Accuracy and Stability
of Numerical Algorithms

Accuracy and Stability
of Numerical Algorithms

Nicholas J. Higham

University of Manchester
Manchester, England

Accuracy and Stability
of Numerical Algorithms

Philadelphia

Copyright © 1996 by the Society for Industrial and Applied Mathematics.
1098765432

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the
publisher. For information. write to the Society for Industrial and Applied Mathematics,
3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Cataloging-in-Publication Data

Higham, Nicholas J., 1961-
Accuracy and stability of numerical algorithms / Nicholas J.
Higham.
p. cm.
Includes bibliographical references (p. -) and index.
ISBN O-8987 1-355-2 (pbk.)
1. Numerical analysis--Data processing. 2. Computer algorithms.
l. Title.
QA297.H53 1996
519.4'0285'5 1 --dc20 95-39903

SI-aJTI-o is a registered trademark.

Dedicated to

Alan M. Turing
and
James H. Wilkinson

Contents

List of Figures XVii
List of Tables XiX
Preface XXi
About the Dedication XXVii

1 Principles of Finite Precision Computation

11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
1.10

111
112

1.13
1.14

1.15
1.16
117
1.18
1.19

1
Notation and Background 2
Relative Error and Significant Digits 4
Sources of Errors 5
Precison Versus Accuracy oo e 7
Backward and Forward Errors 7

Conditioning 9
Cancellation 10
Solving a Quadratic Equation 11
Computing the Sample Variance 12
Solving Linear Equations 13
1.10.1 GEPP Versus Cramer’'s Rule 14
Accumulation of Rounding Errors 16
Instability Without Cancellation 17
1121 The Need for Pivoting 17
1.12.2 An Innocuous Calculation? 17
1.12.3 An Infinite Sumo 18
Increasing the Precison 19
Cancellation of Rounding Errors 21
1141 Computing (e*—1)/z 22
1.14.2 QR Factorization 24
Rounding Errors Can Be Beneficid 26
Stability of an Algorithm Depends on the Problem 27
Rounding Errors Are Not Random 29
Designing St able Algorithms 30
Misconceptions 31

V111

1.20 Rounding Errors in Numerical Analysis - - - 32
1.21 Notes and References - - - « « « « « v v v v v v e e 32
Problems - - - -« ¢ o o e e e e e e e e e e e e 36

2 Floating Point Arithmetic 39
21 Floating Point Number System 40
22 Mode of Arithmetic - - - - -« « « v« v o o o 44
23 |EEE AMthMEtic « - « « « v« v e e e e e 45
24 Aberrant Arithmetics - - - - - « « ¢ o o o 48
25 Choice of Base and Distribution of Numbers - . . - 51
2.6 Statistical Distribution of Rounding Errors - - 52
2.7 Alternative Number Systems - . - 53
28 ACCUrACY TESIS « « « v v o h e 54
29 Notes and References - « « « « v v v v v v e e 56
Problems - - « « v e e e e e 62

3 Basics 67
3.1 Inner and Outer Products - - « « « « « v v e e e e 68
32 The Purpose of Rounding Error Analysis - - - 71
3.3 Running Error Analysis - « -« « ¢« oo 72
34 Notation for Error Analysis - . - - .« oo oo 73
35 Matrix Multiplication - - « - « « oo 76
36 Complex Arithmetic . - . - o 78
3.7 Miscellany - . -« - o o o oo 80
38 Error Anaysis Demystified - - - - . - . ..o 82
39 Other Approaches - « - « « « « v v v v i 83
3.10 Notes and REferences - « « « « « « v « v v v v v v v v e 84
ProbDIEMS - - « « « v v e e e e e e e e e e e e e e 84

4 Summation 87
4.1 Summation Methods - - - « « -« « e e e e 88
42 Error Analysis - - - - o e 89
43 Compensated SUMMALiON - « - « « « « v o 92
44 Other Summation Methods - - - - - « « « o v v o o oo 97
45 Statistical Estimates of Accuracy - - - - .o .o 98
46 Choice of Method - - « « « « v v v v v e 98
47 Notes and References - -« « « « v v v v i e i e 100
Problems - - « -« v e e e e e 100

5 Polynomials 103
51 Horner's Method 104
52 Evauating Derivativeso 106

53 The Newton Form and Polynomial Interpolation . . ., 109

54 Notes and References,
Problems
6 Norms
6.1 Vector Norms
6.2 Matrix Norms
6.3 The Matrix p-Norm
6.4 Notes and References
Problems
7 Perturbation Theory for Linear Systems
71 Normwise Analysis
7.2 Componentwise Analysis
7.3 Scaling to Minimize the Condition Number
74 The Matrix Inverse
75 EXtensions
7.6 Numerical Stability
7.7 Practical Error Bounds
7.8 Perturbation Theory by Calculus
79 Notes and References
Problems
8 Triangular Systems
81 Backward Error Analysiso
82 Forward Error Analysis
8.3 Bounds for the Inverse,
84 A Padld Fan-In Algorithm
85 Notes and References
8.5.1 LAPACK
Problems
9 LU Factorization and Linear Equations
9.1 Gawussian Elimination,
92 Error Analysis
9.3 The Growth Factor
9.4 Specid Matrices
95 Tridiagonal Matrices
9.6 Historical Perspective
9.7 Scaing
9.8 A Posteriori Stability Tests
9.9 Sendtivity of the LU Factorization
9.10 Notes and References

9.10.1 LAPACK e

113
114

117
118
120
124
126
127

131
132
134
137
140
140
141
142
144
145
147

151
152
155
159
162
164
166
166

Problems

10 Cholesky Factorization

10.1 Symmetric Positive Definite Matrices
10.1.1 Error Analysiso

10.2 Sensitivity of the Cholesky Factorization

10.3 Positive Semidefinite Matrices
10.3.1 Perturbation Theory
10.3.2 Error Analysis

10.4 Symmetric Indefinite Matrices and Diagona Pivoting
Method.
10.4.1 Complete Pivoting
10.4.2 Partial Pivoting

10.5 Nonsymmetric Positive Definite Matrices

10.6 Notes and References
10.6.1 LAPACK e
Problems

11 Iterative Refinement
11.1 Convergence of lIterative Refinement
11.2 Iterative Refinement Implies Stability
11.3 Notes and References
11.3.1 LAPACK. e
Problems

12 Block LU Factorization
12.1 Block Versus Partitioned LU Factorization
12.2 Error Analysis of Partitioned LU Factorization
12.3 Error Analysis of Block LU Factorization
12.3.1 Block Diagonad Dominance
12.3.2 Symmetric Positive Definite Matrices
12.4 Notes and References
12.3.1 LAPACK
Problems

13 Matrix Inversion
13.1 Use and Abuse of the Matrix Inverse
13.2 Inverting a Triangular Matrix
13.2.1 Unblocked Methods
13.2.2 Block Methods
13.3 Inverting a Full Matrix by LU Factorization
13.3.1 Method A
1332 Method B L.

1333 Method C
1334 Method D
13.3.5 Summary.
13.4 Gauss-Jordan Elimination
13.5 The Determinant
13,51 Hyman's Method
13.6 Notes and References
13.6.1 LAPACK e
Problemso

14 Condition Number Estimation

141 How to Estimate Componentwise Condition
Numbers

142 The p-Norm Power Method.

143 LAPACK [|-Norm Estimator

144 Other Condition Estimators

145 Condition Numbers of Tridiagona Matrices

146 Notes and References
14.6.1 LAPACK e
Problems

15 The Sylvester Equation

15.1 Solving the Sylvester Equation
152 Backward Error

15.2.1 The Lyapunov Equation
15.3 Perturbation Result
15.4 Practical Error Bounds
155 Extensions
156 Notes and References

15.6.1 LAPACK e

Problems

16 Stationary Iterative Methods
16.1 Survey of Error Analysis
16.2 Forward Error Analysis
16.2.1 Jacobi’'s Method
16.2.2 Successive Overrelaxation
16.3 Backward Error Analysis
16.4 Singular Systems
16.4.1 Theoretical Background
16.4.2 Forward Error Analysis
16.5 Stopping an Iterative Method
16.6 Notes and References

Xi

272
273
275
275
281
282
283
285
285

289

Xii

17

18

19

20

Problems 343
Matrix Powers 345
17.1 Matrix Powers in Exact Arithmetic 346
17.2 Bounds for Finite Precision Arithmetic 353
17.3 Application to Stationary lIteration 358
17.4 Notes and References 358

Problems 359
QR Factorization 361
18.1 Householder Transformations. 362
18.2 QR Factorization 363
18.3 Error Analysis of Householder Computations 364
18.4 Aggregated Householder Transformations 370
18.5 Givens Rotationso 371
18.6 Iterative Refinement 375
18.7 Gram-Schmidt Orthogonalization 376
18.8 Sensitivity of the QR Factorization 381
18.9 Notes and References 383

18.9.1 LAPACK e 386

Problems 387
The Least Squares Problem 391
19.1 Perturbation Theory 392
19.2 Solution by QR Factorization 395
19.3 Solution by the Modified Gram-Schmidt Method 396
19.4 The Normal Equations 397
19.5 lterative Refinement 399
19.6 The Seminormal Equations 403
19.7 Backward Erroro 404
19.8 Proof of Wedin’s Theorem 407
19.9 Notes and References o i 409

19.9.1 LAPACK e 412

Problemso 412
Underdetermined Systems 415
20.1 Solution Methods 416
20.2 Perturbation Theory 417
20.3 Error Analysis 419
20.4 Notes and References 422

20.4.1 LAPACK e 423

Problems 423

21 Vandermonde Systems
21.1 Matrix Inversion e e e
21.2 Primal and Dual Systems.
21.3 Stability
21.3.1 Forward Error
21.3.2 Residualo
21.3.3 Dedling with Instability
21.4 Notes and References
Problems

22 Fast Matrix Multiplication
22.1 Methods
22.2 Error Analysis oo
22.2.1 Winograd's Method
22.2.2 Strassen’'s Method Lo oL
22.2.3 Bilinear Noncommutative Algorithms
2224 The 3M Method
22.3 Notes and References
Problems

23 The Fast Fourier Transform and Applications
23.1 The Fast Fourier Transform
23.2 Circulant Linear Systems
23.3 Notes and References
Problems

24 Automatic Error Analysis
24.1 Exploiting Direct Search Optimization
24.2 Direct Search Methods
24.3 Examples of Direct Search
24.3.1 Condition Estimation
24.3.2 Fast Matrix Inversion
2433 Solving a Cubic
24.4 Interval Analysis.
24.5 Other Work
24.6 Notes and References
Problems

25 Software Issues in Floating Point Arithmetic
25.1 Exploiting IEEE Arithmetic
25.2 Subtleties of Floating Point Arithmetic
25.3 Cray Peculiarities,
25.4 Compilers e

Xiv

25.5 Determining Properties of Floating Point Arithmetic 497
25.6 Testing a Floating Point Arithmetic 498
25.7 Portability 499
25.7.1 Arithmetic Parameters 499

25.7.2 2x2 Problems in LAPACK 500

25.7.3 Numerical Constants 501

25.7.4 Models of Floating Point Arithmetic 501

25.8 Avoiding Underflow and Overflow 502
25.9 Multiple Precision Arithmetic 504
25.10 Patriot Missile Software Problem 506
25.11 Notes and References 507
Problems 508

26 A Gallery of Test Matrices 513
26.1 The Hilbert and Cauchy Matrices 514
26.2 Random Matrices 517
26.3 “Randsvd” Matrices 519
26.4 The Pascal Matrix 520
26.5 Tridiagonal Toeplitz Matrices 524
26.6 Companion Matrices, 525
26.7 Notes and References 526
26.7.1 LAPACK e 527
Problems 527

A Solutions to Problems 529
B Singular Value Decomposition, M-Matrices 579
B.1 Singular Vaue Decomposition 580
B2 M-Matrices 580

C Acquiring Software 581
Cl Internet. 582
C2 Netlib 582
C3 MATLAB 583
C4 NAG Library and FTN9O Compiler 583

D Program Libraries 585
D.1 Basic Linear Algebra Subprograms 586
D.2 EISPACK 587
D.3 LINPACK 587
D.3 LAPACK 587
D.4.1 Structure of LAPACK 588

E The Test Matrix Toolbox 591

XV

Bibliography 595
Name Index 665

Subject Index 675

List

11
1.2
13

14

15
1.6

2.1

4.1
4.2

5.1

6.1
9.1
13.1
141
16.1

17.1
17.2
17.3
17.4
17.5
17.6

of Figures

Backward and forward errors for y =f(z). 8
Mixed forward-backward error for y =f(z). 9
Forward errors ||z — Z||o/||z|loc @nd relative residuals ||b-

AZ|oo /(I AllooIZ]loo) Vversus precision. 20
Absolute error versus precision, t = -log,u 21
Relative errors |JAc-AcL/lIAl, for Givens QR factorization. 25
Values of rational functionr(xz)computed by Horner's rule. .. 29
Relative distance from z to the next larger machine number

(b=2, t=24), displaying wobbling precision. 44
Recovering the rounding eror. 92
Errors |y(1) — 3| for Euler's method with and without com-

pensated summation. L. 96
Computed polynomial values and running and a priori bounds

for Horner's method. 107
Plots of p versus ||Allp, for 1<p<15 125
A banded matrix. 182
Residuals for inverses computed by MaTLAB'S INV function. .. 264

Underestimation ratio for Algorithm 14.4 for 5x5 matrix A(q). 297

Forward and backward erors for SOR iteration. 327
A typicd hump for a convergent, nonnorma matrix. 347
Diverging powers of a nilpotent matrix, C; , 347
Infinity norms of powers of 2 x 2 matrix J in (17.2). 349
Computed powers of chebspec matrices. 356
Pseudospectra for chebspec matrices. 357
Pseudospectrum for SOR iteration matrix. 359

XVii

XV111
18.1
18.2

221
222

231

241

25.1
25.2

26.1
26.2
26.3

LIST OF FIGURES

Householder matrix P times vectorz. 363
Givens rotation, y = G(i,j,q)Z. -« « « « c o oo 372
Exponent versus time for matrix multiplication. 449
Errors for Strassen’s method with two random matrices of di-

menson n = 1024. 457
Error in FFT followed by inverse FFT. 468
The possible steps in one iteration of the MDS method when

NT2. o 478
Rational function r 493
Error in evaluating rational function r 494
spy(rem(pascal(32),2)). 524
Pseudospectra of compan(A). , . . 526

Pseudospectra of 32 x 32 pentadiagonal Toeplitz matrices. . . . 528

List

11
12
1.3

2.1
2.2
2.3
24
25

4.1

6.1
6.2

7.1

9.1
9.2

111

112
11.3

12.1

131
13.2
13.3
134
135
13.6

16.1

of Tables

Computed approximations fn = fl((1+Un)") to e = 2.71828 16
Computed values of (e* — 1)/z from Algorithms 1 and 2. ... 23
Results from GE without pivoting on an upper Hessenberg ma-

triX o e 28
Floating point arithmetic parameters. 41
IEEE arithmetic exceptions and default results. 46
Test arithmetics. o 54
Snetest. 55
Exponentation test. 55
Mean sguare errors for nonnegative x; 99
Constants a,, such that||z|l, < apllzllg, z€C* 121
Constants a,, such that||A|, < apgllAllg, A€C™ ™. 122
Backward and forward sability. 143
Times for solution of a linear system of order n 189
Records for largest dense linear systems solved. 199
Wa,p Vaues for A = orthog(25). 240
Wiap Values for A = clement(50) 241
W vaues for A = gfpp(50) 241
Stability of block and point LU factorization. 256
Backward errors n4 ,(Z) for theconorm. 262
Mflop rates for inverting a triangular matrix on a Cray 2. ... 270
Mflop rates for inverting a full matrix on a Cray 2. 275
Times (minutes and seconds) for inverting an n x n matrix. .. 276
Additional timings for inverting an n x n matrix. 276
Gauss-Jordan elimination for Ur=6.. 279
Dates of publication of selected iterative methods. 326

XixX

LIST OF TABLES

16.2 Result for Jacobi method, a = %-87. 333
16.3 Results for Jacobi method, a = -(%-8"). 333
19.1 LS backward errors and residual for Vandermonde system. . . . 405
20.1 Backward errors for underdetermined Vandermonde system. . . 422
211 Bounds and estimates for koo (Vn). . . . v o o o o oo 428
21.2 Parameters in the three-term recurrence (21.6). 433
21.3 Results for dual Chebyshev-Vandermonde-like system. 438
25.1 Results from Cholesky factorization. 496
25.2 Effect of extended run time on Patriot missile operation. 507
26.1 Condition numbers of Hilbert and Pascal matrices. 516

Pr eface

It has been 30 years since the publication of Wilkinson's books Rounding Er-
rors in Algebraic Processes [1088, 1963] and The Algebraic Eigenvalue Prob-
lem [1089, 1965]. These books provided the first thorough analysis of the
effects of rounding errors on numerical algorithms, and they rapidly became
highly influential classics in numerica analysis. Although a number of more
recent books have included analysis of rounding errors, none has treated the
subject in the same depth as Wilkinson.

This book gives a thorough, up-to-date treatment of the behaviour of
numerical algorithms in finite precision arithmetic. It combines algorithmic
derivations, perturbation theory, and rounding error analysis. Software prac-
ticalities are emphasized throughout, with particular reference to LAPACK.
The best available error bounds, some of them new, are presented in a unified
format with a minimum of jargon. Historical perspective is given to pro-
vide insight into the development of the subject, and further information is
provided in the many quotations. Perturbation theory is treated in detail,
because of its centra role in revealing problem sensitivity and providing error
bounds. The book is unique in that algorithmic derivations and motivation
are given succinctly, and implementation details minimized, so that atten-
tion can be concentrated on accuracy and stability results. The book was
designed to be a comprehensive reference and contains extensive citations to
the research literature.

Although the book’s main audience is specidists in numerical analysis, it
will be of use to al computational scientists and engineers who are concerned
about the accuracy of their results. Much of the book can be understood with
only a basic grounding in numerical analysis and linear agebra.

This first two chapters are very general. Chapter 1 describes fundamental
concepts of finite precision arithmetic, giving many examples for illustration
and dispelling some misconceptions. Chapter 2 gives a thorough treatment of
floating point arithmetic and may well be the single most useful chapter in the
book. In addition to describing models of floating point arithmetic and the
IEEE standard, it explains how to exploit “low-level” features not represented
in the models and contains a large set of informative exercises.

In the rest of the book the focus is, inevitably, on numerical linear algebra,
because it is in this area that rounding errors are most influentiad and have

XXi

XXii PREFACE

been most extensively studied. However, | found that it was impossible to
cover the whole of numerical linear algebra in a single volume. The main
omission is the area of eigenvalue and singular value computations, which
is still the subject of intensive research and requires a book of its own to
summarize algorithms, perturbation theory, and error analysis. This book is
therefore certainly not a replacement for The Algebraic Eigenvalue Problem.

Two reasons why rounding error analysis can be hard to understand are
that, first, there is no standard notation and, second, error analyses are often
cluttered with re-derivations of standard results. In this book | have used no-
tation that | find nearly aways to be the most convenient for error anayss:
the key ingredient is the symbol g, = nu/(1 - nu), explained in §3.1. | have
also summarized many basic error analysis results (for example, in Chapters 3
and 8) and made use of them throughout the book. | like to think of these
basic results as analogues of the Fortran BLAS (Basic Linear Algebra Sub-
programs): once available in a standard form they can be used as black boxes
and need not be reinvented.

A number of the topics included here have not been treated in depth in pre-
vious numerical analysis textbooks. These include floating point summation,
block LU factorization, condition number estimation. the Sylvester equation,
powers of matrices. finite precision behaviour of stationary iterative methods,
Vandermonde systems, and fast matrix multiplication, each of which has its
own chapter. But there are also some notable omissions. | would have liked
to include a chapter on Toeplitz systems, but this is an area in which sta-
bility and accuracy are incompletely understood and where knowledge of the
underlying applications is required to guide the investigation. The important
problems of updating and downdating matrix factorizations when the matrix
undergoes a “small” change have also been omitted due to lack of time and
space. A further omission is analysis of paralel agorithms for al the problems
considered in the book (though blocked and partitioned algorithms and one
particular parallel method for triangular systems are treated). Again, there
are relatively few results and this is an area of active research.

Throughout the history of numerical linear algebra, theoretical advances
have gone hand in hand with software development. This tradition has con-
tinued with LAPACK (1987-), a project to develop a state-of-the-art Fortran
package for solving linear equations and eigenvalue problems. LAPACK has
enjoyed a synergy with research that has led to a number of important bresk-
throughs in the design and analysis of algorithms, from the standpoints of
both performance and accuracy. A key feature of this book is that it pro-
vides the material needed to understand the numerical properties of many of
the agorithms in LAPACK, the except ions being the routines for eigenvalue
and singular value problems. In particular, the error bounds computed by
the LAPACK linear eguation solvers are explained, the LAPACK condition
estimator is described in detail, and some of the software issues confronted by

XX111

the LAPACK developers are highlighted. Chapter 25 examines the influence
of floating point arithmetic on general numerical software, offering salutary
stories, useful techniques, and brief descriptions of relevant codes.

This book has been written with numerical anaysis courses in mind, a-
though it is not designed specifically as a textbook. It would be a suitable
reference for an advanced course (for example, for a graduate course on Nu-
merical Linear Algebra following the syllabus recommended by the ILAS Ed-
ucation Committee [601, 1993]), and could be used by instructors at al levels
as a supplementary text from which to draw examples, historical perspective,
statements of results, and exercises. The exercises (actually labelled “prob-
lems’) are an important part of the book, and many of them have not, to my
knowledge, appeared in textbooks before. Where appropriate | have indicated
the source of an exercise; a name without a citation means that the exercise
came from private communication or unpublished notes. Research problems
given at the end of some sets of exercises emphasize that most of the areas
covered are ill active.

In addition to surveying and unifying existing results (including some that
have not appeared in the mainstream literature) and sometimes improving
upon their presentation or proof, this book contains new results. Some of
particular note are as follows.

1. The error analysis in 85.3 for evaluation of the Newton interpolating
polynomial.

2. The forward error analysis for iterative refinement in 811.1.
3. The eror analysis of Gauss-Jordan elimination in 8§13.4.

4. The unified componentwise error analysis of QR factorization methods
in Chapter 18, and the corresponding analysis of their use for solving
the least squares problem in Chapter 19.

5. Theorem 20.3, which shows the backward stability of the QR factoriza-
tion method for computing the minimum 2-norm solution to an under-
determined system.

The Notes and References are an integral part of each chapter. In addi-
tion to containing references, historical information, and further details, they
include material not covered elsewhere in the chapter, and should aways be
consulted, in conjunction with the index, to obtain the complete picture.

| have included relatively few numerical examples except in the first chap-
ter. There are two reasons. One is to reduce the length of the book. The
second reason is because today it so easy for the reader to perform experi-
ments in MATLAB* or some other interactive system. To this end | have made

*MATLAB is aregistered trademark of The Math Works, Inc.

XXiV PREFACE

avalable the Test Matrix Toolbox, which contains MaTLAB M-files for many
of the algorithms and special matrices described in the book; see Appendix E.

This book has been designed to be as easy to use as possible. There are
thorough name and subject indexes, page headings show chapter and section
tittes and numbers, and there is extensive cross-referencing. | have adopted
the unusua policy of giving with (nearly) every citation not only its numerica
location in the bibliography but aso the names of the authors and the year of
publication. This provides as much information as possible in a citation and
reduces the need for the reader to turn to the bibliography.

A BisT@#tabase acc-stab-num-alg.bib containing all the references
in the bibliography is available over the Internet from the bibnet project
(which can be accessed via netlib, described in §C.2).

Special care has been taken to minimize the number of typographical and
other errors, but no doubt, some remain. | will be happy to receive notification
of errors, as well as comments and suggestions for improvement.

Acknowledgements

Three books, in addition to Wilkinson's, have strongly influenced my research
in numerical linear algebra and have provided inspiration for this book: Golub
and Van Loan's Matrix Computations [470, 1989] (first edition 1983), Parlett’s
The Symmetric Eigenvalue Problem [820, 1980], and Stewart’'s Introduction
to Matrix Computations [941, 1973]. Knuth's The Art of Computer Program-
ming books [666, 1973-1981] have also influenced my style and presentation.
Jm Demmel has contributed greatly to my understanding of the subject
of this book and provided valuable technical help and suggestions. The first
two chapters owe much to the work of Velvel Kahan; | am grateful to him
for giving me access to unpublished notes and for suggesting improvements to
early versions of Chapters 2 and 25. Des Higham read various drafts of the
book, offering sound advice and finding improvements that had eluded me.
Other people who have given valuable help, suggestions, or advice are

Zhaojun Bai, Brad Baxter, Ake Bjérck, Martin Campbell-Kelly,
Shivkumar Chandrasekaran, Alan Edelman, Warren Ferguson, Philip
Gill, Gene Golub, George Hall, Sven Hammarling, Andrzej Kielbas-
inski. Philip Knight, Beresford Parlett, David Silvester, Michael
Saunders, lan Smith, Doron Swade, Nick Trefethen, Jack Williams,
and Hongyuan Zha.

David Carlisle provided invaluable help and advice concernin@®TEX 2¢.
Working with SIAM on the publication of this book was a pleasure. Specia
thanks go to Nancy Abbott (design), Susan Ciambrano (acquisition), Ed Cil-
urso (production), Beth Gallagher (copy editing), Corey Gray (production),

XXV

Mary Rose Muccie (copy editing and indexing), Colleen Robishaw (design),
and Sam Young (production).

Research leading to this book has been supported by grants from the
Engineering and Physical Sciences Research Council, by a Nuffield Science
Research Fellowship from the Nuffield Foundation, and by a NATO Collabo-
rative Research Grant held with J. W. Demmel. | was fortunate to be able
to make extensive use of the libraries of the University of Manchester, the
University of Dundee, Stanford University, and the University of California,
Berkeley.

This book was typeset inATEX 2¢ using the book document style. The
references were prepared in BIBTEX and the index with Makelndex. It is dif-
ficult to imagine how | could have written the book without these wonderful
tools. | used the “big” software from the emTEX distribution, running on a
486DX workstation. | used text editors The Semware Editor (Semware Cor-
poration) and GNU Emacs (Free Software Foundation) and checked spelling
with PC-Write (Quicksoft).

Manchester Nicholas J. Higham
April 1995

About the Dedication

This book is dedicated to the memory of two remarkable English mathemati-
cians, James Hardy Wilkinson (1919-1986), FRS, and Alan Mathison Turing
(1912-1954), FRS, both of whom made immense contributions to scientific
computation.

Turing's achievements include his paper “On Computable Numbers, with
an Application to the Entscheidungsproblem”, which answered Hilbert's de-
cidability question using the abstract device now known as a Turing machine
[1025, 1936]; his work at Bletchley Park during World War 11 on breaking
the ciphers of the Enigma machine; his 1945 report proposing a design for
the Automatic Computing Engine (ACE) at the National Physical Labora-
tory [1026, 1945]; his 1948 paper on LU factorization and its rounding error
analysis [1027, 1948]; his consideration of fundamenta questions in artificia
intelligence (including his proposal of the “Turing test”); and, during the last
part of his life, spent a the University of Manchester, his work on morpho-
genesis (the development of structure and form in an organism). Turing is
remembered through the Turing Award of the Association for Computing Ma
chinery (ACM), which has been awarded yearly since 1966 [3, 1987]. For more
about Turing, read the superb biography by Hodges [575, 1983], described by
a reviewer as “one of the finest pieces of scholarship to appear in the history
of computing” [182, 1984].

Wilkinson, like Turing a Cambridge-trained mathematician, was Turing's
assistant at the National Physical Laboratory. When Turing left, Wilkinson
managed the group that built the Pilot ACE, contributing to the design and
construction of the machine and its software. Subsequently, he used the ma
chine to develop and study a variety of numerica methods. He developed
backward error analysis in the 1950s and 1960s publishing the books Round-
ing Errors in Algebraic Processes [1088, 1963]Jr (REAP) and The Algebraic
Eigenvalue Problem [1089, 1965]i (AEP), both of which rapidly achieved the
status of classics. (AEP was reprinted in paperback in 1988 and, after being
out of print for many years, REAP is now also available in paperback.) The
AEP was described by the late Professor Ledie Fox as “amost certainly the
most important and widely read title in numerical analysis’. Wilkinson also

'REAP has been translated into Polish [1091, 1967] and German [1093, 1969].
*AEP has been translated into Russian [1094, 1970].

XXVii

XXV111 ABOUT THE DEDICATION

contributed greatly to the development of mathematical software. The vol-
ume Handbook for Automatic Computation, Volume II: Linear Algebra [1102,
1971], co-edited with Reinsch, contains high-quality, properly documented
software and has strongly influenced subsequent software projects such as the
NAG Library, EISPACK, LINPACK, and LAPACK.

Wilkinson received the 1970 Turing Award. In his Turing Award lec-
ture he described life with Turing at the National Physical Laboratory in the
1940s [1096, 1971].

Wilkinson is remembered through SIAM’s James H. Wilkinson Prize in
Numerical Analysis and Scientific Computing, awarded every 4 years; the
Wilkinson Prize for Numerica Software, awarded by Argonne National Lab-
oratory, the National Physical Laboratory, and the Numerical Algorithms
Group; and the Wilkinson Fellowship in Scientific Computing at Argonne
National Laboratory. For more about Wilkinson see the biographical mem-
oir by Fox [403, 1987], Fox's article [402, 1978], Parlett's essay [821, 1990],
the prologue and epilogue of the proceedings [252, 1990] of a conference held
in honour of Wilkinson at the National Physica Laboratory in 1987. and the
tributes in [23, 1987]. Lists of Wilkinson's publications are given in [403, 1987]
and in the special volume of the journa Linear Algebra and its Applications
(88/89, April 1987) published in his memory.

Previous Home

Chapter 1
Principles of Finite Precision
Computation

Numerical precision is the very soul of science.
-SIR D’ARCY WENTWORTH THOMPSON, On Growth and Form (1942)

There will always be a small but steady demand for error-analysts to . . .
expose bad algorithms’ big errors and, more important,
supplant bad algorithms with provably good ones.

-WILLIAM M. KAHAN, Interval Arithmetic Options in
the Proposed IEEE Floating Point Arithmetic Standard (1980)

Since none of the numbers which we take out from logarithmic and
trigonometric tables admit of absolute precision,
but are all to a certain extent approximate only,

the results of all calculations performed

by the aid of these numbers can only be approximately true . . .
It may happen, that in special cases the

effect of the errors of the tables is so augmented that

we may be obliged to reject a method,

otherwise the best, and substitute another in its place.

-CARL FRIEDRICH GAUSS’, Theoria Motus (1809)

Backward error analysis is no panacea;
it may explain errors but not excuse them.

-HEWLETT-PACKARD, HP-15C Advanced Functions Handbook (1982)

Cited in Goldstine [461, 1977, p. 258].

Next

2 PRINCIPLES OF FINITE PRECISON COMPUTATION

This book is concerned with the effects of finite precision arithmetic on nu-
merical algorithms', particularly those in numerical linear algebra. Central
to any understanding of high-level agorithms is an appreciation of the basic
concepts of finite precision arithmetic. This opening chapter briskly imparts
the necessary background material. Various examples are used for illustra-
tion, some of them familiar (such as the quadratic equation) but several less
wel known. Common misconceptions and myths exposed during the chapter
are highlighted towards the end, in 8§1.19.

This chapter has few prerequisites and few assumptions are made about
the nature of the finite precision arithmetic (for example, the base, number
of digits, or mode of rounding, or even whether it is floating point arith-
metic). The second chapter deals in detail with the specifics of floating point
arithmetic.

A word of warning: some of the examples from 8§81.12 onward are specia
ones chosen to illustrate particular phenomena. You may never see in practice
the extremes of behaviour shown here. Let the examples show you what
can happen, but do not let them destroy your confidence in finite precision
arithmetic!

1.1. Notation and Background

We describe the notation used in the book and briefly set up definitions needed
for this chapter.
Generaly, we use

capital letters A,B,CD,L for matrices,
subscripted lower case letters a;j, by, ¢, dj, Ay for matrix elements,
lower case letters z,Y,2¢Cg,h for vectors,
lower case Greek letters a,b,gf,r for scalars,

following the widely used convention originally introduced by Householder [587,
1964].

'Ilhe vector space of al real m x n matrices is denoted by IR™*" and the
vector space of real n-vectors by IR". Similarly, C™*™ denotes the vector
space of complex m x n matrices.

Algorithms are expressed using a pseudocode based on the MATLAB lan-
guage [232, 1988], [735, 1992]. Comments begin with the % symbol.

Submatrices are specified with the colon notation, as used in MATLAB and
Fortran 90: A(p:q, r:s) denotes the submatrix of A formed by the intersection
of rows p to g and columns r to s. As a special case, a lone colon as the row or
column specifier means to take al entries in that row or column; thus A(:,j)
is the jth column of A and A(i,:) the ith row. The vaues taken by an integer

For the purposes of this book an agorithm is a MATLAB program; cf. Smale [924, 1990].

1.1 NOTATION AND BACKGROUND 3

variable are also described using the colon notation: “i = 1:n” means the

same as “i=12,...,n".
Evaluation of an expression in floating point arithmetic is denoted fI(),

and we assume that the basic arithmetic operations op=+,-,*,/ satisfy

fl(zopy) = (zopy)(1+6), ldl<u. (11)

Here, u is the unit roundoff (or machine precision), which is typicaly of order
10® or 10™ in single and double precision computer arithmetic, respectively,
and between 10™° and 10™® on pocket calculators. For more on floating
point arithmetic see Chapter 2.

Computed quantities (and, in this chapter only, arbitrary approximations)
wear a hat. Thus Z denotes the computed approximation to z..

Definitions are often (but not always) indicated by “:=" or “=", with the
colon next to the object being defined.

We make use of the floor and celling functions: [z| is the largest integer
less than or equal toz, and[z] is the smallest integer greater than or equa
to x.

The normal distribution with mean m and variance ¢# is denoted by
N(p,0?).

We measure the cost of agorithms in flops. A flop is an dementary floating
point operation: +,-,/, or *. We normally state only the highest-order terms
of flop counts. Thus, when we say that an algorithm for n x n matrices requires
2n%3 flops, we redly mean 2n*3+0(n®) flops.

Other definitions and notation are introduced when needed. Two top
ics, however, do not fit comfortably into the main text and are described in
Appendix B: the singular value decomposition (SVD) and M-matrices.

All our numerical experiments were carried out either in MATLAB 4.2 [735,
1992], sometimes in conjunction with the Symbolic Math Toolbox [204, 1993],
or with the Salford Software/Numerical Algorithms Group FTN90® Fortran 90
compiler, Version 1.2 [888, 1993]. Whenever we say a computation was “done
in Fortran 90" we are referring to the use of this compiler. All the results
guoted were obtained on a 486DX workstation, unless otherwise stated, but
many of the experiments were repeated on a Sun SPARCstation, using the
NAGWare* FTN90 compiler [785, 1992]. Both machines use IEEE standard
floating point arithmetic and the unit roundoff is u = 2 ~ 1.1 x 10*°
in MATLAB and in double precision in Fortran 90. (Strictly speaking, in
Fortran 90 we should not use the terminology single and double precision but
should refer to the appropriate KIND parameters, see, eg., Metcalf and Reid
[749, 1990, §2.6]. However, these terms are vivid and unambiguous in IEEE
arithmetic, so we use them throughout the book.)

®FTN9O is a joint trademark of Salford Software Ltd. and The Numerical Algorithms
Group Ltd.
‘NAGWare is a trademark of The Numerical Algorithms Group Ltd.

4 PRINCIPLES OF FINITE PRECISION COMPUTATION

1.2. Relative Error and Significant Digits

Let T be an approximation to a real number x. The most useful measures of
the accuracy of 7 are its absolute error

Eups(Z) = |z — 7,

and its relative error R
|z — 2|

Erel(i) = |$|

(which is undefined if z = 0). An equivalent definition of relative error is

Erel(Z) = |r|, where T = zi(1+p). Some authors omit the absolute values
from these definitions. When the sign is important we will ssmply talk about
“the error - Z.

In scientific computation, where answers to problems can vary enormously
in magnitude, it is usually the relative error that is of interest, because it is
scale independent: scding = — ax and T — aZleaves E.q(Z) unchanged.

Relative error is connected with the notion of correct significant digits (or
correct significant figures). The significant digits in a number are the first
nonzero digit and all succeeding digits. Thus 1.7320 has five significant digits,
while 0.0491 has only three. What is meant by correct significant digits in
a number that approximates another seems intuitively clear, but a precise
definition is problematic, as we explain in a moment. First, note that for a
number z with p significant digits there are only p+1 possible answers to the
guestion “how many correct significant digits doesz have?’ (assumingZ is
not a constant such as 2.0 that is known exactly). Therefore the number of
correct significant digits is a fairly crude measure of accuracy in comparison
with the relative error. For example, in the following two cases T agrees with
z to three but not four significant digits by any reasonable definition, yet the
relative errors differ by a factor of about 44:

£ = 1.00000, Z = 1.00499, E.q(Z)= 4.99 x 1073,
z = 9.00000, Z = 899899, E,q(Z)= 112 x 10™

Here is a possible definition of correct significant digits. an approximation
Z to z has p correct significant digits if £ and x round to the same number to
p significant digits. Rounding is the act of replacing a given number by the
nearest p significant digit number, with some rule for breaking ties when there
are two nearest. This definition of correct significant digits is mathematicaly
elegant and agrees with intuition most of the time. But consider the numbers

z =0.9949, 7 =0.9951.

According to the definition T does not have two correct significant digits
(z — 0.99, T — 1.0), but does have one and three correct significant digits!

6 PRINCIPLES OF FINITE PRECISION COMPUTATION

or, if the data is itsdf the solution to another problem, it may be the result
of errors in an earlier computation. The effects of errors in the data are
generaly easier to understand than the effects of rounding errors committed
during a computation, because data errors can be anaysed using perturbation
theory for the problem at hand, while intermediate rounding errors require
an analysis specific to the given method. This book contains perturbation
theory for most of the problems considered, for example, in Chapters 7 (linear
systems), 19 (the least squares problem), and 20 (underdetermined systems).

Analysing truncation errors, or discretization errors, is one of the ma-
jor tasks of the numerical analyst. Many standard numerical methods (for
example, the trapezium rule for quadrature, Euler's method for differential
equations, and Newton's method for nonlinear equations) can be derived by
taking finitely many terms of a Taylor series. The terms omitted constitute
the truncation error, and for many methods the size of this error depends
on a parameter (often caled h, “the stepsize’) whose appropriate value is a
compromise between obtaining a smal eror and a fast computation.

Because the emphasis of this book is on finite precison computation, with
virtudly no mention of truncation errors, it would be easy for the reader to
gan the impression that the study of numerica methods is dominated by the
study of rounding errors. This is certainly not the case. Trefethen explains it
well when he discusses how to define numerica anaysis [1016, 1992]:

Rounding errors and instability are important, and numerical an-
alysts will always be the experts in these subjects and at pains
to ensure that the unwary are not tripped up by them. But our
central mission is to compute quantities that are typicaly uncom-
putable, from an analytic point of view, and to do it with lightning
speed.

In this quotation “uncomputable” means that approximations are necessary,
and thus Trefethen's point is that developing good approximations is a more
fundamental task than analysing the effects of rounding errors on those ap-
proximations.

A possible way to avoid rounding and truncation errors (but not data
errors) is to try to solve a problem using a symbolic manipulation package,
such as Maple® [199, 1991] or Mathematica® [1109, 1991]. Indeed, we have
used this approach to compute “exact answers’ in some of our numerical
experiments, While we acknowledge the value of symbolic manipulation as
part of the toolkit of the scientific problem solver, we do not study it in this
book.

*Maple is a registered trademark of Waterloo Maple Software.
®Mathematica is a registered trademark of Wolfram Research Inc.

1.3 SOURCES OF ERRORS 5

A definition of correct significant digits that does not suffer from the latter
anomaly states that T agrees with z to p significant digits if |z —Z]is less than
half a unit in the pth significant digit ofz.. However, this definition implies
that 0.123 and 0.127 agree to two significant digits, whereas many people
would say that they agree to less than two significant digits.

In summary, while the number of correct significant digits provides a useful
way in which to think about the accuracy of an approximation, the relative
error is a more precise measure (and is base independent). Whenever we give
an approximate answer to a problem we should aim to state an estimate or
bound for the relative error.

When z and T are vectors the relative error is most often defined with
anorm, as ||z — Z||/||z||. For the commonly used norms ||z[le := max; |z;l,
lzll == 3, |z, and flzllz = («72)"/2, the inequality iz~ Z/llzl< v x 10°
implies that components x; with|z;| = ||z|| have about p correct significant
decimal digits, but for the smaller components the inequality merely bounds
the absolute error.

A relative error that puts the individual relative errors on an equa footing
is the componentwise relative error

lzi — Zi
max ————,
v o
which is widely used in error analysis and perturbation analysis (see Chapter 7,
for example).

As an interesting aside we mention the “tablemaker's dilemma’. Suppose
you are tabulating the values of a transcendental function such as the sine
function and a particular entry is evaluated as 0.124|500000000 correct to a
few digits in the last place shown, where the vertical bar follows the final
significant digit to be tabulated. Should the final significant digit be 4 or
5? The answer depends on whether there is a nonzero trailing digit and, in
principle, we may never be able answer the question by computing only a
finite number of digits.

1.3. Sources of Errors

There are three main sources of errors in numerical computation: rounding,
data uncertainty, and truncation.

Rounding errors, which are an unavoidable consegquence of working in finite
precision arithmetic, are largely what this book is about. The remainder of
this chapter gives basic insight into rounding errors and their effects.

Uncertainty in the data is always a possibility when we are solving practical
problems. It may arise in several ways. from errors in measuring physical
quantities, from errors in storing the data on the computer (rounding errors),

1.4 PRECISION VERSUS ACCURACY 7

1.4. Precision Versus Accuracy

The terms accuracy and precision are often confused or used interchangeably,
but it is worth making a distinction between them. Accuracy refers to the
absolute or relative error of an approximate quantity. Precision is the accu-
racy with which the basic arithmetic operations +,-,*,/ are performed, and
for floating point arithmetic is measured by the unit roundoff u (see (1.1)).
Accuracy and precision are the same for the scalar computation ¢ = a*b, but
accuracy can be much worse than precision in the solution of a linear system
of equations, for example.

It is important to realize that accuracy is not limited by precision, at least
in theory. This may seem surprising, and may even appear to contradict many
of the results in this book. However, arithmetic of a given precision can be
used to simulate arithmetic of arbitrarily high precision, as explained in §25.9.
(The catch is that such simulation is too expensive to be of practica use for
routine computation.) In al our error anayses there is an implicit assumption
that the given arithmetic is not being used to simulate arithmetic of a higher
precision.

1.5. Backward and Forward Errors

Suppose that an approximation 3 to y =f(x) is computed in an arithmetic
of precision u, where f is a real scalar function of a rea scalar variable. How
should we measure the “quality” of ?

In most computations we would be happy with a tiny relative error,
E.a(y) = u, but this cannot aways be achieved. Instead of focusing on the
relative error of 7 - we can ask “for what set of data have we actually solved
our problem?’, that is, for what Az do we have y = f(x + Az)? In generd,
there may be many such Azx.so we should ask for the smallest one. The value
of |Az| (or min |Ax|), possibly divided by |z|. , is called the backward error.
The absolute and relative errors of y are called forward errors, to distinguish
them from the backward error. Figure 1.1 illustrates these concepts.

The process of bounding the backward error of a computed solution is
caled backward error analysis, and its motivation is twofold. First, it inter-
prets rounding errors as being equivalent to perturbations in the data. The
data frequently contains uncertainties due to previous computations or er-
rors committed in storing numbers on the computer. If the backward error
is no larger than these uncertainties then the computed solution can hardly
be criticized-it may be the solution we are seeking, for all we know. The
second attraction of backward error analysis is that it reduces the question of
bounding or estimating the forward error to perturbation theory, which for
many problems is well understood (and only has to be developed once, for the

8 PRINCIPLES OF FINITE PRECISION COMPUTATION

Input space Output space
~
backward error ™~
\ \
T+ Ax ~ forward error
~
~
~~
=

y = f(z + Az)

Figure 1.1. Backward and forward errors for y =f(z). Solid line = exact; dotted
line = computed.

given problem, and not for each method). We discuss perturbation theory in
the next section.

A method for computing y = f(x) is called backward stable if, for any
it produces a computed g with a small backward error, that is, § = f(z+ Azx)
for some small Az. The definition of “small” will be context dependent. In
general, a given problem has several methods of solution, some of which are
backward stable and some not.

As an example, assumption (1.1) says that the computed result of the
operation z * y is the exact result for perturbed data z((1 + d) and y(1 + d)
with |d < u; thus addition and subtraction are, by assumption, backward
stable operations.

Most routines for computing the cosine function do not satisfy 3 = cos(z +
Az) with a relatively small Az, but only the weaker relation 3 + Dy = cos(zx +
Az)), with relatively small Dy and Az.A result of the form

y+Ay=flz+Az), [Ay[<ely

, |Az] <zl (1.2)

is known as a mixed forward-backward error result and is illustrated in Fig-
ure 1.2. Provided that eand nare sufficiently small, (1.2) says that the
computed value § scarcely differs from the valuey - +Aythat would have been
produced by an input x +Ax scarcely different from the actual input z. Even
more simply, g is amost the right answer for amost the right data

In general, an agorithm is caled numerically stable if it is stable in the
mixed forward-backward error sense of (1.2) (hence a backward stable ago-
rithm can certainly be caled numerically stable). Note that this definition is
specific to problems where rounding errors are the dominant form of errors.
The term stability has different meanings in other areas of numerica anayss.

1.6 CONDITIONING

Input space Output space

backward error

forward error

f(z + Ax)

Figure 1.2. Mixed forward-backward error for y = f(z). Solid line = exact; dotted
line = computed.

1.6. Conditioning

The relationship between forward and backward error for a problem is gov-
erned by the conditioning of the problem, that is, the sensitivity of the solution
to perturbations in the data. Continuing the y = f(z) example of the pre-
vious section, let an approximate solution § satisty § = f(x + Azx). Then,
assuming for simplicity that f is twice continuously differentiable,

f"(z +0Ax)
2!

and we can bound or estimate the right-hand side. This expansion leads to
the notion of condition number. Since

boy_ (xf'(‘”)) 2 L o((Ax)?),

——y=f(:1}+Al‘) —f(l‘) =f,(-'17)AJ:-+— (A‘T)Q) AS (Ovl)a

)

y f@)) =
the quantity)
f(z)

measures, for small Az, the relative change in the output for a given relative
change in the input, and it is called the (relative) condition number of f. If z
or f is a vector then the condition number is defined in a similar way using
norms and it measures the maximum relative change, which is attained for
some, but not al, vectors Azx.

As an example, consider the function f(z) =log x. The condition number
is(z) =|1/logz|, which is large for z ~ 1. This means that a small relative
change in =z can produce a much larger relative change in log z for z ~ 1. The

10 PRINCIPLES OF FINITE PRECISION COMPUTATION

reason is that a small relative change in produces a small absolute change
in f(r'=logz (sncef(r+ Azx) = f(x)+ f'(z)Az = f(x)+ Az/z) and that
change in log z may be large in a relative sense.

When backward error, forward error, and the condition number are defined
in a consstent fashion we have the useful rule of thumb that

forward error condition number x backward error,

with approximate equality possible. One way to interpret this rule of thumb
is to say that the computed solution to an ill-conditioned problem can have a
large forward error. For even if the computed solution has a small backward
error, this error can be amplified by a factor as large as the condition number
when passing to the forward error.

One further definition is useful. If a method produces answers with for-
ward errors of similar magnitude to those produced by a backward stable
method, then it is called forward stable. Such a method need not be back-
ward stable itself. Backward stability implies forward stability, but not vice
versa. An example of a method that is forward stable but not backward stable
is Cramer's rule for solving a 2 x 2 linear system, which is discussed in §1.10.1.

1.7. Cancellation

Cancellation is what happens when two nearly egual numbers are subtracted.
It is often, but not always, a bad thing. Consider the function f(z) = (1 -
cosz)/r2 With z = 1.2x10° the vaue of cosz rounded to 10 significant
figures is

¢ = 0.9999 9999 99,

so that
1 - ¢ = 0.0000 0000 01.

Then (1 - §/x2 = 10'%1.44x10™ = 0.6944. . . , which is clearly wrong
given the fact that 0 < f(z) < /2 for all z # 0. A 10 significant figure
approximation to cosz is therefore not sufficient to yield a value of f(z) with
even one correct figure. The problem is that 1 - ¢ has only 1 significant
figure. The subtraction 1 - ¢ is exact, but this subtraction produces a result
of the same size as the error in c. In other words, the subtraction elevates the
importance of the earlier error. In this particular example it is easy to rewrite
f(z) to avoid the cancellation. Since cosz =1 - 2 sini(z/2),

1 (sin(z/2)\?
Evaluating this second formula for f(z) with a 10 significant figure approxi-
mation to sin (z/2) yidds f(z) = 0.5, which is correct to 10 significant figures.

18 SOLVING A QUADRATIC EQUATION 11

To gain more insight into the cancellation phenomenon consider the sub-
traction (in exact arithmetic) z = a—b, where @ = a(1+Aa) and b = b(1+ Ab).
The terms Da and Db are relative errors or uncertainties in the data, perhaps
attributable to previous computations. With x = a - b we have

—ala — bAb
a—2>b

The relative error bound for Zis large when |a - b| << [a] + |b|, that is,
when there is heavy cancellation in the subtraction. This anadysis shows that
subtractive cancellation causes relative errors or uncertainties aready present
in @ :and b to be magnified. In other words, subtractive cancellation brings
earlier errors into prominence.

It is important to realize that cancellation is not aways a bad thing. There
are several reasons. First, the numbers being subtracted may be error free,
as when they are from initial data that is known exactly. The computation
of divided differences, for example, involves many subtractions, but half of
them involve the initial data and are harmless for suitable orderings of the
points (see 85.3 and 8§21.3). The second reason is that cancellation may be
a symptom of intrinsic ill conditioning of a problem, and may therefore be
unavoidable. Third, the effect of cancellation depends on the role that the
result plays in the remaining computation. For example, if x > y=~ z>0
then the cancdlation in the evaluation of x + (y - 2) is harmless.

la] + [b]
la—b]

zT—-T
z

] < max(| Aal, | Ab])

1.8. Solving a Quadratic Equation

Mathematically, the problem of solving the (real) quadratic equation ax® +
bx + ¢ = 0 is trivial: there are two roots (if a #0)) given by

- Vb2 —

Numericaly, the problem is more challenging, as neither the successful evalua
tion of (1.3) nor the accuracy of the computed roots can be taken for granted.

The easiest issue to dea with is the choice of formula for computing the
roots. If b® >> |4ac| then b2 — 4ac ~ |b|, and so for one choice of sign the for-
mula (1.3) suffers massive cancdlation. This is damaging cancellation because
one of the arguments, (vb? — 4ac), is inexact, so the subtraction brings into
prominence the earlier rounding errors. How to avoid the cancellation is well
known: obtain the larger root (in absolute value), x;, from

_ — (b + sign(b)Vb? — 4ac)

2a

T

and the other from the equation x; x, = cla.

12 PRINCIPLES OF FINITE PRECISION COMPUTATION

Unfortunately, there is a more pernicious source of cancellation: the sub-
traction b® - 4ac. Accuracy is lost here when b® ~ 4ac (the case of nearly
equal roots), and no algebraic rearrangement can avoid the cancellation. The
only way to guarantee accurate computed roots is to use double precision (or
s<2)me trick tantamount to the use of double precision) in the evaluation of
b” - 4ac.

Another potential difficulty is underflow and overflow. If we apply the
formula (1.3) in IEEE single precision arithmetic (described in §2.3) to the
equation 10%°¢ - 3.10°°x+2:10° = 0 then overflow occurs, since the maxi-
mum floating point number is of order 10 the roots, however, are innocuous.
x = 1 and x = 2. Dividing through the equation by max(|al, |b|, |c)) = 10%
cures the problem, but this strategy is ineffective for the equation 10%x?-
3x+2:10° = 0, whose roots are 10°° and 2:10%. In the latter equation we need
to scale the variable: defining x = 10Py gives 10%%y*-3-10%%+2-10%°=0,
which is the first equation we considered. These ideas can be built into a
general scaling strategy (see the Notes and References), but the details are
nontrivial.

As this discussion indicates, not only is it difficult to devise an accurate and
robust algorithm for solving a quadratic equation, but it is a nontrivial task
to prepare specifications that define precisely what “accurate” and “robust”
mean for a given system of floating point arithmetic.

1.9. Computing the Sample Variance

In statistics the sample variance of n numbers x;, . . . , X, is defined as

sn=- L D (@i =), (1.4)

where the sample mean

Computing s2 from this formula requires two passes through the data, one
to compute T and the other to accumulate the sum of squares. A two-pass
computation is undesirable for large data sets or when the sample variance
is to be computed as the data is generated. An alternative formula, found
in many statistics textbooks, uses about the same number of operations but
requires only one pass through the data

G E)) e

i=1

1.10 SOLVING LINEAR EQUATIONS 13

This formula is very poor in the presence of rounding errors because it com-
putes the sample variance as the difference of two positive numbers, and
therefore can suffer severe cancellation that leaves the computed answer dom-
inated by roundoff. In fact, the computed answer can be negative, an event
aptly described by Chan, Golub, and LeVeque [194, 1983] as “a blessing in
disguise since this at least alerts the programmer that disastrous cancella-
tion has occurred”. In contrast, the origina formula (1.4) always yields a
very accurate (and nonnegative) answer, unless n is large (see Problem 1.10).
Surprisingly, current calculators from more than one manufacturer (but not
Hewlett-Packard) appear to use the one-pass formula, and they list it in their
manuals.

As an example, if x = [10000, 10001, 10002]" then, in single precision
arithmetic (u ~ 6 x 10®), the sample variance is computed as 1.0 by the
two-pass formula (relative error 0) but 0.0 by the one-pass formula (relative
error 1). It might be argued that this data should be shifted by some estimate
of the mean before applying the one-pass formula (x; — x; —d, i = 1: n, which
does not change s2), but a good estimate is not always available and there
are alternative one-pass algorithms that will always produce an acceptably
accurate answer. For example, instead of accumulating Y-, z; and Y, z2 we
can accumulate

1k k \ k , 1 k 2
My = E;Ii and Q= ;(m - M) = ;xi - E(Zmi) ,

which can be done via the updating formulae

My =z, Mp=Mi1+ 3’“—#‘—‘ k=2n, (1.6a)
_ - 2
Q1=0, OQpe=Qui+ E-D@E=M1)" o (160)

k b
after whichs2 = Q,/(n - 1). Note that the only subtractions in these recur-
rences are relatively harmless ones that involve the data x,. For the numerica
example above, (1.6) produces the exact answer. The updating formulae (1.6)
are numerically stable, though their error bound is not as small as the one
for the two-pass formula (it is proportional to the condition number Ky in
Problem 1.7).

The problem of computing the sample variance illustrates well how mathe-
matically equivalent formulae can have different numerica stability properties.

1.10. Solving Linear Equations

For an approximate solution y to a linear sysem Ax = b (A €IR"", b €
IR") the forward error is defined as ||x-y|/|x|, for some appropriate norm.

14 PRINCIPLES OF FINITE PRECISION COMPUTATION

Another measure of the quality of y, more or less important depending on
the circumstances, is the size of the residual r = b - Ay. When the linear
system comes from an interpolation problem, for example, we are probably
more interested in how closely Ay represents b than in the accuracy of y. The
residual is scale dependent: multiply A and b by a and r is multiplied by
a. One way to obtain a scale-independent quantity is to divide by ||A|l |Ivll.
yidding the relative residual

b 4yl
) = ATl

The importance of the relative residual is explained by the following re-
suit, which was probably first proved by Wilkinson (see the Notes and Ref-
erences). We use the 2-norm, defined by |x], = (X'X)* and A, =

maxzxo [|Azll2/]|z]|2.

Lemma 1.1. With the notation above, and for the 2-norm,

AA
p(y):min{ 1Al :(A+AA)y=b}.
Il All2
Proof. If (A+DA)y = b then r := b-Ay = DAy, so |Ir||.<||DA]|:|IY|]2,
giving
14415 7l
IAllz — NAll2llyll2
On the other hand, (A+DA)y b for DA = ry'/(y'y) and |DA|, =
Itl/lvlls so the bound (1.7) is attainable. 0

= p(y)- (1.7)

Lemma 1.1 says that p(y) measures how much A (but not b) must be
perturbed in order for y to be the exact solution to the perturbed system,
that is, p(y) equals a normwise relative backward error. If the data A and b
are uncertain and p(y) is no larger than this uncertainty (eg., p(y) = O(u))
then the approximate solution y must be regarded as very satisfactory. For
other problems the backward error may not be as easy to compute as it is for
a generd linear system, as we will see for the Sylvester eguation (815.2) and
the least squares problem (819.7).

To illustrate these concepts we consider two specific linear equation solvers:
Gaussian elimination with partial pivoting (GEPP) and Cramer’'s rule.

1.10.1. GEPP Versus Cramer’s Rule

Cramer’s rule says that the components of the solution to a linear system
Ax = b are given by x; = det(A;(b))/det(A), where A(b) denotes A with its
ith column replaced by b. These formulae are a prime example of a method

1.10 SOLVING LINEAR EQUATIONS 15

that is mathematically elegant, but useless for solving practical problems.
The two flaws in Cramer’'s rule are its computational expense and its nu-
merical instability. The computational expense needs little comment, and is,
fortunately, explained in most modern linear algebra textbooks (for example,
Strang [961, 1993] cautions the student “it would be crazy to solve equations
that way”). The numerica instability is less well known, but not surprising.
It is present even for n = 2, as a numerical example shows.

We formed a 2 x 2 system Ax = b with condition number K,(A) =
IA LA™, ~10", and solved the system by both Cramer's rule and GEPP
in MATLAB (unit roundoff u = 1.1 x 10*°). The results were as follows,
wherer = b - AZ:

Cramer’s rule GEPP
z r/(IAlllZl2) | Z /(1 All2]1Zl|2)
1.0000 1.5075 x 107 | 1.0002 -4.5689 x 107
20001 1.9285 x 107 | 2.0004 -2.1931 x 107"

The scaled residual for GEPP is pleasantly small-of order the unit round-
off. That for Cramer's rule is ten orders of magnitude larger, showing that the
computed solution Z from Cramer’'s rule does not closdy satisfy the equations,
or, equivalently, does not solve a nearby system. The solutions themselves are
similar, both being accurate to three significant figures in each component but
incorrect in the fourth significant figure. This is the accuracy we would expect
from GEPP because of the rule of thumb “forward error < backward error x
condition number”. That Cramer’s rule is as accurate as GEPP in this ex-
ample, despite its large residual, is perhaps surprising, but it is explained by
the fact that Cramer's rule is forward stable for n = 2; see Problem 1.9. For
genera n, the accuracy and stability of Cramer's rule depend on the method
used to evaluate the determinants, and satisfactory bounds are not known
even for the case where the determinants are evaluated by GEPP.

The small residual produced by GEPP in this example is typical: error
analysis shows that GEPP is guaranteed to produce a relative residual of
order u when n = 2 (see §89.2). To see how remarkable a property this is,
consider the rounded version of the exact solution: z = fl(x) = x + Dx,
where [[IDx|,<u|x|,. The residua of z satisfies [b-Az|,=-ADXx]|,<
u||A||2||X||2 u||A||2||z||2 Thus the computed solution from GEPP has about

as small a residual as the rounded exact solution, irrespective of its accuracy.

Expressed another way, the errors in GEPP are highly correlated so as to
produce a small residual. To emphasize this point, the vector [1.0006,2.0012],
which agrees with the exact solution of the above problem to five significant
figures (and therefore is more accurate than the solution produced by GEPP),
has a relative residua ||7||2/(||All2||Z]2) of order 107°.

16 PRINCIPLES OF FINITE PRECISION COMPUTATION

Table 1.1. Computed approximations f, = fl(1+1/n)") to e = 2.71828. . . .

n fn le = fnl

10%| 2593743 1.25 x 10t
10%| 2.704811 1.35 x 1072
10%| 2717051 1.23 x 103
10*| 2.718597 3.15 x 10™*
10°| 2.721962 3.68 x 1073
10°| 2595227 1.23 x 10t
107 | 3.293968 5.76 x 10"

1.11. Accumulation of Rounding Errors

Since the first electronic computers were developed in the 1940s, comments
aong the following lines have often been made: “The enormous speed of
current machines means that in a typical problem many millions of floating
point operations are performed. This in turn means that rounding errors can
potentially accumulate in a disastrous way.” This sentiment is true, but mis-
leading. Most often, instability is caused not by the accumulation of millions
of rounding errors. but by the insidious growth of just a few rounding errors.

As an example, let us approximate e = exp(l) by taking finite n in the
definition e := lim, (1 + 1/n)*. Table 1.1 gives results computed in For-
tran 90 in single precision (U &~ 6 x 109).

The approximations are poor, degrading as n approaches the reciprocal
of the machine precision. For n a power of 10, I/n has a nonterminating
binary expansion. When 1+1/n is formed for n a large power of 10, only
a few significant digits from I/n are retained in the sum. The subsequent
exponentiation to the power n, even if done exactly, must produce an inaccu-
rate approximation to e(indeed, doing the exponentiation in double precision
does not change any of the numbers shown in Table 1.1). Therefore a single
rounding error is responsible for the poor results in Table 1.1.

There is a way to compute (1+1/n)" more accurately, using only single
precision arithmetic; it is the subject of Problem 1.5.

Strassen’s method for fast matrix multiplication provides another exam-
ple of the unpredictable relation between the number of arithmetic operations
and the error. If we evaluate fl(AB) by Strassen’s method, for nxn matrices
A and B, and we look a the error as a function of the recursion threshold
no<n. we find that while the number of operations decreases as n, decreases
from n to 8, the error typically increases; see §22.2.2.

112 INSTABILITY WITHOUT CANCELLATION 17

1.12. Instability Without Cancellation

It is tempting to assume that calculations free from subtractive cancellation
must be accurate and stable, especially if they involve only a small number
of operations. The three examples in this section show the fallacy of this
assumption.

1.12.1. The Need for Pivoting

Suppose we wish to compute an LU factorization

_|€ -1 _ 1 0 U1 U112
a=o =L [m] e<esn

Clearly, ull =€ U2 = ‘_1, l21 = E_l, ‘and U22 = l - |21U12 = 1+ 6_1.
In floating point arithmetic, if € is sufficiently smal then pe = fI(1 + €7?%)
evaluates to e~!. Assuming |, is computed exactly, we then have

N e -1 1 0]]e =1 00
A-LU= [1 1] B [e-l 1] [0 e-l} - [0 1]'
Thus the computed LU factors fail completely to-reproduce A. Notice that
there is no subtraction in the formation of L and U. Furthermore, the matrix
A is very well conditioned (koo (A) = 4/(1+¢€)). The problem, of course, is with
the choice of € as the pivot. The partial pivoting strategy would interchange
the two rows of A before factorizing it, resulting in a stable factorization.

1.12.2. An Innocuous Calculation?

For any x>0 the following computation leaves x unchanged:

for i = 1:.60
T=z

end

for i = 1:60
X =%

end

Since the computation involves no subtractions and al the intermediate num-
bers lie between 1 and x, we might expect it to return an accurate approxi-
mation to x in floating point arithmetic.

On the HP 48G caculator, starting with x = 100 the algorithm produces
x = 1.0. In fact, for any x, the calculator computes, in place of f(x) = X, the
function

. 0, 0<z<l,
f(x)*{l, z>1.

18 PRINCIPLES OF FINITE PRECISION COMPUTATION

The calculator is producing a completely inaccurate approximation to f(x) in

just 120 operations on nonnegative numbers. How can this happen?
-499

The positive humbers x representable on 6(t)he HP 48G sdatisfy 10™° < x <
9.999. . . x 10™°. If we define r(x)=z!/2" then, for any machine number
X >1,

1 < r(z) < r(105%) = 10500/2
— 50027 1og 10 - j1071°

=1+10-15+%.10—30+...,

which rounds to 1, since the HP 48G works to about 12 decima digits. Thus
for x > 1, the repeated square roots reduce x to 1.0, which the squarings leave
unchanged.
For 0 < x < 1 we have
r<0.99...9
N e’
12

on a 12-digit calculator, so we would expect the sguare root to satisfy

V< (1-1071)2 =11 10712 - L. 107 — ...
=0.99...9499...987499...
S S——
12 11
This upper bound rounds to the 12 significant digit number 0.99. . .9. Hence
after the 60 square roots we have on the cdculator a number x < 0.99. . .9.
The 60 squarings are represented by s(x) = z2*, and

26()

s(x) <5(0.99...9) = (1 -10712)
— 10250 log(1—10"'2) log g e

~ 10——260410712-10gme
~ 3.6 x 10—500708

Because it is smaller than the smallest positive representable number, this
result is set to zero on the calculator--a process known as underflow. (The
converse situation, in which a result exceeds the largest representable number,
is caled overflow.)

The conclusion is that there is nothing wrong with the calculator. This
innocuous-looking calculation simply exhausts the precision and range of a
machine with 12 digits of precison and a 3-digit exponent.

1.12.3. An Infinite Sum

It is well known that "7 k=2 = n?/6 = 1.6449 3406 6848. . . . Suppose we
were not aware of this identity and wished to approximate the sum numeri-
caly. The most obvious strategy is to evaluate the sum for increasing k until

1.13 INCREASING THE PRECISION 19

the computed sum does not change. In Fortran 90 in single precision this
yields the value 1.6447 2532, which is first attained at k = 4096. This agrees
with the exact infinite sum to just four significant digits out of a possible nine.

The explanation for the poor accuracy is that we are summing the numbers
from largest to smallest, and the smal numbers are unable to contribute to
the sum. For k = 4096 we are forming s + 4096% = s + 2% where s ~ 1.6.
Single precision corresponds to a 24-bit mantissa, so the term we are adding
to s “drops off the end” of the computer word, as do al successive terms.

The simplest cure for this inaccuracy is to sum in the opposite order: from
smalest to largest. Unfortunately, this requires knowledge of how many terms
to take before the summation begins. With 10° terms we obtain the computed
sum 1.6449 3406, which is correct to eight significant digits.

For much more on summation, see Chapter 4.

1.13. Increasing the Precision

When the only source of errors is rounding, a common technique for estimating
the accuracy of an answer is to recompute it at a higher precision and to see
how many digits of the original and the (presumably) more accurate answer
agree. We would intuitively expect any desired accuracy to be achievable by
computing a a high enough precision. This is certainly the case for agorithms
possessing an error bound proportional to the precision, which includes al the
algorithms described in the subsequent chapters of this book. However, since
an error bound is not necessarily attained, there is no guarantee that a result
computed in t digit precision will be more accurate than one computed in
s digit precision, for a given t > s; in particular, for a very ill conditioned
problem both results could have no correct digits.

For illustration, consider the system Ax = b, where A is the inverse of the
5%x5 Hilbert matrix and b, = (-1)'i. (For details of the matrices used in
this experiment see Chapter 26.) We solved the system in varying precisions
with unit roundoffs u = 2, t = 15:40, corresponding to about 4 to 12
decimal places of accuracy. (This was accomplished in MATLAB by using
the function chop from the Test Matrix Toolbox to round the result of every
arithmetic operation to t bits; see Appendix E.) The algorithm used was
Gaussian elimination (without pivoting), which is perfectly stable for this
symmetric positive definite matrix. The upper plot of Figure 1.3 shows t
against the relative errors ||z — Z|joo/||z]lc @nd the relative residuals |b -
AZ||oc/ (| AllcllZlloc)- The lower plot of Figure 1.3 gives corresponding results
for A = P; + 5l, where P5 is the Pascal matrix of order 5. The condition
numbers koo (A) are 1.62x10° for the inverse Hilbert matrix and 9.55x10° for
the shifted Pascal matrix. In both cases the general trend is that increasing
the precision decreases the residual and relative error, but the behaviour is

20 PRINCIPLES OF FINITE PRECISION COMPUTATION

invhilb(5)

L
—

pascal(5) + eye(5)

10 T 7 T T

-6

10 -
-8 ‘9\9/9)

10 —
—10[i

10 - . |

—n

—12] "\,,/;K

10 —

107L 1 L | I N
15 20 25 30 35 40

Figure 1.3. Forward errors ||z — Z||=/|lzll~ (“*") and relative residuals |b -
ATl /(| Al < 1Tl =) (“0™) versus precisiont = - log, u on the x axis.

not monotonic. The reason for the pronounced oscillating behaviour of the
relative error (but not the residual) for the inverse Hilbert matrix is not clear.

An example in which increasing the precision by several bits does not
improve the accuracy is the evauation of

y = X + a sin(bx), r= a = 10° b=2* (18)

~if

Figure 1.4 plots t versus the absolute error, for precisions u = 2°, t = 10:40.
Since a sin(bx) & -8.55x10°, for t less than about 20 the error is dominated
by the error in representing x = |/7. For 22 < t < 31 the accuracy is (exactly)
constant! The plateau over the range 22 < t < 31 is caused by a fortuitous
rounding error in the addition: in the binary representation of the exact
answer the 23rd to 32nd digits are 1s, and in the range of t of interest the
final rounding produces a number with a 1 in the 22nd bit and zeros beyond,
yielding an unexpectedly small error that affects only bits 33rd onwards.

A more contrived example in which increasing the precision has no bene-
ficial effect on the accuracy is the following evaluation of z = f(X):

y = abs(3(x-0.5)-0.5)/25
ify=0
z=1

1.14 CANCELLATION OF ROUNDING ERRORS 21

_.‘
-
-

—_ -
(=) Ol
UL SRR BRRALLL SRR L e

error
-
o
|

L B B AL

v oo ol v s ol el 3l nw

_
o
AL R

10 L | l | | j
10 15 20 25 30 35 40

t

Figure 1.4. Absolute error versus precision, t = -log, u.

else
z=¢ % Store to inhibit extended precision evaluation.
z=(z - Dby

end

In exact arithmetic, z = f(2/3) = 1, but in Fortran 90 on a Sun SPARCsa
tion and on a 486DX workstation,z = fl(f(2/3)) = 0.0 in both single and
double precision arithmetic. A further example is provided by the “innocu-
ous calculation” of §1.12.2, in which a step function is computed in place of
f(x) = x for a wide range of precisions.

It is worth stressing that how precision is increased can greatly affect
the results obtained. Increasing the precision without preserving important
properties such as monotonicity of rounding can vitiate an otherwise reliable
algorithm. Increasing the precision without maintaining a correct relationship
among the precisions in different parts of an algorithm can also be harmful
to the accuracy.

1.14. Cancellation of Rounding Errors

It is not unusua for rounding errors to cancel in stable agorithms, with the
result that the final computed answer is much more accurate than the inter-

22 PRINCIPLES OF FINITE PRECISION COMPUTATION

mediate quantities. This phenomenon is not universally appreciated, perhaps
because we tend to look at the intermediate numbers in an agorithm only
when something is wrong, not when the computed answer is sat isfactory. We
describe two examples. The first is a very short and rather unusual com-
putation, while the second involves a well-known agorithm for computing a
standard matrix decomposition.

1.14.1. Computing (¢ - 1)/x

Consder the function f(x) = (€ - 1)/x = Y icox'/(i + 1)}, which arises in
various applications. The obvious way to evaluate f is via the agorithm

% Algorithm 1.

if x=0

f =1
else

f=(e - Dix
end

This agorithm suffers severe cancellation for |x| << 1, causing it to produce an
inaccurate answer (O instead of 1, if x is small enough) . Here is an aternative:

% Algorithm 2.
y=¢
if y =1
f =1
else

f = (y - Dllogy
end

At first sight this algorithm seems perverse, since it evaluates both exp and
log instead of just exp. Some results computed in MATLAB are shown in
Table 1.2. All the results for Algorithm 2 are correct in all the significant
figures shown, except for x = 10", when the last digit should be 1. On the
other hand, Algorithm 1 returns answers that become less and less accurate
as X decreases.

To gain insight we look a the numbers in a particular computation with
x = 9 x 10° and u = 2% ~ 6 x 10® for which the correct answer is
1.00000005 to the significant digits shown. For Algorithm 1 we obtain a
completely inaccurate result, as expected:

e’ —1 1.19209290 x 10~7
! = fl — 1.32454766.
! (x) f (9.00000000x 10*8)

1.14 CANCELLATION OF ROUNDING ERRORS 23

Table 1.2. Computed values of (€ - 1)/x from Algorithms 1 and 2.

X Algorithm 1 Algorithm 2
10° | 1.000005000006965 1.000005000016667
10°® | 1.000000499962184 1.000000500000167
107 | 1.000000049433680 1.000000050000002
10 | 9.999999939225290 x 10" 1.000000005000000
10° | 1.000000082740371 1.000000000500000
107'° | 1.000000082740371 1.000000000050000
10*'| 1.000000082740371 1.000000000005000
10°*?| 1.000088900582341 1.000000000000500
10713 | 9.992007221626408 x 10" 1.000000000000050
10" | 9.992007221626408 x 10" 1.000000000000005
10'12 1.110223024625156 1.000000000000000
10| 0

Algorithm 2 produces a result correct in al but the last digit:

e* —1\ _ . {1.19209290 x 107
Tl (1ogem) =Jl (1.19209282 x 10*7) = 1.00000006.

Here are the quarntities that would be obtained by Algorithm 2 in exact arith-
metic (correct to the significant digits shown):

e —1 _ 9.00000041 x 1078
loge* ~ 9.00000001 x 10~8

We see that Algorithm 2 obtains very inaccurate values of € - 1 and loge”,
but the ratio of the two quantities it computes is very accurate. Conclusion:
errors cancel in the division in Algorithm 2.

A short error analysis explains this striking cancellation of errors. We
assume that the exp and log functions are both computed with a relative error
not exceeding the unit roundoff u. The algorithm first computes § = e€*(1+d),
|d <u If 7 =1then €(+d) =1, s0

x = -log(1+d) = -d+d/2-d%3+. . ., ld|<u,

which implies that the correctly rounded value of f(x) = 1+x/2+x°/6+
is 1, and so f has been evaluated correctly, to the working precision, If § #1
then’, using (1.1),

= 1.00000005.

-1 +e)

F=1U@=-1)/10g7) = | =0

(1 +e3), (1-9)

"The analysis from this point on assumes the use of a guard digit in subtraction (see
§2.4); without a guard digit Algorithm 2 is not highly accurate.

24 PRINCIPLES OF FINITE PRECISION COMPUTATION

where |e;| <u, i = 1:3. Defining u = - 1, we have
g
W)= logyg log(l+v)
_ v _ 1
v —v2/2403/3 -0 1 —v/24+02/3 ..

=1+ g + O(v?).

For smal x (y=1)

)

~
~

-y €%
2

é
0@ o) ~ L5 Y = ~ 00

2

N O

From (1.9) it follows that f: approximates f with relative error at most about
3.5u.

The details of the analysis obscure the crucial property that ensures its
success. For smal x, neither § - 1 nor logy agrees with its exact arithmetic
counterpart to high accuracy. But - - 1)/logy :is an extremely good approx-
imation to (y-)/logy near y=1, because the function g(y) = (y-1)/logy
varies so dowly there (g has a removable singularity a 1 and g'(1)) = 1). In
other words, the errors in % - 1 and log y . dmost completely cancel.

1.14.2. QR Factorization

Any matrix A € IR™", m > n, has a QR factorization A = QR, where Q €
IR™ has orthonormal columns and R € IR™ is upper trapezoidal (r; = 0
for i > j). One way of computing the QR factorization is to premultiply A by
a sequence of Givens rotations-orthogonal matrices G that differ from the
identity matrix only in a 2x2 principal submatrix, which has the form

{ cosf sinf }

—sinf cosé

With A; = A, a sequence of matrices A, saisfying A, = GA.; is gen-
erated. Each A, has one more zero than the last, so A, = R for p =
nim - (n + 1)/2). To be specific, we will assume that the zeros are intro-
duced in the order (n,1). (n - 1,1, . . ., (21); (n,2), ..., (3,2); and so on.
For a particular 10x6 matrix A, Figure 15 plots the relative errors
A - Adl/IAlL, where A, denotes the matrix computed in single precision
arithmetic(u =~ 6 x 10%). We see that many of the intermediate matrices are
very inaccurate, but the final computed R has an acceptably small relative
error, of order u. Clearly, there is heavy cancellation of errors on the last
few stages of the computation. This matrix A € IR was specialy chosen,

1.14 CANCELLATION OF ROUNDING ERRORS 25

covl vl g

LELAALLL BN SRR AL NN L B A

error
ALl ul.l

|

UUBER AL

Figure 1.5. Relative errors ||JA A Jl/||IA|l, for Givens QR factorization. The
dotted line is the unit roundoff level.

following a suggestion of Wilkinson [1100, 1985], as a full matrix such that
A, =1 and Ay has the form

511 512 ;{(1,3371)
Ap=10 1 A23n) |,

0 y A(3:m,3:n)

Because y is a the roundoff level, the computedy is the result of severe sub-
tractive cancellation and so is dominated by rounding errors. Consequently,
the computed Givens rotations Gy, ...,G17, whose purpose is to zero the
vector g, and which are determined by ratios involving the elements of ¥, bear
little relation to their exact counterparts, causing A, to differ greatly from
A fork=1112,. ...

To shed further light on this behaviour, we note that the Givens QR fac-
torization is perfectly backward stable; that is, the computed R is the exact
R factor of A + DA, where |DA|<cul|Al,, with ¢ a modest constant de-
pending on the dimensions (Theorem 18.9). By invoking a perturbation result
for the QR factorization (namely (18.27)) we conclude that ||R— R||2/||All2is
bounded by a multiple of K,(A)u. Our example is constructed so that k,(A) is
small (=~24), so we know a priori that the graph in Figure 1.5 must eventually
dip down to the unit roundoff leve.

26 PRINCIPLES OF FINITE PRECISION COMPUTATION

We dso note that ||Q — QHQ is of order u in this example, as again we can
show it must be from perturbation theory. Since Q is a product of Givens
rotations, this means that even though some of the intermediate Givens rota-
tions are very inaccurate, their product is highly accurate, so in the formation
of Q, too, there is extensive cancellation of rounding errors.

1.15. Rounding Errors Can Be Beneficial

An old method for computing the largest eigenvalue (in absolute value) of
a matrix A and the corresponding eigenvector is the power method, which
consists of repeatedly multiplying a given starting vector by A. With scaling
to avoid underflow and overflow, the process in its simplest form is

% Choose a starting vector X.
while not converged

X = AX

2= /|l
end

The theory says that if A has a unique eigenvalue of largest modulus and x
is not deficient in the direction of the corresponding eigenvector u, then the
power method converges to a multiple of u (at a linear rate).

Consider the matrix

04 -0.6 0.2
A=] -03 07 -04
-0.1 -04 0.5

which has eigenvalues 0, 0.4394 and 1.161 (correct to the digits shown) and an
eigenvector [I, 1, 1]" corresponding to the eigenvalue zero. If we take [1,1,1]"
as the starting vector for the power method then, in principle, the zero vector
is produced in one step, and we obtain no indication of the desired dominant
eigenvalue-eigenvector pair. However, when we carry out the computation in
MATLAB, the first step produces a vector with elements of order 10 and
we obtain after 38 iterations a good approximation to the dominant eigen-
pair. The explanation is that the matrix A cannot be stored exactly in bi-
nary floating point arithmetic. The computer actually works with A + DA
for a tiny perturbation DA, and the dominant eigenvalue and eigenvector of
A + DA ae very good approximations to those of A. The starting vector
[1,1,1]" contains a nonzero (though tiny) component of the dominant eigen-
vector of A + DA. This component grows rapidly under multiplication by
A + DA, helped by rounding errors in the multiplication, until convergence
to the dominant eigenvector is obtained.

1.16 STABILITY OF AN ALGORITHM DEPENDS ON THE PROBLEM 27

Perhaps an even more striking example of beneficial effects of rounding
errors is in inverse iteration, which is just the power method applied to the
shifted and inverted matrix (A-m)% The shift m is usualy an approximate
eigenvalue. The closer mis to an eigenvaue, the more nearly singular A - m
is, and hence the larger the error in computing y = (A - m)™ x (which is done
by solving (A-ml)y = x). However, it can be shown that the error lies amost
entirdly in the direction of the required eigenvector, and so is harmless; see, for
example, Parlett [820, 1980, 84.31] or Golub and Van Loan [470, 1989, §7.6.1].

1.16. Stability of an Algorithm Depends on the Problem

An agorithm can be stable as a means for solving one problem but unsta-
ble when applied to another problem. One example is the modified Gram-
Schmidt method, which is stable when used to solve the least squares problem
but can give poor results when used to compute an orthonormal basis of a
matrix (see §8518.7 and 19.3).

A lesser known and much simpler example is Gaussian elimination (GE)
without pivoting for computing the determinant of an upper Hessenberg ma-
trix. A square matrix A is upper Hessenberg if a; = 0 for i > j + 1. GE
transforms A to upper triangular form by n - 1 row eliminations. one for each
of the boxed entries in this 4 x 4 illustration:

X X X X X X X X
K o x ox o ox 0 x x x|
A_Oxx—>00><x_U'

0 0 [x] x 0 0 0 x

The determinant of A is given by the product of the diagonal elements of U.
It is easy to show that this is a stable way to evaluate det(A), even though
arbitrarily large multipliers may arise during the eimination. Note. first, that,
if A denotes the matrix at the start of the kth stage (A(l) = A), then

(k—1) (k—1) (k—1)

(k) (k—1) %k k- ak—l,k _ A k—10% -1k
Ukk = Qg = 0rx ~ — = -1y~ %k T T k-1 0
Ap_1,k-1 Qg1 k-1
because the kth row of AP is the same as the kth row of A. In floating
point arithmetic the model (1.1) shows that the computed a satlsfy
k) A 15(,c g k) k k
Ukk =a§ck = (akk '—ﬁ—j——(l + e+ e))>(1 +e”)
Ag_1,k-1
k k k ~(k—]
oy [0 1+ +)0+)]l
= akk(l +€) —(k=1) s

Qg1 k-1

28 PRINCIPLES OF FINITE PRECISION COMPUTATION

Table 1.3. Results from GE without pivoting on an upper Hessenberg matrix.

Exact Computed Relative error

1.0000 2.3842
1.0000 1.0000 .
T | 1.0000 1.0000 1.3842
1.0000 1.0000
det(A): 2.0000 2.0000 1.9209 x 1078
where |e§k)| < u, i = 1:3. This eguation says that the computed diagonal

elements uy, are the exact diagona elements corresponding not to A, but to
a matrix obtained from A by changing the diagonal elements to ay(1 + egk))

and the subdiagonal elements to a; , (1 + e+)1 +). In other
words, the computed u,, are exact for a matrix differing negligibly from A.
The computed determinant d, which is given by

~

d= fl{Uyy .. -Upn) =U11-. - Unn(L+ 1) ... (1 + 9n), i} < u,

is therefore a tiny relative perturbation of the determinant of a matrix differing
negligibly from A. so this method for evaluating det(A) is numericaly stable
(in the mixed forward backward error sense of (1.2)).

However, if we use GE without pivoting to solve an upper Hessenberg
linear system then large multipliers can cause the solution process to be un-
stable. If we try to extend the anadysis above we find that the computed LU
factors (as opposed to just the diagonal of U) do not, as a whole, necessarily
correspond to a small perturbation of A.

A numerica example illustrates these ideas. Let

a -1 -1 -1
1 1 -1 -1
A=19 1 1 21
0o o0 1 1

We took a = 107 and b = Ae(e = [1,1,1,1]") and used GE without pivoting
in single precision arithmetic (u ~6 x 10°) to solve Ax = b and compute
det(A). The computed and exact answers are shown to five significant figures
in Table 1.3. Not surprisingly, the computed determinant is very accurate.
But the computed solution to Ax = b has no correct figures in its first com-
ponent. This reflects instability of the algorithm rather than ill conditioning
of the problem because the condition number k.. (A) = 16. The source of the
instability is the large first multiplier, a,,/a;; = 10°.

1.17 ROUNDING ERRORS ARE NOT RANDOM 29

8.752377 T T T T 1 T T
X
X x x
x x
x X X * &
x x x
x o * x x x x
s XX ; x x
¥ . % o X x
X - x X
X % b o <X ~ x
x X X% ;2"* %)« " ’)?“
= R
z _‘LX_#’-?M___i__.J_%m
= x xo&k R o X
k - o> X o = Vol
e X <& x"?« *xx w
xx‘ » e oK X X
K % x : x X . X ; X
x x X x »
% N x x x XK
X ;% x x X
X x)
x X x
x
| | L | ! | e
8.752317 50 100 150 200 250 300 350
k

Figure 1.6. Values of rational function r(x) computed by Horner’s rule (marked as
"x"), for x = 1.606 + (k - 1)2°% solid line is the “ exact” r(X).

1.17. Rounding Errors Are Not Random

Rounding errors, and their accumulated effect on a computation, are not
random. This fact underlies the success of many computations, including some
of those described earlier in this chapter. The validity of statistica analysis of
rounding errors is discussed in 82.6. Here we simply give a revesling numerical
example (due to W. Kahan).

Define the rational function

622 — (751 — 2(324 — 2(59 — 4x)))
(@) = T =25l —2(2 - 2(14 1)) |

which is expressed in a form corresponding to evaluation of the quartic poly-
nomials in the numerator and denominator by Horner's rule. We evaluated
r(x) by Horner's rule in double precision arithmetic for 361 consecutive float-
ing point numbers starting with a = 1.606, namely x = a + (k - 1)2%
k = 1:361; the function r(x) is virtualy constant on this interval. Figure 1.6
plots the computed function values together with a much more accurate ap-
proximation to r(x) (computed from a continued fraction representation).
The griking pattern formed by the values computed by Horner's rule shows
clearly that the rounding errors in this example are not random.

30 PRINCIPLES OF FINITE PRECISION COMPUTATION

1.18. Designing Stable Algorithms

There is no simple recipe for designing numerically stable algorithms. While
this helps to keep numerica anaysts in business (even in proving each other's
algorithms to be unstable!) it is not good news for computational scientists
in general. The best advice is to be aware of the need for numerical stability
when designing an algorithm and not to concentrate solely on other issues,
such as computationa cost and paralelizability.

A few guidelines can be given.

1. Try to avoid subtracting quantities contaminated by error (though such
subtractions may be unavoidable).

2. Minimize the size of intermediate quantities relative to the final solu-
tion. The reason is that if intermediate quantities are very large then
the final answer may be the result of damaging subtractive cancella-
tion. Looked at another way, large intermediate numbers swamp the
initial data, resulting in loss of information. The classic example of an
algorithm where this considerat ion is import ant is Gaussian elimination
(89.2), but an even simpler one is recursive summation (84.2).

3. Look for different formulations of a computation that are mathemati-
cally but not numerically equivalent. For example, the classical Gram-
Schmidt method is unstable, but a trivial modification produces the
stable modified Gram-Schmidt (MGS) method (818.7). There are two
ways of using the MGS method to solve a least squares problem, the
more obvious of which is unstable (819.3).

4. It is advantageous to express update formulae as
new-vaue = old-value + small-correct ion

if the small correction can be computed with many correct significant
figures. Numerical methods are often naturally expressed in this form;
examples include met hods for solving ordinary differential equations,
where the correction is proportional to a step size, and Newton’s method
for solving a nonlinear system. A classic example of the use of this
update strategy is in iterative refinement for improving the computed
solution to a linear system Ax = b, in which by computing residuals
r = b - Ay in extended precision and solving update equations that
have the residuals as right-hand sides a highly accurate solution can be
computed: see Chapter 11. For another example (in which the correction
is not necessarily small), see Problem 2.8.

5. Use only well-conditioned transformations of the problem. In matrix
computations this amounts to multiplying by orthogonal matrices where

1.19 MISCONCEPTIONS 31

possible, instead of nonorthogonal, and possibly, ill-conditioned matri-
ces. See §6.2 for a simple explanation of this advice in terms of norms.

6. Take precautions to avoid unnecessary overflow and underflow (see §25.8).

Concerning the second point, good advice is to look at the numbers gen-
erated during a computation. This was common practice in the early days
of eectronic computing. On some machines it was unavoidable because the
contents of the store were displayed on lights or monitor tubes! Wilkinson
gained much insight into numerical stability by inspecting the progress of an
algorithm, and sometimes altering its course (for an iterative process with
parameters): “Speaking for myself | gained a great deal of experience from
user participation, and it was this that led to my own conversion to backward
error analysis’ [1099, 1980, pp. 112-113] see also [1083, 1955]). It is ironic
that with the wealth of facilities we now have for tracking the progress of nu-
merical agorithms (multiple windows in colour, graphica tools, fast printers)
we often glean less than Wilkinson and his co-workers did from mere paper
tape and lights.

1.19. Misconceptions

Several common misconceptions and myths have been dispelled in this chapter
(none of them for the first time-see the Notes and References). We highlight
them in the following list.

1. Cancdllation in the subtraction of two nearly equal numbers is aways a
bad thing (81.7).

2. Rounding errors can overwhelm a computation only if vast numbers of
them accumulate (81.11).

3. A short computation free from cancellation, underflow, and overflow
must be accurate (81.12).

4. Increasing the precision at which a computation is performed increases
the accuracy of the answer (81.13).

5. The fina computed answer from an agorithm cannot be more accurate
than any of the intermediate quantities, that is, errors cannot cancel
(81.14).

6. Rounding errors can only hinder, not help, the success of a computation
(81.15).

32 PRINCIPLES OF FINITE PRECISION COMPUTATION

1.20. Rounding Errors in Numerical Analysis

Inevitably, much of this book is concerned with numerical linear agebra, be-
cause this is the area of numerica anadysis in which the effects of rounding
errors are most important and have been most studied. In nonlinear prob-
lems rounding errors are often not a major concern because other forms of
error dominate. Although we give examples for numerica methods involving
derivatives and integras (for example, Euler's met hod in 84.3 and quadrature
in Problem 3.12), it is beyond our scope to give a treatment of the effects and
influence of rounding errors on these methods. We do. however, give some
selected references to the literature. grouped by subject area

Approximation theory: Clenshaw [212, 19551], Cox [249, 19721], [250, 19751],

[251, 1978], Cox and Harris [253, 1989], de Boor [272, 19721], and de Boor
and Pinkus [273, 1977].

Chaos and dynamical systems: Cipra [211, 1988], Coomes, Kocak, and
Palmer [242, 1995], Corless [246. 1992], [247, 1992], Hammel, Yorke,
and Grebogi [499, 1988], and Sanz-Serna and Larsson [893, 1993].

Nonlinear equations: Dennis and Walker [302, 1984], Spellucci [933, 1980],
and Wozniakowski [1111, 1977].

Optimization: Dennis and Schnabel [300, 1983], Fletcher [377, 1986], [379,
1988], [380, 1993], [381, 1994]. Gill, Murray, and Wright [447, 1981],
Gurwitz [490, 1992], Miller-Merbach [783, 1970], and Wolfe [1108, 1965].

Ordinary differential equation initial value problems: Henrici
[517, 1962], [518, 1963], [519, 1964], D. J. Higham [525, 1991]. Sanz-
Serna [891, 1992, 812], Sanz-Serna and Calvo [892, 1994], and Shampine
[910, 1994, §3.3, §5.6].

Partial differential equations: Ames [14, 1977], Birkhoff and Lynch [101,
1984], Canuto, Hussaini, Quarteroni, and Zang [183, 1988], Douglas [319,
1959], Forsythe and Wasow [397, 1960], Richtmyer and Morton [872,
1967, 81.8], and Trefethen and Trummer [1020, 1987].

Quadrature: Davis and Rabinowitz [267, 1984, 84.2], Lyness [717, 1969],
and Piessens et al. [832, 1983, §3.4.3.1].
1.21. Notes and References

The term “correct significant digits’ is rarely defined in textbooks. it is ap-
parently assumed that the definition is obvious. One of the earliest books on

1.21 NOTES AND REFERENCES 33

numerical analysis, by Scarborough [897, 1950] (first edition 1930), is note-
worthy for containing theorems describing the relationship between correct
significant digits and relative error.

The first definition of correct significant digits in §1.2 is suggested by
Hildebrand [571, 1974, §1.41], who notes its weaknesses.

For a forma proof and further explanation of the fact that precision does
not limit accuracy see Priest [844, 1992].

It is possible to develop formal definitions of numerical stability, either
with respect to a particular problem, as is frequently done in research papers,
or for a very genera class of problems, as is done, for example, by de Jong [274,
1977]. Except in 87.6, we do not give formal definitions of stability in this
book, preferring instead to adapt informally the basic notions of backward
and forward stability to each problem, and thereby to minimize the amount
of notation and abstraction.

Backward error anadysis was systematicaly developed, exploited, and pop
ularized by Wilkinson in the 1950s and 1960s in his research papers and, in
particular, through his books [1088, 1963], [1089, 1965] (for more about the
books see the Notes and References for Chapter 2). Backward error ideas had
earlier appeared implicitly in papers by von Neumann and Goldstine (1057,
1947] and Turing [1027, 1948], both of which dea with the solution of lin-
ear systems, and explicitly in an unpublished technica report of Givens [451,
1954] on the solution of the symmetric eigenproblem by reduction to tridiag-
ona form followed by the use of Sturm sequences. The concept of backward
error is not limited to numerical linear algebra. It is used, for example, in
the numerical solution of differential equations, see Eirola [349, 1993], En-
right [352, 1989], and Shampine [910, 1994, §2.2], in addition to the references
of Sanz-Serna and his co-authors cited in 81.20. Backward error is also used
in understanding chaotic behaviour of iterations, see the references in §1.20.

Conditioning of problems has been studied by numerical analysts since
the 1940s but the first genera theory was developed by Rice [871, 1966]. In
numerical linear algebra, developing condition numbers is part of the subject
of perturbation theory, on which there is a large literature.

The solution of a quadratic equation is a classic problem in numerical anal-
ysis. In 1969 Forsythe [393, 1969] pointed out “the near absence of agorithms
to solve even a quadratic equation in a satisfactory way on actualy used dig-
ital computer systems’ and he presented specifications suggested by Kahan
for a satisfactory solver. Similar, but less technical, presentations are given by
Forsythe [392, 1969] and Forsythe, Macolm, and Moler [395, 1977, 82.6]. Ka
han [627, 1972] and Sterbenz [938, 1974] both present algorithms for solving
a quadratic equation, accompanied by error analysis.

For more details of algorithms for computing the sample variance and
their error analysis, see Chan and Lewis [195, 1979], Chan, Golub, and LeV-
eque [194, 1983], Barlow [61, 1991], and the references therein. Good general

34 PRINCIPLES OF FINITE PRECISION COMPUTATION

references on computational aspects of satistics are Kennedy and Gentle [649,
1980] and Thisted [1000. 1988].

The issues of conditioning and numerical stability play a role in any disci-
pline in which finite precison computation is performed, but the understand-
ing of these issues is less well developed in some disciplines than in others.
In geometric computation, for example, there has been much interest since
the late 1980s in the accuracy and robustness of geometric algorithms; see
Milenkovic [754, 1988], Hoffmann [576, 1989], and Priest [843, 1991], [844,
1992].

It was after discovering Lemma 1.1 that Wilkinson began to develop back-
ward error analysis systematically in the 1950s. He explains that in solving
eigenproblems Ax = Mx by deflation, the residual of the computed solution,
r:= AT — AT (with the normaization 7'z =1 was “aways at noise level rel-
ative to A" [1101, 1986]. He continues, “After some years experience of this
| happened. amost by accident, to observe that . . . (A —rT)Z = AF ... In
other words X and T were exact for a matrix A—rz! and since ||rz7 |2 = ||7 ||z,
this meant that they were exact for a matrix differing from A at the noise
level of the computer. For further details see [1101, 1986] or [1100, 198s].

The numerical stability of Cramer's rule for 2 x 2 systems has been inves-
tigated by Moler [768, 1974] and Stummel [964, 1981, §3.3].

The example in 81.12.2 is taken from the HP-15C Advanced Functions
Handbook [523, 1982], and a similar example is given by Kahan [629, 1980].
For another approach to analysing this “innocuous calculation” see Prob-
lem 3.11. The “f(2/3)" example in §1.13 is aso taken from [629, 1980], in
which Kahan states three “anti-theorems’ that are included among our mis-
conceptions in §1.19.

The example (1.8) is adapted from an example of Sterbenz [938, 1974,
p. 220], who devotes a section to discussing the effects of rerunning a compu-
tation at higher precision.

The function expml := € - 1 is provided in some floating point processors
and mathematics libraries as a more accurate alternative to forming € and
subtracting 1 [991, 1992]. It is important in the computation of sinh and tanh,
for example (since sinh x = €*(e** - 1)/2). Algorithm 2 in §1.14.1 is due to
Kahan [629, 1980].

The instability. and stability of GE without pivoting applied to an upper
Hessenberg matrix (81.16) was first pointed out and explained by Wilkin-
son [1084, 1960]; Parlett [818, 1965] also gives a lucid discussion. In the 1950s
and 1960s. prior to the development of the QR agorithm, various methods
were proposed for the nonsymmetric eigenvalue problem that involved trans
forming a matrix to Hessenberg form H and then finding the zeros of the char-
acteristic polynomial det(H - AI). The most successful method of this type
was Laguerre's iteration. described by Parlett [817, 1964], and used in con-
junction with Hyman's method for evaluating det(H - A/). Hyman's met hod

1.21 NOTES AND REFERENCES 35

is described in 813.5.1.

Classic papers dispensing good advice on the dangers inherent in numer-
ical computation are the “pitfalls’ papers by Stegun and Abramowitz [937,
1956] and Forsythe [394, 1970]. The book Numerical Methods That Work by
Acton [4, 1970] must also be mentioned as a fount of hard-earned practical
advice on numerical computation (look carefully and you will see that the
front cover includes a faint image of the word “Usudly” before “Work”). If
it is not obvious to you that the equation X* - 10x + 1 = O is best thought of
as a nearly linear equation for the smaller root, you will benefit from reading
Acton (see p. 58). Everyone should read Acton’'s “Interlude: What Not To
Compute” (pp. 245-257).

Finaly, we mention the paper “How to Get Meaningless Answers in Sci-
entific Computation (and What to Do About it)” by Fox [401, 1971]. Fox, a
contemporary of Wilkinson, founded the Oxford Computing Laboratory and
was for many years Professor of Numerica Analysis a Oxford. In this paper
he gives numerous examples in which incorrect answers are obtained from
plausible numerica methods (many of the examples involve truncation errors
as well as rounding errors). The section titles provide a list of reasons why
you might compute worthless answers:

* Your problem might be ill conditioned.
* Your method might be unstable.

* You expect too much “anaysis’ from the computers.

Your intuition fails you.
* You accept consistency too easily.
* A successful method may fail in dightly different circumstances.

» Your test examples may be too specia.

Fox estimates [401, 1971, p. 296] that “about 80 per cent of all the results
printed from the computer are in error to a much greater extent than the user
would believe”

®This reason refers to using an inappropriate convergence test in an iterative process.

36 PRINCIPLES OF FINITE PRECISION COMPUTATION

Problems

The road to wisdom?

Well, it's plain and simple to express:
Err

and err

and err again

but less

and less

and less.

-PIET HEIN, Grooks (1966)

1.1. In error andysis it is sometimes convenient to boundE,. () = |z—z|/|Z]
instead of E,.(T) = |r — Z|/|x|. Obtain inequalities between FE..,(z) and
Era (7).

12. (Skeel and Keiper [923, 1993, §1.2]) The number y =¢e™V163 was evalu-
ated at t digit precision for severa values of t, yielding the values shown in the
following table. which are in error in a most one unit in the least significant
digit (the first two values are padded with trailing zeros):

t y

10 2625374 12600000000

15 262537412640769000

20 262537412640768744.00

25 262537412640768744.0000000

30 262537412640768743.999999999999

Does it follow that the last digit before the decima point is 4?

1.3. Show how to rewrite the following expressions to avoid cancellation for
the indicated arguments.

.Vr+1-1,x=0.
. sinx —siny, r = y.
Lt -yt ey

1

2

3

4. (1 —cosx)/sinx, r =~ 0.

5. ¢ = (a?+b* —2abcos)2, ax~b, 6] < 1.
4

1.4. Give stable formulae for computing the square root x + iy of a complex
number a + ib.

15. [523, 1982] By writing (1 + 1/n)" = exp(nlog(1 + 1/n)), show how to
compute (1 + 1/n)" accurately for large n. Assume that the log function is
computed with a relative error not exceeding u. (Hint: adapt the technique
used in 8§1.14.1)

PROBLEMS 37

1.6. (Smith [928, 1975]) Type the following numbers into your pocket calcu-
lator, and look at them upside down (you or the calculator):

07734 The famous “_world” program
38079 Object

318808 Name

35007 Adjective

57738.57734 x 10 Exclamation on finding a bug

3331 A high quality floating point arithmetic

V31,438,449 Fallen tree trunks

1.7. A condition number for the sample variance (1.4), here denoted by V(X) :

R™ — R, can be defined by

[V(z) — V(z + Az)|
eV (x)

Ko = liII[l)Sllp{ DAz < €lzyl, i =1:n }
€—

Show that n _
iz |z — Tz
(n—1)V(z)

This condition number measures perturbations in x componentwise. A corre-
sponding normwise condition number is

Nc=2

— A
oy 1= tigsup{ V=L SN g, < o |
Show that
— /2
[E2IP (n_ 7)
KkN=2——n—"7-"-"a=2|14+ —— > Ke-
N (n-1)V{(x) n—1V(z) c

1.8. (Kahan, Muller, [781, 1989], Francois and Muller [406, 1991]) Consider
the recurrence

Xier = 111 - (1130 - 3000/X 1) /X, X = 112, x; = 61/11.

In exact arithmetic the x, form a monotonically increasing sequence that con-
verges to 6. Implement the recurrence on your computer or pocket calculator
and compare the computed X3, with the true vaue 5.998 (to four correct
significant figures). Explain what you see.

The following questions require knowledge of material from later chapters.
1.9. Cramer’s rule solves a 2 x 2 system Ax = b according to
d=apay - 81312,

X = (byay, - by, ag)d,
X, = (2, - @y by)/d.

38 PRINCIPLES OF FINITE PRECISION COMPUTATION

Show that, assuming d is computed exactly (this assumption has little effect
on the fina bounds), the computed solution z satisfies

[l = 7|l

T < 5 cond(A,), b — Ao < 7y cond(A™H|b]| o

where g; = 3u/(1-3u), cond(Ax) = [||A Y| Allz|||lse/|lZ|lec and cond(A) =

| 1A=Y|A| ll- This forward error bound is as small as that for a backward
stable method (see §7.2, §7.6) so Cramer’s rule is forward stable for 2 x 2

systems.
1.10. Show that the computed sample variancd’ = fl(V(x)) produced by
the two-pass formula (1.4) satisfies

V-V
Vv

< (n+ 3)u + O(u?).

(Note that this error bound does not involve the condition numbers ke or
Ky from Problem 1.7, at least in the first-order term. This is a rare instance
of an algorithm that determines the answer more accurately than the data
warrants!)

Previous Home Next

Chapter 2
Floating Point Arithmetic

From 1946-1948 a great deal of quite detailed coding was done.
The subroutines for floating-point arithmetic were . . .

produced by Alway and myself in 1947 . . .

They were almost certainly the earliest floating-point subroutines.

-J. H. WILKINSON, Turing’s Work at the
National Physical Laboratory . . . (1980)

When discussing the floating-point capabilities of a new machine,

we always ask the manufacturer two questions:

Does the machine use |IEEE arithmetic?

Does it support graceful underflow and provide

user control of rounding mode and exception flags?

Frequently the designer believes his machine is using IEEE arithmetic
when it is using only the IEEE formats without the other required features.

-W. J. CODY, Floating-Point Standards-Theory and Practice (1988)

Arithmetic on Cray computers is interesting because it is driven by a
motivation for the highest possible floating-point performance . . .
Addition on Cray computers does not have a guard digit,

and multiplication is even less accurate than addition . . .

At least Cray computers serve to keep numerical analysts on their toes!

-DAVID GOLDBERG®, Computer Arithmetic (1990)

It is rather conventional to obtain a “realistic” estimate

of the possible overall error due to k roundoffs,

when Kk is fairly large,

by replacing k by Vkin an expression for (or an estimate of)
the maximum resultant error.

-F. B. HILDEBRAND, introduction to Numerical Analysis (1974)

°In Hennessy and Patterson [515, 1990, App. Al.

39

40 FLOATING POINT ARITHMETIC

2.1. Floating Point Number System

A floating point number system F C IR is a subset of the real humbers whose
elements have the form
y =m x b*" 2.2)

The system F is characterized by four integer parameters:
» the base b (sometimes called the radix),
* the precision t, and
« the exponent range emin < e < emax.

The mantissa m is an integer satisfying 0 < m < b' - 1. To ensure a unique
represent at ion for each y € F it is assumed that m > b'™" if y # 0, so that
the system is normalized. The range of the nonzero floating point numbers
in F is given by b*™™" < |y| < b*™(1 - b™). Values of the parameters
for some machines of interest are given in Table 2.1 (the unit roundoff u is
defined on page 42).

Note that an aternative (and more common) way of expressing y is

1 d d

3 3t

where each digit d, satisfies 0 < d, < b - 1, and d; # 0 for normalized
numbers. We prefer the more concise representation (2.1), which we usualy
find easier to work with. This “nonpositiona” representation has pedagogical
advantages. being entirely integer based and therefore simpler to grasp. In
the representation (2.2). d, is cdled the most significant digit and d, the least
significant digit.

It is important to redize that the floating point numbers are not equally
spaced. If b = 2, t = 3, emin = -1, and emax = 3 then the nonnegative
floating point numbers are

0, 0.25, 0.3125, 0.3750, 0.4375, 0.5, 0.625, 0.750, 0.875,
1.0, 1.25, 1.50, 1.75. 2.0, 2.5, 3.0. 3.5, 4.0, 5.0, 6.0, 7.0.

