

Real-World Software
Development

A Project-Driven Guide to Fundamentals in Java

Raoul-Gabriel Urma and Richard Warburton

Real-World Software Development

by Raoul-Gabriel Urma and Richard Warburton

Copyright © 2020 Functor Ltd. and Monotonic Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Alicia Young

Production Editor: Kristen Brown

Copyeditor: Kim Cofer

Proofreader: Tracy Brown-Hamilton

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

December 2019: First Edition

Revision History for the First Edition

2019-12-02: First Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781491967171 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Real-
World Software Development, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-491-96717-1

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491967171

Preface

Mastering software development involves learning a disparate set of
concepts. If you’re starting out as a junior software developer, or even if
you’re more experienced, it can seem like an insurmountable hurdle.
Should you be spending time learning about established topics in the object-
oriented world such as SOLID principles, design patterns, or test-driven
development? Should you be trying out things that are becoming
increasingly popular such as functional programming?

Even once you’ve picked some topics to learn it’s often hard to identify
how they fit together. When you should go down the route of applying
functional programming ideas in your project? When do you worry about
testing? How do you know at what point to introduce or refine these
techniques? Do you need to read a book on each of these topics and then
another set of blog posts or videos to explain how to put things together?
Where do you even start?

Don’t worry, this book is here to help you. You will be helped through an
integrated, project-driven approach to learning. You’ll learn the core topics
that you need to know in order to become a productive developer. Not only
that, but we show how these things fit together into bigger projects.

Why We Wrote This Book
Over the years we have built up a wealth of experience around teaching
developers to code. We have both written books on Java 8 onward and run
training courses around professional software development. In the process
we’ve been recognized as Java Champions and international conference
speakers.

We’ve found over the years that many developers could benefit from either
an introduction or a refresher on several core topics. Design patterns,

functional programming, SOLID principles, and testing are practices that
often get good coverage in their own right, but it’s rarely shown how they
work well and fit together. People sometimes even get put off from
improving their skills simply due to the paralysis of choice over what to
learn. We want to not only teach people core skills, but do so in a way that’s
easy to approach and fun, too.

A Developer-Oriented Approach
This book also gives you the opportunity to learn in a developer-oriented
way. It contains plenty of code samples and whenever we introduce a topic
we always provide concrete code examples. You get all the code for the
projects within the book, so if you want to follow along you can even step
through the book code in an Integrated Development Environment (IDE) or
run the programs in order to try them out.

Another common bugbear when it comes to technical books is that they are
often written in a formal, lecturing style. That’s not how normal people
speak to each other! In this book you’ll get a conversational style that helps
to engage you in the content rather than being patronizing.

What’s in the Book?
Each chapter is structured around a software project. At the end of a
chapter, if you’ve been following along, you should be able to write that
project. The projects start off as simple command-line batch programs but
grow in complexity to fully fledged applications.

You’ll benefit from a project-driven structure in a variety of ways. First,
you get to see how different programming techniques work together in an
integrated setting. When we look at functional programming toward the end
of the book, it isn’t just abstract collection-processing operations—they’re
presented in order to calculate actual results used by the project in question.
This solves the problem of educational material showing good ideas or
approaches, but developers often use them inappropriately or out of context.

Second, a project-driven approach helps ensure that at each stage you see
realistic examples. Educational materials are often full of example classes
called Foo and methods called bar. Our examples are relevant to the
projects in question and show how to apply the ideas to real problems,
similar to the ones that you may encounter in your career.

Finally, it’s more fun and engaging to learn this way. Each chapter is a fresh
project and a fresh opportunity to learn new things. We want you to read
through to the end and really enjoy turning the pages as you’re reading. The
chapters start with a challenge that will be solved, walk you through the
solution, and then end by evaluating what you learned and how the
challenge was solved. We specifically call out the challenge at the
beginning and end of every chapter to ensure that its goals are clear to you.

Who Should Read This Book?
We’re confident that developers from a wide variety of backgrounds will
find things that are useful and interesting in this book. Having said that,
there are some people who will get the maximum value out of this book.

Junior software developers, often just out of university or a couple of years
into their programming career, are who we think of as the core audience for
this book. You’ll learn about fundamental topics that we expect to be of
relevance throughout your software development career. You don’t need to
have a university degree by any means, but you do need to know the basics
of programming in order to make the best use of this book. We won’t
explain what an if statement or a loop is, for example.

You don’t need to know much about object-oriented or functional
programming in order to get started. In Chapter 2, we make no assumptions
beyond that you know what a class is and can use collections with generics
(e.g., List<String>). We take it right from the basics.

Another group who will find this book of particular interest is developers
learning Java while coming from another programming language, such as
C#, C++, or Python. This book helps you quickly get up to speed with the

language constructs and also the principles, practices, and idioms that are
important to write good Java code.

If you’re a more experienced Java developer, you may want to skip
Chapter 2 in order to avoid repeating basic material that you already know,
but Chapter 3 onward will be full of concepts and approaches that will be of
benefit to many developers.

We’ve found that learning can be one of the most fun parts of software
development and hope that you’ll find that as well when reading this book.
We hope you have fun on this journey.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

NOTE
This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/Iteratr-Learning/Real-World-Software-
Development.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “Real-
World Software Development by Raoul-Gabriel Urma and Richard
Warburton (O’Reilly). Copyright 2020 Functor Ltd. and Monotonic Ltd.,
978-1-491-96717-1.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

https://github.com/Iteratr-Learning/Real-World-Software-Development
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/RealWorld_SoftwareDev.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

http://oreilly.com/
http://oreilly.com/
https://oreil.ly/RealWorld_SoftwareDev
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter 1. Starting the Journey

In this chapter, we’ll give you an introduction to the concepts and principles
of this book. A good way of summarizing the overall approach is Practices
and Principles over Technology. There are already many books about
specific technologies, and we aren’t seeking to add to that enormous pile.
That isn’t to say that the detailed knowledge that is specific to a given
language, framework, or library isn’t useful. It’s just that it has a shorter
shelf-life than general practices and principles that apply over longer
periods of time and across different languages and frameworks. That’s
where this book can help you.

Themes
Throughout the book we’ve used a project-based structure to aid learning.
It’s worth thinking about the different themes that run through the chapters,
how they link up together, and why we chose them. Following are the four
different themes that weave through the chapters.

Java Features
Structuring code with classes and interfaces is discussed in Chapter 2. We
move onto exceptions and packages in Chapter 3. You will also get a short
overview of lambda expressions in Chapter 3. Then local variable type
inferences and switch expressions are explained in Chapter 5, and finally
lambda expressions and method references are covered in detail in
Chapter 7. Java language features are important because so many software
projects are written in Java, so it’s useful language to know the workings of
it. Many of these language features are useful in other programming
languages as well, such as C#, C++, Ruby, or Python. Even though those
languages have differences, understanding the how to use a class and core
OOP concepts will be valuable across different languages.

Software Design and Architecture
Throughout the book a series of design patterns are introduced that help
provide you with common solutions to common problems that developers
encounter. These are important to know because even though it may seem
like every software project is different and comes with its own set of
problems, in practice many of these have been encountered before.
Understanding common problems and solutions that have been solved by
developers keeps you from reinventing the wheel in a new software project
and enables you to deliver software faster and more reliably.

The higher-level concepts of coupling and cohesion are introduced early on
the book in Chapter 2. The Notification pattern is introduced in Chapter 3.
How to design a user-friendly Fluent API and the Builder pattern are
introduced in Chapter 5. We look at the big-picture concepts of event-driven
and hexagonal architectures in Chapter 6 and the Repository pattern in
Chapter 7. Finally, you’re also introduced to functional programming in
Chapter 7.

SOLID
We cover all the SOLID principles throughout various chapters. These are a
set of principles designed to help make software easier to maintain. While
we like to think of writing software as the fun part, if the software that you
write is successful it will need to evolve, grow, and be maintained. Trying
to make the software as easy to maintain as possible helps this evolution,
maintenance, and long-term addition of features. The SOLID principles and
the chapters where we will discuss them are:

Single Responsibility Principle (SRP), discussed in Chapter 2

Open/Closed Principle (OCP), discussed in Chapter 3

Liskov Substitution Principle (LSP), discussed in Chapter 4

Interface Segregation Principle (ISP), discussed in Chapter 5

Dependency Inversion Principle (DIP), discussed in Chapter 7

Testing
Writing reliable code that can be easily evolved over time is really
important. Automated tests are key to this. As the software that you write
scales in size it becomes increasingly hard to manually test different
possible cases. You need to automate your testing processes to avoid the
days of human effort it would take to test your software without it.

You learn about the basics of writing tests in Chapters 2 and 4. This is
extended to test-driven development, or TDD, in Chapter 5. In Chapter 6
we cover the use of test doubles, including mocks and stubs.

Chapter Summary
Here’s the outline of the chapters.

Chapter 2, The Bank Statements Analyzer

You’ll write a program to analyze bank statements in order to help
people understand their finances better. This will help you to learn more
about core object-oriented design techniques such as Single
Responsibility Principle (SRP), coupling, and cohesion.

Chapter 3, Extending the Bank Statements Analyzer

In this chapter you learn how to extend the code from Chapter 2, adding
more features, using the Strategy Design pattern, the Open/Closed
Principle, and how to model failures using exceptions.

Chapter 4, The Document Management System

In this chapter we help a successful doctor manage her patient records
better. This introduces concepts such as inheritance within software
design, the Liskov Substitution Principle, and tradeoffs between
composition and inheritance. You will also learn how to write more
reliable software with automated test code.

Chapter 5, The Business Rules Engine

You’ll learn about building a core business rules engine—a way of
defining business logic that is flexible and easy to maintain. This
chapter introduces the topics of test-driven development, developing a
Fluent API, and the Interface Segregation Principle.

Chapter 6, Twootr

Twootr is a messaging platform that enables people to broadcast short
messages to other users who follow them. This chapter builds out the
core of a simple Twootr system. You’ll learn how to think outside-in—
to go from requirements through to the core of your application. You’ll
also learn how to use test doubles to isolate and test interactions from
different components within your codebase.

Chapter 7, Extending Twootr

The final project-based chapter in the book extends the Twootr
implementation from the previous chapter. It explains the Dependency
Inversion Principle and introduces bigger picture architectural choices
such as event-driven and hexagonal architectures. This chapter can help
you extend your knowledge of automated testing by covering test
doubles, such as stubs and mocks, and also functional programming
techniques.

Chapter 8, Conclusion

This final concluding chapter revisits the major themes and concepts of
the book and offers additional resources as you continue in your
programming career.

Iterating on You
As a software developer you may well approach projects in an iterative
fashion. That’s to say, slice off the highest priority week or two’s worth of
work items, implement them, and then use the feedback in order to decide
on the next set of items. We’ve found that it’s often worth evaluating the
progress of your own skills in the same way.

At the end of every chapter there is a brief “Iterating on You” section with a
few suggestions on how you improve upon on the learning from the chapter
in your own time.

Now that you know what you can expect from this book, let’s get to work!

Chapter 2. The Bank
Statements Analyzer

The Challenge
The FinTech industry is really hot right now. Mark Erbergzuck realizes that
he spends a lot of money on different purchases and would benefit from
automatically summarizing his expenses. He receives monthly statements
from his bank, but he finds them a bit overwhelming. He has tasked you
with developing a piece of software that will automate the processing of his
bank statements so he can get better insights into his finances. Challenge
accepted!

The Goal
In this chapter, you will learn the foundations about good software
development before learning more advanced techniques in the next few
chapters.

You will start off by implementing the problem statement in one single
class. You will then explore why this approach poses several challenges in
terms of coping for changing requirements and maintenance of the project.

But do not worry! You will learn software design principles and techniques
to adopt to ensure that the code you write meets these criteria. You will first
learn about the Single Responsibility Principle (SRP), which helps develop
software that is more maintainable, easier to comprehend, and reduces the
scope for introducing new bugs. Along the way, you will pick up new
concepts such as cohesion and coupling, which are useful characteristics to
guide you about the quality of the code and software that you develop.

NOTE
This chapter uses libraries and features from Java 8 and above, including the new date
and time library.

If at any point you want to look at the source code for this chapter, you can look at the
package com.iteratrlearning.shu_book.chapter_02 in the book’s code repository.

Bank Statements Analyzer Requirements
You had a delicious hipster latte (no added sugar) with Mark Erbergzuck to
gather requirements. Because Mark is pretty tech-savvy, he tells you that
the bank statements analyzer just needs to read a text file containing a list of
bank transactions. He downloads the file from his online banking portal.
This text is structured using a comma-separated values (CSV) format. Here
is a sample of bank transactions:

30-01-2017,-100,Deliveroo

30-01-2017,-50,Tesco

01-02-2017,6000,Salary

02-02-2017,2000,Royalties

02-02-2017,-4000,Rent

03-02-2017,3000,Tesco

05-02-2017,-30,Cinema

He would like to get an answer for the following queries:

What is the total profit and loss from a list of bank statements? Is it
positive or negative?

How many bank transactions are there in a particular month?

What are his top-10 expenses?

Which category does he spend most of his money on?

KISS Principle

Let’s start simple. How about the first query: “What is the total profit and
loss from a list of bank statements?” You need to process a CSV file and
calculate the sum of all the amounts. Since there is nothing else required,
you may decide that there is no need to create a very complex application.

You can “Keep It Short and Simple” (KISS) and have the application code
in one single class as shown in Example 2-1. Note that you do not have to
worry about possible exceptions yet (e.g., what if the file does not exist or
what if parsing a loaded file fails?). That is a topic that you will learn about
in Chapter 3.

NOTE
CSV is not fully standardized. It’s often referred to as values separated by commas.
However, some people refer to it as a delimiter-separated format that uses different
delimiters, such as semicolons or tabs. These requirements can add more complexity to
the implementation of a parser. In this chapter, we will assume that values are separated
by a comma (,).

Example 2-1. Calculating the sum of all statements
public class BankTransactionAnalyzerSimple {

 private static final String RESOURCES = "src/main/resources/";

 public static void main(final String... args) throws IOException {

 final Path path = Paths.get(RESOURCES + args[0]);

 final List<String> lines = Files.readAllLines(path);

 double total = 0d;

 for(final String line: lines) {

 final String[] columns = line.split(",");

 final double amount = Double.parseDouble(columns[1]);

 total += amount;

 }

 System.out.println("The total for all transactions is " + total);

 }

}

What is happening here? You are loading the CSV file passed as a
command-line argument to the application. The Path class represents a path

in the filesystem. You then use Files.readAllLines() to return a list of
lines. Once you have all the lines from the file, you can parse them one at a
time by:

Splitting the columns by commas

Extracting the amount

Parsing the amount to a double

Once you have the amount for a given statement as a double you can then
add it to the current total. At the end of the processing, you will have the
total amount.

The code in Example 2-1 will work fine, but it misses a few corner cases
that are always good to think about when writing production-ready code:

What if the file is empty?

What if parsing the amount fails because the data was corrupted?

What if a statement line has missing data?

We will come back to the topic of dealing with exceptions in Chapter 3, but
it is a good habit to keep these types of questions in mind.

How about solving the second query: “How many bank transactions are
there in a particular month?” What can you do? Copy and paste is a simple
technique, right? You could just copy and paste the same code and replace
the logic so it selects the given month, as shown in Example 2-2.

Example 2-2. Calculating the sum of January statements
final Path path = Paths.get(RESOURCES + args[0]);

final List<String> lines = Files.readAllLines(path);

double total = 0d;

final DateTimeFormatter DATE_PATTERN = DateTimeFormatter.ofPattern("dd-MM-yyyy");

for(final String line: lines) {

 final String[] columns = line.split(",");

 final LocalDate date = LocalDate.parse(columns[0], DATE_PATTERN);

 if(date.getMonth() == Month.JANUARY) {

 final double amount = Double.parseDouble(columns[1]);

 total += amount;

 }

}

System.out.println("The total for all transactions in January is " + total);

final Variables
As a short detour, we’ll explain the use of the final keyword in the code
examples. Throughout this book we’ve used the final keyword fairly
extensively. Marking a local variable or a field final means that it cannot
be re-assigned. Whether you use final or not in your project is a collective
matter for your team and project since its use has both benefits and
drawbacks. We’ve found that marking as many variables final as possible
clearly demarcates what state is mutated during the lifetime of an object and
what state isn’t re-assigned.

On the other hand, the use of the final keyword doesn’t guarantee
immutability of the object in question. You can have a final field that
refers to an object with mutable state. We will be discussing immutability in
more detail in Chapter 4. Furthermore, its use also adds a lot of boilerplate
to the codebase. Some teams pick the compromise position of having final
fields on method parameters, in order to ensure that they are clearly not re-
assigned and not local variables.

One area where there is little point in using the final keyword, although
the Java language allows it, is for method parameters on abstract methods;
for example, in interfaces. This is because the lack of body means that there
is no real implication or meaning to the final keyword in this situation.
Arguably the use of final has diminished since the introduction of the var
keyword in Java 10, and we discuss this concept later in Example 5-15.

Code Maintainability and Anti-Patterns
Do you think the copy-and-paste approach demonstrated in Example 2-2 is
a good idea? Time to take a step back and reflect on what is happening.
When you write code, you should strive for providing good code

maintainability. What does this mean? It is best described by a wish list of
properties about the code you write:

It should be simple to locate code responsible for a particular
feature.

It should be simple to understand what the code does.

It should be simple to add or remove a new feature.

It should provide good encapsulation. In other words,
implementation details should be hidden from a user of your code
so it is easier to understand and make changes.

A good way to think about the impact of the code you write is to consider
what happens if a work colleague of yours has to look at your code in six
months and you have moved to a different company.

Ultimately your goal is to manage the complexity of the application you are
building. However, if you keep on copy pasting the same code as new
requirements come in, you will end up with the following issues, which are
called anti-patterns because they are common ineffective solutions:

Hard to understand code because you have one giant “God Class”

Code that is brittle and easily broken by changes because of code
duplication

Let’s explain these two anti-patterns in more detail.

God Class
By putting all of your code in one file, you end up with one giant class
making it harder to understand its purpose because that class is responsible
for everything! If you need to update the logic of existing code (e.g., change
how the parsing works) how will you easily locate that code and make
changes? This problem is referred to as the anti-pattern “God Class.”
Essentially you have one class that does everything. You should avoid this.
In the next section, you will learn about the Single Responsibility Principle,

which is a software development guideline to help write code that is easier
to understand and maintain.

Code Duplication
For each query, you are duplicating the logic for reading and parsing the
input. What if the input required is no longer CSV but a JSON file? What if
multiple formats need to be supported? Adding such a feature will be a
painful change because your code has hardcoded one specific solution and
duplicated that behavior in multiple places. Consequently, all the places will
all have to change and you will potentially introduce new bugs.

NOTE
You will often hear about the “Don’t Repeat Yourself” (DRY) principle. It is the idea
that when you successfully reduce repetition, a modification of the logic does not
require multiple modifications of your code anymore.

A related problem is what if the data format changes? The code only
supports a specific data format pattern. If it needs to be enhanced (e.g., new
columns) or a different data format needs to be supported (e.g., different
attribute names) you will again have to make many changes across your
code.

The conclusion is that it is good to keep things simple when possible, but do
not abuse the KISS principle. Instead, you need to reflect on the design of
your whole application and have an understanding of how to break down
the problem into separate sub-problems that are easier to manage
individually. The result is that you will have code that is easier to
understand, maintain, and adapt to new requirements.

Single Responsibility Principle

The Single Responsibility Principle (SRP) is a general software
development guideline to follow that contributes to writing code that is
easier to manage and maintain.

You can think about SRP in two complementary ways:

A class has responsibility over a single functionality

There is only one single reason for a class to change

The SRP is usually applied to classes and methods. SRP is concerned with
one particular behavior, concept, or category. It leads to code that is more
robust because there is one specific reason why it should change rather than
multiple concerns. The reason why multiple concerns is problematic is, as
you saw earlier, it complicates code maintainability by potentially
introducing bugs in several places. It can also make the code harder to
understand and change.

So how do you apply SRP in the code shown in Example 2-2? It is clear
that the main class has multiple responsibilities that can be broken down
individually:

1. Reading input

2. Parsing the input in a given format

3. Processing the result

4. Reporting a summary of the result

We will focus on the parsing part in this chapter. You will learn how to
extend the Bank Statements Analyzer in the next chapter so that it is
completely modularized.

The first natural step is to extract the CSV parsing logic into a separate
class so you can reuse it for different processing queries. Let’s call it
BankStatementCSVParser so it is immediately clear what it does
(Example 2-3).

Example 2-3. Extracting the parsing logic in a separate class

1

public class BankStatementCSVParser {

 private static final DateTimeFormatter DATE_PATTERN

 = DateTimeFormatter.ofPattern("dd-MM-yyyy");

 private BankTransaction parseFromCSV(final String line) {

 final String[] columns = line.split(",");

 final LocalDate date = LocalDate.parse(columns[0], DATE_PATTERN);

 final double amount = Double.parseDouble(columns[1]);

 final String description = columns[2];

 return new BankTransaction(date, amount, description);

 }

 public List<BankTransaction> parseLinesFromCSV(final List<String> lines) {

 final List<BankTransaction> bankTransactions = new ArrayList<>();

 for(final String line: lines) {

 bankTransactions.add(parseFromCSV(line));

 }

 return bankTransactions;

 }

}

You can see that the class BankStatementCSVParser declares two
methods, parseFromCSV() and parseLinesFromCSV(), that generate
BankTransaction objects, which is a domain class that models a bank
statement (see Example 2-4 for its declaration).

NOTE
What does domain mean? It means the use of words and terminology that match the
business problem (i.e., the domain at hand).

The BankTransaction class is useful so that different parts of our
application share the same common understanding of what a bank statement
is. You will notice that the class provides implementation for the methods
equals and hashcode. The purpose of these methods and how to
implement them correctly is covered in Chapter 6.

Example 2-4. A domain class for a bank transaction

public class BankTransaction {

 private final LocalDate date;

 private final double amount;

 private final String description;

 public BankTransaction(final LocalDate date, final double amount, final

String description) {

 this.date = date;

 this.amount = amount;

 this.description = description;

 }

 public LocalDate getDate() {

 return date;

 }

 public double getAmount() {

 return amount;

 }

 public String getDescription() {

 return description;

 }

 @Override

 public String toString() {

 return "BankTransaction{" +

 "date=" + date +

 ", amount=" + amount +

 ", description='" + description + '\'' +

 '}';

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 BankTransaction that = (BankTransaction) o;

 return Double.compare(that.amount, amount) == 0 &&

 date.equals(that.date) &&

 description.equals(that.description);

 }

 @Override

 public int hashCode() {

 return Objects.hash(date, amount, description);

 }

}

Now you can refactor the application so that it uses your
BankStatementCSVParser, in particular its parseLinesFromCSV()
method, as shown in Example 2-5.

Example 2-5. Using the bank statement CSV parser
final BankStatementCSVParser bankStatementParser = new

BankTransactionCSVParser();

final String fileName = args[0];

final Path path = Paths.get(RESOURCES + fileName);

final List<String> lines = Files.readAllLines(path);

final List<BankTransaction> bankTransactions

 = bankStatementParser.parseLinesFromCSV(lines);

System.out.println("The total for all transactions is " +

calculateTotalAmount(bankTransactions));

System.out.println("Transactions in January " + selectInMonth(BankTransactions,

Month.JANUARY));

The different queries you have to implement no longer need to know about
internal parsing details, as you can now use BankTransaction objects
directly to extract the information required. The code in Example 2-6 shows
how to declare the methods calculateTotalAmount() and
selectInMonth(), which are responsible for processing the list of
transactions and returning an appropriate result. In Chapter 3 you will get
an overview of lambda expressions and the Streams API, which will help
tidy the code further.

Example 2-6. Processing lists of bank transactions
public static double calculateTotalAmount(final List<BankTransaction>

bankTransactions) {

 double total = 0d;

 for(final BankTransaction bankTransaction: bankTransactions) {

 total += bankTransaction.getAmount();

 }

 return total;

}

public static List<BankTransaction> selectInMonth(final List<BankTransaction>

bankTransactions, final Month month) {

 final List<BankTransaction> bankTransactionsInMonth = new ArrayList<>();

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransaction.getDate().getMonth() == month) {

 bankTransactionsInMonth.add(bankTransaction);

 }

 }

 return bankTransactionsInMonth;

}

The key benefit with this refactoring is that your main application is no
longer responsible for the implementation of the parsing logic. It is now
delegating that responsibility to a separate class and methods that can be
maintained and updated independently. As new requirements come in for
different queries, you can reuse the functionality encapsulated by the
BankStatementCSVParser class.

In addition, if you need to change the way the parsing algorithm works
(e.g., a more efficient implementation that caches results), you now have
just a single place that needs to change. Moreover, you introduced a class
called BankTransaction that other parts of your code can rely on without
depending on a specific data format pattern.

It is a good habit to follow the principle of least surprise when you
implement methods. It will help ensure that it is obvious what is happening
when looking at the code. This means:

Use self-documenting method names so it is immediately obvious
what they do (e.g., calculateTotalAmount())

Do not change the state of parameters as other parts of code may
depend on it

The principle of least surprise can be a subjective concept, though. When in
doubt, speak to your colleagues and team members to ensure everyone is
aligned.

Cohesion

So far you have learned about three principles: KISS, DRY, and SRP. But
you have not learned about characteristics to reason about the quality of
your code. In software engineering you will often hear about cohesion as an
important characteristic of different parts of the code you write. It sounds
fancy, but it is a really useful concept to give you an indication about the
maintainability of your code.

Cohesion is concerned with how related things are. To be more precise,
cohesion measures how strongly related responsibilities of a class or
method are. In other words, how much do things belong together? It is a
way to help you reason about the complexity of your software. What you
want to achieve is high cohesion, which means that the code is easier for
others to locate, understand, and use. In the code that you refactored earlier,
the class BankTransactionCSVParser is highly cohesive. In fact, it groups
together two methods that are related to parsing CSV data.

Generally, the concept of cohesion is applied to classes (class-level
cohesion), but it can also be applied to methods (method-level cohesion).

If you take the entry point to your program, the class
BankStatementAnalyzer, you will notice that its responsibility is to wire
up the different parts of your application such as the parser and the
calculations and report back on the screen. However, the logic responsible
for doing calculations is currently declared as static methods within the
BankStatementAnalyzer. This is an example of poor cohesion because the
concerns of calculations declared in this class are not directly related to
parsing or reporting.

Instead, you can extract the calculation operations into a separate class
called BankStatementProcessor. You can also see that the list of
transactions method argument is shared for all these operations, so you can
include it as a field to the class. As a result, your method signatures become
simpler to reason about and the class BankStatementProcessor is more
cohesive. The code in Example 2-7 shows the end result. The additional
advantage is that the methods of BankStatementProcessor can be reused

by other parts of your application without depending on the whole
BankStatement Analyzer.

Example 2-7. Grouping the calculation operations in the class
BankStatementProcessor
public class BankStatementProcessor {

 private final List<BankTransaction> bankTransactions;

 public BankStatementProcessor(final List<BankTransaction> bankTransactions) {

 this.bankTransactions = bankTransactions;

 }

 public double calculateTotalAmount() {

 double total = 0;

 for(final BankTransaction bankTransaction: bankTransactions) {

 total += bankTransaction.getAmount();

 }

 return total;

 }

 public double calculateTotalInMonth(final Month month) {

 double total = 0;

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransaction.getDate().getMonth() == month) {

 total += bankTransaction.getAmount();

 }

 }

 return total;

 }

 public double calculateTotalForCategory(final String category) {

 double total = 0;

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransaction.getDescription().equals(category)) {

 total += bankTransaction.getAmount();

 }

 }

 return total;

 }

}

You can now make use the methods of this class with the
BankStatementAnalyzer as shown in Example 2-8.

Example 2-8. Processing lists of bank transactions using the
BankStatementProcessor class
public class BankStatementAnalyzer {

 private static final String RESOURCES = "src/main/resources/";

 private static final BankStatementCSVParser bankStatementParser = new

BankStatementCSVParser();

 public static void main(final String... args) throws IOException {

 final String fileName = args[0];

 final Path path = Paths.get(RESOURCES + fileName);

 final List<String> lines = Files.readAllLines(path);

 final List<BankTransaction> bankTransactions =

bankStatementParser.parseLinesFrom(lines);

 final BankStatementProcessor bankStatementProcessor = new

BankStatementProcessor(bankTransactions);

 collectSummary(bankStatementProcessor);

 }

 private static void collectSummary(final BankStatementProcessor

bankStatementProcessor) {

 System.out.println("The total for all transactions is "

 + bankStatementProcessor.calculateTotalAmount());

 System.out.println("The total for transactions in January is "

 + bankStatementProcessor.calculateTotalInMonth(Month.JANUARY));

 System.out.println("The total for transactions in February is "

 + bankStatementProcessor.calculateTotalInMonth(Month.FEBRUARY));

 System.out.println("The total salary received is "

 + bankStatementProcessor.calculateTotalForCategory("Salary"));

 }

}

In the next subsections, you will focus on learning guidelines to help you
write code that is easier to reason and maintain.

Class-Level Cohesion
In practice, you will come across at least six common ways to group
methods:

Functional

Informational

Utility

Logical

Sequential

Temporal

Keep in mind that if the methods you are grouping are weakly related, you
have low cohesion. We discuss them in order and Table 2-1 provides a
summary.

Functional

The approach you took when writing the BankStatementCSVParser was to
group the methods functionally. The methods parseFrom() and
parseLinesFrom() are solving a defined task: parse the lines in the CSV
format. In fact, the method parseLinesFrom() uses the method
parseFrom(). This is generally a good way to achieve high cohesion
because the methods are working together, so it makes sense to group them
so they are easier to locate and understand. The danger with functional
cohesion is that it may be tempting to have a profusion of overly simplistic
classes grouping only a single method. Going down the road of overly
simplistic classes adds unnecessary verbosity and complexity because there
are many more classes to think about.

Informational

Another reason to group methods is because they work on the same data or
domain object. Say you needed a way to create, read, update, and delete
BankTransaction objects (CRUD operations); you may wish to have a
class dedicated for these operations. The code in Example 2-9 shows a class
that exhibits informational cohesion with four different methods. Each

method throws a UnsupportedOperationException to indicate the body is
currently unimplemented for the purpose of the example.

Example 2-9. An example of informational cohesion
public class BankTransactionDAO {

 public BankTransaction create(final LocalDate date, final double amount,

final String description) {

 // ...

 throw new UnsupportedOperationException();

 }

 public BankTransaction read(final long id) {

 // ...

 throw new UnsupportedOperationException();

 }

 public BankTransaction update(final long id) {

 // ...

 throw new UnsupportedOperationException();

 }

 public void delete(final BankTransaction BankTransaction) {

 // ...

 throw new UnsupportedOperationException();

 }

}

NOTE
This is a typical pattern that you see often when interfacing with a database that
maintains a table for a specific domain object. This pattern is usually called Data Access
Object (DAO) and requires some kind of ID to identify the objects. DAOs essentially
abstract and encapsulate access to a data source, such as a persistent database or an in-
memory database.

The downside of this approach is that this kind of cohesion can group
multiple concerns together, which introduces additional dependencies for a
class that only uses and requires some of the operations.

Utility

You may be tempted to group different unrelated methods inside a class.
This happens when it is not obvious where the methods belong so you end
up with a utility class that is a bit like a jack of all trades.

This is generally to be avoided because you end up with low cohesion. The
methods are not related, so the class as a whole is harder to reason about. In
addition, utility classes exhibit a poor discoverability characteristic. You
want your code to be easy to find and easy to understand how it is supposed
to be used. Utility classes go against this principle because they contain
different methods that are unrelated without a clear categorization.

Logical

Say you needed to provide implementations for parsing from CSV, JSON,
and XML. You may be tempted to group the methods responsible for
parsing the different format inside one class, as shown in Example 2-10.

Example 2-10. An example of logical cohesion
public class BankTransactionParser {

 public BankTransaction parseFromCSV(final String line) {

 // ...

 throw new UnsupportedOperationException();

 }

 public BankTransaction parseFromJSON(final String line) {

 // ...

 throw new UnsupportedOperationException();

 }

 public BankTransaction parseFromXML(final String line) {

 // ...

 throw new UnsupportedOperationException();

 }

}

In fact, the methods are logically categorized to do “parsing.” However,
they are different by nature and each of the methods would be unrelated.
Grouping them would also break the SRP, which you learned about earlier,
because the class is responsible for multiple concerns. Consequently, this
approach is not recommended.

You will learn in “Coupling” that there exist techniques to solve the
problem of providing different implementations for parsing while also
keeping high cohesion.

Sequential

Say you need to read a file, parse it, process it, and save the information.
You may group all of the methods in one single class. After all the output of
reading the file becomes the input to the parsing, the output of parsing
becomes the input to the processing step, and so on.

This is called sequential cohesion because you are grouping the methods so
that they follow a sequence of input to output. It makes it easy to
understand how the operations work together. Unfortunately, in practice this
means that the class grouping the methods has multiple reasons to change
and is therefore breaking the SRP. In addition, there may be many different
ways of processing, summarizing, and saving, so this technique quickly
leads to complex classes.

A better approach is to break down each responsibility inside individual,
cohesive classes.

Temporal

A temporally cohesive class is one that performs several operations that are
only related in time. A typical example is a class that declares some sort of
initialization and clean-up operations (e.g., connecting and closing a
database connection) that is called before or after other processing
operations. The initialization and the other operations are unrelated, but
they have to be called in a specific order in time.

