


Limit Order Books

A limit order book is essentially a file in a computer that contains all orders sent to the

market, with their characteristics such as the sign of the order, price, quantity and a

timestamp. The majority of organized electronic markets rely on limit order books to store

lists of the interests of market participants in their central computer. A limit order book

contains all information available on a specific market and it reflects the way the market

moves under the influence of its participants.

This book discusses several models of limit order books. It begins by assessing the

empirical properties of data, and then moves on to mathematical models in order to

reproduce the observed properties. It finally presents a framework for numerical

simulations. It also covers important modelling techniques including agent-based

modelling, and advanced modelling of limit order books based on Hawkes processes. The

book also provides in-depth coverage of simulation techniques and introduces general,

flexible, open source library concepts useful to readers in studying trading strategies in

order-driven markets.

The book will be useful to graduate students in the field of econophysics, financial

mathematics and quantitative finance. The contents of this book are taught by the authors

at CentraleSupélec (France) for a course on “Physics of Markets”. A short course based

on the content of this book has been taught at the Graduate School of Mathematical

Sciences, University of Tokyo (Japan), and it will be used at the Université Paris Saclay

(France) for a course in quantitative finance.
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Foreword

When physicists became convinced that matter was not continuous but made from atoms,

new ideas on old subjects started flourishing. Not only well-known macroscopic laws

(thermodynamics, hydrodynamics) became better understood and bolstered by a more

fundamental underlying reality, but a host of spectacular and often unexpected effects

were rationalized, in particular collective emergent phenomena phase transitions,

superconductivity, avalanches, etc. Similarly, after decades of mathematical finance

devoted to the study of effective low frequency models of markets (chiefly based on

variations on the Brownian motion), the increasing availability of high frequency data

now allows a comprehensive study of price formation and of the microstructure of supply

and demand. A new era of financial modelling is opening up, with the hope of addressing

a hitherto neglected yet crucial aspect of price dynamics: feedback effects that can lead to

market anomalies, instabilities and crashes. Instead of considering the market as an inert,

reliable measurement apparatus that merely reveals the fundamental value of assets

without influencing it, the empirical study of the order book reveals that markets do

generate their own dynamics. New intuitions about market dynamics are necessary. New

fascinating statistical regularities are collected and modelled, in particular using

numerical simulations of agent based models. New analytical tools are being built to

account for these observations. The final goal is, much as in physics, to understand the

emergent phenomena and replace ad-hoc models of prices by micro-founded ones where

jumps, fat-tails and clustered volatility would have a clear origin. This is important on

many counts: while the intellectual endeavour is of course exciting in itself, its offshoots

will deeply influence the way we think about market regulation in the wake of

high-frequency trading, and the models we use for financial engineering (from derivative

pricing to algorithmic trading and optimal execution).

Limit order books offers a much needed, broad review of a field that has literally

exploded in the last 20 years, where researchers from economics, financial mathematics,

physics, computer science, etc. compete and confront. This diversity is well illustrated by

the content of the present book that covers a very wide ground, from empirical facts to

advanced mathematical techniques and numerical simulation tools. It will be a very useful
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and inspiring entry point for all scientists, engineers, regulators and traders interested in

understanding how financial markets really work at the basic level.

Jean-Philippe Bouchaud

Capital Fund Management & École Polytechnique



Preface

The Chair of Quantitative Finance was created at École Centrale Paris, now

CentraleSupélec, in 2007. Since its inception, most of its research activities were devoted

to the study of high frequency financial data. The interdisciplinary nature of the team,

composed of mathematicians, financial engineers, computer scientists and physicists,

gave it a special dimension. A sizeable portion of its research efforts has been focused on

the characterization and mathematical modelling of limit order books.

Literally at the core of every modern, electronic financial market, the limit order book

has triggered a huge amount of research in the past twenty years, marked by the seminal

work of Biais et al. (1995) on the empirical analysis of the Paris exchange and revitalized

a few years later, in a fascinating manner, by the work of Smith et al. (2003). However,

much as this topic is interesting, important and challenging, we realized that there was still

no reference book on the subject! We therefore decided to assemble in a single document

a survey of the existing literature and our own contributions on limit order books, whether

they were pertaining to their statistical properties, mathematical modelling or numerical

simulation.

We have tried to follow the intellectual approach of an experimental physicist: empirical

data should come first, and only empirical analyses may be considered as a reliable ground

for building up any kind of theory. The mathematical modelling follows. Models address

the different phenomena that are observed and highlighted, and provide a framework to

explain and reproduce these phenomena, and they are studied from theoretical, analytical

and numerical perspectives.

The book is thus organized as follows: The first part is devoted to the empirical

properties of limit order books; the second part, to their mathematical modelling and the

third, to their numerical analysis. The fourth part deals with some advanced topics such as

imperfection and predictability. Each part presents a survey of the existing scientific

literature, as well as our own contributions.

Significant parts of the material covered in this book have already been presented in

bits and pieces in different research and survey articles, in particular Chakraborti et al.

(2011a,b); Abergel and Jedidi (2013, 2015); Anane and Abergel (2015); Muni Toke (2015,

2011). However, what was lacking was a consistent and systematic compilation of these,



xx Preface

found in a single place where the emphasis was set on a single object of interest. We

hope that this book will fulfil this need and complement the already existing abundant

literature on market microstructure. The interdisciplinary approaches, with the stress on

both empirical data analyses and theoretical studies, will hopefully render it useful to the

reader – researcher, graduate student or practitioner, while facilitating him/her in finding

most of the contemporary knowledge on this essential component of financial markets.
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Tachet, Riadh Zaatour and Ban Zheng, for their contributions to these developments. We
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CHAPTER1
Introduction

“One of the funny things about the stock market is that every time one person

buys, another sells, and both think they are astute.” – William Feather, American
publisher and author (1889–1981)

What is a limit order book? It is a device that the vast majority of organized electronic

markets (all equity, futures and other listed derivatives markets) use to store in their

central computer the list of all the interests of market participants. It is essentially a file in

a computer that contains all the orders sent to the market, with their characteristics such

as the sign of the order (buy or sell), the price, the quantity, a timestamp giving the time

the order was recorded by the market, and a host of various market-dependent

information. In other words, the limit order book contains, at any given point in time, on a

given market, the list of all the transactions that one could possibly perform on this

market. Its evolution over time describes the way the market moves under the influence of

its participants. In fact, the study of limit order books can provide deep insight into the

understanding of the financial market, which is an excellent example of an evolving

“complex system” where the different participants collectively interact to find the best

price of an asset. Hence, this field attracts mathematicians, economists, statistical

physicists, computer scientists, financial engineers, and many others, besides the

practitioners.

A market in which buyers and sellers meet via a limit order book is called an

order-driven market. In order-driven markets, buy and sell orders are matched as they

arrive over time, subject to some priority rules. Priority is always based on price, and

then, in most markets, on time, according to a FIFO (First In, First Out) rule. Such

priority rules are enforced in the vast majority of financial markets, although there exist

some notable exceptions or variants: For instance, the Chicago Mercantile Exchange

(CME) uses for some order books a prorata rule in place of (or together with) time
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priority. Several different market mechanisms have been studied in the microstructure

literature, see for example, Garman (1976); Kyle (1985); Glosten (1994); O’Hara (1997);

Biais et al. (1997); Hasbrouck (2007). We will not review these mechanisms in this book

[except Garman (1976) in Chapter 5], and rather keep our focus on the almost universal

standard of price/time priority.

Essentially, three types of orders can be submitted:

• Limit order An order to specify a price at which one is willing to buy or sell a

certain number of shares, with their corresponding price and quantity, at any point in

time;

• Market order An order to immediately buy or sell a certain quantity, at the best

available opposite quote;

• Cancellation order An order to cancel an existing limit order.

In the literature dealing with limit order books or market microstructure, agents who submit

limit orders are referred to as liquidity providers, while those who submit market orders are

referred to as liquidity takers. In real markets, ever since the various deregulation waves hit

the US markets in 2005 and the European markets in 2007 [see for instance, Abergel et al.

(2014)], there is no such thing as a pure liquidity provider or taker, and this classification

should be understood as a convenient shorthand rather than a realistic description of the

behaviour of market participants.

It is to be noted that depending on the market under consideration, there exist many

variations of the three basic types of orders described above. A catalogue of real order

types one can encounter on financial markets is given in Appendix A. Needless to say, the

list provided is not exhaustive, and will be expanding over time. In this book, for practical

reasons related to the structure of the available datasets, and because we are mainly

interested in understanding and modelling universal features of limit order books, the

focus will be on a somewhat stylized view of the market where orders can be simply of

the “market”, “limit” or “cancellation” type.

Limit orders are stored in the order book, until they are either executed against an

incoming market order or canceled. The ask price PA (or simply the ask) is the price of the

best (i.e. lowest) limit sell order. The bid price PB (or simply the bid) is the price of the

best (i.e. highest) limit buy order. The gap between the bid and the ask

S := PA − PB, (1.1)

is always positive, and is called the spread. We define the mid-price as the average between

the bid and the ask

P :=
PA + PB

2
. (1.2)



Introduction 3

Prices are not continuous, but rather have a discrete resolution ΔP, the tick size, which

represents the smallest quantity by which they can change.

Why study limit order books? It is clear that the study of the empirical properties, as

well as the mathematical modelling and numerical simulation, of limit order books, is of

paramount importance for the researcher keen on gaining a deep understanding of financial

markets.

Traditionally in financial econometrics, the data consist in time series of prices of one

or several assets, and models are based on the statistical properties of the various quantities

one can build from these time series: Returns, volatility, correlation... However, in order-

driven markets, the price dynamics is controlled by the interplay between the incoming

order flow and the order book (Bouchaud et al. 2002). Figure 1.1 is a schematic illustration

of this process, with the conventional representation of quantities on the bid side by non-

positive numbers.

Fig. 1.1 A schematic illustration of the order book. A buy market order arrives and removes

liquidity from the ask side, then, sell limit orders are submitted and liquidity is

restored
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The study of the limit order book therefore reveals, as a by-product, the price dynamics.

One of our main motivations has been to understand the extent to which the mechanisms

of the order book have an impact on the price dynamics at the microstructure level, and

whether this impact remains visible at lower frequencies, i.e. when observing hourly or

daily prices. Furthermore, the genuine scientific curiosity for this area of research has

recently been very definitely enhanced by the rapid growth of algorithmic trading and

high frequency trading. Market making strategies, optimal execution strategies, statistical

arbitrage strategies, being executed at the individual order level, all require a perfect

understanding of the limit order book. Some of the statistical properties presented in this

book, in particular those pertaining to market imperfections, may be seen as building

blocks of such an understanding.

How to model limit order books? There are several steps to take when modelling limit

order books. Probably, the first one is to select a mechanistic description of the way

incoming orders are stored and market orders are executed. This prerequisite is achieved,

at least in a stylized form, in all the mathematical models of limit order books, and plays

an important role in the simulation of limit order books, for which realistic matching
engines must be developed in order to study trading strategies. The second step, at a more

conceptual and scientifically more fundamental stage, involves choosing a mechanism for

the arrival of orders, that is, for the submission of an order of a particular type at a specific

date and time. Regarding this aspect, two main approaches have been successful in

capturing key properties of the order book—at least to some extent. The first one, led by

economists, models the interactions between rational agents who act strategically: The

agents choose their trading decisions as solutions to individual utility maximization

problems [see e.g., Parlour and Seppi (2008), and references therein]. In the second

approach, proposed by econophysicists1, agents are described statistically. In the simplest

form along this line of research, the agents are supposed to act randomly. This approach

is sometimes referred to as zero-intelligence order book modeling, in the sense that the

arrival times and placements of orders of various types are random and independent, the

focus being primarily on the “mechanistic” aspects of the continuous double auction

rather than the strategic interactions between agents. Despite this apparently unrealistic

simplification, statistical models of the order book do capture many salient features of real

markets, and exhibit interesting, non-trivial mathematical properties that form the basis of

a thorough understanding of limit order books. It is however necessary to depart from this

overly simplified approach and study models were agents do interact, at least in a

statistical way. Although, there exists a rather vast, fascinating literature on models of

financial markets with interacting or competing agents (see e.g., Brock and Hommes

1Scholars who work in the interdisciplinary field of “Econophysics”, comprised of the two fields economics and physics,

using ideas and tools from both areas to study complex socio-economic systems.
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(1998) Lux and Marchesi (2000)), very little is concerned with order-driven markets. Some

recent results in this direction, based on a statistical approach using mutually exciting

arrival processes, are presented in this book.

What is in this book? Our approach has been to start with the limit order book data,

trying to assess their statistical properties. Hence, Chapter 2 is a survey of stylized facts
on limit order books, Chapter 3 focuses on the shape of the order book and its relation to

the size of incoming orders, whereas Chapter 4 is concerned with experimental evidence

of the interaction between liquidity providers and takers on order-driven markets. We then

moved on to the mathematical models: Chapter 5 is a survey of early works on limit order

book modelling; Chapters 6 and 7 present an in-depth, rigourous mathematical theory

of zero-intelligence models. In Chapter 8, we review some more advanced agent-based

models, and present recent results on limit order books driven by interacting and competing

statistical agents. We then provide in Chapter 9 a framework for simulations, and analyze

and discuss some numerical results. Finally, in Chapter 10, we return to empirical studies,

but with a different, more practical motivation, that of the profitability of trading strategies

in order-driven markets.

What is not in this book? Obviously, so many things.

For the sake of consistency, we have deliberately left out several alternative approaches

to order-driven markets modelling. Whether one actually requires to understand the

motivation of the agents in order to obtain a faithful description of their behaviour is an

open debate, and we are happy to participate in it with our systematic statistical approach.

Also of great importance is the study of market impact. This subject is definitely an

important topic, with great practical implications, and although limit order book models

obviously offer various possible mechanisms for market impact, we do not address this

specific question.

Also connected to market impact, the systematic study of trading strategies in order-

driven markets in only touched upon in the fourth part of this book, and should be studied

at greater lengths.

We could keep on extending this list of regrets. It is clear that progresses must be made

in the study of limit order books. Some are already in the making, and we certainly hope

that this book will lend an impetus to many others.





PART ONE
EMPIRICAL PROPERTIES OF ORDER-DRIVEN MARKETS





CHAPTER2
Statistical Properties of Limit Order
Books: A Survey

2.1 Introduction

The computerization of financial markets in the second half of the 1980s provided

empirical scientists with easier access to extensive data on order books. Biais et al. (1995)

is an early study of the data flows on the newly (at that time) computerized Paris Bourse.

Many subsequent papers offer complementary empirical findings and modelling

perspectives, e.g., Gopikrishnan et al. (2000), Challet and Stinchcombe (2001), Maslov

and Mills (2001), Bouchaud et al. (2002), Potters and Bouchaud (2003). In this chapter,

we present a summary of some fundamental empirical facts. Basic statistical properties of

limit order books, which can be observed from real data, are described and studied. Many

variables crucial to a fine modelling of order flows and dynamics of order books are

studied: Time of arrival of orders, placement of orders, size of orders, shape of order

books, etc.

The markets we are dealing with are order-driven markets with no official market maker,

in which orders are submitted in a double auction and executions follow price/time priority.

In order to make the results we present both self-contained and reproducible, the statistics

have been computed directly using our own database. The set of data that we have used

in this chapter is detailed in Appendix B, which contains the precise description of all the

data sets used throughout this book.

2.2 Time of Arrivals of Orders

We compute the empirical distribution for interarrival times – or durations – of market

orders for the stock BNP Paribas using the data set described in Appendix B.2. The

results are plotted in Figs 2.1 and 2.2, both in linear and log scale. It is clearly observed
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that the exponential fit is not a good one. We check however that the Weibull distribution

fit is potentially a very good one. Weibull distributions have been suggested for example

in Ivanov et al. (2004). Politi and Scalas (2008) also obtain good fits with q-exponential

distributions.

Fig. 2.1 Distribution of interarrival times for stock BNPP.PA in log-scale. Extracted from

Chakraborti et al. (2011a)

Fig. 2.2 Distribution of interarrival times for stock BNPP.PA (Main body, linear scale).

Extracted from Chakraborti et al. (2011a)
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In the Econometrics literature, these observations of non-Poisson arrival times have given

rise to a large trend of modelling of “irregular” financial data. Engle and Russell (1997)

and Engle (2000) have introduced autoregressive condition duration or intensity models

that may help modelling these processes of orders’ submission (see Hautsch (2004) for

a textbook treatment). Another trend of modelling that accounts for the non-exponential

durations is based on the subordination of stochastic processes (Clark, 1973; Silva and

Yakovenko, 2007; Huth and Abergel, 2012): A Poisson process with a change of time

clock may be used to model financial data. Finally, this observation also leads to the use

of Hawkes processes in financial modelling. These processes will be studied in Chapters 8

and 9.

We also compute using the same data the empirical distribution of the number of

transactions in a given time period τ. Results are plotted in Fig. 2.3.

Fig. 2.3 Distribution of the number of trades in a given time period τ for stock BNPP.PA.

This empirical distribution is computed using data from 2007, October 1st until 2008,

May 31st. Extracted from Chakraborti et al. (2011a)

It seems that the log-normal and the gamma distributions are both good candidates,

however none of them really describes the empirical result, suggesting a complex

structure of arrival of orders. A similar result on Russian stocks was presented in Dremin

and Leonidov (2005).

Chapter 4 contains a more in-depth study of the arrival times of orders and their

dependencies.
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2.3 Volume of Orders

Empirical studies show that the distribution of order sizes is complex to characterize. A

power-law distribution is often suggested. Gopikrishnan et al. (2000) and Maslov and

Mills (2001) observe a power law decay with an exponent 1 + μ ≈ 2.3 − 2.7 for market

orders and 1 + μ ≈ 2.0 for limit orders. Challet and Stinchcombe (2001) emphasize on a

clustering property: Orders tend to have a “round” size in packages of shares, and clusters

are observed around 100’s and 1000’s. As of today, no consensus emerges in proposed

models, and it is plausible that such a distribution varies very wildly with products and

markets.

In Fig. 2.4, we plot the distribution of volume of market orders for four different

stocks. Quantities are normalized by their mean. Power-law coefficient is estimated by a

Hill estimator [see e.g., Hill (1975); de Haan et al. (2000)]. We find a power law with

exponent 1 + μ ≈ 2.7 which confirms studies previously cited. Figure 2.5 displays the

same distribution for limit orders (of all available limits).

Fig. 2.4 Distribution of volumes of market orders. Quantities are normalized by their mean.

Extracted from Chakraborti et al. (2011a)

We find an average value of 1 + μ ≈ 2.1, consistent with previous studies. However, we

note that the power law is a poorer fit in the case of limit orders: Data normalized by their

mean collapse badly on a single curve, and computed coefficients vary with stocks.
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Fig. 2.5 Distribution of normalized volumes of limit orders. Quantities are normalized by

their mean. Extracted from Chakraborti et al. (2011a)

2.4 Placement of Orders

Bouchaud et al. (2002) observe a broad power-law placement around the best quotes on

French stocks, confirmed in Potters and Bouchaud (2003) on US stocks. Observed

exponents are quite stable across stocks, but exchange dependent: 1 + μ ≈ 1.6 on the

Paris Bourse, 1 + μ ≈ 2.0 on the New York Stock Exchange, 1 + μ ≈ 2.5 on the London

Stock Exchange. Mike and Farmer (2008) propose to fit the empirical distribution with a

Student distribution with 1.3 degree of freedom.

We plot the distribution of the following quantity computed on our data set, i.e. using

only the first five limits of the order book: Δp = b0(t−) − b(t) (resp. a(t) − a0(t−)) if

an bid (resp. ask) order arrives at price b(t) (resp. a(t)), where b0(t−) (resp. a0(t−)) is

the best bid (resp. ask) before the arrival of this order. Results are plotted on Fig. 2.6 (in

semilog scale) and 2.7 (in linear scale).

We observe that the empirical distribution of the placement of arriving limit orders is

maximum at Δp = 0; i.e. at the same best quote. We also observe heavy tails in the

distribution. Finally, we also observe an asymmetry in the empirical distribution: The left

side is less broad than the right side. Since, the left side represent limit orders submitted

inside the spread, this is expected: The left side of the distribution is linked to the spread

distribution.
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Fig. 2.6 Placement of limit orders using the same best quote reference in semilog scale. Data

used for this computation is BNP Paribas order book from September 1st, 2007, until

May 31st, 2008. Extracted from Chakraborti et al. (2011a)

Fig. 2.7 Placement of limit orders using the same best quote reference in linear scale. Data

used for this computation is BNP Paribas order book from September 1st, 2007, until

May 31st, 2008. Extracted from Chakraborti et al. (2011a)
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2.5 Cancellation of Orders

Challet and Stinchcombe (2001) show that the distribution of the average lifetime of limit

orders fits a power law with exponent 1 + μ ≈ 2.1 for cancelled limit orders, and

1 + μ ≈ 1.5 for executed limit orders. Mike and Farmer (2008) find that in either case the

exponential hypothesis (Poisson process) is not satisfied on the market.

We compute the average lifetime of cancelled and executed orders on our dataset.

Since, our data does not include a unique identifier of a given order, we reconstruct life

time orders as follows: Each time a cancellation is detected by the algorithm described in

Appendix B.1, we go back through the history of limit order submission and look for a

matching order with same price and same quantity. If an order is not matched, we discard

the cancellation from our lifetime data. Results are presented in Figs 2.8 and 2.9. We

observe a power law decay with coefficients 1 + μ ≈ 1.3 − 1.6 for both cancelled and

executed limit orders, with little variations among stocks. These results are a bit different

from the ones presented in previous studies: Similar for executed limit orders, but our

data exhibits a lower decay as for cancelled orders. Note that the observed cut-off in the

distribution for lifetimes above 20000 seconds is due to the fact that we do not take into

account execution or cancellation of orders submitted on a previous day.

Fig. 2.8 Distribution of estimated lifetime of cancelled limit orders. Extracted from

Chakraborti et al. (2011a)
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Fig. 2.9 Distribution of estimated lifetime of executed limit orders. Extracted from

Chakraborti et al. (2011a)

2.6 Average Shape of the Order Book

Contrary to what one might expect, the maximum of the average offered volume in an

order book is located away from the best quotes (Bouchaud et al. 2002). Our data confirms

this observation: The average quantity offered on the five best quotes grows with the level.

This result is presented in Fig. 2.10. We also compute the average price of these levels in

order to plot a cross-sectional graph similar to the ones presented in Biais et al. (1995). Our

result is presented for stock BNP.PA in Fig. 2.11 and displays the expected shape. Results

for other stocks are similar.

We find that the average gap between two levels is constant among the five best bids

and asks (less than one tick for FTE.PA, 1.5 tick for BNPP.PA, 2.0 ticks for SOGN.PA,

2.5 ticks for RENA.PA). We also find that the average spread is roughly twice as large the

average gap (factor 1.5 for FTE.PA, 2 for BNPP.PA, 2.2 for SOGN.PA, 2.4 for RENA.PA).

Chapter 3 presents more detailed results on the shape of the order book and its relation

to the size of incoming orders.
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Fig. 2.10 Average quantity offered in the limit order book. Extracted from Chakraborti et al.

(2011a)

Fig. 2.11 Average limit order book: price and depth. Extracted from Chakraborti et al. (2011a)
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2.7 Intraday Seasonality

Activity on financial markets is of course not constant throughout the day. Figures 2.12

and 2.13 plot the (normalized) number of market and limit orders arriving in a 5-minute

interval. It is clear that a U shape is observed (an ordinary least-square quadratic fit is

plotted): the observed market activity is larger at the beginning and the end of the day, and

more quiet around mid-day. Such a U-shaped curve is well-known, see Biais et al. (1995),

for example. On our data, we observe that the number of orders on a 5-minute interval can

vary with a factor 10 throughout the day.

Fig. 2.12 Normalized average number of market orders in a 5-minute interval. Extracted from

Chakraborti et al. (2011a)

Challet and Stinchcombe (2001) note that the average number of orders submitted to the

market in a period ΔT vary wildly during the day. The authors also observe that these

quantities for market orders and limit orders are highly correlated. Such a type of intraday

variation of the global market activity is a well-known fact, already observed in Biais et al.

(1995), for example.
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Fig. 2.13 Normalized average number of limit orders in a 5-minute interval. Extracted from

Chakraborti et al. (2011a)

2.8 Conclusion

In this introductory chapter, some elementary statistical features of limit order books have

been produced, related to the size of order, the shape of the order book and the arrival

times of orders. The next two chapters will delve further into two particular questions of

interest: The connection between order sizes and the shape of the order book, and the

mutual excitation of orders of different types.



CHAPTER3
The Order Book Shape as a
Function of the Order Size

3.1 Introduction

Elaborating on the results presented in Section 2.6, this chapter focuses on the shape of

limit order books and the influence of the size of incoming orders. It confirms the

theoretical findings of the models studied in Chapters 6 and 7.

3.2 Methodology

We use the order book data described in Appendix B.3. All movements on the first 10

limits of the ask side and the bid side of the order book are available, which allows us to

reconstruct the evolution of the first limits of the order book during the day. Each trading

day is divided into 12 thirty-minute intervals from 10am to 4pm. We obtain T = 391

intervals for each stock (three and a half days of trading are missing or incomplete in our

dataset: January 15th, the morning of January 21st, February 18th and 19th). For each

interval t = 1, . . . , T , and for each stock k = 1, . . . , 14, we compute the total number of

limit orders Lk(t) and market orders Mk(t), and the average volume (in euros) of limit

orders Vk
L(t) and market orders Vk

M(t). Table 3.1 gives the average number of orders and

their volumes (the overline denotes the average over the time intervals: L
k
= 1

T
∑T

t=1 Lk(t),
and similarly for other quantities). The lowest average activity is observed on UBIP.PA and

LAGA.PA (which are the only two stocks in the sample with less than 200 market orders

and 4000 limit orders in average). The highest activity is observed on BNPP.PA (which is

the only stock with more than 600 market orders and 6000 limit orders on average). The

smallest sizes of orders are observed on AIRP.PA (108.25 and 205.4 for market and limit

orders), and the largest sizes are observed on AXA.PA (535.6 and 876.6 for market and

limit orders).
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Table 3.1 Basic statistics on the number of orders and the average volumes of orders per

30-minute time interval for each stock

Stock k Mk Vk
M Lk Vk

L
(min, max) (min, max) (min, max) (min, max)

AIRP.PA 290.9 108.2 4545.4 205.4

59 1015 60.2 236.9 972 24999 153.6 295.7

ALSO.PA 349.7 181.3 5304.2 289.2

68 1343 75.7 310.8 817 31861 234.5 389.6

AXAF.PA 521.8 535.6 4560.6 876.6

119 2169 311.4 1037.4 1162 20963 603.4 1648.3

BNPP.PA 773.7 203.1 6586.0 277.6

160 4326 113.1 379.5 946 42939 189.2 518.7

BOUY.PA 218.3 227.4 4544.5 369.7

38 1021 113.1 421.9 652 25546 274.5 475.2

CARR.PA 309.5 275.3 4391.4 513.3

49 1200 156.1 517.3 813 14752 380.8 879.6

DANO.PA 385.7 214.4 4922.1 393.1

86 2393 112.6 820.3 1372 18186 286.1 537.4

LAGA.PA 140.8 201.5 3429.0 338.2

22 544 87.2 376.8 632 11319 219.0 504.0

MICP.PA 301.2 137.9 5033.5 240.7

45 1114 74.4 235.4 1012 23799 178.0 315.1

PEUP.PA 294.9 333.2 3790.6 536.7

57 1170 159.1 657.7 967 14053 316.8 828.3

RENA.PA 463.2 266.9 4957.6 384.3

103 1500 133.7 477.2 1383 27851 283.1 539.8

SASY.PA 494.0 241.4 4749.1 421.2

106 1722 128.7 511.7 986 22373 311.1 670.2

SGEF.PA 366.1 188.4 5309.9 353.4

70 1373 107.7 452.3 983 21372 274.2 515.1

UBIP.PA 153.3 384.9 1288.9 754.0

18 998 198.4 675.1 240 7078 451.4 1121.0

We also compute the average cumulative order book shape at 1 to 10 ticks from the best

opposite side. Denoting by PB(t) and PA(t) the best bid and ask prices at time t, the

average cumulative depth Bk
i (t) is the cumulative quantity available in the order book
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for stock k in the price range {PB(t) + 1, . . . , PB(t) + i} (in ticks) for ask limit orders,

or in the price range {PA(t) − i, . . . , PA(t) − 1} for bid limit orders, averaged over time

during interval t. For i � 10, our data is always complete since, the first ten limits are

available. For larger i however, we may not have the full data: Bk
10+ j(t) is not exact if the

spread reaches a level lower or equal to j ticks during interval t. Hence, we impose that

i � 10 in the following empirical analysis. Figure 3.1 plots the empirical average shapes

B
k
i =

1
T

∑T
t=1 Bk

i (t) (arbitrarily scaled to B
k
10 = 1 for easier comparison).

Fig. 3.1 Mean-scaled shapes of the cumulative order book as a function of the distance (in

ticks) from the opposite best price for the 14 stocks studied. Extracted from Muni

Toke (2015)

3.3 The Regression Model

We investigate the influence of the number of limit orders Lk(t) and their average size

Vk
L(t) on the depth on the order book at the first limits with a regression model. We wish to
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study this relationship with the number of limit orders and their size all others things being

equal, i.e. the global market activity being held constant. A fairly natural proxy for the

market activity is the traded volume (transactions) per period. The total volume of market

orders submitted during interval t for the stock k is Mk(t)Vk
M(t). We may also consider the

total volume of incoming limit orders Lk(t)Vk
L(t).

Therefore, we have the following regression model for some measure of the book depth

Bk(t):

Bk(t) = β1Lk(t) + β2Vk
L(t) + β3Lk(t)Vk

L(t) + β4Mk(t)Vk
M(t) + εk,t. (3.1)

We test this regression using Bk(t) = Bk
5
(t) (cumulative depth up to 5 ticks away from

the best opposite price), then, using Bk(t) = Bk
10
(t) (cumulative depth up to 10 ticks away

from the best opposite price) and finally using Bk(t) = Bk
10
(t)− Bk

5
(t) (cumulative volume

between 6 and 10 ticks away from the best opposite price). For each of these three models,

we provide results with or without the interaction term LkVk
L. All models are estimated

as panel regression models with fixed effects, i.e. the error term εk,t is the sum of a non-

random stock specific component δk (fixed effect) and a random component ηk,t. While the

regression coefficients are stock-independent, the variables δk translate the idiosyncratic

characteristics of each stock.

Note that we use data from 10am to 4pm each day, in order to avoid very active periods,

right after the opening of the market or before its closing. By concentrating on the heart of

the trading day, we focus on smoother variations of the studied variables. However, even

with this restriction, the data nonetheless exhibits some intraday seasonality, such as the

well-known U-shaped curve of the number of submissions of orders (see Chapter 2), or the

fact that the order book seems to grow slightly fuller during the day and decline in the end.

This intraday seasonality may be observed by computing, for each stock, the (intraday)

seasonal means of the variables of the model, e.g., the average of a given variable for

a given stock at a given time of the day across the whole sample. This is illustrated for

example in Fig. 3.2 and Fig. 3.3 where we plot, for the 14 stocks studied, the (mean-

scaled) seasonal averages of the number of submitted market orders and the (mean-scaled)

seasonal averages of the cumulative size of the order book up to the tenth limit.

For the sake of completeness, we run the statistical regressions defined at Eq. (3.1) both

on raw data and on deseasonalized data (by subtracting the seasonal mean). Results are

given in Table 3.2 in the first case, and in Table 3.3 in the latter one.

In all cases, irrespective of the presence of the interaction term LkVk
L and irrespective

of the deseasonalization, we observe a positive relationship between the order book depth

and the average size of limit orders Vk
L, and a negative relationship between the order book

depth and the number of limit orders Lk. Note also that the estimated β’s for these two
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quantities are all significant to the highest level in all the cases using deseasonalized data,

and to the 0.2% for all but one case using the raw data (2% level in this worst case).

Fig. 3.2 Mean-scaled number of market orders as a function of the time of day (in seconds)

for the 14 stocks studied. Extracted from Muni Toke (2015)

Therefore, all others things being equal, it thus appears we have identified the following

effect: For a given total volume of arriving limit and market orders LkVk
L and MkVk

M , the

relative size of the limit orders has a strong influence on the average shape of the order

book: The larger the arriving orders are, the deeper the order book is; the more there are

arriving limit orders, the shallower the order book is. The average shape of the order book

is deeper when a few large limit orders are submitted, than when many small limit orders

are submitted. We will provide in Chapter 7, and in particular in Section 7.4, a theoretical

order book model that precisely describes this effect.
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Fig. 3.3 Mean-scaled shapes of the cumulative order book up to 10 ticks away from the

opposite best price as a function of the time of day (in seconds), for the 14 stocks

studied. Extracted from Muni Toke (2015)

As a side comment, we may also look at the influence of the global volume of trades MkVk
M .

Using raw data, we observe a positive influence of this term on the depth of the order

book. At a first glance, this is in line with the phenomenon observed for example in Ns

and Skjeltorp (2006), where a positive relationship between the number of trades and the

order book slope of the first 5 limits of the order book is exhibited. This apparent similarity

is to be taken with great caution, since, the slope and the depth are two different variables:

their relationship and the possible link between their evolutions is not known. Note in

particular that the positive influence of the global volume of trades does not hold using

deseasonalized data in our sample. A second observation made by Ns and Skjeltorp (2006)

is that the influence of market activity on the order book depth is much stronger closer to

the spread, and then, decresases when taking into account further limits. We also observe

this phenomenon using raw data: The lower panel of Table 3.2 shows that this influence is
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Table 3.2 Panel regression results for the models defined in Eq. (3.1), using raw data, for Bk,t = B5
k,t (top panel), Bk,t = B10

k,t (middle panel)

and Bk,t = B10
k,t − B5

k,t (lower panel). In all case, data has 14 stocks and T = 391 time intervals, i.e. 5474 points

B5
k,t Without Lk(t)Vk

M(t) With Lk(t)Vk
M(t)

Variables Est. Std Err. t-value p-value Sig. Est. Std Err. t-value p-value Sig.

Lk(t) -0.24455434 0.02008400 -12.177 < 2.2e-16 *** -8.6511e-02 3.6046e-02 -2.4000 0.01643 *

Vk
M(t) 8.70817318 0.75084050 11.598 < 2.2e-16 *** 1.0374e+01 8.1288e-01 12.7622 < 2.2e-16 ***

Lk(t)Vk
M(t) — — — — — -4.8483e-04 9.1924e-05 -5.2743 1.384e-07 ***

Lk(t)Vk
M(t) 0.00882725 0.00079296 11.132 < 2.2e-16 *** 1.0794e-02 8.7448e-04 12.3430 < 2.2e-16 ***

R2 0.079275 0.083945

F-statistic 156.617 < 2.2e-16 *** 124.994 < 2.2e-16 ***

B10
k,t Without Lk(t)Vk

M(t) With Lk(t)Vk
M(t)

Variables Est. Std Err. t-value p-value Sig. Est. Std Err. t-value p-value Sig.

Lk(t) -0.4576647 0.0439167 -10.4212 < 2.2e-16 *** -0.25599592 0.07895182 -3.2424 0.001192 **

Vk
M(t) 39.4968315 1.6418268 24.0566 < 2.2e-16 *** 41.62260408 1.78046702 23.3774 < 2.2e-16 ***

Lk(t)Vk
M(t) — — — — — -0.00061866 0.00020134 -3.0727 0.002132 **

Lk(t)Vk
M(t) 0.0097127 0.0017339 5.6016 2.228e-08 *** 0.01222198 0.00191540 6.3809 1.906e-10 ***

R2 0.14202 0.14303

F-statistic 301.1 < 2.2e-16 *** 228.534 < 2.2e-16 ***

B10
k,t − B5

k,t Without Lk(t)Vk
M(t) With Lk(t)Vk

M(t)

Variables Est. Std Err. t-value p-value Sig. Est. Std Err. t-value p-value Sig.

Lk(t) -0.21311036 0.02995514 -7.1143 1.27e-12 *** -0.16948494 0.05389411 -3.1448 0.001671 **

Vk
M(t) 30.78865834 1.11987302 27.4930 < 2.2e-16 *** 31.24851002 1.21538277 25.7108 < 2.2e-16 ***

Lk(t)Vk
M(t) — — — — — -0.00013383 0.00013744 -0.9737 0.330234

Lk(t)Vk
M(t) 0.00088543 0.00118269 0.7487 0.4541 0.00142825 0.00130749 1.0924 0.274723

R2 0.1491 0.14925

F-statistic 318.743 < 2.2e-16 *** 239.292 < 2.2e-16 ***
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Table 3.3 Panel regression results for the models defined in Eq. (3.1), using deseasonalized data, for Bk,t = B5
k,t (top panel), Bk,t = B10

k,t
(middle panel) and Bk,t = B10

k,t − B5
k,t (lower panel). In all case, data has 14 stocks and T = 391 time intervals, i.e. 5474 points

B5
k,t Without Lk(t)Vk

M(t) With Lk(t)Vk
M(t)

Variables Est. Std Err. t-value p-value Sig. Est. Std Err. t-value p-value Sig.

Lk(t) -0.2693183 0.0199388 -13.5072 < 2.2e-16 *** -0.2712167 0.0198836 -13.6402 < 2.2e-16 ***

Vk
M(t) 14.8579856 0.6885427 21.5789 < 2.2e-16 *** 15.2819415 0.6905058 22.1315 < 2.2e-16 ***

Lk(t)Vk
M(t) — — — — — -0.0017696 0.0003085 -5.7361 1.021e-08 ***

Lk(t)Vk
M(t) -0.0167731 0.0036252 -4.6268 3.799e-06 *** -0.0064651 0.0040367 -1.6016 0.1093

R2 0.10337 0.10875

F-statistic 209.718 < 2.2e-16 *** 166.433 < 2.2e-16 ***

B10
k,t Without Lk(t)Vk

M(t) With Lk(t)Vk
M(t)

Variables Est. Std Err. t-value p-value Sig. Est. Std Err. t-value p-value Sig.

Lk(t) -0.6663429 0.0423425 -15.7370 < 2.2e-16 *** -0.67127949 0.04216152 -15.9216 < 2.2e-16 ***

Vk
M(t) 50.9522688 1.4622037 34.8462 < 2.2e-16 *** 52.05475178 1.46416246 35.5526 < 2.2e-16 ***

Lk(t)Vk
M(t) — — — — — -0.00460179 0.00065416 -7.0347 2.243e-12 ***

Lk(t)Vk
M(t) -0.0429541 0.0076985 -5.5795 2.528e-08 *** -0.01614842 0.00855951 -1.8866 0.05927 .

R2 0.20566 0.2128

F-statistic 470.96 < 2.2e-16 *** 368.73 < 2.2e-16 ***

B10
k,t − B5

k,t Without Lk(t)Vk
M(t) With Lk(t)Vk

M(t)

Variables Est. Std Err. t-value p-value Sig. Est. Std Err. t-value p-value Sig.

Lk(t) -0.3970246 0.0293712 -13.5175 < 2.2e-16 *** -0.4000628 0.0292738 -13.6662 < 2.2e-16 ***

Vk
M(t) 36.0942832 1.0142678 35.5865 < 2.2e-16 *** 36.7728102 1.0166060 36.1721 < 2.2e-16 ***

Lk(t)Vk
M(t) — — — — — -0.0028322 0.0004542 -6.2356 4.84e-10 ***

Lk(t)Vk
M(t) -0.0261809 0.0053401 -4.9027 9.728e-07 *** -0.0096833 0.0059431 -1.6293 0.1033

R2 0.20463 0.21026

F-statistic 467.995 < 2.2e-16 *** 363.153 < 2.2e-16 ***
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not significant anymore if we take only the “furthest” limits, i.e. the limits between 6 and

10 ticks away from the best price. This is however unclear with deseasonalized data.

3.4 Conclusion

The statistics presented in this chapter provide clear evidence of the influence on the

shape of the limit order book of the size and numbers of limit orders: Larger limit orders

and fewer limit orders lead to fatter order books. Such empirical findings will support the

theoretical work presented in Chapter 7.



