
k) = 0. Thus, equation (11.8) can be rewritten as,

|Yk|2 = |X̂k|2 + E(|Dk|2) (11.9)

The enhanced power spectrum |X̂k|2 can be estimated by subtracting E(|Dk|2)
from |Yk|2, which is called power spectral subtraction.

The spectral power subtraction can be generalized with an arbitrary spectral
order, called generalized spectral subtraction (GSS), as,

|Yk|ν = |X̂k|ν + E(|Dk|ν) (11.10)

where ν is the spectral order. In the cases of ν = 1 and ν = 2, GSS in
equation (11.10) can be reduced to the magnitude and power spectral sub-
tractions, respectively.

In practice, GSS-based speech enhancement may exhibit severe musical
noise due to the high fluctuation of the STSA of noisy signals. In some
cases the estimated noise magnitude can be larger than the input spectral
magnitude, where the enhanced spectral magnitudes are clamped to zero in
order to prevent the spectral magnitude from being negative. The clamping
which happens irregularly with frequency and time leads to producing the
sound of musical tones.

Berouti et al. [11] proposed a method for alleviating the musical noise
phenomenon, where |X̃k|ν = |Yk|ν − αE(|Dk|ν) and Berouti’s GSS (GBSS) is
given by,

|X̂k|ν =
{

|X̃k|ν ; if |X̃k|ν > βE(|Dk|ν)
βE(|Dk|ν) ; otherwise

(11.11)

where α and β are the spectral over-subtraction and floor factors, respectively,
with α ≥ 1 and 0 ≤ β ≤ 1. Note that GBSS reduces to GSS when α = 1 and
β = 0, and to Power Spectral Subtraction (PSS) if ν = 2, α = 1, and β = 0.
GBSS is capable of reducing the overall residual noise level as well as typical
musical noises by appropriately adjusting α and β. The GBSS gain G(GBSS)

k
becomes,

G(GBSS)

k =




[
1 − α

(
1
γk

) ν
2
] 1

ν

; if γk
ν
2 > α + β

β
1
ν

1√
γk

; otherwise

(11.12)
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The noise floor factor β contributes to the reduction of musical noise sounds.
It has the effect of converting the narrowband musical noise into a wider
band noise. Although higher β values give less musical noise, if β is set too
high it may result in an increase of the level of other artifacts of residual
noise. The over-subtraction factor, α, is useful for reducing the overall level of
residual noise. Higher α values give lower levels of residual noise. However,
too high α values may cause distortion in perceived speech quality. Through
experiments, it is found that GBSS with ν = 2, α = 4 ∼ 8, and β = 0.1 give
a moderate level of musical noise reduction while maintaining the perceived
speech quality.

In GBSS, both spectral over-subtraction and floor factors are fixed to
constant values. However, each set of parameters exhibits different noise
reduction performances depending on the selection of these two factors. There
are approaches to obtain the optimal factors based on the psycho-acoustic
model and a parametric formulation. In the psycho-acoustic approach, both α

and β change each frame depending on the psychoacoustic masking threshold
for each spectral component [12]. In the parametric formulation, α is derived
using the MMSE-based metric [13].

11.2.2 Maximum-likelihood Spectral Amplitude Estimation

In DFT-based speech enhancement, given Yk = Xk+Dk, the optimum estimate
of the speech magnitude |Xk| is obtained from the noisy spectrum Yk, in which
Xk = |Xk| exp (jθk) where θk is the phase of Xk. Assuming that the noise Dk
has complex Gaussian distribution, the probability density function (PDF) of
Yk conditioned over |Xk| and θk is,

p(Yk| |Xk|, θk) = 1
πE(|Dk|2)

exp

{
−|Yk|2 − 2|Xk|Re(e−jθkYk) + |Xk|2

E(|Dk|2)

}
(11.13)

McAulay [14] has shown that the maximum likelihood (ML) estimate of |Xk|
can be obtained from the derivative of PDF with respect to |Xk|, where the
ML estimate |X̂k| is given by,

|X̂k| = 1
2

(
|Yk| +

√
|Yk|2 − E(|Dk|2)

)
(11.14)

which can be written in terms of the gain as,

G(ML)

k = 1
2

+ 1
2

√
1 − 1

γk
(11.15)
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11.2.3 Wiener Filtering

The Wiener filter (WF) is a minimum mean square error (MMSE) estimate
of a desired signal in the time domain [1, 4]. Given a noisy signal y(n), for
0 ≤ n ≤ N − 1, the Wiener filter produces the MMSE estimate x̂(n) of speech
x(n) as,


x̂(0)

x̂(1)
...

x̂(N − 1)




︸ ︷︷ ︸
x̂

=




y(0) y(−1) · · · y(1 − P)

y(1) y(0) · · · y(2 − P)

· · · · · · · · · · · ·
y(N − 1) y(N − 2) · · · y(N − P)




︸ ︷︷ ︸
Y




w0
w1
...

wP−1




︸ ︷︷ ︸
w

(11.16)
where wk are the filter coefficients for 0 ≤ k ≤ P − 1 with the filter order P.
Equation (11.16) can be rewritten in the algebraic form as,

x̂ = Yw (11.17)

The Wiener filter error signal e is the difference between the desired and
estimated speech signals given by,

e = x − x̂ (11.18)

The error metric ε is defined as,

ε = eTe (11.19)

= (x − Yw)T(x − Yw)

= xTx − wTYTx − xTYw − wTYTYw

The filter coefficients w are derived by setting the derivative of ε to zero with
respect to w,

∂ε

∂w
= −2(xTY − wTyTY) = 0 (11.20)

Then, the optimal w is given by,

w = (YTY)−1YTx (11.21)

in which YTY and YTx are the autocorrelation matrix Ryy of y(n) and
the cross-correlation vector ryx between y(n) and x(n), respectively. Thus,
equation (11.21) can be written as,

w = R−1
yy ryx (11.22)
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Note that because of the assumption that the speech is uncorrelated with
noise, Ryy = Rxx + Rdd and ryx = rxx. Thus, equation (11.22) becomes,

w = (Rxx + Rdd)
−1rxx (11.23)

Equation (11.23) can be interpreted in the frequency domain as,

G(WF)

k = E(|Xk|2)
E(|Xk|2) + E(|Dk|2)

= ξk

1 + ξk
(11.24)

Note that the Wiener filter gain G(WF)

k in equation (11.24) is defined in terms
of the a priori SNR ξk only.