Table 2-1. Summary of pros and cons for different levels of cohesion

Level of cohesion Pro Con

Functional (high
cohesion)

Easy to understand Can lead to overly simplistic
classes

Informational
(medium cohesion)

Easy to maintain Can lead to unnecessary
dependencies

Sequential (medium
cohesion)

Easy to locate related operations Encourages violation of SRP

Logical (medium
cohesion)

Provides some form of high-
level categorization

Encourages violation of SRP

Utility (low cohesion) Simple to put in place Harder to reason about the
responsibility of the class

Temporal (low
cohesion)

N/A Harder to understand and use
individual operations

Method-Level Cohesion
The same principle of cohesion can be applied to methods. The more
different functionalities a method performs, the harder it becomes to
understand what that method actually does. In other words, your method
has low cohesion if it is handling multiple unrelated concerns. Methods that
display low cohesion are also harder to test because they have multiple
responsibilities within one method, which makes it difficult to test the
responsibilities individually! Typically, if you find yourself with a method
that contains a series of if/else blocks that make modifications to many
different fields of a class or parameters to the method, then it is a sign you
should break down the method in more cohesive parts.

Coupling
Another important characteristic about the code you write is coupling.
Where cohesion is about how related things are in a class, package, or

method, coupling is about how dependent you are on other classes. Another
way to think about coupling is how much knowledge (i.e., specific
implementation) you rely on about certain classes. This is important
because the more classes you rely on, the less flexible you become when
introducing changes. In fact, the class affected by a change may affect all
the classes depending on it.

To understand what coupling is, think about a clock. There is no need to
know how a clock works to read the time, so you are not dependent on the
clock internals. This means you could change the clock internals without
affecting how to read the time. Those two concerns (interface and
implementation) are decoupled from one another.

Coupling is concerned with how dependent things are. For example, so far
the class BankStatementAnalyzer relies on the class
BankStatementCSVParser. What if you need to change the parser so it
supports statements encoded as JSON entries? What about XML entries?
This would be an annoying refactoring! But do not worry, you can decouple
different components by using an interface, which is the tool of choice for
providing flexibility for changing requirements.

First, you need to introduce an interface that will tell you how you can use a
parser for bank statements but without hardcoding a specific
implementation, as shown in Example 2-11.

Example 2-11. Introducing an interface for parsing bank statements
public interface BankStatementParser {

 BankTransaction parseFrom(String line);

 List<BankTransaction> parseLinesFrom(List<String> lines);

}

Your BankStatementCSVParser will now become an implementation of
that interface:

public class BankStatementCSVParser implements BankStatementParser {

 // ...

}

So far so good, but how do you decouple the BankStatementAnalyzer
from the specific implementation of a BankStatementCSVParser? You
need to use the interface! By introducing a new method called analyze(),
which takes BankTransactionParser as an argument, you are no longer
coupled to a specific implementation (see Example 2-12).

Example 2-12. Decoupling the Bank Statements Analyzer from the parser
public class BankStatementAnalyzer {

 private static final String RESOURCES = "src/main/resources/";

 public void analyze(final String fileName, final BankStatementParser

bankStatementParser)

 throws IOException {

 final Path path = Paths.get(RESOURCES + fileName);

 final List<String> lines = Files.readAllLines(path);

 final List<BankTransaction> bankTransactions =

bankStatementParser.parseLinesFrom(lines);

 final BankStatementProcessor bankStatementProcessor = new

BankStatementProcessor(bankTransactions);

 collectSummary(bankStatementProcessor);

 }

 // ...

}

This is great because the BankStatementAnalyzer class no longer requires
knowledge of different specific implementations, which helps with coping
for changing requirements. Figure 2-1 illustrates the difference of
dependencies when you decouple two classes.

Figure 2-1. Decoupling two classes

You can now bring all the different parts together and create your main
application, as shown in Example 2-13.

Example 2-13. The main application to run
public class MainApplication {

 public static void main(final String... args) throws IOException {

 final BankStatementAnalyzer bankStatementAnalyzer

 = new BankStatementAnalyzer();

 final BankStatementParser bankStatementParser

 = new BankStatementCSVParser();

 bankStatementAnalyzer.analyze(args[0], bankStatementParser);

 }

}

Generally, when writing code you will aim for low coupling. This means
that different components in your code are not relying on
internal/implementation details. The opposite of low coupling is called high
coupling, which is what you definitely want to avoid!

Testing
You have written some software and it looks like things are working if you
execute your application a couple of times. However, how confident are you

that your code will always work? What guarantee can you give your client
that you have met the requirements? In this section, you will learn about
testing and how to write your first automated test using the most popular
and widely adopted Java testing framework: JUnit.

Automated Testing
Automated testing sounds like yet another thing that could take more time
away from the fun part, which is writing code! Why should you care?

Unfortunately in software development, things never work the first time. It
should be pretty obvious that testing has benefits. Can you imagine
integrating a new auto-pilot software for planes without testing if the
software actually works?

Testing does not have to be a manual operation, though. In automated
testing you have a suite of tests that runs automatically without human
intervention. This means the tests can be executed quickly when you are
introducing changes in the code and you want to increase confidence that
the behavior of your software is correct and has not suddenly become
unexpected. On an average day, a professional developer will often run
hundreds or thousands of automated tests.

In this section, we will first briefly review the benefits of automated testing
so you have a clear understanding of why testing is a core part of good
software development.

Confidence

First, performing tests on the software to validate whether the behavior
matches the specification gives you confidence that you have met the
requirements of your client. You can present the test specifications and
results to your client as a guarantee. In a sense, the tests become the
specification from your client.

Robustness to changes

Second, if you introduce changes to your code, how do you know that you
have not accidentally broken something? If the code is small you may think
problems will be obvious. However, what if you are working on a codebase
with millions of lines of code? How confident would you feel about making
changes to a colleague’s code? Having a suite of automated tests is very
useful to check that you have not introduced new bugs.

Program comprehension

Third, automated tests can be useful to help you understand how the
different components inside the source code project works. In fact, tests
make explicit the dependencies of different components and how they
interact together. This can be extremely useful for quickly getting an
overview of your software. Say you are assigned to a new project. Where
would you start to get an overview of different components? The tests are a
great place to start.

Using JUnit
Hopefully you are now convinced of the value of writing automated tests.
In this section, you will learn how to create your first automated test using a
popular Java framework called JUnit. Nothing comes for free. You will see
that writing a test takes time. In addition, you will have to think about the
longer-term maintenance of the test you write since it is regular code, after
all. However, the benefits listed in the previous section far outweigh the
downsides of having to write tests. Specifically, you will write unit tests,
which verify a small isolated unit of behavior for correctness, such as a
method or a small class. Throughout the book you will learn about
guidelines for writing good tests. Here you will first get an initial overview
for writing a simple test for the BankTransactionCSVParser.

Defining a test method

The first question is where do you write your test? The standard convention
from the Maven and Gradle build tools is to include your code in
src/main/java and the test classes inside src/test/java. You will also need to

add a dependency to the JUnit library to your project. You will learn more
about how to structure a project using Maven and Gradle in Chapter 3.

Example 2-14 shows a simple test for BankTransactionCSVParser.

NOTE
Our BankStatementCSVParserTest test class has the Test suffix. It is not strictly
necessary, but often used as a useful aide memoire.

Example 2-14. A failing unit test for the CSV parser
import org.junit.Assert;

import org.junit.Test;

public class BankStatementCSVParserTest {

 private final BankStatementParser statementParser = new

BankStatementCSVParser();

 @Test

 public void shouldParseOneCorrectLine() throws Exception {

 Assert.fail("Not yet implemented");

 }

}

There are a lot of new parts here. Let’s break it down:

The unit test class is an ordinary class called
BankStatementCSVParserTest. It is a common convention to use
the Test suffix at the end of test class names.

The class declares one method: shouldParseOneCorrectLine().
It is recommended to always come up with a descriptive name so it
is immediately obvious what the unit test does without looking at
the implementation of the test method.

This method is annotated with the JUnit annotation @Test. This
means that the method represents a unit test that should be

executed. You can declare private helper methods with a test class,
but they won’t be executed by the test runner.

The implementation of this method calls Assert.fail("Not yet
implemented"), which will cause the unit test to fail with the
diagnostic message "Not yet implemented". You will learn
shortly how to actually implement a unit test using a set of
assertion operations available in JUnit.

You can execute your test directly from your favorite build tool (e.g.,
Maven or Gradle) or by using your IDE. For example, after running the test
in the IntelliJ IDE, you get the output in Figure 2-2. You can see the test is
failing with the diagnostic “Not yet implemented”. Let’s now see how to
actually implement a useful test to increase the confidence that the
BankStatementCSVParser works correctly.

Figure 2-2. Screenshot from the IntelliJ IDE of running a failing unit test

Assert statements

You have just learned about Assert.fail(). This is a static method
provided by JUnit called an assert statement. JUnit provides many assert
statements to test for certain conditions. They let you provide an expected
result and compare it with the result of some operation.

One of these static method is called Assert.assertEquals(). You can use
it as shown in Example 2-15 to test that the implementation of
parseFrom() works correctly for a particular input.

Example 2-15. Using assertion statements
@Test

public void shouldParseOneCorrectLine() throws Exception {

 final String line = "30-01-2017,-50,Tesco";

 final BankTransaction result = statementParser.parseFrom(line);

 final BankTransaction expected

 = new BankTransaction(LocalDate.of(2017, Month.JANUARY, 30), -50,

"Tesco");

 final double tolerance = 0.0d;

 Assert.assertEquals(expected.getDate(), result.getDate());

 Assert.assertEquals(expected.getAmount(), result.getAmount(), tolerance);

 Assert.assertEquals(expected.getDescription(), result.getDescription());

}

So what is going on here? There are three parts:

1. You set up the context for your test. In this case a line to parse.

2. You carry out an action. In this case, you parse the input line.

3. You specify assertions of the expected output. Here, you check that
the date, amount, and description were parsed correctly.

This three-stage pattern for setting up a unit test is often referred to as the
Given-When-Then formula. It is a good idea to follow the pattern and split
up the different parts because it helps to clearly understand what the test is
actually doing.

When you run the test again, with a bit luck you will see a nice green bar
indicating that the test succeeded, as shown in Figure 2-3.

Figure 2-3. Running a passing unit test

There are other assertion statements available, which are summarized in
Table 2-2.

Table 2-2. Assertion statements

Assertion statement Purpose

Assert.fail(message) Let the method fail. This is useful as a placeholder
before you implement the test code.

Assert.assertEquals (expecte

d, actual)

Test that two values are the same.

Assert.assertEquals (expecte

d, actual, delta)

Assert that two floats or doubles are equal to within a
delta.

Assert.assertNotNull(object) Assert that an object is not null.

Code Coverage
You’ve written your first test and it’s great! But how can you tell if that is
sufficient? Code coverage refers to how much of the source code of your
software (i.e., how many lines or blocks) is tested by a set of tests. It is
generally a good idea to aim for high coverage because it reduces the
chance of unexpected bugs. There isn’t a specific percentage that is
considered sufficient, but we recommend aiming for 70%–90%. In practice,
it is hard and less practical to actually reach 100% of code coverage
because you may, for example, start testing getter and setter methods, which
provides less value.

However, code coverage is not necessarily a good metric of how well you
are testing your software. In fact, code coverage only tells you what you
definitely have not tested. Code coverage does not say anything about the
quality of your tests. You may cover parts of your code with a simplistic test
case, but not necessarily for edge cases, which usually lead to problematic
issues.

Popular code coverage tools in Java include JaCoCo, Emma, and
Cobertura. In practice, you will see people talking about line coverage,
which tells you how many statements the code covered. This technique
gives a false sense of having good coverage because conditionals (if, while,
for) will count as one statement. However, conditionals have multiple

possible paths. You should therefore favor branch coverage, which checks
the true and false branch for each conditional.

Takeaways
God Classes and code duplication lead to code that is hard to
reason about and maintain.

The Single Responsibility Principle helps you write code that is
easier to manage and maintain.

Cohesion is concerned with how how strongly related the
responsibilities of a class or method are.

Coupling is concerned with how dependent a class is on other parts
of your code.

High cohesion and low coupling are characteristics of maintainable
code.

A suite of automated tests increases confidence that your software
is correct, makes it more robust for changes, and helps program
comprehension.

JUnit is a Java testing framework that lets you specify unit tests
that verify the behavior of your methods and classes.

Given-When-Then is a pattern for setting up a test into three parts
to help understand the tests you implement.

Iterating on You
If you want to extend and solidify the knowledge from this section, you
could try one of these activities:

Write a couple more unit test cases to test the implementation of
the CSV parser.

Support different aggregate operations, such as finding the
maximum or minimum transactions in specific date ranges.

Return a histogram of the expenses by grouping them based on
months and descriptions.

Completing the Challenge
Mark Erbergzuck is very happy with your first iteration of your Bank
Statements Analyzer. He takes your idea and renames it THE Bank
Statements Analyzer. He is so happy with your application that he is
asking you for a few enhancements. It turns out he would like to extend the
reading, parsing, processing, and summarizing functionalities. For example,
he is a fan of JSON. In addition, he found your tests a bit limited and found
a couple of bugs.

This is something that you will address in the next chapter, where you will
learn about exception handling, the Open/Closed Principle, and how to
build your Java project using a build tool.

1 This definition is attributed to Robert Martin.

Chapter 3. Extending the Bank
Statements Analyzer

The Challenge
Mark Erbergzuck was very happy with the work you did in the previous
chapter. You built a basic Bank Statements Analyzer as a minimum viable
product. Because of this success Mark Erbergzuck thinks that your product
can be taken further and asks you to build a new version that support
multiple features.

The Goal
In the previous chapter, you learned how to create an application to analyze
bank statements in a CSV format. Along this journey you learned about
core design principles that help you write maintainable code, the Single
Responsibility Principle, and anti-patterns you should avoid, such as God
Class and code duplication. While you were incrementally refactoring your
code you also learned about coupling (how dependent you are on other
classes) and cohesion (how related things are in a class).

Nonetheless, the application is currently pretty limited. How about
providing functionality for searching for different kinds of transactions,
supporting multiple formats, processors, and exporting the results into a
nice report with different formats such as text and HTML?

In this chapter, you will go deeper in your software development quest.
First, you will learn about the Open/Closed principle, which is essential for
adding flexibility to your codebase and improving code maintenance. You
will also learn general guidelines for when it makes sense to introduce
interfaces, as well as other gotchas to avoid high coupling. You will also
learn about the use of exceptions in Java—when it makes sense to include

them as part of the APIs you define and when it doesn’t. Finally, you will
learn how to systematically build a Java project using an established build
tool like Maven and Gradle.

NOTE
If at any point you want to look at the source code for this chapter, you can look at the
package com.iteratrlearning.shu_book.chapter_03 in the book’s code repository.

Extended Bank Statements Analyzer
Requirements
You had a friendly chat with Mark Erbergzuck to collect new requirements
for the second iteration of the Bank Statements Analyzer. He would like to
extend the functionality of the kind of operations you can perform. At the
moment the application is limited, as it can only query for the revenue in a
particular month or category. Mark has requested two new functionalities:

1. He’d like to also be able to search for specific transactions. For
example, you should be able to return all the bank transactions in a
given date range or for a specific category.

2. Mark would like to be able to generate a report of summary
statistics for his search into different formats such as text and
HTML.

You will work through these requirements in order.

Open/Closed Principle
Let’s start simple. You will implement a method that can find all the
transactions over a certain amount. The first question is where should you
declare this method? You could create a separate BankTransactionFinder
class that will contain a simple findTransactions() method. However,

you also declared a class BankTransactionProcessor in the previous
chapter. So what should you do? In this case, there aren’t a lot of benefits in
declaring a new class every time you need to add one single method. This
actually adds complexity to your whole project, as it introduces a pollution
of names that makes it harder to understand the relationships between these
different behaviors. Declaring the method inside
BankTransactionProcessor helps with discoverability as you
immediately know that this is the class that groups all methods that do some
form of processing. Now that you’ve decided where to declare it, you can
implement it as shown in Example 3-1.

Example 3-1. Find bank transactions over a certain amount
public List<BankTransaction> findTransactionsGreaterThanEqual(final int amount) {

 final List<BankTransaction> result = new ArrayList<>();

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransaction.getAmount() >= amount) {

 result.add(bankTransaction);

 }

 }

 return result;

}

This code is reasonable. However, what if you want to also search in a
certain month? You need to duplicate this method as shown in Example 3-2.

Example 3-2. Find bank transactions in a certain month
public List<BankTransaction> findTransactionsInMonth(final Month month) {

 final List<BankTransaction> result = new ArrayList<>();

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransaction.getDate().getMonth() == month) {

 result.add(bankTransaction);

 }

 }

 return result;

}

In the previous chapter, you already came across code duplication. It is a
code smell which leads to code that is brittle, especially if requirements
change frequently. For example, if the iteration logic needs to change, you
will need to repeat the modifications in several places.

This approach also doesn’t work well for more complicated requirements.
What if we wish to search transactions in a specific month and also over a
certain amount? You could implement this new requirement as shown in
Example 3-3.

Example 3-3. Find bank transactions in a certain month and over a certain
amount
public List<BankTransaction> findTransactionsInMonthAndGreater(final Month month,

final int amount) {

 final List<BankTransaction> result = new ArrayList<>();

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransaction.getDate().getMonth() == month &&

bankTransaction.getAmount() >= amount) {

 result.add(bankTransaction);

 }

 }

 return result;

}

Clearly this approach exhibits several downsides:

Your code will become increasingly complicated as you have to
combine multiple properties of a bank transaction.

The selection logic is coupled to the iteration logic, making it
harder to separate them out.

You keep on duplicating code.

This is where the Open/Closed principle comes in. It promotes the idea of
being able to change the behavior of a method or class without having to
modify the code. In our example, it would mean the ability to extend the
behavior of a findTransactions() method without having to duplicate the
code or change it to introduce a new parameter. How is this possible? As
discussed earlier, the concepts of iterating and the business logic are
coupled together. In the previous chapter, you learned about interfaces as a
useful tool to decouple concepts from one another. In this case, you will
introduce a BankTransactionFilter interface that will be responsible for
the selection logic, as shown in Example 3-4. It contains a single method
test() that returns a boolean and takes the complete BankTransaction

object as an argument. This way the method test() has access to all the
properties of a BankTransaction to specify any appropriate selection
criteria.

NOTE
An interface that only contains a single abstract method is called a functional interface
since Java 8. You can annotate it using the @FunctionalInterface annotation to make
the intent of the interface clearer.

Example 3-4. The BankTransactionFilter interface
@FunctionalInterface

public interface BankTransactionFilter {

 boolean test(BankTransaction bankTransaction);

}

NOTE
Java 8 introduced a generic java.util.function.Predicate<T> inferface, which
would be a great fit for the problem at hand. However, this chapter introduces a new
named interface to avoid introducing too much complexity early on in the book.

The interface BankTransactionFilter models the concept of a selection
criteria for a BankTransaction. You can now refactor the method
findTransactions() to make use of it as shown in Example 3-5. This
refactoring is very important because you now have introduced a way to
decouple the iteration logic from the business logic through this interface.
Your method no longer depends on one specific implementation of a filter.
You can introduce new implementations by passing them as an argument
without modifying the body of this method. Hence, it is now open for
extension and closed for modification. This reduces the scope for
introducing new bugs because it minimizes cascading changes required to
parts of code that have already been implemented and tested. In other
words, old code still works and is untouched.

Example 3-5. Flexible findTransactions() method using Open/Closed
Principle
public List<BankTransaction> findTransactions(final BankTransactionFilter

bankTransactionFilter) {

 final List<BankTransaction> result = new ArrayList<>();

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransactionFilter.test(bankTransaction)) {

 result.add(bankTransaction);

 }

 }

 return result;

}

Creating an Instance of a Functional Interface
Mark Erbergzuck is now happy as you can implement any new
requirements by calling the method findTransactions() declared in the
BankTransactionProcessor with appropriate implementations of a
BankTransactionFilter. You can achieve this by implementing a class as
shown in Example 3-6 and then passing an instance as argument to the
findTransactions() method as shown in Example 3-7.

Example 3-6. Declaring a class that implements the BankTransactionFilter
class BankTransactionIsInFebruaryAndExpensive implements BankTransactionFilter {

 @Override

 public boolean test(final BankTransaction bankTransaction) {

 return bankTransaction.getDate().getMonth() == Month.FEBRUARY

 && bankTransaction.getAmount() >= 1_000);

 }

}

Example 3-7. Calling findTransactions() with a specific implementation of
BankTransactionFilter
final List<BankTransaction> transactions

 = bankStatementProcessor.findTransactions(new

BankTransactionIsInFebruaryAndExpensive());

Lambda Expressions

However, you’d need to create special classes every time you have a new
requirement. This process can add unnecessary boilerplate and can rapidly
become cumbersome. Since Java 8, you can use a feature called lambda
expressions as shown in Example 3-8. Don’t worry about this syntax and
language feature for the time being. We will learn about lambda expressions
and a companion language feature called method references in more detail
in Chapter 7. For now, you can think of it as instead of passing in an object
that implements an interface, we’re passing in a block of code—a function
without a name. bankTransaction is the name of a parameter and the
arrow -> separates the parameter from the body of the lambda expression,
which is just some code that is run to test whether or not the bank
transaction should be selected.

Example 3-8. Implementing BankTransactionFilter using a lambda
expression
final List<BankTransaction> transactions

 = bankStatementProcessor.findTransactions(bankTransaction ->

 bankTransaction.getDate().getMonth() == Month.FEBRUARY

 && bankTransaction.getAmount() >= 1_000);

To summarize, the Open/Closed Principle is a useful principle to follow
because it:

Reduces fragility of code by not changing existing code

Promotes reusability of existing code and as a result avoids code
duplication

Promotes decoupling, which leads to better code maintenance

Interfaces Gotchas
So far you introduced a flexible method to search for transactions given a
selection criterion. The refactoring you went through raises questions about
what should happen to the other methods declared inside the
BankTransactionProcessor class. Should they be part of an interface?

Should they be included in a separate class? After all, there are three other
related methods you implemented in the previous chapter:

calculateTotalAmount()

calculateTotalInMonth()

calculateTotalForCategory()

One approach that we discourage you to put in practice is to put everything
into one single interface: the God Interface.

God Interface
One extreme view you could take is that the class
BankTransactionProcessor acts as an API. As a result, you may wish to
define an interface that lets you decouple from multiple implementations of
a bank transaction processor as shown in Example 3-9. This interface
contains all the operations that the bank transaction processor needs to
implement.

Example 3-9. God Interface
interface BankTransactionProcessor {

 double calculateTotalAmount();

 double calculateTotalInMonth(Month month);

 double calculateTotalInJanuary();

 double calculateAverageAmount();

 double calculateAverageAmountForCategory(Category category);

 List<BankTransaction> findTransactions(BankTransactionFilter

bankTransactionFilter);

}

However, this approach displays several downsides. First, this interface
becomes increasingly complex as every single helper operation is an
integral part of the explicit API definition. Second, this interface acts more
like a “God Class” as you saw in the previous chapter. In fact, the interface
has now become a bag for all possible operations. Worse, you are actually
introducing two forms of additional coupling:

An interface in Java defines a contract that every single
implementation has to adhere by. In other words, concrete
implementations of this interface have to provide an
implementation for each operation. This means that changing the
interface means all concrete implementations have to be updated as
well to support the change. The more operations you add, the more
likely changes will happen, increasing the scope for potential
problems down the line.

Concrete properties of a BankTransaction such as the month and
the category have cropped up as part of method names; e.g.,
calculateAverageForCategory() and
calculateTotalInJanuary(). This is more problematic with
interfaces as they now depend on specific accessors of a domain
object. If the internals of that domain object change, then this may
cause changes to the interface as well and, as a consequence, to all
its concrete implementations, too.

All these reasons are why it is generally recommended to define smaller
interfaces. The idea is to minimize dependency to multiple operations or
internals of a domain object.

Too Granular
Since we’ve just argued that smaller is better, the other extreme view you
could take is to define one interface for each operation, as shown in
Example 3-10. Your BankTransactionProcessor class would implement
all these interfaces.

Example 3-10. Interfaces that are too granular
interface CalculateTotalAmount {

 double calculateTotalAmount();

}

interface CalculateAverage {

 double calculateAverage();

}

interface CalculateTotalInMonth {

 double calculateTotalInMonth(Month month);

}

This approach is also not useful for improving code maintenance. In fact, it
introduces “anti-cohesion.” In other words, it becomes harder to discover
the operations of interest as they are hiding in multiple separate interfaces.
Part of promoting good maintenance is to help discoverability of common
operations. In addition, because the interfaces are too granular it adds
overall complexity, as well as a lot of different new types introduced by the
new interfaces to keep track of in your project.

Explicit Versus Implicit API
So what is the pragmatic approach to take? We recommend following the
Open/Closed Principle to add flexibility to your operations and define the
most common cases as part of the class. They can be implemented with the
more general methods. In this scenario, an interface is not particularly
warranted as we don’t expect different implementations of a
BankTransactionProcessor. There aren’t specializations of each of these
methods that will benefit your overall application. As a result, there’s no
need to over-engineer and add unnecessary abstractions in your codebase.
The BankTransactionProcessor is simply a class that lets you perform
statistical operations on bank transactions.

This also raises the question of whether methods such as
findTransactionsGreaterThanEqual() should be declared given that
they can easily be implemented by the more general findTransactions()
method. This dilemma is often referred to as the problem of providing an
explicit versus implicit API.

In fact, there are two sides of the coin to consider. On one side a method
like findTransactionsGreaterThanEqual() is self-explanatory and easy
to use. You should not be worried about adding descriptive method names
to help readability and comprehension of your API. However, this method
is restricted to a particular case and you can easily have an explosion of

new methods to cater for various multiple requirements. On the other side, a
method like findTransactions() is initially more difficult to use and it
needs to be well-documented. However, it provides a unified API for all
cases where you need to look up transactions. There isn’t a rule of what is
best; it depends on what kind of queries you expect. If
findTransactionsGreaterThanEqual() is a very common operation, it
makes sense to extract it into an explicit API to make it easier for users to
understand and use.

The final implementation of the BankTransactionProcessor is shown in
Example 3-11.

Example 3-11. Key operations for the BankTransactionProcessor class
@FunctionalInterface

public interface BankTransactionSummarizer {

 double summarize(double accumulator, BankTransaction bankTransaction);

}

@FunctionalInterface

public interface BankTransactionFilter {

 boolean test(BankTransaction bankTransaction);

}

public class BankTransactionProcessor {

 private final List<BankTransaction> bankTransactions;

 public BankStatementProcessor(final List<BankTransaction> bankTransactions) {

 this.bankTransactions = bankTransactions;

 }

 public double summarizeTransactions(final BankTransactionSummarizer

bankTransactionSummarizer) {

 double result = 0;

 for(final BankTransaction bankTransaction: bankTransactions) {

 result = bankTransactionSummarizer.summarize(result,

bankTransaction);

 }

 return result;

 }

 public double calculateTotalInMonth(final Month month) {

 return summarizeTransactions((acc, bankTransaction) ->

((,)

 bankTransaction.getDate().getMonth() == month ? acc +

bankTransaction.getAmount() : acc

);

 }

 // ...

 public List<BankTransaction> findTransactions(final BankTransactionFilter

bankTransactionFilter) {

 final List<BankTransaction> result = new ArrayList<>();

 for(final BankTransaction bankTransaction: bankTransactions) {

 if(bankTransactionFilter.test(bankTransaction)) {

 result.add(bankTransaction);

 }

 }

 return bankTransactions;

 }

 public List<BankTransaction> findTransactionsGreaterThanEqual(final int

amount) {

 return findTransactions(bankTransaction -> bankTransaction.getAmount() >=

amount);

 }

 // ...

}

NOTE
A lot of the aggregation patterns that you have seen so far could be implemented using
the Streams API introduced in Java 8 if you are familiar with it. For example, searching
for transactions can be easily specified as shown here:

bankTransactions

 .stream()

 .filter(bankTransaction -> bankTransaction.getAmount() >= 1_000)

 .collect(toList());

Nonetheless, the Streams API is implemented using the same foundation and principles
that you’ve learned in this section.

Domain Class or Primitive Value?

While we kept the interface definition of BankTransactionSummarizer
simple, it is often preferable to not return a primitive value like a double if
you are looking at returning a result from an aggregation. This is because it
doesn’t give you the flexibility to later return multiple results. For example,
the method summarizeTransaction() returns a double. If you were to
change the signature of the result to include more results, you would need
to change every single implementation of the
BankTransactionProcessor.

A solution to this problem is to introduce a new domain class such as
Summary that wraps the double value. This means that in the future you can
add other fields and results to this class. This technique helps further
decouple the various concepts in your domain and also helps minimize
cascading changes when requirements change.

NOTE
A primitive double value has a limited number of bits, and as a result it has limited
precision when storing decimal numbers. An alternative to consider is
java.math.BigDecimal, which has arbitrary precision. However, this precision comes
at the cost of increased CPU and memory overhead.

Multiple Exporters
In the previous section you learned about the Open/Closed Principle and
delved further into the usage of interfaces in Java. This knowledge is going
to come handy as Mark Erbergzuck has a new requirement! You need to
export summary statistics about a selected list of transactions into different
formats including text, HTML, JSON, and so on. Where to start?

Introducing a Domain Object
First, you need to define exactly what is it the user wants to export. There
are various possibilities, which we explore together with their trade-offs:

A number

Perhaps the user is just interested in returning the result of an operation
like calculateAverageInMonth. This means the result would be a
double. While this is the most simple approach, as we noted earlier, this
approach is somewhat inflexible as it doesn’t cope well with changing
requirements. Imagine you create an exporter which takes the double as
an input, this means that every places in your code that calls this
exporter will need to be updated if you need to change the result type,
possibly introducing new bugs.

A collection

Perhaps the user wishes to return a list of transactions, for example,
returned by findTransaction(). You could even return an Iterable
to provide further flexibility in what specific implementation is
returned. While this gives you more flexibility it also ties you to only
being able to return a collection. What if you need to return multiple
results such as a list and other summary information?

A specialized domain object

You could introduce a new concept such as SummaryStatistics which
represents summary information that the user is interested in exporting.
A domain object is simply an instance of a class that is related to your
domain. By introducing a domain object, you introduce a form of
decoupling. In fact, if there are new requirements where you need to
export additional information, you can just include it as part of this new
class without having to introduce cascading changes.

A more complex domain object

You could introduce a concept such as Report which is more generic
and could contain different kinds of fields storing various results
including collection of transactions. Whether you need this or not
depends on the user requirements and whether you are expecting more
complex information. The benefit again is that you are able to decouple

different parts of your applications that produce Report objects and
other parts that consume Report objects.

For the purpose of our application, let’s introduce a domain object that
stores summary statistics about a list of transactions. The code in
Example 3-12 shows its declaration.

Example 3-12. A domain object storing statistical information
public class SummaryStatistics {

 private final double sum;

 private final double max;

 private final double min;

 private final double average;

 public SummaryStatistics(final double sum, final double max, final double

min, final double average) {

 this.sum = sum;

 this.max = max;

 this.min = min;

 this.average = average;

 }

 public double getSum() {

 return sum;

 }

 public double getMax() {

 return max;

 }

 public double getMin() {

 return min;

 }

 public double getAverage() {

 return average;

 }

}

Defining and Implementing the Appropriate Interface
Now that you know what you need to export, you will come up with an API
to do it. You will need to define an interface called Exporter. The reason

you introduce an interface is to let you decouple from multiple
implementations of exporters. This goes in line with the Open/Closed
Principle you learned in the previous section. In fact, if you need to
substitute the implementation of an exporter to JSON with an exporter to
XML this will be straightforward given they will both implement the same
interface. Your first attempt at defining the interface may be as shown in
Example 3-13. The method export() takes a SummaryStatistics object
and returns void.

Example 3-13. Bad Exporter interface
public interface Exporter {

 void export(SummaryStatistics summaryStatistics);

}

This approach is to be avoided for several reasons:

The return type void is not useful and is difficult to reason about.
You don’t know what is returned. The signature of the export()
method implies that some state change is happening somewhere or
that this method will log or print information back to the screen.
We don’t know!

Returning void makes it very hard to test the result with assertions.
What is the actual result to compare with the expected result?
Unfortunately, you can’t get a result with void.

With this in mind, you come up with an alternative API that returns a
String, as shown in Example 3-14. It is now clear that the Exporter will
return text and it’s then up to a separate part of the program to decide
whether to print it, save it to a file, or even send it electronically. Text
strings are also very useful for testing as you can directly compare them
with assertions.

Example 3-14. Good Exporter interface
public interface Exporter {

 String export(SummaryStatistics summaryStatistics);

}

Now that you have defined an API to export information, you can
implement various kinds of exporters that respect the contract of the
Exporter interface. You can see an example of implementing a basic
HTML exporter in Example 3-15.

Example 3-15. Implementing the Exporter interface
public class HtmlExporter implements Exporter {

 @Override

 public String export(final SummaryStatistics summaryStatistics) {

 String result = "<!doctype html>";

 result += "<html lang='en'>";

 result += "<head><title>Bank Transaction Report</title></head>";

 result += "<body>";

 result += "";

 result += "The sum is: " +

summaryStatistics.getSum() + "";

 result += "The average is: " +

summaryStatistics.getAverage() + "";

 result += "The max is: " +

summaryStatistics.getMax() + "";

 result += "The min is: " +

summaryStatistics.getMin() + "";

 result += "";

 result += "</body>";

 result += "</html>";

 return result;

 }

}

Exception Handling
So far we’ve not talked about what happens when things go wrong. Can
you think of situations where the bank analyzer software might fail? For
example:

What if the data cannot be parsed properly?

What if the CSV file containing the bank transctions to import
can’t be read?

What if the hardware running your applications runs out of
resources such as RAM or disk space?

In these scenarios you will be welcomed with a scary error message that
includes a stack trace showing the origin of the problem. The snippets in
Example 3-16 show examples of these unexpected errors.

Example 3-16. Unexpected problems
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

Exception in thread "main" java.nio.file.NoSuchFileException:

src/main/resources/bank-data-simple.csv

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

Why Use Exceptions?
Let’s focus on the BankStatementCSVParser for the moment. How do we
handle parsing problems? For example, a CSV line in the file might not be
written in the expected format:

A CSV line may have more than the expected three columns.