CHAPTER4
Empirical Evidence of Market
Making and Taking

4.1 Introduction

In this chapter, we present empirical studies that shed some new light on the dependency

structure of order arrival times, in particular, on the mutual and self-excitations of limit

and market orders and, to a lesser extent, of cancellation orders. Examples for various

assets and markets (mostly equities, but also bond and index futures) are provided. These

empirical studies lay the ground for the advanced mathematical models studied in

Chapters 8 and 9.

4.2 Re-introducing Physical Time

As seen in Chapter 2, the Poisson hypothesis for the arrival times of orders of different

kinds does not stand under careful scrutiny. However, the study of arrival times of orders

in an order book has not been a primary focus in the first attempts at order book modelling.

Toy models leave this dimension aside when trying to understand the complex dynamics

of an order book. In many order-driven market models (Cont and Bouchaud, 2000; Lux

and Marchesi, 2000; Alfi et al. 2009a), and in some order book models as well (Preis

et al., 2006), a time step in the model is an arbitrary unit of time during which many

events may happen. We may call that clock aggregated time. In most order book models

(Challet and Stinchcombe, 2001; Mike and Farmer, 2008), one order is simulated per time

step with given probabilities, i.e. these models use the clock known as event time. In the

simple case where these probabilities are time-homogeneous and independent of the state

of the model, such a time treatment is equivalent to the assumption that order flows are

homogeneous Poisson processes. A likely reason for the use of event time in order book

modelling – leaving aside the fact that models can be sufficiently complicated without
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adding another dimension – is that many puzzling empirical observations can be made in

event time (e.g. autocorrelation of the signs of limit and market orders) or in aggregated

time (e.g. volatility clustering) (see Chapter 2).

However, it is clear that physical time has to be taken into account for the modelling

of a realistic order book model. For example, market activity varies widely, and intraday

seasonality is often observed as a well known U-shaped pattern. Even for a short time

scale model – a few minutes, a few hours – durations of orders (i.e. time intervals between

orders) are very broadly distributed. Hence, the Poisson assumption and its exponential

distribution of arrival times have to be discarded, and models must take into account the

way these irregular flows of orders affect the empirical properties studied on order books.

Let us give one illustration. On Fig. 4.1, we have plotted examples of the empirical

distribution function of the observed spread in event time (i.e. spread is measured each

time an event happens in the order book), and in physical (calendar) time (i.e. measures

are weighted by the time interval during which the order book is idle).

Fig. 4.1 Empirical distribution function of the bid-ask spread in event time and in physical

(calendar) time. In inset, same data using a semi-log scale. This graph has been

computed with 15 four-hour samples of tick data on the BNPP.PA stock. Extracted

from Muni Toke (2011)

It appears that the frequencies of the most probable values of the time-weighted distribution

are higher than in the event time case. Symmetrically, the frequencies of the least probable
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events are even smaller when physical time is taken into account. This tells us a few things

about the dynamics of the order book, which could be summarized as follows: The wider

the spread, the faster its tightening. We can get another insight of this empirical property by

measuring on our data the average waiting time before the next event, conditionally on the

spread size. When computed on the lower one-third-quantile (small spread), the average

waiting time is 320 milliseconds. When computed on the upper one-third-quantile (large

spread), this average waiting time is 200 milliseconds. These observations complement

some of the ones that can be found in Biais et al. (1995).

4.3 Dependency Properties of Inter-arrival Times

4.3.1 Empirical evidence of market making

A first idea for an enhanced model of order flows is based on the following observation:

Once a market order has been placed, the next limit order is likely to take place faster than

usual. To illustrate this, we compute for several assets:

• the empirical probability distribution of the time intervals of the counting process of

all orders (limit orders and market orders mixed), i.e. the time step between any order

book event (other than cancellation)

• and the empirical probability distribution of the time intervals between a market order

and the immediately following limit order.

If an independent Poisson assumption held, then these empirical distributions should be

identical. However, we observe a very high peak for short time intervals in the second

case. The first moment of these empirical distributions is significant: For the studied assets,

we find that the average time between a market order and the following limit order is 1.3

(BNPP.PA) to 2.6 (LAGA.PA) times shorter than the average time between two random

consecutive events.

On the graphs shown in Fig. 4.2, we plot the full empirical distributions for four of

the five studied assets1. We observe their broad distribution and the sharp peak for the

shorter times: on the Footsie future market for example, 40% of the measured time steps

between consecutive events are less that 50 milliseconds; this figure jumps to nearly 70%

when considering only market orders and their following limit orders. This observation

is an evidence for some sort of market making behaviour of some participants on those

markets. It seems that the submission of market orders is monitored and triggers automatic

limit orders that add volumes in the order book (and not far from the best quotes, since, we

only monitor the five best limits).

In order to confirm this finding, we perform non-parametric statistical tests on the

measured data. For all studied markets, omnibus Kolmogorov–Smirnov and Cramer–von

1Observations are identical on all the studied assets.
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Mises tests performed on random samples establish that the considered distributions are

statistically different. If assuming a common shape, a Wilcoxon-Mann-Withney U test

clearly states that the distribution of time intervals between a market order and the

following limit order is clearly shifted to the left compared to the distributions of time

intervals between any orders, i.e. the average “limit following market” reaction time is

shorter than the average time interval between random consecutive orders.

Fig. 4.2 Empirical distributions of the time intervals between two consecutive orders (any

type, market or limit) and of the time intervals between a market order and the

immediately following limit order. X-axis is scaled in seconds. In insets, same data

using a log-log scale. Studied assets: BNPP.PA (top left), LAGA.PA (top right),

FEIZ9 (bottom left), FFIZ9 (bottom right). Extracted from Muni Toke (2011)

Note that there is no systematic link between the sign of the market order and the sign of

the following limit order. For example for the BNP Paribas (resp. Peugeot and Lagardere)

stock, they have the same sign in 48.8% (resp. 51.9% and 50.7%) of the observations.

And more interestingly, the “limit following market” property holds regardless of the side

on which the following limit order is submitted. On Fig. 4.3, we have plotted the

empirical distributions of time intervals between a market order and the following limit
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order, conditionally on the side of the limit order: The same side as the market order or

the opposite one. It appears for all studied assets that both distributions are roughly

identical.

In other words, we cannot clearly distinguish on the data if liquidity is added where the

market order has been submitted or on the opposite side. Therefore, we do not infer any

empirical property of placement: When a market order is submitted, the intensity of the

limit order process increases on both sides of the order book.

This effect we have thus identified is a phenomenon of liquidity replenishment of an

order book after the execution of a trade. The fact that it is a bilateral effect makes its

consequences similar to that of a market making strategy, even though there is no official

market maker involved on every studied market. This market making behaviour will be

characterized in a bit more detailed fashion in Section 4.4.

Fig. 4.3 Empirical distributions of the time intervals between a market order and the

immediately following limit order, whether orders have been submitted on the same

side and on opposite sides. X-axis is scaled in seconds. In insets, same data using

a log-log scale. Studied assets: BNPP.PA (left), LAGA.PA (right). Extracted from

Muni Toke (2011)

4.3.2 A reciprocal effect?

We now check if a similar or opposite distortion is to be found on market orders when they

follow limit orders. To investigate this, we compute the “reciprocal” measures for all our

studied assets:

• the empirical distribution of the time intervals of the counting process of all orders

(limit orders and market orders mixed), i.e. the time step between any order book

event (other than cancellation)

• and the empirical distribution of the time step between a market order and the

previous limit order.
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If an independent assumption held, then these empirical distribution should be identical.

Results for four assets are shown on Fig. 4.4.

Contrary to the previous case, no effect is very easily interpreted. For the three stocks

[BNPP.PA, LAGA.PA and PEUP.PA (not shown)], it seems that the empirical distribution

is less peaked for small time intervals, but the difference is much less important than in the

previous case. As for the FEI and FFI markets, the two distributions are even more closer.

Non-parametric tests confirm these observations. Performed on data from the three

equity markets, Kolmogorov tests indicate different distributions and Wilcoxon tests

enforce the observation that time intervals between a limit order and a following market

order are stochastically larger than time intervals between unidentified orders.

Fig. 4.4 Empirical distributions of the time intervals between two consecutive orders (any

type, market or limit) and of the time intervals between a limit order and an

immediately following market order. In insets, same data using a log-log scale.

Studied assets: BNPP.PA (top left), LAGA.PA (top right), FEIZ9 (bottom left),

FFIZ9 (bottom right). Extracted from Muni Toke (2011)

As for the future markets on Footsie (FFI) and 3-month Euribor (FEI), Kolmogorov tests do

not indicate differences in the two observed distributions, and the result is confirmed by a

Wilcoxon test that concludes at the equality of the means. However, these results have been
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obtained by considering all limit orders and all market orders, whereas a market taking

behaviour is more likely to be observed when considering limit orders that instantaneously

change the price. In the next section, we make such a distinction, and provide convincing

empirical evidences of this effect.

4.4 Further Insight into the Dependency Structure

As advertised, we now consider the events with more caution, explicitly distinguishing

between aggressive orders that imediately change the best bid or ask price, and passive
orders that do not.

Table 4.1 summarizes the definitions and notations for the different types of events used

in this section.

Table 4.1 Event types definitions

Notation Definition

M, L, C, O market order, limit order, cancellation, any order.

Mbuy, Msell buy/sell market order.

M0
buy

, M0
sell

buy/sell market order that does not change the mid price:

i.e. order quantity < best ask/bid available quantity.

M1
buy

, M1
sell

buy/sell market order that changes the mid price:

i.e. order quantity ≥ best ask/bid available quantity.

Lbuy, Lsell buy/sell limit order.

L0
buy

, L0
sell

buy/sell limit order that does not change the mid price:

i.e. order price ≤ / ≥ best bid/ask price.

L1
buy

, L1
sell

buy/sell limit order that changes the mid price:

i.e. order price > / < best bid/ask price.

Cbuy, Csell buy/sell cancellation.

C0
buy

, C0
sell

buy/sell cancellation that does not change the mid price:

i.e. partial cancellation at best bid/ask limit or cancellation

at another limit.

C1
buy

, C1
sell

buy/sell cancellation that changes the mid price:

i.e. total cancellation of best bid/ask limit order.

M0, L0, C0, O0 market order, limit order, cancellation, any order,

that does not change the mid price.

M1, L1, C1, O1 market order, limit order, cancellation, any order,

that changes the mid price.
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Table 4.2 summarizes the average daily numbers of each type of events.

Table 4.2 Event occurrences statistics summary

Lbuy Lsell L Cbuy Csell C Mbuy Msell M O

Average 24020 24219 48239 20328 20591 40919 3870 3876 7764 96904

Min 8804 8883 17687 7062 7410 14472 1575 1481 3056 36433

Max 44321 46123 90444 41296 41075 82371 7665 7321 14986 187801

The statistics clearly show some symmetry between the buy and sell sides. The numbers

of limit orders and cancellations are comparable, both are significantly higher than the

number of market orders.

Going further, one can empirically estimate the conditional probabilities of occurrence

for events of all types. Table 4.3 shows such probabilities of occurrence of an event of type

j (in column) conditional to the fact that the last observed event is of type i (in row). The

last row represents the unconditional probabilities of each type of events.

Table 4.3 Conditional probabilities (in %) of occurrences per event type

L0
buy

L0
sell

C0
buy

C0
sell

M0
buy

M0
sell

L1
buy

L1
sell

C1
buy

C1
sell

M1
buy

M1
sell

|L0
buy

41.37 9.64 16.00 22.40 2.90 1.58 2.35 1.12 0.02 1.08 1.39 0.16

|L0
sell

9.61 41.79 21.95 16.12 1.61 2.96 1.02 2.29 1.05 0.02 0.15 1.44

|C0
buy

17.91 25.88 40.67 5.98 1.39 1.74 1.20 2.34 1.49 0.37 0.56 0.47

|C0
sell

25.18 17.98 6.04 41.30 1.79 1.42 2.08 1.27 0.37 1.49 0.51 0.60

|M0
buy

22.17 5.33 4.75 9.94 34.64 0.70 7.68 0.65 0.55 1.31 11.86 0.42

|M0
sell

5.60 21.14 10.61 5.01 0.72 34.32 0.53 7.19 1.48 1.10 0.42 11.88

|L1
buy

32.39 8.06 0.21 25.27 4.84 5.58 1.42 1.57 5.80 1.77 2.44 10.65

|L1
sell

7.65 29.94 26.04 0.22 5.63 5.62 1.39 1.36 1.42 5.39 12.37 2.96

|C1
buy

25.02 19.09 35.70 4.96 0.96 0.67 8.34 3.59 0.72 0.35 0.48 0.12

|C1
sell

21.48 23.28 5.42 34.70 0.76 1.16 3.20 7.88 0.63 0.75 0.18 0.57

|M1
buy

28.27 9.60 7.38 28.12 3.11 1.02 11.52 7.98 0.90 0.87 0.67 0.55

|M1
sell

11.83 23.05 33.36 7.24 1.04 3.13 6.79 9.34 1.05 1.81 0.66 0.70

|O 22.82 22.93 19.80 20.03 2.99 3.00 2.07 2.12 0.85 0.88 1.27 1.26

Results in Table 4.3 are rather symmetric: No significant difference is observed between

the buy and sell side. Therefore, their interpretation is detailed only in the case of buy

orders:

L0
buy

: Reinforces the consensus that the stock is not moving down. This increases the

probability of L0
buy

.
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C0
buy

: Decreases the available liquidity on the buy side. Other participants may feel less

comfortable posting buy orders, and the probability of C0
buy

and C1
buy

increases.

M0
buy

: Increases the probability of M0
buy

. This can be explained by order splitting: large

orders are split into smaller pieces that are more easily executed, and the momentum effect:
other participants following the move. The increase of the probability of M1

buy
and L1

buy
is

also explained by the momentum effect.

L1
buy

: Improves the offered price to buy the stock. The first major effect observed is a big

increase in the probability of M1
sell

, which is precisely the market taking effect postulated in

Section 4.3.2. The second effect is a large increase in the probability of C1
buy

whereby the

new liquidity is rapidly cancelled. This might reflect a market manipulation, where agents

are posting fake orders.

C1
buy

: A total cancellation of the best buy limit increases the probability of L1
buy

; other

participants re-offer the liquidity at the previous best buy price. It also increases the

probability of L1
sell

, when a new consensus is concluded by the market participants at a

lower price.

M1
buy

: Consumes all the offered liquidity at the best ask. This increases the probability

of L1
sell

when some participants re-offer the liquidity at the same previous best ask price. It

also increases the probability of L1
buy

, when a new consensus is concluded by the market

participants at a higher price. This is the market making effect already identified and studied

in Section 4.3.1.

Much as these conditional probabilities are informative and practically useful, one

must return to a finer description based on arrival times, as these are at the core of any

microscopic description of a limit order book. The next section revisits the study of arrival

times, distinguishing between aggressive and passive orders.

4.4.1 The fine structure of inter-event durations: Using lagged correlation
matrices

In this section, we return to the study of inter-event durations as in Section 4.3.1, but

specializing to all the event types we have introduced.

Table 4.4 represents the median of the waiting time (in seconds) to the event j (in

column) since, the last observed event i (in row) and Table 4.5 represents the mean of this

waiting time.

Beyond these basic measurements, some insight can be gained by studying the

covariance matrix of these inter-arrival times.
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Table 4.4 Median conditional waiting time

L0
buy

L0
sell

C0
buy

C0
sell

M0
buy

M0
sell

L1
buy

L1
sell

C1
buy

C1
sell

M1
buy

M1
sell

|L0
buy

0.019 0.884 0.564 0.304 13.96 17.21 10.97 13.85 43.64 37.03 18.94 25.43

|L0
sell

0.888 0.017 0.327 0.556 17.25 13.76 13.92 10.96 38.02 41.97 25.79 18.32

|C0
buy

0.398 0.130 0.015 0.987 17.02 16.15 13.06 11.55 37.23 40.06 24.41 22.23

|C0
sell

0.137 0.391 0.975 0.012 16.16 16.65 11.47 12.81 41.00 35.73 22.52 23.56

|M0
buy

0.002 0.045 0.168 0.006 0.01 8.78 0.82 6.03 31.22 21.06 0.10 15.48

|M0
sell

0.041 0.002 0.006 0.154 9.09 0.01 6.34 0.81 22.70 28.60 15.91 0.08

|L1
buy

0.005 0.084 0.258 0.009 7.48 7.45 4.29 6.58 13.59 22.27 10.39 7.93

|L1
sell

0.084 0.005 0.012 0.240 7.29 7.13 6.58 4.04 23.96 13.52 7.54 9.88

|C1
buy

0.019 0.019 0.004 0.439 14.09 16.62 2.09 6.48 11.46 28.40 18.81 20.83

|C1
sell

0.017 0.021 0.400 0.004 15.76 13.03 6.15 2.07 27.81 11.98 20.07 17.53

|M1
buy

0.003 0.033 0.158 0.003 5.47 9.35 1.21 1.99 27.82 21.73 7.24 14.96

|M1
sell

0.030 0.003 0.003 0.139 9.40 5.60 2.32 1.16 21.77 24.91 14.89 7.86

Table 4.5 Mean conditional waiting time

L0
buy

L0
sell

C0
buy

C0
sell

M0
buy

M0
sell

L1
buy

L1
sell

C1
buy

C1
sell

M1
buy

M1
sell

|L0
buy

1.47 3.35 2.68 3.25 30.20 33.02 27.40 29.81 96.89 86.52 41.32 46.86

|L0
sell

3.37 1.46 3.31 2.70 33.21 29.75 30.30 27.07 91.59 91.45 47.68 40.29

|C0
buy

2.28 2.24 1.74 3.76 33.08 32.32 29.17 27.69 89.10 89.16 46.23 43.99

|C0
sell

2.24 2.27 3.73 1.72 32.52 32.55 27.91 28.57 94.05 84.18 44.79 44.96

|M0
buy

0.67 1.63 2.00 1.50 10.83 24.57 15.89 21.97 86.25 73.85 17.35 36.77

|M0
sell

1.63 0.67 1.52 1.98 25.15 10.82 22.71 15.65 79.56 79.61 37.68 17.13

|L1
buy

0.95 1.84 2.55 1.53 23.81 23.35 18.55 20.94 61.80 68.31 32.01 27.93

|L1
sell

1.82 0.96 1.58 2.50 23.20 23.41 21.50 18.13 75.24 59.76 27.80 31.44

|C1
buy

1.48 1.75 1.32 3.15 30.36 33.25 13.71 20.72 50.47 72.32 39.63 41.57

|C1
sell

1.54 1.43 2.91 1.23 32.53 29.31 20.64 13.79 76.86 49.83 41.55 38.24

|M1
buy

0.62 1.51 1.98 1.12 21.74 25.38 15.51 15.22 80.46 71.22 28.70 36.06

|M1
sell

1.45 0.59 1.09 1.91 25.45 21.65 15.92 14.81 73.89 72.67 36.10 29.11

In general, consider a stationary M-dimensional point process N with coordinates

(N1(t), . . . , NM(t)), t ∈ R+: Ni(t) is the number of events of type i having occured up to

time t (see Appendix C.1 for the definition and basic properties of point processes). Given

a duration h and a lag τ, the lagged covariance matrix Ch
τ =

(
Ch
τ(i, j)

)
1≤i, j≤M

of the

process is defined by:

Ch
τ(i, j) =

1

h
Cov(Ni(t + h + τ) − Ni(t + τ), N j(t + h) − N j(t)). (4.1)
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When comparing two different types of events, such a construct helps identify

dependencies, and possible lead − lag relationships, see for example, Bouchaud and

Potters (2004), and Bacry et al. (2012) for a detailed study of this measure in the context

of mutually excited point processes. Its decay as a function of the lag value τ is also

informative on potential long-range interactions.

In order to avoid side effects caused by the wide variability of the frequencies across

event type, it is actually more robust to rely on the lagged linear correlation matrix

ρh
τ(i, j) = Correlation(Ni(t + h + τ) − Ni(t + τ), N j(t + h) − N j(t)). (4.2)

In the case under scrutiny, the components of the process N correspond to the events

M0
buy

, M0
sell

, M1
buy

, M1
sell

, L0
buy

, L0
sell

, L1
buy

, L1
sell

, C0
buy

, C0
sell

, C1
buy

, C1
sell

as in Table 4.1.

The time step h is chosen as 0.1 second, and τ ∈ {0.1, 0.2, . . . 0.9}. The empirical

lagged correlation coefficients are computed per day per stock. The results are then

averaged across stocks and days. For each pair of event types (i, j), the function

τ �→ ρh
τ(i, j) describes the temporal decay of the impact events of type j have on events of

type i. Compared with the rather crude approach based on conditional probabilities, it

provides a finer, richer description of the temporal dependency structure between events.

Figure 4.5 details the impact of the different types of orders on the arrival of M1
buy

orders.

Fig. 4.5 Impact functions on M1
buy

arrival intensity: the graph confirms that the most relevant

events to explain the instantaneous intensity of M1
buy

are M0
buy

, M1
buy

and L1
sell

We see that the intensity of aggressive market orders M1
buy

is primarily correlated with

previous market orders on the same side (M1
buy

and M0
buy

), which expresses the classical

clustering phenomenon. More interestingly, the fact that it is also highly correlated with

past aggressive limit orders is an evidence of the market taking effect. As already noted,

this market taking effect does not necessarily occur on the same side (L1
sell

), but rather,

affects both sides: L1
sell

and L1
buy

exhibit similar correlation levels with M1
buy

.
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Fig. 4.6 Impact functions on the six events O1
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For the sake of completeness, we provide in Fig. 4.6 the same results computed for the

six types of aggressive events. In order to plot only the most relevant information, an

arbitrary threshold of 6% is chosen: events for which the highest correlation coefficient is

lower than 6% are discarded. Also, possible asymmetries in the lagged correlation curves

between events of respective types i and j can be interpreted in terms of lead-lag

relationships.

The intensity of L1
buy

event is increased by the arrival of any Lbuy or Mbuy event. This

means that liquidity providers follow on average the market consensus and provide more

aggressive prices when the stock seems to move in the expected direction. Cancellations

show a primary correlation with limit orders on the same side. This corresponds to the

numerous observations where a new limit is rapidly cancelled. These results are clearly in

line with the conclusions of Section 4.4 based on the conditional probabilities.

As a final comment, Fig. 4.6 clearly shows that the bid and ask sides exhibit

symmetric behaviours with respect to all order types. This justifies the fact that many

empirical studies on limit order books merge samples from the bid and ask sides, as was

done in Section 4.3.1.

4.5 Conclusion

This chapter has provided numerous empirical evidences of the clustering of orders, of a

market making (or: Liquidity resilience) effect and also of a market taking effect (market

participants tends to seize the liquidity when it tightens the spread below usual levels).

Different methods have been presented, relying either on inter-arrival times or on

conditional probabilites of occurrence. These results lay the ground for the “better order

book models” that we present in Chapter 8.





CHAPTER5
Agent-based Modelling of Limit
Order Books: A Survey

5.1 Introduction

This chapter is dedicated to a review of agent-based models of limit order books, that is,

models depicting, at the individual agent level, possibly from a statistical point of view,

the interactions that lead to a transaction on a financial market. Far from being exhaustive,

the survey is based on selected models that we feel are representative of some important,

specific trends in agent-based modelling.

Although known, at least partly, for a long time – Mandelbrot (1963) gives a reference

for a paper dealing with non-normality of price time series in 1915, followed by several

others in the 1920’s – some stylized facts of asset returns (heavy tails, volatility

clustering, etc.) have often been left aside when modelling financial markets. They were

even often referred to as “anomalous” characteristics, as if observations failed to comply

with theory. Much has been done these past twenty years in order to address this

challenge and provide new models that can reproduce these facts. These recent

developments have been built on top of early attempts at modelling mechanisms of

financial markets with agents. Stigler (1964), investigating some rules of the SEC1, or

Garman (1976), investigating double-auction microstructure, belong to those historical

works. It seems that the first modern attempts at that type of models were made in the

field of behavioural finance. This field aims at improving financial modelling based on the

psychology and sociology of the investors. Models are built with agents who can

exchange shares of stocks according to exogenously defined utility functions reflecting

their preferences and risk aversions. LeBaron (2006a,b)shows that this type of modelling

offers good flexibility for reproducing some of the stylized facts and provides a review of

1Securities and Exchange Commission, the agency supervising the organization of regulator of the US stock exchanges
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that type of model. However, although achieving some of their goals, these models suffer

from many drawbacks: First, they are very complex, and it may be a very difficult task

to identify the role of their numerous parameters and the types of dependence on these

parameters; second, the chosen utility functions do not necessarily reflect what is observed

on the mechanisms of a financial market.

A sensible change in modelling appears with much simpler models implementing only

well-identified and presumably realistic “behaviour”: Cont and Bouchaud (2000) uses

noise traders that are subject to “herding”, i.e., formation of random clusters of traders

sharing the same view on the market. The idea is used in Raberto et al. (2001) as well. A

complementary approach is to characterize traders as fundamentalists, chartists or noise

traders. Lux and Marchesi (2000) propose an agent-based model in which these types of

traders interact. In all these models, the price variation directly results from the excess

demand: at each time step, all agents submit orders and the resulting price is computed.

Therefore, everything is cleared at each time step and there is no structure of order book

to keep track of orders.

One big step is made with models really taking into account limit orders and keeping

them in an order book once submitted and not executed.Chiarella and Iori (2002) build

an agent-based model where all traders submit orders depending on the three elements

identified in Lux and Marchesi (2000): Chartists, fundamentalists, noise. Orders submitted

are then stored in a persistent order book. In fact, one of the first simple models with this

feature was proposed in Bak et al. (1997). In this model, orders are particles moving along

a price line, and each collision is a transaction. Due to numerous caveats in this model, the

authors propose in the same paper an extension with fundamentalist and noise traders in

the spirit of the models previously evoked. Maslov (2000) goes further in the modelling

of trading mechanisms by taking into account fixed limit orders and market orders that

trigger transactions, and really simulating the order book. This model was analytically

solved using a mean-field approximation by Slanina (2001).

Following this trend of modelling, the more or less “rational” agents composing

models in Economics tends to vanish and be replaced by the notion of flows: orders are

not submitted any more by an agent following a strategic behaviour, but are viewed as an

arriving flow whose properties are to be determined by empirical observations of market

mechanisms. Challet and Stinchcombe (2001) propose a simple model of order flows:

limit orders are deposited in the order book and can be removed if not executed, in a

simple deposition-evaporation process. Bouchaud et al. (2002) use this type of model with

empirical distribution as inputs. Mike and Farmer (2008) is a very complete empirical

model, where order placement and cancellation models are proposed and fitted on

empirical data. Finally, new challenges arise as scientists try to identify simple

mechanisms that allow an agent-based model to reproduce non-trivial behaviours:
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Herding behaviour in Cont and Bouchaud (2000), dynamic price placement in Preis et al.

(2007), threshold behaviour in Cont (2007), etc.

5.2 Early Order-driven Market Modelling: Market Microstructure
and Policy Issues

The pioneering works in simulation of financial markets were aimed to study market

regulations. The very first one, Stigler (1964), tries to investigate the effect of regulations

of the SEC on American stock markets, using empirical data from the 1920s and the

1950s. Twenty years later, at the start of the computerization of financial markets,

Hakansson et al. (1985) implements a simulator in order to test the feasibility of

automated market making. We will not review the huge microstructure literature in the

line of the books by O’Hara (1997) or Hasbrouck (2007). However, by presenting a small

selection of early models, we underline here the grounding of recent order book

modelling.

5.2.1 A pioneer order book model

To our knowledge, the first attempt to simulate a financial market was by Stigler (1964).

This paper was a biting and controversial reaction to the Report of the Special Study of the

Securities Markets of the SEC [Cohen (1963b)], whose aim was to “study the adequacy

of rules of the exchange and that the New York stock exchange undertakes to regulate

its members in all of their activities” [Cohen (1963a)]. According to Stigler, this SEC

report lacks rigorous tests when investigating the effects of regulation on financial markets.

Stating that “demand and supply are [...] erratic flows with sequences of bids and asks

dependent upon the random circumstances of individual traders”, he proposes a simple

simulation model to investigate the evolution of the market. In this model, constrained by

simulation capability in 1964, price is constrained within L = 10 ticks. (Limit) orders

are randomly drawn, in trade time, as follows: they can be bid or ask orders with equal

probability, and their price level is uniformly distributed on the price grid. Each time

an order crosses the opposite best quote, it is a market order. All orders are of size one.

Orders not executed N = 25 time steps after their submission are cancelled. Thus, N is the

maximum number of orders available in the order book.

In the original paper, a run of a hundred trades was manually computed using tables of

random numbers. Of course, no particular results concerning the stylized facts of financial

time series was expected at that time. However, in his review of some order book models,

Slanina (2008) makes simulations of a similar model, with parameters L = 5000 and

N = 5000, and shows that price returns are not Gaussian: Their distribution exhibits power

law with exponent 0.3, far from empirical data. As expected, the limitation L is responsible

for a sharp cut-off of the tails of this distribution.
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5.2.2 Microstructure of the double auction

Garman (1976) provides an early study of the double auction market with a point of view

that does not ignore temporal structure, and really defines order flows. Price is discrete

and constrained to be within {p1, ..., pL}. Buy and sell orders are assumed to be submitted

according to two Poisson processes of intensities λ and μ. Each time an order crosses the

best opposite quote, it is a market order. All quantities are assumed to be equal to one.

The aim of the author was to provide an empirical study of the market microstructure.

The main result of its Poisson model was to support the idea that negative correlation of

consecutive price changes is linked to the microstructure of the double auction exchange.

This paper is very interesting because it can be seen as a precursor that clearly establishes

the challenges of order book modelling. First, the mathematical formulation is promising.

With its fixed constrained prices, Garman (1976) can define the state of the order book at

a given time as the vector (ni)i=1,...,L of awaiting orders (negative quantity for bid orders,

positive for ask orders). Future analytical models will use similar vector formulations that

can be cast into known mathematical processes in order to extract analytical results – see

for example, Cont et al. (2010) reviewed below. Second, the author points out that although

the Poisson model is simple, analytical solution is hard to work out, and he then provides

Monte Carlo simulation. The need for numerical and empirical developments is a constant

in all following models. Third, the structural question is clearly asked in the conclusion of

the paper: “Does the auction-market model imply the characteristic leptokurtosis seen in

empirical security price changes?”. The computerization of markets that was about to take

place when this research was published – Toronto’s CATS2 opened a year later in 1977 –

motivated many following papers on the subject.

5.2.3 Zero-intelligence

In the models by Stigler (1964) and Garman (1976), orders are submitted in a purely

random way on the grid of possible prices. Traders do not observe the market here and do

not act according to a given strategy. Thus, these two contributions clearly belong to a

class of “zero-intelligence” models. Gode and Sunder (1993) is (one of) the first papers to

introduce the expression “zero-intelligence” in order to describe non-strategic behaviour

of traders. It is applied to traders that submit random orders in a double auction market.

The expression has since been widely used in agent-based modelling, sometimes in a

slightly different meaning (see more recent models described in this review). In Gode and

Sunder (1993), two types of zero-intelligence traders are studied. The first are

unconstrained zero-intelligence traders. These agents can submit random order at random

prices, within the allowed price range {1, . . . , L}. The second are constrained

zero-intelligence traders. These agents submit random orders as well, but with the

2Computer Assisted Trading System
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constraint that they cannot cross their given reference price pR
i : Constrained

zero-intelligence traders are not allowed to buy or sell at loss. The aim of the authors was

to show that double auction markets exhibit an intrinsic “allocative efficiency” (ratio

between the total profit earned by the traders divided by the maximum possible profit)

even with zero-intelligence traders. An interesting fact is that in this experiment, price

series resulting from actions by zero-intelligence traders are much more volatile than the

ones obtained with constrained traders. This fact will be confirmed in future models

where “fundamentalists” traders, having a reference price, are expected to stabilize the

market (see Wyart and Bouchaud (2007) or Lux and Marchesi (2000) below). Note that

the results have been criticized by Cliff and Bruten (1997), who show that the observed

convergence of the simulated price towards the theoretical equilibrium price may be an

artefact of the model. More precisely, the choice of traders’ demand carry a lot of

constraints that alone explain the observed results.

Modern works in econophysics owe a lot to these early models or contributions.

Starting in the mid-90s, physicists have proposed simple order book models directly

inspired from physics, where the analogy “order ≡ particle” is emphasized. Three main

contributions are presented in the next section.

5.3 Order-driven Market Modelling in Econophysics

5.3.1 The order book as a reaction-diffusion model

A very simple model directly taken from physics was presented in Bak et al. (1997). The

authors consider a market with N noise traders able to exchange one share of stock at a

time. Price p(t) at time t is constrained to be an integer (i.e. price is quoted in number of

ticks) with an upper bound p̄: ∀t, p(t) ∈ {0, . . . , p̄}. Simulation is initiated at time 0 with

half of the agents asking for one share of stock (buy orders, bid) with price:

p j
b(0) ∈ {0, p̄/2}, j = 1, . . . , N/2, (5.1)

and the other half offering one share of stock (sell orders, ask) with price:

p j
s(0) ∈ { p̄/2, p̄}, j = 1, . . . , N/2. (5.2)

At each time step t, agents revise their offer by exactly one tick, with equal probability to

go up or down. Therefore, at time t, each seller (resp. buyer) agent chooses his new

price as:

p j
s(t + 1) = p j

s(t) ± 1 (resp. p j
b(t + 1) = p j

b(t) ± 1 ). (5.3)
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A transaction occurs when there exists (i, j) ∈ {1, . . . , N/2}2 such that pi
b(t + 1) =

p j
s(t + 1). In such a case the orders are removed and the transaction price is recorded as

the new price p(t). Once a transaction has been recorded, two orders are placed at the

extreme positions on the grid: pi
b(t + 1) = 0 and p j

s(t + 1) = p̄. As a consequence, the

number of orders in the order book remains constant and equal to the number of agents.

In Fig. 5.1, an illustration of these moving particles is given.

Fig. 5.1 Illustration of the Bak, Paczuski and Shubik model: White particles (buy orders,

bid) moving from the left, black particles (sell orders, ask) moving from the right.

Reproduced from Bak et al. (1997)

Table 5.1 Analogy between the A + B → ∅ reaction model and the order book in Bak et al.

(1997)

Physics Bak et al. (1997)

Particles Orders

Finite Pipe Order book

Collision Transaction

Following this analogy, it can thus be shown that the variation Δp(t) of the price p(t)
verifies:

Δp(t) ∼ t1/4

(
ln

(
t
t0

))1/2

. (5.4)

Thus, at long time scales, the series of price increments simulated in this model exhibit a

Hurst exponent H = 1/4. As for the stylized fact H ≈ 0.7, this sub-diffusive behaviour

appears to be a step in the wrong direction compared to the random walk H = 1/2.

Moreover, Slanina (2008) points out that no fat tails are observed in the distribution of the

returns of the model, but rather fits the empirical distribution with an exponential decay.

Other drawbacks of the model could be mentioned. For example, the reintroduction of

orders at each end of the pipe leads to unrealistic shape of the order book, as shown on

Fig. 5.2.
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Actually here is the main drawback of the model: “Moving” orders is highly unrealistic

as for modelling an order book, and since, it does not reproduce any known financial

exchange mechanism, it cannot be the base for any larger model.

Fig. 5.2 Snapshot of the limit order book in the Bak, Paczuski and Shubik model. Reproduced

from Bak et al. (1997)

Therefore, attempts by the authors to build several extensions of this simple framework,

in order to reproduce stylized facts by adding fundamental traders, strategies, trends, etc.

are not of interest for us in this review. However, we feel that the basic model as such is

very interesting because of its simplicity and its “particle” representation of an order-driven

market that has opened the way for more realistic models.

5.3.2 Introducing market orders

Maslov (2000) keeps the zero-intelligence structure of the Bak et al. (1997) model but adds

more realistic features in the order placement and evolution of the market. First, limit orders

are submitted and stored in the model, without moving. Second, limit orders are submitted

around the best quotes. Third, market orders are submitted to trigger transactions. More
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precisely, at each time step, a trader is chosen to perform an action. This trader can either

submit a limit order with probability ql or submit a market order with probability 1 − ql.

Once this choice is made, the order is a buy or sell order with equal probability. All orders

have a one unit volume.

As usual, we denote p(t) the current price. In case the submitted order at time step t+ 1

is a limit ask (resp. bid) order, it is placed in the book at price p(t) + Δ (resp. p(t) − Δ),

Δ being a random variable uniformly distributed in [0; ΔM = 4]. In case the submitted

order at time step t + 1 is a market order, one order at the opposite best quote is removed

and the price p(t + 1) is recorded. In order to prevent the number of orders in the order

book from large increase, two mechanisms are proposed by the author: Either keeping a

fixed maximum number of orders (by discarding new limit orders when this maximum is

reached), or removing them after a fixed lifetime if they have not been executed.

Numerical simulations show that this model exhibits non-Gaussian heavy-tailed

distributions of returns. In Fig. 5.3, the empirical probability density of the price

increments for several time scales are plotted.

Fig. 5.3 Empirical probability density functions of the price increments in the Maslov model.

In inset, log-log plot of the positive increments. Reproduced from Maslov (2000)

For a time scale δt = 1, the author fit the tails distribution with a power law with exponent

3.0, i.e. reasonable compared to empirical value. However, the Hurst exponent of the price
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series is still H = 1/4 with this model. It should also be noted that Slanina (2001)

proposed an analytical study of the model using a mean-field approximation.

This model brings very interesting innovations in order book simulation: order book

with (fixed) limit orders, market orders, necessity to cancel orders waiting too long in the

order book. These features are of prime importance in any following order book model.

5.3.3 The order book as a deposition-evaporation process

Challet and Stinchcombe (2001) continue the work of Bak et al. (1997) and Maslov

(2000), and develop the analogy between dynamics of an order book and an infinite

one-dimensional grid, where particles of two types (ask and bid) are subject to three types

of events: deposition (limit orders), annihilation (market orders) and evaporation
(cancellation). Note that annihilation occurs when a particle is deposited on a site

occupied by a particle of another type. The analogy is summarized in Table 5.2.

Table 5.2 Analogy between the deposition-evaporation process and the order book in Challet

and Stinchcombe (2001)

Physics Challet and Stinchcombe (2001)

Particles Orders

Infinite lattice Order book

Deposition Limit orders submission

Evaporation Limit orders cancellation

Annihilation Transaction

Hence, the model goes as follows: at each time step, a bid (resp. ask) order is deposited

with probability λ at a price n(t) drawn according to a Gaussian distribution centred on

the best ask a(t) (resp. best bid b(t)) and with variance depending linearly on the spread

s(t) = a(t)−b(t): σ(t) = Ks(t)+C. If n(t) > a(t) (resp. n(t) < b(t)), then it is a market

order: annihilation takes place and the price is recorded. Otherwise, it is a limit order and

it is stored in the book. Finally, each limit order stored in the book has a probability δ to

be cancelled (evaporation).

Figure 5.4 shows the average return as a function of the time scale. It appears that the

series of price returns simulated with this model exhibit a Hurst exponent H = 1/4 for

short time scales, and that tends to H = 1/2 for larger time scales. This behaviour might

be the consequence of the random evaporation process [which was not modelled in Maslov

(2000), where H = 1/4 for large time scales]. Although some modifications of the process

(more than one order per time step) seem to shorten the sub-diffusive region, it is clear that

no over-diffusive behaviour is observed.
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Fig. 5.4 Average return 〈rΔt〉 as a function of Δt for different sets of parameters

and simultaneous depositions allowed in the Challet and Stinchcombe model.