11.2.4 MMSE Spectral Amplitude Estimation

The Wiener filter is a time-domain MMSE estimation while McAulay’s
method is a frequency-domain ML estimation technique. Thus, it is possible to
consider the MMSE estimate of the spectral amplitude [10], which minimizes

ε = (|Xk| − |X̂k|)2 (11.25)

The MMSE-STSA estimate, |X̂k| given Yk, is,

|X̂k| = E(|Xk| |Yk)

=

∫ ∞

0

∫ 2π

0
αkp(Yk|αk, θk)p(αk, θk)dθkdαk∫ ∞

0

∫ 2π

0
p(Yk|αk, θk)p(αk, θk)dθkdαk

(11.26)

where,

p(Yk|αk, θk) = 1
πE(|Dk|2)

exp

{
−|Yk − αkejθk |2

E(|Dk|2)

}
(11.27)

and,

p(αk, θk) = αk

πE(|Xk|2)
exp

{
− α2

k

E(|Xk|2)

}
(11.28)
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in which αk and θk are dummy variables for the spectral amplitude and phase,
respectively, of Xk. The amplitude has the Rayleigh distribution given by,

p(αk) = 2αk

E(|Xk|2)
exp

{
− α2

k

E(|Xk|2)

}
(11.29)

and the phase has the uniform distribution given by,

p(θk) = 1
2π

(11.30)

Through derivation given in [10], equation (11.26) can be rewritten as,

|X̂k| = 
(1.5)

√
vk

γk
exp

(
−vk

2

) {
(1 + vk)I0

(vk

2

)
+ vkI1

(vk

2

)}
|Yk| (11.31)

where 
(·) is the gamma function with 
(1.5) = √
π/2, I0(·) and I1(·) denote

the modified Bessel functions of zero and first order, respectively, and
vk ≡ ξk

1+ξk
γk.

As a variant, Ephraim and Malah [15] proposed an MMSE log spectral
amplitude (MMSE-LSA) estimator, based on the well-known fact that a
distortion measure with the log spectral amplitudes is more suitable for speech
processing. The MMSE-LSA estimator minimizes the following distortion
measure,

ε =
{

log |Xk| − log |X̂k|
}2

(11.32)

with

|X̂k| = exp
[
E{log(|Xk|) |Yk}

]
(11.33)

From [15], the final estimate becomes,

|X̂k| = ξk

1 + ξk
exp

{
1
2

∫ ∞

vk

e−t

t
dt
}

|Yk| (11.34)

11.2.5 Spectral Estimation Based on the Uncertainty of Speech
Presence

The conventional speech enhancement methods can be extended by incorpo-
rating the uncertainty of speech presence [14, 15]. The absence and presence
of speech, H0 and H1, respectively, can be defined as,

H0 : Yk = Dk (11.35)

H1 : Yk = Xk + Dk (11.36)
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Assuming that each spectral component of speech and noise has complex
Gaussian distribution, and that the noise is additive to and uncorrelated with
the speech signal, the conditional probability density functions observing a
noisy spectral component Yk, given H0 and H1, are

p(Yk|H0) = 1
πE(|Dk|2)

exp

{
− |Yk|2

E(|Dk|2)

}
(11.37)

p(Yk|H1) = 1
π(E(|Dk|2) + E(|Xk|2))

exp

{
− |Yk|2

E(|Dk|2) + E(|Xk|2)

}
(11.38)

where k is the spectral bin index, 0 ≤ k ≤ K/2, and E(|Dk|2) and E(|Xk|2)
denote the variances of the kth spectral components of noise and speech,
respectively.

The probability of speech presence can be given by Bayes’ rule,

p(H1|Yk) = p(Yk|H1)p(H1)

p(Yk|H0)p(H0) + p(Yk|H1)p(H1)

= µ�

1 + µ�k
(11.39)

where,

µ = p(H1)

p(H0)
(11.40)

in which p(H1) and p(H0) denote the a priori probability of speech presence
and absence, respectively. The likelihood ratio of the kth spectral bin �k can
be defined from the above two likelihood ratios,

�k = p(Yk|H1)

p(Yk|H0)

= 1
1 + ξk

exp
{

(1 + γk)ξk

1 + ξk

}
(11.41)

The enhanced spectrum based on the probability of speech presence is
written as,

X̂k = E(Xk|Yk, H0)p(H0|Yk) + E(Xk|Yk, H1)p(H1|Yk) (11.42)
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where p(H0|Yk) denotes the probability of speech absence given Yk. Since the
expected speech spectrum under speech absence is zero, i.e. E(Xk|Yk, H0) = 0,
equation (11.42) can be simplified to,

X̂k = E(Xk|Yk, H1)p(H1|Yk) (11.43)

E(Xk|Yk, H1) and p(H1|Yk) can be computed by a conventional spectral esti-
mator and equation (11.39), respectively.

11.2.6 Comparisons

Objective speech qualities for voice-active regions are evaluated in terms
of both segmental SNR (SEGSNR) improvement and Itakura–Saito distor-
tion (ISD). The SEGSNR improvement indicates the difference between the
SEGSNRs of the enhanced speech and the noisy input signals, in which the
SEGSNR is defined by,

SEGSNR(dB) = 10
M


M−1∑

m=0

log10




(m+1)N−1∑
n=mN

x2(n)

(x(n) − x̂(n))2




 (11.44)

where N and M are the frame size and the total number of frames, respectively.
The ISD is defined as,

ISD(dB) = 10 log10

{
aT

x Rx̂ax

aT
x̂ Rx̂ax̂

}
(11.45)

where ax and ax̂ are the LPC coefficients of the desired and estimated speech
signals, respectively, and Rx̂ is the autocorrelation matrix of the estimated
signal.

For comparison, speech material of 64 seconds, mixed with vehicle and
helicopter noises of 0, 5 and 10 dB SNR were used. Enhancement processing
was applied every 10 ms in the frequency domain by the five types of spectral
estimator: PSS, GBSS, ML, WF, and MMSE-LSA. The MMSE-LSA is further
classified, depending on the adoption of the speech presence uncertainty,
into MMSE-LSA-HD and MMSE-LSA-SD in which HD and SD denote the
hard and soft decision methods, respectively. The reference (the best possible
processed signal) is obtained using the original spectral amplitudes with the
phases of the noisy signal, because the ideal speech enhancement is achieved
with the original speech spectral amplitudes and the phases of the noisy input
speech.

The SEGSNR improvement and ISD for the vehicle and the helicopter noisy
signals are shown in Figures 11.2, 11.3, 11.4, and 11.5. From the analysis, it is
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Figure 11.2 SEGSNR improvements from STSA-based speech enhancement meth-
ods in vehicle noise environments
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Figure 11.4 SEGSNR improvements from STSA-based speech enhancement meth-
ods in helicopter noise environments
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Figure 11.5 ISDs of STSA-based speech enhancement methods in helicopter noise
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found that WF- and MMSE-based methods give better results than the other
methods.

For the noisy input signal in Figure 11.6, the spectrograms of different
enhancement methods, showing the characteristics of the residual noise, are
shown in Figures 11.9, 11.10, 11.11, 11.12, 11.13, and 11.14. The spectrograms
of the noise-free and reference signals are shown in Figures 11.7 and 11.8,
respectively. For the PSS and ML-based methods, severe musical noise gives
irregular spots in the spectrograms in Figures 11.9 and 11.11, respectively.
The GBSS method with ν = 2, α = 4, and β = 0.1 reduces the musical tones to
a moderate level (see Figure 11.10), compared with the PSS and ML methods.
The WF-based method gives a further reduction in the level of the residual
noise as shown in Figure 11.12. Using the MMSE-STSA-based method, it
is possible to further eliminate the musical noises (see Figure 11.13). Even
though the level of the overall residual noise of the MMSE-STSA is slightly
higher than that of the WF method, the sound quality of MMSE-STSA is
perceptually more comfortable than that of the WF method. The higher
speech quality is due to further reduction in tonal signals. Combining the
soft-decision technique with the MMSE-based method, it is possible to reduce
the overall level of the residual noise as shown in Figure 11.14.