A CSV line may have fewer than the expected three columns.

The data format of some of the columns may not be correct, e.g.,
the date may be incorrect.

Back in the frightening days of the C programming language, you would
add a lot of if-condition checks that would return a cryptic error code. This
approach had several drawbacks. First, it relied on global shared mutable
state to look up the most recent error. This made it harder to understand
individual parts of your code in isolation. As a result, your code became
harder to maintain. Second, this approach was error prone as you needed to
distinguish between real values and errors encoded as values. The type
system in this case was weak and could be more helpful to the programmer.
Finally, the control flow was mixed with the business logic, which
contributed to making the code harder to maintain and test in isolation.

To solve these issues, Java incorporated exceptions as a first-class language
feature that introduced many benefits:

Documentation

The language supports exceptions as part of method signatures.

Type safety

The type system figures out whether you are handling the exceptional
flow.

Separation of concern

Business logic and exception recovery are separated out with a try/catch
block.

The problem is that exceptions as a language feature also add more
complexity. You may be familiar with the fact that Java distinguishes
between two kinds of exceptions:

Checked exceptions

These are errors that you are expected to be able to recover from. In
Java, you have to declare a method with a list of checked exceptions it
can throw. If not, you have to provide a suitable try/catch block for that
particular exception.

Unchecked exceptions

These are errors that can be thrown at any time during the program
execution. Methods don’t have to explicitly declare these exceptions in
their signature and the caller doesn’t have to handle them explicitly, as it
would with a checked exception.

Java exception classes are organized in a well-defined hierarchy. Figure 3-1
depicts that hierarchy in Java. The Error and RuntimeException classes
are unchecked exceptions and are subclasses of Throwable. You shouldn’t
expect to catch and recover from them. The class Exception typically
represents errors that a program should be able to recover from.

Figure 3-1. Exceptions hierarchy in Java

Patterns and Anti-Patterns with Exceptions
Which category of exceptions should you use under what scenario? You
may also wonder how should you update the BankStatementParser API to
support exceptions. Unfortunately, there isn’t a simple answer. It requires a
bit of pragmatism when deciding what is the right approach for you.

There are two separate concerns when thinking about parsing the CSV file:

Parsing the right syntax (e.g., CSV, JSON)

Validation of the data (e.g., text description should be less than 100
characters)

You will focus on the syntax error first and then the validation of the data.

Deciding between unchecked and checked

There are situations when the CSV file may not follow the correct syntax
(for example, if separating commas are missing). Ignoring this problem will
lead to confusing errors when the application runs. Part of the benefit of

supporting exceptions in your code is to provide a clearer diagnosis to the
user of your API in the event that a problem arises. Accordingly, you decide
to add a simple check as shown in the code in Example 3-17, which throws
a CSVSyntaxException.

Example 3-17. Throwing a syntax exception
final String[] columns = line.split(",");

if(columns.length < EXPECTED_ATTRIBUTES_LENGTH) {

 throw new CSVSyntaxException();

}

Should CSVSyntaxException be a checked or an unchecked exception? To
answer this question you need to ask yourself whether you require the user
of your API to take a compulsory recovery action. For example, the user
may implement a retry mechanism if it is a transient error or she may
display a message back on the screen to add graceful responsiveness to the
application. Typically, errors due to business logic validation (e.g., wrong
format or arithmetic) should be unchecked exceptions, as they would add a
lot of try/catch clutter in your code. It may also not be obvious what the
right recovery mechanism is. Consequently, there’s no point enforcing it on
the user of your API. In addition, system errors (e.g., disk ran out of space)
should also be unchecked exceptions as there’s nothing the client can do. In
a nutshell, the recommendation is to use unchecked exceptions and only use
checked exceptions sparingly to avoid significant clutter in the code.

Let’s now tackle the problem of validating the data once you know it
follows the correct CSV format. You will learn about two common anti-
patterns with using exceptions for validation. Then, you will learn about the
Notification pattern, which provides a maintainable solution to the problem.

Overly specific

The first question going through your mind is where should you add
validation logic? You could have it right at the construction time of the
BankStatement object. However, we recommend creating a dedicated
Validator class for several reasons:

You don’t have to duplicate the validation logic when you need to
reuse it.

You get confidence that different parts of your system validate the
same way.

You can easily unit test this logic separately.

It follows the SRP, which leads to simpler maintenance and
program comprehension.

The are various approaches to implementing your validator using
exceptions. One overly specific approach is shown in Example 3-18. You
have thought of every single edge case to validate the input and converted
each edge case into a checked exception. The exceptions
DescriptionTooLongException, InvalidDateFormat,
DateInTheFutureException, and InvalidAmountException are all user-
defined checked exceptions (i.e., they extend the class Exception). While
this approach lets you specify precise recovery mechanisms for each
exception, it is clearly unproductive as it requires a lot of setup, declares
multiple exceptions, and forces the user to explicitly deal with each of these
exceptions. This is doing the opposite of helping the user understand and
simply use your API. In addition, you can’t collect all the errors as a whole
in case you want to provide a list to the user.

Example 3-18. Overly specific exceptions
public class OverlySpecificBankStatementValidator {

 private String description;

 private String date;

 private String amount;

 public OverlySpecificBankStatementValidator(final String description, final

String date, final String amount) {

 this.description = Objects.requireNonNull(description);

 this.date = Objects.requireNonNull(description);

 this.amount = Objects.requireNonNull(description);

 }

 public boolean validate() throws DescriptionTooLongException,

 InvalidDateFormat,

 DateInTheFutureException,

 InvalidAmountException {

 if(this.description.length() > 100) {

 throw new DescriptionTooLongException();

 }

 final LocalDate parsedDate;

 try {

 parsedDate = LocalDate.parse(this.date);

 }

 catch (DateTimeParseException e) {

 throw new InvalidDateFormat();

 }

 if (parsedDate.isAfter(LocalDate.now())) throw new

DateInTheFutureException();

 try {

 Double.parseDouble(this.amount);

 }

 catch (NumberFormatException e) {

 throw new InvalidAmountException();

 }

 return true;

 }

}

Overly apathetic

The other end of the spectrum is making everything an unchecked
exception; for example, by using IllegalArgumentException. The code
in Example 3-19 shows the implementation of the validate() method
following this approach. The problem with this approach is that you can’t
have specific recovery logic because all the exceptions are the same! In
addition, you still can’t collect all the errors as a whole.

Example 3-19. IllegalArgument exceptions everywhere
public boolean validate() {

 if(this.description.length() > 100) {

 throw new IllegalArgumentException("The description is too long");

 }

 final LocalDate parsedDate;

 try {

 parsedDate = LocalDate.parse(this.date);

 }

 catch (DateTimeParseException e) {

 throw new IllegalArgumentException("Invalid format for date", e);

 }

 if (parsedDate.isAfter(LocalDate.now())) throw new

IllegalArgumentException("date cannot be in the future");

 try {

 Double.parseDouble(this.amount);

 }

 catch (NumberFormatException e) {

 throw new IllegalArgumentException("Invalid format for amount", e);

 }

 return true;

}

Next, you will learn about the Notification pattern, which provides a
solution to the downsides highlighted with the overly specific and overly
apathetic anti-patterns.

Notification Pattern

The Notification pattern aims to provide a solution for the situation in
which you are using too many unchecked exceptions. The solution is to
introduce a domain class to collect errors.

The first thing you need is a Notification class whose responsibility is to
collect errors. The code in Example 3-20 shows its declaration.

Example 3-20. Introducing the domain class Notification to collect errors
public class Notification {

 private final List<String> errors = new ArrayList<>();

 public void addError(final String message) {

 errors.add(message);

 }

 public boolean hasErrors() {

 return !errors.isEmpty();

 }

 public String errorMessage() {

 return errors.toString();

1

 }

 public List<String> getErrors() {

 return this.errors;

 }

}

The benefit of introducing such a class is that you can now declare a
validator that is able to collect multiple errors in one pass. This wasn’t
possible in the two previous approaches you explored. Instead of throwing
exceptions, you can now simply add messages into the Notification
object as shown in Example 3-21.

Example 3-21. Notification pattern
public Notification validate() {

 final Notification notification = new Notification();

 if(this.description.length() > 100) {

 notification.addError("The description is too long");

 }

 final LocalDate parsedDate;

 try {

 parsedDate = LocalDate.parse(this.date);

 if (parsedDate.isAfter(LocalDate.now())) {

 notification.addError("date cannot be in the future");

 }

 }

 catch (DateTimeParseException e) {

 notification.addError("Invalid format for date");

 }

 final double amount;

 try {

 amount = Double.parseDouble(this.amount);

 }

 catch (NumberFormatException e) {

 notification.addError("Invalid format for amount");

 }

 return notification;

}

Guidelines for Using Exceptions

Now that you’ve learned the situations for which you may use exceptions,
let’s discuss some general guidelines to use them effectively in your
application.

Do not ignore an exception

It’s never a good idea to ignore an exception as you won’t be able to
diagnose the root of the problem. If there isn’t an obvious handling
mechanism, then throw an unchecked exception instead. This way if you
really need to handle the checked exception, you’ll be forced to come back
and deal with it after seeing the problem at runtime.

Do not catch the generic Exception

Catch a specific exception as much as you can to improve readability and
support more specific exception handling. If you catch the generic
Exception, it also includes a RuntimeException. Some IDEs can generate
a catch clause that is too general, so you may need to think about making
the catch clause more specific.

Document exceptions

Document exceptions at your API-level including unchecked exceptions to
facilitate troubleshooting. In fact, unchecked exceptions report the root of
an issue that should be addressed. The code in Example 3-22 shows an
example of documenting exceptions using the @throws Javadoc syntax.

Example 3-22. Documenting exceptions
@throws NoSuchFileException if the file does not exist

@throws DirectoryNotEmptyException if the file is a directory and

could not otherwise be deleted because the directory is not empty

@throws IOException if an I/O error occurs

@throws SecurityException In the case of the default provider,

and a security manager is installed, the {@link

SecurityManager#checkDelete(String)}

method is invoked to check delete access to the file

Watch out for implementation-specific exceptions

Do not throw implementation-specific exceptions as it breaks encapsulation
of your API. For example, the definition of read() in Example 3-23 forces
any future implementations to throw an OracleException, when clearly
read() could support sources that are completely unrelated to Oracle!

Example 3-23. Avoid implementation-specific exceptions
public String read(final Source source) throws OracleException { ... }

Exceptions versus Control flow

Do not use exceptions for control flow. The code in Example 3-24
exemplifies a bad use of exceptions in Java. The code relies on an exception
to exit the reading loop.

Example 3-24. Using exceptions for control flow
try {

 while (true) {

 System.out.println(source.read());

 }

}

catch(NoDataException e) {

}

You should avoid this type of code for several reasons. First, it leads to poor
code readability because the exception try/catch syntax adds unnecessary
clutter. Second, it makes the intent of your code less comprehensible.
Exceptions are meant as a feature to deal with errors and exceptional
scenarios. Consequently, it’s good not to create an exception until you are
sure that you need to throw it. Finally, there’s overhead associated with
holding a stack trace in the event that an exception is thrown.

Alternatives to Exceptions
You’ve learned about using exceptions in Java for the purpose of making
your Bank Statements Analyzer more robust and comprehensible for your
users. What are alternatives to exceptions, though? We briefly describe four
alternative approaches together with their pros and cons.

Using null

Instead of throwing a specific exception, you may ask why you can’t just
return null as shown in Example 3-25.

Example 3-25. Returning null instead of an exception
final String[] columns = line.split(",");

if(columns.length < EXPECTED_ATTRIBUTES_LENGTH) {

 return null;

}

This approach is to be absolutely avoided. In fact, null provides no useful
information to the caller. It is also error prone as you have to explicitly
remember to check for null as a result of your API. In practice, this leads
to many NullPointerExceptions and a lot of unnecessary debugging!

The Null Object pattern

An approach you sometimes see adopted in Java is the Null Object pattern.
In a nutshell, instead of returning a null reference to convey the absence of
an object, you return an object that implements the expected interface but
whose method bodies are empty. The advantage of this tactic is that you
won’t deal with unexpected NullPointer exceptions and a long list of
null checks. In fact, this empty object is very predictable because it does
nothing functionally! Nonetheless, this pattern can also be problematic
because you may hide potential issues in the data with an object that simply
ignores the real problem, and as a result make troubleshooting more
difficult.

Optional<T>

Java 8 introduced a built-in data type java.util.Optional<T>, which is
dedicated to representing the presence or absence of a value. The
Optional<T> comes with a set of methods to explicitly deal with the
absence of a value, which is useful to reduce the scope for bugs. It also
allows you to compose various Optional objects together, which may be
returned as a return type from different APIs you use. An example of that is

the method findAny() in the Streams API. You will learn more about how
you can use Optional<T> in Chapter 7.

Try<T>

There’s another data type called Try<T>, which represents an operation that
may succeed or fail. In a way it is analogous to Optional<T>, but instead of
values you work with operations. In other words, the Try<T> data type
brings similar code composability benefits and also helps reduce the scope
for errors in your code. Unfortunately, the Try<T> data type is not built in to
the JDK but is supported by external libraries that you can look at.

Using a Build Tool
So far you’ve learned good programming practices and principles. But what
about structuring, building, and running your application? This section
focuses on why using a build tool for your project is a necessity and how
you can use a build tool such as Maven and Gradle to build and run your
application in a predictable manner. In Chapter 5, you will learn more about
a related topic of how to structure the application effectively using Java
packages.

Why Use a Build Tool?
Let’s consider the problem of executing your application. There are several
elements you need to take care of. First, once you have written the code for
your project, you will need to compile it. To do this, you will have to use
the Java compiler (javac). Do you remember all the commands required to
compile multiple files? What about with multiple packages? What about
managing dependencies if you were to import other Java libraries? What
about if the project needs to be packaged in a specific format such as WAR
or JAR? Suddenly things get messy, and more and more pressure is put on
the developer.

To automate all the commands required, you will need to create a script so
you don’t have to repeat the commands every time. Introducing a new script
means that all your current and future teammates will need to be familiar
with your way of thinking to be able to maintain and change the script as
requirements evolve. Second, the software development life cycle needs to
be taken into consideration. It’s not just about developing and compiling the
code. What about testing and deploying it?

The solution to these problems is using a build tool. You can think of a
build tool as an assistant that can automate the repetitive tasks in the
software development life cycle, including building, testing, and deploying
your application. A build tool has many benefits:

It provides you with a common structure to think about a project so
your colleagues feel immediately at home with the project.

It sets you up with a repeatable and standardized process to build
and run an application.

You spend more time on development, and less time on low-level
configurations and setup.

You are reducing the scope for introducing errors due to bad
configurations or missing steps in the build.

You save time by reusing common build tasks instead of
reimplementing them.

You will now explore two popular build tools used in the Java community:
Maven and Gradle.

Using Maven
Maven is highly popular in the Java community. It allows you to describe
the build process for your software together with its dependencies. In
addition, there’s a large community maintaining repositories that Maven can
use to automatically download the libraries and dependencies used by your
application. Maven was initially released in 2004 and as you might expect,

2

XML was very popular back then! Consequently, the declaration of the
build process in Maven is XML based.

Project structure

The great thing about Maven is that from the get-go it comes with structure
to help maintenance. A Maven project starts with two main folders:

/src/main/java

This is where you will develop and find all the Java classes required for
your project.

src/test/java

This where you will develop and find all the tests for your project.

There are two additional folders that are useful but not required:

src/main/resources

This is where you can include extra resources such as text files needed
by your application.

src/test/resources

This is where you can include extra resources used by your tests.

Having this common directory layout allows anyone familiar with Maven to
be immediately able to locate important files. To specify the build process
you will need to create a pom.xml file where you specify various XML
declarations to document the steps required to build your application.
Figure 3-2 summarizes the common Maven project layout.

Figure 3-2. Maven standard directory layout

Example build file

The next step is to create the pom.xml that will dictate the build process.
The code snippet in Example 3-26 shows a basic example that you can use
for building the Bank Statements Analyzer project. You will see several
elements in this file:

project

This is the top-level element in all pom.xml files.

groupId

This element indicates the unique identifier of the organization that
created the project.

artifactId

This element specifies a unique base name for the artifact generated by
the build process.

packaging

This element indicates the package type to be used by this artifact (e.g.,
JAR, WAR, EAR, etc.). The default is JAR if the XML element
packaging is omitted.

version

The version of the artifact generated by the project.

build

This element specifies various configurations to guide the build process
such as plug-ins and resources.

dependencies

This element specifies a dependency list for the project.

Example 3-26. Build file pom.xml in Maven
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.iteratrlearning</groupId>

 <artifactId>bankstatement_analyzer</artifactId>

 <version>1.0-SNAPSHOT</version>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.7.0</version>

 <configuration>

 <source>9</source>

 <target>9</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.12</version>

 <scope>test</scope>

 </dependency>

 </dependenciesn>

</project>

Maven commands

Once you’ve set up a pom.xml, the next step is to use Maven to build and
package your project! There are various commands available. We only
cover the fundamentals:

mvn clean

Cleans up any previously generated artifacts from a prior build

mvn compile

Compiles the source code of the project (by default in a generated target
folder)

mvn test

Tests the compiled source code

mvn package

Packages the compiled code in a suitable format such as JAR

For example, running the command mvn package from the directory where
the pom.xml file is located will produce an output similar to this:

[INFO] Scanning for projects...

[INFO]

[INFO] ---

-

[INFO] Building bankstatement_analyzer 1.0-SNAPSHOT

[INFO] ---

-

[INFO]

[INFO] ---

-

[INFO] BUILD SUCCESS

[INFO] ---

-

[INFO] Total time: 1.063 s

[INFO] Finished at: 2018-06-10T12:14:48+01:00

[INFO] Final Memory: 10M/47M

You will see the generated JAR bankstatement_analyzer-1.0-
SNAPSHOT.jar in the target folder.

NOTE
If you want to run a main class in the generated artifact using the mvn command, you
will need to take a look at the exec plug-in.

Using Gradle
Maven is not the only build tool solution available in the Java space. Gradle
is an alternative popular build tool to Maven. But you may wonder why use
yet another build tool? Isn’t Maven the most widely adopted? One of
Maven’s deficiencies is that the use of XML can make things less readable
and more cumbersome to work with. For example, it is often necessary as
part of the build process to provide various custom system commands, such
as copying and moving files around. Specifying such commands using an
XML syntax isn’t natural. In addition, XML is generally considered as a
verbose language, which can increase the maintenance overhead. However,
Maven introduced lots of good ideas such as standardization of project
structure, which Gradle gets inspiration from. One of Gradle’s biggest
advantages is that it uses a friendly Domain Specific Language (DSL) using
the Groovy or Kotlin programming languages to specify the build process.
As a result, specifying the build is more natural, easier to customize, and
simpler to understand. In addition, Gradle supports features such as cache
and incremental compilation, which contribute to faster build time.

Example build file

Gradle follows a similar project structure to Maven. However, instead of a
pom.xml file, you will declare a build.gradle file. There’s also a
settings.gradle file that includes configuration variables and setup for a
multiproject build. In the code snippet in Example 3-27 you can find a
small build file written in Gradle that is equivalent to the Maven example
you saw in Example 3-26. You have to admit it’s a lot more concise!

3

https://oreil.ly/uoPbv

Example 3-27. Build file build.gradle in Gradle
apply plugin: 'java'

apply plugin: 'application'

group = 'com.iteratrlearning'

version = '1.0-SNAPSHOT'

sourceCompatibility = 9

targetCompatibility = 9

mainClassName = "com.iteratrlearning.MainApplication"

repositories {

 mavenCentral()

}

dependencies {

 testImplementation group: 'junit', name: 'junit', version:'4.12'

}

Gradle commands

Finally, you can now run the build process by running similar commands to
what you learned with Maven. Each command in Gradle is a task. You can
define your own tasks and execute them or use built-in tasks such as test,
build, and clean:

gradle clean

Cleans up generated files during a previous build

gradle build

Packages the application

gradle test

Runs the tests

gradle run

Runs the main class specified in mainClassName provided the
application plug-in is applied

For example, running gradle build will produce an output similar to this:

BUILD SUCCESSFUL in 1s

2 actionable tasks: 2 executed

You will find the generated JAR in the build folder that is created by
Gradle during the build process.

Takeaways
The Open/Closed Principle promotes the idea of being able to
change the behavior of a method or class without having to modify
the code.

The Open/Closed Principle reduces fragility of code by not
changing existing code, promotes reusability of existing code, and
promotes decoupling, which leads to better code maintenance.

God interfaces with many specific methods introduce complexity
and coupling.

An interface that is too granular with single methods can introduce
the opposite of cohesion.

You should not be worried about adding descriptive method names
to help readability and comprehension of your API .

Returning void as a result of an operation makes it difficult to test
its behavior.

Exceptions in Java contribute to documentation, type safety, and
separation of concerns.

Use checked exceptions sparingly rather than the default as they
can cause significant clutter.

Overly specific exceptions can make software development
unproductive.

The Notification Pattern introduces a domain class to collect
errors.

Do not ignore an exception or catch the generic Exception as you
will lose the benefits of diagnosing the root of the problem.

A build tool automates the repetitive tasks in the software
development life cycle including building, testing, and deploying
your application.

Maven and Gradle are two popular build tools used in the Java
community.

Iterating on You
If you want to extend and solidify the knowledge from this section you
could try one of these activities:

Add support for exporting in different data formats including
JSON and XML

Develop a basic GUI around the Bank Statements Analyzer

Completing the Challenge
Mark Erbergzuck is very happy with your final iteration of the Bank
Statements Analyzer. A few days later, the world hit a new financial crisis
and your application is going viral. Time to work on a new exciting project
in the next chapter!

1 This pattern was first put forward by Martin Fowler.

2 Earlier in Java’s life there was another popular build tool, called Ant, but it is now considered
end-of-life and should not be used anymore.

3 For more information on Maven versus Gradle, see https://gradle.org/maven-vs-gradle/.

https://gradle.org/maven-vs-gradle/

Chapter 4. The Document
Management System

The Challenge
After successfully implementing an advanced Bank Statements Analyzer
for Mark Erbergzuck you decide to run some errands—including going to
an appointment with your dentist. Dr. Avaj has run her practice successfully
for many years. Her happy patients retain their white teeth well into old age.
The downside of such a successful practice is that every year more and
more patient documents get generated. Every time she needs to find a
record of prior treatment, her assistants spend longer and longer searching
their filing cabinets.

She realizes that it’s time to automate the process of managing these
documents and keeping track of them. Luckily, she has a patient who can do
that for her! You are going to help by writing software for her that manages
these documents and enables her to find the information that will allow her
practice to thrive and grow.

The Goal
In this chapter you’ll be learning about a variety of different software
development principles. Key to the design of managing documents is an
inheritance relationship, which means extending a class or implementing an
interface. In order to do this the right way you’ll get to understand the
Liskov Substitution Principle, named after famed computer scientist
Barbara Liskov.

Your understanding of when to use inheritance will get fleshed out with a
discussion of the “Composition over Inheritance” principle.

Finally, you’ll extend your knowledge of how to write automated test code
by understanding what makes a good and maintainable test. Now that we’ve
spoiled the plot of this chapter, let’s get back to understanding what
requirements Dr. Avaj has for the Document Management System.

NOTE
If at any point you want to look at the source code for this chapter, you can look at the
package com.iteratrlearning.shu_book.chapter_04 in the book’s code repository.

Document Management System
Requirements
A friendly cup of tea with Dr. Avaj has revealed that she has the documents
that she wants to manage as files on her computer. The Document
Management System needs to be able to import these files and record some
information about each file that can be indexed and searched. There are
three types of documents that she cares about:

Reports

A body of text detailing some consultation of operation on a patient.

Letters

A text document that gets sent to an address. (You’re probably familiar
with these already, come to think of it.)

Images

The dental practice often records x-rays or photos of teeth and gums.
These have a size.

In addition, all documents need to record the path to the file that is being
managed and what patient the document is about. Dr. Avaj needs to be able
to search these documents, and query whether each of the attributes about a

different type of document contains certain pieces of information; for
example, to search for letters where the body contains “Joe Bloggs.”

During the conversation, you also established that Dr. Avaj might wish to
add other types of documents in the future.

Fleshing Out the Design
When approaching this problem, there are lots of big design choices to
make and modeling approaches that we could take. These choices are
subjective, and you’re welcome to try to code up a solution to Dr. Avaj’s
problem before or after reading this chapter. In “Alternative Approaches”
you can see the reasons why we avoid different choices and the overarching
principles behind them.

One good first step to approaching any program is to start with test-driven
development (TDD), which is what we did when writing the book’s sample
solution. We won’t be covering TDD until Chapter 5, so let’s begin with
thinking about the behaviors that your software needs to perform and
incrementally fleshing out the code that implements these behaviors.

The Document Management System should be able to import documents on
request and add them into its internal store of documents. In order to fulfill
this requirement, let’s create the DocumentManagementSystem class and
add two methods:

void importFile(String path)

Takes a path to a file that our user wants to import to the Document
Management System. As this is a public API method that might take
input from users in a production system, we take our path as a String
rather than relying on a more type-safe class like java.nio.Path or
java.io.File.

List<Document> contents()

Returns a list of all the documents that the Document Management
System currently stores.

You’ll notice that contents() returns a list of some Document class. We’ve
not said what this class entails yet, but it’ll reappear in due course. For now,
you can pretend that it’s an empty class.

Importers
A key characteristic of this system is that we need to be able to import
documents of different types. For the purposes of this system you can rely
on the files’ extensions in order to decide how to import them, since Dr.
Avaj has been saving files with very specific extensions. All her letters have
the .letter extension, reports have .report, and .jpg is the only image format
used.

The simplest thing to do would be to just throw all the code for the
importing mechanism into a single method, as shown in Example 4-1.

Example 4-1. Switch of extension example
switch(extension) {

 case "letter":

 // code for importing letters.

 break;

 case "report":

 // code for importing reports.

 break;

 case "jpg":

 // code for importing images.

 break;

 default:

 throw new UnknownFileTypeException("For file: " + path);

}

This approach would have solved the problem in question but would be
hard to extend. Every time you want to add another type of file that gets
processed you would need to implement another entry in the switch

statement. Over time this method would become intractably long and hard
to read.

If you keep your main class nice and simple and split out different
implementation classes for importing different types of documents, then it’s
easy to locate and understand each importer in isolation. In order to support
different document types, an Importer interface is defined. Each Importer
will be a class that can import a different type of file.

Now that we know we need an interface to import the files, how should we
represent the file that is going to be imported? We have a couple of different
options: use a plain String to represent the path of the file, or use a class
that represents a file, like java.io.File.

You could make the case that we should apply the principle of strong typing
here: take a type that represents the file and reduce the scope for errors
versus using a String. Let’s take that approach and use a java.io.File
object as the parameter in our Importer interface to represent the file being
imported, as shown in Example 4-2.

Example 4-2. Importer
interface Importer {

 Document importFile(File file) throws IOException;

}

You might be asking, Why don’t you use a File for the public API of
DocumentManagementSystem as well then? Well, in the case of this
application, our public API would probably be wrapped up in some kind of
user interface, and we aren’t sure what form that is taking files in. As a
result we kept things simple and just used a String type.

The Document Class
Let’s also define the Document class at this point in time. Each document
will have multiple attributes that we can search on. Different documents
have different types of attributes. We have several different options that we
can consider the pros and cons of when defining the Document.

The first and simplest way to represent a document would be to use a
Map<String, String>, which is a map from attribute names to values
associated with those attributes. So why not just pass a Map<String,
String> around through the application? Well, introducing a domain class
to model a single document is not just drinking the OOP Koolaid, but also
provides a series of practical improvements in application maintability and
readability.

For a start, the value of giving concrete names to components within an
application cannot be overstated. Communication is King! Good teams of
software developers use a Ubiquitous Language to describe their software.
Matching the vocabulary that you use within the code of your application to
the vocabulary that you use to talk to clients like Dr. Avaj makes things a lot
easier to maintain. When you have a conversation with a colleague or client
you will invariably need to agree upon some common language with which
to describe different aspects of the software. By mapping this to the code
itself, it makes it really easy to know what part of the code to change. This
is called discoverability.

NOTE
The term Ubiquitous Language was coined by Eric Evans and originates in Domain
Driven Design. It refers to the use of a common language that is clearly degined and
shared between both developers and users.

Another principle that should encourage you to introduce a class to model a
document is strong typing. Many people use this term to refer to the nature
of a programming language, but here we’re talking about the more practical
use of strong typing in implementing your software. Types allow us to
restrict the way in which data is used. For example, our Document class is
immutable: once it has been created you can’t change, or mutate, any of its
attributes. Our Importer implementations create the documents; nothing
else modifies them. If you ever see a Document with an error in one of its
attributes, you can narrow the source of the bug down to the specific

Importer that created the Document. You can also infer from the
immutability that it’s possible to index or cache any information associated
with the Document and you know that it will be correct forever, since
documents are immutable.

Another design choice that developers might consider when modeling their
Document would be make the Document extend HashMap<String,
String>. At first that seems great because the HashMap has all the
functionality you need to model a Document. However, there are several
reasons why this is a bad choice.

Software design is often as much about restricting functionality that is
undesirable as it is about building things that you do want. We would have
instantly thrown away the aforementioned benefits from immutability by
allowing anything in the application to modify the Document class if it were
just a subclass of HashMap. Wrapping the collection also gives us an
opportunity to give more meaningful names to the methods, instead of, for
example, looking up an attribute by calling the get() method, which
doesn’t really mean anything! Later on we’ll go into more detail about
inheritance versus composition, because this is really a specific example of
that discussion.

In short, domain classes allow us to name a concept and restrict the possible
behaviors and values of this concept in order to improve discoverability and
reduce the scope for bugs. As a result, we’ve chosen to model the Document
as shown in Example 4-3. If you’re wondering why it isn’t public like
most interfaces, this is discussed later in “Scoping and Encapsulation
Choices”.

Example 4-3. Document
public class Document {

 private final Map<String, String> attributes;

 Document(final Map<String, String> attributes) {

 this.attributes = attributes;

 }

 public String getAttribute(final String attributeName) {

 return attributes.get(attributeName);

 }

}

One final thing to note about Document is that it has a package-scoped
constructor. Often Java classes make their constructor public, but this can
be a bad choice as it allows code anywhere in your project to create objects
of that type. Only code in the Document Management System should be
able to create Documents, so we keep the constructor package scoped and
restrict access to only the package that the Document Management System
lives in.

Attributes and Hierarchical Documents
In our Document class we used Strings for attributes. Doesn’t this go
against the principle of strong typing? The answer here is yes and no. We
are storing attributes as text so that they can be searched through a text-
based search. Not only that, but we want to ensure that all attributes are
created in a very generic form that is independent of the Importer that
created them. Strings aren’t a bad choice as such in this context. It should
be noted that passing Strings around throughout an application in order to
represent information is often considered a bad idea. In contrast with
something being strongly typed, this is termed stringly typed!

In particular, if more complicated use was being made of the attribute
values, then having different attribute types parsed out would be useful. For
example, if we wanted to be able to find addresses within a certain distance
or images with a height and width less than a certain size, then having
strongly typed attributes would be a boon. It would be a lot easier to make
comparisons with a width value that is an integer. In the case of this
Document Management System, however, we simply don’t need that
functionality.

You could design the Document Management System with a class hierarchy
for Documents that models the Importer hierarchy. For example, a
ReportImporter imports instances of the Report class that extends the

Document class. This passes our basic sanity check for subclassing. In other
words, it allows you to say a Report is a Document and it makes sense as a
sentence. We chose not to go down that direction, however, as the right way
to model classes in an OOP setting is to think in terms of behavior and data.

The documents are all modeled very generically in terms of named
attributes, rather than specific fields that exist within different subclasses.
Additionally, as far as this system is concerned, documents have very little
behavior associated with them. There was simply no point in adding a class
hierarchy here when it provided no benefit. You might think that this
statement in and of itself is a little arbitrary, but it informs us of another
principle: KISS.

You learned about the KISS principle in Chapter 2. KISS means that
designs are better if they are kept simple. It’s often very hard to avoid
unnecessary complexity, but it’s worth trying hard to do so. Whenever
someone says, “we might need X” or “it would be cool if we also did Y,”
just say No. Bloated and complex designs are paved with good intentions
around extensibility and code that is a nice-to-have rather than must-have.

Implementing and Registering Importers
You can implement the Importer interface to look up different types of
files. Example 4-4 shows the way that images are imported. One of the
great things about Java’s core library is that it provides a lot of built-in
functionality right out of the box. Here we read an image file using the
ImageIO.read method and then extract the width and height of the image
from the resulting BufferedImage object.

Example 4-4. ImageImporter
import static com.iteratrlearning.shu_book.chapter_04.Attributes.*;

class ImageImporter implements Importer {

 @Override

 public Document importFile(final File file) throws IOException {

 final Map<String, String> attributes = new HashMap<>();

 attributes.put(PATH, file.getPath());

 final BufferedImage image = ImageIO.read(file);

 attributes.put(WIDTH, String.valueOf(image.getWidth()));

 attributes.put(HEIGHT, String.valueOf(image.getHeight()));

 attributes.put(TYPE, "IMAGE");

 return new Document(attributes);

 }

}

Attribute names are constants defined in the Attributes class. This avoids
bugs where different importers end up using different strings for the same
attribute name; for example, "Path" versus "path". Java itself doesn’t have
a direct concept of a constant as such, Example 4-5 shows the commonly
used idiom. This constant is public because we want to be able to use it
from different importers, though you may well have a private or package
scoped constant instead. The use of the final keyword ensures that it can’t
be reassigned to and static ensures that there is only a single instance per
class.