Reproduced from Challet and Stinchcombe (2001)

5.4 Empirical Zero-intelligence Models

The three models presented in Section 5.3 have successively isolated essential

mechanisms that are to be used when simulating a “realistic” market: One order is the

smallest entity of the model; the submission of one order is the time dimension (i.e. event

time is used, not an exogenous time defined by market clearing and “tatonnement” on

exogenous supply and demand functions); submission of market orders [as such in

Maslov (2000), as “crossing limit orders” in Challet and Stinchcombe (2001)] and

cancellation of orders are taken into account. On the one hand, one may try to describe

these mechanisms using a small number of parameters, using Poisson process with

constant rates for order flows, constant volumes, etc. This might lead to some analytically

tractable models, such as the ones presented in Chapters 6 and 7. On the other hand, one

may try to fit more complex empirical distributions to market data without analytical

concern.

The latter type of modelling is best represented by Mike and Farmer (2008). It is the first

model that proposes an advanced calibration on the market data as for order placement and

cancellation methods. As for volume and time of arrivals, assumptions of previous models

still hold: all orders have the same volume, discrete event time is used for simulation, i.e.
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one order (limit or market) is submitted per time step. Following Challet and Stinchcombe

(2001), there is no distinction between market and limit orders, i.e. market orders are limit

orders that are submitted across the spread s(t). More precisely, at each time step, one

trading order is simulated: An ask (resp. bid) trading order is randomly placed at n(t) =
a(t) + δa (resp. n(t) = b(t) + δb) according to a Student distribution with scale and

degrees of freedom calibrated on market data. If an ask (resp. bid) order satisfies δa <
−s(t) = b(t) − a(t) (resp. δb > s(t) = a(t) − b(t)), then it is a buy (resp. sell) market

order and a transaction occurs at price a(t) (resp. b(t).
During a time step, several cancellations of orders may occur. The authors propose an

empirical distribution for cancellation based on three components for a given order:

• The position in the order book, measured as the ratio y(t) = Δ(t)
Δ(0) where Δ(t) is the

distance of the order from the opposite best quote at time t,

• The order book imbalance, measured by the indicator Nimb(t) =
Na(t)

Na(t)+Nb(t)
(resp.

Nimb(t) =
Nb(t)

Na(t)+Nb(t)
) for ask (resp. bid) orders, where Na(t) and Nb(t) are the

number of orders at ask and bid in the book at time t,

• The total number N(t) = Na(t) + Nb(t) of orders in the book.

Their empirical study leads them to assume that the cancellation probability has an

exponential dependence on y(t), a linear one in Nimb and finally decreases approximately

as 1/Nt(t) as for the total number of orders. Thus, the probability P(C|y(t), Nimb(t), Nt(t))
to cancel an ask order at time t is formally written:

P(C|y(t), Nimb(t), Nt(t)) = A(1 − e−y(t))(Nimb(t) + B)
1

Nt(t)
, (5.5)

where the constants A and B are to be fitted on market data. Figure 5.5 shows that this

empirical formula provides a quite good fit on market data.

Finally, the authors mimic the observed long memory of order signs by simulating a

fractional Brownian motion. The auto-covariance function Γ(t) of the increments of such

a process exhibits a slow decay:

Γ(k) ∼ H(2H − 1)t2H−2 (5.6)

and it is therefore easy to reproduce exponent β of the decay of the empirical

autocorrelation function of order signs observed on the market with H = 1 − β/2.

The results of this empirical model are quite satisfying as for return and spread

distribution. The distribution of returns exhibit fat tails which are in agreement with

empirical data, as shown in Fig. 5.6.
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Fig. 5.5 Lifetime of orders for simulated data in the Mike and Farmer model, compared to

the empirical data used for fitting. Reproduced from Mike and Farmer (2008)

Fig. 5.6 Cumulative distribution of returns in the Mike and Farmer model, compared to the

empirical data used for fitting. Reproduced from Mike and Farmer (2008)



Agent-based Modelling of Limit Order Books: A Survey 57

The spread distribution is also very well reproduced. As their empirical model has been

built on the data of only one stock, the authors test their model on 24 other data sets of

stocks on the same market and find for half of them a good agreement between empirical

and simulated properties. However, the bad results of the other half suggest that such a

model is still far from being “universal”.

Despite these very nice results, some drawbacks have to be pointed out. The first one

is the fact that the stability of the simulated order book is far from ensured. Simulations

using empirical parameters in the simulations may bring situations where the order book

is emptied by large consecutive market orders. Thus, the authors require that there be at

least two orders on each side of the book. This exogenous trick might be important, since

it is activated precisely in the case of rare events that influence the tails of the

distributions. Also, the original model does not focus on volatility clustering. Gu and

Zhou (2009) propose a variant that tackles this feature. Another important drawback of

the model is the way order signs are simulated. As noted by the authors, using an

exogenous fractional Brownian motion leads to correlated price returns, which is in

contradiction with empirical stylized facts. We also find that at long time scales it leads to

a dramatic increase of volatility. As already seen in Chapter 2, the correlation of trade

signs can be at least partly seen as an artefact of execution strategies. Therefore this

element is one of the numerous that should be taken into account when “programming”

the agents of the model. In order to do so, we have to leave the (quasi) “zero-intelligence”

world and see how modelling based on heterogeneous agents might help to reproduce

non-trivial behaviours. Prior to presenting such developments in Chapter 8, we briefly

review some analytical works on the “zero-intelligence” models.

5.5 Some Analytical and Mathematical Developments in
Zero-intelligence Order Book Modelling

This last section is a brief introduction to the developments of Chapters 6 and 7.

Smith et al. (2003) investigates the scaling properties of some liquidity and price

characteristics in a limit order book model. These results are summarized in Table 5.3. In

Smith et al. (2003), orders arrive on an infinite price grid (This is consistent as the limit

orders arrival rate per price level is finite). Moreover, the arrival rates are independent of

the price level, which has the advantage of enabling the analytical predictions

summarized in Table 5.3.

These results are obtained by mean-field approximations, which assume that the

fluctuations at adjacent price levels are independent. This allows fruitful simplifications of

the complex dynamics of the order book. In addition, the authors do not characterize the

convergence of the coarse-grained price process in the sense of stochastic-process limits,

nor do they show that the limiting process is precisely a Wiener process (Theorem 6.5).
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Table 5.3 Results of Smith et al. ε := q/
(
λM/2λC

)
is a “granularity” parameter that

characterizes the effect of discreteness in order sizes, pc := λM/2λL
is a

characteristic price interval, and f and g are slowly varying functions

Quantity Scaling relation

Average asymptotic depth λL/λC

Average spread λM/λL f (ε, ΔP/pc)

Slope of average depth profile
(
λL

)2
/λMλCg(ε, ΔP/pc)

Price “diffusion” parameter at short time scales
(
λM

)2
λC/λLε−0.5

Price “diffusion” parameter at long time scales
(
λM

)2
λC/λLε0.5

Cont et al. (2010) is an important step in zero-intelligence modelling of limit order books,

because of the simplicity of the model and the consequent analytical tractability. In this

model, the bid and ask prices are integers, constrained on a grid {1, . . . , n} (in ticks). Limit

orders are submitted according to Poisson processes with rate λi, where i is the distance to

the opposite best price. i ≥ 0 ensures that these limit orders are not marketable. Market

orders are also Poisson, with rate μ. The rate of cancellations at a given price is

proportional to the volume standing in the book at that price, which is equivalent to

assume that each standing order can be cancelled after an exponential life time with

parameter θ > 0. All orders are unit-sized. This model is (one of) the first to clearly treat

the order book as a complex Markovian queueing system. The authors show that this

model admits a stationary state, propose some simulations and prove that some analytical

results for quantities of interest can be obtained, such as the probability of increase of the

mid-price, or the probability of execution before a mid-price move.

5.6 Conclusion

Several pioneering works in agent-based modelling of order-driven markets have been

reviewed in this chapter, and the emphasis has been set on the more statistical approaches.

Building on these earlier works, we will continue in Chapters 6, 8 and 9 our study of limit

order book models by introducing a proper mathematical and numerical framework.

Questions such as the ergodicity of the order book and invariance principles for the

suitably rescaled price process will be studied, and numerical analyses will be performed.
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CHAPTER6
The Mathematical Structure of
Zero-intelligence Models

6.1 Introduction

In this chapter, we introduce a general framework to study the mathematical properties of

limit order books in a Markovian context. One of our main motivations is to understand the

interplay between the structure of limit order books and more traditional objects of interest

on financial markets, namely, the price and spread dynamics. After casting the study of

limit order books in the appropriate setting of Markovian point processes, we derive several

mathematical results in the case of independent Poissonian arrival times. In particular, we

show that the cancellation rate plays an important role, ensuring the ergodicity of the order

book and the exponential convergence towards its stationary distribution. We also address

the convergence of the price process induced by the order book dynamics to a diffusive

process at macroscopic time scales. This natural question has attracted a lot of interest of

late, as it is an important building block in establishing the compatibility of microstructural

models with more classical models used in continuous time finance.

6.1.1 An elementary approximation: Perfect market making

We start with the simplest agent-based market model, which we call the Bachelier market

since it provides an order-driven representation of the Bachelier model for asset prices:

• The order book starts in a full state: All limits above PA(0) and below PB(0) are

filled with one limit order of unit size q. The spread starts equal to 1 tick;

• The flow of market orders is modeled by two independent Poisson processes M+(t)
(buy orders) and M−(t) (sell orders) with constant arrival rates (or intensities) λ+

and λ−;
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• There is one liquidity provider, who reacts immediately after a market order arrives

so as to maintain the spread constantly equal to 1 tick. He places a limit order on the

same side as the market order (i.e. a buy limit order after a buy market order and vice

versa) with probability u and on the opposite side with probability 1 − u.

The mid-price dynamics can be written in the following form

dP(t) = ΔP (dM+(t) − dM−(t))Z, (6.1)

where Z is a Bernoulli random variable

Z = 0 with probability (1 − u), (6.2)

and

Z = 1 with probability u, (6.3)

independent on M+ and M−, and the price increment ΔP is equal to the tick size.

The infinitesimal generator L associated with this dynamics is

L f (P) = u
[
λ+ ( f (P + ΔP) − f ) + λ− ( f (P − ΔP) − f )

]
, (6.4)

where f denotes a test function. It is well known that a continuous limit is obtained under

suitable assumptions on the intensity and tick size. Noting that Eq. (6.4) can be rewritten

as

L f (P) =
1

2
u

(
λ+ + λ−

)
(ΔP)2 f (P + ΔP) − 2 f + f (P − ΔP)

(ΔP)2

+ u
(
λ+ − λ−

)
ΔP

f (P + ΔP) − f (P − ΔP)
2ΔP

, (6.5)

and under the following assumptions

u
(
λ+ + λ−

)
(ΔP)2 −→σ2 as ΔP→ 0, (6.6)

and

u
(
λ+ − λ−

)
ΔP−→μ as ΔP→ 0, (6.7)

the generator converges to the classical diffusion operator

σ2

2

∂2 f
∂P2

+ μ
∂ f
∂P

, (6.8)
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corresponding to a Wiener process with drift. This simple case is worked out as an

example of the type of limit theorems that we will be interested in in the sequel. Ofcourse,

an alternate approach using the Functional Central limit Theorem (see Theorem C.8 in

Appendix C.2.2), yields a similar results: For given, fixed values of λ+, λ− and ΔP, the

rescaled-centred price process

P(nt) − nμt
σ
√

n
(6.9)

converges as n→ ∞, to a standard Wiener process, where

σ = ΔP
√
(λ+ + λ−) u, (6.10)

and

μ = ΔP
(
λ+ − λ−

)
u. (6.11)

One can easily achieve more complex diffusive limits such as a local volatility model, see

e.g., Ethier and Kurtz (2005) Theorem 4.1, by imposing that the limit is a function of P
and t:

u
(
λ+ + λ−

)
(ΔP)2 → σ2(P, t) (6.12)

and

u
(
λ+ − λ−

)
ΔP→ μ(P, t). (6.13)

This may indeed be the case if the original intensities are functions of P and t themselves.

6.2 Order Book Dynamics

In this section, we introduce the general setup and notations for the study of limit order

books.

6.2.1 Model setup: Poissonian arrivals, reference frame and boundary
conditions

Order book representation
Each side of the order book is supposed to be fully described by a f inite number of limits

K, ranging from 1 to K ticks away from the best available opposite quote. We use the

notation
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(a(t); b(t)) := (a1(t), . . . , aK(t); b1(t), . . . , bK(t)) ,

where a := (a1, . . . , aK) represents the ask side of the order book, ai being the number of

shares available i ticks away from the best opposite quote; and similarly for b :=
(b1, . . . , bK) on the bid side. In other words, we adopt a f inite moving f rame. This

representation reflects faithfully the limit order books as seen by traders on their screens.

For this reason, a, b will sometimes be referred to as the visible limits. Note that this

representation is different from the ones used in Cont et al. (2010) or Smith et al. (2003)

(see also Gatheral and Oomen (2010) for an interesting discussion).

The quantities ai, bi’s are supposed to live in the discrete space qZ, where q ∈ N∗ is

the minimum order size on each specific market (the lot size), but most of our results can

be extended to the more general case of real-valued ai, bis when orders arrive with random

sizes.

Of interest are also the integrated quantities, introduced in Chapter 3, that describe the

shape of the order book: They are the cumulative depth A, B defined by

Ai :=
i∑

k=1

ak, (6.14)

and

Bi :=
i∑

k=1

|bk|. (6.15)

Also useful are the generalized inverse functions thereof

A−1(q′) := inf{p : Ap > q′}, (6.16)

and

B−1(q′) := inf{p : Bp > q′}, (6.17)

where q′ designates a certain quantity of shares. For the sake of notational simplicity, one

can conveniently introduce the indices corresponding to the first non-empty limit. Their

common value, which will be denoted by iS , is equal to the spread S in number of ticks:

iS := A−1(0) = B−1(0) =
S

ΔP
. (6.18)

The boundary conditions described below will ensure that iS < ∞.
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Boundary conditions
Constant boundary conditions are imposed outside the moving frame of size 2K: every

time the moving frame leaves a price level, the number of shares at that level is set to

a∞ or b∞, depending on the side of the book. Our choice of a finite moving frame and

constant boundary conditions has three motivations: Firstly, it assures that the order book

does not become empty and that the best ask (resp. best bid) price PA (resp. PB) is always

defined. Secondly, it keeps the spread S and the increments of PA, PB bounded - this will

be important when addressing the scaling limit of the price. Thirdly, it helps make the order

book model Markovian, as we do not keep track of the price levels that have been visited,

and then left, by the moving frame at some prior time.

Figure 6.1 is a representation of the order book using the above notations.

Fig. 6.1 Order book dynamics: In this example, K = 9, q = 1, a∞ = 4, b∞ = −4.

The shape of the order book is such that a = (0, 0, 0, 0, 1, 3, 5, 4, 2) and b =
(0, 0, 0, 0,−1, 0,−4,−5,−3). The spread in ticks is given by iS = 5. Assume

that a sell market order arrives, then a, b, iS become a′ = (0, 0, 0, 0, 0, 0, 1, 3, 5),

b′ = (0, 0, 0, 0, 0, 0,−4,−5,−3) and i′S = 7. Assume instead that a new buy

limit order arrives one tick away from the best ask price, then a′ = (1, 3, 5,

4, 2, 4, 4, 4, 4), b′ = (−1, 0, 0, 0,−1, 0,−4,−5,−3) and i′S = 1. Extracted

fromAbergel and Jedidi (2013)
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Arrival of Orders
The state of the order book evolves under the action of the agents operating on the market

via the following events:

• arrival of a new market order;

• arrival of a new limit order;

• cancellation of an already existing limit order.

These events are described by independent Poisson processes:

• M±(t): Counting processes of market orders, with constant intensities λM+
and λM− ;

• L±i (t): Counting processes of limit orders at level i, with constant intensities λL±
i ;

• C±i (t): Counting processes of cancellations of limit orders at level i, with stochastic

intensities λC+

i ai and λC−
i |bi|.

The superscript “+” (respectively “−”) refers to the ask (respectively bid) side of the

book. Also, as already mentioned in Paragraph 6.2.1, all orders have a fixed unit size q.

This assumption is convenient to carry out our analysis and is, for now, of secondary

importance in the general questions we are addressing. Its influence on the limit order

book - particularly, its shape - will be put under careful scrutiny in Chapter 7.

Note that the intensity of the cancellation process at level i is proportional to the

available quantity at that level. This assumption is equivalent to saying that each order at

level i has a lifetime drawn from an exponential distribution with intensity λC±
i . This strict

proportionality assumption will be somewhat relaxed in Section 6.4. Note finally that buy

limit orders L−i (t) arrive below the ask price PA(t), and sell limit orders L+
i (t) arrive

above the bid price PB(t).

6.2.2 Evolution of the order book

We can write the following coupled stochastic differential equations (SDE) for the

quantities of outstanding limit orders on each side of the order book:

dai(t) = −1{ai(t)�0} (q −Ai−1)+ dM+(t) + qdL+
i (t) − qdC+

i (t)

+
(
JM− (a) − a

)
i
dM−(t) +

K∑
i=1

(
JL−i (a) − a

)
i
dL−i (t)

+
K∑

i=1

(
JC−i (a) − a

)
i
dC−i (t), (6.19)
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and

dbi(t) = 1{bi(t)�0} (q −Bi−1)+ dM−(t) − qdL−i (t) + qdC−i (t)

+
(
JM+

(b) − b
)
i
dM+(t) +

K∑
i=1

(
JL+i (b) − b

)
i
dL+

i (t)

+
K∑

i=1

(
JC+

i (b) − b
)
i
dC+

i (t) (6.20)

(remember that, by convention, the bis are non-positive). In Eqs (6.19) and (6.20), the first

three terms describe in a straightforward manner the evolution of the queue at a given limit

i under the influence of the three type of events that can directly affect it:

• A buy market order decreasing by an amount q the first non-zero limit on the ask side,

possibly hitting the liquidity reservoir if all visible limits are empty (and similarly on

the bid side);

• A new limit order increasing by an amount q the corresponding limit;

• A cancellation order decreasing by an amount q the corresponding limit.

By assumption, the intensity of the point processes triggering a cancellation is 0 when the

corresponding quantity is 0, avoiding all inconsistencies. As for the market orders, no such

assumption is made, hence, the use of the indicator function.

As for the J’s, they are shi f t operators corresponding to the renumbering of the ask

side following an event affecting the bid side of the book and vice versa. For instance the

shift operator corresponding to the arrival of a sell market order dM−(t) of size q is

JM− (a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝0, 0, . . . , 0︸������︷︷������︸
k times

, a1, a2, . . . , aK−k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6.21)

with

k = inf{p :
p∑

j=1

|b j| > q} − inf{p : |bp| > 0} (6.22)

= A−1(q) − iS

[with the notations introduced in Eqs (6.14) and (6.15)], expressing the fact that the limit

order book always has exactly K visible limits, and that the reference price for the ask

side of the book possibly changes if a sell market order eats up all the available liquidity
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at the best bid price. Similarly, the cancellation of a limit order at thebest bid will have

exactly the same effect on the ask side:

JC−iS (a) = JM− (a) , (6.23)

whereas a cancellation at other limits on the bid side has no effect on the ask side. Finally,

a new buy limit order within the spread, k ticks away from the previous best bid price,

will shift the ask side according to

JL−i (a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝a1+k, a2+k, . . . , aK , a∞, ..., a∞︸�����︷︷�����︸
k times

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6.24)

with

k := iS − i > 0.

Of course, similar expressions can be derived for the shift operators acting on the bid side

of the order book.

In the next sections, we will study some general properties of the order book, starting

with the generator associated with this 2K-dimensional continuous-time Markov chain.

6.2.3 Infinitesimal generator

The following result characterizes the generator associated to the Markovian point

process driving the order book (basic definitions concerning point processes are recalled

in Appendix C, see also Brémaud (1981) Daley and Vere-Jones (2003) Daley and

Vere-Jones (2008) for an in-depth treatment).

Proposition 6.1 The infinitesimal generator associated to the dynamics of the
limit order book is the operator L defined by

L f (a; b) = λM+ (
f
(
[ai − (q − A(i − 1))+]+; JM+

(b)
)
− f

)

+
K∑

i=1

λL+
i

(
f
(
ai + q; JL+i (b)

)
− f

)

+
K∑

i=1

λC+

i ai

(
f
(
ai − q; JC+

i (b)
)
− f

)

+ λM−( f
(
JM− (a) ; [bi + (q − B(i − 1))+]−

)
− f

)
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+
K∑

i=1

λL−
i

(
f
(
JL−i (a) ; bi − q

)
− f

)

+
K∑

i=1

λC−
i |bi|( f

(
JC−i (a) ; bi + q

)
− f ), (6.25)

where we write f (ai; b) instead of f (a1, . . . , ai, . . . , aK ; b) etc. to ease the
notations, and

x+ := max(x, 0), x− := min(x, 0), x ∈ R. (6.26)

The operator above, although cumbersome to put in writing, is simple to decipher: A series

of standard difference operators corresponding to the “deposition-evaporation” of orders at

each limit, combined with the shift operators expressing the moves in the best limits and

therefore, in the origins of the frames for the two sides of the order book. Note the coupling

of the two sides: the shifts on the as depend on the bs, and vice versa. More precisely the

shifts depend on the profile of the order book on the other side. Also, one can easily check

that the formulation with an indicator function for the case of empty limits is equivalent to

its reformulation with the nested positive parts.

6.2.4 Price dynamics

We now focus on the dynamics of the best ask and bid prices, denoted by PA(t) and PB(t).
One can write the following SDE:

dPA(t) = ΔP[
(
A−1(q) − iS

)
dM+(t)

−
K∑

i=1

(iS − i)+dL+
i (t) +

(
A−1(q) − iS

)
dC+

iS
(t)] (6.27)

and

dPB(t) = −ΔP[
(
B−1(q) − iS

)
dM−(t)

−
K∑

i=1

(iS − i)+dL−i (t) +
(
B−1(q) − iS

)
dC−iS (t)], (6.28)

which describe the various events that affect them: change due to a market order, change

due to limit orders inside the spread, and change due to the cancellation of a limit order at

the best price. Equivalently, the respective dynamics of the mid-price and the spread are:
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dP(t) =
ΔP
2

[(
A−1(q) − iS

)
dM+(t) −

(
B−1(q) − iS

)
dM−(t)

−
K∑

i=1

(iS − i)+dL+
i (t) +

K∑
i=1

(iS − i)+dL−i (t)

+
(
A−1(q) − iS

)
dC+

iS
(t) −

(
B−1(q) − iS

)
dC−iS (t)

]
, (6.29)

dS (t) = ΔP
[(

A−1(q) − iS
)

dM+(t) +
(
B−1(q) − iS

)
dM−(t)

−
K∑

i=1

iS − i)+dL+
i (t) −

K∑
i=1

(iS − i)+dL−i (t)

+
(
A−1(q) − iS

)
dC+

iS
(t) +

(
B−1(q) − iS

)
dC−iS (t)

]
. (6.30)

The equations above are interesting in that they relate in an explicit way the profile of the

order book to the size of an increment of the mid-price or the spread, therefore linking

the price dynamics to the order flow. For instance the conditional infinitesimal drifts of the

mid-price and the spread, given the shape of the order book at time t, are given by:

E [dP(t)| (a; b)] =
ΔP
2

[(
A−1(q) − iS

)
λM+ −

(
B−1(q) − iS

)
λM−

−
K∑

i=1

(iS − i)+λL+
i +

K∑
i=1

(iS − i)+λL−
i

+
(
A−1(q) − iS

)
λC+

iS aiS −
(
B−1(q) − iS

)
λC−

iS |biS |
]

dt, (6.31)

E [dS (t)| (a; b)] = ΔP
[(

A−1(q) − iS
)
λM+

+
(
B−1(q) − iS

)
λM−

−
K∑

i=1

(iS − i)+λL+
i −

K∑
i=1

(iS − i)+λL−
i

+
(
A−1(q) − iS

)
λC+

iS aiS +
(
B−1(q) − iS

)
λC−

iS |biS |
]

dt. (6.32)

6.3 Ergodicity and Diffusive Limit

In this section, our interest lies in the following questions:

(i) Is the order book model defined above stable?

(ii) What is the stochastic-process limit of the price at large time scales?
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6.3.1 Ergodicity of the order book

Denote by Qt(X, .) the transition probability function at time t of the Markov process Xt

starting from X at time 0, and by ||μ|| the total variation norm of a probability measure μ

(see Appendix C.2.1 for details). Then, the following result holds:

Theorem 6.2 If λC = min1≤i≤K{λC±
i } > 0, then (X(t))t≥0 = (a(t); b(t))t≥0

is an ergodic Markov process. In particular (X(t)) has a unique stationary

distribution Π. Moreover, the rate of convergence of the order book to its
stationary state is exponential. That is, there exist r, 0 < r < 1, and R < ∞
such that

||Qt(X, .) −Π(.)|| ≤ RrtV(X), t ∈ R+, X ∈ S. (6.33)

Proof Let

V(X) := V(a; b) :=
K∑

i=1

ai +
K∑

i=1

|bi|+ q (6.34)

be the total number of shares in the book (+q shares). V is a positive function

and tends to +∞ as a; b tend to∞: in other words, V is coercive.

Using the expression of the infinitesimal generator Eq. (6.25) we have

LV (X) ≤ −
(
λM+

+ λM−) q +
K∑

i=1

(
λL+

i + λL−
i

)
q −

K∑
i=1

(
λC+

i ai + λ
C−
i |bi|

)
q

+
K∑

i=1

λL−
i (iS − i)+a∞ +

K∑
i=1

λL+
i (iS − i)+|b∞| (6.35)

≤ −
(
λM+

+ λM−) q +
(
ΛL− + ΛL+

)
q − λCqV(X)

+ K
(
ΛL−a∞ + ΛL+ |b∞|

)
, (6.36)

where

ΛL± :=
K∑

i=1

λL±
i and λC := min

1≤i≤K
{λC±

i } > 0. (6.37)

The first three terms on the right hand side of inequality Eq. (6.35) correspond

respectively to the arrival of a market, limit or cancellation order, ignoring the

effect of the shift operators. The last two terms are due to shifts occurring

after the arrival of a limit order inside the spread. The terms due to shifts
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occurring after market or cancellation orders (which we do not put in the RHS of

Eq. (6.35)) are negative, hence, the inequality. To obtain inequality Eq. (6.36),

we used the fact that the spread iS is bounded by K + 1 - a consequence of the

boundary conditions we impose - and hence (iS − i)+ is bounded by K.

The drift condition Eq. (6.36) can be rewritten as

LV (X) ≤ −βV(X) + γ, (6.38)

which is readily improved to

LV (X) ≤ −βV(X) + γ1K (6.39)

for some positive constants β, γ and a compact subset K of the state space, thanks

to the coercivity of the Lyapunov function V . Inequality Eq. (6.39), together with

the countability of the state space ensuring that all compact sets are petite sets

in the sense of Meyn and Tweedie (2009) (see Appendix C.2.1 for a discussion

and precise references) for a discussion and precise references) let us assert that

(X) is V-uniformly ergodic, hence Eq. (6.33).

As an easy consequence, there holds the following corollary:

Corollary 6.3 The spread S (t) = iS ΔP has a well-defined stationary
distribution.

6.3.2 Large-scale limit of the price process

This section is devoted to the asymptotics of the suitably rescaled, centered price process.

Such limit theorems are actively researched of late: In Cont and de Larrard (2012), the

authors show that in a simplified model of an order book for a liquid stock, one can derive a

diffusive limit for the volume at the best quotes of the book. These types of results are also

the focus of Guo et al. (2015), which also deals with the relative position of an order inside

the queue. Other limit theorems are obtained in Horst and Paulsen (2015). The authors

prove that under some simplifying assumptions and a specific scaling, one may obtain in

the limit coupled differential equations for the bid and ask price dynamics, as well as the

for the shape of the order book. A somewhat related description of the limiting shapes of

the order book as solution of differential equations is also the subject of Gao et al. (2014).

Our treatment of these questions combines the ergodic theory of Markov processes with

martingale convergence theorems. This approach is extremely general and flexible, and

prone to many generalizations for Markovian models of limit order books. We state and

prove our main result concerning the long-time price dynamics in the case of Poissonian

arrival times. The case of more general drivers will be studied in Chapter 8.
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For notational convenience, we recast the equation for the price, or rather, any of the

prices, under the general form

Pt =

∫ t

0

∑
i

Fi (X(u)) dNi(u), (6.40)

where the Ni’s are the point processes driving the events affecting the limit order book,

νi ≡ νi (X) is the (possibly state-dependent) intensity of Ni, and the Fi’s are the jumps in

the price of interest when process Ni jumps.

Denote by Π the stationary distribution of X as provided by Proposition 6.2. Using the

Ergodic Theorem C.7 together with the Martingale Convergence Theorem C.8, one can

show the following proposition:

Proposition 6.4 Consider the price process described by Eq. (6.40) above, and
introduce the sequence of martingales P̂n formed by the centered, rescaled price

P̂n(t) ≡ P(nt) − Q(nt)√
n

,

where Q is the predictable compensator of P

Qt =
∑

i

∫ t

0
νi (X(s)) Fi (X(s)) ds.

Then, P̂n converges in distribution to a Wiener process σ̂W, where the volatility
σ̂ is given by

σ̂2 = lim
t→+∞

1

t

∑
i

∫ t

0
νi (X(s)) (Fi (X(s)))2 ds

=
∑

i

∫
νi (X) (Fi (X))2 Π (dX) (6.41)

(where we use, with a slight abuse of notations, the same letter for a process and
the corresponding state variable in the state space).

Proof Proposition 6.4 will follow from the convergence of the predictable

quadratic variation of P̂n. By construction, there holds

< P̂n, P̂n > (t) =
1

n

∑
i

∫ nt

0
νi (X(s)) (Fi (X(s)))2 ds,
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or else

< P̂n, P̂n > (t) = t(
1

n

∑
i

∫ nt

0
νi (X(s)) (Fi (X(s)))2 ds),

and Theorem C.7 ensures that

a.s.
lim

t→+∞
1

nt

∑
i

∫ nt

0
νi (X(s)) (Fi (X(s)))2 ds

=
∑

i

∫
νi (X) (Fi (X))2 Π(dX)

whenever the integrability conditions in Theorem C.7 are satisfied. Now, those

are easily seen to hold true, since, the integrand in the predictable quadratic

variation is a bounded function. As a matter of fact, the only possibly unbounded

term would come from the intensity of cancellation orders, proportional to the

ai, |bi|’s. However, whenever a cancellation order causes a price change, then

necessarily, the book is in a state where the quantity at the best limit that moves

is precisely equal to q. Hence, the boundedness follows.

The other condition for the martingale convergence theorem to apply is

trivially satisfied, since, the size of the jumps of P̂n is bounded by C√
n
, C being

some constant.

Appealing as it first seems, Proposition 6.4 is not satisfactory: In order to give a more

precise characterization of the dynamics of the rescaled price process, it is necessary to

understand thoroughly the behaviour of its compensator Qnt. As a matter of fact, Qnt itself

satisfies an ergodic theorem, and if its asymptotic variance is not negligible with respect

to nt, one cannot conclude directly from Proposition 6.4 that the rescaled price process Pnt√
n

behaves like a Wiener process with a deterministic drift.

The next result provides a more accurate answer, valid under general ergodicity

conditions.

Theorem 6.5 Write as above the price

Pt =
∑

i

∫ t

0
Fi (X(s)) dNi(s)

and its compensator

Qt =
∑

i

∫ t

0
νi (X(s)) Fi (X(s)) ds.
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Define

h =
∑

i

νi (X) Fi (X)

and let

α =
a.s.
lim

t→+∞
1

t

∑
i

∫ t

0
νi (X(s)) (Fi (X(s))) ds =

∫
h(X)Π(dX).

Finally, introduce the solution g to the Poisson equation

Lg = h − α (6.42)

and the associated martingale

Zt = g(X(t))−g(X(0))−
∫ t

0
Lg(X(s))ds ≡ g(X(t))−g(X(0))−Q(t)+αt.

Then, the deterministically centred, rescaled price

P̄n(t) ≡ P(nt) − αnt√
n

converges in distribution to a Wiener process σ̄W. The asymptotic volatility σ̄
satisfies the identity

σ̄2 = lim
t→+∞

1

t

∑
i

∫ t

0
νi (X(s))

((
Fi − Δi(g)

)
(X(s))

)2
ds (6.43)

≡
∑

i

∫
νi (X)

((
Fi − Δi(g)

)
(X)

)2
Π(dX) (6.44)

where Δi(g) (X) denotes the jump of the process g(X) when the process Ni

jumps and the limit order book is in the state X.

Proof The martingale method, see e.g., Glynn and Meyn (1996) Duflo (1990)

Jacod and Shyriaev (2003), consists in rewriting the price process under the form

P(t) = (P(t) − Q(t)) − Z(t) + g(X(t)) − g(X(0)) + αt (6.45)

≡ (M(t) − Z(t)) + g(X(t)) − g(X(0)) + αt,
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so that

P̄n(t) =
M̃(nt) + g(X(t)) − g(X(0))√

n
,

where M̃ = M − Z is a martingale. Therefore, the theorem is proven if (see

Glynn and Meyn (1996), Theorem 4.2 or Bhattacharya (1982)) one can show that
g(X(t))−g(X(0))√

n
converges to 0 in L2 (Π(dX)), or simply, that g ∈ L2 (Π(dX)).

Theorem 4.4 of Glynn and Meyn (1996)states that the condition

h2 � V (6.46)

(where V is a Lyapunov function for the process) is sufficient for g to be in

L2 (Π(dX)) - however, Condition Eq. (6.46) is trivially satisfied since, h is

bounded.

6.3.3 Interpreting the asymptotic volatility

A general formula for the low frequency volatility of the price process is provided in

Eq. (6.43); it is related to the frequency of events that cause a price change, and to the size

of price jumps when a change occurs. Although, Formula (6.43) can easily be

implemented numerically by using its formulation as a time average, its analytical

computation requires the knowledge of the stationary distribution of the order book.

However, some simplifying hypotheses help shed some light on its interpretation and

qualitative dependency on the model parameters. Assume for instance that one is

interested in modelling large tick assets, for which the price change is always equal to 1

tick. In our framework, this is made possible by choosing K = 1: only one limit on each

side of the order book is modelled. In this case, all the Fi’s introduced in Section 6.3.2 are

equal to 1 or 0, and the asymptotic variance can be rewritten by separating the events that

change the price from those that do not.

Similarly to the empirical approach presented in Section 4.4.1, let us classify market,

limit and cancellation orders depending on whether they change the price or not, using a 1

(resp. 0) superscript to indicate that the event changes (resp. does not change) the price:

M± = M±,1 + M±,0,

L±i = L±,1
i + L±,0

i ,

C±i = C±,1
i +C±,0

i .
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Now, should all these processes be independent Poisson processes, the asymptotic variance

would be given using Eqs (6.41) or (6.43) (see comment below) by

σ̄2 = (ΔP)2

⎛⎜⎜⎜⎜⎜⎜⎝λM+,1 + λM−,1 +
∑

i

(
λL+,1

i + λL−,1
i

)
+ λC+,1

iS
+ λC−,1

iS

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where all the quantities involved are easily interpreted, and can be measured empirically

from the data.

Another interesting question concerning Formula (6.43) is the role played by the

correcting term coming from the solution g to the Poisson Eq. (6.42). In the case of

Poisson arrival for the price-changing processes and deterministic price changes, the

right-hand-side of Eq. (6.42). is 0, so that the correcting terms are also 0: Formulae (6.41)

and (6.43) coincide. In general this is not the case, and one should find an estimate of the

correcting terms - essentially, a control of the variance of h =
∑

i ν
i (X) Fi ((X)) when

the λis are now random. This more general case is analytically very intricate, although

easily attainable via numerical simulations.

6.4 The Role of Cancellations

In this short section, we address in more generality the role played by the cancellation rate

in the ergodicity and price diffusivity of the limit order book model introduced in

Section 6.2. The results presented here rely on the use of a more general Lyapunov

function, and require a less stringent condition on the cancellation rate.

Assume now that in the set of assumptions listed in 6.2.1, those concerning the

cancellation rates are modified as follows:

• C±i (t): Cancellation of a limit order at level i, with intensity λC+

i (a; b) and

λC−
i (a; b), where the functions λC+

i and λC−
i are positive, bounded away from 0 and

tend to∞ as (a; b) → ∞.

Then, there holds the

Proposition 6.6 The properties stated in Theorem 6.2 and Theorem 6.5 hold
without change.

Proof The method is exactly the same, based on the use of an adhoc Lyapunov

function. Of course, the linear function V introduced in the proof of Theorem 6.2

(see (8.5)) does not work under the general assumptions 6.4. However, it is

straightforward to check that the function

Ṽ (X) := exp (V (X)) (6.47)
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actually solves the problem: Upon calculating LṼ as in the proof of

Theorem 6.2, one easily sees that the exponential factors out and - since by

assumption the intensity of incoming limit orders is dominated by that of the

cancellation orders - that an inequality of the form

LṼ � −β′Ṽ + γ′ (6.48)

(compare to Eq. (6.39)) holds for some positive constants β′, γ′. Consequently,

the ergodicity of the limit order book is proven in a similar fashion. As for the

dynamics of the rescaled price process and its convergence to a Wiener process,

one simply observes again that the RHS h of the Poisson Eq. (6.42) is still a

bounded function, so that one can safely apply Theorem 4.4 in Glynn and Meyn

(1996) to obtain the FCLT exactly as in the proof of Theorem 6.5.

6.5 Conclusion

In this chapter, we have analysed a simple Markovian order book model, in which

elementary changes in the price and spread processes are explicitly linked to the

instantaneous shape of the order book and the order flow parameters. Our assumptions

are: independent arrivals of orders of different types, strong intensity of cancellations,

constant order sizes, and the presence of two reservoirs of liquidity K ticks away from the

best quotes.

Two fundamental properties were investigated: the ergodicity of the order book and

the large-scale limit of the price process. The first property is desirable in that it assures

the stability of the order book in the long run, and gives a theoretical underpinning to

statistical measurements on order book data. The second addresses the natural question of

the behaviour of the price sampled at lower frequency, and relates it to a Wiener process.

In a sense, this chapter serves as a mathematical justification to the simple Bachelier model

of asset prices, from a market microstructure perspective.

We believe that the approach presented here is interesting mainly for the introduction

of a general framework and a set of mathematical tools well-suited to further investigations

of more sophisticated models. Some results in this direction will be presented in Chapter 8.

Meanwhile, the next chapter focuses on a different, yet also quite natural question: that of

the shape of a limit order book, and its sensitivity to the size of incoming orders.



CHAPTER7
The Order Book as a Queueing
System

7.1 Introduction

In this chapter, we move forward on the mathematical study of zero-intelligence models by

deriving some analytical properties of a limit order book under the assumptions introduced

in Section 6.2. The model is then extended to the case of random order sizes, thereby

allowing to study the relationship between the size of the incoming limit orders and the

shape of the order book.

Recall that the shape of the order book is simply the function which for any price gives

the number of shares standing in the order book at that price; and the cumulative shape up

to price p is the total quantity offered in the order book between the best limit and price p.

If the limit order book is ergodic, the (cumulative) shape admits a stationary distribution,

and its expectation with respect to this stationary distribution will be simply called the

average (cumulative) shape.

Understanding the average shape of an order book and its link to the order flows is

not straightforward. The first empirical observations of the shape of an order book stated

that, at least for the first limits, the shape of the order book is increasing away from the

spread (Biais et al. 1995). With better data, one can complement this view and state that

“the average order book has a maximum away from the current bid/ask, and a tail reflecting

the statistics of the incoming orders” (Bouchaud et al. 2002; Potters and Bouchaud, 2003),

i.e. that the limit order book is hump-shaped. The decrease of the tail of the order book

is difficult to estimate because one needs complete data, including limit orders submitted

far away from the best quotes, which is often not disclosed by exchanges. A power law

decrease (Bouchaud et al. 2002) or an exponential decrease (Gu et al. 2008) or even a

whole lognormal shape (Preis et al. 2006) have been suggested.
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The hump-shaped order book appears quite easily in simulations, as we will see later in

Chapter 9. Studying simulation results, Cont et al. (2010) observe that “the average profile

of the order book displays a hump [. . . ] that does not result from any fine-tuning of model

parameters or additional ingredients such as correlation between order flow and past price

moves”, but no explicit link between the average shape and the order flows is made. The

results presented in this chapter hopefully closes this gap, at least partially.