11.2.7 Discussion

Ephraim and Malah’s speech enhancement method gives higher performance
mainly due to the DD-based a priori SNR estimation. Cappe [16] has shown
its usefulness for eliminating musical noise phenomena through behavioural
analysis. From interpretation of equation (11.6), it is not difficult to see
that ξ̂k is a smoothed version of γk. The a posteriori SNR γk shows high
fluctuation from frame to frame, while ξ̂k changes slowly. By exploiting the
characteristics of the two SNRs, γk and ξ̂k, improved performance in speech
quality is achieved.

The WF produces better performance than either GBSS- or ML-based
methods. The reason behind this better performance is also due to the
DD-based a priori SNR estimation used in the gain function of the WF. The
usefulness of the DD-based a priori SNR can also be applied to a posteriori SNR-
based speech enhancement methods, such as GBSS- and ML-based spectral
estimators, by replacing the a posteriori SNR with the a priori SNR [17] as,

γk = ξ̂k + 1 (11.46)

Although substantial reduction of musical noise is achieved by the WF-based
method, it is observed that the musical noise is not completely removed (see
Figure 11.12). It is also possible to show that the musical noise phenomenon
exists in the a priori SNR-based speech enhancement using equation (11.46).



Review of STSA-based Speech Enhancement 393

0.5 1 1.5 2 2.5 3 3.5 4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

× 104

Time (sec)
(a)

Time
(b)

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 11.6 Noisy speech: (a) time waveform and (b) spectrogram at 5 dB SNR
vehicle noise
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Figure 11.7 Noise-free speech: (a) time waveform and (b) spectrogram



Review of STSA-based Speech Enhancement 395

0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

× 104

Time (sec)

(a)

Time

(b)

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 11.8 Speech enhanced using a theoretical limit: (a) time waveform and
(b) spectrogram



396 Speech Enhancement

0.5 1 1.5 2 2.5 3 3.5 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

× 104

Time (sec)

(a)

Time

(b)

Fr
eq

ue
nc

y

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 11.9 Speech enhanced by PSS: (a) time waveform and (b) spectrogram
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Figure 11.11 Speech enhanced by ML-STSA estimation: (a) time waveform and
(b) spectrogram
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Figure 11.12 Speech enhanced by WF: (a) time waveform and (b) spectrogram
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Figure 11.13 Speech enhanced by MMSE-STSA estimation: (a) time waveform and
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Figure 11.14 Speech enhanced by MMSE-STSA estimation with speech presence
uncertainty: (a) time waveform and (b) spectrogram
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Therefore, the following guidelines for designing a speech enhancement
algorithm can be stated:

• Proper combination of the a priori and a posteriori SNRs is important to
eliminate the musical noise while maintaining high speech quality.

• The soft-decision technique based on speech presence uncertainty is useful
for further suppressing the level of residual noise for voice-inactive regions.

11.3 Noise Adaptation

Frequency-domain speech enhancement focuses mainly on improved esti-
mation of spectral attenuation factors with the assumption of the given
noise statistics. However, in practice, the noise statistics exhibit frame to
frame fluctuations which require robust estimation for good performance.
Noise estimation methods can be classified into two types: hard decision
(HD), which adapts the noise variance during voice-inactive regions by voice
activity detection (VAD), and soft decision (SD), which adapts the noise all
the time.

HD-based methods are quite successful when voice activity classification
of speech is performed accurately. However, VAD itself is a complicated
technique to implement when high performances under various noise sources
and levels are required. Thus, speech detection errors due to VAD may cause
over-estimation or under-estimation of the noise statistics, which may lead to
degradation of speech quality. The performance of the HD-based method is
therefore heavily dependent on the performance of the VAD method used.

SD-based methods adapt the noise statistics based on the uncertainty of
speech absence, instead of the hard-limited function used in the HD-based
methods [18, 19]. SD-based methods do not rely on VAD decisions and update
the noise statistics even in the presence of speech. SD-based methods rely on
the accurate estimation of the mixture ratio between speech and noise. The
inaccurate measurement of speech absence (or presence), especially in voice-
active regions, can seriously distort the enhanced speech. Cho [20] proposed
a mixed-decision-based noise adaptation, combining the characteristics of the
HD- and SD-based methods.

11.3.1 Hard Decision-based Noise Adaptation

The HD-based method conducts noise adaptation during speech absence
regions only,

E(|D(t)
k |2) =

{
ηE(|D(t−1)

k |2) + (1 − η)|Y(t)
k |2 if Y(t) ∈ H0

E(|D(t−1)

k |2) otherwise
(11.47)
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where the superscript t indicates the frame index, η is the smooth adaptation
factor, e.g. 0.95, and Y is the noisy spectrum. In the case of speech presence,
usually indicated by a VAD, it does not update the noise variance. HD-based
noise adaptation has been widely used in speech enhancement.

11.3.2 Soft Decision-based Noise Adaptation

The SD-based noise estimation, the estimated noise given by Yk, is formu-
lated as,

E(Dk|Yk) = E(Dk|Yk, H0)p(H0|Yk) + E(Dk|Yk, H1)p(H1|Yk)

= {p(H0|Yk) + p(H1|Yk)GD,k}Yk (11.48)

where E(Dk|Yk, H0) = Yk, E(Dk|Yk, H1) = GD,kYk. The probability of speech
presence p(H1|Yk) is defined in equation (11.39) and p(H0|Yk) = 1 − p(H1|Yk).
The optimal noise gain GD,k can be derived from the Wiener estimator W in
the time domain. It can be shown that W = Rdd(Rxx +Rdd)

−1, in which Rdd and
Rxx denote the covariance matrices of the noise and speech signals resulting
in the filter frequency response given by,

GD,k = E(|Dk|2)
E(|Xk|2) + E(|Dk|2)

= 1
1 + ξk

(11.49)

where ξk is the a priori SNR which can be estimated using the decision-
directed method defined in equation (11.6). Here, the estimation of noise gain
GD is an independent task within the noise estimation process which may
be used in other kinds of enhanced spectral estimation techniques, such as
MMSE, MMSE-LSA, etc. The noise variance of the SD-based method may be
estimated in a recursive manner as given below,

E(|D(t)
k |2) = ηE(|D(t−1)

k |2) + (1 − η)|E(D(t)
k |Y(t)

k )|2 (11.50)

11.3.3 Mixed Decision-based Noise Adaptation

In order to alleviate the problems in the HD- and SD-based methods, the
MD-based method is proposed [20] for noise adaptation as

E(|D(t)
k |2) =




ηE(|D(t−1)

k |2) + (1 − η)|Y(t)
k )|2 ; if Y(t) ∈ H0 and �(t) ≤ θ

ηE(|D(t−1)

k |2) + (1 − η)|E(D(t)
k |Y(t)

k )|2 ; if Y(t) ∈ H0 and �(t) > θ

E(|D(t−1)

k |2) ; otherwise
(11.51)
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where �(t) = {∏K
k=1 �

(t)
k }1/K, as defined in equation (11.41). The threshold θ

is set to a sufficiently small value, i.e. θ < 1, that rarely classifies the speech
as silence.