Example 4-5. How to define a constant in Java
public static final String PATH = "path";

There are importers for all three different types of files and you will see the
other two implemented in “Extending and Reusing Code”. Don’t worry,
we’re not hiding anything up our sleeves. In order to be able to use the
Importer classes when we import files, we also need to register the
importers to look them up. We use the extension of the file that we want to
import as the key of the Map, as shown in Example 4-6.

Example 4-6. Registering the importers
 private final Map<String, Importer> extensionToImporter = new HashMap<>();

 public DocumentManagementSystem() {

 extensionToImporter.put("letter", new LetterImporter());

 extensionToImporter.put("report", new ReportImporter());

 extensionToImporter.put("jpg", new ImageImporter());

 }

Now that you know how to import documents, we can implement search.
We won’t be focusing on the most efficient way to implement searching of

documents here since we’re not trying to implement Google, just get the
information to Dr. Avaj that she requires. A conversation with Dr. Avaj
revealed that she wanted to be able to look up information about different
attributes of a Document.

Her requirements could be met by just being able to find subsequences
within attribute values. For example, she might want to search for
documents that have a patient called Joe, and with Diet Coke in the body.
We thus devised a very simple query language that consisted of a series of
attribute name and substring pairs separated by commas. Our
aforementioned query would be written as "patient:Joe,body:Diet
Coke".

Since the search implementation keeps things simple rather than trying to
be highly optimized, it just does a linear scan over all the documents
recorded in the system and tests each one against the query. The query
String that is passed to the search method is parsed into a Query object
that can then be tested against each Document.

The Liskov Substitution Principle (LSP)
We’ve talked about a few specific design decisions related to classes—for
example, modeling different Importer implementations with classes, and
why we didn’t introduce a class hierarchy for the Document class and why
we didn’t just make Document extend HashMap. But really there’s a broader
principle at stake here, one that allows us to generalize these examples into
an approach that you can use in any piece of software. This is called the
Liskov Substitution Principle (LSP) and it helps us understand how to
subclass and implement interfaces correctly. LSP forms the L of the SOLID
principles that we’ve been referring to throughout this book.

The Liskov Substitution Principle is often stated in these very formal terms,
but is actually a very simple concept. Let’s demystify some of this
terminology. If you hear type in this context, just think of a class or an
interface. The term subtype means establish a parent-to-child relationship

between types; in other words, extend a class or implement an interface. So
informally you can think of this as meaning that child classes should
maintain the behavior they inherit from their parents. We know, we know—
it sounds like an obvious statement, but we can be more specific and split
out LSP into four distinct parts:

LSP

Let q(x) be a property provable about objects x of type T. Then q(y)
should be true for objects y of type S where S is a subtype of T.

Preconditions cannot be strengthened in a subtype

A precondition establishes the conditions under which some code will
work. You can’t just assume what you’ve written will work anyway,
anyhow, anywhere. For example, all our Importer implementations
have the precondition that the file being imported exists and is readable.
As a result, the importFile method has validation code before any
Importer is invoked, as can be seen in Example 4-7.

Example 4-7. importFile definition
 public void importFile(final String path) throws IOException {

 final File file = new File(path);

 if (!file.exists()) {

 throw new FileNotFoundException(path);

 }

 final int separatorIndex = path.lastIndexOf('.');

 if (separatorIndex != -1) {

 if (separatorIndex == path.length()) {

 throw new UnknownFileTypeException("No extension found For

file: " + path);

 }

 final String extension = path.substring(separatorIndex + 1);

 final Importer importer = extensionToImporter.get(extension);

 if (importer == null) {

 throw new UnknownFileTypeException("For file: " + path);

 }

 final Document document = importer.importFile(file);

 documents.add(document);

 } else {

 throw new UnknownFileTypeException("No extension found For file:

" + path);

 }

 }

LSP means that you can’t require any more restrictive preconditions
than your parent required. So, for example, you can’t require your
document to be smaller than 100KB in size if your parent should be able
to import any size of document.

Postconditions cannot be weakened in a subtype

This might sound a bit confusing because it reads a lot like the first rule.
Postconditions are things that have to be true after some code has run.
For example, after importFile() has run, if the file in question is valid
it must be in the list of documents returned by contents(). So if the
parent has some kind of side effect or returns some value, then the child
must do so as well.

Invariants of the supertype must be preserved in a subtype

An invariant is something that never changes, like the ebb and flow of
the tides. In the context of inheritance, we want to make sure that any
invariants that are expected to be maintained by the parent class should
also be maintained by the children.

The History Rule

This is the hardest aspect of LSP to understand. In essence, the child
class shouldn’t allow state changes that your parent disallowed. So, in
our example program we have an immutable Document class. In other
words, once it has been instantiated you can’t remove, add, or alter any
of the attributes. You shouldn’t subclass this Document class and create
a mutable Document class. This is because any user of the parent class
would expect certain behavior in response to calling methods on the
Document class. If the child were mutable, it could violate callers’
expectations about what calling those methods does.

Alternative Approaches
You could have taken a completely different approach when it comes to
designing the Document Management System. We’ll take a look at some of
these alternatives now as we think they are instructive. None of the choices
could be considered wrong as such, but we do think the chosen approach is
best.

Making Importer a Class
You could have chosen to make a class hierarchy for importers, and have a
class at the top for the Importer rather than an interface. Interfaces and
classes provide a different set of capabilities. You can implement multiple
interfaces, while classes can contain instance fields and it’s more usual to
have method bodies in classes.

In this case the reason to have a hierarchy is to enable different importers to
be used. You’ve already heard about our motivation for avoiding brittle
class-based inheritance relationships, so it should be pretty clear that using
interfaces is a better choice here.

That’s not to say that classes wouldn’t be a better choice elsewhere. If you
want to model a strong is a relationship in your problem domain that
involves state or a lot of behavior, then class-based inheritance is more
appropriate. It’s just not the choice we think is most appropriate here.

Scoping and Encapsulation Choices
If you have taken the time to peruse the code you might notice that the
Importer interface, its implementations, and our Query class are all
package scoped. Package scope is the default scope, so if you see a class
file with class Query at the top you know it’s package scoped, and if it
says public class Query it’s public scoped. Package scoping means that
other classes within the same package can see or have access to the class,
but no one else can. It’s a cloaking device.

A strange thing about the Java ecosystem is that even though package scope
is the default scope, whenever we’ve been involved in software
development projects there are always more public-scoped classes than
package-scoped ones. Perhaps the default should have been public all
along, but either way package scope is a really useful tool. It helps you
encapsulate these kinds of design decisions. A lot of this section has
commented on the different choices that are available to you around
designing the system, and you may want to refactor to one of these
alternative designs when maintaining the system. This would be harder if
we leaked details about this implementation outside of the package in
question. Through diligent use of package scoping you can stop classes
outside of the package making so many assumptions about that internal
design.

We think it’s also worth reiterating that this is simply a justification and
explanation of these design choices. There’s nothing inherently wrong with
making other choices listed in this section—they may work out to be more
appropriate depending on how the application evolves over time.

Extending and Reusing Code
When it comes to software, the only constant is change. Over time you may
want to add features to your product, customer requirements may change,
and regulations could force you alter your software. As we alluded to
earlier, there may be more documents that Dr. Avaj would like to add to our
Document Management System. In fact, when we first came to showcase
the software that we’ve written for her she immediately realized that
invoicing clients was something that she also wanted to keep track of in this
system. An invoice is a document with a body and an amount and has an
.invoice extension. Example 4-8 shows an example invoice.

Example 4-8. Invoice example
Dear Joe Bloggs

Here is your invoice for the dental treatment that you received.

Amount: $100

regards,

 Dr Avaj

 Awesome Dentist

Fortunately for us, all of Dr. Avaj’s invoices are in the same format. As you
can see, we need to extract an amount of money from this, and the amount
line starts with the Amount: prefix. The person’s name is at the beginning of
the letter on a line with the prefix Dear. In fact, our system implements a
general method of finding the suffix of a line with a given prefix, shown in
Example 4-9. In this example, the field lines has already been initialized
with the lines of the file that we’re importing. We pass this method a
prefix—for example, “Amount:”—and it associates the rest of the line, the
suffix, with a provided attribute name.

Example 4-9. addLineSuffix definition
 void addLineSuffix(final String prefix, final String attributeName) {

 for(final String line: lines) {

 if (line.startsWith(prefix)) {

 attributes.put(attributeName, line.substring(prefix.length()));

 break;

 }

 }

 }

We in fact have a similar concept when we try to import a letter. Consider
the example letter presented in Example 4-10. Here you can extract the
name of the patient by looking for a line starting with Dear. Letters also
have addresses and bodies of text that you want to extract from the contents
of the text file.

Example 4-10. Letter example
Dear Joe Bloggs

123 Fake Street

Westminster

London

United Kingdom

We are writing to you to confirm the re-scheduling of your appointment

with Dr. Avaj from 29th December 2016 to 5th January 2017.

regards,

 Dr Avaj

 Awesome Dentist

We also have a similar problem when it comes to importing patient reports.
Dr. Avaj’s reports prefix the name of the patient with Patient: and have a
body of text to include, just like letters. You can see an example of a report
in Example 4-11.

Example 4-11. Report example
Patient: Joe Bloggs

On 5th January 2017 I examined Joe's teeth.

We discussed his switch from drinking Coke to Diet Coke.

No new problems were noted with his teeth.

So one option here would be to have all three text-based importers
implement the same method to find the suffixes of text lines with a given
prefix that was listed in Example 4-9. Now if we were charging Dr. Avaj
based on the number of lines of code that we had written, this would be a
great strategy. We could triple the amount of money that we would make for
basically the same work!

Sadly (or maybe not so sadly, given the aforementioned incentives),
customers rarely pay based on the number of lines of code produced. What
matters are the requirements that the customer wants. So we really want to
be able to reuse this code across the three importers. In order to reuse the
code we need to actually have it live in some class. You have essentially
three options to consider, each with pros and cons:

Use a utility class

Use inheritance

Use a domain class

The simplest option to start with is to create a utility class. You could call
this ImportUtil. Then every time you wanted to have a method that needs
to be shared between different importers it could go in this utility class.
Your utility class would end up being a bag of static methods.

While a utility class is nice and simple, it’s not exactly the pinnacle of
object-oriented programming. The object-oriented style involves having
concepts in your application be modeled by classes. If you want to create a
thing, then you invoke new Thing() for whatever your thing is. Attributes
and behavior associated with the thing should be methods on the Thing
class.

If you follow this principle of modeling real-world objects as classes, it
does genuinely make it easier to understand your application because it
gives you a structure and maps a mental model of your domain onto your
code. You want to alter the way that letters are imported? Well then edit the
LetterImporter class.

Utility classes violate this expectation and often end up turning into bundles
of procedural code with no single responsibility or concept. Over time, this
can often lead to the appearance of a God Class in our codebase; in other
words, a single large class that ends up hogging a lot of responsibility.

So what should you do if you want to associate this behavior to a concept?
Well, the next most obvious approach might be to use inheritance. In this
approach you would have the different importers extend a TextImporter
class. You could then place all the common functionality on that class and
reuse it in subclasses.

Inheritance is a perfectly solid choice of design in many circumstances.
You’ve already seen the Liskov Substitution Principle and how it puts
constraints on the correctness of our inheritance relationship. In practice,
inheritance is often a poor choice when the inheritance fails to model some
real-world relationship.

In this case, a TextImporter is an Importer and we can ensure that our
classes follow the LSP rules, but it doesn’t really seem like a strong concept

to work with. The issue with inheritance relationships that don’t correspond
to real-world relationships is that they tend to be brittle. As your application
evolves over time you want abstractions that evolve with the application
rather than against it. As a rule of thumb, it’s a bad idea to introduce an
inheritance relationship purely to enable code reuse.

Our final choice is to model the text file using a domain class. To use this
approach we would model some underlying concept and build out our
different importers by invoking methods on top of the underlying concept.
So what’s the concept in question here? Well, what we’re really trying to do
is manipulate the contents of a text file, so let’s call the class a TextFile.
It’s not original or creative, but that’s the point. You know where the
functionality for manipulating text files lies, because the class is named in a
really dead simple manner.

Example 4-12 shows the definition of the class and its fields. Note that this
isn’t a subclass of a Document because a document shouldn’t be coupled to
just text files—we may import binary files like images as well. This is just a
class that models the underlying concept of a text file and has associated
methods for extracting data from text files.

Example 4-12. TextFile definition
class TextFile {

 private final Map<String, String> attributes;

 private final List<String> lines;

 // class continues ...

This is the approach that we pick in the case of importers. We think this
allows us to model our problem domain in a flexible way. It doesn’t tie us
into a brittle inheritance hierarchy, but still allows us to reuse the code.
Example 4-13 shows how to import invoices. The suffixes for the name and
amount are added, along with setting the type of the invoice to be an
amount.

Example 4-13. Importing invoices
 @Override

 public Document importFile(final File file) throws IOException {

 final TextFile textFile = new TextFile(file);

 textFile.addLineSuffix(NAME_PREFIX, PATIENT);

 textFile.addLineSuffix(AMOUNT_PREFIX, AMOUNT);

 final Map<String, String> attributes = textFile.getAttributes();

 attributes.put(TYPE, "INVOICE");

 return new Document(attributes);

 }

You can also see another example of an importer that uses the TextFile
class in Example 4-14. No need to worry about how TextFile.addLines is
implemented; you can see an explanation of that in Example 4-15.

Example 4-14. Importing letters
 @Override

 public Document importFile(final File file) throws IOException {

 final TextFile textFile = new TextFile(file);

 textFile.addLineSuffix(NAME_PREFIX, PATIENT);

 final int lineNumber = textFile.addLines(2, String::isEmpty, ADDRESS);

 textFile.addLines(lineNumber + 1, (line) -> line.startsWith("regards,"),

BODY);

 final Map<String, String> attributes = textFile.getAttributes();

 attributes.put(TYPE, "LETTER");

 return new Document(attributes);

 }

These classes weren’t first written like this, though. They evolved into their
current state. When we started coding up the Document Management
System, the first text-based importer, the LetterImporter, had all of its
text extraction logic written inline in the class. This is a good way to start.
Trying to seek out code to reuse often results in inappropriate abstractions.
Walk before you run.

As we started writing the ReportImporter it become increasingly apparent
that a lot of the text extraction logic could be shared between the two
importers, and that really they should be written in terms of method
invocations upon some common domain concept that we have introduced
here—the TextFile. In fact, we even copy and pasted the code that was to
be shared between the two classes to begin with.

That isn’t to say that copy and pasting code is good—far from it. But it’s
often better to duplicate a little bit of code when you start writing some
classes. Once you’ve implemented more of the application, the right
abstraction—e.g., a TextFile class will become apparent. Only when you
know a little bit more about the right way to remove duplication should you
go down the route of removing the duplication.

In Example 4-15 you can see how the TextFile.addLines method was
implemented. This is common code used by different Importer
implementations. Its first argument is a start index, which tells you which
line number to start on. Then there’s an isEnd predicate that is applied to
the line and returns true if we’ve reached the end of the line. Finally, we
have the name of the attribute that we’re going to associate with this value.

Example 4-15. addLines definition
 int addLines(

 final int start,

 final Predicate<String> isEnd,

 final String attributeName) {

 final StringBuilder accumulator = new StringBuilder();

 int lineNumber;

 for (lineNumber = start; lineNumber < lines.size(); lineNumber++) {

 final String line = lines.get(lineNumber);

 if (isEnd.test(line)) {

 break;

 }

 accumulator.append(line);

 accumulator.append("\n");

 }

 attributes.put(attributeName, accumulator.toString().trim());

 return lineNumber;

 }

Test Hygiene
As you learned in Chapter 2, writing automated tests has a lot of benefits in
terms of software maintainability. It enables us to reduce the scope for
regressions and understand which commit caused them. It also enables us to

refactor our code with confidence. Tests aren’t a magic panacea, though.
They require that we write and maintain a lot of code in order to get these
benefits. As you know, writing and maintaining code is a difficult
proposition, and many developers find that when they first start writing
automated tests that they can take a lot of developer time.

In order to solve the problem of test maintainability you need to get to grips
with test hygiene. Test hygiene means to keep your test code clean and
ensure that it is maintained and improved along with your codebase under
test. If you don’t maintain and treat your tests, over time they will become a
burden on your developer productivity. In this section you’ll learn about a
few key points that can help to keep tests hygienic.

Test Naming
The first thing to think about when it comes to tests is their naming.
Developers can get highly opinionated about naming—it’s an easy topic to
talk about a lot because everyone can relate to it and think about the
problem. We think the thing to remember is that there’s rarely a clear, really
good name for something, but there are many, many, bad names.

The first test we wrote for the Document Management System was testing
that we import a file and create a Document. This was written before we had
introduced the concept of an Importer and weren’t testing Document-
specific attributes. The code is in Example 4-16.

Example 4-16. Test for importing files
 @Test

 public void shouldImportFile() throws Exception

 {

 system.importFile(LETTER);

 final Document document = onlyDocument();

 assertAttributeEquals(document, Attributes.PATH, LETTER);

 }

This test was named shouldImportFile. The key driving principles when
it comes to test naming are readability, maintainability, and acting as

executable documentation. When you see a report of a test class being run,
the names should act as statements that document what functionality works
and what does not. This allows a developer to easily map from application
behavior to a test that asserts that this behavior is implemented. By reducing
the impedence mismatch between behavior and code, we make it easier for
other developers to understand what is happening in the future. This is a test
that confirms that the document management system imports a file.

There are lots of naming anti-patterns, however. The worst anti-pattern is to
name a test something completely nondescript—for example, test1. What
on earth is test1 testing? The reader’s patience? Treat people who are
reading your code like you would like them to treat you.

Another common test naming anti-pattern is just named after a concept or a
noun—for example, file or document. Test names should describe the
behavior under test, not a concept. Another test naming anti-pattern is to
simply name the test after a method that is invoked during testing, rather
than the behavior. In this case the test might be named importFile.

You might ask, by naming our test shouldImportFile haven’t we
committed this sin here? There’s some merit to the accusation, but here
we’re just describing the behavior under test. In fact, the importFile
method is tested by various tests; for example,
shouldImportLetterAttributes, shouldImportReportAttributes, and
shouldImportImageAttributes. None of those tests are called
importFile—they are all describing more specific behaviors.

OK, now you know what bad naming looks like, so what is good test
naming? You should follow three rules of thumb and use them to drive test
naming:

Use domain terminology

Align the vocabulary used in your test names with that used when
describing the problem domain or referred by the application itself.

Use natural language

Every test name should be something that you can easily read as a
sentence. It should always describe some behavior in a readable way.

Be descriptive

Code will be read many times more often than it is written. Don’t skimp
on spending more time thinking of a good name that’s descriptive up
front and easier to understand later down the line. If you can’t think of a
good name, why not ask a colleague? In golf, you win by putting in the
fewest shots. Programming isn’t like that; shortest isn’t necessarily best.

You can follow the convention used in the
DocumentManagementSystemTest of prefixing test names with the word
“should,” or choose not to; that’s merely a matter of personal preference.

Behavior Not Implementation
If you’re writing a test for a class, a component, or even a system, then you
should only be testing the public behavior of whatever is being tested. In
the case of the Document Management System, we only have tests for the
behavior of our public API in the form of
DocumentManagementSystemTest. In this test we test the public API of the
DocumentManagementSystem class and thus the whole system. The API
can be seen in Example 4-17.

Example 4-17. Public API of the DocumentManagementSystem class
public class DocumentManagementSystem

{

 public void importFile(final String path) {

 ...

 }

 public List<Document> contents() {

 ...

 }

 public List<Document> search(final String query) {

 ...

 }

}

Our tests should only invoke these public API methods and not try to
inspect the internal state of the objects or the design. This is one of the key
mistakes made by developers that leads to hard-to-maintain tests. Relying
on specific implementation details results in brittle tests because if you
change the implementation detail in question, the test can start to fail even
if the behavior is still working. Take a look at the test in Example 4-18.

Example 4-18. Test for importing letters
 @Test

 public void shouldImportLetterAttributes() throws Exception

 {

 system.importFile(LETTER);

 final Document document = onlyDocument();

 assertAttributeEquals(document, PATIENT, JOE_BLOGGS);

 assertAttributeEquals(document, ADDRESS,

 "123 Fake Street\n" +

 "Westminster\n" +

 "London\n" +

 "United Kingdom");

 assertAttributeEquals(document, BODY,

 "We are writing to you to confirm the re-scheduling of your

appointment\n" +

 "with Dr. Avaj from 29th December 2016 to 5th January 2017.");

 assertTypeIs("LETTER", document);

 }

One way of testing this letter-importing functionality would have been to
write the test as a unit test on the LetterImporter class. This would have
looked fairly similar: importing an example file and then making an assert
about the result returned from the importer. In our tests, though, the mere
existence of the LetterImporter is an implementation detail. In
“Extending and Reusing Code”, you saw numerous other alternative
choices for laying out our importer code. By laying out our tests in this
manner, we give ourselves the choice to refactor our internals to a different
design without breaking our tests.

So we’ve said that relying on the behavior of a class relies on using the
public API, but there’s also some parts of the behavior that aren’t usually
restricted just through making methods public or private. For example, we

might not want to rely on the order of documents being being returned from
the contents() method. That isn’t a property that’s restricted by the public
API of the DocumentManagementSystem class, but simply something that
you need to be careful to avoid doing.

A common anti-pattern in this regard is exposing otherwise private state
through a getter or setter in order to make testing easier. You should try to
avoid doing this wherever possible as it makes your tests brittle. If you have
exposed this state to make testing superficially easier, then you end up
making maintaining your application harder in the long run. This is because
any change to your codebase that involves changing the way this internal
state is represented now also requires altering your tests. This is sometimes
a good indication that you need to refactor out a new class that can be more
easily and effectively tested.

Don’t Repeat Yourself
“Extending and Reusing Code” extensively discusses how we can remove
duplicate code from our application and where to place the resulting code.
The exact same reasoning around maintenance applies equally to test code.
Sadly, developers often simply don’t bother to remove duplication from
tests in the same way as they would for application code. If you take a look
at Example 4-19 you’ll see a test that repeatedly makes asserts about the
different attributes that a resulting Document has.

Example 4-19. Test for importing images
 @Test

 public void shouldImportImageAttributes() throws Exception

 {

 system.importFile(XRAY);

 final Document document = onlyDocument();

 assertAttributeEquals(document, WIDTH, "320");

 assertAttributeEquals(document, HEIGHT, "179");

 assertTypeIs("IMAGE", document);

 }

Normally you would have to look up the attribute name for every attribute
and assert that it is equal to an expected value. In the case of the tests here,
this is a common enough operation that a common method,
assertAttributeEquals, was extracted with this logic. Its implementation
is shown in Example 4-20.

Example 4-20. Implementing a new assertion
 private void assertAttributeEquals(

 final Document document,

 final String attributeName,

 final String expectedValue)

 {

 assertEquals(

 "Document has the wrong value for " + attributeName,

 expectedValue,

 document.getAttribute(attributeName));

 }

Good Diagnostics
Tests would be no good if they didn’t fail. In fact, if you’ve never seen a
test fail how do you know if it’s working at all? When writing tests the best
thing to do is to optimize for failure. When we say optimize, we don’t mean
make the test run faster when it fails—we mean ensure that it is written in a
way that makes understanding why and how it failed as easy as possible.
The trick to this is good diagnostics.

By diagnostics we mean the message and information that gets printed out
when a test fails. The clearer this message is about what has failed, the
easier it is to debug the test failure. You might ask why even bother with
this when a lot of the time Java tests are run from within modern IDEs that
have debuggers built in? Well, sometimes tests may be run within
continuous integration environments, and sometimes they may be from the
command line. Even if you’re running them within an IDE it is still helpful
to have good diagnostic information. Hopefully, we’ve convinced you of
the need for good diagnostics, but what do they look like in code?

Example 4-21 shows a method that asserts that the system only contains a
single document. We will explain the hasSize() method in a little bit.

Example 4-21. Test that the system contains a single document
 private Document onlyDocument()

 {

 final List<Document> documents = system.contents();

 assertThat(documents, hasSize(1));

 return documents.get(0);

 }

The simplest type of assert that JUnit offers us is assertTrue(), which will
take a boolean value that it expects to be true. Example 4-22 shows how we
could have just used assertTrue to implement the test. In this case the
value is being checked to equal 0 so that it will fail the shouldImportFile
test and thus demonstrate the failure diagnostics. The problem with this is
that we don’t get very good diagnostics—just an AssertionError with no
information in the message shown in Figure 4-1. You don’t know what
failed, and you don’t know what values were being compared. You know
nothing, even if your name isn’t Jon Snow.

Example 4-22. assertTrue example
assertTrue(documents.size() == 0);

Figure 4-1. Screenshot of assertTrue failing

The most commonly used assertion is assertEquals, which takes two
values and checks they are equal and is overloaded to support primitive
values. So here we can assert that the size of the documents list is 0, as
shown in Example 4-23. This produces a slightly better diagnostic as shown
in Figure 4-2, you know that the expected value was 0 and the actual value
was 1, but it still doesn’t give you any meaningful context.

Example 4-23. assertEquals example
assertEquals(0, documents.size());

Figure 4-2. Screenshot of assertEquals example failing

The best way of making an assert about the size itself is to use a matcher
for asserting the collection size as this provides the most descriptive
diagnostics. Example 4-24 has our example written in that style and
demonstrates the output as well. As Figure 4-3 shows, this is much clearer
as to what went wrong without you needing to write any more code.

Example 4-24. assertThat example
assertThat(documents, hasSize(0));

Figure 4-3. Screenshot of assertThat example failing

What is going on here is that JUnit’s assertThat() is being used. The
method assertThat() takes a value as its first parameter and a Matcher as
its second. The Matcher encapsulates the concept of whether a value
matches some property and also its associated diagnostics. The hasSize
matcher is statically imported from a Matchers utility class that contains a
bundle of different matchers and checks that the size of a collection is equal
to its parameter. These matchers come from the Hamcrest library, which is
a very commonly used Java library that enables cleaner testing.

Another example of how you can build better diagnostics was shown in
Example 4-20. Here an assertEquals would have given us the diagnostic
for the attribute’s expected value and actual value. It wouldn’t have told us

http://hamcrest.org/

what the name of the attribute was, so this was added into the message
string to help us understand failure.

Testing Error Cases
One of the absolute worst and most common mistakes to make when
writing software is only to test the beautiful, golden, happy path of your
application—the code path that is executed when the sun is shining on you
and nothing goes wrong. In practice lots of things can go wrong! If you
don’t test how your application behaves in these situations, you’re not going
to end up with software that will work reliably in a production setting.

When it comes to importing documents into our Document Management
System there are a couple of error cases that might happen. We might try to
import a file that doesn’t exist or can’t be read, or we might try to import a
file that we don’t know how to extract text from or read.

Our DocumentManagementSystemTest has a couple of tests, shown in
Example 4-25, that test these two scenarios. In both cases we try to import a
path file that will expose the problem. In order to make an assert about the
desired behavior we use the expected = attribute of JUnit’s @Test
annotation. This enables you to say Hey listen, JUnit, I’m expecting this test
to throw an exception, it’s of a certain type.

Example 4-25. Testing for error cases
 @Test(expected = FileNotFoundException.class)

 public void shouldNotImportMissingFile() throws Exception

 {

 system.importFile("gobbledygook.txt");

 }

 @Test(expected = UnknownFileTypeException.class)

 public void shouldNotImportUnknownFile() throws Exception

 {

 system.importFile(RESOURCES + "unknown.txt");

 }

You may want an alternative behavior to simply throwing an exception in
the case of an error, but it’s definitely helpful to know how to assert that an

exception is thrown.

Constants
Constants are values that do not change. Let’s face it—they are one of the
few well-named concepts when it comes to computer programming. The
Java programming language doesn’t use an explicit const keyword like
C++ does, but conventionally developers create static field fields in
order to represent constants. Since many tests consist of examples of how a
part of your computer program should be used, they often consist of many
constants.

It’s a good idea when it comes to constants that have some kind of
nonobvious meaning to give them a proper name that can be used within
tests. We do that extensively through the
DocumentManagementSystemTest, and in fact, have a block at the top
dedicated to declaring constants, shown in Example 4-26.

Example 4-26. Constants
public class DocumentManagementSystemTest

{

 private static final String RESOURCES =

 "src" + File.separator + "test" + File.separator + "resources" +

File.separator;

 private static final String LETTER = RESOURCES + "patient.letter";

 private static final String REPORT = RESOURCES + "patient.report";

 private static final String XRAY = RESOURCES + "xray.jpg";

 private static final String INVOICE = RESOURCES + "patient.invoice";

 private static final String JOE_BLOGGS = "Joe Bloggs";

Takeaways
You learned how to build a Document Management System.

You recognized the different trade-offs between different
implementation approaches.

You understood several principles that drive the design of software.

You were introduced to the Liskov Substitution Principle as a way
to think about inheritance.

You learned about situations where inheritance wasn’t appropriate.

Iterating on You
If you want to extend and solidify the knowledge from this section you
could try one of these activities:

Take the existing sample code and add an implementation for
importing prescription documents. A prescription should have a
patient, a drug, a quantity, a date, and state the conditions for
taking a drug. You should also write a test that checks that the
prescription import works.

Try implementing the Game of Life Kata.

Completing the Challenge
Dr. Avaj is really pleased with your Document Management System and she
now uses it extensively. Her needs are effectively met by the features
because you drove your design from her requirements toward application
behavior and into your implementation details. This is a theme that you will
return to when TDD is introduced in the next chapter.

https://oreil.ly/RrxJU

Chapter 5. The Business Rules
Engine

The Challenge
Your business is now doing really well. In fact, you’ve now scaled to an
organization with thousands of employees. This mean you’ve hired many
people for different business functions: marketing, sales, operations, admin,
accounting, and so on. You realize that all the business functions have
requirements for creating rules that trigger actions depending on some
conditions; for example, “notify sales team if prospect’s job title is ‘CEO’.”
You could be asking your tech team to implement each new requirement
with bespoke software, but your developers are quite busy working on other
products. In order to encourage collaboration between the business team
and the tech team, you’ve decided that you will develop a Business Rules
Engine that will enable developers and the business team to write code
together. This will allow you to increase productivity and reduce the time it
takes to implement new rules because your business team will be able to
contribute directly.

The Goal
In this chapter you’ll first learn about how to approach a new design
problem using test-driven development. You will get an overview about a
technique called mocking, which will help specify unit tests. You will then
learn about a couple of modern features in Java: local variable type
inference and switch expressions. Finally, you’ll learn how to develop a
friendly API using the Builder pattern and the Interface Segregation
Principle.

NOTE
If at any point you want to look at the source code for this chapter, you can look at the
package com.iteratrlearning.shu_book.chapter_05 in the book’s code repository.

Business Rules Engine Requirements
Before you start, let’s think about what is it you want to achieve. You’d like
to enable nonprogrammers to add or change business logic in their own
workflow. For example, a marketing executive may wish to apply a special
discount when a prospect is making an inquiry about one of your products
and fits certain criteria. An accounting executive may wish to create an alert
if expenses are unusually high. These are examples of what you can achieve
with a Business Rules Engine. It’s essentially software that executes one or
more business rules that are often declared using a simple bespoke
language. A Business Rules Engine can support multiple different
components:

Facts

The available information to which rules have access

Actions

The operation you want to perform

Conditions

These specify when an action should be triggered

Rules

These specify the business logic you want to execute, essentially
grouping facts, conditions, and actions together

The main productivity benefit of a Business Rules Engine is that it enables
rules to be maintained, executed, and tested within one place without
having to integrate with a main application.

NOTE
There are many production-ready Java Business Rules Engine such as Drools. Typically
such an engine conforms to standards such as the Decision Model and Notation (DMN)
and comes with a centralized rule repository, an editor using a Graphical User Interface
(GUI), and visualization tools to help maintenance of complex rules. In this chapter, you
will develop a minimal viable product for a Business Rules Engine and iterate over it to
improve both its functionality and accessibility.

Test Driven Development
Where do you start? The requirements are not set in stone and are expected
to evolve so you begin by simply listing the basic features you will need
your users to undertake:

Add an action

Run the action

Basic reporting

This translates in the basic API shown in Example 5-1. Each method throws
an UnsupportedOperationException indicating it is yet to be
implemented.

Example 5-1. Basic API for Business Rules Engine
public class BusinessRuleEngine {

 public void addAction(final Action action) {

 throw new UnsupportedOperationException();

 }

 public int count() {

 throw new UnsupportedOperationException();

 }

 public void run() {

 throw new UnsupportedOperationException();

 }

}

https://www.drools.org/

An action is simply a piece of code that will be executed. We could use the
Runnable interface, but introducing a separate interface Action is more
representative of the domain at hand. The Action interface will allow the
Business Rules Engine to be decoupled from concrete actions. Since the
Action interface only declares a single abstract method, we can annotate it
as a functional interface, as shown in Example 5-2.

Example 5-2. The Action interface
@FunctionalInterface

public interface Action {

 void execute();

}

Where do we go from here? It’s now time to actually write some code—
where is the implementation? You will use an approach called test-driven
development (TDD). The TDD philosophy is to start writing some tests that
are going to let you guide the implementation of the code. In other words,
you write tests first before the actual implementation. It’s a bit like doing
the opposite of what you’ve been doing so far: you wrote the full code for a
requirement and then tested it. You will now focus more on the tests.

Why Use TDD?
Why should you take this approach? There are several benefits:

Writing a test at a time will help you focus and refine the
requirements by correctly implementing one thing at a time.

It’s a way to ensure a relevant organization for your code. For
example, by writing a test first, you need to think hard about the
public interfaces for your code.

You are building a comprehensive test suite as you iterate through
the requirements, which increases confidence that you are
matching the requirements and also reduces the scope of bugs.

You don’t write code that you don’t need (over-engineer) because
you’re just writing code that passes the tests.