7.2 A Link Between the Flows of Orders and the Shape of an Order
Book

7.2.1 The basic one-sided queueing system

The aim of this section is to present the basic one-sided order book model, discuss the

relevance of its assumptions and recall some results from queueing theory in the context of

this order book model. Let us consider a one-sided order book model, i.e. a model in which

all limit orders are ask orders, and all market orders are buy orders. Bid price is assumed

to be constantly equal to zero, and consequently spread and ask price are identically equal.

From now on, this quantity will be simply referred to as the price. We will use the notations

already introduced in Chapter 6, sometimes slightly simplified to the one-sided setting of

this chapter. Let PA(t) denote the price at time t. {PA(t), t ∈ [0 ∈ ∞)} is a continuous-

time stochastic process with value in the discrete set {1, . . . , K}. In other words, the price

is given in number of ticks. Let ΔP be the tick size, such that the price range of the

model in currency is actually {ΔP, . . . , KΔP}. For realistic modelling and empirical fitting

performance, one may assume that the maximum price K is chosen very large, but in fact

it will soon be obvious that this upper bound does not affect in any way the order book for

lower prices. For all i ∈ {1, . . . , K}, (ask) limit orders at price i are submitted according to a

Poisson process with parameter λL
i (we drop the ± of the notation introduced in Chapter 6,

since we only deal with one side of the book and all limit orders are ask orders). These

processes as assumed to be mutually independent, so that the number of orders submitted

at prices 1 . . . , r is a Poisson process with parameter ΛL
r defined as ΛL

r =
∑r

i=1 λ
L
i . All

limit orders standing in the book may be cancelled. It is assumed that the time intervals

between submission and cancellation form a set of mutually independent random variables

identically distributed according to an exponential distribution with parameter λC > 0

(here again we simplify the notation of Chapter 6, dropping the unnecessary index and

± symbol). Finally, (buy) market orders are submitted at random times according to a

Poisson process with parameter λM . Note that all orders are assumed to be of unit size.

This restriction will be dropped in Sections 7.4 et sq.

Still using the notations of Chapter 6, let {Ak(t), t ∈ [0,∞)} be the stochastic process

representing the number of limit orders at prices 1, . . . , k standing in the order book at

time t. Ak is thus the cumulative shape of the order book in our model. Ak can be viewed
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as a birth-death process with birth rate ΛL
k and death rate λM + nλC in state n ; it may

equivalently be viewed as the size of a M/M/1+ M queueing system with arrival rate ΛL
k ,

service rate λM and reneging rate λC (see e.g., (Feller, 1968, Chapter XVII) or (Brémaud,

1999, Chapter 8) among many textbook references). This queueing system will now be

refered to as the 1 → k queueing system. Ak admits a stationary distribution πAk(·) as

soon as λC > 0. The matrix form of the infinitesimal generator is written:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ΛL
k ΛL

k 0 0 0 . . .

λM + λC −(ΛL
k + λ

M + λC) ΛL
k 0 0 . . .

0 λM + 2λC −(ΛL
k + λ

M + 2λC) ΛL
k 0 . . .

...
...

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.1)

The infinitesimal generator is here conveniently written in matrix form in this discrete

setting, but note that it is equivalent to the functional operator form L used in Chapter 6.

The stationary probability πAk is classically obtained and written for all n ∈N∗:

πAk(n) = πAk(0)
n∏

i=1

ΛL
k

λM + iλC , (7.2)

and setting
∑∞

n=0 πAk(n) = 1 gives:

πAk(0) =

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑

n=0

n∏
i=1

ΛL
k

λM + iλC

⎞⎟⎟⎟⎟⎟⎟⎠
−1

. (7.3)

Introducing the normalized parameters Λ̄L
k =

ΛL
k
λC and λ̄M = λM

λC , and after some

simplifications, we write for all n ∈N:

πAk(n) =
e−Λ̄L

k
(
Λ̄L

k

)λ̄M

λ̄MΓΛ̄L
k
(λ̄M)

n∏
i=1

Λ̄L
k

i + λ̄M , (7.4)

where Γy is the lower incomplete version of the Euler gamma function:

Γy : R+ → R, x �→
∫ y

0
tx−1e−tdt. (7.5)

Now, the price in the one-sided order book model is equal to k if and only if the “1→ k−1”

queueing system is empty and the “1 → k” system is not. Therefore, if Ak is distributed

according to the invariant distribution πAk , then the distribution πPA of the price PA is

written:
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πPA(1) = 1 −
e−Λ̄L

1

(
Λ̄L

1

)λ̄M

λ̄MΓΛ̄L
1
(λ̄M)

, πPA(K) =
e−Λ̄L

K−1

(
Λ̄L

K−1

)λ̄M

λ̄MΓΛ̄L
K−1

(λ̄M)
, (7.6)

and for all k ∈ {2, . . . , K − 1},

πPA(k) =
e−Λ̄L

k−1

(
Λ̄L

k−1

)λ̄M

λ̄MΓΛ̄L
k−1

(λ̄M)
−

e−Λ̄L
k
(
Λ̄L

k

)λ̄M

λ̄MΓΛ̄L
k
(λ̄M)

. (7.7)

Using previous results, the average size E[Ak] of the “1 → k” queueing system is easily

computed. From Eq. (7.4), we can write after some simplifications:

E[Ak] = Λ̄L
k −

ΓΛ̄L
k
(1 + λ̄M)

ΓΛ̄L
k
(λ̄M)

. (7.8)

Still using the notations of Chapter 6, ak = Ak −Ak−1 is the number of orders in the book

at price k ∈ {1, . . . , K}. Thus, the average shape of the order book at price k is obviously:

E[ak] = λ̄
L
k −

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ΓΛ̄L

k
(1 + λ̄M)

ΓΛ̄L
k
(λ̄M)

−
ΓΛ̄L

k−1
(1 + λ̄M)

ΓΛ̄L
k−1

(λ̄M)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (7.9)

with λ̄L
k =

λL
k
λC .

7.2.2 A continuous extension of the basic model

In order to facilitate the comparison with existing results, we propose a continuous version

of the previous toy model. Price is now assumed to be a positive real number. Mechanisms

for market orders and cancellations are identical: unit-size market orders are submitted

according to a Poisson process with rate λM , and standing limit orders are cancelled after

some exponential random time with parameter λC . As for the submission of limit orders,

the mechanism is now slightly modified: Since, the price is continuous, instead of a finite

set of homogeneous Poisson processes indexed by the number of ticks k ∈ {1, . . . , K}, we

now consider a spatial Poisson process on the positive quadrant R2
+. Let λL(p, t) be a non-

negative function denoting the intensity of the spatial Poisson process modelling the arrival

of limit orders, the first coordinate representing the price, the second one the time (see e.g.,

Privault, 2013, Chapter 12 for a textbook introduction on the construction of spatial Poisson

processes). As in the discrete case, this process is assumed to be time-homogeneous, and it

is hence assumed that price and time are separable. Let hλL : R+ → R+ denote the spatial

intensity function of the random events, i.e. limit orders. Then, λL(p, t) = αhλL(p) is the

intensity of the spatial Poisson process representing the arrival of limit orders.
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We recall that in this framework, for any p1 < p2 ∈ [0,∞), the number of limit orders

submitted at a price p ∈ [p1, p2] is a homogeneous Poisson process with intensity∫ p2

p1
λL(p, t) dp. Furthermore, if p1 < p2 < p3 < p4 on the real positive half-line, then the

number of limit orders submitted in [p1, p2] and [p3, p4] form two independent Poisson

processes.

Now, let A([0, p]) be the random variable describing the cumulative size of our new

order book up to price p ∈ R+. Given the preceding remarks, A([0, p]) is, as in the

previous section, the size of a M/M/1 + M queueing system with arrival rate

α
∫ p

0
hλL(u) du, service rate λM and reneging rate λC . Using the results of Section 7.2.1,

we obtain from Eq. (7.8):

E[A([0, p])] =
∫ p

0
λ̄L(u) du − f

(
λ̄M ,

∫ p

0
λ̄L(u) du

)
, (7.10)

where we have defined λ̄L(u) =
αh
λL (u)
λC and:

f (x, y) =
Γy(1 + x)

Γy(x)
. (7.11)

From now on, Λ̄L(p) =
∫ p

0
λ̄L(u) du will be the (normalized) arrival rate of limit orders

up to price p, and A(p) = E[A([0, p])] will be the average cumulative shape of the order

book up to price p. Then, a(p) = dA(p)
dp will be the average shape of the order book (per

price unit, not cumulative). Straightforward differentiation of Eq. (7.10) and some terms

rearrangements lead to the following proposition.

Proposition 7.1 In a continuous order book with homogeneous Poisson arrival
of market orders with intensity λM, spatial Poisson arrival of limit orders with
intensity αhλL(p), and exponentially distributed lifetimes of non-executed limit
orders with parameter λC, the average shape of the order book a is computed
for all p ∈ [0,∞) by:

a(p) = λ̄L(p)
[
1 − λ̄M

(
gλ̄M ◦ Λ̄L

)
(p)

[
1 − λ̄M [Λ̄L(p)]−1

[
1 −

(
gλ̄M ◦ Λ̄L

)
(p)

]]]
,

(7.12)

where

gλ̄M (y) =
e−yyλ̄

M

λ̄MΓy(λ̄M)
. (7.13)
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Let us give a few comments on the average shape we obtain. Firstly, note that by

identification to Eq. (7.4), observing that πAk(0) = gλ̄M (Λ̄L
k ) in the discrete model,

gλ̄M (Λ̄L(p)) is to be interpreted as the probability that the order book is empty up to a

price p. Secondly, note that letting λ̄M → 0 in Eq. (7.12) gives a(p) → λ̄L(p) (cf.

limλ̄M→0 gλ̄M (y) = e−y). Indeed, if there were no market orders, then the average shape of

the order book would be equal to the normalized arrival rates. Thirdly, as p → ∞, we

have a(p) ∼ k λ̄L(p) for some constant k. This leads to our main comment, which we

state as the following proposition.

Proposition 7.2 The shape of the order book a(p) can be written as:

a(p) = λ̄L(p)C(p), (7.14)

where C(p) is the probability that a limit order submitted at price p will be
cancelled before being executed.

This proposition translates a law of conservation of the flows of orders: The shape of

the order book is exactly the fraction of arriving limit orders that will be cancelled. The

difference between the flows of arriving limit orders and the order book is exactly the

fraction of arriving limit orders that will be executed.

The proof is straightforward. Indeed, in the 1 → k queueing system, the average

number of limit orders at price k that are cancelled per unit time is λCE[ak] (λCE[Ak] is

the reneging rate of 1 → k queue using queueing system vocabulary). Therefore, the

fraction of cancelled orders at price k over arriving limit orders at price k, per unit time, is

Ck =
λCE[ak]

λL
k

. Using Eq. (7.9) and some straightforward computations, the fraction Ck of

limit orders submitted at price k which are cancelled is:

Ck = 1 − λ̄
M

Λ̄L
k

(
gλ̄M (Λ̄L

k−1) − gλ̄M (Λ̄L
k )

)
. (7.15)

Therefore, in the continuous model up to price p ∈ R+ with average cumulative shape

A(p), the fraction of limit orders submitted at a price in [p, p + ε] which are cancelled is

written:

1 − λ̄M

Λ̄L(p + ε) − Λ̄L(p)

(
gλ̄M (Λ̄L(p)) − gλ̄M (Λ̄L(p + ε))

)
. (7.16)

By letting, ε → 0, we obtain that the fraction C(p) of limit orders submitted at price

p ∈ R+ which are cancelled is:
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C(p) = 1 − λ̄Mg′
λ̄M (Λ̄

L(p)) (7.17)

= 1 − λ̄M(gλ̄M ◦ Λ̄L)(p)
(
1 − λ̄M

Λ̄L(p)
(1 − (gλ̄M ◦ Λ̄L)(p))

)
, (7.18)

which gives the final result.

This law of conservations of the flows of orders explains the relationship between the

shape of the order book and the flows of arrival of limit orders. For high prices, two cases

are to be distinguished. On the one hand, if the total arrival rate of limit orders is a finite

positive constant α (for example when hλL is a probability density function on [0,+∞), in

which case limp→+∞ Λ̄L(p) =
∫ ∞

0
λ(u, t) du = α ∈ R∗+), then the proportionality

constant between the shape of the order book a(p) and the normalized limit order flow

λ̄L(p) is, as p→ +∞, C∞ defined as:

C∞ = lim
p→∞C(p) = 1 − λ̄Mgλ̄M (α)

(
1 − λ̄

M

α
(1 − gλ̄M (α))

)
< 1. (7.19)

In such a case, the shape of the order book as p → +∞ is proportional to the normalized

rate of arrival of limit orders λ̄L(p), but not equivalent. The fraction of cancelled orders

does not tend to 1 as p → +∞, i.e. market orders play a role even at high prices. On the

other hand, in the case where limp→+∞ Λ̄L(p) = ∞, then very high prices are not reached

by market orders, and the tail of the order book behaves exactly as if there were no market

orders: a(p) ∼ λ̄L(p) as p → +∞. We may remark here that there exists an empirical

model for the probability of execution F(p) = 1 −C(p) in Mike and Farmer (2008). In

this latter model, it is assumed to be the complementary cumulative distribution function

of a Student distribution with parameter s = 1.3. As such, it is decreasing towards 0 as

p−s. In our model however, it is exponentially decreasing, and, in view of the previous

discussion, does not necessarily tends towards 0.

7.3 Comparison to Existing Results on the Shape of the Order Book

The model presented in Section 7.2 belongs to the class of “zero-intelligence” Markovian

order book models: All order flows are independent Poisson processes. Although very

simple, it turns out it replicates the shapes of the order book usually obtained in previous

empirical and numerical studies, as we will now see.

7.3.1 Numerically simulated shape in Smith et al. (2003)

A first result on the shape of the order book is provided in Smith et al. (2003), on Figs 3(a)

and 3(b). These figures are obtained by numerical simulations of an order book model very

similar to the one presented in Section 7.2, where all order flows are Poisson processes:



84 Limit Order Books

Market orders are submitted are rate λM
S with size σS , limit orders are submitted with the

same size at rate λL
S per unit price on a grid with tick size ΔPS , and all orders are removed

randomly with constant probability δS per unit time1. Figures 3(a) and 3(b) in Smith et al.

(2003) are obtained for different values of a “granularity” parameter εS ∝ δSσS
λM

S
. It is

observed that, when εS gets larger, the average book becomes deeper close to the spread,

and thinner for higher prices.

Using our own notations, εS actually reduces to 1
λ̄M , i.e. the inverse of the normalized

rate of arrival of market orders. Using Smith et al. (2003)’s assumption that limit orders

arrive at constant rate λL
S per unit price and unit time, we obtain in our model λL(p, t) = λL

S ,

i.e. Λ̄L(p) = λL
S p. On Fig. 7.1, we plot the average shapes and cumulative shapes of the

order book given at Eqs (7.12) and (7.10) with this Λ̄L. It turns out that when λ̄M varies,

our basic model indeed reproduces precisely Figs 3(a) and 3(b) of Smith et al. (2003).

Therefore we are able to analytically describe the shapes that were only numerically

obtained. These shapes can be straightforwardly obtained with different regimes of market

orders in our basic model: When the arrival rates of market orders increases (i.e. when εS
increases), all other things being equal, the average shape of the order book is thinner for

lower prices.

7.3.2 Empirical and analytical shape in Bouchaud et al. (2002)

We now give two more examples of order book shapes obtained with Eq. (7.12) of

Proposition 7.1. We successively consider two types of normalized intensities of arrival

rates of limit orders:

• exponentially decreasing with the price: λ̄L(u) =
α

λC βe
−βu ;

• power-law decreasing with the price: λ̄L(u) =
α

λC (γ − 1)(1 + u)−γ, γ > 1.

The first case is the one observed on Chinese stocks by Gu et al. (2008). The second case is

the one suggested in an empirical study by Bouchaud et al. (2002), in which γ ≈ 1.5− 1.7.

Moreover, the latter paper provides the only analytical formula previoulsy proposed (to our

knowledge) linking the order flows and the average shape of a limit order book: Bouchaud

et al. (2002) derives an analytical formula from a zero-intelligence model by assuming that

the price process is diffusive with diffusion constant D. Using our notations, their average

order book, denoted here bBP, is for any p ∈ (0,∞):

bBP(p) ∝ e−σ
−1 p

∫ p

0
hλL(u) sinh(σ−1u) du + sinh(σ−1 p)

∫ ∞

p
hλL(u)e−σ

−1u du, (7.20)

1we have indexed all variables with an S to differentiate them from our own notations
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Fig. 7.1 Shape (top panel) and cumulative shape (bottom panel) of the order book computed

using Eqs (7.12) and (7.10) with λ̄L(p) = α, α = 8 and λ̄M = 1 (full line),

λ̄M = 2 (dashed), λ̄M = 6 (dotdashed), λ̄M = 16 (dotted). Note that results

are scaled on the same dimensionless axes used in Smith et al. (2003). Previously

published in Muni Toke (2015)
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where the parameter σ2 is homogeneous to the variance of a price (it is proportional to the

diffusion coefficient divided by the cancellation rate). σ is thus interpreted in Bouchaud

et al. (2002) as “the typical variation of price during the lifetime of an order, and [it] fixes

the scale over which the order book varies”. Therefore, although σ is not available in our

model, since, our one-sided model does not have a diffusive price, we may however obtain

a satisfying order of magnitude for the parameter by computing the standard deviation of

the price in our model, using numerical simulations (see also Remark 7.3 below).

We plot the shape of Bouchaud et al. (2002) for the two types of normalized arrival

rates of limit orders previously mentionned. Note that the formula (7.20) is defined up to a

multiplicative constant that we arbitrarily fix such that the maximum offered with respect

to the price in our model is equal to the maximum of Eq. (7.20). Results are plotted in

Fig. 7.2, and numerical values given in caption.

Fig. 7.2 Comparison of the shapes of the order book in our model (black curves) and using

the formula proposed by Bouchaud et al. (2002) (grey curves). Three examples are

plotted: Arrival of limit orders with exponential prices, α = 20, β = 0.75,

λM = 4, λC = 1 (full lines); idem with λM = 8 (dashed lines); arrival of limit

orders with power-law prices, α = 40, γ = 1.6, λM = 4, λC = 1 (dash-dotted

lines). Previously published in Muni Toke (2015)
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It turns out that our model Eq. (7.12) and Eq. (7.20) provide similar order book shapes.

Since, Eq. (7.20) has been successfully tested with empirical data in Bouchaud et al.

(2002), Fig. 7.2 provides a good hint that the shape Eq. (7.12) could provide good

empirical fittings as well. As p → ∞, both formulas lead to a shape a(p) decreasing as

the arrival rate of limit orders λ̄L(p), which was already observed in Bouchaud et al.

(2002), and discussed here in Section 7.2. The main difference between the shapes occurs

as p → 0. Equation (7.20) imposes that bBP = 0, whereas the result Eq. (7.12) allows a

more flexible behaviour with b(0) = λ̄L(0)
1+λ̄M , a quantity that depends on the three types of

order flows. The difference of behaviour close to the spread is not surprising considering

the different natures of both models.

Remark 7.3 We have used numerical simulations of our model to compute the

standard deviation of the price in our model. Note however that this could be

found by a numerical evaluation of the analytical form of the standard deviation

of the price. Indeed, the stationary distribution of the price in our continuous

model can be explicitly derived. Assuming this distribution admits a density

function πPA , then the same observation that leads to Eqs (7.6) and (7.7) in the

discrete case gives here for any p ∈ [0,∞):
∫ p

0
πPA(p) dp = 1 − e−Λ̄L(p)[Λ̄L(p)]λ̄

M

λ̄MΓΛ̄L(p)(λ̄
M)

, (7.21)

which is written by straighforward differentiation and some terms

rearrangements:

πPA(p) = λ̄L(p)(gλ̄M ◦ Λ̄L)(p)
(
1 − λ̄M [Λ̄L(p)]−1(1 − (gλ̄M ◦ Λ̄L)(p))

)
(7.22)

= λ̄L(p)
1 −C(p)
λ̄M . (7.23)

Some examples of this distribution are plotted on Fig. 7.3.

Now, using this explicit distribution of the price in our order book model,

we may compute its standard deviation in the example cases described above,

by numerically evaluating the integrals defining the first two moments of the

distribution.

Finally, let us recall that the price process in our model is a jump process with

right-continuous paths, so it is not diffusive. Note however that the price process

in similar two-sided order book models has been shown to admit a diffusive limit

with an appropriate time scaling (see Chapter 6).
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Fig. 7.3 Price density function πPA as a function of the price, computed with

Eq. (7.22), with hλL constant (full line), exponentially decreasing (dotted) and

power-law decreasing (dashed). Previously published in Muni Toke (2015)

7.4 A Model with Varying Sizes of Limit Orders

We now allow for random sizes of limit orders in our model. As in Section 7.2, we start

by describing the basic model as a queueing system, and then extend it to the case of a

continuous price.

Let us recall that we deal with a one-sided order book model, i.e. a model in which

all limit orders are ask orders, and all market orders are bid orders. Let PA(t) denote the

price at time t. {PA(t), t ∈ [0 ∈ ∞)} is a continuous-time stochastic process with value in

the discrete set {1, . . . , K}, i.e. the price is given in number of ticks. For all i ∈ {1, . . . , K},
(ask) limit orders at price i are submitted according to a Poisson process with parameter

λL
i . These processes as assumed to be mutually independent, so that the number of orders

submitted at prices between 1 and r (included) is a Poisson process with parameter ΛL
r

defined as ΛL
r =

∑r
i=1 λ

L
i .

The contribution of this section is to allow for random sizes of limit orders, instead

of having unit-size limit orders as in the basic model of Section 7.2. We assume that all

the sizes of limit orders are independent random variables. We also assume that the sizes

of limit orders submitted at a given price are identically distributed, but we allow this

distribution to vary depending on the price. For a given price k ∈ N∗, let gk
n, n ∈ N∗,
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denote the probability that a limit order at price k is of size n. Let gk denote the mean size

of a limit order at price k, which is assumed to be finite. It is a well known property of

the Poisson process to state that the rate of arrival of limit orders of size n at price i is

λL
i gi

n, hence the rate of arrival of limit orders of size n with a price lower or equal to k is∑k
i=1 λ

L
i gi

n. Similarly, the probability that a limit order with a price lower or equal to k is

of size n is Gk
n =

∑k
i=1

λL
i

ΛL
k

gi
n. Let Gk =

∑k
i=1

λL
i

ΛL
k

gi denote the mean size of a limit order

with price up to k.

Mechanism for cancellation is unchanged: all limit orders standing in the book may be

cancelled. Note however that a limit order is not cancelled all at once, but unit by unit, i.e.

share by share (see also Remark 7.6 below). It is assumed that the time intervals between

the submission of a limit order and the cancellation of one share of this order form a set of

mutually independent random variables identically distributed according to an exponential

distribution with parameter λC > 0. Finally, (buy) market orders are submitted at random

times according to a Poisson process with parameter λM . All market orders are assumed

to be of unit size.

As in Section 7.2, let {Ak(t), t ∈ [0,∞)} be the stochastic process representing the

number of limit orders at prices 1, . . . , k standing in the order book at time t. Ak is thus

the cumulative shape of the order book in our model. It can be viewed as the size of

a MX/M/1 + M queueing system with bulk arrival rate ΛL
k , bulk volume distribution

(Gk
n)n∈N∗ , service rate λM and reneging rate λC (see e.g., Chaudhry and Templeton (1983)

for queueing systems with bulk arrivals). The infinitesimal generator of the process Ak is
thus written:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ΛL
k ΛL

k Gk
1

ΛL
k Gk

2
ΛL

k Gk
3

ΛL
k Gk

4
. . .

λM + λC −(ΛL
k + λM + λC) ΛL

k Gk
1

ΛL
k Gk

2
ΛL

k Gk
3
. . .

0 λM + 2λC −(ΛL
k + λM + 2λC) ΛL

k Gk
1

ΛL
k Gk

2
. . .

0 0 λM + 3λC −(ΛL
k + λM + 3λC) ΛL

k Gk
1
. . .

...
...

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.24)

The stationary distribution πAk = (πAk(n))n∈N of Ak hence satisfies the following system

of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0 = −ΛL

kπAk(0) + (λM + λC)πAk(1),

0 = −(ΛL
k + λ

M + nλC)πAk(n) + (λM + (n + 1)λC)πAk(n + 1)

+
∑n

i=1 ΛL
k Gk

i πAk(n − i), (n ≥ 1),

(7.25)
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which can be solved by introducing the probability generating functions. Let ΦAk(z) =∑
n∈N πAk(n)z

n and ΦGk(z) =
∑

n∈N∗ Gk
nzn. Let us also introduce the normalized

parameters

λ̄M =
λM

λC and Λ̄L
k =

ΛL
k

λC . (7.26)

By multiplying the n-th line by zn and summing, the previous system leads to the

following differential equation:

d
dz

ΦAk(z) +
(
λ̄M

z
− Λ̄L

kϕGk(z)
)

ΦAk(z) =
λ̄M

z
πAk(0), (7.27)

where we have set ϕGk(z) =
1−ΦGk (z)

1−z . This equation is straightforwardly solved to obtain:

ΦAk(z) = z−λ̄
M
λ̄MπAk(0)e

Λ̄L
k

∫ z
0
ϕGk (u) du

∫ z

0
vλ̄

M−1e−Λ̄L
k

∫ v
0
ϕGk (u) du dv, (7.28)

and the condition ΦAk(1) = 1 leads to

πAk(0) =

(
λ̄M

∫ 1

0
vλ̄

M−1eΛ̄L
k

∫ 1

v ϕGk (u) du dv
)−1

, (7.29)

which by substituting in the general solution gives:

ΦAk(z) = z−λ̄
M

∫ z
0

vλ̄
M−1eΛ̄L

k

∫ z
v ϕGk (u) du dv∫ 1

0
vλ̄M−1eΛ̄L

k

∫ 1

v ϕGk (u) du dv
. (7.30)

Now, turning back to the differential Eq. (7.27), then taking the limit when z tends

increasingly to 1 and using basic properties of probability generating functions

(limz→1
t<1

ΦAk(z) = 1, limz→1
t<1

d
dz ΦAk(z) = E[Ak] and limz→1

t<1
ϕGk(z) = Gk), we obtain the

result stated in the following proposition.

Proposition 7.4 In the discrete one-sided order book model with Poisson
arrival at rate λM of unit size market orders, Poisson arrival of limit orders
with rate λL

k at price k and random size with distribution (gk
n)n∈N∗ on N∗,

and exponential lifetime of non-executed limit orders with parameters λC, the
average cumulative shape of the order book up to price k is given by:

E[Ak] = Λ̄L
k Gk − λ̄M +

(∫ 1

0
vλ̄

M−1eΛ̄L
k

∫ 1

v ϕGk (u) du dv
)−1

. (7.31)
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Note that by taking the sizes of all limit orders to be equal to 1, i.e. by setting gk
1
= 1 and

gk
n = 0, n ≥ 2, Eq. (7.31) reduces to Eq. (7.8) of Section 7.2, as expected.

We now introduce a specification of the model where the sizes of limit orders are

geometrically distributed with parameter q ∈ (0, 1) and independent of the price, i.e. for

any price k ∈ N∗, gk
n = (1 − q)n−1q. This specification is empirically founded, as it has

been observed that the exponential distribution may be a rough continuous approximation

of the distribution of the sizes of limit orders (see Chapter 2). This specification of the

volume distribution straightfowardly gives ϕGk(z) = 1
1−(1−q)z and with some

computations we obtain:

E[Ak] =
Λ̄L

k

q
− λ̄M +

λ̄Mq
Λ̄L

k
1−q

2F1(λ̄M ,
−Λ̄L

k
1−q , 1 + λ̄M , 1 − q)

, (7.32)

where 2F1 is the ordinary hypergeometric function (see e.g., Seaborn, 1991, Chapter 2).

Now, following the idea presented in Section 7.2, we consider an order book with a

continuous price, in which limit orders are submitted according to a spatial Poisson

process with intensity λL(p, t) = αhλL(p). Recall that hλL is assumed to be a real

non-negative function with positive support, denoting the spatial intensity of arrival rates,

i.e. the function such that the number of limit orders submitted in the order book in the

price interval [p1, p2] is a homogeneous Poisson process with rate
∫ p2

p1
αhλL(u) du. Using

notations defined in Section 7.2, the cumulative shape at price p ∈ [0,+∞) of this

continuous order book is thus:

A(p) =
1

q
Λ̄L(p) − λ̄M +

λ̄Mq
Λ̄L(p)

1−q

2F1(λ̄M ,
−Λ̄L(p)

1−q , 1 + λ̄M , 1 − q)
, (7.33)

which can be derived to obtain the average shape a(p) of the order book, which we state

in the following proposition.

Proposition 7.5 In a continuous one-sided order book with homogeneous
Poisson arrival of unit-size market orders with intensity λM, spatial Poisson
arrival of limit orders intensity αhλL(p), geometric distribution of the sizes
of limit orders with parameter q, and exponentially distributed lifetimes of
non-executed limit orders with parameter λC, the average shape of the order
book a is computed for all p ∈ [0,∞) by:

a(p) =
λ̄L(p)

q
+

d
dp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ λ̄Mq
Λ̄L(p)

1−q

2F1(λ̄M ,
−Λ̄L(p)

1−q , 1 + λ̄M , 1 − q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (7.34)
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7.5 Influence of the Size of Limit Orders on the Shape of the Order
Book

We now use the results of Section 7.4 to investigate the influence of the size of the limit

orders on the shape of the order book. Recall that market orders are submitted at rate λM

with size 1, that non-executed limit orders are cancelled share by share after a random time

with exponential distribution with parameter λC , and that the distribution of the sizes of

limit orders is a geometric distribution with parameter q (i.e. with mean 1
q ). We study in

detail the influence of the parameter q on the theoretical shape of the order book.

In a first example, we assume that the normalized intensity of arrival of limit orders λ̄L

is constant (i.e. as in Smith et al. 2003) and equal to αq. Note that when q varies, the mean

total volume V(p) of arriving limit orders up to price p per unit time remains constant:

V(p) =
1

q

∫ p

0
λ̄L(u) du = pα. (7.35)

In other words, when q decreases, limit orders are submitted with larger sizes in average,

but less often, keeping the total submitted volume constant. The first remarkable

observation is that, although the mean total volumes of limit and market orders are

constant, the shape of the order book varies widely with q. On Fig. 7.4, we plot the shape

a(p) defined at Eq. (7.34), and cumulative shape defined at Eq. (7.33), of an order book

with arriving volumes of limit orders as in Eq. (7.35). With the chosen numerical values,

the average volume of one limit order ranges from approximately 1 (q = 0.99) to 20

(q = 0.05). It appears that when q decreases, the shape of the order book increases for

lower prices. In other words, the larger the size of incoming limit orders, the deeper the
order book around the spread, all other things being equal.

We observe that Fig. 7.4 here is similar to Fig. 7.1 here and figure 3 in Smith et al.

(2003). However, volumes of limit and market orders are equal in the two latter cases,

and we have shown in Section 7.3 that these different shapes can actually be obtained with

different regimes of market orders, but equal sizes of market and limit orders: when the

arrival rates of market orders increases, all other things being equal, the average shape of

the order book is thinner for lower prices.

Therefore, the observation made now is different. In similar trading regimes where the

mean total volume of limit and market orders are equal, we highlight the influence of the

relative volume of limit orders (compared to unit market orders) on the order book shape:

The smaller the average size of limit orders, the shallower the order book close to the

spread.



The Order Book as a Queueing System 93

Fig. 7.4 Shape of the order book as computed in Eq. (7.34) (top) and cumulative shape of

the order book as computed in Eq. (7.33) (bottom) with λ̄M = 10, λ̄L(p) =
αq
K 1(0,K), α = 40, K = 8, and q = 0.99 (full line), q = 0.5 (dotted),

q = 0.25 (dotdashed), q = 0.10 (short-dashed), q = 0.05 (long-dashed).

Previously published in Muni Toke (2015)
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We provide a second example of the phenomenon by assuming that the intensity of

incoming limit orders exhibits a power-law decrease with the price, as tested in

Section 7.3 to compare to the analytical shape provided in Bouchaud et al. (2002). We

thus have now λ̄L(p) = qα(γ − 1)(1 + p)−γ. There again, when q varies, the average

total volume of incoming limit orders up to price p remains constant and equal to

α(γ − 1)
∫ p

0
(1 + u)−γ du = α(1 − (1 + p)1−γ). Figure 7.5 plots the shape of the order

book with these characteristics, when q varies.

Fig. 7.5 Shape of the order book as computed in Eq. (7.34) with λ̄M = 10, λ̄L(p) =
qα(γ − 1)(1 + p)−γ, α = 40 γ = 1.6, and q = 0.99 (full line), q = 0.5

(dotted), q = 0.25 (dotdashed), q = 0.10 (short-dashed), q = 0.05 (long-

dashed). Previously published in Muni Toke (2015)

The observed phenomenon is equally clear with this more realistic distribution of incoming

limit orders: the order book deepens at the first limits when the average volume of limit

orders increases, the total volume of limit orders and unit-size market orders submitted

being constant.

Finally, one might remark that, by assuming unit-size market orders, our model with

geometric distribution of limit orders’ sizes does not predict the order book shape in the

case where the average size of limit orders is smaller than the average size of market orders.

In fact, it will now appear that this case has never been empirically encountered in our data:

The average size of limit orders is always in our sample greater than the average size of

market orders.
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Remark 7.6 We recall that, for analytical tractability purposes, the

cancellation mechanism used in this chapter is that each share of submitted limit

orders has a lifetime following an exponential distribution independent of the

other variables. A more realistic cancellation mechanism would be that each

limit order has an independent exponentially-distributed lifetime, i.e. that an

order standing in the book is cancelled all at once and not share by share. It

turns out this does not qualitatively change our results. We simulate an order

book with this latter cancellation system, and compare the average shape of the

simulated order book with our analytical formulas. Results are shown on Fig. 7.6

in the case of a uniform price distribution for the limit orders.

Fig. 7.6 Shape of the order book with share-by-share cancellation (Eq. (7.34), full lines),

and with order-by-order cancellation (numerical simulation, dashed lines). In

these computations, λM = 10, λC = 1, λ̄L(p) = qα
λC K , α = 40, K = 8,

and (from black to light grey) q = 0.99, q = 0.5, q = 0.25, q = 0.10,

q = 0.05. Previously published in Muni Toke (2015).

Obviously, if q is close to 1, then both cancellation mechanisms are equivalent

and the simulated shape converges to our analytical results. When q � 1,

we cannot straightforwardly compare the two models (the cancellation rate

is proportional to the number of shares in the book in one case, and to the

number of orders in the book in the other one), but we nevertheless observe

that both mechanisms exhibit similar shapes of the order book. Furthermore,

it is interesting to note that, irrespective of the cancellation mechanism, our

observation stating that the submission of larger limit orders leads to thicker
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order books around the spread is always valid. We may finally add that since,

market orders are unit-sized, q may be understood as a relative measure of the

volume of limit orders compared to the volume of market orders, and is therefore

expected to be closer to 1 than to 0.

7.6 Conclusion

We have presented in this chapter the analysis of a simple limit order book model based on

classical results from queueing theory. A continuous version of the model has been derived,

providing an analytical formula for the shape of the order book that reproduces results from

acknowledged numerical and empirical studies. The model has then be extended so as to

allow for the limit orders to be submitted with random sizes. The extended model provides

some insight into the influence of the size of limit orders in an order book. This insight

is confirmed by the empirical study on liquid stocks traded on the Paris Stock Exchange

presented in Chapter 3.



CHAPTER8
Advanced Modelling of Limit Order
Books

8.1 Introduction

This chapter is devoted to the study of more realistic models where the interactions between

agents - or, from a statistical point of view, the dependencies between orders of different

types - are incorporated in the models. After reviewing in the first section the existing

literature on agent − based modelling of market interactions, we introduce and analyze in

the spirit of Chapter 6, a Hawkes process-based limit order book model.

8.2 Towards Non-trivial Behaviours: Modelling Market Interactions

In early statistical models of limit order books, flows of orders are treated as independent

processes. Even if the process is empirically detailed and not trivial [Mike and Farmer

(2008)], the standing assumption is that order arrivals are independent and identically

distributed. This very strong (and false) hypothesis is similar to the “representative agent”

hypothesis in Economics: orders being successively and independently submitted, we

may not expect anything but regular behaviours. Following the work of economists such

as Kirman (1992, 1993, 2002), one has to translate the heterogeneous property of the

markets into the agent-based models. Agents are not identical, and not independent.

In this section we present some toy models implementing mechanisms that aim at

bringing heterogeneity: Herding behaviour on markets in Cont and Bouchaud (2000),

trend following behaviour in Lux and Marchesi (2000) or in Preis et al. (2007), threshold

behaviour Cont (2007). Most of the models reviewed in this section are not order book

models, since a persistent order book is not kept during the simulations. They are rather

price models, where the price changes are determined by the aggregation of excess supply

and demand. However, they identify essential mechanisms that may explain some

empirical data, and lay the grounds for the designs of better limit order book models.
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8.2.1 Herding behaviour

The model presented in Cont and Bouchaud (2000) considers a market with N agents

trading a given stock with price p(t). At each time step, agents choose to buy or sell one

unit of stock, i.e. their demand is φi(t) = ±1, i = 1, . . . , N with probability a or are idle

with probability 1 − 2a. The price change is assumed to be linearly linked with the excess

demand D(t) =
∑N

i=1 φi(t) with a factor λ measuring the liquidity of the market:

p(t + 1) = p(t) +
1

λ

N∑
i=1

φi(t). (8.1)

λ can also be interpreted as a market depth, i.e. the excess demand needed to move the price

by one unit. In order to evaluate the distribution of stock returns from Eq. (8.1), we need to

know the joint distribution of the individual demands (φi(t))1≤i≤N . If the distribution of the

demand φi is independent and identically distributed with finite variance, then the Central

Limit Theorem stands and the distribution of the price variation Δp(t) = p(t + 1) − p(t)
will converge to a Gaussian distribution as N goes to infinity.

The idea to obtain non-trivial behaviours is to model the diffusion of the information

among traders by randomly linking their demand through clusters. At each time step,

agents i and j can be linked with probability pi j = p = c
N , c being a parameter measuring

the degree of clustering among agents. Therefore, an agent is linked to an average number

of (N − 1)p other traders. Once clusters are determined, the demand are forced to be

identical among all members of a given cluster. Denoting nc(t) the number of cluster at a

given time step t, Wk the size of the k-th cluster, k = 1, . . . , nc(t) and φk = ±1 its

investement decision, the price variation is then straightforwardly written:

Δp(t) =
1

λ

nc(t)∑
k=1

Wkφk (8.2)

This modelling is a direct application to the field of finance of the random graph

framework as studied in Erdos and Renyi (1960). Kirman (1983) previously suggested it

in economics. Using these previous theoretical works, and assuming that the size of a

cluster Wk and the decision taken by its members φk(t) are independent, the author are

able to show that the distribution of the price variation at time t is the sum of nc(t)
independent identically distributed random variables with heavy-tailed distributions:

Δp(t) =
1

λ

nc(t)∑
k=1

Xk, (8.3)
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where the density f (x) of Xk = Wkφk is decaying as:

f (x) ∼|x|→∞ A
|x|5/2

e
−(c−1)|x|

W0 . (8.4)

Thus, this simple toy model exhibits fat tails in the distribution of prices variations, with

a decay reasonably close to empirical data. Therefore, Cont and Bouchaud (2000) show

that taking into account a naive mechanism of communication between agents (herding

behaviour) is able to drive the model out of the Gaussian convergence and produce non-

trivial shapes of distributions of price returns.