They can be represented pictorialy as follows:

0 05 1.0 2.0 3.0 4.0 5.0 6.0 7.0

2.1 FLOATING POINT NUMBER SYSTEM 41

Table 2.1. Floating point arithmetic parameters.

Machine and arithmetic b t emin emax u
Cray- 1 single 2 48 -8192 8191 4 x107'°
Cray- 1 double 2 96 -8192 8191 1 x107?°
DEC VAX G format, double | 2 53 -1023 1023 1 x10°'®
DEC VAX D format, double | 2 56 -127 127 1 x10Y
HP 28 and 48G calculators | 10 12 -499 499 5 x 1072
IBM 3090 single 16 6 -64 63 5 x10"
IBM 3090 double 16 14 -64 63 1 x 107
IBM 3090 extended 16 28 -64 63 2 x10
|EEE single 2 24 -125 128 6 x10°
|EEE double 2 53 -1021 1024 1 x10°%®
|EEE extended (typical) 2 64 -16381 16384 5 x1072°

Notice that the spacing of the floating point numbers jumps by a factor 2
at each power of 2. The spacing can be characterized in terms of machine
epsilon, which is the ey from 1.0 to the next larger floating point
number. Clearly, e, = b'™, and this is the spacing of the floating point
numbers between 1.0 and b; the spacing of the numbers between 1.0 and
1/b is b" =e€p/b. The spacing a an arbitrary x € F is estimated by the
following lemma.

Lemma 2.1. The spacing between a normalized floating point number x and
an adjacent normalized floating point number is at least b~ “epr|x| and at most
e |X| (unless x or the neighbour is zero).

Proof. See Problem 2.2.

The system F can be extended by including subnormal numbers (also
known as denormalized numbers), which, in the notation of (2.1), are the
numbers)

y:imxbemln—t' O<m<bt'l,

which have the minimum exponent and are not normalized (equivalently, in
(2.2) e = emin and the most significant digit d; = 0). The subnorma numbers
have fewer digits of precision than the normalized numbers. The smallest
positive normdized floating point number is A =b®™"! while the smallest
positive subnormal number is m = b*™™" = Aep;. The subnormal numbers
fill the gap between A and O and are equally spaced, with spacing the same
as that of the numbers of F between A and 8\, namely Aear = b®™™. For
example, in the system illustrated above with b = 2, t = 3, emin = -1, and
emax = 3, we havel = 22 and m= 2 the subnormal numbers are

42 FLOATING POINT ARITHMETIC

0.0625, 0.125, 0.1875,

and the complete number system can be represented as

I.Lllhlll 1 1] l 1 I | | | l Il | |
llllll T I

III R I J T 1 I I I 1

0 05 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Let G C IR denote all real numbers of the form (2.1) with no restriction
on the exponent e. If x € IR then fl(x) denotes an element of G nearest to X,
and the transformation x — fl(X) is caled rounding. There are severa ways
to break ties when x is equidistant from two floating point numbers, including
taking fl(x) to be the number of larger magnitude (round away from zero)
or the one with an even last digit d; (round to even): the latter rule enjoys
impeccable statistics [144, 1973]. For more on tie-breaking strategies see the
Notes and References.

Although we have defined fl as a mapping onto G, we are only interested
in the cases where it produces a result in F. We say that fl(x) overflows if

fl(x)| > max{ly] : y € F} and underflows if 0 < [fI(X)] < min{ly] : 0 #y€

} The following result shows that every rea number x lying in the range of
F can be approximated by an element of F with a relative error no larger
than u = ¥%b'™". The quantity u is called the unit roundoff. It is the most
useful quantity associated with F and is ubiquitous in the world of rounding
error analysis.

Theorem 2.2. If x € IR liesin the range of F then
fl(x) = x(1 + d), |d]| < u. (2.3)
Proof. We can assume that x > 0. Writing the real number x in the form
Xx=mx b® ! bt <m<b'-1,

we see that x lies between the adjacent floating point numbers y; = |m| b® '
and y, = [mb®". Thus fi(x) = y; or y, and we have

_ e—t
i) o) < 20l < T

Hence

l/@)e—t 1
< 2 < _ﬁl—t = u.

fl(z)—=z
T T uxgett T2

2.1 FLOATING POINT NUMBER SYSTEM 43

The last inequality is strict unless m= b'™?, in which case x = fl(x), hence
the inequality of the theorem is drict. 0

Theorem 2.2 says that fl(x) is equal to x multiplied by a factor very close
to 1. The representation 1 + d for the factor is the standard choice, but it is
not the only possibility. For example, we could write the factor as €, with a
bound on |a] a little less than u (cf. the rp notation in 8§3.4).

The following modified version of this theorem can aso be useful.

Theorem 2.3. If x € IR lies in the range of F then

xr
= < .
fle) = o Mol <

Proof. See Problem 2.4.]

The widely used |IEEE standard arithmetic (described in §2.3) has b = 2
and supports two precisions. Single precision has t = 24, emin = -125,
emax = 128 and u = 2% = 596 x 10® Double precision has t = 53,
emin = -1021, emax = 1024, and u = 2 = 1.11 x 10'®. IEEE arithmetic
uses round to even.

It is easy to see that

T = (Bt_1+1) Xﬂe = ’fl(l‘)—.’[
2 T

x:([jt“l>x5€ = !_fl@_)_f_z
2 T

Hence, while the relative error in representing x is bounded by ¥%b'™" (as
it must be, by Theorem 2.2), the relative error varies with x by as much
as a factor b. This phenomenon is called wobbling precision, and is one of
the reasons why small bases (in particular, b = 2) are favoured. The effect
of wobbling precision is clearly displayed in Figure 2.1, which plots machine
numbers X versus the relative distance from x to the next larger machine
number, for 1 < x < 16 in IEEE single precision arithmetic. In this plot, the
relative distances range from about 2% = 1.19 x 107 just to the right of a
power of 2 to about 2% = 596 x 10° just to the left of a power of 2 (see
Lemma 2.1).

The notion of ulp, or “unit in last place’, is sometimes used when describ-
ing the accuracy of a floating point result. One ulp of the normalized floating
point number y = +b® x .d;d, . . . dyisulp(y) =b® x .00 . .. 01 = b®". If x
is any real number we can say that y and x agree to |y - xjulpy) ulps in
y. This measure of accuracy “wobbles’ when y changes from a power of b to
the next smaler floating point number, since ulp(y) decreases by a factor b.

In MATLAB the permanent variable eps represents the machine epsilon
(not the unit roundoff as is sometimes thought). MATLAB uses |EEE standard

1 1-t
~ Qﬂ ’
1
2

g—t

~
~

44 FLOATING POINT ARITHMETIC

13] T | T

1 2 4 8 16

Figure 2.1. Relative distance from x to the next larger machine number (b = 2,
t = 24), displaying wobbling precision.

double precision arithmetic on those machines that support it in hardware.
In Fortran 90 the intrinsic function EPSILON returns the machine epsilon cor-
responding to the KIND of its REAL argument.

2.2. Model of Arithmetic

To carry out rounding error anaysis of an agorithm we need to make some
assumptions about the accuracy of the basic arithmetic operations. The most
common assumptions are embodied in the following model, in which x, y €
F:

STANDARD MODEL
fl(xopy) = (xopy)(1+d), [dlsu, op=+-* /1 (24)

It is norma to assume that (2.4) holds aso for the square root operation.
Note that now we are using fl(-) with an argument that is an arithmetic
expression to denote the computed value of that expression. The model says
that the computed value of x op y is “as good as’ the rounded exact answer,
in the sense that the relative error bound is the same in both cases. However,

2.3 |IEEE ARITHMETIC 45

the model does not require that d = O when x op y € F-a condition which
obviously does hold for the rounded exact answer-so the model does not
capture al the features we might require of floating point arithmetic. This
mode! is valid for most computers, and, in particular, holds for IEEE standard
arithmetic. Cases in which the model is not valid are described in §2.4.

The following modification of (2.4) can aso be used (cf. Theorem 2.3):

:L‘Opy
146"

fl(zopy) = 6] < u. (2.5)

Note: Throughout this book, the standard model (2.4) is used unless
otherwise stated. Most results proved using the standard model remain true
with the weaker modd (2.6) described below, possibly subject to dlight in-
creases in the constants. We identify problems for which the choice of model
significantly affects the results that can be proved.

2.3. |[EEE Arithmetic

IEEE standard 754, published in 1985 [597, 198s5], defines a binary floating
point arithmetic system. It is the result of severa years work by a working
group of a subcommittee of the IEEE Computer Society Computer Standards
Committee.

Among the design principles of the standard were that it should encourage
experts to develop robust, efficient, and portable numerical programs, enable
the handling of arithmetic exceptions, and provide for the development of
transcendental functions and very high precision arithmetic.

The standard specifies floating point number formats, the results of the
basic floating point operations and comparisons, rounding modes, floating
point exceptions and their handling, and conversion between different arith-
metic formats. Square root is included as a basic operation. The standard
says nothing about exponentiation or transcendental functions such as exp
and cos.

Two main floating point formats are defined:

Type | Size | Mantissa | Exponent |Unit roundoff | Range

Single | 32 hits | 23+1 bits | 8 bits | 2% ~ 596 x 10°® 10*®
Double | 64 bits | 52+1 bits | 11 bits 2% ~ 111 x 10% | 10%*3°8

In both formats one bit is reserved as a sign bit. Since the floating point
numbers are normalized, the most significant bit is dways 1 and is not stored
(except for the denormalized numbers described below). This hidden bit ac-
counts for the “H” in the table.

46 FLOATING POINT ARITHMETIC

Table 2.2. |IEEE arithmetic exceptions and default results.

Exception type | Example | Default result

Invalid operation | o/o, 0 xoc, vV—1 NaN (Not a Number)
Overflow +oc

Divide by zero Finite nonzero/O +oc

Underflow Subnormal numbers
Inexact Whenever fl(xopy) # xopy | Correctly rounded result

The standard specifies that al arithmetic operations are to be performed
as if they were first calculated to infinite precision and then rounded according
to one of four modes. The default rounding mode is to round to the nearest
representable number, with rounding to even (zero least significant bit) in the
case of a tie. With this default mode, the model (2.4) is obvioudy satisfied.
Note that computing with a single guard bit (see §2.4) will not always give the
same answer as computing the exact result and then rounding. But the use
of a second guard bit and a third sticky hit (the logical OR of al succeeding
bits) enables the rounded exact result to be computed. Rounding to plus or
minus infinity is also supported by the standard: this facilitates the imple-
mentation of interval arithmetic. The fourth supported mode is rounding to
zero (truncation, or chopping).

IEEE arithmetic is a closed system: every arithmetic operation produces
a result, whether it is mathematically expected or not, and exceptional oper-
ations raise a signa. The default results are shown in Table 2.2. The default
response to an exception is to set a flag and continue, but it is aso possible
to take a trap (pass control to a trap handler).

A NaN is a special bit pattern that cannot be generated in the course of
unexceptional operations because it has a reserved exponent field. Since the
mantissa is arbitrary, subject to being nonzero, a NaN can have something
about its provenance encoded in it, and this information can be used for
retrospective diagnostics. A NaN is generated by operations such as 0/0,
0 x oc, 0o/oc, (+00) + (—00), and /~1. One creative use of the NaN is to
denote uninitialized or missing data. Arithmetic operations involving a NaN
return a NaN as the answer. A NaN compares as unordered and unequa with
everything including itself (a NaN can be tested with the predicate x # X or
with the IEEE recommended function isnan. if provided).

The IEEE standard provides distinct representations for +0 and -0, but
comparisons are defined so that +O = -0. Signed zeros provide an elegant
way to handle branch cuts in complex arithmetic; for details, see Kahan [632,

1987].
The infinity symbol is represented by a zero mantissa and the same ex-

2.3 |IEEE ARITHMETIC 47

ponent field as a NaN; the sign bit distinguishes betweentoo. "The infinity
symbol obeys the usual mathematical conventions regarding infinity, such as
00 + 00 = 00, (—1) X 00 = —o0, and (finite)/o0o = 0.

The standard allows subnormal numbers to be represented, instead of
flushing them to zero as in many systems, and this feature permits gradual
underflow (sometimes called graceful underflow). Gradual underflow makes
it easier to write reliable numerical software; see Demmel [280, 1984].

The standard may be implemented in hardware or software. The first
hardware implementation was the Intel 8087 floating point coprocessor, which
was produced in 1981 and implements an early draft of the standard (the
8087 very nearly conforms to the present standard). This chip, together with
its bigger and more recent brothers the Intel 80287, 80387, 80486 and the
Pentium, is used in IBM PC compatibles (the 80486DX and Pentium are
general-purpose chips that incorporate a floating point coprocessor). Other
manufacturers that produce processors implementing |IEEE arithmetic include
DEC (Alpha), Hewlett Packard (Precision Architecture), IBM (RS/6000),
Inmos (T800, T900), Motorola (680x0)) and Sun (SPARCstation).

The IEEE standard defines minimum requirements for two extended num-
ber formats: single extended and double extended. The double extended for-
mat has at least 79 bits, with at least 63 bits in the mantissa and at least
15 in the exponent; it therefore surpasses the double format in both preci-
sion and range, having unit roundoff u < 5.42 x 10%° and range at least
10**%*2, The purpose of the extended precision formats is not to provide for
higher precision computation per se, but to enable double precision results
to be computed more reliably (by avoiding intermediate overflow and under-
flow) and more accurately (by reducing the effect of cancellation) than would
otherwise be possible. In particular, extended precision makes it easier to
write accurate routines to evaluate the elementary functions, as explained by
Hough [584, 1981].

A double extended format of 80 bits is supported by the Intel and Motorola
chips mentioned above (which are used in many PC and Macintosh comput-
ers); these chips, in fact, normaly do al their floating point arithmetic in 80
bit arithmetic (even for arguments of the single or double format). However,
double extended is not supported by Sun SPARCstations or machines that use
the PowerPC or DEC Alpha chips. Furthermore, the extended format (when
available) is supported little by compilers and packages such as Mathematica
and Maple. Kahan [636, 1994] notes that “What you do not use, you are
destined to lose”, and encourages the development of benchmarks to measure
accuracy and related attributes. He also explains that

For now the 10-byte Extended format is a tolerable compromise
between the value of extra-precise arithmetic and the price of im-
plementing it to run fast; very soon two more bytes of precision

48 FLOATING POINT ARITHMETIC

will become tolerable, and ultimately a 16-byte format . . . That
kind of gradua evolution towards wider precision was aready in
view when |EEE Standard 754 for Floating-Point Arithmetic was
framed.

A possible side effect of the use of an extended format is the phenomenon
of double rounding, whereby a result computed “as if to infinite precison” (as
specified by the standard) is rounded first to the extended format and then to
the destination format. Double rounding (which is allowed by the standard)
can give a different result from that obtained by rounding directly to the
destination format, and so can lead to subtle differences between the results
obtained with different implementations of |IEEE arithmetic (see Problems 2.9
and 3.11).

An |EEE Standard 854, which generalizes the binary standard 754, was
published in 1987 [598, 1987]. It is a standard for floating point arithmetic
that is independent of word length and base (adthough in fact only bases 2 and
10 are provided in the standard, since the drafting committee “could find no
valid technical reason for alowing other radices, and found severa reasons for
not alowing them” [223, 1988]). Base 10 IEEE 854 arithmetic is implemented
in the HP-71B calculator.

2.4. Aberrant Arithmetics

Unfortunately, not all computer floating point arithmetics adhere to the model
(2.4). The most common reason for noncompliance with the model is that
the arithmetic lacks a guard digit in subtraction. The role of a guard digit is
easily explained with a smple example.

Consider a floating point arithmetic system with base b = 2 and t = 3
digits in the mantissa. Subtracting from 1.0 the next smaler floating number
we have, in binary notation,

2! x 0100~ _ 2" x 0.100-
2° x 0111 2' x 00111

2" x 0.0001 = 2% x 0.100
Notice that to do the subtraction we had to line up the binary points, thereby
unnormalizing the second number and using, temporarily, a fourth mantissa
digit, known as a guard digit. Some machines do not have a guard digit.
Without a guard digit in our example we would compute as follows, assuming
the extra digits are simply discarded:

2 x 0100- _ 2' x 0.100-
2° x 0.111 2! x 0.011 (last digit dropped)

2! x 0.001 = 2" x 0.100

2.4 ABERRANT ARITHMETICS 49

The computed answer is too big by a factor 2 and so has relative error 1! For
machines without a guard digit it is not true that

fi(xty) =(xzy)(l+ d, |d|<u,
but it is true that
fle £y =z(1+a)xy(1+p6), af=0, laf+|B <u.

Our model of floating point arithmetic becomes

No GUARD DIGIT MODEL

flx £y) =x12Q + a) + yl+b), lal,|b|< u, (2.68)
fi(xopy) = (xopy) (I +d), ldl<u, op=x/ (26b)

where we have stated a weaker condition on a and b that is generally easier
to work with.

Notable examples of machines that lack guard digits are several models
of Cray computers (Cray 1, 2, X-MP, Y-MP, and C90). On these computers
subtracting any power of 2 from the next smaller floating point number gives
an answer that is either a factor of 2 too large (as in the example above-eg.,
Cray X-MP or Y-MP) or is zero (Cray 2). In 1992 Cray announced that it
would produce systems that use IEEE standard double precision arithmetic
by 1995.

The lack of a guard digit is a serious drawback. It causes many agorithms
that would otherwise work perfectly to fail some of the time (e.g., compensated
summation-see §4.3). Here is an example of a result that holds only when a
guard digit is used. This result holds for any base b.

Theorem 2.4 (Ferguson). Let x and y be floating point numbers for which
e(x - y) < min(e(x),e(y)), where e(x) denotes the exponent of x in its nor-
malized floating point representation. If subtraction is performed with a guard
digit then x - y is computed exactly (assuming x - y does not underflow or
overflow) .

Proof. From the condition of the theorem the exponents of x and y differ
by at most 1. If the exponents are the same then fl(x - y) is computed
exactly, so suppose the exponents differ by 1, which can happen only when x
and y have the same sign. Scale and interchange x and y if necessary so that
b <y<1<x<b, where b is the base. Now x is represented in base b as
X1 Xo...% and the exact difference z = x - y is of the form

50 FLOATING POINT ARITHMETIC

Xq - X e X -
0.y, ... yt-1yt
2.2 . ..2%72+1
But ex - y) < gy) and y < 1, so z = 0. The agorithm for computing z
forms z; .z, . . .z+1 and then rounds to t digits; since z has at most t significant
digits this rounding introduces no error, and thus z is computed exactly. C

The next result is a corollary of the previous one but is more well known. It
is worth stating as a separate theorem because the conditions of the theorem
are so0 elegant and easy to check (being independent of the base), and because
this weaker theorem is sufficient for many purposes.

Theorem 25 (Sterbenz). Let x and y be floating point numbers with y/2 <
X < 2y. If subtraction is performed with a guard digit then x - y is computed
exactly (assuming x - y does not underflow).

Theorem 2.5 is vital in proving that certain special algorithms work. A
good example involves Heron's formula for the area A of a triangle with sides
of length a, b, and c:

A= /s(s—a)(s—b)(s—c), s=(a+b+c)2

This formula is inaccurate for needle-shaped triangles. if a ~ b + c then sx a
and the term s - a suffers severe cancelation. A way around this difficulty,
devised by Kahan, is to rename a, b, and ¢ so that a > b > ¢ and then evaluate

A= i\/(a+ b+0)(c—(a=b)(c+(@-b)a+(b-0). (27

The parentheses are essential! Kahan has shown that this formula gives the
area with a relative error bounded by a modest multiple of the unit roundoff
provided that a guard digit is used in subtraction [457, 1991, Thm. 3], [634,
1990] (see Problem 2.22). If there is no guard digit, the computed result can
be very inaccurate.

Kahan has made these interesting historical comments about guard digits
[634, 1990]:

CRAYs are not the first machines to compute differences blighted
by lack of a guard digit. The earliest IBM *360s, from 1964 to 1967,
subtracted and multiplied without a hexadecimal guard digit un-
til SHARE, the IBM mainframe user group, discovered why the
consequential anomalies were intolerable and so compelled a guard
digit to be retrofitted. The earliest Hewlett-Packard financial cal-
culator, the HP-80, had a similar problem. Even now, many a
caculator (but not Hewlett-Packard’'s) lacks a guard digit.

2.5 CHOICE OF BASE AND DISTRIBUTION OF NUMBERS 51

2.5. Choice of Base and Distribution of Numbers

What base b is best for a floating point number system? Most modern com-
puters use base 2. Most hand-held calculators use base 10, since it makes
the calculator easier for the user to understand (how would you explain to a
naive user that 0.1 is not exactly representable on a base 2 caculator?). IBM
mainframes traditionally have used base 16. Even base 3 has been tried-in
an experimental machine called SETUN, built at Moscow State University in
the late 1950s [1066, 1960].

Several criteria can be used to guide the choice of base. One is the impact
of wobbling precision: as we saw at the end of 8§2.1, the spread of representa
tion errors is smallest for small bases. Another possibility is to measure the
worst-case representation error or the mean sguare representation error. The
latter quantity depends on the assumed distribution of the numbers that are
represented. Brent [144, 1973] shows that for the logarithmic distribution the
worst-case error and the mean sguare error are both minimal for (normalized)
base 2, provided that the most significant bit is not stored explicitly.

The logarithmic distribution is defined by the property that the proportion
of base b numbers with leading significant digit n is

1
logg(n + 1) —loggn = logﬁ(l + ;)

It appears that in practice real numbers are logarithmically distributed. In
1938, Benford [90, 1938] noticed, as had Newcomb [794, 1881] before him,
that the early pages of logarithm tables showed greater signs of wear than the
later ones. (He was studying dirty books!) This prompted him to carry out a
survey of 20,229 “real-life’ numbers, whose decimal representations he found
matched the logarithmic distribution closely.

The observed logarithmic distribution of leading significant digits has not
been fully explained. Some proposed explanations are based on the assump-
tion that the actual distribution is scale invariant, but this assumption is
equivalent to the observation to be explained [1032, 1984]. Barlow [57, 1981],
[58, 1981], [60, 1988] and Turner [1031, 1982], [1032, 1984] give useful insight
by showing that if uniformly distributed numbers are multiplied together, then
the resulting distribution converges to the logarithmic one; see also Boyle [141,
1994]. Furthermore, it is an interesting result that the leading significant dig-
its of the numbers qk, k =012,. .., ae logarithmicaly distributed if q is
positive and is not a rational power of 10; when q = 2 and the digit is 7 this
is Gelfand’s problem [829, 1981, pp. 50-51].

The nature of the logarithmic distribution is striking. For decimal num-
bers, the digits 1 to 9 are not equally likely to be a leading significant digit.
The probabilities are as follows:

52 FLOATING POINT ARITHMETIC

1 2 3 4 5 6 7 8 9
0301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

As an example, here is the leading significant digit distribution for the ele-
ments of the inverse of one random 100 x 100 matrix from the norma N(O, 1)
distribution:
1 2 3 4 5 6 7 8 9
0.334 0.163 0.100 0.087 0.077 0.070 0.063 0.056 0.051

For an entertaining survey of work on the distribution of leading significant
digits see Raimi [856, 1976] (and aso the popular article [855, 1969]).

2.6. Statistical Distribution of Rounding Errors

Most rounding error analyses, including all the ones in this book, are designed
to produce worst-case bounds for the error. The analyses ignore the signs of
rounding errors and are often the result of many applications of the triangle
inequality and the submultiplicative inequality. Consequently, although the
bounds may well give much insight into a method, they tend to be pessimigtic
if regarded as error estimates.

Statistical statements about the effect of rounding on a numerical process
can be obtained from statistical analysis coupled with probabilistic models
of the rounding errors. For example, a well-known rule of thumb is that a
more redlistic error estimate for a numerical met hod is obtained by replacing
the dimension-dependent constants in a rounding error bound by their sguare
root: thus if the bound is f(n)u, the rule of thumb says that the error is typi-
cally of order \/f(n)u (see, for example, Wilkinson [1088, 1963, pp. 26, 102]).
This rule of thumb can be supported by assuming that the rounding errors
are independent random variables and applying the central limit theorem.
Statistical analysis of rounding errors goes back to one of the first papers on
rounding error analysis, by Goldstine and von Neumann [462, 1951].

As we noted in §1.17, rounding errors are not random. See Problem 2.10
for an example of how two rounding errors cancel in one particular class of
computations. Forsythe [389, 1959] points out that rounding errors do not
necessarily behave like independent random variables and proposes a random
form of rounding (intended for computer testing) to which statistical analysis
is applicable.

Henrici [517, 1962], [518, 1963], [519, 1964] assumes models for rounding
errors and then derives the probability distribution of the overal error, mainly
in the context of difference methods for differential equations. Hull and Swen-
son [593, 1966] give an insightful discussion of probabilistic models, pointing
out that “There is no clam that ordinary rounding and chopping are random
processes, or that successive errors are independent. The question to be de-
cided is whether or not these particular probabilistic models of the processes

2.7 ALTERNATIVE NUMBER SYSTEMS 53

will adequately describe what actually happens’ (see aso the ensuing note by
Henrici [520, 1966]).

Since the late 1980s Chaitin-Chatelin and her co-workers have been de-
veloping a method called PRECISE, which involves a statistical analysis of
the effect on a computed solution of random perturbations in the data; see
Brunet [152, 1989], Chatelin and Brunet [202, 1990], and Chaitin-Chatelin
and Frayssé [190, 1996]. This approach is superficialy similar to the earlier
CESTAC (permutation-perturbation) method of La Porte and Vignes [153,
1986], [682, 1974], [1054, 1986], but differs from it in several respects. CES
TAC deals with the arithmetic reliability of algorithms, whereas PRECISE
is designed as a tool to explore the robustness of numerica algorithms as a
function of parameters such as mesh size, time step, and nonnormality.

Several authors have investigated the distribution of rounding errors under
the assumption that the mantissas of the operands are from a logarithmic
distribution, and for different modes of rounding; see Barlow and Bareiss [62,
1985] and the references therein.

Other work concerned with statistical modelling of rounding errors in-
cludes that of Tienari [1002, 1970] and Linnainmaa [704, 1975].

2.7. Alternative Number Systems

The floating point format is not the only means for representing numbers in
finite precision arithmetic. Various alternatives have been proposed, though
none has achieved widespread use.

A particularly elegant system is the “level index arithmetic” of Clenshaw,
Olver, and Turner, in which a number x > 1 is represented by £ = | + f,
where f € [0,1] and

z=e , o f=Inn(... () ...)

where the exponentiation or logarithm is performed | times (I is the “levd”).
If 0 < x < 1, then x is represented by the reciprocal of the representation
for I/x. An obvious feature of the level index system is that it can represent
much larger and smaler numbers than the floating point system, for similar
word lengths. A price to be paid is that addition and subtraction are more
complicated (and more costly) than in floating point arithmetic. For very
readable introductions to level index arithmetic see Clenshaw and Olver [213,
1984] and Turner [1033, 1991], and for more details see Clenshaw, Olver, and
Turner [214, 1989]. Level index arithmetic is somewhat controversia in that
there is disagreement about its advantages and disadvantages with respect to
floating point arithmetic; see Demmel [282, 1987]. A number system involving
levels has aso been proposed by Matsui and Iri [736, 1981]; in their system,

54 FLOATING POINT ARITHMETIC

Table 2.3. Test arithmetics.

Hardware Software I3 x (4/3 - 1) -1F
Casio fx-140 (1979) 1x 107
Casio fx-992VB & 1990) 1x10™
HP 48G (1993) 1x10™M
Sharp EL-5020 (1994) 0P
486DX MATLAB 4.2 (1994) 22...%x10"
486DX WATFOR-77° V3.0 (1988) 22...x10"
486DX FTN 90° (1993) 22...x%x 107
486DX MS-DOS QBasic 1.1 11 ..x10%¢°

®Integersin the test expression are typed as real constants 3.0, etc., for the Fortran
teﬂs
®1 x 10° if 4/3 is stored and recalled from memory.
WATCOM Systems Inc.
Sdford Softw%re/Numencd Algorithms Group, Verson 1.2.
€2.2....x 10" if 4/3isstored and recalled from avariable.

the number of hits alocated to the mantissa and exponent is alowed to vary
(within a fixed word size).

Other number systems include those of Swartzlander and Alexopolous [981,
1975], Matula and Kornerup [741, 1985], and Hamada [495, 1987]. For sum-
maries of alternatives to floating point arithmetic see the section “Alternatives
to Floating-Point Some Candidates’ in [214, 1989], and Knuth [668, 1981,
Chap. 4].

2.8. Accuracy Tests

How can you test the accuracy of the floating point arithmetic on a computer
or pocket calculator? There is no easy way, though a few software packages are
available to help with the tasks in specific programming languages (see §25.6).
There are, however, a few quick and easy tests that may revea weaknesses.
The following list is far from comprehensive and good performance on these
tests does not imply that an arithmetic is correct. Results from the tests are
given in Tables 2.4-25 for the sdlected floating point arithmetics described in
Table 2.3. Double precision was used for the compiled languages. The last
column of Table 2.3 gives an estimate of the unit roundoff (see Problem 2.14).
The estimate produced by QBasic indicates that the compiler used extended
precision in evauating the estimate.

1. (Cody [221, 1982]) Evauate sin(22) = -8.8513 0929 0403 8759 2169 x
10 (shown correct to 21 digits). This is a difficult test for the range

2.8 ACCURACY TESTS

Table 2.4. Sine test.

Machine sin(22)
Exact | -8.8513 09290403 8759 x 103
Casio fx-140 | -8.8513 62 x 107
Casio fx-992VB | -8.8513 0929096 x 107
HP 48G | -8.8513 0929 040 x 107
Sharp EL-5020 | -8.8513 09154 x 107
MATLAB 4.2 | -8.8513 0929 0403 876 x 10°°
WATFOR-77 | -8.8513 09290403 880 x 10°
FTN 90 | -8.8513 0929 0403 876 x 10
QBasic | -8.8513 0929 0403 876 x 107

Table 2.5. Exponentation test. No entry for last column means same value as

previous column.

Machine

2 5125

exp(125log(2.5))

Exact

Casio fx-140
Casio fx-992VB
HP 48G

Sharp EL-5020
MATLAB 4.2
WATFOR-77
FTN 90

QBasic

55271 4787 5260 4446 x 10%
55271 477 x 10®

55271 4787 526 x 10%°
55271 4787 526 x 10%
55271 4787 3 x 1049

55271 4787 5260 445 x 10%
55271 4787 5260 450 x 10%
55271 4787 5260 445 x 10%
55271 4787 5260 444 x 10%

5.5271 4787 5260 4446 x 10%°
5.5271 463 x 10%°

55271 4787 377 x 10%
55271 4796 2 x 10%

55271 4787 5260 459 x 10%
55271 4787 5260 460 x 10%
55271 4787 5260 459 x 10%

reduction used in the sine evaluation (which brings the argument within
the range [-p/2,p/2], and which necessarily uses an approximate value
of p), since 22 is close to an integer multiple of p.

2. (Cody [221, 1982]) Evaluate 2.5'® = 55271 4787 5260 4445 6025 x 10*°
(shown correct to 21 digits). One way to evaluate z = X’ is as z =
exp(ylogx). But to obtain z correct to within a few ulps it is not suf-
ficient to compute exp and log correct to within a few ulps; in other
words, the composition of two functions evaluated to high accuracy is
not necessarily obtained to the same accuracy. To examine this partic-
ular case, write

w = ylogx,

z = exp(w).

56 FLOATING POINT ARITHMETIC

If w—w+Dw then z —z+Dz, where z + Dz = exp(w+Dw) =
exp(w) exp(Dw) =~ exp(w)(I+Dw), so Dz/z = Dw. In other words,
the relative error of z depends on the absolute error of w and hence on
the size of w. To obtain z correct to within a few ulps it is necessary
to use extra precision in calculating the logarithm and exponentia [228,
1980, Chap. 7].

3. (Karpinski [645, 1985]) A simple test for the presence of a guard digit
on a pocket caculator is to evaluate the expressions

9/27 * 3 -1, 9/27 * 3- 0.5 - 0.5,

which are given in a form that can be typed directly into most four-
function calculators. If the results are equa then a guard digit is present.
Otherwise there is probably no guard digit (we cannot be completely
sure from this simple test). To test for a guard digit on a computer it
is best to run one of the diagnostic codes described in §25.5.

2.9. Notes and References

The classic reference on floating point arithmetic, and on all aspects of round-
ing error analysis, is Wilkinson's Rounding Errors in Algebraic Processes
(REAP) [1088, 1963]. Wilkinson was uniquely qualified to write such a book,
for not only was he the leading expert in rounding error analysis, but he was
one of the architects and builders of the Automatic Computing Engine (ACE)
a the National Physical Laboratory [1082, 1954]. The Pilot (prototype) ACE
first operated in May 1950, and an engineered version was later sold commer-
cialy as the DEUCE Computer by the English Electric Company. Wilkinson
and his colleagues were probably the first to write subroutines for floating
point arithmetic. and this enabled them to accumulate practical experience
of floating point arithmetic much earlier than anyone ese [357, 1976], [1099,
1980].

In REAP, Wilkinson gives equal consideration to fixed point and floating
point arithmetic. In fixed point arithmetic, al numbers are constrained to lie
in a range such as [-1,1], as if the exponent were frozen in the floating point
representation (2.1). Preliminary analysis and the introduction of scale factors
during the computation is needed to keep numbers in the permitted range.
We consider only floating point arithmetic in this book. REAP, together with
Wilkinson's second book, The Algebraic Eigenvalue Problem (AEP) [1089,
1965], has been immensely influential in the areas of floating point arithmetic
and rounding error analysis.

Wilkinson's books were preceded by the paper Error Analysis of Floating-
Point Computation [1084, 1960], in which he presents the model (2.4) for
floating point arithmetic and applies the model to several agorithms for the

2.9 NOTES AND REFERENCES 57

eigenvalue problem. This paper has hardly dated and is still well worth read-
ing.

Another classic book devoted entirely to floating point arithmetic is Ster-
benz's Floating-Point Computation [938, 1974]. It contains a thorough treat-
ment of low-level details of floating point arithmetic, with particular reference
to IBM 360 and IBM 7090 machines. It also contains a good chapter on round-
ing error analysis and an interesting collection of exercises. R. W. Hamming
has said of this book, “Nobody should ever have to know that much about
floating-point arithmetic. But I'm afraid sometimes you might” [833, 1988].
Although Sterbenz's book is now dated in some respects, it remains a useful
reference.

A third important reference on floating point arithmetic is Knuth's Seminu-
merical Algorithms [668, 1981, 84.2], from his Art of Computer Programming
series. Knuth's lucid presentation includes historical comments and challeng-
ing exercises (with solutions).

The first analysis of floating point arithmetic was given by Samelson and
Bauer [890, 1953]. Later in the same decade Carr [187, 1959] gave a detailed
discussion of error bounds for the basic arithmetic operations.

An up-to-date and very readable reference on floating point arithmetic
is the survey paper by Goldberg [457, 1991], which includes a detailled dis-
cussion of IEEE arithmetic. A less mathematical, more hardware-oriented
discussion can be found in the appendix “Computer Arithmetic” written by
Goldberg that appears in the book on computer architecture by Hennessy and
Patterson [515, 1990].

A fascinating historical perspective on the development of computer float-
ing point arithmetics, including background to the development of the IEEE
standard, can be found in the textbook by Patterson and Hennessy [822,
1994, 84.11].

The idea of representing floating point numbers in the form (2.1) is found,
for example, in the work of Forsythe [393, 1969], Matula [740, 1970], and
Dekker [275, 1971].

An dternative definition of fl(x) is the nearest y € G sdtisfying ly| <
[x]. This operation is caled chopping, and does not satisfy our definition of
rounding. Chopped arithmetic is used in the IBM/370 floating point system.

The difference between chopping and rounding (to nearest) is highlighted
by a discrepancy in the index of the Vancouver Stock Exchange in the early
1980s [852, 1983]. The exchange established an index in January 1982, with
the initial value of 1000. By November 1983 the index had been hitting lows
in the 520s, despite the exchange apparently performing well. The index was
recorded to three decimal places and it was discovered that the computer
program calculating the index was chopping instead of rounding to produce
the final vaue. Since the index was recalculated thousands of times a day, each
time with a nonpositive fina error, the bias introduced by chopping became

58 FLOATING POINT ARITHMETIC

significant. Upon recalculation with rounding the index almost doubled!

When there is a tie in rounding, two possible strategies are to round to
the number with an even last digit and to round to the one with an odd last
digit. Both are stable forms of rounding in the sense that

fIi((x+y-»+y -y =lx+y-y),

as shown by Reiser and Knuth [869, 1975], [668, 1981, p. 222]. For other
rules, such as round away from zero, repeated subtraction and addition of the
same number can yield an increasing sequence, a phenomenon known as drift.
For bases 2 and 10 rounding to even is preferred to rounding to odd. After
rounding to even a subsequent rounding to one less place does not involve a
tie. Thus we have the rounding sequence 2.445, 2.44, 2.4 with round to even,
but 2.445, 2.45. 2.5 with round to odd. For base 2, round to even causes
computations to produce integers more often [640, 1979] as a consequence of
producing a zero least significant bit. Rounding to even in the case of ties
seems to have first been suggested by Scarborough in the first edition (1930)
of [897, 1950].

Predict ions based on the growth in the size of mathematicd models solved
as the memory and speed of computers increase suggest that floating point
arithmetic with unit roundoff u ~ 10 will be needed for some applications
on future supercomputers [48, 1989].

The moded (2.4) does not fully describe any floating point arithmetic. It is
merely a tool for error analysis-one that has been remarkably successful in
view of our current understanding of the numerical behaviour of agorithms.
There have been various attempts to devise formal models of floating point
arithmetic, by specifying sets of axioms in terms of which error analysis can be
performed. Some attempts are discussed in §25.7.4. No model yet proposed
has been truly successful. Priest [844, 1992] conjectures that the task of
“encapsulating all that we wish to know about floating point arithmetic in
a single set of axioms’ is impossible, and he gives some motivation for this
conjecture.

Under the model (2.4), floating point arithmetic is not associative with
respect to any of the four basic operations: (afop]b)[op]c # afop](b[op]c),
op = +-*/, where afop]b := fl(a op b). Nevertheless, floating point arith-
metic enjoys some algebraic structure, and it is possible to carry out error
anaysis in the “ algebra’. Fortunately, it was recognized by Wilkinson
and others in the 1950s that this laboured approach is unnecessarily compli-
cated, and that it is much better to work with the exact equations satisfied
by the computed quantities. As Parlett [821, 1990] notes, though, “There
have appeared a number of ponderous tomes that do manage to abstract the
computer’s numbers into a formal structure and burden us with more jargon.”

A draft proposal of IEEE Standard 754 is defined and described in [599,
1981]. That article, together with others in the same issue of the journa

2.9 NOTES AND REFERENCES 59

Computer, provides a very readable description of IEEE arithmetic. In par-
ticular, an excellent discussion of gradual underflow is given by Coonen [243,
1981]. A draft proposa of IEEE Standard 854 is presented, with discussion,
in [225, 1984].

W. M. Kahan of the University of California at Berkeley received the
1989 ACM Turing Award for his contributions to computer architecture and
numerical analysis, and in particular for his work on IEEE floating point
arithmetic standards 754 and 854.

An interesting examination of the implications of the IEEE standard for
high-level languages such as Fortran is given by Fateman [365, 1982]. Topics
discussed include trap handling and how to exploit NaNs. For an overview of
hardware implementations of IEEE arithmetic, and software support for it,
see Cody [223, 1988].

Producing a fast and correct implementation of IEEE arithmetic is a dif-
ficult task. Correctness is especially important for a microprocessor (as op-
posed to a software) implementation, because of the logistica difficulties of
correcting errors when they are found. In late 1994, much publicity was gen-
erated by the discovery of a flaw in the floating point divide instruction of
Intel’s Pentium chip. Because of some missing entries in a lookup table on
the chip, the FPDIV instruction could give as few as four correct significant
decima digits for double precision floating point arguments with certain spe-
cial bit patterns [916, 1994]. The flaw had been discovered by Intel in the
summer of 1994 during ongoing testing of the Pentium processor, but it had
not been publicaly announced. In October 1994, a mathematician doing re-
search into prime numbers independently discovered the flaw and reported it
to the user community. Largely because of the way in which Intel responded
to the discovery of the flaw, the story was reported in national newspapers
(e.g., the New York Times [727, 1994]) and generated voluminous discussion
on Internet newsgroups (notably comp. sys. intel). Intel corrected the bug
in 1994 and, severa weeks after the bug was first reported, offered to replace
faulty chips. For a very readable account of the Pentium FPDIV bug story,
see Moler [772, 1995]. To emphasize that bugs in implementations of floating
point arithmetic are far from rare, we mention that the Calculator application
in Microsoft Windows 3.1 evaluates fl(2.01 - 2.00) = 0.0.

Computer chip designs can be tested in two main ways. by software sim-
ulations and by applying formal verification techniques. Formal verification
aims to prove mathematically that the chip design is correct, and this ap-
proach is now being used by Intel and other chip manufacturers [452, 1995].
The implementation of IEEE arithmetic for the Inmos T800 transputer in the
1980s was done with the help of forma methods. The IEEE standard was
translated into the set-theoretic specification language Z, and then Occam
procedures were written that were proved to adhere to the specifications. For
details, see Barrett [69, 1989] or, for a more informa overview, Shepherd and

60 FLOATING POINT ARITHMETIC

Wilson [917, 1989].

The floating point operation op (op = +,-,*, or /) is monotonic if
fl(a op b) < fl(c op d) whenever a, b, ¢, and d are floating point numbers
for which a op b < ¢ op d and neither fl (a op b) nor fl(c op d) overflows. IEEE
arithmetic is monotonic, as is any correctly rounded arithmetic. Monotonic
arithmetic is import ant in the bisection algorithm for finding the eigenval-
ues of a symmetric tridiagona matrix; see Demmel, Dhillon, and Ren [289,
1994], who give rigorous correctness proofs of some bisect ion implementat ions
in floating point arithmetic. Ferguson and Brightman [371, 1991] derive con-
ditions that ensure that an approximation to a monotonic function preserves
the monotonicity on a set of floating point numbers.

On computers of the 1950s (fixed point) multiplication was slower than
(fixed point) addition by up to an order of magnitude [693, 1980, Apps. 2, 3].
For most modern computers it is a rule of thumb that a floating point addition
and multiplication take about the same amount of time, while a floating point
division is 2-10 times dower, and a square root operation (in hardware) is 1-2
times dower than a division.

Some computers have the ability to perform a floating point multiplication
followed by an addition or subtraction, x * y + zor x * y - z, as though it were a
single floating point operation. For example, the IBM RISC System/6000 has
a fused multiply-add (FMA) operation that forms x * y + z with just a single
rounding error, at the end, the multiplication and addition being performed
at twice the precision of the operands (and by overlapping additions and
multiplications the RS/6000 can perform a sequence of FMASs in one cycle
each) [596, 1993]. For a clever use of an FMA operation to achieve increased
accuracy in a computation, see Problem 2.25.

During the design of the IBM 7030, Sweeney [982, 1965] collected statistics
on the floating point additions carried out by selected application programs
on an IBM 704. He found that 11% of all instructions traced were floating
point additions. Details were recorded of the shifting needed to aign floating
point numbers prior to addition, and the results were used in the design of
the shifter on the IBM 7030.

The word bit, meaning binary digit, first appeared in print in a 1948
paper of Claude E. Shannon, but the term was apparently coined by John
W. Tukey [1022, 1984]. The word byte, meaning a group of (usually eight)
bits, did not appear in print until 1959 [156, 1981].

The earliest reference we know for Theorem 2.5 is Sterbenz [938, 1974,
Thm. 4.3.1]. Theorem 2.4 is due to Ferguson [370, 1995], who proves a more
general version of the theorem that alows for trailing zero digits in x and .
A variation in which the condition is0O <y < x <y + b®. where e = min{j:
b > vy}, is stated by Ziv [1132, 1991] and can be proved in a similar way.

For more on the choice of base, see Cody [227, 1973] and Kuki and Cody
[677, 1973]. Buchholz's paper Fingers or Fists? [155, 1959] on binary versus

2.9 NOTES AND REFERENCES 61

decimal representation of numbers on a computer deserves mention for its
clever title, though the content is only of historical interest.

The model (2.4) ignores the possibility of underflow and overflow. To take
underflow into account the model must be modified to

fiixopy) = (xopy) +d) +h, op = +,-,%,/. (2.8)

As before, |d| < u. If underflow is gradual, as in IEEE arithmetic, then |h| <
%ﬂem‘m—t = Au, ‘Which is half the spacing between the subnormal numbers
(A = b®™™ " is the smalest positive normalized floating point number); if
underflows are flushed to zero then |h| < A. Only one of d and h is nonzero:
d if no underflow occurs, otherwise h. With gradual underflow the absolute
error of an underflowed result is no greater than the smallest (bound for the)
absolute error that arises from an operation fl(x op y) in which the arguments
and result are normalized. For more details, and a thorough discussion of how
error analysis of standard algorithms is affected by using the model (2.8), see
the perceptive paper by Demmel [280, 1984]. Another relevant reference is
Neumaier [789, 1985].

Algorithms for evaluating elementary functions in IEEE arithmetic are
developed by Tang [987, 1989], [989, 1990], [991, 1992], Gal and Bachelis [412,
1991], and Ziv [1132, 1991]. Tang [990, 1991] gives a very readable description
of table lookup agorithms for evaluating dementary functions, which are used
in a number of current chips.

Algorithms for evaluating complex elementary functions that exploit ex-
ception handling and assume the availability of agorithms for the real elemen-
tary functions are presented by Hull, Fairgrieve, and Tang [592, 1994]. For
details of how elementary functions are evauated on many of today’s pocket
calculators see Schelin [898, 1983].

An important problem not considered in this chapter is the conversion of
numbers between decimal and binary representations. These conversions are
needed whenever numbers are read into a computer or printed out. They tend
to be taken for granted, but if not done carefully they can lead to puzzling
behaviour, such as a number read in as 0.1 being printed out as 0.099. . .9.
To be precise, the problems of interest are (a) convert a number represented
in decima notation to the best binary floating point representation of a given
precision, and (b) given a binary floating point number, print a correctly
rounded decimal representation, either to a given number of significant digits
or to the smalest number of significant digits that alows the number to be
re-read without loss of accuracy. Algorithms for solving these problems are
given by Clinger [220, 1990] and Steele and White [936, 1990]; Gay [431, 1990]
gives some improvements to the agorithms and C code implementing them.
Precise requirements for binary-decimal conversion are specified in the IEEE
arithmetic standard. A program for testing the correctness of binary-decimal
conversion routines is described by Paxson [823, 1991]. Early references on

62 FLOATING POINT ARITHMETIC

base conversion are Goldberg [458, 1967] and Matula [739, 1968], [740, 1970].
It is interesting to note that, in Fortran or C, where the output format for
a “print” statement can be precisely specified, most compilers will, for an
(in)appropriate choice of format, print a decimal string that contains many
more dignificant digits than are determined by the floating point number whose
value is being represented.

Other authors who have analysed various aspects of floating (and fixed)
point arithmetic include Diamond [305, 1978], Urabe [1037, 1968], and Feld-
stein, Goodman, and co-authors [471, 1975], [368, 1982], [472, 1985], [369,
1986]. For a survey of computer arithmetic up until 1976 that includes a
number of references not given here, see Garner [420, 1976].

Problems
The exercise had warmed my blood, and
| was beginning to enjoy myself amazingly.
-JOHN BUCHAN, The Thirty-Nine Steps (1915)
2.1. How many normalized numbers and how many subnormal numbers are

there in the system F defined in (2.1) with min < e < e,,? Wha are the
figures for IEEE single and double precision (base 2)?

2.2. Prove Lemma 2.1.

2.3. In IEEE arithmetic how many double precision numbers are there be-
tween any two adjacent nonzero single precision numbers?

2.4. Prove Theorem 2.3.
2.5. Show that

0.1=) (7% +27%)
=1
and deduce that 0.1 has the base 2 representation 0.0001100 (repeating last 4
bits). Let £ = fl(0.1) be the rounded version of 0.1 obtained in binary IEEE
single precision aithmetic (u = 2%). Show that (z — 7)/zr = —iu.

2.6. What is the largest integer p such that all integers in the interval [-p,p]
are exactly representable in IEEE double precision arithmetic? What is the
corresponding p for IEEE single precision arithmetic?

2.7. Which of the following statements is true in IEEE arithmetic, assuming
that a and b are normalized floating point numbers and that no exception
occurs in the stated operations?

1. fl(a op b) =fl(bopa), op = +*.

2. fl(b-a) = -fl(a - h).

PROBLEMS 63

3. flla+a) = fl(2* a).

4. fl(0.5*a) = fl(a/2).

5 fl(a+b) +c) =1fl(a+ (b + c)).

6. a < fl((a + b)/2) < b, given that a < b.

2.8. Show that the inequalities a < fl((a + b)/2) < b, where a and b are
floating point numbers with a < b, can be violated in base 10 arithmetic.
Show that a < fl(a+(b-a)/2) < b in base b arithmetic, for any b, assuming
the use of a guard digit.

2.9. What is the result of the computation +/1 —2-53 in IEEE double preci-
sion arithmetic, with and without double rounding from an extended format
with a 64-bit mantissa?

2.10. A theorem of Kahan [457, 1991, Thm. 7] says that if b = 2 and the
arithmetic rounds as specified in the IEEE standard, then for integers m and
n with m| < 2"t and n = 2 + 2/ (some i, j), fl((mn)*n) = m. Thus,
for example, fl((1/3) * 3) = 1 (even though fl(1/3) # 1/3). The sequence of
alowable n begins 1,2,3,4,5,6,8,9,10,12,16,17,18,20, so Kahan's theorem
covers many common cases. Test the theorem on your computer.

2.11. Investigate the leading significant digit distribution for numbers ob-
tained as follows.

1. K", n = 0:1000 for k = 2 and 3.

2. nl, n = 1:1000.

3. The eigenvalues of a random symmetric matrix.

4., Physica constants from published tables.

5. From the front page of the London Times or the New York Times.

(Note that in writing a program for the first case you can form the powers of
2 or 3 in order, following each multiplication by a division by 10, as necessary,
to keep the result in the range [1,10]. Similarly for the second case)

2.12. (Edelman [343, 1994]) Let x be a floating point number in IEEE double
precision arithmetic satisfying 1 < x < 2. Show that fl(x*(1/x)) is either 1
or 1 -¢/2, wheree = 2 (the machine epsilon).

2.13. (Edelman [343, 1994]) Consider |IEEE double precision arithmetic. Find
the smallest positive integer j such that fl(x *(1/x)) # 1, where x = 1 + je,
with €:= 2° (the machine epsilon).

2.14. Kahan has stated that “an (over-)estimate of u can be obtained for
amost any machine by computing |3 x (4/3 - 1) - 1] using rounded floating-
point for every operation”. Test this estimate against u on any machines
available to you.

64 FLOATING POINT ARITHMETIC

2.15. What is 0° in IEEE arithmetic?

2.16. Evaluate these expressions in any |EEE arithmetic environment avail-
able to you. Are the values returned what you would expect? (None of the
results is specified by the IEEE standard.)

1°<.

2°°.

exp(oo)~ eXp(_oo)'

sign(NaN), sign(—NaN).

NaN°.

o,

lNaN

A o A e

8. log(o0), log(—oc). log(0).

2.17. In the course of solving ax - 2bx + ¢ = O for x, the expressionv/d? — ac
must be computed. Can the true value of b? - ac be nonnegative and yet its
computed value be negative?

2.18. Can Theorem 2.4 be strengthened to say that fl(x - y) is computed
exactly whenever the exponents of x > 0 and y > O differ by a most 1?

2.19. Two requirements that we might ask of a routine for computing /z :in
floating point arithmetic are that the identities V22 = |z| and (y/Z)? = |z| be
satisfied. Which, if either, of these is a reasonable requirement?

2.20. Are there any floating point values of x and y (excepting values both
0, or so huge or tiny to cause overflow or underflow) for which the computed

vaue of x/\/22 + y? «exceeds 1?

2.21. (Kahan) A natural way to compute the maximum of two numbers x
and y is with the code

% max(X, Y)
if x >y then
max =x

else
max =y
end

Does this code aways produce the expected answer in |IEEE arithmetic?

2.22. Prove that Kahan's formula (2.7) computes the area of a triangle ac-
curately if a guard digit is used in subtraction. (Hint: you will need one
invocation of Theorem 25.)

PROBLEMS 65

2.23. (Kahan) Describe the result of the computation y = (x + X) - x on a
binary machine with a guard digit and one without a guard digit.

2.24. (Kahan) Let f(x) = (((x - 05) + x) - 0.5 + x. Show that if f is
evauated as shown in single or double precision binary |IEEE arithmetic then
f(x) # O for al floating point numbers x.

2.25. (Kahan) Consider a machine that can perform a fused multiply-add
operation with just a single rounding error:

fIix+y*2=(x+y* 2(1 + d), |d]| < u.
Show that, on such a machine, the algorithm
bc
w-b*c
a*d-w) +e

X @ =
II||||

(

computes x = det([25%]) with high relative accuracy.

2.26. Derive Newton's method for solving f(x) = a - Ux = 0. This method
was used on early computers (and is still used on some Cray computers, for
example) to implement reciprocation in terms of multiplication and thence
divison as a/lb = a * (1/b); see, e.g., [506, 1946].

2.27. Suppose we have an iterative algorithm for computing z = x/y. Derive
a convergence test that terminates the iteration (only) when full accuracy has
been achieved. Assume the use of IEEE arithmetic with gradual underflow
(use (2.9)).

Previous Home Next

Chapter 3
Basics

A method of inverting the problem of round-off error is proposed
which we plan to employ in other contexts and

which suggests that it may be unwise to

separate the estimation of round-off error

from that due to observation and truncation.

-WALLACE J. GIVENS, Numerical Computation of the
Characteristic Values of a Real Symmetric Matrix (1954)

The enjoyment of one’s tools is an essential ingredient of successful work.

-DONALD E. KNUTH, The Art of Computer Programming,
Volume 2, Seminumerical Algorithms (1981)

The subject of propagation of rounding error,

while of undisputed importance in numerical analysis,

is notorious for the difficulties which it presents when it is to be
taught in the classroom in such a manner that the student is
neither insulted by lack of mathematical content

nor bored by lack of transparence and clarity.

-PETER HENRICI, A Model for the Propagation
of Rounding Error in Floating Arithmetic (1980)

The two main classes of rounding error analysis are not,
as my audience might imagine, ‘backwards’ and ‘forwards’,
but rather ‘one’s own’ and ‘other people’s’.

One’s own is, of course, a model of lucidity;

that of others serves only to obscure the

essential simplicity of the matter in hand.

-J. H. WILKINSON, The State of the Art in Error Analysis (1985)

67

68 BAsics

Having defined a model for floating point arithmetic in the last chapter, we
now apply the model to some basic matrix computations, beginning with inner
products. This first application is simple enough to permit a short analysis,
yet rich enough to illustrate the ideas of forward and backward error. It aso
raises the thorny question of what is the best notation to use in an error
analysis. We introduce the “g,” notation, which we use widely, though not
exclusively, in the book. The inner product analysis leads immediately to
results for matrix-vector and matrix-matrix multiplication.

In the last two sections we determine a model for rounding errors in com-
plex arithmetic and derive some miscellaneous results of use in later chapters.

3.1. Inner and Outer Products

Consider the inner product s, = X'y, where x, y € IR". Since the order of
evaluation of s, = x;y; + ... + Xy, afects the anaysis (but not the final error
bounds), we will assume that the evauation is from left to right. (The effect
of particular orderings is discussed in detail in Chapter 4, which considers
the specia case of summation.) In the following analysis, and throughout the
book, a hat denotes a computed quantity.

Les=xy; + ... + XYy denote the ith partia sum. Using the standard
model (2.4), we have

51 = fl(zay1) = 21y (1 + &),
S2 = fU(S1 + x2y2) = (51 + x2y2(1 + 62)) (1 + 63)
(21y1(1 + 61) + 22y2(1 + 62)) (1 + 63)

=z1y1(1 +61)(1 + 63) + zay2(1 + 62)(1 + 63), (3.1)

where |d| < u, i = 1:3. For our purposes it is not necessary to distinguish
between the different d, terms, so to simplify the expressions let us drop the
subscripts on the d and write 1 + d. =1 £ d. Then

S3 = fU(52 + x3y3) = (52 + z3ys(1 £ 6))(1 +6)
= (z1y1(1 £ 6)® + 22y2(1 £ 6)* + z3y3(1 £ 6)) (1 £ 8)
=r1y1(1 £ 6)° + 2y2(1 £ 6)° + zays(1 £ 6)°.

The pattern is clear. Overall, we have
Spn =1 (1 26" + oy (1 £6)" + 23ys(1 £6)" 1 4+ -+ 2,y (1 £6)% (3.2)

There are various ways to simplify this expression. A particularly elegant way
is to use the following result.

3.1 INNER AND OUTER PRrRODUCTS 69

Lemma 3.1. If |d| < uand p; = 1 for i = 1:n, and nu < 1, then
n
[T +6)" =1+6,,
i=1

where nu
6| <

1—nu I

Proof. See Problem 3.1. {l

The q,, and g, notation will be used throughout this book. Whenever we
write ¢, there is an implicit assumption that nu < 1, which is true in virtu-
aly any circumstance that might arise with IEEE single or double precision
arithmetic.

Applying the lemma to (3.2) we obtain

Spn = z1y1(1+0n) + 229y2(1+6,) + 23y3(1+0pn_1) + - - - + Toyn(1+62). (3.3)

This is a backward error result and may be interpreted as follows. the com-
puted inner product is the exact one for a perturbed set of data x4,. . . , X,

Vi1 + 00)Yo(1 + ') - -, Ya(1 + 0y (alternatively, we could perturb the x;
and leave the y; alone). Each relative perturbation is certainly bounded by

o, = nu/(l - nu), so the perturbations are tiny.
The result (3.3) applies to one particular order of evaluation. It is easy to
see that for any order of evaluation we have, using vector notation,

flzTy) = (z + Az)Ty =T (y + Ay), |Az| <v,lzl, Ay < ,lyl, (34)

where |x| denotes the vector with elements |x;| and inequalities between vec-
tors (and, later, matrices) hold componentwise.
A forward error bound follows immediately from (3.4):

2Ty = fUaTY)| < 7, D leavs] = valz(T Iyl (35)

i=1

If y = x, so that we are forming a sum of squares x'x, this result shows that
high relative accuracy is obtained. However, in general, high relative accuracy
is not guaranteed if [x"y| << |x|"ly].

It is easy to see that precisdly the same results (3.3)-(3.5) hold when we
use the no-guard-digit rounding error model (2.6). For example, expression
(3.1) becomes S2 = x; (1 + d)(1 +) + %¥(1 + dy)(1 + d,), where d, has
replaced a second occurrence of ds, but this has no effect on the error bounds.

It is worth emphasizing that the constants in the bounds above can be
reduced by focusing on particular implementations of an inner product. For
example, if n = 2m and we compute

70 BAasics

s, = x(L'm) "y(1:m)
s, = x(m + 1:n) 'y(m+ 1:n)
Sy = S+ S,

then |s, — 8a| < 7, /54,177 Ilyl. By accumulating the inner product in two
pieces we have almost halved the error bound. This idea can be gener-
alized by breaking the inner product into k pieces, with each mini inner
product of length n/k being evaluated separately and the results summed.
The error bound is now g1,k+k_l|xT||y|, which achieves its minima value of

72ﬁ*llmT||y| for k = \/n (or, rather, we should take k to be the nearest
integer to /n). But it is possible to do even better by using pairwise sum-
mation of the products xy; (this method is described in 84.1). With pairwise
summation, the error bound becomes

~ T
‘Sn - Sn| S ’Y[]ogz n]+1|x ||y’

Since many of the error analyses in this book are built upon the error anaysis
of inner products, it follows that the constants in these higher level bounds
can also be reduced by using one of these nonstandard inner product imple-
mentations. The main significance of this observation is that we should not
attach too much significance to the precise values of the constants in error
bounds.

Inner products are amenable to being calculated in extended precision.
If the working precision involves a t-digit mantissa then the product of two
floating point numbers has a mantissa of 2t - 1 or 2t digits and so can be
represented exactly with a 2t-digit mantissa. Some computers aways form the
2t-digit product before rounding to t digits. thus alowing an inner product to
be accumulated at 2t-digit precision at little or no extra cost, prior to a final
rounding.

The extended precision computation can be expressed as fl(fl.(x'y)),
where fl, denotes computations with unit roundoff u. (Uu. < u). Defining
8 = fl(x"y), the analysis above holds with u replaced by u, in (3.3) (and
with the subscripts on the ¢;, reduced by 1 if the multiplications are done
exactly). For the final rounding we have

fUfle(ay)) =5a(1+6), 18] <,

and so, overdl,

e (1 + wa| |yl

2"y — fU(fle(z"y))| < ulzTy| +

e
1 - nu,

Hence, as long as nue(|x|T|y| < u|xTy|, the computed inner product is about
as good as the rounded exact inner product. The effect of using extended

3.2 THE PURPOSE OF ROUNDING ERROR ANALYSIS 71

precision inner products in an agorithm is typicaly to enable a factor n to
be removed from the overal error bound.

Because extended precision inner product calculations are machine depen-
dent it is difficult or impossible to write portable programs that use them.
Most modern numerical codes (for example those in EISPACK, LINPACK,
and LAPACK) do not use extended precision inner products. One process in
which these more accurate products are needed is the traditional formulation
of iterative refinement, in which the aim is to improve the accuracy of the
computed solution to a linear system (see Chapter 11).

We have seen that computation of an inner product is a backward stable
process. What can be said for an outer product A = xy', where x, y, € IR"?
The analysis is easy. We have &; = xyi(1 + d;;), |dj] <u, so

A=xy"+D, D] < ulxy']. (3.6)

This is a satisfying result, but the computation is not backward stable. In
fact, A = (x + Dx)(y + Dy)' does not hold for any Dx and Dy (let alone a
smal Dx and Dy) because A is not in genera a rank 1 matrix.

This distinction between inner and outer products illustrates a general
principle. a numerical process is more likely to be backward stable when the
number of outputs is small compared with the number of inputs, so that there
is an abundance of data onto which to “throw the backward error”. An inner
product has the minimum number of outputs for its 2n scalar inputs, and
an outer product has the maximum number (among standard linear algebra
operations).

3.2. The Purpose of Rounding Error Analysis

Before embarking on further error analyses, it is worthwhile to consider what
a rounding error anaysis is designed to achieve. The purpose is to show the
existence of an a priori bound for some appropriate measure of the effects
of rounding errors on an algorithm. Whether a bound exists is the most
important question. ldeally, the bound is small for all choices of problem
data. If not, it should reveal features of the algorithm that characterize any
potential instability, and thereby suggest how the instability can be cured
or avoided. For some unstable agorithms, however, there is no useful error
bound. (For example, no bound is known for the loss of orthogonality due to
rounding error in the classica Gram-Schmidt method; see §18.7)

The constant terms in an error bound (those depending only on the prob-
lem dimensions) are the least important parts of it. As discussed in §2.6, the
constants usually cause the bound to overestimate the actual error by orders
of magnitude. It is not worth spending much effort to minimize constants
because the achievable improvements are usualy insignificant.

72 BAsics

It is worth spending effort, though, to put error bounds in a concise, easily
interpreted form. Part of the secret is in the choice of notation, which we
discuss in §3.4, including the question of what symbols to choose for variables
(see the discussion in Higham [554, 1993, §3.5]).

If sharp error estimates or bounds are desired they should be computed
a posteriori, so that the actual rounding errors that occur can be taken into
account. One approach is to use running error analysis, described in the next
section. Other possibilities are to compute the backward error explicitly, as
can be done for linear equation and least squares problems (see 887.1, 7.2, and
19.7), or to apply iterative refinement to obtain a correct ion that approximates
the forward error (see Chapter 11).

3.3. Running Error Analysis

The forward error bound (3.5) is an a priori bound that does not depend on
the actual rounding errors committed. We can derive a sharper, a posteri-
ori bound by reworking the analysis. The inner product evaluation may be
expressed as

Sg=0
for i = 1in

§ = S T XY
end

Write the computed partial sums as &; =: s; +e; andlet z; := fl(x;y;). We
have, using (2.5),

Z = e <u = Zi=xy - 6E
Similarly, (1 +€;)5; = 5;_1 + z;, where ;] < u, or
Si+e; + €8 =8i_1+e_1+ Ty — 02
Hence € = e.; - ¢;5; — 8;2;, which gives
le:] < lei—i| + ulSi| + ulzi].
Since ey, = 0, we have |e,| < um,, where
m=m. +[sil+]z, me=0.

Algorithm 3.2. Given x, y € IR" this algorithm computes s = fl(x" y) and
a number msuch that |s - X'y] < m

3.4 NOTATION FOR ERROR ANALYSIS 73

=0
=0

g3

i = 1n

Z = XY

S=S+ 2z
m=m+ [s| + |z
end

m=m*m

r

This type of computation, where an error bound is computed concurrently
with the solution, is called running error analysis. The underlying idea is
simple: we use the modified form (2.5) of the standard rounding error model
to write

|x op y - fl(x op y)l<ulfl(x op y)|,
which gives a bound for the error in x op y that is easily computed, since
fl(x op y) is stored on the computer. Key features of a running error anaysis
are that few inequalities are involved in the derivation of the bound and that
the actual computed intermediate quantities are used, enabling advantage
to be taken of cancellation and zero operands. A running error bound is,
therefore, usualy smaler than an a priori one.

There are, of course, rounding errors in the computation of the running
error bound, but their effect is negligible for nu << 1 (we do not need many
correct significant digits in an error bound).

Running error analysis is a somewhat neglected practice nowadays, but it
was widely used by Wilkinson in the early years of computing. It is applicable
to amost any numerical agorithm. Wilkinson explains [1101, 1986]

When doing running error analysis on the ACE a no time did |
write down these expressions. | merely took an existing program
(without any error analysis) and modified it as follows. As each
arithmetic operation was performed | added the absolute value of
the computed result (or of the dividend) into the accumulating
error bound.

For more on the derivation of running error bounds see Wilkinson [1100, 198s]
or [1101, 1986]. A running error analysis for Horner's method is given in 85.1.

3.4. Notation for Error Analysis

Another way to write (3.5) is

Ky - X'y < nuxlyl + O(u?). 3.7)

74 BAsics

In general, which form of bound is preferable depends on the context. The
use of first-order bounds such as (3.7) can simplify the algebra in an anaysis.
But there can be some doubt as to the size of the constant term concealed by
the big-oh notation. Furthermore, in vector inequaities an O(u%) term hides
the structure of the vector it is bounding and so can make interpretation of
the result difficult; for example, the inequality [x - y| < nujx| + O(u®) does
not imply that y approximates every element of x with the same relative error
(indeed the relative error could be infinite when x, = 0, as far as we can tell
from the bound).

In more complicated analyses based on Lemma 3.1 it is necessary to ma
nipulate the 1 + g, and g, terms. The next, lemma provides the necessary
rules.

Lemma 3.3. For any positive integer k let g, denote a quantity bounded
according to |g] < g = ku/(1 - ku). The following relations hold:

(14+60c)(146;) =14 0k,
ﬂ_{1+9k+]’. i<k,
1+6; Tl 1+ Okyo Gk,

Ye; < Ymin(k,j)°
e < Yiks
Ve U S Vegas
Ye Y WY S Vet

Proof. See Problem 3.4. 0

Concerning the second rule in Lemma 3.3, we certainly have

k Jj
10 +60= /TI0 +60% = 1+ 64.
1=1 1=1

but if we are given only the expression (1 + q,)/(1 + g;) and the bounds for
gx and g;, we cannot do better than to replace it by gy, for j > k.
Another style of writing bounds is made possible by the following lemma

Lemma 3.4. If |d<ufor i = 1:n and nu < 0.01, then

n

H(l +6;) =141,

i=1

where |h,| < 1.01nu.

3.4 NOTATION FOR ERROR ANALYSIS 75

Proof. We have

n

[Ta+6)-1

i=1

|n,] = <(1+u)™-1.

Since 1 + x < € for x > 0, we have (1 + u)" < exp(nu), and so

(), ()

l+u)"—1<nu+

2! 3!
nu nu\ 2 nu\3
<nu(1+7+(7) +(7) +)
RS S
Tl —nu/2
.0lnu. O
<nu0.995<10 nu

Note that this lemma is dightly stronger than the corresponding bound we
can obtain from Lemma 3.1: |g,| < nu/(1 - nu) < nu/0.99 = 1.0101. . . nu.
Lemma 3.4 enables us to derive, as an dternative to (3.5),

| x"y-fI(x"y) |<1.01nulx| " ly]. (3.9)

A convenient device for keeping track of powers of 1 + d terms was intro-
duced by Stewart [941, 1973, App. 3]. His relative error counter <k> denotes

a product
k

<k>= H(l + 6i)pi, pi = £1, |(51l <u. (39)
i=1

The counters can be manipulated using the rules

<j><k> = < + k>,
<j> .
kS = <j+k>.

At the end of an analysis it is necessary to bound |<k> - 1|, for which any
of the techniques described above can be used.

Wilkinson explained in [1100, 198s] that he used a similar notation in his
research, writing " for a product of r factors 1 + d;, with |dj| < u. He aso
derived results for specific values of n, before treating the general case-a
useful trick of the trade!

An dternative notation to fl() to denote the rounded vaue of a number
or the computed value of an expression is [], suggested by Kahan. Thus, we
would write [a + [b * ¢]] instead of fl(a + fl(b * C)).

76 BAasics

A completely different notation for error analysis has been proposed by
Olver [807, 1978], and subsequently used by him and several other authors.
For scalars x and y of the same sign, Olver defines the relative precision rp as
follows:

ya X; rp(a) means that y = e’x, |d| < a.

Sincee’ = 1 + d + O(d?), this definition implies that the relative error in x as
an approximation to y (or vice versa) is a most a + O(a?. But, unlike the
usual definition of relative error, the relative precision possesses the properties
of

symmetry: ya.Xx; rp(a) <= X ='y; rp(a),
additivity: y=.x; rp(a) and z=~ y; rp(b) = z=x:rp(a + b).

Proponents of relative precison clam that the symmetry and additivity prop-
erties make it easier to work with than the relative error.

Pryce [845, 1981] gives an excellent appraisal of relative precision, with
many examples. He uses the additional notation 1(d) to mean a number q
with q= 1; rp(d). The 1(d) notation is the analogue for relative precision of
Stewart’s <k> counter for relative error. In later papers, Pryce extends the
rp notation to vector and matrices and shows how it can be used in the error
analysis of some basic matrix computations [846, 1984], [847, 198s5].

Relative precision has not achieved wide use. The important thing for an
error analyst is to settle on a comfortable notation that does not hinder the
thinking process. It does not really matter which of the notations described
in this section is used, as long as the fina result is informative and expressed
in a readable form.

3.5. Matrix Multiplication

Given error analysis for inner products it is straightforward to analyse matrix-
vector and matrix-matrix products. Let A€ IR™" xe IR" and y = Ax.
The vector y can be formed as m inner products, y, == ol'x, i= 1:m, where
al is the ith row of A. From (3.4) we have
Ui = (a; + Aay) 'z, [Aa;| < 7, lail.
This gives the backward error result
G=(A+AAz, [AA <7, |A] (A€ R™M), (3.10)

which implies the forward error bound

3.5 MATRIX MULTIPLICATION 17

Normwise bounds readily follow (see Chapter 6 for norm definitions): for
example,
Iy = ¥llp < WallAllpllzlle, p=1,00.
This inner product formation of y can be expressed agorithmically as

% Sdot or inner product form.

y(m) = 0O
for i = I'm

for j = Lin

end’ () = (1) (i)x()
end

The two loops can be interchanged to give

% Saxpy form.

y(m) = 0O
for j = Lin
for i = 1im
y (i) =y(i) +a(i.j) x(j)
end
end

The terms “sdot” and “saxpy” come from the BLAS (see 8§D.1). Sdot stands
for (single precision) dot product, and saxpy for (single precision) a times
x plus y. The question of interest is whether (3.10) and (3.11) hold for the
saxpy form. They do: the saxpy agorithm till forms the inner products af ,
but instead of forming each one in turn it evaluates them all “in paralel”, a
term a a time. The key observation is that exactly the same operations are
performed, and hence exactly the same rounding errors are committed-the
only difference is the order in which the rounding errors are created.

This “rounding error equivalence” of algorithms that are mathematically
identical but agorithmicaly different is one that occurs frequently in matrix
computations. The equivalence is not aways as easy to see as it is for matrix-
vector products.

Now consider matrix multiplication: C = AB, where A € IR™" and
B € IR™P. Matrix multiplication is a triple loop procedure, with six possible
loop orderings, one of which is

C(Imlp) = O
for i = Lim
for j = 1:p
for k = 1in

C(i,j)=C(i.j) +A(i,k)B(k.j)

78 BAsics

end
end
end

As for the matrix -vector product. al six versions commit the same rounding
errors, so it suffices to consider any one of them. The “jik” and “jki” orderings
both compute C a column at a time: ¢; = Ab;, where ¢ = C(,j) and
b; = B(:j). From (3.10),

6j = (A —+ AA])()J‘, |AA]‘ S 771|A|'

Hence the jth computed column of C has a smal backward error: it is the
exact jth column for dightly perturbed data. The same cannot be said for
C as a whole (see Problem 3.5 for a possibly large backward error bound).
However, we have the forward error bound

|C—C| <y,]A|B] (A€ R™ ", Bec R"™P), (3.12)
and the corresponding normwise bounds include
IC = Cllp < %l Al 1Bl p=1.2.F.

The bound (3.12) falls short of the ideal bound |C' — (| < 7.1C|, which says
that each component of C is computed with high relative accuracy. Never-
theless (3.12) is the best bound we can expect, because it reflects the sen-
sitivity of the product to componentwise relative perturbations in the data:
for any i and j we can find a perturbation DA with |DA| < u|A| such that

|(A+DA)B-ABJ;=u(|A[|B]);; (similarly for perturbations in B).

3.6. Complex Arithmetic

To carry out error analysis of algorithms in complex arithmetic we need a
model for the basic arithmetic operations. Since complex arithmetic must be
implemented using real arithmetic, the complex model is a consequence of the
corresponding real one. We will assume that for complex numbers x = a + ib
and y = ¢ + id we compute

xty=a+czti(b+ d), (3.139)
Xy = ac - bd + i(ad + bc), (3.13b)
I/y:ac+bd bc — ad (3.130)

c? 4 d? l€2+d2'

3.6 COMPLEX ARITHMETIC 79

Lemma 3.5. For x, y € Cthe basic arithmetic operations computed according
to (3.13) under the standard model (2.4) satisfy

fllzxy)=(z+y)(1+96), [b<wu,
fllzy) = zy(1 +6), 6] < V27,
flilz/y) = (z/y)(1 +6), 6] < V2.
Proof. Throughout the proof, d, denotes a number bounded by |di| < u.
Addition/subtraction:
fllzx+y) =(a+c)(1461)+i(b+d)(1 +62)
=z+y+(a+c)b +i(b+ d)bo,

S0
[fiz +y) = (@ +)1 < (la+cf? + b+ d*)u? = (|2 + ylu)?,
as required.
Multiplication:
fU(zy) = (ac(l 4 61) — bd(1 + 62))(1 + 63)
+ i(ad(1 + 64) + be(1 + 65)) (1 + b6)
= ac(l 4 62) — bd(1 + 63) +i(ad(1 + 65) + bc(1 + 65"))
=zy +e,
where
lel* < 73 ((lac| + [bd])* + (lad] + |be])?)
< 292(a? + b2)(c? + d?)
= 273 |zyl?,
as required.
Division:
fUS +d?) = (P(1+61) + d*(1 + 62))(1 + 63)
=c2(1+6y) +d*(1+65)
= (2 +d*)(1 +63).
Then

(ac(l + 64) + bd(1 + 65)) (1 + b6)
fiRes/y) = (2 +d?)(1+07)
_ac(14+65") +bd(1 4 65")
(4 d)(1+6Y)
= Rez/y + e,

80 BAasics

where, using Lemma 3.3,
lac| + |bd|
2 tdr
Using the analogous formula for the error in fl(Imx/y),

2 2
_ 2 < Uacl £ 16d])” + (Jbe| + ad])® ,
‘Z‘/y| = (C2+d2)2 V4
2(a? +) (> + d?) ,

(02+d2)2 74
= 293la/yl*.

ler] <

which completes the proof. 0

It is worth stressing that d in Lemma 3.5 is a complex number, so we
cannot conclude from the lemma that the real and imaginary parts of fl(x op y)
are obtained to high relative accuracy---only that they are obtained to high
accuracy relative to [x op Y|

As explained in §25.8, the formula (3.13c) is not recommended for practical
use since it is susceptible to overflow. For the aternative formula (25.1), which
avoids overflow, similar analysis to that in the proof of Lemma 3.5 shows that

flla/y) = (@/y)L+6), 18] < Vo

Bounds for the rounding errors in the basic complex arithmetic operations
are rarely given in the literature. Indeed, virtualy all published error analyses
in matrix computations are for real arithmetic. However, because the bounds
of Lemma 3.5 are of the same form as for the standard model (2.4) for red
arithmetic, most results for real arithmetic (including virtually al those in
this book) are valid for complex arithmetic, provided that the constants are
increased appropriately.

3.7. Miscellany

In this section we give some miscellaneous results that will be needed in later
chapters. The first two results provide convenient ways to bound the effect
of perturbations in a matrix product. The first result uses norms and the
second. components.

Lemma 3.6. If X; + DX; € IR™" satisfies ||DX||| < d||X|| for all j for a
consistent norm, then

m m

[T +ax) -] x5

§=0 =0

< (H(l +65) — 1) ;I;[o 1 X;1-

7=0

3.7 MISCELLANY 81

Proof. The proof is a straightforward induction, which we leave as an
exercise (Problem 3.10). 0

A componentwise result is entirely analogous.

Lemma 3.7. If Xj + DX, € IR™" satisfies |DX;| < d|X;| for all j, then

T1x, + ax,) - [[x| < (ﬁ(mj)_l) Iix. o
J=0 =0 §=0 §=0

The final result describes the computation of the “rank 1 update” y =
(I - ab")x, which is an operation arising in various agorithms, including the
Gram-Schmidt method and Householder QR factorization.

Lemma 38. Let a, b, x €IR" and let y = (I - ab')x be computed as § =
flix-a(b"x)). Then § =y + Dy, where

|Ay| < Yoys(I +lallbT])lz],

so that
1Ayll2 < Ynys(1 + llall2libll2)lI]l2.

Proof. Consider first the computation of w = a(b'x). We have

@ := (a4 Aa)bT (z + Ax), |Aa| < ulal|, |Az| < v,z
= a(b”x) + a(b” Az) + AabT (z + Ax)
=:w + Aw,

where]
|Aw| < (7, + 61+ 7)) la| b7z

Finaly, 7 = fl(x - @) satisfies
y=x-a'z) - Aw+ Ay;, |4yl < u(lz| + D)),
and
| — Aw + Ayi| < u(lz| + |a]|bT||z]) + (1 +) (v, + w(1 + 7)) |al[pT||z].
Hence y =y + Dy, where

[Ay| < [ul + (2u+v® + 7, + 2uy, + u?y,)lalb”]]|z]
< Yy +lallpTPz). O

82 BAsics

3.8. Error Analysis Demystified

The principles underlying an error analysis can easily be obscured by the
details. It is therefore instructive to examine the basic mechanism of forward
and backward error analyses. We outline a general framework that reveals
the essential simplicity.

Consider the problem of computing z = f(a), where f : IR" — IR".
Any agorithm for computing z can be expressed as follows. Let x;, = a and
X = Ok(X), k = 1:p, where

Tyt = [2’:], & € R.

The kth stage of the agorithm represents a single floating point operation
and x contains the origina data together with al the intermediate quantities
computed so far. Findly, z = Tx,4,, wherel is comprised of a subset of the
columns of the identity matrix (so that each z is a component of X;.,). In
floating point arithmetic we have

Zry1 = gr(Th) + Agqa,

where D,,; represents the rounding errors on the kth stage and should be
essy to bound. We assume that the functions g, are continuoudly differentiable
and denote the Jacobian of g, a a by J. Then, to first order,

T2 = g1{a) + Az,
T3 = go(T2) + Azz = g2(g1(a) + Axg) + Axy
= g2(91(a)) + J2Azy + Azs,
Ty = g3(T3) + Azq = g3(92(91(a)) + J2 Ay + Azs) + Azy
= 93(92(91(a))) + J3JoAzz + J3Az3 + Azy.
The pattern is clear: for the find z = Zp4+1we have
2=1[gp(---92(01(a))...) + Jp... oAz + Jp ... J3Azz + - --
+ JpAzy, + Azpy |
Axs
Azg

= f(a) + Idiag(Jp... Jo, ..., Jp, I) =: f(a) + Jh.

Azpy

In a forward error analysis we bound f(a) - Z, which requires bounds for
(products of) the Jacobians J,. In a backward error analysis we write, again
to first order,

3.9 OTHER APPROACHES 83

where J; is the Jacobian of f. So we need to solve, for Da,

Jf Aa = J h , g=pn+(p+1)/2).
PR S e
mxn nx1 mXq gx1

In most matrix problems there are fewer outputs than inputs (m < n), so
this is an underdetermined system. For a normwise backward error analysis
we want a solution of minimum norm. For a componentwise backward error
analysis, in which we may want (for example) to minimize € subject to |Dal <
€lal, we can write

Jh=J;D-D7'Aa =: Be, D = diag(a;),

and then we want the solution ¢ of minimal m-norm.

The conclusions are that forward error analysis corresponds to bounding
derivatives and that backward error analysis corresponds to solving a large
underdetermined linear system for a solution of minima norm. In principal,
therefore, error analysis is straightforward! Complicating factors in practice
are that the Jacobians J, may be difficult to obtain explicitly, that an error
bound has to be expressed in a form that can easily be interpreted, and that
we may want to keep track of higher-order terms.

3.9. Other Approaches

In this book we do not describe al possible approaches to error analysis. Some
others are mentioned in this section.

Linearized rounding error bounds can be developed by applying equations
that describe, to first order, the propagation of absolute or relative errors in
the elementary operations +,-,*,/. The basics of this approach are given in
many textbooks (see, for example, Dahlquist and Bjorck [262, 1974, 82.2] or
Stoer and Bulirsch [955, 1980, 81.3]), but for a thorough treatment see Stum-
mel [963, 1980], [964, 1981]. Ziv [1133, 1995] shows that linearized bounds
can be turned into true bounds by increasing them by a factor that depends
on the algorithm.

Rounding error analysis can be phrased in terms of graphs. This appears
to have been first suggested by McCracken and Dorn [743, 1964], who use
“process graphs’ to represent a numerical computation and thereby to analyse
the propagation of rounding errors. Subsequent more detailed treatments
include those of Bauer [82, 1974], Miller [758, 1976], and Yaamov [1117, 1994].
The work on graphs falls under the heading of automatic error analysis (for
more on which see Chapter 24) because processing of the large graphs required
to represent practical computations is impracticd by hand. Linnainmaa [705,
1976] shows how to compute the Taylor series expansion of the forward error

84 BAsics

in an dgorithm in terms of the individual rounding errors, and he presents a
graph framework for the computation.

Some authors have taken a computational complexity approach to error
analysis, by aiming to minimize the number of rounding error terms in a
forward error bound, perhaps by rearranging a computation. Because this
approach ignores the possibility of cancellation of rounding errors, the results
need to be interpreted with care. See Aggarwal and Burgmeier [6, 1979] and
Tsao [1024, 1983].

3.10. Notes and References

The use of Lemma 3.1 for rounding error analysis appears to originate with
the origina 1972 German edition of a book by Stoer and Bulirsch [955, 1980].
The lemma is also used, with p; = 1, by Shampine and Allen [911, 1973,
p. 18].

Lemma 3.4 is given by Forsythe and Moler [396, 1967, p. 92]. Wilkinson
made frequent use of a dightly different version of Lemma 3.4 in which the
assumption is nu < 0.1 and the bound for |h,| is 1.06nu (see, eg., [1089,
1965, p. 113]).

A straight forward notation for rounding errors that is subsumed by the
notation described in this chapter is suggested by Scherer and Zeller [899,
1980].

Ziv [1131, 1982] proposes the relative error measure

d(x,y) = llz = yll/ max(|l]l. lyll)

for vectors x and y and explains some of its favourable properties for error
analysis.

Wilkinson [1089, 1965, p. 447] gives error bounds for complex arithmetic;
Olver [808, 1983] does the same in the relative precision framework. Dem-
mel [280, 1984] gives error bounds that extend those in Lemma 3.5 by taking
into account the possibility of underflow.

Henrici [521, 1980] gives a brief, easy to read introduction to the use of
the model (2.4) for analysing the propagation of rounding errors in a genera
algorithm. He uses a set notation that is another possible notation to add to
those in §3.4.

The perspective on error analysis in §3.8 was suggested by J. W. Demmel.

Problems

3.1. Prove Lemma 3.1.

3.2. (Kielbasiniski and Schwetlick [658, 1988], [659, 1992]) Show that if p, =1
in Lemma 3.1 then the stronger bound |f , | < nu/(1-%nu) holds for nu < 2.

PROBLEMS 85

3.3. One agorithm for evaluating a continued fraction

b
ag + 0
b
a) + b
ag+---+
An41
is
gn*l = g+l
for kK = n:-1:.0
Ok = & + b/O 1

end

Derive a running error bound for this algorithm.
3.4. Prove Lemma 3.3.

3.5. (Backward error result for matrix multiplication.) Let A € IR™" and
B € IR™ both be nonsingular. Show that fl(AB) = (A + DA)B, where
IDA| < g,JA|BIB™Y, and derive a corresponding bound in which B is per-
turbed.

3.6. (Backward error definition for matrix multiplication.) Let A € IR"*"
and B € IR™P be of full rank and suppose C= AB. Define the component-
wise backward error

w=min{e:C = (A+ AA)(B + AB), |AA|<€E, |AB|<€F},
where E and F have nonnegative entries. Show that
4 9ij

where R = C - AB and G = EF. Explain why the definition of w makes
sense only when A and B have full rank. Define a mixed backward/forward
error applicable to the general case.

3.7. Give anaogues of the backward error results (3.4) and (3.10) for complex
X, y, and A

38. Let A,. .. A€ IR"" Show that
lAr... Ax — fU(A1... AK)|lF < (kn®u+ O(u?))[|A1ll2 - - || Akll2-

3.9. Which is the more accurate way to compute x> - y* as xX* - y* or as

(x+y)(x-y)AAssume the use of a guard digit. Note that this computation
arises when sguaring a complex number.)

86 BAsics

3.10. Prove Lemma 3.6.

3.11. (Kahan [629, 1980]) Consider this MATLAB function, which returns the
absolute value of its first argument x € IR™
function z = absolute(x , m)
y = X.-2;
for i=I:m
y = sart(y);
en
z =y,
for i=l:m-1
z=12 -2
end
Here is some output from a 486DX workstation that uses |EEE standard
double precision arithmetic:
>> x = [.25 .5 .75 1.25 1.5 2]; z = absolute(x, 50); [x; 7]
ans =
0.2500 0.5000 0.7500 1.2500 1.5000 2.0000
0.2528 0.5028 0.7788 1.2840 1.4550 2.1170

Give an eror anaysis to explain the results.

The same machine produced this output:
>> x = [.25 .56 .75 1.25 1.5 2]; z = absolute(x, 75); [x; Z
ans =

0.2500 0.5000 0.7500 1.2500 1.5000 2.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
But a Sun SPARCstation, which also uses |IEEE standard double precision
arithmetic, produced
ans =

0.2500 0.5000 0.7500 1.2500 1.5000 2.0000

0 0 0 1.0000 1.0000 1.0000

Explain these results and why they differ (cf. §1.12.2).
3.12. Consider the quadrature rule

1(f) = / fa)de Y wif () =5 J()

where the weights w and nodes x; are assumed to be floating point numbers.
Assuming that the sum is evaluated in left-to-right order and that

filf(z:)) = fl@)(X +m:), |msl <.
obtain and interpret a bound for |I(f) — J(f)|, where J(f) = fI(J(f)).

Previous

Chapter 4
Summation

| do hate sums.

There is no greater mistake than to call arithmetic an exact science.
There are . . . hidden laws of Number

which it requires a mind like mine to perceive.

For instance, if you add a sum from the bottom up,

and then again from the top down,

the result is always different.

-MRS. LA TOUCHE™Y

Joseph Fourier introduced this delimited z-notation in 1820,
and it soon took the mathematical world by storm.

-RONALD L. GRAHAM, DONALD E. KNUTH, and
OREN PATASHNIK, Concrete Mathematics (1989)

One of the major difficulties in a practical [error] analysis
is that of description.
An ounce of analysis follows a pound of preparation.

-BERESFORD N. PARLETT, Matrix Eigenvalue Problems (1965)

¥Quoted in Mathematical Gazette [730, 1924].

87

Next

88 SUMMATION

Sums of floating point numbers are ubiquitous in scientific computing. They
occur when evauating inner products, means, variances, norms, and al kinds
of nonlinear functions. Although at first sight summation might appear to
offer little scope for algorithmic ingenuity, the usual “recursive summation”
(with various orderings) is just one of a variety of possible techniques. We
describe several summation methods and their error analyses in this chap
ter. No one method is uniformly more accurate than the others, but some
guidelines can be given on the choice of method in particular cases.

4.1. Summation Methods

In most circumstances in scientific computing we would naturaly trandate a
sum 3°7 , z; into code of the form

s=0

for i = 1in
S= S+ X;

end

This is known as recursive summation. Since the individual rounding errors
depend on the operands being summed, the accuracy of the computed sum
s waries with the ordering of the x;. (Hence Mrs. La Touche, quoted a the
beginning of the chapter, was correct if we interpret her remarks as applying
to floating point arithmetic.) Two interesting choices of ordering are the
increasing order x| <|X,] < ... < |Xx,|, and the decreasing order |x;| >
ol > ... 2 x|

Another method is pairwise summation (also known as cascade summa-
tion, or fan-in summation), in which the x; are summed in pairs according
to

Yi=T2i1+ T2, i=1:|2] (Yn+1)2 =T if nis odd),

and this pairwise summation process is repeated recursively on the y;, i =
1:[(n+1)/2]. The sum is obtained in [log,n] stages. For n = 6, for example,
pairwise summation forms

Ss = (X1 + X)) + (X3 + Xp) + (X5 + Xp).

Pairwise summation is attractive for paralel computing, because each of the
[log,n] stages can be done in paralel [573, 1988, 8§5.2.2].

A third summation method is the insertion met hod. First, the x; are
sorted by order of increasing magnitude (aternatively, some other ordering
could be used). Then x; + x, is formed, and the sum is inserted into the
list X5,. . . X, maintaining the increasing order. The process is repeated
recursively until the final sum is obtained. In particular cases the insertion

4.2 ERROR ANALYSIS 89

method reduces to one of the other two. For example, if x; = 2" the
insertion method is equivalent to recursive summation, since the insertion is
always to the bottom of the list:

1248 — 348 — 78 — 15

On the other hand, if 1 < X < X, < .. < X, < 2, every insertion is to the
end of the list, and the method is equivalent to pairwise summation if n is a
power of 2; for example, if 0 <e < 1/2,

1, 14+€, 1426, 143¢ — 142, 1436, 2+€¢ — 2+4€ 24+5¢ — 4+6e.

To choose between these met hods we need error analysis, which we develop
in the next section.

4.2. Error Analysis

Error analysis can be done individualy for the recursive, pairwise and inser-
tion summation methods, but it is more profitable to recognize that each is a
specia case of a genera agorithm and to analyse that algorithm.

Algorithm 4.1. Given numbers X;,. . . X, this agorithm computes S, =
i T

Let S = {Xg.aX}.

repeat while S contains more than one element
Remove two numbers x and y from S,
and add their sum x + y to S.

end

Assign the remaining element of Sto S, .

Note that since there are n numbers to be added and hence n - 1 additions
to be performed, there must be precisely n - 1 executions of the repeat loop.

First, let us check that the previous methods are special cases of Algo-
rithm 4.1. Recursive summation (with any desired ordering) is obtained by
taking x at each stage to be the sum computed on the previous stage of the
algorithm. Pairwise summation is obtained by [log,n] groups of executions
of the repeat loop, in each group of which the members of S are broken into
pairs, each of which is summed. Finally, the insertion method is, by definition,
a specia case of Algorithm 4.1.

Now for the error analysis. Express the ith execution of the repeat loop
as T, = xi; + yi,. The computed sums satisfy (using (2.5))

i, +Yi,

-
1+6;

, |6l <u, i=1lin-1. (4.1)

90 SUMMATION

The loca error introduced in forming IA} is 6if .. The overdl error is the sum
of the local errors (since summation is a linear process), so overal we have

n—-1
En:=S8,-8.,= > &T. (4.2)
i=1

The smallest possible error bound is therefore

n—1

|Bal < ud_ITi. (4.3)
1=1

(This is actually in the form of a running error bound, because it contains the
computed quantities-see 83.3) It is easy to see that |Ti| <3 7, |z;|+O(u)
for each i, and so we have aso the wesker bound

n

|Enl < (n—1u)_ |z + O(u?). (4.4)

i=1

This is a forward error bound. A backward error result showing that S, is

the exact sum of terms x;(1 +¢;) with |e;| <+,,_; can be deduced from (4.1),

using the fact that no number x takes part in more than n - 1 additions.
The following criterion is apparent from (4.2) and (-1.3):

In designing or choosing a summation met hod to achieve high ac-
curacy, the aim should be to minimize the absolute values of the
intermediate sums T;.

The aim specified in this criterion is surprisingly simple to state. When we
consider specific methods, however, we find that the aim is difficult to achieve.

Consider recursive summation, for which T;_; = 5; := Z;Zl z;. ldedly,
we would like to choose the ordering of the x to minimize >, |§,—|. This
is a combinatorial optimization problem that is too expensive to solve in the
context of summation. A reasonable compromise is to determine the ordering
sequentially by minimizing, in turn, X4, [S,, . . . , |Snal- This ordering
strategy, which we denote by Psum, can be implemented with O(nlogn)
comparisons. If we are willing to give up the property that the ordering is
influenced by the signs of the x; we can instead use the increasing ordering,
which in general will lead to a larger value of "I, [S:| than that for the
Psum ordering. If all the x; have the same sign then all these orderings
are equivalent. Therefore when summing nonnegative numbers by recursive
summation the increasing ordering is the best ordering, in the sense of having
the smallest a priori forward error bound.

4.2 ERROR ANALYSIS 91

How does the decreasing ordering fit into the picture? For the summation
of positive numbers this ordering has little to recommend it. The bound (4.3)
is no smaller, and potentialy much larger, than it is for the increasing order-
ing. Furthermore, in a sum of postive terms that vary widdy in magnitude
the decreasing ordering may not alow the smaller terms to contribute to the
sum (which is why the harmonic sum E?:l 1/¢ ‘“converges’ in floating point
arithmetic as n — og. However, consider the example with n = 4 and

x = [I, M, 2M, -3M], (4.5)

where M is a floating point number so large that fl(1 + M) = M (thus M >
u?). The three orderings considered so far produce the following results:

Increasing: fll + M+ 2M - 3M) = 0,
Psum: fld+M-3M + 2M) = 0,
Decreasing: Sp=fIkAM+ 2M + M + 1) = 1.

Thus the decreasing ordering sustains no rounding errors and produces the
exact answer, while both the increasing and Psum orderings yield computed
sums with relative error 1. The reason why the decreasing ordering performs
so well in this example is that it adds the “1” after the inevitable heavy
cancellation has taken place, rather than before, and so retains the important
information in this term. If we evaluate the term u = 3" ,|S;| in the error
bound (4.3) for example (4.5) we find

Increasing: m = 4M, Psum: m = 3M, Decreasing: m= M + 1,

Sn
Sn

s0 (4.3) “predicts’ that the decreasing ordering will produce the most accurate
answer, but the bound it provides is extremely pessimistic since there are no
rounding errors in this instance.

Extrapolating from this example, we conclude that the decreasing or-
dering is likely to yield greater accuracy than the increasing or Psum or-
derings whenever there is heavy cancellation in the sum, that is, whenever
|Z:}1=l .’L',;l < Z?:l |ml|

Turning to the insertion method, a good explanation of the insertion strat-
egy is thet it attempts to minimize, one a a time, the teems |Ti|,...,|Tnh—1|
in the error bound (4.3). Indeed, if the x; are all nonnegative the insertion
method minimizes this bound over al instances of Algorithm 4.1.

Finaly, we note that a stronger form of the bound (4.4) holds for pairwise
summation. It can be deduced from (4.3) or derived directly, as follows.
Assume for simplicity that n = 2". Unlike in recursive summation each addend
takes part in the same number of additions, log,n. Therefore we have a
relation of the form

N n logy n))
So=Y @ [T a+8"), 16 <uy

=1 k=1

92 SUMMATION

al ay

[e]
+b D b |
=5 | ar | a2t+b |
—a ‘ b1] 0 |
-b | — by | 0 = —e

Figure 4.1. Recovering the rounding error.

which leads to the bound

n

'E"l < ’Ylogznz;xil' (46)

i=1

Since it is proportional to logy,n rat her than n, this is a smaler bound than
(4.4), which is the best bound of this form that holds in general for Algo-
rithm 4.1.

4.3. Compensated Summation

We have left to last the compensated summation method, which is recursive
summation with a correction term cleverly designed to diminish the rounding
errors. Compensated summation is worth considering whenever an accurate
sum is required and computations are already taking place at the highest
precision supported by the hardware or the programming language in use.

In 1951 Gill [449, 1951] noticed that the rounding error in the sum of two
numbers could be estimated by subtracting one of the numbers from the sum,
and he made use of this estimate in a Runge-Kutta code in a program library
for the EDSAC computer. Gill’s estimate is valid for fixed point arithmetic
only. Kahan [625, 1965] and Mgller [777, 1965] both extended the idea to
floating point arithmetic. Maller shows how to estimate a + b - fl(a + b) in
chopped arithmetic, while Kahan uses a slightly simpler estimate to derive
the compensated summation method for computing > | ;.

The estimate used by Kahan is perhaps best explained with the aid of a
diagram. Let a and b be floating point numbers with |a| > |b|, let § = fl(a+b),
and consider Figure 4.1, which uses boxes to represent the mantissas of a and
b. The figure suggests that if we evauate

e=—[((a+b)—a)—b] =(a—3)+b

4.3 COMPENSATED SUMMATION 93

in floating point arithmetic, in the order indicated by the parentheses, then
the computed é will be a good estimate of the error (a + b) - 5. In fact, for
rounded floating point arithmetic in base 2, we have

a+b= s+8@, (4.7

that is, the computed € represents the error exactly. This result (which does
not hold for al bases) is proved by Dekker [275, 1971, Thm. 4.7], Knuth [668,
1981, Thm. C, p. 221], and Linnainmaa [703, 1974, Thm. 3]. Note that there
is no point in computing fl(§ + &), sinces is dready the best floating point
representation of a + b !

Kahan's compensated summation method employs the correction e on
every step of a recursive summation. After each partial sum is formed, the
correction is computed and immediately added to the next term x; before that
term is added to the partial sum. Thus the idea is to capture the rounding
errors and feed them back into the summation. The method may be written
as follows.

Algorithm 4.2 (compensated summation). Given floating point numbers

Xy, . . ., X, this algorithm forms the sum = Y by compensated sum-
mation.
s=0;e=0
for i = Lin
temp = s
y=Xi+e

s=temp+y
e = (temp - s) + y % Evauate in the order shown.
end

The compensated summation method has two weaknesses: é is not neces
sarily the exact correction, since (4.7) is based on the assumption that |a] > |b|,
and the addition y = x, + e is not peformed exactly. Nevertheless, the use
of the corrections brings a benefit in the form of an improved error bound.
Knuth [668, 1981, Ex. 19, pp. 229, 572-573] shows that the computed sum S,
satisfies .

Sn = Z(l +Mi)$i, |/‘L'L| <2u+ O(HUQ), (48)
1=1
which is an amost ideal backward error result (a more detailed version of
Knuth's proof is given by Goldberg [457, 1991]).

In [627, 1972] and [628, 1973] Kahan describes a variation of compensated
summation in which the final sum is also corrected (thus “s = s + €" is
appended to the agorithm above). Kahan states in [627, 1972] and proves in

94 SUMMATION

[628, 1973] that (4.8) holds with the stronger bound |m| < 2u+O((n-i+

1yu® The proofs of (4.8) given by Knuth and Kahan are similar; they use the

model (2.4) with a subtle induct ion and some intricate algebraic manipulation.
The forward error bound corresponding to (4.8) is

|E,| < (2u+ O(nu?)) Z |4 (4.9)
1=1

As long as nu < 1, the constant in this bound is independent of n, and
so the bound is a significant improvement over the bounds (4.4) for recur-
sive summation and (4.6) for pairwise summation. Note, however, that if
S x> |30 x|, compensated summation is not guaranteed to yield a
small relative error.

Another version of compensated summation has been investigated by sev-
era authors: Jankowski, Smoktunowicz, and Wozniakowski [609, 1983], Jank-
owski and Wozniakowski [611, 1985], Kielbasinski [655, 1973], Neumaier [788,
1974], and Nickel [797, 1970]. Here, instead of immediately feeding each cor-
rection back into the summation, the correct ions are accumulated separately
by recursive summation and then the global correction is added to the com-
puted sum. For this version of compensated summation Kielbasinski [655,
1973] and Neumaier [788, 1974] show that

5:” = Z(l + [ll').'l'i, |ﬂ,| S 211 + ‘II,ZLLQ, (410)

provided nu < 0.1; this is weaker than (4.8) in that the second-order term
has an extra factor n. If nu < 0.1 then in (4.10), Im| < 2.1u. Jankowski,
Smoktunowicz, and Wozniakowski [609, 1983] show that, by using a divide
and conquer implementation of compensated summation, the range of n for
which |m| < cu holds in (4.10) can be extended, at the cost of a dight increase
in the size of the constant c.

Neither the correction formula (4.7) nor the result (4.8) for compensated
summation holds under the no-guard-digit mode of floating point arithmetic.
Indeed, Kahan [634, 1990] constructs an example where compensated summa-
tion fals to achieve (4.9) on certain Cray machines, but he states that such
failure is extremely rare. In [627, 1972] and [628, 1973] Kahan gives a mod-
ification of the compensated summation algorithm in which the assignment
‘e = (temp - S) + Y’ is replaced by

f=0
if sign(temp) = sign(y), f = (0.46 * s-s) + s, end
e=(temp-f -(s-f) +y

4.3 COMPENSATED SUMMATION 95

Kahan shows in [628, 1973] that the modified algorithm achieves (4.8) “on
all North American machines with floating hardware” and explains that “The
mysterious constant 0.46, which could perhaps be any number between 0.25
and 0.50, and the fact that the proof requires a considerat ion of known ma
chines designs, indicate that this algorithm is not an advance in computer
science.”

Viten'ko [1056, 1968] shows that under the no-guard-digit modd (2.6) the
summation met hod with the optima error bound (in a certain sense defined
in [1056, 1968]) is pairwise summation. This does not contradict Kahan's
result because Kahan uses properties of the floating point arithmetic beyond
those in the no-guard-digit model.

A good illustration of the benefits of compensated summation is provided
by Euler's method for the ordinary differential equation initial value problem

y' = f(xy), y(d) given, which generates an approximate solution according
to Vin = Yk *+ hfi, Yo = y(a). We solved the equation y' = -y with y(0) = 1
over [0,1] using n steps of Euler's method (nh = 1), with n ranging from 10
to 10°. With compensated summation we replace the statements x = x + h,
y =y + h* f(xy) by (with the initiaization cx = 0, cy = Q)

dx = h + ¢cx

new-x = x + dx

cX = (X - new-x) + dx
X = new_x

dy = h* f(xy) + cy

new-y =y + dy
cy = (y - new-y) + dy
y = new-y

Figure 4.2 shows the errors e, = ly(1) - y,| where 7, is the computed
approximation to y(1). The computations were done in Fortran 90 in single
precision arithmetic on a Sun SPARCstation (u ~ 6 x 10®). Since Euler's
method has global error of order h, the error curve on the plot should be
approximately a straight line. For the standard. implement at ion of Euler's
method the errors g, start to increase steadily beyond n = 20,000 because
of the influence of rounding errors. With compensated summation the errors
e, ae much less affected by rounding errors and do not grow in the range of
n shown (for n = 10°% e, is about 10 times larger than it would be in exact
arithmetic). Plots of U-shaped curves showing total error against stepsize
are common in numerical analysis textbooks (see, e.g., Forsythe, Malcolm,
and Moler [395, 1977, p. 119] and Shampine [910, 1994, p. 259]), but the
textbooks rarely point out that the “U” can be flattened out by compensated
summation.

96 SUMMATION

error

Figure 4.2. Errors ly(1) - w.| for Euler’'s method with (“x") and without (“0")
compensated summation.

The cost of applying compensated summation in an ordinary differential
equation solver is amost negligible if the function f is at al expensive to eval-
uate. But, of course, the benefits it brings are noticeable only when a vast
number of integration steps are taken. Very long-term integrations are un-
dertaken in celestial mechanics, where roundoff can affect the ability to track
planetary orbits. Researchers in astronomy use compensated summation, and
other techniques, to combat roundoff. An example application is a 3 million
year integration of the planets in the solar system by Quinn, Tremaine, and
Duncan [854, 1991]; it used a linear multistep method of order 13 with a
constant stepsize of 0.75 days and took 65 days of machine time on a Silicon
Graphics 4D-25 workstation. See also Quinn and Tremaine [853, 1991] and
Quinlan [851, 1994].