The TDD Cycle
The TDD approach roughly consists of the following steps in a cycle, as
depicted in Figure 5-1:

1. Write a test that fails

2. Run all tests

3. Make the implementation work

4. Run all tests

Figure 5-1. TDD cycle

In practice, as part of this process, you must continuously refactor your
code or it will end up unmaintainable. At this moment you know you have a
suite of tests that you can rely on when you introduce changes. Figure 5-2
illustrates this improved TDD process.

Figure 5-2. TDD with refactoring

In the spirit of TDD, let’s start by writing our first tests to verify that
addActions and count behave correctly, as shown in Example 5-3.

Example 5-3. Basic tests for the Business Rules Engine
@Test

void shouldHaveNoRulesInitially() {

 final BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine();

 assertEquals(0, businessRuleEngine.count());

}

@Test

void shouldAddTwoActions() {

 final BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine();

 businessRuleEngine.addAction(() -> {});

 businessRuleEngine.addAction(() -> {});

 assertEquals(2, businessRuleEngine.count());

}

When running the tests, you will see that they fail with an
UnsupportedOperationException, as shown in Figure 5-3.

Figure 5-3. Failing tests

All tests are failing, but that’s fine. It gives us a reproducible test suite that
will guide the implementation of the code. Now can add some
implementation code, as shown in Example 5-4.

Example 5-4. Basic implementation for the Business Rules Engine
public class BusinessRuleEngine {

 private final List<Action> actions;

 public BusinessRuleEngine() {

 this.actions = new ArrayList<>();

 }

 public void addAction(final Action action) {

 this.actions.add(action);

 }

 public int count() {

 return this.actions.size();

 }

 public void run(){

 throw new UnsupportedOperationException();

 }

}

You can now rerun the tests and they are passing! However, there’s one
crucial operation missing. How do we write a test for the method run?
Unfortunately, run() does not return any result. We are going to need a
new technique called mocking to verify that the method run() operates
correctly.

Mocking
Mocking is a technique that will allow you to verify that when the method
run() is executed, each action that was added to the Business Rules Engine
is actually executed. At the moment it is difficult to do because both the
methods run() in BusinessRuleEngine and perform() in Action are
returning void. We have no way to write an assertion! Mocking is covered
in detail in Chapter 6, but you will get a brief overview now so you are able
to progress with writing a test. You’ll be using Mockito, which is a popular
mocking library for Java. At its simplest you can do two things:

1. Create a mock.

2. Verify that a method is called.

So how do you get started? You will need to import the library first:

import static org.mockito.Mockito.*;

This import allows you to use the methods mock() and verify(). The
static method mock() allows you to create a mock object which you can
then verify that certain behaviors happen. The method verify() allows you
to set up assertions that a particular method is invoked. Example 5-5 shows
an example.

Example 5-5. Mocking and verifying interaction with an Action object
@Test

void shouldExecuteOneAction() {

 final BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine();

 final Action mockAction = mock(Action.class);

 businessRuleEngine.addAction(mockAction);

 businessRuleEngine.run();

 verify(mockAction).perform();

}

The unit test creates a mock object for Action. This is done by passing the
class as argument to the mock method. Next, you have the when part of

your test where you invoke behaviors. Here we are adding the action and
executing the method run(). Finally, you have the then part of the unit
tests, which sets up assertions. In this case, we verify that the method
perform() on the Action object was invoked.

If you run this test it will fail as expected with a
UnsupportedOperationException. What if the body of run() is empty?
You will receive a new exception trace:

Wanted but not invoked:

action.perform();

-> at

BusinessRuleEngineTest.shouldExecuteOneAction(BusinessRuleEngineTest.java:35)

Actually, there were zero interactions with this mock.

This error is coming from Mockito and tells you that the method
perform() was never invoked. It’s now time to write the correct
implementation for the method run(), as shown in Example 5-6.

Example 5-6. The run() method implementation
public void run() {

 this.actions.forEach(Action::perform);

}

Re-run the tests and you will now see the test passing. Mockito was able to
verify that when the Business Rules Engine is running, the method
perform() on the Action object should be invoked. Mockito allows you to
specify sophisticated verification logic such as how many times a method
should be invoked, with certain arguments, etc. You will learn more about
this in Chapter 6.

Adding Conditions
You have to admit that so far the Business Rules Engine is pretty limiting.
You can only declare simple actions. However, in practice, the users of the
Business Rules Engine will need to execute actions based on certain

conditions. These conditions will be dependent on some facts. For example,
notify the sales team only if the prospect’s job title is CEO.

Modeling State
You may start by writing code that adds an action and refers to a local
variable using an anonymous class as shown in Example 5-7, or using a
lambda expression as shown in Example 5-8.

Example 5-7. Adding an action using an anonymous class
// this object could be created from a form

final Customer customer = new Customer("Mark", "CEO");

businessRuleEngine.addAction(new Action() {

 @Override

 public void perform() {

 if ("CEO".equals(customer.getJobTitle())) {

 Mailer.sendEmail("sales@company.com", "Relevant customer: " +

customer);

 }

 }

});

Example 5-8. Adding an action using a lambda expression
// this object could be created from a form

final Customer customer = new Customer("Mark", "CEO");

businessRuleEngine.addAction(() -> {

 if ("CEO".equals(customer.getJobTitle())) {

 Mailer.sendEmail("sales@company.com", "Relevant customer: " + customer);

 }

});

However, this approach is inconvenient for several reasons:

1. How do you test the action? It’s not an independent piece of
functionality; it has a hardcoded dependency on the customer
object.

2. The customer object is not grouped with the action. It is a sort of
external state that is shared around, leading to a confusing mix of

responsibilities.

So what do we need? We need to encapsulate the state that is available to
actions within the Business Rules Engine. Let’s model these requirements
by introducing a new class called Facts, which will represent the state
available as part of the Business Rules Engine, and an updated Action
interface that can operate on facts. An updated unit test is shown in
Example 5-9. The unit test checks that when the Business Rules Engine
runs, the specified action is actually invoked with the Facts object passed
as an argument.

Example 5-9. Testing an action with facts
@Test

public void shouldPerformAnActionWithFacts() {

 final Action mockAction = mock(Action.class);

 final Facts mockFacts = mock(Facts.class);

 final BusinessRuleEngine businessRuleEngine = new

BusinessRuleEngine(mockedFacts);

 businessRuleEngine.addAction(mockAction);

 businessRuleEngine.run();

 verify(mockAction).perform(mockFacts);

}

To follow the TDD philosophy, this test will initially fail. You always need
to run the tests to begin with to ensure that they fail, otherwise you may
write a test that accidentally passes. To make the test pass you will need to
update the API and implementation code. First, you’ll introduce the Facts
class, which allows you to store a fact represented as a key and a value. The
benefit of introducing a separate Facts class for modeling state is that you
can control the operations available to your users by providing a public
API, and also unit test the behavior of the class. For the time being, the
Facts class will only support String keys and String values. The code for
the Facts class is shown in Example 5-10. We chose the names getFact
and addFact because they better represent the domain at hand (working
with facts) rather than getValue and setValue.

Example 5-10. The Facts class

public class Facts {

 private final Map<String, String> facts = new HashMap<>();

 public String getFact(final String name) {

 return this.facts.get(name);

 }

 public void addFact(final String name, final String value) {

 this.facts.put(name, value);

 }

}

You’ll now need to refactor the Action interface so that the perform()
method can use a Facts object passed as an argument. This way it’s clear
the facts are available within the context of the single Action (Example 5-
11).

Example 5-11. The Action interface that takes facts
@FunctionalInterface

public interface Action {

 void perform(Facts facts);

}

Finally, you can now update the BusinessRuleEngine class to utilize the
facts and the updated Action’s perform() method as shown in Example 5-
12.

Example 5-12. BusinessRuleEngine with facts
public class BusinessRuleEngine {

 private final List<Action> actions;

 private final Facts facts;

 public BusinessRuleEngine(final Facts facts) {

 this.facts = facts;

 this.actions = new ArrayList<>();

 }

 public void addAction(final Action action) {

 this.actions.add(action);

 }

 public int count() {

 return this.actions.size();

 }

 public void run() {

 this.actions.forEach(action -> action.perform(facts));

 }

}

Now that the Facts object is available to actions, you can specify arbitrary
logic in your code that looks up the Facts object as shown in Example 5-
13.

Example 5-13. An action utilizing the facts
businessRuleEngine.addAction(facts -> {

 final String jobTitle = facts.getFact("jobTitle");

 if ("CEO".equals(jobTitle)) {

 final String name = facts.getFact("name");

 Mailer.sendEmail("sales@company.com", "Relevant customer: " + name);

 }

});

Let’s look at some more examples. This is also a good opportunity to
introduce two recent features in Java, which we explore in order:

Local variable type inference

Switch expressions

Local Variable Type Inference
Java 10 introduced variable local type inference. Type inference is the idea
that the compiler can figure out the static types for you so you don’t have to
type them. You saw an example of type inference earlier in Example 5-10
when you wrote

Map<String, String> facts = new HashMap<>();

instead of

Map<String, String> facts = new HashMap<String, String>();

This is a feature that was introduced in Java 7 called the diamond operator.
Essentially, you can omit the type parameters of generics (in this case
String, String) in an expression when its context determines them. In
the preceding code, the lefthand side of the assignment indicates the keys
and values of the Map should be Strings.

Since Java 10, type inference has been extended to work on local variables.
For example, the code in Example 5-14 can be rewritten using the var
keyword and local variable type inference shown in Example 5-15.

Example 5-14. Local variable declaration with explicit types
Facts env = new Facts();

BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine(env);

Example 5-15. Local variable type inference
var env = new Facts();

var businessRuleEngine = new BusinessRuleEngine(env);

By using the var keyword in the code shown in Example 5-15, the variable
env still has a static type Facts and the variable businessRuleEngine still
has the static type BusinessRuleEngine.

NOTE
A variable declared using the var keyword is not made final. For example, this code:

final Facts env = new Facts();

is not strictly equivalent to:

var env = new Facts();

You can still assign another value to the variable env after declaring it using var. You’d
have to explicitly add the final keyword as follows in front of the variable env for it to
be final:

final var env = new Facts()

In the rest of the chapters, we simply use the var keyword without final for brevity as
it is in the spirit of code conciseness. When we explicitly declare the type of a variable,
we use the final keyword.

Type inference helps reduce the amount of time taken to write Java code.
However, should you use this feature all the time? It’s worth remembering
that developers spend more time reading code than writing it. In other
words, you should think about optimizing for ease of reading over ease of
writing. The extent to which var improves this will always be subjective.
You should always be focusing on what helps your teammates read your
code, so if they are happy reading code with var then you should use it,
otherwise not. For example, here we can refactor the code in Example 5-13
to use local variable type inference to tidy up the code as shown in
Example 5-16.

Example 5-16. An action utilizing the facts and local variable type inference
businessRuleEngine.addAction(facts -> {

 var jobTitle = facts.getFact("jobTitle");

 if ("CEO".equals(jobTitle)) {

 var name = facts.getFact("name");

 Mailer.sendEmail("sales@company.com", "Relevant customer: " + name);

 }

});

Switch Expressions
So far you’ve only set up actions with exactly one condition to handle. This
is pretty limiting. For example, say you work with your sales team. They
may record on their Customer Relationship Management (CRM) system
different deals with different amounts that have different stages. A deal
stage may be represented as an enum Stage with values including LEAD,
INTERESTED, EVALUATING, CLOSED, as shown in Example 5-17.

Example 5-17. Enum representing different deal stages
public enum Stage {

 LEAD, INTERESTED, EVALUATING, CLOSED

}

Depending on the stage of the deal you can assign a rule that gives you the
probability of winning the deal. Consequently, you can help the sales team
with generating a forecast. Say for a particular team, LEAD has 20%
probability to convert, then a deal at stage LEAD with amount of 1000USD
will have a forecasted amount of 200USD. Let’s create an action to model
these rules and return a forecasted amount for a particular deal as shown in
Example 5-18.

Example 5-18. A rule to calculate a forecast amount for a specific deal
businessRuleEngine.addAction(facts -> {

 var forecastedAmount = 0.0;

 var dealStage = Stage.valueOf(facts.getFact("stage"));

 var amount = Double.parseDouble(facts.getFact("amount"));

 if(dealStage == Stage.LEAD){

 forecastedAmount = amount * 0.2;

 } else if (dealStage == Stage.EVALUATING) {

 forecastedAmount = amount * 0.5;

 } else if(dealStage == Stage.INTERESTED) {

 forecastedAmount = amount * 0.8;

 } else if(dealStage == Stage.CLOSED) {

 forecastedAmount = amount;

 }

 facts.addFact("forecastedAmount", String.valueOf(forecastedAmount));

});

The code shown in Example 5-18 is essentially providing a value for each
enum value available. A preferred language construct is the switch
statement as it’s more succinct. This is shown in Example 5-19.

Example 5-19. A rule to calculate a forecast amount for a specific deal
using a switch statement
switch (dealStage) {

 case LEAD:

 forecastedAmount = amount * 0.2;

 break;

 case EVALUATING:

 forecastedAmount = amount * 0.5;

 break;

 case INTERESTED:

 forecastedAmount = amount * 0.8;

 break;

 case CLOSED:

 forecastedAmount = amount;

 break;

}

Note all the break statements in the code in Example 5-19. The break
statement ensures that the next block in the switch statement is not
executed. If you forget the break by accident, then the code still compiles
and you get what’s called a fall-through behavior. In other words, the next
block is executed and this can lead to subtle bugs. Since Java 12 (using the
language feature preview mode) you can rewrite this to avoid the fall-
through behavior and multiple breaks by using a different syntax for
switch. switch can now be used as an expression, as illustrated in
Example 5-20.

Example 5-20. Switch expression with no fall-through behavior
var forecastedAmount = amount * switch (dealStage) {

 case LEAD -> 0.2;

 case EVALUATING -> 0.5;

 case INTERESTED -> 0.8;

 case CLOSED -> 1;

}

Another benefit of this enhanced switch form, besides increased readability,
is exhaustiveness. This means that when you use switch with an enum, the

Java compiler checks that for all enum values there’s a corresponding
switch label. For example, if you forget to handle the CLOSED case, the Java
compiler would produce the following error:

error: the switch expression does not cover all possible input values.

You can rewrite the overall action using a switch expression as shown in
Example 5-21.

Example 5-21. A rule to calculate a forecast amount for a specific deal
businessRuleEngine.addAction(facts -> {

 var dealStage = Stage.valueOf(facts.getFact("stage"));

 var amount = Double.parseDouble(facts.getFact("amount"));

 var forecastedAmount = amount * switch (dealStage) {

 case LEAD -> 0.2;

 case EVALUATING -> 0.5;

 case INTERESTED -> 0.8;

 case CLOSED -> 1;

 }

 facts.addFact("forecastedAmount", String.valueOf(forecastedAmount));

});

Interface Segregation Principle
We would now like to develop an inspector tool that allows users of the
Business Rules Engine to inspect the status of possible actions and
conditions. For example, we would like to evaluate each action and
associated condition in order to log them without actually performing the
action. How do we go about this? The current Action interface is not
sufficient because it doesn’t separate the code performed versus the
condition that triggers that code. At the moment there’s no way to separate
out the condition from the action code. To make up for this, we could
introduce an enhanced Action interface that has a built-in functionality for
evaluating the condition. For example, we could create an interface
ConditionalAction that includes a new method evaluate() as shown in
Example 5-22.

Example 5-22. ConditionalAction interface

public interface ConditionalAction {

 boolean evaluate(Facts facts);

 void perform(Facts facts);

}

We can now implement a basic Inspector class that takes a list of
ConditionalAction objects and evaluates them based on some facts, as
shown in Example 5-23. The Inspector returns a list of reports that
captures the facts, the conditional action, and the result. The
implementation for the Report class is shown in Example 5-24.

Example 5-23. An Inspector of conditions
public class Inspector {

 private final List<ConditionalAction> conditionalActionList;

 public Inspector(final ConditionalAction...conditionalActions) {

 this.conditionalActionList = Arrays.asList(conditionalActions);

 }

 public List<Report> inspect(final Facts facts) {

 final List<Report> reportList = new ArrayList<>();

 for (ConditionalAction conditionalAction : conditionalActionList) {

 final boolean conditionResult = conditionalAction.evaluate(facts);

 reportList.add(new Report(facts, conditionalAction,

conditionResult));

 }

 return reportList;

 }

}

Example 5-24. The Report class
public class Report {

 private final ConditionalAction conditionalAction;

 private final Facts facts;

 private final boolean isPositive;

 public Report(final Facts facts,

 final ConditionalAction conditionalAction,

 final boolean isPositive) {

 this.facts = facts;

 this.conditionalAction = conditionalAction;

 this.isPositive = isPositive;

 }

 public ConditionalAction getConditionalAction() {

 return conditionalAction;

 }

 public Facts getFacts() {

 return facts;

 }

 public boolean isPositive() {

 return isPositive;

 }

 @Override

 public String toString() {

 return "Report{" +

 "conditionalAction=" + conditionalAction +

 ", facts=" + facts +

 ", result=" + isPositive +

 '}';

 }

}

How would we go about testing the Inspector? You may start by writing a
simple unit test as shown in Example 5-25. This test highlights a
fundamental issue with our current design. In fact, the ConditionalAction
interface breaks the Interface Segregation Principle (ISP).

Example 5-25. Highlighting ISP violation
public class InspectorTest {

 @Test

 public void inspectOneConditionEvaluatesTrue() {

 final Facts facts = new Facts();

 facts.setFact("jobTitle", "CEO");

 final ConditionalAction conditionalAction = new JobTitleCondition();

 final Inspector inspector = new Inspector(conditionalAction);

 final List<Report> reportList = inspector.inspect(facts);

 assertEquals(1, reportList.size());

 assertEquals(true, reportList.get(0).isPositive());

 }

 private static class JobTitleCondition implements ConditionalAction {

 @Override

 public void perform(Facts facts) {

 throw new UnsupportedOperationException();

 }

 @Override

 public boolean evaluate(Facts facts) {

 return "CEO".equals(facts.getFact("jobTitle"));

 }

 }

}

What is the Interface Segregation Principle? You may notice that the
implementation of the perform method is empty. In fact, it throws an
UnsupportedOperationException. This is a situation where you are
coupled to an interface (ConditionalAction) that provides more than what
you need. In this case, we just want a way to model a condition—something
that evaluates to either true or false. Nonetheless, we are forced to depend
on the perform() method because it is part of the interface.

This general idea is the foundation of the Interface Segregation Principle. It
makes the case that no class should be forced to depend on methods it does
not use because this introduces unnecessary coupling. In Chapter 2, you
learned about another principle, the Single Responsibility Principle (SRP),
which promotes high cohesion. The SRP is a general design guideline that a
class has responsibility over a single functionality and there should be only
one reason for it to change. Although the ISP may sound like the same idea,
it takes a different view. The ISP focuses on the user of an interface rather
than its design. In other words, if an interface ends up very large, it may be
that the user of that interface sees some behaviors it doesn’t care for, which
causes unnecessary coupling.

To provide a solution that meets the Interface Segregation Principle, we are
encouraged to separate out concepts in smaller interface that can evolve
separately. This idea essentially promotes higher cohesion. Separating out
interfaces also provides an opportunity for introducing names that are closer
to the domain at hand, such as Condition and Action, which we explore in
the next section.

Designing a Fluent API
So far we’ve provided a way for our users to add actions with complex
conditions. These conditions were created using the enhanced switch
statement. However, for business users the syntax isn’t as friendly as it
could be to specify simple conditions. We’d like to allow them to add rules
(a condition and an action) in a way that matches their domain and is
simpler to specify. In this section, you will learn about the Builder pattern
and how to develop your own Fluent API to address this problem.

What Is a Fluent API?
A Fluent API is an API that is explicitly tailored for a specific domain so
that you can solve a specific problem more intuitively. It also embraces the
idea of chaining method calls to specify a more complex operation. There
are several high-profile Fluent APIs you may be already familiar with:

The Java Streams API allows you to specify data processing
queries in a way that reads more like the problem you need to
solve.

Spring Integration offers a Java API to specify enterprise
integration patterns using a vocabulary close to the domain of
enterprise integration patterns.

jOOQ offers a library to interact with different databases using an
intuitive API.

Modeling the Domain
So what is it that we want to simply for our business users? We’d like to
help them specify a simple combination of “when some condition holds,”
“then do something” as a rule. There are three concepts in this domain:

Condition

A condition applied on certain facts that will evaluate to either true or
false.

https://oreil.ly/549wN
https://oreil.ly/rMIMD
https://www.jooq.org/

Action

A specific set of operations or code to execute.

Rule

This is a condition and an action together. The action only runs if the
condition is true.

Now that we’ve defined the concepts in the domain, we translate it into
Java! Let’s first define the Condition interface and reuse our existing
Action interface as shown in Example 5-26. Note that we could have also
used the java.util.function.Predicate interface available since Java 8,
but the name Condition better represents our domain.

NOTE
Names are very important in programming because good names help you understand the
problem that your code is solving. Names are in many cases more important than the
“shape” of the interface (in terms of its parameters and return types), because the names
convey contextual information to humans reading the code.

Example 5-26. The Condition interface
@FunctionalInterface

public interface Condition {

 boolean evaluate(Facts facts);

}

Now the remaining question is how to model the concept of a rule? We can
define a interface Rule with an operation perform(). This will allow you to
provide different implementations of a Rule. A suitable default
implementation of this interface is a class DefaultRule, which will hold a
Condition and Action object together with the appropriate logic to
perform a rule as shown in Example 5-27.

Example 5-27. Modeling the concept of a rule

@FunctionalInterface

interface Rule {

 void perform(Facts facts);

}

public class DefaultRule implements Rule {

 private final Condition condition;

 private final Action action;

 public Rule(final Condition condition, final Action action) {

 this.condition = condition;

 this.action = action;

 }

 public void perform(final Facts facts) {

 if(condition.evaluate(facts)){

 action.execute(facts);

 }

 }

}

How do we create new rules using all these different elements? You can see
an example in Example 5-28.

Example 5-28. Building a rule
final Condition condition = (Facts facts) ->

"CEO".equals(facts.getFact("jobTitle"));

final Action action = (Facts facts) -> {

 var name = facts.getFact("name");

 Mailer.sendEmail("sales@company.com", "Relevant customer!!!: " + name);

};

final Rule rule = new DefaultRule(condition, action);

Builder Pattern
However, even though the code uses names that are close to our domain
(Condition, Action, Rule), this code is fairly manual. The user has to
instantiate separate objects and assemble things together. Let’s introduce
what’s called the Builder pattern to improve the process of creating a Rule
object with the appropriate condition and action. The purpose of this pattern
is to allow the creation of an object in a simpler manner. The Builder

pattern essentially deconstructs the parameters of a constructor and instead
provides methods to supply each of the parameters. The benefit of this
approach is that it allows you to declare methods with names that are
suitable to the domain at hand. For example, in our case we’d like to use the
vocabulary when and then. The code in Example 5-29 shows how to set up
the Builder pattern to build a DefaultRule object. We’ve introduced a
method when(), which supplies the condition. The method when() returns
this (i.e., the current instance), which will allow us to chain up further
methods. We’ve also introduced a method then(), which will supply the
action. The method then() also returns this, which allows us to further
chain a method. Finally, the method createRule() is responsible for the
creation of the DefaultRule object.

Example 5-29. Builder pattern for a Rule
public class RuleBuilder {

 private Condition condition;

 private Action action;

 public RuleBuilder when(final Condition condition) {

 this.condition = condition;

 return this;

 }

 public RuleBuilder then(final Action action) {

 this.action = action;

 return this;

 }

 public Rule createRule() {

 return new DefaultRule(condition, action);

 }

}

Using this new class, you can create RuleBuilder and configure a Rule
using the methods when(), then(), and createRule() as shown in
Example 5-30. This idea of chaining methods is a key aspect of designing a
Fluent API.

Example 5-30. Using the RuleBuilder

Rule rule = new RuleBuilder()

 .when(facts -> "CEO".equals(facts.getFact("jobTitle")))

 .then(facts -> {

 var name = facts.getFact("name");

 Mailer.sendEmail("sales@company.com", "Relevant customer: " + name);

 })

 .createRule();

This code looks more like a query and it leverages the domain at hand: the
notion of a rule, when(), and then() as built-in constructs. But it’s not
entirely satisfactory because there are still two awkward constructs the user
of your API will have to encounter:

Instantiate an “empty” RuleBuilder

Call the method createRule()

We can improve this by coming up with a slightly improved API. There are
three possible improvements:

We’ll make the constructor private so that it can not be invoked
explicitly by a user. This means that we will need to come up with
a different entry point for our API.

We can make the method when() static so it’s invoked directly and
essentially short circuits the invocation to the old constructor. In
addition, a static factor method improves discoverability of what’s
the right method to use to set up Rule objects.

The method then() will become responsible for the final creation
of our DefaultRule object.

Example 5-31 shows the improved RuleBuilder.

Example 5-31. Improved RuleBuilder
public class RuleBuilder {

 private final Condition condition;

 private RuleBuilder(final Condition condition) {

 this.condition = condition;

 }

 public static RuleBuilder when(final Condition condition) {

 return new RuleBuilder(condition);

 }

 public Rule then(final Action action) {

 return new DefaultRule(condition, action);

 }

}

You can now simply create rules by starting with the RuleBuilder.when()
method followed by the then() method as shown in Example 5-32.

Example 5-32. Using the improved RuleBuilder
final Rule ruleSendEmailToSalesWhenCEO = RuleBuilder

 .when(facts -> "CEO".equals(facts.getFact("jobTitle")))

 .then(facts -> {

 var name = facts.getFact("name");

 Mailer.sendEmail("sales@company.com", "Relevant customer!!!: " +

name);

 });

Now that we’ve refactored the RuleBuilder, we can refactor the Business
Rules Engine to support rules instead of just actions, as shown in
Example 5-33.

Example 5-33. Updated Business Rules Engine
public class BusinessRuleEngine {

 private final List<Rule> rules;

 private final Facts facts;

 public BusinessRuleEngine(final Facts facts) {

 this.facts = facts;

 this.rules = new ArrayList<>();

 }

 public void addRule(final Rule rule) {

 this.rules.add(rule);

 }

 public void run() {

 this.rules.forEach(rule -> rule.perform(facts));

 }

}

Takeaways
The test-driven development philosophy starts with writing some
tests that are going to let you guide the implementation of the code.

Mocking allows you to write unit tests that assert that certain
behaviors are triggered.

Java supports local variable type inferences and switch
expressions.

The Builder pattern helps design a user-friendly API for
instantiating complex objects.

The Interface Segregation Principle helps promote high cohesion
by reducing dependence on unnecessary methods. This is achieved
by breaking up large interfaces into smaller cohesive interfaces so
that users only see what they need.

Iterating on You
If you want to extend and solidify the knowledge from this chapter you
could try one of these activities:

Enhance the Rule and RuleBuilder to support a name and
description.

Enhance the Facts class so the facts can be loaded from a JSON
file.

Enhance the Business Rules Engine to support rules having
multiple conditions.

Enhance the Business Rules Engine to support rules with different
priorities.

Completing the Challenge
Your business is booming and your company has adopted the Business
Rules Engine as part of its workflow! You are now looking for your next
idea and want to put your software development skills to something new
that will help the world rather than just your company. It’s time to jump to
the next chapter—Twootr!

Chapter 6. Twootr

The Challenge
Joe was an excited young chap, keen to tell me all about his new startup
idea. He was on a mission to help people communicate better and faster. He
enjoyed blogging but wondered about how to get people to blog more
frequently in smaller amounts. He was calling it micro-blogging. The big
idea was that if you restricted the size of the messages to 140 characters that
people would post little and often rather than in big messages.

We asked Joe if he felt that this restriction would encourage people to just
post short, pithy statements that didn’t really mean anything. He said
“Yolo!” We asked Joe how he was going to make money. He said “Yolo!”
We asked Joe what he planned to call the product. He said “Twootr!” We
thought it sounded like a cool and original idea, so we decided to help him
build his product.

The Goal
In this chapter you will learn about the big picture of putting a software
application together. A lot of the previous apps in this book were smaller
examples—batch jobs that would run on the command line. Twootr is a
server-side Java application, similar to the kind of application that most
Java developers write.

In this chapter you’ll have the opportunity to learn about a number of
different skills:

How to take a big picture description and break it down into
different architectural concerns

How to use test doubles to isolate and test interactions from
different components within your codebase

How to think outside-in—to go from requirements through to the
core of your application domain

At several places in this chapter we will also talk not only about the final
design of the software, but how we got there. There are a few places where
we show how certain methods iteratively evolved over the development of
the project in response to an expanding list of implemented features. This
will give you a feel for how software projects can evolve in reality, rather
than simply presenting an idealized final design abstract of its thought
process.

Twootr Requirements
The previous applications that you’ve seen in this book are all line-of-
business applications that process data and documents. Twootr, on the other
hand, is a user-facing application. When we talked to Joe about the
requirements for his system, it became apparent that he had refined his
ideas a bit. Each micro-blog from a user would be called a twoot and users
would have a constant stream of twoots. In order to see what other users
were twooting about, you would follow those users.

Joe had brainstormed some different use cases—scenarios in which his
users use the service. This is the functionality that we need to get working
in order to help Joe achieve his goal of helping people communicate better:

Users log in to Twootr with a unique user ID and password.

Each user has a set of other users that they follow.

Users can send a twoot, and any followers who are logged in
should immediately see the twoot.

When users log in they should see all the twoots from their
followers since they last logged in.

Users should be able to delete twoots. Deleted twoots should no
longer be visible to followers.

Users should be able to log in from a mobile phone or a website.

The first step in explaining how we go about implementing a solution fit for
Joe’s needs is to overview and outline the big-picture design choices that
we face.

Design Overview

NOTE
If at any point you want to look at the source code for this chapter, you can look at the
package com.iteratrlearning.shu_book.chapter_06 in the book’s code repository.

If you want to see the project in action, you should run the TwootrServer class from
your IDE and then browser to http://localhost:8000.

If we pick out the last requirement and consider it first then it strikes us
that, in contrast to many of the other systems in this book, we need to build
a system that has many computers communicating together in some way.
This is because our users may be running the software on different
computers—for example, one user may load the Twootr website on their
desktop at home and another may run Twootr on a mobile phone. How will
these different user interfaces talk to each other?

The most common approach taken by software developers trying to
approach this kind of problem is to use the client-server model. In this
approach to developing distributed applications we group our computers
into two main groups. We have clients who request the use of some kind of
service and servers who provide the service in question. So in our case our
clients would be something like a website or a mobile phone application
that provides a UI through which we can communicate with the Twootr
server. The server would process the majority of the business logic and send
and receive twoots to different clients. This is shown in Figure 6-1.

Figure 6-1. Client-server model

It was clear from the requirements and talking to Joe that a key part of this
system working was the ability to immediately view twoots from users you
follow. This means that the user interface would have to have the ability to
receive twoots from the server as well as send them. There are, in big-
picture terms, two different styles of communication that can be used to
achieve this goal: pull-based or push-based.

Pull-Based
In a pull-based communication style the client makes a request to the server
and queries it for information. This style of communication is often called a
point-to-point style or a request-response style of communication. This is a
particularly common communication style, used by most of the web. When
you load a website it will make an HTTP request to some server, pulling the
page’s data. Pull-based communication styles are useful when the client
controls what content to load. For example, if you’re browsing wikipedia
you control which pages you’re interested in reading about or seeing next
and the content responses are sent back to you. This is shown in Figure 6-2.

Figure 6-2. Pull communications

Push-Based
Another approach is a push-based communication style. This could be
referred to as a reactive or event-driven communication approach. In this
model, streams of events are emitted by a publisher and many subscribers
listen to them. So instead of each communication being 1 to 1, they are 1 to
many. This is a really useful model for systems where different components
need to talk in terms of ongoing communication patterns of multiple events.
For example, if you’re designing a stock market exchange then different
companies want to see updated prices, or ticks, constantly rather than
having to make a new request every time they want to see a new tick. This
is shown in Figure 6-3.

Figure 6-3. Push communications

In the case of Twootr, an event-driven communication style seems most
suitable for the application as it mainly consists of ongoing streams of
twoots. The events in this model would be the twoots themselves. We could
definitely still design the application in terms of a request-response
communication style. If we went down this route, however, the client would
have to be regularly polling the server and asking with a request saying,
“Hey, has anyone twooted since my last request?” In an event-driven style
you simply subscribe to your events—i.e., follow another user—and the
server pushes the twoots that you’re interested in to the client.

This choice of an event-driven communication style influences the rest of
the application design from here on in. When we write code that
implements the main class of our application, we’ll be receiving events and
sending them. How to receive and send events determines the patterns
within our code and also how we write tests for our code.

From Events to Design
Having said that, we’re building a client-server application—this chapter
will focus on the server-side component rather than the client component. In
“User Interface” you will see how a client can be developed for this
codebase, and an example client is implemented in the code samples that go
with this book. There are two reasons why we focus on the server-side
component. First, this is a book on how to write software in Java, which is
extensively used on the server side but not so widely on the client side.
Second, the server side is where the business logic lies: the brains of the
application. The client side is a very simple codebase that just needs to bind
a UI to publishing and subscribing events.

Communication
Having established that we want to send and receive events, a common next
step in our design would be to pick some kind of technology to send those
messages to or from our client to our server. There are lots of choices in this
area, and here are a few routes that we could go down:

WebSockets are a modern, lightweight communications protocol to
provide duplex (two-way) communication of events over a TCP
stream. They are often used for event-driven communication
between a web browser and a web server and is supported by
recent browser releases.

Hosted cloud-based message queues such as Amazon Simple
Queue Service are an increasingly popular choice for broadcasting
and receiving events. A message queue is a way of performing

inter-process communication by sending messages that can either
be received by a single process of a group of processes. The benefit
of being a hosted service is that your company doesn’t have to
expend effort on ensuring that they are reliably hosted.