8.2.2 Fundamentalists and trend followers

Lux and Marchesi (2000) proposed a model very much in line with agent-based models in

behavioural finance, but where trading rules are kept simple enough so that they can be

identified with a presumably realistic behaviour of agents. This model considers a market

with N agents that can be part of two distinct groups of traders: n f traders are

“fundamentalists”, who share an exogenous idea p f of the value of the current price p;

and nc traders are “chartists” (or trend followers), who make assumptions on the price

evolution based on the observed trend (mobile average). The total number of agents is

constant, so that n f + nc = N at any time. At each time step, the price can be moved up

or down with a fixed jump size of one tick. The probability to go up or down is directly

linked to the excess demand ED through a coefficient β. The demand of each group of

agents is determined as follows:

• Each fundamentalist trades a volume V f proportional, with a coefficient γ, to the

deviation of the current price p from the perceived fundamental value p f : V f =

γ(p f − p).

• Each chartist trades a constant volume Vc. Denoting n+ the number of optimistic

(buyer) chartists and n− the number of pessimistic (seller) chartists, the excess

demand by the whole group of chartists is written (n+ − n−)Vc.

Therefore, assuming that there exists some noise traders on the market with random

demand μ, the global excess demand is written:

ED = (n+ − n−)Vc + n f γ(p f − p) + μ. (8.5)

The probability that the price goes up (resp. down) is then defined to be the positive (resp.

negative) part of βED.

As observed in Wyart and Bouchaud (2007), fundamentalists are expected to stabilize

the market, while chartists should destabilize it. In addition, following Cont and Bouchaud

(2000), the authors expect non-trivial features of the price series to results from herding
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behaviour and transitions between groups of traders. Referring to Kirman’s work as well,

a mimicking behaviour among chartists is thus proposed. The nc chartists can change their

view on the market (optimistic, pessimistic), their decision being based on a clustering

process modelled by an opinion index x = n+−n−
nc

representing the weight of the majority.

The probabilities π+ and π− to switch from one group to another are formally written:

π± = v
nc

N
e±U , U = α1x + α2 p/v, (8.6)

where v is a constant, and α1 and α2 respectively reflect the weight of the majority’s

opinion and the weight of the observed price in the chartists’ decision. Transitions

between fundamentalists and chartists are also allowed, decided by comparison of

expected returns (see Lux and Marchesi (2000) for details).

The authors show that the distribution of returns generated by their model have excess

kurtosis. Using a Hill estimator, they fit a power law to the fat tails of the distribution and

observe exponents grossly ranging from 1.9 to 4.6. They also check hints for volatility

clustering: absolute returns and squared returns exhibit a slow decay of autocorrelation,

while raw returns do not. It thus appears that such a model can grossly fit some stylized

facts. However, the number of parameters involved, as well as the complicated rules of

transition between agents, make clear identification of sources of phenomenons and

calibration to market data difficult and intractable.

Alfi et al. (2009a,b) provide a somewhat simplifying view on the Lux-Marchesi

model. They clearly identify the fundamentalist behaviour, the chartist behaviour, the

herding effect and the observation of the price by the agents as four essential effects of an

agent-based financial model. They show that the number of agents plays a crucial role in a

Lux-Marchesi-type model: more precisely, the stylized facts are reproduced only with a

finite number of agents, not when the number of agents grows asymptotically, in which

case the model stays in a fundamentalist regime. There is a finite-size effect that may

prove important for further studies.

The role of the trend following mechanism in producing non-trivial features in price

time series is also studied in Preis et al. (2007). The starting point is an order book model

similar to Challet and Stinchcombe (2001) or Smith et al. (2003): At each time step,

liquidity providers submit limit orders at rate λ and liquidity takers submit market orders

at rate μ. As expected, this zero-intelligence framework does not produce fat tails in the

distribution of (log-)returns nor an over-diffusive Hurst exponent. Then, a stochastic link

between order placement and market trend is added: It is assumed that liquidity providers

observing a trend in the market will act consequently and submit limit orders at a wider

depth in the order book. Although the assumption behind such a mechanism may not be

empirically confirmed (a questionable symmetry in order placement is assumed) and

should be further discussed, it is interesting enough that it directly provides fat tails in the
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log-return distributions and an over-diffusive Hurst exponent H ≈ 0.6 − 0.7 for medium

time-scales.

8.2.3 Threshold behaviour

We finally review a model focusing primarily on reproducing the stylized fact of volatility

clustering, while most of the previous models we have reviewed were mostly focused on

fat tails of log returns. Cont (2007) proposes a model with a rather simple mechanism to

create volatility clustering. The idea is that volatility clustering characterizes several

regimes of volatility (quite periods vs bursts of activity). Instead of implementing an

exogenous change of regime, the author defines the following trading rules.

At each period, an agent i ∈ {1, . . . , N} can issue a buy or a sell order: φi(t) = ±1.

Information is represented by a series of i.i.d Gaussian random variables. (εt). This public

information εt is a forecast for the value rt+1 of the return of the stock. Each agent

i ∈ {1, . . . , N} decides whether to follow this information according to a threshold θi > 0

representing its sensibility to the public information:

φi(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if εi(t) > θi(t)
0 if |εi(t)| < θi(t)
−1 if εi(t) < −θi(t)

(8.7)

Then, once every choice is made, the price evolves according to the excess demand D(t) =∑N
i=1 φi(t), in a way similar to Cont and Bouchaud (2000). At the end of each time step t,

threshold are asynchronously updated. Each agent has a probability s to update its threshold

θi(t). In such a case, the new threshold θi(t + 1) is defined to be the absolute value |rt| of

the return just observed. In short:

θi(t + 1) = 1{ui(t)<s}|rt|+ 1{ui(t)>s}θi(t). (8.8)

The author shows that the time series simulated with such a model do exhibit some realistic

facts on volatility. In particular, long range correlations of absolute returns is observed. The

strength of this model is that it directly links the state of the market with the decision of the

trader. Such a feedback mechanism is essential in order to obtain non trivial characteristics.

Of course, the model presented in Cont (2007) is too simple to be fully calibrated on

empirical data, but its mechanism could be used in a more elaborate agent-based model in

order to reproduce the empirical evidence of volatility clustering.

8.2.4 Enhancing zero-intelligence models

We will show in Section 8.3 that the zero-intelligence framework of Chapters 6 and 7 can

be generalized to the case of non-Poissonian orders flows. We end this survey section by

mentioning very recent developments built on this trend of modelling.
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Huang et al. (2015) propose a Markovian order book model in which the intensities

of arrival of orders are state-dependent. The order book is represented as a collection of

queues indexed by their distance in ticks to a reference price. This reference price process

is the main difference with the models described in this book. For each of the queues of

the limit order book, market orders, limit orders and cancellation orders are submitted with

intensities that are function of the number of shares standing in the book at the time of

submission. The authors do not assume any parametric form for these intensities, but plug

empirical estimates in their simulations. They show that such a small improvement (the

dependency of the intensities on the size of the queue) can lead to a realistic modelling of

the stationary state of the order book (distribution of the volume at the best quote). In an

extended version of the model, the empirically estimated intensities also depend on the size

of the preceding queues, according to their classifications as empty, low, normal or high.

In this setting, the authors can simulate quantities of interests, such as the probability of

execution of a limit order. Very recently, in the spirit of what we will present in the rest of

the chapter, Huang and Rosenbaum (2015) show that ergodicity and diffusive limit of the

price process are also obtained in such a setting, with a reference price and state-dependent

order flows.

Finally, the use of Hawkes processes for modelling limit order books is a very active

and fruitful direction of research, it will be studied in depth in the next sections of this

chapter and in Chapter 9.

8.3 Limit Order Book Driven by Hawkes Processes

Hawkes processes are a class of point processes that offer very natural and flexible models

for processes that mutually excite one another. Since, their introduction, they have been

applied to a wide range of research areas, from seismology in the pioneering work Hawkes

(1971) to credit risk, financial contagion and more recently, to the modelling of market

microstructure. Among the growing litterature in this latter field, Bacry et al. (2013a, 2012,

2013b) or Da Fonseca and Zaatour (2014b,a) introduce and study models where the joint

price and order flow dynamics are driven by Hawkes processes. In the recentBacry et al.

(2014), the authors develop a new method to accurately estimate non-parametric slowly

decaying Hawkes kernels, that allow to describe significant inter-order excitation over long

time windows. They fit an eight-dimensional Hawkes model with this type of kernels (four

types of orders per side of the book, namely orders that move the price, then market,

limit and cancellations that do not move the price), and confirm the self-excitation of the

order flows we describe and model in Chapters 4 and 9. Several recent papers [Hardiman

et al. (2013); Filimonov and Sornette (2015); Lallouache and Challet (2015) Gatheral et al.

(2015)] are concerned with the stability of Hawkes processes calibrated to price dynamics,
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whereas Alfonsi and Blanc (2015) addresses the optimal execution strategies when the

market orders are modelled via Hawkes processes.

Closer in spirit to our approach and motivations, the pioneering work by Large (2007)

is concerned with the specification, and calibration on real data, of a Hawkes process-

based model of limit order books. Muni Toke (2011); Muni Toke and Pomponio (2011)

are empirical and numerical studies of Hawkes processes modelling limit order books, and

Zheng et al. (2014) is a stylized order book model model driven by Hawkes processes.

As it turns out, the relevance of Hawkes processes for limit order book modelling is

amply demonstrated by several empirical properties of the order flow of market and limit

orders at the microscopic level. In particular, Hawkes processes exhibit the property of

time clustering, which can reproduce the fact that order arrivals alternate bursting and

quiet periods, as illustrated in Chapter 2. Hawkes processes also exhibit the property of

mutual excitation, which can reproduce the fact that order flows exhibit non-negligible

cross-dependencies, as illustrated in Chapter 4.

The rest of this chapter is devoted to the study of Hawkes process-based limit order

book models in a Markovian setting. After describing the mathematical framework, the

emphasis will be set, as in Chapter 6, on the ergodicity of the limit order book and the

diffusive behaviour of the price at large time scales.

8.3.1 Hawkes processes

We briefly recall in this section several classical results on multivariate Markovian Hawkes

processes.

Let N =
(
N1, ..., ND

)
be a D-dimensional point process with intensity vector λ =(

λ1, ..., λD
)
.

Definition 8.1 We say that N =
(
N1, . . . , ND

)
is a multivariate Hawkes

process with exponential kernel if there exists
(
λi

0

)
1�i�D

∈
(
R∗+

)D
,

(αi j)1�i, j�D ∈
(
R∗+

)D2

and (βi j)1�i, j�D ∈
(
R∗+

)D2

such that the intensities

satisfy the following set of relations:

λm(t) = λm
0 +

D∑
j=1

αm j

∫ t

0
e−βm j(t−s)dN j(s) (8.9)

for 1 � m � D.

The particular choice of exponential kernels is motivated by an important result that we

now recall:
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Proposition 8.2 Define the processes μi j as

μi j(t) = αi j

∫ t

0
e−βi j(t−s)dN j(s), 1 ≤ i, j ≤ D,

and let μ = {μi j}1≤i, j≤D. Then, the process (N,μ) is Markovian.

proof Lemma 6 in Massoulié (1998)gives a proof of this result.

Stationarity
Extending the early stability and stationarity result in Hawkes and Oakes (1974),

Theorem 5 in Massoulié (1998) proves a general stability result for the multivariate

Hawkes processes just introduced. In fact, one can show the existence of a Lyapunov

function for such a process. The existence of a Lyapunov function actually implies

exponential convergence towards the stationary distribution, a property already seen and

used in Chapter 6 (see Appendix C.1.1 for details).

We summarize these results in the following proposition:

Proposition 8.3 Let the matrix A be defined by

Ai j =
α ji

β ji
, 1 ≤ i, j ≤ D.

Assume that A is positive and that its spectral radius ρ (A) satisfies the
condition

ρ (A) < 1. (8.10)

Then, there exists a (unique) multivariate point process N =
(
N1, . . . , Nm

)
whose intensity is specified as in Definition 8.1. Morevover, this process is stable,
and converges exponentially fast in the total variation norm towards its unique
stationary distribution.

Appendix C, Section C.1.1 provides an explicit construction of Lyapunov functions of

arbitrary high polynomial growth at infinity for Hawkes processes.

8.3.2 Model setup

A limit order book model whose dynamics is governed by Hawkes processes is now

introduced. We shall use the same notations and conventions as in Chapter 6 to represent

the limit order book.

The same three types of events can modify the limit order book: arrival of a new limit

order, arrival of a new market order, cancellation of an already existing limit order. This
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time, the arrival of market and limit orders are described by mutually exciting Hawkes

processes:

• M±(t): Hawkes processes for buy or sell market orders, with intensities λM+

and λM− ;

• L±i (t): Hawkes processes for limit orders at level i, with intensities λL±
i ,

whereas the arrival of a cancellation order is modelled as in Chapter 6 by a doubly

stochastic Poisson process:

• C±i (t): Counting process for cancellations of limit orders at level i, with intensity

λC+

i ai and λC−
i |bi|.

8.3.3 The infinitesimal generator

A Markovian (2K + 2)-dimensional Hawkes process now models the intensities of the

arrivals of market and limit orders. The full limit order book can be characterized by the D-

dimensional process (a; b;μ) of the available quantities and the intensities of the Hawkes

processes decomposed as in Section 8.3.1, where D = (2K + 2)2 + 2K is the dimension

of the state space.

The infinitesimal generator associated with the process describing the joint evolution

of the limit order book has the following expression

LF(a; b;μ) = λM+ (
F

(
[ai − (q − A(i − 1))+]+; JM+

(b);μ+ ΔM+
(μ)

)
− F

)

+
K∑

i=1

λL+
i

(
F

(
ai + q; JL+i (b);μ+ ΔL+i (μ)

)
− F

)

+
K∑

i=1

λC+

i ai

(
F

(
ai − q; JC+

i (b);μ
)
− F

)

+ λM−(F (
JM−(a); [bi + (q − B(i − 1))+]−;μ+ ΔM−(μ)

)
− F

)

+
K∑

i=1

λL−
i

(
F

(
JL−i (a); bi − q;μ+ ΔL−i (μ)

)
− F

)

+
K∑

i=1

λC−
i |bi|

(
F

(
JC−i (a); bi + q;μ

)
− F

)

−
D∑

i, j=1

βi jμ
i j ∂F
∂μi j . (8.11)
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In order to ease the already cumbersome notations, we have written F (ai; b;μ) instead of

F (a1, . . . , ai, . . . , aK ; b;μ), and use the same symbol for a process and the corresponding

state variable in the state space. Moreover, the notation Δ(...) (μ) stands for the jump of the

intensity vector μ corresponding to a jump of the process N(...) (see Section C.1.1).

The operator L is a combination of

• standard difference operators corresponding to the arrival or cancellation of orders at

each limit and shift operators expressing the moves in the best limits, as already seen;

• drift terms coming from the mean-reverting behaviour of the intensities of the

Hawkes processes between jumps.

Note that, similarly to what is done in Chapter 6, the infinitesimal generator is fully worked

out in the case of a discrete state space for the quantities a, b; some trivial but notationally

cumbersome modifications would be necessary in order to account for the case of general,

real-valued quantities ai, bi’s and order size q.

8.3.4 Stability of the order book

In this section, we study the long-time behaviour of the limit order book. A Lyapunov

function is built, ensuring the ergodicity of the limit order book under the natural

assumption (8.10). More precisely, there holds the following proposition.

Proposition 8.4 Under the standing assumptions, in particular (8.10), the
limit order book process X is ergodic. It converges exponentially fast towards
its unique stationary distribution Π.

Proof Given the existence of the Lyapunov function provided in Lemma 8.5

below, the result is proven using Theorem 7.1 in Meyn and Tweedie (1993),

see Appendix C, Section C.2.1. The only technical difficulty lies in establishing

the fact that compact sets are petite sets, a result proven in Zheng et al. (2014),

Theorem 3.1 and Section 3.3.

Lemma 8.5 For η > 0 small enough, the function V defined by

V (a; b;μ) =
K∑

i=1

ai +
K∑

i=1

|bi|+ 1

η

(2K+2)2∑
i, j=1

δi jμ
i j ≡ V1 +

1

η
V2 (8.12)

where V1 (resp. V2) corresponds to the part that depends only on (a; b) (resp.
μ), is a Lyapunov function satisfying a geometric drift condition

LV � −ζV +C, (8.13)
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for some ζ > 0 and C ∈ R. The coefficients δi j’s are defined in (C.13) in
Section C.1.1.

Proof First specialize V2 to be identical - up to a change in the indices - to

the function defined by Eq. (8.5) in Appendix C.1.1. Regarding the “small”

parameter η > 0, it will become handy as a penalization parameter, as we shall

see below.

Thanks to the linearity of L, there holds

LV = LV1 +
1

η
LV2.

The first term LV1 is dealt with exactly as in Chapter 6:

LV1 ≤ −(λM+
+ λM−)q +

K∑
i=1

(
λL+

i + λL−
i

)
q −

K∑
i=1

(
λC+

i ai + λ
C−
i |bi|

)
q

+
K∑

i=1

λL+
i (iS − i)+a∞ +

K∑
i=1

λL+
i (iS − i)+|b∞| (8.14)

≤ −
(
λM+

+ λM−) q +
(
ΛL− + ΛL+

)
q − λCqV1(x)

+ K
(
ΛL−a∞ + ΛL+ |b∞|

)
, (8.15)

where

ΛL± :=
K∑

i=1

λL±
i and λC := min

1≤i≤K
{λC±

i } > 0.

Computing LV2 yields an expression identical to that obtained in Section C.1.1:

L (V2) =
∑
i, j

λ
j
0
δi jαi j + (κ − 1)

∑
j,k

εkμ
jk,

so that there holds

LV = LV1 +
1

η
LV2 � −λCqV1 − γ

η
V2 −G.μ+C,

where γ is as in Eq. (C.15), G.μ is a compact notation for the linear form in the

μi j’s obtained in Eq. (8.15), and C is some constant. Now, thanks to the positivity

of the coefficients in V2 and of the μi j’s, one can choose η small enough that there

holds
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∀μ, |G.μ| � γ
2η

V2 (μ) ,

which yields

LV ≡ LV1 +
1

η
LV2 � −λCqV1 − γ

2η
V2 +C, (8.16)

and finally

LV � −ζV +C,

with ζ = Min
(
λCq,

γ
2η

)
and C is some constant.

8.3.5 Large scale limit of the price process

Using the same approach as in Chapter 6 in this more general context, we study the

long-time behaviour of the price process, taking into account the stochastic behaviour of

the intensities of the point processes triggering the order book events. We first recall the

expression of the price dynamics in our limit order book model. Consider for instance the

mid-price, solution to the SDE (6.29) which we recall here

dP(t) =
ΔP
2

[(
A−1(q) − iS

)
dM+(t) − (B−1(q) − iS )dM−(t)

−
K∑

i=1

(iS − i)+dL+
i (t) +

K∑
i=1

(iS − i)+dL−i (t)

+
(
A−1(q) − iS

)
dC+

iA
(t) −

(
B−1(q) − iS

)
dC−iB(t)

]
.

Let us recast this equation - exactly as in 6.40 - under the following form:

Pt =

∫ t

0

∑
i

Fi (X(u)) dNi(u), (8.17)

where the Ni are the point processes driving the limit order book, X is the Markovian

process describing its state, and P is one of the price processes we are interested in. In

the current context of Hawkes processes, X = (a, b,μ) and the Ni, with state-dependent

intensitites νi (X), are the Poisson and Hawkes processes driving the limit order book. As

mentioned earlier, the Fi are bounded functions, as the price changes are bounded by the

total number of limits in the book, thanks to the non-zero boundary conditions a∞, b∞.
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Denote again by Π the stationary distribution of X, as provided by Proposition 8.4. We

can prove the following theorem:

Theorem 8.6 Write as above the price

Pt =

∫ t

0

∑
i

Fi (X(s)) dNi(s)

and its compensator

Qt =

∫ t

0

∑
i

νi (X(s)) Fi (X(s)) ds.

Define

h =
∑

i

νiFi (X)

and let

α =
a.s.
lim

t→+∞
1

t

∫ t

0

∑
i

νi (X(s)) Fi (X(s)) ds =
∫

h (X)Π(dX).

Finally, introduce the solution g to the Poisson equation

Lg = h − α

and the associated martingale

Zt = g (X(t))− g (X0)−
∫ t

0
Lg (X(s)) ds ≡ g (X(t))− g (X0)−Qt + αt.

Then, the deterministically centered, rescaled price

P̄n(t) ≡ Pnt − αnt√
n

converges in distribution to a Wiener process σ̄W. The asymptotic volatility σ̄
satisfies the identity

σ̄2 = lim
t→+∞

1

t

∫ t

0

∑
i

νi (X(s))
((

Fi − Δi(g)
)
(X(s))

)2
ds (8.18)

≡
∫ ∑

i

νi (X)
((

Fi − Δi(g)
)
(X)

)2
λiΠ(dX). (8.19)
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Proof Using again the martingale method as in the proof of Theorem 6.5 with

Pt = (Pt − Qt)−Zt + g (X(t))−g (X0)+αt ≡ (Mt − Zt)+ g (X(t))−g (X0)+αt,

the theorem will be proven if one can show that g ∈ L2 (Π(dX)). The condition

h2 � V (8.20)

(where V is a Lyapunov function for the process) of Theorem 4.4 in Glynnand

Meyn (1996) is sufficient for g to be in L2 (Π(dX)). The linear Lyapunov

function V introduced in (8.12) does not yield the desired result, because h now

has a linear growth. However, Lemma Lemma C.5 in Appendix C provides a

Lyapunov function having a polynomial growth of arbitrarily high order in the

intensities at infinity, thereby ensuring that Condition(8.20) holds.

8.4 Conclusion

The question of modelling the interactions between agents of different types is quite

fascinating. It has important consequences on many aspects of the understanding of limit

order books, be it from an empirical, theoretical or practical point of view. In this chapter

we have suggested and reviewed several, and studied some, avenues for such a refined

modelling. It is however clear that much more work is still to be done, in view in

particular of the fierce competition between agents following different strategies. Such a

game-theoretic approach to limit order book modelling is still in its infancy, and will

probably be the subject of many interesting future studies.



PART THREE
SIMULATION OF LIMIT ORDER BOOKS





CHAPTER9
Numerical Simulation of Limit Order
Books

9.1 Introduction

This chapter describes useful algorithms and their implementations for the numerical

simulation of limit order books. The basic algorithm simulating a zero-intelligence limit

order book is presented, and then extended to the case of a multivariate Hawkes

process-driven order book. Numerical results are analyzed, and compared to empirical

data.

9.2 Zero-intelligence Limit Order Book Simulator

9.2.1 An algorithm for Poissonian order flows

We describe a basic algorithm for the simulation of the limit order book model of Chapters

6 and 7. We will assume for notational simplicity that the order book is symmetric, i.e. that

the intensities of arrival of orders of various types are identical on the bid and ask side. We

can thus drop the ± signs of our notations, and define here with obvious notations:

λL =
(
λL

1 , . . . , λL
K

)
,

ΛL =
K∑

i=1

λL
i ,

λC(a) =
(
λC

1 a1, . . . , λC
KaK

)
,

ΛC(a) =
K∑

i=1

λC
i ai,
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λC(b) =
(
λC

1 |b1|, . . . , λC
K |bK |

)
,

ΛC(b) =
K∑

i=1

λC
i |bi|,

Λ(a, b) = 2(λM + ΛL) + ΛC(a) + ΛC(b).

Using these notations, the routine for the simulation of the limit order book is sketched in

Algorithm 1 [see also Gatheral and Oomen (2010) for a similar description].

Algorithm 1 Order book simulation with Poisson order flows.

Require: Model parameters: K (number of visible limits), λM , {λL
i }i∈{1,...K}, {λC

i }i∈{1,...K}
(intensities of order flows), a∞, b∞ (size of hidden limits), random distributions

VL,VM ,VC (volume of limit, market and cancel orders).

Simulation Parameters: N (length of simulation in event time), Xinit (initial state of the

limit order book)

1: Initialization: Set t ← 0 (physical time), X(0) ← Xinit.

2: for n = 1, . . . , N

3: Update the cancellation intensities: ΛC(b) =
∑K

i=1 λ
C
i |bi|, ΛC(a) =

∑K
i=1 λ

C
i ai..

4: Time of next event: Draw the waiting time τ from an exponential distribution

with parameter Λ(a, b) = 2(λM + ΛL) + ΛC(a) + ΛC(b).

5: Type of next event: Draw an event type according to the probability vector(
λM , λM , ΛL, ΛL, ΛC(a), ΛC(b)

)
/Λ(a, b). These probabilities correspond

respectively to a buy market order, a sell market order, a buy limit order, a sell

limit order, a cancellation of an existing sell order and a cancellation of an existing

buy order.

6: Volume of next event: Depending on the event type, draw the order volume from

one of the random distributionsVL,VM ,VC .

7: Price of next event:

8: if the next event is a limit order then

9: Draw the relative price level according to the probability vector
(
λL

1
, . . . , λL

K

)
/ΛL.

10: end if

11: if the next event is a cancellation then

Contd...
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Algorithm 1 Order book simulation with Poisson order flows.

12: Draw the relative price level at which to cancel an order from according to the

probability vector
(
λC

1
a1, . . . , λC

KaK
)

/ΛC(a) (ask case) or
(
λC

1
|b1|, . . . , λC

K |bK |
)

/
ΛC(b) (bid case).

13: end if

14: Set t ← t + τ and update the order book according to the new event.

15: Enforce the boundary conditions: ai ← a∞, i ≥ K + 1 and bi ← b∞, i ≥ K + 1.

16: end for

This algorithm is simply the transcription of the limit order book modelled in Chapter

6, enhanced as in Chapter 7 to allow random sizes of submitted orders of all types. This

feature will help producing more realistic simulated data.

9.2.2 Parameter estimation

The parameters of the model are estimated on the dataset presented in Appendix B.6. In

this section we analyze the results computed with the parameters estimated for the stock

SCHN.PA (Schneider Electric) in March 2011. These results and figures are given as

illustration, but it is important to note that they are qualitatively similar for all CAC 40

stocks.

Let T be the length of the time window of interest each day. If NM
T is the total number

of trades (buy and sell) during this time window, then the estimate for the intensity of the

market orders is

λ̂M =
NM

T

2T
.

If NL
i,T is the total number of limit orders (buy and sell) submitted i ticks away from the

best opposite quote during the time interval of length T , then the estimate for the intensity

of the limit orders i ticks away from the best opposite quote is

λ̂L
i =

NL
i,T

2T
.

As for the cancellation intensities, we need to normalize the count by the (temporal)

average number of shares 〈Xi〉 at distance i from the best opposite quote. If NC
i,T is the

total number of cancellation orders (buy and sell) submitted i ticks away from the best

opposite quote during the time interval of length T , then the estimate for the intensity of

the cancellation orders i ticks away from the best opposite quote is
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λ̂C
i =

1

〈Xi〉
NC

i,T

2T

We then average λ̂M , λ̂L
i and λ̂L

i across 23 trading days to get the final estimates. As for the

volumes, we compute the empirical distributions of the volumes for each type of orders,

and we fit by maximum likelihood estimation a log-normal distribution with parameters

(v̂M , ŝM) (market orders), (v̂L, ŝL) (limit orders) and (v̂C , ŝC) (cancellation orders).

The parameters estimated for SCHN.PA in March 2011 are summarized in Tables 9.1

and 9.2. A graphic representation of these parameters is given in Fig. 9.1 and Fig. 9.2.

Table 9.1 Model parameters for the stock SCHN.PA (Schneider Electric) in March 2011 (23

trading days). Figures 9.1 and 9.2 are graphical representation of these parameters

K 30

a∞ 250

b∞ 250

(vM , sM) (4.00, 1.19)

(vL, sL) (4.47, 0.83)

(vC , sC) (4.48, 0.82)

λM± 0.1237

Table 9.2 Model parameters for the stock SCHN.PA (Schneider Electric) in March 2011 (23

trading days). Figures 9.1 and 9.2 are graphical representation of these parameters

i (ticks) 〈Xi〉 (shares) λL±
i 103.λC±

i

1 276 0.2842 0.8636

2 1129 0.5255 0.4635

3 1896 0.2971 0.1487

4 1924 0.2307 0.1096

5 1951 0.0826 0.0402

6 1966 0.0682 0.0341

Contd...
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i (ticks) 〈Xi〉 (shares) λL±
i 103.λC±

i

7 1873 0.0631 0.0311

8 1786 0.0481 0.0237

9 1752 0.0462 0.0233

10 1691 0.0321 0.0178

11 1558 0.0178 0.0127

12 1435 0.0015 0.0012

13 1338 0.0001 0.0001

14 1238 0.0 0.0

15 1122
...

...

16 1036

17 943

18 850

19 796

20 716

21 667

22 621

23 560

24 490

25 443

26 400

27 357

28 317

29 285
...

...

30 249 0.0 0.0
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Fig. 9.1 Model parameters: Arrival rates and average depth profile (parameters as in

Table 9.2). Error bars indicate variability across different trading days. Extracted

from Abergel and Jedidi (2013)
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Fig. 9.2 Model parameters: Volume distribution. Panels (a), (b) and (c) correspond

respectively to market, limit and cancellation orders volumes. Dashed lines are

lognormal fits (parameters as in Table 9.1). Extracted from Abergel and Jedidi (2013)
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9.2.3 Performances of the simulation

We compute on our simulated data several quantities of interest. Figure 9.3 represents the

average shape of the order book. Recall that this shape has been analytically determined in

Chapter 7 in the case of a one-sided model. The agreement between the simulated shape

and the empirical one is fairly good. A cross-sectional view of this quantity for all CAC

40 stocks is provided in the next subsection (Fig. 9.10 Panel (a)).

Fig. 9.3 Average depth profile. Simulation parameters are summarized in Tables 9.1 and 9.2.

Extracted from Abergel and Jedidi (2013)

We also study some properties of the price process derived from the order book

simulations. The distribution of the spread is given in Fig. 9.4. We observe that the

simulated distribution is tighter than the empirical one. This observation stands for all

CAC 40 stocks, as documented Fig. 9.10 Panel (b). It must however be taken with a grain

of salt, as the spread distribution is highly sensitive to many parameters of the model. In

Section 9.3, we present a qualitative study of the spread distribution under various

modelling assumptions for the arrival of orders.
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Figure 9.5 shows the fast decay of the autocorrelation function of the price increments.

Note the high negative autocorrelation of simulated trade prices relatively to the data. This

feature is most likely due to the fact that we have assumed a symmetric order book and

Poissonian arrival of orders: In real markets, order splitting induces a clustering of market

orders of identical signs, so that the traded prices in a sequence of market orders are closer

to one another that in the zero-intelligence case for which the bid-ask bounce effect1 is

important.

Fig. 9.4 Probability distribution of the spread. Note that the model (dark gray) predicts a

tighter spread than the data. Extracted from Abergel and Jedidi (2013)

Figure 9.6 gives an example of simulated path for the mid-price. Figure 9.7 plots the

histogram of the empirical distribution of the price increments over 1000 events. At this

(large) scale, the normal distribution is a good match. This is a well-known observation,

called asymptotic normality of price increments. Figure 9.8 shows the Q-Q plots of the

mid-price increments for four different scales, from 1 second to 5 minutes. The

convergence of the distribution of the price increments towards a Gaussian distribution as

the time scale of observation increases is clearly observed.

1The bid-ask bounce effect describes the fact that the signs of market orders generally alternate, thereby creating a large

change in traded prices due to the presence of the bid-ask spread
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Fig. 9.5 Autocorrelation of price increments. This figure shows the fast decay of the

autocorrelation function, and the large negative autocorrelation of trades at the first

lag. Extracted from Abergel and Jedidi (2013)

Fig. 9.6 Price sample path. At large time scales, the price process is close to a Wiener process.

Extracted from Abergel and Jedidi (2013)
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Fig. 9.7 Probability distribution of price increments. Time lag h = 1000 events. Extracted

from Abergel and Jedidi (2013)

Fig. 9.8 Q-Q plot of mid-price increments. h is the time lag in seconds. This figure illustrates

the aggregational normality of price increments. Extracted from Abergel and Jedidi

(2013)
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We now give a few facts on the properties of the variance of the price processes of our

simulations. The signature plot of a price time series is defined as the variance of price

increments at lag h normalized by the lag h, as a function of this lag h. In other words, it is

the function h �→ σ2
h where

σ2
h =

V [P(t + h) − P(t)]
h

. (9.1)

This function measures the variance of price increments per time unit. Its main interest is

that it shows the transition from the variance at small time scales where micro-structure

effects dominate, to the long-term variance. Using the results of Chapter 6, in particular

Theorem 6.5, one can show that

lim
h→∞σ

2
h = σ2, for some fixed value σ. (9.2)

Figure 9.9 shows the signature plots computed on our simulations compared to the

empirical ones. Signature plots are computed for both the trade prices and the mid-prices,

and in both event and calendar time.

Two main observations are to be made. First, the simulated long-term variance is lower

than the variance computed from the data. This observation remains valid for all CAC

40 stocks as documented in Fig. 9.10 Panel (c). We know that depth (shape) of the order

book increases away from the best price towards the center of the book. In the absence of

autocorrelation in trade signs, this would cause prices to wander less often far away from

the current best as they hit a higher “resistance”. We also suspect that actual prices exhibit

locally more “drifting phases” than in our symmetric Markovian simulation where the

expected price drift is null at all times. An interesting analysis of a simple order book model

that allows time-varying arrival rates can be found in Challet and Stinchcombe (2003).

Second, the simulated signature plot is too high at short time scales relative to the

asymptotic variance, especially for traded prices. As seen previously, this behaviour is

well explained by the bid-ask bounce, which is too strong in the zero-intelligence model

as there is no accounting for the clustering of orders of identical signs (see Subsection

9.2.4 below for a simple quantitative analysis of this phenomenon). It is however

remarkable that the signature plot of empirical trade prices looks much flatter than the

signature plot of simulated trade prices. Indeed, a flat empirical signature plot at all time

scales suggests that the prices are actually diffusive, which seems to contradict the

observation that empirical order signs exhibit positive long-ranged correlations. This has

been observed and discussed in several empirical studies (Bouchaud et al. 2004; Lillo and

Farmer, 2004; Farmer et al. 2006; Bouchaud et al. 2009). According to these studies, the

paradox is solved by observing that the diffusivity results from two opposite effects:
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Fig. 9.9 Signature plot: σ2
h := V [P(t + h) − P(t)]/h. y axis unit is tick2 per trade for

panel (a) and tick2. second−1 for panel (b). We used a 1,000,000 event simulation

run for the model signature plots. Data signature plots are computed separately for

each trading day [9 : 30–14 : 00] then averaged across 23 days. For calendar time

signature plots, prices are sampled every second using the last tick rule. The inset is

a zoom-in. Extracted from Abergel and Jedidi (2013)
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Fig. 9.10 A cross-sectional comparison of liquidity and price diffusion characteristics between

the model and data for CAC 40 stocks (March 2011). Extracted from Abergel and

Jedidi (2013)

On the one hand, autocorrelation in trade signs induces persistence in the price processes,

while on the other hand, the liquidity stored in the order book induces mean-reversion.

These two effects counterbalance each other exactly. This subtle equilibrium between

liquidity takers and liquidity providers, which guarantees price diffusivity at short lags, is
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not accounted for by the simple Poisson order book model that is simulated here, which

explains our observations of anomalous diffusions at short time scales (see also Smith

et al. 2003). Because of the absence of positive autocorrelation in trade signs in the

model, this effect is magnified when one looks at trades. The next subsection elaborates

on this point.

9.2.4 Anomalous diffusion at short time scales

We propose a heuristic argument for the understanding of the discrepancy between the

model and the data signature plots at short time scales. In what follows, we use the trade

time, i.e. the t-th trade occurs at time t. Denote by PTr(t) the price of the trade at time t,
and α(t) its sign:

α(t) =

⎧⎪⎪⎨⎪⎪⎩1 for a buyer initiated trade, i.e. a buy market order,

−1 for a seller initiated trade, i.e. a sell market order.

We assume that the two signs are equally probable (symmetric model). But to make the

argument valid for both the model (for which successive trade signs are independent) and

the data (for which trade signs exhibit long memory) we do not assume independence of

successive trade signs. Let P(t−) and S (t−) be the mid-price and spread just before the

t-th trade. Then,

PTr(t) = P(t−) + 1

2
α(t)S (t−). (9.3)

For any process Z we define the increment ΔZ(t) = Z(t + 1) − Z(t). With Eq. (9.3), the

variance of the trade price process can be written:

(
σTr

1

)2
= V[ΔPTr(t)]

= E
[(

ΔPTr(t)
)2

]
= E

[
(ΔP(t−))2

]
+ E [ΔP(t−)Δ(α(t)S (t−))] + 1

4
E

[
(Δ(α(t)S (t−)))2

]
.

The first term in the right-hand side of the above equation is the variance of mid-price

increments, denoted σ2
1

thereafter. The second term represents the covariance of mid-price

increments and the trade sign weighted by the spread. We may assume that this quantity

is negligible. Indeed, this amounts to neglecting the correlation between trade signs and

mid-quote movements, which can be justified by the dominance of cancellations and limit

orders in comparison to market orders in order book data. We can thus focus on the third

term and write:
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E
[
(Δ(α(t)S (t−)))2

]
= E

[
(α(t + 1)ΔS (t−) + S (t−)Δα(t))2

]
= E

[
(Δα(t))2

]
E

[
S (t−)2

]
+ 2E [α(t + 1)ΔS (t−)S (t−)Δα(t)]

+ E
[
α(t + 1)2

]
E

[
(ΔS (t−))2

]
.

Again, we neglect the cross term in the right-hand side, which amounts this time to neglect

the correlation between trade signs and spread movements. We are thus left with:

E
[
(Δ(α(t)S (t−)))2

]
≈ E

[
(Δα(t))2

]
E

[
S (t−)2

]
+ E

[
(ΔS (t−))2

]
.

Finally, if ρ1(α) is the autocorrelation of trade signs at the first lag, we observe that:

E
[
(Δα(t))2

]
= E

[
α(t + 1)2

]
+ E

[
α(t)2

]
− 2E [α(t)α(t + 1)]

= 2 (1 − ρ1(α)) ,

and we obtain:

(
σTr

1

)2 ≈ σ1
2 +

1

2
(1 − ρ1(α))E

[
S (t−)2

]
+

1

4
E

[
(ΔS (t−))2

]
. (9.4)

More generally, a similar result after n trades may be written:

(
σTr

n

)2 ≈ σn
2 +

1

2n
(1 − ρn(α))E

[
S (t−)2

]
. (9.5)

Two effects are clear from Eq. (9.4). First, the trade price variance at short time scales is

larger than the mid-price variance. Second, autocorrelation in trade signs dampens this

discrepancy. This explains at least partially why the trades signature plot obtained from

the data is flatter than the model predictions: ρ1(α)model = 0, while ρ1(α)data ≈ 0.6.

Interestingly, although the arguments that led to (9.4) are rather qualitative, a back of the

envelope calculation with E
[
S 2

]
∈ [1, 9] gives a difference

(
σTr

)2 − σ2 in the range

[0.5, 4.5], which has the same order of magnitude of the values obtained by simulation.

From a modelling perspective, a possible solution to recover the diffusivity, even at

very short time scales, is to incorporate long-ranged correlation in the order flow. Tóth

et al. (2011) have investigated numerically this route using a “ε-intelligence” order book

model. In this model, market orders signs are long-ranged correlated, that is, in trade time

ρn(α) = E [α(t + n)α(t)] ∝ n−γ, γ ∈]0, 1[. (9.6)
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The size of incoming market orders is a fraction f of the volume displayed at the best

opposite quote, with f drawn from the distribution

Pξ( f ) = ξ(1 − f )ξ−1, (9.7)

It is shown in this model that by fine tuning the additional parameters γ and ξ, one can

ensure a diffusive behaviour of the price both at a mesoscopic time scale (a few trades) and

a macroscopic time scale (a few hundred trades)2.