Finaly, we describe an even more ingenious agorithm caled doubly com+-
pensated summation, derived by Priest [844, 1992] from a related algorithm
of Kahan. It is compensated summation with 2 extra applications of the
correction process™ and it requires 10 instead of 4 additions per step. The
algorithm is tantamount to simulating double precision arithmetic with sin-
gle precision arithmetic; it requires that the summands first be sorted into

"The algorithm should perhaps be called triply compensated summation, but we adopt
Priest’s terminology.

4.4 OTHER SUMMATION METHODS 97

decreasing order, which removes the need for certain logica tests that would
otherwise be necessary.

Algorithm 4.3 (doubly compensated summation). Given floating point num-
bersxy,. . ., X, this agorithm forms the sum s, = Y7, z; by doubly compen-
sated summation. All expressions should be evaluated in the order specified
by the parentheses.

Sort the x; so that || > |xo] > . . . > |x,|
S, =X, =0
for i = 2

Yo = C1 T X

Ue = X = % - Ce1)

B = Yk + St

Ue = Vi = (& - Sa)

Z = U + Uy

& = Ktz

Gk = % - (S -
end

Priest [844, 1992, §4.1] analyses this agorithm for t-digit base b arithmetic
that satisfies certain reasonable assumptions-ones which are all satisfied by
|EEE arithmetic. He shows that if n < b'® then the computed sum s,
satisfies

‘Sn - §n| < 2ulsn|»

that is, the computed sum is accurate virtually to full precision.

4.4. Other Summation Methods

We mention briefly two further classes of summation algorithms. The first
builds the sum in a series of accumulators, which are themselves added to give
the sum. As originally described by Wolfe [1107, 1964] each accumulator holds
a partid sum lying in a different interval. Each term x is added to the lowest-
level accumulator; if that accumulator overflows it is added to the next-highest
one and then reset to zero, and this cascade continues until no overflow occurs.
Modifications of Wolfe's algorithm are presented by Malcolm [723, 1971] and
Ross [880, 1965]. Malcolm [723, 1971] gives a detailed error analysis to show
that his method achieves a relative error of order u. A drawback of the
algorithm is that it is strongly machine dependent. An interesting and crucial
feature of Malcolm’'s algorithm is that on the final step the accumulators
are summed by recursive summation in order of decreasing absolute value,
which in this particular situation precludes severe loss of significant digits
and guarantees a small relative error.

98 SUMMATION

Another class of algorithms, referred to as “distillation algorithms” by
Kahan [633, 1987], work as follows. given x, = fl(x;), i = 1in, they iteratively
construct floating point numbers), ... 2 such that 3" 2 = S Tis
terminating when xs,k)approximates Sor @, with relative error a most u.
Kahan states that these agorithms appear to have average run times of order
a least n log n. See Bohlender [130, 1977], Kahan [633, 1987], Leuprecht and
Oberaigner [700, 1982], Pichat [830, 1972], and Priest [844, 1992, pp. 66-69)

for further details and references.

4.5. Statistical Estimates of Accuracy

The rounding error bounds presented above can be very pessimistic, because
they account for the worst-case propagation of errors. An alternative way
to compare summation methods is through statistical estimates of the error,
which may be more representative of the average case. A datistica anaysis
of three summation methods has been given by Robertazzi and Schwartz [874,
1988] for the case of nonnegative x,. They assume that the relative errors in
floating point addition are statistically independent and have zero mean and
finite variance ¢2. Two distributions of nonnegative x, are considered: the
uniform distribution on [0,2m]. and the exponential distribution with mean
m Making various simplifying assumptions Robertazzi and Schwartz esti-
mate the mean sgquare error (that is, the variance of the absolute error) of
the computed sums from recursive summation with random, increasing and
decreasing orderings, and from insertion summation and pair-wise summation
(with the increasing ordering). Their results for the summation of n numbers
are given in Table -1.1.

The results show that for recursive summation the ordering affects only
the constant in the mean square error, with the increasing ordering having
the smallest constant and the decreasing ordering the largest; since the x, are
nonnegative, this is precisely the ranking given by the rounding error bound
(4.3). The insertion and pairwise summation methods have mean square
errors proportional to n? rather than n® for recursive summation, and the
insertion method has a smaller constant than pairwise summation. This is aso
consistent with the rounding error analysis, in which for nonnegative x; the
insertion met hod satisfies an error bound no larger than pairwise summation
and the latter method has an error bound with a smaller constant than for
recursive summation (log,n versus n).

4.6. Choice of Method

There is a wide variety of summation methods to choose from. For each
met hod the error can vary greatly with the data, within the freedom afforded

4.6 CHOICE OF METHOD 99

Table 4.1. Mean square errors for nonnegative x;.

Distrib. | Increasing Random Decreasing Insertion Pairwise

Unif(0,2m) |0.20nfn%s®> 0.33nfn%s? 053nfn’s? 2.6nfn%s® 2.7nfn’s?
EXP(m) 0.13nfn®s®> 0.33nfn®s®> 0.63nfn®s®> 2.6nfn’s®> 4.0nfn’s?

by the error bounds, numerical experiments show that, given any two of the
methods, data can be found for which either method is more accurate than
the other [553, 1993]. However, some specific advice on the choice of met hod
can be given.

1. If high accuracy is important, consider implementing recursive summa-
tion in higher precision; if feasible this may be less expensive (and more
accurate) than using one of the alternative methods a the working pre-
cision. What can be said about the accuracy of the sum computed at
higher precision? If S, = Y., x is computed by recursive summation
at double precision (unit roundoff uz)v and then rounded to single preci-
sion, an error bound of the formlSn—§n| < u|§n|+nu2 S°F |z holds.
Hence a relative error of order u is guaranteed if nu Y0, |z < |Sy|.
Priest [844, 1992, pp. 62-63] shows that if the x, are sorted in decreas-
ing order of magnitude before being summed in double precision, then
IS, — S| < 2u|S,| holds provided only that n < b'® for t-digit base
b arithmetic satisfying certain reasonable assumptions. Therefore the
decreasing ordering may be worth arranging if there is a lot of cancella
tion in the sum. An aternative to extra precison computation is doubly
compensated summation, which is the only other method described here
that guarantees a small relative error in the computed sum.

2. For most of the methods the errors are, in the worst case, proportiona
to n. If n is very large, pairwise summation (error constant log,n) and
compensated summation (error constant of order 1) are attractive.

3. If the x; all have the same sign then all the methods yield a relative error
of a most nu and compensated summation guarantees perfect relative
accuracy (as long as nu < 1). For recursive summation of one-signed
data, the increasing ordering has the smallest error bound (4.3) and
the insertion method minimizes this error bound over al instances of
Algorithm 4.1.

4. For sums with heavy cancellation (3., |zi| > [, il), :recursive
summation with the decreasing ordering is attractive, although it cannot
be guaranteed to achieve the best accuracy.

100 SUMMATION

Considerations of computational cost and the way in which the data are
generated may rule out some of the met hods. Recursive summation in the
natural order, pairwise summation, and compensated summation can be im-
plemented in O(n) operations for general x;, but the other methods are more
expensive since they require searching or sorting. Furthermore, in an applica
tion such as the numerical solution of ordinary differential equations, where
X 1S not known until Zf;ll % has been formed. sorting and searching may
be impossible.

4.7. Notes and References

This chapter is based on Higham [553, 1993]. Analysis of Algorithm 4.1 and
compensated summation can aso be found in Espelid [356, 1978].

The earliest error analysis of summation is that of Wilkinson for recursive
summation in [1084, 1960], [1088, 1963].

Pairwise summation was first discussed by McCracken and Dorn [743,
1964, pp. 61-63], Babuska [35, 1969], and Linz [707, 1970]. Caprani [185, 1971]
shows how to implement the method on a serial machine using temporary
storage of size [log,n] + 1 (without overwriting the x).

The use of compensated summation with a Runge-Kutta formula is de-
scribed by Vitasek [1055, 1969]. See also Butcher [170, 1987, pp. 118-120]
and the experiments of Linnainrnaa [703, 1974]. Davis and Rabinowitz [267,
1984, 84.2.1] discuss pairwise summation and compensated summation in the
context of quadrature.

Problems

4.1. Define and evaluate a condition number C(x) for the summation S,(x) =
S, z;. When does the condition number take the value 1?

4.2. (Wilkinson [1088, 1963, p. 19]) Show that the bounds (4.3) and (4.4) are
nearly attainable for recursive summation. (Hint: assume u = 2', set n = 2'
(r << t), and define

x(1) = 1,

x(2 =1- 2",
x(3:4) = 1 - 2,
x(5:8) = 1 - 2%,

X2+ 1:2)=1-2"11)

PROBLEMS 101

4.3. Let S, =3 ,:x be computed by recursive summation in the natural
order. Show that

ku
1—ku’

Sn=(m+22)(140n-1) + D 21+ 0 in1), [0kl <7 =
1=3

and hence that E, = S, — S, :satisfies

n
|En| < (Jo1] + |22))n—1 + Z || Yr—it1-
i=3

Which ordering of the X minimizes this bound?

44. Let M be a floating point number so large that fl(10 + M) = M. What
are the possible values of fl(Z?=1 z;), where {z;}¢_;, ={1, 2, 3, 4, M,-M}
and the sum is evauated by recursive summation?

45. The “+” method for computing S, = ZLI is defined as follows: form
the sum of the positive numbers, S,, and the sum of the nonpositive numbers,
S, separately, by any method, and then foom S, = S. + S,. Discuss the

pros and cons of this met hod.

4.6. Let {x;} be a convergent sequence with limit £. Aitken's D’-method

(Aitken extrapolation) generates a transformed sequence {y;} defined by
(Tip1 —)2

Tiyo —2Tip1 + 25

Yi =25 —

Under suitable conditions (typically that {x;} is linearly convergent), the vy
converge to & faster than the x,. Which of the following expressions should
be used to evaluate the denominator in the formula for y;?

(@) (4+2 - 2%4) + X%
(b) (Kisz = X41) - (Kisr - X))
(€ (Kivz + %) - 2.
4.7. Analyse the accuracy of the following method for evaluating S, = >, z;:

n
Sn = log H e*i.
=1

4.8. In numericd methods for quadrature and for solving ordinary differential
equation initial value problems it is often necessary to evauate a function on
an equally spaced grid of points on a range [a,b]: x = a + ih, i = On,
where h = (b-a)/n. Compare the accuracy of the following ways to form x;.
Assume that a and b, but not necessarily h, are floating point numbers.

102 SUMMATION

(@ X = xi.4 + h (x0 = a).
(b) x, = a + ih.
(© x = a(l - i/n) + (i/nb.

Note that (a) is typicaly used without comment in, for example, a Newton-
Cotes quadrature rule or a Runge-Kutta method with fixed step size.

4.9. (RESEARCH PROBLEM) Priest [844, 1992, pp. 61-62] has proved that
if Xi] > [X] > |xs| then compensated summation computes the sum x; +
X, + X3 with a relative error of order u (under reasonable assumptions on the
arithmetic, such as the presence of a guard digit). He also gives the example

X, = 2" =22, xemx= X=X 6=-(2' A1),

for which the exact sum is 2 but compensated summation computes O in
IEEE single precision arithmetic (t=24). What is the smalest n for which
compensated summation applied to x;,. . . , X, ordered by decreasing absolute
value can produce a computed sum with large relative error?

Previous Home Next

Chapter 5
Polynomials

The polynomial (z - 1)(z - 2) . . . (z - 20) is not a ‘difficult’ polynomial per se . . .
The ‘difficulty’ with the polynomial P(z - i) is that of
evaluating the explicit polynomial accurately.
If one already knows the roots, then the polynomial can be evaluated
without any loss of accuracy.

-J. H. WILKINSON, The Perfidious Polynomial (1984)

| first used backward error analysis in connection with
simple programs for computing zeros of polynomials
soon after the PILOT ACE came into use.

-J. H. WILKINSON, The State of the Art in Error Analysis (1985)

The Fundamental Theorem of Algebra asserts that

every polynomial equation over the complex field has a root.
It is almost beneath the dignity of such a majestic theorem
to mention that in fact it has precisely n roots.

-J. H. WILKINSON, The Perfidious Polynomial (1984)

103

104 PoLYNOMIALS

Two common tasks associated with polynomias are evaluation and interpola
tion: given the polynomia find its values at certain arguments, and given the
values at certain arguments find the polynomial. We consider Horner’'s rule
for evaluation and the Newton divided difference polynomial for interpolation.
A third task not considered here is finding the zeros of a polynomia. Much re-
search was devoted to polynomial zero finding up until the late 1960s; indeed,
Wilkinson devotes a quarter of Rounding Errors in Algebraic Processes [1088,
1963] to the topic. Since the development of the QR algorithm for finding
matrix eigenvalues there has been less demand for polynomia zero finding,
since the problem either arises as, or can be converted to (see §26.6 and [346,

1995], [1007, 1994]), the matrix eigenvalue problem.

5.1. Horner’s Method
The standard met hod for evaluating a polynomial
p(x) = a0+ a;x + ...+ ax (5.1)

is Horner's method (also known as Horner's rule and nested multiplication),
which consists of the following recurrence:

an(x) = a,
fori =n-1: -1.0
qi(x) = xgi.1(X) + &
end
p(x) = q0(x)

The cost is 2n flops, which is n less than the more obvious method of evaluation
that explicitly forms powers of x (see Problem 5.2).

To anadyse the rounding errors in Horner's met hod it is convenient to use
the relative error counter notation <k> (see (3.9)). We have

= (2Gn<1> + a,_1)<1>
T, <2> 4+ ap_1<1>,
Gn-2 = (2qn-1<1> + an-2)<1>
= .1'2an<4> + TAp_1<3> 4+ ap_2<1>.

f
)

|

|

I

It is easy to either guess or prove by induction that

Qo = ap<l>+a;x<3>+ -+ +a,_ 12" '<2n — 1> + a,z"<2n>
= (1 +01)(l() + (1 +03)(L11 4+ 4 (1 +0271~])ﬂ«n_1‘7‘n_]
+ (1 4 02,)anx™, (5.2)

5.1 HORNER'S METHOD 105

where we have used Lemma 3.1, and where |f | < ku/(1 - ku) = g,. This
result shows that Horner's method has a small backward error: the com-
puted gy is the exact value at x of a polynomia obtained by making relative
perturbations of size at most g,, to the coefficients of p(x).

A forward error bound is easily obtained: from (5.2) we have

p(z) = Gol < Yan D _ lasllz]* = 72, B(J2)), (5.3)
1=0

where p(z) = Y7 |a;|z*. The relative error is bounded according to

p@) =@l _ . #el) _
@l =)

Clearly, the factor y (p,x) can be arbitrarily large. However, y(p,x) = 1 if
a >0foraliandx>0, orif ()agy >0 for al i and x < 0.

In a practica computation we may wish to compute an error bound aong
with go. The bound (5.3) is entirely adequate for theoretical purposes and can
itself be computed by Horner's method. However, it lacks sharpness for two
reasons. First, the bound is the result of replacing each g, by @,. Second,
and more importantly, it is an a priori bound and so takes no account of
the actual rounding errors that occur. We can derive a sharper, a posteriori
bound by a running error anaysis.

For the ith step of Horner's method we can write

(1 + €)q = 2gi+1(1 + 6:) + ai, |6i], €] < u, (5.4)
where we have used both (2.4) and (2.5). Defining g; =: g + f;, we have
¢ + fi + €qi = ©(git1 + fir1) + TGiv16: + ai,

or
fz' = .Ifi+1 + l'C’]\i+16i - eiai» f'n =0.

Hence
Ifil <laflfisr] + ull2l|Gisr] + 1)

Since f, = 0, we have [f| < up;, where
mi = [|mips + [2l|G1] + 1@, 7 =0.
We can dightly reduce the cost of evaluating the majorizing sequence p by
workingwith p; := (m; +|g;|), which satisfies the recurrence
~ 1~
pi = |zlpies + |Gl pn = 51Enl-

We can now furnish Horner's method with a running error bound.

106 POLYNOMIALS

Algorithm 5.1. This algorithm evaluates y = fl(p(x)) by Horner's method,
where p(x) = >°°, a;z'. It also evaluates a quantity msuch that |y - p(x)] < m

end
m = m(2m- |y|)

Cost: 4n flops.

It is worth commenting on the case where one or more of the a and X
is complex. The analysis leading to Algorithm 5.1 is ill valid for complex
data, but we need to remember that the error bounds for fl(x op y) are not
the same as for rea arithmetic. In view of Lemma 3.5. it suffices to replace
the last line of the agorithm by m = v/2v,(2u — |y|). An increase in speed of
the algorithm, with only a dlight worsening of the bound, can be obtained by
replacing |yl = (Rey)* + (my)®)”* by |Rey] + |imy| (and, of course, [x
should be evaluated once and for all before entering the loop).

One use of Algorithm 5.1 is to provide a stopping criterion for a polynomial
zero-finder: if |fl(p(x)| is of the same order as the error bound m then further
iteration serves no purpose, for as far as we can tell, x could be an exact zero.

As a numerica example, for the expanded form of p(x) = (x + 1)* we
found in MATLAB that

flip(-1) =0, p=24x10"", ~,,p(Jz]) =1.5x 107
and for p(x) the Chebyshev polynomia of degree 32,
fl(p(0.5)) = 0.5000, p=33x10"1 v p(|lz]) =1.0x 1075,

In these two cases. the running error bound is, respectively. 62 and 31 times
smaller than the a priori one.

In another experiment we evaluated the expanded form of p(x) = (x - 2)3
is simulated single precision in MATLAB (U ~6 x 10®) for 200 equally spaced
points near X = 2. The polynomial values, the error, and the a priori and
running error bounds are al plotted in Figure 5.1. The running error bound
is about seven times smaller than the a priori one.

5.2. Evaluating Derivatives

Suppose now that we wish to evaluate derivatives of p. We could simply
differentiate (5.1) as many times as necessary and apply Horner's method to

5.2 EVALUATING DERIVATIVES 107

-5
x 10
3 T T —T
2 - =+~ A priori bound
= — Running bound
1 — Error -

"T

2.005 2.01

Figure 5.1. Computed polynomial values (top) and running and a priori bounds
(bottom) for Horner’s method.

each expression, but there is a more efficient way. Observe that if we define
QO = ay + GX + . ..+ X" = qO,
where the g, = g;(a) are generated by Horner's method for p(a), then

p(x) = (x - aq(x) + r.

In other words, Horner's method carries out the process of synthetic division.
Clearly, p'(d = qg(a). If we repeat synthetic division recursively on q(x), we
will be evauating the coefficients in the Taylor expansion
T —a)? z—ao)" (.
p(x) = p(a) + (@ - alp'(0) + T2) 4o T g,
and after a fina scaling by factorials, we will obtain the derivatives of p a a.
The resulting agorithm is quite short.

Algorithm 5.2. This algorithm evaluates the polynomia p(z) = 31 ; a;z?
and its first k derivatives a a, returning y; = p(')(a), i = Ok

y0 = a,
y(Lk) = 0

108 POLYNOMIALS

forj =n-1:-1:0
for i = min(k, n - j): -1:1

Yo = ay + Vi
end
Yo = @Yo + &
end
m = |
for j = 2:k
m = m*j
yj = mvy;
end

cost: nk + 2(k + n) - k¥2 flops.

How is the error bounded for the derivatives in Algorithm 5.2? To answer
this quest ion with the minimum of algebra, we express the agorithm in matrix
notation. Horner's method for evaluating p(a) is equivalent to solution of the
bidiagonal system

I —a qo ag
1 - q1 ay
(]71+1q:: 1 = =:q.
L —a : :
1 (In a“ll

By considering (5.4). we see that

(Uns1 + A1) = a, [A1] < ulUpyi].
Hence
Iq - a S u|Un_J:1 HUnJrlqu + O(uz)- (55)
The recurrence for ry, = p'(@) can be expressed as U,r = q(1:n), where

r=r0n - 1), so
(Ufn + AQ);\: (/]\(1171,), IA2| < u|[]n .
Hence

= (U - U,;’IA.ZU,I’I)(q(I: n)+ (g(l:n) — q(l:n))) + O(u?)
=r - U7 Ar + UM (G(1:n) — q(1:n)) + O(u?).

This gives, using (5.5),

I =71 < wU U]+ wlU U U lg(1:n) | + O(u?). (5.6)

5.3 THE NEWTON FORM AND POLYNOMIAL INTERPOLATION 109

Now
(1 o] |a® ... o™t
1 af :
-1y _ .
IUn I_ 1 : s
lal
L 1
E 2la| 2lal® ... 2|a*!
1 2laf :
|Un_1||Un|: 1 R
2|al
L 1
rl 3la] 5la? ... (2n—1)|a|*!
1 3la| :
U2 U U] = . :
3le
L 1

By looking at the form of r and q, we find from (5.6) that

Ip'(a) — 70| < QUZkQIGk[|Q|k71 + O(u?)
k=1

IA

n
QHUZ klag||a)* 7t + O(u?)
k=1
=:2nup’(a) + O(u?). (5.7)

This is essentialy the same form of bound as for p(a) in (5.3). Analogous
bounds hold for al derivatives.

5.3. The Newton Form and Polynomial Interpolation

An dternative to the monomia representation of a polynomial is the Newton

form -
px) =) c]](x-a;), (5.8)

=0 =0

which is commonly used for polynomia interpolation. The interpolation prob-
lem is to choose p so that p(a;)) = f;, i = O:n, and the numbers ¢, are known

110 POLYNOMIALS

as divided differences. Assuming that the points a are distinct, the divided
differences may be computed from a standard recurrence:

c0:n) = f(0:n)
fork =0n-1
for j = ni-1:k+l

k+1 k k
Y = (P =) /(e — a;mk-)

end
end
c=cm

Cost: 3n%/2 flops.

Two questions are of interest: how accurate are the computed ¢;, and
what is the effect of rounding errors on the polynomial values obtained by
evaluating the Newton form? To answer the first question we express the
recurrence in matrix-vector form:

9=, D=L, M k=0n-1,
where L, = D;'M; is lower bidiagonal, with

Dy = diag(ones(L:k + 1), &u1 - Q@2 - &, - - - 3 - &r-k-1),
[k]

M =

The analysis that follows is based on the model (2.4), and so is valid only for
machines with a guard digit. With the no-guard-digit model (2.6) the bounds
become weaker and more complicated, because of the importance of terms
fl(a - a-k-1) in the andysis.

It is straightforward to show that

e* D) = G Liet®), (5.9)
where G, = diag(ones(1:k + 1), hy 2. . . N ne1), Where each hy is of the
form h; = (1 + dy)(1 + dp)(1 + dg), |di| < u. Hence

c=(Ln_1+AL,_1)...(Lo+ ALy)f, [AL;| < ~4|Ly. (5.10)

From Lemma 3.7.
le=el = [(Ln-1--Lo = (Ln—1 + ALn_1) ... (Lo + ALo)) f|
< ((T+7)" = 1)[Ln-al - | Lollf]
= ((1=3w)™ = 1)|Ln-s].-.|LollfI (5.1)

5.3 THE NEWTON FORM AND POLYNOMIAL INTERPOLATION 111

To interpret the bound, note first that merely rounding the data (f; —

fi(L + d), |dj] < u) can cause an eror Dc as large as €qng = UlL|If],
where L = L,q. . . Ly so errors of at least this size are inevitable. Since
Lol - - - Lol = |Lnoq- - -Lo] = |L|, the error in the computed divided differ-
ences can be larger than e, Only if there is much subtractive cancellation
inthe product L = L,; ... Ly If 3g <@ <...<a,thenexhl is
positive on the diagonal and nonpositive on the first subdiagonal; therefore
Loal - - JLol = JLpa - - Lol = |L|, and we have the very satisfactory bound

e—=¢ < ((1-3w™ - 1)|L||f|. This same bound holds if the a are arranged
in decreasing order.

To examine how well the computed Newton form reproduces the f; we
“unwind” the analysis above. From (5.9) we have

e® = LGP = (L + ALE*Y, ALk < ylLg -
By invoking Lemma 3.7 again, we obtain
If = L7180 < (1= 3uw) ™" = 1)|Lg "] ... [L L][l (5.12)

Ifag < a4y < .. < a, then Li‘l > 0 for dl i, and we obtain the very
stisfactory bound |f — L='e] < ((1 — 3u)™™ — 1)|L7!||e]. Again, the same
bound holds for points arranged in decreasing order.

In prectice it is found that even when the computed divided differences are
very inaccurate, the computed interpolating polynomial may still reproduce
the origina data well. The bounds (5.11) and (5.12) provide insight into this
observed behaviour by showing that ¢—¢ and f — L~'¢ « can be large only when

there is much cancellation in the products L, . . . Lof and Lg'...L ' ¢,
respectively.
The analysis has shown that the ordering a; < a; < . . . < a, Yidds

“optimal” error bounds for the divided differences and the residual, and so
may be a good choice of ordering of interpolation points. However, if the
am is to minimize |p(x) - fl(p(x))| for a given x# a, then other orderings
need to be considered. An ordering with some theoretica support is the Lea
ordering, which is defined by the equations [863, 1990]

a9 = max |a;], (5.139)
1
-1 -1
I] oy — ekl =max [lei ~ o), j=1l:n—1. (5.13b)
k=0 27 o

For a given set of n + 1 points a, the Leja ordering can be computed in n?
flops (see Problem 5.4).

We give a numerica example to illustrate the analysis. Let n = 16 and
letay < ... < a, be equally spaced points on [-1,1] . Working in simulated

112 POLYNOMIALS

single precision with u = 2% ~6 x 10®, we computed divided differences
for two different vectors f. Error statistics were computed by regarding the
solutions computed in double precision as exact. We define the ratios

(Lol LollfDe (Lg'LoJE5 2D,
. p2 = max , .
ﬁ(‘il ! \f2|

(1) For f; from the normal N(0,1) distribution the divided differences
range in magnitude from 1 to 10°. and their relative errors range from O (the
first divided difference, f,, is always exact) to 3 x 10°. The ratio p; = 16.3,
so (5.11) provides a reasonably sharp bound for the error in ¢.. The reative
errors when f is reconstructed from the computed divided differences range
between 0 and 3 x 107 (it makes little difference whet her the reconstruction
is done in single or double precision). Again, this is predicted by the analysis,
in this case by (5.12), because p, = 2 x 10’. For the Leja ordering, the divided
differences are computed with about the same accuracy, but f is reconstructed
much more accurately, with maximum relative error 7 x 10° (p; = 1 x 10°,
p, = 8 x 10%.

(2) For f; = exp(a), the situation is reversed: we obtain inaccurate di-
vided differences but an accurate reconstruction of f. The divided differences
range in magnitude from 10™ to 10", and their relative errors are as large as
1, but the relative errors in the reconstructed f are all less than 107. Again,
the error bounds predict this behaviour: p, = 6 x 10°, p, = 1.02. The Lea
ordering performs similarly.

The natural way to evaluate the polynomial (5.8) for a given x is by a
generdization of Horner's met hod:

pf1 = max
1

an(X) = G
for i = n - 1:-1:0

g(x) = (xa)g+1(x) + ¢
end

P(X) = do(X)
A straightforward analysis shows that (cf. (5.2))
ZI\O =co<1> + (@ — O‘O)Cl <4> + (.T — C{(J)(.T —)C‘2<7> + -
+(r—ap)...(z —an_2)cn-1<3n — 2>
+(r—ag)...(x —an_1)en<3n>.
Hence the computed ¢, is the exact value corresponding to a polynomial with

dightly perturbed divided differences. The corresponding forward error bound
is

n -1
Ip(‘r) - aﬂl S 7371 Z |Cl| H |‘T - a]l
i=0 =0

5.4 NOTES AND REFERENCES 113

5.4. Notes and References

Backward and forward error analysis for Horner's rule was given by Wilkin-
son [1088, 1963, pp. 36-37, 49-50]; our results are simply Wilkinson's pre-
sented in a different notation. The analysis has been redone by many other au-
thors, sometimes without reference to Wilkinson's results. Ancther early ref-
erence, which gives a forward error bound only, is McCracken and Dorn [743,
1964, §3.5],

For more on running error analysis see §3.3.

Miller [782, 1983] gives a first-order error analysis for the evaluation of the
divided difference form of a polynomial. Olver [809, 1986] derives a posteriori
error bounds for the Horner scheme with derivatives (Algorithm 5.2), phrasing
them in terms of his relative precision notation. Stewart [939, 1971] analyses
synthetic division, using a matrix-oriented approach similar to that in 85.2.

The relative merits of the monomial and Chebyshev representations of
a polynomial are investigated, with respect to accuracy of evaluation, by
Newbery [793, 1974] and Schonfelder and Razaz [901, 1980]. Clenshaw [212,
1955] showed how Horner's method could be extended to evauate a polyno-
mial expressed in the Chebyshev form p(x) = > @ ,a.Ti(z) where T, is the
Chebyshev polynomia of degree i. Error analysis of Clenshaw's method, and
variations of it, are given by Gentleman [433, 1969], Newbery [792, 1973], and
Oliver [805, 1977], [806, 1979]. Clenshaw's scheme can be generalized to ex-
pansions in terms of arbitrary orthogonal polynomias, see Smith [927, 1965]
and Algorithm 21.8.

Running error bounds for Horner's method were included in agorithms of
Kahan and Farkas [637, 1963], [638, 1963] without explanation. Adams [5,
1967] derives the bounds and extends them to evauation of a red polynomia
at a complex argument. Algorithm 5.1 is given in [5, 1967], and aso in the clas-
sic paper by Peters and Wilkinson [827, 1971], which describes many aspects
of the solution of polynomial equations. Wilkinson's paper “The Perfidious
Polynomial” [1103, 1984] (for which he was awarded the Chauvenet Prize) is
highly recommended as a beautifully written introduction to backward error
anaysis in genera and eror analysis for polynomias in particular.

There seems to be little work on choosing the ordering of interpolation
points to minimize the effect of rounding errors on the construction or eval-
uation of the interpolating polynomial. Werner [1075, 1984] examines ex-
perimentally the effect of different orderings on the computed value of an
interpolating polynomial at a single point, for several forms of interpolating
polynomial.

The Leja ordering, which was proposed by Leja in a 1957 paper, is analysed
in detail by Reichel [863, 1990]. He shows that an appropriately defined
condition number for the Newton form of interpolating polynomia grows a a
dower than exponential rate in the degree n for Lega points, which are points

114 PoLYNOMIALS

taken from a given compact set that satisfy the condition (5.13). For more
on the numerical benefits of the Leja ordering see §821.3.3.

If a polynomial is to be evaluated many times at different, arguments it
may be worthwhile to expend some effort transforming it to a form that can
be evaluated more cheaply than by a straightforward application of Horner's
rule. For example, the quartic

pX) = a,xt + a® + ayX + a;x + a;, a; £ 0,
can be rewritten as [668, 1981, p. 471]

PX) = ((y + x + @)y + ag)ay, y=(x+a)x+ ay,
where the coefficients a are given by.

oy = %((1;;/(14 —1). B=as/ay —aplag+ 1), «a; =ai/as — ap,

ay =3 -2a1, az=ap/ag—a(a +a), a;=ay.

Once the a have been computed, p(x) can he evauated in three multiplica
tions and five additions, as compared with the four multiplications and four
additions required by Horner's rule. If a multiplication takes longer than an
addition, the transformed polynomia should be cheaper to evaluate. For poly-
nomias of degree n > 4 there exist evaluation schemes that require strictly
less than the 2n tota additions and multiplications required by Horner's rule;
see Knuth [665, 1962], [668, 1981, pp. 471-475] and Fike [373, 1967] One
application in which such schemes have been used is in evaluating polynomia
approximations in an elementary function library [412, 1901]. Little seems to
be known about the numerical stability of fast polynomia evaluation schemes;
see Problem 5.6.

Problems

5.1. Give an alternative derivation of Algorithm 5.2 by differentiating the
Horner recurrence and rescaling the iterates.

5.2. Give an eror analysis for the following “beginner’s’ agorithm for eval-
uating p(x) = a + a;x + . . . + ax"

qx)=agy=1
for i = 1in

y =Xy

ax) = g(x) + ay
end

p(x) = q(x)

PROBLEMS 115

53. Let p(xX) = ag + ayx + ...+ ax" and n = 2m. Then

p(x) = (aO + a2X2 + ...+ amezm) + (alX + a3X3 + ...+ azm_lxzm—l)

Sagtagy t...tagy" +*X@gtagy t.. .+ am-y™),

where y = x°. Obtain an error bound for fl(p(x)) when p is evauated using
this splitting (using Horner's rule on each part).

5.4. Write down an agorithm for computing the Leja ordering (5.13) in n?
flops.

5.5. If the polynomial p(x) = YT, a;x' hasroots X,. . . , X, it can be eval-
uated from the root product form p(x) = a,[],(z — z;). Give an error
analysis for this evaluation.

5.6. (RESEARCH PROBLEM) Investigate the numerica stability of fast poly-
nomial evaluation schemes (see the Notes and References) by both rounding
error analysis and numerical experiments. For a brief empirical study see
Miller [757, 1975, §10].

Previous Home Next

Chapter 6
Norms

While it is true that all norms are equivalent theoretically,
only a homely one like the oc-norm is truly useful numerically.

-J. H. WILKINSON®?, Lecture at Stanford University (1984)

Matrix norms are defined in many different ways in the older literature,
but the favorite was the Euclidean norm of the matrix

considered as a vector in n’-space.
Wedderburn (1934) calls this the absolute value of the matrix

and traces the idea back to Peano in 1887.

-ALSTON S. HOUSEHOLDER,
The Theory of Matrices in Numerical Analysis (1964)

2Quoted in Fox [403, 1987].

117

118 NORMS

Norms are an indispensable tool in numerica linear algebra. Their ability to
compress the mn numbers in an m x n matrix into a single scalar measure of
size enables perturbation results and rounding error analyses to be expressed
in a concise and easily interpreted form. In problems that are badly scaled,
or contain a structure such as sparsity, it is often better to measure matrices
and vectors componentwise. But norms remain a vauable instrument for the
error anayst, and in this chapter we describe some of their most useful and
interesting properties.

6.1. Vector Norms

A vector norm is a function ||| : : €* — IR satisfying the following conditions:
1. ||| > O with equdlity iff x = O.
2. ||lax|| = fa] |¥|| for @l a€C, e C".

3. Ix+yll < Il + [lyll for &l x, y € €™ (the triangle inequality).

The three most useful norms in error analysis and in numerical computa
tion are

“Manhattan“ or “taxi cab” norm,

N

Izl =Dl
i=1
n 1/2
llxfl2 = <Zl-‘ri|2) = (%)% Euclidean length,
i=1

max [x;].
1<i<n

([l oc

These are al special cases of the Holder y-norm:

n 1/p
aly= (Shelr) o ez
i=1

The 2-norm has two properties that make it particularly useful for the-
oretical purposes. First, it is invariant under unitary transformations, for if
Q*Q =1, then [|Qx]|3 = x*Q*Qx = x*x = ||lz||3. Second, the 2-norm is
differentiable for dl x, with gradient vector Vx|, = X/|X]f.

A fundamental inequality for vectors is the Hoélder inequality (see, for
example, [502, 1967, App. 1])

eyl < XV lg t-=1L (6.1)

S| e
K| -

6.1 VECTOR NORMS 119

This is an equality when p, g > 1 if the vectors (jx;|°) and (ly,|") are linearly
dependent and xy; lies on the same ray in the complex plane for al i; equality
is also possible when p = 1 and p =0,, as is easily verified. The special case
with p = q = 2 is caled the Cauchy-Schwarz inequality:

eyl < IIxl Il
For an arbitrary vector norm ||| the dual norm is defined by

|2"z]

||| p = max

. 6.2
o =] (62)

It follows from the Holder inequality that the dual of the p-norm is the g-norm,
where p'+g® = 1. The definition of dual norm vyields, trivialy, the general
Holder inequality [x*y| < |[X|| |lylp. For a proof of the reassuring result that
the dual of the dual norm is the origina norm (the “duality theorem”) see
Horn and Johnson [580, 1985, Thm. 5.5.14].
In some analyses we need the vector z dual to y, which is defined by the
property
zy = |iZplyll = 1. (6.3)
That such a vector z exists is a consequence of the duality theorem (see [580,
1985, Cor. 5.5.15]).
How much two p-norms of a vector can differ is shown by the attainable
inequalities [422, 1983, pp. 27-28], [459, 1983, Lem. 1.1]
1 1)

”1'”112 < ”1'”12l <nh P2 ”-Tsza P < po. (6.4)

The p-norms have the properties that ||x|| depends only on the absolute
vaue of x, and the norm is an increasing function of the absolute vaues of the
entries of x. These properties are important enough to warrant a definition.

Definition 6.1. A norm on C"is
1. monotone if |x| < |yl = ||| < ||| for all x, ye C™, and
2. absolute if || [x| || = |Ix|| for al x € C".

The following nonobvious theorem shows that these two properties are
equivalent.

Theorem 6.2 (Bauer, Stoer, and Witzgall). A norm on C" is monotone if
and only if it is absolute.

Proof. See Horn and Johnson [580, 1985, Thm. 5.5.10], or Stewart and
Sun [954, 1990, Thm. 2.1.3]. O

120 NORMS

6.2. Matrix Norms

A matrix norm is a function ||| : ¢"™*" — IR satisfying obvious analogues

of the three vector norm properties. The simplest example is the Frobenius
norm.

m n /2

[Allp = (ZZ|“U|) = (t‘ra(ro(A"A))l/2

=1 3=1

(which is sometimes called the Euclidean norm and denoted ||-||c).

A very important class of matrix norms are those subordinate to vector
norms. Given a vector norm on C", the corresponding subordinate matrix
norm on C™*" s defined by

_ [[Ax]]
141l = max B (6.5)
or, equivaently,
4]l = max Azl
=1

(Strictly speaking, this definition uses two different norms. one on C™ in the
numerator of (6.5) and one on C" in the denominator. Thus the norm used
in the definition is assumed to form a family defined on (¢ for any s.)

For the I-, 2-, and ~c-vector norms it can be shown that

[[A]l; = max E lai;, “max column sum”,
1<]<n
Al <« = max Z lai; |, “max row sum”,
1<i<m £ 1
J:

(1A]l2 = (p(4*‘A))1/2 = Omax(A4), spectral norm,
where the spectral radius
p(B) = max{|A| : det(B — AI) =0},

and where s, (A) denotes the largest singular value of A. To remember
the formulae for the 1- and oc-norms, note that 1 is a vertical symbol (for
columns) and! oc is a horizontal symbol (for rows).

A norm is consistent if it satisfies ||AB|| < ||A]| ||B]| whenever the prod-
uct AB is defined. The Frobenius norm and all subordinate norms are con-
sistent. An example of a norm that is not consistent is the “max norm”
[Al = max; ; la;|. The best bound that holds for al A ¢ ¢m*» and

B € €7 i is|AB|| < nA|| |B]l, with equaity when a; = 1 andb;= 1.

6.2 MATRIX NORMS 121

Table 6.1. Constants apq such that [|X||, < apq||x||q, x € C".

q
|l 2 oc
111 Vn n
p 211 1 a
oo |1 1 1

A norm for which |[UAV|| = ||A]| for al unitary U and V is caled a
unitarily invariant norm. These norms have an interesting theory, which we
will not explore here (see [581, 1991, §3.5] or [954, 1990, §2.3]). Only two
unitarily invariant norms will be needed for our analysis: the 2-norm and
the Frobenius norm. That these two norms are unitarily invariant follows
easly from the formulae above. For any unitarily invariant norm, the useful
property holds that ||A*|| = ||A]|. The 2-norm satisfies the additional relation
JAAlL = JAI 3.

The unitary invariance of the 2- and Frobenius norms has implications for
error analysis, for it means that multiplication by unitary matrices does not
magnify errors. For example, if A € C™*" !is contaminated by errors E and
Q is unitary, then

QA+E)Q* = QAQ*+F,

and |F|l, = |[QEQ*|l. = |IE|,- In contrast, if we do a generd, nonsingular
similarity transformation

X(A+E)X? = XAX'+G,

condition number of X. The condition number satisfies k(X) > 1 (kg(X) >
v/n) and can be arhitrarily large.

In perturbation theory and error analysis it is often necessary to switch
between norms. Therefore inequalities that bound one norm in terms of an-
other are required. It is well known that on a finite-dimensional space any
two norms differ by a most a constant that depends only on the dimension
(so-called norm equivalence). Tables 6.1 and 6.2 give attainable inequalities
for the vector and matrix norms of most interest.

The definition of subordinate matrix norm can be generalized by permit-
ting different norms on the input and output space:

then |Gl = IIXEX, < ko(X)IEl, where k(X) = [IX|I X" is the

| Az

[Alla,s = max (6.6)

122 NORMS

Table 6.2. Constants a,, such that ||A[|, < ayl|All, Ae C™*". Here, ||Ally =
max;; |a;| and [|Alls 3:>:i.7 as;|.

q
1 2 o0 F M S
1 1 vm m vm m 1
2 | Vn 1 vm 1 vmn 1
p oo | n vn 1 N n 1
F | vn y/rank(A) vym 1 vmn 1
M 1 1 1 1 1 1
S n /mnrank(A) m mn mn 1

Note that, in genera, the submultiplicative property ||AB|la,b < |[|Al|a,b||B|la,b
does not hold. but we do have

[ABlla.s < [|Ally 51 Blla~: (6.7)

for any third vector norm |||g. The choice a = 1 and b = oc produces the
max norm, mentioned above, [|A[|l, o = max;; [a-

At least two important results about matrix norms hold for this mixed
subordinate norm. The first is a simple formula for the matrix condition
number of a nonsingular A € €™*", defined by

A4+ A4 -4t
Ka3(A) = lim sup (”(+)_1 “B,a> _
0 aAlas<ell Allas A" 5.0

Note that this definition uses the ||-[a,o norm on the data space and the

[fb,a norm on the solution space, as is naturd.
We need the following lemma.

Lemma 6.3. Given vector norms |-Jla and |||o and vectors x, y € C" such
that |[xJa = [lylb = 1, there exists a matrix B with ||B||ab = 1 such that
Bx = vy.

Proof. Recall that the dual of the a-norm is defined by |z||2 =

MaXy a=1/ZW|. Let z be a vector dua to x, so that z*x = 2120zlla = 1,
and hence ||z[|? = 1. Let B = yz*. Then Bx = y and

IBlla.s = max |lyz"wlls = llylls max |2"w| = llylsllzllg =1,
[lw]la=1 wlla=1

as required. 0

6.2 MATRIX NORMS 123

Theorem 6.4. For nonsingular A € C™*", the matrix condition number
Kan(A) satisfies

kao(A) = Al oA o, (6.8)

Proof. In view of the expansion
(A+DA) *- A 1=-A'DAA 1+ O(||DAP),
the result is proved if we can show that

sup [|[ATTAAA g0 = A5 (6.9)
1AA 4 s<1

That (6.9) holds with the equality replaced by “<” follows from two applica
tions of (6.7). To show the opposite inequality, we have
A AAA g = max, AT AAAT Yl 2 A7 AAz]a A7 5.0,
Yilz=
(6.10)

where, for the lower bound, we have chosen y so that ||A ylla = [|A Yo, a
and where A" 'y=||A ||, x with |Ix|l. = 1. Now, from Lemma 6.3, there
exists a matrix AA with [|[DA]l; , = 1 such that DAX = y. In (6.10) this
gives |[AT'AAA g > [|A7H|5.4, as required. a

The next result concerns the relative distance to singularity for a matrix
AecCH:

|AA o
[Ala.s

It states that the relative distance to singularity is the reciprocal of the con-
dition number.

dist, 3(A) := min { : A+ AA singular } .

Theorem 6.5 (Gastinel, Kahan). For nonsingular A € C**",we have
distan (A) = (AkslAba)-1 = kap(A)™

Proof. If A + DA is singular, then there exists x # 0 such that (A +
DA)x = 0. Hence

zlla = |47 AAz]la < A7 ol AAzlls < JAT 5.0l AAllasl12]le;

giving
[AA]la.s -1
—= > K, 5(A).
TAllas = o

124 NORMS

To show that a suitable perturbation achieves this lower bound, let y be
such that lyl, = 1 and A 'Yl = [IA'b . ad wite x = A'y. By
Lemma 6.3 there exists B with |B|l, , = 1 such that Bx/|x|, = -y. Letting
DA = Bl|Xl, we have [DA|,p/llAllas = kavb(A)'l. and A+DA is singular
because (A + DA)A''y = 0. 0

6.3. The Matrix p-Norm

The matrix p-norm is the norm subordinate to the Hoélder p-norm:

”Air“p

All, = max ,
” HP 220 ”.T”p

(6.11)
Formulae for ||Al|, are known only for p = 1, 2, ,c0. For other vaues of p, how
to estimate or compute [|Al|, is an interesting problem, the study of which,
as well as being interesting in its own right, yields insight into the properties
of the 1, 2, and oc norms.

By taking x = g in (6.11). using (6.4). and using (6.21) below, we can
derive the bounds, for A € C™*",

max [|AG.llp < 4l < n' 7 max [AG.), (6.12)

mjlx||A(i-¢)||p/(p—1) <[|lA]l, < m'/P IH?XHA(?'-I)Hp,/(p—1)~ (6.13)

Matrix norms can be compared using the following elegant result of Schnei-
der and Strang [900, 1962] (see also [580, 1985, Thm. 5.6.18]): if ||||. and |||l

denote two vector norms and the corresponding subordinate matrix norms,
then for A € C™™"

max 1Al = (max “l“")< max HJHJ> (6.14)
A#0 [|Alls \ogzeC™ llzll3 /) \ozzeC [7]la
From (6.4) and (6.14), we have, when m = n,

A 1 _ 1
I};l;aé‘l))(:: 4;:pl — 71(min(p,.p,) max(p,.p,)) (615)
¥ Allp,

Note that, unlike for vectors, p; < p, does not imply [|Alp; > [|[Allp,- The
result (6.15) implies, for example, that for al p > 1

Al

nl-l/P

All2 o
nu”/p—lll/m < | Aflp < a2 A, (6.17)

< IAllp < n'T P AL, (6.16)

6.3 THE MATRIX p-NORM 125

Hadamard(12) chebspec(8)
12 T Y 50 T T
45r
401
35
30+ 1
0 5 1b 15 250 5 1I0 15
rand(25) 1/p versus log(norm(A,p))
30 T T 4 T
25t \,/
i l \/
o 1 v
101
50 5 1b 15 1() 015 1

Figure 6.1. Plots of p versus ||A||,, for 1 < p < 15. Fourth plot shows 1/p versus
log [|A|l,, for the matrices in the first three plots.

Upper bounds for [|A||, that do not involve m or n can be obtained from
the interesting property that log [|A||, is a convex function of 1/p for p > 1
(see Figure 6.1), which is a consequence of the Riesz-Thorin theorem [503,
1952, pp. 214, 219], [450, 1991]. The convexity implies that if f(a) = ||Al]1/ a
then for 0 < ab < 1,

logf(qa + (1 - q)b) < qglogf(a) + (1 - ql)logf(b), O<qg<l
Writing p;, = l/a and p, = 1b, this inequality can be expressed as
< 0 1-9 _ P1P2 .
Al < 1Al Al » =01 7 6p° (6.18)
1<p,p2<o0, 0<0<1
Two interesting special cases are

IAll, < IAlITPIIANILSY?, (6.19)

and
lAll, < [lAIFZH1AI~Y7, 1<p<2. (6.20)

Note that (6.19) includes the well-known inequality ||All2 < v/]|All11|Allcc-

126 NORMS

Two further results that are familiar for p = 1, 2, < are

11
Ay = Al 4= =1, 6.21
1470 = 1Alle. 2+ (6.21)

(see, for example, [580, 1985, Thm. 5.6.36]) and
= max(||4

I+ 5]l

The bounds (6.16) and (6.17) imply that given the ability to compute
Al [IAll, and ||All . we can estimate ||A]|, correct to within a factor n*'*.
These a priori estimates are at their best when p iscloseto 1, 2, or oc, but in
genera they will not provide even one correct significant digit. The bound in
(6.18) can be much smaller than the other upper bounds given above, but how
tight it is depends on how nearly log [|Al|, is linear in p. Numerica methods
are needed to obtain better estimates. these are developed in chapter 14.

Allg)-

I |

6.4. Notes and References

The matrix condition number appears to have been first introduced explicitly
by Turing [1027, 1948], who defined, for example, the N-condition number
of A e IR™ as n' N(AN(A™), where N() is Turing's notation for the
Frobenius norm. Todd [1003, 1968] gives a short survey of the matrix condi-
tion number with many references.

Theorem 6.2 was originally proved by Bauer, Stoer, and Witzgall, in a
paper that contains many interesting results on monotonic norms [84, 1961].

Tables of constants in inequalities between different norms have been given
by various authors: see, for example, Stone [957, 1962] and Zielke [1129, 1988].

Our development of the mixed subordinate norm |||y p is based on that
of D. J Higham [526, 1995].

Theorem 6.5 is proved by Kahan [626, 1966, pp. 775 776], who attributes
it to Gastinel but gives no reference. For the 2-norm, this result goes back
to a paper by Eckart and Young [334, 1936]. Theorem 6.5 is an instance
of a relationship that holds for many problems. the condition number is the
reciprocal of the distance to the nearest singular problem (one with an infinite
condition number). This relationship applies to matrix inversion, eigenvalue
and eigenvector computation, polynomial zero-finding, and pole assignment
in linear control systems. For an in-depth study see Demmel [281, 1987].

Direct proofs of inequality (6.19) can be found in Kato [646, 1976, p. 29]
and Todd [1006, 1977, pp. 25-26]. The inequality does not seem to be well
known.

For historicad comments on the development of norms in numerica anal-
ysis, see Householder [587, 1964, Chap. 2] and Stewart and Sun [954, 1990,
Chap. 2].

PROBLEMS 127

Problems

Problems worthy

of attack

prove their worth

by hitting back.

-PIET HEIN, Grooks (1966)

6.1. Prove the inequalities given in Tables 6.1 and 6.2. Show that each
inequality in Table 6.2 (except the one for ag,) is attainable for a matrix of the
form A = xy', where x, y € {e, g}, wheree =[1, 1. . ., 1]". Show that equal-
ity in |[Alls < a5, ||All, is attained for square real matrices A iff A is a scalar
multiple of a Hadamard matrix (see §9.3 for the definition of a Hadamard
matrix), and for square complex matrices if a, = exp(2pi(r - 1)(s - 1)/n)
(this is a Vandermonde matrix based on the roots of unity).

6.2. Let x, y € C™*™. Show that, for any subordinate matrix norm, |[|xy*|| =
|11 {I¥1lo-
6.3. Show that a subordinate matrix norm ||| on C**" satisfies

Rey*Ax
Al = max Y
z.y#0 [yl pllz

From ancient times until now the
study of magic squares has flourished as a kind of cult,
often with occult trappings, whose initiates range from

such eminent mathematicians as Arthur Cayley and Oswald Veblen
to laymen such as Benjamin Franklin.

-MARTIN GARDNER, More Mathematical Puzzles and Diversions (1961)

6.4. Let M,, € R"*" denote a magic square matrix, that is, an n x n matrix
containing the integers from 1 to n? arranged in such a way that the row and
column sums are all the same. Let m,, denote the magic sum of M, (thus,
m, = n(n> + 1)/2). Show that [IMill, = m, for al 1 < p <oo. (This result
is a specia case of an apparently little-known result of Stoer and Witzgall,
which states that the norm of a doubly stochastic matrix is 1 for any norm
subordinate to a permutation-invariant absolute vector norm [956, 1962].)

6.5. Show that ||ABC||e < [|All2|IBlIElICl], for any A, B, and C such that

the product is defined. (This result remains true when the Frobenius norm is
replaced by any unitarily invariant norm [581, 1991, p. 211].)

128 NORMS

6.6. Show that for any nonsingular A € C™™",

JRECE
]

NNE
0]
«

max,

KQ,B(A) =

6.7. Show that for any A € C**" and any consigent matrix norm, p(A) <
||All, where p is the spectral radius.

6.8. Show that for any A € C**" and d > O there is a consistent norm ||
(which depends on A and d) such that ||A|| < p(A) + d, where p is the spectral
radius. Hence show that if p(A) < 1 then there is a consistent norm ||-|| such
that ||A|l < 1.

6.9. Lt A € C™*". Use the SVD to find expressions for ||A]l, and ||Allr
in terms of the singular values of A. Hence obtain a bound of the form

c Al < [lAlle <€ ¢ ||All,, where ¢, and ¢, are constants that depend on n.

When is there equality in the upper bound? When is there equality in the
lower bound?

6.10. Show that

Ils 71l

Deduce that when ||F||, = 1, the norm is(1+ v/5)/2. the golden ratio.

611 Let A € C™". Prove that (3 [[AllL, = max; [AG)l,, and (b)
Al = max [JAG)IE. What is [JAl[Ls ?

6.12. (Tao [994, 1984]) Show that if A is Hermitian positive definite then

_ \/ 2.+ |FIE + |Flly/T+ TFTR

- 2

[Alloc.1 = max{z*Az : ||z||oc = 1}.

(Rohn [879, 1995] shows that the problem of computing ||Al|oc,l is NP-hard.)
6.13. Prove that if H € IR™" is a Hadamard matrix then

I1H1p

(See 89.3 for the definition of a Hadamard matrix.)

max{nl/p'nl-l/p}.

6.14. Show that if A € IR™" has a most m nonzeros per row then

max [|A(: J)llp < |4l < ptole max [|A(:, J)llp. (6.22)

PROBLEMS 129

while if A has at most m nonzeros per column then

max [4G, g < [Allp < 6"/ max]| AG,), (6.23)

where p* + g* = 1. (These inequalities generalize (6.12) and (6.13).)
6.15. Show that if A€ C**™ then for any p-norm (1 < p < oc),

Al < A ll, < n@n/PIP A, < Val|All,.

6.16. Define the function v : C* — IR by

n

v(z) = Z(| Rez;| + |Imz;|).

i=1
Is v a vector norm on C*? Derive an explicit expression for

v(A) = 1'(112)1X] v(Azx), AeC".

Previous Home Next

Chapter 7

Perturbation Theory for Linear
Systems

Our hero is the intrepid, yet sensitive matrix A.
Our villain is E, who keeps perturbing A.
When A is perturbed he puts on a crumpled hat: A = A + E.

-G. W. STEWART and JI-GUANG SUN, Matrix Perturbation Theory (1990)

The expression ‘ill-conditioned’ is sometimes used merely as a

term of abuse applicable to matrices or equations . . .

It is characteristic of ill-conditioned sets of equations that

small percentage errors in the coefficients given may lead to

large percentage errors in the solution.

-A. M. TURING, Rounding-Off Errors in Matrix Processes (1948)

131

132 PERTURBATION THEORY FOR LINEAR SYSTEMS

In this chapter we are concerned with a linear system Ax = b, where A €
IR"“". In the context of uncertain data or inexact arithmetic there are three
import ant quest ions:

(1) How much does x change if we perturb A and b; that is, how sensitive
is the solution to perturbations in the data?

(2) How much do we have to perturb the data A and b for an approximate
solution y to be the exact solution of the perturbed system-in other words,
what is the backward error of y?

(3) What bound should we compute in practice for the forward error of a
given approximate solution?

To answer these questions we need both normwise and componentwise
perturbation theory.

7.1. Normwise Analysis

First, we present some classical normwise perturbation results. We denote by
[I-]| any vector norm and the corresponding subordinate matrix norm. As
usual, kK(A) = ||All ||A Y| is the matrix condition number. Throughout this
chapter the matrix E and the vector f are arbitrary and represent tolerances
against which the perturbations are measured (their role becomes clear when
we consider componentwise results).

Our first result makes precise the intuitive feeling that if the residua is
smal then then have a “good” approximate solution.

Theorem 7.1 (Riga and Gaches). The normwise backward error

he,«y) := min{ €:(A + DA), = b + Db, |IDA]| < €|[E]|, [[Dbl| < €]If||}
(7-1)
is given by

nes(y) = iE| I (7.2)

lll + 11

wherer = b - Ay.

Proof. It is straight forward to show that the right-hand side of (7.2) is a
lower bound for hg ¢(y). This lower bound is attained for the perturbations

IEN Iyl T I
AAmin TR TR T TR TR k] Abmin = - _r? 73
IEyl + 11 £ LET Iyl + 111l (7-3)

where z is a vector dual to y (see 86.1). 0

For the particular choice E = A and f = b, hg (y) is caled the normwise
relative backward error.
The next result measures the senstivity of the system.

7.1 NORMWISE ANALYSIS 133

Theorem 7.2. Let Ax = b and (A + DA)y = b + Db, where ||DA|| < ¢]|E|
and ||Db|| < €|f|, and assume that 6|||A' YIIIEl < 1. Then

Iz — vl ¢ AL o
(&4 ST elA-1 1 E| (Izl +A77 ||EH) ; (7.4)

and this bound is attainable to first order in .

Proof. The bound (7.4) follows easily from the equation A(y - X) =
Db-DAX+DA(x - y). It is attained to first order in e for DA = ¢||E||||x||wv"
and Db = —el||f|w, where ||w]| = 1, ||A *w|| = ||]A Y]] and u is a vector dual
to x. 0

Associated with the way of measuring perturbations used in these two
theorems is the normwise condition number

kp.s(Az) = lixrtl)sup{ % (A + AA)(z + Az) = b+ Ab,

1Al < el B, [146] < elifil }-

Because the bound of Theorem 7.2 is sharp, it follows that

n&AA@y=k§%#ﬂ+wA*mww

For the choice E = A and f = b we have k(A) < ke:(A x) < 2k(A), and the
bound (7.4) can be weakened dightly to yield the familiar form

lo—yll _ _2ex(4)
el = T=en(4)

A numerical example illustrates the above results. Let A be the 8 x 8
Vandermonde matrix with (i,j) element j*‘®, and let b = e, be the first unit
vector, so that x is the first column of A™. We take y to be the approximate
solution to Ax = b computed by Gaussian elimination with partial pivoting.
Computations are performed in MATLAB (U ~ 1.1 x 10'°). We find that
hab(y) = 305 x 107 for the oo-norm, and Koo(A) = 1.68 x 10™. This
is an admirably small backward error, but it may be uninformative for two
reasons. First, the elements of A vary over 12 orders of magnitude, so while
our backward error perturbations are small compared with the large elements
of A, we may be making large perturbations in the small elements (indeed we
are in this particular example). Second, we are perturbing the zero elements
of b (as can be seen from (7.3) together with the fact that for this example
the residual r has no zero entries); this is unsatisfactory if we wish to regard
y as the first column of the inverse of a perturbed matrix.

133 PERTURBATION THEORY FOR LINEAR SYSTEMS

Next. let b = Ae. where e = [1, 1,. . . . 1], and let z be the solution to the
perturbed g-stem (A + DA)z = b + Db, where DA = tol|A| and Db = tol[b),
with tol = 8u. We find that

b =2l 40y 1012
2= — 240 %x 10712, 75
e (7.5
while the corresponding bound from (7.4) with ¢ =tol, E=A andf=Dbis
3.03 x 102 Thus the normwise forward error bound is extremely pessimistic
for this specia choice of perturbation.

To obtain a more satisfactory backward error measure and a sharper per-

turbation bound in this example, we need componentwise analyss.

7.2. Componentwise Analysis
The componentwise backward error is defined as
we (y) = min{e: (A 4+ AA)y = b+ Ab, [AA] < €E. |Ab| <€f}, (7.6)

where E and f are now assumed to have nonnegative entries. Inequalities
between matrices or vectors are understood to hold componentwise. In this
definition each element of a perturbation is measured relative to its individua
tolerance, so, unlike in the normwise definition, we are making full use of the
n’> + n parameters in E and f.

How should E and f be chosen? The most common choice of tolerances is
E=|Alandf=|b|, which yieds the componentwise relative backward error.
For this choice

a;; = 0= A(Lij =0 and bl‘ =0 = .Ab, =0

in (7.6), and so if wg(y) is small then y solves a problem that is close to
the original one in the sense of componentwise relative perturbations and has
the same sparsity pattern. Another attractive property of the componentwise
relative backward error is that it is insendtive to the scaling of the system: if
Ax = b is scaled to (S,AS,)(S;'xr) = Sib, where S, and S, are diagonal, and
y is scaled to S, 'y. then w remains unchanged.

The choice E = |Alee’, f = |b| gives a row-wise backward error. The
condraint [IDA| <_¢E is now |Da;j| <ea;, where (g is the 1-norm of the ith
row of A, so perturbations to the ith row of A are being measured relative to
the norm of that row. A columnwise backward error can be formulated in a
similar way, by taking E = ee'|A| and f = ||b]|e.

The third natural choice of tolerances is E = ||Aljee” and f = ||bjle, for
which wg¢(y) is the same as the normwise backward error hg (y). up to a
constant.

As for the normwise backward error in Theorem 7.1, there is a simple
formula for weg «(9).

7.2 COMPONENTWISE ANALYSIS 135

Theorem 7.3 (Oettli and Prager). The componentwise backward error is
given by

wg, 5 (y) =max—|ri|—,
’ i (Elyl+ f)i

where r = b- Ay, and £/0 isinterpreted as zero if £ = 0 and infinity otherwise.

(7.7)

Proof. It is easy to show that the right-hand side of (7.7) is a lower bound
for w(y), and that this bound is attained for the perturbations

DA = D,ED,, Db = -D.f, (7.8)

where D, = diag(ri/(Ely] + f)i) and D, = diag(sgn(y;)). o

The next result gives a forward error bound corresponding to the compo-
nentwise backward error.

Theorem 7.4. Let Ax = b and (A + DA)y = b + Db, where |DA| < ¢E and

|Db] < ef, and assumethat €|| |A~!|E || < 1, where ||| is an absolute norm.
T ey 1A~ |Elz] + 14717 |
T—y € A Elz|+|A7f

< — ; 7.9

Jell = T— e[[ATE] El (7-9)

and for the oo -norm this bound is attainable to first order in e.

Proof. The bound (7.9) follows easily from the equation A(y - X) =
Db - DAx + DA(X - y). For theoo-norm the bound is ettained, to first
order in ¢, for DA= eD;ED, and Db = -eD;f, where D, = diag(sign(x))
and D, = diag(¢;), where & = sign(A™"); and [||A~YE|z| + [A7f |le =
(|A*1|E1x|+lA‘1|f)k. 0

Theorem 7.4 implies that the condition number

COIldE'f(A,.'E) = hr%sup{ % : (A + AA)(.’B + A:L‘) =b+ Ab,

|AA| < B, Ab] < ef }

is given by

conds (A 2) = | IA_IlElﬁL - A S oo 710

For the special case E = |A| and f = |b] we have the condition numbers
introduced by Skeel [919, 1979]:

A~ Allz! lloo

cond(A4,z) := I

136 PERTURBATION THEORY FOR LINEAR SYSTEMS

which differs from cond,, 5 (A, X) by a most a factor 2. and
cond(A) := cond(4,e) = | |A7|A] ||« < Ko (A). (7.12)

How does cond compare with k? Since cond(A) is invariant under row
scaling Ax = b — (DA)x = Db, where D is diagonal. it can be arbitrarily
smaler than k4 (A). In fact, it is straightforward to show that

min{ K (DA) : D diagonal } = cond(A), (7.12)

where the optimal scaling Dg equilibrates the rows of A, that is, DgA has
rows of unit 1-norm (Dg|Ale=€)

Chandrasekaran and Ipsen [197, 1995] note the following inequalities. First.
with Dg as just defined,

K (A) ‘ 4
e (DR) < cond(A) € ke (A) (7.13)

(these inequalities imply (7.12)). Thus cond(A) can be much smaler than
ks (A) only when the rows of A are badly scaled. Second, if D¢, equilibrates
the columns of A (e'JAIDC=e") then

ri(A) AT el ‘
Nk (Der) mim A1 < cond(4.1) < kx(4).

These inequalities show that cond(A, X) can be much smaller than k. (A) only
when the columns of either A or A* are badly scaled.

Returning to the numerical example of §7.1, we find that wg¢(y) = 1.10 x
10" for E = |A| and f = |b| or f = 0. This tells us that if we measure
changes to A in a componentwise relative sense, then for y to be the first
column of the inverse of a perturbed matrix we must make relative changes to
A four orders of magnitude larger than the unit roundoff. For the perturbed
system. Theorem 7.4 with ¢ = tol, E = |A|, and f = |b| gives the bound

lz = 2l < 4.08 x 10710,
Il

which is eight orders of magnitude smaller than the normwise bound from
Theorem 7.2, and only a factor 170 larger than the actual forward error (7.5).
An example of Kahan [626, 1966] is also instructive Let

2 -1 1 2(1 +¢)
A—|:—l € 6:|, b:[—¢ :I, (7.14)
1 € € €

7.3 SCALING TO MINIMIZE THE CONDITION NUMBER 137

where 0 < € < 1, s0 that x = [¢,~1,1]T. The normwise condition number
Koo(A) is 2(1+€71)s0 the system is very senstive to arbitrary perturbations
in A and b. Moreover,

1 € €
2¢ +1
Aal=| T2 P
2¢ +1
1 1
2¢

so cond(A) = 3 +(2¢)~!, which implies that the system is also very sen-
sitive to componentwise perturbations for some right-hand sides. However,
cond(A, X) = 5/2 + €, so for this particular b the system is very well condi-
tioned under componentwise perturbations.

A word is in order concerning the choice of condition number. Every
condition number for a linear system is defined with respect to a particular
class of perturbations. It is important to use the right condition number for
the occasion. For example, if Z is a computed solution to Ax = b and we
know its normwise backward error h, ,(Z), then it is the condition number
k(A) that appears in the relevant forward error bound (multiplying 7, ,(7))
and therefore tells us something about the accuracy of . The component-
wise condition number cond(A, x) is relevant only if we are deding with the
componentwise relative backward error, wian(Z). Looked at another way,
each agorithm has an associated error analysis that determines the condition
number relevant to that algorithm.

7.3. Scaling to Minimize the Condition Number

In the last section we noted the invariance of cond(A) under row scaling, which
contrasts with the strong dependence of k..(A) upon the row scaling. The
opportunity to scale the rows or columns of A arises in various applications,
so we now take a closer look at the effect of scaling on the normwise condition
number.

First, we consider one-sided scaling, by giving a generaization of a well-
known result of van der Sluis [1039, 1969]. It shows that, for one-sided scaling
in a Holder p-norm, equilibrating the rows or columns is a nearly optima
strategy. We state the result for rectangular matrices A, for which we define

kp(A) := [[Allp[lA*llp, where A" is the pseudo-inverse of A (see Problem 19.3).

Theorem 7.5 (van der Sluis). Let 4 € R™*™ have full rank, letD; c R¥**
denote the set of nonsingular diagonal matrices, and define

D¢ := diag(|A(;, 5)lp) ", Dr :=diag(J|A(i,:)llp) "'

138 PERTURBATION THEORY FOR LINEAR SYSTEMS

Then
. . 1=1/p i o
kp(ADc) <n Jmin kp(AD), (7.15)
rkp(DpA) < m!'/? min wp(DA). (7.16)

Proof. For any X ¢ R™ " we have, from (6.12),

max ||AC,), < |A]l, < n'7VPmax |AG.)], (7.17)
J J
Therefore
|AD¢], < n'=1/P. (7.18)

Now, for any D € Dy.
D' At = ID&'D - D™ A%,
< mJaX(Idnl A D) ID™ A,
< AD|pID~" AT, = Ky(AD). (7.19)

using the first inequality in (7.17). Multiplying (7.18) and (7.19) and min-
imizing over D, we obtain (7.15). Inequdity (7.16) follows by noting that
ko(DA) = kq(A'D), where p* + g* = 1 (see (6.21)). 0

For p = oo, (7.16) confirms what we aready know from (7.12) and (7.13):
that in the oc-norm, row equilibration is an optima row scaling strategy.
Similarly, for p = 1, column equilibration is the best column scaling, by
(7.15). Theorem 7.5 is usualy stated for the 2-norm, for which it shows that
row and column equilibration produce condition numbers within factors /m
and /n. respectively, of the minimum 2-norm condition numbers achievable
by row and column scaling.

As a corollary of Theorem 7.5 we have the result that among two-sided
diagona scalings of a symmetric positive definite matrix. the one that gives
A a unit diagond is not far from optimal.

Corollary 7.6 (van der Sluis). Let A € R"*"™ be symmetric positive definite
and let D. = diag(a];'/?). Then
kao(DyAD,) <n 52%1 k2(DAD). (7.20)

Proof. Let A = R'R be a Cholesky factorization, note that k, (DAD) =
k,(RD)?, and apply Theorem 7.5 to RD. 0

Is the scaling D in Corollary 7.6 ever optimal? Forsythe and Straus [386,
1955] show that it is optima if A is symmetric postive definite with property

7.3 SCALING TO MINIMIZE THE CONDITION NUMBER 139

A (that is, there exists a permutation matrix P such that PAP' can be
expressed as a block 2 x 2 matrix whose (1,1) and (2,2) blocks are diagonal).
Thus, for example, any symmetric positive definite tridiagonal matrix with
unit diagona is optimally scaled.

We note that by using (6.22) in place of (7.17), the inequalities of Theo-
rem 7.5 and Corollary 7.6 can be strengthened by replacing m and n with the
maximum number of nonzeros per column and row, respectively.

Here is an independent result for the Frobenius norm.

Theorem 7.7 (Stewart and Sun). Let A=[a,, . . ., a] € R™™" be nonsin-
gular, with B := A" = [by, ..., b)]", and let Dc = diag((||b;]12/lla;l2)"/?).
Then

3 llaslleibsll: = xr(ADc) = min xp(AD).
J

Proof. For D = diag(d) € D,, we have, using the Cauchy-Schwarz
inequality,

w(aD) = (S ttletg) (St 2)

with equality if dj|[a]|2 = adj‘lnbjuz for dl j, for some a # 0. There is
equality for d? = [[b;ll2/lla;l2- O

As we have seen in this and the previous section, the minimum value of
Koo(DA) is || |A7Y|A] |loo- The next result shows that for two-sided scalings
the matrix |A *||A| again features in the formula for the minima condition
number. A matrix is irreducible if it cannot be symmetrically permuted to
block triangular form. A Perron vector of B > 0 is a nonnegative eigenvector
corresponding to the eigenvalue p(B), where p denotes the spectral radius.

1

/2
> llalzllbslas
J

Theorem 7.8 (Bauer). Let A € R™ " be nonsingular and suppose that |A||A |
and |A !||A| are irreducible. Then

. _ -1
p, B Koo(D1AD2) = p(|A|[AT7)). (7.21)

The minimum is attained for D; = diag(X)* and D, = diag(JA *|x), where
X > 0 is a right Perron vector of |A[|A™ Y| (so that |A||A™ Y = p(AIA Y])x).

Proof. See Problem 7.9. O
For the Kahan example (7.14),
p(JATHIA|) ~ 2.62 + 1.79¢ < 3+ (2¢) ! = [|ATY|A] || ocs

and, in fact, koo (DAD) = 3 for D = diag(e'/2,e71/2,¢71/2), so a symmetric
two-sided scaling is nearly optima in this case.

140 PERTURBATION THEORY FOR LINEAR SYSTEMS

7.4. The Matrix Inverse

We briefly discuss component wise perturbation theory for the matrix inverse.
With X := A' and X + DX := (A + DX)*, a componentwise condition
number is

. 1AX]| A™EIA™Y [loo
ip(A) = lim sup JAA| <eE } < 7.22
E €0 { €|l X || 0o | } A= ()
In general, the inequality- is strict. but there is equality when |A?| = D;A D,

for D; of the form diag(x1), [407, 1992, Thm. 1.10], [439, 1982]. Another
componentwise condition number is evaluated in Problem 7.10. We saw in
Theorem 6.5 that the reciprocal of the normwise condition number for matrix
inversion is the normwise relative distance to singularity. Is the same true
for an appropriate componentwise condition number? The componentwise
distance to singularity,

dp(A) :=min{e: A+ AA singular, |[AA] < eF },
has been characterized by Rohn [877, 1989], [878, 1990] as

1
maxg g Po(S1IATISE)’

dy(A) =

where the maximum is taken over al signature mat rices § = diag(+1) and
where
Po(X) = max{|A| : A is a real eigenvalue of A4 }.

This formula involves 4" eigenproblems and thus is computationally intractable
(in fact it has been shown to be NP-hard by Poljak and Rohn [836, 1993]).
Demmel [285, 1992] shows by complexity arguments that there can be no
smple relationship between dg(A) and the quantity |[|A~'|F |/, whichisan
upper bound for me (A). He also presents evidence for the conjecture that

1 Yn

At = 4t = Sy

for a constant g,. The lower bound aways holds and Demmel identifies
several classes of matrices for which the upper bound holds. This conjecture
is both plausible and aesthetically pleasing because djy(A) is invariant under
two-sided diagonal scalings of A and p(JA Y|A]) is the minimum oo-norm
condition number achievable by such scalings, as shown by Theorem 7.8.

7.5. Extensions

The componentwise analyses can be extended in three main ways.

7.6 NUMERICAL STABILITY 141

(1) We can use more general measures of size for the data and the solution.
Higham and Higham [528, 1992] measure DA, Db, and Dx by

vp([(Aaij/eij) (Abi/fi)]), vp((Azi/g:)),

where vp(A) = (Ei.ilaijlp)l/pa 1 < p < oo, and the g;, f;, and g; are

tolerances. They show that the corresponding backward error is given by the

explicit formula _
|Gzl

where r = b - Ay, D; = diag(e;y, . . . , &, f), and p* + g* = 1; bounds
for the corresponding condition number are aso obtained. Theorem 7.3, and
Theorem 7.4 with the oo-norm, correspond t0 p = oo and g = ||2|x- If

we take p = > .and g = |x|, we are measuring the change in the solution in
a componentwise relative sense, as v,((Axi/g;)) = max; |Az;|/|z;|, and the
condition number is [528, 1992]

|| diag(|a:) AT (Elz] + £)lloc-

This latter case has also been considered by Rohn [876, 1989] and Gohberg
and Koltracht [455, 1993]. It is also possible to obtain individual bounds
for Ax;|/|zi|, i = 1:n, by refraining from taking norms in the anaysis. see
Chandrasekaran and Ipsen [197, 1995] and Problem 7.1.

(2) The backward error results and the perturbation theory can be ex-
tended to systems with multiple right-hand sides. For the genera v, measure
described in (1), the backward error can be computed by finding the mini-
mum p-norm solutions to n underdetermined linear systems. For details, see
Higham and Higham [528, 1992].

(3) Structure in A and b can be preserved in the analysis. For example, if A
is symmetric or Toeplitz then its perturbation can be forced to be symmetric
or Toeplitz too, while still using componentwise measures. References include
Higham and Higham [527, 1992] and Gohberg and Koltracht [455, 1993] for
linear structure, and Bartels and D. J. Higham [76, 1992] for Vandermonde
structure. A symmetry-preserving normwise backward error is explored by
Bunch, Demmel, and Van Loan [163, 1989], while Smoktunowicz [930, 1995]
considers the componentwise case (see Problem 7.11). Symmetry-preserving
normwise condition numbers are treated by D. J. Higham [526, 1995].

7.6. Numerical Stability

The backward errors examined in this chapter lead to definitions of numerica
stability of algorithms for solving linear systems. Precise and formal defi-
nitions of sability can be given, but there are so many possibilities, across

142 PERTURBATION THEORY FOR LINEAR SYSTEMS

different problems, that to define and name each one tends to cloud the issues
of interest. We therefore adopt an informa approach.

A numerical method for solving a square, nonsingular linear system Ax = b
is normwise backward stable if it produces a computed solution such that
n4.,(%) is of order the unit roundoff. How large we alow' n, ,(7)/u to be.
while ill declaring the method backward stable, depends on the context,. It
is usualy implicit in this definition that 7,4 ,(z) = O(u) for al A and b, and
a method that yields 7, ,(Z) = O(u) or a particular A and b is said to have
performed in a normwise backward stable manner.

The significance of normwise backward stability is that the computed so-
lution solves a slightly perturbed problem, and if the data A and b contain
uncertainties bounded only normwise (A — A + AA with [[AA] = O(u]|4]))
and similarly for b), then ¥ may be the exact solution to the problem we
wanted to solve, for al we know.

Componentwise backward stability is defined in a similar way: we now re-
quire the componentwise backward error w4 ,(¥) to be of order u. This is a
more stringent requirement than normwise backward stability. The rounding
errors incurred by a met hod that is componentwise backward stable are in
size and effect equivalent to the errors incurred in simply converting the data
A and b to floating point numbers before the solution process begins.

If a method is normwise backward stable then, by Theorem 7.2, the for-
ward error ||z —Z||/||z|| is bounded by a multiple of k(A)u. However, a met hod
can produce a solution whose forward error is bounded in this way without the
normwise backward error 7, ,(Z) being of order u. Hence it is useful to define
a method for which |z — Z||/||z|| = O(x(A)u) as normwise forward stable.
By similar reasoning involving “’IAI,IbI(f)’ we say a method is componentwise
forward stable if ||z — Z||/||z|| = O(cond(A,x)u). Table 7.1 summarizes the
definitions and the relations between them. There are several examples in
this book of linear-equation-solving algorithms that are forward stable but
not backward stable: Cramer's rule for n = 2 (81.10.1). Gauss-Jordan elim-
ination (813.4), and the seminormal equations method for underdetermined
systems (820.3).

Other definitions of numerical stability can be useful (for example, row-
wise backward stability means that 7, ,..r () = O(u)). and they will be
introduced when needed.

7.7. Practical Error Bounds

Suppose we have a computed approximation z to the solution of a linear
system Ax = b, where A € R™*™. What error bounds should we compute?

7.7 PRACTICAL ERROR BOUNDS 143

Table 7.1. Backward and forward stability.

Componentwise backward stability = Componentwise forward stability
Wy a1 (T) = O(u) ||a:”;“;r|| = O(cond(A, x)u)
4

4
Normwise backward stability = Normwise forward stability

Mas(E) = O(w) 2=~ o(u(ap

The backward error can be computed exactly, from the formulae

)
me.s @) = TETRT + 1A

wg,;(Z) = max (7.23)

CERA
a the cost of one or two matrix-vector products, for r = b - AZ and E|Z|
The only question is what to do if the denominator is so smal as to cause
overflow or division by zero in the expression forwy (7). This could hap-
pen, for example, when E = |A| and f = |b| and, for some i, ajx = 0 for
all j, as is most likely in a sparse problem. LAPACK's xyyRFS (“refine so-
Iution”) routines apply iterative refinement in fixed precision, in an attempt
to satisfy wia el S U If the ith component of the denominator in (7.23)
is less than safe min/u, where safe min is the smalest number such that
1l/safe min does not overflow, then they add (n + 1) safe min to the ith com-
ponents of the numerator and denominator. A more sophisticated strategy is
advocated for sparse problems by Arioli, Demmel, and Duff [24, 1989]. They
suggest modifying the formula (7.23) by replacing |b;| in the denominator by
JAG,)|1lZll« When the ith denominator is very small. See [24, 1989] for
details and judtification of this strategy.

Turning to the forward error, one approach is to evauate the forward error
bound from Theorem 7.2 or Theorem 7.4, with € equal to the corresponding
backward error. Because x in (7.9) is unknown, we should use the modified
bound

& — Z[|oc AT (B2 + f) [l
17| oo 1]
If we have a particular E and f in mind for backward error reasons, then it is

natural to use them in (7.24). However, the size of the forward error bound
varies with E and f, so it is natural to ask which choice minimizes the bound.

< wp (@) (7.24)

144 PERTURBATION THEORY FOR LINEAR SYSTEMS

Lemma 7.9. The upper bound in (7.23) is at least as large as the upper bound
in

Iz = Zllee _ 1A 7] oo
7l = N7l

and is equal to it when E|z|+ f is a multiple of |r].

(7.25)

Proof. First note that r = b - A7 implies|z —7| < |A~!||r|, which implies
(7.25). Now, for z > O,

- v
[A Y|l = 1471 (zlg) < max M|A71!z.

i 1 !2i1
with equdlity if z is a multiple of r. Taking z = E|Z| + f gives
(A | S wp ((@)NAT(EIZ] +).

with equdity when FE|Z| + f is a multiple of |r]. The truth of this statement
is preserved when >c-norms are taken, so the result follows. 0

Since the bound (7.25) is obtained by taking absolute values in the equa-
tion x — T = A~ 'r, it is clearly the smallest possible such bound subject
to ignoring signs in A* and r. It is reasonable to ask why we do not take
|[A='r||~/ll as our error bound. (Theoreticaly it is an exact bound!)
The reason is that we cannot compute r or ||[A~!r| . exactly. In place of r
we compute 7 = fl(b— ATF), and

r=r+4r. [Ar] <50 (1AlT]+ (b)) (7.26)

Therefore a strict bound. and one that should be used in practice in place of
(7.25), is
o = Flloe _ AT+ Yid (AIZ] + 1B]) [l
17l 117l '
This forward error bound is estimated and returned by LAPACK's xyyRFS
routines. For details on how this is done without computing A™, see Chap-
ter 14.
The LAPACK linear equation solvers estimate only one condition number:
the standard condition number k; (A) (or, rather, its reciproca, referred to as
rcond), which is returned by the xyyCON routines.

(7.27)

7.8. Perturbation Theory by Calculus

The perturbation results in this book are al derived algebraicaly, without any
use of derivatives. Caculus can also be used to derive perturbation bounds,
often in a sraight forward fashion.

7.9 NOTES AND REFERENCES 145

As a simple example, consider a linear system A(t)z(t) = b(t), where
A(t) e R"™™and x(t), b(t) € R"™ are assumed to be continuoudly differentiable
functions of t. Differentiating gives

A(t)z(t) + A(t)i(t) = b(t),
or, dropping the t arguments,
i =-A"1Az + A7 'h.

Taking norms, we obtain

E bl _ o (1AL, bl
faf < 1A7HIIAN+ 147 < (A)<||Au+||b||)

This bound shows that k(A) is a key quantity in measuring the sensitivity of
a linear system. A componentwise bound could have been obtained just as
easly.

We normally express perturbations of the data in the foom A — A + AA.
To use the calculus framework we can take A(0) as the original matrix A and
write A+ AA := A(e) = A(0) + €A(0) + O(¢?), but the perturbation bound
then becomes a first-order one.

The calculus technique is a useful addition to the armoury of the error
analyst (it is used by Golub and Van Loan [470, 1989], for example), but the
algebraic approach is preferable for deriving rigorous perturbation bounds of
the standard forms.

7.9. Notes and References

This chapter draws on the survey paper Higham [558, 1994].

Theorem 7.3 is due to Oettli and Prager [802, 1964], and predates the
normwise backward error result Theorem 7.1 of Rigal and Gaches [873, 1967].
In addition to Theorem 7.1, Rigal and Gaches give a more general result
based on norms of blocks that includes Theorems 7.3 and 7.1 as special cases.
Theorem 7.1 is aso obtained by Kovarik [672, 1976].

Theorems 7.1 and 7.3 both remain valid when A is rectangular. Compo-
nentwise backward error for rectangular A was considered by Oettli, Prager,
and Wilkinson [803, 1965], but their results are subsumed by those of Oettli
and Prager [802, 1964] and Rigal and Gaches [873, 1967].

For a linear system Ax = b subject to componentwise perturbations, Oet-
tli [801, 1965] shows how linear programming can be used to obtain bounds
on the components of x when al solutions of the perturbed system lie in the
same orthant. Cope and Rust [244, 1979] extend this approach by showing, in
general, how to bound al the solutions that lie in a given orthant. This type

146 PERTURBATION THEORY FOR LINEAR SYSTEMS

of analysis can also be found in the book by Kuperman [681, 1971], which
includes an independent derivation of Theorem 7.3. See also Hartfiel [505,
1980].

Theorem 7.4 is a sraightforward generadization of a result of Skeel [919,
1979, Thms. 2.1 and 2.2]. It is clear from Bauer's comments in [80, 1966]
that the bound (7.9), with E = |A] and f = |b|, was known to him, though
he does not state the bound. This is the earliest reference we know in which
componentwise anaysis is used to derive forward perturbation bounds.

Theorem 7.8 is from Bauer [79, 1963]. Bauer actualy states that equaity
holds in (7.21) for any A, but his proof of equality is valid only when |A l||A|
and |A||A l| have positive Perron vectors. Businger [168, 1968] proves that
a sufficient condition for the irreducibility condition of Theorem 7.8 to hold
(which, of course, implies the positivity of the Perron vectors) is that there do
not exist permutations P and Q such that PAQ is in block triangular form.

Theorem 7.7 is from Stewart and Sun [954, 1990, Thm. 4.3.5].

Further results on scaling to minimize the condition number k(A) are given
by Forsythe and Straus [386, 1955], Bauer [81, 1969], Golub and Varah [465,
1974], McCarthy and Strang [742, 1974], Shapiro [913, 1982]. [914, 1985], [915,
1991], and Watson [1067, 1991].

Chan and Foulser [193, 1988] introduce the idea of “effective conditioning”
for linear systems, which takes into account the projections of b onto the range
space of A. See Problem 7.5, and for an application to partial differential
equations see Christiansen and Hansen [208, 1994].

For an example of how definitions of numerical stability for linear equa
tion solvers can be extended to incorporate structure in the problem, see
Bunch [162, 1987].

An interesting application of linear system perturbation analysis is to
Markov chains. A discrete-time Markov chain can be represented by a square
matrix P, where p; is the probability of a transition from state i to state j.

Since state i must lead to some other state. _;Pij = . and these conditions
can be writ ten in matrix vector form as

Pe=e (7.28)

A nonnegative matrix satisfying (7.28) is called a stochastic matrix. The
initial state of the Markov chain can be defined by a vector z', where z,
denotes the probability that the ith state of the chain is occupied. Then the
state of the chain a the next time unit is given by z'P. The steady state or
stationary vector of the chain is given by
T = lim T P*.

k—oc
An important question is the sensitivity of the individual components of the
steady-state vector to perturbations in P. This is investigated, for example.

PROBLEMS 147

by Ipsen and Meyer [605, 1994], who measure the perturbation matrix norm-
wise, and by O'Cinneide [800, 1993], who measures the perturbation matrix
componentwise. For a matrix-oriented development of Markov chain theory
see Berman and Plemmons [94, 1994].

It is possible to develop probabilistic perturbation theory for linear systems
and other problems by making assumptions about the statistical distribution
of the perturbations. We do not consider this approach here (though see Prob-
lem 7.13), but refer the interested reader to the papers by Fletcher [376, 198s],
Stewart [948, 1990], and Weiss, Wasilkowski, Wozniakowski, and Shub [1073,
1986].

Problems
7.1. Under the conditions of Theorem 7.4, show that
|z —y| <e(I —elAHE)HATY(f + Elal).

Hence derive a first-order bound for |x - yi|/|x|-

7.2. Let Ax = b, where A € R"*". Show that for any vector y and any
subordinate matrix norm,

Ifl -l I
ATl < T = A

where the residual r = b - Ay. Interpret this result.
7.3. Prove (7.13) and deduce (7.12).

74. Let A € R™"™ be symmetric positive definite and let A = DHD,
where D = jiag(a}iﬂ) (this is the scaling used in Corollary 7.6). Show that
cond(H) < koo(H) < n cond(H).

7.5. (Chan and Foulser [193, 1988]) Let A € R™*" havethe SYD A= UZXVT,
where X' = diag(o;), o1 > -+ > g, and define the projection matrix P, :=
U UL, where U, = U(:;,n + 1 - kin). Show that if Ax = b and A(x + DX) =
(b + Db) then

[4zll2 _ ons1-k bll2_[IA0]2
lzllz = on [IP:bll2 1Ibll2

What is the interpretation of this result?

7.6. (a) For the choice of tolerances E = |Alee’, f = |b|, corresponding to a
row-wise backward error, show that

el
Il

[E2IN
(1] oc

cond(A) < condg (A, x) < 2cond(A)

148 PERTURBATION THEORY FOR LINEAR SYSTEMS

(b) For E = ee'|A| and f =||b]|ce, corresponding to a columnwise back-
ward error, show that

”A_le || [A||‘1| ”1 < COIldE'f(A,[E) < 2||A71||x “ IAHTI Hl)
llz /o o
7.7. Show that
2wy 4,161 (¥)
| AL 16|
w (¥) Swip0y) € ——————.
| AlIb] |A[.0 1 — “’lA|,{b|(y)
2114(Y)
Naply) < y) < ————.
law(y "|A|.()() 1= 77,4,1)(:‘/)

78. Let A c R"™™ be nonsingular. A componentwise condition number for
the problem of computing c'x, where Ax = b, can be defined by
"
Xp f(Ar):= linll)sup{ |:|(flﬁ;r!| (A + AA)(x + Ax) = b+ Ab,

|AA| < €E. |Ab| < ef }

Obtain an explicit formula for xgs(A, x). Show that xg«(A, x) > 1 if
E = |Al or f = |b]. Derive the corresponding normwise condition number
v ;(A,x),in which the congiraints are [|[DA|l; < ¢[|Ell; and||Dbll, < €| f]l2.

7.9. (Bauer [79, 1963]) Let A, B, Ce R"*". (a) Prove that if B and C have
positive elements then

min |D1BD2|| o || D5 ' CDT 5 = p(BC),
1,472 n

Dy.Dse
where D, = {diag(d;) : di > O, i = Lin}. (Hint: consider D; = diag(x,) ™"
and D, = diag(Cx,), where x; > 0 is a right Perron vector of BC: BCx; =
p(BC)x;.)

(b) Deduce that if |A] and |A | have positive entries, then
min_ koo (D1ADy) = p(|A[|ATY)).

Dy.DyeD,

(¢) Show that for any nonsingular A,

; . 2) < p(|AIlATT)).
Dl.BifeDn Koc(D1AD2) < p(|A[|A™7])

(d) Strengthen (b) by showing that for any nonsingular A such that
IAIAY and |A YA are irreducible,

.) _ —1p
p, min_ Koo (D1AD2) = p(|A||AT7]).

PROBLEMS 149

(e) What can you deduce about minp, p,ep, £(D1AD) : for the 1- and
2-norms?

7.10. (Bauer [80, 1966, p. 413], Rohn [876, 1989]) We can modify the def-
inition of nE(A) in (7.22) by measuring DX componentwise relative to X,
giving

1o (A) = limosup{ max A%l A4 < e }

5|zl

(where X = A~! and X + AX = (A + AA)~!). Show that

!

' (A) = max w

711 Let A€ R™™" lbe symmetric and let y be an approximate solution to
Ax = b. If y has a small backward error, so that y solves a nearby system. does
it follow that y solves a nearby symmetric system? This problem answers the
guestion for both the normwise and componentwise relative backward errors.

(@ (Bunch, Demmel, and Van Loan [163, 1989]) Show that if (A+G)y = b
then there exists H = H' such that (A + H)y = b with ||H||, < ||G|l, and
IIH[l <V2IIGllr- (This result does not require A = A')

(b) (Smoktunowicz [930, 1995]) Show that if A is symmetric and diagonally
dominant and (A + G)y = b with |G| < ¢|A|, then there exists H = H' such
that (A + H)y = b with [H| < 3¢]A|. (For a general symmetric A there may
not exist such an H, as is easily shown by a 2 x 2 example [527, 1992].)

() (Smoktunowicz [930, 1995]) Show that if A is symmetric positive def-
inite and (A + G)y = b with |G| < ¢|A| then there exists H = H' such that
(A + H)y = b with |H|] <(2n — 1)¢]Al.

7.12. Suppose that A € R™™™ has w; nonzeros in itsith row, i = 1:n. Show
that the inequality (7.27) can be replaced by

Iz = Zlloe AT+ LOANZ] + 1] llo
Zllee 17l

i

where I' = diag(v,,, ;). This bound is potentially much smaller than (7.27)
for large, sparse matrices.

7.13. (D. J. Higham, after Fletcher [376, 1985]) Suppose the nonsingular,
square matrix A is perturbed to A + DA and b to b + Db. Then, to first order,
the solution of Ax = b is perturbed to x + Dx, where

Ar = —A"1AAz + A7 Ab.

150 PERTURBATION THEORY FOR LINEAR SYSTEMS

Suppose that the perturbations have the form
Aai] = €4;€45, Abl = 61'f,‘,

where the ¢;; - and di are independent random variables, each having zero
mean and variance s (As usua, the matrix E and vector f represent fixed
tolerances.) Let e denote the expected value.

(@ Show that
E(1Az(l3) = o®|I [A~[E][x] + [A~][/ 1.
where square brackets denote the operation of elementwise sguaring: [B]j;
b2
)
(b) Hence explain why

1/2

(A~ "IE][=] + (A1)

llzll2

condexp(4,x) :=

may be regarded as an “expected condition number” for the linear system
Ax = b.

(c) For the case where g; = |All; and f; = ||b|,. compare condexp(A, X)
with the “worst-case” condition number k5 ,(A, X) for the 2-norm.

7.14. (Horn and Johnson [581, 1991, p. 331]) Prove that for any nonsingular

A €]Rnxn' "
.) . -1y,
p, il ky(D1ADy) > A0 A7,
where o is the Hadamard product (A o B = (b)) and D, is defined asin
Problem 7.9. (Hint: use the inequality ||JA o B|l, < ||Al|»||B||l,.) Discuss the
attainability of this bound.

Previous

Chapter 8
Triangular Systems

In the end there is left the coefficient of one unknown and the constant term.
An elimination between this equation and

one from the previous set that contains two unknowns

yields an equation with the coefficient of

another unknown and another constant term, etc.

The quotient of the constant term by the unknown

yields the value of the unknown in each case.

-JOHN V. ATANASOFF, Computing Machine for the Solution of
Large Systems of Linear Algebraic Equations (1940)

The solutions of triangular systems are usually computed to high accuracy.
This fact . . . cannot be proved in general/, for counter examples exist.
However, it is true of many special kinds of triangular matrices and

the phenomenon has been observed in many others.

The practical consequences of this fact cannot be over-emphasized.

-G. W. STEWART, Introduction to Matrix Computations (1973)

In practice one almost invariably finds that

if L is ill-conditioned, so that ||L||||L™']| > 1,

then the computed solution of Lx = b (or the computed inverse)
is far more accurate than [standard norm bounds] would suggest.

-J. H. WILKINSON, Rounding Errors in Algebraic Processes (1963)

151

Home Next

152 TRIANGULAR SYSTEM

Triangular systems play a fundamental role in matrix computations. Many
methods are built on the idea of reducing a problem to the solution of one
or more triangular systems, including virtualy all direct methods for solving
linear systems. On serid computers triangular systems are universaly solved
by the standard back and forward substitution algorithms. For parallel com-
putation there are several alternative methods, one of which we analyse in
88.4.

Backward error analysis for the subgtitution agorithms is straightforward
and the conclusion is well known: the algorithms are extremely stable. The
behaviour of the forward error, however, is intriguing, because the forward
error is often surprisingly small --much smaller than we would predict from
the normwise condition number k, or, sometirnes, even the componentwise
condition number cond. The quotes from Stewart and Wilkinson at the start
of this chapter emphasize the high accuracy that is frequently observed in
practice. The analysis we give in this chapter provides a partial explanation
for the observed accuracy of the substitution algorithms. In particular, it
reveals three important but nonobvious properties:

* the accuracy of the computed solution from subgtitution depends strongly
on the right-hand side:

* a triangular matrix may be much more or less ill conditioned than its
transpose; and

» the use of pivoting in LU, QR, and Cholesky factorizations can greatly
improve the conditioning of a resulting triangular system.

As well as deriving backward and forward error bounds, we show how to
compute upper and lower bounds for the inverse of a triangular matrix.

8.1. Backward Error Analysis

Recall that for an upper triangular matrix U € R™™" the system Ux = b can
be solved using the formula x, = (b; — Z?ZH] wi; ;) /w;, which yields the
components of x in order from last to first.

Algorithm 8.1 (back substitution). Given a nonsingular upper triangular
matrix U € R™*" this algorithm solves the system Ux = b.

Xn: bnlunn
for i = n - 1:-1:1
S:bi
forj =i+ 1in
S =S - U”X”

8.1 BACKWARD ERROR ANALYSIS 153

end

We will not state the analogous algorithm for solving a lower triangu-
lar system, forward substitution. All the results below for back substitution
have obvious analogues for forward substitution. Throughout this chapter T
denotes a matrix that can be upper or lower triangular.

To andyse the errors in subgtitution we need the following lemma.
Lemma 8.2. Let y = (c—Zf;l a;b;)/by be evaluated in floating point arith-
metic according to

s=¢c

for i = 1:1k-1
s=s-ab

end

y = gbk

Then the computed 7 . satisfies
k—1
bey(1 + Ox) ZC_Zaibi(1+0i)a (8.1)
=1
where |g| < g = iu/(1 - iu).

Proof. Analysis very similar to that leading to (3.2) shows that 5§ :=
fllc = 5! aiby) s satisfies
k-1
S=c(l+61)...(L+8-1)— > _abi(l+e)(1+6)...(1+8-1),
i=1
where |e;|,|6;] < u. The fina division yields, using (25), 3 = fl(5/bx) =
3/(be(14+6k)), |6k| < u, so that, after dividing through by (1461) ... (1+ék-1),
we have

. 1+ 6k = 1+¢

b =C— ,‘bi .
AT 6. (1+6e1) ¢ ;“ 1+60)..-(1+6 1)

The result is obtained on invoking Lemma 3.1. 0

Two remarks are in order. First, we chose the particular form of (8.1),
in which c is not perturbed, in order to obtain a backward error result for
Ux = b in which b is not perturbed. Second, we carefully kept track of the
teems 1 + d in the proof, so as to obtain the best possible constants. Direct
application of the lemma to Algorithm 8.1 yields a backward error result.

154 TRIANGULAR SYSTEMS

Theorem 8.3. The computed solution r from Algorithm 8.1 satisfies

U+ ADE=b |Auy| < { ol T=0 g
"I'|1'*J'||u1j|~ L #]

Theorem 8.3 holds only for the particular ordering of arithmetic operations
used in Algorithm 8.1. A result that holds for any ordering is a conseguence
of the next lemma

Lemma 8.4. If y = ¢— Zf;ll a;b;)/byis evaluated in floating point arith-
metic, then. no matter what the order of evaluation,

k-1
L+ 6) = o= S abi(1-+6)

=1

where ;9,(:)1 < ~ for all i. If by = 1, so that there is no division, then
0] < ~,_, for all i.

Proof. The result is not hard to see after a little thought , but a formal
proof is tedious to write down. Note that the ordering used in Lemma 8.2 is
the one for which this lemma is least obvious! The last part of the lemma
is useful when anaysing unit lower triangular systems, and in various other
contexts. 0

Theorem 85. Let the triangular system TX = b, where 7 ¢ R™ ™ is non-
singular, be solved by substitution, with any ordering. Then the computed

solution 7 satisfies
(T+AT)E=b, |AT|<,|T|. O

In technical terms, this result says that 7 has a tiny componentwise relative
backward error. In other words, the backward error is about as small as we
could possibly hope.

In most of the remaining error analyses in this book, we will derive re-
sults that, like the one in Theorem 8.5, do not depend on the ordering of
the arithmetic operations. Results of this type are more general, usualy no
less informative. and easier to derive, than ones that depend on the order-
ing. However, it is important to realise that the actual error does depend on
the ordering, possibly strongly so for certain data. This point is clear from
Chapter 4 on summation.

8.2 FORWARD ERROR ANALYSIS 155

8.2. Forward Error Analysis

From Theorems 8.5 and 7.4 there follows the forward error bound

o =l _ cond(T,),
ol 1-cond(T)y,’

where
T T 17] |loo

l|z]l

cond(T,x) = . cond(T) = || |T YT || oc-
This bound can, of course, be arbitrarily smaller than the corresponding
bound involving - ko (T) = || T ||oc || T~ !||cfor the reasons explained in Chap-
ter 7. For further insight, note that, in terms of the traditional condition
number, k(T), ill conditioning of a triangular matrix stems from two pos
sible sources: variation in the size of the diagonal elements and rows with
off-diagonal elements which are large relative to the diagona elements. Sig-
nificantly, because of its row scaling invariance, cond(T, X) is susceptible only-
to the second source.

Despite its pleasing properties, cond(T, x) can be arbitrarily large. This
is illustrated by the upper triangular matrix

1, i=7,
Ula) = (ui;), uy = {_a‘ i< ; (82
for which
U@™), =45 A (8.3)
((Q)i]‘ - a(] + a)j*i—l,] > 1. .

We have cond(U(a),e) = cond(U(a)) ~ 2a"* as a — oo. Therefore WC
cannot assert that all triangular systems are solved to high accuracy. Never-
theless, for any T there is always at least one system for which high accuracy
is obtained: the system TX = e, if T is upper triangular, or TX = e, if T
is lower triangular. In both cases cond(T, x) = 1, and the solution comprises
the computation of just a single scalar reciprocal.

To gain further insight we consider special classes of triangular matrices,
beginning with one produced by certain standard factorizations with pivoting.
In al the results below, the triangular matrices are assumed to be n x n and
nonsingular, and 7 is the computed solution from substitution.

Lemma 8.6. Suppose the upper triangular matrix U € R™*" .satisfies
|wis| > |uij| for all j > i. (8.4)

Then the unit upper triangular matrix W = |U” *||U| satisfies wj < 27 for
al j>i.

156 TRIANGLLAR SYSTEMS

Proof. We can write W = |V Y|V] where V = D U and D = diag(u;,).
The matrix V is unit upper triangular with) |uy| < 1, and it is easy to show
that [(V));] < 277 for j > i. Thus for j > i,

’ j
Wi; = Z‘(\/’*l)ikﬂvkﬂ <1+ Z gk—i=1 | _ 9i—i a
b= k=itl

Theorem 8.7. Under the conditions of Lemma 8.6, the computed solution z
to Ux = b obtained by substitution satisfies

o, = T <207y, max (E;l, i=1I:n.

Proof. From Theorem 8.5 we have

e~ 3| = U AU < 7, JU |

Ul

7l.

Using Lemma 8.6 we obtain

n n
s = il £ 7, 3wy | < g max (7] Y020 <20y max (7). 0
J=i == -

Lemma 8.6 shows that for matrices satisfying (8.4), cond(T) is bounded
for fixed n, no matter how large k(T). The bounds for |z;—Z;| in Theorem 8.7,
athough large if n is large and i is small. decay exponentially with increasing

thus, later components of x are always computed to high accuracy relative
to the elements already computed.

Analogues of Lemma 8.6 and Theorem 8.7 hold for lower triangular L
satisfying

il > [ly| for al j < i. (8.5)
Note, however, that if the upper triangular matrix T satisfies (8.4) then T'
does not necessarily satisfy (8.5). In fact, cond(T ') can he arbitrarily large,
as shown by the example

1 1 0
T=10 € €],
0 0
; 2
cond(T) =5, cond(T") =1+ -.
¢

An important conclusion is that a triangular system Tx = b can be much
more or less ill conditioned than the system T'y = c, even if T satisfies (8.4).
Theorem 8.7, or its lower triangular analogue, is applicable to

8.2 FORWARD ERROR ANALYSIS

157

» the lower triangular matrices from Gaussian elimination with partial

pivoting or complete pivoting;

» the upper triangular matrices from Gaussian elimination with complete

pivoting;

» the upper triangular matrices from the Cholesky and QR factorizations

with complete pivoting and column pivoting, respectively.
Next, we consider triangular T satisfying

ti >0, t; < 0 for al i #]j.

It is easy to see that such a matrix has an inverse with nonnegative elements,
and hence is an hi-matrix (for definitions of an hi-matrix see Appendix B).

Associated with any square matrix A is the comparison matrix:

i, i=7,
M) = (mi). my = {0 20

(8.6)

For any nonsingular triangular T, M(T) is an M-matrix. Furthermore, it is

easy to show that [T < M(T)™ (see Theorem 8.11).

The following result shows that among all matrices R such that |R| = [T],

R = M(T) is the one that maximizes cond(R,X).

Lemma 8.8. For any triangular T,

cond(T, z) < cond(M(T),z) = || (2M(T) ! diag([t::|) — I)|z| ”OC/HZL‘HDO

Proof. The inequdity follows from |T | < M(T)?, together with |T| =

IM(T)|. Since M(T)* > 0, we have

IM(TY M) = M(D™ (2diag([til) - M)
= 2MM™ diag(itil) - 1,
which yields the equality. 0
If T=M(T) has unit diagonal then, using Lemma 8.8,
~(T)
1Tl

cond(T) = cond(T,e) = ||2T ! — I]|oc = 2

This means, for example, that the system U(1)x = b (see (8.2)), where x = e,
is about as ill conditioned with respect to componentwise relative perturba

tions in U(1) as it is with respect to normwise perturbations in U(1).

158 TRIANGULAR SYSTEMS

The next result gives a forward error bound for substitution that is proved
directly, without reference to the backward error result Theorem 8.5 (indeed. it
cannot be obtained from that result!). The bound can be very weak, because
IIM(T)" || can be arbitrarily larger than ||T" %|| (see Problem 8.2), but it
yields a pleasing bound in the special case described in the corollary.

Theorem 8.9. The computed solution 7 obtained from substitution applied
to the triangular system Tx = b of order n satisfies

le — 7] < ((n® + n+ Du+ O(u?))M(T) '[b].

Proof. Without loss of generality, suppose T = L, is lower triangular. The
proof is by induction on the components of x. The result clearly holds for
the first component. Assume that it holds for the first n - 1 components. An
analogue of Lemma 8.3 shows that

—1
~ ((7
nnTn = ba(1+6,101) - Z w1+ 00).

where Ifolll < Yny1 for al j. Subtracting from I, %, = bn — Z;’:_]l lnj;
gives

n—1 11

~ (0 ~]
b (00 = Bu) = =bnb) =S (e = 75) + 3 1,765
J=1

so that
n— l| #
|I .I‘"’ = rn+1 “nn Zl 71"[I‘]' + ’)71+1 Z “::: A (87)
Write
My, 0 YA 0
M(L) = . . ML) ' = ")
(L) [—m’ mnn] (£) {r am ALY my)

Then the inductive assumption can be written as |T(1:n — 1) - r(l n—1) <
-1 MMb(1:n—1)|, which implies (1:n—1)] < (1, +)M [b(1:n—1)|.
Hence (8.7) gives

|Zn — Tn| < Y1 Mnlbn] + o ymim M1 — 1))
+ Va1 (1 + Dmtm M b1 — 1)
< (Mnt + Yogr (pn—r + 1)) (ML) 1)) .