There are many good open source message transports or message
queues, such as Aeron, ZeroMQ, and AMPQ implementations.
Many of these open source projects avoid vendor lock-in, though
they may limit your choice of client to something that can interact
with a message queue. For example, they wouldn’t be appropriate
if your client is a web browser.

That’s far from an exhaustive list, and as you can see different technologies
have different trade-offs and use cases. It might be the case that, for your
own program, you pick one of these technologies. At a later date you decide
that it’s not the right choice and want to pick another. It might be that you
wish to choose different types of communications technologies for different
types of connecting clients. Either way, making that decision at the
beginning of your project and being forced to live with it forever isn’t a
great architectural decision. Later in this chapter we will see how it’s
possible to abstract away this architectural choice to avoid a big-mistake-
up-front architectural decision.

It’s even possibly the case that you may want to combine different
communications approaches; for example, by using different
communications approaches for different types of client. Figure 6-4
visualizes using WebSockets to communicate with a website and Android
push notifications for your Android mobile app.

Figure 6-4. Different communications approaches

GUI
Coupling the choice of UI communications technology or your UI to your
core server-side business logic also has several other disadvantages:

It is difficult and slow to test. Every test would have to test the
system by publishing and subscribing to events running in parallel
with the main server.

It breaks the Single Responsibility Principle that we talked about in
Chapter 2.

It assumes that we’re going to have a UI as our client. At first this
might be a solid assumption for Twootr, but in the glorious future
we might wish to have interactive artificially intelligent chat bots
helping solve user problems. Or twooting cat GIFs at least!

The takeaway from this is that we would be prudent to introduce some kind
of abstraction to decouple the messaging for our UI from the core business
logic. We need an interface through which we can send messages to the
client and an interface through which we can receive messages from the
client.

Persistence

There are similar concerns at the other side of the application. How should
we store the data for Twootr? We have many choices to pick from:

Plain-text files that we can index and search ourselves. It’s easy to
see what has been logged and avoids a dependency on another
application.

A traditional SQL database. It’s well tested and understood, with
strong querying support.

A NoSQL database. There are a variety of different databases here
with differing use cases, query languages, and data storage models.

We don’t really know which to pick at the beginning of our software project
and our needs may evolve over time. We really want to decouple our choice
of storage backend from the rest of our application. There’s a similarity
between these different issues—both are about wanting to avoid coupling
yourself to a specific technology.

The Hexagonal Architecture
In fact, there’s a name for a more general architectural style here that helps
us solve this problem. It’s called the Ports and Adapters or Hexagonal
architecture and was originally introduced by Alister Cockburn. The idea,
shown in Figure 6-5, is that the core of your application is the business
logic that you’re writing, and you want to keep different implementation
choices separate from this core logic.

Whenever you have a technology-specific concern that you want to
decouple from the core of your business logic, you introduce a port. Events
from the outside world arrive at and depart from your business logic core
through a port. An adapter is the technology-specific implementation code
that plugs into the port. For example, we may have a port for publishing and
subscribing to UI events and a WebSocket adapter that talks to a web
browser.

https://oreil.ly/wJO17

Figure 6-5. Hexagonal architecture

There are other components within a system for which you might want to
create a port and adapter abstraction. One thing that might be relevant to an
expanded Twootr implementation is a notification system. Informing users
that they have a lot of twoots they might be interested in logging in and
seeing would be a port. You may wish to implement this with an adapter for
email or text messages.

Another example port that comes to mind is authentication services. You
may wish to start off with an adapter that just stores the usernames and
passwords, later replacing it with an OAuth backend or tying it to some
other system. In the Twootr implementation that this chapter describes we
don’t go so far as to abstract out authentication. This is because our
requirements and initial brainstorming session haven’t come up with a good
reason why we might want different authentication adapters as of yet.

You might be wondering how you separate what should be a port and what
should be part of the core domain. At one extreme you could have hundreds
or even thousands of ports in your application and nearly everything could
be abstracted out of the core domain. At the other extreme you could have
none at all. Where you decide your application should live on this sliding
scale is a matter of personal judgment and circumstance: there are no rules.

A good principle to help you decide might be to think of anything that is
critical to the business problem that you’re solving as living inside the core
of the application and anything that is technology specific or involves
communicating with the outside world as living outside the core
application. That is the principle that we’ve used in this application. So
business logic is part of our core domain, but responsibility for persistence
and event-driven communication with the UI are hidden behind ports.

Where to Begin
We could proceed with outlining the design in more and more detail at this
stage, designing more elaborate diagrams and deciding what functionality
should live in what class. We’ve never found that to be a terribly productive
approach to writing software. It tends to result in lots of assumptions and
design decisions being pushed down into little boxes in an architecture
diagram that turn out to be not so little. Diving straight into coding with no
thought to overall design is unlikely to result in the best software, either.
Software development needs just enough upfront design to avoid it
collapsing into chaos, but architecture without coding enough bits to make
it real can quickly become sterile and unrealistic.

NOTE
The approach of pushing all your design work before you start writing your code is
called Big Design Up Front, or BDUF. BDUF is often contrasted with the Agile, or
iterative, development methodologies that have become more popular over the last 10–
20 years. Since we find iterative approaches to be more effective, we’ve described the
design process over the next couple of sections in an iterative manner.

In the previous chapter you saw an introduction to TDD—test-driven
development—so by now you should be familiar with the fact that it’s a
good idea to start writing our project with a test class, TwootrTest. So let’s
start with a test that our user can log in:
shouldBeAbleToAuthenticateUser(). In this test a user will log in and be

correctly authenticated. A skeleton for this method can be seen in
Example 6-1.

Example 6-1. Skeleton for shouldBeAbleToAuthenticateUser()
@Test

public void shouldBeAbleToAuthenticateUser()

{

 // receive logon message for valid user

 // logon method returns new endpoint.

 // assert that endpoint is valid

}

In order to implement the test we need to create a Twootr class and have a
way of modeling the login event. As a matter of convention in this module
any method that corresponds to an event happening will have the prefix on.
So, for example, we’re going to create a method here called onLogon. But
what is the signature of this method—what information does it need to take
as parameters and what should it reply with?

We’ve already made the architectural decision to separate our UI
communications layer with a port. So here we need to make a decision as to
how to define the API. We need a way of emitting events to a user—for
example, that another user who the user is following has twooted. We also
need a way of receiving events from a given user. In Java we can just use a
method call to represent the events. So whenever a UI adapter wants to
publish an event to Twootr, it will call a method on some object owned by
the core of the system. Whenever Twootr wants to publish an event, it will
call a method on some object owned by the adapter.

But the goal of ports and adapters is that we decouple the core from a
specific adapter implementation. This means we need some way of
abstracting over different adapters—an interface. We could have chosen to
use an abstract class at this point in time. It would have worked, but
interfaces are more flexible because adapter classes can implement more
than one interface. Also by using an interface we’re discouraging our future
selves from the devilish temptation to add some state into the API.

Introducing state in an API is bad because different adapter
implementations may want to represent their internal state in a different
way, so putting state into the API could result in coupling.

We don’t need to use an interface for the object where user events are
published as there will only be a single implementation in the core—we can
just use a regular class. You can see what our approach looks like visually
in Figure 6-6. Of course we need a name, or indeed a pair of names, in
order to represent this API for sending and receiving events. There are lots
of choices here; in practice, anything that made it clear that these were APIs
for sending and receiving events would do well.

We’ve gone with SenderEndPoint for the class that sends events to the
core and ReceiverEndPoint for the interface that receives events from the
core. We could in fact flip the sender and receiver designations around to
work from the perspective of the user or the adapter. This ordering has the
advantage that we’re thinking core first, adapters second.

Figure 6-6. Events to code

Now that we know the route we’re going down we can write the
shouldBeAbleToAuthenticateUser() test. This just needs to test that
when we log on to the system with a valid username that the user logs on.
What does logging on mean here? Well, we want to return a valid
SenderEndPoint object, as that is the object returned to the UI in order to
represent the user who has just logged on. We then need to add a method to
our Twootr class in order to represent the logon event happening and allow
the test to compile. The signature of our implementation is shown in

Example 6-2. Since TDD encourages us to do the minimal implementation
work in order to get a test to pass and then evolve the implementation, we’ll
just instantiate the SenderEndPoint object and return it from our method.

Example 6-2. First onLogon signature
SenderEndPoint onLogon(String userId, ReceiverEndPoint receiver);

Now that we’ve got a nice green bar we need to write another test—
shouldNotAuthenticateUnknownUser(). This will ensure that we don’t
allow a user who we don’t know about to log on to the system. When
writing this test, an interesting issue crops up. How do we model the failure
scenario here? We don’t want to return a SenderEndPoint here, but we do
need a way of indicating to our UI that the logon has failed. One approach
would be to use exceptions, which we described in Chapter 3.

Exceptions could work here, but arguably it’s a bit of an abuse of the
concept. Failing to logon isn’t really an exceptional scenario—it’s a thing
that happens all the time. People typo their username, they typo their
passwords, and they can sometimes even go to the wrong website! An
alternative, and common, approach would be to return the SenderEndPoint
if the logon succeeds, and return null if it fails. This is a flawed approach
for several reasons:

If another developer uses the value without checking that it isn’t
null, they get a NullPointerException. These kinds of bugs are
incredibly common mistakes for Java developers to make.

There is no compile-time support in order to help avoid these kind
of issues. They crop up at runtime.

There is no way to tell from looking at the signature of a method
whether it is deliberately returning a null value to model failure or
whether there’s just a bug in the code.

A better approach that can help here is to use the Optional data type. This
was introduced in Java 8 and models values that may be present or absent.
It’s a generic type and can be thought of a box where a value may or may

not lurk inside—a collection with only one or no values inside. Using
Optional as a return type makes it explicit what happens when the method
fails to return its value—it returns the empty Optional. We’ll talk about
how to create and use the Optional type throughout this chapter. So we
now refactor our onLogon method to have the signature in Example 6-3.

Example 6-3. Second onLogon signature
Optional<SenderEndPoint> onLogon(String userId, ReceiverEndPoint receiver);

We also need to modify the shouldBeAbleToAuthenticateUser() test in
order to ensure that it checks that the Optional value is present. Our next
test is shouldNotAuthenticateUserWithWrongPassword() and is shown
in Example 6-4. This test ensures that the user who is logging in has the
correct password for their logon to work. That means our onLogon()
method needs to not only store the names of our users, but also their
passwords in a Map.

Example 6-4. shouldNotAuthenticateUserWithWrongPassword
 @Test

 public void shouldNotAuthenticateUserWithWrongPassword()

 {

 final Optional<SenderEndPoint> endPoint = twootr.onLogon(

 TestData.USER_ID, "bad password", receiverEndPoint);

 assertFalse(endPoint.isPresent());

 }

A simple approach for storing the data in this case would have been to use a
Map<String, String>, where the key is the user ID and the value is the
password. In reality, though, the concept of a user is important to our
domain. We’ve got stories that refer to users and a lot of the system’s
functionality is related to users talking to each other. It’s time for a User
domain class to be added to our implementation. Our data structure will be
modified to a Map<String, User>, where the key is the user’s ID and the
value is the User object for the user in question.

A common criticism about TDD is that it discourages the design of
software. That it just leads you to write tests and you end up with an

anaemic domain model and have to just rewrite your implementation at
some point. By an anaemic domain model we mean a model where the
domain objects don’t have much business logic and it’s all scattered across
different methods in a procedural style. That’s certainly a fair critique of the
way that TDD can sometimes be practiced. Spotting the right point in time
to add a domain class or make some concept real in code is a subtle thing. If
the concept is something that your user stories are always referring to,
though, you should really have something in your problem domain
representing it.

There are some clear anti-patterns that you can spot, however. For example,
if you’ve built different lookup structures with the same key, that you add to
at the same time but relate to different values, then you’re missing a domain
class. So if we track the set of followers and the password for our user and
we have two Map objects from the user ID, one onto followers and one onto
a password, then there’s a concept in the problem domain missing. We
actually introduced our User class here with only a single value that we
cared about—the password—but an understanding of the problem domain
tells us that users are important so we weren’t being overly premature.

NOTE
From this point onward in the chapter we’ll use the word “user” to represent the generic
concept of a user, and the stylized User to represent the domain class. Similarly, we use
Twootr to refer to the system as a whole, and Twootr to refer to the class that we’re
developing.

Passwords and Security
So far we’ve avoid talking about security at all. In fact, not talking about
security concerns and hoping that they will just go away is the technology
industries’ favorite security strategy. Explaining how to write secure code
isn’t a primary, or even secondary, objective of this book; however, Twootr

does use and store passwords for authentication so it’s worth thinking a
little about this topic.

The simplest approach to storing passwords is to treat them like any other
String, known as storing them plain text. This is bad practice in general as
it means anyone who has access to your database has access to the
passwords of all your users. A malicious person or organization can, and in
many cases has, used plain-text passwords in order to log in to your system
and pretend to be the users. Additionally, many people use the same
password for multiple different services. If you don’t believe us, ask any of
your elderly relatives!

In order to avoid anyone with access to your database just reading the
passwords, you can apply a cryptographic hash function to the password.
This is a function that takes some arbitrarily sized input string and converts
it to some output, called a digest. Cryptographic hash functions are
deterministic, so that if you want to hash the same input again you can get
the same result. This is essential in order to be able to check the hashed
password later. Another key property is that while it should be quick to go
from input to digest, the reverse function should take so long or use so
much memory that it is impractical for an attacker to reverse the digest.

The design of cryptographic hash functions is an active research topic on
which governments and companies spend a lot of money. They are hard to
implement correctly so you should never write your own—Twootr uses an
established Java library called Bouncy Castle. This is open source and has
undergone heavy peer review. Twootr uses the Scrypt hashing function,
which is a modern algorithm specifically designed for storing passwords.
Example 6-5 shows an example of the code.

Example 6-5. KeyGenerator
class KeyGenerator {

 private static final int SCRYPT_COST = 16384;

 private static final int SCRYPT_BLOCK_SIZE = 8;

 private static final int SCRYPT_PARALLELISM = 1;

 private static final int KEY_LENGTH = 20;

 private static final int SALT_LENGTH = 16;

https://www.bouncycastle.org/

 private static final SecureRandom secureRandom = new SecureRandom();

 static byte[] hash(final String password, final byte[] salt) {

 final byte[] passwordBytes = password.getBytes(UTF_16);

 return SCrypt.generate(

 passwordBytes,

 salt,

 SCRYPT_COST,

 SCRYPT_BLOCK_SIZE,

 SCRYPT_PARALLELISM,

 KEY_LENGTH);

 }

 static byte[] newSalt() {

 final byte[] salt = new byte[SALT_LENGTH];

 secureRandom.nextBytes(salt);

 return salt;

 }

}

A problem that many hashing schemes have is that even though they are
very computationally expensive to compute, it may be feasible to compute a
reversal of the hashing function through brute forcing all the keys up to a
certain length or through a rainbow table. In order to guard against this
possibility, we use a salt. Salts are extra randomly generated input that is
added to a cryptographic hashing function. By adding some extra input to
each password that the user wouldn’t enter, but is randomly generated, we
stop someone from being able to create a reverse lookup of the hashing
function. They would need to know the hashing function and the salt.

Now we’ve mentioned a few basic security concepts here around the idea of
storing passwords. In reality, keeping a system secure is an ongoing effort.
Not only do you need to worry about the security of data at rest, but also
data in flight. When someone connects to your server from a client, it needs
to transmit the user’s password over a network connection. If a malicious
attacker intercepts this connection, they could take a copy of the password
and use it to do the most dastardly thing possible in 140 characters!

In the case of Twootr, we receive a login message via WebSockets. This
means that for our application to be secure the WebSocket connection needs

https://oreil.ly/0y6Pc

to be secure against a man-in-the-middle attack. There are several ways to
do this; the most common and simplest is to use Transport Layer Security
(TLS), which is a cryptographic protocol that aims to provide privacy and
data integrity to data sent out over its connection.

Organizations with a mature understanding of security build regular reviews
and analysis into the design of their software. For example, they might
periodically bring in outside consultants or an internal team to attempt to
penetrate a system’s security defenses by playing the role of a attacker.

Followers and Twoots
The next requirement that we need to address is following users. You can
think about designing software in one of two different ways. One of those
approaches, called bottom-up, starts with designing the core of the
application—data storage models or relationships between core domain
objects—works its way up to building the functionality of the system. A
bottom-up way of looking at following between users would be to decide
how to model the relationship between users that following entails. It’s
clearly a many-to-many relationship since each user can have many
followers and a user can follow many other users. You would then proceed
to layer on top of this data model the business functionality that is required
to keep users happy.

The other approach is a top-down approach to software development. This
starts with user requirements or stories and tries to develop the behavior or
functionality needed to implement these stories, slowly driving down to the
concerns of storage or data modeling. For example, we would start with the
API for receiving an event to follow another user and then design whatever
storage mechanism is needed for this behavior, slowly working from API to
business logic to persistence.

It is hard to say that one approach is better in all circumstances and that the
other should always be avoided; however, for the line-of-business type of
applications that Java is very popular for writing our experience is that a
top-down approach works best. This is because the temptation when you

start with data modeling or designing the core domain of your software is
that you can expend unncessary time on features that aren’t necessary for
your software to work. The downside of a top-down approach is that
sometimes as you build out more requirements and stories your initial
design can be unsatisfactory. This means that you need to take a vigilant
and iterative approach to software design, where you constantly improve it
over time.

In this chapter of the book we will show you a top-down approach. This
means that we start with a test to prove out the functionality of following
users, shown in Example 6-6. In this case our UI will be sending us a event
to indicate that a user wants to follow another user, so our test will call the
onFollow method of our end point with the unique ID of the user to follow
as an argument. Of course, this method doesn’t yet exist—so we need to
declare it in the Twootr class in order to get the code to compile.

Modeling Errors
The test in Example 6-6 just covers the golden path of the following
operation, so we need to ensure that the operation has succeeded.

Example 6-6. shouldFollowValidUser
 @Test

 public void shouldFollowValidUser()

 {

 logon();

 final FollowStatus followStatus =

endPoint.onFollow(TestData.OTHER_USER_ID);

 assertEquals(SUCCESS, followStatus);

 }

For now we only have a success scenario, but there are other potential
scenarios to think about. What if the user ID passed as an argument doesn’t
correspond to an actual user? What if the user is already following the user
that they’ve asked to follow? We need a way of modeling the different
results or statuses that this method can return. As with everything in life,

there’s a proliferation of different choices that we can make. Decisions,
decisions, decisions…

One approach would be to throw an exception when the operation returns
and return void when it succeeds. This could be a completely reasonable
choice. It may not fall foul of our idea that exceptions should only be used
for exceptional control flow, in the sense that a well-designed UI would
avoid these scenarios cropping up under normal circumstances. Let’s
consider some alternatives, though, that treat the status like a value, rather
than using exceptions at all.

One simple approach would be using a boolean value—true to indicate
success and false to indicate failure. That’s a fair choice in situations
where an operation can either succeed or fail, and it would only fail for a
single reason. The problem with the boolean approach in situations that
have multiple failure scenarios is that you don’t know why it failed.

Alternatively, we could use simple int constant values to represent each of
the different failure scenarios, but as discussed in Chapter 3 when
introducing the concept of exceptions, this is an error prone, type unsafe,
and poor readability + maintainability approach. There is an alternative here
for statuses that is type safe and offers better documentation: enum types.
An enum is a list of predefined constant alternatives that constitutes a valid
type. So anywhere that you can use an interface or a class you can use
an enum.

But enums are better than int-based status codes in several ways. If a
method returns you an int you don’t necessarily know what values the int
could contain. It’s possible to add javadoc to describe what values it can
take, and it’s possible to define constants (static final fields), but these are
really just lipstick on a pig. Enums can only contain the list of values that
are defined by the enum declaration. Enums in Java can also have instance
fields and methods defined on them in order to add useful functionality,
though we won’t be using that feature in this case. You can see the
declaration of our follower status in Example 6-7.

Example 6-7. FollowStatus
public enum FollowStatus {

 SUCCESS,

 INVALID_USER,

 ALREADY_FOLLOWING

}

Since TDD drives us to write the simplest implementation to get a test
passing, then onFollow method at this point should simply return the
SUCCESS value.

We’ve got a couple of other different scenarios to think about for our
following() operation. Example 6-8 shows the test that drives our
thinking around duplicate users. In order to implement it we need to add a
set of user IDs to our User class to represent the set of users that this user is
following and ensure that the addition of another user isn’t a duplicate. This
is really easy with the Java collections API. There’s already a Set interface
that defines unique elements, and the add method will return false if the
element that you’re trying to add is already a member of the Set.

Example 6-8. shouldNotDuplicateFollowValidUser
 @Test

 public void shouldNotDuplicateFollowValidUser()

 {

 logon();

 endPoint.onFollow(TestData.OTHER_USER_ID);

 final FollowStatus followStatus =

endPoint.onFollow(TestData.OTHER_USER_ID);

 assertEquals(ALREADY_FOLLOWING, followStatus);

 }

The test shouldNotFollowInValidUser() asserts that if the user isn’t
valid, then the result status will indicate that. It follows a similar format to
shouldNotDuplicateFollowValidUser().

Twooting

Now we’ve laid the foundations let’s get to the exciting bit of the product—
twooting! Our user story described how any user could send a twoot and
that any followers who were logged in at that moment in time should
immediately see the twoot. Now realistically we can’t see that users will see
the twoot immediately. Perhaps they’re logged into their computer but
getting a coffee, staring at another social network or, God forbid, doing
some work.

By now you’re probably familiar with the overall approach. We want to
write a test for a scenario where a user who has logged on receives a twoot
from another user who sends the twoot—
shouldReceiveTwootsFromFollowedUser(). In addition to logging on
and following, this test requires a couple of other concepts. First, we need
to model the sending of a twoot, and thus add an onSendTwoot() method to
the SenderEndPoint. This has parameters for the id of the twoot, so that
we can refer back to it later, and also its content.

Second, we need a way of notifying a follower that a user has twooted—
something that we can check has happened in our test. We earlier
introduced the ReceiverEndPoint as a way of publishing messages out to
users, and now is the time to start using it. We’ll add an onTwoot method
resulting in Example 6-9.

Example 6-9. ReceiverEndPoint
public interface ReceiverEndPoint {

 void onTwoot(Twoot twoot);

}

Whatever our UI adapter is will have to send a message to the UI to tell it
that a twoot has happened. But the question is how do write a test that
checks that this onTwoot method has been called?

Creating Mocks
This is where the concept of a mock object comes in handy. A mock object
is a type of object that pretends to be another object. It has the same
methods and public API as the object being mocked and looks to the Java

type system as though it’s another object, but it’s not. Its purpose is to
record any interactions, for example, method calls, and be able to verify that
certain method calls happen. For example, here we want to be able to verify
that the onTwoot() method of ReceiverEndPoint has been called.

NOTE
It might be confusing for people who have a computer science degree reading this book
to hear the word “verify” being used in this way. The mathematics and formal methods
communities tend to use it to mean situations where a property of a system has been
proved for all inputs. Mocking uses the word totally differently. It just means checking
that a method has been invoked with certain arguments. It’s sometimes frustrating when
different groups of people use the same word with overloaded meanings, but often we
just need to be aware of the different contexts that terminology exists within.

Mock objects can be created in a number of ways. The first mock objects
tended to be written by hand; we could in fact hand write a mock
implementation of ReceiverEndPoint here, and Example 6-10 is an
example of one. Whenever the onTwoot method is called we record its
invocation by storing the Twoot parameter in a List, and we can verify that
it has been called with certain arguments by making an assertion that the
List contains the Twoot object.

Example 6-10. MockReceiverEndPoint
public class MockReceiverEndPoint implements ReceiverEndPoint

{

 private final List<Twoot> receivedTwoots = new ArrayList<>();

 @Override

 public void onTwoot(final Twoot twoot)

 {

 receivedTwoots.add(twoot);

 }

 public void verifyOnTwoot(final Twoot twoot)

 {

 assertThat(

 receivedTwoots,

 contains(twoot));

 }

}

In practice, writing mocks by hand can become tedious and error prone.
What do good software engineers do to tedious and error-prone things?
That’s right—they automate them. There are a number of libraries that can
help us by providing ways of creating mock objects for us. The library that
we will use in this project is called Mockito, is freely available, open
source, and commonly used. Most of the operations relating to Mockito can
be invoked using static methods on the Mockito class, which we use here as
static imports. In order to create the mock object you need to use the mock
method, as shown in Example 6-11.

Example 6-11. mockReceiverEndPoint
 private final ReceiverEndPoint receiverEndPoint =

mock(ReceiverEndPoint.class);

Verifying with Mocks
The mock object that has been created here can be used wherever a normal
ReceiverEndPoint implementation is used. We can pass it as a parameter
to the onLogon() method, for example, to wire up the UI adapter. Once the
behavior under test—the when of the test—has happened our test needs to
actually verify that the onTwoot method was invoked (the then). In order to
do this we wrap the mock object using the Mockito.verify() method.
This is a generic method that returns an object of the same type that it is
passed; we simply call the method in question with the arguments that we
expect in order to describe the expected interaction with the mock object, as
shown in Example 6-12.

Example 6-12. verifyReceiverEndPoint
verify(receiverEndPoint).onTwoot(aTwootObject);

Something you may have noticed in the last section is the introduction of
the Twoot class that we used in the signature of the onTwoot method. This
is a value object that will be used to wrap up the values and represent a
Twoot. Since this will be sent to the UI adapter it should just consist of

fields of simple values, rather than exposing too much from the core
domain. For example, in order to represent the sender of the twoot it
contains the id of the sender rather than a reference to their User object.
The Twoot also contains a content String and the id of the Twoot object
itself.

In this system Twoot objects are immutable. As mentioned previously, this
style reduces the scope for bugs. This is especially important in something
like a value object that is being passed to a UI adapter. You really just want
to let your UI adapter display the Twoot, not to alter the state of another
user’s Twoot. It’s also worth noting that we continue to follow domain
language here in naming the class Twoot.

Mocking Libraries
We’re using Mockito in this book because it has nice syntax and fits our
preferred way of writing mocks, but it’s not the only Java mocking
framework. Both Powermock and EasyMock are also popular.

Powermock can emulate Mockito syntax but it allows you to mock things
that Mockito doesn’t support; for example, final classes or static methods.
There is some debate around whether it’s ever a good idea to mock things
like final classes—if you can’t provide a different implementation of the
class in production, then should you really really be doing so in tests? In
general, Powermock usage isn’t encouraged but there can occasionally be
break-glass situations where it is useful.

EasyMock takes a different approach to writing mocks. This is a stylistic
choice and may be preferred by some developers over others. The biggest
conceptual difference is that EasyMock encourages strict mocking. Strict
mocking is the idea that if you don’t explicitly state that an invocation
should occur, then it’s an error to do so. This results in tests that are more
specific about the behavior that a class performs, but that can sometimes
become coupled to irrelevant interactions.

SenderEndPoint
Now these methods like onFollow and onSendTwoot are declared on the
SenderEndPoint class. Each SenderEndPoint instance represents the end
point from which a single user sends events into the core domain. Our
design for Twoot keeps the SenderEndPoint simple—it just wraps up the
main Twootr class and delegates to the methods passing in the User object
for the user that it represents within the system. Example 6-13 shows the
overall declaration of the class and an example of one method
corresponding to one event—onFollow.

Example 6-13. SenderEndPoint
public class SenderEndPoint {

 private final User user;

 private final Twootr twootr;

 SenderEndPoint(final User user, final Twootr twootr) {

 Objects.requireNonNull(user, "user");

 Objects.requireNonNull(twootr, "twootr");

 this.user = user;

 this.twootr = twootr;

 }

 public FollowStatus onFollow(final String userIdToFollow) {

 Objects.requireNonNull(userIdToFollow, "userIdToFollow");

 return twootr.onFollow(user, userIdToFollow);

 }

You might have noticed the java.util.Objects class in Example 6-13.
This is a utility class that ships with the JDK itself and offers convenience
methods for null reference checking and implementation of hashCode()
and equals() methods.

There are alternative designs that we could consider instead of introducing
the SenderEndPoint. We could have received events relating to a user by
just exposing the methods on the Twootr object directly, and expect to have
any UI adapter call those methods directly. This is a subjective issue, like

many parts of software development. Some people would consider creating
the SenderEndPoint as adding unnecessary complexity.

The biggest motivation here is that, as mentioned earlier, we don’t want to
expose the User core domain object to a UI adapter—only talking to them
in terms of simple events. It would have been possible to take a user ID as a
parameter to all the Twootr event methods, but then the first step for every
event would have been looking up the User object from the ID, whereas
here we already have it in the context of the SenderEndPoint. That design
would have removed the concept of the SenderEndPoint, but added more
work and complexity in exchange.

In order to actually send the Twoot we need to evolve our core domain a
little bit. The User object needs to have a set of followers added to it, who
can be notified of the Twoot when it arrives. You can see code for our
onSendTwoot method as it is implemented at this stage in the design in
Example 6-14. This finds the users the who are logged on and tells them to
receive the twoot. If you’re not familiar with the filter and forEach
methods or the :: or -> syntax, don’t worry—these will be covered in
“Functional Programming”.

Example 6-14. onSendTwoot
void onSendTwoot(final String id, final User user, final String content)

{

 final String userId = user.getId();

 final Twoot twoot = new Twoot(id, userId, content);

 user.followers()

 .filter(User::isLoggedOn)

 .forEach(follower -> follower.receiveTwoot(twoot));

}

The User object also needs to implement the receiveTwoot() method.
How does a User receive a twoot? Well, it should notify the UI for the user
that there’s a twoot ready to be displayed by emitting an event, which
entails calling receiverEndPoint.onTwoot(twoot). This is the method
call that we’ve verified the invocation of using mocking code, and calling it
here makes the test pass.

You can see the final iteration of our test in Example 6-15, and this is the
code that you can see if you download the example project from GitHub.
You might notice it looks a bit different than what we’ve so far described.
First, as the tests for receiving twoots have been written, a few operations
have been refactored out into common methods. An example of this is
logon(), which logs our first user onto the system—part of the given
section of many tests. Second, the test also creates a Position object and
passes it to the Twoot, and also verifies the interaction with a
twootRepository. What the heck is a repository? Both of these are
concepts that we’ve not needed so far, but are part of the evolution of the
design of the system and will be explained in the next two sections.

Example 6-15. shouldReceiveTwootsFromFollowedUser
 @Test

 public void shouldReceiveTwootsFromFollowedUser()

 {

 final String id = "1";

 logon();

 endPoint.onFollow(TestData.OTHER_USER_ID);

 final SenderEndPoint otherEndPoint = otherLogon();

 otherEndPoint.onSendTwoot(id, TWOOT);

 verify(twootRepository).add(id, TestData.OTHER_USER_ID, TWOOT);

 verify(receiverEndPoint).onTwoot(new Twoot(id, TestData.OTHER_USER_ID,

TWOOT, new Position(0)));

 }

Positions
You will learn about Position objects very soon, but before presenting
their definition we should meet their motivation. The next the requirement
that we need to get working is that when a user logs in they should see all
the twoots from their followers since they last logged in. This entails
needing to be able to perform some kind of replay of the different twoots,

and know what twoots haven’t been seen when a user logs on. Example 6-
16 shows a test of that functionality.

Example 6-16. shouldReceiveReplayOfTwootsAfterLogoff
 @Test

 public void shouldReceiveReplayOfTwootsAfterLogoff()

 {

 final String id = "1";

 userFollowsOtherUser();

 final SenderEndPoint otherEndPoint = otherLogon();

 otherEndPoint.onSendTwoot(id, TWOOT);

 logon();

 verify(receiverEndPoint).onTwoot(twootAt(id, POSITION_1));

 }

In order to implement this functionality, our system needs to know what
twoots were sent while a user was logged off. There are lots of different
ways that we could think about designing this feature. Different approaches
may have different trade-offs in terms of implementation complexity,
correctness, and performance/scalability. Since we’re just starting out
building Twootr and not expecting many users to begin with, focusing on
scalability issues isn’t our goal here:

We could track the time of every twoot and the time that a user
logs off and search for twoots between those times.

We could think of twoots as a contiguous stream where each twoot
has a position within the stream and record the position when a
user logs off.

We could use positions and record the position of the last seen
twoot.

When considering the different designs we would lean away from ordering
messages by time. It’s the kind of decision that feels like a good idea. Let’s
suppose we store the time unit in terms of milliseconds—what happens if
we receive two twoots within the same time interval? We wouldn’t know

the order between those twoots. What if a twoot is received on the same
millisecond that a user logs off?

Recording the times at which users log off is another problematic event as
well. It might be OK if a user will only ever log off by explicitly clicking a
button. In practice, however, that’s only one of several ways in which they
can stop using our UI. Perhaps they’ll close the web browser without
explicitly logging off, or perhaps their web browser will crash. What
happens if they connect from two web browsers and then log off from one
of them? What happens if their mobile phone runs out of battery or closes
the app?

We decided the safest approach to knowing from where to replay the twoots
was to assign positions to twoots and then store the position up to which
each user has seen. In order to define positions we introduce a small value
object called Position, which is shown in Example 6-17. This class also
has a constant value for the initial position where streams will be before the
stream starts. Since all of our position values will be positive, we could use
any negative integer for the initial position: -1 is chosen here.

Example 6-17. Position
public class Position {

 /**

 * Position before any tweets have been seen

 */

 public static final Position INITIAL_POSITION = new Position(-1);

 private final int value;

 public Position(final int value) {

 this.value = value;

 }

 public int getValue() {

 return value;

 }

 @Override

 public String toString() {

 return "Position{" +

 "value=" + value +

 '}';

 }

 @Override

 public boolean equals(final Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 final Position position = (Position) o;

 return value == position.value;

 }

 @Override

 public int hashCode() {

 return value;

 }

 public Position next() {

 return new Position(value + 1);

 }

}

This class looks a little bit complex, doesn’t it? At this point in your
programming you may ask yourself: Why do I have these equals() and
hashCode() methods defined on it, rather than just let Java handle them for
me? What is a value object? Why am I asking so many questions? Don’t
worry, we have just introduced a new topic and will answer your questions
soon. It is often very convenient to introduce small objects that represent
values that are compounds of fields or give a relevant domain name to some
numeric value. Our Position class is one example; another one might be
the Point class that you see in Example 6-18.