9.2.5 Results for CAC 40 stocks

In order to get a cross-sectional view of the performance of the model on all CAC 40

stocks, we estimate the parameters separately for each stock and run a 100, 000 event

simulation for each parameter set. We then compare in Figure 9.10 the average depth,

average spread and the long-term “volatility” measured directly from the data, to those

obtained from the simulations. Dashed line is the identity function. It would correspond

to a perfect match between model predictions and the data. Solid line is a linear regression

zdata = b1 + b2 zmodel for each quantity of interest z. Parameters of the regression are

given in Table 9.3.

We observe a good agreement between the average depth profiles (Panel (a)), and the

model successfully predicts the relative magnitudes of the long-term variance σ2∞ and the

average spread 〈S 〉 for different stocks. However, it tends to systematically underestimate

σ2∞ and 〈S 〉. As explained above, this may be related to the absence of autocorrelation in

order signs in the model and the presence of more drifting phases in empirical prices than

in the simulated ones.

Table 9.3 CAC 40 stocks regression results

b1 b2 R2

Log 〈A〉 (5) −0.42 (±0.11) 1.13 (±0.04) 0.99

Log 〈S 〉 0.20 (±0.06) 1.16 (±0.07) 0.97

σ∞ −0.012 (±0.05) 1.35 (±0.11) 0.94

9.3 Simulation of a Limit Order Book Modelled by Hawkes Processes

The basic order book simulator is now enhanced with arrival times of limit and market

orders following mutually exciting Hawkes processes, as in the model described and

2Note that Toth. el al. Tóth et al. (2011) model the “latent order book”, not the actual observable order book. The former

represents the intended volume at each price level p, that is, the volume that would be revealed should the price come close

to p. So that the interpretation of their parameters, in particular the expected lifetime τlife of an order, does not strictly match

ours.
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mathematically analysed in Chapter 8. We present numerical procedures for the

estimation and simulation of Hawkes processes. We show in Section 9.3.4 that using

Hawkes process-driven order flows enables a more realistic behaviour of the bid-ask

spread than Poissonian order flows.

9.3.1 Simulation of the limit order book in a simple Hawkes model

It is known [Large (2007) Da Fonseca and Zaatour (2014b)] that there is a strong clustering

of the arrivals of market and limit orders, and we have also seen in Chapter 4 that the flow

of limit orders strongly interact with the flow of market order. Such observations naturally

advocate for the use of Hawkes processes to model the intensities of submissions of market

and limit orders, as was already presented and mathematically studied in Chapter 8.

In this section, we analyze a low-dimensional Hawkes process-based limit order book

model. Flows of limit and market orders are represented by two Hawkes processes NL and

NM , with stochastic intensities respectively λL and λM defined as:

λM(t) = λM
0 +

∫ t

0
αMMe−βMM(t−s)dNM

s ,

λL(t) = λL
0 +

∫ t

0
αLMe−βLM(t−s)dNM

s +

∫ t

0
αLLe−βLL(t−s)dNL

s .

Three mechanisms can be used here. The first two are self-exciting ones, MM and LL.

They are a way to translate into the model the observed clustering of arrival of market and

limit orders and the broad distributions of their durations. The third mechanism, LM, is the

direct translation of the market making property we have identified in Chapter 4. When a

market order is submitted, the intensity of the limit order process NL increases, enforcing

the probability that the next event will illustrate a market making behaviour. Note that, for

the sake of computational simplicity, we do no implement the reciprocal mutual excitation

ML: Although a market taking effect has been identified in Chapter 4, it was not observed

with all limit orders, but only with the aggressive ones. Since, we preferred to keep the

model low-dimensional, the ML effect is not implemented here. Some calibration results

based on a more complete model including the market taking effect will be presented in

Section 9.4.

9.3.2 Algorithm for the simulation of a Hawkes process

We now have to modify our routine for the simulation of a limit order book with

Poissonian order flows (Algorithm 1) and replace the simulation of events with

exponentially distributed inter-event times (lines 4 and 5 of the algorithm) with the

simulation of the Hawkes processes NM and NL.
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Below is a generic algorithm that simulates a P-variate Hawkes process with

intensities

λn(t) = λn
0(t) +

P∑
m=1

∫ t

0
αnme−βnm(t−s) dNm(s), n = 1, . . . P

The simulation is based on a thinning method (Lewis and Shedler, 1979). Let [0, T ] be

the time interval on which the process is to be simulated. We define IK(t) =
∑K

n=1 λ
n(t)

the sum of the intensities of the first K components of the multivariate process. IP(t) =∑P
n=1 λ

n(t) is thus the total intensity of the multivariate process and we set I0 = 0.

The detailed routine is given in Algorithm 2.

Algorithm 2 Generic thinning algorithm for the simulation of a multivariate

Hawkes process.

Require: Deterministic base intensities λn(t) and exponential kernel parameters (αmn)
and (βmn), m, n = 1, . . . , P for the P-variate Hawkes process.

1: Initialization: Set i1 ← 1, . . . , iP ← 1 and I∗ ← IP(0) =
∑P

n=1 λ
n
0
(0).

2: Time of first event: Draw s exponentially distributed with parameter I∗.
3: while s < T

4: Draw D uniformly distributed on [0, 1].

5: if D ≤ IP(s)
I∗ then

6: Set tn0

in0
← s where n0 is such that

In0−1(s)
I∗ < D ≤ In0 (s)

I∗ . (New event of type n0)

7: Set in0 ← in0 + 1.

8: end if
9: Update maximum intensity: Set I∗ ← IP(s). I∗ exhibits a jump of size∑P

n=1 αnn0
if an event of type n0 has just occurred.

10: Time of next event: Draw s exponentially distributed with parameter I∗.
11: end while

Ensure:
(
{tni }i

)
n=1,...,P

is a sample path of a multivariate Hawkes process on [0, T ].

As an illustration we provide some examples of simulations of bivariate Hawkes

processes using Algorithm 2. Figure 9.11 shows an example of such a simulation for

parameters, and Fig. 9.12 zooms in on a small part of this simulation. Parameters used to

compute these graphs are:

λ1
0 = 0.1,α11

1 = 0.2, β11
1 = 1.0,α12

1 = 0.1, β12
1 = 1.0,

λ2
0 = 0.5,α21

1 = 0.5, β21
1 = 1.0,α22

1 = 0.1, β22
1 = 1.0, (9.8)
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Fig. 9.11 Simulation of a two-dimensional Hawkes process with parameters given in Eq. (9.8)

Fig. 9.12 Simulation of a two-dimensional Hawkes process parameters given in Eq. (9.8).

(Zoom of Fig. 9.11)
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9.3.3 Parameter estimation

The Hawkes model described above has many variants: By forcing some αs to be zero,

we can turn off one or several of these features. We therefore have several models to test:

namely LM, MM, MM + LM, MM + LL, MM + LL + LM – and try to understand the

influence of each effect. As a reference, we will also simulate the model in which NM and

NL are homogeneous Poisson processes. This variant will be referred to as HP.

Hawkes processes can be estimated by a maximum likelihood method. Details for an

efficient computation of the log-likelihood are given in Appendix C.1.1. We fit both NL

and NM processes by computing on our data these maximum likelihood estimators of the

parameters of the different variants of the model. As expected, estimated values varies

with the market activity on the day of the sample. However, it appears that estimation of

the parameters of stochastic intensity for the MM and LM effect are quite robust. We find

an average relaxation parameter β̂MM = 6, i.e. roughly 170 milliseconds as a

characteristic time for the MM effect, and β̂LM = 1.8, i.e. roughly 550 milliseconds

characteristic time for the LM effect. Estimation of models including the LL effect are

more troublesome on our data. In the simulations that follows, we assume that the

self-exciting parameters are similar (αMM = αLL, βMM = βLL) and ensure that the

number of market orders and limit orders in the different simulations is roughly equivalent

(i.e. approximately 145000 limit orders and 19000 market orders for 24 hours of

continuous trading). Table 9.4 summarizes the numerical values used for simulation.

Fitted parameters are in agreement with an assumption of asymptotic stationarity. We

compute long runs of simulations with our enhanced model, simulating each time 24

hours of continuous trading. With these parameters, the order book is never empty during

the simulations. Note however that there is no mechanism to prevent the limit order book

from becoming empty. If needed, one can enforce the limits a∞ and b∞ for some price far

away from the best prices, as in Algorithm 1. Statistics based on the simulation results are

discussed in the Section 9.3.4.

Table 9.4 Estimated values of parameters used for simulations

Model μ0 αMM βMM λ0 αLM βLM αLL βLL

HP 0.22 - - 1.69 - - - -

LM 0.22 - - 0.79 5.8 1.8 - -

MM 0.09 1.7 6.0 1.69 - - - -

MM LL 0.09 1.7 6.0 0.60 - - 1.7 6.0

MM LM 0.12 1.7 6.0 0.82 5.8 1.8 - -

MM LL LM 0.12 1.7 5.8 0.02 5.8 1.8 1.7 6.0
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Common parameters: mP
1
= 2.7, νP

1
= 2.0, sP

1
= 0.9

V
1
= 275, mV

2
= 380

λC = 1.35, δ = 0.015

9.3.4 Performances of the simulation

In this section, we present the results of the simulation of the Hawkes process-based model

described above. Other than the arrival times of events, there are some differences with

the order book simulation described in Algorithm 1: first, the volume distributions VM

and VL are exponential (instead of Log-Gaussian). Second, we do not keep track of the

intensities λL
i for each price level i, but use instead one process NL for the submission of

limit order. The submission price of an incoming limit orders is then drawn according to

a parametric (Student) distribution centred around the same side best quote and truncated

at the opposite best price. Third, the size of these new limit orders is randomly drawn

according to an exponential distribution with mean mV
L .

These are minor changes implemented in order to study some alternatives to the choices

in Section 9.2, but their influence on the results we present here is clearly moderate, the

empahsis being on the arrival times.

With these specifications, we have the following results. Firstly, we can easily check

that introducing self- and mutually exciting processes into the order book simulator helps

producing more realistic arrival times. Figure 9.13 shows the distributions of the durations

of market orders (left) and limit orders (right). As expected, we check that the Poisson

assumption has to be discarded, while the use of Hawkes processes helps give more weight

to very short time intervals. We also verify that models with only self-exciting processes

MM and LL are not able to reproduce the market making feature described in Chapter 4.

Distribution of time intervals between a market order and the next limit order are plotted

on Fig. 9.14. As expected, no peak for short times is observed if the LM effect is not in

the model. However, when the LM effect is included, the simulated distribution of time

intervals between a market order and the following limit order is very close to the empirical

one.

Besides offering a better simulation of the arrival times of orders, we argue that the LM

effect also helps simulating a more realistic behaviour of the bid-ask spread of the order

book. On Fig. 9.15, we compare the distributions of the spread for three models – HP, MM,

MM+LM – with respect to the empirical measures. We first observe that the model with

homogeneous Poisson processes produces a fairly good shape for the spread distribution,

but slightly shifted to the right. Small spread values are largely underestimated. When

adding the MM effect in order to get a better grasp at market orders’ arrival times, it appears

that we flatten the spread distribution. One interpretation could be that when the process

NM is excited, markets orders tend to arrive in cluster and to hit the first limits of the order

book, widening the spread and thus giving more weight to large spread values. However,
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since the number of orders is roughly constant in our simulations, there has to be periods

of lesser market activity where limit orders reduce the spread. Hence, a flatter distribution.

The MM + LM model produces a spread distribution much closer to the empirical shape. It

appears from Fig. 9.15 that the LM effect reduces the spread: the market making behaviour

helps giving less weight to larger spread values (see the tail of the distribution) and to

sharpen the peak of the distribution for small spread values.

Fig. 9.13 Empirical density function of the distribution of the durations of market orders (left)

and limit orders (right) for three simulations, namely HP, MM, LL, compared to

empirical measures. In inset, same data using a semi-log scale. Extracted from Muni

Toke (2011)
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Fig. 9.14 Empirical density function of the distribution of the time intervals between a market

order and the following limit order for three simulations, namely HP, MM+LL,

MM+LL+LM, compared to empirical measures. In inset, same data using a semi-

log scale. Extracted from Muni Toke (2011)

Fig. 9.15 Empirical density function of the distribution of the bid-ask spread for three

simulations, namely HP, MM, MM+LM, compared to empirical measures. In

inset, same data using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01 euro).

Extracted from Muni Toke (2011)
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We show on Fig. 9.16 that the same effect is observed in an even clearer way with the MM

+ LL and MM + LL + LM models.

Fig. 9.16 Empirical density function of the distribution of the bid-ask spread for three

simulations, namely HP, MM, MM + LM, compared to empirical measures. In

inset, same data using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01 euro).

Extracted from Muni Toke (2011)

Actually, the spread distribution produced by the MM + LL model is the flattest one. This

is in line with our previous argument. When using two independent self exciting Hawkes

processes for arrival of orders, periods of high market orders’ intensity gives more weight

to large spread values, while periods of high limit orders’ intensity gives more weight to

small spread values. Adding the cross-term LM to the processes implements a coupling

effect that helps reproducing the empirical shape of the spread distribution. The MM + LL

+ LM simulated spread is the closest to the empirical one.

Finally, it is somewhat remarkable to observe that these variations of the spread

distributions are obtained with little or no change in the distributions of the variations of

the mid-price. As shown on Fig. 9.17, the distributions of the variations of the mid-price

sampled every 30 seconds are nearly identical for all the simulated models.



138 Limit Order Books

Fig. 9.17 Empirical density function of the distribution of the 30-second variations of the

mid-price for five simulations, namely HP, MM, MM+LM, MM+LL, MM+LL+LM,

using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01 euro). Extracted from

Muni Toke (2011)

9.4 Market Making and Taking, Viewed from a Hawkes-process
Perspective

In this short section, we analyze the calibration results of a more general Hawkes process-

based model for the limit order book. This time, we distinguish between limit (L) and

market (M) orders that change the price (denoted A for aggressive) and those that do not

change the price (denoted P for passive); hence we consider four types of orders, denoted

by the abbreviations AM, PM, AL and PL. These four types of events are modelled with

a four-dimensional Hawkes process N(t) = (NAM(t), NPM(t), NAL(t), NPL(t)) with a

constant base intensity and an exponential kernel. In other words, the process N has the

intensity λ(t) = (λAM(t), λPM(t), λAL(t), λPL(t)) satisfying:

λ(t) = λ0 +

∫ t

0
K(t − u)dN(u), (9.9)
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where λ0 = (λAM
0

, λPM
0

, λAL
0

, λPL
0
) is the base intensity and the kernel matrix K has general

term Ki j(u) = αi je−βi ju, i, j ∈ {AM, PM, AL, PL}. As before, the model is fitted to the data

using a maximum-likelihood estimation described in Appendix C.1.1. In this example, we

use 14 days of trading (February 1st to 23rd, 2010) for twelve randomly selected CAC 40

stocks traded on the Paris Bourse. Since, the empirical results in Chapter 4, Section 4.4.1

section has exhibited, as expected, a certain symmetry between the bid and ask sides, we

do not distinguish the buy and sell sides and merge all events of the same type from both

the bid and ask sides of the book. Following Large (2007), we visualize the results by

plotting circles with center coordinates (αi j, ln(2)β−1
i j ) and a diameter proportional to the

number of exciting events j. Thus, the higher the circle, the stronger the influence of

the corresponding event. Similarly, circles on the right side of the graph have a longer

influence.

Figure 9.18 plots for the twelve stocks the resulting circles for events that influence the

intensity of aggressive limit orders (parameters αAL− j and βAL− j).

Fig. 9.18 Hawkes parameters for aggressive limit orders for various CAC40 stocks. These

values are computed using MLE estimation on 14 days of trading (Feb.1st-Feb.23rd

2010), 10am-12pm
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The intensity of the arrival process of limit orders submitted inside the spread is strongly

excited by aggressive market orders, with a rather short half-life. We thus observe here a

return of liquidity that tightens the spreads after its widening by an aggressive market order:

This is the market making effect already described. Another similar effect of resilience in

the order book is observed, a bit less strongly, with passive market orders. The third notable

influence is due to the aggressive limit orders, with a less intense effect but longer half-life,

illustrating the clustering of these aggressive limit orders. The limited effect of passive limit

orders appears in contrast negligible. It is important to remark that this pattern is a general

one: All circles of the same type are grouped together on the same part of the graph, i.e.

each of the 12 studied stocks exhibit roughly the same behaviour with respect to clustering

and market making.

Regarding the reciprocal excitations on aggressive market orders, results are presented

on Fig. 9.19.

Fig. 9.19 Hawkes parameters for aggressive market orders for various CAC40 stocks. These

values are computed using MLE estimation on 14 days of trading (Feb.1st-Feb.23rd

2010), 10am-12pm



Numerical Simulation of Limit Order Books 141

The intensity of the arrival process of market orders that move the price is strongly excited

by passive and aggressive market orders. This is an illustration of the clustering of trades,

and possibly of a rush to decreasing liquidity: When the volume available at the best

limit decreases due to several passive market orders, an aggressive market order is likely

to quickly take the remaining liquidity. We also observe a clear influence of aggressive

limit orders on aggressive market orders, which corresponds to a market taking effect. This

is in line with the observations of Section 4.4.1 based on the use of lagged correlation

coefficients. It is however interesting to remark that the strength and length of this effect

varies across the stocks studied, i.e. the patterns are less clearly defined for the influence on

aggressive market orders than they were in the previous case for the influence of aggressive

limit orders.

9.5 Conclusion

This chapter was primarily motivated by practical considerations: when using a particular

limit order book model, it is important to assess its reliability in reproducing the behaviour

of real markets.

Starting with the basic zero-intelligence paradigm and progressing towards more

refined models based on Hawkes processes, we have studied limit order book models that

can be used to benchmark market making or statistical arbitrage strategies. Note that we

do not present results on general state-dependent intensities in this work, and refer the

interested reader to some recent contributions such as Huang et al. (2015).

In a different but related direction, a very general, flexible open-source library has

been developped by A. Kolotaev in the Chair of Quantitative Finance, and can be found at

http://fiquant.mas.ecp.fr. Its purpose is to provide a generic framework for the study of

trading strategies in order-driven markets.
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CHAPTER10
Market Imperfection and
Predictability

10.1 Introduction

This chapter somewhat departs from our initial motivation of studying limit order books

per se, and addresses the very practical question of the predictability of financial markets

based on the information content of limit order books.

Forecasting the market has always been one of the “hottest” topics among market

practitioners, and the temptation to identify hopefully profitable signals has never been as

high as today. Numerous academic studies aim at identifying some predictive features in

the time series of past returns, although many seem to obtain negative results. For

instance, it is a well-known stylized fact that there is no evidence of linear correlation

between successive returns, see e.g., (Chakraborti et al. 2011a) (Lillo and Farmer, 2004).

Such studies seemingly demonstrate the lack of predictive character of the series of past

returns, as far as the sign of the next price move is concerned. In that sense, the property

generally referred to as the Efficient Market Hypothesis does not seem to be challenged.

Rather intriguingly, several books – some popular amongst finance practitioners –

introduce and explain predictive strategies that seem to always make money (see e.g.,

Murphy, 1999; Vidyamurthy, 2004). But, when backtesting those strategies on realistic

samples, the results are often quite disappointing, and the strategies no longer profitable.

It is likely that the plague of over-fitting, inherent to many prediction methods, plays a key

role in the seemingly good performances published in those books.

However, there exist several ways to actually make better predictions than just using

the series of past returns. For instance, Abergel and Politi (2013) exhibit some synthetic

baskets that are not traded and therefore, not necessarily arbitrage-free. Based on these

baskets, they provide evidence of short-term predictability. More specific to the context
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of order-driven markets, the use of limit order book data has yielded interesting prediction

results (Zheng et al. 2012; Anane et al. 2015; Anane and Abergel, 2015; Cont et al. 2014).

The study presented in this chapter is performed both from an academic and a

professional perspective. It is based on an extensive use of market data, inclusive of limit

order book data, and aims at identifying signals that can be used as forecasting tools, and

studying their performances. Several prediction methods are introduced and

systematically benchmarked. For each prediction method, the statistical properties of the

corresponding signals are briefly investigated and the performances of some associated

investment strategies are presented.

10.2 Objectives, Methodology and Performances Measures

10.2.1 Objectives

We focus on the EUROSTOXX 50 European liquid stocks. One year (2013) of full daily

order book data are used to achieve the study. For a stock with a mid price S t at time t, the

return to be predicted over a period δt is ln
(S t+δt

S t

)
. At time t, one can use all the available

data for any time s ≤ t to perform the prediction.

The focus is on predicting the stocks’ returns over a fixed period δt using some limit

order book indicators. Once the returns and the indicators are computed, the data are

sampled on a fixed time grid from 10:00 a.m. to 5:00 p.m. with a resolution δt. Three

different resolutions are tested: 1, 5 and 30 minutes. Below are the definitions of the

studied indicators and the rationale behind using them to predict the returns.

Past return The past return is defined as ln
(

S t
S t−δt

)
. Two effects justify the use of the past

return indicator to predict the next return: The mean-reversion effect and the momentum
effect. If a stock suddenly shows an abnormal return that makes the stock price significantly

deviate from its historical mean value, then the mean reversion effect is observed when

another large return with opposite sign occurs rapidly after, driving the stock price back to

its usual average range. On the other hand, if the stock exhibits, in a progressive fashion,

a significant deviation, then the momentum effect occurs when more and more market

participants become convinced of the relevance of the move and trade in the same sense,

thereby increasing the deviation.

Order book imbalance A weighted measure of liquidity on the bid (respectively ask)

side is defined as Liqbid =
∑5

i=1 wi|bi|PB
i (respectively Liqask =

∑5
i=1 wiaiPA

i ), where PB
i

(respectively PA
i ) is the price at the limit i on the bid (respectively ask) side, the ai’s and

bi’s are the signed quantities, and wi is a positive, decreasing function of i. The maximum

number of limits used in the computation (here, 5) reflects the number of visible limits on

the trader’s screen1. Those indicators measure the volume instantaneously available for

1Note that only non-empty limits are used in this indicator, so that we slightly depart from the notations introduced in

Chapter 6, where the index i measured the distance in ticks from the best opposite quote
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trading on each side of the order book. Finally, the order book imbalance is defined as

ln
( Liqbid

Liqask

)
. This indicator summarizes the order book static state and gives an idea about

the buy-sell instantaneous equilibrium. When this indicator is significantly higher

(respectively lower) than 0, the available quantity at the bid side is significantly higher

(respectively lower) than the one at the ask side; only few participants are willing to sell

(respectively buy) the stock, which might reflect a market consensus that the stock will

move up (respectively down).

Flow quantity This indicator summarizes the order book dynamic over the last period

δt. Qb (respectively Qs) is denoted as the sum of the bought (respectively sold) quantities,

over the last period δt and the flow quantity is defined as ln
(Qb

Qs

)
. This indicator is similar

to the order flow and shows a high positive autocorrelation. The rationale behind using the

flow quantity is to verify if the persistence of the flow is informative about the next return.

EMA For a process (X)ti observed at discrete times (ti), the exponential moving average

EMA(d, X) with delay d is defined as EMA(d, X)t0 = Xt0 and, for i ≥ 1, EMA(d, X)ti =

ωXti + (1−ω)EMA(d, X)ti−1
, where ω = min(1,

ti−ti−1
d ). The EMA is a weighted average

of the process with an exponential decay. The smaller d is, the shorter the EMA memory is.

10.2.2 Methodology
We empirically test the market efficiency by predicting the stocks’ returns over three

different time intervals: 1, 5 and 30 minutes. In Section 10.3, the indicators are either the

past returns, the order book imbalance or the flow quantity. A simple method based on

historical conditional probabilities is used to assess, separately, the informative effect

of each indicator. In Section 10.4, the three indicators and their EMA(X, d) for

d ∈
{
2i : i = 0, . . . , 8

}
are combined in order to perform a better prediction than that based

on a single indicator. Different methods, based on linear regression, are tested. In

particular, some statistical and numerical stability problems of the linear regression are

addressed.

The predictions are tested statistically, then used to design a simple trading strategy.

The goal is to verify whether one can find a profitable strategy covering trading costs of

0.5 basis point2. This trading cost is realistic and corresponds to many funds, brokers, and

banks trading costs. The possibility of determining, if it exists, a strategy that stays

profitable after paying the costs, provides an empirical counter-example to market

efficiency. Notice that, in all the sections, the learning samples are sliding windows

containing sufficient number of days, and the testing samples are the next days. The

models parameters are fitted in-sample on a learning sample, and the strategies are

tested out-of-sample on a testing sample. The sliding training windows prevents the

methodology from any over-fitting, since, performances are only computed out of sample.

2Recall that a basis point is a equal to 10−4 times the current asset price
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10.2.3 Performance measures

In most studies addressing market efficiency, results are summarized in a linear

correlation coefficient. However, such a measure is not sufficient to conclude about

returns predictability or market efficiency: Any interpretation of the results should depend

on the predicted signal and a corresponding trading strategy. From now on, we shall adopt

the very empirical, but quite realistic, view that returns are considered predictable - and

thus, the market is considered inefficient - if one can run a profitable strategy covering the

trading costs.

10.3 Conditional Probability Matrices

Let Y be the variable we want to predict, and X the explanatory variable (or indicator). The

conditional probability matrices provide empirical estimates of the conditional probability

distribution of Y given X. To apply this method, the data need to be discretized in a small

number of classes. Let
{
CX

i : i = 1, . . . , S X
}

be the partition of the state space of X in S X

classes, and
{
CY

j : j = 1, . . . , S Y
}

the partition of the state space of Y in S Y classes. For a

given learning period [0, T ] containing N observations, let tn, n = 1, . . . , N be the time of

the n-th observation, and (Xtn , Ytn) be the n-th observed value of (X, Y). The matrix MT

of occurrences of events up to time T has coefficients MT (i, j), 1 ≤ i ≤ S X , 1 ≤ j ≤ S Y ,

defined as:

MT (i, j) = card
(
{n : n ≤ N, Xtn ∈ CX

i , Ytn ∈ CY
j )}

)
.

Then, a prediction of the “next” return YT conditional to the observations XT at time T can

be computed using the matrix MT .

For example, to check if the past returns X can help predicting the future returns Y , the

returns are classified into two classes and the empirical occurrences matrix is computed.

Table 10.1 shows the results for the 1-minute returns of Deutsche Telekom over the year

2013.

Table 10.1 Historical occurrences matrix for Deutsche Telekom over 2013

Y < 0 Y > 0

X < 0 19,950 21,597

X > 0 21,597 20,448
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Table 10.2 Monthly historical conditional probabilities: In the most cases, P(Y < 0|X < 0)
and P(Y > 0|X > 0) are lower than 50% where P(Y > 0|X < 0) and

P(Y < 0|X > 0) are higher than 50%

Month Jan Feb Mar Apr May Jun

P(Y < 0|X < 0) 0.49 0.48 0.47 0.48 0.47 0.50

P(Y > 0|X < 0) 0.51 0.52 0.53 0.52 0.53 0.50

P(Y < 0|X > 0) 0.50 0.52 0.51 0.53 0.52 0.49

P(Y > 0|X > 0) 0.50 0.48 0.49 0.47 0.48 0.51

Month Jul Aug Sep Oct Nov Dec

P(Y < 0|X < 0) 0.48 0.51 0.51 0.47 0.46 0.44

P(Y > 0|X < 0) 0.52 0.49 0.49 0.53 0.54 0.56

P(Y < 0|X > 0) 0.51 0.50 0.51 0.50 0.51 0.55

P(Y > 0|X > 0) 0.49 0.50 0.49 0.50 0.49 0.45

The historical probability to observe a negative return is P(X < 0) = 49.70% and to

observe a positive return is P(X > 0) = 50.30%. Therefore, a trader always buying the

stock would have a success rate of 50.30%. Also note that P(Y < 0|X < 0) = 48.02%,

P(Y > 0|X < 0) = 51.98%, P(Y < 0|X > 0) = 51.37%, P(Y > 0|X > 0) = 48.63%.

Thus, a trader playing the mean-reversion (buy when the past return is negative and sell

when the past return is positive), would have a success rate of 51.67%. The same

approach, when trading the strategy over 500 stocks, gives a success rate of 54.38% for

the buy strategy and of 72.91% for the mean reversion strategy. This simple test shows

that the smallest statistical bias can be profitable and useful for designing a trading

strategy. However the previous strategy is not realistic: the conditional probabilities are

computed in-sample and the full data set of Deutsche Telekom was used for the

computation. In reality, predictions have to be computed using only the past data. It is,

thus, important to have stationary probabilities. Table 10.2 shows that the monthly

observed frequencies are quite stable, and thus can be used to estimate out-of-sample

probabilities. Each month, one can use the observed frequencies of the previous month as

an estimator of current month probabilities. In the following paragraphs, frequencies

matrices are computed on sliding windows for the different indicators. Several

classification and prediction methods are presented.
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10.3.1 Binary case

In the binary case, explanatory variables X are classified in S X = 2 classes, relatively to

their historical mean X : CX
1
=]−∞, X], CX

2
=]X,+∞[. Using the frequency (occurrences)

matrix, a predictor Ŷ of the variable Y is computed as:

Ŷ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E

[
Y |X ∈ CX

1

]
if XT ∈ CX

1

E
[
Y |X ∈ CX

2

]
if XT ∈ CX

2

. (10.1)

In what follows, we present the results for the prediction of the log-returns Y using for the

explanatory variable X one of the quantities defined in Section 10.2: the past returns, the

order book imbalance, or the flow quantity. The quality of the prediction is evaluated using

four different criteria:

• AUC (Area under the curve) combines the true positive rate and the false positive

rate to give an idea about the classification quality;

• Accuracy is defined as the ratio of the correct predictions (Y and Ŷ have the same

sign);

• Gain is computed on a simple strategy to measure the prediction performance.

Predictions are used to run a strategy that buys when the predicted return is positive

and sells when it is negative. At each time, for each stock the strategy’s position is

in {−100, 000, 0 ,+100, 000};
• Profitability is defined as the gain divided by the traded notional of the strategy

presented above. This measure is useful to estimate the gain with different transaction

costs.

Figure 10.1 summarizes the results obtained when predicting the 1-minute returns using

the three indicators. For each predictor, the AUC and the accuracy are computed over all

the stocks. Results are computed over more than 100,000 observations and the amplitude

of the 95% confidence interval is around 0.6%. For the three indicators, the accuracy and

the AUC are significantly higher than the 50% random guessing threshold. The graph also

shows that the order book imbalance gives the best results, and that the past returns is the

least successful predictor. Detailed results per stock are given in Appendix D.

In Fig. 10.2, the performances of the trading strategies based on the prediction of the

1-minute returns are presented. The strategies are profitable and the results confirm the

predictability of the returns (see the details in Appendix D).
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Fig. 10.1 The quality of the binary prediction: The AUC and the Accuracy are higher than

50%. The three predictors are better than random guessing and are significantly

informative. Extracted from Anane and Abergel (2015)

Fig. 10.2 The quality of the binary prediction: For the 3 predictors, the densities of the gain

and the profitability are positively biased, confirming the predictability of the returns.

Extracted from Anane and Abergel (2015)

In Fig. 10.3, the cumulative gains of the strategies based on the three indicators over the

whole year 2013 are represented. When trading without costs, predicting the 1-minute

return using the past return and betting 100,000 euros at each time, would make a 5-million
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Euro profit. Even better, predicting using the order book imbalance would make more

than 20 million Euros profit. The results confirm the predictability of the returns, but

not the inefficiency of the market. In fact, Fig. 10.4 shows that, when adding the 0.5 bp

trading costs, only the strategy based on the order book imbalance remains (marginally)

positive. Thus, no conclusion, about the market efficiency, can be made (see more details

in Appendix D).

Fig. 10.3 The quality of the binary prediction: The graphs confirm that the 3 indicators are

informative and that the order book imbalance indicator is the most profitable.

Extracted from Anane and Abergel (2015)

Fig. 10.4 The quality of the binary prediction: When adding the 0.5 bp trading costs, the

strategies are only slightly profitable. Extracted from Anane and Abergel (2015)
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Figure 10.5 represents the cumulative gain and the profitability for the 5-minute and the

30-minute strategies (with the trading costs). The strategies are not profitable. Moreover,

the predictive power decreases as the time horizon increases.

Fig. 10.5 The quality of the binary prediction: The strategies are not profitable. Moreover, the

performances decreases significantly compared to the 1-minute horizon. Extracted

from Anane and Abergel (2015)

The results of the binary method show that the returns are significantly predictable.

Nevertheless, the strategies based on those predictions are not sufficiently profitable to

cover the trading costs. In order to enhance the predictions, the same idea is applied to the

four-class case. Moreover, a new strategy based on a minimum threshold of the expected

return is tested.
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10.3.2 Four-class case

We now investigate the case where the explanatory variable X is classified into four classes;

“very low values” CX
1

, “low values” CX
2

, “high values” CX
3

and “very high values” CX
4

. As

in the binary case, at each time tn, Y is predicted as Ŷ = E(Y |X ∈ CX
i ), where CX

i is

the class of the current observation Xtn . The expectation is estimated from the historical

frequencies matrix.

In this four-class case however, a new trading strategy is tested. The strategy is to buy

(respectively sell) 100,000 Euros when Ŷ is positive (respectively negative) and |Ŷ | > θ,
where θ is a minimum threshold (we will use θ = 1 basis point in what follows). Notice

that the case θ = 0 corresponds to the strategy tested in the binary case.

The rationale for choosing θ > 0 is clearly to avoid trading the stock when the signal is

noisy. In particular, when analysing the expectations of Y relative to the different classes of

X, it is always observed that the absolute value of the expectation is high when X is in one

of its extreme classes (CX
1

or CX
4

). On the other hand, when X is in one of the intermediary

classes (CX
2

or CX
3

) the expectation of Y is close to 0 reflecting a noisy signal.

For each indicator X, the classes are defined as CX
1
=] −∞, Xa], CX

2
=]Xa, Xb], CX

3
=

]Xb, Xc] and CX
4
=]Xc,+∞[. To compute Xa, Xb and Xc, the 3 following classifications

were tested:

• Quartile classification The quartile Q1, Q2 and Q3 are computed in-sample for

each day, then averaged over the days. Xa, Xb and Xc corresponds, respectively, to

Q1, Q2 and Q3 ;

• K-means classification The K-means algorithm (Hastie et al. 2011), applied to the

in-sample data with k = 4, gives the centres G1, G2, G3 and G4 of the optimal (in

the sense of the minimum within-cluster sum of squares) clusters. Xa, Xb and Xc are

given respectively by
G1+G2

2 ,
G2+G3

2 and
G3+G4

2 ;

• Mean-variance classification The average X and the standard deviation σ(X) are

computed in the learning period. Then, Xa, Xb and Xc correspond, respectively, to

X −σ(X), X and X + σ(X).

Only the results based on the mean-variance classification are presented here, since, the

results computed using the two other classifications are equivalent and the differences do

not affect the conclusions.

Figure 10.6 compares the profitabilities of the binary and the 4-class methods. For the

1-minute prediction, the results of the 4-class method are significantly better. For the

longer horizons, the results of both methods are equivalent. Notice also that, using the best

indicator, in the 4-class case, one obtains a significant profit after paying the trading costs.

Some more detailed results are given in Appendix D.
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The interesting result of this first section is that even when using the simplest

statistical learning method, the used indicators are informative and provide a better

prediction than random guessing. However, in most cases, the obtained performances are

too low to conclude about the market inefficiency.

Fig. 10.6 The quality of the 4-class prediction: For the 1-minute prediction, the results of the

4-class method are significantly better than the results of the binary one. For longer

horizons, both strategies are not profitable when adding the trading costs. Extracted

from Anane and Abergel (2015)
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In order to enhance the performances, the three indicators and their exponential moving

averages are combined in the next section.

10.4 Linear Regression

In this section, X denotes a 30-column matrix containing the 3 indicators and their EMA(d)
for d ∈

{
2i : i = 0, . . . , 8

}
, and Y denotes the target vector to be predicted. The general

approach is to calibrate, on the learning sample, a function f such that f (X) is “the closest

possible” to Y , and hope that, after the learning period, the relation between X and Y is still

well described by f . Hence, f (X) would be a good estimator of Y . In the linear case, f is

supposed to be a linear function and the model errors are supposed to be independent and

identically distributed (Seber and Lee, 2003). Actually, the standard textbook model posits

a relationship of the form Y = Xβ+ ε where ε is Gaussian with mean 0 and variance σ2.

For numerical reasons, the computations in what follows will be done with z-scored (i.e.

scaled and centered) data Xi−Xi
σ(Xi)

instead of Xi.

10.4.1 Ordinary least squares (OLS)

The OLS method consists in estimating the unknown parameter β by minimizing a cost

function Jβ equal to the sum of squares of the residuals between the observed variable Y
and the linear approximation Xβ. With the usual notation ‖ · ‖2 for the l2-norm, we have

Jβ = ‖Y − Xβ‖2
2
, and the estimator β̂ is thus defined as

β̂ = arg min
β

(
‖Y − Xβ‖22

)
.

This criterion is reasonable if at each time i the row Xi of the matrix X and the observation

Yi of the vector Y represent independent random sample from their populations. The cost

function Jβ depends quadratically on β, and the critical point equation yields the unique

solution

β̂ = (tXX)−1tXY ,

provided that tXX is invertible. The expectation, variance and mean squared error of this

estimator can be straightforwardly computed:

E
[̂
β|X

]
= β,

Var
[̂
β|X

]
= σ2(tXX)−1,

MSE
[̂
β
]
= E

[
‖̂β − β‖22|X

]
= σ2

∑
i

λ−1
i ,
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where the λi’s are the eigenvalues of tXX. Notice that the OLS estimator is unbiased, but

can exhibit an arbitrary high MSE when the matrix tXX has small eigenvalues.

In the out-of-sample period, Ŷ = Xβ̂ is used to predict the target. We resume our case

study where the trading strategy is to buy (respectively sell) 100,000 Euros when Ŷ > 0

(respectively Ŷ < 0). The binary case based on the order book imbalance indicator is taken

as a benchmark to measure the quality of the predictions, since, it performed best in the

previous section. The linear regression is computed using 30 indicators, including the order

book imbalance, thus one may intuitively expect that it will perform at least as well as the

binary case. Figure 10.7 compares the profitabilities of the two strategies. The detailed

statistics per stock are given in Appendix D.

Fig. 10.7 The quality of the OLS prediction: The results of the OLS method are not better than

those of the binary one. Extracted from Anane and Abergel (2015)

Similarly to the binary method, the performance of the OLS method decreases as the

horizon increases. But the surprising result is that, when combining all the 30 indicators,

the results are not better than just applying the binary method to the order book imbalance

indicator. This leads to questioning the quality of the regression.

Figure 10.8 gives some example of the OLS regression coefficients. It is clear that the

coefficients are not stable over the time.

For example, for some period, the regression coefficient of the order book imbalance

indicator is negative, which does not make any financial sense. It is also observed that,

for highly correlated indicators, the regression coefficients might be quite different. This

result also does not make sense, since, one would expect to have close coefficients for

similar indicators. From a statistical view, this is explained by the high MSE caused by the

high colinearity between the variables. In the following paragraphs, this numerical aspect

is addressed, and some popular solutions to the OLS estimation problems are tested.
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Fig. 10.8 The quality of the OLS prediction: The graph on the left shows the instability of

the regression coefficient of the order book imbalance indicator over the year 2013

for the stock Deutsche Telekom. The graph on the right shows, for a random day,

a very different coefficients for similar indicators; the order book imbalance and its

exponential moving averages. Extracted from Anane and Abergel (2015)

10.4.2 Ridge regression

When solving a linear system AX = B, A being invertible, if a small change in the

coefficient matrix (A) or a small change in the right hand side (B) causes a large change

in the solution vector (X), the system is said to be ill-conditioned. An example of an

ill-conditioned system is given below:[
1.000 2.000

3.000 5.999

]
×

[
x
y

]
=

[
4.000

11.999

]
=⇒

[
x
y

]
=

[
2.000

1.000

]
.

When making a small change in the matrix A:[
1.001 2.000

3.000 5.999

]
×

[
x
y

]
=

[
4.000

11.999

]
=⇒

[
x
y

]
=

[ −0.400

2.200

]
.