8.3 BOUNDS FOR THE INVERSE 159

We have the recurrence pr, = (14+%, 1)ptk—1+Yep1 < (L4+Yns1) k-1 +Vns1s
Lo = u, which yields

pn < (L4 Y1) v+ (T4 7)) = 1) < (P +n+Du+0@wW?). O

~

Corollary 8.10. The computed solution obtained from substitution applied
to the triangular system Tx = b of order n, where T = M(T) and b > O,
satisfies
Iz -2 < ((n* +n+u+O0@W?)|zl. O

Corollary 8.10 shows that, when T is an M-matrix and the right-hand
side is nonnegative, the solution is obtained to high relative accuracy in every
component. The reason for the high accuracy is that for such a system there
are no subtractions of like-signed numbers, so that each x is computed as
a sum of nonnegative quantities. A consequence of the cordlary is that the
inverse of a triangular M-matrix can be computed to high relative accuracy.

Triangular systems of the type in Corollary 8.10 occur in linear equations
obtained by discretizing certain elliptic partial differential equations, such as
the Poisson equation on a rectangle, with zero boundary conditions and a
positive forcing function: these problems yield symmetric positive definite
M-matrices, and the LU factors of an M-matrix are themselves M-matrices.
Such systems aso occur when evaluating the bounds of the next section.

8.3. Bounds for the Inverse

In this section we describe bounds for the inverse of a triangular matrix and
show how they can be used to bound condition numbers. All the bounds in
this section have the property that they depend only on the absolute values
of the elements of the matrix. The norm estimation methods of Chapter 14,
on the other hand, do take account of the signs of the elements.

The bounds are al based on the following theorem, whose easy proof we
omit.

Theorem 8.11. If U is a nonsingular upper triangular matrix then
U < MU' < WUt < ZU)T

where the upper triangular matrices W(U) and Z(U) are defined as follows:

il i=J,
b — max;t1<k<n [Uik|, ©<J,

L[=g
e _‘aﬁa i<ja

160 TRIANGULAR SYSTEMS

where a = ming |ugl, b = maxio; |uyl/[ugl. 0

Theorem 8.11 is a specia case of results in the theory of Ill-matrices.
For more general results couched in terms of matrix minorants and diagona
dominance, respectively, see Dahlquist [261, 1983] and Varga [1051, 1976]; see
also Householder [587, 1964, Exercise 15, p. 58].

An obvious implication of the theorem is that for any vector z and any
absolute norm

O =t < M)~ el | < W) < 1 Z2W) =)

By taking z = |Ule, z = |U||x|, and z = e, respectively, we obtain upper
bounds for cond(U), cond(U,x), and k..(U).The cost of computing these
bounds is just the cost of solving a triangular system with coefficient matrix
MU), WQU), or Z(U), which is easily seen to be O(n®). O(n), and O(1)
flops, respectively. By comparison, computing any of these condition numbers
exactly costs O(n®) flops.

As an example, here is how to compute an upper bound for || T-1!|| in n?
flops.

Algorithm 8.12. Given a nonsingular upper triangular matrix U € R™*",
this algorithm computes m= ||M (U)o > [|U Y|

end
m= ¥l

How good are these upper bounds? We know from Problem 8.2 that the
ratio [[M(T) Y|/IT" | can be arbitrarily large, therefore any of the upper
bounds can be arbitrarily poor. However, with suitable assumptions on T,
more can be said.

It is easy to show that if T is bidiagonal then |T" ' = M(T) % Since
a bidiagonal system can be solved in O(n) flops, it follows that the three
condition numbers of interest can each be computed exactly in O(n) flops
when T is bidiagonal.

As in the previous section, triangular matrices that result from a pivoting
strategy also lead to a specia result.

8.3 BOUNDS FOR THE INVERSE 161

Theorem 8.13. Suppose the upper triangular matrix U € R™*" satisfies
|ui] > |uy| for all j > i.
Then, for the 1-, 2-, and co--norms,
L < o < M) < W) < 120)) < —e
min, |u;|

(8.8)

rnin,- |u,‘i|

Proof. The left-hand inequality is trivial. The right-hand inequality
follows from the expression || Z(U)~ 1.0 = (84 1)""'/a(see Problem 8.5),

together with [|All2 < V[Al]| All - 0

The inequalities from the second on in (8.8) are al equalities for the matrix
with u; = 1 and u;; = -1 (j > i). The question arises of whether equality is
possible for the upper triangular matrices arising from QR factorization with
column pivoting, which satisfy the inequalities (see Problem 18.5)

J
ui ZZu?j, j=k+1ln, k=1Lln. (8.9)
i=k

That equality is possible is shown by the parametrized matrix of Kahan [626,
1966]

1 —¢c -c —c
1 —c —c
U, () = diag(1,s,...,s" 1) IRV (8.10)
’ —c
1

where ¢ = cos(q), s = sin(q). It is easily verified that U,(q) satisfies the
inequalities (8.9)-as equalities, in fact. Prom (8.3), U,(q)* = (bi;) is given

by
st=7, i=7,
ﬂz‘j = { J

st7ele+ 1)1 i<
Thusas 6 — 0, s"1U,(0)~! — [0,0,...,0,z], where = [27=2 27~1 .. 1,1)7.
and hence, for small q,
2n—1
[tnn|”
It can also be verified that the matrix Un(0) = (uy) defined by u;; =
(-D)"'uy| satisfies, for small q, [Un(8)]|7! = 1/|unn|, while|M(U,0)|)"! =
2" /|uy. Hence the upper bounds for |[U™Y|| can al be too big by a factor
of order 2" .

1Un(8) " ll1,2,00 =

162 TRIANGULAR SYSTEMS

8.4. A Parallel Fan-In Algorithm

Subsgtitution is not the only way to solve a triangular system. In this section we
describe a different approach that has been suggested for parallel computation.

Any lower triangular matrix: L € R™*™ can be factorized L = L, L, . . . L,,
where L, differs from the identity matrix only in the kth column:
I,
lkk
Ly = levine 1 . (8.11)
lnk 1
The solution to a linear system Lx = b may therefore be expressed as
r=L"'b=M,M,_...Mb, (8.12)

where M; :Li". When evaluated in the natural right-to-left order, this
formula yiedlds a trivia variation of a column-oriented version of substitution.

The fan-in algorithm evaluates the product (8.12) in [log(n + 1)] steps by
the fan-in operation (which is the operation used in pairwise summation: see
84.1). For example, for n = 7 the calculation is specified by

r = ((M7Mg)(MsMy)) ((MsMy)(Myb)),

where all the products appearing within a particular size of parenthesis can
be evaluated in parallel. I1lIl general. the evaluation can be expressed as a
binary tree of depth [log(n + 1)] + 1, with products M;b and MM, ; (i =
3,5...,2(n-1)/2] +1) a the top level and a single product yielding x at
the bottom level. This algorithm was proposed and analysed by Sameh and
Brent [889, 1977], who show that it can be implemented in %log2n+0(10g n)
time steps on gzn® + O(n?) processors. The agorithm requires about n*/10
operations and thus is of no interest for serial computation. Some pertinent
comments on the practica significance of log n terms in complexity results are
given by Edelman [341, 1993].

To derive an error bound while avoiding complicated notation that ob-
scures the simplicity of the anaysis, we take n = 7. The result we obtain is
easily seen to be vaid for al n. We will not be concerned with the precise
values of constants, so we write ¢, for a constant depending on n. We assume
that the inverses M; = L,'1 .are formed exactly, because the errors in forming
them affect only the constants. From the error analysis of matrix-vector and
matrix-matrix multiplication (83.5), we find that the computed solution 7
satisfies

= ((1\]7]\16 + A7e)(MsMy + Asq) + A7654) ((A[';]ul + A;;Q)(]\[l + Al()sb:)Lé)

8.4 A PARALLEL FAN-IN ALGORITHM 163

where

|4 i-1| < cau|M;||M;_1| + O(u?), i=5,7,

| Azgss| < cnu(|M7Mg||MsMy| + | M7 Mg MsMy|) + O(u?),
|Asa| < cpu(|Ms]|Ma| + |MsMs|) + O(u?),
[Ay| < epu|M] + O(u?).

Premultiplying (8.13) on the left by L, we find that the residua r = Lz — b
is a sum of terms of the form

L(M;7 ... Mj41)A;. xMe_y...Mb=1Ly...L;iA; xLg... L.

.....

All these terms share the same upper bound, which we derive for just one of
them. For j = 5, k =

|Ly...LsAssLy ... Lyx| < cqulLy ... Ls||Ms||Mg||Ls . . . Lyz| + O(u?)
=cpu|Ly...L5||L¢L7L" Ly ... Ly|
X |LsLeL7L™"L1LyL3||Ly ... L7x| + O(u?)
< epulLI[LY LILTH|L| 2] + O(u?),

where we have used the property that, for any L € R™ ", |Ly|...|L,| = |L|.
The overdl residual bound is therefore of the form

|b— LZ| < dyulL|[L7Y|LIIL7YIL]|z] + O(u?), (8.14)
or, on taking norms,

16— LTl < drull ILIILTHILILTHIL 2] loc + O(u?). (8.15)

By considering the binary tree associated with the fan-in agorithm, and
using the fact that the matrices at the ith level of the tree have a most 2'"*
nontrivial columns, it is easy to see that we can take d, = an log n, where a
is a constant of order 1.

It is not hard to find numerical examples where the bound in (8.15) is
approximately attained (for d, = 1) and greatly exceeds: u||L| o ||Z]joo, Which
is the magnitude required for normwise backward stability. One way to con-
struct such examples is to use direct search (see Chapter 24).

The key fact revealed by (8.15) is that the fan-in agorithm is only condi-
tionaly stable. In particular, the agorithm is normwise backward stable if L
is well conditioned. A special case in which (8.14) simplifiesiswhen L isan M -
matrix and b > O: Problem 8.4 shows that in this case L™ Y|L||X| < (2n-1)X,
so (8.14) yidlds |LZ — bl < (2n - 1)°dnulL||x| + O(u®), and we have compo-
nentwise backward stability (to first order).

164 TRIANGULAR SYSTEMS

We can obtain from (8.15) the result
(L+ AL)Z = b, ALl < anurso(L)?|| L]~ + O(u?), (8.16)

which was proved by Sameh and Brent (889, 1977] (with a, = ¥n’ log n +
O(n log n)). However, (8.16) is a much weaker bound than (8.14) and (8.15).
In particular, a diagona scaling Lx = b — DyLD,-D;'c = Db (where D is
diagonal) leaves (8.14) (and, to a lesser extent, (8.15)) essentially unchanged,
but can change the bound (8.16) by an arbitrary amount.

A forward error bound can be obtained directly from (8.13). We find that

le — 2| < dlu|Mq|| Mg ... | My|[b] + O(u?)
= d\ uM(L)"'|b| + O(u?), (8.17)
where M(L) is the comparison matrix (a bound of the same form as that

in Theorem 8.9 for substitution-see the Notes and References and Prob-
lem 8.10). which can be weakened to

e = Flloe ML) L] ||

lzll~ ~ ; [l2]]

+ O(u?). (8.18)

We aso have the bound
IAL=HIED? |]

B3I

[l — 7|

[Eg(Pe

< dnu

+ O(u?). (8.19)

which is an immediate consequence of (8.14). Either bound in (8.18) and
(8.19) can be arbitrarily larger than the other, for fixed n. An example where
(8.19) is the better bound (for large n) is provided by the matrix with I;;, =1,
for which L Y|L| has maximum element 2 and M(L) }|L| has maximum
element 2"*.

8.5. Notes and References

Section 8.2 is based on Higham [538, 1989]. Many of the results presented
in 888.2 and 8.3 have their origin in the work of Wilkinson. Indeed, these
sections are effectively a unification and extension of Wilkinson's results in
[1085, 1961], [1088, 1963], [1089, 1965].

Classic references for Theorems 8.3 and 8.5 are Wilkinson [1085, 1961,
p. 294], [1088, 1963, pp. 100-102], Forsythe and Moler [396, 1967, §21], and
Stewart [941, 1973, pp. 150, 408-410].

Analogues of Theorem 8.7 and Corollary 8.10 for matrix inversion are
proved by Wilkinson in [1085, 1961, pp. 322 323], and Corollary 8.10 itself is
proved in [1089, 1965, pp. 250-251].

8.5 NOTES AND REFERENCES 165

A result of the form of Theorem 8.9 holds for any triangular system solver
that does not rely on algebraic cancellation-in particular, for the fan-in al-
gorithm, as dready seen in (8.17). See Problem 8.10 for a more precise for-
mulation of this genera result.

The bounds in 88.3 have been investigated by various authors. The unified
presentation given here is based on Higham [534, 1987]. Karasalo [642, 1974]
derives an O(n) flops agorithm for computing |[M(T)” *||r. Manteuffel [726,
1981] derives the first two inequalities in Theorem 8.11, and Algorithm 8.12.
A different derivation of the equations in Algorithm 8.12 is given by Jen-
nings [613, 1982, §9]. The formulae given in Problem 8.5 are derived directly
as upper bounds for ||T7!||;.. by Lemeire [699, 1975].

That ||B™ !l can be computed in O(n) flops when B is bidiagonal, as
|M(B) 'e|», Was first pointed out by Higham [531, 1986]. Demmel and
Kahan [296, 1990] derive an estimate for the smalest singular value smin of
a bidiagonal matrix B by using the inequality & < o, (B) < /na, where
7 =min(||B~Y|Z}, |B7!|7!) They compute & in O(n) flops as

7 = min(||M(B) el 1M (B) el)

Section 8.4 is adapted from Higham [560, 1995], in which error anayss is
given for several paralld methods for solving triangular systems.

The fan-in method is topical because the fan-in operation is a specia case
of the parallel prefix operation and several fundamental computations in linear
algebra are amenable to a paralld prefix-based implementation, as discussed
by Demmel [287, 1992], [288, 1993]. (For a particularly clear explanation of the
parallel prefix operation see the textbook by Buchanan and Turner [154, 1992,
§13.21.) The important open question of the stability of the paralel prefix
implementation of Sturm sequence evaluation for the symmetric tridiagonal
eigenproblem has recently been answered by Mathias [734, 1995]. Mathias
shows that for positive definite matrices the relative error in a computed minor
can be as large as a multiple of A3, where \,, is the smallest eigenvalue of
the matrix; the corresponding bound for seriad evaluation involves \;!. The
analogy with (8.19), where we also see a condition cubing effect, is intriguing.

Higham and Pothen [568, 1994] analyse the stability of the “partitioned
inverse method” for paralel solution of sparse triangular systems with many
right-hand sides. This method has been studied by several authors in the
1990s; see Alvarado, Pothen, and Schreiber [13, 1993] and the references
therein. The idea of the method is to factor a sparse triangular matrix
Le R aL=LlL,...L,=GG, ... G, where exch G, is a prod-
uct of consecutive Lj terms and 1 < m < n, with m as small as possible
subject to the G; being sparse. Then the solution to Lx = b is evaluated as

r=G,'G;l,...G b,

166 TRIANGULAR SYSTEMS

where each G;' is formed explicitly and the product is evaluated from right
to left. The advantage of this approach is that x can be computed in m seria
steps of parallel matrix-vector multiplication.

8.5.1. LAPACK

Computational routine XTRTRS solves a triangular system with multiple right-
hand sides: XTBTRS is an analogue for banded triangular matrices. There is
no driver routine for triangular systems.

Problems

Before you start an exercise session,
make sure you have a g/ass of water and
a mat or towel nearby.

-MARIE HELVIN, Mode/ Tips for a Healthy Future (1994)
8.1. Show that under the no-guard-digit model (2.6). Lemma 8.2 remains
true if (8.1) is changed to
k=1
beg(l+0k) = = > aibi(1+6,12).
=1

and that the corresponding modification of Theorem 8.5 has
(T+AT)z=b, |AT| <, ,|T].

8.2. Show that for a triangular matrix T the ratio |[M(T) Y[/[IT" Y| can be
arbitrarily large.

8.3. Suppose the unit upper triangular matrix U7 € R""" satisfies |u| < 1
for j > i. By using Theorem 8.9. show that the computed solution T from
substitution on Ux = b satisfies

lrs = 3l <277 ((n? + o+ Du+ O(u®)) 1b] =«
Compare with the result of applying Theorem 8.7.

8.4. Let T € R"*" be triangular and suppose T = M(T) and Tx = b > 0.
Show that [T Y|T||x| < (2n-1)|x|, and hence that cond(T, x) < 2n-1. This
result show that a triangular M-matrix system with a nonnegative right-
hand side is very well conditioned with respect to componentwise relative
perturbations, irrespective of the size of k(T) (and so leads to an alternative
proof of Corollary 8.10).

8.5. Show that for a triangular 7€ R"*", |Z(T)"'|| = (3 + 1)""'/a for
both the I- and >c-norms (a and b are defined in Theorem 8.11).

PROBLEMS 167

8.6. Write detailed agorithms for efficiently computing || M (U)™!|2] ||« @nd
W)~ 2] ll-
8.7. Bounds from diagonal dominance. (@) Prove the following result (Ahlberg
and Nilson [8, 1963], Varah [1049, 1975]): if A € R™*™ (not necessarily trian-
gular) satisfies

o = lai| = Y _laiy| >0, i=1ln

J#i

(that is, A is gtrictly diagonally dominant by rows), then

1

A oo € ———.
min; q;

(b) Hence show that (Varga [1051, 1976]) if A € R™*" satisfies

Bi = |ai|d; — Z |lais|d; > 0, i = lin,
i

for some positive diagona matrix D = diag(d;) (that is, AD is dtrictly diag-
ondly dominant by rows), then

1Dl

A7l < .
A" o min, B,

(c) Use part (b) to provide another derivation of the upper bound || M(T) el
21T s

8.8. (@) Let A € R™™" Dbe nonsingular. For a given i and j, determine, if
possible, a; such that A + a;;e;el is singular. Where is the “best’ place to
perturb A to make it singular?

(b) Let T = U(D) in (8.2), so that, for example,

1 -1 -1 -1
1 -1 -1

1 -1

1

Ty =

Show that T, is made singular by subtracting 2°" from a certain element of
Th.

8.9. (Zha [1127, 1443]) Show that if ¢ and s are nonnegative (with ¢ + s* = 1)
then the Kahan matrix U,(q) in (8.10) has s 2y/1 + ¢ as its second smallest
singular vaue. (That there should be such an explicit formula is surprising;
none is known for the smallest singular value.)

168 TRIANGULAR SYSTEMS

8.10. Consider a method for solving triangular systems Tx = b that computes
x = fi(T, b) where, for al i, f; is a multivariate rationa function in which the
only divisions are by diagonal elements of L and such that when T = M(T)
and b > 0 there are no subtractions in the evaluation of f;. Show that a bound
holds of the form in Theorem 8.9, namely, for T € R"*",

|z — Z| < (cnu+ OW?))M(T) ' |b]. (8.20)

Give an example of a triangular system solver for which (8.20) is not satisfied.

Previous Home

Chapter 9
LU Factorization and Linear Equations

It appears that Gauss and Doolittle applied

the method only to symmetric equations.
More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout . . .

have emphasized the use of the method, or variations of it,
in connection with non-symmetric problems . . .
Banachiewicz . . . saw the point . . .

that the basic problem is really one of matrix factorization,
or “decomposition” as he called it.

-PAUL S. DWYER, Linear Computations (1951)

Intolerable pivot-growth [with partial pivoting] is a phenomenon that happens
only to numerical analysts who are looking for that phenomenon.

-WILLIAM M. KAHAN, Numerical Linear Algebra (1966)

By 1949 the major components of the

Pilot ACE were complete and undergoing trials . . .

During 1951 a programme for solving simultaneous

linear algebraic equations was used for the first time.

26th June, 1951 was a landmark in the history of the machine,
for on that day it first rivalled alternative computing methods
by yielding by 3 p.m. the solution to

a set of 17 equations submitted the same morning.

-MICHAEL WOODGER, The History and Present Use of
Digital Computers at the National Physical Laboratory (1958).

The closer one looks,

the more subtle and remarkable Gaussian elimination appears.
-LLOYD N. TREFETHEN, Three Mysteries of Gaussian Elimination (1985)

169

Next

170 LU FACTORIZATION AND LINEAR EQUATIONS

9.1. Gaussian Elimination

We begin by giving a traditional description of Gaussian elimination (GE) for
solving a linear system Ax = b, where A € R™*™ is nonsingular.

The strategy of GE is to reduce a problem we can’'t solve (a full linear
system) to one that we can (a triangular system), using elementary row op-
erations. There are n - 1 stages, beginning with A® = A b® := b, and
finishing with the upper triangular system A®x = b™.

At the kth stage we have converted the origina system to A¥ = p¥,

where) ")
Alk) — [All A]}\g] X
0 Ay
with 4k) o p(k-1)x(k=1) upper triangular. The purpose of the kth stage of

the dinination is to zero the elements below the diagonal in the kth column
of A, This is accomplished by the operations

(k+1) _ (k) (k)
a;; =a;; Myl

bgkﬂ) = bfk) — mikb}ck), i=k+1:n,

i=k+Lin, j=k+ l:n,

where the multipliers m,, = a}’/a\), i = k+1:n. At the end of the (n - 1)st
stage we have the upper triangular system A% = p™ which is solved by
back substitution. For an n x n matrix, GE requires 2n*3 flops.

There are two problems with the method as described. First. there is
a breakdown with division by zero if “;\-IZ) = 0.Second, if we are working in
finite precision and some multiplier m, is large, then there is a possible loss of
significance: in the subtraction agf)_mikag)‘ Jlow-order digits of o!*) could be
logt. Losing these digits could correspond to making a relatively large change
to the original matrix A. The simplest example of this phenomenon is for the
matrix []]; here. agf;) =1-1/¢, :and fl(aéé)) = —1/¢ if ¢ < u, which would
be the exact answer if we changed a,, from 1 to O.

These observations motivate the strategy of partial pivoting. At the start
of the kth stage, the kth and rth rows are interchanged, where

Ry (k)
la,, | == Jnax la; |-

Partial pivoting ensures that the multipliers are nicely bounded:
imu| <1, i=k+1lin

A more expensive pivoting strategy, which interchanges both rows and
columns, is complete pivoting.

9.1 GAUSSIAN ELIMINATION 171

At the start of the kth stage, rows k and r and columns k and s are

interchanged, where
o] = max o))
k<ij<n

Note that this requires O(n®) comparisons in total, compared with O(n?)
for partial pivoting. Because of the searching overhead, and because partia
pivoting works so well, complete pivoting is rarely used in practice.

Much insight into GE is obtained by expressing it in matrix notation. We
can write

Iy
1
Mgk 1

AK+D = A1 AR = . AR
—Mk42.k .

—Mn k 1

The matrix M, can be expressed compactly as M, = I —me}, where g is
the kth unit vector and e/'m, = 0 ffor i < k. To invert My, just flip the signs
of the multipliers: M, ' =1 +m,el. Overdll,

My M, 5...M{A=A™ = U,
and so
A=M7"M7 o MNU
= (I +mel)I+myel)...(I+m,_jel_ U

n—1
= (I + Zmie?)U
i=1

1

moy 1
= ma2 - U =:LU.
Mp1 Mp2 ... Mpn-1 1

The conclusion is that GE computes an LU factorization of A: A = LU,
where L is unit lower triangular and U is upper triangular.
We introduce the shorthand notation A, = A(l:k, 1:k).

Theorem 9.1. There exists a unique LU factorization of A € R™™™if and
only if A is nonsingular for k = 1:n - 1. If A is singular for some 1 < k <
n - 1 then the factorization may exist, but if so it is not unique.

172 LU FACTORIZATION AND LINEAR EQUATIONS

Proof. Suppose A is nonsingular for k = 1:n - 1. The existence of an
LU factorization can be proved by. examining the steps of GE. but a more
elegant proof, which also gives uniqueness, can be obtained by an induc-
tive bordering construct ion. Suppose A; has the unique LU factorization
Aya = LUy, (this supposition clearly holds for k - 1 = 1). We look for
a factorization

_ Ak_ 1 b _ Lkv,l 0 L‘rk_ 1 u .
Ak o [(,'T akk] o [lvl' 1} |: 0 Uk - LkUk'

The equations to be satisfied are L.,u = b, Ul I = ¢, and ay = 1'u +
Uk The matrices L, and U,, are nonsingular, since 0 # det(A,,) =
det(L ;) det(U,,). so the eguations have a unique solution. completing the
induction.

We prove the converse, under the assumption that A is nonsingular; for the
case A singular see Problem 9.1. Suppose an LU factorization exists. Then
A, = LU for k = 1:n, which gives

det(A) = det(Uy) = Uy . . . Uge 9.1)

Setting k = n we find that 0 # det(A) =u;; . . . Uy, and hence det(A,) =
Ug - - . Ug# 0, k=121n- 1

Examples that illustrate the last part of the theorem are [oo] = [} V][00].
which holds for any I, and [V]] which does not have an LU factoriza-
tion. 0

Visually, the condition of Theorem 9.1 is (for n = 5) that the indicated
submatrices must be nonsingular:

X
X
X

X | X|X

XXX X X
XX X X X
X X X X X

From (9.1) follows the expression uy = det(A)/det(A,). In fact, 4l
the elements of L and U can be expressed by determinant al formulae (see,
e.g., Gantmacher [413, 1950, p- 35] or Householder [587, 1964. p. 11]):

Cdet(A([L:j - 1,4 1:5)
o det(A;) 1z (.29
det(A(1:4,[1:¢ — 1, j]))

w;; = i< . 2
Uij qt (A) L 1<y (9.2b)

9.1 GAUSSIAN ELIMINATION 173

The effect of partial pivoting is easily seen by considering the case n = 4.
We have

U = M3PsMyPoMyP A, where Py swaps rows k,7 (r > k),
= M3 - PsMyP; - PP M Py Ps- P3Py P A
N e N e N e

=: M{M},M!/PA,

where, for example, M| = P3Py(I — myel)PyPy =1 — (P3Pymy)ef. For k =
1,2,3, M is the same as M, except the multipliers are interchanged. Hence,
for n = 4, GE with partia pivoting (GEPP) applied to A is equivalent to GE
without pivoting applied to the row-permuted matrix PA. This conclusion
is true for any n: GEPP computes a factorization PA = LU. Similarly, GE
with complete pivoting computes a factorization PAQ = LU, where P and Q
are permutation matrices.

Exploitation of the LU factorization streamlines both the error analysis
and the practica solution of linear systems. Solution of Ax = b breaks into
a factorization phase, PA = LU for partial pivoting (O(n®) flops), and a
substitution phase, where the triangular systems Ly = Pb, Ux = y are solved
(O(n?) flops). If more than one system is to be solved with the same coefficient
matrix but different right-hand sides, the factorization can be reused, with a
consequent saving in work.

Computing an LU factorization A = LU is equivaent to solving the equa-

tions
min{i,j)

a; =Y lLiur.
r=1

If these nonlinear equations are examined in the right order, they are easily
solved. For added generality let A € R™*™(m > n) and consider an LU
factorization with L € R™*™ and U € R™*™ (L is lower trapezoida: I; = 0
for i < j). Suppose we know the first k - 1 columns of L and the first k - 1
rows of U. Setting Iy = 1,

akj:lklU1j+"'+lk,k—1uk—1,j+7 J=kin, (9.3
ik = lnwie + -+l Jukk, i =k + Lim. (9.4)

We can solve for the boxed elements in the kth row of U and then the kth
column of L. This process is called Dodlittle's method.

Algorithm 9.2 (Doolittle’s method). This algorithm computes an LU fac-
torization A= LU € R™*", where m > n (assuming the factorization exists),
by Doolittle's method.

174 LU FACTORIZATION AND LINEAR EQUATIONS

for k = 1:n
for j = k:n
(*) ury = ap; — - gy,
end
fori = k+ 1:m
**) L = (aw — Zf;]] Liji) /s
end
end

Cost: n*(m - n/3) flops.
Doolittle's met hod is mathematically equivalent to GE without pivoting,
for we have, in (9.3).

”kj711\'1711]“""11\«“5]' E(l;_.;*l) (] >,\‘), (95)

and similarly for (9.3). Had we chosen the normalization u; = 1, we would
have obtained the Crout method. The Crout and Doolittle methods are well
suited to caculations by hand or with a desk calculator, because they obviate
the need to store the intermediate quantities ngf). They are also attractive
when we can accumulate inner products in extended precision.

It is straightforward to incorporate partia pivoting into Doolittle’'s method
(see. eg.. Stewart [941, 1973, p. 138]). However, complete pivoting cannot be

incorporated without changing the met hod.

9.2. Error Analysis

The error analysis of GE is a combination of the error analyses of inner
products and substitution. When this fact is realized. the analysis becomes
straight forward. The key observation leading to this viewpoint is that all
mathematically equivalent variants of GE satisfy a common error bound. To
see why, first note the connection between standard GE, as we have described
it, and the Doolittle met hod, as shown in (9.5). Whether the inner product
in (9.5) is calculated as one operation. or whether its terms are calculated
many operations apart, precisely the same rounding errors are sustained (as-
suming that extended precision accumulation of inner products is not used):
al that changes is the moment when those rounding errors are committed. If
we alow inner products to be reordered. so that, for example, the summation
(*) in Algorithm 9.2 is calculated with the index i decreasing from k - 1 to
1, instead of increasing from 1 to k - 1. then the actua rounding errors are
different but a common bound holds for all orderings.

It suffices, then, to analyse the Doolittle method. It aso suffices to analyse
the met hod without pivoting, because GE with partiad or complete pivoting
is equivaent to GE without pivoting applied to a permuted matrix.

9.2 ERROR ANALYSIS 175

The assignments (*) and (**) in Algorithm 9.2 are of the foom y = (c -
Z::]l aib;)/bx, which is analysed in Lemma 8.4. Applying the lemma, we
deduce that, no matter what the-ordering of the inner products, the computed
matrices L and U satisfy (with Iy = 1)

k
< Mkilldls G >k,

i=]

k
< llan

j=1

k1
agj — E lkiti; — Uk
i=1

k
@ik — Y L

Jj=1

., i> k.

These inequalities constitute a backward error result for LU factorization.

Theorem 9.3. If GE applied to A € R™*™ (m > n) runs to completion then
the computed LU factors L € R™*" and U € R"*" satisfy

LU =A+A44, |AAl <~ ILI0U|. O (9.6)

With only a little more effort, a backward error result can be obtained for
the solution of Ax = b.

Theorem 9.4. Let A € R™*" and suppose GE produces computed LU factors
L, U,and a computed solution z to Ax = b. Then
(9.7)

Proof. From Theorem 9.3, LU = A + AA,, |AA;| < 7,1|Z||L71. By
Theorem 8.5, substitution produces y and 7 satisfying

(L+ALg=b, |AL| < ,lLI,

U+Anz =7 |AU| <v,|01.
Thus
b= (L+AL)U+AU)Z = (A+AA; +LAU + ALU + ALAU)Z = (A+AA)ZT,
where |AA} < 37n|f||(7| +73|Z|lﬁ|. We need a constant 2g, instead of
3y, +72. Although it is not usualy worth expending effort reducing constants
in error bounds (see the Wilkinson quotation at the start of Chapter 10), we

will optimize constants in this important case. Consideration of Lemma 8.4
shows that we actualy have

|AL| < diag(%-l)|z|» |AU| < diag(’Yn—i+1)|0|w

176 LU FACTORIZATION AND LINEAR EQUATIONS

so that
ILAU + ALU + ALAU| < diag(v;_1 + Y-is1 + Vi1 Tn-is)| LI
< % LI
usng Lemma 3.3, which gives the required constant. 0

How do we interpret Theorem 9.4? Idedly, we would like |DA| < ulA|,
which corresponds to the uncertainty introduced by rounding the elements of
A, but because each element of A undergoes up to n arithmetic operations we
cannot expect better than a bound |DA| < c,u|A|, where ¢, is a constant of
order n. Such a bound holds if L and U/ satisfy |L||U| = [LU]. which certainly
holds if L andl’ are nonnegative. because then (9.6) gives

IL||U| = |LU| = |A + AA| < |A| + ~,|L||U]
1 (9.8)

= |L||U]| < El

n

Subgtituting into (9.7). we obtain

(A+AAD)F=b. |AA| < li’i;—w (L.U >0).
This result says that 7 has a small componentwise relative backward error.

One class of matrices that has nonnegative LU factors is defined as follows.
A e R"™ " is totally positive (nonnegative) if the determinant of every square
submatrix is positive (nonnegative). In particular, this definition requires that
a; and det(A) be positive or nonnegative. Some examples of totally nonneg-
ative matrices are given in Chapter 26. If A is totaly nonnegative then it has
an LU factorization A = LU in which L and U are totally nonnegative. so
thata L > 0 and U > O (see Problem 9.6); moreover, the computed factors L
and {7 are nonnegative for sufficiently small vaues of the unit roundoff u [273,
1977]. Inverses of totally nonnegative matrices also have the property that
|A] = |L[|U] (see Problem 9.7). Note that the property of a matrix or its
inverse being totally nonnegative is generally destroyed under row permuta-
tions. Hence for totally- nonnegative matrices and their inverses it is best to
use Gaussian elimination without pivoting.

One important fact that follows from (9.6) and (9.7) is that the stability
of GE is determined not by the size of the multipliers but by the size of the
matrix |Z||L7[. This matrix can be small when the multipliers . /,; are large, and
large when the multipliers are of order 1 (as we will see in the next section).

To understand the stability of GE further we turn to norms. For GE with-
out pivoting. the ratio || [L||U|||/]|A|]] can be arbitrarily large. For example,
for the matrix [|] the ratio is of order ¢~ '. . Assume then that partial piv-

11
oting is used. Then |l;| < 1 for all i > j, since the I; are the multipliers.

9.3 THE GROWTH FACTOR 177

And it is easy to show by induction that |u;| < 21 max, .; |ay|. Hence, for
partial pivoting, L is small and U is bounded relative to A.
Traditionally, backward error analysis for GE is expressed in terms of the
growth factor
maxX; j k |a£f)|
max; j |a;;|

which involves al the elements ag_f) (k = 1:n) that occur during the elimina
tion. Using the bound |u;;| = |a£;.)

classic theorem.

| < pn max;;|a;| we obtain the following

Theorem 9.5 (Wilkinson). Let A € R™™" and suppose GE with partial piv-
oting produces a computed solution z-to Ax = b. Then

(A+4A4)T=b, | AAllx <20%7,p0l|Alle. D (9.9)

We hasten to admit to using an illicit manoeuvre in the derivation of this
theorem: we have used bounds for L and U that strictly are valid only for the
exact L and U. We could instead have defined the growth factor in terms of

the computed aﬁj’, but then any bounds for the growth factor would involve

the unit roundoff (similarly, we can only guarantee that |lAl-J-| < 1 + u). Our
breach of correctness is harmless for the purposes to which we will put the
theorem.

The assumption in Theorem 9.5 that partial pivoting is used is not nec-
essary: essentialy the same result holds for GE without pivoting (see Prob-
lem 9.8). The normwise backward stability of GE with or without pivoting is
therefore governed by the growth factor, to which we now turn our attention.

9.3. The Growth Factor

It is easy to show that p, < 2" for partiad pivoting. Wilkinson notes that
this upper bound is achieved for matrices of the form illustrated for n = 4 hy

1 0 01
-1 1 0 1
-1 -1 11
-1 -1 -1 1

For these matrices, no interchanges are required by partia pivoting, and there
is exponential growth of elements in the last column of the reduced matrices.
In fact, this is just one of a nontrivial class of matrices for which partial

178 LU FACTORIZATION AND LINEAR EQUATIONS

pivoting achieves maxima growth. When necessary in the rest of this chapter,
we denote the growth factor for partial pivoting by p? and that for complete

pivoting by pf,.

Theorem 9.6 (Higham and Higham). All real n x n matrices A for which
pP(A) = 2"" are of the form

T : ad:|

0 :

where D = diag(+1). M is unit lower triangular with m; = -1 for i > j,
T is an arbitrary nonsingular upper triangular matrix of order n -1, d =
(1,24,... 2"Y', and a is a scalar such that a := |a,| = max; |a.

A=DM

Proof. GE with partial pivoting applied to a matrix A gives a factorization
B := PA = LU, where P is a permutation matrix. It is easy to show that
lu;| < 2 . max..; |by|, with equdity for i = s only if there is equality for
i = Ls- 1 Thus p, = 2" implies that the last column of U has the form
aDd, and also that |b,)| = max;; |by|. By considering the final column of B,
and imposing the requirement that || < 1, it is easy to show that the unit
lower triangular matrix L must have the form L = DMD. It follows that
a each stage of the reduction every multiplier is £1; hence no interchanges
are performed, that is, P = |. The only requirement on T is that it be
nonsingular, for if t;; = O then the ith elimination stage would be skipped
because of a zero pivot column and no growth would be produced on that
stage. 0

Note that by varying the eements m; (i > j) and the vector d in The
orem 9.6 we can construct matrices for which p? achieves any desired vaue
between 1 and 2.

Despite the exist once of matrices for which p, is large with partia piv-
oting, the growth factor is amost invariably small in practice. For example,
Wilkinson says “It is our experience that any substantial increase in size of
elements of successive A, is extremely uncommon even with partia pivoting

No example which has arisen naturally has in my experience given an
increase by a factor as large as 16" [1089, 1965, pp. 213-214].

Until recently. there were no reports in the literature of large growth factors
being observed in practical applications. However, Wright [1116, 1993] has
found a class of two-point boundary value problems that. when solved by the
multiple shooting met hod, yield a linear system for which partial pivoting
suffers exponential growth. The matrix is block lower bidiagonal, except for
a nonzero block in the top right-hand corner. Furthermore, Foster [399, 1994]
shows that a quadrature met hod for solving a practicaly occurring Volterra

9.3 THE GROWTH FACTOR 179

integral equation gives rise to linear systems for which partial pivoting again
gives large growth factors.

There exist some well-known matrices that give unusualy large, but not
exponentia, growth. They can be found using the following theorem, which is
applicable whatever the strategy for interchanging rows and columns in GE.

Theorem 9.7 (Higham and Higham). Let A € C**™ be nonsingular and set
a=max; |ajl, b=max; |(AY, and g = (ab)™. Then g < n, and for
any permutation matrices P and Q such that PAQ has an LU factorization.
the growth factor p, for GE without pivoting on PAQ satisfies p, > Q.
Proof. The inequality g < n follows from Z?:Ia‘ij(A“l) =1. Consider

7

an LU factorization PAQ = LU computed by GE. We have

umal = lexU e, | = leh U™ L7 e, | = e QAT PTe,,

= ‘(A_l)ij] for some 1, j (9.10)
<83
k)

Hence max; j x laﬁj | > Junn] > 871, and the result follows.

Note that q' = ab satisfies koo (A) ™! < 67! < n2k(A)~!. Clearly, A
has to be very wel conditioned for the theorem to provide a lower bound
near the maximum of n.

We apply the theorem to three noncontrived matrices that appear in prac-

tical applications.
Sn =1/ 2 sin(T) t (9.12)
n+1 n+1//, ..

(1) The matrix
is the symmetric, orthogonal eigenvector matrix for the second difference ma
trix (the tridiagona matrix with typical row (-1, 2, -1)-see 826.5); it arises,
for example, in the analysis of time series [19, 1971, 86.5]. Theorem 9.7 gives
Pr(Sy) = (n + 1)/2.

(2) A Hadamard matrix H, is an n x n matrix with elements h; = +1
and for which the rows of H, are mutually orthogonal. Hadamard mat rices
exist only for certain n; a necessary condition for their existence if n > 2 is
that n is a multiple of 4. For more about Hadamard mat rices see Hall [494,
1967, Chap. 14], Wallis [1062, 1993], and Wallis, Street, and Wallis [1063,
1972]. We have H,HF = nl, and so H;! = n~'HI. Theorem 9.7 gives
P, > N.

(3) The next matrix is a complex Vandermonde matrix based on the roots
of unity, which occurs in the evaluation of Fourier transforms (see §23.1):

Vo = (exp(—2mi(r — 1)(s - 1)/71));:1 (9.12)

180 LU FACTORIZATION AND LINEAR EQUATIONS

Since V,-! = n~'VH Theorem 9.7 givesp,(V,) > n.

Note that each of these matrices is orthogonal or unitary (to within a row
scaling in the case of the Hadamard matrix), so it is not necessary to apply GE
to them! This may explain why growth factors of order n for these matrices
have not been reported in the literature as occurring in practice.

To summarize, athough there are practically occurring matrices for which
partial pivoting yields a moderately large, or even exponentialy large, growth
factor, the growth factor is almost invariably found to be small. Explaining
this fact remains one of the magor unsolved problems in numerica analysis.
The best attempt to date is by Trefethen and Schreiber [1019, 1990]. who
develop a satisticad model of the average growth fact or for partia pivoting
and complete pivoting. Their model supports their empirical findings that for
various distributions of random mat rices the average growth fact or (normal-
ized by the standard deviation of the initial matrix elements) is close to n?’3
for partial pivoting and n” for complete pivoting. Extensive experiments by
Edelman suggest that for random matrices from the normal N(O, 1) distribu-
tion the unnormalized growth factor for partia pivoting grows like n™ [345,
1995].

We turn now to complete pivoting. Wilkinson [1085, 1961, pp. 282-285]
showed that

Pl < ntR2. 3V g sy cn!/2pilosn (9.13)

and that this bound is not attainable. The bound is a much more slowly
growing function than 2", but can ill be quite large (eg., it is 3570 for
n = 100). As for partial pivoting, in practice the growth factor is usualy
small. Wilkinson stated that “no matrix has been encountered in practice for
which p;/p, was as large as 8" [1085, 1961, p. 285] and that “no matrix has
yet been discovered for which f(r) > r” [1089, 1965, p. 213] (here. p; is the
(n - i+ Dst pivot and f(r) := po).
Cryer [256, 1968] defined

g(n) = sup p;(A). (9.14)
AER"xn

The following results are known:
*9(2
* 903

*g(4) = 4 Cryer [256, 1968] and Cohen [229, 1974].

2 (trivid).

2% Tornheim [1012, 1965] and Cohen [229, 1974].

* g(5) < 5.005; Cohen [229, 1974].

9.4 SPECIAL MATRICES 181

Tornheim [1012, 1965] (see dso Cryer [256, 1968]) showed that oS (Hp)> n
for any n x n Hadamard matrix H,, (a bound which, as we saw above, holds
for any form of pivoting). For n such that a Hadamard matrix does not exist,
the best known lower bound is g(n) > p5(S,)= (n + 1)/2 (see (9.11)).

Cryer [256, 1968] conjectured that for real matrices p¢(A) < n, with equal-
ity if and only if A is a Hadamard matrix. The conjecture pt(A) < n became
one of the most famous open problems in numerical analysis, and has been
investigated by many mathematicians. The conjecture was finaly shown to be
fase in 1991. Using a package LANCELOT [236, 1992] designed for large-scale
nonlinear optimization, Gould [474, 1991] discovered a 13 x 13 matrix for which
the growth factor is 13.0205 in |IEEE double precision floating point arith-
metic. Edelman subsequently showed, using the symbolic manipulation pack-
ages Mathematica and Maple, that a growth factor 13.02 can be achieved in
exact arithmetic by making a small perturbation (of relative size 107) to one
element of Gould's matrix [338, 1992], [348, 1991]. A more striking counterex-
ample to the conjecture is a matrix of order 25 for which p5; := 32.986341 [338,
1992]. Interesting problems remain, such as determining lim, —»:g(n)/h and
evaluating ; p¢, for Hadamard matrices (see Problem 9.15).

For complex matrices the maximum growth factor is at least n for any
n, since pS(Vy) = n (see (9.12)). The growth can exceed n, even for n = 3
Tornheim [1012, 1965] constructed the example

1 1 1
A=1{1 =z =z7'|, z=(-1+iV/8)/3,
for which p§(A) = 3.079.

9.4. Special Matrices

For matrices with certain special properties, more can be said about the be-
haviour of GE and, in particular, the size of the growth factor.
As a first example, suppose A € C**" is diagonally dominant by rows,

Y lagl < laul, i=1n,

J#i
or diagonaly dominant by columns, that is, A* is diagonally dominant by
rows. Then GE without pivoting is perfectly stable.

Theorem 9.8 (Wilkinson). If A € C™*" is diagonally dominant by rows or
columns then A has an LU factorization without pivoting and the growth factor
Pn < 2. If A is diagonally dominant by columns then |I;| < 1 for all i and
j in the LU factorization without pivoting (hence GEPP does not require any
row interchanges).

182 LU FACTORIZATION AND LINEAR EQUATATIONS

q+1
<>

p+1 0

0

Figure 9.1. A banded matrix.

Proof. The result follows immediately from the more general Theo-
rems 125 and 12.6 for block diagonally dominant matrices. 0

Note that for a matrix diagonally dominant by rows the multipliers can
be arbitrarily large but, nevertheless, p, < 2, so GE is perfectly stable.

A smaller bound for the growth factor also holds for an upper Hessenberg
matrix. (H is upper Hessenberg if h; = 0 for i > j + 1)

Theorem 9.9 (Wilkinson). If A ¢ """ is upper Hessenberg thenp? < n.

Proof. The structure of an upper Hessenberg H means that at each stage
of GEPP we just add a multiple of the pivot row to the next row (after
possibly swapping these two rows). That ;P < n is a consequence of the
following claim, which is easily proved by induction: at the start of stage Kk,
row k + 1 of the reduced matrix is the same as row k + 1 of the original matrix,
and the pivot row has elements of modulus a most k times the largest element
of H. 0

A matrix A e """ has lower bandwidth p and upper bandwidth q if a; = 0
fori >j+pandj>i+q; see Figure 9.1. It is wel known that in an LU
factorization of a banded matrix the factors inherit A's band structure: L
has lower bandwidth p and U has upper bandwidth g. If partia pivoting is
used then, in PA = LU. L has a most p + 1 nonzeros per column and U has
upper bandwidth p + g. (For proofs of these properties see Golub and Van
Loan [470, 1989, 84.3].) It is not hard to see that for a banded matrix, g, in
Theorem 9.3 can be replaced by Gnax (p+1, ¢+ @d 2g, in Theorem 9.4 can be
replaced by Onax(p+1, q+1) T G+q+1- ‘

The following result bounds the growth factor for partial pivoting on a
banded matrix.

9.5 TRIDIAGONAL MATRICES 183

Theorem 9.10 (Bohte). If A € C**™ has upper and lower bandwidths p then
pP <2271 _(p—1)2P~2 and this bound is almost attainable when n = 2p+1.

Proof. See Bohte [131, 1975]. An example with n = 9 and p = 4 in which
equaity is amost attained is the matrix

-1 -1 -1 -1
-1 1 0 0
-1 -1 1 0
-1 -1 -1 1
A= | 1+¢ 0 0 0 0
0O -1 -1 -1 -1 1 0
60 o0 -1 -1 -1 -1 1
0 0 0o -1 -1 -1 -1
0 o0 0 0 -1 -1 -1

S O O
SO OO O
o OO oo

—_——_ 0O oo o oo
ok it e e = OO OO

where ¢ is an arbitrarily small positive number, which ensures that rows 1
and 5 are interchanged on the first stage of the elimination, this being the
only row interchange required. Ignoring terms in e, the last column of U
in PA = LU is [1, 1, 2, 4, 8, 16, 31, 60, 116]' and the growth factor is
116. 0

A specia case of Theorem 9.10 is the easily verified result that for a tridi-
agonal matrix,, p? < 2. Hence GEPP achieves a small normwise backward
error for tridiagonal matrices. In the next section we show that for several
types of tridiagona matrix GE without pivoting achieves a small component-
wise backward error.

9.5. Tridiagonal Matrices

Consider the nonsingular tridiagonal matrix
dl €
C9 d2 €2
A= €
) ’ €n—1
cn dy
and assume that A has an LU factorization A = LU, where
1 up e
12 1 U2 €9

€n—1
ln 1 Un

184 LU FACTORIZATION AND LINEAR EQUATIONS

GE for computing L and U is described by the recurrence relations

l; = ('i/Uz‘—l .
uy = dp: i=2:n. (9.16)
Uu; = dz — 1;6,;1
For the computed quantities, we have
1+ el = ——, le;] < u.
Ui—1
(1460 =d; — Le, ((1+8), 16:].16:] < w.
Hence ~ N
lei = Litti—] < u)liti— |,
|d; —liej_y — u;| < U(ﬁz‘ez‘—ll + |,]).

In matrix terms these bounds may be written as
A=LU+AA, |AA| <u|L||U]. (9.17)

If the LU factorization is used to solve a system Ax = b by forward and back
substitution then it is straightforward to show that the computed solution T
satisfies

(L+ AL)U + AU)T =b, |AL| <u|L|, |AU| < (2u+u®)|U]. (9.18)
Combining (9.17) and (9.18) we have, overdl,

(A+ AT =b, |AA < fILIU|. f(u) =4u+3u® +u®. (9.19)

The backward error result (9.19) applies to arbitrary nonsingular tridiag-
ond A having an LU factorization. We are interested in determining classes
of tridiagonal A for which a bound of the form |DA| < g(u) |Al holds. Such a
bound will hold if |Z||U| = |LU|, as noted in §9.2 (see (9.8)).

Three classes of matrices for which IZH(A/'I = IZlA«'{ holds for the exact L
and U are identified in the following theorem.

Theorem 9.11. Let 4 € R™™" be nonsingular and tridiagonal. If any of the
following conditions hold then A has an LU factorization and |L||U| = |LU|:

(& A is symmetric positive definite;

(b) A is totally nonnegative, or equivalently, L > 0 and U > O;

(c) A is an M-matrix, or equivalently, L and U have positive diagonal
elements and nonpositive off-diagonal elements;

(d) A is sign equivalent to a matrix B of type (8)-(c), that is, A = D,BD,,
where |D,| = |D,| = .

9.5 TRIDIAGONAL MATRICES 185

Proof. For (@), it is well known that a symmetric positive definite A has
an LU factorization in which U = DL, where D is diagona with positive
diagonal elements. Hence |L||U| = |L||D||LT| = |LDL"| = |LU|, where the
middle equality requires a little thought. In (b) and (c) the equivalences,
and the existence of an LU factorization, follow from known results on totally
nonnegative matrices [258, 1976] and M-matrices [94, 1994]; |L||U| = |LU]| is
immediate from the sign properties of L and U. (d) is trivial. 0

For diagonally dominant matrices, [L||U| is not equal to |LU| = |A|, but
it cannot be much bigger.

Theorem 9.12. Suppose: 4 € R™ ™ is nonsingular, tridiagonal, and diag-
onally dominant by rows or columns, and let A have the LU factorization
A = LU. Then [L||U] < 3A].

Proof. If |i - j| = 1 then (|L||U]); = |ay|, so it suffices to consider the
diagonal elements and show that (using the notation of (9.15))

llie| + [u] < 3|di].

The rest of the proof is for the case where A is diagondly dominant by rows;
the proof for diagonal dominance by columns is similar.

First, we claim that || < |u;| or al i. The proof is by induction. For
i = 1 the result is immediate, and if it is true for i - 1 then, from (9.16).

|ci]

il 2 1di] = [llles] = el = 7=

lei-1]
> |d;| — |ei| > leil,
as required. Note that, similarly, |u| < |d| + |g]|. Finally,

Ci

|li€i71| + |'ll,l'| = €1 + lu1| _<_ Ici| + lu"il

i—1

< el + (1ds] + lesl)
< 3|di. o

Theorem 9.13. If the nonsingular tridiagonal matrix A is of type (a)-(d) in
Theorem 9.11, and if the unit roundoff u is sufficiently small, then GE for
solving Ax = b succeeds and the computed solution 7 . satisfies

2 3
(A+AA)z=b, |AAl<h()Al, h(u) = éu—ig%uﬂ

The same conclusion is true if A is diagonally dominant by rows or columns,
with no restriction on u, provided the bound is multiplied by 3.

186 LU FACTORIZATION AND LINEAR EQUATIONS

Proof. If u is sufficiently small then for types (a)-(c) the diagonal e ements
of U will be postive, since u; — u; >0 asu—0. It is easy to see that u; > 0
for al i ensures that \Zl[U{ = |Lf7[. The argument is similar for type (d). The
result therefore follows from (9.19) and (9.8). The last part is trivial. 0

A corollary of Theorem 9.13 is that it is not necessary to pivot for the
matrices specified in the theorem (and, indeed, pivoting could vitiate the result
of the theorem). Note that large multipliers may occur under the conditions
of the theorem, but they do not affect the stability. For example, consider the
M-matrix

2 -2 0 1 0 0 2 =20
A=1e=2 2 0| =](e-2)/2 1 0 0 ¢ 0| =LU,
0 -1 3 0 —1/e 1 0 0 3

where 0 < ¢ < 2. Themultiplier I3, is unbounded as ¢ — (). but |L|JU] = |A|
and GE performs very stably, as Theorem 9.13 shows it must.

9.6. Historical Perspective

GE was the first numerical algorithm to be subjected to rounding error anal-
ysis, so0 it is ingtructive to follow the development of the error analysis from
its beginnings in the 1940s.

In the 1940s there were three magjor papers giving error analyses of GE.
Hotelling [583, 1943] presented a short forward error anaysis of the LU factor-
ization stage of GE. Under the assumptions that |a;| < 1 and |b| < 1 for all
i and j and that the pivots are al of modulus unity, Hotelling derives a bound
containing a fact or 4"* for the error in the elements of the reduced upper
triangular system. Hotelling's work was quoted approvingly by Bargmann.
Montgomery, and von Newmann [55, 1946], who dismiss elimination met hods
for the solution of a linear system Ax = b as being numerically unstable. In-
stead, they recommended computation of A* via the Newton Schulz iteration
[908, 1933] (which was also discussed by Hotelling). In one paragraph they
out line the aleged shortcomings of elimination methods as follows:

In the elimination method a series of n compound operations is
performed each of which depends on the preceding. An error at
any stage affects all succeeding results and may become greatly
magnified; this explains roughly why instability should be ex-
pected. It should be noticed that at each step a division is per-
formed by a number whose size cannot be estimated in advance
and which might the so small that any error in it would be greatly
magnified by division. In fact such small divisors must occur if the
determinant of the matrix is smal and may occur even if it is not

9.6 HISTORICAL PERSPECTIVE 187

. . . Another reason to expect instability is that once the variable
X, is obtained al the other variables are expressed in terms of it.

As Wilkinson [1098, 1974, p. 354] notes of this paragraph, “amost every state-
ment in it is either wrong or miseading”.

Hotelling's result led to genera pessimism about the practical effectiveness
of GE for solving large systems of equations. Three papers later in the same
decade helped to restore confidence in GE.

Goldstine [460, 1972, p. 290] says of his discussions with von Neumann:

We did not fed it reasonable that so skilled a computer as Gauss
would have falen into the trap that Hotelling thought he had noted
. .. Von Neumann remarked one day that even though errors may
build up during one part of the computation, it was only relevant
to ask how effective is the numerically obtained solution, not how
close were some of the auxiliary numbers, calculated on the way
to their correct counterparts. We sensed that at least for positive
definite matrices the Gaussian procedure could be shown to be
quite stable.

von Neumann and Goldstine [1057, 1947] subsequently gave a long and diffi-
cult rigorous fixed-point error anaysis for the inverson of a symmetric pos-
itive definite matrix A via GE. They showed that the computed inverse X
satisfies ||AX —I]js < 14.2n°uk,(A). Parlett [821, 1990] explains that “the joy
of this result was getting a polynomia in n, and the pain was obtaining 14.2,
a number that reflects little more than the exigencies of the analysis” Wilkin-
son [1095, 1971] gives an interesting critique of von Neumann and Goldsting's
paper and points out that the residual bound could hardly be improved using
modern error anaysis techniques. In a later paper [462, 1951], Goldstine and
von Neumann gave a probabilistic analysis, which Goldstine summarizes as
showing that “under reasonable probabilistic assumptions the error estimates
of the previous paper could be reduced from a proportionality of n?> to n”
[460, 1972, p. 291].

In his 1970 Turing Award Lecture [1096, 1971], Wilkinson recounts how in
the early 1940s he solved a system of 12 linear equations on a desk calculator,
obtaining a small residual. He goes on to describe a later experience:

It happened that some time after my arrival [at the National Physi-
ca Laboratory in 1946], a system of 18 equations arrived in Mathe-
matics Division and after talking around it for some time we finaly

decided to abandon theorizing and to solve it . . . The operation
was manned by Fox, Goodwin, Turing, and me, and we decided
on Gaussian dimination with complete pivoting . . . Again the sys

tem was mildly ill-conditioned, the last equation had a coefficient
of order 10 (the original coefficients being of order unity) and

188 LU FACTORIZATION AND LINEAR EQUATIONS

the residuals were again of order 10™°, that is of the size cor-
responding to the exact solution rounded to ten decimals. It is
interesting that in connection with this example we subsequently
performed one or two steps of what would now be called “iterative
refinement,” and this convinced us that the first solution had had
amost six correct figures.

(Fox [403, 1987] notes that the computation referred to in this quotation
took about two weeks using desk computing equipment!) In a subsequent
paper, Fox, Huskey, and Wilkinson [404, 1948] presented empirical evidence
in support of GE, commenting that “in our practica experience on matrices
of orders up to the twentieth, some of them very ill-conditioned, the errors
were in fact quite smal”.

The experiences of Fox, Huskey, and Wilkinson prompted Turing to write
a remarkable paper “Rounding-off errors in matrix processes’ [1027, 1948].
In this paper, Turing made several import ant contributions. He formulated
the LU (actually. the LDU) factorization of a matrix, proving the “if” part
of Theorem 9.1 and showing that GE computes an LDU factorization. He
introduced the term “condition number” and defined two matrix condition
numbers, one of which is " 'N(A)N(A™), where N(A) = ||Allr, the “N-
condition number of A”. He used the word “preconditioning” to mean im-
proving the condition of a system of linear equations (a term that did not
come into popular use until the 1970s). He described iterative refinement
for linear systems. He exploited backward error ideas, for example by noting
that *‘the triangular resolution obtained is an exact resolution of a matrix
A - S where M(S) < € (M(S) = max;; |sj|. Finaly, and perhaps most
importantly, he analysed GEPP for general matrices and obtained a bound
for |z — 7||~ that contains a term proportiona to [A~!||4. (By making a
trivial change in the analysis, namely replacing A" 'b by x, Turing's bound
can be made proportional only to ||A~!||..) Turing also showed that the
factor 4" in Hotelling's bound can be improved to 2"* and that il the
bound is attained only in exceptional cases.

In a review of Turing's paper, Bodewig [129, 1949] described the error
bounds as “impractical“ and advocated computing the residual of the com-
puted solution and then determining “the exact correct ion by solving a new
system.” That another researcher could miss the point of Turing’s analysis
emphasizes how new the concept of rounding error analysis was in the 1940s.

Table 9.1 shows the time for solution of linear systems by GE on some
early computing devices. The performance of modern computers on two linear
system benchmarks is summarized by Dongarra [312, 1995]; Dongarra’s report
is regularly updated and can be obtained from netlib under the benchmark
directory.

Douglas [319, 1959] presented a forward error anaysis for GE applied to

9.6 HISTORICAL PERSPECTIVE 189

Table 9.1. Times for solution of a linear system of order n.

Machine Y ear n Time Reference
Logarithm tables c. 1884 29a 7 weeks [952, 1994]
Desk computing equipment ¢. 1946 18 2 weeks [403, 1987]
Harvard Mark 1 1947 10 45 minutes b
IBM 602 Calculating Punch 1949 10 4 hours [1053, 1949]
Pilot ACE 1951 17 over3hours [1110, 1958]
Pilot ACE’ 1954 30 1% mins [1110, 1958]
ACE 1958 30 5 seconds [1110, 1958]
EDSAC 2 1960 31 4 seconds [73, 1960]
EDSAC2° 1960 100 7minutes [73, 1960]

Symmetrl ¢ positive definite system.

[127 1948, p. 27], [507, 1948, p. 336].
W|th magnetic drum store.

dus ng magnetic tape for auxiliary storage.

diagonally dominant tridiagonal systems arising in the solution of the heat
equation by finite differences. He concluded that the whole procedure of
solving this partia differential equation “is stable against round-off error”. It
is surprising that Douglas paper is little known, because irrespective of the
fact that his anaysis can be simplified and clarified usng modern techniques,
his is one of the first truly positive rounding error results to be published.

A magor breakthrough in the error anadysis of GE came with Wilkinson's
pioneering backward error anaysis, in which he proved Theorem 9.5 [1085,
1961], [1088, 1963]. Apart from its simplicity and elegance and the realistic
nature of the bounds, the main feature that distinguishes Wilkinson's anaysis
from the earlier error analyses of GE is that it bounds the normwise backward
error rather than the forward error.

Wilkinson had been aware of the properties of the growth factor for par-
tial pivoting long before developing his backward error analysis. In a 1954
paper [1081, 1954] he noted that

After m reductions the largest element is at most 2"’ times as large
as the largest original coefficient. It is possible to construct sets
in which this factor is achieved but in practice an increase seldom
takes place; more frequently the coefficients become progressively
smaller, particularly if the equations are ill-conditioned.

This quote summarizes most of what we know today!
Four of the first textbooks to incorporate Wilkinson's analysis were those of
Fox [400, 1964, pp. 161-174], Isaacson and Keller [607, 1966], Wendroff [1074,

190 LU FACTORIZATION AND LINEAR EQUATIONS

1966], and Forsythe and Moler [396, 1967, Chap. 21]. Fox gives a simplified
analysis for fixed-point arithmetic under the assumption that the growth fac-
tor is of order 1. Forsythe and Moler give a particularly readable backward
error analysis that has been widely quoted.

Wilkinson's 1961 result is essentialy the best that can be obtained by
a normwise analysis. Subsequent work in error analysis for GE has mainly
been concerned with bounding the backward error component wise, as in The-
orems 9.3 and 9.4. We note that Wilkinson could have given a componentwise
bound for the backward perturbation DA, since most of his anaysis is at the
element level.

Chartres and Geuder [200, 1967] analyse the Doodlittle version of GE. They
derive a backward error result (A + DA)Z? = b, with a componentwise bound
on DA; dthough they do not recognize it, their bound can be written in the
form |DA| < cu|L|U].

Reid [867, 1971] shows that the assumption in Wilkinson's analysis that
partial pivoting or complete pivoting is used is unnecessary. Without making
any assumptions on the pivoting strategy, he derives for LU factorization the
result LU = A + DA, |Dg;| < 3.01 min(i - 1,j)u max, ;af;‘f’|. Again, thisis a
componentwise bound. Erisman and Reid [355, 1974] note that for a sparse
matrix, the term min(i - 1, j) in Reid's bound can be replaced by m;, where
my; is the number of multiplications required in the calculation of I (i > j)
or u; (i <}j).

de Boor and Pinkus [273, 1977] give the result stated in Theorem 9.4.
They refer to the original 1972 German edition of [955, 1980] for a proof
of the result and explain several advantages to be gained by working with a
componentwise bound for DA, one of which is the strong result that ensues for
totally nonnegative matrices. A result very similar to Theorem 9.4 is proved
by Sautter [895, 1978].

Skeel [919, 1979] carried out a detailed componentwise error analysis of
GE with a different flavour to the analysis given in this chapter. His aim was
to understand the numerical stability of GE (in a precisely defined sense) and
to determine the proper way to scale a system by examining the behaviour
of the backward and forward errors under scaling (see §9.7). He later used
this analysis to derive important results about fixed precision iterative refine-
ment (see Chapter 11). Skeel’s work popularized the use of component wise
backward error analysis and componentwise perturbation theory.

The *|L||U]" «componentwise style of backward error analysis for GE is
now well known, as evidenced by its presence in the text books of Conte and
de Boor [237, 1980]. Golub and Van Loan [370, 1989] (also the 1983 first
edition), and Stoer and Bulirsch [955, 1980].

Forward error analyses have also been done for GE. The analyses are more
complicated and more difficult to interpret than the backward error analyses.
Olver and Wilkinson [810, 1982] derive a posteriori forward error bounds that

9.7 SCALING 191

require the computation of A™. Further results are given in a series of papers
by Stummel [965, 1982], [966, 1985], [967, 1985], [968, 1985].

Finaly, probabilistic error analysis for GE is given by Barlow and Bareiss
[63, 198s].

9.7. Scaling

Prior to solving a linear system Ax = b by GE we are at liberty to scae the
rows and the columns:

Ar=b — DyADy-Dy'a = Db, or Ay=c, (9.20)

where D; and D, are nonsingular diagonal matrices. We apply GE to the
scaled system A'y = ¢ and then recover x from x = D,y. Although scaling
was used in some of the earliest published programs for GE [396, 1967], [745,
1962], how best to choose a scaling is still not well understood, and no single
scaling algorithm can be guaranteed always to perform satisfactorily. Wilkin-
son’s remark “We cannot decide whet her equations are ill-conditioned without
examining the way in which the coefficients were derived” [1089, 1965, p. 198]
sums up the problem of scaling rather well.

The effect of scaling in GE without pivoting is easy to describe. If the
elements of D; and D, are powers of the machme base b (so that the scalmg
is done without error) and GE produces Lad0 <lsfymgA + DA = LU
then GE on A’ = D;AD, produces l)lLDl‘ and D,UD, satisfying A’ +
D,DAD, = DIZDI‘1 - DyUDs. In other words, the rounding errors in GE
scale in the same way as A. This is a result of Bauer [78, 1963] (see [396,
1967, Chap. 11] for a clear proof and discussion). With partial pivoting,
however, the choice of pivots is affected by the row scaling (though not the
column scaling), and in a way that is difficult to predict.

We can take a method-independent approach to scaling, by considering
any method for solving Ax = b that yields a solution satisfying

[l — Tl

< tpkoo(A)u,
T2l (4)

with ¢, a constant. For the scaled system (9.20) we have

-1
||D2 ()”OC <Cnlix(D1AD2)u
D7 2]l oo

s0 it is natural to choose D, and D, to minimize k(D1 AD;). Aswe saw in
§7.3 (Theorem 7.8), the minimum possible value is no larger than p(|A™ *||A]).
However, a column scaling has the (usualy) undesirable effect of changing the
norm in which the error is measured. With row scaling only, the minimum

192 LU FACTORIZATION AND LINEAR EQUATIONS

vaue of ko (D1A)is cond(A) = |||A7Y||A|||=, achieved when D;A has rows
of unit 1-norm (see (7.12)). Thus row equilibration yields a cond-bounded
forward error. For GE, though, it is possible to do even better. Sked [919,
1979] shows that for D; = diag(|A||x|)'l, the forward error bound for GEPP
is proportional to cond(A,X) = || |A7T||A|x]|~/l|z]|x: the catch is, of course,
that the scaling depends on the unknown solution x!' Row equilibration can
be regarded as approximating x by e in this “optima” scaling.

The LINPACK LU factorization routines do not include scaling, while
in the LAPACK driver routine XxGESVX an initial scaling is optional. One
reason why scaling is not popular with numerical analysts is that a cond(A, x)-
bounded forward error and a small componentwise relative backward error are
both achieved by fixed precision iterative refinement (assuming it converges):
see Chapter 11. Even Skeel’s optimal scaling does not guarantee a small
componentwise relative backward error.

Some programs for GEPP incorporate row scaling implicitly. They com-
pute row scale factorsd,. . . . , d,. but. instead of applying GEPP to diag(d;)™* x
A, they apply it to A and choose as pivot row at the kth stage a row r for
which d,\a(r',f.)l is maximal. This type of scaling has the sole effect of influenc-
ing the choice of pivots. There is little justification for using it, and the best
bound for the growth factor is 2" multiplied by a product of terms d,/d;,
that can be large.

There is, however. one situation in which a form of implicit row scaing
is beneficial. Consider the pivoting strategy that selects as the kh pivot an

element a(,’,‘;_) for which

g | gl 9.21
TAW (s)~ SR TA® Gk)l ©20
A result of Pefia [825, 1994] shows that if there exists a permutation matrix P
such that PA has an LU factorization PA = LU with |PA] = |L||U]|, then such
a factorization will be produced by the pivoting scheme (9.21). This means
that, unlike for partia pivoting, we can use the pivoting scheme (9.21) with
impunity on totally nonnegative matrices and their inverses, row permutations
of such matrices, and any matrix for which some row permutation has the
“|PA] = [L]JU|" property. However, this pivoting strategy is as expensive as
complete pivoting to implement, and for general A it is not guaranteed to
produce a factorization as stable as that produced by partial pivoting.

9.8. A Posteriori Stability Tests

Having solved a linear system by LU factorization we can compute the com-
ponentwise or normwise backward error at the cost of evauating one or two
matrix-vector products (see Theorems 7.1 and 7.3). In some situations,

9.8 A POSTERIORI STABILITY TESTS 193

though, we may wish to assess the stability of a computed LU factoriza-
tion before using it to solve one or more linear systems. One possibility is
to compute the growth factor by monitoring the size of elements during the
elimination, at a cost of O(n® comparisons. This has been regarded as rather
expensive, and more efficient ways to estimate p,, have been sought.

Businger [169, 1971] describes a way to obtain an upper bound for p, in
O(n®) operations. This approach is generdized by Erisman and Reid [355,
1974], who apply the Holder inequality to the equation

k
(k+1) _ o
a;; =a;j — E Lirttrj, i,j >k,
r=1

to obtain the bound

k+1
@] < Jaigh+ 1o L) g, i)l

< nila}xlaij[+ max [T ,l,-qi_l)||pmjax||(u1j, st g)llg (9:22)

where p* + ' = 1. In practice p = 1,2,00 are the values of interest.
Barlow [56, 1986] notes that application of the Holder inequality instead to

min(i,5)

(k+1)
aij = Z lirurj

r=k+1

yields a sometimes sharper bound.

It is interesting to note that in light of experience with the bound (9.22),
Reid [868, 1987] recommends computing the growth factor explicitly in the
context of sparse matrices, arguing that the expense is justified because (9.22)
can be a very weak bound. See Erisman et a. [354, 1987] for some empirica
results on the quaity of the bound. L

Chu and George [209, 1985] observe that the oo-norm of the matrix |L||U]|
can be computed in O(n®) operations without forming the matrix explicitly,
since L A L

ILI[UHlse = I L[|Ule lloc = [I1LI(IUl€) || sc-

Thus one can cheaply compute a bound on ||AAl|, from the componentwise
backward error bounds in (9.6) and (9.7).

All the methods discussed in this section make use of an a priori error
analysis to compute bounds on the backward error. Because the bounds do not
take into account the statistical distribution of rounding errors, and because
they involve somewhat pessimistic constant terms, they cannot be expected
to be very sharp. Thus it is important not to forget that it is straightforward
to compute the backward error itself: A -LU. Exact computation costs a
prohibitively expensive O(n®) operations, but ||[A— LU||;can be estimated in

194 LU FACTORIZATION AND LINEAR EQUATIONS

O(n?) operations using the matrix norm estimator in Algorithm 14.4. Another
possibility is to use a running error analysis, in which an error bound is
computed concurrently with the factors (see 53.3).

9.9. Sensitivity of the LU Factorization

Although Theorem 9.3 bounds the backward error of the computed LU factors
L and U, it does not give any indication about the size of the forward errors
L - L .and U -U. For most applications of the LU factorization it is the
backward error and not the forward errors that matters, but it is till of some
interest to know how big the forward errors can be. This is a quest ion of
perturbation theory and is answered by the next result.

Theorem 9.14 (Barrlund, Sun). Let the nonsingular matrices 4 € R™*"
and A+DA have LU factorizations A = LU and A+DA = (L+DL)(U+DU),
and assume that ||G||, < 1, where G = L 'DAU™. Then

max{nAan MAU||F}< IGIe L MNU Al [AA]
12 00 = TGl = T 2 LU A4, [Alr
(9.23)

Moreover, if p(|G|) < 1, where G = (L + DL) 'DA(U + DU)", then

|AL| < |L + AL|stril((I — |G))7}G)).
|AU| < trin(|GI(I - |G) ") IU + AU/,

where stril(-) and triu(-) denote, respectively, the strictly lower triangular part
and the upper triangular part of their matrix arguments. O

The normwise bounds (9.23) imply that x(A) := ||L” Y [lU YL JIAl, is
an upper bound for the condition numbers of L and U under normwise per-
turbations. We have

k2(A) < x(A) < min{ka(L), k2(U)}ra(A).

and the ratio x(A)/k,(A) can be arbitrarily large (though if partial pivoting
is used then k,(L) < n2"™).

The componentwise bounds in Theorem 9.14 are a little unsatisfactory in
that they involve the unknown mat rices DL and DU, but we can set these
terms to zero and obtain a bound correct to first order.

9.10 NOTES AND REFERENCES 195

9.10. Notes and References

A variant of GE was used by the Chinese around the first century AD; the Jiu
Zhang Suanshu (Nine Chapters of the Mathematical Art) contains a worked
example for a system of five equations in five unknowns [619, 1991, pp. 156-177].
[696, 1989]

Gauss, who was a great datistician and numerical analyst, developed his
elimination method as a tool to help him prove results in linear regression
theory. The first published appearance of GE is in his Theoria Motus (1809).
Stewart [952, 1994] gives a survey of Gauss's work on solving linear systems:
see aso the afterword in [423, 1995].

The traditional form of GE, as given at the start of this chapter. can be
expressed algorithmically as

for k = 1in
for j = k+1:n
fori = k + Lin
ai; = a; - (ad/aw)ay
end
end
end

This is identified as the kji form of GE. Altogether there are six possible
orderings of the three loops. Doolittle’s method (Algorithm 9.2) is the ijk
or jik variant of Gaussian elimination. The choice of loop ordering does not
affect the stability of the computation, but can greetly affect the efficiency of
GE on a high performance computer. For more on the different loop orderings
of GE see Chapter 12; Dongarra, Gustavson. and Karp [310, 1984]; and the
books by Dongarra, Duff, Sorensen, and van der Vorst [315, 1991] and Golub
and Van Loan [470, 1989].

This chapter draws on the survey paper Higham [545, 1990]. Theorems 9.6
and 9.7 are from Higham and Higham [562, 1989].

Myrick Hascall Doolittle (1830-1913) was a “computer of the United States
coast and geodetic survey” [362, 1987]. Crout's method was published in an
engineering journal in 1941 [255, 1941].

GE and its variants were known by various descriptive names in the early
days of computing. These include the bordering met hod, the escalator met hod
(for matrix inversion), the square root method (Cholesky factorization), and
pivotal condensation. A good source for details of these methods is Fad-
deeva [360, 1959].

In a confidential 1948 report that “covers the genera principles of both the
design of the [Automatic Computing Engine] and the method of programming
adopted for it”, Wilkinson gives a program implementing GE with partial
pivoting and iterative refinement [1080, 1948, p. 111]. This was probably the

196 LU FACTORIZATION AND LINEAR EQUATIONS

first such program to be written and for a machine that had not yet been
built!

The terms “partial pivoting” and “complete pivoting” were introduced by
Wilkinson in [1085, 1961]. The pivoting techniques themselves were in use
in the 1940s and it is not clear who, if anyone, can be said to have invented
them: indeed, von Neumann and Goldstine [1057, 1947, 84.2] refer to complete
pivoting as the “customary procedure”.

There is a long history of published programs for GE. beginning with Crout
routines of Forsythe [390, 1960], Thacher [999, 1961], McKeeman [745, 1962],
and Bowdler, Martin, Peters, and Wilkinson [138, 1966], al written in Algol
60 (which was the “officia” language for publishing mathematical software in
the 1960s. and a strong competitor to Fort ran for practical use at that time).
The GE routines in LAPACK are the latest in a lineage beginning with the
Fortran routines decomp and solve in Forsythe and Moler's book [396, 1967],
and continuing with routines by Moler [766, 1972], [767, 1972] (which achieve
improved efficiency in Fortran by accessing arrays by column rather than by
row), Forsythe, Malcolm, and Moler [395, 1977] (these routines incorporate
condition estimation-see Chapter 14), and LINPACK [307, 1979].

LU fectorization of totally nonnegetive matrices has been investigated by
Cryer [257, 1973], [258, 1976], Ando [21, 1987], and de Boor and Pinkus
[273, 1977]. It is natural to ask whether we can test for total nonnegativity
without computing all the minors. The answer is yes: for an n x n matrix
total nonnegativity can be tested in O(n® operations. as shown by Gasca
and Pefia [421, 1992]. The test involves carrying out a modified form of GE
in which all the elimination operations are between adjacent rows and then
checking whether certain pivots are positive. Note the analogy with positive
definiteness, which holds for a symmetric matrix if and only if al the pivots
in GE are poditive.

The dilemma of whether to define the growth factor in terms of exact or
computed quantities is faced by all authors, most make one choice or the other,
and go on to derive, without comment, bounds that are strictly incorrect.
Theorem 9.8, for example, bounds the exact growth factor; the computed one
could. conceivably violate the bound, but only by a tiny relative amount. van
Veldhuizen [1045, 1977] shows that for a variation of partial pivoting that
allows either a row or column interchange at each stage, the growth factor
defined in terms of computed quantities is at most about (1 + 3nu)2"*,
compared with the bound 2" for the exact growth factor.

The idea of deriving error bounds for GE by anaysing the equations ob-
tained by solving A = LU is exploited by Wilkinson [1097, 1974], who gives a
general analysis that includes Cholesky factorization. This paper gives a con-
cise summary of error analysis of factorization methods for linear equations
and least squares problems.

Various authors have tabulated growth factors in extensive tests with ran-

9.10 NOTES AND REFERENCES 197

dom matrices. In tests during the development of LINPACK, the largest value
observed was pj, = 23, occurring for a random matrix of 1s, Os, and -1s [307,
1979, p. 1.21]. Macleod [720, 1989] recorded a vaue pf,, = 35.1, which oc-
curred for a symmetric matrix with elements from the uniform distribution
on [-1, 1]. In one MATLAB test of 1000 matrices of dimension 100 from the
normal N(O, 1) distribution, | found the largest growth factor to be pP = 9.59.

Gould [474, 1991] used the optimization LANCELOT [236, 1992] to maxi-
mize the nth pivot for complete pivoting as a function of about n*/3 variables

comprising the intermediate elements aﬁf) of the elimination; constraints were
included that normalize the matrix A, describe the elimination equations, and
impose the complete pivoting conditions. Gould's package found many loca
maxima, and many different starting values had to be tried in order to lo-
cate the matrix for which p{; > 13. In an earlier attempt a maximizing the
growth factor, Day and Peterson [271, 1988] used a problem formulation in
which the variables are the n”* elements of A, which makes the constraints and
objective function substantially more nonlinear than in Gould’'s formulation.
Using the package NPSOL [444, 1986], they obtained “largest known” growth
factors for 5<n < 7.

Theoretical progress into understanding the behaviour of the growth fac-
tor for complete pivoting has been made by Day and Peterson [271, 1988],
Puschmann and Cortés [849, 1983], Puschmann and Nordio [850, 1985], and
Edelman and Mascarenhas [345, 1995].

A novel dternative to partia pivoting for stabilizing GE is proposed by
Stewart [942, 1974]. The idea is to modify the pivot element to make it suit-
ably large, and undo this rank one change later using the Sherman-Morrison
formula. Stewart gives error anaysis that bounds the backward error for this
modified form of GE.

Theorem 9.8 is proved for matrices diagonally dominant by columns by
Wilkinson [1085, 1961, pp. 288-289]. Theorem 9.9 is proved in the same paper.
That p, < 2 for matrices diagonally dominant by rows does not appear to
be well known, but it is proved by Wendroff [1074, 1966, pp. 122-123]. for
example.

The results in 89.5 for tridiagonal matrices are taken from Higham [541,
1990]. Another method for solving tridiagonal systems is cyclic reduction,
which was developed in the 1960s [171, 1970]. Error analysis given by Amodio
and Mazzia [15, 1994] shows that cyclic reduction is normwise backward stable
for diagonally dominant tridiagonal matrices.

The chapter “Scaling Equations and Unknowns” of Forsythe and Moler
[396, 1967] is a perceptive, easy to understand treatment that is till well worth
reading. Early efforts at matrix scaling for GE were directed to equilibrating
either just the rows or the rows and columns simultaneously (so that al the
rows and columns have similar norms). An agorithm with the latter aim
is described by Curtis and Reid [259, 1972]. Other important references on

198 LU FACTORIZATION AND LINEAR EQUATIONS

scaling are the papers by van der Sluis [1040, 1970] and Stewart [945, 1977].
which employ normwise anadysis, and those by Skeel [919, 1979], [921, 1981],
which use componentwise analysis.

Much is known about the existence and stability of LU factorizations of
M-matrices and related matrices. A is an H-matrix if the comparison matrix
M(A) (defined in (8.6)) is an M-matrix. Funderlic, Neumann, and Plem-
mons [410, 1982] prove the existence of an LU factorization for an H-matrix
A that is generalized diagonally dominant, that is, DA is diagonaly dom-
inant by columns for some nonsingular diagonal matrix D: they show that
the growth factor satisfies p, < 2 max; |d;|/min; |d;|]. Neumann and Plem-
mons [791, 1984] obtain a growth factor bound for an inverse of an H-matrix.
Ahac, Buoni, and Olesky [7, 1988] describe a novel column-pivoting scheme
for which the growth factor can be bounded by n then A is an H-matrix.

The normwise bounds in Theorem 9.14 are due to Barrlund [71, 1991]
and the componentwise ones to Sun [972, 1992]. Similar bounds are given
by Stewart [951, 1993] and Sun [973, 1992]. Barrlund [72, 1992] describes a
general technique for deriving matrix perturbation bounds using integrals.

Interval arithmetic techniques (see §24.4) are worth considering if high ac-
curacy or guaranteed accuracy is required when solving a linear system. We
mention just one paper, that by Demmel and Kriickeberg [297, 198s], which
provides a very readable introduction to the subject and contains further ref-
erences.

For severa years Ededman has been collecting information on the solution
of large, dense linear algebra problems. His papers [337, 1991], [341, 1993],
[342, 1994] present statistics and details of the applications in which large
dense problems arise. Edelman also discusses relevant issues such as what
users expect of the computed solutions and how best to make use of paralel
computers. Table 9.2 contains “world records’ for linear systems from Edel-
man’s surveys. For all the records shown the matrix was complex and the
system was solved in double precision arithmetic by some version of LU fac-
torization. Most of the very large systems currently being solved come from
the solution of boundary integral equations, a major application being the
analysis of radar cross sections; the resulting systems have coefficient mat ri-
ces that are complex symmetric (but not Hermitian). A recent reference is
Wang [1064, 1991].

9.10.1. LAPACK

Driver routines xGESV (simple) and xGESVX (expert) use LU factorization with
partial pivoting to solve a general system of linear equations with multiple
right-hand sides. The expert driver incorporates iterative refinement, condi-
tion estimation, and backward and forward error estimation and has an option
to scale the system AX = B to(DR'AD;")De-X = D' B before solution,

PROBLEMS 199

Table 9.2. Records for largest dense linear systems solved (dimension n).

Y ear n Computer Time
1991 55296 Connection Machine CM-2 4.4 days
1992/3 75,264 Intel iPSC/860 2°/3days
1994 76,800 Connection Machine CM-5 4.1 days
1995 128,600 Intel Paragon =1 hour

where Dg = diag(r;) = diag(max; |a;|) and Dc = diag(max; rilg;l); the
scaling is done by the routine xGEEQU. The LU factorization is computed by
the routine XGETRF, which uses a partitioned outer product algorithm. The
expert driver aso returns the quantity [|A]|/||U]|, where [|A]] = max;; [a,
which is an estimate of the reciprocal of the growth factor, 1/p?. A value
much less than 1 signals that the condition estimate and forward error bound
could be unreliable.

For band matrices, the driver routines are xGBSV and xGBSVX, and for
tridiagonal matrices, xGTSV and xGTSVX; again, these use LU factorization
with partial pivoting.

Problems

9.1. (Completion of proof of Theorem 9.1.) Show that if a singular matrix
A ¢ R™" has a unique LU factorization then A, is nonsingular for k =
In-1

9.2. Define A(s) = A - sl, whees € R and 4 € R™*". For how many
values of s, a most, does A(s) fall to have an LU factorization without
pivoting?

9.3. Show tha A € R™ " has a unique LU factorization if O does not belong
to the field of values F(A) = {2*A4z/(2*2): 0# 2 € C" }.

9.4. State analogues of Theorems 9.3 and 9.4 for LU factorization with row
and column interchanges: PAQ = LU.

9.5. Give a 2 x 2 matrix A having an LU factorization A = LU such that
ILJJU| < c|A| does not hold for any c, yet I LU=/l Al is of order 1.

9.6. Show that if A € R"*™ is nonsingular and totally nonnegative it has an
LU factorization A = LU with L > 0 and U > 0. (Hint: use the inequality

det(A) < det(A(1:p,1:p)) det(A(p + lin,p + 1:n)), p=1lin—_

which holds for any totally nonnegative A [414, 1959, p. 100].) Deduce that
the growth factor for GE without pivoting p, = 1.

200 LU FACTORIZATION AND LINEAR EQUATIONS

9.7. Show that if A € R™*" ‘is nonsingular and its inverse is totally nonnega
tive then it has an LU factorization A = LU with |A] = |L||U]. (Use the fact
that if C is totally nonnegative and nonsingular then JC 3 is totally non-
negative, where J = diag(-1)'"™") (this can be proved using determinantal
identities; see [21, 1987, Thm. 3.3]).)

9.8. Show that Theorem 9.5 is valid for GE without pivoting, with a different
constant.

9.9. Suppose that GE without pivoting is applied to a linear system Ax = b,
where A € R™*" is nonsingular, and that al operations are performed exactly
except for the division determining a single multiplier I;; (where i > j and
A =LU), which is computed with relative error e: Ij; = I;;(1 +¢). Evauate
the difference x - T between the exact and computed solutions. (The answer
allows us to see clearly the effect of a computational blunder, which could, for
example. be the result of the mafunction of a computer's divide operation.)

9.10. Show that q in Theorem 9.7 sdtisfies

0(B) =0 (h’ _“ﬂ) — 20(A).

Hence, for g(n) defined in (9.14) and S, in (9.11). deduce a larger lower bound
than g(2n) > p&(S2,) = (2n+1)/2.

9.11. Explain the errors in the following criticism of GE with complete piv-
oting.

Gaussian elimination with complete pivoting maximizes the pivot
at each stage of the elimination. Since the product of the pivots is
the determinant (up to sign), which is fixed, making early pivots
large forces later ones to be small. These small pivots will have large
relative errors due to the accumulation of rounding errors during the
algorithm, and dividing by them therefore introduces larger errors.

9.12. In sparse matrix computations the choice of pivot in GE has to be
made with the aim of preserving sparsity as well as maintaining stability. In
threshold pivoting, a pivot element is chosen from among those elements in
column k tha satisfy |a§,‘f)| > T MaX,, >k \aiﬂ , where 7 € (0,1] is a parameter
(see, for example, Duff, Erisman, and Reid [325, 1986, 8§5.4]). Show that for
threshold pivoting

maxlaij” < (14 771" max|ay,|.
1 1

where m is the number of nonzero entries in the jth column of U. Hence
obtain a bound for p,.

PROBLEMS 201

9.13. (ReESeaRCH PRoOBLEM) Obtain sharp bounds for the growth factor for
GE with partial pivoting applied to (a) a matrix with lower bandwidth p
and upper bandwidth g (thus generalizing Theorem 9.10), and (b) a quasi-
tridiagonal matrix (an n x n matrix that is tridiagonal except for nonzero
(4, n) and (n, 1) elements).

9.14. (ReESeaRCH PROBLEM) Explain why the growth factor for GE with
partial pivoting is amost aways small in practice.

9.15. (RESEARCH PROBLEM) For GE with complete pivoting what is the
vaue of lim, . g(n)/n (see (9.14))? Is p¢, equal to n for Hadamard matrices?

Previous Home

Chapter 10
Cholesky Factorization

The matrix of that equation system is negative definite-which is a
positive definite system that has been multiplied through by — 1.
For all practical geometries the common finite difference

Laplacian operator gives rise to these,

the best of all possible matrices.

Just about any standard solution method will succeed,

and many theorems are available for your pleasure.

—FORMAN S. ACTON, Numerical Methods That Work (1970)

Many years ago we made out of half a dozen transformers
a simple and rather inaccurate machine for

solving simultaneous equations—the solutions being
represented as flux in the cores of the transformers.
During the course of our experiments we

set the machine to solve the equations—

X+Y+zZ2=1
X+Y+Z=2
X+Y+Z2=3

The machine reacted sharply—it blew the main fuse and put all the lights out.
—B. V. BOWDEN, The Organization of a Typical Machine (1953)

There does seem to be some misunderstanding about the
purpose of an a priori backward error analysis.

All too often, too much attention is paid

to the precise error bound that has been established.

The main purpose of such an analysis is either to

establish the essential numerical stability of an algorithm or to
show why it is unstable and in doing so to

expose what sort of change is necessary to make it stable.
The precise error bound is not of great importance.

—J. H. WILKINSON, Numerics/ Linear Algebra on Digits/ Computers (1974)

203

Next

204 CHOLESKY FACTORIZATION

10.1. Symmetric Positive Definite

Symmetric positive definiteness is one of the highest accolades to which a
matrix can aspire. Symmetry confers major advantages and simplifications
in the eigenproblem and, as we will see in this chapter, positive definiteness
permits economy and numerical stability in the solution of linear systems.
A symmetrical matrix A € R™*" is positive definite if xX'Ax > 0 for dll
nonzero z € R™. Well-known equivalent conditions to A = A’ being positive
definite are

o det(Ay) > 0, k = Lin, where A, = A(1:k, 1:k) is the leading principal
submatrix of order k.

e Af(A) >0, k = 1:n, where A\x denotes the kth largest eigenvalue.

The first of these conditions implies that A has an LU factorization, A = LU
(see Theorem 9.1). Another characterization of positive definiteness is that the
pivots in LU factorization are positive, since uy = det(Ap/det(A,;). By
factoring out the diagonal of U and taking its sguare root, the LU factorization
can be converted into a Cholesky factorization: A = R'R, where R is upper
triangular with positive diagonal elements. This factorization is so important
that it merits a direct proof.

Theorem 10.1. If A € R™™ is symmetric positive definite then there is a
unique upper triangular R € R™*™ with positive diagonal elements such that
A = R'R

Proof. The proof is by induction. The result is clearly true for n
1. Assume it is true for n — 1. The leading principal submatrix A,_;
A(1:n-1,1:n-1) is positive definite, so it has a unique Cholesky factorization
A., = RI_|R,_,. We have a factorization

T -
e[t 2)-[% Sl 5] -

¢« (10.1)

if
RZ—IT =c, (10.2)
rTr+ 8% =a. (10.3)

Equation (10.2) has a unique solution since R,.; is nonsingular. Then (10.3)
givesb? = a — r'r. It remains to check that there is a unique real, positive b
satisfying this equation. From the equation

0 < det(A) = det(R") det(R) = det(R, ;)%b?

10.1 SyMMETRIC POSITIVE DEFINITE MATRICES 205

we see that b? >0, hence there is a unique b > 0. O

The proof of the theorem is constructive, and provides a way to compute
the Cholesky factorization that builds R a column at a time. Alternatively,
we can work directly from the equations

7
=Y rarkg, 724,
k=1

which follow by equating (i, j) elements in A = R'R. By solving these equa-
tions in the order (1,1), (1,2), (2,2), (1,3), (2,3), (3,3), . . ., (n,n), we obtain
the following algorithm.

Algorithm 10.2. Given a symmetric positive definite A € R™*™ this algo
rithm computes the Cholesky factorization A = R'R.

for j = 1in
for i = 1:j-1
ri; = (aij — E;c;ll ThiTkj)/Tsi
end
1
ri; = (aj5 — Ei 17"12c])1/2
end

Cost: n%3 flops (haf the cost of LU factorization).

As for Gaussian elimination (GE), there are different agorithmic forms of
Cholesky factorization. Algorithm 10.2 is the jik or “sdot” form. We describe
the kij, outer product form in 810.3.

Given the Cholesky factorization A = R'R, a linear syslem Ax = b can
be solved via the two triangular systems R'y = b and Rx = .

If we define D =diag(r%) then the Cholesky factorization A = R'R
can be rewritten as A = LDL', where L = R' diag(r;;))™ is unit lower
triangular. The LDL' factorization is sometimes preferred over the Cholesky
factorization because it avoids the need to compute the n sguare roots that
determine the r;;. The LDL' factorization is certainly preferred for solving
tridiagonal systems, as it requires n less divisions than Cholesky factorization
in the substitution stage. All the results for Cholesky factorization in this
chapter have anaogues for the LDL' factorization. Block LDL' factorization
for indefinite matrices is discussed in 810.4.

10.1.1. Error Analysis

Error bounds for Cholesky factorization are derived in a similar way to those
for LU factorization. Consider Algorithm 10.2. Using Lemma 8.4 we have

E Tkz'rk]

< Z [P [P - (10.4)

206 CHOLESKY FACTORIZATION

From a variation of Lemma 8.4 in which the division is replaced by a square
root (see Problem 10.3), we have

J

~2

ajj — E :Tkj
k=1

A backward error result is immediate.

J
~2
<Y+ Z Tkj
k=1

Theorem 10.3. If Cholesky factorization applied to the symmetric positive
definite matrix A € R™ ™ runs to completion then the computed factor R
satisfies

RTR=A+A44, |8A<7,.BT|IR. © (10.5)

Theorem 10.4. Let A € R™ ™ be symmetric positive definite and suppose
Cholesky factorization produces a computed factor R and a computed solution
Z to AXx = b. Then

(A+AA)E=b, |AA| < 2v,,,|RT||R]. (10.6)
Proof. The proof is analogous to the proof of Theorem 9.4. DO

These results imply that Cholesky factorization enjoys perfect normwise
backward stability. The key inequality is

IRTIRIll2 = | |RI I3 < nllRIZ = nllAll2,
whose analogue for the computed R is, from (10.5),
HETNR |2 < n(1 = v 41) 7M1 All2-
Thus (10.6) implies
[AAll2 < [[AAll2 £ 27p 4271 = i) " Al < 8n(n + Dul|A]l2, (10.7)

where for the last inequality we have assumed that g, ,; < /2. Another
indicator of stahility is that the growth factor for GE is exactly 1 (see Prob-
lem 10.4). It is important to realize that the multipliers can be arbitrarily
large (consider, for example, [% 9]as g — 0). But, remarkably, for a positive
definite matrix the size of the multipliers has no effect on stability.

Note that the perturbation DA in (10.6) is not symmetric, in generd,
because the backward error matrices for the triangular solves with R and
R" are not the transposes of each other. For conditions guaranteeing that a
“small” symmetric DA can be found, see Problem 7.11.

The following rewritten version of Theorem 10.3 provides further insight
into Cholesky factorization.

10.1 SyMMETRIC POSITIVE DEFINITE MATRICES 207

Theorem 10.5 (Demmel). If Cholesky factorization applied to the symmet-
ric positive definite matrix A € R™ " runs to completion then the computed
factor R satisfies

RTR=A+ A4, |AA| < (1 —pi1) Ynyrdd?,

1/2
i

whered = a
Proof. Theorem 10.3 shows that RTR = A+DA with |DA| < g.. 1 |RT||R].
Dencting by 7; the ith column of R, we have

I7:ll3 = 777 = asi + Aai < asi + Yo [R] 77,

sothat ||7ill3 < (1 —7n41) tai. Then, using the Cauchy-Schwarz inequality,
P71 < IFell2lFsllz < (1= o) (@isa5) M2,

giving R
IRT||R| < (1 — vpqq) " dd” (10.8)

and the required bound for DA. O

Standard perturbation theory applied to Theorem 10.4 yields a bound
of the form ||z — Z||/|lz]| < cruk(A) + O(u?). However, with the aid of
Theorem 10.5 we can obtain a potentialy much smaller bound. The idea is
to write A = DHD where D = diag(A)"?, so that H has unit diagonal. van
der Sluis's result (Corollary 7.6) shows that

ko(H) <m _ min ko(FAF), (10.9)
F diagonal
so D is nearly a condition-minimizing diagonal scaling. It follows that k,(H) <

nk,(A) and that k,(H) << k,(A) is possible if A is badly scaled. Note that
1<||H]l, < n, since H is positive definite with h; = 1.

Theorem 10.6 (Demmel, Wilkinson). Let A = DHD € R™*™ be symmetric
positive definite, where D = diag(A)Y% and suppose Cholesky factorization
successfully produces a computed solution Z to Ax = b. Then the scaled error
D(z —z) satisfies
ID@-9)lla _ _ralH)e
Dzl 1—ra(H)e’

where €: = 2n(1 - gn+|)7lgn+1-

(10.10)

Proof. Straightforward analysis shows that (cf. the proof of Theorem 9.4)
(A + DA)ZT = b, where

AA = AA + AR+ RTAy + A Ay,

208 CHOLESKY FACTORIZATION

with [DA)| < (1-Gy+1) G, 1dd" (by Theorem 105) and |Dy| < diag(g) |BT,
ID,| < diag(g, . i+ 1) |Bl- Scaling with D, we have

(H+ D 'AAD™Y)DZ = D™ b,
and standard perturbation theory gives

ID(z = 2)ll2 _ _s2(H)| D 'AAD |2
|IDzll; = 1—ko(H)|D-TAAD-Y|y’

But, using (10.8) and |[D"'dd'D’ Y, = |lee’|l, = n, we have

|0~ 44D < 322D dd "D,
n+1

+ diag(v; + Yp—it1 + YVn_ix)IIDTHRT||RID™Y|2
<2n(1 - ’Yn+1)_1')’n+1a

using Lemma 3.3, which yields the result. O

Care needs to be exercised when interpreting bounds that involve scaled
quantities, but in this case the interpretation is relatively easy. Suppose that
H is well conditioned and k,(D) is large, which represents the artificial ill
conditioning that the DHD scaling is designed to clarify. The vector Dx =
H D™ b is likely to have components that do not vary much in magnitude.
Theorem 10.6 then guarantees that we obtain the components of Dx to good
relative accuracy and this means that the components of x (which will vary
greatly in magnitude) are obtained to good relative accuracy.

So far, our results have al contained the proviso that Cholesky factoriza-
tion runs to completion—in other words, the results assume that the argument
of the square root is adways positive. Wilkinson [1092, 1968] showed that suc-
cess is guaranteed if 20n*’ %, (A)u < 1, that is, if A is not too ill conditioned.
It would be nice to replace A in this condition by H, where A = DHD. Justi-
fication for doing so is that Algorithm 10.2 is scale invariant, in the sense that
if we scde A— FAF, where F is diagond, then R scales to RF; moreover, if
F comprises powers of the machine base, then even the rounding errors scale
according to F. The following theorem gives an appropriate modification of
Wilkinson's condition.

Theorem 10.7 (Demmel). Let A = DHD € R™*™ be symmetric positive
definite, when D = diag(A)"% If Amin(H) > ng,../(1-g,.;) then Cholesky
factorization applied to A succeeds (barring underflow and overflow) and pro-
duces a nonsingular R. [fAmin(H) < -ng,../(1-g..1) then the computation
is certain to fail.

10.2 SENSITIVITY OF THE CHOLESKY FACTORIZATION 209

Proof. The proof is by induction. Consider Algorithm 10.2. The first
stage obviously succeeds and gives 7;; > 0, since a;; > 0. Suppose the
algorithm has successfully completed k — 1 stages, producing a nonsingular
Ri.1, and consider equations (10.1)-(10.3) with n replaced by k. The kth
stage can be completed, but may give a pure imaginary 3 (it will if fi(a —
7T7) < 0). However, in the latter event, the error andysis of Theorem 10.5
is il valid! Thus we obtain R, satisfying RiR, = A, + DA, [DA] < (1 -

Vo) Mkr1dkdr, where d = [a%f,...,a,t{f]T. Now, with D, = diag(d,),

we have

Amin (Dy '(Ak + AAk)D; ') = Amin (Hx + Dy ' AAkDY)
> Amin(Hi) — | D ' AAxD |2

v
>)‘min(Hk) — %lleeT”2
T Tk+1

> /\min(H) - k’nc—-l-l > 0:
b =Y

using the interlacing of the eigenvalues [470, 1989, Cor. 8.1.4] and the con-
dition of the theorem. Hence D;'(Ax + AAx)D; ! is positive definite, and
therefore so is the congruent matrix A, + DA, showing that fzk must be real
and nonsingular, as required to complete the induction.

If Cholesky succeeds, then, by Theorem 105, D™ (A + DAD™ is positive
definite and S0 0 < Agin (H)+[| D' AAD |2 < Amin(H)+n(1 =Y 11) " Yng1-
Henceif Amin(H) < -ng,41/(1-g,+1) then the computation must fal. O

Note that, since ||[H||2 > 1, the condition for success of Cholesky factor-
ization can be written as k,(H)ng,+1/(1-gn+1) < 1.

10.2. Sensitivity of the Cholesky Factorization

The Cholesky factorization has perturbation bounds that are similar to those
for LU factorization, but of a smpler form thanks to the positive definiteness

(IAYl, replaces [JU Y|IL Y, in the normwise bounds).

Theorem 10.8 (Sun). Let A € R™™™ be symmetric positive definite with the
Cholesky factorization A = R'R and let AA be a symmetric matrix satisfying
IN'DA|[, < 1. Then A + DA has the Cholesky factorization A + DA =
(R + DR'(R + DR), where

IARIF _ . _1/p ra(A)e IAA|
T <ol €= , p=2F
IRl 1— ra(A)e Al P

210 CHOLESKY FACTORIZATION

Moreover, if p(|G|) < 1, where G = (R + DR)DA(R + DR)%, then
IDR| < triu(|G|(I - |G)™)|R + AR],
where triu(-) denotes the upper triangular part. 0

Note that the Cholesky factor of A, = A(l:k,1k) is R, and k,(A.y) >
ko(Ay) by the interlacing property of the egenvalues. Hence if A, (and
hence A) is ill conditioned but A, is well conditioned then R, will be relatively
insensitive to perturbations in A but the remaining columns of R will be much
more sensitive.

10.3. Positive Semidefinite Matrices

If A is symmetric and positive semidefinite (XAx > 0 for al x) then a
Cholesky factorization exists, but the theory and computation are more subtle
than for postive definite A.

The questions of existence and uniqueness of a Cholesky factorization are
answered by the following result.

Theorem 10.9. Let A € R™™™ be positive semidefinite of rank r. (a) There
exists at least one upper triangular R with nonnegative diagonal elements such
that A = R'R. (b) There is a permutation P such that P TAP has a unique
Cholesky factorization, which takes the form

IOTAIT = R'TR, R= [RO“ ROW] , (10.11)

where Ry, is r x r upper triangular with positive diagonal elements.

Proof. (a): Let the symmetric positive semidefinite square root X of A
have the QR factorization X = QR with r;; > 0. Then A = X*> = X'X =
R'Q'QR = R'R. (b): The algorithm with pivoting described below amounts
to a constructive proof. O

Note that the factorization in part (a) is not in general unique. For exam-

ple,
0 0 _ 0 0 0 cos@
0 1| |cos@® sinf| |0 sind |-

For practical computations a factorization of the form (10.11) is needed,
because this factorization so conveniently displays the rank deficiency. Such
a factorization can be computed using an outer product Cholesky algorithm,
comprising r = rank(A) stages. At the kth stage, a rank-1 matrix is sub-
tracted from A so as to introduce zeros into positions k:n in the kth row and

10.3 POSITIVE SEMIDEFINITE MATRICES 211

column. Ignoring pivoting for the moment, at the start of the kh stage we
have

k-1 n—k+1
k) _ (k) 0 0
A =A- er ket [0 A } (10.12)
where v =10, ..., 0, r;j, . . ., I;)]. The reduction is carried one stage further
by computing
e = 1/ at®
kk = \/ Qpp»

Tkj —akj)/rkk, j=k+1n,

D D e, 43 =k41n

Overdl we have,
A= Zrl =R"R RT =[ry,...,7).

To avoid breakdown when ai’;) vanishes (or is negative because of rounding

errors), pivoting is incorporated into the algorithm as follows. At the start
of the kth stage an element agﬁ) > 0 (s > K) is sdected as pivot, and rows
and columns k and s of A, and the kth and sth dements of r;, i = 1.k — 1,
are interchanged. The overall effect is to compute the decomposition (10.11),
where the permutation P takes account of al the interchanges.

The standard form of pivoting is defined by

—mind - a6 — o
s = mln{j ta0 = krél?gcn i
This is egquivalent to complete pivoting in GE, since Ay is positive semidefinite
so its largest element lies on the diagonal. We note for later reference that
this pivoting strategy produces a matrix R that satisfies (cf. Problem 18.5)

min(j,r)

T2 > Z TU, j=k+1ln, k=Lr (10.13)
i=k

It will be convenient to denote by cp(A) := PTAP the permuted matrix
obtained from the Cholesky algorithm with complete pivoting.

10.3.1. Perturbation Theory

In this section we analyse, for a positive semidefinite matrix, the effect on
the Cholesky factorization of perturbations in the matrix. This perturbation
theory will be used in the error analysis of the next section.

212 CHOLESKY FACTORIZATION

Throughout this section A is assumed to be an n x n postive semidefinite
matrix of rank r whose leading principal submatrix of order r is positive
definite. For k = 1:r we will write

k n—k
ko[A A
A= 10.14
n—k A’{Q Azz] ()
and other matrices will be partitioned conformably.
We have the identity
k
a= & |Bhg R]+[0 O]
=) 12)
n-k |RL | 0 Sk(A) (10.15)

where R,; is the Cholesky factor of A, Ry, = Riy 4z, and
Sk(A) = Az — ARAT Ay,

is the Schur complement of A;; in A. Note that S(A) = O, so that for k = r,
(10.15) is the (unique) Cholesky factorization of A. The following lemma
shows how S(A) changes when A is perturbed.