Example 6-18. Point
class Point {

 private final int x;

 private final int y;

 Point(final int x, final int y) {

 this.x = x;

 this.y = y;

 }

 int getX() {

g () {

 return x;

 }

 int getY() {

 return y;

 }

A Point has an x coordinate and a y coordinate, while a Position has just
a value. We’ve defined the fields on the class and the getters for those
fields.

The equals and hashcode Methods
If we want to compare two objects defined like this with the same value,
then we find that they aren’t equal when we want them to be. Example 6-19
shows an example of this; by default, the equals() and hashCode()
methods that you inherit from java.lang.Object are defined to use a
concept of reference equality. This means that if you have two different
objects located in different places in your computer’s memory, then they
aren’t equal—even if all the field values are equal. This can lead to a lot of
subtle bugs in your program.

Example 6-19. Point objects aren’t equal when they should be
final Point p1 = new Point(1, 2);

final Point p2 = new Point(1, 2);

System.out.println(p1 == p2); // prints false

It’s often helpful to think in terms of two different types of objects—
reference objects and value objects—based upon what their notion of
equality is. In Java we can override the equals() method in order to define
our own implementation that uses the fields deemed relevant to value
equality. An example implementation is shown in Example 6-20 for the
Point class. We check that the object that we’re being given is the same
type as this object, and then check each of the fields are equal.

Example 6-20. Point equality definition
 @Override

 public boolean equals(final Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 final Point point = (Point) o;

 if (x != point.x) return false;

 return y == point.y;

 }

 @Override

 public int hashCode() {

 int result = x;

 result = 31 * result + y;

 return result;

 }

final Point p1 = new Point(1, 2);

final Point p2 = new Point(1, 2);

System.out.println(p1.equals(p2)); // prints true

The Contract Between equals and hashCode
In Example 6-20 we not only override the equals() method, but also the
hashCode() method. This is due to the Java equals/hashcode contract. This
states that if we have two objects that are equal according to their equals()
method, they also have to have the same hashCode() result. A number of
core Java APIs make use of the hashCode() method—most notably
collection implementations like HashMap and HashSet. They rely on this
contract holding true, and you will find that they don’t behave as you would
expect if it doesn’t. So how do you correctly implement the hashCode()?

Good hashcode implementations not only follow the contract, but they also
produce hashcode values that are evenly spread throughout the integers.
This helps improve the efficiency of HashMap and HashSet
implementations. In order to achieve both of those goals, the following is a
simple series of rules that if you follow will result in a good hashCode()
implementation:

1. Create a result variable and assign it a prime number.

2. Take each field that is used by the equals() method and compute
an int value to represent the hashcode of the field.

3. Combine the hashcode from the field with the existing result by
multiplying the previous result by a prime number; for example,
result = 41 * result + hashcodeOfField;

In order to calculate the hashcode for each field, you need to differentiate
based upon the type of the field in question:

If the field is a primitive value, use the hashCode() method
provided on its companion class. For example, if it’s a double then
use Double.hashCode().

If it’s a nonnull object, just call its hashCode() method or use 0
otherwise. This can be abbreviated with the
java.lang.Objects.hashCode() method.

If it’s an array, you need to combine the hashCode() values of
each of its elements using the same rules as we’ve described here.
The java.util.Arrays.hashCode() methods can be used to do
this for you.

In most cases you won’t need to actually write the equals() and
hashCode() methods yourself. Modern Java IDEs will generate them for
you. It’s still helpful to understand the principles and reasons behind the
code they generate, though. It’s especially important to be able to review a
pair of equals() and hashCode() methods that you see in code and know
whether they are well or poorly implemented.

NOTE
We’ve talked in this section a little bit about value objects, but a future version of Java is
scheduled to include inline classes. These are being prototyped in Project Valhalla. The
idea behind inline classes is to provide a very efficient way to implement data structures
that look like values. You will still be able to code against them like you can a normal
class, but they will generate correct hashCode() and equals() methods, use up less
memory, and for many use cases be faster to program with.

When implementing this feature we need to associate a Position with
every Twoot, so we add a field to the Twoot class. We also need to record
each user’s last seen Position, so we add a lastSeenPosition to a User.
When a User receives a Twoot they update their position, and when a User
logs on they emit the twoots that the user hasn’t seen. So no new events
need to be added to either the SenderEndPoint or the ReceiverEndPoint.
Replaying twoots also requires that we store the Twoot objects somewhere
—initially, we just use a JDK List. Now our users don’t have to be logged
on to the system all the time in order to enjoy Twootr, which is awesome.

Takeaways
You learned about bigger-picture architectural ideas like
communication styles.

You developed the ability to decouple domain logic from library
and framework choices.

You drove the development of code in this chapter with tests going
outside-in.

You applied object-oriented domain modeling skills to a larger
project.

Iterating on You

https://oreil.ly/muvlT

If you want to extend and solidify the knowledge from this section you
could try one of these activities:

Try the word wrap Kata.

Without reading the next chapter write down a list of things that
need to be implemented in order for Twootr to be complete.

Completing the Challenge
We had a followup meeting with your client Joe and talked about the great
progress that was made with the project. A lot of the core domain
requirements have been covered and we’ve described how the system could
be designed. Of course Twootr isn’t complete at this point. You’ve not
heard about how you wire the application up together so that the different
components can talk to each other. You’ve also not been exposed to our
approach to persist the state of twoots into some kind of storage system that
won’t disappear when Twootr is rebooted.

Joe is really excited by both the progress made and he’s really looking
forward to seeing the finished Twootr implementation. The final chapter
will complete the design of Twootr and cover the remaining topics.

https://oreil.ly/vH2Q5

Chapter 7. Extending Twootr

The Challenge
Previously, on Twootr, Joe had wanted a modern online communication
system to be implemented. The previous chapter presented a potential
design for Twootr and the implementation of the core business domain was
described, including driving out that design through tests. You learned
about some of the design and data modeling decisions involved and how to
break down the initial problem and structure your solution. That didn’t
cover the whole of the Twootr project, so it’s up to this chapter to complete
the narrative.

The Goal
This chapter extends and completes the progress made in the previous
chapter by helping you understand about the following topics:

Avoiding coupling with the Dependency Inversion Principle and
Dependency Injection

Persistence with the Repository pattern and the Query Object
pattern.

A brief introduction to functional programming that will show you
how you can make use of the ideas from this in a Java-specific
context and a real application.

Recap
Since we’re continuing the Twootr project from the previous chapter, it’s
probably worth recapping the key concepts in our design at this point. If

you’re continuing from the previous chapter in a marathon reading session,
then we’re glad you’re enjoying the book, but feel free to skip this section:

Twootr is the parent class that instantiates the business logic and
orchestrates the system.

A Twoot is a single instance of a message broadcast by a user in
our system.

A ReceiverEndPoint is an interface that is implemented by a UI
adapter and pushes Twoot objects out to the UI.

The SenderEndPoint has methods that correspond to events being
sent into the system from a user.

Password management and hashing are performed by the
KeyGenerator class.

Persistence and the Repository Pattern
So we’ve now got a system that can support much of the core twooting
operations. Unfortunately, if we restart the Java process in any way all the
twoots and user information is lost. We need a way of persisting the
information that we’re storing in order to survive a restart. Earlier in the
discussion of software architecture we talked about ports and adapters and
how we would like to keep the core of our application agnostic of the
storage backend. There’s, in fact, a commonly used pattern that helps us do
this: the Repository pattern.

The Repository pattern defines an interface between the domain logic and
storage backend. In addition to allowing us to use a different storage
backend over time as our application evolves, this approach offers several
advantages:

Centralizing logic for mapping data from our storage backend to
the domain model.

Enables unit testing of core business logic without having to spin
up a database. This can speed up the execution of tests.

Improves maintainability and readability by keeping each class
single responsibility.

You can think of a repository as a being like a collection of objects, but
instead of just storing the objects in memory, the repository persists them
somewhere. When evolving the design of our application we drove the
design of the repositories through tests; however, to save time here we will
just describe the final implementation. Since a repository is a collection of
objects we need two of them in Twootr: one to store User objects and one
for Twoot objects. Most repositories have a series of common operations
that are implemented:

add()

Stores a new instance of the object into the repository.

get()

Looks up a single object based on an identifier.

delete()

Deletes an instance from the persistence backend.

update()

Ensures that the values saved for this object are equal to the instance
fields.

Some people use the acronym CRUD to describe these kind of operations.
This stands for Create, Read, Update, and Delete. We’ve used add and get
instead of create and read as the naming is more inline with common Java
usage, for example, in the collections framework.

Designing the Repositories

In our case we’ve designed things top-down and driven the development of
the repositories from tests. The implication of this is that not all the
operations are defined on both repositories. The UserRepository, shown in
Example 7-1, doesn’t have an operation to delete a User. That’s because
there’s no requirement that has actually driven an operation to delete a user.
We asked our customer, Joe, about this and he said “once you Twoot, you
can’t stop!”

When working on your own, you might be tempted to add functionality just
to have the “normal” operations in the repository, but we would strongly
caution against going down that route. Unused code, or dead code as it’s
often known, is a liability. In some sense all code is a liability, but if the
code is actually doing something useful then it has a benefit to your system,
while if it unused it’s merely a liability. As your requirements evolve you
need to refactor and improve your codebase and the more unused code that
you have lying around, the more difficult this task is.

There’s a guiding principle here that we’ve been alluding to throughout the
chapter, but not mentioned until now: YAGNI. This stands for You ain’t
gonna need it. This doesn’t mean don’t introduce abstractions and different
concepts like repositories. It just means don’t write code that you think
you’re going to need in the future—only write it when you actually need it.

Example 7-1. UserRepository
public interface UserRepository extends AutoCloseable {

 boolean add(User user);

 Optional<User> get(String userId);

 void update(User user);

 void clear();

 FollowStatus follow(User follower, User userToFollow);

}

There are also differences between the design of our two repositories due to
the nature of the objects that they are storing. Our Twoot objects are

immutable, so the TwootRepository shown in Example 7-2 doesn’t need to
implement an update() operation.

Example 7-2. TwootRepository
public interface TwootRepository {

 Twoot add(String id, String userId, String content);

 Optional<Twoot> get(String id);

 void delete(Twoot twoot);

 void query(TwootQuery twootQuery, Consumer<Twoot> callback);

 void clear();

}

Normally the add() method in a repository simply takes the object in
question and persists it to the database. In the case of the
TwootRepository, we have taken a different approach. This method takes
some specific parameters and actually creates the object in question. The
motivation behind this approach was that the data source would be the one
to assign the next Position object to the Twoot. We’re delegating the
responsibility of ensuring a unique and ordered object to the data layer that
will have the appropriate tool for creating such a sequence.

Another alternative might have been to take a Twoot object that doesn’t
have a position assigned to it and then have the position field set when
it is added. Now one of the key goals of an object’s constructor should be to
ensure that all the internal state is completely initialized, ideally checked
with final fields. By not assigning the position at object creation time we
would have created an object that wasn’t completely instantiated, breaking
one of our principles around creating objects.

Some implementations of the Repository pattern introduce a generic
interface—for example, something like Example 7-3. In our case this
wouldn’t be appropriate as the TwootRepository doesn’t have an
update() method and the UserRepository doesn’t have a delete()
method. If you want to write code that abstracts over different repositories,

then this might be useful. Trying to avoid forcing different implementations
into the same interface for the sake of it is a key part of designing a good
abstraction.

Example 7-3. AbstractRepository
public interface AbstractRepository<T>

{

 void add(T value);

 Optional<T> get(String id);

 void update(T value);

 void delete(T value);

}

Query Objects
Another key distinction between different repositories is how they support
querying. In the case of Twootr our UserRepository doesn’t need any
querying capability, but when it comes to Twoot objects we need to be able
to look up the twoots to replay when a user logs on. What is the best way to
implement this functionality?

Well, there are several different choices that we could make here. The
simplest is that we could simply try our repository like a pure Java
Collection and have a way of iterating over the different Twoot objects.
The logic to query/filter could then be written in normal Java code. This is
lovely, but potentially quite slow as it requires us to retrieve all the rows
from our data store into our Java application in order to do the querying,
when in reality we may only want a few of them. Often data store backends
such as SQL databases have highly optimized and efficient implementations
of how to query and sort data, and it’s best to leave the querying to them.

Having decided that the repository implementation needs to have the
responsibility for querying the data store we need to decide how best to
expose this through the TwootRepository interface. One choice would
have been to add a method that is tied to our business logic that performs

the querying operation. For example, we could have written something like
the twootsForLogon() method from Example 7-4 that takes the user object
and looks up twoots associated with it. The downside of this is that we’ve
now coupled the specific business logic functionality to our repository
implementation—something that the introduction of our repository
abstraction was designed to avoid. This will make it harder for us to evolve
our implementation in line with requirements as we’ll have to modify the
repository as well as the core domain logic and also breaches the Single
Responsibility Principle.

Example 7-4. twootsForLogon
List<Twoot> twootsForLogon(User user);

What we want to design is something that enables us to harness the power
of a data store’s querying capability without tying the business logic to the
data store in question. We could add a specific method to query the
repository for a given business criteria, as shown by Example 7-5. This
approach is much better than the first two, but can still be refined a little bit.
The problem with hardcoding each query to a given method is that as your
application evolves over time and adds more querying functionality, we add
more and more methods to the Repository interface, bloating it and making
it harder to understand.

Example 7-5. twootsFromUsersAfterPosition
List<Twoot> twootsFromUsersAfterPosition(Set<String> inUsers, Position

lastSeenPosition);

This brings us to the next querying iteration, shown in Example 7-6. Here
we’ve abstracted out the criteria that we query our TwootRepository on
into its own object. Now we can add additional properties to this criteria to
query on without having the number of query methods be a combinatorial
explosion of different properties to query about. The definition of our
TwootQuery object is shown in Example 7-7.

Example 7-6. query
List<Twoot> query(TwootQuery query);

Example 7-7. TwootQuery
public class TwootQuery {

 private Set<String> inUsers;

 private Position lastSeenPosition;

 public Set<String> getInUsers() {

 return inUsers;

 }

 public Position getLastSeenPosition() {

 return lastSeenPosition;

 }

 public TwootQuery inUsers(final Set<String> inUsers) {

 this.inUsers = inUsers;

 return this;

 }

 public TwootQuery inUsers(String... inUsers) {

 return inUsers(new HashSet<>(Arrays.asList(inUsers)));

 }

 public TwootQuery lastSeenPosition(final Position lastSeenPosition) {

 this.lastSeenPosition = lastSeenPosition;

 return this;

 }

 public boolean hasUsers() {

 return inUsers != null && !inUsers.isEmpty();

 }

}

This isn’t the final design approach taken for querying the twoots, though.
By returning a List of objects it means that we need to load into memory
all the Twoot objects that are going to be returned in one go. This isn’t a
terribly good idea when this List may grow to be very large. We may not
want to query all of the objects in one go either. That’s the case here—we
want to push each of the Twoot objects out to our UI without needing to
have them all in memory at one point in time. Some repository

implementations create an object to model the set of results returned. These
objects let you page or iterate through the values.

In this case we’re going to do something simpler: just take a
Consumer<Twoot> callback. That’s a function that the caller is going to pass
in that takes a single argument—a Twoot—and returns void. We can
implement this interface using either a lambda expression or a method
reference. You can see our final approach in Example 7-8.

Example 7-8. query
void query(TwootQuery twootQuery, Consumer<Twoot> callback);

See Example 7-9 to see how you would use this query method. This is how
our onLogon() method calls the query. It takes the user who has logged on,
and uses the set of users that this user is following as the user part of the
query. It then uses the last seen position for that part of the query. The
callback that receives the results of this query is user::receiveTwoot, a
method reference to the function that we described earlier that publishes the
Twoot object to the UI ReceiverEndPoint.

Example 7-9. An example of using the query method
twootRepository.query(

 new TwootQuery()

 .inUsers(user.getFollowing())

 .lastSeenPosition(user.getLastSeenPosition()),

 user::receiveTwoot);

That’s it—that’s our repository interface designed and usable in the core of
the application logic.

There is another feature that some repository implementations use that we
haven’t described here, and that’s the Unit of Work pattern. We don’t use the
Unit of Work pattern in Twootr, but it’s often used in conjunction with the
Repository pattern so its worth mentioning it here. A common thing for
line-of-business applications to do is to have a single operation that
performs many interactions with the data store. For example, you might be
transferring money between two bank accounts and want to remove money
from one back account and add it to the other bank account in the same

operation. You don’t want either of these operations to succeed without the
other one succeeding—you don’t want to put money into the creditor’s
account when there isn’t enough money in the debtor’s account. You also
don’t want to reduce the debtor’s balance without ensuring that you can put
money into the creditor account.

Databases often implement transactions and ACID compliance in order to
enable people to perform these kinds of operations. A transaction is
essentially a group of different database operations that are logically
performed as a single, atomic operation. A Unit of Work is a design pattern
that helps you perform database transactions. Essentially, each operation
that you perform on your repository gets registered with a unit of work
object. Your unit of work object can then delegate to one of more
repositories, wrapping these operations in a transaction.

One thing we haven’t talked about so far is how we actually implement the
repository interfaces that we’ve designed. As with everything else in
software development, there are often different routes we can go down. The
Java ecosystem contains many Object-Relational Mappers (ORMs) that try
to automate the task of this implementation for you. The most popular
ORM is Hibernate. ORMs tend to be a simple approach that can automate
some of the work for you; however, they often end up producing sub-
optimal database querying code and can sometimes introduce more
complexity than they help remove.

In the example project we provide two implementations of each of the
repositories. One of them is a very simple in-memory implementation
suitable for testing that won’t persist the data over restarts. The other
approach uses plain SQL and the JDBC API. We won’t go into much detail
about the implementation as most of it doesn’t illustrate any particularly
interesting Java programming ideas; however, in “Functional
Programming” we will talk about how we use some ideas from functional
programming in the implementation.

Functional Programming

http://hibernate.org/

Functional programming is a style of computer programming that treats
methods as operating like mathematical functions. This means that it avoids
mutable state and changing data. You can program in this style in any
language, but some programming languages offer features to help make it
easier and better—we call those functional programming languages. Java
isn’t a functional programming language, but in version 8, 20 years after it
was first released, it started to add a number of features that helped make
functional programming in Java a reality. Those features include lambda
expressions, the Streams and Collectors API, and the Optional class. In
this section we’ll talk a little bit about how those functional programming
features can be used and how we use them in Twootr.

There are limits to the level of abstractions that library writers could use in
Java before Java 8. A good example of this was the lack of efficient parallel
operations over large collections of data. Java from 8 onward allows you to
write complex collection-processing algorithms, and simply by changing a
single method call you can efficiently execute this code on multicore CPUs.
In order to enable writing of these kinds of bulk data parallel libraries,
however, Java needed a new language change: lambda expressions.

Of course there’s a cost, in that you must learn to write and read lambda-
enabled code, but it’s a good trade-off. It’s easier for programmers to learn a
small amount of new syntax and a few new idioms than to have to
handwrite a large quantity of complex thread-safe code. Good libraries and
frameworks have significantly reduced the cost and time associated with
developing enterprise business applications, and any barrier to developing
easy-to-use and efficient libraries should be removed.

Abstraction is a concept that is familiar to anyone who does object-oriented
programming. The difference is that object-oriented programming is mostly
about abstracting over data, while functional programming is mostly about
abstracting over behavior. The real world has both of these things, and so do
our programs, so we can and should learn from both influences.

There are other benefits to this new abstraction as well. For many of us who
aren’t writing performance-critical code all the time, these are more

important wins. You can write easier-to-read code—code that spends time
expressing the intent of its business logic rather than the mechanics of how
it’s achieved. Easier-to-read code is also easier to maintain, more reliable,
and less error-prone than code that is more difficult to read.

Lambda Expressions
We will define a lambda expression as a concise way of describing an
anonymous function. We appreciate that’s quite a lot to take in at once, so
we’re going to explain what lambda expressions are by working through an
example of some existing Java code. Let’s start by taking a interface used to
represent a callback in our codebase: ReceiverEndPoint, shown in
Example 7-10.

Example 7-10. ReceiverEndPoint
public interface ReceiverEndPoint {

 void onTwoot(Twoot twoot);

}

In this example, we’re creating a new object that provides an
implementation of the ReceiverEndPoint interface. This interface has a
single method, onTwoot, which is called by the Twootr object when it is
sending a Twoot object to the UI adapter. The class listed in Example 7-11
provides an implementation of this method. In this case to keep things
simple we’re just printing it out on the command line rather than sending a
serialized version to an actual UI.

Example 7-11. Implementing ReceiverEndPoint with a class
public class PrintingEndPoint implements ReceiverEndPoint {

 @Override

 public void onTwoot(final Twoot twoot) {

 System.out.println(twoot.getSenderId() + ": " + twoot.getContent());

 }

}

NOTE
This is actually an example of behavior parameterization—we’re parameterizing over
the different behaviors to send a message to the UI.

There are seven lines of boilerplate code required in order to call the single
line of actual behavior here. Anonymous inner classes were designed to
make it easier for Java programmers to represent and pass around
behaviors. You can see an example in Example 7-12, which reduces the
boilerplate a bit but they still don’t make it easy enough if you want to
make passing behavior around really easy.

Example 7-12. Implementing ReceiverEndPoint with an anonymous class
 final ReceiverEndPoint anonymousClass = new ReceiverEndPoint() {

 @Override

 public void onTwoot(final Twoot twoot) {

 System.out.println(twoot.getSenderId() + ": " +

twoot.getContent());

 }

 };

Boilerplate isn’t the only issue, though: this code is fairly hard to read
because it obscures the programmer’s intent. We don’t want to pass in an
object; what we really want to do is pass in some behavior. In Java 8 or
later, we would write this code example as a lambda expression, as shown
in Example 7-13.

Example 7-13. Implementing ReceiverEndPoint with a lambda expression
 final ReceiverEndPoint lambda =

 twoot -> System.out.println(twoot.getSenderId() + ": " +

twoot.getContent());

Instead of passing in an object that implements an interface, we’re passing
in a block of code—a function without a name. twoot is the name of a
parameter, the same parameter as in the anonymous inner class example. ->
separates the parameter from the body of the lambda expression, which is
just some code that is run when the twoot gets published.

Another difference between this example and the anonymous inner class is
how we declare the variable event. Previously, we needed to explicitly
provide its type: Twoot twoot. In this example, we haven’t provided the
type at all, yet this example still compiles. What is happening under the
hood is that javac is inferring the type of the variable event from it’s context
—here, from the signature of onTwoot. What this means is that you don’t
need to explicitly write out the type when it’s obvious.

NOTE
Although lambda method parameters require less boilerplate code than was needed
previously, they are still statically typed. For the sake of readability and familiarity, you
have the option to include the type declarations, and sometimes the compiler just can’t
work it out!

Method References
A common idiom you may have noticed is the creation of a lambda
expression that calls a method on its parameter. If we want a lambda
expression that gets the content of a Twoot, we would write something like
Example 7-14.

Example 7-14. Get the content of a twoot
twoot -> twoot.getContent()

This is such a common idiom that there’s actually an abbreviated syntax for
this that lets you reuse an existing method, called a method reference. If we
were to write the previous lambda expression using a method reference, it
would look like Example 7-15.

Example 7-15. A method reference
Twoot::getContent

The standard form is Classname::methodName. Remember that even
though it’s a method, you don’t need to use brackets because you’re not
actually calling the method. You’re providing the equivalent of a lambda

expression that can be called in order to call the method. You can use
method references in the same places as lambda expressions.

You can also call constructors using the same abbreviated syntax. If you
were to use a lambda expression to create a SenderEndPoint, you might
write Example 7-16.

Example 7-16. Lambda to create a new SenderEndPoint
(user, twootr) -> new SenderEndPoint(user, twootr)

You can also write this using method references, as shown in Example 7-17.

Example 7-17. Method reference to create a new SenderEndPoint
SenderEndPoint::new

This code is not only shorter, but also a lot easier to read.
SenderEndPoint::new immediately tells you that you’re creating a new
SenderEndPoint without your having to scan the whole line of code.
Another thing to notice here is that method references automatically support
multiple parameters, as long as you have the right functional interface.

When we were first exploring the Java 8 changes, a friend of ours said that
method references “feel like cheating.” What he meant was that, having
looked at how we can use lambda expressions to pass code around as if it
were data, it felt like cheating to be able to reference a method directly.

In fact, method references are really making the concept of first-class
functions explicit. This is the idea that we can pass behavior around and
treat it like another value. For example, we can compose functions together.

Execute Around
The Execute Around pattern is a common functional design pattern. You
may encounter a situation where you have common initialization and
cleanup code that you always want to do, but parameterize different
business logic that runs within the initialization and cleanup code. An
example of the general pattern is shown in Figure 7-1. There are a number
of example situations in which you can use execute around, for example:

Files

Open a file before you use it, and close it when you’ve finished using
the file. You may also want to log an exception when something goes
wrong. The parameterized code can read from or write to the file.

Locks

Acquire a lock before your critical section, release the lock after your
critical section. The parameterized code is the critical section.

Database connections

Open a connection to a database upon initialization, close it when
finished. This is often even more useful if you pool your database
connections as it also allows your open logic to also retrieve the
connection from your pool.

Figure 7-1. Execute Around pattern

Because the initialization and cleanup logic is being used in many places, it
is possible to get into a situation where this logic is duplicated. This means
that if you want to modify this common initialization or cleanup code, then
you will have to modify multiple different parts of your application. It also
exposes the risk that these different code snippets could become
inconsistent, introducing potential bugs into your application.

The Execute Around pattern solves this problem by extracting a common
method that defines both the initialization and cleanup code. This method
takes a parameter containing the behavior that differs between use cases of
the same overall pattern. The parameter will use an interface to enable it to

be implemented by different blocks of code, usually using lambda
expressions.

Example 7-18 shows a concrete example of an extract method. This is
used within Twootr in order to run SQL statements against the database. It
creates a prepared statement object for a given SQL statement and and then
runs our extractor behavior on the statement. The extractor is just a
callback that extracts a result, i.e., reads some data from the database, using
the PreparedStatement.

Example 7-18. Use of the Execute Around pattern in the extract method
 <R> R extract(final String sql, final Extractor<R> extractor) {

 try (var stmt = conn.prepareStatement(sql,

Statement.RETURN_GENERATED_KEYS)) {

 stmt.clearParameters();

 return extractor.run(stmt);

 } catch (SQLException e) {

 throw new IllegalStateException(e);

 }

 }

Streams
The most important functional programming features in Java are focused
around the Collections API and Streams. Streams allow us to write
collections-processing code at a higher level of abstraction than we would
be able to do with loops. The Stream interface contains a series of functions
that we’ll explore throughout this chapter, each of which corresponds to a
common operation that you might perform on a Collection.

map()

If you’ve got a function that converts a value of one type into another,
map() lets you apply this function to a stream of values, producing another
stream of the new values.

You may very well have been doing some kind of map operations for years
already with for loops. In our DatabaseTwootRepository we’ve built up a
tuple to be used in a query String containing all the id values of the

different users whom a user is following. Each id value is a quoted String
and the whole tuple is surrounded by brackets. For example, if they
followed users with IDs "richardwarburto" and "raoulUK" we would
produce a tuple String of "(richardwarburto,raoulOK)". In order to
generate this tuple you would use a mapping pattern, transforming each id
into "id" and then adding them into a List. The String.join() method
can then be used to join them with commas between. Example 7-19 is code
written in this style.

Example 7-19. Building a user tuple with a for loop
 private String usersTupleLoop(final Set<String> following) {

 List<String> quotedIds = new ArrayList<>();

 for (String id : following) {

 quotedIds.add("'" + id + "'");

 }

 return '(' + String.join(",", quotedIds) + ')';

 }

map() is one of the most commonly used Stream operations. Example 7-20
is the same example of building up the user tuple but using map(). It also
takes advantage of the joining() collector, which allows us to join the
elements in the Stream together into a String.

Example 7-20. Building a user tuple using map
 private String usersTuple(final Set<String> following) {

 return following

 .stream()

 .map(id -> "'" + id + "'")

 .collect(Collectors.joining(",", "(", ")"));

 }

The lambda expression passed into map() both takes a String as its only
argument and returns a String. It isn’t necessary for both the argument and
the result to be the same type, but the lambda expression passed in must be
an instance of Function. This is a generic functional interface with only
one argument.

forEach()

The forEach() operation is useful when you want to perform a side effect
for each value in the Stream. For example, suppose you want to print out
the name of a user or save each transaction in your stream to a database.
forEach() takes a single argument—a Consumer callback executed that
gets invoked with every element in the stream as an argument.

filter()

Any time you’re looping over some data and checking each element with an
if statement, you might want to think about using the Stream.filter()
method.

For example, the InMemoryTwootRepository needs to query the different
Twoot objects in order to find twoots that meet its TwootQuery.
Specifically, that the position is after the last seen position and that user is
being followed. An example of this being written in for loop style is shown
in Example 7-21.

Example 7-21. Looping over twoots and using an if statement
 public void queryLoop(final TwootQuery twootQuery, final Consumer<Twoot>

callback) {

 if (!twootQuery.hasUsers()) {

 return;

 }

 var lastSeenPosition = twootQuery.getLastSeenPosition();

 var inUsers = twootQuery.getInUsers();

 for (Twoot twoot : twoots) {

 if (inUsers.contains(twoot.getSenderId()) &&

 twoot.isAfter(lastSeenPosition)) {

 callback.accept(twoot);

 }

 }

 }

You have probably written some code that looks like this: it’s called the
filter pattern. The central idea of filter is to retain some elements of the
Stream, while throwing others out. Example 7-22 shows how you would
write the same code in a functional style.

Example 7-22. Functional style
 @Override

 public void query(final TwootQuery twootQuery, final Consumer<Twoot>

callback) {

 if (!twootQuery.hasUsers()) {

 return;

 }

 var lastSeenPosition = twootQuery.getLastSeenPosition();

 var inUsers = twootQuery.getInUsers();

 twoots

 .stream()

 .filter(twoot -> inUsers.contains(twoot.getSenderId()))

 .filter(twoot -> twoot.isAfter(lastSeenPosition))

 .forEach(callback);

 }

Much like map(), filter() is a method that takes just a single function as
an argument—here we’re using a lambda expression. This function does the
same job that the expression in the if statement did earlier. Here, it returns
true if the String starts with a digit. If you’re refactoring legacy code, the
presence of an if statement in the middle of a for loop is a pretty strong
indicator that you really want to use filter. Because this function is doing
the same job as the if statement, it must return either true or false for a
given value. The Stream after the filter has the elements of the Stream
beforehand, which evaluated to true.

reduce()

reduce is a pattern that will also be familiar to anyone who has used loops
to operate on collections. It’s the kind of code that you write when you want
to collapse down an entire list of values into a single value—for example,
finding the sum of all the values of different transactions. The general
pattern that you would see with reduction when writing a loop is shown in
Example 7-23. Use the reduce operation when you’ve got a collection of
values and you want to generate a single result.

Example 7-23. The reduce pattern

Object accumulator = initialValue;

for (Object element : collection) {

 accumulator = combine(accumulator, element);

}

An accumulator gets pushed through the body of the loop, with the final
value of the accumulator being the value that we were trying to compute.
The accumulator starts with an initialValue and then gets combined
together with each element of the list by calling the combine operation.

The things that differ between implementations of this pattern are the
initialValue and the combining function. In the original example, we
used the first element in the list as our initialValue, but it doesn’t have to
be. In order to find the shortest value in a list, our combine would return the
shorter track of out of the current element and the accumulator. We’ll now
take a look at how this general pattern can be codified by an operation in
the Streams API itself.

Let’s demonstrate the reduce operation by adding a feature that combines
together different twoots into one large twoot. The operation will have a list
of Twoot objects, the sender of the Twoot, and its id provided as arguments.
It will need to combine together the different content value and return the
highest position of the twoots being combined. The overall code is
demonstrated in Example 7-24.

We start with a new Twoot object created using the id, senderId with
empty content and the lowest possible position—the INITIAL_POSITION.
The reduce then folds together each element with an accumulator,
combining the element to the accumulator at every step. When we reach
the final Stream element, our accumulator has the sum of all the elements.

The lambda expression, known as a reducer, performs the combining and
takes two arguments. acc is the accumulator and holds the previous twoots
that have been combined. It is also passed in the current Twoot in the
Stream. The reducer in our example creates a new Twoot, with the max of
the two positions, the concatenation of their content, and the specified id
and senderId.

Example 7-24. Implementing sum using reduce
 private final BinaryOperator<Position> maxPosition =

maxBy(comparingInt(Position::getValue));

 Twoot combineTwootsBy(final List<Twoot> twoots, final String senderId, final

String newId) {

 return twoots

 .stream()

 .reduce(

 new Twoot(newId, senderId, "", INITIAL_POSITION),

 (acc, twoot) -> new Twoot(

 newId,

 senderId,

 twoot.getContent() + acc.getContent(),

 maxPosition.apply(acc.getPosition(), twoot.getPosition())));

 }

Of course these Stream operations aren’t that interesting on their own. They
become really powerful when you combine them together to form a
pipeline. Example 7-25 shows some code from Twootr.onSendTwoot()
where we send twoots to the followers of a user. The first step is to call the
followers() method, which returns a Stream<User>. We then use the
filter operation to find the users who are actually logged in who we want
to send the twoot to. Then we use the forEach operation to produce the
desired side effect: sending a twoot to a user and recording the result.