When making a small change in the vector B:[
1.000 2.000

3.000 5.999

]
×

[
x
y

]
=

[
4.001

11.999

]
=⇒

[
x
y

]
=

[ −3.999

4.000

]
.

Clearly, it is mandatory to take into consideration such effects before achieving any

computation when dealing with experimental data. Various measures of the

ill-conditioning of a matrix have been proposed (Riley, 1955), the most popular one
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probably being (Cheney and Kincaid, 2008) the condition number K(A) = ‖A‖2‖A−1‖2,

where ‖ · ‖2 with a matrix argument denotes the induced matrix norm corresponding to the

l2 vector norm: ‖A‖2 = maxX�0
‖AX‖2
‖X‖2 . The larger K(A), the more ill-conditioned A is.

The condition number K(A) gives a measure of the sensitivity of the solution X relative to

a perturbation of the matrix A or the vector B. More precisely, it is proved that:

• if AX = B and A(X + δX) = B + δB then
‖δX‖2
‖X‖2 ≤ K(A) ‖δB‖2‖B‖2 ;

• if AX = B and (A + δA)(X + δX) = B then
‖δX‖2
‖X+δX‖2 ≤ K(A) ‖δA‖2‖A‖2 .

Note that K(A) can be computed as the ratio of the maximum singular value of A over

the minimum singular value. Going back to our introductory example above, we have

K(A) = 49988. The small perturbations can thus be amplified by a factor of almost 50000,

causing the instability we have observed.

Figure 10.9 represents the singular values of tXX used to compute the regression of the

right graph of Fig. 10.8. The graph shows rapidly decreasing singular values. In particular,

the condition number is higher than 80000!

Fig. 10.9 The quality of the OLS prediction: The graph shows that the matrix inverted when

computing the OLS coefficient is ill-conditioned. Extracted from Anane and Abergel

(2015)

This finding explains the instability observed on the previous section. Not only is the

performance of the OLS estimator not satisfactory, but the numerical problems caused by

the ill-conditioning of the matrix makes the result numerically unreliable. One popular

solution to enhance the stability of the estimation of the regression coefficients is the

Ridge method. This method was introduced independently by A. Tikhonov, in the context

of solving ill-posed problems, around the middle of the 20th century, and by A.E. Hoerl in
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the context of linear regression. The Ridge regression consists of adding a regularisation

term to the original OLS problem:

β̂Γ = arg min
β

(
‖Y − Xβ‖22 + ‖Γβ‖22

)
.

The new term gives preference to a particular solution with desirable properties. Γ is

called the Tikhonov matrix and is usually chosen as a multiple of the identity matrix: λRI,

where λR ≥ 0. The new estimator of the linear regression coefficients is called the Ridge

estimator, denoted by β̂R and defined as follows:

β̂R = arg min
β

(
‖Y − Xβ‖22 + λR‖β‖22

)
.

Similarly to the OLS case, straightforward computations show that

β̂R = (tXX + λRI)−1tXY .

Setting Z =
(
I + λR(tXX)−1

)−1
gives β̂R = Zβ̂, and we can write after some computations:

E
[̂
βR|X

]
= Zβ,

Var
[̂
βR|X

]
= σ2Z (tXX)−1 tZ,

MSE
(̂
βR

)
= E

[
‖(Zβ̂ − β)‖22|X

]
= σ2

∑
i

λi

(λi + λR)2
+ λ2

R
tβ(tXX + λRI)−2β.

The first element of the MSE corresponds exactly to the trace of the covariance matrix

of β̂R, i.e. the total variance of the parameters estimations. The second element is the

squared distance from β̂R to β and corresponds to the square of the bias introduced when

adding the ridge penalty. Note that, when increasing the λR, the bias increases and the

variance decreases. On the other hand, when decreasing the λR, the bias decreases and the

variance increases, both converging to their OLS values. To enhance the stability of the

linear regression, one should compute a λR, such that MSE
(̂
βR

)
≤MSE

(̂
β
)
. As proved in

Hoerl and Kennard (1970), this is always possible:

Theorem (Hoerl) There always exist λR ≥ 0 such that MSE
(̂
βR

)
≤MSE

(̂
β
)
.

From a statistical view, adding the Ridge penalty aims at reducing the MSE of the

estimator, and is particularly necessary when the covariance matrix is ill-conditioned.

From a numerical view, the new matrix to be inverted is tXX + λRI with as eigenvalues
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(λi + λR)i. The new condition number satisfies K(tXX + λRI) = λmax+λR
λmin+λR

≤ λmax
λmin

=

K(tXX). Hence, the ridge regularisation enhances the conditioning of the problem and

improves the numerical reliability of the result.

From the previous, it can be seen that increasing the λR leads to numerical stability

and reduces the variance of the estimator, however it increases the bias of the estimator.

One has to chose the λR as a trade-off between those two effects. Next, two estimators of

λR are tested: The Hoerl-Kennard-Baldwin (HKB) estimator Hoerl et al. (1975) and the

Lawless–Wang (LW) estimator Lawless and Wang (1976).

In order to compare the stability of the Ridge and the OLS coefficients, Figs 10.10 and

10.11 represent the same test of Fig. 10.8, applied, respectively, to the Ridge HKB and

the Ridge LW methods. In the 1-minute prediction case, the graphs show that the Ridge

LW method gives the most consistent coefficients. In particular, the coefficient of the order

book imbalance is always positive (as expected from a financial point of view) and the

coefficients of similar indicators have the same signs.

Fig. 10.10 The quality of the Ridge HKB prediction: The graphs show that the results of the

Ridge HKB method are not significantly different from those of the OLS method

(Fig. 10.8). In this case, the λR is close to 0 and the effect of the regularisation is

limited. Extracted from Anane and Abergel (2015)

Finally, Fig. 10.12 summarizes the profitabilities of the corresponding strategies of the two

methods. Appendix D contains more detailed results per stock.

From the results of this section, it can be concluded that adding a regularisation term

to the regression enhances the predictions. The next section deals with an other method of

regularisation based on dimension reduction.
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Fig. 10.11 The quality of the Ridge LW prediction: The graph on the left shows the stability of

the regression coefficient of the order book imbalance over the year 2013 for Deutsh

Telecom. The coefficient is positive during all the period, in line with the financial

view. The graph on the right shows, for a random day, a positive coefficients for

the order book imbalance and its short term EMAs. The coefficients decreases with

the time; ie the state of the order book “long time ago” has a smaller effect than

its current state. More over, for longer than a 10-second horizon, the coefficients

become negative confirming the mean-reversion effect. Extracted from Anane and

Abergel (2015)

Fig. 10.12 The quality of the Ridge prediction: For the 1-minute and the 5-minute horizons

the LW method performs significantly better than the OLS method. However, for

the 30-minute horizon, the HKB method gives the best results. Notice that for the

1-minute case, the LW method improves the performances by 58% compared to the

OLS, confirming that stabilizing the regression coefficients (Fig. 10.11 compared

to Fig. 10.8), leads to a better trading strategies. Extracted from Anane and Abergel

(2015)
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10.4.3 Least Absolute Shrinkage and Selection Operator (LASSO)

In this paragraph, a simpler, yet very efficient transformation of the original indicators’

space, the LASSO regression, is presented. The LASSO method (Tibshirani, 1996)

enhances the conditioning of the covariance matrix by reducing the number of the used

indicators. Mathematically, the LASSO regression aims to produce a sparse set of

regression coefficients – i.e. with some coefficients exactly equal to 0. This is possible

thanks to the l1-penalization.

More precisely, the LASSO regression consists in estimating the linear regression

coefficient as:

β̂L = arg min
β

(
‖Y − Xβ‖22 + λL‖β‖1

)
,

where ‖ · ‖1 denotes the l1-norm. Writing |βi| = βi+ − βi− and βi = βi+ + βi−, with βi+ ≥ 0

and βi− ≤ 0, a classic quadratic problem with a linear constraints is obtained and can be

solved by a classic solver. We do not have any simple estimator for the parameter λL. We

will therefore in this study use a cross-validation method (Hastie et al. 2011) to select the

best value of λL out of the set
{
T10−k : k ∈ {2, 3, 4, 5, 6}

}
, where T denotes the number of

the observations.

Figure 10.13 compares, graphically, the Ridge and the LASSO regularisation,

Fig. 10.13 addresses the instability problems observed in Figs 10.8 and 10.15 summarizes

the results of the strategies corresponding to the LASSO method. The detailed results per

stock are given in Appendix D.

Fig. 10.13 The quality of the LASSO prediction: The estimation graphs for the Ridge (on the

left) and the LASSO regression (on the right). Notice that the l1−norm leads to 0

coefficients on the less important axis. Extracted from Anane and Abergel (2015)
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Fig. 10.14 The quality of the LASSO prediction: The graphs show that the LASSO regression

gives a regression coefficients in line with the financial view (similarly to Fig 10.11).

Moreover, the coefficients are sparse and simple for the interpretation. Extracted

from Anane and Abergel (2015)

Fig. 10.15 The quality of the LASSO prediction: Similar as the Ridge regression, the LASSO

regression gives a better profitability than the OLS one. Notice that for the 1-minute

case, the LASSO method improves the performances by 165% compared to the

OLS. Eventhough the LASSO metho is using less regressors than the OLS method,

(and thus less signal), the out of sample results are significantly better in the LASSO

case. This result confirms the importance of the signal by noise ratio and highlights

the importance of the regularisation when adressing an ill-conditioned problem.

Extracted from Anane and Abergel (2015)
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The next paragraph introduces the natural combination of the Ridge and the LASSO

regression and presents this chapter’s conclusions concerning the market inefficiency.

10.4.4 Elastic net (EN)

The EN regression aims to combine the regularisation effect of the Ridge method and the

selection effect of the LASSO one. The idea is to estimate the regression coefficients as:

β̂EN = arg min
β

(
‖Y − Xβ‖22 + λEN1

‖β‖1 + λEN2
‖β‖22

)

We will not detail here the details of the estimation of β̂EN , which can be found in Zou

and Hastie (2005). In this study, the numerical estimation is computed in two steps. In the

first step λEN1
and λEN2

are selected via the cross-validation method used in the previous

section, and the problem is solved as in the LASSO case. In the second step, the final

coefficients are obtained by a Ridge regression (λEN1
= 0) over the indicators which had a

non-zero coefficient in the first step. The two-step method avoids useless l1-penalty effects

on the selected coefficients.

Figure 10.16 shows that the coefficients obtained by the EN method are in line with the

financial view and combine both regularisation effects observed when using the Ridge and

the LASSO methods.

Fig. 10.16 The quality of the EN prediction: The graphs show that the EN regression gives a

regression coefficients in line with the financial view (similarly to Figs 10.11 and

10.14). Extracted from Anane and Abergel (2015)

Finally, the trading strategy presented in the previous sections (trading only if Ŷ ≥ |θ| ) is

applied to the different regression methods. Figure 10.17 summarizes the obtained results.



166 Limit Order Books

Fig. 10.17 The quality of the EN prediction: The EN method gives the best results compared to

the other regressions. Extracted from Anane and Abergel (2015)

Results for the three time horizons confirm that the predictions of all the regularized

method (Ridge, LASSO, EN) are better than the OLS ones. As detailed in the previous

paragraphs, this is always the case when the indicators are highly correlated. Moreover,

the graphs show that the EN method gives the best results compared to the other

regressions. The 1-minute horizon results underline that, when an indicator has an

obvious correlation with the target, using a simple method based exhaustively on this

indicator, performs as least as well as more sophisticated methods including more

indicators. Finally, the performance of the EN method for the 1-minute horizon suggest

that the market is inefficient for such horizon. The conclusion is less obvious for the
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5-minute horizon. On the other hand, the 30-minute horizon results show that none of the

tested methods could find any proof of the market inefficiency for such horizon.

Interpreting these results, one could say that the market is inefficient in the short term,

and that this inefficiency progressively disappears as new information becomes more

widely spread.

10.5 Conclusion

This chapter is a large-scale, empirical study, over the EUROSTOXX 50 universe, testing

the predictability of returns. The first part of the study shows that the future returns are

not independent of the past dynamic and state of the order book. In particular, the order

book imbalance indicator is informative and provides a reliable prediction of the returns.

The second part of the study shows that combining different order book indicators using

adequate regressions lead to trading strategies with good performances even when paying

the trading costs. In particular, our results demonstrate that the market is inefficient in the

short term and that a period of a few minutes is necessary for prices to adjust to the new

information present in the limit order book.





APPENDIXA
A Catalogue of Order Types

We list below some examples of orders that exist in different exchanges, along with short

descriptions:

• Market order: A market order is an order to buy or sell an asset at the bid or offer

price currently available in the marketplace.

• Limit order: A limit order is an order to buy or sell a contract at a specified price or

better.

• Good till date order (GTD): An order that remains in the marketplace until it is

executed or until the market closes on the date specified.

• Fill or kill order (FOK): An order that must be executed as a complete order

immediately, otherwise it is cancelled.

• Market on close order (MOC): A market order submitted to be executed as close to

the closing price as possible.

• Market on open order (MOO): A market order to be executed when the market

opens.

• Limit on close order (LOC): A limit order to be executed as a market order at the

closing price if the closing price is equal to or better than the submitted limit price.

• Limit on open order (LOO): A limit order to be executed as a market order when

the the market opens if the opening price is equal to or better than the limit price.

• Stop order: An order converted to a market buy or sell order once a specified stop

price is attained or penetrate

• Pegged to market order: An order that is pegged to buy on the best offer and sell on

the best bid.

• Market to limit order: an order that is sent in as a market order to be executed at the

current best price. If the entire order is not immediately executed at the market price,
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the remainder of the order is resubmitted as a limit order with the limit price set to

the price at which the original order was executed as a market order.

• Discretionary order: An order that allows the broker to delay the execution at her

discretion to try and get a better price.

• Iceberg order: An order whose (generally large) large volume is only partially

disclosed. Iceberg orders belong to the category of “hidden orders”, whereby

investors wishing to hide large-size orders, can do so by applying the “hidden”

attribute to a large volume order and hide the submitted quantity from the market.

• Block order: A limit order with a minimum size of 50 contracts.

• Volume-weighted average price order (VWAP): Bid or ask orders to be executed

at the volume weighted average price traded in the market of reference for a given

security, during a future period of time.



APPENDIXB
Limit Order Book Data

An experimental approach to the study of limit order books lies in the availability of data.

Most of the results presented in this book - in any case, those we have produced ourselves

- use the Thomson Reuters Tick History (TRTH) database. All exchange-traded assets

worldwide are present in the TRTH database, where they are identified by their Reuters
Identification Code (RIC). Similar to most historical databases directly provided by the

exchanges, the TRTH data come into the form of two separate files, a trade file recording

all transactions, and an event file recording every change in the limit order book. Some very

specific information, such as traders’ identities, cannot be publicly disclosed for obvious

confidentiality reasons, but in theory, one could reconstruct the sequence of order arrivals

of all types using this trade and event files.

After explaining the algorithm used for the processing of limit order book data, we

describe the specific data sets that have been used at various places in this book. That way,

our results can be reproduced, extended and, of course, challenged, based on the very same

data sets we have used.

B.1 Limit Order Book Data Processing

Because one cannot distinguish market orders from cancellations just by observing changes

in the limit order book (the “event” file), and since, the timestamps of the “trade” and

“event” files are asynchronous, we use a matching procedure to reconstruct the order book

events.

In a nutshell, we proceed as follows for each stock and each trading day:

1. Parse the “event” file to compute order book state variations:

• If the variation is positive (volume at one or more price levels has increased),

then label the event as a limit order.

• If the variation is negative (volume at one or more price levels has decreased),

then label the event as a “likely market order”.



172 Appendices

• If no variation—this happens when there is just a renumbering in the field

“Level” that does not affect the state of the book—do not count an event.

2. Parse the “trade” file and for each trade:

• Compare the trade price and volume to likely market orders whose timestamps

are in [tTr − Δt, tTr + Δt], where tTr is the trade timestamp and Δt is a

predefined, market-dependent time window. For instance, we set Δt = 3 s for

CAC 40 stocks over the year 2011, based on the empirical fact that the median

delay in reporting trades is −900 ms: half of the trades are reported in the

“trade” file 900 milliseconds or less before the corresponding change appears

in the “event” file.

• Match the trade to the first likely market order with the same price and volume

and label the corresponding event as a market order—making sure the change

in order book state happens at the best price limits.

• Remaining negative variations are labeled as cancellations.

Doing so, we have an average matching rate of around 85% for CAC 40 stocks. As a

byproduct, one gets the sign of each matched trade, that is, whether it is buyer or seller-

initiated.

Tables B.1 and B.2 below provide an example of the data files and of the matching

algorithm

Table B.1 Tick by tick data file sample. Note that the field “Level" does not necessarily

correspond to the distance in ticks from the best opposite quote as there might be

gaps in the book. Lines corresponding to the trades in Table B.2 are highlighted in

italics

Timestamp Side Level Price Quantity

33480.158 B 1 121.1 480

33480.476 B 2 121.05 1636

33481.517 B 5 120.9 1318

33483.218 B 1 121.1 420

33484.254 B 1 121.1 556

33486.832 A 1 121.15 187

33489.014 B 2 121.05 1397

33490.473 B 1 121.1 342

33490.473 B 1 121.1 304

33490.473 B 1 121.1 256

33490.473 A 1 121.15 237
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Table B.2 Trades data file sample

Timestamp Last Last quantity

33483.097 121.1 60

33490.380 121.1 214

33490.380 121.1 38

33490.380 121.1 48

Remark B.1 As a comment, we note that, depending on the markets and

periods, this matching rate can deteriorate or improve. The possibility of using

hidden orders is definitely one of the main reasons why the matching rate is not

closer to 100%; the increase in trading frequency for the most liquid assets such

as equity index futures is another, since the occurrence of trades with the same

time stamps increases, while the time resolution of the TRTH database is still

the millisecond.

B.2 Chapter 2

In Chapter 2, we have produced our own empirical plots based on TRTH database for

the Paris stock exchange. We have selected four stocks: France Telecom (FTE.PA), BNP

Paribas (BNPP.PA), Societe Générale (SOGN.PA) and Renault (RENA.PA). For any given

stocks, the data displays time-stamps, traded quantities, traded prices, the first five best-bid

limits and the first five best-ask limits. Except when mentioned otherwise, all statistics are

computed using all trading days from Oct, 1st 2007 to May, 30th 2008, i.e. 168 trading

days. On a given day, orders submitted between 9:05am and 5:20pm are taken into account,

i.e. first and last minutes of each trading days are removed.

B.3 Chapter 3

In Chapter 3, we have used TRTH database for fourteen stocks traded on the Paris stock

exchange, from January 4th, 2010 to February 22nd, 2010. The fourteen stocks under

investigation are: Air Liquide (AIRP.PA, chemicals), Alstom (ALSO.PA, transport and

energy), Axa (AXAF.PA, insurance), BNP Paribas (BNPP.PA, banking), Bouygues

(BOUY.PA, construction, telecom and media), Carrefour (CARR.PA, retail distribution),

Danone (DANO.PA, milk and cereal products), Lagardére (LAGA.PA, media), Michelin

(MICP.PA, tires manufacturing), Peugeot (PEUP.PA, vehicles manufacturing), Renault

(RENA.PA, vehicles manufacturing), Sanofi (SASY.PA, healthcare), Vinci (SGEF.PA,

construction and engineering), Ubisoft (UBIP.PA, video games). All these stocks except
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Ubisoft were included in the CAC 40 French index in January and February 2010, i.e.

they are among the largest market capitalizations and most liquid stocks on the Paris stock

exchange.

B.4 Chapter 4

B.5 Distribution of Durations

In Section 4.3, we use TRTH database for several assets of various types:

• BNP Paribas (RIC: BNPP.PA): 7th component of the CAC40 during the studied

period

• Peugeot (RIC: PEUP.PA): 38th component of the CAC40 during the studied period

• Lagardère SCA (RIC: LAGA.PA): 33th component of the CAC40 during the studied

period

• Dec.2009 futures on the 3-month Euribor (RIC: FEIZ9)

• Dec.2009 futures on the Footsie index (RIC: FFIZ9)

For each trading day between September 10th, 2009 and September 30th, 2009 (i.e. 15 days

of trading), we use 4 hours of data, from 9:30am to 1:30pm. This time frame is convenient

for european equity markets because it avoids the opening of American markets and the

consequent increase of activity.

In Table B.3, we give the number of market and limit orders detected on our 15 4-hour

samples for each studied order book.

Table B.3 Number of limit and markets orders recorded on 15 samples of four hours (Sep

10th to Sep 30th, 2009; 9:30am to 1:30pm) for 5 different assets (stocks, index

futures, bond futures)

Code Number of limit orders Number of market orders

BNPP.PA 321,412 48,171

PEUP.PA 228,422 23,888

LAGA.PA 196,539 9,834

FEIZ9 110,300 10,401

FFIZ9 799,858 51,020

On the studied period, market activity ranges from 2.7 trades per minute on the least liquid

stock (LAGA.PA) to 14.2 trades per minute on the most traded asset (Footsie futures).
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B.5.1 Lagged correlation matrix

In Section 4.4.1, the data set comprises the 30 constituents of the DAX index traded on

the Frankfurt Stock Exchange, and results are computed using four months of tick-by-tick

data, from February to June 2014.

B.6 Chapter 9

The dataset used for the simulations presented in Chapter 9 consists of TRTH database

for the CAC 40 index constituents in March 2011 (23 trading days), namely, tick-by-tick

order book data up to 10 price levels, and trades. In order to avoid the diurnal seasonality

in trading activity (and the impact of the US market open on European stocks), we restrict

our attention to the time window [9 : 30–14 : 00] Paris time.



APPENDIXC
Some Useful Mathematical Notions

C.1 Point Processes

Point processes are a class of stochastic processes that appear in a natural fashion when a

phenomenon is best described by events occurring at points in time separated by intervals

of inactivity. A reference book on the subject is (Daley and Vere-Jones, 2003, 2008). In

this brief appendix, we recall some standard notions and notations for point processes.

Definition C.1 A point process is an increasing sequence (Tn)n∈N of positive

random variables defined on a measurable space (Ω,F , P).

We will restrict our attention to processes that are non-explosive, that is, for which

limn→∞ Tn = ∞. To each realization (Tn) corresponds a counting function (N(t))t∈R+

defined by

N(t) = n if t ∈ [Tn, Tn+1[, n ≥ 0. (C.1)

(N(t)) is a right continuous step function with jumps of size 1 and carries the same

information as the sequence (Tn), so that (N(t)) is also called a point process.

Definition C.2 A multivariate point process (or marked point process) is a

point process (Tn) for which a random variable Xn is associated to each Tn. The

variables Xn take their values in a measurable space (E,E).

We will restrict our attention to the case where E = {1, . . . , M}, m ∈ N∗. For each

m ∈ {1, . . . , M}, we can define the counting processes

Nm(t) =
∑
n≥1

I(Tn ≤ t)I(Xn = i). (C.2)
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We also call the process

N(t) = (N1(t), . . . , NM(t))

a multivariate point process.

Definition C.3 (Intensity of a point process) A point process (N(t))t∈R+ can

be completely characterized by its (conditional) intensity function, λ(t), defined

as

λ(t) = lim
u→0

P [N(t + u) − N(u) = 1|Ft]

u
, (C.3)

where Ft is the history of the process up to time t, that is, the specification of all

points in [0, t]. Intuitively

P [N(t + u) − N(u) = 1|Ft] = λ(t) u + o(u), (C.4)

P [N(t + u) − N(u) = 0|Ft] = 1 − λ(t)u + o(u), (C.5)

P [N(t + u) − N(u) > 1|Ft] = o(u). (C.6)

This is naturally extended to the multivariate case by setting for each m ∈
{1, . . . , M}

λm(t) = lim
u→0

P [Nm(t + u) − Nm(u) = 1|Ft]

u
. (C.7)

Definition C.4 A point process is stationary when for every r ∈ N∗ and all

bounded Borel subsets A1, . . . , Ar of the real line, the joint distribution of

{N(A1 + t), . . . , N(Ar + t)}

does not depend on t.

C.1.1 Hawkes processes

The main definitions and fundamental properties of Hawkes processes have been given

in Chapter 8 Section C.1.1. Here, we make precise some more specific points: the

construction of a Lyapunov function for Markovian Hawkes processes, and the calibration

of Hawkes processes based on maximum likelihood estimations.
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Lyapunov functions for Hawkes processes
For the sake of completeness, an explicit construction of a Lyapunov function for a multi-

dimensional Hawkes processes N = (Ni) with intensities

λi(t) = λi
0 +

∑
j

∫ t

0
αi je−βi j(t−s)dN j(s)

is provided here.

Denote as in Proposition 8.2

μi j(t) =
∫ t

0
αi je−βi j(t−s)dN j(s),

so that there holds

λi(t) = λi
0 +

∑
j

μi j(t). (C.8)

We assume the following

∀i, j, αi j > 0, βi j > 0, (C.9)

as well as the spectral condition (8.10)

ρ (A) < 1. (C.10)

The infinitesimal generator associated to the Markovian process (μi j), 1 � i, j � D, is the

operator

LHF(μ) =
∑

j

λ j(F(μ+ Δ j(μ)) − F(μ)) −
∑
i, j

βi jμ
i j ∂F
∂μi j ,

where μ is the vector with components μi j and the λ j are as in (C.8). The notation Δ j(μ)

characterizes the jumps in those of the entries in μ that are affected by a jump of the process

N j. For a fixed index j, it is given by the vector with entries αi j at the relevant spots, and

zero entries elsewhere.

A Lyapunov function for the associated semi-group is sought under the form

V(μ) =
∑
i, j

δi jμ
i j (C.11)

(since, the intensities are always positive, a linear function will be coercive). Assuming

(C.11), there holds
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LHV =
∑

j

λ j

⎛⎜⎜⎜⎜⎜⎜⎝∑
i

δi jαi j

⎞⎟⎟⎟⎟⎟⎟⎠ −∑
i, j

βi jμ
i jδi j

or

LHV =
∑
i, j

⎛⎜⎜⎜⎜⎜⎜⎝λ j
0
+

∑
k

μ jk

⎞⎟⎟⎟⎟⎟⎟⎠ δi jαi j − βi jμ
i jδi j. (C.12)

At this stage, it is convenient to introduce ε the maximal eigenvector of the matrix A
(introduced in Proposition 8.3) with entries

Ai j =
α ji

β ji
.

Denote by κ the associated maximal eigenvalue. By Assumption (8.10), one has that 0 <

κ < 1 and furthermore, by Perron-Frobenius theorem, there holds: ∀i, εi > 0.

Assuming that

δi j ≡ εi
βi j

, (C.13)

the expression for V becomes

V(μ) =
∑
i, j

εi
μi j

βi j
. (C.14)

Plugging Eq. (C.14) in Eq. (C.12) yields

LHV =
∑
i, j

λ
j
0
δi jαi j +

∑
i, j,k

μ jkεi
αi j

βi j
−

∑
j,k

β jkμ
jkδ jk

=
∑
i, j

λ
j
0
δi jαi j + (κ − 1)

∑
j,k

εkμ
jk,

using the identity
∑

j A jiεi = κε j. A comparison with Eq. (C.14) easily yields the upper

bound

LHV � −γV +C, (C.15)

with γ = (1 − K)βmin, βmin ≡ In fi, j(βi j) > 0 by assumption, and C =
∑

i, j λ
j
0
δi jαi j ≡

κε.λ0.



180 Appendices

The following result generalizes the form of Lyapunov functions beyond Eq. (C.11)1:

Lemma C.5 Under the standing assumptions (8.10) and (C.9), one can
construct a Lyapunov function of arbitrary high polynomial growth at infinity.

Proof Let n ∈ N∗, and V be the function defined in Eq. (C.14). Raising V to

the power n yields

LH (Vn) (μ) =
∑

j

λ j(Vn(μ+ Δ j(μ))−Vn(μ))− nVn−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝∑
i, j

βi jμ
i j ∂V
∂μi j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (C.16)

Upon factoring Vn(μ+ Δ j(μ)) − Vn(μ):

Vn(μ+Δ j(μ))−Vn(μ) = (V(μ+Δ j(μ))−V(μ))

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
k=0

Vn−1−k(μ+ Δ j(μ))Vk(μ)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

the linearity of V yields the following expression

Vn(μ+Δ j(μ))−Vn(μ) = nVn−1(μ)(V(μ+Δ j(μ))−V(μ))+M j (V) (μ),

where M jV(μ) can be bounded by a polynomial function of order n − 1 at

infinity in μ. Therefore, one can rewrite (C.16) as follows

LH (Vn) (μ) = (nVn−1LH (V))(μ) +M (V) (μ), (C.17)

whereM (V) (μ) is a polynomial of order n−1 in μ. Combining Eq. (C.14) with

Eq. (C.17) shows that Vn is also a Lyapunov function for the Hawkes process.

Maximum-likelihood estimation
We provide some elements for the calibration on market data of Hawkes processes with

exponential kernels. Let us consider a sample realization on [0, T ] of a D-dimensional

(generalized) Hawkes process, for which the m-th coordinate Nm admits an intensity of

the form:

λm(t) = λm
0 (t) +

D∑
n=1

∫ t

0

P∑
j=1

αmn, je−βmn, j(t−s)dNn(s), (C.18)

where λm
0

: R+ → R+ is a deterministic (not necessarily constant) function, the number

P of exponential kernels is a fixed integer, and for all m, n = 1, . . . , D, and j = 1, . . . , P,

αmn, j and βmn, j are positive constants. We will develop the estimation procedure for this

process, although in the simpler version of this model used throughout the book, we have

1See also the construction of an exponentially growing Lyapunov function in Zheng et al. (2014) or Clinet (2015)



Appendices 181

set P = 1 and λm
0
(t) = λm

0
a positive constant, so that the general defining equation in

C.18 reduces to the usual expression:

λm(t) = λm
0 +

D∑
n=1

∫ t

0
αmne−βmn(t−s)dNn(s). (C.19)

(when P = 1, αmn,1, βmn,1 are identical to the αmn, βmn previously introduced). Let

{Ti, Zi}i=1,...,N be the ordered pool of all N observed events of the sample, where

Zi ∈ {1, . . . , D} denotes the type of the observed event at time Ti.

Let {T m
i }i=1,...,Nm be the extracted ordered sequence of the Nm observed events of

type m. The log-likelihood lnL of the multi-dimensional Hawkes process can be

computed as the sum of the likelihood of each coordinate, and is thus written:

lnL({N(t)}t≤T ) =
D∑

m=1

lnLm({Nm(t)}t≤T ), (C.20)

where each term is defined by:

lnLm({Nm(t)}t≤T ) =

∫ T

0
(1 − λm(s)) ds +

∫ T

0
ln λm(s)dNm(s). (C.21)

This partial log-likelihood can be computed as:

lnLm({Nm(t)}t≤T ) = T −Λm(0, T ) (C.22)

+
∑

i:Ti≤T

1{Zi=m} ln

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣λm
0 (Ti) +

D∑
n=1

P∑
j=1

∑
T n

k<Ti

αmn, je−βmn, j(Ti−T n
k )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where Λm(0, T ) =
∫ T

0
λm(s)ds is the integrated intensity. Following Ozaki (1979), we

compute this in a recursive way by observing that, thanks to the exponential form of the

kernel:

Rmn
j (l) =

∑
T n

k<T m
l

e−βmn, j(T m
l −T n

k )

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−βmn, j(T m

l −T m
l−1

)Rmn
j (l − 1) +

∑
T m

l−1
≤T n

k<T m
l

e−βmn, j(T m
l −T n

k ) if m � n,

e−βmn, j(T m
l −T m

l−1
)
(
1 + Rmn

j (l − 1)
)

if m = n.

(C.23)
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The final expression of the partial log-likelihood may thus be written:

lnLm({Nm(t)}t≤T ) = T −
∫ T

0
λm

0 (s)ds −
∑

i:Ti≤T

M∑
n=1

P∑
j=1

αmn, j

βmn, j

(
1 − e−βmn, j(T−Ti)

)

+
∑

l:T m
l ≤T

ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣λm
0 (T

m
l ) +

M∑
n=1

P∑
j=1

αmn, jRmn
j (l)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (C.24)

where Rmn
j (l) is defined with Eq. (C.23) and Rmn

j (0) = 0.

Testing the calibration
A general result on point processes theory states that a given non-Poisson process can be

transformed into a homogeneous Poisson process by a stochastic time change. A standard

monovariate version of this result and its proof can be found in (Brémaud, 1981,

Chapter II, Theorem T16). Bowsher (2007) has shown that this can be generalized in a

multi-dimensional setting, which provides specification tests for multi-dimensional

Hawkes models. We reproduce here its result, with slightly modified notations to

accommodate our notations.

Theorem C.6 (Bowsher, 2007, Theorem 4.1) Let N be a D-variate point
process on R∗+ with natural filtration {F N

t }t∈R+ , and D ≥ 1. Also let {Ft}t∈R+ be
a history of N (that is, F N

t ⊆ Ft,∀t ≥ 0), and suppose, for each m, that Nm has
the Ft-intensity λm where λm satisfies

∫ ∞
0
λm(s)ds = ∞ almost surely. Define

for each m and all t ≥ 0 the Ft-stopping time τm(t) as the (unique) solution to

∫ τm(t)

0
λm(u)du = t. (C.25)

Then the D point processes {Ñm}m=1,...,D defined by Ñm(t) = Nm(τm(t)),
∀t ≥ 0, are independent Poisson processes with unit intensity. Furthermore,
the durations of each Poisson process Ñm are given by

Λm(T m
i−1, T m

i ) =

∫ T m
i

T m
i−1

λm(s)ds, ∀i ≥ 2. (C.26)
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Let us compute the integrated intensity of the m-th coordinate of a multidimensional

Hawkes process between two consecutive events T m
i−1

and T m
i of type m:

Λm(T m
i−1, T m

i ) =

∫ T m
i

T m
i−1

λm(s)ds

=

∫ T m
i

T m
i−1

λm
0 (s)ds +

D∑
n=1

P∑
j=1

∑
T n

k<T m
i−1

αmn, j

βmn, j

[
e−βmn, j(T m

i−1
−T n

k ) − e−βmn, j(T m
i −T n

k )
]

+
D∑

n=1

P∑
j=1

∑
T m

i−1
≤T n

k<T m
i

αmn, j

βmn, j

[
1 − e−βmn, j(T m

i −T n
k )

]
. (C.27)

As in the log-likelihood computation, following Ozaki (1979), we observe that:

Amn
j (i − 1) =

∑
T n

k<T m
i−1

e−βmn, j(T m
i−1
−T n

k ) (C.28)

= e−βmn, j(T m
i−1
−T m

i−2
)Amn

j (i − 2) +
∑

T m
i−2
≤T n

k<T m
i−1

e−βmn, j(T m
i−1
−T n

k ),

so that the integrated density can be written for all i ≥ 2:

Λm(T m
i−1, T m

i ) =

∫ T m
i

T m
i−1

λm
0 (s)ds +

D∑
n=1

P∑
j=1

αmn, j

βmn, j

⎡⎢⎢⎢⎢⎢⎢⎣Amn
j (i − 1)

(
1 − e−βmn, j(T m

i −T m
i−1

)
)

+
∑

T m
i−1
≤T n

k<T m
i

(
1 − e−β

mn
j (T m

i −T n
k )

) ⎤⎥⎥⎥⎥⎥⎥⎦, (C.29)

where Amn
j is defined as in Eq. (C.28) with for all j = 1, . . . , P, Amn

j (0) = 0.

Hence, simply following the method in Bowsher (2007), we can easily define tests to

check the goodness-of-fit of a Hawkes model to some empirical data. Since, the integrated

intensity Λm(T m
i−1

, T m
i ) is a time interval of a homogeneous Poisson Process, we can test

for each m = 1, . . . , D: (i) whether the variables
(
Λm(T m

i−1
, T m

i )
)
i≥2

are exponentially

distributed; (ii) whether the variables
(
(Λm(T m

i−1
, T m

i )
)
i≥2

are independent.
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C.2 Ergodic Theory for Markov Processes

The ergodicity of a Markov process is a fundamental notion related to the possible

identification of averages over time or space. Loosely speaking, ergodicity characterizes

those processes whose sample paths visit the state space in a uniform (with respect to

some measure) manner. Conditions for ergodicity and convergence towards an invariant

measure are provided by the theory of stochastic stability, for which we refer to Meyn and

Tweedie (2009)and simply recall some important and useful results.

C.2.1 Stochastic stability

Let (Qt)t≥0 be the transition probability function of a Markov process at time t, that is

Qt(x, E) := P [X(t) ∈ E|X(0) = x] , t ∈ R+, x ∈ S, E ⊂ S, (C.30)

where S is the state space of the process. An aperiodic, irreducible Markov process is

ergodic if an invariant probability measure π exists and

lim
t→∞ ||Q

t(x, .) − π(.)|| = 0,∀x ∈ S, (C.31)

where ||.|| designates for a signed measure ν the total variation norm defined as

||ν|| := sup
f :| f |<1

|ν( f )| = sup
E∈B(S)

ν(E) − inf
E∈B(S)

ν(E). (C.32)

In (C.32), B(S) is the Borel σ-field generated by S, and for a measurable function f on S,

ν( f ) :=
∫
S f dν.

V-uniform ergodicity. A Markov process is said V-uniformly ergodic if there exists a

coercive function V > 1, an invariant distribution π, and constants r, 0 < r < 1, and

R < ∞ such that

||Qt(x, .) − π(.)|| ≤ RrtV(x), x ∈ S, t ∈ R+. (C.33)

V−uniform ergodicity is studied via the infinitesimal generator of the Markov process.

Indeed, it is shown in Meyn and Tweedie (2009, 1993) that it is equivalent to the existence

of a coercive function V satisfying the Lyapunov-type condition

LV(x) ≤ −βV(x) + γ1C, (Geometric drift condition) (C.34)

for some positive constants β and γ, and where C is a petite set. (Theorems 6.1 and 7.1

in Meyn and Tweedie (1993).) Condition (C.34) says that the larger V(X(t)), the stronger

X is pulled back towards the center of the state space S. We refer to Meyn and Tweedie

(2009) for further details.
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Due to the topology of the state space, a Lyapunov function is often obtained under the

form

LV(x) ≤ −βV(x) + γ1K, (Geometric drift condition), (C.35)

where K is a compact set rather than a petite set. Hence, it is important to have criteria

showing that compact sets are indeed petite sets. Such criteria are provided in Chapter 6 of

Meyn and Tweedie (2009), and can be obtained directly in specific examples. For instance,

the case of countable state space is well-known and covers the zero-intelligence model in

Chapter 6; as for Hawkes processes, such a result is proven in Zheng et al. (2014), and the

proof given there easily extends to the case of a Hawkes process-driven limit order book.

C.2.2 The Ergodic Theorem and Martingale Convergence Theorem

The Ergodic Theorem for Markov processes states the following:

Theorem C.7 (Meyn and Tweedie (2009) Maruyama and Tanaka (1959)

Cattiaux et al. (2012)) Let X be an ergodic Markov process. Denote by Π its
unique invariant probability measure, and let H be in L1(Π(dX)). Then, there
holds:

a.s.
lim

t→+∞
1

t

∫ t

0
G(X(t))dt =

∫
G(x)Π(dx).

The Martingale Convergence Theorem states a general invariance principle for

conveniently rescaled martingales under minimal assumptions of convergence for the

quadratic variation and jump sizes. We quote below the version that is used in this book.

Theorem C.8 (Theorem 7:1:4 in Ethier and Kurtz (2005), Theorem 2.1 in

Whitt (2007)) For n � 1, let Mn ≡ (Mn,1, ..., Mn,k) be a local martingale in
the Skorohod space Dk with respect to a filtration (Fn,t : t � 0), satisfying
Mn(0) = 0. Let C ≡ (Ci j) be a covariance matrix, i.e. a nonnegative-definite
symmetric matrix of real numbers.