Lemma 10.10. Let E be symmetric and assume A;; + Ej;; is nonsingular.
Then

Sk(A+E) = Sx(A)+En—(ELW+WTE)+WTELW+O(| E|)?), (10.16)
where W= AT}'Aj,.
Proof. We can expand
(A1 + En) ™' =AY - AR E A + AT E A En A+ O(IEulP).

The result is obtained by subgtituting this expansion into S(A+E) = (A, +
Ex) — (Ap + Eip)'(Au + Ei) '(Ap + Ep), and collecting terms. O

Lemma 10.10 shows that the sensitivity of S(A) to perturbations in A
is governed by the matrix W = A7}'A;,. The question arises of whether,
for a given A, the potential |W||2 magnification of E indicated by (10.16)
is attainable. For the no-pivoting strategy, P = I, the answer is trivialy
“yes', since we can take E = [o], ‘with |g| small, to obtain ||S(A+E) -
Sk(A)l2 = IWIZIIE|l2+O (I Ell3). | For complete pivoting, however, the answer
is complicated by the possibility that the sequence of pivots will be different for
A+ E than for A, in which case Lemma 10.10 is not applicable. Fortunately, a
mild assumption on A is enough to rule out this technical difficulty, for small
[lEl| . In the next lemma we redefine A := cp(A) in order to simplify the
not at ion.

10.3 POSITIVE SEMIDEFINITE MATRICES 213

Lemma 10.11. Let A := cp(A). Suppose that
(SiA)11 > (SiA);, j=2n-i, i = 0r-1 (10.17)

(where & (A) := A). Then, for sufficiently small ||E||,, A+E = cp(A+E).
For E =[%'8], with |g| sufficiently small,
Sk (cp(A + E)) = Se(A)llz = IWIZIEll2 + O(IEI3).

Proof. Note that since A = cp(A), (10.17) smply states that there
are no ties in the pivoting strategy (since (Si(A))11 = az(-f:fi)ﬁ in (10.12)).
Lemma 10.10 shows that S(A+E) = S(A) + O(||E|l,), and so, in view of
(10.17), for sufficiently small ||E||, we have

(Si(A+ E)),, > (Si(A+E)) j=2n—4, i=0:r—1.

i’
This shows that A + E = cp(A+E). The last pat then follows from
Lemma 10.10. O

We now examine the quantity |\W||, = ||AAallz. We show first that
[[W]|> can be bounded in terms of the square root of the condition number of
All.

Lemma 10.12. If A, partitioned as in (10.14), is symmetric positive definite
and A,; is positive definite then ||AT!Arsllz < v/ IlAT 2]l A2 ll2-
1/2

Proof. Write A71A,, = A7/2A7 /%Ay, and use |47 2|2 = |AT 1S/,
together with [|A;/2Apllz = |AGLAT ALl < |lA2]3/? which follows
from the fact that the Schur complement Ay —Aj, Al A2 i positive semidef-
inite. 0

Note that, by the arithmetic-geometric mean inequaity /zy < (z +y)/2
(x, y > 0), we aso have, from Lemma 1012, ||A}'Apllz < (1A 2 +
1A22]]2)/2. - S

The ineguality of Lemma 10.12 is attained for the positive semidefinite
matrix

A= ok k Iy pnk

_ a>0
Lickr @ 'y gni|’ ’

where 1, is the p x q identity matrix. This example shows that [[W], can
be arbitrarily large. However, for A := cp(A), ||W]|, can be bounded solely
in terms of n and k. The essence of the proof, in the next lemma, is that
large elements in A7}' are countered by smal elements in Ap,. Heredfter we
set k = r, the value of interest in the following sections.

214 CHOLESKY FACTORIZATION

Lemma 10.13. Let A := cp(A) and set k=r. Then

- 1
AT Asallz,F < \/g(n -7r)(4" —1). (10.18)

There is a parametrized family of rank-r matrices A(q) = cp(A(d)), 8 € (0, 5],
for which

| A11(8) " Ar2(8)ll2,F — \/%(n —r)4r—1) as 0.

Proof. The proof is a straightforward computation. The matrix A(O) :=
R(9)'R(q), where

1 —¢ -c —c —cC —C
1 —c —c —C . —cC

R(9) = diag(1,s,...,s"" 1) 1 : : : | e rT*,
1 —c ... —c

(10.19)
with ¢ = cosq, s = sin g. Thisis the r x n version of Kahan's matrix (8.10). R

satisfies the inequalities (10.13) (as equalities) and so A(q) = cp(A(q)). O

We conclude this section with a “worst-case” example for the Cholesky fac-
torization with complete pivoting. Let U(q) = diag(r, r-1, 1R(q), where
R(q) is given by (10.19), and define the rank-r matrix C(q) = U(q)'U(q).
Then C(q) satisfies the conditions of Lemma 10.11. Also,

[Wll2 = |C11(8) ' Cr2(8)ll2 = 1U11(8) " Ur2(8)ll2 = | R12(6) ™" Ra2(6) |2

_a\/%(n—r)(zir—l) 256 — 0.

Thus, from Lemma 10.11, for E = [/ 9], with |g| and q sufficiently small,

15-(cp(C(O) + B)))la = 5(n =)& — DB,

This example can be interpreted as saying that in exact arithmetic the resid-
ual after an r-stage Cholesky factorization of a semidefinite matrix A can
overestimate the distance of A from the rank-r semidefinite matrices by a
factor as large as (n — r)(4" — 1)/3.

10.3.2. Error Analysis

In this section we present a backward error analysis for the Cholesky factor-
ization of a positive semidefinite matrix. An important consideration is that

10.3 PoSITIVE SEMIDEFINITE MATRICES 215

a matrix of floating point numbers is very unlikely to be ‘(exactly” positive
semidefinite; errors in forming or storing A will almost certainly render the
smallest eigenvalue nonzero, and possibly negative. Therefore error analysis
for a rank r postive semidefinite matrix may appear, a first sight, to be of
limited applicability. One way around this difficulty is to state results for
A = A + DA, where A is the matrix stored on the computer, A is positive
semidefinite of rank r, and DA is a perturbation, which could represent the
rounding errors in storing A, for example. However, if the perturbation AA
is no larger than the backward error for the Cholesky factorization, then this
extra formalism can be avoided by thinking of DA as being included in the
backward error matrix. Hence for simplicity, we frame the error anaysis for
a poditive semidefinite A.

The analysis makes no assumptions about the pivoting strategy, so A
should be thought of as the pre-permuted matrix PTAP.

Theorem 10.14. Let A be an n x n symmetric positive semidefinite matrix
of floating point numbers of rank r < n. Assume that A;; = A(Lr, 1) is
positive definite with

Amin(H11) > 7% 41/(1 = Vr1)s (10.20)

where A;; = Dy Hy; Dy, and Dy = diag(An)Y% Then, in floating point
arithmetic, the Cholesky algorithm applied to A successfully completes r stages
(barring underflow and overflow), and the computed r x n Cholesky factor R-
satisfies

14— BIR,ll2 < 2%, | All2(IW)l + 1) + O(u?), (10.21)
where W = AT'Ap,.

Proof. First, note that condition (10.20) guarantees successful completion
of the first r stages of the agorithm by Theorem 10.7.
Analysis very smilar to that leading to Theorem 10.3 shows that

A+ E=RIR, + AU+D), (10.22)
where
T n—r
T n—r
- ST - - [0 0
R.= +[Ry Ry, AUtD= ~ |,
r[11 12] e 10 Sr+1
and

|E| < 1 (|1BT|| RS+ [ATHD)). (10.23)

216 CHOLESKY FACTORIZATION

Taking norms in (10.23) and using the inequality |||B| ||z < 1/rank(B)||Blls,
we obtain
IEll2 € Yyr (PN RTI2l| Rellz + v = F| A)
= 7,41 (P BZR, ||z + v — 7| AT D)
=741 (TllA+ E — ATy + V/n= 7| AT
< Yo (TN Allz + 7] Ellz + n) ATD),

which implies

'7 —~,
IEll2 < ﬁ(rlmuz +nf|ATHDl). (10.24)
r+1

Our am is to obtain an a priori bound for ||4 — ﬁfﬁ,||2. It is clear from
(10.22)-(10.24) that to do this we have only to bound [|A{"*"),. To this end,
we interpret (10.22) in such a way that the perturbation theory of §10.3.1 may
be applied.

Equation (10.22) shows that §r+1 is the true Schur complement for the
matrix A + E and that Ay, + E); = ﬁflﬁll is positive definite. Hence we can
use Lemma 10.10 to deduce that

1Az = 18 s1llz < | Baallz + 21 Brallz| Wiz + IW (31 Erallz + O(w?)
2
< IEN(IWllz + 1) + O(u?).
Substituting from (10.24) we find that
ATz < ry, [All2(IW 12 + 1)% + O(u?).

Finally, using (10.22) and (10.24), we obtain

I4 = BIR,ll2 < 2rvepalAI(IW Il + 1)* + O@?). O

Theorem 10.14 is just about the best result that could have been expected,
because the bound (10.21) is essentidly the same as the bound obtained on
taking norms in Lemma 10.10. In other words, (10.21) simply reflects the
inherent mathematical sensitivity of A-R'R to small perturbations in A.

We turn now to the issue of stability. Idedlly, for A as defined in Theo-
rem 10.14, the computed Cholesky factor R, produced after r stages of the
algorithm would satisfy

IA — RTR, ||2 < caull Allz,

10.3 PoSITIVE SEMIDEFINITE MATRICES 217

where ¢, is a modest constant. Theorem 10.14 shows that stability depends
on the size of ||W|, = ||A7}A4.llz2 (to the extent that ||W||, appears in a
realistic bound for the backward error).

If no form of pivoting is used then ||W|, can be arbitrarily large for fixed
n (see 810.3.1) and the Cholesky algorithm must in this case be classed as
unstable. But for complete pivoting we have from Lemma 10.13 the upper
bound W], < (1/3(n —)4 — 1) Thus the Cholesky agorithm with
complete pivoting is stable if r is small, but stability cannot be guaranteed,
and seems unlikely in practice, if ||W]|, (and hence, necessarily, r and n) is
large.

Numerical experiments show that ||WM]|, is amost aways small in practice
(typically less than 10) [540, 1990]. However, it is easy to construct examples
where ||W|, is large. For example, if R is a Cholesky factor of A from complete
pivoting then let C = M(R)" M(R), where M(R) is the comparison matrix;
C will usually have a much larger vaue of [|[W]|, than A.

An important practical issue is when to terminate the Cholesky factoriza-
tion of a semidefinite matrix. The LINPACK routine xCHDC proceeds with
the factorization until a nonpositive pivot is encountered, that is, up to and
including stage k — 1, where k is the smallest integer for which

i <0, i=kn (10.25)

Usually k > r + 1, due to the effect of rounding errors.
A more sophisticated termination criterion is to stop as soon as

ISkl <ellA]l or @¥ <0, i=kn, (10.26)

for some readily computed norm and a suitable tolerance e. This criterion
terminates as soon as a stable factorization is achieved, avoiding unnecessary
work in eliminating negligible elements in the computed Schur complement
Sk. Note that IISkII is indeed a reliable order-of- magnltude estimate of the
true residua, since Sk is the only nonzero block of A¥ and, by (10.22) and
(10.24), A— RT_|R, | = A®) — E with ||E|]| = O)(IA + [IA%])).
Another possible stopping criterion is
max a(k) < ea() (10.27)
k<i<n
This is related to (10.26) in that if A (pre-permuted) and A, are positive
semidefinite then a() =max;; |a;| = [|All, and similarly maxk<i<n aEf) =

[1Skll2- Note that (10.27) bounds #2(Rk—1), since if (10.27) holds first a the
kth stage then, using Theorem 8.13,

~ ~ ~(1 1/2
ro(Re-1) Ml =(aly > <172,

k — 1)1/2 2k-2 — |?k_1,k—l| afck_ﬁl):—l

218 CHOLESKY FACTORIZATION

Practical experience shows that the criteria (10.26) and (10.27) with € =
nu both work well, and much more effectively than (10.25) [540, 1990]. We
favour (10.27) because of its negligible cost.

10.4. Symmetric Indefinite Matrices and Diagonal Pivot-
ing Method

Let A € R™™" be symmetric but indefinite, that is, (x'Ax) (y'Ay) < 0 for
some x and y. How can we solve Ax = b efficiently?

Gaussian elimination with partial pivoting (GEPP) can be used to com-
pute the factorization PA = LU, but it does not take advantage of the symme-
try to reduce the cost and storage. We might try to construct a factorization
A = LDL', where L is unit lower triangular and D is diagonal. But this
factorization may not exist, even if symmetric pivoting is alowed, and if it
does exist its computation may be unstable. For example, consider

o B A N [S

There is arbitrarily large element growth for 0 < € << 1, and the factorization
does not exist for €= 0.

The most popular approach for solving symmetric indefinite systems is to
use a block LDL" factorization

PAP" = LDL",

where L is unit lower triangular and D is block diagonal with 1 x 1 or 2 x 2
diagonal blocks. This factorization is essentially a symmetric block form of
GE, with pivoting. Note that by Sylvester’'s inertia theorem, A and D have
the same inertia”, which is easily determined from D (see Problem 10.11).

To begin the computation of the factorization we choose a permutation P
and an integer s = 1 or 2 so that

r « [E CT
nAm=__, [C B |

with E nonsingular. Then we compute the factorization

r [I, 0 E 0 I, E7CT
Al ‘[CE—I In_sHo B—CE-ICTHO Inos |

The inertia of a symmetric matrix is an ordered triple {i,, i, i}, where i, is the
number of positive eigenvalues, i_ the number of negative eigenvalues, and i, the number
of zero eigenvalues.

10.4 INDEFINITE MATRICES 219

This process is repeated on the (n — s) x (n —s) Schur complement
A=B-CE 'C'.

The cost of the method is n%3 flops (the same as the cost of Cholesky fac-
torization of a positive definite matrix) plus the cost of determining the per-
mutations 17. This method for computing the block LDL' factorization is
caled the diagonal pivoting method. It can be thought of as a generalization
of Lagrange’'s method for reducing a quadratic form to diagonal form (devised
by Lagrange in 1759 and rediscovered by Gauss in 1823) [763, 1961, p. 371].

One conceivable difficulty with the diagona pivoting method can be dis-
posed of immediately. If a nonsingular pivot metrix E of dimension 1 or 2
cannot be found, then all 1 x 1 and 2 x 2 principal submatrices of the sym-
metric matrix A are singular, and this is easily seen to imply that A is the
zero matrix.

The strategy for choosing 17 is crucial for achieving stability. A suitable
modification of the error analysis for block LU factorization (Theorem 12.4)
tells us that, provided linear systems involving 2 x 2 pivots are solved in a
normwise backward-stable way, the condition ||L|| |ID]| |IL"|| < cJl|All, for
a modest constant c,, is sufficient to ensure dability. A key requirement,
therefore, is to choose the pivot E so that the Schur complement A is suitably
bounded, since D is made up of elements of Schur complements. We describe
two suitable pivoting strategies.

10.4.1. Complete Pivoting

Bunch and Perlett [166, 1971] devised the following strategy for choosing 17.
It suffices to describe the interchanges for the first stage of the factorization.

Let my = max;; |ay|, m = max; |a;], and choose a € (0, 1).

if m >am,

Set s = 1, and choose P so that |e;q] = m.
else

Set s = 2, and choose P <o that |ey| = mp.
end

Note that m is the best 1 x 1 pivot under symmetric permutations and
my is the pivot that would be chosen by GE with complete pivoting. This
strategy says “as long as there is a diagona pivot eement not much smaller
than the complete pivot, choose it as a 1 x 1 pivot”, that is, “choose a1 x 1
pivot whenever possible’. If the strategy dictates the use of a 2 x 2 pivot then
that pivot E is indefinite (see Problem 10.11).

It remains to determine a. This is done by minimizing a bound on the
element growth. For the following analysis we assume that the interchanges

220 CHOLESKY FACTORIZATION

have dready been done. If s = 1 then
~ 1 _ 2 1
Gy =by—cag—ey = [Iyl<po+ < (14 2)no.

Now consider the case s = 2. The (i, j) element of the Schur complement
A=B-CE 'C' is
@i =bij — [ca ciz] E7? [gﬂ]) (10.28)
42

Now

E-! = [611 612]_1 _ 1 [€22 _312]
€21 €2 det(E) | —e21 en

and, using the symmetry of E,
det(E) = en1e22 — €3, = enrezn — p§ < pf — pg < (a® — 1)ug.
Since a € (0, 1), we have |det(E)] > (1 — a’)u?. Thus
1 a 1
E7l< ——M— .
B e 1)
Since |¢;| < mp, we obtain from (10.28)

21+ a)ug (
(1= a?)uo
To determine a we equate the maximum growth for two s = 1 steps with

that for one s = 2 step:
2
o l-«a

which reduces to the quadratic equation 4a° — a — 1 = 0. We require the
positive root

- 2
|ai;| < po + 1+——) Lo-

l-«

=~ 0.64.

The anadysis guarantees a growth factor bound of (1+a)" = (2.57)"*.
This bound is pessimistic, however; a much more detailed analysis by Bunch
[158, 1971] shows that the growth factor is no more than 3.07(n—1)**°® times
larger than the bound (9.13) for LU factorization with complete pivoting—a
very satisfactory result. Strictly spesking, bounding the growth factor bounds
only ||D||, not ||L]]. But it is easy to show that for s = 1 and 2 no element of
CE' exceeds max{1/a,l/(1-a)} in absolute value, and so ||L|| is bounded
independently of A.

Since complete pivoting requires the whole active submatrix to be searched
at each stage, it needs up to n*/6 comparisons, and so the method is rather
expensive.

10.4 INDEFINITE MATRICES 221

10.4.2. Partial Pivoting

Bunch and Kaufman [164, 1977] devised a pivoting strategy for the diago-
nal pivoting method that requires only O(n®) comparisons. At each stage
it searches a most two columns and so is analogous to partial pivoting for
LU factorization. The strategy contains several logical tests. As before, we
describe the pivoting for the first stage only. Recall that s denotes the size of
the pivot block.

Choose a € (0, 1).
A= A(2:1n,1)]|00
If A = O there is nothing to do on this stage of the elimination.
ro=min{i > 2: |aq| = A}
if [@a| > A
(1) s=1,P =1

else
A(l:ir —1,7)
A(r+Lin,m) ||| o
if |aj1]s > ar?

(2 s=1,P =1
edse if |a,| > as

(3) s = 1 and choose P to swap rows and columns 1 and r.
else
(4) s = 2 and choose P to swap rows and columns 2 and r,
so that |(PAP),| =:A.
end
end

To understand the algorithm it helps to consider the matrix

(an A
A ... Qpp ... O
b}
g
L N .

and to note that the pivot is one of ay;, a,, and [*} *] (or, rather, since
A:=|a,q], this matrix with A replaced by a,;).

222 CHOLESKY FACTORIZATION

To bound the element growth reconsider each case in turn, noting that
for cases (1) and (2) the elements of the Schur complement are given by

Toi = s — 2101

17 17 0,11 .

Case (I):
- 1 1
[3i] < las;| + ~lagjl < {1+~ H}gfx|aij|-

Case (2): Using symmetry,

o 1
Bl < |+ ot < gl < (14 3) macla

Case (3): The origind a,, is now the pivot, and |a,| > as, o
~ 1
@51 < lass| + a ||01]| < (1 +)ﬂ}%xlaijl-
'rr 2

Case (4): This is where we use a 2 x 2 pivot, which, after the interchanges,
is E = (PTAP)(1:21:2) = [2m2n] Now

| det(E)| = |a2; — a11are| > A% — |a1i|ao > A% — a(ar?) = A%(1 — a?).

The elements of the Schur complement A = B-CE 'C" are given by

~ -1 a —Qr1 a;si
a;; = b,’j - det(E) [ail a,-r] [_;:1 al:] I:a';r] N

SO

|@:;] < [bij] + (A2(1 = a?))~! [A "][axa |aill] [2]

2)%(1 + @)
A2(1-a?)

This analysis shows that the bounds for the element growth for s = 1 and
s = 2 are the same as the respective bounds for the complete pivoting strategy.
Hence, using the same reasoning, we again choose a = (1 + v/17)/8.

The growth factor for the partial pivoting strategy is bounded by (2.57)" !
As for GEPP, large growth factors do not seem to occur in practice. But un-
like for GEPP, no example is known for which the bound is attained [164,
1977]; see Problem 10.18.

“We commit a minor abuse of notation, in that in the rest of this section &; should
redly be&_, ;4 (s=1)ord. ,;, (s=2).

20 2
< = = .
16451 + =| "-J|+ —a - (1+1_a>n}3:xlau|

10.5 NONSYMMETRIC PosITIVE DEFINITE MATRICES 223

As noted in the previous subsection, a bound on the growth factor p,, does
not in itself ensure stability. Indeed athough [|D]|/||A]] is bounded for partia
pivoting, |[L||/]|A]| can be arbitrarily large for fixed n; see Problem 10.15.
Higham [559, 1995] gives a detailed error analysis of the diagona pivoting
method with an arbitrary pivoting strategy, under the assumption that com-
puted solutions to linear systems involving 2 x 2 pivots have a smal com-
ponentwise relative backward error. The conclusions are that the computed
factors satisfy

LDLIT = P(A+ AA)PT, |AA| < pi(n)u(|A| + PT|L||D||ZT|P) + O(u?)
and the computed solution to a linear system Ax = b satisfies
(A+AA)Z=b, |AA| < pa(n)u(|A| + PT|L||D||ILT|P) + O(u?),

where p; and p, are linear polynomias. For the partial pivoting strategy,
Higham shows that if linear systems involving 2 x 2 pivots are solved by GEPP
or by use of the explicit inverse, then the computed solutions do indeed have
a small componentwise relative backward error, and that, moreover,

Il ILIDILT Jlw < 360p,]|Allw,

where ||Al[y = max;; |aij|. Thus the diagona pivoting method with partial
pivoting is stable if the growth factor is small.

10.5. Nonsymmetric Positive Definite Matrices

The notion of positive definiteness can be extended to nonsymmetric matrices.
A nonsymmetric matrix A € R™ ™ is positive definite if x'Ax > 0 for all
X # 0. This is equivalent to the condition that the symmetric part Ag of
A is positive definite, where A =Ag + Ag with Ag = (A + AT)/2 and
Ac = (A — AT)/2. A positive definite matrix clearly has nonsingular leading
principal submatrices, and so has an LU factorization, A = LU. It can even
be shown that pivots u;; are positive. However, there is no guarantee that the
factorization is stable without pivoting, as the example [¢ i] shows. The
standard error analysis for LU factorization applies (Theorems 9.3 and 9.4),
and so the question is whether |L||U| can be suitably bounded. Golub and
Van Loan [469, 1979] show that, for the exact LU factors,

LI llF < nllAg + AR A5 Ak |2 (10.29)

Let x(A) = ||Ag + AR A Ag|l2]lAg |2, which is just ky(A) when A is sym-
metric. Mathias [731, 1992] shows that || |L||U| ||¢ (involving now the com-
puted LU factors) is at most a factor 1 + 30un®'2X(A) times larger than the

224 CHOLESKY FACTORIZATION

upper bound in (10.29), and that the LU factorization (without pivoting)
succeeds if 24n®'*X(A)u < 1.

These results show that it is safe not to pivot provided that the symmetric
part of A is not too ill conditioned relative to the norm of the skew-symmetric
part. If A is symmetric (Ax = 0) then we recover the results for symmetric
positive definite matrices.

10.6. Notes and References

André-Louis Cholesky (1875-1918) was a French military officer involved in
geodesy and surveying in Crete and North Africa. In some books his name
is misspelled “Choleski”. Details of Cholesky’s life-and a discussion about
the pronunciation of his namel-can be found in the electronic mall magazine
NA-Digest, volume 90, 1990, issues 7, 8, 10-12, and 24; see, in particular,
the biography [22, 1922]. Cholesky’s work was published posthumously on his
behalf by Benoit [91, 1924].

The properties of the Cholesky factorization are intimately associated with
the properties of the Schur complement, as is apparent from some of the proofs
in this chapter. The same is true for GE in general. An excellent survey of the
Schur complement, containing historical comments, theory, and applications,
is given by Cottle [248, 1974].

For results on the Cholesky factorization in Hilbert space see Power [841,
1986].

A book by George and Liu [438, 1981] is devoted to the many practical is-
sues in the implementation of Cholesky factorization for the solution of sparse
symmetric positive definite systems.

There is no floating point error anadysis of Cholesky factorization in Wilkin-
son’s books, but he gives a detailed analysis in [1092, 1968], showing that
RTR = A+E, with ||E||, < 25n°'2JAl,. It is unfortunate that this paper
is in a rather inaccessible proceedings, because it is a model of how to phrase
and interpret an error analysis. Meinguet [747, 1983] and Sun [973, 1992] give
componentwise backward error bounds similar to those in Theorems 10.3 and
10.4. Kielbasinski [657, 1987] reworks Wilkinson's analysis to improve the
constant.

The fact that k,(H) can replace the potentially much larger k,(A) in
the forward error bound for the Cholesky method was stated informally and
without proof by Wilkinson [1092, 1968, p. 638]. Demmel [283, 1989] made
this observation precise and explored its implications, Theorems 10.5, 10.6,
and 10.7 are taken from [283, 1989].

The bounds in Theorem 10.8 are from Sun [971, 1991], [972, 1992]. Similar
bounds are given by Stewart [944, 1977], [951, 1993], Barrlund [71, 1991],
and Sun [973, 1992]. A perturbation bound that can be much smaller than

10.6 NOTES AND REFERENCES 225

the normwise one in Theorem 10.8 is derived and explored by Chang and
Paige [198, 1995]. Perturbation results of a different flavour, including one
for structured perturbations of the form of DA in Theorem 10.5, are given by
Drmac, Omladc, and Veselic [321, 1994].

The perturbation and error analysis of 810.3 for semidefinite matrices is
from Higham [540, 1990], where in a perturbation result for the QR factoriza-
tion with column pivoting is aso given. For an application in optimization
that makes use of Cholesky factorization with complete pivoting and the ana-
ysis of 810.3.1 see Forsgren, Gill, and Murray [384, 1995].

Fletcher and Powell [382, 1974] describe several agorithms for updating
an LDL' factorization of a symmetric positive definite A when A is modified
by a rank-1 matrix. They give detailed componentwise error anaysis for some
of the methods.

An excellent way to test whether a given symmetric matrix A is positive
(semi) definite is to attempt to compute a Cholesky factorization. This test
is less expensive than computing the eigenvalues and is numerically stable.
Indeed, if the answer “yes’ is obtained, it is the right answer for a nearby
matrix, whereas if the answer is “no” then A must be close to an indefinite
matrix. See Higham [535, 1988] for an application of this definiteness test.
An dgorithm for testing the definiteness of a Toeplitz matrix is developed by
Cybenko and Van Loan [260, 1986], as part of a more complicated agorithm.
According to Kerr [654, 1990], misconceptions of what is a sufficient condition
for a matrix to be positive (semi) definite are rife in the engineering literature
(for example, that it suffices to check the definiteness of al 2 x 2 submatrices).
See also Problem 10.8. For some results on definiteness tests for Toeplitz
matrices, see Makhoul [722, 1991].

A major source of symmetric indefinite linear systems is the least squares
problem, because the augmented system is symmetric indefinite; see Chap-
ter 19. Other sources of such systems are interior methods for solving con-
strained optimization problems (see Forsgren, Gill, and Shinnerl [385, 1996],
Turner [1030, 1991], and Wright [1115, 1992]) and linearly constrained opti-
mization problems (see Gill, Murray, Saunders, and Wright [445, 1990], [446,
1991]).

The idea of using a block LDL' factorization with some form of pivoting
for symmetric indefinite matrices was first suggested by Kahan in 1965 [166,
1971]. Bunch and Parlett [166, 1971] developed the complete pivoting strategy
and Bunch [158, 1971] proved its stability. Bunch [160, 1974] discusses a rather
expensive partiad pivoting strategy that requires repeated scalings. Bunch and
Kaufman [164, 1977] found the efficient partial pivoting strategy presented
here, which is the one now widely used, and Bunch, Kaufman and Perlett [165,
1976] give an Algol code implementing the diagona pivoting method with this
pivoting strategy. Dongarra, Duff, Sorensen, and van der Vorst [315, 1991,
85.4.5] show how to develop a partitioned version of the diagonal pivoting

226 CHOLESKY FACTORIZATION

method with partial pivoting.

Liu [709, 1987] shows how to incorporate a threshold into the Bunch-
Kaufinan partial pivoting strategy for sparse symmetric matrices, see aso Duff
et al. [326, 1991]. The partial pivoting strategy and variants of it described
by Bunch and Kaufman [164, 1977] do not preserve band structure, but the
fill-in depends on the number of 2 x 2 pivots, which is bounded by the number
of negative eigenvalues (see Problem 10.11). Jones and Patrick [615, 1993],
[616, 1994] show how to exploit this fact.

The complete and partial pivoting strategies of Bunch et al. use a fixed
number of tests to determine each pivot. Another possibility is to prescribe
growth bounds corresponding to 1 x 1 and 2 x 2 pivots and to search in
some particular order for a pivot satisfying the bound. Fletcher [375, 1976]
uses this approach to define a pivoting strategy that usually requires only
O(nZ) operations. Duff, Reid, and co-workers apply the same approach to the
diagonal pivoting method for sparse matrices, where sparsity considerations
also influence the choice of pivot [331, 1979], [326, 1991]; their Fortran codes
MAZ27 [329, 1982] and MA47 [330, 1995] implement the methods.

Gill, Murray, Ponceledn, and Saunders [443, 1992] show how for sparse,
symmetric indefinite systems the diagonal pivoting factorization can be used
to construct a (positive definite) preconditioned for an iterative method.

Another method for solving symmetric indefinite systems is Aasen’s method
[1, 1971], which employs the factorization PAP' = LTL', where L is unit
lower triangular and T is tridiagonal. It is competitive with the diagonal
pivoting method in terms of speed. Barwell and George [77, 1976] compare
the performance of Fortran codes for several methods for solving symmet-
ric indefinite systems, including the diagonal pivoting method and Aasen’s
method.

Dax and Kaniel [270, 1977] propose computing a factorization PAP' =
LDLT for symmetric indefinite matrices by an extended form of Gaussian
elimination in which extra row operations are used to “build up” a pivot ee-
ment prior to the elimination operations, here, L is unit lower triangular and
D is diagona. A complete pivoting strategy for determining the permutation
P is described in [270, 1977] and partial pivoting strategies in Dax [268, 1982].

Analogues of the factorization for symmetric matrices exist for skew-
symmetric matrices; see Bunch [161, 1982].

Bunch [159, 1971] shows how to scale a symmetric matrix so that in every
nonzero row and column the largest magnitude of an element is 1.

10.6.1. LAPACK

Driver routines xPOSV (simple) and xPOSVX (expert) use the Cholesky fac-
torization to solve a symmetric (or Hermitian) positive definite system of
linear equations with multiple right-hand sides. (There are corresponding

PROBLEMS 227

routines for packed storage, in which one triangle of the matrix is stored in
a one-dimensiona array: PP replaces PO in the names) The expert driver
incorporates iterative refinement, condition estimation, and backward and
forward error estimation and has an option to scale the system AX = B
to (D"*AD1)DX = D~'B, where D = diag(al/?). Modulo the rounding
errors in computing and applying the scaling, the scaling has no effect on
the accuracy of the solution prior to iterative refinement, in view of Theo-
rem 10.6. The Cholesky factorization is computed by the routine xPOTRF,
which uses a partitioned algorithm that computes R a block row at a time.
The drivers xPTSV and XxPTSVX for symmetric positive definite tridiagonal ma-
trices use LDL" factorization. LAPACK does not currently contain a routine
for Cholesky factorization of a positive semidefinite matrix, but there is such
a routine in LINPACK (xCHDC).

Driver routines xSYSV (simple) and xSYSVX (expert) use the block LDL'
factorization (computed by the diagonal pivoting method) with partial piv-
oting to solve a symmetric indefinite system of linear equations with multi-
ple right-hand sides. For Hermitian matrices the corresponding routines are
XHESV (simple) and xHESVX (expert). (Variants of these routines for packed
storage have names in which SP replaces SY and HP replaces HE.) The expert
drivers incorporate iterative refinement, condition estimation, and backward
and forward error estimation. The factorization is computed by the routine
XSYTRF or XxHETRF.

Problems

10.1. Show that if A € R™™ is symmetric positive definite then

laij| < y/ai;a;; for all i # j.
What does this statement imply about max;; |g;|?

10.2. If A is a symmetric positive definite matrix, how would you compute
x A x?
103. Let y = (c— %1 ai5:)'"* 1 be evaluated in floating point arithmetic in
any order. Show that
k—1)
P+ 0) =c— Y ab:(1+6)),

i=1

where |68 | < yx—1 foral i, and [ges 1] < Gesn.

10.4. Let A € R™ ™ be symmetric positive definite. Show that the reduced
submatrix B of order n—1 at the end of the first stage of GE is aso symmetric

228 CHOLESKY FACTORIZATION

positive definite. Deduce that 0 < ag;) Sag;'” <--- < ailk) = ay and hence
that the growth factor p, = 1

10.5. Show that the backward error result (10.6) for the solution of a sym-
metric positive definite linear system by Cholesky factorization implies

(A+A4)z=b, [[AAllM <271 (1 = Yogd) T 1 Allne,

where ||Al|ly = max;; |a;| (which is not a consistent matrix norm—see 8§6.2).
The significance of this result is that the bound for ||DA||w/||Allw contains a
linear polynomial in n, rather than the quadratic that appears for the 2-norm
in (10.7).

10.6. Let A = cp(A) € R™ ™ be positive semidefinite of rank r and suppose it
has the Cholesky factorization (10.11) with P = I. Show that Z = [W, —I]'
is a basis for the null space of A, where W = Ajj' 4;,.

10.7. Prove that (10.13) holds for the Cholesky decomposition with complete
pivoting.

10.8. Give an example of a symmetric matrix A € R™*™ for which the leading
principal submatrices A, satisfy det(A,) > 0, k = 1in, but A is not positive
semidefinite (recall that det(A,) > 0, k = 1in, implies that A is positive
definite). State a condition on the minors of A that is both necessary and
sufficient for positive semidefiniteness.

10.9. Suppose the outer product Cholesky factorization algorithm terminates
a the (k+1)st stage (see (10.15)), with a negative pivot in the (k + 1, k + 1)
position. Show how to construct a direction of negative curvature for A (a
vector p such that p'Ap < 0).

10.10. What is wrong with the following argument? A positive semidefinite
matrix is the limit of a positive definite one as the smallest eigenvalue tends to
zero. Theorem 10.3 shows that Cholesky factorization is stable for a positive
definite matrix, and therefore, by continuity, it must be stable for a positive
semidefinite matrix, implying that Theorem 10.14 is unnecessarily wesak (since
IM|> can be large).

10.11. Consider the diagonal pivoting method applied to a symmetric ma-
trix. Show that with complete pivoting or partial pivoting any 2 x 2 pivot
is indefinite. Hence give a formula for the inertia in terms of the block sizes
of the block diagona factor. Show how to avoid overflow in computing the
inverse of a2 x 2 pivot.

10.12. Describe the effect of applying the diagonal pivoting method with
partial pivoting to a 2 x 2 symmetric matrix.

10.13. What factorization is computed if the diagonal pivoting method with
partial pivoting is applied to a symmetric positive definite matrix?

PROBLEMS 229

10.14. (Sorensen and Van Loan; see [315, 1991, 85.3.2]) Suppose the partia
pivoting strategy for the diagona pivoting method is modified by redefining

o =AG 7)o

(thus “Sew = Max(Sq q.la|)"). Show that the same growth factor bound
holds as before and that for a positive definite matrix no interchanges are
done and only 1 x 1 pivots are used.

0

1 K

1

10.15. Let
0
A= |e
0

where 0 < ¢ < 1, and suppose the diagona pivoting method is applied to
A, yielding a factorization PAPT = LDL'. Show that with partia pivot-
ing ||L||eo iSunbounded as ¢ — 0, whereas with complete pivoting ||L||o i S
bounded independently of e.

10.16. Let

= O M

An Ar
A =
[A21 Azz]

be nonsymmetric positive definite. Show that the Schur complement S =
Ayy — Ay AT A, is also positive definite. In other words, show that GE
preserves positive definiteness.

10.17. A matrix of the form

_[H BT
a-[5 2.

where H € R™*™ and G € R™*™ are symmetric positive definite has been
caled a symmetric quasidefinite matrix by Vanderbel [1047, 1995]. Show that
(@) A is nonsingular, (b) for any permutation P, P TAP has an LU factoriza-
tion, (c) AS is nonsymmetric positive definite, where S = diag(l, —I). (This
last property reduces the question of the stability of an LDL' factorization of
A to that of the stability of the LU factorization of a nonsymmetric positive
definite matrix, for which see 810.5. This reduction has been pointed out and
exploited by Gill, Saunders, and Shinnerl [448, 1996].)

10.18. (ResEARCH PROBLEM) Is the growth factor bound (2.57)" " for the
diagonal pivoting method with partial pivoting attainable? If not, how big
can the growth factor be? Similarly, what is a sharp bound for the complete
pivoting growth factor?

10.19. (ReseaRcH ProBLEM) Bound the growth factor for Aasen’'s method
[1, 1971].

Previous Home Next

Chapter 11
terative Refinement

The ILLIAC’s memory is sufficient to accommodate a system of 39 equations
when used with Routine 51.

The additional length of Routine 100 restricts to 37

the number of equations that it can handle.

With 37 equations the operation time of Routine 100 is about

4 minutes per iteration.

—JAMES N. SNYDER, On the improvement of the Solutions to a Set of

Simultaneous Linear Equations Using the ILLIAC (1955)

In a short mantissa computing environment
the presence of an iterative improvement routine can
significantly widen the class of solvable Ax = b problems.

— GENE H. GOLUB and CHARLES F. VAN LOAN,
Matrix Computations (1989)

Most problems involve inexact input data and

obtaining a highly accurate solution to an

imprecise problem may not be justified.

— J. J. DONGARRA, J. R. BUNCH, C. B. MOLER, and G. W. STEWART,
LINPACK Users’ Guide (1979)

231

232 ITERATIVE REFINEMENT

Iterative refinement is an established technique for improving a computed
solution Zto a linear system Ax = b. The process consists of three steps:

1. Compute r = b — AZ.
2. Solve Ad = r.
3. Update y = T-+ d.
(Repeat from step 1 if necessary, with T replaced by vy).

If there were no rounding errors in the computation of r, d, and y, then y would
be the exact solution to the system. The idea behind iterative refinement is
that if r and d are computed accurately enough then some improvement in
the accuracy of the solution will be obtained. The economics of iterative
refinement are favorable for solvers based on a factorization of A, because
the factorization used to compute £ can be reused in the second step of the
refinement.

Traditionally, iterative refinement is used with Gaussian eimination (GE),
and r is computed in extended precision before being rounded to working pre-
cision. Iterative refinement for GE was used in the 1940s on desk calculators,
but the first thorough analysis of the method was given by Wilkinson in 1963
[1088, 1963]. The behaviour of iterative refinement for GE is usually sum-
marized as follows: if double precision is used in the computation of r, and
A is not too ill conditioned, then the iteration produces a solution correct to
working precision and the rate of convergence depends on the condition num-
ber of A. In the next section we give a componentwise analysis of iterative
refinement that confirms this summary and provides some further insight.

11.1. Convergence of Iterative Refinement

Let A€ R™ ™ be nonsingular and let Z be a computed solution to Ax = b.
Define x, =7 : and consider the following iterative refinement process: r; =
b — Ax (precision @), solve Ad, = r; (precision u), X,; = X + d; (precision
u), i =1, 2For traditiona iterative refinement, @:= u% Note that in this
chapter subscripts specify members of a vector sequence, not vector elements.

We henceforth define r;, d;, and x to be the computed quantities (to avoid
a profusion of hats). The only assumption we will make on the solver is that
the computed solution § to a system Ay = c satisfies

(A+ AA)j=c, |A7 1 AAl < 1. (11.1)

Thus the solver need not be LU factorization or even a factorization method.
The page or so of anadyss that follows is straightforward but tedious. The
reader is invited to jump straight to (11.4), at least on first reading.

11.1 CONVERGENCE OF ITERATIVE REFINEMENT 233

Consider first the computation of r;. There are two stages. First, s =
fllb — Ax)=b-Ax + Ds is formed in the (possibly) extended precision
W, 50 that |Ds| < Fns1(I0 + [Allzi]) (cf. (3.10)), where 7x < kT/(1 — ku).
Second, the residual is rounded to the working precision: r; = fl(s) = § + fi,
where [f;| < u|s|. Hence

r; = b— Ax; + Ar;, |Ar;| < ulb— Az + (1 + u)¥, 41 (6] + [A]lz:])-
By writing X = x + (% — X), we obtain the bound
|Ari| < [u+ 1+ w)TnpallAlle — zi| + 2(1 + w)Tn 41| 4Allz]- (11.2)
For the second step we have, by (11.1), (A + DA)d;, = r;. Now write
(A+ AA) " = (AT + AT AA)) T = (I + F)ATY,
where, since g = | A71AA;i |lo < 1, [|Filloo < 0:/(1 — 6;). Hence
di=I+F)A 'ri= (I +F)(z—2: + A Ary). (11.3)
For the last step,
Tiv1 = Ti +di + Az,
|Az;| < ulzi +dif < u(lz — @il + |2] + |di])-
Using (11.3) we have
Tippi—z=Flz—z)+({ + F,-)A_lAri + Az;.
Hence
zis1 — 2| < |Flz — @l + (I + |FDIATH| A7) + ulz — zi| + ulz] + uldi]
< |Fillz — zs| + (I + |F|)|A7Y|Ar| + ulz — 24| + ulz|
+u(l +|F|)(jz — 2| +|A7Y|Ari)
= (A +wF| +2ul) |z — x| + (1 +)T+ |E)IATAr] + ula|.
Substituting the bound for |Dr;| from (11.2) gives

lziv1 — 2| < ((1+w)|F| + 2ul)|z — 4]
+(1+) (u+ (L+u)Tppa) (T + IEDIATH|Alle — 24l
+2(1 + w)* T (I + |FDIATH|All2] + ulz]
=: Gilz — zi| + gs. (11.49)
Note that

G; ~ |Fi| + u(l + |Fi|)|A7YAl,
9i = W (I + |Fi)IAT|All] + ule].

234 ITERATIVE REFINEMENT

As long as A is not too ill conditioned and the solver is not too unstable, we
have ||Gilleo < 1, which means that the error contracts until we reach a point
at which the g; term becomes significant. The limiting normwise accuracy,
that is, the minimum size of |lz — Z;lleo/||Z]lco, is roughly ||gilloo/l|Z]lec =
2ntcond(A, z) + u. Moreover, if 2na(I + |Fi|)|A7Y||Al|z| < pulz| for some
m, then we can expect to obtain a componentwise relative error of order nu,
that is, min, |z — zi| < pulz|.

We concentrate now on the case where the solver uses LU factorization. In
the traditional use of iterative refinement, @ = u? and one way to summarize
our findings is as follows.

Theorem 11.1 (mixed precision iterative refinement). Let iterative refine-
ment be applied to the nonsingular linear system Ax = b, using LU fac-
torization and with residuals computed in double the working precision. Let
h = u]] |A YLV |, where L and U are the computed LU factors of A.
Then, provided h is sufficiently less than 1, iterative refinement reduces the
error by a factor approximately h at each stage, until ||z — Z;|loo/l|Z]lc0 = u-

This theorem is stronger than the standard results in the literature, which
have koo (A)u in place of h. We can have h <<koo(A)u, since h is independent
of the row scaling of A (modulo changes in the pivot sequence). For example,
if |f||(7| ~ |A| then h =~ cond(A)u, and cond(A) can be arbitrarily smaller
than ke (A).

Consider now the case where u = u, which is called fixed precision iterative
refinement. We have an analogue of Theorem 11.1.

Theorem 11.2 (fixed precision iterative refinement). Let iterative refine-
ment in fixed precision be applied to the nonsingular linear system Ax = b
of order n, using LU factorization. Let h = u]| |A™ Y|L||U] ||eo, Where L and
U are the computed LU factors of A. Then, provided h is sufficiently less than
1, iterative refinement reduces the error by a factor approximately h at each
stage, until ||z — Zilleo/lIZllcc < 2ncond(A, X)u.

The key difference between mixed and fixed precision iterative refinement
is that in the latter case a relative error of order u is no longer ensured. But
we do have a relative error bound of order cond(A, x)u. This is a stronger

bound than holds for the original computed solution Z, for which we can say
only that

~ 1T urr
I2 = Blloo < o, LA NENT]Iz oo
lllloo [/l oo
(this bound is obtained by applying Theorems 7.4 and 9.4, or from (11.4) with

i = 0. In fact, a relative error bound of order cond(A, x)u is the best we can
possibly expect if we do not use higher precision, because it corresponds to the

11.2 ITERATIVE REFINEMENT IMPLIES STABILITY 235

uncertainty introduced by making componentwise relative perturbations to A
of size u (again, see Theorem 7.4); this level of uncertainty is usualy present,
because of errors in computing A or in rounding its elements to floating point
form.

The gist of this discussion is that iterative refinement is beneficid even if
residuals are computed only at the working precision. This fact became widely
appreciated only after the publication of Skeel’s 1980 paper [920, 1980]. One
reason for the delayed appreciation may be that comments such as that made
by Forsythe and Moler, “It is absolutely essential that the residuals r, be
computed with a higher precision than that of the rest of the computation”
[396, 1967, p. 49], were incorrectly read to mean that without the use of higher
precision no advantage at all could be obtained from iterative refinement. In
the next section we will see that fixed precision iterative refinement does more
than just produce a cond(A, X)u-bounded forward error for LU factorization—
it brings componentwise backward stability as well.

11.2. Iterative Refinement Implies Stability

We saw in the last section that fixed precision iterative refinement can improve
the accuracy of a solution computed by GE. The question arises of what the
refinement process does to the backward error. To answer this question we give
a genera backward error analysis that is applicable to a wide class of linear
equation solvers. Throughout this section, “iterative refinement” means fixed
precision iterative refinement.

We assume that the computed solution T to Ax = b satisfies

|b— AZ| < u(g(A,d)|Z| + h(A,b)), (11.5)

where g : R**(»+1) _, R™*n ;and h :JR"*(n*+1) _, R™ have nonnegative
entries. The functions g and h may depend on n and u as well as on the data
A and b. We aso assume that the residual r = b — AZ is computed in such a
way that

7 —r| <ut(4,b,7), (11.6)

where t : R™*(+2) _, R™ is nonnegative. If r is computed in the conventional
way, then we can take

o~ ’Yn, ~
8(A,b,8) = 2 (|A][7] + [b). (11.7)

First we give an asymptotic result that does not make any further assump-
tions on the linear equation solver.

Theorem 11.3. Let A € R™™™ be nonsingular. Suppose the linear system
Ax = b is solved in floating point arithmetic using a solver S together with one

236 ITERATIVE REFINEMENT

step of iterative refinement. Assume that the computed solution Z produced by
S satisfies (11.5) and that the computed residual? satisfies (11.6). Then the
corrected solution § satisfies

b~ AFl < u(h(A,7) +t(A,,9) + |Al[§]) + ug, (11.8)
where g = O(u) if £(4,5,Z) — t(A,5,9) = O(||Z — Ylleo)-
Proof. The residual r = b — AZ of the original computed solution Z
satisfies
Ir| < u(g(A, b)[] + h(4,b). (11.9)
The computed residual is7 = r + Dr, where |Dr| <ut(A,b,Z). The computed
correction d satisfies
Ad=7+f, 1Al <u(g(4,7)d +h(4,7). (11.10)
Finally, for the corrected solution we have
§=flE+d)=8+d+fo, |fol S u(lEl+|d]). (11.10)
Collecting together the above results we obtain
b—AG=b— AT — Ad— Afy =7 — Ar — Ad — Afo = ~f1 — Ar — Afs.
Hence
Ib— AFl < u(g(A,7)|d] + h(A,7)) +ut(A,b,8) + ulA|(|Z| + |d]) (11.12)
= u(h(A,7) + t(A,b,9) + |Allg]) + ug,
where
g =t(A,6,8) - 8(4,5,9) + 9(A,7)d] + |A|(I2] - 91 + |d]).
The claim about the order of g follows since Z — ¥, |Z| — [g], and d are al of
order u. 0

Theorem 11.3 shows that, to first order, the componentwise relative back-
ward error Wiy p Will be small after one step of iterative refinement as long as
h(A,7) and t(A,b,y) are bounded by a modest scalar multiple of |A||y] + |b].
This is true for t if the residual is computed in the conventional way (see
(11.7)), and in some cases we may take h= 0, as shown below. Note that the
function g of (11.5) does not appear in the first-order term of (11.8). This
is the essential reason why iterative refinement improves stability: potential
instability manifested in g is suppressed by the refinement stage.

A weakness of Theorem 11.3 is that the bound (11.8) is asymptotic. Since
a strict bound for g is not given, it is difficult to draw firm conclusions about

11.2 ITERATIVE REFINEMENT IMPLIES STABILITY 237

the size of wju . The next result overcomes this drawback, a the cost of

some specialization (and a rather long proof).
We introduce a measure of ill scaling of the vector |Bj|X|,

max;(|B||z|):
o(B,z) = — .

(5:2) = (Bl
Theorem 11.4. Under the conditions of Theorem 11.3, suppose that g(A, b) =
G|A| and h(A, b) = Hib|, where G, H € R™*™ have nonnegative entries, and
that the residual is computed in the conventional manner. Then there is a
function

f(t1,t2) & (ta(t1 +n+ 1)/ cond(A™") +2(t1 + n+ 2)2(1 +ut2)?)/(n+1)

such that if
cond(A7)0(4,9) < (F(1Glloo, | Hlloo)u) ™"
then
Ib— A < 27,1, |17

Proof. As with the analysis in the previous section, this proof can be
skipped without any real loss of understanding. From (11.12) in the proof of
Theorem 11.3, using the formula (11.7) for t, we have

|b— A < wHIP + Yoy1 o] + (Va1 + wIAIE + (I + G)|Alld]. (11.13)
The inequality (11.9) implies
bl — |AlIZ] < |b— AZ| < u(G|AllZ] + H]bl),

or (I — uH)|b] < (I + uG)|A||Z|. If u||H|leo < 1/2 (say) then | — uH is
nonsingular with a nonnegative inverse satisfying ||(I — UH) || < 2 and we
can solve for |b| to obtain [b| < (I —uH)™ (I + uG) |A| |Z]. It follows from this
relation and consideration of the rest of the proof that the simplifying step
of replacing b by 0 in the analysis has little effect on the bounds—it merely
produces unimportant perturbations in f in the statement of the theorem.
Making this replacement in (11.13) and approximating g, +1 + U = gps, WE
have

b~ AG] < wH[F + Yo | AllE] + u(I + G)|4]|d]. (11.14)

Our task is now to bound |A||Z], |7], and IAIIEI in terms of |g]. By manip-
ulating (11.11) we obtain the ineguality

Iz < (1—u)7 (g + Q +w)ld]) ~ 7]+ |d]. (11.15)

238 ITERATIVE REFINEMENT

Also, we can bound {7 by
71 < Irl +14r| < u(G|AlIZ] + H[b]) + 7o ia (1AIIZ] + [0]),
and dropping the |b| terms and using (11.15) gives
71 < (UG + Yo DI AE] < (UG + Yo DIAIF] + |d])- (11.16)
Substituting from (11.15) and (11.16) into (11.14) we find

b— AG| < (Vpyrd + uH G +7,411))|Al[F]
+(Ypgr I + (I + G) + uH WG + v,,,1))|Al|d]
=t (Ypar ! + M1)|A|[F] + M2|Al|d], (11.17)

where

[Miflco < ullH loo (/|G lloo + Fnt1)s
[Mzlloo < Yni2 + wlIGlloo + wll Hlloo (ul| Gllco + Ynt1)-

Now from (11.10), making use of (11.16),

jd] < |A7Y(F1 + uGlAlld] + uH|)

< AU + uH) (UG + Yo DIAI(IG] + |d]) + uG|Alld]).

After premultiplying by |A] this may be rearranged as
(I — uMs)|Alld] < ulAl|A™*| Mq 4], (11.18)
where

Ms = |A||A7 (I + uH)(G + (Yayr /W) + G),
My = (I +uH)(G + (Yay /w)]).

Using g,+1/u < (n + 1)/(1 — (n + L)u) ~n + 1, we have the bounds

[Mslloo < cond(A™1)([Glloo + 7 +1)(2 + ul| Hlloo),

[Malloo < (IGlloo +n + 1)(1 + ul|H]loo)-

If ul|Ms]loo < 12 (say) then (I —um3)™*
we can rewrite (11.18) as

> 0 with [|(I —uM3)-1|| oo < 2 and

|Alld] < u(I — uMs)~"|A|| A7 Mq | Al). (11.19)

11.2 ITERATIVE REFINEMENT IMPLIES STABILITY 239

Substituting this bound into (11. 17) we obtain

b — Ayl

INA

(Ygad + M+ uMp(I — uMs) A A7 M) | Al

P (M + Ms)| A1
w] A1,

IA

where
W = Yny1 + | Ms]l0o (4, 9)

(see Problem 11.1). Finaly, we bound || Ms||eec Writing, g = ||Glleo, h =
|Hlloo, we have

1Mslico < u?gh + uhypyy + 2u(Tniz + ug +u?gh + uhy,)
x cond(A71)(g +n + 1)(1 + uh)

and this expression is approximately bounded by u?(h(g + n + 1) + 2(g + n +
2)°(1 + uh)® cond(A™). Requiring || Ms|leoo(A,7) 100t to exceed g,., leads
to the result. O

Theorem 11.4 says that as long as A is not too ill conditioned, |A||y] :is not
too badly scaed (cond(A~1)o(A,7) is not too large), and the solver is not too
unstable (f([|Glleo, [|H |loo) is not too large), then Wi, < 20,. &fter one
sep of iterative refinement. Note that the term g, ; |A||g] in (11.20) comes
from the error bound for evaluation of the residual, so this bound for w is
about the smallest we could expect to prove.

Let us apply Theorem 11.4 to GE with or without pivoting. If there is
pivoting, assume (without loss of generdity) that no interchanges are required.
Theorem 9.4 shows that we can teke

9(4,b) =~ 2m|L||[U|, h(A,b) =0,

where f, U are the computed LU factors of A. To apply Theorem 11.4 we
use Ax LU and write

9(A,b) ~ 2n|L|| L~ A < 2n|L||IL 7Y Al
which shows that we can take
G=2LIL7Y, F(IGlloo |Hlloo) = 8n|| |L|IZ 7" ||

Without pivoting the growth factor-type term |||Z||Z~}| ||o iiS unbounded,
but with partial pivoting it cannot exceed 2" and is typicaly O(n) [1019,
1990] .

We can conclude that, for GE with partial pivoting (GEPP), one step of
iterative refinement will usually be enough to yield a small componentwise

240 ITERATIVE REFINEMENT

Table 11.1. wiy, values for A = orthog(25).

cond(A~!)o(A, z) = 3.02e1
cond(A) = 2.0%1, koo(A) =2.10el
GEPP GE QR
2.53e-16 4.61e-7 4.54e-16
4.59e-17 1.56e-13 5.31e-17
4.34e-17

relative backward error as long as A is not too ill conditioned and |A||y] is
not too badly scaled. Without pivoting the same holds true with the added
proviso that the computation of the origind Z must not be too unstable.

These results for GE are very similar to those of Skeel [920, 1980]. The
main differences are that Skeel’s analysis covers an arbitrary number of refine-
ment steps with residuals computed in single or double precision, his anaysis
is specific to GE, and his results involve s(A, x) rather than s (A 7).

One interesting problem remains: to reconcile Theorem 11.4 with Theo-
rem 11.2. Under the conditions of Theorem 11.4 the componentwise relative
backward error is small after one step of iterative refinement, so the forward
error is certainly bounded by a multiple of cond(A, x)u. How can this be
shown (for GE) using the andysis of §11.1? An explanation is nontrivial-see
Problem 11.2.

We will see applications of Theorems 11.3 and 11.4 to other types of linear
equation solver in Chapters 18, 19, and 21.

Tables 11.1-11.3 show the performance of fixed precision iterative refine-
ment for GE without pivoting, GEPP, and Householder QR factorization (see
§18.6). The matrices are from the Test Matrix Toolbox (see Appendix E),
and may be summarized as follows. Clement(n) is tridiagona with zero diag-
ona entries;, orthog(n) is a symmetric and orthogonal matrix, and gfpp(n)
is a matrix for which the growth factor for GEPP is maximal. In each
case the right-hand side b was chosen as a random vector from the uniform
distribution on [0, 1]. We report the componentwise relative backward er-
rors for the initial solution and the refined iterates (refinement was termi-
nated when - W) 4 5 (¥) < u). GEPP performs as predicted by both our and
Sked’s analyses. In fact, iterative refinement converges in one step even when
q(A, x) := cond(A')s(A, X) exceeds u™ in the examples reported and in
most others we have tried. GE also achieves a smal componentwise relative
backward error, but can require more than one refinement step, even when
q(A, x) is smal.

11.3 NOTES AND REFERENCES 241

Table 11.2. Wi vauesfor A = clement (50).

cond(A™1)o(A,) = 2.40e18
cond(A) = 1.44e6, Kkoo(A) = 3.50e7
GEPP GE QR
3.88e-15 Fail 1.43e-7
7.74e-17 1.04e-15
6.71e-17

Table 11.3. Wiy p values for A = gfpp(50).

cond(A™Y)o(A, z) = 4.51e2

cond(A) =50, Koo(A) =150
GEPP GE QR
8.03e-4 8.03e-4 3.22¢-16
8.06e-17 8.06e-17 3.82¢-17

11.3. Notes and References

Wilkinson [1088, 1963] gave a detailed analysis of iterative refinement in a kind
of scaed fixed point arithmetic called block-floating arithmetic. Moler [765,
1967] extended the anadlysis to floating point arithmetic. Very readable analy-
ses of iterative refinement are given in the books by Forsythe and Moler [396,
1967, 822] and Stewart [941, 1973, 84.5].

As we mentioned in 89.10, as early as 1948 Wilkinson had written a pro-
gram for the ACE to do GEPP and iterative refinement. Other early imple-
mentations of iterative refinement are in a code for the University of Illinois
ILLIAC by Snyder [932, 1955], the Algol code of McKeeman [745, 1962], and
the Algol codes in the Handbook [138, 1966], [729, 1966]. Some of the ma
chines for which these codes were intended could accumulate inner products
in extended precision, and so were well suited to mixed precision iterative
refinement.

Interest in fixed precision iterative refinement was sparked by two papers
that appeared in the late 1970s. Jankowski and Wozniakowski [610, 1977]
proved that an arbitrary linear equation solver is made normwise backward
stable by the use of fixed precision iterative refinement, as long as the solver
is not too unstable to begin with and A is not too ill conditioned. Skeel [920,
1980] analysed iterative refinement for GEPP and showed that one step of
refinement yields a small componentwise relative backward error, as long as
cond(A"!)s (A, x) is not too large.

242 ITERATIVE REFINEMENT

The analysis in 811.1 extends existing results in the literature. The anaysis
in 811.2 is from Higham [549, 1991].

The quantity s(A, X) appearing in Theorem 114 can be interpreted as
follows. Consider a linear system Ax = b for which (JA||x]); = O for some i.
While the componentwise relative backward error vv|A|,|b|(X of the exact so-
lution x is zero, an arbitrarily smal change to a component x where a; #0
yields w1 (X + Dx) > 1. Therefore solving Ax = b to achieve a small
componentwise relative backward error can be regarded as an ill-posed prob-
lem when |A||x| has a zero component. The quantity s(A, X) reflects this
ill-posedness because it is large when |A||x| has a relatively small component.

For a lucid survey of both fixed and mixed precision iterative refinement
and their applications, see Bjorck [111, 1990]. For particular applications of
fixed precision iterative refinement, see Govaerts and Pryce [475, 1990] and
Jankowski and Wozniakowski [611, 198s].

By increasing the precision from one refinement iteration to the next it
is possible to compute solutions to arbitrarily high accuracy, an idea first
suggested by Stewart in an exercise [941, 1973, pp. 206-207]. For algorithms,
see Kielbasinski [656, 1981] and Smoktunowicz and Sokolnicka [931, 1984].

There are a number of practical issues to attend to when implementing iter-
ative refinement. Mixed precision iterative refinement cannot be implemented
in a portable way when the working precision is aready the highest precision
supported by a compiler. This is the main reason why iterative refinement is
not supported in LINPACK. (The LINPACK manual lists a subroutine that
implements mixed precision iterative refinement for single precision data, but
it is not part of LINPACK [307, 1979, pp. 1.8-1. 10].) For either form of refine-
ment, a copy of the matrix A needs to be kept in order to form the residual,
and this necessitates an extra n’ elements of storage. A convergence test for
terminating the refinement is needed. In addition to revealing when conver-
gence has been achieved, it must signa lack of (sufficiently fast) convergence,
which may certainly be experienced when A is very ill conditioned. In the
LAPACK driver xGESVX, fixed precision iterative refinement is terminated if
the componentwise relative backward error w = Wy, (Z;) satisfies

1. w<u,

2. w has not decreased by a factor of at least 2 during the current iteration,
or

3. five iterations have been performed.

These criteria were chosen to be robust in the face of different BLAS imple-
mentations and machine arithmetics. In an implementation of mixed precision
iterative refinement it is more natural to test for convergence of the sequence
{Z;}, with a test such as ||Z; — Zi—1lleo/||Zillc < U (see, eg., Forsythe and

PROBLEMS 243

Moler [396, 1967, p. 65]). However, if A is so ill conditioned that Theorem 11.1
is not applicable, the sequence z; could converge to a vector other than the
solution. This behaviour is very unlikely, and Kahan [626, 1966] quotes a
“prominent figure in the world of error-analysis’ as saying “Anyone unlucky
enough to encounter this sort of calamity has probably aready been run over
by a truck.”

A by-product of extended precision iterative refinement is an estimate of
the condition number. Since the error decreases by a factor approximately
h = ul|]JA7Y|L||U| |lo tOn each iteration (Theorem 11.1), the relative change
made to x on the first iteration should be about h, that is, ||d1]leo/||Z]lco =
7 & Koo(A)u. Now that reliable and inexpensive condition estimators are
available (Chapter 14) this rough estimate is less important.

An unusua application of iterative refinement is to fault-tolerant com-
puting. Boley et al. [132, 1994] propose solving Ax = b by GEPP or QR
factorization, performing one step of fixed precision iterative refinement and
then testing whether the a priori residual bound in Theorem 11.4 is satisfied.
If the bound is violated then a hardware fault may have occurred and specia
action is taken.

11.3.1. LAPACK

Iterative refinement is carried out by routines whose names end -RFS, and
these routines are cdled by the expert drivers (name ending -SVX). lIterative
refinement is available for al the standard matrix types except triangular ma-
trices, for which the origina computed solution already has a componentwise
relative backward error of order u. As an example, the expert driver xGESVX
uses LU factorization with partial pivoting and fixed precision iterative refine-
ment to solve a general system of linear equations with multiple right-hand
sides, and the refinement is actualy carried out by the routine x GERFS.

Problems

11.1. Show that for A € R™*" and z € R", |A||z| < 0| 4] c]z|, Where
s = max; [x|/min; [x].
11.2. Use the analysis of §11.1 to show that, under the conditions of Theo-

rem 11.4, ||z —Z2]|oo/||Z||0o IS bounded by a multiple of cond(A, X)u for GEPP
after one step of fixed precision iterative refinement.

11.3. Investigate empirically the size of |||L||L7!||le for L from GEPP.

11.4. (Demmel and Higham [291, 1992]) Suppose GEPP with fixed precision
iterative refinement is applied to the multiple-right-hand side system AX = B,
and that refinement of the columns of X is done “in pardlel”: R = B — AX,

244 ITERATIVE REFINEMENT

AD = R, Y = X + D. What can be said about the stability of the process
if R is computed by conventional multiplication but the second step is done
usng a fast multiplication technique for which only (12.3) holds?

11.5. (ResearRcH PRrROBLEM) Is one step of fixed precision iterative refinement
sufficient to produce a componentwise relative backward error of order u for
Cholesky factorization applied to a symmetric positive definite system Ax = b,
assuming cond(A™")s(A, X) is not too large? Answer the same question for
the diagonal pivoting method with partial pivoting applied to a symmetric
system Ax = b.

Previous Home Next

Chapter 12
Block LU Factorization

Block algorithms are advantageous for at least two important reasons.
First, they work with blocks of data having b? elements,

performing O(b®) operations.

The O(b) ratio of work to storage means that

processing elements with an O(b) ratio of

computing speed to input/output bandwidth can be tolerated.
Second, these algorithms are usually rich in matrix multiplication.
This is an advantage because

nearly every modern parallel machine is good at matrix multiplication.

—ROBERT S. SCHREIBER, Block Algorithms for Parallel Machines (1988)

It should be realized that, with partial pivoting,

any matrix has a triangular factorization.

DECOMP actually works faster when zero pivots occur because they mean that
the corresponding column is already in triangular form.

— GEORGE E. FORSYTHE, MICHAEL A. MALCOLM, and CLEVE B. MOLER,
Computer Methods for Mathematical Computations (1977)

It was quite usual when dealing with very large matrices to

perform an iterative process as follows:

the original matrix would be read from cards and the reduced matrix punched
without more than a single row of the original matrix

being kept in store at any one time;

then the output hopper of the punch would be

transferred to the card reader and the iteration repeated.

— MARTIN CAMPBELL-KELLY, Programming the Pi/et ACE (1981)

245

246 BLock LU FACTORIZATION

12.1. Block Versus Partitioned LU Factorization

As we noted in Chapter 9 (Notes and References), Gaussian elimination (GE)
comprises three nested loops that can be ordered in six ways, each yidding a
different algorithmic variant of the method. These variants involve different
computational kernels: inner product and saxpy operations (level-1 BLAS),
or outer product and gaxpy operations (level-2 BLAS). To introduce matrix—
matrix operations (level-3 BLAS), which are beneficial for high-performance
computing, further manipulation beyond loop reordering is needed. We will
use the following terminology, which emphasises an important distinction.

A partitioned algorithm is a scalar (or point) agorithm in which the op-
erations have been grouped and reordered into matrix operations.

A block algorithm is a generdization of a scdar algorithm in which the
basic scalar operations become matrix operations (a+b, ab, and a/b become
A+B, AB, and AB™), and a matrix property based on the nonzero structure
becomes the corresponding property blockwise (in particular, the scalars O
and 1 become the zero matrix and the identity matrix, respectively). A block
factorization is defined in a smilar way and is usually what a block algorithm
computes.

A partitioned version of the outer product form of LU factorization may
be developed as follows. For 4 € R™*™ and a given block size r, write

[An Al‘Z] _ [Ln 0] [Ir 0] [Un Um] (12.1)
A21 A22 L21 In—r 0 B 0 In—r ’ .
where A;; is r x r. One step of the agorithm consists of factoring A;; =
Ly, Ujq, solving the multiple right-hand side triangular systems Ly, Uy, = Aq,
and L,,Uyy = Ay for Uy, and Ly, respectively, and then forming B =
Ay — Ly Uy this procedure is repeated on B. The block operations defining
Ui, Ly, and B are level-3 BLAS operations. This partitioned agorithm does
precisely the same arithmetic operations as any other variant of GE, but it
does the operations in an order that permits them to be expressed as matrix
operations.

A genuine block agorithm computes a block LU factorization, which is a

factorization A = LU € R™*"™, where L and U are block triangular and L has
identity matrices on the diagonal:

I Un U ... Umnm
L= L21 ! . , U= Va2 ‘
: . Um—l,m
Lml .. Lm,m—l I Umm

In general, the blocks can be of different dimensions. Note that this fac-
torization is not the same as a standard LU factorization, because U is not

12.1 BLock VERSUS PARTITIONED LU FACTORIZATION 247

triangular. However, the standard and block LU factorizations are related as
follows: if A = LU is a block LU factorization and each U; has LU factor-
ization U;; = LUy, then A = Ldiag(Ly;) - diag(Uy) U is an LU factorization.
Conditions for the existence of a block LU factorization are easy to state.

Theorem 12.1. The matrix A = (A)%-, € R™" has a unique block LU
factorization if and only if the first m — 1 leading principal block submatrices
of A are nonsingular.

Proof. The proof is entirely analogous to the proof of Theorem 9.1. O

This theorem makes clear that a block LU factorization may exist when
an LU factorization does not.
If A;; € R™*" is nonsingular we can write

_|An Al _ | I 0]lAn A
i B P | e R

which describes one block step of an outer-product-based algorithm for com-
puting a block LU factorization. Here, S = Ay, — Ay AT'A;, is the Schur
complement of A;; in A. If the (1, 1) block of S of appropriate dimension is
nonsingular then we can factorize S in a similar manner, and this process can
be continued recursively to obtain the complete block LU factorization. The
overal algorithm can be expressed as follows.

Algorithm 12.2 (block LU factorization). This algorithm computes a block
LU factorization A = LU € R™*™, using the notation of (12.2).

1. Uy = Ay, U = Ags.
3. S= A, — Ly;A (Schur complement).
4. Compute the block LU factorization of S, recursively.

Given a block LU factorization of A, the solution to a system Ax = b can
be obtained by solving Ly = b by forward substitution (since L is triangular)
and solving Ux = y by block back substitution. There is freedom in how
step 2 of Algorithm 12.2 is accomplished, and how the linear systems with
coefficient matrices U;; that arise in the block back substitution are solved.
The two main possibilities are as follows.

Implementation 1. Ay, is factorized by GE with partial pivoting. Step 2
and the solution of linear systems with U;; are accomplished by substitution
with the LU factors of A, ;.

Implementation 2: A‘l1 is computed explicitly, so that step 2 becomes a
matrix multiplication and Ux = y is solved entirely by matrix—vector multi-
plications. This approach is attractive for parallel machines.

248 BLock LU FACTORIZATION

What can be said about the numerical stability of partitioned and block
LU factorization? Because the partitioned algorithm is just a rearrangement
of standard GE, the standard error analysis applies if the matrix operations
are computed in the conventional way. However, if fast matrix multiplication
techniques are used (for example, Strassen’s method), the standard results
are not applicable. Standard results are, in any case, not applicable to block
LU factorization; its stability can be very different from that of LU factor-
ization. Therefore we need error analysis for both partitioned and block LU
factorization based on general assumptions that permit the use of fast matrix
multiplication.

Unless otherwise stated, in this chapter an unsubscripted norm denotes
[IA]] = max;; |a;]. We make two assumptions about the underlying level-3
BLAS (matrix-matrix operations).

(1) If 4€ R™™ and B € R™*® then the computed approximation C to
C = AB sdtisfies

C=AB+AC, |AC| < ci(m,n,pul|All||Bll + O(u?), (12.3)

where ¢,(m, n, p) denotes a constant depending on m, n and p.

(2) The computed solution X to the triangular systems TX = B, where
T € R™™ and B € R™*P, ssatisfies

TX =B+4B, ||AB|| < co(m,puul|T]| | X + O(w?). (12.4)

For conventional multiplication and substitution, conditions (12.3) and
(12.4) hold with c;(m, n, p) = n?> and c,(mp) = nP. For implementations
based on Strassen’s method, (12.3) and (12.4) hold with ¢; and c, rather
complicated functions of the dimensions m, n, p and the threshold no that
determines the level of recursion (see Theorem 22.2 and [544, 1990]).

12.2. Error Analysis of Partitioned LU Factorization

An error analysis for partitioned LU factorization must answer two questions.
The first is whether partitioned LU factorization becomes unstable in some
fundamental way when fast matrix multiplication is used. The second is
whether the constants in (12.3) and (12.4) are propagated stably into the
final error bound (exponential growth of the constants would be disastrous).

We will assume that the block level LU factorization is done in such a way
that the computed LU factors of A;; € R™" satisfy

Luln = An+ AAn, |44 < es(r)ullLul [Tl + O@?). (12.5)

Theorem 12.3 (Demmel and Higham). Under the assumptions (12.3),
(12.4), and (12.5), the LU factors of A € R™*™ computed using the partitioned

12.2 ERROR ANALYSIS OF PARTITIONED LU FACTORIZATION 249

outer product form of LU factorization with block size r satisfiy LU = A+ DA,

where o
|AA|l < u(8(n,)| All + 6(n, 7)IILI |U]]) + O(u?), (12.6)

and where
6(n,r)=1+4+6(n—-rnr), &(rr)=0,
O(n,r) = ma.x{c,g(r), c(r,n—r)l+c(n—rrn—r)+én—rr)
+0(n -, 7‘)}, O(r,r) = cz(r).

Proof. The proof is essentially inductive. To save clutter we will omit
“+O(U%)” from each bound. For n = r, the result holds trivially. Consider
the first block stage of the factorization, with the partitioning (12.1). The
assumptions imply that

Luliz = A+ AAn, |AAp| < ca(r,n — r)ul| Dy || |Trll, (127)
LoyUyy = Aoy + AAgy, || AAz| < co(r,n — r)u|| Lo || [T)] (12:8)
To obtain B = Ay, — L,,U;, we first compute C = 521[712, obtaining
C=LylUi+AC, ||AC| < ci(n—r,7n—r)ul|La| ||Tsl,
and then subtract from A,,, obtaining
B=An-C+F, |F| <u(lAz|+Cl). (129)
It follows that
B = Agy — LyU1o + AB, (12.108)
IABI| < u(||Azzll + || Zax | Tl
+c1(n—r,r,n—r)||z21|| Hﬁu“) (12.100)

The remainder of the algorithm consists of the computation of the LU fac-
torization of B, and by our inductive assumption (12.6), the computed LU
factors satisfy

LyslUss = B+ AB, (12.11a)
IAB) < 6(n -, r)ul|B|| + 8(n — 7, r)ul|Laol| [Ta2ll. (12.11b)

Combining (12.10) and (12.11), and bounding ||§|| using (12.9), we obtain
Lo1Usz + LoglUze = Agy + AAg,,

Adgpll < u([l +6(n—r7r)||As||+ [l +caa(n—r,r,n—7)+6(n—r,7)]
x | Lo || 1Ural| + 6(n = 7, 7)|| Lozl |Tazll)- (12.12)

250 BLock LU FACTORIZATION

Collecting (12.5), (12.7), (12.8), and (12.12) we have LU = A + DA, where
bounds on ||DA;|| are given in the equations just mentioned. These bounds
for the blocks of DA can be weakened dightly and expressed together in the
more succinct form (12.6). D

These recurrences for d(n,r) and q(n,r) show that the basic error constants
in assumptions (12.3), (12.4), and (12.5) combine additively a worst. Thus,
the backward error analysis for the LU factorization is commensurate with
the error analysis for the particular implementation of the BLAS3 employed
in the partitioned factorization. In the case of the conventional BLAS3 we
obtain a Wilkinson-style result for GE without pivoting, with q(nr) = O(n®)
(the growth factor is hidden in L and U).

Although the above analysis is phrased in terms of the partitioned outer
product form of LU factorization, the same result holds for other “ijk” par-
titioned forms (with slightly different constants), for example, the gaxpy or
sdot forms. There is no difficulty in extending the analysis to cover partia
pivoting and solution of Ax = b using the computed LU factorization (see
Problem 12.6).

12.3. Error Analysis of Block LU Factorization

Now we turn to block LU factorization. We assume that the computed ma-
trices Ly, from step 2 of Algorithm 12.2 satisfy

E21A11 = A21 + E21, ||E21” < c4(n, r)u||f21|| “A11" + O(uz) (1213)

We also assume that when a system U;;x; = d; of order r is solved, the
computed solution Z; satisfies

(Ui + AU,‘,‘)?E,‘ =d;, ||AU{¢|| < 05(r)u||U,-.-|| + O(uz), (12.14)
The assumptions (12.13) and (12.14) are satisfied for Implementation 1 of

Algorithm 12.2 and are sufficient to prove the following result.

Theorem 12.4 (Demmel, Higham, and Schreiber). Let L and U be the com-
puted block LU factors of 'A € R™"™ from Algorithm 12.2 (with Implementa-
tion 1), and let T be the computed solution to Ax = b. Under the assumptions
(12.3), (12.13), and (12.14),

LU=A+ A4, (A+A4AA)T=b,
1AA4;]| < dau(|All + |21 D)) + O@?), i=1:2, (12.15)

where the constant d, is commensurate with those in the assumptions.

12.3 ERROR ANALYSIS OF BLock LU FACTORIZATION 251

Proof. We omit the proof (see Demmel, Higham, and Schreiber [293,
1995] for details). It is similar to the proof of Theorem 12.3. 0

The bounds in Theorem 12.4 are valid aso for other versions of block LU
factorization obtained by “block loop reordering”, such as a block gaxpy based
algorithm.

Theorem 12.4 shows that the stability of block LU factorization is de-
termined by the ratio [[L|||JU]|/||A]] (numerical experiments show that the
bounds are, in fact, reasonably sharp). If this ratio is bounded by a mod-
est function of n, then L and U are the true factors of a matrix close to
A, and ¥ solves a dlightly perturbed system. However, ||Z||[|U|| can exceed
[|A]] by an arbitrary factor, even if A is symmetric positive definite or di-
agonally dominant by rows. Indeed, ||L|| > ||Lo4l| = [|Ay AT, using the
partitioning (12.2), and this lower bound for ||L|| can be arbitrarily large.
In the following two subsections we investigate this instability more closely
and show that ||L]|||U]] can be bounded in a useful way for particular classes
of A. Without further comment we make the reasonable assumption that
[ILITU]] = [IL]I]|U]|, so that these bounds maybe used in Theorem 12.4.

What can be said for Implementation 2? Suppose, for simplicity, that the
inverses Al“l1 (which are used in step 2 of Algorithm 12.2 and in the block
back substitution) are computed exactly. Then the best bounds of the forms
(12.13) and (12.14) are

L1 Ay = Agy + AAg, |AA2:]| < ca(n, r)ur(Anr)l| A2l + O(u?),
(Ui + AU)Z; = dy, |AU|| < es(r)us(Uss)||Us|l + O(u?).

Working from these results, we find that Theorem 12.4 till holds provided the
first-order terms in the bounds in (12.15) are multiplied by max; k(U;;). This
suggests that Implementation 2 of Algorithm 12.2 can be much less stable
than Implementation 1 when the diagonal blocks of U are ill conditioned, and
this is confirmed by numerica experiments.

12.3.1. Block Diagonal Dominance

One class of matrices for which block LU factorization has long been known
to be stable is block tridiagonal matrices that are diagonally dominant in
an appropriate block sense. A general matrix A € R™™ is block diagonally
dominant by columns with respect to a given partitioning A = (A;)) and a
given norm if, for al j,

IAZ™" =D Ayl = > 0. (12.16)

it
A is block diagonally dominant by rows if A” is block diagonaly dominant by
columns. For the block size 1, the usua property of point diagonal dominance

252 BLock LU FACTORIZATION

is obtained. Note that for the 1- and co-norms diagonal dominance does not
imply block diagonal dominance, nor does the reverse implication hold (see
Problem 12.2). Throughout our analysis of block diagonal dominance we take
the norm to be an arbitrary subordinate matrix norm.

First, we show that for block diagonally dominant matrices a block LU
factorization exists, using the key property that block diagona dominance is
inherited by the Schur complements obtained in the course of the factorization.
In the analysis we assume that A has m block rows and columns.

Theorem 12.5 (Demmel, Higham, and Schreiber). Suppose A € R™**™is
nonsingular and block diagonally dominant by rows or columns with respect to
a subordinate matrix norm in (12.16). Then A has a block LU factorization,
and all the Schur complements arising in Algorithm 12.2 have the same kind
of diagonal dominance as A.

Proof. This proof is a generalization of Wilkinson's proof of the corre-
sponding result for point diagonally dominant matrices [1085, 1961, pp. 288—
289, [470, 1989, p. 120] (as is the proof of Theorem 12.6 below). We consider
the case of block diagonal dominance by columns; the proof for row-wise di-
agonal dominance is analogous.

The first step of Algorithm 12.2 succeeds, since A;; is nonsingular, pro-
ducing a matrix that we can write as

@ _ |Un U
o[v

S

For j = 22m we have
m 2 m
Z ||A£j)|| = Z l4i; — A AT Ayl
b b

m m

<Y IAGI+ NAGITAR T N Aal
i P

m
< D MAGH+ IAGIIAT T(IAT ™ = 14z1l), using (12.16)

ity

= > A+ Al = A 1HIAT A

£==2

i#j
<NAG N = HAGIIAT N I450, using (12.16),
= min ||Aj;z| — | Ayl JATH |41

ll=ll=1

12.3 ERROR ANALYSIS OF BLock LU FACTORIZATION 253

"rrhm I(A; Aj1A1_11A1;')$”

= min ||A(2) I (12.17)

Now |fA() is singular it follows that 31, i HA @) H =0; therefore A?, and

hence also A, is gingular, which is a contradiction. Thus A(2) is nonsmgular
and (12.17) can be rewritten

3 142) < 1427,
i=2

i

showing that A®@ is block diagonally dominant by columns. The result follows
by induction. 0

The next result alows us to bound ||U|| for a block diagondly dominant
matrix.

Theorem 12.6 (Demmel, Higham, and Schreiber). Let A satisfy the condi-
tions of Theorem 12.5. If A¥ denotes the matrix obtained after k — 1 steps
of Algorithm 12.2, then

max AP <2 max [A4].
k<i,j<m 1<4,5<m

Proof. Let A be block diagonally dominant by columns (the proof for row
diagonal dominance is similar). Then

ZHA ”"‘Z”AU An AL Ayl
=2

m m
< ST 1AG 1 + HAGTHIATTTD . IAall
=2 1=2

m
<D A1,
i=1

using (12.16). By induction, using Theorem 12.5, it follows that Y ;= IIA(k)II <
S 1 4s0- This yidds

max [AD] < max ZIIA('“)II_ max ZnAwu

k<i,j<m
From (12.16), 3,; 1 4ss1l < 1471117 < 11455, so

(k) < =2 Al 0
ksnzl?.)s(”A ”Sngbaéxm”A“”—21I_<njang“A”“ lsnzl?-gm” il

254 BLock LU FACTORIZATION

The implications of Theorems 125 and 12.6 for stability are as follows.
Suppose A is block diagonally dominant by columns. Also, assume for the
moment that the (subordinate) norm has the property that

max || Ay < [|4]] < > A, (12.18)
gV

which holds for any p-norm, for example. The subdiagona blocks in the first
block column of L are given by Li; = A;; A7 andso [[[LT;,...,LEL,)T| <1, by
(12.16) and (12.18). From Theorem 125 it follows that ||[LT,, ;,..., LT 17|l <
1forj=2m. Since U; = Af.;.) for j > i, Theorem 12.6 shows that ||U;|| <
2||A]| for each block of U (and ||U;|| < ||Al]). Therefore ||L|| < m and [|U]| <
m’||All, and so ||L||||U]] < m®||A|. For particular norms the bounds on the
blocks of L and U yield a smaler bound for ||L|| and ||U||. For example, for
the 1-norm we have ||L||.|lUl. < 2m||A]l, and for theoco-norm ||L{leo||U|leo <
2m?||Alloo. We conclude that block LU factorization is stable if A is block
diagonaly dominant by columns with respect to any subordinate matrix norm

satisfying (12.18).
Unfortunately, block LU factorization can be unstable when A is block
diagonally dominant by rows, for although Theorem 12.6 guarantees that
< 2|All, |IL]] can be arbitrarily large. This can be seen from the

1Uyl| <
example
A O] I 0] |An Of _
A= 3 =L 1[7]-

where A is block diagonally dominant by rows in any subordinate norm for
any nonsingular matrix Ay;. It is easy to confirm numerically that block LU
factorization can be unstable on matrices of this form.

Next, we bound ||L]||[|U]| for a genera matrix and then specialize to point
diagonal dominance. From this point on we use the norm ||A|| := max;; |&;|.
We partition A according to

All A12 rXr
A= |:A21 Azg] , A € RTTT (12.19)
and denote by p, the growth factor for GE without pivoting. We assume that
GE applied to A succeeds.

To bound ||L||, we note that, under the partitioning (12.19), for the first
block stage of Algorithm 12.2 we have ||L,.|| = [|A2; A5l < npak(A) (see
Problem 12.4). Since the algorithm works recursively with the Schur com-
plement S, and since every Schur complement satisfies k(S) < p,k(A) (see
Problem 12.4), each subsequently computed subdiagonal block of L has norm
a most np2k(A) Since U is composed of elements of A together with ele-

ments of Schur complements of A,

Ul < pallAll- (12.20)

12.3 ERROR ANALYSIS OF BLock LU FACTORIZATION 255

Overal, then, for a general matrix A € R™*",
IZIIUN < npiw(A) - pullAll = noj(A) | Al (12.21)

Thus, block LU factorization is stable for a general matrix A as long as GE
is stable for A (that is, p, is of order 1) and A is well conditioned.

If A is point diagonally dominant by columns then, since every Schur
complement enjoys the same property, we have [|L;|| < 1 for i > j, by
Problem 12.5. Hence ||L|| = 1. Furthermore, p, < 2 (Theorem 9.8 or Theo-
rem 12.6), giving ||U]| < 2||A[| by (12.20), and so

ILITVIE < 2IA]l-

Thus block LU factorization is perfectly stable for a matrix point diagonally
dominant by columns.

If A is point diagonaly dominant by rows then the best we can do is to
take p, < 2 in (12.21), obtaining

[ILITTUI] < 8nk(A)IAIl. (12.22)

Hence for point row diagonally dominant matrices, stability is guaranteed if A
is well conditioned. This in turn is guaranteed if the row diagonal dominance
amounts g in the analogue of (12.16) for point row diagonal dominance are
sufficiently large relative to [|A]|, because A7 oo < (min g)™ (see prob-
lem 8.7(a)).

12.3.2. Symmetric Positive Definite Matrices

Further useful results about the stability of block LU factorization can be
derived for symmetric positive definite matrices. First, note that the existence
of a block LU factorization is immediate for such matrices, since all their
leading principal submatrices are nonsingular. Let A be a Ssymmetric positive
definite matrix, partitioned as

All Agﬂl] rXT
A= , A1 e R™.
[A21 A2z .

The definiteness implies certain relations among the submatrices A; that can
be used to obtain a stronger bound for ||L||, than can be deduced for a genera
matrix (cf. Problem 12.4).

Lemma 12.7. If A is symmetric positive definite then ||Ag AT |2 < K2(A4)/2.

Proof. This lemma is a corollary of Lemma 10.12, but we give a separate
proof. Let A have the Cholesky factorization

RE o Ry, R12] xr
A=|_H , Ry, e R™X".
[Rsz R%"z] [0 Rx H

256 BLock LU FACTORIZATION

Table 12.1. Sability of block and point L U factorization. p,, is the growth factor for
GE without pivoting.

Matrix property Block LU Point LU
Symmetric positive definite k(A)*'? 1
Block column diagonally dominant 1 Ph
Point column diagonally dominant 1 1
Block row diagonally dominant p3K(A) Py
Point row diagonally dominant k(A) 1
Arbitrary p3k(A) Ph

Then A21A1_11 = R{2R11 'R1_11R1_1T = R{2R1_1T: so

1Az ALHll2 < IRwll2I R 2 < IRI2| R Iz = m2(R) = ma(A)Y2. O

The following lemma is proved in a way similar to the second inequality in
Problem 12.4.

Lemma 12.8. If A is symmetric positive definite then the Schur complement
S = Ap - nAp A7 satisiies ky(9) < k,(A).

Using the same reasoning as in the last subsection, we deduce from these
two lemmas that each subdiagonal block of L is bounded in 2-norm by k, (A)*/2.
Therefore ||L]|, < 1 + mk,(A)Y% where there are m block stages in the algo-
rithm. Also, it can be shown that ||U]|, <+/ml| A]l2. Hence

I Lll20lU2 < vm(1 + mra(A)Y/2)||All2. (12.23)

It follows from Theorem 12.4 that when Algorithm 12.2 is applied to a sym-
metric positive definite matrix A, the backward errors for the LU factorization
and the subsequent solution of a linear system are both bounded by

cnvmul|Al2(2 + mrz(A4)'/2) + O(u?). (12.24)

Any resulting bound for ||z —Z||2/{|z||lz will be proportional to k,(A)¥?, rather
than k,(A) as for a stable method. This suggests that block LU factorization
can lose up to 50% more digits of accuracy in x than a stable method for
solving symmetric positive definite linear systems. The positive conclusion to
be drawn, however, is that block LU factorization is guaranteed to be stable
for a symmetric positive definite matrix that is well conditioned.

The stability results for block LU factorization are summarized in Ta-
ble 12.1, which tabulates a bound for [|A — LU||/(c,u||A]]) for block and point

12.4 NOTES AND REFERENCES 257

LU factorization for the matrix properties considered in this chapter. The
constant c, incorporates any constants in the bound that depend polynomi-
aly on the dimension, so a value of 1 in the table indicates unconditional
stability.

12.4. Notes and References

The distinction between a partitioned algorithm and a block algorithm is
rarely made in the literature (exceptions include the papers by Schreiber [902,
1988] and Demmel, Higham, and Schreiber [293, 1995]); the term “block al-
gorithm” is frequently used to describe both types of algorithm. A parti-
tioned agorithm might also be called a “blocked agorithm” (as is done by
Dongarra, Duff, Sorensen, and van der Vorst [315, 1991]), but the similar-
ity of this term to “block algorithm” can cause confusion and so we do not
recommend this terminology. Note that in the particular case of matrix mul-
tiplication, partitioned and block algorithms are equivalent. Our treatment of
partitioned LU factorization has focused on the stability aspects; for further
details, particularly concerning implementation on high-performance comput-
ers, see Dongarra, Duff, Sorensen, and van der Vorst [315, 1991] and Golub
and Van Loan [470, 1989].

Block LU factorization appears to have first been proposed for block tridi-
agonal matrices, which frequently arise in the discretization of partial dif-
ferential equations. References relevant to this application include Isaacson
and Keller [607, 1966, p. 59], Varah [1048, 1972], Bank and Rose [53, 1977],
Mattheij [737, 1984], [738, 1984], and Concus, Golub, and Meurant [235, 1985].

For an application of block LU factorization to linear programming, see
Eldersveld and Saunders [351, 1992].

Theorem 12.3 is from Demmel and Higham [291, 1992]. The results in
§12.3 are from Demmel, Higham, and Schreiber [293, 1995], which extends
earlier analysis of block LU factorization by Demmel and Higham [291, 1992].

Block diagonal dominance was introduced by Feingold and Varga [366,
1962], and has been used mainly in generalizations of the Gershgorin circle
theorem. Varah [1048, 1972] obtained bounds on ||L|| and ||U|| for block
diagonaly dominant block tridiagonal matrices, see Problem 12.1.

Theorem 12.5 is obtained in the case of block diagonal dominance by rows
with min; ¢ > 0 by Polman [837, 1987]; the proof in [837, 1987] makes use of
the corresponding result for point diagonal dominance and thus differs from
the proof we have given.

At the cost of a much more difficult proof, Lemma 12.7 can be strengthened
to the attainable bound |[|A5; ATz < (Ko (A)Y2 = ko(A)YY®)/2, as shown
by Demmel [279, 1983, Thin. 4], but the weaker bound is sufficient for our
purposes.

258 BLock LU FACTORIZATION

124.1. LAPACK

LAPACK does not implement block LU factorization, but its LU factorization
(and related) routines for full matrices employ partitioned LU factorization
in order to exploit the level-3 BLAS and thereby to be efficient on high-
performance machines.

Problems

12.1. (Varah [1048, 1972]) Suppose A is block tridiagona and has the block
LU factorization A = LU (so that L and U are block bidiagonal and U;;+ 1 =
A ;+1). Show that if A is block diagonally dominant by columns then

ILis-1ll <1, (Ul < WAl + [[Aim sl
while if A is block diagonaly dominant by rows then
ILii—all < NAsiall/NNAicrsll, IWUsll < N Asll + Az i-all-

What can be deduced about the stability of the factorization and has the block
classes of matrices?

12.2. Show that for the 1- and co-norms diagonal dominance does not imply
block diagona dominance, and vice versa

12.3. If A ¢ R™™ is symmetric, has positive diagonal elements, and is block
diagonaly dominant by rows, must it be postive definite?

12.4. Let Ae R™™ be partitioned

All A12] rXr
A= , Ay e R 12.25
|:A21 A22 11 ()
with A;; nonsingular. Let [|A]] := max; |a;|. Show that lAg AT <

np.k(A). Show that the Schur complement S = A,, — A A7 A, sdtisfies
k(S) < pnk(A).
12.5. Let A € R™" 1Dbe partitioned as in (12.25), with A;; nonsingular,

and suppose that A is point diagonally dominant by columns. Show that
“A21A1_11“1 < 1.

12.6. Show that under the conditions of Theorem 12.3 the computed solution
to AX = b satisfies

(A+A4)T=b, [AA| < cau(lAll + IZIITN) + O(u?),

PROBLEMS 259

and the computed solution to the multiple right-hand side system AX = B
(where (12.4) is assumed to hold for the multiple right-hand side triangular
solves) sdtisfies

IAX = B|| < cau(l|AIl + IZINTN) 1 X1 + Ow?).

In both cases, ¢, is a constant depending on n and the block size.

12.7. Let X = [4 2] € R™", where A is square and nonsingular. Show
that
det(X) = det(A) det(D — CA 'B).

Assuming A, B, C, D are dl m x m, give a condition under which det(X) =
det(AD — CB).

Previous Home Next

Chapter 13
Matrix Inversion

It is amusing to remark that we were so involved with

matrix inversion that we probably talked of nothing else for months.
Just in this period Mrs. von Neumann acquired a big,

rather wild but gentle Irish Setter puppy,

which she called inverse in honor of our work!

— HERMAN H. GOLDSTINE, The Computer.’
From Pascal to von Neumann (1972)

The most computationally intensive portion

of the tasks assigned to the processors is

integrating the KKR matrix inverse over the first Brillouin zone.

To evaluate the integral,

hundreds or possibly thousands of complex double precision matrices
of order between 80 and 300 must be formed and inverted.

Each matrix corresponds to a different vertex of the tetrahedrons
into which the Brillouin zone has been subdivided.

— M. T. HEATH, G. A. GEIST, and J. B. DRAKE, Superconductivity
in Early Experience with the Intel iPSC/860
at Oak Ridge National Laboratory (1990)

Press to invert the matrix.
Note that matrix inversion can produce erroneous results
if you are using iii-conditioned matrices.

— HEWLETT-PACKARD, HP 48G Series User’'s Guide (1993)

Almost anything you can do with A™ can be done without it.

— GEORGE E. FORSYTHE and CLEVE B. MOLER,
Computer Solution of Linear Algebraic Systems (1967)

261

262 MATRIX INVERSION

13.1. Use and Abuse of the Matrix Inverse

To most numerical analysts, matrix inversion is a sin. Forsythe, Malcolm,
and Moler put it well when they say [395, 1977, p. 31] “In the vast major-
it y of practical computational problems, it is unnecessary and inadvisable to
actually compute A"".” The best example of a problem in which the ma
trix inverse should not be computed is the linear equations problem Ax = b.
Computing the solution as x = A x b requires 2n’ flops, assuming A*
is computed by Gaussian elimination with partial pivoting (GEPP), whereas
GEPP applied directly to the system costs only 2n%3 flops.

Not only is the inversion approach three times more expensive, but it is
much less stable. Suppose X = A" is formed exactly, and that the only
rounding errors are in forming x = fl(Xb). Then Z = (X + DX)b, where
IDX| < gi|X|, by (3.10). So AZ = A(X + DX)b = (I + ADX)b, and the best
possible residual bound is

|b— AZ| < v,|AllA7[b].
For GEPP, Theorem 9.4 yields
|b — AZ| < 2v,|L||T||z).

Since it is usually true that || |Z||T] llo = l|Alleo for GEPP, we see that the
matrix inversion approach is likely to give a much larger residual than GEPP
if Aisill conditioned and if ||Z||co < || |47 1]{8] ||oo- For example, we solved 50
25x25 systems Ax = b in MATLAB, where the elements of x are taken from the
normal N(O, 1) distribution and A is random with k,(A) = u'*? ='9x 10"
As Table 13.1 shows, the inversion approach provided much larger backward
errors than GEPP in this experiment.

Given the inexpedience of matrix inversion, why devote a chapter to it?
The answer is twofold. First, there are Situations in which a matrix inverse
must be computed. Examples are in statistics [54, 1974, 8§7.5], [721, 1984,
§2.3], [744, 1989, p. 342 ff], where the inverse can convey important statistical
information, in certain matrix iterations arising in eigenvalue-related problems
[37, 1993], [174, 1987], [566, 1994], and in numerical integrations arising in

Table 13.1. Backward errors h, p(z) for the oo-norm.

min max

x=A! x b | 6.66e-12 1.6%-10
GEPP | 3.44e-18 7.56e-17

13.1 USE AND ABUSE OF THE MATRIX INVERSE 263

superconductivity computations [509, 1990] (see the quotation at the start of
the chapter). Second, methods for matrix inversion display a wide variety
of stability properties, making for instructive and chalenging error analyss.
(Indeed, the first major rounding error analysis to be published, that of von
Neumann and Goldstine, was for matrix inversion-see §9.6).

Matrix inversion can be done in many different ways—in fact, there are
more computationally distinct possibilities than for any other basic matrix
computation. For example, in triangular matrix inversion different loop order-
ings are possible and either triangular matrix—vector multiplication, solution
of a triangular system, or a rank-1 update of a rectangular matrix can be em-
ployed inside the outer loop. More generdly, given a factorization PA = LU,
two ways to evaluate A" are. as AT = U™ x L™ x P, and as the solution
to UAT = L™ x P. These methods generaly achieve different levels of ef-
ficiency on high-performance computers, and they propagate rounding errors
in different ways. We concentrate in this chapter on the numerical stability,
but comment briefly on performance issues.

The quality of an approximation Y =~ A" can be assessed by looking
a the right and left residuas, AY — | and YA — |, and the forward error,
Y — A", Suppose we perturb A — A + DA with |DA| < ¢€|A|; thus, we
are making relative perturbations of size at most ¢ to the elements of A. If

Y = (A+ DA)! then (A + DA)YY = Y(A + DA) = I, so that
(13.1)
(13.2)
and, since (A + DA)" = A1 — AT'DAAT +D(e?),
|A7Y — Y| < e|A7H|A|| A7 + O(?). (13.3)

(Note that (13.3) can also be derived from (13.1) or (13.2).) The bounds
(13.1)-(13.3) represent “ideal” bounds for a computed approximation Y to
A1, if we regard € :as a smal multiple of the unit roundoff u. We will show
that, for triangular matrix inversion, appropriate methods do indeed achieve
(13.2) or (13.2) (but not both) and (13.3).

It is important to note that neither (13.1), (13.2), nor (13.3) implies that
Y + DY = (A + DA with||AAlleo < €|Allo ad|AY [loo < €[] [lco, that
is, Y need not be close to the inverse of a matrix near to A, even in the norm
sense. Indeed, such a result would imply that both the left and right residuas
are bounded in norm by (2¢ + €2)[|Aloo||Y lloo, @nd this is not the case for any
of the methods we will consider.

To illustrate the latter point we give a numerical example. Define the
matrix A, € R™*™ as triu(gr(vand(n))), in MATLAB notation (vand is a
routine from the Test Matrix Toolbox—see Appendix E); in other words, A,
is the upper triangular QR factor of the n x n Vandermonde matrix based on

264 MATRIX INVERSION

Right residual

| T SR S |

Unit roundoff

-
o
L L S |

Left residual

Figure 13.1. Residuals for inverses computed by MATLAB'S INV function.

equispaced points on [0, 1]. We inverted A,, for n = 1:80, using MATLAB'S
INV function, which uses GEPP. The left and right normwise relative residuals

XA - Ioo JAX — Ijoo

L = o> ’ R = =]
1 X llooll All o lAllooll X floo

are plotted in Figure 13.1. We see that while the left residual is aways less
than the unit roundoff, the right residual becomes large as n increases. These
matrices are very ill conditioned (singular to working precison for n > 20),
yet it is il reasonable to expect a small residual, and we will prove in 813.3.2
that the left residua must be small, independent of the condition number.
In most of this chapter we are not concerned with the precise values of
constants (813.4 is the exception); thus ¢, denotes a constant of order n. To
simplify the presentation we introduce a special notation. Let A A; € R™ ™™,

i = 1:k, be matrices such that the product A; A, . . . A is defined and let
k—1
=1

Then DA, A . . ., A) e R™ ™ denotes a matrix bounded according to

|A(Ay, Ay, . . ., Ak)l < cpu|A1||A2| oAk

13.2 INVERTING A TRIANGULAR MATRIX 265

This notation is chosen so that if € = fI(ALA,. . Ay, with the product
evaluated in any order, then

C=A1A;.. A+ A(AL Ag, ..., Ar).

13.2. Inverting a Triangular Matrix

We consider the inversion of a lower triangular matrix L € R™ ™, - treating
unblocked and blocked methods separately. We do not make a distinction
between partitioned and block methods in this section. All the results in this
and the next section are from Du Croz and Higham [322, 1992].

13.2.1. Unblocked Methods

We focus our atention on two “j” methods that compute L™ a column a a
time. Analogous “i” and “k” methods exist, which compute L™ row-wise or
use outer products, respectively, and we comment on them at the end of the
section.

The first method computes each column of X = L™ independently, using
forward substitution. We write it as follows, to facilitate comparison with the
second method.

Method 1.
for j = 1in
zj5 = I
X(j + Linj) = -xL(+ 1nj)
Solve L(j + L:n, j + Ln)X(j + Lin, j) = X(+ Lnj),
by forward substitution.
end

In BLAS terminology, this method is dominated by n calls to the level-2
BLAS routine XTRSV (Triangular SolVe).

The second method computes the columns in the reverse order. On the
jth step it multiplies by the previously computed inverse L(j + L, j + 1n)”
instead of solving a system with coefficient matrix L(j + 1:n, j + 21:n).

Method 2.

for j = n-1:1
zj; =13
X(G+ In j) = X(j + Ln, j + Ln)L(+ Lin, j)
X(G + Lin, j) = -xX(j + 1in, j)

end

266 MATRIX INVERSION

Method 2 uses n cals to the level-2 BLAS routine XxTRW (Triangular
Matrix times Vector). On most high-performance machines xXTRMW can be
implemented to run faster than X TRSV, so Method 2 is generally preferable to
Method 1 from the point of view of efficiency (see the performance figures at
the end of §13.2.2). We now compare the stability of the two methods.

Theorem 85 shows that the jth column of the computed X from Method 1
satisfies

(L+ AL;j)z; =ej, |ALj| < cpulL].
It follows that we have the componentwise residual bound

ILX — 1| < caulL||X]| (13.9)
and the componentwise forward error bound
X — L7 < caul L7 ILIIX]. (135)
SinceX = L + O(u), (13.5) can be written as
IX — LY < cpu|L7Y|LIL™Y + O(u?), (13.6)

which is invariant under row and column scding of L. If we take norms we
obtain normwise relative error bounds that are either row or column scaling
independent: from (13.6) we have

X = LYoo
120

and the same bound holds with cond(L™) replaced by cond(L).

Notice that (13.4) is a bound for the right residual, LX — I. This is because
Method 1 is derived by solving LX = |. Conversely, Method 2 can be derived
by solving XL = |, which suggests that we should look for a bound on the
left residua for this method.

< cpu cond(L71) + O(u?), (13.7)

Lemma 13.1. The computed inverse X from Method 2 satisfies
(13.8)

Proof. The proof is by induction on n, the case n = 1 being trivia.
Assume the result is true for n — 1 and write

_|la O _,-1_|B O
els 8] xmm[1)

where o,f € R, y,z € R*! and M, N € R"~V*(»~1) " Method 2 computes
the first column of X by solving XL = | according to

b=at, z = -bNy.

13.2 INVERTING A TRIANGULAR MATRIX 267

In floating point arithmetic we obtain
B=a'1+6), l6<u,
2=—BNy+A(B,N,y).

Thus

~

Pa=1+4,
Za+ Ny = —6ﬁy+aA(§,ﬁ,y).

This may be written as

u
ulNllyl + cau(l + u)| Nyl

< (| X||L])(1:n,1).

IXL - I|(1:n,1) <

By assumption, the corresponding inequality holds for the (2:n, 2:n) subma-
trices and so the result is proved. O

Lemma 13.1 shows that Method 2 has a left residual andogue of the right
residual bound (13.4) for Method 1. Since there is, in general, no reason to
choose between a small right residua and a small left residual, our conclusion
is that Methods 1 and 2 have equaly good numerical stability properties.

More generally, it can be shown that al three i, j, and k inversion variants
that can be derived from the equations LX = | produce identical rounding
errors under suitable implementations, and al satisfy the same right residua
bound; likewise, the three variants corresponding to the equation XL = |
al satisfy the same left residua bound. The LINPACK routine XxTRDlI uses
a k variant derived from XL = I; the LINPACK routines xGEDI and xPQODI
contain analogous code for inverting an upper triangular matrix (but the LIN-
PACK Users Guide [307, 1979, Chaps. 1 and 3] describes a different variant
from the one used in the code).

13.2.2. Block Methods
Let the lower triangular matrix L € R™*™ be partitioned in block form as

Ly
Ly Lo

, (13.9)

Lyy Lnn

where we place no restrictions on the block sizes, other than to require the
diagona blocks to be square. The most natural block generaizations of Meth-
ods 1 and 2 are as follows. Here, we use the notation L q.s to denote the

268 MATRIX INVERSION

submatrix comprising the intersection of block rows p to g and block columns
r tosof L.