11.3.4 Comparisons

In order to show the robustness of the noise adaptation techniques, speech
quality is compared in terms of both SEGSNR improvement and ISD with
respect to the speech-detection error-rate of VAD (Ed). Various Ed are cali-
brated by a voice activity detector [21], and then frame-by-frame VAD results
are given to each noise adaptation method. For the experiment, speech
material of 64 seconds was mixed with vehicle noise at 5 dB SNR, and then
processed every 10 ms in the frequency domain by the MMSE estimator [10]
employing noise adaptation methods. Finally, the enhanced speech signal
is obtained by the inverse DFT of the enhanced spectrum, followed by the
overlap-and-add procedure.

SEGSNR improvement and ISD between the clean and enhanced speech
signals for vehicle noisy speech signals of 0, 5, and 10 dB SNR are shown in
Figures 11.15, 11.16, and 11.17, respectively. The experiments confirm that

• The SD-based method results in worse performance compared with both
the MD- and the HD-based methods, for low Ed.

• The HD-based method exhibits significant degradation in performance
with increases in Ed.

• The MD-based method produces, regardless of the VAD performance,
robust and superior performance in comparison with the HD- and SD-
based methods.

Note that for very low Ed, i.e. 0.0 ≤ Ed < 0.1, the performances of the MD
and HD are slightly worse than in the case of Ed = 0.2. This is caused by less
frequent adaptation of the noise frames because of the increased false alarm
rate of the VAD. n other words, VAD produces the low Ed at the expense of
an increased false alarm rate during pauses.

Results for helicopter noisy speech with levels of 0, 5, and 10 dB SNR are
shown in Figures 11.18, 11.19, and 11.20, respectively. They exhibit perfor-
mance patterns similar to the vehicle noisy signals despite differences in the
absolute values being measured.

In conclusion we can say that the STSA-based spectral enhancement tech-
niques including GSS, GBSS, ML, WF, and MMSE-based algorithms together
with the estimate of speech presence uncertainty have various advantages
and disadvantages. The MMSE-based STSA method combined with speech
presence uncertainty is perhaps the best currently available method for
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Figure 11.15 Comparison of SEGSNR improvement and ISD against the speech-
detection error-rate of VAD for vehicle noisy speech of 0 dB SNR

noise reduction. In speech enhancement systems, accurate noise estima-
tion/adaptation is necessary to keep track of the noise characteristics. Noise
estimation and adaptation is the most important area that requires further
research for better speech enhancement techniques.
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Figure 11.16 Comparison of SEGSNR improvement and ISD against the speech-
detection error-rate of VAD for vehicle noisy speech of 5 dB SNR

11.4 Echo Cancellation

Echo in a telecommunications system is the delayed and distorted sound
which is reflected back to the source. In telecommunications, there are two
types of echo: acoustic echo, which results from the reflection of sound
waves and acoustic coupling between the microphone and loudspeaker,
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Figure 11.17 Comparison of SEGSNR improvement and ISD against the speech-
detection error-rate of VAD for vehicle noisy speech of 10 dB SNR

and electrical echo, generated at the two-to-four wire conversion hybrid
transformer due to imperfect impedance matching. Here, we will develop
cancellation for the electrical echo which will be equally applicable for acoustic
echo cancellation.

The source of electrical echo can be understood by considering a simplified
block diagram of a connection between a pair of subscribers, S1 and S2,
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Figure 11.18 Comparison of SEGSNR improvement and ISD against the speech-
detection error-rate of VAD for helicopter noisy speech of 0 dB SNR

as shown in Figure 11.21. It can be seen from this block diagram that
each subscriber has a two-wire loop over which both the received signal
and transmitted signals travel. On the four-wire part of the line, the two
directions of transmission are separated. The speech from S1 travels on the
upper path and the speech from S2 travels on the lower path, as indicated
by the arrows. The converter device between the two- and four-wire sections
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Figure 11.19 Comparison of SEGSNR improvement and ISD against the speech-
detection error-rate of VAD for helicopter noisy speech of 5 dB SNR

is called the hybrid. The role of the hybrid is to direct the signal energy
arriving from S1 or S2 to the upper or lower path of the four-wire circuit,
without allowing any leakage back to the source over the opposite direction
line. Because of impedance mismatching, however, some of the transmitted
signal returns to the original source, which hears a delayed version of its own
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Figure 11.20 Comparison of SEGSNR improvement and ISD against the speech-
detection error-rate of VAD for helicopter noisy speech of 10 dB SNR

speech. This is called the talker echo and its subjective effect depends on the
round trip delay around the loop. For short delays and reasonable attenuation
(6 dB or more) the talker echo cannot be distinguished from the normal side
tone of the telephone and hence does not cause problems. In applications
such as satellite communications however, as a consequence of high altitude,
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Figure 11.21 Block diagram of duplex connection between two subscribers

a round trip delay of approximately 540 ms (270 ms each way) is possible; this
makes the echo very disturbing and may in fact make it impossible to carry
out a conversation. In such cases, it is essential to control or remove the echo.
Since the subjective disruption of echo is proportional to the round trip delay
as well as the echo energy level, the echo control techniques usually depend
on the circuit length.

Some international connections use a switch (called an echo suppressor)
operated by the voice activity, which attempts to impose an open circuit on
the return path from listener to talker when the listener is silent. However,
an echo suppressor cannot operate during double-talk and hence produces
choppy echo. For this reason, echo suppressors are now being replaced by
echo cancellers that are based on adaptive filtering techniques.

11.4.1 Digital Echo Canceller Set-up

A block diagram of an echo canceller for one direction of transmission is
shown in Figure 11.22, where the far-end talker signal is denoted by y(i),
the unwanted echo signal by r(i), and the near-end talker signal by x(i). The

Hybrid

Echo
Canceller

+

u(i) = x(i) + r(i) − r(i)

x(i) + r(i)

y(i)

x(i)

Near-end
talker

From far-end
talker

r(i)^To far-end
listener

−
+

^

Figure 11.22 Block diagram of an echo canceller
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near-end signal and the echo are added together at the output of the hybrid.
Since the far-end signal is available as a reference for the echo canceller, the
replica of the echo r̂(i) is estimated by matching the signals on both paths of
the four-wire section. The estimated echo is then subtracted from the total of
the returned echo and the near-end signal,

u(i) = x(i) + r(i) − r̂(i) (11.52)

The difference between r(i), the returned echo, and r̂(i), the estimated echo,
should be as small as possible for good echo cancellation performance. The
echo canceller estimates the echo by using the far-end reference signal in a
transversal filter such as the one shown in Figure 11.23. This filter basically
acts as a tapped delay line. If the impulse response of the filter is same as the
echo path response, then the estimated echo and the returned echo become
identical, resulting in perfect echo cancellation. Since the echo path response
is not known in advance and may vary slowly with time, the coefficients of
the transversal filter are adapted. In order to produce no distortion on the
near-end talker signal, the filter coefficients are only updated when there is
no near-end activity.