Assume the following: Mn is locally square-integrable. The expected value of
the maximum jump in the predictable quadratic variation

〈
Mn,i, Mn, j

〉
and of the

maximum squared jump of Mn are asymptotically negligible. Furthermore〈
Mn,i, Mn, j

〉
(t) ⇒ ci j(t) in R as n→ ∞ (C.36)

for each t > 0 and for each pair i, j.
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Conclusion:

Mn ⇒M in Dk as n→ ∞, (C.37)

where M is a k-dimensional Wiener process with mean vector E (M(t)) = 0
and covariance matrix E (M(t)M(t)tr) = Ct.



APPENDIXD
Comparison of Various Prediction
Methods

This appendix presents the numerical results for the various prediction methods presented

and back-tested in Chapter 10.

D.1 Results for the Binary Classification

Table D.1 The quality of the binary prediction: 1-minute prediction AUC and accuracy per

stock

Order book imbalance Flow quantity Past return

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.53 0.53 0.51 0.51

AIR LIQUIDE 0.56 0.56 0.53 0.53 0.51 0.51

ALLIANZ 0.61 0.61 0.51 0.51 0.53 0.53

ASML Holding NV 0.56 0.56 0.53 0.53 0.51 0.51

BASF AG 0.54 0.54 0.52 0.52 0.50 0.50

BAYER AG 0.54 0.54 0.53 0.53 0.51 0.51

BBVARGENTARIA 0.54 0.54 0.53 0.53 0.51 0.51

BAY MOT WERKE 0.54 0.54 0.53 0.53 0.51 0.51

DANONE 0.56 0.56 0.53 0.53 0.51 0.51

BNP PARIBAS 0.53 0.53 0.52 0.52 0.51 0.51

CARREFOUR 0.55 0.55 0.53 0.53 0.51 0.51

CRH PLC IRLANDE 0.62 0.62 0.58 0.58 0.53 0.53

AXA 0.55 0.55 0.51 0.51 0.52 0.52

DAIMLER CHRYSLER 0.54 0.54 0.53 0.53 0.51 0.51

Contd...
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Order book imbalance Flow quantity Past return

Stock AUC Accuracy AUC Accuracy AUC Accuracy

DEUTSCHE BANK AG 0.53 0.53 0.52 0.52 0.51 0.51

VINCI 0.54 0.54 0.53 0.53 0.51 0.51

DEUTSCHE TELEKOM 0.56 0.56 0.52 0.52 0.51 0.51

ESSILOR INTERNATIONAL 0.56 0.56 0.54 0.54 0.50 0.50

ENEL 0.63 0.63 0.51 0.51 0.55 0.55

ENI 0.64 0.64 0.51 0.51 0.56 0.56

E.ON AG 0.58 0.58 0.51 0.51 0.51 0.51

TOTAL 0.54 0.54 0.52 0.52 0.51 0.51

GENERALI ASSIC 0.62 0.62 0.50 0.50 0.54 0.54

SOCIETE GENERALE 0.52 0.52 0.51 0.51 0.51 0.51

GDF SUEZ 0.56 0.56 0.52 0.52 0.50 0.50

IBERDROLA I 0.56 0.56 0.54 0.54 0.51 0.51

ING 0.53 0.53 0.53 0.53 0.51 0.51

INTESABCI 0.60 0.60 0.51 0.51 0.53 0.53

INDITEX 0.59 0.59 0.55 0.55 0.50 0.50

LVMH 0.59 0.59 0.52 0.52 0.52 0.52

MUNICH RE 0.58 0.58 0.52 0.52 0.51 0.51

LOREAL 0.60 0.60 0.53 0.53 0.52 0.52

PHILIPS ELECTR. 0.56 0.56 0.55 0.55 0.50 0.50

REPSOL 0.57 0.57 0.54 0.54 0.51 0.51

RWE ST 0.54 0.54 0.53 0.53 0.51 0.51

BANCO SAN CENTRAL HISPANO 0.54 0.54 0.53 0.53 0.51 0.51

SANOFI 0.54 0.54 0.53 0.53 0.50 0.50

SAP AG 0.54 0.54 0.52 0.52 0.51 0.51

SAINT GOBAIN 0.54 0.54 0.53 0.53 0.51 0.51

SIEMENS AG 0.54 0.54 0.53 0.53 0.51 0.51

SCHNEIDER ELECTRIC SA 0.54 0.54 0.52 0.52 0.51 0.51

TELEFONICA 0.59 0.59 0.53 0.53 0.51 0.51

UNICREDIT SPA 0.57 0.57 0.50 0.50 0.52 0.52

UNILEVER CERT 0.56 0.56 0.52 0.52 0.51 0.51

VIVENDI UNIVERSAL 0.57 0.57 0.53 0.53 0.51 0.51

VOLKSWAGEN 0.57 0.57 0.52 0.52 0.51 0.51
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Table D.2 The quality of the binary prediction: The daily gain average and standard deviation

for the 1-minute prediction (without trading costs)

Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW 1388 1201 1107 1308 174 1264

AIR LIQUIDE 1603 1112 996 1005 169 936

ALLIANZ 2775 1219 221 1107 638 1175

ASML Holding NV 1969 1278 1244 1316 190 1419

BASF AG 1156 1102 921 1311 2 1185

BAYER AG 1269 1055 1142 1251 289 1296

BBVARGENTARIA 1954 1537 1866 1700 595 1934

BAY MOT WERKE 1330 1219 1240 1325 347 1394

DANONE 1591 993 958 1143 231 1196

BNP PARIBAS 1120 1608 831 1620 526 1911

CARREFOUR 1878 1572 1461 1601 600 1665

CRH PLC IRLANDE 4144 1881 2853 1691 1496 1542

AXA 2003 1373 674 1428 582 1603

DAIMLER CHRYSLER 1380 1275 1130 1228 208 1390

DEUTSCHE BANK AG 1251 1372 905 1405 310 1672

VINCI 1410 1113 1252 1211 376 1113

DEUTSCHE TELEKOM 1586 1416 848 1196 308 1298

ESSILOR INTERNATIONAL 1762 1315 1523 1295 12 1281

ENEL 3723 1655 295 1384 1219 1307

ENI 2996 1185 321 1161 1109 1201

E.ON AG 2245 1193 481 1722 323 1445

TOTAL 1256 956 831 977 326 950

GENERALI ASSIC 3977 1764 177 1324 1210 1577

SOCIETE GENERALE 1195 1763 853 1896 643 2060

GDF SUEZ 2031 1227 934 1389 156 1355

IBERDROLA I 2220 1433 1626 1514 566 1403

ING 1511 1564 1493 1491 217 1720

INTESABCI 4019 1911 153 1787 1048 1954

INDITEX 2481 1452 1742 1525 145 1344

Contd...
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

LVMH 2445 1220 533 1148 613 1267

MUNICH RE 1895 1107 791 1485 194 1006

LOREAL 2367 1109 894 1242 438 1220

PHILIPS ELECTR. 1978 1173 1670 1565 182 1251

REPSOL 2694 1451 1700 1607 292 1558

RWE ST 1323 1348 1475 1880 307 1747

BANCO SAN CENTRAL 1717 1535 1393 1577 383 1684

HISPANO

SANOFI 1368 1040 1118 1123 107 1190

SAP AG 1225 1022 939 1071 117 1084

SAINT GOBAIN 1612 1359 1209 1449 455 1607

SIEMENS AG 1108 983 967 1196 164 1124

SCHNEIDER ELECTRIC SA 1419 1294 1014 1275 379 1436

TELEFONICA 2694 1267 1156 1341 290 1194

UNICREDIT SPA 3039 2025 382 1850 683 2002

UNILEVER CERT 1402 766 551 860 222 949

VIVENDI UNIVERSAL 2142 1223 1114 1391 244 1326

VOLKSWAGEN 2044 1440 1165 1397 225 1359

Table D.3 The quality of the binary prediction: The daily gain average and standard deviation

for the 1-minute prediction (with trading costs)

Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW −191 1189 −788 1325 −1222 1531

AIR LIQUIDE 81 1112 −980 1057 −1211 1164

ALLIANZ 1141 1063 −1199 1309 −952 1162

ASML Holding NV 370 1179 −697 1335 −1301 1574

BASF AG −422 1064 −955 1338 −1298 1558

BAYER AG −363 1002 −734 1249 −1122 1503

BBVARGENTARIA 303 1477 −58 1681 −910 2027

BAY MOT WERKE −260 1176 −530 1263 −1256 1510

Contd...
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

DANONE −40 963 −906 1164 −1246 1369

BNP PARIBAS −402 1596 −1022 1618 −1115 1998

CARREFOUR 251 1486 −492 1606 −975 1690

CRH PLC IRLANDE 2971 1714 934 1612 −27 1549

AXA 313 1299 −1064 1488 −1152 1560

DAIMLER CHRYSLER −231 1243 −748 1235 −1206 1529

DEUTSCHE BANK AG −394 1368 −959 1423 −1277 1819

VINCI −170 1072 −656 1224 −1093 1324

DEUTSCHE TELEKOM 50 1407 −949 1225 −1128 1516

ESSILOR INTERNATIONAL 185 1265 −389 1296 −1104 1575

ENEL 2151 1456 −1069 1610 −329 1198

ENI 1513 971 −1136 1375 −281 1046

E.ON AG 583 1096 −1108 1887 −1047 1592

TOTAL −362 934 −1058 1024 −1278 1206

GENERALI ASSIC 2369 1565 −1403 1539 −484 1490

SOCIETE GENERALE −405 1718 −846 1901 −968 2002

GDF SUEZ 402 1140 −951 1438 −1249 1513

IBERDROLA I 762 1332 −312 1503 −1094 1475

ING −186 1519 −450 1470 −1186 1890

INTESABCI 2333 1715 −1081 1822 −517 1820

INDITEX 1110 1375 −195 1535 −1155 1457

LVMH 831 1119 −1183 1296 −928 1235

MUNICH RE 366 1011 −1019 1490 −1260 1177

LOREAL 816 985 −797 1274 −982 1236

PHILIPS ELECTR. 377 1113 −272 1575 −1255 1490

REPSOL 1233 1308 −184 1585 −1188 1713

RWE ST −182 1251 −399 1864 −1122 1960

BANCO SAN CENTRAL 205 1431 −492 1566 −1064 1822

HISPANO

SANOFI −279 998 −720 1127 −1382 1454

SAP AG −340 1000 −944 1093 −1428 1277

Contd...
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)
SAINT GOBAIN −48 1326 −694 1463 −1060 1655

SIEMENS AG −472 966 −898 1209 −1353 1363

SCHNEIDER ELECTRIC SA −162 1263 −872 1296 −1339 1493

TELEFONICA 1124 1130 −686 1342 −1044 1257

UNICREDIT SPA 1434 1940 −896 1953 −738 2067

UNILEVER CERT −253 730 −1246 938 −1344 1142

VIVENDI UNIVERSAL 547 1113 −804 1386 −1186 1452

VOLKSWAGEN 446 1373 −785 1408 −979 1584

D.2 Results for the Four-class Classification

Table D.4 The quality of the 4-class prediction: 1-minute prediction AUC and accuracy per

stock

Order book imbalance Flow quantity Past return

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.58 0.59 0.50 0.42 0.50 0.50

AIR LIQUIDE 0.71 0.72 nan nan 0.50 0.58

ALLIANZ 0.69 0.69 0.50 0.54 0.61 0.61

ASML Holding NV 0.60 0.60 0.50 0.54 0.48 0.48

BASF AG 0.60 0.60 nan nan 0.49 0.50

BAYER AG 0.53 0.55 0.50 0.59 0.50 0.56

BBVARGENTARIA 0.57 0.57 0.55 0.55 0.55 0.56

BAY MOT WERKE 0.57 0.58 0.55 0.55 0.54 0.55

DANONE 0.60 0.60 nan nan 0.58 0.58

BNP PARIBAS 0.58 0.59 0.50 0.50 0.52 0.53

CARREFOUR 0.59 0.60 0.50 0.56 0.56 0.56

CRH PLC IRLANDE 0.70 0.70 0.64 0.64 0.55 0.56

AXA 0.58 0.60 nan nan 0.56 0.56

DAIMLER CHRYSLER 0.57 0.57 0.50 0.51 0.54 0.54

DEUTSCHE BANK AG 0.55 0.55 0.54 0.56 0.52 0.52

VINCI 0.60 0.60 0.55 0.56 0.56 0.56

Contd...
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Order book imbalance Flow quantity Past return

Stock AUC Accuracy AUC Accuracy AUC Accuracy

DEUTSCHE TELEKOM 0.71 0.72 nan nan 0.51 0.51

ESSILOR INTERNATIONAL 0.60 0.60 0.50 0.55 0.52 0.56

ENEL 0.73 0.73 nan nan 0.57 0.60

ENI 0.76 0.76 nan nan 0.61 0.61

E.ON AG 0.64 0.64 nan nan 0.53 0.53

TOTAL 0.54 0.59 nan nan 0.50 0.46

GENERALI ASSIC 0.68 0.68 nan nan 0.60 0.60

SOCIETE GENERALE 0.55 0.56 0.50 0.54 0.52 0.54

GDF SUEZ 0.62 0.62 nan nan 0.53 0.53

IBERDROLA I 0.63 0.63 0.56 0.56 0.57 0.57

ING 0.55 0.55 0.54 0.55 0.52 0.55

INTESABCI 0.67 0.67 nan nan 0.58 0.58

INDITEX 0.68 0.68 0.58 0.58 0.55 0.55

LVMH 0.65 0.66 nan nan 0.58 0.58

MUNICH RE 0.66 0.66 0.55 0.55 0.54 0.54

LOREAL 0.67 0.67 nan nan 0.58 0.58

PHILIPS ELECTR. 0.61 0.62 0.50 0.51 0.52 0.54

REPSOL 0.63 0.63 0.53 0.58 0.57 0.57

RWE ST 0.58 0.58 0.53 0.55 0.52 0.52

BANCO SAN CENTRAL HISPANO 0.57 0.56 0.52 0.51 0.58 0.58

SANOFI 0.60 0.60 nan nan 0.50 0.60

SAP AG 0.52 0.61 0.50 0.56 0.52 0.54

SAINT GOBAIN 0.56 0.58 0.54 0.58 0.54 0.55

SIEMENS AG 0.56 0.61 0.55 0.56 0.59 0.59

SCHNEIDER ELECTRIC SA 0.57 0.58 nan nan 0.56 0.57

TELEFONICA 0.68 0.68 0.53 0.57 0.56 0.56

UNICREDIT SPA 0.64 0.65 0.50 0.54 0.57 0.57

UNILEVER CERT 0.50 0.63 nan nan nan nan

VIVENDI UNIVERSAL 0.63 0.63 nan nan 0.51 0.52

VOLKSWAGEN 0.62 0.62 0.49 0.49 0.52 0.53
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Table D.5 The quality of the 4-class prediction: The daily gain average and standard deviation

for the 1-minute prediction (without trading costs)

Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW 137 388 −6 98 4 131

AIR LIQUIDE 306 577 0 0 3 42

ALLIANZ 1363 779 4 47 68 276

ASML Holding NV 440 651 5 63 −2 132

BASF AG 87 287 0 0 −2 48

BAYER AG 21 128 14 137 14 99

BBVARGENTARIA 390 665 273 669 208 582

BAY MOT WERKE 107 281 47 276 52 238

DANONE 168 366 0 0 4 47

BNP PARIBAS 171 428 3 66 44 453

CARREFOUR 486 715 11 139 136 469

CRH PLC IRLANDE 2534 1240 1364 1077 202 560

AXA 594 786 0 0 55 320

DAIMLER CHRYSLER 93 289 2 24 16 191

DEUTSCHE BANK AG 34 224 38 212 12 291

VINCI 154 451 13 111 27 147

DEUTSCHE TELEKOM 488 827 0 0 3 66

ESSILOR INTERNATIONAL 351 596 17 164 10 106

ENEL 2219 1056 0 0 193 503

ENI 2000 773 0 0 110 300

E.ON AG 651 680 0 0 10 168

TOTAL 10 93 0 0 1 38

GENERALI ASSIC 2520 1420 0 0 249 756

SOCIETE GENERALE 184 503 2 25 56 410

GDF SUEZ 504 692 0 0 21 171

IBERDROLA I 738 951 155 512 115 409

ING 109 373 59 296 7 138

INTESABCI 2512 1248 0 0 185 731

Contd...
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INDITEX 1039 914 151 587 44 223

LVMH 930 847 0 0 64 277

MUNICH RE 370 533 26 145 3 50

LOREAL 800 674 0 0 22 112

PHILIPS ELECTR. 440 613 6 94 11 116

REPSOL 1234 1013 142 445 110 555

RWE ST 192 556 85 380 29 364

BANCO SAN CENTRAL 228 501 4 158 168 635
HISPANO

SANOFI 26 127 0 0 6 90

SAP AG 50 196 24 187 6 200

SAINT GOBAIN 210 519 30 186 88 362

SIEMENS AG 26 139 31 198 28 162

SCHNEIDER ELECTRIC SA 123 434 0 0 37 214

TELEFONICA 1402 825 36 232 34 205

UNICREDIT SPA 1316 1393 17 197 247 835

UNILEVER CERT 16 104 0 0 0 0

VIVENDI UNIVERSAL 583 826 0 0 5 141

VOLKSWAGEN 530 745 −0 78 1 215

Table D.6 The quality of the 4-class prediction: The daily gain average and standard deviation

for the 1-minute prediction (with trading costs)

Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW 22 263 −9 150 −38 183

AIR LIQUIDE 128 329 0 0 1 31

ALLIANZ 586 559 −1 16 8 194

ASML Holding NV 125 408 −0 32 −25 168

BASF AG 15 189 0 0 −7 51

BAYER AG −14 105 1 86 −2 77

BBVARGENTARIA 107 507 31 465 16 474
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

BAY MOT WERKE −1 193 1 199 −12 184

DANONE 21 210 0 0 −4 42

BNP PARIBAS 34 271 −12 126 −65 481

CARREFOUR 116 506 −8 131 18 362

CRH PLC IRLANDE 1848 1102 518 844 18 442

AXA 174 550 0 0 −23 274

DAIMLER CHRYSLER −7 245 −1 14 −32 199

DEUTSCHE BANK AG −23 204 8 122 −33 311

VINCI 38 281 −3 73 −5 111

DEUTSCHE TELEKOM 241 526 0 0 −10 79

ESSILOR INTERNATIONAL 88 388 −14 157 −4 91

ENEL 1338 881 0 0 −18 443

ENI 1082 613 0 0 −25 211

E.ON AG 185 475 0 0 −22 173

TOTAL −5 72 0 0 −3 49

GENERALI ASSIC 1518 1179 0 0 58 636

SOCIETE GENERALE 2 412 −2 24 −41 394

GDF SUEZ 142 464 0 0 −8 126

IBERDROLA I 340 722 28 331 18 292

ING −13 329 6 209 −12 147

INTESABCI 1514 1096 0 0 −20 658

INDITEX 547 702 3 400 −10 198

LVMH 372 581 0 0 −11 169

MUNICH RE 111 322 −3 62 −6 46

LOREAL 285 443 0 0 −5 85

PHILIPS ELECTR. 113 417 −6 96 −8 105

REPSOL 611 809 40 254 27 437

RWE ST 38 450 −2 299 −42 372

BANCO SAN CENTRAL 20 392 −31 203 49 463

HISPANO

SANOFI 1 69 0 0 −0 79
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

SAP AG 2 120 −4 137 −30 207

SAINT GOBAIN 25 403 −1 114 −7 289

SIEMENS AG 2 74 −2 89 −3 141

SCHNEIDER ELECTRIC SA 16 317 0 0 −14 195

TELEFONICA 656 663 6 139 −7 183

UNICREDIT SPA 693 1159 −5 173 19 628

UNILEVER CERT 1 56 0 0 0 0

VIVENDI UNIVERSAL 214 617 0 0 −27 175

VOLKSWAGEN 171 545 −7 115 −45 246

Table D.7 The quality of the 4-class prediction: The daily gain average and standard deviation

for the 30-minute prediction (without trading costs)

Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW −11 887 −6 845 −41 823

AIR LIQUIDE −57 669 −17 633 −21 624

ALLIANZ −14 762 69 689 −41 729

ASML Holding NV −87 862 43 1075 −29 897

BASF AG −20 807 −3 781 −67 722

BAYER AG 38 759 −93 774 −46 765

BBVARGENTARIA −16 1263 −63 1138 16 1084

BAY MOT WERKE −25 783 −23 923 −13 901

DANONE −61 744 19 726 −18 745

BNP PARIBAS −28 998 −2 1179 −9 1151

CARREFOUR 4 1108 −135 1082 −52 972

CRH PLC IRLANDE 75 962 −105 1161 −6 1117

AXA 12 1054 6 1055 49 1111

DAIMLER CHRYSLER 75 872 −51 825 9 961

DEUTSCHE BANK AG 54 1054 −89 1152 −35 996

VINCI 110 761 80 742 100 743

DEUTSCHE TELEKOM 27 722 81 700 −14 718

Contd...
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

ESSILOR INTERNATIONAL 29 830 43 827 41 872

ENEL 27 991 −40 971 55 959

ENI 7 628 −18 651 −16 645

E.ON AG −70 911 −4 963 65 826

TOTAL 49 660 108 689 73 669

GENERALI ASSIC 18 1011 2 1094 11 1085

SOCIETE GENERALE 53 1413 67 1253 −5 1335

GDF SUEZ 59 906 −24 847 25 823

IBERDROLA I 3 1017 −73 960 51 949

ING −21 1138 105 1205 −80 1142

INTESABCI −128 1359 −54 1329 85 1288

INDITEX −8 894 −161 912 17 860

LVMH −36 831 15 725 −26 675

MUNICH RE 29 641 −25 688 −7 727

LOREAL −19 671 31 755 15 727

PHILIPS ELECTR. −24 844 24 789 −29 841

REPSOL −87 878 −5 920 3 925

RWE ST 32 1132 61 1217 46 1140

BANCO SAN CENTRAL 2 1150 −60 1072 48 1090
HISPANO

SANOFI −29 810 25 856 7 794

SAP AG 4 683 −52 709 −15 682

SAINT GOBAIN −66 996 22 994 −51 945

SIEMENS AG 127 771 −35 802 −59 725

SCHNEIDER ELECTRIC SA −31 896 −79 837 8 838

TELEFONICA −12 759 42 918 111 912

UNICREDIT SPA 130 1529 58 1498 81 1357

UNILEVER CERT 5 543 31 546 −26 508

VIVENDI UNIVERSAL 21 874 −15 899 6 859

VOLKSWAGEN 71 929 120 994 75 1055
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Table D.8 The quality of the binary prediction: The daily gain average and standard deviation

for the 30-minute prediction (with 0.5 bp trading costs)

Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

INTERBREW −55 887 −51 845 −84 824

AIR LIQUIDE −96 672 −61 635 −62 625

ALLIANZ −57 764 23 687 −80 731

ASML Holding NV −132 863 −6 1072 −73 896

BASF AG −61 809 −47 780 −108 724

BAYER AG −7 758 −136 777 −84 767

BBVARGENTARIA −58 1265 −108 1137 −25 1082

BAY MOT WERKE −65 784 −69 923 −53 902

DANONE −101 743 −25 726 −60 742

BNP PARIBAS −71 997 −46 1180 −51 1149

CARREFOUR −39 1110 −182 1085 −94 972

CRH PLC IRLANDE 31 960 −152 1163 −48 1116

AXA −31 1052 −37 1054 4 1109

DAIMLER CHRYSLER 36 874 −93 825 −31 961

DEUTSCHE BANK AG 9 1053 −138 1151 −77 997

VINCI 72 763 40 742 65 743

DEUTSCHE TELEKOM −12 722 36 702 −53 720

ESSILOR INTERNATIONAL −9 830 −1 828 −2 869

ENEL −17 993 −81 974 17 959

ENI −36 627 −58 652 −57 642

E.ON AG −106 911 −45 965 22 824

TOTAL 10 661 66 690 34 666

GENERALI ASSIC −26 1011 −44 1096 −32 1087

SOCIETE GENERALE 10 1415 19 1252 −51 1336

GDF SUEZ 14 905 −70 847 −16 818

IBERDROLA I −40 1016 −117 962 5 947

ING −63 1137 58 1207 −122 1144

INTESABCI −172 1359 −97 1327 47 1290

INDITEX −48 896 −204 913 −22 859
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Order book imbalance Flow quantity Past return

Stock Gain σ(Gain) Gain σ(Gain) Gain σ(Gain)

LVMH −82 830 −30 725 −68 675

MUNICH RE −13 641 −66 691 −49 728

LOREAL −57 674 −9 754 −22 728

PHILIPS ELECTR. −65 845 −23 788 −71 839

REPSOL −128 877 −52 920 −41 920

RWE ST −7 1130 15 1218 5 1140

BANCO SAN CENTRAL −37 1149 −103 1073 6 1089
HISPANO

SANOFI −67 810 −21 856 −34 797

SAP AG −37 683 −100 709 −60 680

SAINT GOBAIN −105 997 −23 995 −93 946

SIEMENS AG 84 772 −77 805 −98 725

SCHNEIDER ELECTRIC SA −73 896 −123 836 −34 838

TELEFONICA −49 760 −4 919 68 913

UNICREDIT SPA 84 1529 15 1499 40 1359

UNILEVER CERT −39 543 −14 545 −67 509

VIVENDI UNIVERSAL −24 874 −61 900 −37 856

VOLKSWAGEN 33 929 76 995 38 1058

Notice that the nans on the tables of the Appendix 2 correspond to the cases where |Ŷ | is always lower than

θ thus no positions are taken.

D.3 Performances of the OLS Method

Table D.9 The quality of the OLS prediction: The AUC and the accuracy per stock for the

different horizons

1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.50 0.50 0.50 0.50

AIR LIQUIDE 0.57 0.57 0.52 0.52 0.49 0.49

ALLIANZ 0.61 0.61 0.53 0.53 0.50 0.50

ASML Holding NV 0.55 0.55 0.51 0.51 0.51 0.51

BASF AG 0.54 0.54 0.52 0.52 0.50 0.50

BAYER AG 0.54 0.54 0.51 0.51 0.51 0.51
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

BBVARGENTARIA 0.54 0.54 0.51 0.51 0.49 0.49

BAY MOT WERKE 0.55 0.55 0.51 0.51 0.49 0.49

DANONE 0.56 0.56 0.51 0.51 0.49 0.49

BNP PARIBAS 0.53 0.53 0.51 0.51 0.50 0.50

CARREFOUR 0.55 0.55 0.51 0.51 0.52 0.52

CRH PLC IRLANDE 0.62 0.62 0.56 0.56 0.52 0.52

AXA 0.55 0.55 0.51 0.51 0.50 0.50

DAIMLER CHRYSLER 0.54 0.54 0.51 0.51 0.50 0.50

DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.51 0.51

VINCI 0.55 0.55 0.52 0.52 0.51 0.51

DEUTSCHE TELEKOM 0.56 0.56 0.52 0.52 0.50 0.51

ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.51 0.51

ENEL 0.62 0.62 0.53 0.53 0.48 0.48

ENI 0.64 0.64 0.54 0.54 0.50 0.50

E.ON AG 0.57 0.57 0.52 0.52 0.48 0.48

TOTAL 0.54 0.54 0.51 0.51 0.50 0.50

GENERALI ASSIC 0.61 0.61 0.54 0.54 0.50 0.50

SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.52 0.52

GDF SUEZ 0.56 0.56 0.51 0.51 0.50 0.50

IBERDROLA I 0.57 0.57 0.52 0.52 0.51 0.51

ING 0.53 0.53 0.51 0.51 0.49 0.49

INTESABCI 0.59 0.59 0.51 0.51 0.50 0.50

INDITEX 0.59 0.59 0.53 0.53 0.52 0.52

LVMH 0.59 0.59 0.52 0.52 0.52 0.52

MUNICH RE 0.58 0.58 0.53 0.53 0.50 0.50

LOREAL 0.60 0.60 0.52 0.52 0.51 0.51

PHILIPS ELECTR. 0.56 0.56 0.51 0.51 0.50 0.50

REPSOL 0.57 0.57 0.52 0.52 0.51 0.51

RWE ST 0.54 0.54 0.51 0.51 0.49 0.49

BANCO SAN CENTRAL HISPANO 0.54 0.54 0.51 0.51 0.49 0.49

SANOFI 0.54 0.54 0.51 0.51 0.49 0.49

SAP AG 0.54 0.54 0.51 0.51 0.51 0.51
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

SAINT GOBAIN 0.54 0.54 0.51 0.51 0.52 0.52

SIEMENS AG 0.54 0.54 0.51 0.51 0.50 0.50

SCHNEIDER ELECTRIC SA 0.54 0.54 0.52 0.52 0.51 0.51

TELEFONICA 0.59 0.59 0.52 0.52 0.50 0.50

UNICREDIT SPA 0.56 0.56 0.51 0.51 0.49 0.49

UNILEVER CERT 0.56 0.56 0.51 0.51 0.50 0.50

VIVENDI UNIVERSAL 0.57 0.57 0.51 0.51 0.51 0.51

VOLKSWAGEN 0.56 0.56 0.52 0.52 0.51 0.51

D.4 Performances of the Ridge Method

Table D.10 The quality of the Ridge HKB prediction: The AUC and the accuracy per stock for

the different horizons

1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.50 0.50 0.50 0.50

AIR LIQUIDE 0.57 0.57 0.52 0.52 0.50 0.50

ALLIANZ 0.61 0.61 0.53 0.53 0.49 0.49

ASML Holding NV 0.55 0.55 0.51 0.51 0.51 0.51

BASF AG 0.54 0.54 0.52 0.52 0.50 0.50

BAYER AG 0.54 0.54 0.51 0.51 0.50 0.50

BBVARGENTARIA 0.54 0.54 0.51 0.51 0.50 0.50

BAY MOT WERKE 0.55 0.55 0.51 0.51 0.50 0.50

DANONE 0.56 0.56 0.51 0.51 0.50 0.50

BNP PARIBAS 0.53 0.53 0.51 0.51 0.50 0.50

CARREFOUR 0.55 0.55 0.51 0.51 0.52 0.52

CRH PLC IRLANDE 0.62 0.62 0.56 0.56 0.52 0.52

AXA 0.56 0.55 0.51 0.51 0.50 0.50

DAIMLER CHRYSLER 0.54 0.54 0.51 0.51 0.50 0.50

DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.51 0.51

VINCI 0.55 0.55 0.51 0.52 0.51 0.51

DEUTSCHE TELEKOM 0.56 0.56 0.52 0.52 0.51 0.52
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.51 0.51

MUNICH RE 0.59 0.59 0.53 0.53 0.50 0.50

ENEL 0.62 0.62 0.53 0.53 0.48 0.48

ENI 0.65 0.65 0.54 0.54 0.50 0.50

E.ON AG 0.57 0.57 0.52 0.52 0.48 0.48

TOTAL 0.54 0.54 0.51 0.51 0.50 0.50

GENERALI ASSIC 0.62 0.62 0.54 0.54 0.51 0.51

SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.53 0.52

GDF SUEZ 0.57 0.57 0.52 0.52 0.50 0.50

IBERDROLA I 0.57 0.57 0.53 0.53 0.52 0.52

ING 0.53 0.53 0.51 0.50 0.50 0.50

INTESABCI 0.60 0.60 0.52 0.52 0.50 0.50

INDITEX 0.59 0.59 0.53 0.53 0.52 0.52

LVMH 0.59 0.59 0.52 0.52 0.50 0.50

LOREAL 0.60 0.60 0.52 0.52 0.51 0.51

PHILIPS ELECTR. 0.56 0.56 0.51 0.51 0.49 0.49

REPSOL 0.58 0.58 0.52 0.52 0.52 0.52

RWE ST 0.54 0.54 0.51 0.51 0.50 0.50

BANCO SAN CENTRAL HISPANO 0.54 0.54 0.51 0.51 0.50 0.50

SANOFI 0.54 0.54 0.51 0.51 0.51 0.51

SAP AG 0.55 0.55 0.51 0.51 0.51 0.51

SAINT GOBAIN 0.54 0.54 0.51 0.51 0.52 0.52

SIEMENS AG 0.54 0.54 0.51 0.51 0.51 0.51

SCHNEIDER ELECTRIC SA 0.55 0.55 0.52 0.52 0.50 0.50

TELEFONICA 0.59 0.59 0.52 0.52 0.51 0.51

UNICREDIT SPA 0.57 0.57 0.51 0.51 0.49 0.49

UNILEVER CERT 0.56 0.56 0.51 0.51 0.49 0.49

VIVENDI UNIVERSAL 0.57 0.57 0.51 0.51 0.51 0.51

VOLKSWAGEN 0.57 0.57 0.52 0.52 0.51 0.51
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Table D.11 The quality of the Ridge LW prediction: The AUC and the accuracy per stock for

the different horizons

1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.55 0.55 0.52 0.52 0.50 0.50

AIR LIQUIDE 0.57 0.57 0.53 0.53 0.49 0.49

ALLIANZ 0.61 0.61 0.54 0.54 0.50 0.50

ASML Holding NV 0.56 0.56 0.52 0.52 0.52 0.52

BASF AG 0.54 0.54 0.52 0.52 0.50 0.50

BAYER AG 0.55 0.55 0.51 0.51 0.50 0.50

BBVARGENTARIA 0.54 0.54 0.51 0.51 0.50 0.50

BAY MOT WERKE 0.55 0.55 0.51 0.51 0.50 0.50

DANONE 0.56 0.56 0.51 0.51 0.49 0.49

BNP PARIBAS 0.54 0.54 0.52 0.52 0.50 0.50

CARREFOUR 0.55 0.55 0.51 0.51 0.51 0.51

CRH PLC IRLANDE 0.62 0.62 0.57 0.57 0.51 0.51

AXA 0.56 0.56 0.51 0.51 0.51 0.51

DAIMLER CHRYSLER 0.54 0.54 0.52 0.52 0.51 0.51

DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.52 0.52

VINCI 0.56 0.56 0.52 0.53 0.51 0.52

DEUTSCHE TELEKOM 0.57 0.57 0.52 0.52 0.52 0.52

ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.50 0.50

ENEL 0.63 0.63 0.54 0.54 0.50 0.50

ENI 0.65 0.65 0.55 0.55 0.50 0.50

E.ON AG 0.58 0.58 0.52 0.52 0.50 0.51

TOTAL 0.54 0.54 0.52 0.52 0.51 0.51

GENERALI ASSIC 0.62 0.62 0.55 0.55 0.49 0.49

SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.52 0.52

GDF SUEZ 0.57 0.57 0.52 0.52 0.50 0.50

IBERDROLA I 0.57 0.57 0.53 0.53 0.52 0.52

ING 0.53 0.53 0.51 0.51 0.50 0.50

INTESABCI 0.60 0.60 0.53 0.53 0.48 0.48

INDITEX 0.60 0.60 0.54 0.54 0.51 0.51
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

LVMH 0.59 0.59 0.52 0.52 0.50 0.50

MUNICH RE 0.59 0.59 0.54 0.54 0.50 0.50

LOREAL 0.60 0.60 0.53 0.53 0.51 0.51

PHILIPS ELECTR. 0.57 0.57 0.52 0.52 0.50 0.50

REPSOL 0.58 0.58 0.53 0.53 0.51 0.51

RWE ST 0.55 0.55 0.51 0.51 0.49 0.49

BANCO SAN CENTRAL HISPANO 0.54 0.54 0.52 0.52 0.51 0.51

SANOFI 0.55 0.55 0.51 0.51 0.50 0.50

SAP AG 0.55 0.55 0.51 0.51 0.51 0.51

SAINT GOBAIN 0.55 0.55 0.51 0.51 0.52 0.52

SIEMENS AG 0.55 0.55 0.52 0.52 0.51 0.52

SCHNEIDER ELECTRIC SA 0.55 0.55 0.52 0.52 0.50 0.50

TELEFONICA 0.60 0.60 0.53 0.53 0.51 0.51

UNICREDIT SPA 0.57 0.57 0.52 0.52 0.49 0.49

UNILEVER CERT 0.57 0.57 0.51 0.51 0.51 0.51

VIVENDI UNIVERSAL 0.58 0.58 0.52 0.52 0.51 0.51

VOLKSWAGEN 0.57 0.57 0.52 0.52 0.50 0.50

D.5 Performances of the LASSO Method

Table D.12 The quality of the LASSO prediction: The AUC and the accuracy per stock for the

different horizons

1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

INTERBREW 0.54 0.54 0.51 0.51 0.50 0.50

AIR LIQUIDE 0.58 0.58 0.52 0.52 0.49 0.49

ALLIANZ 0.61 0.61 0.54 0.54 0.52 0.52

ASML Holding NV 0.56 0.56 0.52 0.52 0.51 0.51

BASF AG 0.53 0.53 0.51 0.51 0.51 0.51

BAYER AG 0.54 0.54 0.51 0.51 0.50 0.50

BBVARGENTARIA 0.54 0.54 0.51 0.51 0.49 0.49
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

BAY MOT WERKE 0.55 0.55 0.51 0.51 0.49 0.49

DANONE 0.56 0.56 0.51 0.51 0.50 0.50

BNP PARIBAS 0.54 0.54 0.51 0.51 0.49 0.49

CARREFOUR 0.55 0.55 0.51 0.51 0.50 0.50

CRH PLC IRLANDE 0.62 0.62 0.56 0.56 0.52 0.52

AXA 0.55 0.55 0.51 0.51 0.49 0.49

DAIMLER CHRYSLER 0.53 0.53 0.52 0.52 0.50 0.50

DEUTSCHE BANK AG 0.53 0.53 0.51 0.51 0.51 0.51

VINCI 0.55 0.55 0.52 0.53 0.52 0.52

DEUTSCHE TELEKOM 0.58 0.58 0.52 0.52 0.52 0.52

ESSILOR INTERNATIONAL 0.56 0.56 0.51 0.51 0.50 0.50

ENEL 0.62 0.62 0.53 0.53 0.50 0.50

ENI 0.64 0.64 0.55 0.55 0.49 0.49

E.ON AG 0.57 0.57 0.52 0.52 0.49 0.50

TOTAL 0.54 0.54 0.52 0.52 0.51 0.51

GENERALI ASSIC 0.62 0.62 0.54 0.54 0.51 0.51

SOCIETE GENERALE 0.53 0.53 0.50 0.50 0.52 0.52

GDF SUEZ 0.56 0.56 0.52 0.52 0.51 0.51

IBERDROLA I 0.56 0.56 0.53 0.53 0.53 0.53

ING 0.52 0.52 0.51 0.51 0.50 0.50

INTESABCI 0.60 0.60 0.53 0.53 0.50 0.50

INDITEX 0.59 0.59 0.53 0.53 0.52 0.52

LVMH 0.59 0.59 0.52 0.52 0.51 0.51

MUNICH RE 0.58 0.58 0.54 0.54 0.50 0.50

LOREAL 0.60 0.60 0.53 0.53 0.50 0.50

PHILIPS ELECTR. 0.56 0.56 0.52 0.52 0.50 0.50

REPSOL 0.57 0.57 0.52 0.52 0.51 0.51

RWE ST 0.54 0.54 0.51 0.51 0.50 0.50

BANCO SAN CENTRAL HISPANO 0.54 0.54 0.52 0.52 0.50 0.50

SANOFI 0.54 0.54 0.51 0.51 0.50 0.50

SAP AG 0.53 0.53 0.52 0.52 0.50 0.50
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1-min horizon 5-min horizon 30-min horizon

Stock AUC Accuracy AUC Accuracy AUC Accuracy

SAINT GOBAIN 0.54 0.54 0.51 0.51 0.52 0.52

SIEMENS AG 0.54 0.54 0.51 0.51 0.50 0.50

SCHNEIDER ELECTRIC SA 0.54 0.54 0.51 0.51 0.49 0.49

TELEFONICA 0.59 0.59 0.53 0.53 0.51 0.51

UNICREDIT SPA 0.57 0.57 0.52 0.52 0.48 0.48

UNILEVER CERT 0.57 0.57 0.51 0.51 0.51 0.51

VIVENDI UNIVERSAL 0.57 0.57 0.52 0.52 0.52 0.52

VOLKSWAGEN 0.56 0.56 0.52 0.52 0.49 0.49
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