Method 1B.
for j = 1:N
X;; = L3 (by Method 1)
Xipang = ~LraongX)
Solve Livi:njeanXjwrng = Xe1on,j
by forward substitution
end

Method 2B.

for j = N:-1:1
Xj; = L3} (by Method 2)
Xj+1:N,j = j+1:N,j+1:NLj+1:N,j
Xiprng = Xern X

end

One can argue that Method 1B carries out the same arithmetic operations
as Method 1, athough possibly in a different order, and that it therefore
satisfies the same error bound (13.4). For completeness, we give a direct
proof.

Lemma 13.2. The computed inverse X from Method 1B satisfies
ILX — I| < epulL|| X (13.10)

Proof. Equating block columns in (13.10), we obtain the N independent
inequalities

ILX1:nj — Iun | < coulLl| Xyn sl 5 =1:N. (13.11)
It suffices to verify the inequaity with j = 1. Write

Lz[Ln] X1]
L21 Lzz ’ X21 X22 ’

where Ly;, X;; € R™" and Ly, is the (1, 1) block in the partitioning of (13.9).
X11 is computed by Method 1 and so, from (13.4),

|

Ly X1 - I| < coul Ly || Xua| = c,u(|L||)?|)1r (13.12)

X5, is computed by forming T = -L,,X;; and solving L,,X,; = T. The
computed X,, satisfies

L22Xa1 + A(Lgg, Xa1) = Loy X11 + A(La1, X11).

13.2 INVERTING A TRIANGULAR MATRIX 269

Hence
|L21X11 + LooXo1| < cate(|Laa|| X 11| + |L22|| X21)
= caus(|L||X]) ;- (13.13)
Together, inequalities (13.12) and (13.13) are equivaent to (13.11) with j = 1,
as required. 0

We can atempt a similar anaysis for Method 2B. With the same notation
as above, Xy, is computed as X,; = —X,,L,Xy;. Thus

Xo1 = —XogLo1 X1, + A(Xa2, Lo1, X11)- (13.14)

To bound the left residual we have to postmultiply by L;; and use the fact
that X;; is computed by Method 2:

Xo1L1y + Xoa Lot (I + A(X11,L11)) = A(X22, La1, X11) Ly
This leads to a bound of the form
|X21L11 + X22Lo1| < cpu|Xaa||Laa || X2 [1L1a s

which would be of the desired form in (13.8) were it not for the factor
|X11]|L11|- This analysis suggests that the left residual is not guaranteed
to be small. Numerical experiments confirm that the left and right residuals
can be large smultaneously for Method 2B, athough examples are quite hard
to find [322, 1992]; therefore the method must be regarded as unstable when
the block size exceeds 1.

The reason for the instability is that there are two plausible block gen-
erdizations of Method 2 and we have chosen an unstable one that does not
cary out the same arithmetic operations as Method 2. If we perform a solve
with L instead of multiplying by X; we obtain the second variation, which
isused by LAPACK's XTRTRI :

Method 2C.
for j = N:-1:1
Xj; = Lj;! (by Method 2)
XJ+1 Nj o~ X1 N, j+1: NLJ+1 N
Solve XJ+1N,JLJ = Xir1n; by back substitution.
end
For this method, the analogue of (13.14) is
X21L11 + A(Xa1, L11) = —Xop Loy + A(Xaz, L)
which yields
1 X21L11 + XooLo1| € cuu(|Xaa||Lna| + [X22||La1]).-
Hence Method 2C enjoys a very satisfactory residual bound.

270 MATRIX INVERSION

Table 13.2. Mflop rates for inverting a triangular matrix on a Cray 2.

n=128n=25 n=0512 n = 1024
Unblocked: Method 1 95 162 231 283
Method 2 114 211 289 330
k variant 114 157 178 191
Blocked: Method 1B 125 246 348 405
(block size 64) Method 2C 129 269 378 428
k variant 148 263 344 383

Lemma 13.3. The computed inverse X from Method 2C satisfies
|XL -1 < coulX|IL). O

In summary, block versions of Methods 1 and 2 are available that have
the same residual bounds as the point methods. However, in general, there is
no guarantee that stability properties remain unchanged when we convert a
point method to block form, as shown by Method 2B.

In Table 13.2 we present some performance figures for inversion of a lower
triangular matrix on a Cray 2. These clearly illustrate the possible gains in
efficiency from using block methods, and aso the advantage of Method 2 over
Method 1. For comparison, the performance of a k variant is also shown
(both k variants run at the same rate). The performance characteristics of
the i variants are similar to those of the j variants, except that since they are
row oriented rather than column oriented, they are liable to be slowed down
by memory-bank conflicts, page thrashing, or cache missing.

13.3. Inverting a Full Matrix by LU Factorization

Next, we consider four methods for inverting a full matrix A € R™*™, given an
LU factorization computed by GEPP. We assume, without loss of generdity,
that there are no row interchanges. We write the computed LU factors as L
and U. Recdl that A + DA = LU, with |DA| < cyulL||U] (Theorem 9.3).

13.3.1. Method A

Perhaps the most frequently described method for computing X = A is the
following one.

Method A.
for j = Lin

13.3 INVERTING A FuLL MATRIX BY LU FACTORIZATION 271

Solve Ax; = g
end

Compared with the methods to be described below, Method A has the
disadvantages of requiring more temporary storage and of not having a conve-
nient partitioned version. However, it is simple to analyse. From Theorem 9.4
we have

(A+AA)T;=¢5, |AAj| < ulL||U|, (13.15)
and so R R
|AX —I| < c,ulL||U||X]. (13.16)
This bound departs from the form (13. 1) only in that |A| is replaced by its
upper bound |L||[U] + O(u). The forward error bound corresponding to (13.16)
is
|X — A7 < cpulA™Y|L||U||X]. (13.17)

Note that (13.15) says that Z. is the jth column of the inverse of a matrix
close to A, but it is a different perturbation DA for each column. It is
not true that X itsdf is the inverse of a matrix close to A, unless A is well
conditioned.

13.3.2. Method B
Next, we consider the method used by LINPACK’S xGEDI , LAPACK’S xCGETRI ,
and MATLAB'S INV function.

Method B.
Compute U™ and then solve for X the equation XL = U™

To analyse this method we will assume that U™ is computed by an
analogue of Method 2 or 2C for upper triangular matrices that obtains the
columns of U™ in the order 1 to n. Then the computed inverse Xu ~ U™*
will satisfy the residual bound

| XuU — I| < cpul|Xy||U].

We also assume that the triangular solve from the right with L is done by
back substitution. The computed X therefore satisfies XL = Xu + D(X, L)
and so . R N

X(A+ AA) = XLU = XyU + A(X,L)U.

This leads to the residual bound
XA - 1| < cou(UYUT+ 21X |1 LU
< culX||L|UI, (13.18)

272 MATRIX INVERSION

which is the left residual analogue of (13.16). From (13.18) we obtain the
forward error bound

|X — A7 < ¢, u|X||L||U||A7Y.

Note that Methods A and B are equivalent, in the sense that Method A
solves for X the equation LUX = | while Method B solves XLU = |. Thus
the two methods carry out analogous operations but in different orders. It fol-
lows that the methods must satisfy analogous residual bounds, and so (13.18)
can be deduced from (13.16).

We mention in passing that the LINPACK manua states that for Method B
a bound holds of the form [JAX — || < d.ul|Al| [|IX]| [307, 1979, p. 1.20]. This
is incorrect, athough counterexamples are rare; it is the left residud that is
bounded this way, as follows from (13.18).

13.3.3. Method C

The next method that we consider is from Du Croz and Higham [322, 1992].

It solves the equation UXL = |, computing X a partid row and column a a
time. To derive the method partition
X = T I'{z L= 1 0 U= Uyl ’U.’{Z
zo1 Xo2|’ lon La2 |’ 0 Usx|’

where the (1, 1) blocks are scalars, and assume that the trailing submatrix
X4, is dready known. Then the rest of X is computed according to

z21 = —Xa2lo1,
T T
Ty = —ujpXa2/un,

T
z11 = 1/ui1 — zy5lar.

The method can also be derived by forming the product X = U™ x L*!
using the representation of L and U as a product of elementary matrices (and
diagonal matrices in the case of U). In detaill the method is as follows.

Method C.

for k = ni-1:1
X(k+1n,k)=-X(k+1lin,k+1:n)L(k+ 1:n,k)
X(k,k+1:n)=-Uk,k+1:n)X(k+ Llin,k+ 1:n)/u
Tk = l/ukk - X(k‘,k + 1n)L(k+ l:n,k)

end

The method can be implemented so that X overwrites L and U, with the
aid of a work vector of length n (or a work array to hold a block row or column

13.3 INVERTING A FuLL MATRIX BY LU FACTORIZATION 273

in the partitioned case). Because most of the work is performed by matrix—
vector (or matrix-matrix) multiplication, Method C is likely to be the fastest
of those considered in this section on many machines. (Some performance
figures are given at the end of the section.)

A graightforward error anadysis of Method C shows that the computed. X
satisfies R R

|[UXL - I| < caulU||X||L]- (13.19)

We will refer to UXL — I :as a “mixed residual”. From (13.19) we can obtain
bounds on the left and right residua that are weaker than those in (13.18) and
(13.16) by a factor |[U *||U| on the left or |L||L" | on the right, respectively.
We aso obtain from (13.19) the forward error bound

IX — A7Y < cuu|U Y UNXIILILTY,

which is (13.17) with |A" | replaced by its upper bound U™ Y|L"Y + O(u)
and the factors reordered.

The LINPACK routine xSI DI uses a specid case of Method C in con-
junction with the diagonal pivoting method to invert a symmetric indefinite
matrix; see Du Croz and Higham [322, 1992] for details.

13.3.4. Method D

The next method is based on another natural way to form A™ and is used
by LAPACK'SxPOTRI , which inverts a symmetric positive definite matrix.

Method D.

Compute L™ and U™ and then form A* = U™ x L%

The advantage of this method is that no extra workspace is needed; U™ *
and L™ can overwrite U and L, and can then be overwritten by their product.
However, Method D is significantly slower on some machines than Methods
B or C, because it uses a smaller average vector length for vector operations.

To analyse Method D we will assume initially that L™ is computed by
Method 2 (or Method 2C) and, as for Method B above, that U™ is computed
by an analogue of Method 2 or 2C for upper triangular matrices. We have

X = XyX, + AXu, X1). (13.20)

Since A = LU — DA,
XA=XyX,LU - Xy X, AA+ A(Xy, X1)A. (13.21)
Rewriting the first term of the right-hand side using X,.L = | + D(X_,L),

and similarly for U, we obtain

XA-1=AXy,U)+ XpA(Xy, L)U — Xy XL AA+ A(Xy, X1)A, (1322

274 MATRIX INVERSION

and so

XA = 1I] < cu(|UHU] + 2(UL-YILIU] + UYL Al
< chulUY|L7Y| LU (13.23)

This bound is weaker than (13.18), since |X| < |U~}!{|L~!| + O(u). Note,
however, that the term D(Xy,X)A in the residual (13.22) is an unavoidable
consequence of forming XyX,, and so the bound (13.23) is essentialy the
best possible.

The analysis above assumes that X, and X, both have small left residuals.
If they both have small right residuals, as when they are computed using
Method 1, then it is easy to see that a bound analogous to (13.23) holds for
the right residua AX -1 f X, has a small left residual and X, has a small
right residua (or vice versa) then it does not seem possible to derive a bound
of the form (13.23). However, we have

IXLL - 1] = LR LX - L] < L ILX - 1L, (13.24)

and since L is unit lower triangular with |I;] < 1, we have |(L™ %)y < 2%,
which places a bound on how much the left and right residuals of X_ can differ.
Furthermore, since the matrices L from GEPP tend to be well conditioned
(koo(L) < m2"~1) and since our numerical experience is that large residuals
tend to occur only for ill-conditioned matrices, we would expect the left and
right residuals of XL amost aways to be of similar size. We conclude that
even in the “conflicting residuals’ case, Method D will, in practice, usualy
satisfy (13.23) or its right residual counterpart, according to whether X, has a
small left or right residua respectively. Similar comments apply to Method B
when U™ is computed by a method yielding a small right residual.

These considerations are particularly pertinent when we consider Method
D specialized to symmetric positive definite matrices and the Cholesky fac-
torization A = R'R. Now A' is obtained by computing X; = R' and
then forming A = X,XZ this is the method used in the LINPACK rou-
tine xPODI [307, 1979, Chap. 3]. If Xz has a smal right residua then X7
has a small left residual, so in this application we naturally encounter con-
flicting residuals. Fortunately, the symmetry and definiteness of the problem
help us to obtain a satisfactory residual bound. The analysis parallels the
derivation of (13.23), so it suffices to show how to treat the term X, X% RTR
(cf. (13.21)), where R now denotes the computed Cholesky factor. Assuming
RXg = I + D(R, Xg), and using (13.24) with L replaced by R, we have

XpXERTR=Xg(I + AR, Xr)T)R
=I+4F+ XrA(R,Xr)TR, |F| < |R7||A(R, XR)||R],
=1+G,

13.4 GAUSS—JORDAN ELIMINATION 275

Table 13.3. Mflop rates for inverting a full matrix on a Cray 2.

n=64 n=128 n= 256 n=512
Unblocked: Method B 118 229 310 347
Method C 125 235 314 351
Method D 70 166 267 329
Blocked: Method B 142 259 353 406
(block size 64) Method C 144 264 363 415
Method D 70 178 306 390

and
|G| < cau(IR7Y|RI|R7Y|R| + |[RTMIR™T||RT]|R)).

From the inequality || |B| ||z < v/n||B||2 for B € R™*™, together with [|A], =
IRIZ + O, it follows that

IGllz < 2n®cpul|Aljz]l A7 l2,
and thus overal we have a bound of the form
IXA = Illz < dnull All2) X|l2-

Since X and A are symmetric the same bound holds for the right residual.

13.3.5. Summary

In terms of the error bounds, there is little to choose between Methods A, B,
C, and D. Numerical results reported in [322, 1992] show good agreement with
the bounds. Therefore the choice of method can be based on other criteria,
such as performance and the use of working storege. Table 13.3 gives some
performance figures for a Cray 2, covering both blocked (partitioned) and
unblocked forms of Methods B, C, and D.

On a historical note, Tables 13.4 and 13.5 give timings for matrix inversion
on some early computing devices, times for two modern machines are given
for comparison. The inversion methods used for the timings on the early
computers in Table 13.4 are not known, but are probably methods from this
section or the next.

13.4. Gauss—-Jordan Elimination

Whereas Gaussian elimination (GE) reduces a matrix to triangular form by
elementary operations, Gauss-Jordan elimination (GJE) reduces it dl the way

276 MATRIX INVERSION

Table 13.4. Times (minutes and seconds) for inverting an n x n matrix. Source for
DEUCE, Pegasus, and Mark 1 timings: [181, 1981].

DEUCE Pegasus Manchester HP48G Sun SPARC-

(English Electric) (Ferranti) Mark 1 Caculator station ELC
n 1955 1956 1951 1993 1991
8 20s 26s - 4s .004s
16 58s 2m 37s - 18s .01s
24 3m 36s 7m 57s 8m 48s .02s
32 m 44s 17m 52s 16m - .04s

Table 13.5. Additional timings for inverting an n x n matrix.

Machine Year n Time Reference

Aiken Relay Calculator 1948 38 59% hours [764, 1948

IBM 602 Calculating Punch 1949 10 8 hours [1053, 1949
SEAC (National Bureau of Standards) 1954 49 3hours [1004, 1954]
Datatron 1957 80" 2% hours [753, 1957

IBM 704 1957 115* 19m 30s [320, 1957]

®Block tridiagonal matrix, using an inversion method designed for such matrices.
asymmetric positive definite matrix.

to diagonal form. GJE is usualy presented as a method for matrix inversion,
but it can also be regarded as a method for solving linear eguations. We
will take the method in its latter form, since it simplifies the error andysis.
Error bounds for matrix inversion are obtained by taking unit vectors for the
right-hand sides.

At the kth stage of GJE, dl off-diagona elements in the kh column are
eliminated, instead of just those below the diagonal, as in GE. Since the ele-
ments in the lower triangle (including the pivots on the diagona) are identical
to those that occur in GE, Theorem 9.1 tells us that GJE succeeds if al the
leading principal submatrices of A are nonsingular. With no form of pivoting
GJE is unstable in general, for the same reasons that GE is unstable. Partia
and complete pivoting are easily incorporated.

Algorithm 13.4 (Gauss-Jordan elimination). This algorithm solves the lin-
ear sysem Ax = b, where A € R™ ™ is nonsingular, by GJE with partial
pivoting.

13.4 GAUSS—JORDAN ELIMINATION 277

for k = 1:in
Find r such that |a,| = maxi-, |al-
A(k, kin) & A(r, kin), b(k) < b(r) % Swap rows k and r.
row_ind=[1k — 1, k + 1:n] % Row indices of elements to eliminate.
m = A(row_ind,K)/A(k,k) % Multipliers.
A(row_ind,k:n) = A(row_ind,k:n) — m*A(k,k:n)
b(row_ind) = b(row_ind) — m*b(k)

end
X = bi/a”, i = 1n
Cost: n® flops.

The numerical stability properties of GJE are rather subtle and error anal-
ysis is trickier than for GE. An observation that simplifies the analysis is that
we can consider the algorithm as comprising two stages. The first stage is
identical to GE and forms M. M., . . . M;A = U, where U is upper trian-
gular. The second stage reduces U to diagonal form by elementary operations:

NoNp_1...NoU=D, Ny=1-nef, eln,=0,i>k.

The solution x is formed as x = D_;1N, . . . Ny, wherey = M, . . . M,b.
The rounding errors in the first stage are precisely the same as those in GE,
so it suffices to consider the second stage. We will assume, for simplicity, that
there are no row interchanges. As with GE, this is equivalent to assuming
that al row interchanges are done at the start of the agorithm.

Define Uy = N . .N,U (so U, = U) and note that N, and U, have the
forms

U = [D’(‘)‘l [kaWk]] , Di_y € R*¥Dx(E-1) " giaeonal,
k
Ik—l [nk 0]
Ny = ,
, [0 Tnkpr
where ng = [-Uy /U, - - - . -uk_l,k/ukk]T. The computed matrices obviously
satisfy
ﬁk,+1 = ﬁkﬁk + Ag, (13.253)
A Ok—l A(k) < ST 3 b
k= 0 0'n.—k+1] IAICI = 73'Nk||Uk|) (1325)

(to be precise, Ny iis defined as N, but with (Ni)ix = —Tyx/Tkk). Similarly,
with X1 = N . . . Nyy, we have

Brpr = NeZ+ fi, €Ffe=0,02k, |ful < 73| NelZxl- (13.26)

278 MATRIX INVERSION

Because of the structure of ﬁk, D,, and f,, we have the useful property that
Niaj =4y, i>j4, Nifi=f, 2]

Without loss of generality, we now assume that the final diagonal matrix D is
the identity (i.e, the pivots are al 1); this simplifies the analysis a little and
has a negligible effect on the final bounds. Thus (13.25) and (13.26) yield

I=Upp1=Na. . . NoU 4 A, (13.27)
k=2
T=ZTpy1 = ﬁn . ﬁgy + Z Sk (13.28)
k=2

Now

18k] < Ysl Nl Tkl < v3| Nil| N1 U—1 + Ag—1]
< ¥3(1 + 73) [Nk || Nk—1|Uk-1]
<o < y3(1 + v5) TN - IN) U,

and, similarly, R R
|fxl < ¥3(1 4+ 73) %Nkl ... [N2l [yl-

But defining fi, = [»f 0]T € R™, we have

INe| ... IN2| = I + [fixlel + - + [Rzled
< |Na|...|Na| = |Ny... Ng| =: | X|,

where X = Ut + O(u) (by (13.27)). Hence

|8k] < (n = D)73(1 +9)" 2IX U,

B

x
Il
M)

Ifkl < (n = 1)y3(1 +93)" 21X]yl

NE

a
Jl

2

Combining (13.27) and (13.28) we have, for the solution of U, = v,
g= (I—ZAk>U'1y+ka = (I—ZAk>z+ka,
k=2 k=2 k=2 k=2

which gives the componentwise forward error bound

lz — 2| < (n— 1)1 +73)" 21X |(IU||2 + |y])- (13.29)

13.4 GAUSS—JORDAN ELIMINATION 279

Table 13.6. Gauss-Jordan elimination for U, = b.

N hy p®) kKeo(U)u
16 2.0e-14 5.8e-11
32 6.4e-10 7.6e-6
64 1.7e2 6.6e4

This is an excellent forward error bound: it says that the error in Z is
no larger than the error we would expect for an approximate solution with
a tiny componentwise relative backward error. In other words, the forward
error is bounded in the sane way as for substitution. However, we have not,
and indeed cannot, show that the method is backward stable. The best we
can do is to derive from (13.27) and (13.28) the result

(U+ AU =y + Ay, (13.30Q)
|AU| < (n = 1)ys(1 +v3)" |U|| XU, (13.30b)
|Ay| < (n — D)vs(1 +v3)" 2|U 11Xyl (13.300)

using ﬁ{l...ﬁgl = U + O(u). These bounds show that Z has a normwise
backward error bounded approximately by koo(U)(n —1)v;. Hence the back-
ward error can be guaranteed to be smdl only if U is well conditioned. This
agrees with the comments of Peters and Wilkinson [828, 1975] that “the resid-
uals corresponding to the Gauss-Jordan solution are often larger than those
corresponding to back-substitution by a factor of order k.”

A numerical example helps to illustrate the results. We take U to be
the upper triangular matrix with 1s on the diagona and — 1s everywhere
above the diagond (U = U(1) from (8.2)). This matrix has condition number
Koo(U) = n2"~ 1, Table 13.6 reports the normwise relative backward error
Mup(Z) = IUT = blloo/(IU||oollZllco + IIblloc) (see (7.2)) for b = U,, where
x = €3. Clearly, GJE is backward unstable for these matrices—the backward
errors show a dependence on ke (U). However, the relative distance between Z
and the computed solution from substitution (not shown in the table) is less
than ke (U)u, which shows that the forward error is bounded by keo(U)u,
confirming (13.29).

By bringing in the error analysis for the reduction to upper triangular
form, we obtain an overdl result for GJE.

Theorem 13.5. Suppose GJE successfully computes an approximate solution
Z to Ax = b, where A€ R™™ is nonsingular. Then

b— AZ| < 8nulZI[T1T T3] + O(?), (13.31)
lo - 8] < (2nlAM|ZNT] + 6n(T D)) 18] + O@?), (1332)

280 MATRIX [INVERSION

where A~ LU is the factorization computed by GE.

Proof. For the first stage (which is just GE), we have A + DA, = Eﬁ,
|AA1| < 7,|L||U|, and (L + AL)Y = b, |AL| < v,|L|, by Theorems 9.3 and
8.5.

Using (13.30), we obtain

(L+ AL)T + AU)zZ = (L + ALY + Ay) = b+ (L + AL) Ay,
or AZ = b —r, where
r=(AA, + LAU + ALU + ALAU)Z — (L + AL)Ay. (13.33)

The bounds (13.31) and (13.32) follow easily on using (13.30). 0O

Theorem 13.5 shows that the stability of GJE depends not only on the size
of |L||U| (as in GE), but also on the condition of U. The term |U 1||U||:::| is
an upper bound for |Z|, and if this bound is sharp then the residua bound
is very similar to that for LU factorization. Note that for patia pivoting we
have Koo(U) < 12" koo (A) + O(u).

The bounds in Theorem 13.5 have the pleasing property that they are
invariant under row or column scaling of A, though of course if we are using
partial pivoting then row scaling can change the pivots and dter the bound.

As mentioned earlier, to obtain bounds for matrix inversion we simply
take b to be each of the unit vectors in turn. For example, the residual bound
becomes

|[AX — I < 8nu|L||O)T 1 |T|1X] + O(u?).

For the speciad case of symmetric positive definite matrices, an informative
normwise result follows from Theorem 13.5. We make the natural assumption
that symmetry is exploited in the elimination.

Corollary 13.6. Suppose GJE successfully computes an approximate solu-
tion. Zto Ax = b, where A € R™"™ is symmetric positive definite. Then

lIb — AZ]|z < 8n’urz(A)'/?[All2llzll2 + O(u?),
Iz — 2l

llll2

where A ~ LU is the factorization computed by symmetric GE.

< 8n3uka(A) + O(u?),

Proof. By Theorem 9.3 we gave A + DA = LU where DA is symmetr-
ic and satisfies |DA| < +,|L||U|. Defining D = deg(U)lf2 we have, by

13.5 THE DETERMINANT 281

symmetry, A + DA =LD- D' = .R'R Hence

HT=Tll2 = I |IR"*D~Y||DR ||2
= [IR7IR| |12
< nkz(R) = nka(A + AA)Y/?
= nky(A)Y2 4+ O(u).

Furthermore, it is staightforward to show that || |ZI|U]ll2 = | |IRT|IR| ||z <
n(1-g,) *[|All,. The required bounds follow.

Corollary 13.6 shows that GJE is forward stable for symmetric positive
definite matrices, but it bounds the backward error only by a multiple of
kz(A)”z. Numerical experiments show that the backward error is usualy
much less than k,(A)*?u, but (very ill-conditioned) matrices can certainly be
found for which the backward error is many order of magnitude larger than
u. Hence GJE is not backward stable even for symmetric positive definite
matrices.

13.5. The Determinant

It may be too optimistic to hope that determinants will
fade out of the mathematical picture in a generation;
their notation alone is a thing of beauty

to those who can appreciate that sort of beauty.

— E. T. BELL, Review of “Contributions to the History of Determinants,
1900-1920", by Sir Thomas Muir (1931)

Like the matrix inverse, the determinant is a quantity that rarely needs to
be computed. The common fallacy that the determinant is a measure of ill
conditioning is displayed by the observation that if Q@ € R™*™ is orthogonal
then det(aQ) = a'det(Q) = =d', which can be made arbitrarily small or
large despite the fact that aQ is perfectly conditioned. Of course, we could
normalize the matrix before taking its determinant and define, for example,

1 det(D
VA= o — e D= diee(4G.)l),
where D™ A has rows of unit 2-norm. This function is called the Hadamard
condition number by Birkhoff [99, 1975], because Hadamard’'s determinantal
inequality (see Problem 13.11) implies that ¥ (A) > 1, with equdity if and
only if A has mutualy orthogonal rows. Unless A is dready row equilibrated
(see Problem 13.13), ¢ (A) does not relate to the conditioning of linear systems
in any straightforward way.

282 MATRIX INVERSION

As good a way as any to compute the determinant of a general matrix
A e R™™™ is via GEPP. If PA = LU then

det(A) = det(P)* det(U) = (-1)'uy . . U (13.34)

where r is the number of row interchanges during the elimination. If we
use (13.34) then, barring underflow and overflow, the computed determinant
d = fl[det(n)) satisfies

d = det(T)(1 + 6,),

where |g,| < ¢,, SO we have a tiny relative perturbation of the exact determi-
nant of a perturbed matrix A + DA, where DA is bounded in Theorem 9.3.
In other words, we have almost the right determinant for a dightly perturbed
matrix (assuming the growth factor is smal).

However, underflow and overflow in computing the determinant are quite
likely, and the determinant itself may not be a representable number. One pos-
shility is to compute log |det(A) = E:;l log |u;|; as pointed out by Forsythe
and Moler [396, 1967, p. 55], however, the computed sum may be inaccurate
due to cancellation. Another approach, used in LINPACK, is to compute and
represent det(A) in the form y x 10° where 1 < |y| < 10 and e is an integer
exponent.

13.5.1. Hyman’s Method

In §81.16 we andysed the evaluation of the determinant of a Hessenberg matrix
H by GE. Another method for computing det(H) is Hyman's method [594,
1057], which is superficially similar to GE but agorithmically different. Hy-
man's method has an easy derivation in terms of LU factorization that leads to
a very short eror analysis. Let H € R™™™ bean unreduced upper Hessenberg
matrix (h;,,, i # 0 for al i) and write

_[hT n _[T v n-1
H—|:T y:|) H1_|:hT n]$ hayER 7776]R“

The matrix H; is H with the first row cyclicaly permuted to the bottom, so

det(H,) = (-1)"* det(H). Since T is a nonsingular upper triangular matrix,
we have the LU factorization

_ I o|l{T] _
Hl - [hTT—l 1:’ ’:0 n—hTT‘ly] —LU, (13-35)

from which we obtain det(H,) = det(T)(h — h'T 'y). Therefore

det(H) = (-1)"* de(T)(h - h'T). (13.36)

13.6 NOTES AND REFERENCES 283

Hyman's method consists of evaluating (13.36) in the natura way: by solving
the triangular system Tx = y by back substitution, then forming h — h'x and
itsproduct with det(T) = h, ;hg, . . . hypog.

For the error analysis we assume that no underflows or overflows occur.
From the backward error analysis for substitution (Theorem 8.5) and for an
inner product ((34)) we have immediately, on defining m:= h — h'T 'y,

B=(n-(h+AR)T(T + AT) 'y)(1 + 6),

where
|AR] < Yp_alhl, |1AT] < 7|7, 18] < w

Since fl(det(T)) = det(T)(1 + dy). . .(1 + d,.), |d] < u, the computed de-
terminant satisfies

d := fl(det(H)) = (1 + 6,) det(T) (1 — (h + AR)T(T + AT)1y),

where |q,] < g,. This is not a backward error result, because only one of
the two Ts in this expression is perturbed. However, we can write det(T) =
det(T + DT)(1 + q(n-1)2)1 so that

d = det(T + AT)(9(1 + b,2_pyy) — (h+ AR)T(T + AT) y(1 + 6,5 11))-

We conclude that the computed determinant is the exact determinant of a
perturbed Hessenberg matrix in which each element has undergone a relative
perturbation not exceeding gy . n+ 1 ~ nu, which is a very sdatisfactory result.
In fact, the constant g,,.,+1 May be reduced to g,, by a dightly modified
analysis, see Problem 13.14.

13.6. Notes and References

Classic references on matrix inversion are Wilkinson's paper Error Analysis
of Direct Methods of Matrix Inversion [1085, 1961] and his book Rounding
Errors in Algebraic Processes [1088, 1963]. In discussing Method 1 of §13.2.1,
Wilkinson says “ The residual of X as a left-hand inverse may be larger than
the residual as a right-hand inverse by a factor as great as ||L|| |IL" Y| . . . We
are asserting that the computed X is almost invariably of such a nature that
XL — | is equally small” [1088, 1963, p. 107]. Our experience concurs with
the latter statement. Triangular matrix inversion provides a good example of
the value of rounding error anadysis. it helps us identify potential instabilities,
even if they are rarely manifested in practice, and it shows us what kind of
stability is guaranteed to hold.

In [1085, 1961] Wilkinson identifies various circumstances in which trian-
gular matrix inverses are obtained to much higher accuracy than the bounds

284 MATRIX INVERSION

of this chapter suggest. The results of 88.2 provide some insight. For example,
if T is a triangular M-matrix then, as noted after Corollary 8.10, its inverse
is computed to high relative accuracy, no matter how ill conditioned L may
be.

Sections 13.2 and 13.3 are based closely on Du Croz and Higham [322,
1992].

Method D in §13.34 is used by the Hewlett-Packard HP-15C calculator,
for which the method's lack of need for extra storage is an important prop-
erty [523, 1982].

Higham [560, 1995] gives error analysis of a divide-and-conquer method
for inverting a triangular matrix that has some attractions for paralel com-
putation.

GJE is an old method. It was discovered independently by the geodesist
Wilhelm Jordan (1842-1899) (not the mathematician Camille Jordan (1838-
1922)) and B.-l. Clasen [12, 1987].

An Algol routine for inverting positive definite matrices by GJE was pub-
lished in the Handbook for Automatic Computation by Bauer and Reinsch [83,
1971]. As a means of solving a single linear system, GJE is 50% more expensive
than GE when cost is measured in flops; the reason is that GJE takes O(n?)
flops to solve the upper triangular system that GE solves in n? flops. How-
ever, GJE has attracted interest for vector computing because it maintains
full vector lengths throughout the agorithm. Hoffmann [577, 1987] found that
it was faster than GE on the CDC Cyber 205, a now-defunct machine with a
relatively large vector startup overhead.

Turing [1027, 1948] gives a simplified analysis of the propagation of errors
in GJE, obtaining a forward error bound proportional to k(A). Bauer [80,
1966] does a componentwise forward error analysis of GJE for matrix inver-
sion and obtains a relative error bound proportional t0 Keo(A) for symmetric
positive definite A. Bauer's paper is in German and his analysis is not easy to
follow. A summary of Bauer's anaysis (in English) is given by Meinguet [746,
1969].

The first thorough analysis of the stability of GJE was by Peters and
Wilkinson [828, 1975]. Their paper is a paragon of rounding error analysis.
Peters and Wilkinson observe the connection with GE, then devote their at-
tention to the “second stage” of GJE, in which Ux = y is solved. They show
that each component of x is obtained by solving a lower triangular system, and
they deduce that, for each i, (U + DU;)x') = y + Dy;, where |DU;| < g|U]|
and |Dy;| < gly], and where the ith component of x"’ is the ith component
of Z. 'They then show that Z has relative error bounded by2n&e(U)u+0(u?),
but that T does not necessarily have a small backward error. The more direct
approach used in our analysis is similar to that of Dekker and Hoffmann [276,
1989], who give a normwise anaysis of a variant of GJE that uses row pivot-
ing (elimination across rows) and column interchanges. Our componentwise

PROBLEMS 285

bounds (13.29)—<(13.32) are new.

Goodnight [473, 1979] describes the use of GJE in datistics for solving
least squares problems.

Error analysis of Hyman’s method is given by Wilkinson [1084, 1960],
[1088, 1963, pp. 147-154], [1089, 1965, pp. 426-431]. Although it dates
from the 1950s, Hyman's method is not obsolete: it has found use in meth-
ods designed for high-performance computers; see Ward [1065, 1976], Li and
Zeng [701, 1992], and Dubrulle and Golub [324, 1994].

13.6.1. LAPACK

Routine xGETRI computes the inverse of a general square matrix by Method
B using an LU factorization computed by xGETRF. The corresponding routine
for a symmetric positive definite matrix is XxPOTRI , which uses Method D,
with a Cholesky factorization computed by xPOTRF. Inversion of a symmetric
indefinite matrix is done by xSYTRI . Triangular matrix inversion is done by
XTRTRI , which uses Method 2C. None of the LAPACK routines compute the
determinant, but it is easy for the user to evaluate it after computing an LU
factorization.

Problems

13.1. Reflect on this cautionary tae told by Acton [4, 1970, p. 246].

“It was 1949 in Southern Cdifornia. Our computer was a very new CPC
(model 1, number 1) —a 1-second-per-arithmetic-operation clunker that was
holding the computational fort while an early electronic monster was being
coaxed to life in an adjacent room, From a nearby aircraft company there
arrived one day a 16 x 16 matrix of 10-digit numbers whose inverse was desired

. We labored for two days and, after the usual number of glitches that
accompany any strange procedure involving repeated handling of intermediate
decks of data cards, we were possessed of an inverse matrix. During the
checking operations . . . it was noted that, to eight significant figures, the
inverse was the transpose of the origina matrix! A hurried visit to the aircraft
company to explore the source of the matrix reveadled that each element had
been laboriously hand computed from some rather simple combinations of
sines and cosines of a common angle. It took about 10 minutes to prove that
the matrix was, indeed, orthogonal!”

13.2. Rework the analysis of the methods of §13.2.2 using the assumptions
(12.3) and (12.4), thus catering for possible use of fast matrix multiplication
techniques.

286 MATRIX INVERSION

13.3. Show that for any nonsingular matrix A,

n(A)Zma.x{”AX_I” IIXA—III}'

IXA-1I|" |AX — I
This inequdity shows that the left and right residuals of X as an approxima
tion to A can differ greatly only if A is ill conditioned.

13.4. (Mendelssohn [748, 1956]) Find parametrized 2 x 2 matrices A and X
such that the ratio ||JAX — I]|/[|XA — 1|| can be made arbitrarily large.

13.5. Let X and Y be approximate inversesof A € R™*" that satisfy
|AX - I| <u|A||X| and [YA-I| <u|Y]A]
and let Z = fI(Xb) and § = fI(Yb). Show that
|AZ — b] < ¥oy1|AllX|I6] and |AF - b] < 7,p|AlIY | Allz].

Derive forward error bounds for Z and 7. Interpret al these bounds.

13.6. What is the relation between the matrix on the front cover of the LA-
PACK Users Guide [17, 1995] and that on the back cover? Answer the same
guestion for the LINPACK Users Guide [307, 1979].

13.7. Show that for any matrix having a row or column of 1s, the elements
of the inverse sum to 1.

13.8. Let X = A + iB € C™*™ 'be nonsingular. Show that X' can be
expressed in terms of the inverse of the real matrix of order 2n,

Y= [g _AB]'

Show that if X is Hermitian positive definite then Y is symmetric positive
definite. Compare the economics of rea versus complex inversion.

13.9. For a given nonsingular A € R™*™ and X ~ A", it is interesting to ask
what is the smallest e such that X + DX = (A + DA)* with ||DX|| < €[l X]|
and || AA| < e||A|l. We require (A + DA)Y(X + DX) = I, or

ADX + DAX + DADX = | — AX

It is reasonable to drop the second-order term, leaving a generalized Sylvester
equation that can be solved using singular value decompositions of A and X
(cf. 815.2). Investigate this approach computationaly for a variety of A and
methods of inversion.

PROBLEMS 287

13.10. For a nonsingular A € R™*™ and given integers i and j, under what
conditions is det(A) independent of a;? What does this imply about the
suitability of det(A) for measuring conditioning?

13.11. Prove Hadamard's inequality for A € C™*™:

| det(A)] < [T llallz,

k=1
where g, = A(;, K). When is there equality? (Hint: use the QR factorization.)

13.12. (a) Show that if A" = QR is a QR factorization then the Hadamard
condition number ¢(A) = [T, pi/|rii|, where p; = [IRC, i)l (b) Evaluate
P(A)for A = U(1) (see (8.2)) and for the Pei matrix A = (a — 1)I + ee'.

13.13. (Guggenheimer, Edelman, and Johnson [486, 1995]) (a) Prove that for
a nonsingular A € R™*",

2 1AL\"
o < gy (W)

(Hint: apply the arithmetic-geometric mean inequality to the n numbers

02/2, 62/2, 02, ..., 02_,, where the s; are the singular values of A) (b)
Deduce that if A has rows of unit 2-norm then
2
A PR —

where 7 is the Hadamard condition number.

13.14. Show that Hyman's method for computing det(H), where H € R™*"
is an unreduced upper Hessenberg matrix, computes the exact determinant
of H + DH where IDH| < @,.1|H|, barring underflow and overflow. What
is the effect on the error bound of a diagonal similarity transformation H™ —
D 'HD, where D = diag(d), d # 0?

13.15. What is the condition number of the determinant?

13.16. (RESeARCH ProBLEM) Obtain backward and forward error bounds
for GJE applied to a diagonaly dominant matrix. Peters and Wilkinson [828,

1975] state that “it is well known that Gauss-Jordan is stable” for a diagonally
dominant matrix, but a proof does not seem to have been published.

Previous Home Next

Chapter 14
Condition Number Estimation

Most of LAPACK'’S condition humbers and error bounds are based on
estimated condition numbers . . .

The price one pays for using an estimated

rather than an exact condition number is

occasional (but very rare) underestimates of the true error;

years of experience attest to the reliability of our estimators,

although examples where they badly underestimate the error can be constructed.

— E. ANDERSON et al,, LAPACK Users’ Guide, Release 2.0 (1995)

The importance of the counter-examples is that they make clear that
any effort toward proving that the algorithms
always produce useful estimations is fruitless.

It may be possible to prove that the algorithms
produce useful estimations in certain situations, however,
and this should be pursued.

An effort simply to construct more complex algorithms is dangerous.

— A. K. CLINE and R. K. REW, A Set of Counter-Examples
to Three Condition Number Estimators (1983)

Singularity is almost invariably a clue.
— SIR ARTHUR CONAN DOYLE, The Boscombe Valley Mystery “(1892)

289

290 CONDITION NUMBER ESTIMATION

14.1. How to Estimate Componentwise Condition
Numbers

When bounding the forward error of a computed solution to a linear system
we would like to obtain the bound with an order of magnitude less work than
is required to compute the solution. For a dense n x n system, where the
solution process usualy requires O(n3) operations, we need to compute the
bound in O(nz) operations. An estimate of the bound that is correct to within
a factor 10 is usualy acceptable, because it is the magnitude of the error that
is of interest, not its precise value.

In the perturbation theory of Chapter 7 for linear equations we obtained
perturbation bounds that involve the condition numbers

Al _
kg (d,z) = AL oy aery ey

ll|l
AT f + AT Ele] [loo
llz]l oo

and their variants. To compute these condition numbers exactly we need
to compute A, which requires O(n®) operations, even if we are given a
factorization of A. Is it possible to produce reliable estimates of both condition
numbers in O(nz) operations? The answer is yes, but to see why we first need
to rewrite the expression for condg (A, X). Consider the general expression
l|A7Y|dlc, where d is a given nonnegative vector (thus, d = f + E|x| for
conde (A, x)); note that the practica error bound (7.27) is of this form.
Writing D = diag(d) and e = [1, 1, 1], we have

A dlleo = I |A™"|Deleo = [|A™' Dlefloo = I |A™' Dl floo = IIA'ID(IIoo-)
14.1

COndE,f(A, :E) =

]

Hence the problem is equivalent to that of estimating ||B|loo := ||A™}D||co-
If we can estimate this quantity then we can estimate any of the condition
numbers or perturbation bounds for a linear system. There is an algorithm,
described in 814.3, that produces reliable order-of-magnitude estimates of
[IBl|;, for an arbitrary B, by computing just a few matrix-vector products
Bx and B'y for carefully selected vectors x and y and then approximating
[1Bll1 =|IBX||./||X|l;- If we assume that we have a factorization of A (say,
PA = LU or A = QR), then we can form the required matrix-vector products
for B = A 'D in O(n% flops. Since [|B|l; = ||BT ||eo,it follows that we can
use the agorithm to estimate |||A~!|d]lo in O(n? flops.

Before presenting the [-norm condition estimation algorithm, we describe
a more general method that estimates [|B||, for any p € [1,00]. This more
general method is of interest in its own right and provides insight into the
special case p = 1.

14.2 THE p-NorRM POwWER METHOD 291

14.2. The p-Norm Power Method

An iterative “power method” for computing ||A||, was proposed by Boyd in
1974 [139, 1974]. When p = 2 it reduces to the usual power method applied
to A'A. We use the notation dual, (x) to denote any vector y of unit g-
norm such that equdity holds in the Holder inequaity zTy < ||z||»llyllq (this
normalization is different from the one we used in (6.3), but is more convenient
for our present purposes). Throughout this section, p > 1 and q is defined by
pt+gt=1

Algorithm 14.1 (p-norm power method). Given A € R™*" and zp € R™,
this agorithm computes g and x such that g < [|All, and ||AX]|, = dlIXlp.

X = Xo %o llp
repeat
y = AX
z= A" dud,(y)
if ||1lq < 2'x
g = IVl
quit

end
X = dualy(2)
end

Cost: 4rmn flops (for r iterations).
There are several ways to derive Algorithm 14.1. Perhaps the most natural
way is to examine the optimality conditions for maximization of
_ ll4zlly
E

First, we note that the subdifferentia (that is, the set of subgradients) of an
arbitrary vector norm ||| is given by [378, 1987, p. 379]

F(z) z € R"™.

Ollall = {A: Az = |lall, [Alp < 1}.

If x# 0then ATz = ||z|| = ||Alp > 1, from the Holder inequality, and so, if
X#0,

Bllzll = {A: Xz = |lzl, |Allp =1}
=: {dual(z)}.

It can adso be shown that if A has full rank,

d||Az| = {AT dual(Az)}. (14.2)

292 CONDITION NUMBER ESTIMATION

We assume now that A has full rank, 1 < p < >, and x# 0. Then it
is easy to see that there is a unique vector dual, (x), so 9||z[l, has just one
element, that is, |||, is differentible. Hence we have

AT dual,(Az) _ ||Az|l, dual,(z)

]l I3

F(z) = (14.3)

The first-order Kuhn-Tucker condition for a local maximum of F is therefore

Azl

AT dual, (Az) =
P(42) = T,

dual,(z).

Sincedualy(dua, (x)) = X/||x||, if p # 1, , 1 this equation can be written

_ =13

T =
|Az||,

dual, (AT dual,(Az)). (14.4)

The power method is simply functional iteration applied to this transformed
set of Kuhn-Tucker equations (the scale factor ||:c||f,/||Ax||p is irrdlevant since
Flax) = F(x).

For the 1- and oo--norms, which are not everywhere differentiable, a differ-
ent derivation can be given. The problem can be phrased as one of maximizing
the convex function F(x) := ||AX|[, over the convex set S := {x : [[X|[, < 1}.
The convexity of F and S ensures that, for any u« € S, a least one vector g
exists such that

F(w) > Fu)+g¢T(v—u) forallve§. (14.5)

Vectors g satisfying (14.5) are called subgradients of F (see, for example,
[378, 1987, p. 364]). Inequality (14.5) suggests the strategy of choosing a
subgradient g and moving from u to a point v. € S that maximizesg' (u — u),
that is, a vector that maximizes g' u. Clearly, u. = dua,(g). Since, from
(14.2), g has the form A" dual,(Ax), this completes the derivation of the
iteration.

For al values of p the power method has the desirable property of gener-
ating an increasing sequence of norm approximations.

Lemma 14.2. In Algorithm 14.1, the vectors from the kth iteration satisfy
(i) 2*"z* = |ly*|l,, and
(i) Iyl < ll2*llq < " llp < l|Allp-
The first inequality in (ii) is strict if convergence is not obtained on the kth
iteration.

14.2 THE p-NorM POWER METHOD 293

Proof. z¢'z¢F = dual,(y*)T Az* = dual,(v*)Ty* = ||v*|l,- Then

k' k

k T

ly°]lp = 2" =
T

< “Zk”q”xk”p = ||zk“q =z g = dua‘lzo(yk)Tl‘l-'IJk-H

< || dualp, (¥¥) oIl Az* I, = lv** I,

< || Allp-

For the last part, note that, in view of (i), the convergence test “||zk||q <
2 2% can be written as “||Z]l; < IVl - 0

It is clear from Lemma 14.2 (or directly from the Holder inequality) that
the convergence test “[|Z||, < z'x" in Algorithm 14.1 is equivalent to “l12lq =
z'x" and, since [IX||[, = 1, this is equivalent to x = dual, (z). Thus, athough
the convergence test compares two scalars, it is actually testing for equality
in the vector equation (14.4).

The convergence properties of Algorithm 14.1 merit a careful description.
Firgt, in view of Lemma 14.2, the scdars g, = ||y/||, form an increasing and
convergent sequence. This does not necessarily imply that Algorithm 14.1
converges, since the algorithm tests for convergence of the x, and these vec-
tors could fail to converge. However, a subseguence of the X must converge
to a limit, * say. Boyd [139, 1974] shows that if T iis a strong loca maximum
of F with no zero components, then z* — Z llinearly.

If Algorithm 14.1 converges it converges to a stationary point of F(Xx)
when 1 < p <oo. Thus, instead of the desired globa maximum [|A][,, we
may obtain only a local maximum or even a saddle point. When p = 1 or
oo, if the algorithm converges to a point at which F is not differentiable, that
point need not even be a stationary point. On the other hand, for p = 1
or oo Algorithm 14.1 terminates in a most n + 1 iterations (assuming that
when dual, or dual, is not unique an extreme point of the unit ball is taken),
since the agorithm moves between the vertices ¢ of the unit ball in the 1-
norm, increasing F on each stage (x = =g for p = 1, and dua,(y) = xg for
P = 20). An example where n iterations are required for p = 1 is given in
Problem 14.2.

For two specia types of matrix, more can be said about Algorithm 14.1.

(1) If A = xy" (rank 1), the algorithm converges on the second step with
9= ||All, = |IXllolI¥llq, whatever x,. _ _

(2 §oyd [159, 1974] shows that if A has nonnegative elements, A'A is
irreducible, 1 < p < oo, and x, has positive elements, then the X converge
and g — [|All,.

For values of p strictly between 1 and oo the convergence behaviour of
Algorithm 14.1 is typical of a linearly convergent method: exact convergence is
not usualy obtained in a finite number of steps and arbitrarily many steps can

294 CONDITION NUMBER ESTIMATION

be required for convergence, as is well-known for the 2-norm power method.
Fortunately, there is a method for choosing a good starting vector that can
be combined with Algorithm 14.1 to produce a reliable norm estimator; see
the Notes and References and Problem 14.1.

We now turn our attention to the extreme values of p: 1 and oo.

14.3. LAPACK [|-Norm Estimator

Algorithm 14.1 has two remarkable properties when p = 1. it dmost aways
converges within four iterations (when x, = [1, 1, . . ., 1]", say) and it fre-
quently yields ||A]|; exactly. This rapid, finite termination is aso obtained
for p = oo, and is related to the fact that Algorithm 14.1 moves among the
finite set of extreme points of the unit ball. Numerical experiments suggest
that the accuracy is about the same for both norms but that slightly more
iterations are required on average for p = oo. Hence we will confine our
attention to the 1-norm.

The I-norm version of Algorithm 14.1 was derived independently of the
general algorithm by Hager [492, 1984] and can be expressed as follows. The
notation x = sign(y) means that x; = 1 or —1 according as 'y, > 0 or y; < O.
We now specidize to square matrices.

Algorithm 14.3 (1-norm power method). Given A € R™™"™ this algorithm

computes g and x such that g < [|All; and [|AX]]; = df|x]l;.
x=n'e
repeat
y = AX
X = sgn(y)
zZ = Agrx
if llzlloo < 27z
g = [yl
quit
end
x = g, where |z| = ||z]le (smallest such j)

end

Numerical experiments show that the estimates produced by Algorithm
14.3 are frequently exact (g = ||Al|ly), usuadly “acceptable’” (g > ||Al|:/10),
and sometimes poor (g < |[|A][:/10).

An important question for any norm or condition estimator is whether
there exists a “counterexample’—a parametrized matrix for which the quo-
tient “estimate divided by true norm” can be made arbitrarily small (or large,
depending on whether the estimator produces a lower bound or an upper

14.3 LAPACK 1-NORM ESTIMATOR 295

bound) by varying a parameter. A genera class of counterexample for Algo-
rithm 14.3 is given by the matrices

A=1+0C,

where Ce = C'e = 0 (there are many possible choices for C). For any such
matrix, Algorithm 14.3 computessy = n"'e, x = e, z = e, and hence the
algorithm terminates at the end of the first iteration with

Y 1 -1

= ~ as 8 — oo.
lAllx [l +6C|

The problem is that the algorithm stops a a local maximum that can differ
from the globa one by an arbitrarily large factor.

A more reliable and more robust agorithm is produced by the following
modifications of Higham [537, 1988].

Definition of estimate. To overcome most of the poor estimates, g is

redefined as
= max {||y||1 —”C“l}
ol S’

where

_ — (1)1 i—1
c=Ab, b, =(-1) (1+n—1)'
The vector b is considered likely to “pick out” any large elements of A in those
cases where such elements fail to propagate through to .

Convergence test. The algorithm is limited to a minimum of two and a
maximum of five iterations. Further, convergence is declared after comput-
ing x if the new x is the same as the previous one, this event signals that
convergence will be obtained on the current iteration and that the next (and
final) multiplication A'x is unnecessary. Convergence is also declared if the
new |lyll; is no larger than the previous one. This nonincrease of the norm
can happen only in finite precision arithmetic and signals the possibility of a
vertex g being revisited—the onset of “cycling.”

The improved algorithm is as follows. This agorithm is the basis of dll
the condition number estimation in LAPACK.

Algorithm 14.4 (LAPACK norm estimator). Given A € R™ ™ this ago-
rithm computes g and u = Aw such that g < [|A]|; with JJull /W, = g (w
is not returned).

u = An'e

if n =1, quit with g = |u,|, end
g=lully

X = sign(u)

296 CONDITION NUMBER ESTIMATION

x = A'X

k=2

repeat
j=min{i: x| = ||zl }
u = Ag
7=
g= |lully _
if sign(u) = x or g <%, goto (*), end
X = sign(u
X = Agrx()
k = k+1

until (|zllec = 2 or k& > 5)
(*) Xi :(—]_)I+1(1+:'l%11), 1=1:n
X = AX
if 2[|x]|/(3n) > g then
u=x
g = 2I¥l:/(3n)
end

Algorithm 14.4 can till be “defeated’: it returns an estimate 1 for matrices
A(q) of the form

A(Q) = | + gP, where P = P, Pe = 0, Pe;, = 0, Pb = 0. (14.6)

(P can be constructed as | — Q where Q is the orthogonal projection onto
spar{e, e, b}.) Indeed, the existence of counterexamples is intuitively obvi-
ous since Algorithm 14.4 samples the behaviour of A on less than n vectors
in R®. Numerical counterexamples (not parametrized) can be constructed
automatically by direct search, as described in 824.3.1. Despite these weak-
nesses, practical experience with Algorithm 14.4 shows that it is very rare
for the estimate to be more than three times smaller than the actual norm,
independent of the dimension n. Therefore Algorithm 14.4 is, in practice, a
very reliable norm estimator. The number of matrix-vector products required
is a least 4 and a most 11, and averages between 4 and 5.

There is an analogue of Algorithm 14.3 for complex matrices, in which x;
is defined as yi/|y;| if y;# 0 and 1 otherwise. In the corresponding version of
Algorithm 14.4 the test for repeated x vectors is removed, because x now has
noninteger, complex components and so is unlikely to repeat.

It is interesting to look at a performance profile of Algorithm 14.4. A per-
formance profile is a plot of some measure of the performance of an algorithm
versus a problem parameter. In this case, the natural measure of performance
is the underestimation ratio, d||Al|;- Figure 14.1 shows the performance
profile for a 5 x 5 matrix A(q) of the form (14.6), with P constructed as

14.4 OTHER CONDITION ESTIMATORS 297

1.1 T T T T

JIPE T WU T

0.8 -

0.7 -

0.6]

0.5 .

0.4 | | | 1
0 2 4 6 8 10

Figure 14.1. Underestimation ratio for Algorithm 14.4 for 5 x 5 matrix A(O) of (14.6)
with 150 equally spaced values of ¢ € [0,10].

described above (because of rounding errors in constructing A(q) and within
the algorithm, the computed norm estimates differ from those that would be
produced inexact arithmetic). The jagged nature of the performance curve is
typica for algorithms that contain logical tests and branches. Small changes
in the parameter g, which themselves result in different rounding errors, can
cause the algorithm to visit different vertices in this example.

14.4. Other Condition Estimators

The first condition estimator to be widely used is the one employed in LIN-
PACK. It was developed by Cline, Moler, Stewart, and Wilkinson [216, 1979].
The idea behind this condition estimator originates with Gragg and Stew-
art [476, 1976], who were interested in computing an approximate null vector
rather than estimating the condition number itself.

We will describe the algorithm as it applies to a triangular matrix T €
R™ ™. There are three steps:

1. Choose a vector d such that ||y|| is as large as possible relative to ||d||,
where T'y = d.

2. Solve Tx = .

298 CONDITION NUMBER ESTIMATION

3. Estimate [T = |lll/llyll (< IT=)-

In LINPACK the norm is the I-norm, but the agorithm can aso be used
for the 2-norm or the cm-norm. The motivation for step 2 is based on a singular
value decomposition analysis. Roughly, if ||y||/||d|| (= |T~7|)is large then
lzll/llwll (= |IT71|) © will dmost certainly be at least as large, and it could be
a much better estimate. Notice that T'Tx = d, so the agorithm is related to
the power method on the matrix (T'T)™" with the specially chosen starting
vector d.

To examine step 1 more closely, suppose that T = U' is lower triangular
and note that the equation Uy = d can be solved by the following column-
oriented (saxpy) form of substitution:

p(l:n) =0
for j=n:-1:1
Y; = (dj — pj)/uj5
() B3 =1 =05 =)+ Ul - 1,50
en

The idea is to choose the elements of the right-hand side vector d adaptively
as the solution proceeds, with d; = 1. At the jth stage of the algorithm

d..., dy have been chosen and y,, . . . , ¥+, ae known. The next element
d; € {{+1, -1} is chosen so as to maximize a weighted sum of d; — p; and the
partia sumspy, . . ., p, which would be computed during the next execution

of statement (*) above. Hence the algorithm looks ahead, trying to gauge
the effect of the choice of d; on future solution components. This heuristic
algorithm for choosing d is expressed in detail as follows.

Algorithm 14.5 (LINPACK condition estimator). Given a nonsingular up-
per triangular matrix U € R™*™ and a set of nonnegative weights {w}, this
agorithm computes a vector y such that Uy = d, where the elements d; = *1
are chosen to make ||y|| large.

p(lin) =0
for j =n:—1:1
v = (1 —p;)/uj;
y; = (—1—p;)/uj;
pt(L:j—1)=p(l:5-1)+U(1:5 - 1,5)yt ()
p(1:j-1)=p(L:j-1)+U(L:j - 1,5)y(4)
if wi|1 — p;| + 127 wilpf | > wil1 + ps| + 127 wilpy |
i =y}
p(l:j—1)=pT(1:5-1)
else
Yi =Y;

14.4 OTHER CONDITION ESTIMATORS 299

p(lj-1) = p(Lj-1)
end
end

cost: 4n flops.

LINPACK takes the weights w; = 1, though another possible (but more
expensive) choice would be w, = 1/ujl, which corresponds to how p; is
weighted in the expression y; = (d, — p)/u;.

To edtimate ||A l|| for a full matrix A, the LINPACK estimator makes
use of an LU factorization of A. Given PA = LU, the equations solved are
U'z=d Ly = z and AX = P'y, where for the first system d is constructed
by the analogue of Algorithm 14.5 for lower triangular matrices; the estimate
is |IXIL/YIk = ||A Y|;. Since d is chosen without reference to L, there is
an underlying assumption that any ill condition in A is reflected in U. This
assumption may not be true; see Problem 14.3.

In contrast to the LAPACK norm estimator, the LINPACK estimator re-
quires explicit access to the elements of the matrix. Hence the estimator
cannot be used to estimate componentwise condition numbers. Furthermore,
separate code has to be written for each different type of matrix and factoriza-
tion. Consequently, while LAPACK has just a single norm estimation routine,
which is called by many other routines, LINPACK has multiple versions of its
algorithm, each tailored to the specific matrix or factorization.

Several years dfter the LINPACK condition estimator was developed, sev-
era parametrized counterexamples were found by Cline and Rew [217, 1983].
Numerical counterexamples can also be constructed by direct search, as shown
in 824.3.1. Despite the existence of these counterexamples the LINPACK esti-
mator has been widely used and is regarded as being almost certain to produce
an estimate correct to within a factor 10 in practice.

A 2-norm condition estimator was developed by Cline, Corm, and Van
Loan [218, 1982, Algorithm 1]; see aso Van Loan [1043, 1987] for another
explanation. The agorithm builds on the ideas underlying the LINPACK es
timator by using “look-behind” as well as look-ahead. It estimates s, (R) =
IR=1I5" or spmax (R) = [|R|, for a triangular matrix R, where s i, and S ax
denote the smallest and largest singular values, respectively. Full matrices
can be treated if a factorization A = QR is available (Q orthogonal, R up-
per triangular), since R and A have the same singular values. The estimator
performs extremely well in numerical tests, often producing an estimate that
has some correct digits [218, 1982], [534, 1987]. No counterexamples to the
estimator were known until Bischof [103, 1990] obtained counterexamples as
a by-product of the andlysis of a different but related method, mentioned at
the end of this section.

All the methods described so far have the property that when applied
repeatedly to a given matrix they aways produce the same estimate. Another

300 CONDITION NUMBER ESTIMATION

approach is to introduce some randomness, so that the output of the method
depends on the particular random numbers chosen. A natural idea along these
lines is to apply the power method to the matrix (AA")™ with a randomly
chosen starting vector. If a factorization of A is available, the power method
vectors can be computed inexpensively by solving linear systems with A and
AT. Analysis based on the singular value decomposition suggests that there
is a high probability that a good estimate of ||A" ||, will be obtained. This
notion is made precise by Dixon [306, 1983], who proves the following result.

Theorem 14.6 (Dixon). Let A € R™™ be nonsingular and let q > 1 be a
constant. If 'z € R™ is a random vector from the uniform distribution on the
unit sphere S, = {y € R":yTy =1}, then the inequality

1/2k

(zT(AAT)~*z) /% < | A=Y|, < 0(zT(AAT)*z)"/* (14.7)

holds with probability at least 1 — 0.8q*n"® (k > 1). O

Note that the left-hand inequality in (14.7) always holds; it is only the
right-hand inequality that is in question.
For k = 1, (14.7) can be written as

A7 zll2 < A7z < Ol A7 2]l2,

which suggests the smple estimate ||A~!||; & ||A~z||2, where X is chosen ran-
domly from the uniform distribution on S,. Such vectors x can be generated
from the formula

T = 2|22,

where z;, . . ., z, are independent random variables from the norma N(O, 1)
distribution [668, 1981, p. 130]. If, for example, n = 100 and g has the rather
large value 6400 then inequality (14.7) holds with probability at least 0.9.
In order to take a smaller constant g, for fixed n and a desired probability,
we can use larger values of k. If k = 2] is even then we can simplify (14.7),
obtaining ')
I(AAT) T 2]|3™ < || A7 |2 < 6]|(AAT) |l (14.8)

and the minimum probability stated by the theorem is 1 - 0.8q7n"2. Taking
j = 3, for the same value n = 100 as before, we find that (14.8) holds with
probability at least 0.9 for the considerably smaller value q = 4.31.
Probabilistic condition estimation has not yet been adopted in any ma-
jor software packages, perhaps because the other techniques work so well.
For more on the probabilistic power method approach see Dixon [306, 1983],
Higham [534, 1987], and Kuczynski and Wozniakowski [676, 1992] (who also
analyse the more powerful Lanczos method with a random starting vector).
For a probabilistic condition estimation method of very general applicability

14.5 CoNDITION NUMBERS OF TRIDIAGONAL MATRICES 301

see Kenney and Laub [652, 1994] and Gudmundsson, Kenney, and Laub [485,
1995].

The condition estimators described above assume that a single estimate
is required for a matrix given in its entirety. Condition estimators have also
been developed for more specidlized situations. Bischof [103, 1990] develops a
method for estimating the smallest singular value of a triangular matrix which
processes the matrix a row or a column at a time. This “incremental condition
estimation” method can be used to monitor the condition of a triangular ma
trix as it is generated, and so is useful in the context of matrix factorization
such as the QR factorization with column pivoting. The estimator is general-
ized to sparse matrices by Bischof, Lewis, and Pierce [104, 1990]. Barlow and
Vemulapati [67, 1992] develop a |-norm incremental condition estimator with
look-ahead for sparse matrices.

Condition estimates are also required in applications where a matrix fac-
torization is repeatedly updated as a matrix undergoes low rank changes.
Algorithms designed for a recursive least squares problem and employing
the Lanczos method are described by Ferng, Golub, and Plemmons [372,
1991]. Pierce and Plemmons [831, 1992] describe an algorithm for use with
the Cholesky factorization as the factorization is updated, while Shroff and
Bischof [918, 1992] treat the QR factorization.

14.5. Condition Numbers of Tridiagonal Matrices

For a bidiagona matrix B, [B™| = M(B)™ (see §8.3), so the condition num-
bers kgy and condg; can be computed exactly with an order of magnitude
less work than is required to compute B* explicitly. This property holds
more generally for severa types of tridiagonal matrix, as a consequence of
the following result. Recall that the LU factors of a tridiagonal matrix are
bidiagona and may be computed using the formulae (9.16).

Theorem 14.7. If the nonsingular tridiagonal matrix A € R™™™ has the LU
factorization A = LU and |L||U| = |A], then U L"Y = A Y.

Proof. Using the notation of (9.15), |L||U] = |A] = |LU| if and only if,
for al 2,
|liei1 + ui| = [lillei—1] + [udl,

sign (le—‘l) =1. (14.9)

that is, if

Using the formulae

302 CONDITION NUMBER ESTIMATION

(Lnl)ij = ﬁ(_lP+1)1 12> j1

p=J

we have
n
(U_IL_I)ij = Z (U_l)ik (L_l)kj
k=max(%,5)
n 1 k-1 —e k-1
= > o II (f) [(-to+1)
k=max(i,j) © p=i P/ op=j
max(%,7)—1 —e max(%,7)—1
=]I (u—p) I (lesn)
p=i P p=j
n 1 k-1 e l
x Z el H (g p+l>
k=max(i,5) Uk p=max(i,5) Yr
max(4,j)—1 _e max(,7)—1
- 10 (32) 1 b
p=i P p=j
1 n k-1 el)
x . &) .
Umax(4,5) k_"%i Lo H) (Up+1
= ,J) p=max(i,5)
Thus, in view of (14.9), it is clear that U 'L™ Y = (U YLY),, as re
quired. O

Since L and U are bidiagonal, |U Y| = MU)™* and |L'Y = M(L)".
Hence, if |[A] = |L||U|, then, from Theorem 14.7,

A7y = ULy = M(U) T M (L) 1y. (14.10)

It follows that we can compute any of the condition numbers or forward error
bounds of interest exactly by solving two bidiagonal systems. The cost is
O(n) flops, as opposed to the O(n?) flops needed to compute the inverse of a
tridiagonal matrix.

When does the condition |A] = |L||U] hold? Theorem 9.11 shows that it
holds if the tridiagonal matrix A is symmetric positive definite, totally posi-
tive, or an M-matrix. So for these types of matrix we have a very sdtisfactory
way to compute the condition number.

If A is tridiagonal and diagondly dominant by rows, then we can compute
in O(n) flops an upper bound for the condition number that is not more than
a factor 2n — 1 too large.

14.5 ConNDITION NUMBERS OF TRIDIAGONAL MATRICES 303

Theorem 14.8. Suppose the nonsingular, row diagonally dominant tridiag-
onal matrix A € R™*™ has the LU factorization A = LU. Then, if y > 0,

UYLy fleo < (20 = DA™Y lloo-
Proof. We have L? = UA !, so
UYLy < [UTHUNA y = [VHIVIIA g,

where the bidiagona matrix V = diag(u;;))* U has u; = 1 and |y i =
le/u] < 1 (see the proof of Theorem 9.12). Thus

11 ... 1711
-1 -1 1 1 -1
UL Ny < : ' 147"y,
1 1
and the result follows on taking norms. 0

In fact, it is possible to compute |A l|y exactly in O(n) operations for any
tridiagonal matrix. This is a consequence of the specia form of the inverse of
a tridiagonal matrix.

Theorem 14.9 (Ikebe). Let A € R™™"™ be tridiagonal and irreducible (that
is, .1, and & ;,,; are nonzero for all i). Then there are vectors X, y, p, and

g such that
(A1) = {xiyj’ LS9 0
Pigj, 127

This result says that the inverse of an irreducible tridiagonal matrix is
the upper triangular part of a rank-1 matrix joined aong the diagonal to the
lower triangular part of another rank-1 matrix. If A is reducible then it has
the block form [4! Aoz] (or its transpose), and this blocking can be applied
recursively until the élagonal blocks are all irreducible, at which point the
theorem can be applied to the diagonal blocks.

The vectors %, y, p, and q in Theorem 14.9 can &l be computed in O(n)
flops, and this enables the condition numbers and forward error bounds to be
computed also in O(n) flops (see Problem 14.5). Unfortunately, the vectors
X, ¥, p, and g can have a huge dynamic range, causing the computation to
break down because of overflow or underflow. For example, for the diagonally
dominant tridiagonal matrix with a; = 4, &1, = §;+1=1, we have (x; =
1) x|~ q"" Iyll~ q7 and |y~ q ", where g = 2 +v/3 ~ 3.73. These
numerical problems can be overcome, but only at a nontrivial increase in
cost. Therefore, we do not recommend the use of Theorem 14.9 for computing
condition numbers. For a general tridiagonal matrix it is probably better to
estimate the condition number using Algorithm 14.4.

304 CONDITION NUMBER ESTIMATION

14.6. Notes and References

The clever trick (14.1) for converting the norm || |A~!|d || into the norm of
a matrix with which products are easily formed is due to Arioli, Demmel, and
Duff [24, 1989].

The p-norm power method was first derived and analysed by Boyd [139,
1974] and was later investigated by Tao [993, 1984]. Tao applies the method
to an arbitrary mixed subordinate norm ||All,, (see (6.6)), while Boyd takes
the a and b-norms to be p-norms (possibly different). Algorithm 14.1 can be
converted to estimate [|A]l,p, by making straightforward modifications to the
norm-dependent terms. An algorithm that estimates [|A]|, using the power
method with a specialy chosen starting vector is developed by Higham [551,
1992]; the method for obtaining the starting vector is outlined in Problem 14.1.
The estimate produced by this algorithm is always within a factor n* =" of
[|All, and the cost is about 70n® flops. A MATLAB M-file pnorm implementing
this method is part of the Test Matrix Toolbox (see Appendix E).

The finite convergence of the power method for p = 1 and p = 00 holds
more generally: if the power method is applied to the norm |[|-||,, and
one of the a and b norms is polyhedral (that is, its unit ball has a finite
number of extreme points), then the iteration converges in a finite number
of steps. Moreover, under a reasonable assumption, this number of steps can
be bounded in terms of the number of extreme points of the unit bals in the
a-norm and the dua of the b-norm. See Bartels [75, 1991] and Tao [993,
1984] for further details.

Hager [492, 1984] gave a derivation of the 1-norm estimator based on sub-
gradients and used the method to estimate k;(A). That the method is of
wide applicability y because it accesses A only through matrix-vector products
was recognized by Higham, who developed Algorithm 14.4 and its complex
analogue and wrote Fortran 77 implementations, which use a reverse commu-
nication interface [537, 1988], [543, 1990]. These codes are used in LAPACK,
the NAG library, and various other program libraries. A version of Algo-
rithm 14.4 dedicated to estimating k,(A) is supplied with MATLAB as M-file
condest. Algorithm 14.4 is aso implemented in ROM on the Hewlett-Packard
HP 48G and HP 48GX caculators (along with several other LAPACK rou-
tines), in a form that estimates k;(A). The Hewlett-Packard implementation
is instructive because it shows that condition estimation can be efficient even
for small dimensions. on a standard HP 48G, inverting A and estimating its
condition number (without being given a factorization of A in either case)
both take about 5 seconds for n = 10, while for n = 20 inversion takes 30
seconds and condition estimation only 20 seconds.

Moler [769, 1978] describes an early version of the LINPACK condition
estimator and raises the question of the existence of counterexamples. An
early version without look-ahead was incorporated in the Fortran code decomp

14.6 NOTES AND REFERENCES 305

in the book of Forsythe, Macolm, and Moler [395, 1977].

Matrices for which condition estimators perform poorly can be very hard
to find theoretically or with random testing, but for all the estimators de-
scribed in this chapter they can be found quite easily by applying direct
search optimization to the under- or overestimation ratio; see 824.3.1.

Both LINPACK and LAPACK return estimates of the reciprocal of the
condition number, in a variable rcond < 1. Overflow for a very ill condi-
tioned matrix is thereby avoided, and rcond is smply set to zero when sin-
gularity is detected. MATLAB has a built-in function rcond that implements
the LINPACK condition estimation algorithm.

A simple modification to the LINPACK estimator that can produce a
larger estimate is suggested by O’'Leary [804, 1980]. For sparse matrices,
Grimes and Lewis [483, 1981] suggest a way to reduce the cost of the scaling
strategy used in LINPACK to avoid overflow in the condition estimation.
Zlatev, Wasniewski, and Schaumburg [1134, 1986] describe their experience
in implementing the LINPACK condition estimation algorithm in a software
package for sparse matrices.

Stewart [946, 1980] describes an efficient way to generate random matrices
of a given condition number and singular value distribution (see 826.3) and
tests the LINPACK estimator on such random matrices.

Condition estimators specialized to the (generalized) Sylvester equation
have been developed by Byers [172, 1984], Kagstrom and Westin [624, 1989],
and K&gstrom and Poromaa [621, 1992].

A survey of condition estimators up to 1987, which includes counterex-
amples and the results of extensive numerica tests, is given by Higham [534,
1987].

Theorems 14.7 and 14.8 are from Higham [541, 1990]. That [[A7}|lec can
be computed in O(n) flops for symmetric positive definite tridiagonad A was
first, shown in Higham [531, 1986].

Theorem 14.9 has a long history, having been discovered independently
in various forms by different authors. The earliest reference we know for
the result as stated is lkebe [600, 1979], where a more genera result for
Hessenberg matrices is proved. A version of Theorem 14.9 for symmetric
tridiagonal matrices was proved by Bukhberger and Emel’yanenko [157, 1973].
The culmination of the many papers on inverses of tridiagonal and Hessenberg
matrices is a result of Cao and Stewart on the form of the inverse of a block
matrix (A;) with A; = 0 for i > j + s [184, 1986]; despite the generality of
this result, the proof is short and elegant. Any banded matrix has an inverse
with a specia “low rank” structure; the earliest reference on the inverse of a
general band matrix is Asplund [32, 1959]. For a recent survey on the inverses
of symmetric tridiagonal and block tridiagonal matrices see Meurant [751,
1992].

For symmetric positive definite tridiagonal A the standard way to solve

306 CONDITION NUMBER ESTIMATION

AX = b is by using a Cholesky or LDL' factorization, rather than an LU
factorization. The LINPACK routine SPTSL uses a nonstandard “LUB” fac-
torization resulting from the BABE (“burn at both ends’) algorithm, which
eliminates from the middle of the matrix to the top and bottom simultane-
ously (see the LINPACK Users Guide [307, 1979, Chap. 7] and Higham [531,
1986]). The results of 814.5 are applicable to all these factorization, with
minor modifications.

14.6.1. LAPACK

Algorithm 14.4 is implemented in routine X LACON, which has a reverse commu-
nication interface. The LAPACK routines xPTCON and xPTRFS for symmet-
ric positive definite tridiagonal matrices compute condition numbers using
(14.10); the LAPACK routines XGTCON and XGTRFS for general tridiagonal
matrices use Algorithm 14.4. LINPACK’S tridiagonal matrix routines do not
incorporate condition estimation.

Problems

14.1. (Higham [551, 1992]) The purpose of this problem is to develop a non-
iterative method for choosing a starting vector for Algorithm 14.1. The idea

is to choose the components of x in the order x;, X, X, in an attempt
to maximize ||AX||/||X||p- Suppose X;, X SAtisfying [[x(Lk-D)||, = 1
have been determined and let g, = [|A(:, 1:k-Dx(Lk-1)|,. We now try

to choose x,, and a the same time revise x(1:k-1), to give the next partial
product a larger norm. Defining

g p) = IAAG, 1k — Dz(1:k — 1) + A, Kl

we set
T = pt, z(l:k—1) — Xz(l: k- 1),

-}

e = [|AG 1 k)2(1: k)l = Ye-1-

where

o) = max{ g0 | [2]

Then [IX(LK)|l, = 1 and

Develop this outline into a practical algorithm. What can you prove about
the quality of the estimate ||AX||,/||X||, that it produces?

PROBLEMS 307

14.2. (Higham [543, 1990]) Let the n x n symmetric tridiagona matrix T,(a) =
(t;) be defined by

2, i=1,
tii = 'l:, 2325’"’_17
_tn,n——l +a, i=mn,

i = [—((E+1)/2-0a) ifiisodd,
BT /2 if 4 is even.

For example, Tg(a) is given by

2 —(1-a)
—(1-a) 2 -1
-1 3 —(2-0a)
-(2-a) 4 -2
-2 5 -B-a)
-3-a) 3

Note that, for al a, ||[T,(@)en 11 = [IT.(3)]];- Show that if Algorithm 14.3
is applied to T,(a) with 0 < a < 1 then x = _ on the ith iteration, for

i =2, ... n,with convergence on the nth iteration. Algorithm 14.4, however,
terminates after five iterations with y° = T, (a)e, and
lv’l, @ 8-«

—0 asn— oo.

ITo(a)]i 2n—-2-a

Show that the extra estimate saves the day, so that Algorithm 14.4 returns a
fina estimate that is within a factor 3 of the true norm, for any a < 1.

14.3. Let PA = LU be an LU factorization with partial pivoting of A 1
R™™. Show that

4" oo
gn—1

SN oo < nllA™ oo

14.4. (Higham [537, 1988]) Investigate the behaviour of Algorithms 14.3 and
14.4 for the Peil matrix, A = al + ee' (a > 0), and for the upper bidiagonal
matrix with 1s on the diagona and the first superdiagonal.

14.5. (Ikebe [600, 1979], Higham [531, 1986]) Let A € R™*™ | be nonsingular,
tridiagonal, and irreducible. By equating the last columns in AA™ = |
and the first rows in A" A = I, show how to compute the vectors x and
y in Theorem 14.9 in O(n) flops. Hence obtain an O(n) flops agorithm for
computing || |A7}d |0, Where d > 0.

308 CONDITION NUMBER ESTIMATION

14.6. The representation of Theorem 14.9 for the inverse of nonsingular, tridi-
agonal, and irreducible A € R™*"™ involves 472 parameters, yet A depends only
on 3n — 2 parameters. Obtain an dternative representation that involves only
3n — 2 parameters. (Hint: symmetrize the matrix.)

14.7. (RESEARCH PrROBLEM) (Demmel [286, 1992]) Show that estimating
IA"Y| to within a factor depending only on the dimension of A is at least as
expensive as computing A™*.

14.8. (RESEARCH PROBLEM) Let A € R™™ be diagondly dominant by rows,
let A = LU be an LU factorization, and let y > 0. What is the maximum
size of | [UTY|IL7 y |lo/||A™ y]|eo This is an open problem raised in [541,
1990]. In a small number of numerical experiments with full random matrices
the ratio has been found to be less than 2 [541, 1990], [790, 1986].

Previous Home Next

Chapter 15
The Sylvester Equation

We must commence, not with a square,

but with an oblong arrangement of terms consisting, suppose,
of m lines and n columns.

This will not in itself represent a determinant,

but is, as it were, a Matrix out of which we may form
various systems of determinants by fixing upon a number p,
and selecting at will p lines and p columns,

the squares corresponding to which may be termed
determinants of the pth order.

— J. J. SYLVESTER, Additions to the Articles, “On a New Class
of Theorems, ” and “On Pasta/’s Theorem” (1850)

I have in previous papers defined a “Matrix” as a rectangular array of terms,
out of which different systems of determinants may be engendered,

as from the womb of a common parent;

these cognate determinants being

by no means isolated in their relations to one another,

but subject to certain simple laws of

mutual dependence and simultaneous deperition.

— J. J. SYLVESTER, On the Relation Between the Minor

Determinants of Linear/y Equivalent Quadratic Functions (1851)

309

310 THE SYLVESTER EQUATION

The linear matrix equation
AX - XB = C, (15.1)

where A € R™™, B € R**" and C ¢ R™*™ are given and X € R™*"
is to be determined, is called the Sylvester equation. It is of pedagogical
interest because it includes as specia cases several important linear equation
problems:

1. linear system: Ax = ¢,

2. multiple right-hand side linear system: AX = C,

3. matrix inversion: AX = |,

4. eigenvector corresponding to given eigenvalue b: (A — bl)x = 0,
5. commuting matrices: AX — XA = 0.

The Sylvester equation arises in its full generality in various applications. For
example, the equations

I X||A -C||I X| _|A AX-XB-C
0 I 0 B 0o I|" 1|0 B
show that block-diagonalizing a block triangular matrix is equivalent to solv-
ing a Sylvester equation. The Sylvester equation can also be produced from
finite difference discretization of a separable eliptic boundary value problem
on a rectangular domain, where A and B represent application of a difference
operator in the “y” and “x” directions, respectively [935, 1991].
That (15.1) is merely a linear system is emphasized by writing it in the
form
(In® A — BT ® I,,,) vec(X) = vec(C), (15.2)

where A ® B := (a; B) is a Kronecker product and the vec operator stacks
the columns of a matrix into one long vector. For future reference, we note
the useful relation

vec(AX B) = (BT ® A) vec(X).

(See Horn and Johnson [581, 1991, Chap. 4] for a detailed presentation of
properties of the Kronecker product and the vec operator). The mn x mn
coefficient matrix in (15.2) has a very specia structure, illustrated for n = 3
by
A~ an —bQII —b3lI
—bial A —byl —bsl
—by3l —bos] A —bssl

15.1 SOLVING THE SYLVESTER EQUATION 311

In dealing with the Sylvester equation it is vital to consider this structure and
not treat (15.2) as a genera linear system.
Since the mn eigenvalues of I, ® A-B' ® I, are given by

Nij(In® A~ BT ®1I,) = M(A) — X\(B), i=1:m, j=1Lln, (15.3)

the Sylvester equation is nonsingular precisely when A and B have no eigen-
values in common.

In this chapter we briefly discuss the Schur method for solving the Sylvester
equation and summarize its rounding error analysis. Then we determine the
backward error for the Sylvester equation, investigate its relationship with
the residual, and derive a condition number. All these results respect the
structure of the Sylvester equation and are relevant to any solution method.
We adso consider the special case of the Lyapunov equation and mention how
the results extend to generdizations of the Sylvester equation.

15.1. Solving the Sylvester Equation

One way to solve the Sylvester equation is to apply Gaussian eimination with
partial pivoting (GEPP) to the “big” system (15.2), but the structure of the
coefficient matrix cannot be exploited and the cost is a prohibitive O(m? n®)
flops. A more efficient method, requiring O(m® + n% flops, is obtained with
the aid of Schur decompositions of A and B. Let A and B have the real Schur
decompositions

A = URU", B = VSV, (15.4)

where U and V are orthogonal and R and S are quasi-triangular, that is, block
triangular with 1 x 1 or 2 x 2 diagonal blocks, and with any 2 x 2 diagona
blocks having complex conjugate eigenvaues. (See Golub and Van Loan [470,
1989, §7.4.1] for more details of the real Schur decomposition.)

With the decompositions (15.4), the Sylvester equation transforms to

RZ-28S=D (Z=UTXxv, D=UTcV), (15.5)

or, equivalently, Pz = d, where P = I, ® R- S ® I, z = vec(Z) and
d = vet(D). If R and S ae both triangular then P is block triangular
with triangular diagonal blocks, so Pz = d can be solved by substitution.
Expressed in the notation of (15.5), the solution process take the form of n
substitutions: if S is upper triangular then

(R—s;;1)Z(:,3) = D(,)+ Z(:,1:5 - 1)S8(1:5 - 1,5), j=1ln.

Suppose now that R and S are quasi-triangular, and for definiteness as-
sume that they are both upper quasi-triangular. Partitioning Z = (Z;) con-

312 THE SYLVESTER EQUATION
formaly with R = (Rj) and S = (S;) we have

m j-1
RiiZ;; — Z,'ijj = D;; — Z Rikaj + Z ZikSkj. (15.6)
k=1

k=141

These equations can be used to determine the blocks of Z working up the
block columns from first to last. Since R; and S; are both of order 1 or 2,
each system (15.6) is a linear system of order 1, 2, or 4 for Z;; in the latter
two cases it is usually solved by GEPP (or even Gaussian elimination with
complete pivoting—see Problem 15.4).

This Schur decomposition method for solving the Sylvester equation is
due to Bartels and Stewart [74, 1972]. What can be said about its numerica
stability? In the case where R and S are both triangular, Theorem 8.5 shows
that

(P+ AP)Z =d, |AP| < cm nul P, (15.7)

where ¢, denotes a constant depending on the dimensions m and n (in fact,
we can take Cp,= mn). Thus |d — PZz] < ¢y aulP||Z], which implies the
weaker inequality

|D — (RZ — ZS)| < cmnu(|RI|IZ| + |Z2]|S)). (15.8)

If R or S is quasi-triangular then the error analysis depends on how the
systems of dimension 2 or 4 are solved. If GEPP followed by fixed precision
iterative refinement is used for each of these systems “Pz = d”.and if for
each system P is not too ill conditioned and the vector |P||Z| iis not too badly
scaled, then (15.7) and (15.8) remain valid (see §11.2). Otherwise, we have
only a normwise bound

ID = (RZ = ZS)|IF < ¢y nu(|IRIF + ISIE)I 2] p-

Because the transformation of a matrix to Schur form (by the QR algorithm)
is a backward stable process™ it is true overall that

IC — (AX — XB)||r < ¢y ulllAllr + Bl F)IX||F. (15.9)

Thus the relative residual is guaranteed to be bounded by a modest multiple
of the unit roundoff u.

Golub, Nash, and Van Loan [464, 1979] suggested a modification of the
Bartels-Stewart algorithm in which A is reduced only to upper Hessenberg
form: A = UHU'. The reduced system HZ — ZS = D can be solved
by solving n systems that are either upper Hessenberg or differ from upper

®See Golub and Van Loan [470, 1989, §7.5.6]. A proof is outside the scope of this book,
but the necessary tools are Lemmas 18.3 and 18.8 about Householder and Givens rotations.

15.2 BACKWARD ERROR 313

Hessenberg form by the addition of an extra subdiagona. As shown in [464,
1979], the Hessenberg—Schur algorithm has a smaller flop count than the
Bartels-Stewart algorithm, with the improvement depending on the relative
sizes of m and n. The computed solution X again satisfies (15.9).

The use of iterative methods to solve the Sylvester equation has attracted
attention recently for applications where A and B are large and sparse [572,
1995], [588, 1992], [935, 1991], [1059, 1988]. The iterations are usually ter-
minated when an inequality of the form (15.9) holds, so here the size of the
relative residual is known a priori (assuming the method converges).

15.2. Backward Error

We saw in the last section that standard methods for solving the Sylvester
equation are guaranteed to produce a small relative residual. Does a small
relative residual imply a small backward error? The answer to this question
for a general linear system is yes (Theorem 7. 1). But for the highly structured
Sylvester equation the answer must be no, because for the special case of ma
trix inverson we know that a small residua does not imply a small backward
eror (813.1). In this section we investigate the relationship between residual
and backward error for the Sylvester eguation.

The normwise backward error of an approximate solution Y to (15.1) is
defined by

n(Y) =min{e: (A+ AA)YY —Y(B+ AB)=C+ AC, ||AA|F < ea,
|AB|lr < €8, |AC||lF < ev}- (15.10)

The tolerances a, b, and g provide some freedom in how we measure the
perturbations. Of most interest is the choice a = ||Alle, b = ||Blle, g =
[IClle, for which we will call g the normwise relative backward error. The
equation (A + DA)Y — Y(B + DB) = C + DC may be written

AAY —YAB — AC =R, (15.11)

where the residual R = C — (AY — YB). A small backward error implies a
small relative residua since, using the optimal perturbations from (15. 10) in
(15.11), we have

IRllF = [|AAY —YAB - AC|[r < ((a+ B)Y[|lr +7In(Y). (1512

To explore the converse question of what the residual implies about the
backward error we begin by transforming (15.11) using the SVD of Y, Y =
USV', where U € R™*™ and V € R™*" are orthogonal and S = diag(s;) 1
R™™. Thenumberss; > S, > . . . > Syinm,n > 0 are the singular values

314 THE SYLVESTER EQUATION
of Y and we define, in addition, S qinm,m+ = - - - = Smaxm,n) = 0. Equation
(15.1 1) transforms to
AAZ - ZAB - AC =R, (15.13)
where
AA=UTAAU, AB=VTABV, AC=UTACV, R=UTRV.

This is an underdetermined system, with mn equations in m*> + n®> + mn
unknowns. We can write it in the uncoupled form™®

Aaij a0

s~ oy 200y 2%

=7y, i=1Llm, j=Lln (1514)
B v 4

For each i and j it is Straightforward to show that the minimum of (e~!Aas;)2+
(B71Abi;)% + (7' Aci;)® subject to (15.14) is attained for

Zilij _ acrj ’7
a a2c7]2. + B2+ 42
Ab,’j _ —ﬂa’i 7
3 o?0? + 20} + 72 e
Acij —y

v o?0l + B0 + 2 Tij.

(ST

Since h(Y) is the minimum value of max{|[a ‘DA||s||b" 'DB||s|lg” 'DC||c},
it follows that

These matrices minimize

AA
o

B
o’ B v

" AB

<n(Y)<¢, (15.15)

Sl

where

¢ = min{|| [«~144 ﬂ'lZf? y'AC] lIr}

1/2
(ZZ o2o? +ﬂza +'72) ' (15.16)

=1 j=1

For notational convenience we extend AA (if m < n) or AB (if m > n) to dimension
m x n; the “fictitious’ elements will be set to zero by the minimization.

15.2 BACKWARD ERROR 315

This expression shows that the backward error is approximately equa not to
the normwise relative residud ||R|r/((e+B)||X||F+7), but to a component-
wise residua corresponding to the diagonalized equation (15.13).

From (15.15) and (15.16) we deduce that

I Bll
(e+BIYlr+’

nY)<p (15.17)

where
__(+BlYlF+
T @A+ P AT
The scalar m > 1 is an amplification factor that measures by how much, at
worst, the backward error can exceed the normwise relative residua. We now
examine m more closely, concentrating on the normwise relative backward
error, for which a = ||Alle, b = ||B||s, and g = ||C||
First, note that if n = 1 and B = 0, so that the Sylvester equation
reduces to a linear system Ay = ¢, then s; = ||y]l, and s, = 0 for k > 1, s0
= (IAllrllyllz + llcl2)/ (1Al lll3 + ficl3)/?. Clearly, 1 < p < V2, and s
we recover Theorem 7.1 (for the 2-norm) from (15.12) and (15.17), to within
a constant factor.
If m = n then

(15.18)

(Alle +1IBIRIY I F + ICll 7

U= . (15.19)
((NAlI% + I1Bl%)omin(Y)? + ICIIF)2
We see that mis large only when
ICllF
Y|p>omin(Y) and ||Y|r>» ———s5—, (15.20)

that is, when Y is ill conditioned and Y is a large-normed solution to the
Sylvester equation. In the general case, with m # n, one of 62, and d2is
aways zero and hence m can be large for a third reason: A (if m < n) or B
(if m > n) greatly exceeds the rest of the data in norm; in these cases the
Sylvester equation is badly scaled. However, if we set a = b = ||Al[c + [|B|le
which corresponds to regarding A and B as comprising a single set of data,
then bad scaling does not affect m

If we dlow only A and B to be perturbed in (15.10) (as may be desirable
if the right-hand side C is known exactly), then g = 0 and (15.19) and (15.20)
remain valid with ||C|| replaced by zero. In this case m > ||Y||F||Y||, =
ko(Y) (for any m and n), so mis large whenever Y is ill conditioned (and
included in this case is matrix inversion). Conditions involving controllability
which guarantee that the solution to the Sylvester equation with m = n is
nonsingular are given by Hearon [508, 1977], while Datta [265, 1988] gives a
determinantal condition for nonsingularity. It is an open problem to derive

316 THE SYLVESTER EQUATION

conditions for the Sylvester equation to have a well-conditioned solution (see
Problem 15.5).

The following numerica example illustrates the above anadlysis. This par-
ticular example was carefully chosen so that the entries of A and B are of a
smple form, but equaly effective examples are easily generated using random,
ill-conditioned A and B of dimenson m, n > 2. Let

|1 -1 _4_|1+a O
a=[1 2] meacaire]

Define C by the property that vet(C) is the singular vector corresponding to
the smallest singular value of 1, ® A — B'® I,,. With a = 10°, we solved the
Sylvester equation in MATLAB by the Bartels-Stewart algorithm and found
that the computed solution X satisfies

IRlLs
(141l + I1BI)IX] e+ [Clle

=282x 107, o(X)={2x10'8,5 x 10°},

nX)~€E=221x10"%, u=566x 102

Although X hes a very acceptable residua (as it must in view of (15.9)), its
backward error is eight orders of magnitude larger than is necessary to achieve
backward stability. We solved the same Sylvester eguation using GEPP on the
system (15.2). The relative residual was again less than u, but the backward
error was appreciably larger: n(X) &~ 1.53 x 1075.

One conclusion we can draw from the analysis is that standard methods for
solving the Sylvester equation are at best conditionally backward stable, since
there exist rounding errors such that 7, , is the only nonzero element of R,
and then (15.17) is an approximate equality, with m possibly large.

15.2.1. The Lyapunov Equation

If we put B = —A' in the Sylvester equation we obtain
AX+ XA" = C,

which is caled the Lyapunov equation. This eguation plays a maor role in
control and systems theory and it can be solved using the same techniques as
for the Sylvester eguation.

If C = C' then C = AX + XA" = X'AT + AX" = C', so X and
X" are both solutions to the Lyapunov equation. If the Lyapunov equation
is nonsingular (equivaently, A;(A) + A;(A) # for al i and j, by (15.3)) it
therefore has a unique symmetric solution.

15.2 BACKWARD ERROR 317

We assume that C is symmetric and that Y is a symmetric approximate
solution. The definition of backward error is now

n(Y)=min{e: (A+ AA)Y +Y(A+ AA)T = C+ AC, | AA|F < ea,
AC = ACT, || AC|F < ev}.

The analogue of (15.11) isAY + YAAT — AC = R := C — AY - YAT.
Let Y = ULU" be a spectral decomposition, with A = diag);). Then the
residual equation transforms to

AN+ AZA - 3C =R,

where AA = UTAAU, AC = UTACU, and R = UTRU. This system can be
written in uncoupled form as

Zaji _ KQ'
«

Ao
%ij v 2% F Q=1 (15.21)
”

caAj +ad; -

We can obtain the minimum value of ||[a=!AA 4 !AC]|F by minimizing
(o' Aaiy)? + (o' Aazi)® + 2(7 ™ Acyy)”

subject to (15.21), for i, j = 1:n. The solution is

ZZlij _ 2a)\j F Zc,-j _ it 4 7,._,
a 202(AF+ AN+ v 202N+ A%+

(Note that AC is symmetric since R is) It follows that £/v2 < n(Y) < €,
where

e = X": (402X2 +)7 < i 27z,
S QA+ AN +97)7 T A (202 (A + AT +97)

where the last inequality is usually a good approximation. Comparing with
(15.16) we see that respecting the extra structure of the Lyapunov eguation
has essentidly no effect on the backward error.

Finaly, the analogue of (15.17) and (15.18) is

n(v) < pBle___ V2(2al¥ilr +)
~2Ylr 4+’ T (4a2X2 +42)1/2 0

where A\, = min; |/\,l

318 THE SYLVESTER EQUATION

15.3. Perturbation Result

To derive a perturbation result we consider the perturbed Sylvester equation
(A+AA)(X + AX) — (X + AX)(B+ AB) =C + AC,
which, on dropping second-order terms, becomes
AAX — AXB = AC — AAX + XAB.
This sysem may be written in the form

vec(AA)
vec(AB)
vec(AC)

Pvec(AX)=—[XT®In ~I1.®X —Inn] , (1522

where P = |, ® A—B" ®1,,. If we measure the perturbations normwise by
{"AA”F 1AB||F ”AC”F}

€ = max 5)
a g Y
where a, b, and g are tolerances as in (15.10), then
AX
lAX e < V3We (15.23)
XNl

is a sharp bound (to first order in €), where
=P a(XT®Ln) —BUn®X) —VImn] ll2/IX|lF (15.24)

is the corresponding condition number for the Sylvester equation. The bound
(15.23) can be weakened to

1AX||F
1Xlir

< V3, (15.25)

where
a+ B Xllr+

X1l 7

If |P~||2(c+ B)e < 1/2 then twice the upper bound in (15.25) can be shown
to be a strict bound for the error. The perturbation bound (15.25) with
a||Allg, b = ||B|le, and g = ||C||r is the one that is usualy quoted in
the literature for the Sylvester equation (see [464, 1979] and [522, 1988], for
example), and corresponds to applying standard perturbation theory for Ax =
b to (15.2). Note that [|P" ||, = sep(A, B)*, where sep is the separation of
A and B,

& = [P~

|AX - XB||r

15.26
X] - (15.26)

sep(A, B) = %1&%

15.3 PERTURBATION RESULT 319

The sep function is an important tool for measuring invariant subspace sen-
sitivity [470, 1989, 8§7.2.5], [940, 1973], [1050, 1979].

For the Lyapunov equation, a similar derivation to the one above shows
that the condition number is

IIn®A+A® L) [a((XT ® L) + (In ® X)IT), —vlua]ll2/IIX|F,
(15.27)
where P is the vet-permutation matrix, which is defined by the property that
vec(A') = P vet(A).

How much can the bounds (15.23) and (15.25) differ? The answer is by
an arbitrary factor. To show this we consider the case where B is normal
(or equivalently, A is normal if we transpose the Sylvester equation). We
can assume B is in Schur form, thus B = diag(m;) (with the m possibly
complex). Then P = diag(A - u;ly), and it is draightforward to show that
if X = [X, ..., X)], and if we approximate the 2-norms in the definitions of ¥
and F by Frobenius norms, then

7~ (a2z 33 CA —) 1%+ 62 3 A — g3 Ton) ™ X

j=1 j=1
234 - ujjfm)—1||%~)/||X||%,
j=1
while "
_ 2
&~ S (A = s T) (e + B) + 1/1X (122

=1

These formulae show that in general Y and F will be of similar magnitude,
and we know that Y < F from the definitions. However, Y can be much
smaller than F. For example, suppose that g = 0 and

(A = panm) "Ml > max [|(A — #isdm) ™ I F.

Then if

lzall:)(A = binnTm) " X1
<1 and
X1l e IX1F

we have Y << F. Such examples are easily constructed. To illustrate, let
A=diag(2, 2,...,2 1) and B = diag(L/2, 1/2, . .., 1/2, 1 —¢), with ¢ >0, 0
that A—myl, = diag(l+e€1l+e...,1+¢¢€), and let X = (A — my,15)Y,
where Y = [y, y, . .., Y, O] with [[(A-mhn | m)Yll = [[A-manlml[2 @0d [IV]], = 1.
Then, if g = O(e)

< A = tnnn) " P,

¥ =0(®+5), o~el(e®+0%).

320 THE SYLVESTER EQUATION

To summarize, the “traditional” perturbation bound (15.25) for the Syl-
vester eguation can severely overestimate the effect of a perturbation on the
data when only A and B are perturbed, because it does not take account
of the specia structure of the problem. In contrast, the perturbation bound
(15.23) does respect the Kronecker structure, and consequently is attainable
for any given A, B, and C. N

To obtain an a posteriori error bound for a computed solution X := X +
DX we can set DA = 0, DB = 0, and DC = AX — XB — C = R in (15.22),

which leads to .
IX - XllF —1y IRllF
——— <P 2 .
xTe < F lx
A similar but potentially much smaller bound is described in the next section.

(15.28)

15.4. Practical Error Bounds

For the Sylvester equation we can obtain an analogue of the practical error
bound (7.27) by identifying Ax = b with (15.2). For the computed residua of
a computed solution X we have

R = fl(C - (fl(AX) — f(XB))) = R+ AR,
AR| L U|C| + Y2l Al X| + Ynp2l X||B| = Ry
Therefore the bound is

X — XI| _ 1P~ |(| vee(R)| + veo(Ru)) |
i X1

, (15.29)

where ||X|| = max;; [x;|. After transformation by the technique illustrated
in (14.1), this bound can be estimated by the LAPACK norm estimator (Algo-
rithm 14.4) at the cost of solving a few linear systems with coefficient matrices
l,® A — B'®.1,, and its transpose—in other words, solving a few Sylvester
equations AX — XB = C and A'™X — XB'" = D. If the Bartels-Stewart
algorithm is used, these solutions can be computed with the aid of the pre-
viously computed Schur decompositions of A and B. The condition number
Y in (15.24) and sep(A, B) = |[P~}||3! can both be estimated in much the
same way; daternatively, the power method can be used (see Ghavimi and
Laub [440, 1995]). Other agorithms for efficiently estimating sep(A, B) given
Schur decompositions of A and B are given by Byers [172, 1984] and Kégstrom
and Poromaa [621, 1992].

The atraction of (15.29) is that large eIementsAin the jth column of P *
may be countered by a small jth element of vec(R) + vec(R,), making the
bound much smaller than (15.28). In this sense (15.29) has better scaling

15.5 EXTENSIONS 321

properties than (15.28), although (15.29) is not actually invariant under di-
agonal scalings of the Sylvester equation.
We give a numerical example to illustrate the advantage of (15.29) over
(15.28). Let
A=J30), B=J3(107"%), c;=1,

where J,(A) denotes a Jordan block of size n with eigenvalue A. Solving
the Sylvester equation by the Bartels-Stewart agorithrm we found that the
bounds are

(15.28) : 8.00 x 1073, (15.29) : 6.36 x 10715

(where in evaluating (15.28) we replaced R by |R| + R,, as in (15.29)). Here,
sep(A, B) = 1.67 x 10, and the bound (15.29) is smal because relatively
large columns of P! are nullified by relaively small dements of |vedR)| +
vec(R,). For this example, with a = ||Allz, b = ||B|lz, 9 = ||C||e, We have

Y = 7.00 x 10°, F = 1.70 x 10%,

confirming that the usua perturbation bound (15.25) for the Sylvester equa-
tion can be very pessimistic. Furthermore,

IRl
(IAllF + IBIR)IX] F + ICllF
o(X) = {6 x 10'°, 5 x 10%, 3 x 10%},
nX)~€=1.00x10"" pu=226x 10",

=7.02 x 107,

so we have an example where the backward error is small despite a large m.

15.5. Extensions

The Sylvester equation can be generalized in two main ways. One retains the
linearity but adds extra coefficient matrices, yielding the generalized Sylvester
equations

AXB + CXD = E (15.30)

and
AX — YB = C, DX — YE = F. (15.31)

These two forms are equivalent, under conditions on the coefficient matrices
[210, 1987]; for example, defining Z := XB and W := —CX, (15.30) becomes
AZ — WD = E, CZ + WB = 0. Applications of generalized Sylvester equa-
tions include the computation of stable eigendecompositions of matrix pencils
[294, 1987], [295, 1988], [622, 1993], [623, 1994] and the implementation of

322 THE SYLVESTER EQUATION

numerical methods for solving implicit ordinary differential equations [353,
1980].

The second generalization incorporates a quadratic term, yielding the al-
gebraic Riccati equation

AX +XB - XFX+G =0. (15.32)

This general Riccati equation and its symmetric counterpart with B = AT
and F and G symmetric are widely used in control theory.

The backward error results and perturbation theory of this chapter can be
generdized in a straightforward way to (15.31) and (15.32). See Kagstrom [620,
1994] for (15.31) and Ghavimi and Laub [440, 1995] for (15.32). The back-
ward error derivations do not extend to (15.30), because in this equation the
coefficient matrices appear nonlinearly.

A variation of the Lyapunov equation called the discrete-time Lyapunov
equation has the form

X -F'XF =Q,

where F,Q € R™*". As in (15.30), the data appears nonlinearly. Ghavimi
and Laub [441, 1995] show how to derive an approximation to the backward
error by linearizing an equation characterizing the optimal perturbations.

Another generalization of the Sylvester equation, mainly of theoretical
interest, is

k

> AXBi=C,

=1
where 4, ¢ R™*™ and B, ¢ R™*", i+ = 1: k. See Lancaster [685, 1970] for
associated theory.

15.6. Notes and References

This chapter is based on Higham [556, 1993]. The backward error derivations
make use of ideas of Ghavimi and Laub [440, 1995].

The Sylvester equation is so named because Sylvester considered the ho-
mogeneous version of the equation [985, 1884].

Bhatia and Rosenthal [96, 1996] give a survey of theoretica results for the
Sylvester equation in both finite- and infinite-dimensional spaces.

For details of the role of the Sylvester equation in the eigenproblem see
Bal, Demmel, and McKenney [38, 1993], [40, 1993] and the references therein.

Iterative methods that make use of matrix inversion to solve the Sylvester
equation are described by Miller [755, 1988] and Roberts [875, 1980].

Hammarling [496, 1982] gives a method for solving the Lyapunov equa-
tion AX + XA = —C in the case where A has eigenvalues with negative

15.6 NOTES AND REFERENCES 323

real parts and C is positive semidefinite; his method directly computes the
Cholesky factor of the solution (which is indeed symmetric positive definite—
see Problem 15.2).

A survey of the vec operator, the Kronecker product, and the vec-permu-
tation matrix is given together with historical comments by Henderson and
Searle [514, 1981]. Historica research by Henderson, Pukelsheim, and Searle
[513, 1983] indicates that the Kronecker product should be called the Zehfuss
product, in recognition of an 1858 paper by Zehfuss that gives a determinantal
result involving the product.

The vet-permutation matrix P (which appears in (15.27)) is given explic-

itly by
I = Z (eie?) ® (ejeg‘),

%,7=1
and has the property that: (A® B)II = [I(B ® A).

Applications of the Lyapunov equation in control theory, including specia
situations where an approximate solution of low rank is required, are discussed
by Hodel [574, 1992]. A much older reference to applications is Barnett and
Storey [68, 1968].

Algorithms and software for solving (15.30) are developed by Gardiner,
Wette, Laub, Amato, and Moler [417, 1982], [418, 1982].

Perturbation theory for Lyapunov and Riccati equations can be found in
the work of Byers [173, 1985], Hewer and Kenney [522, 1988], [650, 1990], and
Gahinet, Laub, Kenney, and Hewer [411, 1990].

Chu [210, 1987] determines conditions for the existence of unique solutions
to the generalized Sylvester equations (15.30) and (15.31). The appropriate
conditions for (15.30) are that the pencils A + AC and D + AB are regular
and the spectra of the pencils have an empty intersection, which neatly gen-
erdlizes the conditions for the Sylvester equation to have a unique solution;
the conditions for (15.31) are anaogous.

There is much work on agorithms and software for solving the algebraic
Riccati equation. For a sampling, see Laub [691, 1979], Arnold and Laub [30,
1984], Byers [174, 1987], Gardiner, and Laub [416, 1991], and Kenney, Laub,
and Papadopoulos [653, 1992].