The number of filter coefficients, which may be very significant from a
complexity point of view, is usually determined by the length of the echo
path impulse response, which typically lasts 2 to 4 ms, requiring 32 taps
(4 × 10−3/125 × 10−6) approximately. However, the impulse response of the
echo path may be delayed by some time depending on the distance between
the position of the echo canceller and the hybrid in the system. Moreover
more than a few taps may be needed to accurately model the response of the
hybrid. Therefore, the use of 64 or 128-tap filters are typical.

Z−1 Z−1 Z−1 Z−1

a0 a1 a2 ap Echo

Reference Signal

y(i)

r(i)^

x(i) + r(i)x(i) +r(i) − r(i)

To far-end

From far-end

^

−
+

+

Figure 11.23 Block diagram of a transversal filter used in echo cancellation
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Figure 11.24 Block diagram showing echo cancellation applied to both ends

In practice, echo cancellers are applied on both ends to cancel the echoes in
each direction as shown in Figure 11.24. An echo canceller should, in general,
satisfy the following fundamental requirements:

• Rapid convergence of the filter coefficients when turned on.
• Very low echo when there is no near-end speech.
• Slow divergence when there is no far- or near-end speech.
• Little divergence when both near- and far-end signals are present.

The ITU-T G.165 recommendations [22], which summarize the above require-
ments, are as follows:

• After convergence with no near-end speech, with input noise level between
−10 dBm0 and −30 dBm0, final echo return loss (ERL) should be −40 dB.

• After 500 ms of first start up, the parameters should converge to give at
least 27 dB echo reduction with no near-end speech.

• Degradation of residual echo after 2 minutes from the time all signals are
removed from the fully-converged canceller should not be more than 10 dB.

• The returned echo level, 500 ms after interruption of the echo path, should
reach −40 dBm0.

11.4.2 Echo Cancellation Formulation

An echo canceller can be split into the following parts: adaptive transversal
filter, near-end speech detection, and residual error suppression.

Adaptive Transversal Filter

In a digital echo canceller both the reference and echo signals are available in
digital form. Therefore the echo path impulse response can be represented in
digital form by ak,

r(i) =
N−1∑
k=0

aky(i − k) (11.53)
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Assuming the system is linear and the echo path impulse response is of finite
length N, then the echo canceller forms the replica of the returned echo using,

r̂(i) =
N−1∑
k=0

aky(i − k) (11.54)

When ak = hk, for k = 0, 1, . . . , N − 1 the returned and estimated echoes are
identical resulting in no residual echo. The coefficients of the transversal filter
are updated to match the slowly time-varying echo path impulse response
by minimizing the mean squared residual error given by:

e2(i) = [r(i) − r̂(i)]2 (11.55)

When there is no near-end speech (x(i) = 0), the filter coefficients are updated
in such a way that the residual error tends to a minimum. The update of the
coefficients at each iteration is controlled by a step size β,

hk(i + 1) = hk(i) + 2βe(i)y(i − k) (11.56)

The convergence of the algorithm is determined by the step size β and the
power of the far-end signal y(i). In general, making β large speeds up the
convergence, while a smaller β reduces the asymptotic cancellation error. It
has been shown that the convergence time constant is inversely proportional
to the power of y(i) and that the algorithm will converge very slowly for
low-signal levels [23]. To overcome this situation, the loop gain is usually
normalized by an estimate of the far-end signal power,

2β = 2β(i) = β1

Py(i)
(11.57)

where β1 is a compromise value of the step size constant and Py(i) is an
estimate of the average power in y(i) at time i. The far-end signal power can
be estimated by

Py(i) = [Ly(i)]2 (11.58)

where,

Ly(i + 1) = (1 − ρ)Ly(i) + ρ|y(i)| (11.59)

and a typical value of ρ = 2−7. The above equation is only an estimate
of the average signal level, which is updated for every sample using the
approximation for ease of implementation in real-time.
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Near-End Speech Detection

The quality of the echo canceller can be affected significantly if the near-end
speech is not detected accurately. This is because the filter coefficients will be
adjusted wrongly and hence will distort the near-end speech. Therefore, the
coefficients are updated only when there is no near-end speech; they are kept
fixed during near-end activity to prevent divergence. The power estimate ŝ(i)
of the near-end composite signal s(i) = x(i) + r(i) is usually compared with
the power estimate ŷ(i) of the far-end signal y(i) to decide if there is near-end
activity. The power estimate is computed as

ŝ(i + 1) = (1 − α)ŝ(i) + α|s(i)| (11.60)

and,

ŷ(i + 1) = (1 − α)ŷ(i) + α|y(i)| (11.61)

where a typical value for α is 1/32. Near-end speech is declared when

ŝ(i) ≥ MAX[ŷ(i), ŷ(i − 1), . . . , ŷ(i − N)] (11.62)

In order to avoid continuous switching, every time near-end speech is
detected, it is assumed to last for some time (typically 600 samples).

Residual Echo Suppressor

Due to nonlinearities in the echo path, the convergence of the filter coefficients
and hence the accuracy of the echo path modelling is limited to around 30
to 35 dB. In order to further enhance the performance of the echo canceller, a
residual echo suppressor can be used. This can be done simply by comparing
the returned signal power with a threshold relative to the far-end signal, and
completely eliminating it if it falls below the threshold. Again the returned
signal power is estimated using

Lu(i + 1) = (1 − ρ)Lu(i) + ρ|u(i)| (11.63)

Whenever Lu(i)/Ly(i) < 2−4, the residual echo suppressor is activated. In
some applications however, it may be perceptually more acceptable to leave
a very low level of random signal to indicate that the line is not dead.

11.4.3 Improved Performance Echo Cancellation

Echo cancellation based on the NLMS algorithm (or other variants of the
general LMS algorithm) performs well with both acoustic and electrical
echoes, provided that near-end speech is not present. The performance,
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however, degrades when near-end speech is present (and is even worse
if near-end speech cannot be detected correctly). Significant performance
degradation is also expected when echo is contaminated with background
noise.

Echo cancellers generally stop filter coefficient adaptation when near-end
speech is present. An accurate near-end speech detector is therefore necessary
to avoid divergence of the filter coefficients, which may have two drawbacks.
First, the cancellation performance strongly depends on the accuracy of the
near-end speech detector. The second drawback is related to the length of the
near-end speech presence. In cases where a near-end speech segment is long,
the echo characteristics may change considerably and if the filter coefficients
are not continually adapted during those segments, then the filter will lose
synchronization with the echo path changes, leading to a large change when
filter coefficient adaptation is resumed. This may result in temporary filter
divergence causing performance reduction.