An dgorithm for estimating a generalization of sep that occurs in pertur-
bation theory for the generalized Sylvester equation (15.31) is developed by
Kégstrom and Westin [624, 1989).

Another generdization of the Sylvester eguation is to take just one equa
tion from (15.31), AX — YB = C ((15.13) is of this form). This equation can
be underdetermined or overdetermined, depending on the dimensions of the
coefficient matrices. Conditions involving generalized inverses that are both
necessary and sufficient for the existence of a solution are given by Baksalary
and Kaa [49, 1979]. Zietak examines the inconsistent case [1130, 198s] for one

324 THE SYLVESTER EQUATION

choice of dimensions giving an overdetermined system. Stewart [949, 1992]
shows how to compute a minimum Frobenius norm least sguares solution.
The even more general equation AXB + CYD = E has also been analysed
by Baksalary and Kala [50, 1980], who again give necessary and sufficient
conditions for the existence of a solution.

15.6.1. LAPACK

The computations discussed in this chapter can al be done using LAPACK.
The Bartels-Stewart algorithm can be implemented by calling XxGEES to com-
pute the Schur decomposition, using the level-3 BLAS routine xGEMM to trans-
form the right-hand side C, calling xTRSYL to solve the (quasi-) triangular
Sylvester equation, and using XxGEMM to transform back to the solution X.
The error bound (15.29) can be estimated using XxLACON in conjunction with
the above routines. A Fortran 77 code dggsvx [556, 1993] of Higham follows
this outline and may appear in a future release of LAPACK.

Routine XxLASY2 solves a real Sylvester equation AX = XB = sC in which
A and B have dimension 1 or 2 and s is a scale factor. It is called by X TRSYL .

Kégstrom and Poromaa have developed codes for solving (15.31), which
are intended for a future release of LAPACK [622, 1993], [623, 1994].

Problems

15.1. Show that the Sylvester equation AX — XA = | has no solution.
15.2. (Bellman [89, 1970, §10.18]) Show that if the expression

X = —/ eA*CePt dt
0

exists for al C it represents the unique solution of the Sylvester equation
AX + XB = C. (Hint: consider the matrix differential equation dz/dt =
AZ(t) + Z(t)B, Z(0) = C.) Deduce that the Lyapunov equation AX +
XA" = —C has a symmetric positive definite solution if A has eigenvalues
with negative real parts and C is symmetric positive definite.

15.3. (Byers and Nash [176, 1987]) Let A € R™*™ and consider

. |AX + X AT ||p

sep(A, —AT) = min ”—

P4 A = X

Show that there exists a minimizer X that is either symmetric or skew-
symmetric.

15.4. How would you solve a Sylvester equation AX — XB = C in which A
and B are of dimension 1 or 2? Compare your method with the one used in
the LAPACK routine XLASY2.

15.5. (ResearRcH PRoBLEM) Derive conditions for the Sylvester equation to
have a well-conditioned solution.

Previous Home Next

Chapter 16
Stationary lIterative Methods

I recommend this method to you for imitation.

You will hardly ever again eliminate directly,

at least not when you have more than 2 unknowns.

The indirect [iterative] procedure can be done while half asleep,
or while thinking about other things."

— CARL FRIEDRICH GAUSS, Letter to C. L. Gerling (1823)

The iterative method is commonly called the “Seidel process, ”
or the “Gauss—Seidel process. ”

But, as Ostrowski (1952) points out,

Seidel (1874) mentions the process but advocates not using it.
Gauss nowhere mentions it.

— GEORGE E. FORSYTHE,

Solving Linear Algebraic Equations Can Be Interesting (1953)

The spurious contributions in null(A)
grow at worst linearly and
if the rounding errors are small the scheme can be quite effective.

— HERBERT B. KELLER,
On the Solution of Singular and Semidefinite
Linear Systems by Iteration (1965)

YGauss refers here to his relaxation method for solving the normal equations. The
translation is taken from Forsythe [387, 1951].

325

326 STATIONARY |TERATIVE METHODS

Table 16.1. Dates of publication of selected iterative methods. Based on Young [1123,
1989].

1845 Jacobi Jacobi method

1874 Seiddl Gauss-Seidel method

1910 Richardson Richardson’s method
1938-1939 Temple Method of steepest descent

1940s Various (analysisby Successive overrelaxation
Young and Frankel) (SOR) method
1952 Hestenesand Stiefel Conjugate gradient method

Iterative methods for solving linear systems have along history, going back
at least to Gauss. Table 16.1 shows the dates of publication of selected meth-
ods. It is perhaps surprising, then, that rounding error analysis for iterative
methods is not well developed. There are two main reasons for the paucity
of error analysis. One is that in many applications accuracy requirements
are modest and are satisfied without difficulty, resulting in little demand for
error analysis. Certainly there is no point in computing an answer to greater
accuracy than that determined by the data, and in scientific and engineering
applications the data often has only a few correct digits. The second reason
is that rounding error analysis for iterative methods is inherently more diffi-
cult than for direct methods, and the bounds that are obtained are harder to
interpret.

In this chapter we consider a simple but important class of iterative meth-
ods, dationary iterative methods, for which a reasonably comprehensive error
analysis can be given. The basic question that our analysis attempts to answer
is “What is the limiting accuracy of a method in floating point arithmetic?’
Specificaly, how small can we guarantee that the backward or forward error
will be over al iterations k = 1, 2,. . .? Without an answer to this question
we cannot be sure that a convergence test of the form ||b — AZk|l < ¢ (say)
will ever be satisfied, for any given value of € < ||b — Azgl|!

As an indication of the potentially devastating effects of rounding errors
we present an example constructed and discussed by Hammarling and Wilkin-
son [497, 1976]. Here, A is the 100 x 100 lower bidiagonal matrix with a; = 1.5
and a;_; = 1, and bj= 2.5. The successive overrelaxation (SOR) method
is applied in MATLAB with parameter w = 1.5, starting with the rounded
version of the exact solution x, given by x = 1 — (=2/3)". The forward errors
IZx — zlloo/llZlloc and the co-norm backward errors 7, ,(Zx) are plotted in
Figure 16.1. The SOR method converges in exact arithmetic, since the itera
tion matrix has spectral radius 1/2, but in the presence of rounding errors it
diverges. The iterate Zaag has a largest element of order 10", Zxyo = Zx for

16.1 SURVEY OF ERROR ANALYSIS 327

forward error

normwise backward error

v by b et e by by Wl

Ll

1 0-20 i l | | 1]
0 50 100 150 200 250

Iteration number

Figure 16.1. SOR iteration.

k > 238, and for k > 100, Zx(60: 100) =~ (—1)*¥Z100(60: 100). The divergence
is not a result of ill conditioning of A, since ke(A) =~ 5. 'The reason for the
initia rapid growth of the errors in this example is that the iteration matrix
is far from normal; this allows the norms of its powers to become very large
before they ultimately decay by a factor ~ 1/2 with each successive power.
The effect of rounding errors is to cause the forward error curve in Figure 16.1
to level off near k = 100, instead of decaying to zero as it would in exact arith-
metic. More insight into the initial behaviour of the errors can be obtained
using the notion of pseudo-eigenvalues;, see §17.3.

16.1. Survey of Error Analysis

Before analysing stationary iterative methods, we briefly survey the published
error anaysis for iterative methods. For symmetric positive definite systems,
Golub [468, 1962] derives both statistical and nonstatistical bounds for the
forward error and residual of the Richardson method. Benschop and Ratz [92,
1971] give a statistical analysis of the effect of rounding errors on stationary
iteration, under the assumption that the rounding errors are independent
random variables with zero mean. Lynn [719, 1964] presents a statistical
analysis for the SOR method with a symmetric positive definite matrix.
Hammarling and Wilkinson [497, 1976] give a normwise error analysis for

328 STATIONARY ITERATIVE METHODS

the SOR method. With the aid of numerical examples, they emphasize that
while it is the spectral radius of the iteration matrix M™'N that determines
the asymptotic rate of convergence, it is the norms of the powers of this matrix
that govern the behaviour of the iteration in the early stages. This point is
also explained by Trefethen [1017, 1992], using the tool of pseudospectra

Dennis and Walker [302, 1984] obtain bounds for ||z — Zik41]l/llz — Zk||
for stationary iteration as a special case of error analysis of quasi-Newton
methods for nonlinear systems. The bounds in [302, 1984] do not readily
yield information about normwise or componentwise forward stability.

Bollen [133, 1984] analyses the class of “descent methods’ for solving Ax =
b, where A is required to be symmetric positive definite; these are obtained by
iteratively using exact line searches to minimize the quadratic function F(xX) =
(A* b — x)'A(A" b — x). The choice of search direction p, = b — Ax, =: r,
yields the steepest descent method, while p, = g (unit vector), where |r; =
II7klloo, gives the Gauss-Southwell method. Bollen shows that both methods
are normwise backward stable as long as a condition of the form c,k(Aju < 1
holds. If the p, are cyclicaly chosen to be the unit vectors e;, e,, . . ., €, then
the Gauss-Seidel method results, but unfortunately no results specific to this
method are given in [133, 1984].

Wozniakowski [1112, 1977] shows that the Chebyshev semi-iterative method
is normwise forward stable but not normwise backward stable, and in [1113,
1978] he gives a normwise error analysis of dtationary iterative methods. Some
of the assumptions in [1113, 1978] are difficult to justify, as explained by
Higham and Knight [563, 1993].

In [1114, 1980] Wozniakowski analyses a class of conjugate gradient al-
gorithms (which does not include the usual conjugate gradient method). He
obtains a forward error bound proportional to k(A)*? and a residual bound
proportional to K(A), from which neither backward nor forward normwise st
bility can be deduced. We note that as part of the analysis in [1114, 1980]
Wozniakowski obtains a residua bound for the steepest descent method that
is proportional to K(A), and is therefore much weaker than the bound obtained
by Bollen [133, 1984].

Zawilski [1125, 1991] shows that the cyclic Richardson method for sym-
metric positive definite systems is normwise forward stable provided the pa-
rameters are suitably ordered. He also derives a sharp bound for the residua
that includes a factor k(A), and which therefore shows that the method is not
normwise backward stable.

Arioli and Romani [29, 1992] give a dtatistical error analysis of stationary
iterative methods. They investigate the relations between a statistically de-
fined asymptotic stability factor, ill conditioning of M"'A, where A = M — N
is the splitting, and the rate of convergence.

Greenbaum [479, 1989] presents a detailed error analysis of the conjugate
gradient method, but her concern is with the rate of convergence rather than

16.2 FORWARD ERROR ANALYSIS 329

the attainable accuracy. An excellent survey of work concerned with the effects
of rounding error on the conjugate gradient method (and the Lanczos method)
is given by Greenbaum and Strakos in the introduction of [480, 1992]; see also
Greenbaum [481, 1994]. Notay [799, 1993] analyses how rounding errors influ-
ence the convergence rate of the conjugate gradient method for matrices with
isolated eigenvalues at the ends of the spectrum. Van der Vorst [1058, 1990]
examines the effect of rounding errors on preconditioned conjugate gradient
methods with incomplete Cholesky preconditioners.

The anaysis given in the remainder of this chapter is from Higham and
Knight [563, 1993], [564, 1993], wherein more details are given. Error analysis
of Kaczmarz's row-action method is given by Knight [663, 1993].

16.2. Forward Error Analysis

A stationary iterative method has the form
Mzp1 = Nz + b,

where A =M — N € R**™ is nonsingular and M is nonsingular. We assume
that the spectral radius p(M'* N) < 1, so that in exact arithmetic the itera-
tion converges for any starting vector X,. We are not concerned with the size
of congtants in this anaysis, so we denote by ¢, a constant of order n.

The computed vectors T saisfy an equality of the form

(M + AMy41)Tk41 = NZp + b+ fi,

which we write as
M§k+1 =N?E\k+b—,€k, (16.1)

where
& = AMk11Zk+1 — fk-
We will assume that M is triangular (as is the case for the Jacobi, Gauss—
Seidel, SOR, and Richardson iterations), so that |AMjy.| < chu|M| and f,
accounts solely for the errors in forming Nz, + b. Hence
€kl < cnu(|M||Ze41| + IN[1Zk| + [b]) = pi- (16.2)

Solving the recurrence (16.1) we obtain

g1 =Gz + Y GEM TN b~ Emos), (16.3)
k=0

where G = M™'N. Since the iteration is stationary at X,

m
z=G™ g+ GM™, (16.4)
k=0

330 STATIONARY |TERATIVE METHODS

and so the error €., = T — Tm41 Satisfies

m
em+1 = Gm+1€0 + Z GkM_lém_k. (16.5)
k=0
We have m
lem1] < [G™Fleo| + Z IGEM ™| fom—, (16.6)
k=0

where m, is the bound for x, defined in (16.2). The first term, |G™ ‘e, is
the error of the iteration in exact arithmetic and is negligible for large m. The
accuracy that can be guaranteed by the analysis is therefore determined by
the last term in (16.6), and it is this term on which the rest of the analysis
focuses.

At this point we can proceed by using further componentwise inequalities
or by using norms. First we consider the norm approach. By taking norms in
(16.6) and defining

, (16.7)

we obtain

m
lemsalle < 1G™ el + . lloc 3 IG*M

< IG™ eolloo + cati(1 + 72) (M]loo + I N loo) 2l oo

o0}
xS IG*M Yo, (16.8)
k=0

where the existence of the sum is assured by the result of Problem 16.1.
1f |Glloo = M~ 'N|loo = q < 1 then (16.8) yields

1M oo

llem1lloo < 1G™* eolloo + (1 + 7o) (1M [loo + [N loo)l12lloo "= .

Thus if q is not too close to 1 (g < 0.9, say), and g, and [|M ||« are not too
large, a small forward error is guaranteed for sufficiently large m.

Of more interest is the following componentwise development of (16.6).
Defining

|Zk |4
- Lkld 16.9
Oz Slltp félfgxn (il)’ (16.9)

so that |Zk| < 6z|z| for al k, we have from (16.2),

k| < enu(l + 62)(|M| + |N|)|z]. (16.10)

16.2 FORWARD ERROR ANALYSIS 331
Hence (16.6) yields
lem+1] < |G™Feg| + cru(l + 6;) (ZlG")(|M|+|N|)|a:|, (16.11)

where, again, the existence of the sum is assured by the result of Problem 16.1.
SinceA= M —-N= M(I - M 'N) we have

1= (;(M‘lN)")M‘l

The sum in (16.11) is clearly an upper bound for |A" |. Defining c(A) > 1 by

=6|A—l|}

(16.12)

)
E(M—lN)kM—l
k=0

c(A) mm{ Zl TINY MY <€

we have our fina bound
lem1] < [G™*eq| + cau(1 + Oa)c(A) AT (IM] + IND[z]. (16.13)

An interesting feature of stationary iteration methods is that if the ele-
ments of M and N are multiples of the elements in the correspondi ng positions
of A then any scding of the foom Az = b — D;AD, - Dy'z = Db (D; di-
agonal) leaves the eigenvalues of M~ 'N unchanged; hence the asymptotic
convergence rate is independent of row and column scaling. This scale inde-
pendence applies to the Jacobi and SOR iterations, but not, for example, to
the stationary Richardson iteration, for which M = I. One of the benefits of
doing a componentwise analysis is that under the above assumptions on M
and N the bound (16.13) largely shares the scale independence. In (16.13)
the scalar c(A) is independent of the row and column scaling of A, and the
term |A”Y|(IM| + |N|)|X| scales in the same way as x. Furthermore, g, can be
expected to depend only mildly on the row and column scaling, because the
bound in (16.2) for the rounding error terms has the correct scaling properties.

What can be said about c(A)? In genera, it can be arbitrarily large.
Indeed, c(A) is infinite for the Jacobi and Gauss-Seidel iterations for any
n > 3 if A is the symmetric posmve definite matrix with a; = min(i, j),
becauseA is tridiagonal and (M’ IN)*M™ is not.

If M* and M 'N both have nonnegative elements then c(A) = 1; as we
will see in the next section, this condition holds in some important instances.

Some further insight into c(A) can be obtained by examining the case
where M™'N € C™*" is diagona with eigenvalues ; It is easy to show that
c(A) = maxi |1 —\; |/(1 |Ai]), so c(A) can be large only if p(M™ IN) is close
to 1. Although M™'N cannot be diagonal for the Jacobi or Gauss-Seidel

332 STATIONARY |TERATIVE METHODS

methods, this formula can be taken as being indicative of the size of c(A)
when M™'N is diagonalizable with a well-conditioned matrix of eigenvectors.
We therefore have the heurigtic inequality, for genera A,

c(A) > max 'TIT:\\: i = M(MTIN). (16.14)

In practical problems where stationary iteration is used, we would expect
c(A) to be of modest size (O(n), say) for two reasons. First, to achieve
a reasonable convergence rate, p(M~ 'N) has to be safely less than 1, which
implies that the heuristic lower bound (16.14) for c(A) is not too large. Second,
even if A is sparse, A™ will usually be full, and so there are unlikely to be
zeros on the right-hand side of (16.12). (Such zeros are dangerous because
they can make c(A) infinite)

Note that in (16.13) the only terms that depend on the history of the
iteration are [G™ 'e,| and q,. In using this bound we can redefine x,. to be
any iterate Ty thereby possibly reducing g,. This is a circular argument if
used to obtain a priori bounds, but it does suggest that the potentialy large
gy term will generdly be innocuous. Note that if x; = O for some i then g, is
infinite unless (Zx); = 0 for al k. This difficulty with zero components of x
can usualy be overcome by redefining

0. = sup mae (UM INDIE],
Tk 1ign (M| + |N))|=l),’

for which the above bounds remain valid if q, is replaced by 2q,.
Finally, we note that (16.13) implies

lemsillo < IIG™ eolloo + cnu(l +0z)c(A)H AT (M| + |N])Iz| lloo- (16.15)

If qc(A) = O(1) and M| + |N| < alA], with a = O(1), this bound is of the
form ¢, cond(A, X)u a m— oo, and we have componentwise forward stability.

Now we speciadize the forward error bound (16.15) to the Jacobi, Gauss—
Seidel, and SOR iterations.

16.2.1. Jacobi’'s Method

For the Jacobi iteration, M = D = diag(A) and N = diag(A) — A. Hence
M| + N = [M = N| = |A], and so (16.15) yields

lem1lloo < IG™H enlloo + cntu(l + 82)c(A)|| |ATH[|All2| |loo- (16.16)
If Aisan M-matrix then M™* > 0 and M™* > 0, so c(A) = 1. Hence in

this case we have componentwise forward stability as m — oo if g, is suitably
bounded.

16.2 FORWARD ERROR ANALYSIS 333

Table 16.2. Jacobi method, a = 1/12 - 8.

| p(M-IN) Iters. cond(AX) mink ¢(Zk) mink 74,(Tx)

=1 0.75 90 3.40 2.22e-16 1.27e-16
j=2 0.97 352 4.76 1.78-15 9.02e-16
j=3 0.996 1974 4.97 1.42e-14 7.12e-15
j=4 1.00 11226 5.00 1.14e-13 5.69e-14
j=5 1.00 55412 5.00 9.10e-13 4.55e-13
Table 16.3. Jacobi method, a = -(1/2-8)).
| p(M'N) Iters. cond(AX) ming ¢(Zx) mingn.,(Zk)
j=1 0.75 39 7.00 4.44e-16 5.55e-17
1=2| 097 273 6.30el 4.88e-15 7.63e-17
j=3] 0.99 1662 5.11€2 4.22e-14 8.24e-17
j=4| 100 9051 4.09e3 341e-13 8.32e-17
j=5| 1.00 38294 3.28e¢4 2.73e-12 8.33e-17

Wozniakowski [1113, 1978, Ex. 4.1] cites the symmetric positive definite
matrix

1
A= |a
a

as a matrix for which the Jacobi method can be unstable, in the sense that
there exist rounding errors such that no iterate has a relative error bounded by
CrnKoo(A)u. Let us see what our analysis predicts for this example. Straight-
forward manipulation shows that if a = 1/2 — € (e > 0), then c(A) =~ (3¢)7 1,
soc(A) — oo ase — 0. (The heuristic lower bound (16.14) is approximately
3(2¢)7! in this case) Therefore (16.16) suggests that the Jacobi iteration can
be unstable for this matrix. To confirm the instability we applied the Jacobi
method to the problem with x = [1, 1, 1] and a = 1/2 — 87/, j = 1.5. We
took a random X,. with ||X — X, = 107, and the iteration was terminated
when there was no decrease in the norm of the residua for 50 consecutive
iterations. Table 16.2 reports the smalest vaue of ¢(Zk) = ||z — Zk|loo/|Zl 0o
over al iterations, for each j; the number of iterations is shown in the column
“Iters.”

The ratio miny (ZTk)j+1/ ming ¢(Tk) takes the values 8.02, 7.98, 8.02,

1+ 2a

M-IN)=2
T A) = 2a,

e =9

a 1
al, 0<a<z, k(d)=
1 2

334 STATIONARY ITERATIVE METHODS

7.98 for | = 1:4, showing excellent agreement with the behaviour predicted
by (16.16), since c(A) ~ 87/3. Moreover, §, =~ 1 in these tests and setting
¢, = 1 the bound (16.16) is at most a factor 13.3 larger than the observed
error, for each j.

If -1/2 < a < 0 then A is an M-matrix and c(A) = 1. The bound (16.16)
shows that if we set a = —(12 — 87)) and repeat the above experiment then
the Jacobi method will perform in a componentwise forward stable manner
(clearly, 8, = 1 is to be expected). We carried out the modified experiment,
obtaining the results shown in Table 16.3. All the ming ¢(Zx); values areless
than cond(A,XY)u, so the Jacobi iteration is indeed componentwise forward
stable in this case. Note that since p(M™ 'N) and |M 'N], take the same
values for a and —a, the usua rate of convergence measures cannot distinguish
between these two examples.

16.2.2. Successive Overrelaxation

The SOR method can be written in the form Mx,,; = NXup, Where

M==(D+wl), N==(1-w)D -uwl),

1 1
w w
and where A = D + L + U, with L and U dtrictly lower triangular and upper
triangular, respectively. The matrix |[M| + |N| agrees with |A| everywhere
except, possibly, on the diagonal, and the best possible componentwise in-
equaity between these two matrices is

141

a4 1) < PRl gy pya (16.17)

Note that f(w) = 1 for 1 <w < 2, and f(w) — o0 asw — 0. From (16.15)
we have

lem+1lleo < IG™ eolloo + cnu(l + 8z)c(A) f (W)l |ATH | Allz] loo-

If Ais an Al-matrix and 0 < w < 1then M* > 0 and M'N > 0, s
c(A) = 1. The Gauss-Seidel method corresponds to w = 1, and it is interesting
to note that for this method the forward error bound has exactly the same form
as that for the Jacobi method (though c(A) and q, are, of course, different
for the two methods).

16.3. Backward Error Analysis

We now turn our attention to bounding the residual vector, r, = b — AZk.
From (16.3) and (16.4) we find that

Pmy1 = AG™H (z — 20) + Z AGEFM .
k=0

16.3 BACKWARD ERROR ANALYSIS 335

It is easy to show that AG* = H*A, where H = NM™ (recdl that G =
M~ 'N). ~ Therefore

Pma1 = H™ o + > H¥(I = H)ém-- (16.18)
k=0
Taking norms and using (16.2) gives, similarly to (16.8),
Irmilloo < IH™ 7olloo + o (1 +12) (M loo + [N lloo)llzllco, (16.19)

where

g =

St
k=0 R

The following bound shows that s is smal if ||H|le = ¢ < 1, with g not too
close to 1.

- 11— HJ|
o< ||I—H||oo2||H||§o=1—_§~
q

k=0
A potentially much smaller bound can be obtained under the assumption that
H is diagonaizable. If H = XDX™, with D = diag(A\:), then
oo
o= |X(Dk_Dk+1)X—1|
k=0

1| (Z diag(|1 - A,-HAM)) X

k=0

. 1-\ -
~ et aimg (P =X
1

oo

IA

oo

(o]

[1 -\
< . 16.20
_noo(X)m?xl_l/\iI , ()

Notethat X\; = \(H) = (NM™1) =)\ (M~IN), so we see the reappearance
of the term in the heuristic bound (16.14). The bound (16.20) is of modest
size if the eigenproblem for H is well conditioned (koo (X) is small) and p(H)
is not too close to 1. Note that rea eigenvalues of H near +1 do not affect
the bound for s, even though they may cause slow convergence.

To summarize, (16.19) shows that, for large m, the normwise backward
error M4 4(Zm) for the co-norm s certainly no larger than

cnith 7))o

Note that [|[M]leo+||Nlleo < 2||Allec for the Jacobi and Gauss-Seidel methods,
and aso for the SOR method if w > 1.

336 STATIONARY ITERATIVE METHODS

A componentwise residual bound can also be obtained, but it does not lead
to any identifiable classes of matrix or iteration for which the componentwise
relative backward error is small.

To conclude, we return to our numerical examples. For the SOR example
at the start of the chapter, c(A) = O(10%®) and s = O(10%), so our error
bounds for this problem are dl extremely large. In this problem max; |1 —
Xil/(1 = |\]) = 3, where A\; = M;(M~IN), so (16.14) is very weak; (16.20) is
not applicable since M™ !N is defective.

For the first numerical example in §16.2.1, Table 16.2 reports the minimum
oo-norm backward errors n,4 ,(Zx). For this problem it is straightforward to
show that o = (1 —€)/e = 8/(1 — 877). The ratios of backward errors for
successive value of j are 7.10, 7.89, 7.99, 8.00, so we see excellent agreement
with the behaviour predicted by the bounds. Table 16.3 reports the normwise
backward errors for the second numerica example in §16.2.1. The backward
erors are dl less than u, which again is close to what the bounds predict,
since it can be shown that s < 5 for —-1/2 < a < 0. In both of the examples
of §16.2.1 the componentwise backward error w4 p(Zk) & 14,(Zk), @nd in

our practical experience this behaviour is typical or the Jacobi and SOR
iterations.

16.4. Singular Systems

Singular linear systems occur in a variety of applications, including the com-
putation of the stationary distribution vector in a Markov chain [94, 1994],
[647, 1983] and the solution of a Neumann boundary vaue problem by finite
difference methods [834, 1976]. Because of the structure and the possibly large
dimension of the coefficient matrices in these applications, iterative solution
methods are frequently used. An important question is how the rather deli-
cate convergence properties of the iterative methods are affected by rounding
errors. In this section we extend the analysis of stationary iteration to singular
systems.

16.4.1. Theoretical Background

A useful tool in analysing the behaviour of stationary iteration for a singular
system is the Drazin inverse. This can be defined, for A € R™*", as the
unique matrix A° such that

AP AADP = AP AAP = AP A, and AFH1AD = A,

where k = index(A). The index of A is the smallest nonnegative integer k
such that rank(A) = rank(A*+1); it is characterized as the dimension of the
largest Jordan block of A with eigenvalue zero. If index(A) = 1 then A°

16.4 SINGULAR SYSTEMS 337

is also known as the group inverse of A and is denoted by A”. The Drazin
inverse is an “equation-solving inverse” precisely when index(A) < 1, for then
AA°A = A and s0 if Ax = b is a consistent system then A°b is a solution.
As we will see, however, the Drazin inverse of the coefficient matrix A itself
plays no role in the analysis. The Drazin inverse can be represented explicitly

as follows. If B o
. -1
A_P[0 N]P ,

where P and B are nonsingular and N has only zero eigenvalues, then

~1
AD = p [BO 8] p1.

Further details of the Drazin inverse can be found in Campbell and Meyer's
excellent treatise [180, 1979, Chap. 7].

Let A € R™™™ be a singular matrix and consider solving Ax = b by
stationary iteration with a splitting A = M — N, where M is nonsingular.
First, we examine the convergence of the iteration in exact arithmetic. Since
any limit point x of the sequence {x,} must satisty Mx = Nx + b, or Ax = b,
we restrict our attention to consistent linear systems. (For a thorough analysis
of stationary iteration for inconsistent systems see Dax [269, 1990].) As in
the nonsingular case we have the relation (cf. (16.4)):

Tmp1 =Gz +) G'M™'h, (16.21)
=0

where G = M™'N. Since A is singular, G has an eigenvalue 1, so G™ does
not tend to zero as m — oo, that is, G is not convergent. If the iteration
is to converge for al x, then lim,,_,.c G™ must exist. Following Meyer and
Plemmons [752, 1977], we call a matrix B for which limy, e B™ exists semi-
convergent.

We assume from this point on that G is semiconvergent. It is easy to see
[94, 1994, Lem. 6.9] that G must have the form

G-P [g H P, (16.22)

where P is nonsingular and p(I") < 1. Hence

lim G™ = P [I 0] p-1.

m-—o00 0 0

To rewrite this limit in terms of G, we note that

I—G:P[O 0 }P‘l

0 I_r (16.23)

338 STATIONARY ITERATIVE METHODS

and, since I — I" is nonsingular,

0 0

(16.24)
Hence
lim G™"=1-(I-G)°(I-0G). (16.25)
m—00
To evaluate the limit of the second term in (16.21) we note that, since the
system is consistent, M"'b = M™* Ax = (I — G)x, and o

iG"M“lb = iGi(I -G)z
i=0 =0
=T -G™)z
- (I-Q)PU-C)z=I-C)PM b

We note in passing that the condition that G is semiconvergent is equivalent
to | — G having index 1, in view of (16.23), but that this condition does not
imply that A = M(l — G) has index 1.

The conclusion is that if G is semiconvergent, stationary iteration con-
verges to a solution of AX = b that depends on Xg:

lim 2, = - (I -G)P(U—-G))zo+ (I -G)PM1b. (16.26)
The first term in this limit is in null(l — G) and the second term is in range(l —

G). To obtain the unique solution in range(l — G) we should teke for x,. any
vector in range(l — G) (X, = O, say).

16.4.2. Forward Error Analysis

We wish to bound €7, = X — Z41, Where x is the limit in (16.26) cor-
responding to the given starting vector x,. The analysis proceeds as in the
nonsingular case, up to the derivation of equation (16.5):

m
em+1 =G ey + ZGiM_lﬁm-p
i=0

As before, the first term, G™ 'e,, is negligible for large m, because it
is the error after m + 1 stages of the exact iteration and this error tends
to zero. To obtain a useful bound for the second term, we cannot simply
take norms or absolute values, because Y i-oG* grows unfoundedly with m
(recall that G has an eigenvalue 1). Our approach is to split the vectors &;

according to & = €M + €2, where M—1¢*) € range(I — G) and M1 €

16.4 SINGULAR SYSTEMS 339

null(l — G); this is a well-defined splitting because range(l — G) and null(l — G)
are complementary subspaces (since index(I — G) = 1, or equivadently, G is
semiconvergent). Using the properties of the splitting the error can be written
as

m
emi1 = Gm+1eo+ZGi (1) +2Gz (2)

=0 =0
m

=Gm™leg+ Y GIMTED) + MT 1Z§(2)_..
=0 1=0

We achieve the required splitting for x; via the formulae
&V = MEMT, ¢ = M(I-E)M7'g,
where
E=(I-G)?U-0G).
Hence the error can be written as

m m
emi1 =G eg+ Y GEM i+ (I-E)M™') fms (16.27)
=0 =0
Clearly, as m — oo the fina term in this expression can become unbounded,
but since it grows only linearly in the number of iterations it is unlikely to
have a significant effect in applications where stationary iteration converges
quickly enough to be of practica use.
Now we bound the term

Sm= GEM '¢m ;. (16.28)
i=0
Using inequality (16.2) and the definition of g, in (16.7) and q, in (16.9), we
have

ISmlleo < ente(1 +72)(IMllso + [N lloo) 2llo Y IG*EM ™ |co,

1=0
|Sml| < cnu(l +62) > |G'EM™Y(|M] + |N|)|z|. (16.29)
i=0

The convergence of the two infinite sums is assured by the result of Prob-
lem 16.1, since by (16.22)-(16.24),

GE = G'(I - G)°(- G)

=P[é ﬁ‘]P—I'P[g (I—g’)‘l]P_l‘P[g (IBF)]P_I

_p [o] Pl=(GE) (i>1), (16.30)

340 STATIONARY ITERATIVE METHODS

where p(I") < 1.
We conclude that we have the normwise error bound

lem+1lloo < IG™* eollo + cnti(l + 72) (1M [lo + [N floo) 2]l

x {DIGBM ™ oo+ (m+ DI — EYM oo . (1631)
i=0

On setting E = | we recover the result (16.8) for the nonsingular case. If we
assume that G is diagonal, so that P in (16.30) is a matrix of eigenvectors of
G, then

oo
; 1
EM ™ Yoo < Koo P)IM ™ oo ——=<-
;IIG loo < Koo PIIM oo 7775
This bound shows that a small forward error is guaranteed if x(P)||M Y| =
O(1) and the second largest eigenvalue of G is not too close to 1. (It is this
subdominant eigenvalue that determines the asymptotic rate of convergence
of the iteration.)
Turning to the componentwise case, we see from (16.24) and (16.30) that

had .

Y GE=(I-G)".

=0
Because of the form of the sum in (16.29), this prompts us to define the scalar
c(A) > 1 by

c(4) = min{e: 31BN < T - G)PM,
=0

in terms of which we have the componentwise error bound

lem+1] < 1G™Feo + cnu(l + 82){c(A)(I - G)P M|
+(m+ 1| - E)M 7 }(IM| + ND)|z| (16.32)

Again, as a specia case we have the result for nonsingular A, (16.13).

To what should we compare this bound? A perturbation result for Ax = b
is given in [564, 1993] that projects the perturbations of A and b into range(l —
G) and thus can be thought of as gauging the effect of perturbations to the
“nonsingular part of the system”. For perturbations of order € it gives an
expression

Az = (I - G)PM~1(Ab — AAz) + O(€?).

Hence we can deduce conditions on a dtationary iterative method that ensure
it is componentwise forward stable, in the sense of yielding a solution whose

16.5 STOPPING AN ITERATIVE METHOD 341

eror is no larger than the uncertainty in x caused by rounding the data. The
constants ¢, and c(A) should be bounded by d,, where d, denotes a dowly
growing function of n; the inequality M| + [N| < d!,|A| should hold, as it
does for the Jacobi method and for the SOR method when w € [8,2], where
b is positive and not too close to zero; and the “exact error” G™* ‘e, must
decay quickly enough to ensure that the term (m + 1) | (I — E)M™| does not
grow too large before the iteration is terminated.

Numerical results given in [564, 1993] show that the analysis can correctly
predict forward and backward stability, and that for certain problems linear
growth of the component of the error in null(A) can indeed cause an otherwise
convergent iteration to diverge, even when starting very close to a solution.

16.5. Stopping an lterative Method

What convergence test should be used to stop an iterative linear equation
solver? In this section we explain how backward errors and condition numbers
help answer this question. Note first that most iterative methods for solving
Ax = b compute al or part of a matrix—vector product w = Au on each
iteration, and in floating point arithmetic we have

W=(A+AAw, |AA| <Al

where m is the maximum number of nonzeros per row of A. The method
therefore cannot distinguish between A and A + DA where |DA| < g, |A], and
so there is no point in trying to achieve a componentwise relative backward
error less than g, . Of course, instability of a method (or simply lack of
convergence) may pose further restrictions on how small a backward error
can be achieved.

It is worth keeping in mind throughout this discussion that in practical
applications accuracy and stability requirements are often quite modest be-
cause of large errors or uncertainties in the data, or because the iteration is
an “inner step” of some “outer” iterative process. Indeed, one of the advan-
tages of iterative methods is that the slacker the convergence tolerance the
less computational effort is required, though the relation between tolerance
and work depends very much on the method.

Natural stopping criteria for an iterative method are that some measure
of backward error or forward error does not exceed a tolerance, e. We will
assume that the residual r = b — Ay is available for each iterate y, and that
norms of y, r, and A can be computed or estimated. If r is not computed
directly, but is recurred by the method, as, for example, in the conjugate
gradient method, then the norm of the computed residual may differ from
that of the true residual by severd orders of magnitude; clearly, this affects
the way that the stopping tests are interpreted.

342 STATIONARY |ITERATIVE METHODS

From Theorem 7.1 we have the following equivalences, for any subordinate
matrix norm:

I7]l < ellpll < Ay=0b+ Ab, ||Ab|| < €lb], (16.33a)
Irll < ellAllllvll <= (A+AA)y=0, [AA| <ellAl, (16.33b)

Irll < e(l ANyl + lIbl]) <= (A+ AA)y =b+ Ab,
[AAll < ellAll, [lAbll <eflpll. (16.33c)

These inequalities remain true with norms replaced by absolute vaues (Theo
rem 7.3), but to evaluate (16.33b) and (16.33c) a matrix—vector product |A|ly]|
must be computed, which is a nontrivial expense in an iterative method.

Of these tests, (16.33c) is preferred in general, assuming it is acceptable
to perturb both A and b. Note the importance of including both ||A]| and
llyl] in the test on [|r||; a test ||r]| < €llAll, though scale independent, does
not bound any relative backward error. Test (16.33a) is commonly used in
existing codes, but may be very stringent, and possibly unsatisfiable. To see
why, note that the residual of the rounded exact solution fl(x) = x + Dx,
IDX| < ulx|, sdtisfies, for any absolute norm,

il = 1Ib - Az + Az)]|| < ullAll |z,

and

Al Il

< i< 4l el
If A is ill conditioned and x is a large-normed solution (that is, ||X|]| =~
[IA"Hl1bl]), so that ||b]| is close to its lower bound, then (16.33a) is much
harder to satisfy than (16.33c).

If the forward error is to be bounded, then, for a nonsingular problem, tests
can be derived involving the residual and A™: the equality x — y = A 'r
leads to normwise and componentwise forward error bounds, such as ||x —
vilivll < ||A ||||r||/||y|| Since these bounds involve A™) they are nontrivia
to compute. Some iterative methods automatically produce estimates of the
extremal eigenvalues, and hence of k2(A) = Amax(A)/Amin(A). For large,
sparse symmetric positive definite matrices ||A ||, can be cheaply estimated
using the Lanczos method. Another possibility is to use condition estimation
techniques (Chapter 14).

The discussion in this section has inevitably been very general. Other
considerations in practice include detecting nonconvergence of a method (due
to rounding errors or otherwise), adapting the tests to accommodate a pre-
conditioned (the residual r provided by the method may now be that for the
preconditioned system), and using a norm that corresponds to a quantity be-
ing minimized by the method (a norm that may be nontrivial to compute).

16.6 NOTES AND REFERENCES 343

16.6. Notes and References

The Gauss-Seidel method was chosen by Wilkinson [1080, 1948] as an “ex-
ample of coding” for the ACE. Speaking of experience at that time at the
National Physical Laboratory, he explained that “In general, direct methods
have been used on those equations which did not yield readily to relaxation,
and hence those solved by direct methods have nearly always been of an ill-
conditioned type’.

Stationary iterative methods are relatively easy to program, although there
are many issues to consider when complicated data structures or parald ma
chines are used. A good source of straightforward C, Fortran, and MATLAB
implementations of the Jacobi, Gauss-Seidel, and SOR methods, and other
nonstationary iterative methods, is the book Templates for the Solution of
Linear Systems [70, 1994]; the software is available from netlib. The book
contains theoretical discussions of the methods, together with practical ad-
vice on topics such as data structures and the choice of a stopping criterion.
The choice of stopping criteria for iterative methods is aso discussed by Arioli,
Duff, and Ruiz [28, 1992].

An up-to-date textbook on iterative methods is Axelsson [34, 1994].

Problems

16.1. Show that if B € R™™ and p(B) < 1, then the series > po,|B*| and
> heo IB*|| are both convergent, where ||| is any norm.
16.2. (Descloux [304, 1963]) Consider the (nonlinear) iterative process

Tr+1 = G(zk) + ek, To given,
where G : R™” — IR™ satisfies
IG(z) — a] < Bllz — al for all z € R™, (16.34)

for some 8 € (0,1), and where ||g]| < a for dl k. Note that a must satisfy
G(a) = a.

(& Show that
a a
if |zx — al| < —— th —a|| € ——;
if ok - all < 725 then o —all < 77
. a
if |z — al| > -5 then ||zg41 —all < ||lzx —all -

(b) Show that the sequence {x,} is bounded and its points of accumulation
X satisfy

(c) Explain the practical relevance of the result of (b).

Previous Home Next

Chapter 17
Matrix Powers

Unfortunately, the roundoff errors in the mth power of a matrix, say B™,
are usually small relative to [|B||™ rather than ||B"|.

— CLEVE B. MOLER and CHARLES F. VAN LOAN,
Nineteen Dubious Ways to Compute the Exponential of a Matrix (1978)

It is the size of the hump that matters:
the behavior of ||p(ADY)"|| = |Ip(ADt)"°Y|| for small but nonzero t.
The eigenvalues and the norm, by contrast, give sharp information
only about the limits t — oo or t — 0.

— DESMOND J. HIGHAM and LLOYD N. TREFETHEN,
Stiffness of ODES (1993)

345

346 MATRIX POWERS

Powers of matrices occur in many areas of numerical anaysis. One approach
to proving convergence of multistep methods for solving differential equations
is to show that a certain parameter-dependent matrix is uniformly “power
bounded” [493, 1991, 8V.7], [862, 1992]. Stationary iterative methods for
solving linear equations converge precisely when the powers of the iteration
matrix converge to zero. And the power method for computing the largest
eigenvalue of a matrix computes the action of powers of the matrix on a vector.
It is therefore important to understand the behaviour of matrix powers, in
both exact and finite precision arithmetic.

It is well known that the powers A“ of A € C™**™ tend to zero as k — oo f
p(A) < 1, where p is the spectral radius. However, this simple statement does
not tell the whole story. Figure 17.1 plots the 2-norms of the first 30 powers of
a certain 3 x 3 matrix with p(A) = 0.75. The powers do eventualy decay, but
initially they grow rapidly. (In this and other similar plots, k on the x-axis
is plotted against ||ﬂ(Ak)||2 on the y-axis, and the norm vaues are joined
by straight lines for plotting purposes.) Figure 17.2 plots the 2-norms of the
first 250 powers of a 14 x 14 nilpotent matrix C,, discussed by Trefethen
and Trummer [1020, 1987] (see 817.2 for details). The plot illustrates the
statement of these authors that the matrix is not power bounded in floating
point arithmetic, even though its 14th power should be zero.

These examples suggest two important questions.

« For a matrix with p(A) < 1, how does the sequence {||A|} behave? In
particular, what is the size of the “hump’ max, ||AY|?

« What conditions on A ensure that fI(A") — 0 as k— oco?

We examine these questions in the next two sections.

17.1. Matrix Powers in Exact Arithmetic

In exact arithmetic the limiting behaviour of the powers of A € C**™ is
determined by A’s eigenvalues. As dready noted, if p(A) < 1 then A — 0
as k — oo if p(A) > 1, [|A| — oo ask — oo. In the remaining case of
P(A) = 1, ||A|— oo if A has a defective eigenvalue A such that || = 1;
A does not converge if A has a nondefective eigenvalue A 3 1 such that
|\l =1 (dthough the norms of the powers may converge); otherwise, the only
eigenvalue of modulus 1 is the nondefective eigenvalue 1 and A“ converges
to a nonzero matrix. These statements are easily proved using the Jordan
canonical form

A=XJX1egrm, (17.19)

17.1 MATRIX POWERS IN EXACT ARITHMETIC

25

20

15

10

Figure 17.1. A typical hump for a convergent, nonnormal matrix.

| | 1 I

5

10 15 20 25 30

Figure 17.2.

100 150 200 250

Diverging powers of a nilpotent matrix, Cy 4.

347

348 MATRIX POWERS

where X is nonsingular and

A1
J = diag(J1, Ja, ..., Js), Ji= € CMX™ . (17.1b)
A1
Ai
where n, + ny, + . . . + ng = n. We will cal a matrix for which A“~ 0 as

k — oo (or equivalently, p(A) < 1) a convergent matrix.
The norm of a convergent matrix can be arbitrarily large, as is shown
trivially by the scaled Jordan block

l o
J=/\|:0 1], (17.2)

with |A\| <1 and a >> 1. While the spectral radius determines the asymptotic
rate of growth of matrix powers, the norm influences the initial behaviour of
the powers. The interesting result that p(A) = limg—co [|A*[|*/* for any norm
(see Horn and Johnson [580, 1985, p. 299], for example) confirms the asymp-
totic role of the spectral radius. This formula for p(A) has actualy been con-
sidered as a means for computing it; see Wilkinson [1089, 1965, pp. 615-617]
and Friedland [408, 1991].

An important quantity is the “hump” max, ||AY|, which can be arbitrarily
large for a convergent matrix. Figure 17.1 shows the hump for the 3 x 3
upper triangular matrix with diagona entries 3/4 and off-diagona entries 2;
this matrix has 2-norm 3.57. The shape of the plot is typical of that for a
convergent matrix with norm bigger than 1. Note that if A is normal (so
that in (17.1a) J is diagonal and X can be taken to be unitary) we have
A, = || diag(A)ll. = |All5 = p(A), so the problem of bounding ||A|
is of interest only for nonnormal matrices. The hump phenomenon arises in
various areas of numerical analysis. For example, it is discussed for matrix
powers in the context of stiff differentia equations by D. J. Higham and
Trefethen [529, 1993], and by Moler and Van Loan [775, 1978] for the matrix
exponential € with t — oo.

More insight into the behaviour of matrix powers can be gained by con-
sidering the 2 x 2 matrix (17.2) with 0 £ A <1 and a > 0. We have

k_klka
J—/\[O 1]

and

(175 0o 1+ (k+ Da 1
= ~AM14~—) forl k. 17.3
175 os 1+ ka (1+7) forterge (17:3)

17.1 MATRIX POWERS IN EXACT ARITHMETIC 349

L1t

Lol il

=TT
v [yl

10-2 1]] | | 1 !
0 50 100 150 200 250 300 350 400

Figure 17.3. Infinity norms of powers of 2 x 2 matrix Jin (17.2), for | = 0.99 and
a = 0 (bottom line) and a = 10 k = 0:3.

Hence
Al+a) -1
(1-XNa

It follows that the norms of the powers can increase for arbitrarily many steps
until they ultimately decrease. Moreover, because K tends to zero quite
dowly as k — oo, the rate of convergence of ||J*|l« to zero can be much
dower than the convergence of A to zero (see (17.3)) when A is close to 1. In
other words, nontrivial Jordan blocks retard the convergence to zero.

For this 2 x 2 matrix, the hump max, ||J*||e :is easily shown to be approx-
imately

17 oo < 1¥lleo i k>

pl/a—l/ log, p_a

log, p’

where p = A7! > 1, this value being attained for k =~ (log,p)~* — o~ 1.
Figure 17.3 displays the norms of the first 400 powers of the matrices with
A=0.99 and a = 0,0.001,0.01,0.1,1. The size and location of the hump are
complicated expressions even in this simple case. When we generalize to direct
sums of larger Jordan blocks and incorporate a similarity transformation,
giving (17.1a8), the qualitative behaviour of the powers becomes too difficult
to describe precisely.

In the rest of this section we briefly survey bounds for ||Ak||. First, how-
ever, we comment on the condition number x(X) = || X|| || X ~!|| that appears

350 MATRIX POWERS

in various bounds in this chapter. The matrix X in the Jordan form (17.1a)
is by no means unique [413, 1959, pp. 220-221], [467, 1976]: if A has distinct
eigenvalues (hence J is diagonal) then X can be replaced by XD, for any
nonsingular diagonal D, while if A has repeated eigenvalues then X can be
replaced by XT, where T is a block matrix with block structure conformal
with that of J and which contains some arbitrary upper trapezoidal Toeplitz
blocks. We adopt the convention that k(X) denotes the minimum possible
value of k(X) over &l possible choices of X. This minimum vaue is not
known for general A, and the best we can hope is to obtain a good estimate
of it. However, if A has distinct eigenvalues then the results in Theorems 7.5
and 7.7 on diagonal scalings are applicable and enable us to determine (an
approximation to) the minimal condition number. Explicit expressions can be
given for the minimal 2-norm condition number for n = 2; see Young [1122,
1971, 83.8].

A trivial bound is ||A| < ||AI. A sharper bound can be derived in terms
of the numerical radius

*

r(A):ma.x{ 2*Az

2*z

:O#zEC"},

which is the point of largest modulus in the field of values of A. It is not hard
to show that ||Al[./2 < r(A) < ||All, [580, 1985, p. 331]. The (nontrivial)

inequality r(Ak) < r(A)k [580, 1985, p. 333] leads to the bound
4%]|z < 2r(A)*.
If A is diagondizable then, from (17.1a), we have the bound
145l < mp(X)o(A)*, (17.4)

for any p-norm. (Since p(A) < ||A]| for any norm, we aso have the lower bound
p(A* < |IA9l,) This bound is unsaisfactory for two reasons. Firdt, by
choosing A to have well-conditioned large eigenvalues and ill-conditioned small
eigenvalues we can make the bound arbitrarily pessimistic (see Problem 17.1).
Second, it models norms of powers of convergent matrices as monotonically
decreasing seguences, which is qualitatively incorrect if there is a large hump.
The Jordan canonical form can also be used to bound the norms of the
powers of a defective matrix. If XJX™ is the Jordan canonical form of d ‘A

then
A5, < kp(X)(p(A) + 6)%, (17.5)

for all d > 0. This is a special case of a result of Ostrowski [812, 1973,
Thin. 20.1] and the proof is straightforward: We can write d ‘A = X(d* D +
M)X, where D = diag(A;) and M is the off-diagonal part of the Jordan

17.1 MATRIX POWERS IN EXACT ARITHMETIC 351

form. Then A = X(D + dM)X™", and (17.5) follows by taking norms. An
aternative way of writing this bound is

1A%]lp < Kp(X)rp(D)(p(A) + 8)F,

where A = XIX' and D = diag(6"~',6"2,...,1). Note that this is not
the same X as in (17.5): multiplying A by a scdar changes k(X) when A is
not diagonalizable. Both bounds suffer from the same problems as the bound
(17.4) for diagonalizeble matrices.

Another bound in terms of the Jordan canonical form (17.1) of A is given
by Gautschi [430, 1953]. For convergent matrices, it can be written in the
form

A% |lF < ckP~p(A), (17.6)

where p = max{n; : A; # 0} : and c is a constant depending only on A (c is not
defined explicitly in [430, 1953]). The factor k" makes this bound somewhat
more effective at predicting the shapes of the actual curve than (17.5), but
again ¢ can be unsuitably large.

Since the norm estimation problem is trivial for normal matrices, it is
natural to look for bounds that involve a measure of nonnormality. Consider
the Schur decomposition Q*AQ = D+N, where N is strictly upper triangular,
and let S represent the set of al such N. The nonnormality of A can be
measured by Henrici’s departure from normality [516, 1962]

A4 1) = A(4) = min | V)

For the Frobenius norm, Henrici shows that ||N||z is independent of the par-
ticular Schur form and that

ap(4) = (1413 - Y nP) " < (=

n

— A 1/4
=) atA - A
Laszl6 [690, 1994] has recently shown that Dg(A) is within a constant factor
of the distance from A to the nearest normal matrix:
Ar(A)
A <
Jn S v(A) < Ar(4),

where V(A) = min{||E||r : A + E is normal}. Henrici uses the departure
from normality to derive the 2-norm bounds

ni:l (I;) p(A)**A5(A)', p(A) >0,

I4*2 << =5

A (A)k, p(A) =0 and k < n.

17.7)

352 MATRIX POWERS

Empirical evidence suggests that the first bound in (17.7) can be very pes
simistic. However, for norma matrices both the bounds are equalities.

Another bound involving nonnormality is given by Golub and Van Loan [470,
1989, Lem. 7.3.2]. They show that, in the above notation,

. Ar(A)*

ARl < (14 60)"1 p(A) + =222

145 < @+ 0 (o) + 255
for any q > 0. This bound is an analogue of (17.5) with the Schur form
replacing the Jordan form. Again, there is equality when A is normal (if we
set g = 0).

To compare bounds based on the Schur form with ones based on the Jordan

form we need to compare D(A) with k(X). If A is diagonaizable then [710,
1969, Thin. 4]

Ap(A)\?
w02 (1+ G5E0)

it can be shown by a 2 x 2 example that miny k,(X) can exceed Dr(A)/||All
by an arbitrary factor [201, 1993, §4.2.7], [190, 1996, 89.1.1].

Another tool that can be used to bound the norms of powers is the pseu-
dospectrum of a matrix, popularized by Trefethen [1017, 1992], [1018]. The
e-pseudospectrum of A € C**™ is defined, for a given € > 0, to be the set

A(A) = {z: z is an eigenvalue of A + E for some E with {[E|[2 <€},
and it can also be represented, in terms of the resolvent (4 — A)?, as
A(A)={z:l|(zI = A) 221}

As Trefethen notes [1017, 1992], by using the Cauchy integral representation
of A“ (which involves a contour integral of the resolvent) one can show that

4% 12 < €7 pe(A)*FT, (17.8)
where the e-pseudospectral radius
pe(A) = max{|z|: z € A(A) }. (17.9)

This bound is very similar in flavour to (17.5). The difficulty is transferred
from estimating k(X) to choosing € and estimating p(A).

Bai, Demmel, and Gu [39, 1994] consider A with p(A) < 1 and manipu-
late the Cauchy integral representation of A in a dightly different way from
Trefethen to produce a bound in terms of the distance to the nearest unstable
matrix,

d(A) = min{ ||AAlj2 : A+ AA has an eigenvalue of modulus 1}
=min{e: p(A)=1}.

17.2 BOUNDS FOR FINITE PRECISION ARITHMETIC 353

Their bound is

. {mam(l —d(A)™, m> (1 - d(A))/d(A),
A%z <
1/d(A), m < (1 -d(4))/d(A),

where e < a, := (1+ 1/m)™™ < 4. Note that d(A) < 1 when p(A) < 1, as
is easily seen from the Schur decomposition. The distance d(A) is not easy to
compute. One approach is a bisection technique of Byers [175, 1988].

Finaly, we mention that the Kreiss matrix theorem provides a good esti-
mate of Supyso ||AY| for a generd A € €C™*™, abeit in terms of an expression
that involves—the resolvent and is not easy to compute:

¢(A) < sup||A*|; < ne(A),
k>0

where f(A) = sup{(lZ = DlI@ — AL : |74 > 1} and e = exp(l). Details
and references are given by Wegert and Trefethen [1071, 1994].

17.2. Bounds for Finite Precision Arithmetic

The formulae A - A“ or A - A can be implemented in several ways, corre-
sponding to different loop orderings in each individual product, but as long
as each product is formed using the standard formula (AB); = 3 aikbx;,
all these variations satisfy the same rounding error bounds. We do not
analyse here the use of the binary powering technique, where, for exam-
ple, A’ is formed as A((A%)%? dternate multiplication on the left and right
(FI(AY = fI(AfI(A“?)A)); or fast matrix multiplication techniques such as
Strassen’s method. None of these methods is equivalent to repeated multipli-
cation in finite precision arithmetic.

We suppose, without loss of generdity, that the columns of A™ are com-
puted one at a time, the jth as fI(A(A(. . . (Ag) . . .)), where g is the jth
unit vector. The error analysis for matrix—vector multiplication shows that
the jth computed column of Am sdtisfies

fl(A™e;) = (A+ AA)(A+ AAy)...(A+ AAp)ej, (17.10)
where, for both real and complex matrices, we have (Problem 3.7)
|AA] < Ynial Al (17.11)

It follows that
|fU(A™e)] < (L + Yny2) 1Al Mey,

and so a sufficient condition for convergence of the computed powers is that

p(1A]) < ——

_ (17.12)
1+ 7n+2

354 MATRIX POWERS

This result is useful in certain special cases. p(JA]) = p(A) if A is triangular
or has a checkerboard sign pattern (since then |A| = DAD™ where D =
diag(x1)); if A is normal then p(|A|] < /np(A) (this bound being attained
for a Hadamard matrix); and in Markov processes, where the a; are transition
probabilities, |A] = A. However, in general p(JA]) can exceed p(A) by an
arbitrary factor (see Problem 17.2).

To obtain sharper and more informative results it is necessary to use more
information about the matrix. In the following theorem we give a sufficient
condition, baaed on the Jordan canonical form, for the computed powers of a
matrix to converge to zero. Although the Jordan form is usualy eschewed by
numerical analysts because of its sengtivity to perturbations, it is convenient
to work with in this application and leads to an informative result.

Theorem 17.1 (Higham and Knight). Let A € C**™ with the Jordan form
(17.1) have spectral radius p(A) < 1. A sufficient condition for fl(A™) — 0
asm-—oois

4t Ynp2k00(X)l|Alloo < (1 = p(A))", (17.13)

where t = max; n;.
Proof. It is easy to see that if we can find a nonsingular matrix S such

that
157 AS oo + Koo ()| AAsleo < 1 (17.14)

for all i, then the product
(A+A4A)) ... (A+AA,) = S(ST'AS+S71AA,S) ... (ST1AS+S71AA,S)S ™!

tends to 0 as m — oo. In the rest of the proof we construct such a matrix S
for the DA; in (17.10).
Let P(¢) = diag(Py(e), ..., Ps(€)) where 0 < e <1 — p(A) and
Pi(€) = diag((1 — |Xi| — €)' 7™, (1 — | M| — €)27™,...,1) € R™*™,
Now consider the matrix P(e)~!JP(e). Its ith diagonal block is of the form

Ml + (1 — || —€e)N, where the only nonzeros in N are 1s on the first super-
diagonal, and so

IP(e)" X" AX P(€)lloo = [|P(€) T JP(€)lloo < max(|Xi| +1~|Ai|—€) =1-e.

Defining S = X P(¢), wehave ||[S™1AS||o <1 —¢€ and
Koo(S) < Koo(P(€)) Koo (X) < (1 — p(A) — €)' Koo (X). (17.15)

Now we sete = 6(1 — p(A)) where 0 < g < 1 and we determine q so that
(17.14) is satisfied, that is, S0 that. Koo (S)]|AA;i]lee < € for al i. From (17.11)
and (17.15) we have

Koo (S)|AAilleo < Ynya(l = 6)' 741 = p(A4))' koo (X) | Allco-

17.2 BOUNDS FOR FINITE PRECISION ARITHMETIC 355

Therefore (17.14) is sdtisfied if

Ynt2(l = 6)1 781 = p(A))' koo (X)|Alleo < 8(1 = p(4)),
that is, if
Trs2t00(X) | Allo < (1= 6)'7160(1 — p(4))".

If the integer t is greater than 1 then the function f(q) = (1 — q)"' q has
a maximum on [0,1] a q. = t* and f(g:) = (t — 1)1 — t)' satisfies
@4t - 1)) < f(g) < €. We conclude that for all integers 1 <t < n.

Tnsaioo (X Alloo < 3:(1~ p(A))

is sufficient to ensure that (17.14) holds.

If Ais norma then ||A]l, = p(A) < 1, t = 1, and k,(X) = 1, so (17.13)
can be written in the form

1
1+cpu’

p(A4) <

where ¢, is a constant depending on n. This condition is aso easily derived
by taking 2-norms in (17.10) and (17.11).

We can show the sharpness of the condition in Theorem 17.1 by using the
Chebyshev spectral differentiation matrix C, € R™*™ described by Trefethen
and Trummer [1020, 1987]. The matrix C, arises from degree n — 1 polynomial
interpolation of n arbitrary data values at n Chebyshev points, including a
boundary condition a 1. It is nilpotent and is similar to a single Jordan block
of dimension n. We generate C, in MATLAB using the routine chebspec from
the Test Matrix Toolbox (see Appendix E). Figure 17.4 shows the norms of
the powers of four variants of the C, matrix.

The powers of Cg converge to zero, while the powers of 15Cg diverge.
Using a technique for estimating k,(X) described in [565, 1995], we find that
ukz(X)||Csll2 ~ 1.08 x 10°°, which is safely less than 1, so that Theorem 17.1
predicts convergence. For 15Cg we have wukq(X)||15Cs||2 2.7, so the theorem
correctly does not predict convergence.

Next, for the matrix A = C;3 + 0.36l, whose powers diverge, we have
uka(X)||All2/(1 — p(A))*2 ~ 13.05, and for A = C;3 + 0.01l, whose powers
converge, ukz(X)||A4]l2/(1—p(A))'? =~ 10.01, so again the theorem is reasonably
sharp.

The plots reved interesting scalloping patterns in the curves of the norms.
For Cg and 15Cg the dips are every 8 powers, but the point of first dip and
the dipping intervals are atered by adding different multiples of the identity
matrix, as shown by the C,; examples. Explaining this behaviour is an open
problem (see Problem 17.3).

356 MATRIX POWERS

chebspec(8) 15*chebspec(8)

0 50 100 0 50 100

chebspec(13) + 0.01*eye(13)

chebspec(13) + 0.36*eye(13)

0 50 100 0 50 100

Figure 17.4. Computed powers of chebspec matrices.

We saw in the last section that the powers of A can be bounded in terms
of the pseudospectral radius. Can the pseudospectrum provide information
about the behaviour of the computed powers? Figure 17.5 shows approxi-
mations to the e-pseudospectra for the matrices used in Figure 17.4, where
€ = n||Al|]zu; the (computed) eigenvalues are plotted as crosses “x”. We see
that the pseudospectrum lies inside the unit disc precisely when the powers
converge to zero.

A heuristic argument based on (17.10) and (17.11) suggests that, if for ran-
domly chosen perturbations DA; with [|[DA]|| < cyul|A]], most of the eigen-
values of the perturbed matrices lie outside the unit disc, then we can expect
a high percentage of the terms A + DA, in (17.10) to have spectra radius
bigger than 1 and hence we can expect the product to diverge. On the other
hand, if the c,ul|A|[-pseudospectrum is wholly contained within the unit disc,
each A + DA, will have spectra radius less than 1 and the product can be
expected to converge. (Note, however, that if p(A) < 1 and p(B) < 1 it is not
necessarily the case that p(AB) < 1.) To make this heuristic precise, we need
an anaogue of Theorem 17.1 phrased in terms of the pseudospectrum rather
than the Jordan form.

Theorem 17.2 (Higham and Knight). Suppose that 4 € C**™ is diagonal-
izable with A = X diag()\;)X~! and has a unique eigenvalue X; of largest
modulus. Suppose that [|X|l: = 3°7_; |zal and | X !|e = 3°7_, |y15], where

17.2 BOUNDS FOR FINITE PRECISION ARITHMETIC 357

chebspec(8) 15*chebspec(8)
MDA N M3 e T
1t 1 g%
0.5} 05f .
0 0K <
-0.5} —0.5["- '
-1 Ll I R, g
T Sttt N
-1 0 1 -1 0 1

chebspec(13) + 0.01*eye(13) chebspec(13) + 0.36"eye(13)

Figure 17.5. Pseudospectra for chebspec matrices.

Xt = (yy). If pe(A) < 1for € = cl|All, where ¢, is a constant de-
pending only on n, then, provided that a certain O(e?) term can be ignored,
limpm—oo fI(A™) = 0.

Proof. It can be shown (see [565, 1995]) that the conditions on ||X||; and
| X~!|oo imply there is a perturbation A = A + DA of A with ||[DA], = e
such that
~ Kko(X)e
o(A) 2 o) + 25V o),
Hence, if pe(A) < 1 then p(A) + k2(X)e/n? < 1+ O(€?). Ignoring the O(e?)
term and rearranging gives

cnurz(X)||All2/n® <1~ p(A).

Using Theorem 17.1 we have the required result for ¢, = 4n’(n + 2), since
t=1 0

Suppose we compute the eigenvalues of A by a backward stable agorithm,
that is, one that yields the exact eigenvalues of A+E, where ||E|l, < cyu||All,,
with ¢, a modest constant. (An example of such an algorithm is the QR
algorithm [470, 1989, §7.5]). Then the computed spectral radius p satisfies p <

Pl Allz(A)' In view of Theorem 17.2 we can formulate a rule of thumb-one

358 MATRIX POWERS

that bears a pleasng symmetry with the theoretical condition for convergence:

The computed powers of A can be expected to converge to O if the
spectral radius computed via a backward stable eigensolver is less
than 1.

This rule of thumb has aso been discussed by Trefethen and Trummer [1020,
1987] and Reichel and Trefethen [866, 1992]. In our experience the rule of

thumb is fairly reliable when p is not too close to 1. For the matrices used in
our examples we have, using MATLAB'S eig function,

p(Cg) = 0.073, p(15Cg) = 2.7, p(Cr4) = 1.005,
p(C13 +0.011) = 0.70, p(Ci3 + 0.361) = 1.05,

and we observed convergence of the computed powers for Cg and Cy3 + 0.01l
and divergence for the other matrices.

17.3. Application to Stationary Iteration

As we saw in the previous chapter, the errors in stationary iteration satisfy
e, = (M 'N)*e,, so convergence of the iteration depends on the convergence
of (M~ N)* to zero as k — co. “While the errors in stationary iteration are not
precisely modelled by the errors in matrix powering, because matrix powers
are not formed explicitly, the behaviour of the computed powers fI(M™ 'N)¥)
can be expected to give some insight into the behaviour of stationary iteration.

For the successive overrelaxation (SOR) example at the start of Chap-
ter 16, the matrix G = M~ 'N is lower triangular with g; = 0.5(-1)'".
The computed powers of G in MATLAB reach a maximum norm of =s10%®
a k = 99 and then decay to zero; the eventual convergence is inevitable in
view of the condition (17.12), which clearly is satisfied for this triangular G.
An approximation to the ul||G||,-pseudospectrum is plotted in Figure 17.6,
and we see clearly that part of the pseudospectrum lies outside the unit disk.
These facts are consistent with the nonconvergence of the SOR iteration (see
Figure 16.1).

That the pseudospectrum of G gives insight into the behaviour of station-
ary iteration has also been observed by Trefethen [1015, 1990], [1017, 1992],
[1018] and Chatelin and Frayssé [203, 1992], but no rigorous results about the
connect ion are available.

17.4. Notes and References

This chapter is based closely on Higham and Knight [565, 1995].

PROBLEMS 359

0.8 T T T T T T T T

0.4r- .

0.2 s

-0.8% 1 I 1 1 1 L] 1
-6 -14 -12 -1 -08 -06 -04 -02

Figure 17.6. Pseudospectrum for SOR iteration matrix.

The analysis for the powers of the matrix (17.2) is modelled on that of
Stewart [953, 1994], who uses the matrix to construct a Markov chain whose
second largest eigenvalue does not correctly predict the decay of the transient.

For some results on the asymptotic behaviour of the powers of a nonneg-
ative matrix, see Friedland and Schneider [409, 1980].

Another application of matrix powering is in the scaling and sguaring
method for computing the matrix exponential, which uses the identity €* =
(V™™ together with a Taylor or Padé approximation to €'™ see Moler
and Van Loan [775, 1978].

Problems

17.1. Let A € C™*" be diagondizable: A = XLX', L = diag);) Con-
struct a parametrized example to show that the bound ||A*||; < ko (X)p(A)*
can be arbitrarily weak.

17.2. Show that p(JA|)/p(A) can be arbitrarily large for A € R™*™.

17.3. (ResearcH ProBLEM) Explain the scalloping patterns in the curves of
norms of powers of a matrix, as seen, for example, in Figure 17.4. (Consider
exact arithmetic, as the phenomenon is not rounding error dependent.)

17.4. (REsSEaRCH PRrROBLEM) obtain a sharp sufficient condition for fl(AY) —
0 in terms of the Schur decomposition of A € C™*™ -with p(A) < 1.

Previous Home Next

Chapter 18
QR Factorization

Any orthogonal matrix can be written as the product of reflector matrices.
Thus the class of reflections is rich enough for all occasions

and yet each member is characterized by a single vector

which serves to describe its mirror.

— BERESFORD N. PARLETT, The Symmetric Eigenvalue Problem (1980)

A key observation for understanding the numerical properties of the
modified Gram-Schmidt algorithm is that it can be interpreted as
Householder QR factorization applied to the matrix A

augmented with a square matrix of zero elements on top.

These two algorithms are not only mathematically . . .

but also numerically equivalent.

This key observation, apparently by Charles Sheffield,

was relayed to the author in 1968 by Gene Golub.

— AKE BJORCK, Numerics of Gram-Schmidt Orthogonalization (1994)

The great stability of unitary transformations in numerical analysis
springs from the fact that both the £y-norm

and the Frobenius norm are unitarily invariant.

This means in practice that even when rounding errors are made,
no substantial growth takes place in the

norms of the successive transformed matrices.

— J. H. WILKINSON,
Error Analysis of Transformations Based on the
Use of Matrices of the Form | — 2ww" (1965)

361

362 QR FACTORIZATION

The QR factorization is a versatile computational tool that finds use in lin-
ear equation, least squares and eigenvalue problems. It can be computed in
several ways, including by the use of Householder transformations and Givens
rotations, and by the Gram—Schmidt method. We explore the numerical prop
erties of al three methods in this chapter. We also examine the use of iterative
refinement on a linear system solved with a QR factorization and consider the
inherent sensitivity of the QR factorization.

18.1. Householder Transformations

A Householder matrix (also known as a Householder transformation, or House-
holder reflector) is a matrix of the form

2 T n
P=I—mvv, O?Q‘UE]R.

It enjoys the properties of symmetry and orthogonality, and, consequently, is
involuntary (P> = 1). The application of P to a vector yields

20Tz
P:v:a:—(vTv)v.
Figure 18.1 illustrates this formula and makes it clear why P is sometimes
caled a Householder reflector: it reflects x about the hyperplane span(v)<.

Householder matrices are powerful tools for introducing zeros into vectors.
Consider the question “given x and y can we find a Householder matrix P such

that Px = y? Since P is orthogona we clearly require that ||X]], = ||Vll»-
Now T
v
Pz = = -2 == Jv=y,
T=y T (vTv)v Y

and this last equation has the form au = x — y for some a. But P is indepen-

dent of the scaling of v, so we can set a = 1.
With u = x — y we have
vy =2Tz 4+ yTy — 22Ty,

and, since XX = yTy,

1
viz=zTz - yT:r = §’UT'U.
Therefore
Pr=z-v=y,
as required. We conclude that, provided ||X|[, = |lyll,, we can find a House-

holder matrix P such that Px = y. (Strictly speaking, we have to exclude the
case x =Yy, which would require u = 0, making P undefined).

18.2 QR FACTORIZATION 363

T span(v)*

Figure 18.1. Householder matrix P times vector Xx.

Normally we choose y to have a special pattern of zeros. The usual choice
isy = se where s = x||X|b, which yields the maximum number of zeros in
y. Then

V=g —Yy=2I—0e;.

We choose sign(s) = —sign(x;) to avoid cancellation in the expression for u; .

18.2. QR Factorization

A QR factorization of A € R™*™ with m > n is a factorization
Ry
A=QR=[Q1]|’} =R,

where Q € R™*™ is orthogonal and R; € R™*™ is upper triangular. The
matrix R is called upper trapezoidal, since the term triangular applies only to
square matrices. Depending on the context, either the full factorization A =
QR or the “economy size” version A = Q;R; can be called a QR factorization.
A quick existence proof of the QR factorization is provided by the Cholesky
factorization: if A has full rank and A'’A = R'R is a Cholesky factorization,
then A = AR' - R is a QR factorization. The QR factorization is unique
if A has full rank and we require R to have positive diagona elements (A =
QD - DR is a QR factorization for any D = diag(zl)).

The QR factorization can be computed by premultiplying the given ma-
trix by a suitably chosen sequence of Householder matrices. The process is

364

illustrated for a generic 4 x 3 matrix as follows:

QR FACTORIZATION

f x x x| [x| x %]

X X X P 0| x x P,
A= LN N

X X X 0x x

| X x x| | 0| x x|

[x x| x] [x x x]
0 x| x P 0 x x - R
0 0|x 0 0 x ’

| 0 0| x | | 0 0 O]

The general process is adequately described by the kth stage of the re-
duction to triangular form. With A; = A we have, a the start of the kth

stage,

Ry 2 By

— (k—1)x(k-1) m~k+1
Ak—[0 - Ck:I’ Ri_1€R , zx€R , (18.1)

where R.; is upper triangular. Choose a Householder matrix P, such that
Pz = oe; and embed P into an m x m matrix

I, O
= ~ |. 18.2
=" £ (182)
Then let A, = PA. Overdl, we obtan R = PP,; . . . P,A =2 Q'A
(P, =1 if m=n).
To compute Ay,; we need to form PC,. We can write

B =2/(vv),

which shows that the matrix product can be formed as a matrix—vector prod-
uct followed by an outer product. This approach is much more efficient than
forming P explicitly and doing a matrix multiplication.

The overall cost of the Householder reduction to triangular form is 2n®(m-
n/3) flops. The explicit formation of Q requires a further 4(m?n—mn? + n*3)
flops, but for many applications it suffices to leave Q in factored form.

PiCr = (I — BrvT)Cx = Cx — Bu(vT Cy),

18.3. Error Analysis of Householder Computations

It is well known that computations with Householder matrices are very sta-
ble. Wilkinson showed that the computation of a Householder vector, and
the application of a Householder matrix to a given matrix, are both normwise
stable, in the sense that the computed Householder vector is very close to

18.3 ERROR ANALYSIS OF HOUSEHOLDER COMPUTATIONS 365

the exact one and the computed update is the exact update of a tiny norm-
wise perturbation of the original matrix [1089, 1965, pp. 153-162, 236], [1090,
1965]. Wilkinson also showed that the Householder QR factorization algo-
rithm is normwise backward stable [1089, p. 236]. In this section we give a
combined componentwise and normwise error analysis of Householder matrix
computations. The componentwise bounds provide extra information over
the normwise ones that is essential in certain applications (for example, the
analysis of iterative refinement).

Lemma 18.1. Let z € R™. Consider the following construction of 8 € R
and v € R™ such that Px = se;, where P = | — bw' is a Householder matrix
with b = 2/(v'v):

V=2=T

s =sign(z1)||zllz2 %o=-s
V1 =v1+8

B =1/(sv1)

In floating point arithmetic the computed 3 and 7 satisfy 5(2:n) = v(2: n)
and

B =B+ banys),
V1 = v1(1 + Ony2),

where [qd < g

Proof. We sketch the proof. Each occurrence of d denotes a different
number bounded by [d| < u. We compute fl(x'x) =1+ 0,)x'x, and then
flllzllz) = Q4 81 + 6,)2(2Tz)? = (1 4 0n41)|z]|2 (the latter term
1 + Q,4+1 is suboptima, but our main aim is to keep the anaysis simple).
Hence 5= (1 + 641)s.

For notational convenience, define w = u; + s. We have W = (v1 + 8)(1 +
6) = w(l + 0,42) (essentially because there is no cancellation in the sum).
Hence

. o (1+6)?
B = fl(1/(30)) = (14 0n11)8(1 + Opy2)w
(1+6)?

= Tt Gmyayow ~ LT banse)B. O

For convenience we will henceforth write Householder matrices in the form
| — vv', which requires ||ul|, = v/2 and amounts to redefining u := /Bv

366 QR FACTORIZATION

and b := 1 in the representation of Lemma 18.1. We can then write, using
Lemma 18.1,

T=v+4v, |Bv|<vnl| (veR™, || =v2), (18.3)

where, as required for the next two results, the dimension is now m. Here, we
have introduced the generic constant

_ cmu

T 1-cmu’

Yem

in which ¢ denotes a small integer constant whose exact vaue is unimportant.
We will make frequent use of g.,, in the rest of this chapter, because it is not
worthwhile to evaluate the integer constants in our bounds explicitly. Because
we are not “chasing constants” we can afford to be somewhat cavalier and
freely use inequalities such as

Yem + Ym + YemYm + Vom < Vem

(recal Lemma 3.3), where we signify by the prime that the constant ¢ on the
right-hand side is different from that on the left.

The next result describes the application of a Householder matrix to a
vector, and is the basis of al the subsequent analysis. In the applications of
interest P is defined as in Lemma 18.1, but we will adlow P to be an arbitrary
Householder matrix. Thus v is an arbitrary, normalized vector, and the only
assumption we make is that the computed v satisfies (18.3).

Lemma 18.2. Let b € R™ and consider the computation of y = Pb= (-
90T)b = b — 5(37Tb), twhen ¥ € R™ satisfies (18.3): The computed ¥ satisfies

§=(P+APM, | AP|p < Yem,
where P = | - w',
Proof. (Cf. the proof of Lemma 3.8,) We have
@ := fl(B(%Tb)) = (¥ + AT)(@T (b + Ab)),
where [AY] < u|t] and |Db| < g.|b]. Hence
B = (v+ Av+ AD)(v + Av)T (b + Ab) =: v(vTb) + Aw,

where [DW < g.nm|ullu’||b]. Then

7= fl(b—®) =b—v(®Tb) — Aw+ Ay, |Ay1| < ulb —).

We have
| — Aw + Ayr| < ulb] + Vo 0] [v7 | B].

18.3 ERROR ANALYSIS OF HOUSEHOLDER COMPUTATIONS 367

Hence § = Pb+ Ay, where [|Ay|l2 < 72, |1bll2- But then § = (P + AP)b,
where AP = Ayb® /b'b setisfies ||AP||p = || Ayll2/[lbll2 < & O

Next, we consider a sequence of Householder transformations applied to a
matrix. Again, each Householder matrix is arbitrary and need have no con-
nection to the matrix to which it is being applied. In the cases of interest, the
Householder matrices P, have the form (18.2), and so are of ever-decreasing
effective dimension, but to exploit this property would not lead to any signif-
icant improvement in the bounds.

For the remaining results in this section, we make the (reasonable) as-
sumption that an inequality of the form

1
MT Yo, < 3 (18.4)

holds, where r is the number of Householder transformations and it is implicit
that G and H denote nonnegative matrices.

Lemma 18.3. Consider the sequence of transformations
Ak+1 = PkAk, k=1 r,

where A, = A€ R™™ and P, = I —v,vf € R™ ™ is a Householder matrix.
Assume that the transformations are performed using computed Householder
vectors Uy &~ vg that satisfy (18.3). The computed matrix A,,, satisfies

Arp1 = QT (A + AA), (18.5)

where Q" = P,P,; . . . P, and DA satisfies the normwise and componentwise
bounds

I1AAllF < TvemllAllF,
|AA| < mry,GlAl, |IGllF = 1.
(In fact, we can take G = m 'ee’, where e = [1, 1,.., 1]".) In the special
case n = 1, so that A = a, we have a7+ = (Q+AQ)Ta with |[AQ|lF < rYem-

Proof. First, we consider the jth column of A, a, which undergoes the

transformations a§’+1) P, ...Pia;. By Lemma 18.2 we have

@™ = (P, + AP,)... (P, + AP))a;,

where each DP,, depends on j and sdtisfies ||DPK|[z < Q. Using Lemma 3.6
we obtain

A(r+1) QT(j+d'),

||dj||2 <X+ Yem)™ = Dllajll2 < (18.6)

TYem
1— “aJ”2 = T’ch”aJ“:"
cm

368 QR FACTORIZATION

using Lemma 3.1 and assumption (18.4). Hence DA in (18.5) sdtisfies

n n
IAAIE =" lldsl3 < r*van Y llasly = r*vallAll%-
j=1

i=1
NOW, since |[all, < |lall, = €'la|, from (18.6) we have
|AA| < ryime(el |Al) = mrv,,GlAl,

where ||G||¢ = 1 (since ||ee’|| = m). Finaly, if n = 1, so that A is a
column vector, then (as in the proof of Lemma 18.2) we can rewrite (18.5)
as ™) = (Q + AQ)Ta, where AQT = (QTAa)aT/aTa and ||AQ|F =
”Aallz/”a”2 < ™Yem- o

Note that the componentwise bound for AA in Lemma 18.3 does not imply
the normwise one, because of the extra factor m in the componentwise bound.
This is a nuisance, because it means we have to state both bounds in this and
other analyses.

We now apply Lemma 18.3 to the computation of the QR factorization of
a matrix.

Theorem 18.4. Let R € R™" be the computed upper trapezoidal QR factor
of A € R™*™ (m > n) obtained via the Householder QR algorithm. Then
there exists an orthogonal @ € R™*™ such that

A+ AA = QR,

matrix Q is given explicitly as Q = (PP, . . . P;)', where P, is the House-
holder matrix that corresponds to the exact application of the kth step of the
algorithm to A,.

where ||DA|lr < ngeyl|Allr and |DA| < mng,GIA|, with [|G|lz = 1. The

Proof. This is virtually a direct application of Lemma 18.3, with Py
defined as the Householder matrix that produces zeros below the diagond in
the kth column of the computed matrix A, one subtlety is that we do not
explicitly compute the lower triangular elements of R, but rather set them to
zero explicitly. However, it is easy to see that the conclusions of Lemmas 18.2
and 183 are ill valid in these circumstances, the essential reason is that the
elements of DPb in Lemma 18.2 that correspond to elements that are zeroed
by the Householder matrix P are forced to be zero, and hence we can set the
corresponding rows of DP to zero too, without compromising the bound on
|IDP[e 0

Finaly, we consider use of the QR factorization to solve a linear system.
Given a QR factorization of a nonsingular matrix A € R™*™,a linear sys-
tem Ax = b can be solved by forming Q'b and then solving Rx = Q'b.

18.3 ERROR ANALYSIS OF HOUSEHOLDER COMPUTATIONS 369

From Theorem 18.4, the computed R is guaranteed to be nonsingular if
ko(A)n3?y,,. < 1.We give only componentwise bounds.

Theorem 18.5. Let A € R™*™ be nonsingular. Suppose we solve the system
Ax = b with the aid of a QR factorization computed by the Householder
algorithm. The computed Z . satisfies

(A+ AA)E = b+ Ab,

where
|AA| < 'n'Z'chGlAI) IAb| < n2'7an|b|> ”G”F =1

Proof. By A Theorem 18.4, the computed upper triangular factor R : satisfies
A + DA = QR with |[DA] < nzgcn61|A| and ||G,||r = 1. BY Lemma 18.3,
the computed transformed right-hand side satisfies € = Q7 (b + Ab). with
|Ab| < n2y,,G1lb]. Importantly, the same orthogonal matrix Q appears in
the equations involving B and ¢

By Theorem 8.5, the computed solution Z
satisfies

- to the triangular system Rr=¢

(R+ AR)Z =¢, |AR|<,|R|
Premultiplying by Q yieds
(A+ AA+ QAR)T = b+ Ab,

that is, (A+AA)Z = b+Ab, where AA = AA+QAR. Using R = QT(A+AA)
we have

|44| < n’v,,G1lA| +7,|QIIR)
< n275,G11A] + 7,.1Q11QT|(+ n?y,,G1)|A
= n27£nG|A|)

where G > G; and ||G|]|[r = 1. O

The proof of Theorem 185 naturaly leads to a result in which b is per-
turbed. However, we can easily modify the proof so that only A is perturbed:
the trick is to use Lemma 18.3 to write€ = (Q+AQ)Tb, where |AQ|r < nYen,
and to premultiply by (Q + DQ)" instead of Q in the middle of the proof.
This leads to the result

(A+AAE=b, |AA<n*y,GlAl, [Glr=1 (187

An interesting application of Theorem 185 is to iterative refinement, as
explained in §18.6.

370 QR FACTORIZATION

18.4. Aggregated Householder Transformations

In Chapter 12 we noted that LU factorization agorithms can be partitioned so
as to express the bulk of the computation as matrix-matrix operations (level-
3 BLAS). For computations with Householder transformations the same goa
can be achieved by aggregating the transformations. This technique is widely
used in LAPACK.

One form of aggregation is the “WY” representation of Bischof and Van
Loan [105, 1987]. This involves representing the product Q, = PP, . . . Py
of r Householder transformations P; = I — vvl € R™*™ (where vlv; = 2).
in the form

Q-=I1+W, YT, W,Y.eR™",

This can be done using the recurrence
Wi=-v, i=v, W=[W_ —v], Yi=[Y_, Qv (188

Using the WY representation, a partitioned QR factorization can be de-
veloped as follows. Partiion A € R™*™ (m > n) as

A=[A; B], A eR™, (18.9)

and compute the Householder QR factorization of A,

P.P._,...PlA = [%1] .
The product P,P,; . . . P, =1+ W,Y,T is accumulated using (18.8), as the
P, are generated, and then B is updated according to

which involves only level-3 BLAS operations. The process is now repeated on
the last m — r rows of B.

When considering numerical stability, two aspects of the WY representa
tion need investigating: its construction and its application. For the construc-
tion, we need to show that Q, := I+ W, YT satisfies

1Q,QF - I||z < dyu, (18.10)
Wellz < d2, [[Yrll2 < ds, (18.11)

for modest constants d;, d,, and d;. Now

[?17—:\1] = Qi1 — % fU(BT Qi)
fIOT Qi)

~ —

Qi=1+[Wi, -7

18.5 GIVENS ROTATIONS 371

But this last eguation is essentialy a standard multiplication by a Householder
matrix, @; = (I -9,)Qi—1, abeit with less opportunity for rounding errors.
It follows from Lemma 18.3 that the near orthogonality of Qi_l is inherited by
@i; {the condition on)7, in (18.11) follows similarly and that on WT is trivial.
Note that the condition (18. 10) implies that

~

Qr=Ur+ AU, UTU,=1, ||AU|2 < diu, (18.12)

that is, @ ‘is close to an exactly orthogona matrix (see Problem 18.13).

Next we consider the application of Q.. Suppose we form C = Q,B =
(I +W.YT)B for the B in (18.9), so that

C = fI(B + fUW, (YT B))).

Analysing this level-3 BLAS-based computation using (18.12) and the very
general assumption (12.3) on matrix multiplication (for the 2-norm), it is
straightforward to show that

C =U,B+ AC = U.(B+ UL AC),
|AC|l2 < [1+ dy + dads(1 + c1(r,m,n —7)
+ca(m,r,n—r))]ullBllz + O(w?). (18.13)

This result shows that the computed update is an exact orthogonal update of
a perturbation of B, where the norm of the perturbation is bounded in terms
of the error congtants for the level-3 BLAS.

Two conclusions can be drawn. Firgt, algorithms that employ the WY rep
resentation with conventional level-3 BLAS are as stable as the corresponding
point agorithms. Second, the use of fast BLAS3 for applying the updates af-
fects stability only through the constants in the backward error bounds. The
same conclusions apply to the more storage-efficient compact WY representa
tion of Schreiber and Van Loan [905, 1989], and the variation of Puglisi [848,
1992].

18.5. Givens Rotations

Another way to compute the QR factorization is with Givens rotations. A
Givens rotation (or plane rotation) G(i, j,) € R™*™ is equa to the identity
matrix except that

Gl ahli i) = | ¢ il

-8 C

372 QR FACTORIZATION

o A m - [fs f;] [2]

€i

Figure 18.2. Givens rotation, y = G(i, j, q)X.

where ¢ = cosqg and s = sing. The multiplication y = G(i, j, Q)X rotates x
through q radians clockwise in the (i, j) plane, see Figure 18.2. Algebraicaly,

Tk, k #ihjv
cT; + 8z, k=1,
—sz; + cxj, k=37,

Yk

and s0 y; = O if
(18.14)

Ty I;
§= ——, = ———.
V27 + 22 Vz?+ 2
Givens rotations are therefore useful for introducing zeros into a vector one
a a time. Note that there is no need to work out the angle q, since ¢ and s
in (18.14) are dl that are needed to apply the rotation. In practice, we would
scale the computation to avoid overflow (cf. §25.8).

To compute the QR factorization, Givens rotations are used to eliminate
the elements below the diagona in a systematic fashion. Various choices and
orderings of rotations can be used; a natural one is illustrated as follows for a
generic 4 x 3 matrix:

[x x x] {xxx- (xxx'

X X X X X X 2
A= Gai Gaa X X X G,

X X X X X X 0 x x

[X x X 0 x x 0 x x

[% | x x] [x | x x] [x x| x]
0| x x Gaq 0| x x Gag 0 x| x Gaa
0| x x 0| x x 0 0fx

[0 [x x| L 00 x| | 0 0| x

18.5 GIVENS ROTATIONS 373

o OO X
o O X X
o X X X

The operation count for Givens QR factorization of a general m x n matrix
(m > n) is 3n°(m — n/3) flops, which is 50% more than that for Householder
QR factorization. The main use of Givens rotations is to operate unstructured
matrices—for example, to compute the QR factorization of a tridiagonal or
Hessenberg matrix, or to carry out delicate zeroing in updating or downdating
problems [470, 1989, §12.6].

Error analysis for Givens rotations is similar to that for Householder
matrices—but a little easier. We omit the (straightforward) proof of the first
result.

Lemma 18.6. Let a Givens rotation G(i, j, q) be instructed according to
(18.14). The computed ¢ and 5 satisfy

C=c(l1+6s), s=s(1+86,), (18.15)
where|fy], |63] < 4. a

Lemma 18.7. Let z € R™ and consider the computation of y = @,-ja:, where

~

G,;is a computed Givens rotation in the (i, j) plane for which ¢ and s satisfy
(18.15). The computed ¥ satisfies

¥ = (Gij + AGij)z, |AGi;IFr < V27,

where G;; is an exact Givens rotation based on ¢ and s in (18.15). All the
rows of DG;; except the ith and jth are zero.

Proof. The vector g differs from x only in elements i and j. We have
7 = fl(cz; + 8z;) = czi(1 + 06) + sz;(1 + 65),
where 106/, 15| < v6, and similarly for §;. Hence
[7 — Gijz| < 76lGijllzl,

so that "'Z]— G.,;]'CL‘HQ < \/5’76”:1,‘”2 We takeAG,-J- = (’!’J\— Gij.’ZJ)CBT/CIZT.’L‘. O

For the next result we need the notion of digoint Givens rotations. Rota-
tionsGiq jq, . . ., Gy, are digoint if i js and js # j; for s# t. Digoint ro-
tations are “nonconflicting” and therefore commute; it matters neither math-
ematicaly nor numericaly in which order the rotations are applied. (Digoint

374 QR FACTORIZATION

rotations can therefore be applied in parallel, though that is not our inter-
est here.) Our approach is to take a given sequence of rotations and reorder
them into groups of digoint rotations. The reordered algorithm is numerically
equivalent to the original one, but alows a simpler error analysis.

As an example of a rotation sequence aready ordered into digoint groups,
consider the following sequence and ordering illustrated for a 6 x 5 matrix:

Tt W N = X
O Ot W X X
~N O ot X X X
03 X X X X
© X X X X X

Here, an integer k in position (i, j) denotes that the (i, j) element is eliminated
on the kth step by a rotation in the (j, i) plane, and &l rotations on the kth
step are digoint. For an m x n matrix with m > n there aler = m+ n — 2
stages, and the Givens QR factorization can be written as W, W,; . . . WA =
R, where each W is a product of a most n digoint rotations. It is easy to see
that an analogous grouping into digoint rotations can be done for the scheme
illustrated at the start of this section.

Lemma 18.8. Consider the sequence of transformations
A = WA, k= Lr,

where A; = A € R™*™ and each W, is a product of digoint Givens rotations.
Assume that the individual Givens rotations are performed using computed
sine and cosine values related to the exact values defining the W, by (18.15).
Then the computed matrix A,,; satisfies

A = QA + DA,

where Q" = W\W,, . . . W, and DA satisfies the normwise and component-
wise bounds

”AA“F < 7c-r”A“F’
|AA] < m.GlA|, [|IGllF=1.

(In fact, we can take G = m 'ee’, wheree=[1,1,...,1]") In the special
casen = 1, so that A = a we have &* P = (Q + DQ)" awith ||DQ||r < .

Proof. The proof is analogous to that of Lemma 18.3, so we offer only
a sketch. First, we consider the jth column of A, &, which undergoes the

18.6 ITERATIVE REFINEMENT 375

transformations a('H)— W, . .. Wya. By Lemma 18.7 and the disointness
of the rotations, we have

a"t = (W, + AW,.) ... (Wh + AWi)a;,

where each DW, depends on j and satisfies ||[DW||, </2v,. Using Lemma 3.6
we obtain

™ = Q" (a; +dy),
ld;ll2 < (1 + V27)" = Dllasllz = Yerllasllz- (18.16)
Hence
1AA% =" lld;113 < 7211 All%
=1

The inequalities (18. 16) for j = 1:n imply that
|AA| < vere(e”|Al) =: my,,GlAl,
where ||G||g = 1. The result for n = 1 is proved as in Lemma 18.3. I
We are now suitably equipped to give a result for Givens QR factorization.

Theorem 18.9. Let R € R™ " be the computed upper trapezoidal QR factor
of A € R™™ (m > n) obtained via the Givens QR algorithm, with any
standard choice and ordering of rotations. Then there exists an orthogonal
@ € R™*™ suych that

A+ AA=QR,
with |[DA|[r < GmmnllAlle and |DA| < mgci(t nGlAl, [IGlle = 1. (The
matrix Q is a product of Givens rotations, the kth of which corresponds to the

exact application of the kth step of the algorithm to A,) 0O

It is interesting that the error bounds for QR factorization with Givens
rotations are a factor n smaler than those for Householder QR factorization.
This appears to be an artefact of the analysis, and we are not aware of any
difference in accuracy in practice.

18.6. lIterative Refinement

Consider a nonsingular linear system Ax = b, where A € R™™™. Suppose we
solve the system using a QR factorization A = QR computed using House-
holder or Givens transformations (thus, x is obtained by solving Rx = Q'b).
Theorem 18.5, and its obvious analogue for Givens rotations, show that: T

satisfies
b — Az| < p(n)uG(|Al|Z] + [b]), (18.17)

376 QR FACTORIZATION

where ||G||r = 1 and p is a low-degree polynomia. Hence Z has a normwise
backward error of order p(n)u. However, since G is a full matrix, (18.17) sug-
gests that the componentwise relative backward error w4 »(Z) need not be
smadl. In fact, we know of no nontrivid class of matrices for which Householder
or Givens QR factorization is guaranteed to yield a small componentwise rel-
ative backward error.

Suppose that we carry out a step of fixed precision iterative refinement, to
obtain y. The form of the bound (18.17) enables us to invoke Theorem 11.4.
We conclude that the componentwise relative backward error w4 (%) a-
ter one step of iterative refinement will be smal as long as A is not too ill
conditioned and |A||g] is not too badly scaled. This conclusion is similar to
that for Gaussian elimination with partial pivoting (GEPP), except that for
GEPP there is the added requirement that the LU factorization not suffer
large element growth.

Recall from (18.7) that we aso have a backward error result in which only
A is perturbed. The analysis of $11.1 is therefore applicable, and analogues
of Theorems 11.1 and 11.2 hold in which h = uke(A).

The performance of QR factorization with fixed precision iterative refine-
ment is illustrated in Tables 11. 1-1 1.3 in §11.2. The performance is as pre-
dicted by the analysis. Notice that the initial componentwise relative back-
ward error is large in Table 11.2 but that iterative refinement successfully
reduces it to the roundoff level (despite cond(A~1)a(A,z) being huge). It is
worth stressing that the QR factorization yielded a small normwise relative
backward error in each example (n4,(Z) < wu, in fact), as we know it must.

18.7. Gram-Schmidt Orthogonalization

The oldest method for computing a QR factorization is the Gram-Schmidt
orthogonalization method. It can be derived directly from the equation A =
QOR, where A, Q@ € R™*™ .and R € R™™ (Gram-Schmidt does not compute
the m x m matrix Q in the full QR factorization and hence does not provide
a basis for the orthogonal complement of range(A)). Denoting by & and
the jth columns of A and Q, respectively, we have

J
a; = E :Tquk'
k=1

Premultiplying by ¢f yields, since Q has orthonorma columns, g¢fa; = rij,
i = 1;j — 1. Further,

4 = ¢;/7i5

18.7 GRAM-SCHMIDT ORTHOGONALIZATION 377

where
j—1
G =a;— Y Thigk, T =|djl2
k=1
Hence we can compute Q and R a column at a time. To ensure that r; > 0
we require that A has full rank.

Algorithm 18.10 (classical Gram-Schmidt). Given A € R™*™ of rank n
this agorithm computes the QR factorization A = QR, where Q is m x n and
R is n x n, by the Gram-Schmidt method.

for j = Lin
for i = 1:j-1
rij =g} a;
end
i—1
Q_;' =405 — Zi=1 Tkjqk
755 = llgjll2
/
95 = 4;/75
end

Cost: 2mn® flops (2n*/3 flops more than Householder QR factorization
with Q left in factored form).

In the classica Gram-Schmidt method (CGS), & appears in the compu-
tation only a the jth stage. The method can be rearranged so that as soon as

q, is computed, al the remaining vectors are orthogonalized against . This
gives the modified Gram-Schmidt method (MGS).

Algorithm 18.11 (modified Gram-Schmidt). Given A € R™*™ of rank n
this agorithm computes the QR factorization A = QR, where Q is m x n and
R is n x n, by the MGS method.

a,(cl) =a, k=1n
fork=1:n
Tkk = ||a§ck)||2
gk = agc)/"'kk
forj=k+1in

Cost: 2mn®> flops.

378 QR FACTORIZATION

It is worth noting that there are two differences between the CGS and
MGS methods. The first is the order in which the calculations are performed:
in the modified method each remaining vector is updated once on each step
instead of having al its updates done together on one step. This is purely a
matter of the order in which the operations are performed. Second, and more
crucially in finite precision computation, two different (but mathematically
equivalent) formulae for ry are used: in the classical method, ry = ¢laj,
which involves the original vector a, whereas in the modified method a; is
replaced in this formula by the partialy orthogonalized vector a§.’°)_ Another
way to view the difference between the two Gram-Schmidt methods is via
representations of an orthogonal projection; see Problem 18.7.

The MGS procedure can be expressed in matrix terms by defining A, =
[th,---,Qk—x,aik),-n,a,(f)]. MGS transforms A; = A into A,,; = Q by the
sequence of transformations A, = A, 1R, where R, is equal to the identity
except in the kth row, where it agrees with the find R For example, if n = 4
and k = 3,

10 0 0

01 0 0
Aa=la @ o oPl=la & @ 1|y o . ., |=4Fs

00 0 1

ThusR=R,...R;.

The Gram-Schmidt methods produce Q explicitly, unlike the Householder
and Givens methods, which hold Q in factored form. While this is a benefit,
in that no extra work is required to form Q, it is aso a weakness, because
there is nothing in the methods to force the computed @ to be orthonormal in
the face of roundoff. Orthonormality of Q is a consequence of orthogonaity
relations that are implicit in the methods, and these relations may be vitiated
by rounding errors.

Some insight is provided by the case n = 2, for which the CGS and MGS
methods are identical. Given a;, a € R™ wecomputeq; = a;/||a;|],, which
we will suppose is done exactly, and then we form the unnormalized vector

0, = a, —(¢¥ a2)q1. The computed vector satisfies
%@ = a3 — q (a2 + Aaz) + Ay,

where
|Aaz| < Ynlazl, 4G < ulag — ¢f (az + Aay)|.

Hence

B =q@+A4n, |Ag| < vl e +ullaz] + (1 +y)le] llaz)),

18.7 GRAM-SCHMIDT ORTHOGONALIZATION 379

and so the normalized inner product satisfies

T 2 lazllz _ _(m+2)u
Y122l llgzll2 sin Z(a1,a2)’

where (a1, ap) is the angle between a; and a,. But kg(A) > cot £(a,as2),
where A = [a;, a,] (Problem 18.8). Hence, for n = 2, the loss of orthogonality
can be bounded in terms of k,(A). The same is true in genera for the MGS
method, as proved by Bjorck [107, 1967]. A direct proof is quite long and
complicated, but a recent approach of Bjorck and Paige [119, 1992] enables a
much shorter derivation; we take this approach here.

The observation that simplifies the error analysis of the MGS method
is that the method is equivalent, both mathematically and numerically, to
Householder QR factorization of the padded matrix [%] € R(™™*™. To
understand this equivalence, consider the Householder QR factorization

S(m+2)u (18.18)

pT (0| _ B , PT=Pp,...P,P,. (18.19)
A 0

Let 0,.--,g9, € R™ be the vectors obtained by applying the MGS method to

A. Then it is easy to see that

—e
Pi=I-vpl, v = [q11]’ vlv, =2

and that the multiplication A, = P;[%] carries out the first step of the MGS

method on A, producing the first row of R and o, ..., a{?:

1 T1i1 T12 . Tin
Ag=n-1 | 0 0 ... 0
m 0 agz) e ag)

The argument continues in the same way, and we find that
Pe=1—-uul, wvw= [;ek] , VR =2, k=2n (18.20)
k

With the Householder-MGS connection established, we are ready to derive
error bounds for the MGS method by making use of our existing error analysis
for the Householder method.

Theorem 18.12. Suppose the MGS method is applied to A € R™*™ of rank

n, yielding computed matrices @ € R™*™ and R € R™". Then there are
constants ¢; = ¢(m, n) such that

A+AA =QR, A4z < cullAls, (18.21)

1QTQ — I||2 < couna(A) + O((ur2(A4))?), (18.22)

380 QR FACTORIZATION

and there exists an orthonormal matrix Q such that
A+ AA; =QR, |AAs <cuGlAl, ||Glir=1. (18.23)

Proof. To prove (18.21) we use the matrix form of the MGS method. For
the computed matrices we have

Ap= AR+ Ax, | Ak| < ulAky||Ril.
Expanding this recurrence, we obtain
A=QR+ ApRp_1... Ri+An_1Rn_g...Ri+ -+ ARy + A1
Hence
|4 - QR| < u(lAns1l|Ral ... |Ral + - + |Asl|Ral Ra| + | A2l|Ra), (18:24)
and a typica term has the form
Akl Ri=a] . 1R = (@ .. G G ... GP)[Sk-1, (18.25)

where S, agrees with |R] in its first k — 1 rows and the identity in its last

n—k + 1 rows. Assume for simplicity that ||@ill2 =1 (this does not affect the

final result). We have a§k+1) = (I—qqu)agk), iand Lemma 3.8 shows that the

computed vector satisfies
~(k+1 ~(k
18511z < (1 + 27me0)l357 2,
which implies || Ak+1llF < (1 + 27mys)*llAllF and, from Fi; = fl(afagk)), we

have |Bllr < vA(1 4+ Ym)(1 4 2Ypmi3)" M| Allp. Using (18.24) and exploiting
the form of (18.25) we find, after a little working, that

IA - QRllr < 4n®ul|A|F,
provided that (1 +¥m)(1 + 27mya)™ ! < 2.
To prove the last two parts of the theorem we exploit the Householder—

MGS connection. By applying Theorem 184 to (18.19) we find that there is
an orthogona P such that

AAs =R 1311 =
= = | 18.26
[A‘l'AAJ P[O] [le]R’ ()

|AA,| S C4‘U,G,'|A|, "G,”F = 1, i =3:4.

with

18.8 SENSITIVITY OF THE QR FACTORIZATION 381

This does not directly yield (18.23), since ﬁgl is not orthonormal. However,
it can be shown that if we define Q to be the nearest orthonormal matrix
to Py, in the Frobenius norm, then (18.23) holds with ¢; = v/m + 1)cq (See
Problem 18.11).

Now (18.21) and (18.23) yield @ — Q = (AA; — AA;)R™?, so

CsUlﬁlz(A)
1-— \/ﬁC;;’LLIig(A)’

where cs = ¢, ++y/nc3 and we have used (18.23) to bound ||ﬁ‘1 ll. Thisbound
implies (18.22) with ¢, = 2c5 (use the first inequality in Problem 18.13). 0O

We note that (18.22) can be strengthened by replacing k,(A) in the bound
by the minimum over postive diagonal matrices D of k,(AD). This follows
from the observation that in the MGS method the computed Q is invariant
under scalings A « AD, a least if D comprises powers of the machine base.
As a check, note that the bound in (18.18) for the case n = 2 is independent
of the column scaling, since sin Z(a1, a) is.

Theorem 18.12 tells us three things. First, the computed QR factors from
the MGS method have a small residual. Second, the departure from orthonor-
mality of Q is bounded by a multiple of k,(A)u, so that Q is guaranteed to be
nearly orthonormal if A is well conditioned. Finaly, R is the exact triangular
QR factor of a matrix near to A in a componentwise sense, so it is as good
an R-factor as that produced by Householder QR factorization applied to A
In terms of the error andysis, the MGS method is weaker than Householder
QR factorization only in that Q is not guaranteed to be nearly orthonormal.

For the CGS method the residual bound (18.21) ill holds, but no bound
of the form (18.22) holds for n > 2 (see Problem 18.9).

Here is a numerical example to illustrate the behaviour of the Gram—
Schmidt methods. We take the 25 x 15 Vandermonde matrix A = (p™%),
where the pi are equally spaced on [0, 1]. The condition number k,(A) =
1.47 x 10°. We have

CGS: ||[A—QR|j2=50x10"16, |QTQ —1I|. =39,
MGS: |[A—-QR||l;=30x10"1, [QTQ —I|s=6.2 x107°.

Both methods produce a small residual for the QR factorization. While
CGS produces a Q showing no semblance of orthogonality, for MGS we have

IQTQ — Il ~ ka(A)u/26.

I1Q - Qll2 < (e1 + vncs)ullAll2| B2 <

18.8. Sensitivity of the QR Factorization

How do the QR factors of a matrix behave under small perturbations of the
matrix? This question was first considered by Stewart [944, 1977]. He showed

382 QR FACTORIZATION

that if A € R™*™ has rank n and
A=QR and A+ AA=(Q+ AQ)(R+ AR)

are QR factorization, then, for sufficiently small DA,

IARIF 14Als o

TRl < e e A g (18.27)

1AQIlF < carr(A) 14A]F (18.28)
AT

where ¢, is a constant. Here, and throughout this section, we use the “econ-
omy size” QR factorization with R a square matrix normalized to have nonneg-
ative diagonal elements. Similar normwise bounds are given by Stewart [951,
1993] and Sun [971, 1991], and, for AQ only, by Bhatia and Mukherjea [95,
1994] and Sun [975, 1995].

Componentwise sensitivity analyses have been given by Zha [1126, 1993]
and Sun [972, 1992], [973, 1992]. Zha's bounds can be summarized as follows,
with the same assumptions and notation as for Stewart’s result above. Let
|IDA| < eG|A|, where G is nonnegative with |G|l = 1. Then, for sufficiently
smal e,

| ARl oo
| Rlloo
lAQ|lco < cm necond(R™!) + O(e?), (18.29)

< emmnecond(R™1) + O(?),

where c,,, is a constant depending on m and n. The quantity f(A) =
cond(R™) can therefore be thought of as a condition number for the QR
factorization under the columnwise class of perturbations considered. Note
that f is independent of the column scaling of A.
As application of these bounds, consider a computed QR factorization
=~ QR obtained via the Householder agorithm, where Q is the computed
product of the computed Householder matrices. Theorem 18.4 shows that A+
DA = QR, where Q is orthogonal and |AA| < mn'ycmGIIA| with ||Gl||F =1
Applying Lemma 18.3 to_ the computation of Q we have that Q = Q + 4,
where |4] < mn'ycmGT|Q| With ||G, || = 1. From the expression @ — Q=
(@ - Q)+(Q Q) (@) A -we have, on applying (18.29) to the first
term, R
Q- Qlleo < Cm,nug(A) + O(uz)' (18.30)

To illustrate this analysis we describe an example of Zha Let

11 1 1/e
A=10 ¢ , B=1{0]-/6)
{0 1] [0 1/J

18.9 NOTES AND REFERENCES 383

where € > 0 is a parameter. It is easy to verify that A = QR, and B = QRg
are QR factorization (the same Q in each case) where

1/vV2 0
Q=- 0 1].
1/v2 0
With € = 10%, the computed Q factors from MATLAB are

QA = QB =

-7.0711e-001 1.2539e-008 -7.0711e-001 1.5872e-016
0 -1.0000e+000 0 -1.0000e+000

-7.0711e-001 -1.2539e-008 -7.0711e-001 -1.5872e-016

and
|Q — Qall2~1.8x 1078, ||Q — Q5ll2 2.2 x107'°.

Since f (A) ~ 2.8 x 10° and f (B) ~ 3.8, the actual errors match the bound
(18.30) very well. Note that k,(A) =~ 2.8 x 10° and k,(B) =~ 2.1 x 10°, s0
the normwise perturbation bound (18.28) is not strong enough to predict the
difference in accuracy of the computed Q factors, unless we scale the factor
1/e out of the last column of B to leave a well-conditioned matrix. The virtue
of the componentwise analysis is that it does not require a judicious scaling
in order to yied useful results.

18.9. Notes and References

The earliest appearance of Householder matrices is in the book by Turnbull
and Aitken [1029, 1932, pp. 102-105]. These authors show that if ||X||, = ||VIl»
(z # —y) then a unitary matrix of the foom R = azz* — | (in their notation)
can be constructed so that Rx = y. They use this result to prove the existence
of the Schur decomposition. The first systematic use of Householder matrices
for computational purposes was by Householder [586, 1958], who used them
to construct the QR factorization. Householder’s motivation was to compute
the QR factorization with less arithmetic operations (in particular, less square
roots) than are required by the use of Givens rotations.

In the construction of 818.1 for a Householder matrix P such that Px =
se,, the other choice of sign, sign(s) = sign(x;), can be used, provided that
u, is formed in a numericaly stable way. The appropriate formula is derived
as follows [264, 1976], [819, 1971], [820, 1980, p. 91]:

2f — ||zl —(z3+-- +123)

v =1 — Si zllo = = .
1= o= sign(@)llell = Zm e Nl T 7+ sien@lells

A detailed analysis of different adgorithms for constructing P such that Px =
se;, is given by Perlett [819, 1971].

384 QR FACTORIZATION

Tsao [1023, 1975] describes an alternative way to form the product of a
Householder matrix with a vector and gives an error analysis. There is no
major advantage over the usua approach.

As for Householder matrices, normwise error analysis for Givens rota-
tions was given by Wilkinson [1087, 1963], [1089, 1965, pp. 131-139]. Wilkin-
son analysed QR factorization by Givens rotations for sguare matrices [1089,
1965, pp. 240-241], and his analysis was extended to rectangular matrices by
Gentleman [435, 1973]. The idea of exploiting disjoint rotations in the er-
ror analysis was developed by Gentleman [436, 1975], who gave a normwise
analysis that is simpler and produces smaller bounds than Wilkinson's (our
normwise bound in Theorem 18.9 is essentially the same as Gentleman's).

For more details of agorithmic and other aspects of Householder and
Givens QR factorization, see Golub and Van Loan [470, 1989, 85.2].

The error analysis in 818.3 is a refined and improved version of analysis
that appeared in the technical report [546, 1990] and was quoted without
proof in Higham [549, 1991].

The WY representation for a product of Householder transformations
should not be confused with a genuine block Householder transformation.
Schreiber and Parlett [904, 1988] define, for a given Z € R™*™ (m > n), the
“block reflector that reverses the range of Z” as

H=1I,-2wZzT, W =2(2TZ)* ¢ R™*",

If n = 1 this is just a standard Householder transformation. A basic task is
as follows: given E € R™*™ (m > n) find a block reflector H such that

F
0

Schreiber and Parlett develop theory and agorithms for block reflectors, in
both of which the polar decomposition plays a key role.

Sun and Bischof [977, 1995] show that any orthogonal matrix can be ex-
pressed in the form Q = | — YSY', even with S triangular, and they explore
the properties of this representation.

Another important use of Householder matrices, besides computation of
the QR factorization, is to reduce a matrix to a simpler form prior to itera
tive computation of eigenvalues (Hessenberg or tridiagonal form) or singular
values (bidiagona form). For these two-sided transformations an analogue of
Lemma 18.3 holds with normwise bounds (only) on the perturbation. Error
analyses of two-sided application of Householder transformations is given by
Ortega [811, 1963] and Wilkinson [1086, 1962], [1089, 1965, Chap. 6].

Mixed precision iterative refinement for solution of linear systems by House-
holder QR factorization is discussed by Wilkinson [1090, 1965, 810], who notes
that convergence is obtained as long as a condition of the form c,k,(Au < 1
holds.

ne=[¢|. Feme

18.9 NOTES AND REFERENCES 385

Fast Givens rotations can be applied to a matrix with half the number
of multiplications of conventional Givens rotations, and they do not involve
square roots. They were developed by Gentleman [435, 1973] and Hammar-
ling [498, 1974]. Fast Givens rotations are as stable as conventional ones-see
the error analysis by Parlett in [820, 1980, 86.8.3], for example-but, for
the original formulations, careful monitoring is required to avoid overflow.
Rath [861, 1982] investigates the use of fast Givens rotations for performing
similarity transformations in solving the eigenproblem. Barlow and Ipsen [65,
1987] propose a class of scaed Givens rotations suitable for implementation
on systolic arrays, and they give a detailed error anadysis. Anda and Park [16,
1994] develop fast rotation agorithms that use dynamic scaling to avoid over-
flow.

Rice [870, 1966] was the first to point out that the MGS method produces
a more nearly orthonormal matrix than the CGS method in the presence
of rounding errors. Bjorck [107, 1967] gives a detailled error analysis, proving
(18.21) and (18.22) but not (18.23), which is an extension of the corresponding
normwise result of Bjérck and Paige [119, 1992]. Bjorck and Paige give a
detailed assessment of MGS versus Householder QR factorization.

The difference between the CGS and MGS methods is indeed subtle.
Wilkinson [1095, 1971] admitted that “I used the modified process for many
years without even noticing explicitly that | was not performing the classica
algorithm.”

The orthonormality of the matrix @ from Gram-Schmidt can be improved
by reorthogonalization, in which the orthogonalization step of the classical
or modified method is iterated. Analyses of Gram—Schmidt with reorthog-
ondization are given by Abdelmaek [2, 1971], Ruhe [883, 1983], and Hoff-
mann [578, 1989]. Daniel, Gragg, Kaufman, and Stewart [263, 1976] analyse
the use of classical Gram-Schmidt with reorthogonalization for updating a
QR factorization after a rank one change to the matrix.

The mathematical and numerical equivalence of the MGS method with
Householder QR factorization of the matrix [‘k] was known in the 1960s
(see the Bjorck quotation at the start of the chapter) and the mathematical
equivalence was pointed out by Lawson and Hanson [695, 1974, Ex. 19.39].

A block Gram-Schmidt method is developed by Jaby and Philippe [608,
1991] and error analysis given. See also Bjorck [115, 1994], who gives an
up-to-date survey of numerica aspects of the Gram—Schmidt method.

For more on Gram-Schmidt methods, including historical comments, see
Bjorck [116, 1996].

One use of the QR factorization is to orthogonalize a matrix that, because
of rounding or truncation errors, has lost its orthogonality; thus we compute
A = QR and replace A by Q. An aternative approach is to replace A € R™*"
(m > n) by the nearest orthonormal matrix, that is, the matrix Q that solves
{lIA - Q|| : Q'Q = I} = min. For the 2- and Frobenius norms, the optimal

386 QR FACTORIZATION

Q is the orthonorma polar factor U of A, where A = UH is a polar decom-
position: U € R™*™ has orthonorma columns and H € R™*™ is symmetric
positive semidefinite. If m = n, U is the nearest orthogonal matrix to A in any
unitarily invariant norm, as shown by Fan and Hoffman [361, 1955]. Chan-
drasekaran and Ipsen [196, 1994] show that the QR and polar factors satisfy
|A—Qll2,r <5vn||A—Ull2, under the assumptions that A has full rank and
columns of unit 2-norm and that R has positive diagonal elements. Sun [974,
1995] proves a similar result and aso obtains a bound for ||Q — UJ|g in terms
of |JATA — I||. Algorithms for maintaining orthogondlity in long products of
orthogonal matrices, which arise, for example, in subspace tracking problems
in signal processing, are analysed by Edelman and Stewart [347, 1993] and
Mathias [733, 1995].

Various iterative methods are available for computing the orthonormal
polar factor U, and they can be competitive in cost with computation of a
QR factorization. For more details on the theory and numericad methods, see
Higham [530, 1986], [539, 1989], Higham and Papadimitriou [567, 1994], and
the references therein.

A notable omission from this chapter is a treatment of rank-revealing QR
factorizations-ones in which the rank of A can readily be determined from
R. This topic is not one where rounding errors play a major role, and hence it
is outside the scope of this book. Pointers to the literature include Golub and
Van Loan [470, 1989, 85.4], Chan and Hansen [192, 1992], and Bjorck [116,
1996]. A column pivoting strategy for the QR factorization, described in
Problem 18.5, ensures that if A has rank r then only the first r rows of R
are nonzero. A perturbation theorem for the QR factorization with column
pivoting is given by Higham [540, 1990]; it is closely related to the perturba-
tion theory in 810.3.1 for the Cholesky factorization of a positive semidefinite
matrix.

18.9.1. LAPACK

LAPACK contains a rich selection of routines for computing and manipulat-
ing the QR factorization and its variants. Routine xGEQRF computes the QR
factorization A = QR of an m x n matrix A by the Householder QR algo-
rithm. If m < n (which we ruled out in our andysis, merely to smplify the
notation), the factorization takes the form A = Q[R; R;], where R; is m x m
upper triangular. The matrix Q is represented as a product of Householder
transformations and is not formed explicitly. A routine xORGQR (or X UNGQR in
the complex case) is provided to form al or part of Q, and routine X ORMQR (or
x UNMQR) will pre- or postmultiply a matrix by Q or its (conjugate) transpose.

Routine x GEQPF computes the QR factorization with column pivoting (see
Problem 18.5).

An LQ factorization is computed by X GELQF. When A is m x n with m < n

PROBLEMS 387

it takes the form A = [L 0] Q. It is essentidly the same as a QR factorization
of A" and hence can be used to find the minimum 2-norm solution to an
underdetermined system (see 8§20.1).

LAPACK aso computes two nonstandard factorization of an m x n A:

xGEQLF : A=Q[g], m > n, XGERQF: A=[0 R]Q, m<mn,
where L is lower trapezoida and R upper trapezoidal.

Problems

18.1. Find the eigenvalues of a Householder matrix and a Givens matrix.

18.2. Let P = I—jooT, where 8 andy are the computed quantities described
in Lemma 18.1. Derive a bound for ||PTP — I||,.

18.3. A complex Householder matrix has the form
P =1 - puw",

where 0 #% v € €* and b = 2/u*u. For given z,y € C", show how to
determine, if possible, P so that Px = .

18.4. (Wilkinson [1089, 1965, p. 242]) Let z € R™ and let P be a Householder
matrix such that Px = [|x|Le;. Let Gyp Gy, be Givens rotations
such that Qx = Gy . . Gy X = £||X|Le,. True or fdse: P = Q2

18.5. In the QR factorization with column pivoting, columns are interchanged
a the start of the kth stage of the reduction so that, in the notation of (18.1),
1%l = [ICL, DIz for al j. Show that the resulting R factor satisfies

Jj
T%kzzrfj: j=k+Llin, k=1ln,
ik

so that, in particular, |ri1] > [r]l = . . . > |rl. (These are the same
equations as (10.13), which hold for the Cholesky factorization with complete
pivoting—why?)

186. Let W € R™*™ be a product of disjoint Givens rotations. Show that

HW1ll2 < V2.

18.7. The CGS method and the MGS method applied to A € R™*™(m > n)
compute a QR factorization A = QR, @ € R™*™. Define the orthogonal
projection P, = g;¢7, where g = Q(;, i). Show that

(I-P)YI-Pj~)..I-P)=I-Pj—---— P

388 QR FACTORIZATION

Show that the CGS method corresponds to the operations
aj — (I —P;—---— P1)a;, j=1ln,
while MGS corresponds to
aj — (I - P;)(I—Pj-1)...(I = Py)aj, j=1ln.
188. Let A = [a,, &] € R™*? and denote the angle between a, and a, by
g, 0 < q<p/l2. (Thus, cosg = |aTaz|/(llaill2llazll2)-) Show that

max(|la1]|z, [|laz]|2)

A) > —
r2(4) 2 min(||a1 |2, [|az(|2)

cot 8.

18.9. (Bjorck [107, 1967]) Let

A=

O =
o mn O =
an OO =

0

which is a matrix of the form discussed by Lauchli [692, 1961]. Assuming
that fI(1+€2) =1, evauate the Q matrices produced by the CGS and MGS
methods and assess their orthonormality.

18.10. Show that the matrix P in (18.19) has the form

[0, QT
P_[Q I—QQT]’

where Q is the matrix obtained from the MGS method applied to A.
18.11. (Bjorck and Paige [119, 1992]) For any matrices satisfying

AA P
[A + AIAZ] - [P;iJ R, PPy + P{le =1

where both P;; and P,; have a least as many rows as columns, show that

there exists an orthonormal Q such that A + DA = QR, where

AA=FAA + Ady, ||Fll2 < 1.

(Hint: use the CS decomposition P;; = UCW', P,; = VSA', where U
and V have orthonormal columns, W is orthogona, and C and S are square,
nonnegative diagonal matrices with C* + & = I. Le Q = W' Note,
incident aly, that P,, = W' - WSV, so Q = VW is the orthonormal
polar factor of P,;, and hence is the nearest orthonormal matrix to P,; in the
2- and Frobenius norms. For details of the CS decomposition see Golub and
Van Loan [470, 1989, pp. 77, 471] and Paige and Wei [814, 1994].)

PROBLEMS 389

18.12. We know that Householder QR factorization of [g] is equivalent to
the MGS method applied to A, and Problem 18.10 shows that the orthonor-
ma matrix Q from MGS is a submatrix of the orthogonal matrix P from the
Householder method. Since Householder's method produces a nearly orthog-
onad P, does it not follow that MGS must also produce a nearly orthonormal

Q7
18.13. (Higham [557, 1994]) Let A € R™*™ (m > n) have the polar decom-
position A = UH. Show that

I ATA — I|l2

A1 <14 - Ul <1474 1]

This result shows that the two measures of orthonormality [JA'A — 1||, and
[|A - U]|, are essentially equivaent (cf. (18.22)).

Previous Home

Chapter 19
The Least Squares Problem

For some time it has been believed that orthogonalizing methods

did not suffer this squaring of the condition number . . .

It caused something of a shock, therefore,

when in 1966 Golub and Wilkinson . . . asserted that

already the multiplications QA and Qb may produce errors in the solution
containing a factor x*(A).

— A. VAN DER SLUIS,
Stability of the Solutions of Linear Least Squares Problems (1975)

Most packaged regression problems do compute a cross-products matrix
and solve the normal equations using a matrix inversion subroutine.

All the programs . . . that disagreed

(and some of those that agreed) with the unperturbed solution

tried to solve the normal equations.

— ALBERT E. BEATON, DONALD B. RUBIN, and JOHN L. BARONE,
The Acceptability of Regression Solutions:
Another Look at Computational Accuracy (1976)

On January 1, 1801 Giuseppe Piazzi discovered the asteroid Ceres.
Ceres was only visible for forty days

before it was lost to view behind the sun . . .

Gauss, using three observations, extensive analysis,

and the method of least squares, was able to

determine the orbit with such accuracy that Ceres was

easily found when it reappeared in late 1801.

— DAVID K. KAHANER, CLEVE B. MOLER, and STEPHEN G. NASH,
Numerical Methods and Software (1989)

391

Next

392 THE LEAST SQUARES PROBLEM

In this chapter we consider the least squares (LS) problem min, [|b — Az||s,
where Ae R™*™ (m > n) has full rank. We begin by examining the sen-
sitivity of the LS problem to perturbations. Then we examine the stability
of methods for solving the LS problem, covering QR factorization methods,
the normal equations and seminorma equations methods, and iterative refine-
ment. Finally, we show how to compute the backward error of an approximate
LS solution.

We do not develop the basic theory of the LS problem, which can be found
in standard textbooks (see, for example, Golub and Van Loan [470, 1989,
§5.3]). However, we recall the fundamental result that any solution of the
LS problem satisfies the normal equations ATAx = ATb (see Problem 19.1).
Therefore if A has full rank there is a unique LS solution. More generally,
whatever the rank of A the vector x,s = A'b is an LS solution, and it is the
solution of minimal 2-norm. Here, A” is the pseudo-inverse of A (given by
A* = (ATA)'AT when A has full rank); see Problem 19.3. (For more on the
pseudo-inverse see Stewart and Sun [954, 1990, §3.1].)

19.1. Perturbation Theory

Perturbation theory for the LS problem is, not surprisingly, more complicated
than for linear systems, and there are several forms in which bounds can be
stated. We begin with a normwise perturbation theorem that is a restatement
of a result of Wedin [1069, 1973, Thm. 5.1]. For an arbitrary rectangular
matrix A we define the condition number , (A) = [|A[[,||A"]l,. If A has
r = rank(A) nonzero singular values, s; > - - - > s, then «,(A) = sy/s,.

Theorem 19.1 (Wedin). Let A R™*™ (m > n) and A + DA both be of full
rank, and let

|6 — Az||2 = min, r=b— Az,
|(b+ Ab) — (A + AA)yl|2 = min, s=b+ Ab— (A + AA)y,
|AAllz < €llAllz, 11Abll2 < €l|b]2-

Then, provided that «,(A)e< 1,

Iz - yll2 Kko(A)e . T
llz]l2 STz ra(A)e (2 + (k2(4) + 1)————”A”2”x”2) (19.1)
I = sllz ¢ (1 4 2. (19.2)

162

These bounds are approximately attainable.O

19.1 PERTURBATION THEORY 393

Proof. We defer a proof until §19.8, since the techniques used in the proof
are not needed elsewhere in this chapter. O

The bound (19. 1) is usudly interpreted as saying that the sensitivity of the
LS problem is measured by ,, (A) when the residua is small or zero and by
(A otherwise. This means that the sensitivity of the LS problem depends
strongly on b as well as A, unlike for a square linear system.

Here is a simple example where the «,(A)* effect is seen:

10 10 1
A=1|0 €¢|, aa=1|0 o|, b=1|0|, ab=o0.
0 0 0 ¢ 1

It is a smple exercise to verify that

<[=[] -0 =[]

Since k,(A) = 1lle,

=gl 1. alAAl, 1

Iz~ Yz _ 2 Apieslz o
Tl 2~ g, = ¢
Ir—sle 1. . &AL

—= == S gy(A)—= = 1.
Bl 2~ "7,

Surprisingly, it is easier to derive componentwise perturbation bounds than
normwise ones for the LS problem. The key idea is to express the LS solution
and its residual as the solution of the augmented system

[AIT 61] [;] = [8] (19.3)

which is simply another way of writing the normal equations, A'Ax = Ab.
This is a square nonsingular system, so standard techniques can be applied.
The perturbed system of interest is

I A+ AA) [s b+ Ab
[(A+/_\.A)T 0][y]z[0 } (19.4)

where we assume that
|AA| < eE, |Ab] <¢€f. (19.5)
From (19.3) and (19.4) we obtain

I A|l|s—r] |Ab— AAy
AT 0| |y—=z| | —-4AATs |-

394 THE LEAST SQUARES PROBLEM

Premultiplying by the inverse of the matrix on the left gives

s—r I—-AAT (AD)T Ab - AAy
[y—a:] =[A —(ATA)‘l] [_AATS J (196
Looking a the individual block components we obtain
|s—r| <e(lI — ATA|(f + Ely]) + |A+ITET|3|), (19.7)
ly — z| < e(JA*|(f + Ely|) + |(ATA) "' |ET|s]). (19.8)
(Note that ||I — AA™||, = min{1, m — n}, as is easily proved using the sin-

gular value decomposition (SVD).) On taking norms we obtain the desired
perturbation result.

Theorem 19.2. Let A € R™*"®(m > n) and A + DA be of full rank. For
the perturbed LS problem described by (19.4) and (19.5) we have

lz =yl . AT, + Elyl) | + [[(ATA) 1 ET|s| |

< (19.9)
llz| [l
— I — AAT E +\T T
nr”T”sn <l I(f + lm I+ IATTETIsl] 1

for any monotonic norm. These bounds are approximately attainable. 0O

For a sguare system, we have s = O, and we essentialy recover Theo-
rem 7.4. Note, however, that the bounds contain the perturbed vectors y and
s. For theoretical analysis it may be preferable to use alternative bounds in
which x and r replace y and s and there is an extra factor

)—l

(el ™) o 5]

where the term in parentheses is assumed to be positive. For practical compu-
tation (19.9) is unsatisfactory because we do not know s = b + Db — (A + DA)y.
However, as Stewart and Sun observe [954, 1990, p. 159], 7 = b — Ay is com-
putable and

Is| < |7l +(f + Elyl),

and using this bound in (19.9) makes only a second-order change.

The componentwise bounds enjoy better scaling properties than the norm-
wise ones. If E = |A] and f = |b] then the bounds (19.7) and (19.8), and
to a lesser extent (19.9) and (19.10), are invariant under column scalings
b— Az — b— AD - D~z (D diagonal). Row scaling does affect the com-
ponentwise bounds, since it changes the LS solution, but the componentwise
bounds are less sensitive to the row scaling than the normwise bounds, in a
way that is difficult to make precise.

19.2 SoLuTIiON BY QR FACTORIZATION 395

19.2. Solution by QR Factorization

Let A e R™*™, with m > n and rank(A) =n. If A has the QR factorization
oa= 3]

then

Y 112
Az — b3 = 11QT Az — QTb||3 =: ” [Rm_; C]
2

It follows that the unique LS solution is x =R’c, and the residual [|lb —
AX|l; = ||d]|,- Thus the LS problem can be solved with relatively little extra
work beyond the computation of a QR factorization. Note that Q is not
required explicitly; we just need the ability to apply Q' to a vector.

It is well known that the Givens and Householder QR factorization algo-
rithms provide a normwise backward stable way to solve the LS problem. The
next result expresses this fact for the Householder method and aso provides
componentwise backward error bounds (essentially the same result holds for
the Givens method).

As in Chapter 18, we will use the generic constant g.,,, in which ¢ denotes
a small integer. We will assume implicitly that a condition holds of the form
mnge, < U2

Theorem 19.3. Let A € R™*™ (m > n) have full rank and suppose the
LS problem min, ||b — Ax||, is solved using the Householder QR factorization
method. The computed solution Z is the exact LS solution to

rnzin [|(b+ Ab) — (A+ AA)Z|2,
where the perturbations satisfy the normwise bounds
IAA|lF < myemllAllr, [1Abll2 < Ry Ibll2,
and the componentwise bounds
|AA| < My, GlAl, |4Ab] < mny,Glbl,
where [|G]le = 1

Proof. The proof is a straightforward generdization of the proof of The
orem 18.5 and is left as an exercise (Problem 19.2). O

396 THE LEAST SQUARES PROBLEM

As for Theorem 185 (see (18.7)), Theorem 19.3 remains true if we set
Db = O, but in generd there is no advantage to restricting the perturbations
to A

Theorem 19.3 is a strong result, but it does not bound the residual of the
computed solution, which, after al, is what we are trying to minimize. How
close, then, is|jb— AZljz to min, ||b — Ax||,? We can answer this question using
the perturbation theory of §19.1. With ¥:= b + Db — (A + DA)Z, X = X
and r := b — Ax, (19.6) yields

F—r=(I —AAT)(Ab - AAZ) — (AN)TAATF,
so that
(b— AZ) —r = —AAY(Ab — AAZ) — (AN)TAATT.

Substituting the bounds for DA and Db from Theorem 19.3, and noting that
[|JAA]|, = 1, we obtain

(b= AZ) = r|l2 < mny.,, (IG([6] + |Al|z])]I2
+[[1ATTIATIGT|r| ||2) + O(u?),
< My (1|16 + 14]|2] ||2 + cond2(AT)||r||2) + O(u?),

where cond,(A) = || |A]|A] |l,. Hence
16 — AZll2 < mnvey |l 16 + | Allz] ||2 + (1 + mnyey, conda(AT))[I7l2 + O(u?).

This bound contains two parts. The term mngq,, || |b| + |Al|X] |l is a multiple
of the bound for the error in evauating fl(b — Ax), and so is to be expected.
The factor 1 + mng. ,,cond, (AT) will be less than 1.1 (say) provided that
cond, (A") is not too large. Note that cond, (A") < ., (A) and cond, (A) is
invariant under column scaing of A (A« A diag(d;), d; # 0). The conclusion
is that, unless A is very ill conditioned, the residua b — AZ will not exceed
the larger of the true residual r = b — Ax and a constant multiple of the error
in evaluating fl(r)—a very satisfactory result.

19.3. Solution by the Modified Gram-Schmidt Method

The modified Gram-Schmidt (MGS) method can be used to solve the LS
problem. However, we must not compute x from x = R™(Q'b), because the

lack of orthonormality of the computed@would adversely affect the stability.
Instead we apply MGS to the augmented matrix [A Db]:

4d=(a aal[§ 2]

19.4 THE NORMAL EQUATIONS 397

We have

az=v=1a 0] 5] =10 gl [P 7]
= Q1(Rz - 2) — Pgnt1-

Since q,, is orthogona to the columns of Qy, ||b — Ax||,® = ||IRx — z||,° + r?,
so the LS solution is x = R'z. Of course, z = Q',b, but z is now computed
as part of the MGS procedure instead of as a product between Q' and b

Bjorck [107, 1967] shows that this algorithm is forward stable, in the
sense that the forward error ||x — Z||2/||z||2 is as small as that for a norm-
wise backward stable method. It has recently been shown by Bjérck and
Paige [119, 1992] that the algorithm is, in fact, normwise backward stable
(see aso Bjorck [115, 1994)), that is, a normwise result of the form in Theo-
rem 19.3 holds. Moreover, a componentwise result of the form in Theorem 19.3
holds too—see Problem 19.5. Hence the possible lack of orthonormality of @
does not impair the stability of the MGS method as a means for solving the
LS problem.

19.4. The Normal Equations

The oldest method of solving the LS problem is to form and solve the normal
equations, ATAx = A'b. Assuming that A has full rank, we can use the
following procedure:

Form C = A'A and ¢ = A'b.
Compute the Cholesky factorization C = R'R.
Solve R'y = ¢, Rx = y.

Cost: : n’(m + n/3) flops.

If m >> n, the norma equations method requires about half as many
flops as the Householder QR factorization approach (or the MGS method).
However, it has less satisfactory numerical stability properties. There are
two problems. The first is that information may be lost when C := fl(ATA) is
formed-essentially because forming the cross product is a squaring operation
that increases the dynamic range of the data. A simple example is the matrix

A=[1 (1)], 0<e<Vu,

€

for which

1+€2 1 11
ATA=[1 1], fl(ATA)=[1 1}.

Even though A is distance approximately e from a rank-deficient matrix, and
hence unambiguoudly full rank if e = y/u/2, tthe computed cross product is

398 THE LEAST SQUARES PROBLEM

singular. In general, whenever ,(A) > u 2 we can expect51to be singular

or indefinite, in which case Cholesky factorization is likely to break down
(Theorem 10.7).

The second weakness of the normal equations method is more subtle and
is explained by a rounding error analysis. In place of C = A'A and ¢ = A'b
we compute

C=ATA+ AC,, |ACY| <, |AT||A],
C=ATb+ Ac, |Ac <, |AT|b].
By Theorems 10.3 and 10.4, the computed Cholesky factor R and solution £
satisfy
RTR=C+A4C,;, |ACy| <7, |RTIIR, (1912
(C+AC)E=2, |ACs| < 27,4 |RT|IR].
Overall,

(ATA + AA)Z = ATh + Ac, (19.12)
|AA| < Y| AT||A| + 27,11 |RTI|R], |Ac| € 7,,|AT|]b].

By bounding || |RT||R}||; with the aid of (19.11), we find that

|AA]l2 € (mn + 2n? + 2n)ul|A||Z + O(u?), (19.139)
lAcllz < mn'/?ul| A]l2]b]l2 + O(u?). (19.13b)

These bounds show that we have solved the normal equations in a backward
stable way, as long as [|All||bll,= ||ATb||,. But if we try to translate this
result into a backward error result for the LS problem itself, we find that
the best backward error bound contains a factor ,(A) [569, 1987]. The best
forward error bound we can expect, in view of (19.13), is of the form

llz — 2l

”1'”2 5 Cm,n”Z(A)zu (1914)

(since «»(ATA) = ,(A)?). Now we know from Theorem 19.1 that the sen-
sitivity of the LS problem is measured by «,(A)® if the residua is large, but
by «(A) if the residua is small. It follows that the norma equations method
has a forward error bound that can be much larger than that possessed by a
backward stable method.

A mitigating factor for the normal equations method is that, in view of
Theorem 10.6, we can replace (19.14) by the (not entirely rigorous) bound

1D(z — 2|2

1Dall, e (P

19.5 ITERATIVE REFINEMENT 399

where A = BD, with D = diag(J|JA(;, |l), so that B has columns of unit
2-norm. Van der Sluis's result (Theorem 7.5) shows that
fcz(B) S \/’I_’L I_Ilin K2(AF).
F diagonal
Hence the normal eguations method is, to some extent, insensitive to poor
column scaling of A.

Although numerica analysts amost invariably solve the full rank LS prob-
lem by QR factorization, statisticians frequently use the normal equations
(though perhaps less frequently than they used to, thanks to the influence of
numerical analysts). The norma equations do have a useful role to play. In
many dtatistical problems the regression matrix is contaminated by errors of
measurement that are very large relative to the roundoff level; the effects of
rounding errors are then likely to be insignificant compared with the effects
of the measurement errors, especially if IEEE double precision (as opposed to
single precision) arithmetic is used.

The normal equations (NE) versus (Householder) QR factorization debate
can be summed up as follows.

. The two methods have a similar computationa cost if m =~ n, but the
NE method is up to twice as fast for m >> n. (This statement assumes
that A and b are dense; for details of the storage requirements and
computational cost of each method for sparse matrices, see, for example,
Bjorck [116, 1996] and Heath [510, 1984].)

. The QR method is aways backward stable. The NE method is guaran-
teed to be backward stable only if A is well conditioned.

. The forward error from the NE method can be expected to exceed that
for the QR method when A is ill conditioned and the residual of the LS
problem is small.

. The QR method lends itself to iterative refinement, as described in the
next section. lterative refinement can be applied to the NE method, but
the rate of convergence inevitably depends on ,(A)? instead of y,(A).

19.5. Iterative Refinement

As for square linear systems, iterative refinement can be used to improve
the accuracy and stability of an approximate LS solution. However, for the
LS problem there is more than one way to construct an iterative refinement
scheme.

By direct analogy with the square system case, we might consider the
scheme

400 THE LEAST SQUARES PROBLEM

1. Compute r = b — AZ.
2. Solve the LS problem ming||Ad-r]|,.
3. Update y =% + d.
(Repeat from step 1 if necessary, with Z replaced by).

This scheme is certainly efficient-a computed QR factorization (for example)
of A can be reused at each step 2. Golub and Wilkinson [466, 1966] inves-
tigated this scheme and found that it works well only for nearly consistent
systems.

An dternative approach suggested by Bjorck [106, 1967] is to apply iter-
ative refinement to the augmented system (19.3), so that both x and r are
refined simultaneoudy. Since this is a square, nonsingular system, existing re-
sults on the convergence and stability of iterative refinement can be applied,
and we would expect the scheme to work well. To make precise statements
we need to examine the augmented system method in detail.

For the refinement steps we need to consider an augmented system with
an arbitrary right-hand side:

r + Ax = f, (19.153)
Ar = g. (19.15b)
If A has the QR factorization
R
a=elg].

where R € R™®*™then (19. 15) transforms to

amr+[§|e=ams,
[RT 0]QTr=y.

This system can be solved as follows:

h =RTg,
a=q7s =2,
h

r=Q[d2],
x = R7'(d, - h)

The next result describes the effect of rounding errors on the solution process.

19.5 ITERATIVE REFINEMENT 401

Theorem 19.4. Let A€ R™*™ be of full rank n < m and suppose the aug-
mented system (19.15) is solved using a Householder QR factorization of A
as described above. The computedZ and 7 satisfy

I A+ AA][] _[f+Af
(A+ AAR)T 0 | g+ Ag

where
|A4;| < mny.,GlAl, i=1:2,

|Ag| < Vmny., | AT | Hs|r,

with ||G|lr = L, |IHi|lr = 1 i = 1:3.

Proof. The proof does not involve any new ideas and is rather tedious,
SO we omit it. 0

Consider first fixed precision iterative refinement. Theorem 19.4 implies
that the computed solution (77,zT)T to (19.15) satisfies

51-Le 5l 2] oy %)

<mmcm([|ATl(GT+H3) 0o ||l
Hy 0f[]|f]
" [0 0] [lgl '
Unfortunately, this bound is not of a form that allows us to invoke The-
orem 11.4. However, we can apply Theorem 11.3, which tells us that the
corrected solution (s ,yT)T obtained after one step of iterative refinement

L 210 smennl)00 41150
#menes ([amy 1] H;H ['bID

+ 0(u?). (19.16)

@)

Here, (77,72)T denotes the residual of the augmented system corresponding
to the original computed solution. We will make two simplifications to the
bound (19.16). First, since (71,73)T = O(u), the first term in the bound may
be included in the O(u®) term. Second, (19.16) yields [6 ~ 8 — Ayl = O(u)
and so [3] < |A||7] + |b] + O(u). With these two simplifications, (19.16) may

be written
<o ([5] [51] +[01]) +o0

o] - L+ 6105)

402 THE LEAST SQUARES PROBLEM

In view of the Oettli—Prager result (Theorem 7.3) this inequdlity tells us that,
asymptotically, the solution 7 produced after one step of fixed precision it-
erative refinement has a small componentwise relative backward error with
respect to the augmented system. However, this backward error alows the
two occurrences of A in the augmented system coefficient matrix to be per-
turbed differently, and thus is not a true componentwise backward error for
the LS problem. Nevertheless, the result tells us that iterative refinement can
be expected to produce some improvement in stability. Note that the bound in
Theorem 19.2 continues to hold if we perturb the two occurrences of A in the
augmented system differently. Therefore the bound is applicable to iterative
refinement (with E = |A|, f = |b]), and sO we can expect iterative refine-
ment to mitigate the effects of poor row and column scaling of A. Numerical
experiments show that these predictions are borne out in practice [549, 1991].

Turning to mixed precision iterative refinement, we would like to apply
the analysis of $11.1, with “Ax = b* again identified with the augmented
system. However, the analysis of §11.1 requires a backward error result in
which only the coefficient matrix is perturbed (see (11.1)). This causes no
difficulties because from Theorem 19.4 we can deduce a normwise result (cf.

Problem 7.7):
(L A+ 2] vz 2]

The theory of §11.1 then tells us that mixed precision iterative refinement will
converge as long as the condition number of the augmented system matrix is
not too large and that the rate of convergence depends on this condition
number. How does the condition number of the augmented system relate to
that of A? Consider the matrix that results from the scaling A « o~ !4
(a>0):

2

al A
Cla) = [AT 0] . (19.17)
Bjorck [106, 1967] shows that the eigenvalues of C(a) are
2 1/2
(X 4,2 = 1:
MC(a)) = !2 * (4 +"’) » t=1Lim, (19.18)
(0‘, m - n times,

where s; i = 1. n, are the singular values of A, and that

V2K2(A) < min £5(Cla)) < 2x3(A), maxxa(Cla)) > ka(A)?, (19.19)

with min, ,(C(a)) being achieved for a = o,,/v/2 I(see Problem 19.7). Hence
C(@) may be much more ill conditioned than A. However, in our andysis

19.6 THE SEMINORMAL EQUATIONS 403

we are at liberty to take min, ,(C(a)) as the condition number, because
scaling the LS problem according to b — Ax « (b — Ax)/a does not change
the computed solution or the rounding errors in any way (at least not if
a is a power of the machine base). Therefore it is, x,(A) that governs the
behaviour of mixed precision iterative refinement, irrespective of the size of
the LS residual. As Bjorck [111, 1990] explains, this means that “in a sense
iterative refinement is even more satisfactory for large residua least-squares
problems.” He goes on to explain that “When residuals to the augmented
system are accumulated in precision b, t, > 2t;, this scheme gives solutions
to full single-precision accuracy even though the initial solution may have no
correct significant figures.”

Iterative refinement can be applied with the MGS method. Bjérck [106,
1967] gives the details and shows that mixed precision refinement works just
as well as it does for Householder’'s method.

19.6. The Seminormal Equations

When we use a QR factorization to solve an LS problem min, ||b — AX||,,
the solution x is determined from the equation Rx = Q'b (or via a similar
expression involving Q for the MGS method). But if we need to solve for
severa right-hand sides that are not all available when the QR factorization
is computed, we need to store Q before applying it to the right-hand sides.
If A is large and sparse it is undesirable to store Q, as it can be much more
dense than A. We can, however, rewrite the norma equations as

R'Rx = A'b,

which are caled the seminormal equations. The solution x can be determined
from these equations without the use of Q. Since the cross product matrix
ATA is not formed explicitly and R is determined stably via a QR factor-
ization, we might expect this approach to be more stable than the normal
equations method.

Bjorck [110, 1987] has done a detailed error analysis of the seminormal
equations (SNE) method, under the assumption that R is computed by a
backward stable method. His forward error bound for the SNE method is of
the same form as that for the normal equations method, involving a factor
«2(A)?. Thus the SNE method is not backward stable. Bjorck considers
applying one step of fixed precision iterative refinement to the SNE method,
and he cals the resulting process the corrected seminormal equations (CSNE)
method:

R'Rx = A'b
r=>b - Ax

404 THE LEAST SQUARES PROBLEM

R'/Rw = A'r
y=X+w

It is important that the norma equations residua be computed as shown, as
AT(b - Ax), and not as A'b — ATAx. Bjorck derives a forward error bound
for the CSNE method that is roughly of the form

Iz - vl (. (12) nz(A)2u||rnz)
——— L cmn | k2(A)u-ko(A)u |1+ + .
Tellz (A)u- ra(4) TAllel2) + TAll=l:

Hence, if \,(A)°U < 1, the CSNE method has a forward error bound similar
to that for a backward stable method, and the bound is actually smaller than
that for the QR method if ,(A)’U << 1 and r is small. However, the CSNE

method is not backward stable for all A.

19.7. Backward Error

Although it has been known since the 1960s that a particular method for
solving the LS problem, namely the Householder QR factorization method,
yidds a small normwise backward error (see $19.2), it was for a long time
an open problem to obtain a formula for the backward error of an arbitrary
approximate solution. Little progress had been made towards solving this
problem until Waldén, Karlson, and Sun [1060, 1995] found an extremely
elegant solution. We will denote by | ;,, and s., the smallest eigenvalue
of a symmetric matrix and the smallest singular value of a general matrix,
respectively.

Theorem 19.5 (Waldén, Karlson, and Sun). Let A € R™**(m > n), b e
R™, 0%y e R"™ and r = b — Ay. The normwise backward error

Np(y) = min{ |[AA4, 04b]||F : [|(A+ AA)y — (b+ Ab)|l2 =min} (19.20)

is given by

rw) = (i,

where

rr’ % |lyli3
)\,=,\~(AAT—,u) p=—a2t2
e llyll3 1+ 62|lyll3

The backward error (19.20) is not a direct generalization of the usual
normwise backward error for square linear systems, because it minimizes

19.7 BACKWARD ERROR 405

Table 19.1. LS backward errors and residual for Vandermonde system.

Nr _ i _
A = qapy €= ik
NE 8.6 x 10712 2.40 x 10710 6.3 x 1078
QR 8.6 x 10718 241x1071% 62x 107
MGS 2.6 x 10718 7.32x 1077 20x10"
MGS(bad) 2.0x 1071 566 x 107° 58 x 1077

I[AA, 04b)||r instead of max{||AAll2/|IE]l2, |Abll2/||fll2}. However, the Pa
rameter q alows us some flexibility: taking the limit 8 — oo forces Db = 0,
giving the case where only A is perturbed.

Theorem 19.5 can be interpreted as saying that if | . > O then the backward
error is essentially that given by Theorem 7.1 for a consistent system. If
I« < 0, however, the nearest perturbed system of which y is the LS solution
is inconsistent. A sufficient condition for 1. < 0 is b & range(A) (assuming
m# 0), that is, the original system is inconsistent.

The formulae given in Theorem 19.5 are unsuitable for computation be-
cause they can suffer from catastrophic cancellation when |. < 0. Instead,
the following alternative formula derived in [1060, 1995] should be used (see
Problem 19.9):

Nr(y) = min{ 71, omin([A MmC))}, (19.21a)
lIrll2 rrT

=1V C=1-—. 19.21b

"= Yl Y 7 (19:210)

To illustrate Theorem 19.5, we consider an LS problem with a 25 x 15
Vandermonde matrix A = (p}‘l),where the p; are equdly spaced on [0, 1],
and b = Ax with x; = i (giving a zero residual problem). The condition
number ,,(A) = 1.47 x 10°. We solved the LS problem in MATLAB in four
different ways. by using the NE with Cholesky factorization, via Householder
QR factorization, and via the MGS method, using both the stable approach
described in §19.3 and the unstable approach in which Q'b is formed as
a matrix—vector product (denoted MGS(bad)). The results, including the
norms of the residuals r = b — AZ, are shown in Table 19.1. As would be
expected from the analysis in this chapter, the QR and stable MGS methods
produce backward stable solutions, but the NE method and the unstable MGS
approach do not.

As we saw in the analysis of iterative refinement, sometimes we need to
consider the augmented system with different perturbations to A and AT.
The next result shows that from the point of view of normwise perturbations

406 THE LEAST SQUARES PROBLEM

and componentwise perturbations bounded by |DA] < eG|A|, the lack of

“symmetry” in the perturbations has little effect on the backward error of vy.

Lemma 19.6 (Kielbasinskiand Schwetlick). Let A € R™*" (m > n) and
consider the perturbed augmented system

(aramyr oM]=10)

There is a vector § and a perturbation DA with

DA = G,DA; + G,DA,, GT =G, =G? G,+Gy=1I, (1922

[(A+IAA)T A+0AA] [jJ - [8]

that is, y solves the LS problem min, [[(A + DA)Xx — bj|,.

such that

Proof. If s = b— (A + DA;)y = 0 we take DA = DA,;. Otherwise, we set
DA = PDA, + (I — P)DA, = DA, + PH,
where P = ss'/s's and H = DA, - DA;. We have
§:i=b-(A+ AA)y = b— (A+ AA,)y — PHy = Bs,
where b = 1 — s'Hy/s"s. Then

(A+ AA)T5=(A+ AA + (P-1)H)"Bs
=ﬂ((A+AA2)Ts+HT(P—I)s) =0. 0O

Note that (19.22) implies a bound stronger than just [DA|, < ||DA4]l,+
[|DA|[2:) o1/
AAll, < (1442 + |A42)2)%, p=2F.

Turning to componentwise backward error, the simplest approach is to ap-
ply the componentwise backward error wg f(y)to the augmented system (19.3),

setting
| 0 Ea
=g)

SO as not to perturb the diagonal blocks | and O of the augmented system co-
efficient matrix. However, this approach alows A and AT to undergo different
perturbations DA, and DA, with AA; # AAZ and thus does not give a true
backward error, and Lemma 19.6 is of no help. This problem can be over-
come by using a structured componentwise backward error to force symmetry

19.8 PrRoOF OoF WEDIN'S THEOREM 407

of the perturbations; see Higham and Higham [527, 1992] for details. One
problem remains. as far as the backward error of y is concerned, the vector r
in the augmented system is a vector of free parameters, so to obtain the true
componentwise backward error we have to minimize the structure-preserving
componentwise backward error over al r. This is a nonlinear optimization
problem to which no closed-form solution is known. Experiments show that
when y is a computed LS solution, r = b — Ay is often a good approximation
to the minimizing r [527, 1992], [549, 1991].

19.8. Proof of Wedin’s Theorem

In this section we give a proof of Theorem 19.1. We define P, := AA", the
orthogonal projection onto range(A).

Lemma 19.7. Let A, B € R™*™. If rank(A) = rank(B) and h = [A"|L]IA-
Bl|l, < 1, then

1
BY|l, < ——||AT]|5.
1B™]l2 < 1= 77” [P

Proof. Letr = rank(A). A standard result on the perturbation of singular
values gives
or(B) 2 0r(A) — |A - B2,

that is,
I1B*|Iz' > 1A%l - IIA - Bll2 > 0,

which gives the result on rearranging. D

Lemma 19.8. Let A, B € R™*™. If rank(A) = rank(B) then
IPo(I = Pg)llz = lIPg(I — P4)ll2 < ||A — Bllzmin{ |A*|l2, | B*|l2 }.
Proof. We have

IP5(I = Pa)ll2 = (P5(I = Pa))"ll2
= [I(I = P4)Pgll2
= [|({ - AAT)BB™ ||,
= (I — AAT)(A + (B - A))B* |2
=|(I ~ AA")(B ~ A)B*||2
< |4 = Bll[|BF[l2-

The result then follows from the (nontrivial) equdity ||Pa(l — Pg)ll. = ||Ps(l-
Pullo; see, for example, Stewart [943, 1977, Thin. 2.3] or Stewart and Sun

408 THE LEAST SQUARES PROBLEM

[954, 1990, Lem. 3.3.5], where proofs that use the CS decomposition are
given. O

Proof of Theorem 19.1. Let B := A + AA. We have, with r = b — Ax,
y-z=B"(b +Db)-z=B"(r+ Ax + Db) — x
= B™(r + Bx — DAX + Db) - x
= B*(r - DAx + Db) — (I — B'B)x
= B*(r — DAx + Db), (19.23)
since B has full rank. Now
B'r = B*(BB")r = B'Pgr = B*Pg(l - Py)r. (19.24)
Applying Lemmas 19.7 and 19.8, we obtain
1B*rll2 < [IB*|l2(IlB — All2llA*l2) 7 ll2

|A*|l2
< AAl, | AT
S Toia A, AAl AT]l
ka(A)2e ||z
T T- k(A A2 19.25
1 — ka(A)e ||All2 ()
Similarly,
I15+(-Az + A0l < L2l (Aol + Iol)
1= Kz(A)E
Ko(A)e (116]]2)
1—ka(A)e IAll2llzll2 llzll2
ra(A)e (12 >
2+ zll2. (19.26
T 1—ko(A)e 1Allz]lz]|2 lzll2- ()

The bound for ||x — y]||o/||X||, is obtained by using inequalities (19.25) and
(19.26) in (19.23).
Turning to the residua, using (19.23) we find that

s —r = Db + B(x —y) — DAX
= Db - BB'(r — DAx + Db) — DAx
= (I - BB*)(Db — DAX) — BB'r.
Since ||l — BB||, = min{l, m — n},
lir = sllz < 14bllz + |AAz|2 + [BBFrl2 < e(|lbll2 + | Allzllzll2) + |BB*l2.
Using (19.24), Lemma 19.8, and [|BB*||, = 1, we obtain
|BB*rllz = | BB* Pg(I — Pa)rll2 < [|AAll2]|A*|l2]i7ll2 < s2(A)ellr|2-

19.9 NOTES AND REFERENCES 409

Hence

[Ir — sll2 IAll2{lz]l2 ||_rl|3> <
ER e Ay,) S <+ 2ma(4).
For the attainability, see Wedin [1069, 1973§6]. O

Note that, as the proof has shown, Wedin's theorem actualy holds with-
out any restriction on m and n, provided we define x = A'b and y =
(A+ DA)*(b + Db) when m < n (in which case r = 0). We consider un-
derdetermined systems in detail in the next chapter. The original version of
Wedin's theorem also requires only rank(A) = rank(A + DA) and not that A
have full rank.

Se(1+

19.9. Notes and References

The most comprehensive and up to date treatment of the LS problem is the
book by Bjérck [116, 1996], which is an updated and expanded version of [112,
1990]. It treats many aspects not considered here, including rank-deficient,
weighted, and constrained problems. An early book devoted to numerical
aspects of the LS problem was written by Lawson and Hanson [695, 1974],
who, together with Stewart [94 1, 1973], were the first to present error analysis
for the LS problem in textbook form.

The history of the LS problem is described in the statistically oriented
book by Farebrother [363, 1988].

The pseudo-inverse A" underlies the theory of the LS problem, since the
LS solution can be expressed as x = A'b. An excellent reference for pertur-
bation theory of the pseudo-inverse is Stewart and Sun [954, 1990,§3.3]. The
literature on pseudo-inverses is vast, as evidenced by the annotated bibliogra-
phy of Nashed and Rail [786, 1976], which contains 1,776 references published
up to 1976.

Normwise perturbation theory for the LS problem was developed by vari-
ous authors in the 1960s and 1970s. The earliest analysis was by Golub and
Wilkinson [466, 1966], who gave a first-order bound and were the first to rec-
ognize the potential ,,(A)’ sensitivity. A nonasymptotic perturbation bound
was given by Bjorck [107, 1967], who worked from the augmented system.

An early set of numerical experiments on the Householder, Gram-Schmidt,
and normal equations methods for solving the LS problem was presented by
Jordan [618, 1968]; this paper illustrates the incomplete understanding of
perturbation theory and error analysis for the LS problem at that time.

van der Sluis [1041, 1975] presents a geometric approach to LS perturba
tion theory and gives lower bounds for the effect of worst-case perturbations.
Golub and Van Loan [470, 1989, Thin. 5.3.1] give a first-order analogue of
Theorem 19.1 expressed in terms of the angle q between b and range(A) in-
stead of the residua r.

410 THE LEAST SQUARES PROBLEM

Wel [1072, 1990] gives a normwise perturbation result for the LS problem
with a rank deficient A that allows rank(A + DA) > rank(A).

Componentwise perturbation bounds of the form in Theorem 19.2 were
first derived by Bjorck in 1988 and variations have been given by Arioli, Duff,
and de Rijk [25, 1989], Bjorck [113, 1991], and Higham [542, 1990].

Higham [542, 1990] examined the famous test problem from Longley [711,
1967]—a regression problem which has a notorioudly ill-conditioned 16 x 7
coefficient matrix with ,(A)= 5 x 10°. The inequality (19.8) was found
to give tight bounds for the effect of random componentwise relative per-
turbations of the problem generated in experiments of Beaton, Rubin, and
Barone [86, 1976]. Thus componentwise perturbation bounds are potentially
useful in regression analysis as an dternative to the existing statistically based
techniques.

The tools required for a direct proof of the normwise backward error result
in Theorem 19.3 are developed in Wilkinson's book The Algebraic Eigenvalue
Problem [1089, 1965]. Results of this form were derived informaly by Golub
and Wilkinson (assuming the use of extended precision inner products) [466,
1966], stated by Wilkinson [1090, 1965, p. 93] and Stewart [941, 1973], and
proved by Lawson and Hanson [695, 1974, Chap. 16].

The idea of using QR factorization to solve the LS problem was mentioned
in passing by Householder [586, 1958]. Golub [463, 1965] worked out the
details, using Householder QR factorization, and this method is sometimes
called “Golub’s method”. In the same paper, Golub suggested the form of
iterative refinement described at the start of §19.5 (which is implemented in
a procedure by Businger and Golub [167, 1965]), and showed how to use QR
factorization to solve an LS problem with a linear constraint Bx = c.

It was Bjorck [106, 1967] who first recognized that iterative refinement
should be applied to the augmented system for best results, and he gave a
detailed rounding error anaysis for the use of a QR factorization computed by
the Householder or MGS methods. Bjérck and Golub [118, 1967] give an Algol
code for computation and refinement of the solution to an LS problem with
a linear congraint; they use Householder transformations, while Bjorck [108,
1968] gives a similar code baaed on the Gram-Schmidt method. In [109, 1978],
Bjorck dispels some misconceptions of statisticians about (mixed precision)
iterative refinement for the LS problem; he discusses standard refinement
together with two versions of refinement based on the seminormal equations.

Error analysis for solution of the LS problem by the classical Gram-
Schmidt method with reorthogonalization is given by Abdelmalek [2, 1971],
who obtains a forward error bound as good as that for a backward stable
method.

Higharn and Stewart [569, 1987] compare the normal equations method
with the QR factorization method, with emphasis on aspects relevant to re-
gression problems in statistics.

19.9 NOTES AND REFERENCES 411

Foster [398, 1991] proposes a class of methods for solving the LS problem
that are intermediate between the normal equations method and the MGS
method, and that can be viewed as block MGS agorithms.

The most general analysis of QR factorization methods for solving the LS
and related problems is by Bjorck and Paige [120, 1994], who consider an
augmented system with an arbitrary right-hand side (see Problem 20.1) and
prove a number of subtle stability results.

Theorem 19.4 and the following anaysis are from Higham [549, 1991].

Arioli, Duff, and de Rijk [25, 1989] investigate the application of fixed pre-
cision iterative refinement to large, sparse LS problems, taking the basic solver
to be the block LDL' factorization code MA27 [329, 1982] from the Harwell
Subroutine Library (applied to the augmented system); in particular, they
use scaling of the form (19.17). Bjorck [114, 1992] determines, via an error
anadysis for solution of the augmented system by block LDL' factorization, a
choice of a in (19.17) that minimizes a bound on the forward error.

The idea of implementing iterative refinement with a precision that in-
creases on each iteration (see the Notes and References to Chapter 11) can be
applied to the LS problem; see Gluchowska and Smoktunowicz [453, 1990].

The use of SNE was first suggested by Kahan, in the context of iterative
refinement, as explained by Golub and Wilkinson [466, 1966].

Stewart [945, 1977] discusses the problem of finding the normwise back-
ward error for the LS problem and offers some backward perturbations that
are candidates for being of minima norm. The problem is aso discussed by
Higham [542, 1990]. Componentwise backward error for the LS problem has
been investigated by Arioli, Duff, and de Rijk [25, 1989], Bjorck [113, 1991],
and Higham [542, 1990].

Theorem 19.5 has been extended to the multiple right-hand side LS prob-
lem by Sun [976, 1996].

Lemma 19.6 is from a book byKielbasiniski and Schwetlick, which has
been published in German [658, 1988] and Polish [659, 1992] editions, but
not in English. The lemma is their Lemma 8.2.11, and can be shown to be
equivaent to a result of Stewart [943, 1977, Thin. 5.3].

Other methods for solving the LS problem not considered in this chapter
include those of Peters and Wilkinson [826, 1970], Cline [215, 1973], and
Plemmons [835, 1974], al of which begin by computing an LU factorization
of the rectangular matrix A. Error bounds for these methods can be derived
using results from this chapter and Chapters 9 and 18.

In this chapter we have not specifically treated LS problems whose coeffi-
cient matrices have rows varying greatly in norm, and we have not considered
weighted LS problems min, |[[D(b — AX)||,, where D = diag(d;). Error anal-
ysis for Householder QR factorization with column pivoting applied to badly
row-scaled problems is given by Powell and Reid [840, 1969]. Methods and
error analysis for weighted LS problems are given by Barlow [59, 1988], Bar-

412 THE LEAST SQUARES PROBLEM

low and Handy [64, 1988], Barlow and Vemulapati [66, 1992], Gulliksson and
Wedin [489, 1992], Gulliksson [487, 1994], [488, 1995], and Van Loan [1042,
1985].

Another topic not considered here is the constrained LS problem, where
X is required to satisfy linear equality and/or inequality constraints. Nu-
merical methods are described by Lotstedt [713, 1984] and Golub and Van
Loan [470, 1989, §12. 1], and perturbation theory is developed by Eldén [350,
1980], Lotstedt [712, 1983], and Wedin [1070, 1985].

19.9.1. LAPACK

Driver routine XxGELS solves the full rank LS problem by Householder QR
factorization. It caters for multiple right-hand sides, each of which defines a
separate LS problem. Thus, XGELS solves min{ [|B — AX||r : X € R™*?},
where A € R™*™ (m > n) and B € R™*?. This routine does not return any
error bounds, and iterative refinement is not supported for LS problems in
LAPACK.

Driver routines xGELSX and XGELSS solve the rank-deficient LS problem
with multiple right-hand sides, using, respectively, a complete orthogona fac-
torization (computed via QR factorization with column pivoting) and the
SVD.

LAPACK also contains routines for solving the linearly constrained LS
problem (X GGLSE) and ageneraized form of weighted LS problem (xGGGLM) .

Problems

19.1. Show that any solution to the LS problem min, ||b — Ax||, satisfies the
normal equations A'TAx = A'b. What is the geometrical interpretation of
these equations?

19.2. Prove Theorem 19.3.

19.3. The pseudo-inverse Xe R™™™ of A € R™*" can be defined as the
uniqgue matrix satisfying the four Moore—Penrose conditions

(i) AXA = A, (ii) XAX = X,
(iii) AX = (AX)", (iv) XA = (XA)".

Let A = US V' be an SVD, with S = diag(s;) and let r = rank(A). Show
that X = V diag(s;", . . . ,s,. 0, ..., O)U" satisfies (i)-(iv) and hence is the
pseudo-inverse of A. Show that (A")" = A.

19.4. Show that the pseudo-inverse A" of A € R™*" solves the problem

min ||AX = L,||F.

PROBLEMS 413

Is the solution unique?

19.5. Prove a result analogous to Theorem 19.3 for the MGS method, as
described in §19.3.

19.6. Consider the LS problem min,||b — Ax||,, whereA € R™*™. Let Z be
the computed LS solution obtained from the norma equations method and
x the exact solution, and define ¥ = b — Az, r = b— Az. Using (19.12) and
(19.13) show that a bound holds of the form

rTr = 7171 < cmnulle = Zl2ll All2 (|1 All21Z]2 + [1b]l2) + O(u?).

19.7. Prove (19.18) and (19.19).

19.8. (Waddén, Karlson, and Sun [1060, 1995]) Partiadly complete the gap in
Theorem 19.5 by evaluating hg(0) for the case “6 = o0”, that is, Db = 0.

19.9. Prove (19.21).

Previous Home Next

Chapter 20
Underdetermined Systems

I’'m thinking of two numbers.
Their average is 3.
What are the numbers?

— CLEVE B. MOLER, The World’s Simplest Impossible Problem (1990)

This problem arises in important algorithms

used in mathematical programming . . .

In these cases, B is usually very large and sparse and,

because of storage difficulties,

it is often uneconomical to store and access Q; . . .

Sometimes it has been thought that [the seminormal equations method)]
could be disastrously worse than [the Q method] . . .

It is the purpose of this note to show that such algorithms are
numerically quite satisfactory.

— C. C. PAIGE, An Error Analysis of a
Method for Solving Matrix Equations (1973)

415

416 UNDERDETERMINED SYSTEMS

Having considered well-determined and overdetermined linear systems, we
now turn to the remaining class of linear systems. those that are underdeter-
mined.

20.1. Solution Methods

Consider the underdetermined system Ax = b, where A€ R™*™with m < n.
The system can be analysed using a QR factorization

AT = Q [ﬂ , (20.1)

where Q € R™™"™ is orthogonal and R € R™*™ is upper triangular. (We
could, alternatively, use an LQ factorization of A, but we will keep to the
standard notation.) We have

b = Ax = [R"T 0]Q"x = Ry, (20.2)
where

Y= [yl] =QTx1 n e R™.
Y2

If A has full rank then y, = R'b is uniquely determined and al solutions of
Ax = b are given by

z=0Q [z;] , Y2 € R"™™ arbitrary.

The unique solution X_g that minimizes ||x||, is obtained by setting y, = O.
We have

Trs =Q [R;Tb] (20.3)
=Q [g] RIRTh=Q [ﬂ (RTR)™ b (20.4)
= AT(AAT) 1
= A*b,

where A* = AT(AA)™ is the pseudo-inverse of A. Hence x,s can be
characterized as x,s = A'y, where y solves the normal equations AATy = b.

Equation (20.3) defines one way to compute x.s. We will refer to this
method as the “Q method”. When A is large and sparse it is desirable to
avoid storing and accessing Q, which can be expensive. An aternative method

20.2 PERTURBATION THEORY 417

with this property uses the QR factorization (20.1) but computes x, s as
X.s = Ay, where
R'Ry = b (20.5)

(cf. (20.4)). These latter equations are called the seminormal equations (SNE).
As the “semi” denotes, however, this method does not explicitly form AA',
which would be undesirable from the standpoint of numerica stability. Note
that equations (20.5) are different from the equations R'Rx = A'b for an
overdetermined least squares (LS) problem, where A = Q[R" 0] € R™*"
with m > n, which are also called seminormal equations (see §19.6).

20.2. Perturbation Theory

A componentwise perturbation result for the minimum 2-norm solution to an
underdetermined system is readily obtained.

Theorem 20.1 (Demmel and Higham). Let A € R™*™ (m < n) be of full
rank and 0 # b€ R™. Suppose [|JA* DA|l, < 1 and

|AA| < €E, |Ab| < ¢f.

If x and y are the minimum 2-norm solutions to Ax = b and (A + DA)y =
b + Db, respectively, then, for any monotonic norm,

b2 =00 < ()17 - a*al- BT 14+7 2] + 114%) - (f + Blal)) o5 + O(E).

llz [E]
(20.6)
For any Holder p-norm, the bound is attainable to within a constant factor
depending on n.

Proof. The perturbed matrix A + DA = A(l + A" DA) has full rank, so
we can manipulate the equation

y = (A+ DA)(A + DA)YA + DA))'(b + Db)
to obtain
y—x = (I — A" A) DAT(AAT)Y'b + A"(Db - DAX) + O(e?)
= (I - A*A) DATA*Xx + A*(Db - DAX) + O(é)). (20.7)

The required bound follows on using absolute value inequalities and taking
norms. That the bound is attained to within a constant factor depending on
n for Holder p-norms is a consequence of the fact that the two vectors on the
right-hand side of (20.7) are orthogonal. D

418 UNDERDETERMINED SYSTEMS

Two specia cases are worth noting, for later use. We will use the equdity
[l - A*A]l, = min{l, n - m}, which can be derived by consideration of the QR
factorization (20.1), for example. If E = |A|JH, where H is a given nonnegative
matrix, and f = |b], then we can put (20.6) in the form

condy(A) = || [A"[IA] |-

Note that cond,(A) is independent of the row scaling of A (cond,(DA) =
cond,(A) for nonsingular diagonal D). If E = ||All,ene’, and f = |[b||.em,
where e,, denotes the m-dimensional vector of 1s, then

llz —yll2

el < min{3,n — m + 2}(mn)2ky(A)e + O(?). (20.9)

The following analogue of Lemma 19.6 will be needed for the error anal-
ysis in the next section, It says that if we perturb the two occurrences of
A in the normal equations AA'x = b differently, then the solution of the
perturbed system is the solution of normal equations in which there is only
one perturbation of A and, moreover, this single perturbation is no larger, in
the normwise or componentwise sense, than the two perturbations we started
with.

Lemma 20.2 (Kielbasinski and Schwetlick). Let A € R™*™ (m < n) be of
full rank and suppose

(A + DA)IT= b, = (A + DA,)'7.

Assume that 3 max (|[A'DA|], |JA" DAy|l,) < 1. Then there is a vector ¥
and a perturbation DA with

DA = DAG, + DA,G,, GT =G, = G2, G +G,=1,

such that
(A+ AA)T =, z=(A+ AA)Tﬂ,

that is, = is the minimum 2-norm solution to (A + DA)x = bh.

Proof. The proof is similar to that of Lemma 19.6, but differs in some
details. IfZ= (A+ DA,)"5 = O we take DA = DA,. otherwise, we set

DA := DAP + DAYl - P) = DA, + HP,

20.3 ERROR ANALYSIS 419

where P = zzT /2% and H = DA, - DA,. We have
(A+ AA)Tg = (A+ AA, + HP)Tg = (7,

where b =1 +zT HTg/Z"Z, which shows that we need to setj = 8~17. To
check that (A + DA)Z = b, we evaluate

(A+AA)T=(A+AA+H(P-1))T
=(A+ AA))Z =b,

as required. The vector yis undefined if b = 0. But

TTHT (A + AAy)* T
'z

—T 17T~
T°H
B=1+ foyzH

>1-|(A+ AA)TH|j;

|A* Hll;)
>l — if |A*tAAz]la <1
2= T AT A, (if | 2lle < 1)
_ (I4* A4 |2 + [[A* AAy|l2)
- 1—||AtAA;l2 !

which is positive if 3 max (JJA" DA|l,, ||A* DA,|l,) < 1. O

Note that in Lemma 20.2 we have the normwise bound

1/2
A4l < (1AAL]2 + |1A42]12) 2, p=2,F.

20.3. Error Analysis

We now consider the stability of the Q method and the SNE method. For both
methods we assume that the QR factorization is computed using Householder
or Givens transformations.

Before presenting the results we define a measure of stability. The com-
ponentwise backward error for a minimum-norm underdetermined system
Ax = b is defined as

Wg ;(y) :=min{e: 3 AA € R™"", Ab € R™ with |AA| < ¢E, |Ab] < ef

st. y is the min. norm solution to (A+ DA)y = b + Db },
Note the requirement in this definition that y be the minimum norm solution;
the usual componentwise backward error wg f(y) (see (7.6)) is a generaly

smaller quantity. Let us say that a method is row-wise backward stable if it
produces a computed solution Z for which the componentwise backward error

420 UNDERDETERMINED SYSTEMS

Wg s Is of order u, where E = |Aleqe’, and f = |b|. This condition requires
that Z solve a perturbed minimum norm problem in which the perturbations
to the ith row of A are smal compared with the norm of that row (similarly
for b); cf. the discussion of componentwise backward errors in §7.2.

Theorem 20.3. Let A € R™*™ with rank(A) = m < n, and assume that
a rendition of the form cond, (A)mng. , < 1 holds. Suppose the underdeter-
mined system Ax = b is solved in the minimum 2-norm sense using the Q
method. Then the computed solution Z is the minimum 2-norm solution to
(A+ DA)x = b, where

1AAllF < mye,llAllr

and

Proof. The Q method solves the triangular system R'y, = b and then
forms x = Q[yf, 0]7. Assuming the use of Householder QR factorization,
from Theorem 18.4 we have that

(a+ a4 =[],

for some orthogonal matrix Q, where [[DAollr < mg|[Allr and |AAT] <

mny.,G§ |AT| with ||G||r = 1. The computed ¥ satisfies
(R+AR)Tgi=b, |AR| <7,IRl.
From Lemma 18.3, the computed solution T satisfies

i=@+40)], 14Qlr <mv (20.10)

We now rewrite the latter two equations in such a way that we can apply
Lemma 20.2:

(A+4A4)Z:=[(R+ AR)T 0](Q+4Q)™'-(Q+4Q) [%] =
2= @+4Q) | {| B = (4+ am)y
It is straightforward to show that

DAl < mng'|AlG;, IGille = 1, i = 12,

and ||DA;||e 5 mg||All. i = 1:2. The result follows on invocation of
Lemma 20.2 o

20.3 ERROR ANALYSIS 421

Theorem 20.3 says that the Q method is row-wise backward stable. This is
not atogether surprising, since (Householder or Givens) QR factorization for
the LS problem enjoys an analogous backward stability result (Theorem 19.3),
abeit without the restriction of a minimum norm solution. Applying (20.8)
to Theorem 20.3 we obtain the forward error bound

”:':T;fﬂl < mny.,, conda(A) + O(u?). (20.11)
2

The same form of forward error bound (20.11) can be derived for the SNE
method as for the Q method [292, 1993]. However, it is not possible to obtain
a result analogous to Theorem 20.3, nor even to obtain a residual bound of the
form ||b— AZ||2 < em nul|A|l2]|Z]|2 (which would imply that Z solved a nearby
system, thoughZ -would not necessarily be the minimum norm solution). The
method of solution guarantees only that the seminormal equations themselves
have a small residual. Thus, as in the context of overdetermined LS problems,
the SNE method is not backward stable. A possible way to improve the
stability is by iterative refinement, as shown in [292, 1993].

Note that the forward error bound (20. 11) is independent of the row scaling
of A, since cond, (A) is. The bound is therefore potentialy much smaller than
the bound

lz — 2|l
flzll2

obtained by Paige [813, 1973] for the SNE method and by Jennings and Os-
borne [614, 1974] and Arioli and Laratta [26, 1985, Thin. 4] for the Q method.

Finaly, we mention an aternative version of the Q method that is based
on the modified Gram-Schmidt (MGS) method. The obvious approach is
to compute the QR factorization AT = QR using MGS (Q € R"™™, R €
R™*™) solve R'y = b, and then form x = Qy. Since Q is provided explicitly
by the MGS method, the final stage is a full matrix—vector multiplication,
unlike for the Householder method. However, because the computed Q may
depart from orthonormality, this method is unstable in the form described.
The formation of x = Qy should instead be done as follows:

< Cm,nu”'2(A) + O(u2)7

™ =0
fork=n:-1:1
g®=1) = 2 — (o) — yx)gx
end
z=zO
. k) — (K _ T, (k)
The recurrence can be written as x = X" + vy — (0 X))y, and the

last term is zero in exact arithmetic if the g, are mutualy orthogona. In finite
precision arithmetic this correction term has the “magical” effect of making

422 UNDERDETERMINED SYSTEMS

Table 20.1. Backward errors for underdetermzned Vandermonde system.

| nA.b(?E)
Householder QR | 9.76 X 1078
MGS with x := Qy | 4.10 x 10-*
MGS with x formed stably (see text) | 2.25 X 10"
SNE method (using Householder QR) | 1.99 x 10-*

the algorithm stable, in the sense that it satisfies essentidly the same result
as the Q method in Theorem 20.3; see Bjorck and Paige [120, 1994].

A numerical example is instructive. Take the 20 x 30 Vandermonde matrix
A= (pij_l), where the p; are equally spaced on [0, 1], and let b have elements
equally spaced on [0, 1]. The condition number ,,(A) = 4.35 x 10™. The
(standard) normwise backward errors in the 2-norm are shown in Table 20.1.
For A", the Q supplied by MGS satisfies |QTQ — I]|, = 1.41 x 10° which
explains the instability of the “obvious’ MGS solver.

20.4. Notes and References

The seminormal equations method was suggested by Gill and Murray [442,
1973] and Saunders [894, 1972]. Other methods for obtaining minimal 2-norm
solutions of underdetermined systems are surveyed by Cline and Plemmons
[219, 1976].

Theorem 20.1 is from Demmel and Higham [292, 1993]. The bound (20.9)
is well known; it follows from Wedin's original version of our Theorem 19.1,
which applies to minimum 2-norm underdetermined problems as well as LS
problems.

Theorem 20.3 is new. Demmel and Higham [292, 1993] prove the weaker
result that 7 from the Q method is very close to a vector Z that satisfies the
criterion for row-wise backward stability, and Lawson and Hanson [695, 1974,
Thin. 16. 18] give a corresponding result in which T satisfies the criterion for
general normwise backward stability. The key to showing actual backward
stability is the use of Kielbasiriski and Schwetlick’s lemma, which is a mod-
ification of Lemma 8.2.11 in [658, 1988] and [659, 1992] (our Lemma 19.6).
Demmel and Higham [292, 1993] aso give eror analysis for the seminormal
equations method.

The new MGS algorithm for solving the minimum norm problem was first
suggested by Bjorck and Paige [119, 1992]; see aso Bjorck [115, 1994].

Arioli and Laratta [27, 1986] give error analysis of QR factorization meth-
ods for solving the general problem min{ [|x — c||, : A, = b}, where Ae R™*"

PROBLEMS 423

with m < n.

20.4.1. LAPACK

The same routines that solve the (overdetermined) LS problem aso solve un-
derdetermined systems for the solution of minimal 2-norm. Thus, XGELS solves
a full rank underdetermined system with multiple right-hand sides by the Q
method. Routines XGELSX and XGELSS solve rank-deficient problems with mul-
tiple right-hand sides, using, respectively, a complete orthogonal factorization
(computed via QR factorization with column pivoting) and the singular vaue
decomposition.

Problems

20.1. (Bjorck [114, 1992]) Show that the system

ol [E]= 1) 12

characterizes the solution to the following generalizations of the LS problem
and the problem of finding the minimum norm solution to an underdetermined
system:

min, ||b — Az||3 + 27z, (20.13)
miny ||y — bl|2 subject to ATy =c. (20.14)

20.2. (ResearRcH ProOBLEM) Find a formula for the backward error of an
arbitrary approximation to the minimum 2-norm solution of an underdeter-
mined system. That is, for A € R™*™ withrank(A) = m < n, find

m(y) := min{ e : vy is the minimum 2-norm solution to (A + DA)y = b + Db,
where [[DA|; < e|[All,, [IDbll, < eflbl, }.

Previous Home Next

Chapter 21
Vandermonde Systems

We began, 25 years ago, to take up [the conditioning of]

the class of Vandermonde matrices.

The original motivation came from unpleasant experiences with the
computation of Gauss type quadrature rules from the

moments of the underlying weight function.

— WALTER GAUTSCHI, How (Un)stable are Vandermonde Systems? (1990)

Extreme ill-conditioning of the [Vandermonde] linear systems

will eventually manifest itself as n increases by yielding

an error curve which is not sufficiently levelled on the current reference . . .
or more seriously fails to have the correct number of sign changes.

— M. ALMACANY, C. B. DUNHAM, and J. WILLIAMS,
Discrete Chebyshev Approximation by Interpolating Rationals (1984)

425

426 VANDERMONDE SYSTEMS

A Vandermonde matrix is defined in terms of scalars ag, a4, a, € C by
1 1 ... 1
V= Vioman o) = | % 9 | ¢ gmsninn
o of ... ol

Vandermonde matrices play an important role in various problems, such as
in polynomia interpolation. Suppose we wish to find the polynomia p,(x) =

ax" + a, X" + - - - + a, that interpolates to the data (i, fi)2y, for distinct
points a;, that is, p,(a;) = f;, i = 0n. Then the desired coefficient vector
a=1[apa,...,a] is the solution of the dua Vandermonde system

V'a = f (dual).

The primal system
Vx = b (primal)

represents a moment problem, which arises, for example, when determining
the weights for a quadrature rule: given moments b; find weights x; such that
Srozial =bi, i =0:n.

Because a Vandermonde matrix depends on only n+ 1 parameters and has
a great ded of structure, it is possible to perform standard computations with
reduced complexity. The easiest agorithm to derive is for matrix inversion.

21.1. Matrix Inversion

Assume that V is nonsingular and let V ' = W = (Wij)z_j:(). The ith row of
the equation WV = | may be written

n
E w,-_.,-ai = 6,'];, k=0:n.
20

These equations specify a fundamental interpolation problem that is solved
by the Lagrange basis polynomid:

n) n e
;wim =11 (ai _a’;) = li(z). (21.1)

k=0
ki

The inversion problem is now reduced to finding the coefficients of I;(x). It is
clear from (21.1) that V is nonsingular iff the a; are digtinct. It aso follows
from (21. 1) that V ™ is given explicitly by

_ ("‘U"den—j(ao, sy Oi—1, Oyl - - - 7an)
= - ,

I1 (@i — ax)

k=0
k#i

Wij (21.2)

21.1 MATRIX INVERSION 427

where s,(y, . . ., Yn) denotes the sum of all distinct products of k of the argu-
ments y;, . . ., VY, (that is s, is the kth elementary symmetric function). An
efficient way to find the w;; is first to form the master polynomial

n n+1
o) = [[e—an) = 3 e,
k=0 =0

and then to recover each Lagrange polynomia by synthetic division:

%(z) = d(z)/(z —),
lLi(z) = qi(z)/qi(u)-

The scalars gi(a;) can be computed by Homer's rule as the coefficients of g;
are formed.

Algorithm 21.1. Given distinct scalars ag, a5, ,a, € € this agorithm
computes W = (wi;)7 -0 = V(, a1,y --y0m)" L

% Stage 1: Construct the master polynomial.

a = -ag a =1
for k = I:n
e = 1
forj=k: -1:1
aj = aj_l - akaj
end
ag = —OgkQo
end

% Stage 2: Synthetic division.
for i = On
wi, = 1I; s =1
forj=n-1 -1.0
Wij = @+ T aiWij4
S =a;s + Wij
end
wi(i, 1) =w(, :)/s
end

Cost: 6n° flops,

The O(n?) complexity is optimal, since the algorithm has n® output values,
each of which must partake in at least one operation.

Vandermonde matrices have the deserved reputation of being ill condi-
tioned. The ill conditioning is a consequence of the monomials being a poor

428 VANDERMONDE SYSTEMS

Table 21.1. Bounds and estimates for e (Va).

a; | Bound or estimate Reference
(VI): Uit | Koo(Va) > nnt1 [428, 1990]
(V2): arbitrary | xz(Vn) > n~1/22n-2 [1035, 1994]
(V3): ai >0 | ko(Va)>27 1 (n>1) [429, 1988
(V4): equispaced [0,1] | Koo(Va) ~ (47)~ 12 8™ [428, 1990]
(V5): equispaced [- 1, 1] | koo(Va) ~ m~te™™/4(3.1)" [425, 1975]
(V6): Chebyshev nodes[-1, 1] | eo(Va) ~ 21+ v2)" [425, 1975]
(V7): roots of unity | k2(Vy) = well known.

basis for the polynomias on the rea line. A variety of bounds for the con-
dition number of a Vandermonde matrix have been derived by Gautschi and

his co-authors. Let V, = V(ag, @y, . . ., @ana) € C**™. For arbitrary distinct
points a;,
max(1, |« 14|
ma.xH-—l-——(—l—Jl—D < WViitleo < H' _' JII (21.3)
A 10T G 1T

with equality on the right when a; = |ajle® for al j with a fixed q (in
particular, when a; > 0 for al j) [424, 1962], [426 1978]. Note that the
upper and lower bounds differ by at most a factor 2. More specific bounds
are given in Table 21.1, on which we now comment.

Bound (V1) and estimate (V4) follow from (21.3). The condition number
for the harmonic points 1/(i + 1) grows faster than n!; by contrast, the con-
dition numbers of the notorioudly ill-conditioned Hilbert and Pascal matrices
grow only exponentially (see §26.1 and §:26.4). For any choice of points the
rate of growth is at least exponentia (V2), and this rate is achieved for points
equaly spaced on [0, 1]. For points equally spaced on [— 1, 1], the condition
number grows at a slower exponential rate than that for [0, 1], and the growth
rate is slower still for the zeros of the nth degree Chebyshev polynomid (V6).
For one set of points the Vandermonde matrix is perfectly conditioned: the
roots of unity, for whichV,/\/n iis unitary.

21.2. Primal and Dual Systems

The standard Vandermonde matrix can be generalized in at least two ways:
by alowing confluence of the points a; and by replacing the monomias by

21.2 PRIMAL AND DUAL SYSTEMS 429

other polynomials. An example of a confluent Vandermonde matrix is
1 0 0 1 0

o 1 0 a1 1
at 200 2 o 204]. (21.4)
ol 3a% 6ag o} 3o?
af 408 1203 aof 4o}

The second, third, and fifth columns are obtained by “differentiating” the
previous column. The transpose of a confluent Vandermonde matrix arises
in Hermite interpolation; it is nonsingular if the points corresponding to the
“nonconfluent columns’ are distinct.

A Vandermonde-like matrix is defined by P = (pi(;))7;=0, Where p; isa
polynomia of degree i. The case of practical interest is where the pi satisfy a
three-term recurrence relation. In the rest of this chapter we will assume that
the p; do satisfy a threeterm recurrence relation. A particular application is
the solution of certain discrete Chebyshev approximation problems [11, 1984].
Incorporating confluence, we obtain a confluent Vandermonde-like matrix,
defined by

P =Pag, ai,. . . ay) = [0 (@o), d1 (@1), an (@ ,)] CFIx(n+1)
where the a; are ordered so that equal points are contiguous, that is,
o=0; (<)) = =04 = =a; (21.5)
and the vectors q;(x) are defined recursively by
[po(z), p1(x), ..., pu(@)]T, ifj=0o0ra; # a1,
%(@) = { iqj_l(sz), otherwise.

dzx

For al polynomials and points, P is nonsingular; this follows from the deriva
tion of the agorithms below. One reason for the interest in Vandermonde-like
matrices is that for certain polynomials they tend to be better conditioned
than Vandermonde matrices (see, for example, Problem 21.5). Gautschi [427,
1983] derives bounds for the condition numbers of Vandermonde-like matrices.

Fast algorithms for solving the confluent Vandermonde-like primal and
dua sysems Px = b and P'a = f can be derived under the assumption that
the p;(x) satisfy the three-term recurrence relation

piv1(z) = 05(x — B)p;(x) — vipi—a(x), j§2=1, (21.6a)
po(z) =1, pi(2) = bo(z — Bo)po(z), (21.6b)
where 6; # 0 for al j. Note that in this chapter g denotes a constant in the

recurrence relation and not iu/(1 — iu) as elsewhere in the book. The latter
notation is not used in this chapter.

430 VANDERMONDE SYSTEMS

The algorithms exploit the connection with interpolation. Denote by
r(i) > O the smallest integer for which a; = a;4, = - - - = a;, Consid-
ering first the dual system P'a = f, we note that

¥(z) =) aipi(z) (21.7)
i=0
satisfies _
PU=r(a) = f;, i = on.

Thus y is a Hermite interpolating polynomial for the data {a;, f; }, and our
task is to obtain its representation in terms of the basis{p;(z)},. As a first
step we construct the divided difference form of vy,

n i-1
P(z) =Y o[- o). (21.8)
i=0 j=0
The (confluent) divided differences ¢; = f[ay, a;,. . . . @] may be generated
using the recurrence relation
f[aj_k, . ,CZ] : i[.aj_k_l, ey aj_l] ’ a,- 75 ko1,
fky—k—lr--aaj]z ’ j=k-1
[rii)yrk+1 0 = Okt
(k+1)° 7

(21.9)

Now we need to generate the a; in (21.7) from the ci in (21.8). The idea is
to expand (21.8) using nested multiplication and use the recurrence relations
(21.6) to express the results as a linear combination of the p;. Define

da(X) = cy, (21.10)
gk(z) = (= — ok)qk+1(z) + ek, k=n-—1:-1:0, (21.11)

from which qg(xX) = y (). Let

n—k
a(z) =Y aff) p;(2). (21.12)
3=0

To obtain recurrences for the coefficientsagk)

of (21.11), giving

we expand the right-hand side

n—k—1
k+1
a(z)=(z—0x) a’l(c+j+)1pj(x) + Ck-
—~

21.2 PRIMAL AND DUAL SYSTEMS 431

Using the relations, from (21.6),
1
Tpo(x) = 0—P1(z) + Bo,
0
1 .
zpj(z) = G —(pj1(z) +vipi-1(z)) + Bipi(x), =1,
we obtain, for k = O:n — 2,
1
wie) =l (50 +)

n—k—1

- ai’r,‘il((pr12(@) +3p5-1(c))+ﬂjpj(x))
j=1

n—k-—1
(k+1)
— g Z g 1Pi (T) +ck

k k
=ck+ (6o — ak)afcfll) + ;'1 a}c_:;)

n—k—2
1 (k1 (k+1) | Vi+1l (k+1)
+ Z (0]' §c+J)+ (Bj — ak)agyiir + 9j+ OQptjt2 P

1
+ (ma(kH) + (Brn—k-1 _ak)a(k+1)) —k—1(z)

1
b ol p (a), (2119
n—k-—1

in which the empty summation is defined to be zero. For the special case
k =n —1 we have

1
Gn-1(z) = crn—1 + (Bo — an-1)a™ + %ag")pl(z). (21.14)

Recurrences for the coefficients a(), j =k:n,in terms of a(+1),j =k +1:. n,

follow immediately by comparlng (21.12) with (21.13) and (21.14).
In the following agorithm, stage | computes the confluent divided differ-
ences and stage |l implements the recurrences derived above.

Algorithm 21.2 (dua, P'a = f). Given parameters {65, 85,75}), a Vec-
tor f, and points a(0:n) € C™*! satisfying (21 .5), this agorithm solves the
dua confluent Vandermonde-like system P'a = f.

% Stage I:
Setc=f

432 VANDERMONDE SYSTEMS

for k = 0n-1
clast = ¢
for j = k + I:n
if a; aj then

Cj = CJ/(k + 1)
ese
temp = ¢
¢j = (¢ — clast)/(@, — aj_y-1)
clast = temp
end
end
end
% Stage II:
Seta=c
An.| = ap. + (bO - a-n—l)a-n
a, = &,/qo

fork=n-2:-10
ax = ax + (Bo — ak)ak+1 + (71/01)ak42
for j = I'n —k =2
Aktj = ak+j/0i-1 + (Bj — ak)@kri+1 + (Vi+1/05+1)0k+j+2
end
An—-1 = an—l/an—k-z + (ﬂn—k—l - ak)an
a-n = a-n/Qn»k—l
end

Assuming that the values;/0; are given (note that g appears only in
the terms <;/6;), the computational cost of Algorithm 21.2 is at most 9n?/2
flops. The vectors ¢ and a have been used for clarity; in fact both can be
replaced by f, so that the right-hand side is transformed into the solution
without using any extra storage.

Values of 8;, B;, v; for some polynomials of interest are collected in Ta
ble 21.2.

The key to deriving a corresponding agorithm for solving the prima sys
tem is to recognize that Algorithm 21.2 implicitly computes a factorization of
P into the product of 2n triangular matrices. In the rest of this chapter
we adopt the convention that the subscripts of all vectors and matrices run
from 0 to n. In stage I, letting ¢ denote the vector ¢ at the start of the kth
iteration of the outer loop, we have

c® =¥, kY = e, k=on-1 (21.15)

The matrix L, is lower triangular and agrees with the identity matrix in rows

21.2 PRIMAL AND DUAL SYSTEMS 433

Table 21.2. Parameters in the three-term recurrence (21.6).

Polynomial g;
Monomials 1

b
0

Chebyshev 2° 0 1 "go=1
0

o

Legendre 2t A =1

3+1
Hermite 2 0 2j
Laguerre —]% 2j+1 54

0 to k. The remaining rows can redescribed, for k + | < j < n, by

CTL _ e?/(k+1), if aj = aj_k_l,
7T (€] —el)/(a; — aj—k-1), some s < j, otherwise,
where g; is column j of the identity matrix. Similarly, stage 1l can be expressed
as
a® =c¢™ a = ua™’ y=n_1_-10 (21.16)

The matrix U, is upper triangular, it agrees with the identity matrix in rows
0 to k — 1, and it has zeros everywhere above the first two superdiagonals.

From (21.15) and (21.16) we see that the overal effect of Algorithm 21.2
is to evaluate, step-by-step, the product

a=Ug ..Ul ...Lf=PT (21.17)

Taking the transpose of this product we obtain a representation of P™, from
which it is easy to write down an agorithm for computing x = P b.
Algorithm 21.3 (primal, Px = b). Given parameters {6;,53;,7; ;-‘;l,a vec-
tor b, and pointsa(0:n) € €™ satisfying (21.5), this algorithm solves the
prima confluent Vandermondelike| system Px = b.

% Stage |I:
Setd="b
for k = O.n—-2

forj=n-k —12
ditj = (¥j=1/0j-1)dk+j-2 + (Bj—1 — ak)drtj—1 + dry;/0-1
end
di+1 = (Bo — ak)dk + dks1/60
end
d'n. = ()60 - an—l)dn—l + dn/oﬁ

434 VANDERMONDE SYSTEMS

% Stage II:
Set x =d
fork=n-1.-10
xlast = 0
forj=n:-1:k+1
if a.j = a.j_k_| then
Xj = XJ/(k + 1)
else
temp = xj/(aj - aj.x.1)
X; = temp — xlast
xlast = temp
end
end
X = X - xlast
end

Algorithm 21.3 has, by construction, the same operation count as Algo-
rithm 21.2.

21.3. Stability

Algorithms 21.2 and 21.3 have interesting stability properties. Depending on
the problem parameters, the algorithms can range from being very stable (in
either a backward or forward sense) to very unstable.

When the pa are the monomias and the points a; are distinct, the algo-
rithms reduce to those of Bjérck and Pereyra [121, 1970]. Bjérck and Pereyra
found that for the system Vx = b with a; = /(i + 3), b; = 2", n = 9, and
on a computer with u= 107*°,

Koo(V) =9 X 10'3, max —lxi ~ Zi| =

: Su.
iz

Thus the computed solution has a tiny componentwise relative error, despite
the extreme ill condition of V. Bjorck and Pereyra comment “It seems as if
at least some problems connected with Vandermonde systems, which tradi-
tionaly have been considered too ill-conditioned to be attacked, actualy can
be solved with good precision.” This high accuracy can be explained with the
aid of the error andysis below.

The analysis can be kept quite short by exploiting the interpretation of
the algorithms in terms of matrix—vector products. Because of the inherent
duality between Algorithms 21.2 and 21.3, any result for one has an anaogue
for the other, so we will consider only Algorithm 21.2.

The analysis that follows is based on the model (2.4), and so is valid only
for machines with a guard digit. With the no-guard-digit model (2.6) the

21.3 STABILITY 435

bounds become weaker and more complicated, because of the importance of
terms fl(a; — oj_k—1) in the anaysis.

21.3.1. Forward Error

Theorem 21.4. If no underflow or overflows are encountered then Algo-
rithm 21.2 runs to completion and the computed solution@ satisfies

la — @] < c(n,u)|Uol...|Unz1llLn-1l...|Lollfl, (21.18)
where c(n, u) := (1 + u)™ — 1 = 7nu + O(U®).

Proof. First, note that Algorithm 21.2 must succeed in the absence of
underflow and overflow, because division by zero cannot occur.

The analysis of the computation of the ¢ vectors is exactly the same
as that for the nonconfluent divided differences in §5.3 (see (5.9) and (5.10)).
However, we obtain a dightly cleaner error bound by dropping the g, notation
and instead writing

5 = (Le + AL)ER, DLl < [(@ + u)® - 1. (21.19)

Tuming to the equations (21.16), we can regard the multiplication ak =
Uka() as comprising a sequence of three-term inner products. Analysing

these in standard fashion we arrive at the equation
a®) = (Ue + AU, DU < [(1 + u)*- U, (21.20)

where we have taken into account the rounding errors in forming U’Ekz)-i-l

ﬁj — ax and 'U,,(;’ki)_{_z = ")’j+1/0j+1 ('L =k +j).
Sinced® = £, and @ =3a©, (21.19) and (21.20) imply that
a= (Uo—i—AUo) A (Un—l +AUn_1)(Ln_1 +ALn_1) ... (L0+ALO)f (21.21)
Applying Lemma 3.7 to (21.21) and using (21.17), we obtain the desired bound
for the forward error. O

The product [Ug| . . . |Upallloal - - - ILg| in (21.18) is an upper bound for
|Up. . Upslns . . . Lol = |P"| and is equal to it when there is no subtrac-
tive cancellation in the latter product. To gain insight, suppose the points are
distinct and consider the case n = 3. We have

PT= UpU Uz Lo L1 Ly

1 fo—ao /6 0 10 0 0
= 8 Bi—ao 72/ 1 fo—an m/b
B o7t B2 — ap 65" B —

;! ;!

436 VANDERMONDE SYSTEMS

1 00 0 1
y 10 0 01
1 ,80—&2 00 1
-1 -
00 0 O aa—lao aa-l-ao
1
y 0 1
O ag——lcxo agilao 1
0 0 a3 —Q) Qgz—ay
r 1
-1 1
S R L . (21.22)
Qg2 —Qy Q—0)
0 0 -1 1

- az—a3 a3 —a2

There is no subtractive cancellation in this product as long as each matrix
has the alternating (checkerboard) sign pattern defined, for A = (a;), by
(-)™a; > 0. This sign patern holds for the matrices L; if the points
a; are arranged in increasing order. The matrices U; have the required sign
pattern provided that (in general)

g > 0 g > 0 for dl i, and b; - a,<Ofordli+k<n-1

In view of Table 21.2 we have the following result.

Corollary 215. If 0 < ag < a; < - - - < a, then for the monomials, or the
Chebyshev, Legendre, or Hermite polynomials,

la—3] <c(n,w)|P7T)Ifl. D

Corollary 21.5 explains the high accuracy observed by Bjorck and Pereyra.
Note that if
[Pl < t|PTH| = tyla]

then, under the conditions of the corollary, |a@ —a| < ¢(n,u)ts]al, which shows
that the componentwise relative error is bounded by c(n, u)t,. For the prob-
lem of Bjorck and Pereyra it can be shown that t, ~ n“/24. Another factor
contributing to the high accuracy in this problem is that many of the sub-
tractions a; — aj4q; = V([+ 3) — U([— k + 2) are performed exactly, in
view of Theorem 2.5.

Note that under the conditions of the corollary P-T has the alternating
sign pattern, since each of its factors does. Thus if (<1)'f; > 0 then t, =
1, and the corollary implies that @ is accurate essentially to full machine
precision, independent of the condition number ko(P). In particular, taking
f to be a column of the identity matrix shows that we can compute the inverse
of P to high relative accuracy, independent of its condition number.

21.3 STABILITY 437

21.3.2. Residual

Next we look at the residual, r = f —PT@. Rewriting (21.21),

f=(Lo+ALo)™ ... (Ln-1+ALn 1) (Un-1+AUn-1) 7" ... (Uo+AUp) " 'a.
(21.23)
From the proof of Theorem 21.4 and the relation (5.9) it is easy to show that

(Le + D' = L' + By |El < [(L - w)® - 4L
Strictly, an analogous bound for (U, + DUk)'I does not hold, since DU
cannot be expressed in the form of a diagonal matrix times U,. However,
it seems reasonable to make a simplifying assumption that such a bound is
valid, say

(U + DU = U + R [RJ < [(L- w' - 1yt (21.29)
Then, writing (21.23) as
=Ly +Eo) ... (L7 4+ Enc)) (U + Foch) ... (Ut + Fo)a

and invoking Lemma 3.7, we obtain the following resuit.

Theorem 21.6. Under the assumption (21.24), the residual of the computed
solution @ from Algorithm 21.2 is bounded by

|f = PTa| < d(n,u) |Lg ... |L;21 U2 - . (UG fal, (21.25)
where d(n, u) ;= (L —u)™™ — 1 = 7nu + OW?. O

For the monomials, with distinct, nonnegative points arranged in increas
ing order, the matrices L; and U; are bidiagonal with the alternating sign
property, as we saw above. Thus L;.' > 0 and U;* > 0, and since P" =
Lyt . L;L UL .. Uyt we obtain from (21.25) the following pleasing re-
sult, which guarantees a tiny componentwise relative backward error.

Corollary 21.7. Let 0 < a5 < a; < - - - < a,, and consider Algorithm 21.2
for the monomials. Under the assumption (21.24), the computed solution @
satisjies

|f - PTal < d(n,)|PT|[al. O

438 VANDERMONDE SYSTEMS

Table 21.3. Results for dual Chebyshev-Vandermonde-like system.

n 10 20 30 40
——-"“”;"“"“ 25x10"2 63 x 107 47 X 10° 18X 10°
ILf — PT@lloo

_ 60X 102 11x10" 53x10° 83X 102
I Plicoll@lloo + Il flloo

21.3.3. Dealing with Instability

The potentid instability of Algorithm 21.2 is illustrated by the following ex-
ample. Take the Chebyshev polynomials T; with the points a; = cos(im/n)
(the extrema of T,), and define the right-hand side by f; = (-1)'. The exact
solution to P'a = f is the last column of the identity matrix. Relative errors
and residuals are shown in Table 21.3 (u = 10™%). Even though ,(P) < 2
for al n (see Problem 21.7), the forward errors and relative residuals are large
and grow with n. The reason for the instability is that there are large inter-
mediate numbers in the agorithm (at the start of stage Il for n = 40, |¢|leo
is of order 10™); hence severe cancellation is necessary to produce the final
answer of order 1. Looked at another way, the factorization of P' used by
the algorithm is unstable because it is very sensitive to perturbations in the
factors.

How can we overcome this instability? There are two possibilites. preven-
tion and cure. The only means at our disposal for preventing instability is to
reorder the points a;. The ordering is arbitrary subject to condition (21.5)
being satisfied. Recall that the algorithms construct an LU factorization of
PT in factored form, and note that permuting the rows of P' is equivalent
to reordering the points a;. A reasonable approach is therefore to take what-
ever ordering of the points would be produced by Gaussian elimination with
partial pivoting (GEPP) applied to P'. Since the diagonal elements of U in
PT = LU have the form

i—1
Uiy = hi H(O{i - aj), 1= O:n,
=0

where ha depends only on the q;, and since partia pivoting maximizes the
pivot a each stage, this ordering of the a; can be computed at the start of the
algorithm in n® flops (see Problem 21.8). This ordering is essentialy the Leja
ordering (5.13) (the difference is that partia pivoting leaves a, unchanged).

To attempt to cure observed instability we can use iterative refinement
in fixed precison. Ordinarily, residual computation for linear equations is

21.3 STABILITY 439

trivial, but in this context the coefficient matrix is not given explicitly and
computing the residual turns out to be conceptually almost as difficult, and
computationally as expensive, as solving the linear system!

To compute the residua for the dua system we need a means for evalu-
atingy (t) in (21.7) and its first k < n derivatives, where k = max;(i — r(i))
is the order of confluence. Since the polynomials p; satisfy a three-term re-
currence relation we can use an extension of the Clenshaw recurrence formula
(which evaluates y but not its derivatives). The following agorithm imple-
ments the appropriate recurrences, which are given by Smith [927, 1965] (see
Problem 21.9).

Algorithm 21.8 (extended Clenshaw recurrence). This algorithm computes
the k + 1 values y; = y“)(x), 0<j<k wherey isgiven by (21.7) and k < n.
It uses a work vector z of order k.

Sety(0: k) = z(0: k) = 0
yO = an
forj=n-1.-1.0
temp = Yy
Yo = Qj(x — bj)¥ — Yi+120 + a;
Z, = temp
for i = 1: min(k, n —j)
temp =i
Yi = qj((x - bj)yi + Zi) - G+1Zi
z; = temp
end
end
m=1
for i = 2.k
m=m*i
Yi=m*y;
end

Computing the residual using Algorithm 21.8 costs between 3n? flops (for
full confluence) and 6n° flops (for the nonconfluent case); recal that Algo-
rithm 21.2 costs a most 9n?/2 flops!

The use of iterative refinement can be justified with the aid of Theo-
rem 11.3. For (confluent) Vandermonde matrices, the residuals are formed
using Homer's rule and (11 .7) holds in view of (5.3) and (5.7). Hence for
standard Vandermonde matrices, Theorem 11.3 leads to an asymptotic com-
ponentwise backward stability result. A complete error analysis of Algo-
rithm 21.8 is not available for (confluent) Vandermonde-like matrices, but
it is easy to see that (11.7) will not aways hold. Nevertheless it is clear that

440 VANDERMONDE SYSTEMS

a normwise bound can be obtained (see Oliver [805, 1977] for the special case
of the Chebyshev polynomials) and hence an asymptotic normwise stability
result can be deduced from Theorem 11.3. Thus there is theoretical backing
for the use of iterative refinement with Algorithm 21.8.

Numerical experiments using Algorithm 21.8 in conjunction with the par-
tial pivoting reordering and fixed precision iterative refinement show that both
techniques are effective means for stabilizing the agorithms, but that iterative
refinement is likely to fail once the instability y is sufficiently severe. Because
of its lower cost, the reordering approach is preferable.

Two heuristics are worth noting. Consider a (confluent) Vandermonde-
like system Px = b Heuristic 1. it is systems with a large normed solution
(lzll = 1P~ i8]} that are solved to high accuracy by the fast algorithms.
To produce a large solution the algorithms must sustain little cancellation,
and the error analysis shows that cancellation is the main cause of instability.
Heuristic 2: GEPP is unable to solve accurately Vandermonde systems with
a very large normed solution (||z|| > w™}||b|l/||P|l)- The pivots for GEPP
will tend to satisfy |ui| 2 ul|P|, so that the computed solution will tend
to satisfy ||Z]| < »|bll/IPll- A consequence of these two heuristics is that
for Vandermonde(-like) systems with a very large-normed solution the fast
algorithms will be much more accurate (but no more backward stable) than
GEPP. However, we should be suspicious of any framework in which such sys-
tems arise; athough the solution vector may be obtained accurately (barring
overflow), subsequent computations with numbers of such a wide dynamic
range will probably themselves be unstable.

21.4. Notes and References

The formulae (21. 1) and (21.2), and inversion methods based on these formu-
lae, have been discovered independently by many authors. Traub [1013, 1966,
§14] gives a short historical survey, his earliest reference being a 1932 book
by Kowalewski. There does not appear to be any published error analysis
for Algorithm 21.1 (see Problem 21.3). There is little justification for using
the output of the algorithm to solve the primal or dua linear system, as is
done in [842, 1992, §2.8]; Algorithms 21.2 and 21.3 are more efficient and al-
most certainly at least as stable. Calvetti and Reichel [179, 1993] generdize
Algorithm 21.1 to Vandermonde-like matrices, but they do not present any
error analysis. Gohberg and Olshevsky [456, 1994] give another O(n) flops
algorithm for inverting a Chebyshev—Vandermonde matrix.

The standard condition number k(V) is not an appropriate measure of
sengitivity when only the points a; are perturbed, because it does not reflect
the special structure of the perturbations. Appropriate condition numbers
were first derived by Higham [533, 1987] and are comprehensively investigated

PROBLEMS 441

by Bartels and D. J. Higham [76, 1992]; see Problem 21.10.

Methods for solving the dual and primal Vandermonde systems have an in-
teresting history. The earliest agorithm was derived by Lyness and Moler [718,
1966] via Neville interpolation; it solves the dual system in O(n®) flops. The
first O(n?) algorithm was obtained by Ballester and Pereyra [52, 1967]; it
computes the LU factors of the Vandermonde matrix and requires O(n?) el-
ements of storage. Bjorck and Pereyra [121, 1970] derived the speciaization
of Algorithms 21.2 and 21.3 to nonconfluent Vandermonde matrices; these
algorithms require no storage other than that for the problem data. The al-
gorithms of Bjorck and Pereyra were generalized by Bjorck and Elfving to
confluent systems [117, 1973], and by Higham to Vandermonde-like systems
[536, 1988] and confluent Vandermonde-like systems [547, 1990]. The error
analysis in this chapter is taken from [547, 1990]. Tang and Golub [992, 1981]
give a block agorithm that requires only rea arithmetic to solve a Vander-
monde system in which al the points appear in complex conjugate pairs.

Other O(n?) algorithms for solving Chebyshev-Vandermonde systems are
given by Reichd and Opfer [865, 1991] and Calvetti and Reiche [178, 1992].
The former agorithms are progressive, in that they alow the solution to be
updated when a new point a; is added; they generalize progressive agorithms
of Bjorck and Pereyra [121, 1970]. Boros, Kailath, and Olshevsky [135, 1994]
use the concept of displacement structure to derive further O(n?) agorithms
for solving Vandermonde and Chebyshev—Vandermonde systems. No error
anaysis is given in [135, 1994], [178, 1992], or [865, 1991].

The O(n?) complexity of the algorithms mentioned above for solving Van-
dermonde-like systems is not optimal. Lu [714, 1994], [715, 1995], [716, 1996]
derives O(n log n log p) flops agorithms, where p is the number of distinct
points. The numerical stability and practical efficiency of the agorithms re-
main to be determined. Bini and Pan [98, 1994] give an O(n log” n) agorithm
for solving a dua Vandermonde system that involves solving related Toeplitz
and Hankel systems.

Since Vandermonde systems can be solved in less than O(n®) flops it is
natural to ask whether the O(mn?) complexity of QR factorization of an
m X n matrix can be bettered for a Vandermonde matrix. QR factorization
algorithms with O(mn) flop counts have been derived by Demeure [277, 1989],
[278, 1990], and for Vandermonde-like matrices where the polynomias satisfy
a three-term recurrence by Reichel [864, 1991]. No error analysis has been
published for these agorithms. Demeure's algorithms are likely to be unstable,
because they form the normal equations matrix V'V.

Problems

21.1. Derive a modified version of Algorithm 21.1 in which the scale factor

442 VANDERMONDE SYSTEMS

s = g(a;) is computed directly as

n

[T (e —).

k=0
ki

What is the flop count for this version?

21.2. (Calvetti and Reichel [179, 1993]) Generalize Algorithm 21.1 to the
inversion of a Vandermonde-like matrix for polynomials that satisfy a three-
term recurrence relation.

21.3. Investigate the stability of Algorithm 21.1 and the modified version
of Problem 21.1. (a) Evaluate the left and right residuals of the computed
inverses;, compare the results with those for GEPP. (b) Show that Algo-
rithm 21.1 always performs subtractions of like-signed number