An adaptive normalized least mean squared (ANLMS) algorithm has been
suggested by Al-Naimi [24] to overcome these problems. It is based on the
NLMS algorithm (with a 128-tap transversal adaptive filter [25]). The NLMS
of [25] differs from the general NLMS in that filter coefficients are updated
less frequently with a thinning factor, M, resulting in

hk(i + 1) = hk(i) + β

M−1∑
m=0

e(i + M − m)y(i + M − m − k)

σ (i)2 (11.64)

The ANLMS includes a number of enhancements to the system in [25]
which are: increased robustness to noise contamination, continuous filter
coefficient adaptation, and elimination of the need for a near-end speech
detector. The ANLMS is given by,

hk(i + 1) = hk(i) + wk(i)β

M−1∑
m=0

e(i + M − m)y(i + M − m − k)

ψ(i)2ρ(i)2 (11.65)

where ψ(i) and ρ(i) are given by,

ψ(i) = αeψ(i − 1) + (1 − αe)
∣∣y(i)

∣∣ (11.66)

and,

ρ(i) = αeρ(i − 1) + (1 − αe) |z(i)| (11.67)
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respectively. The weighting function wk(i) is

wk(i) = exp


−

(
ĥk(i) − hk(i)

γβ

)2

 (11.68)

where ĥk(i) is the unweighted estimate and hk(i) is the average track of filter
coefficient k at time i, given by,

ĥk(i) = hk(i) + β

M−1∑
m=0

e(i + M − m)y(i + M − m − k)

ψ2(i)ρ2(i)
(11.69)

hk(i) = αhhk(i − 1) + (1 − αh)hk(i). (11.70)

Note that 0 ≤ αe ≤ 1, 0 ≤ αh ≤ 1 and γ > 0 are tuning parameters which need
to be optimized for a given application.

The performance improvement with the ANLMS method stems from the
soft-decision weighting function, wk(i). This weighting function removes the
need for a near-end speech detector and its associated problems. It also
provides a soft-decision means of continuous filter coefficient adaptation so
as not to lose synchronization with echo path changes. In addition, it results
in increased robustness to background noise contamination.

At time i, the weighting function wk(i) depends, for its calculation, on
the average track of filter coefficient k (as given in equation (11.70)) and
on the unweighted estimate of filter coefficient hk(i) at time i (as given in
equation (11.69)). If the difference between the estimated and the related
average filter coefficient track is large (which mostly occurs due to the
presence of noise, near-end speech or both), then the weighting will be small.
On the other hand, when the difference is small the wk(i) will be close to one.
The weighting wk(i) and the step size β determine the adaptive step size. The
adaptive step size is close to β for changes that follow smoothly the evolution
of each filter coefficient track, whilst being much less than β for changes that
are generally not related to the echo path change over time. The variance of
the weighting function wk(i), i.e. how fast it will decay from the unity value,
is controlled by the value γβ.

Note that the performance of this method depends on correct estimation
of the average value of each filter coefficient track and therefore requires an
initialization period that is dependent on the application. This initial period is
essential in getting a reliable average filter coefficient track and for the overall
system convergence.

The ITU-T recommendation G.165 defines the echo canceller performance
requirements using band-limited white noise (300–3400 Hz) test signals for
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Table 11.1 ITU-T recommendations and ANLMS system performance
results

ITU-T recommendation G.165 ANLMS

Tests Input levels Recommendation Results

Steady state −30 dBm0 −48 dBm0 −83 dBm0

residual echo level −20 dBm0 −42 dBm0 −72 dBm0

−10 dBm0 −36 dBm0 −60 dBm0

Convergence −30 dBm0 attenuation ≥ 27 dB 30 dB

−20 dBm0 attenuation ≥ 27 dB 30 dB

−10 dBm0 attenuation ≥ 27 dB 30 dB

Leak rate −30 dBm0 (For all input levels, (Echo level

(i.e. slow divergence −20 dBm0 residual echo level increase of 6 dB

when no signal) −10 dBm0 should not increase was evident for

more than 10 dB) all input levels)

Infinite return

loss convergence −30 dBm0 ≤ −37 dBm0 −78 dBm0

(i.e. rapid return to −20 dBm0 ≤ −37 dBm0 −68 dBm0

convergence after −10 dBm0 ≤ −37 dBm0 −57 dBm0

an interrupt to

echo path)

far-end and near-end ports. A test is devised (see [22]) for each of the require-
ments in Table 11.1, listed with the results obtained for the various tests.

The requirements for echo canceller performance for double-talk situations
is subdivided into two tests. The first is related to the double-talk detection
part of the echo canceller. As there is no such double-talk detector used in
the ANLMS system this test is not performed. The second part of the test is
aimed at ensuring that, in double-talk situations, the divergence is low. The
requirement for this part is that only a 10 dB increase in residual echo level
of the results listed in the steady state test (Test No. 1 of [22]) are permitted.
The ANLMS is well within this requirement.

Note that this does not mean that systems based on either LMS or NLMS
do not satisfy the ITU-T requirements. On the contrary, they do satisfy them,
but the advantages of ANLMS are the continued filter coefficient adaptation
even during cross-talk scenarios and that there is no need for switching or
VADs, which results in more consistency.

In order to improve the overall system performance, a noise suppressor
and an echo canceller can be used jointly. The noise suppressor may be
integrated either prior to the echo canceller or after it. Integrating prior to
the echo canceller in order to remove the noise from the near-end signal
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Figure 11.25 Block diagram of cascaded echo cancellation and noise suppression

usually distorts the echo signal in a nonlinear manner, which may make echo
cancellation more difficult. By placing the noise suppressor after the echo
canceller, to remove the residual echo error as well as noise, may therefore be
more appropriate as shown in Figure 11.25.

The performance of this set-up has been tested both subjectively and
objectively. Subjective testing was carried out through informal listening
tests, while objective testing was conducted through various filter coefficient
convergence behaviours. Two different echoes were used for this purpose.
The first was a simple echo resulting from a single delay and attenuation of the
far-end speech signal and the second was the sum of three different delayed
and attenuated versions of the far-end speech. Each echo was mixed with the
near-end speech signal along with vehicle noise contamination resulting in
SNRs of 0, 5, 10, 15 and 20 dB.

Results obtained using the simple echo case are shown in Figures 11.26–
11.31. The echo was generated by delaying the far end speech by 40 samples
and attenuated through a factor of 0.48. Part (a) of Figures 11.26–11.31 shows
the input to the cascaded system and the corresponding output signals and
part (b) shows the convergence track of filter coefficients h40 and h0. The
robustness of the system under noisy conditions and the convergence of the
filter coefficients (h40 and h0), even in the presence of near-end speech, are
quite evident in Figures 11.26–11.31. Note that, as also highlighted above,
neither a near-end speech detector nor a switch for filter coefficient adaptation
is needed. All that is needed is an initial training period for which the wk(i)
are set to one. In this setup, the initial period is 1 second for which the near-
end speech is assumed to be absent. The weighting function is switched on
after that and is responsible for convergence of the filter coefficients during
near-end speech presence and silences in the near-end signal. Based on the
average track of each filter coefficient (i.e. hk(i)) and the selection of the γβ

value in the wk(i) definition, only the step changes that follow the average
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Figure 11.26 Performance of the noise-echo canceller for clean speech
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Figure 11.27 Performance of the noise-echo canceller at 20 dB SNR
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Figure 11.28 Performance of the noise-echo canceller at 15 dB SNR
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Figure 11.29 Performance of the noise-echo canceller at 10 dB SNR
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Figure 11.30 Performance of the noise-echo canceller at 5 dB SNR
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Figure 11.31 Performance of the noise-echo canceller at 0 dB SNR
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Figure 11.32 Performance of noise-echo canceller for clean speech

track have a considerable effect on the filter coefficient adaptation. Otherwise
the overall step size due to wk(i) (i.e. wk(i)β) will be small, therefore not
changing the previous filter coefficient value by much and thus reducing the
likelihood of divergence.

A similar result was obtained in the second experiment when a more
complex echo was used. The echo used for this setup was generated through
the sum of three different delays: 20, 40 and 60 samples with corresponding
attenuation factors of 0.2, 0.48 and 0.35 respectively. Figures 11.32–11.37
show the results obtained for the second setup which proves the effectiveness
of the new adaptation algorithm proposed by Al-Naimi [24].

11.5 Summary

With advanced signal processing algorithms and techniques it is possible
to improve the quality of speech communications significantly. Both echo
and noise cancellation/suppression algorithms have been reasonably well
developed to tackle high levels of echo and noise present in communication
systems. It is, of course, important to adapt the existing algorithms to
specific communication systems to maximize their performances. When both
acoustic noise and echo are present it is important to tune the overall
enhancement algorithms (noise suppressor and echo canceller) jointly to
maximize performance. Another important issue is the convergence time of



424 Speech Enhancement

0 20000 40000 60000 80000

Time (samples)

−2

−1

0

1

2

A
m

pl
itu

de
 (

× 
10

5 )

0 20000 40000 60000 80000 1 × 105

Time (samples)

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F
ilt

er
 C

oe
ffi

ci
en

t

h0

h20

h35

h85

h92

Figure 11.33 Performance of the noise-echo canceller at 20 dB SNR
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Figure 11.34 Performance of the noise-echo canceller at 15 dB SNR
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Figure 11.35 Performance of the noise-echo canceller at 10 dB SNR
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Figure 11.36 Performance of the noise-echo canceller at 5 dB SNR
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Figure 11.37 Performance of the noise-echo canceller at 0 dB SNR

the adaptive filtering used in the enhancement algorithms. It is crucial that
the filters converge rapidly and do not diverge under any circumstances
(any level of acoustic noise and echo). Normalized LMS algorithms usually
provide adequate performance. The newly-proposed adaptive normalized
LMS algorithm [24], discussed in this chapter, has shown robust performance
under significant levels of acoustic noise and echo.
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PDA, see pitch determination algorithm
peak detector 177
peakiness of speech 179–80
peak-picking of the magnitude spctrum

266–7
perceptual evaluation of speech quality

18
perceptually-based error minimization

procedure in AbS-LPC coder 200,
203–6

perceptually-determined distortion
measure 42–3

performance of LTP analysis methods
228–30

performance of echo canceller 415–23
performance of hybrid coder 320–2
performance of JQ-MSVQ quantizer

129
performance of low-pass filtering

142–6
performance of LPC analysis 74–7
performance of MA-MSVQ quantizer

129, 130
performance of moving average

predictor 126–8
performance of multi-stage vector

quantization 117–21, 125–6
performance of noise adaptation

methods 404–6, 407, 408, 409, 410
performance of pitch determination

algorithms 164–6, 167, 168
performance of pitch tracking process

175
performance of speech coding standards

15–18
performance of speech enhancement

methods 389–402
performance of voice activity detector

(VAD) 364–8
periodicity in speech signal 77–8,

178–9
phase synchronization 281

pitch adaptive mixed excitation (PAME)
251–4

pitch determination 149, 150–78, 263
pitch determination algorithm (PDA)

autocorrelation 152–5
average magnitude difference

(AMDF) 151–2
centre-clipping 169–72
generally 149
harmonic peak detection 156
peak detector 177
performance comparison 164–6,

167, 168
spectral autocorrelation 158–62,

163–4
spectral synthesis 163–4
spectrum similarity 156–8

pitch determination preprocessing
166–77

pitch error 165, 177–8
pitch estimation, see pitch determination
pitch filter 81–2
pitch gain, optimum 153, 154
pitch lag 78, 81, 83, 175–7
pitch measurement algorithm 81
pitch period

generally 149, 150–1, 165
LP filter coefficient 7
SWPM 323

pitch prediction 235–7
see also long term prediction

pitch predictor 77–83
see also long term predictor

pitch pulse location in AbS 325–7
pitch pulse location in SWPM 286–91,

302–4, 323
pitch pulse shape in AbS 327
pitch pulse shape in SWPM 292–7,

302–4, 323
pitch quantization in AbS 324, 325, 326
pitch smoothing 172–7
pitch tracking 172–7
pitch–LPC formulation model 79
plosive detection 318–19
polyphase structure 227
post-filtering in a CELP coder 257–60
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power spectrum 99
power-saving, VAD and 358
PPL, see pitch pulse location
PPS, see pitch pulse shape
prediction gain 78, 80, 124–5, 140–1
prediction of LPC parameters in CELP

221–2
prediction of pitch in CELP 222–8
predictive vector quantization 52
predictor codebook 52
pre-emphasis of the signal 75
pre-emphasized energy of speech 183
probability density 33
prototype waveform interpolation (PWI)

coder 282
public switched telephone network

(PSTN) 5, 9, 10
pulse amplitude coding 237–8
pulse amplitude quantization, joint

238–40
pulse code modulation (PCM) xiii, 5,

32–3
pulse excitation 202
pulse location 211–12, 216, 217, 248
pulse position coding 237

Q

quality measurements 16
quantization 23, 238–40

see also types of quantization:
differential vector, LSF, multi-stage
vector, predictive vector, scalar,
split vector, vector

quantization error 27–8, 29, 106
quantization issues of hybrid coder

322–31
quantization noise 7
quantization process

scalar 26–39, 106
vector 39–50, 106
see also LPC quantization process, LSF

quantization process
quantizer

adaptive 33–9
companded 32–3
differential 36–9

Jayant 34–6
JQ-MSVQ 128–31
logarithmic scalar 32–3
LPC 87, 90, 94–5, 97
LSF 107, 110–16
Max 30–2
see also scalar quantizer

quantizer input/output 31
quantizer step size 26

R
Rabiner 169, 172
random channel error 336
random noise excitation 202
random noise generator 65
ratio filter method 95–6, 98–100
real-time coder 108
real-time system 74
rectangular window function 58–9,

60–5, 165
Reeves 5
reference template 40
regular pulse excitation 207–8
regulatory body 9
residual error suppression in echo

cancellation 413, 415
rms energy 317, 318, 333
robustness 10
RPELPC coder 217–19

S
sampling 23–5
satellite telephony 15
SB-LPC, see split-band LPC
scalar quantization process 26–39, 106
scalar quantizer 54
scalar quantizer, logarithmic 32–3
scalar quantizer, non-uniform 29–30
scalar quantizer, optimum 29–32
scalar quantizer, uniform 26–9
secure communication 14–15
segmental SNR 389
self-excitation 207
SELP 207
SELP coder 212–15
sequential optimization 116
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Shlomot 282
short term predictor, see LPC analysis
short-time spectral analysis 57–65
signal compression 1–2
signal power LP filter coefficient 7
signal processing 1–2
signal reconstruction 5
signal to noise ratio (SNR)

CELP coder 228–30
generally 7
RPELPC coder 218–19
segmental 389

signal variability 53–4
simultaneous joint codebook design

116
Singhal and Atal 235
sinusoidal analysis 262–3
sinusoidal coder 8, 261–75
sinusoidal model voicing 265–6
sinusoidal speech coder 149, 150, 156
sinusoidal speech-model matching 299
sinusoidal transform coder (STC) 149,

261–75
smoothed likelihood ratio (SLR)

371–2, 373, 374–5
SNR, see signal to noise ratio
soft-decision noise adaptation 402, 403
soft-decision voicing 150, 189–96
Sohn 368
Sondhi 169, 172
source dependent mode decision 9
source-filter model 65–7
speaker variability in signal 53
spectral analysis, short-time 57–65
spectral autocorrelation PDA 158–62,

163–4
spectral correlation 267–8
spectral distortion 106–7, 131–4
spectral envelope 77, 149, 202
spectral subtraction 380, 382–4,

389–92, 396, 397
spectral synthesis method 150
spectral synthesis PDA 163–4
spectral tilt of speech 182, 266
spectrum flattening 166–72
spectrum similarity PDA 156–8

speech characteristic
frame energy 185–6
low-band to full-band energy 184
peakiness 179–80
periodic similarity 178–9
pre-emphasized energy 183
spectrum tilt 182
weighting 186–7
zero crossing rate 180–1

speech classification in a hybrid coder
311–19

speech coder, see coder
speech coding standard

DoD 14–15
ETSI 13–14
INMARSAT 15, 16
ITU-T 12–13
NATO 15
performance 15–18
TIA/EIA 14, 15

speech enhancement
adaptive filtering 380
discrete cosine transform (DCT) 380
discrete Fourier transform (DFT)

380
echo cancellation 406–23, 424–6
generally 379–80
guidelines 402
Kalman filter 380
Karhunen–Loève transform (KLT)

380
maximum likelihood STSA

estimation 380, 389–92, 398
minimum mean square error STSA

estimation 380, 389–92, 400, 401
model-based 380
noise adaptation 402–6
performance comparison of methods

389–402
short-time spectral amplitude

381–402
spectral subtraction 389–92, 396, 397
transform domain 380
uncertainty of speech presence

387–9, 401
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speech enhancement (continued)
wavelet transform 380
Wiener filtering 389–92, 399

speech presence, uncertainty of 387–9,
401

speech quality xiii, 9, 10, 334 – 5
speech signal

average spectral distortion 107, 121
LPC analysis 65–77
outlier 107, 121
periodicity 77–8
requirements for good quality 107
spectral analysis 57–65
transition region 57
unvoiced 57, 58, 65
voiced 57, 58, 65

speech stationarity assumption 131
split-band LPC (SB-LPC) coder 128,

261, 268, 271–5, 342
split vector codebook 49–50
split vector quantization 111–12,

117–21
split-band mixed voicing 193–6
Stachurski 283
STANAG speech coding standard 15
statistical multiplexing, VAD and 359
STC, see sinusoidal transform coder
STP, see short term predictor
STSA, see short-time spectral analysis
STSA estimation 380, 389–92, 398, 400,

401
Sundberg 174
SWPM, see synchronized

waveform-matched phase model
synchronized harmonic excitation

299–301
synchronized waveform-matched phase

model (SWPM)
advantages 301–4
generally 285–98
offset target modification 304–8
robustness to acoustic noise 342

T

tandem connection 11
telephony system, analogue 1

threshold function, voicing 191–2, 196
TIA regulatory body

enhanced variable rate coder (EVRC)
286

IS-54 speech coding standard 14, 15
IS-96 speech coding standard 360,

363–4, 364–8
IS-127 speech coding standard 360,

363–4, 364–8
IS-641-A speech coding standard 14,

15
IS-733 speech coding standard 360,

363–4, 364–8
time division multiple access (TDMA)

14
time-domain pitch determination

151–5, 158–66, 177
time-varying codebook 52
time-varying filter in AbS-LPC coder

200, 202–3
Toeplitz matrix 69, 249
training a codebook 52, 116, 246
training a moving average predictor

125–6
Trancoso 282
transcoding 11
transition 298
transition detection 315–18
transition quantization in ACELP 331,

332–4
transition region 150
transmission channel errors 54
tree search, M-best 115–16
tree search codebook, see binary search

codebook

U

UMTS (ETSI) speech coding standard
360

uncertainty of speech presence 387–9,
401

uniform scalar quantizer 26–9, 33
unvoiced excitation 202
unvoiced speech signal 57, 58, 65, 150,

298
up-sampling 226–8
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V
VAD, see voice activity detector
variable bit-rate coding 331–5
variable rate coder 9
vector quantization

harmonic amplitude 272
multi-stage 111, 113–21
split 111–12
see also codebook

vector quantization process 39–50, 106
vector quantizer 54
vector sum codebook excitation 243–7
Villette 299
vocoder 6–7, 149, 150, 202
voice activity detector (VAD)

benefits 357–9
ETSI speech coding standards 360,

361–2, 362–3, 364–8, 374–5
hard decision noise adaptation 402
ITU-T speech coding standards 360,

361, 364–8,
374–5

likelihood ratio 368–75
performance 364–8
TIA/EIA speech coding standards

360, 363–4, 364–8
voicing decision 359

voice activity detector (VAD) algorithm
11, 281, 311, 341, 357

voiceband data handling 11–12
voiced excitation 202
voiced speech signal 57, 58, 65, 150, 298
voiced–unvoiced classification 149
voicing

frequency-domain 263
generally 281
harmonic 264–6
multi-band excitation 264

sinusoidal model 265–6
threshold function 191–2, 196

W
waveform coder 6–7, 8
waveform, equation for sampled 23
wavelet transform 380
weighted mean square error

measurement 106
weighted mean square error distortion

measure 42
weighting filter of AbS-LPC coder

204–5
weighting method

EFR 109, 110, 120, 121
group delay 109–10, 121
LSF inverse distance 109–10, 121
Paliwal–Atal 108, 110, 121
performance 119–21

white noise excitation 309–11
white noise excitation mode error 346,

347
wideband speech coding standard 13
wide-sense stationary assumption 133
Wiener filtering 380, 385–6, 389–92,

399
window length 81
window function

Bartlett 58–9, 60, 61
Blackman 59, 60, 61
generally 58–65, 75
Hamming 59, 60–5, 165, 190, 262
Kaiser 59, 60, 61
rectangular 58–9, 60–5, 165

window position test 132

Z
zero-crossing rate of speech 180–1, 313
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