Example 7-25. Use of Stream within the onSendTwoot method
 user.followers()

 .filter(User::isLoggedOn)

 .forEach(follower ->

 {

 follower.receiveTwoot(twoot);

 userRepository.update(follower);

 });

Optional
Optional is a core Java library data type, introduced in Java 8, that is
designed to provide a better alternative to null. There’s quite a lot of hatred
for the old null value. Even the man who invented the concept, Tony Hoare,
described it as “my billion-dollar mistake”. That’s the trouble with being an

https://oreil.ly/OaXWj

influential computer scientist—you can make a billion-dollar mistake
without even seeing the billion dollars yourself!

null is often used to represent the absence of a value, and this is the use
case that Optional is replacing. The problem with using null in order to
represent absence is the dreaded NullPointerException. If you refer to a
variable that is null, your code blows up. The goal of Optional is twofold.
First, it encourages the coder to make ap‐ propriate checks as to whether a
variable is absent in order to avoid bugs. Second, it documents values that
are expected to be absent in a class’s API. This makes it easier to see where
the bodies are buried.

Let’s take a look at the API for Optional in order to get a feel for how to
use it. If you want to create an Optional instance from a value, there is a
factory method called of(). The Optional is now a container for this
value, which can be pulled out with get, as shown in Example 7-26.

Example 7-26. Creating an Optional from a value
Optional<String> a = Optional.of("a");

assertEquals("a", a.get());

Because an Optional may also represent an absent value, there’s also a
factory method called empty(), and you can convert a nullable value into
an Optional using the ofNullable() method. You can see both of these
methods in Example 7-27, along with the use of the isPresent() method,
which indicates whether the Optional is holding a value.

Example 7-27. Creating an empty Optional and checking whether it
contains a value
Optional emptyOptional = Optional.empty();

Optional alsoEmpty = Optional.ofNullable(null);

assertFalse(emptyOptional.isPresent());

// a is defined above

assertTrue(a.isPresent());

One approach to using Optional is to guard any call to get() by checking
isPresent()—this is needed because a call to get() can throw a
NoSuchElementException. Unfortunately, this approach isn’t a very good
coding pattern for using Optional. If you use it this way, all you’ve really
done is to replicate the existing patterns for using null—where you would
check if a value isn’t null as a guard.

A neater approach is to call the orElse() method, which provides an
alternative value in case the Optional is empty. If creating an alternative
value is computationally expensive, the orElseGet() method should be
used. This allows you to pass in a Supplier function that is called only if
the Optional is genuinely empty. Both of these methods are demonstrated
in Example 7-28.

Example 7-28. Using orElse() and orElseGet()
assertEquals("b", emptyOptional.orElse("b"));

assertEquals("c", emptyOptional.orElseGet(() -> "c"));

Optional also has a series of methods defined that can be used like the
Stream API; for example, filter(), map(), and ifPresent(). You can
think of these methods applying to the Optional API similarly to the
Stream API, but in this case your Stream can only contain 1 or 0 elements.
So Optional.filter() will retain an element in the Optional if it meets
the criteria and return an empty Optional if the Optional was previously
empty or if the predicate fails to apply. Similarly, map() transforms the
value inside the Optional, but if it’s empty it doesn’t apply the function at
all. That’s what makes these functions safer than using null—they only
operate on the Optional if there’s really something inside of it. ifPresent
is the Optional dual of forEach—it applies a Consumer callback if there’s
a value there, but not otherwise.

You can see an extract of the code from the Twootr.onLogon() method in
Example 7-29. This is an example of how we can put together these
different operations to perform a more complex operation. We start off by
looking up the User from their ID by calling UserRepository.get(),

which returns an Optional. We then validate the user’s password matchers
using filter. We use ifPresent to notify the User of the twoots that
they’ve missed. Finally, we map the User object into a new
SenderEndPoint that is returned from the method.

Example 7-29. Use of Optional within the onLogon method
 var authenticatedUser = userRepository

 .get(userId)

 .filter(userOfSameId ->

 {

 var hashedPassword = KeyGenerator.hash(password,

userOfSameId.getSalt());

 return Arrays.equals(hashedPassword, userOfSameId.getPassword());

 });

 authenticatedUser.ifPresent(user ->

 {

 user.onLogon(receiverEndPoint);

 twootRepository.query(

 new TwootQuery()

 .inUsers(user.getFollowing())

 .lastSeenPosition(user.getLastSeenPosition()),

 user::receiveTwoot);

 userRepository.update(user);

 });

 return authenticatedUser.map(user -> new SenderEndPoint(user, this));

In this section we’ve really only scratched the surface of functional
programming. If you are interested in learning about functional
programming in greater depth, we recommend Java 8 In Action and Java 8
Lambdas.

User Interface
Throughout this chapter we’ve avoided talking too much about the user
interface to this system, because we’re focused on the design of the core
problem domain. That said, it’s worth delving a little into what the example
project delivers as part of its UI just in order to understand how the event
modeling fits together. In our example project we ship a single-page

https://oreil.ly/wGImJ
https://oreil.ly/hDrfH

website that uses JavaScript to implement its dynamic functionality. In
order to keep things simple and not delve too much into the myriad
framework wars, we’ve just used jquery to update the raw HTML page,
but kept a simple separation of concerns in the code.

When you browse to the Twootr web page it connects back to the host using
WebSockets. These were one of the event communication choices discussed
back in “From Events to Design”. All the code for communicating with it
lies in the web_adapter subpackage of chapter_06. The
WebSocketEndPoint class implements the ReceiverEndPoint and also
invokes any needed methods on the SenderEndPoint. For example, when
the ReceiverEndPoint receives and parses a message to follow another
user it invokes the SenderEndPoint.onFollow(), passing the username
through. The returned enum—FollowStatus then gets converted into a
wire format response and written down the WebSocket connection.

All communication between the JavaScript frontend and the server is done
using the JavaScript Object Notation (JSON) standard. JSON was chosen
as it’s very easy for a JavaScript UI to deserialize or serialize.

Within the WebSocketEndPoint we need to map to and from JSON within
Java code. There are many libraries that can be used for this purpose, here
we’ve chosen the Jackson library, which is commonly used and well
maintained. JSON is often used in applications that take a request/response
approach rather than an event-driven approach as well. In our case we
manually extract the fields from the JSON object to keep things simple, but
its also possible to use a higher-level JSON API, such as a binding API.

Dependency Inversion and Dependency
Injection
We’ve talked a lot about decoupling patterns in this chapter. Our overall
application uses the Ports and Adapters pattern and the Repository pattern
to decouple business logic away from implementation details. There is in
fact a large, unifying principle that we can think of when we see these

http://www.json.org/
https://github.com/FasterXML/jackson

patterns—Dependency Inversion. The Dependency Inversion Principle is
the final of our five SOLID patterns that we’ve talked about in this book,
and like the others was introduced by Robert Martin. It states that:

High-level modules should not depend upon low-level modules.
Both should depend upon abstractions.

Abstractions should not depend upon details. Details should
depend upon abstractions.

The principle is called an inversion because in traditional imperative,
structured programming it is often the case that high-level modules
compose down to produce low-level modules. It’s often a side effect of the
top-down design that we talked about in this chapter. You split up a big
problem into different subproblems, write a module to solve each of those
subproblems, and then the main problem (the high-level module) depends
on the subproblems (the low-level modules).

In the design of Twootr we’ve avoided this problem through the
introduction of abstractions. We have a high-level entry point class, called
Twootr, and it doesn’t depend upon the low-level modules such as our
DataUserRepository. It depends upon the abstraction—the
UserRepository interface. We perform the same inversion at the UI port.
Twootr doesn’t depend upon the WebSocketEndPoint—it depends upon
the ReceiverEndPoint. We program to the interface, not the
implementation.

A related term is the concept of Dependency Injection, or DI. To understand
what DI is and why we need it, let’s undertake a thought experiment on our
design. Our architecture has determined that the main Twootr class needs to
depend upon the UserRepository and TwootRepository in order to store
User and Twoot objects. We have defined fields inside Twootr to store
instances of these objects, as shown in Example 7-30. The question is, how
do we instantiate them?

Example 7-30. Dependencies within the Twootr class

public class Twootr

{

 private final TwootRepository twootRepository;

 private final UserRepository userRepository;

The first strategy that we could use for populating the fields is to try and
call constructors using the new keyword, as shown in Example 7-31. Here
we’ve hardcoded the use of the database-based repositories into the
codebase. Now most of the code in the class still programs to the interface,
so we could change the implementation here quite easily without having to
replace all our code, but it’s a bit of a hack. We have to always use the
database repositories, which means our tests for the Twootr class depend
upon the database and run more slowly.

Not only that, but if we want to ship different versions of Twootr to
different customers—for example, an in-house Twootr for enterprise
customers that uses SQL and a cloud-based version that uses a NoSQL
backend—we would have to cut the builds from two different versions of
the codebase. It’s not enough to just define interfaces and separate
implementation—we also have to have a way of wiring up the right
implementation in a way that doesn’t break our abstraction and decoupling
approach.

Example 7-31. Hardcoding the field instantiation
public Twootr()

{

 this.userRepository = new DatabaseUserRepository();

 this.twootRepository = new DatabaseTwootRepository();

}

// How to start Twootr

Twootr twootr = new Twootr();

A commonly used design pattern for instantiating different dependencies is
the Abstract Factory Design pattern. Example 7-32 demonstrates this
pattern, where we have a factory method that we can use to create an
instance of our interface using the getInstance() method. When we want
to set up the right implementations to use, we can call a setInstance().

So, for example, we could use setInstance() in tests to create an in-
memory implementation, in an on-premise installation to use a SQL
database, or in our cloud environment to use a NoSQL database. We’ve
decoupled the implementation from the interface and can call this wiring
code wherever we want.

Example 7-32. Creating the instances with factories
public Twootr()

{

 this.userRepository = UserRepository.getInstance();

 this.twootRepository = TwootRepository.getInstance();

}

// How to start Twootr

UserRepository.setInstance(new DatabaseUserRepository());

TwootRepository.setInstance(new DatabaseTwootRepository());

Twootr twootr = new Twootr();

Unfortunately this factory method approach has its downsides as well. For a
start, we’ve now created a big ball of shared mutable state. Any situation
where we want to run a single JVM with different Twootr instances with
different dependencies isn’t possible. We’ve also coupled together lifetimes
—perhaps we sometimes want to instantiate a new TwootRepository when
we start Twootr, or perhaps we sometimes want to reuse an existing one.
The factory method approach won’t let us directly do this. It can also
become rather complicated to have a factory for every dependency that we
want to create in our application.

This is where Dependency Injection comes in. DI can be thought of as an
example of the Hollywood Agent approach—don’t call us, we’ll call you.
With DI instead of creating dependencies explicitly or using factories to
create them, you simply take a parameter and whatever instantiates your
object has the responsibiltiy for passing in the required dependencies. It
might be a test class’s setup method passing in a mock. It might be the
main() method of your application passing in a SQL database
implementation. An example of this in use with the Twootr class is shown
in Example 7-33. Dependency Inversion is a strategy; Dependency
Injection and the Repository pattern are tactics.

Example 7-33. Creating the instances using Dependency Injection
public Twootr(final UserRepository userRepository, final TwootRepository

twootRepository)

{

 this.userRepository = userRepository;

 this.twootRepository = twootRepository;

}

// How to start Twootr

Twootr twootr = new Twootr(new DatabaseUserRepository(), new

DatabaseTwootRepository());

Taking objects this way not only makes it easier to write tests for your
objects, but it has the advantage of externalizing the creation of the objects
themselves. This allows your application code or a framework to control
when the UserRepository is created and what dependencies are wired into
it. Many developers find it convenient to use DI frameworks, such as
Spring and Guice, that offer many features on top of basic DI. For example,
they define lifecycles for beans that standardize hooks to be called after the
objects are instantiated or before they are destroyed if required. They can
also offer scopes for objects, such as Singleton objects that are only
instantiated once during the lifetime of a process or per-request objects.
Furthermore, these DI frameworks often hook nicely into web development
frameworks such as Dropwizard or Spring Boot and provide a productive
out-of-the-box experience.

Packages and Build Systems
Java allows you to split your codebase into different packages. Throughout
this book we’ve put the code for each chapter into its own package and
Twootr is the first project where we’ve split out multiple subpackages
within the project itself.

Here are the packages can you look at for the different components within
the project:

com.iteratrlearning.shu_book.chapter_06 is the top-level
package for the project.

com.iteratrlearning.shu_book.chapter_06.database

contains the adapter for SQL database persistence.

com.iteratrlearning.shu_book.chapter_06.in_memory

contains the adapter for in-memory persistence.

com.iteratrlearning.shu_book.chapter_06.web_adapter

contains the adapter for the WebSockets-based UI.

Splitting out large projects into different packages can be helpful to
structure code and make it easier for developers to find. Just in the same
way that classes group together related methods and state, packages group
together related classes. Packages should follow similar coupling and
cohesion rules to your classes. Put classes in the same package when
they’re likely to change at the same time and are related to the same
structure. For example, in the Twootr project if we want to alter the SQL
database persistence code we know we go to the database subpackage.

Packages also enable information hiding. We discussed the idea of having a
package-scoped constructor method back in Example 4-3 in order to
prevent objects from being instantiated outside of the package. We can also
have package scoping for classes and methods. This prevents objects
outside of the package from accessing the details of the class and helps us
achieve loose coupling. For example, WebSocketEndPoint is package-
scoped implementation of the ReceiverEndPoint interface that lives in the
web_adapter package. No other code in the project should talk to this class
directly—only through the ReceiverEndPoint interface that acts as the
port.

Our approach of having a package per adapter in Twootr fits nicely with the
hexagonal architectural pattern that we’ve used throughout this module. Not
every application is hexagonal, however, and there are two common
package structures that you may well encounter in other projects.

One very common approach to structuring packages is to structure them by
layer—for example, grouping together all code that generates HTML views
in a website into a views package, and all the code that relates to handling

web requests into a controller package. Despite being popular, this can be
a poor choice of structure as it results in poor coupling and cohesion. If you
want to modify an existing web page to add an additional parameter and
display a value based upon that parameter, you would end up touching the
controller and the view packages, and probably several others as well.

An alternative way of structuring code is to group code by feature. So, for
example, if you were writing an ecommerce site you might have a cart
package for your shopping cart, a product package for code related to
product listings, a payment package code related to taking card payments,
etc. This can often be more cohesive. If you want to add support for
receiving payment by Mastercard as well as Visa, then you would only need
to modify the payment package.

In “Using Maven” we talked about how to set up a basic build structure
using the Maven build tool. In the project structure for this book we have
one Maven project and the different chapters of the book are different Java
packages within that one project. That’s a nice and simple project structure
that will work for a wide range of different software projects, but it’s not the
only one. Both Maven and Gradle offer project structures that build and
output many build artifacts from a single top-level project.

This can make sense if you want to deploy different build artifacts. For
example, suppose you’ve got a client/server project where you want to have
a single build that builds both the client and the server, but the client and the
server are different binaries running on different machines. It’s best not to
overthink or over-modularize build scripts, though.

They’re something that you and your team will be running on your
machines regularly and the highest priority is for them to be simple, fast,
and easy to use. That’s why we went down the route of having one single
project for the entire book, rather than submodule per project.

Limitations and Simplifications

You’ve seen how we implement Twootr and learned about our design
decisions along the way, but does that mean that the Twootr codebase that
we’ve seen so far is the only or the best way to write it? Of course not! In
fact, there are a number of limitations to our approach and simplifications
that we’ve deliberately taken in order to make the codebase explainable in a
single chapter.

For a start we’ve written Twootr as though it will be run on a single thread
and completely ignored the issue of concurrency. In practice we may want
to have multiple threads responding to and emitting events in our Twootr
implementation. That way we can make use of modern multicore CPUs and
serve a larger number customers on one box.

In a bigger-picture sense, we’ve also ignored any kind of failover that
would allow our service to continue to run if the server that it was hosted on
fell over. We’ve also ignored scalability. For example, requiring all our
twoots have a single defined order is something that is easy and efficient to
implement on a single server but would present a serious
scalability/contention bottleneck. Similarly, seeing all the twoots when you
log on would cause a bottleneck as well. What if you go on holiday for a
week and when you log back on you get 20,000 twoots!

Addressing these issues in detail goes beyond the scope of this chapter.
However, these are important topics if you wish to go further with Java, and
we plan to address them in greater detail in future books in this series.

Takeaways
You can now decouple data storage from business logic using the
Repository pattern.

You have seen implementations of two different types of
repositories within this approach.

You were introduced to the ideas of functional programming,
including Java 8 Streams.

You’ve seen how to structure a larger project with different
packages.

Iterating on You
If you want to extend and solidify the knowledge from this section you
could try one of the following activities.

Suppose that we had taken a pull model for Twootr. Instead of having
messages continuously pushed out to a browser-based client over
WebSockets, we had used HTTP to poll for the latest messages since a
position.

Brainstorm how our design would have changed. Try drawing a
diagram of the different classes and how data would flow between
them.

Implement, using TDD, this alternative model for Twootr. You
don’t need to implement the HTTP parts, just the underlying
classes following this model.

Completing the Challenge
We built the product and it worked. Unfortunately, Joe realized when he
launched that someone called Jack had released a similar product, with a
similar name, taking billions in VC funding and with hundreds of millions
of users. Jack only got there first by 11 years; it was bad luck for Joe, really.

Chapter 8. Conclusion

If you’ve read this far, you’ve hopefully enjoyed the book. We enjoyed
writing it as well. In this concluding chapter you’ll learn about where to go
next in your programming career. We’ll offer some advice on how to evolve
your skills and push yourself to the next level in your career as a developer.

Project-Based Structure
The project-based structure of the book was designed to help you
understand software development concepts more easily. You were presented
topics within software projects in order to understand the context of
software engineering decisions. Context is critical in software engineering
—decisions that may be right in one context aren’t so applicable in another.
Many developers overuse and abuse subclassing due to misunderstanding
that it’s a mechanism for code reuse. Hopefully we’ve discouraged that idea
in your mind in Chapter 4.

But you can’t simply hope to read a book and magically become an expert
software developer. It takes practice, experience, and patience. This book is
just here to help optimize and improve the process. That’s why we’ve added
an “Iterating on You” section to each chapter—they offer suggestions as to
how you can take the material in this book further and improve your
understanding.

Iterating on You
As a software developer you probably often approach projects in an
iterative fashion. That’s to say, slice off the highest priority week or two’s
worth of work items, implement them, and then use the feedback in order to
decide on the next set of items. We’ve found that it’s often worth evaluating
the progress of your own skills in the same way.

Taking a regular retrospective on yourself can help you gain focus and
direction should you need it. Agile software development often involves
weekly retrospectives, but you don’t personally need to do it so frequently.
A quarterly or biannual retrospective can be very helpful. One topic we’ve
found useful is to evaluate what skills would help your current or a future
job. In order to ensure that these skills are progressed, it’s helpful to set a
goal for the next quarter. This could be something to learn or something to
improve upon. It doesn’t need to a big goal like learning a whole new
programming language; it could be something simple like picking up a new
testing framework or a couple of design patterns.

We’ve heard pushback from some developers when it comes to skills. A
frequently asked question is “How can I be constantly expected to learn
new technologies, practices, and principles?” It’s not easy and everyone is
busy. They trick is to not worry about trying to learn everything in the
technology industry. That’s a surefire route to madness! Finding key skills
that will serve you over time and build upon your existing skillset is what
helps you become an excellent developer. The key thing is to be always
improving yourself and iterating on you.

Deliberate Practice
While this book has covered a lot of the key concepts and skills that are
needed to be a good developer, it’s important to practice them. Reading
isn’t enough on its own—practice helps you internalize these skills and
apply them yourself. In your day job seeking out situations where different
techniques are appropriate to apply will help. As every pattern described in
the book has places where it works and places where it doesn’t work, so it’s
also helpful to consider situations where a technique isn’t helpful.

Often we think that natural talent and intellect are the most crucial factors to
success, but a lot of research has established that practice and work are the
real the key to success. Books such as Talent is Overrated by Geoff Colvin
(Portfolio, 2008) and Outliers: The Story of Success by Malcolm Gladwell

(Penguin, 2009) evaluate a number of key factors to being successful in
your life, and the most effective of all is deliberate practice.

Deliberate practice is a form of practice that has purpose and is systematic.
Deliberate practice has the goal of trying to improve performance and
requires focus and attention. Often when people practice their skills to
improve them, they just engage in repetition. Doing the same thing over and
over again expecting to get better at it is not the most effective way of doing
things.

One good example of this was when we were exploring and learning the
Eclipse Collections library. In order to understand and learn the library in a
systematic way we stepped through the excellent set of code Katas that
come with the library in question. To ensure that we were getting a really
good understanding, we stepped through the Katas three times. Each time
we started from scratch and compared my solution with the one that we had
done previously, finding cleaner, better, and faster ways of doing them.

The thing is that repeating personal behaviors means that they are
automatic. So if you pick up bad habits during your career, you can end up
teaching them to yourself through practicing on the job. Experience
reinforces habit. Deliberate practice is the way to break out of that cycle.
Deliberate practice may involve practicing new approaches from books
systematically. It may involve taking a small problem that you’ve solved
before and solving it repeatedly with different approaches. It may involve
going on training courses that have exercises that have been designed to
practice. No matter which route you go down, deliberate practice is the key
to honing your skills over time and going beyond what this book covers.

Next Steps and Additional Resources
OK, so hopefully you’re convinced that this book isn’t the end of the road
in terms of learning, but what should you look at next?

Getting involved in open source is a great way to learn more about software
and expand your horizons. Many of the most popular Java open source

https://www.eclipse.org/collections/

projects, like JUnit and Spring are hosted on GitHub. Some projects can be
more welcoming than others but often open source maintainers are
overworked and in need of help on their projects. You could take a look at
the bug tracker and see if there’s anything you can work.

Formal training courses and online learning are another practical and
popular way of improving your skills. Online training courses are
increasingly popular and both Pluralsight and the O’Reilly Learning
Platform have a great selection of Java training courses.

Another fantastic source of information for developers are blogs and
Twitter. Both Richard and Raoul are on Twitter and often post links on
software development. The Programming Reddit often acts as a strong link
aggregator, as does Hacker News. Finally, the training company that the
book authors run (Iteratr Learning) also provides a series of free articles for
anyone to read.

Thank you for reading this book. We appreciate your thoughts and feedback
and wish you the best in your journey as a Java developer.

https://github.com/
http://pluralsight.com/
http://safaribooksonline.com/
http://twitter.com/richardwarburto
https://twitter.com/raouluk
http://reddit.com/r/programming
http://news.ycombinator.com/
http://iteratrlearning.com/articles

Index

Symbols

<> (diamond) operator, Local Variable Type Inference

@FunctionalInterface annotation, Open/Closed Principle

@Test annotation, Defining a test method

expected =+ attribute, Testing Error Cases

@throws Javadoc syntax, Document exceptions

A

abstract classes, Where to Begin

abstract factory design pattern, Dependency Inversion and Dependency
Injection

abstraction, Functional Programming

details and, Dependency Inversion and Dependency Injection

in functional programming, benefits of, Functional Programming

accumulators, reduce()

Action interface, Test Driven Development

mocking and verifying interaction with Action object, Mocking

refactoring so perform method can use Facts object as argument,
Modeling State

actions, Business Rules Engine Requirements, Modeling the Domain

action using facts, Modeling State

action using facts and local variable type inference, Local Variable
Type Inference

adding to business rules engine, Modeling State

testing an Action with facts, Modeling State

adapters, The Hexagonal Architecture

decoupling core from specific adapter implementation, Where to Begin

add method in repositories, Persistence and the Repository Pattern

TwootRepository (example), Designing the Repositories

aggregations

avoiding returning primitive values from, Domain Class or Primitive
Value?

implementing with Streams API, Explicit Versus Implicit API

Agile, or iterative, development methodologies, Where to Begin

iterating on you, Iterating on You

anaemic domain model, Where to Begin

Android push notifications, Communication

anti-cohesion, Too Granular

anti-patterns, Code Maintainability and Anti-Patterns

code duplication, Code Duplication

exposing private state through getters/setters, Behavior Not
Implementation

God class, God Class

in test naming, Test Naming

indicating need for a domain class, Where to Begin

APIs

designing a Fluent API, Designing a Fluent API-Takeaways

explicit vs. implicit API, Explicit Versus Implicit API-Domain Class or
Primitive Value?

for sending and receiving events, Where to Begin

assertAttributeEquals method, Don’t Repeat Yourself

assertion statements, Assert statements

Assert.fail method, Defining a test method

assertAttributeEquals method, Don’t Repeat Yourself

assertEquals method, Assert statements, Good Diagnostics

assertThat method, Good Diagnostics

assertTrue method, Good Diagnostics

summary of, Assert statements

using for testing, Assert statements

AssertionError, Good Diagnostics

attributes

and hierarchical Documents, Attributes and Hierarchical Documents

assertAttributeEquals method, Don’t Repeat Yourself

for importers in document management system, Implementing and
Registering Importers

searching on attributes of a Document, Implementing and Registering
Importers

authentication, The Hexagonal Architecture

failing for unknown users, Where to Begin

testing for Twootr (example), Where to Begin

automated testing, Automated Testing

B

bank statements analyzer (example), The Challenge-Completing the
Challenge

applying single responsibility pattern to code, Single Responsibility
Principle

domain class for bank transactions, Single Responsibility
Principle

extracting parsing logic into a class, Single Responsibility
Principle

processing lists of bank transactions, Single Responsibility
Principle

using the CSV parser, Single Responsibility Principle

calculating sum of all statements, KISS Principle

class-level cohesion in, Class-Level Cohesion-Method-Level Cohesion

decoupling from the parser, Coupling

decoupling interface from implementation, Coupling

enhancing functionalities of, Completing the Challenge

extending, The Challenge-Completing the Challenge

declaring class implementing BankTransactionFilter, Creating an
Instance of a Functional Interface

exception handling, Exception Handling-Try<T>

explicit vs. implicit API for BankTransactionProcessor, Explicit
Versus Implicit API-Domain Class or Primitive Value?

exporting summary statistics in different formats, Multiple
Exporters-Exception Handling

finding transactions in certain month, Open/Closed Principle

finding transactions over certain amount, Open/Closed Principle

implementing BankTransactionFilter using lambda expression,
Lambda Expressions

interface gotchas, Interfaces Gotchas-Too Granular

requirements, Extended Bank Statements Analyzer Requirements

using a build tool, Using a Build Tool-Gradle commands

requirements, Bank Statements Analyzer Requirements

testing CSV parser, Defining a test method

behavior

abstracting over behavior in functional programming, Functional
Programming

test names describing behavior under test, not concepts, Test Naming

testing public behavior, not implementation, Behavior Not
Implementation-Behavior Not Implementation

big design up front (BDUF), Where to Begin

BigDecimal class, Domain Class or Primitive Value?

boolean values indicating success or failure, Modeling Errors

bottom-up approach to software development, Followers and Twoots

Bouncy Castle library, Passwords and Security

break statements in switch statement, Switch Expressions

build tools, Why Use a Build Tool?-Gradle commands, Packages and Build
Systems

benefits of using, Why Use a Build Tool?

using Gradle, Using Gradle-Gradle commands

using Maven, Using Maven-Using Gradle

build.gradle files, Example build file

builder pattern, Builder Pattern-Takeaways

improvements to RuleBuilder, Builder Pattern

using the RuleBuilder, Builder Pattern

business logic, separation from data stores, Query Objects

business rules engine (example), The Challenge-Completing the Challenge

adding conditions, Adding Conditions-Interface Segregation Principle

BusinessRuleEngine with facts, Modeling State

local variable type inference, Local Variable Type Inference

using interface segregation principle, Interface Segregation
Principle

components, Business Rules Engine Requirements

designing a Fluent API, Designing a Fluent API-Takeaways

modeling the domain, Modeling the Domain

updating to support rules, Builder Pattern

using builder pattern for rules, Builder Pattern-Takeaways

production-ready, in Java, Business Rules Engine Requirements

requirements, Business Rules Engine Requirements

test-driven development, Test Driven Development-The TDD Cycle

using mocking for tests, Mocking-Mocking

C

chaining methods in Fluent APIs, Builder Pattern

changes, robustness to, Robustness to changes

checked exceptions, Why Use Exceptions?

choosing between unchecked exceptions and, Deciding between
unchecked and checked

class-level cohesion, Class-Level Cohesion-Method-Level Cohesion

functional, Functional

informational, Informational

logical, Logical

sequential, Sequential

temporal, Temporal

utility, Utility

classes

adapter, Where to Begin

capabilities, Making Importer a Class

changing behavior without modifying code, Open/Closed Principle

class hierarchy for Documents, Attributes and Hierarchical Documents

coupling, Coupling

decoupling, Coupling

exceptions hierarchy in Java, Why Use Exceptions?

inline, in future Java version, The Contract Between equals and
hashCode

modeling real-world objects as, Extending and Reusing Code

single responsibility principle, Single Responsibility Principle

test classes with Test suffix, Defining a test method

client-server model, Design Overview

Cobertura code coverage tool, Code Coverage

code

duplication, Code Duplication, Open/Closed Principle

extending and reusing in document management system, Extending
and Reusing Code-Test Hygiene

maintainability, Code Maintainability and Anti-Patterns, Too Granular

code coverage, Code Coverage

tools in Java for, Code Coverage

cohesion, The Goal, Cohesion-Method-Level Cohesion

class-level, Class-Level Cohesion-Temporal

pros and cons for different levels, Temporal

coupling versus, Coupling

method-level, Method-Level Cohesion

promoted by interface segregation principle, Interface Segregation
Principle

Collectors API, Functional Programming

combine operation, reduce()

comma-separated values (CSV) format, Bank Statements Analyzer
Requirements

concerns in parsing files, Patterns and Anti-Patterns with Exceptions

extracting parsing logic into BankStatementCSVParser class, Single
Responsibility Principle

problems with files, Why Use Exceptions?

communication in Twootr (example), Communication

composition over inheritance principle, The Goal

conditions, Business Rules Engine Requirements, Modeling the Domain

adding to business rules engine, Adding Conditions-Interface
Segregation Principle

local variable type inference, Local Variable Type Inference

modeling state, Modeling State

using interface segregation principle, Interface Segregation
Principle

using switch expressions, Switch Expressions

defining Condition interface for business rules engine, Modeling the
Domain

constants

defining in Java, Implementing and Registering Importers

in enum types, Modeling Errors

in int-based status codes, Modeling Errors

names that can be used in tests, Constants

constructors

package scoped constructor for Document, The Document Class

control flow versus exceptions, Exceptions versus Control flow

coupling, The Goal, Coupling

of UI to core server-side business logic, disadvantages of, GUI

unnecessary, in violation of interface segregation principle, Interface
Segregation Principle

cryptographic hash functions, Passwords and Security

Bouncy Castle Java library for, Passwords and Security

brute forcing reversal of, Passwords and Security

CSVSyntaxException, Deciding between unchecked and checked

D

data access object (DAO) pattern, Informational

data stores, separation from business logic, Query Objects

data types

local variable type inference, Local Variable Type Inference

restricting data use with, The Document Class

static typing in lambda method parameters, Lambda Expressions

strong typing, Importers

types and subtypes in Liskov substitution principle, The Liskov
Substitution Principle (LSP)

dead code, Designing the Repositories

Decision Model and Notation (DMN) standard, Business Rules Engine
Requirements

delete method in repositories, Persistence and the Repository Pattern

deliberate practice, Deliberate Practice

delimiter-separated formats, KISS Principle

dependencies

coupling and, Coupling

decoupling classes, Coupling

managing with a build tool, Why Use a Build Tool?

dependency injection, Dependency Inversion and Dependency Injection

creating Twootr class instances with, Dependency Inversion and
Dependency Injection

frameworks for, Dependency Inversion and Dependency Injection

dependency inversion principle (DIP), SOLID, Dependency Inversion and
Dependency Injection

design

big design up front (BDUF), Where to Begin

bottom-up approach, Followers and Twoots

in Twootr (example), recap of key concepts, Recap

just enough upfront design in software development, Where to Begin

test-driven development discouraging, Where to Begin

top-down approach, Followers and Twoots

diagnostics, good, for failing tests, Good Diagnostics-Good Diagnostics

diamond operator (<>), Local Variable Type Inference

digests, Passwords and Security

discoverability, Open/Closed Principle, Too Granular, The Document Class

Document class hierarchy, defining, Attributes and Hierarchical Documents

document management system (example), The Challenge-Completing the
Challenge

alternative approaches to, Alternative Approaches-Scoping and
Encapsulation Choices

making Importer a class, Making Importer a Class

scoping and encapsulation choices, Scoping and Encapsulation
Choices

design and modeling approaches, Fleshing Out the Design-
Implementing and Registering Importers

attributes and hierarchical Documents, Attributes and
Hierarchical Documents

Document class, The Document Class-The Document Class

implementing and registering Importers, Implementing and
Registering Importers

importers, Importers

extending and reusing code, Extending and Reusing Code-Test
Hygiene

Liskov substitution principle in design of, The Liskov Substitution
Principle (LSP)-The Liskov Substitution Principle (LSP)

requirements, Document Management System Requirements

test hygiene, Test Hygiene-Takeaways

constants, Constants

Don't Repeat Yourself, Don’t Repeat Yourself

good diagnostics for test failures, Good Diagnostics-Good
Diagnostics

testing behavior, not implementation, Behavior Not
Implementation-Behavior Not Implementation

testing error cases, Testing Error Cases

documenting exceptions, Document exceptions

domain classes, Domain Class or Primitive Value?

advantages of using Document class, The Document Class

Notification, Notification Pattern

spotting the right time to add, Where to Begin

using for code reuse in document management system, Extending and
Reusing Code

domain-specific language (DSL), use by Gradle, Using Gradle

domains, Single Responsibility Principle

anaemic domain model, Where to Begin

Fluent APIs, What Is a Fluent API?

modeling in business rules engine, Modeling the Domain

ports versus parts of core domain, The Hexagonal Architecture

using domain terminology in test naming, Test Naming

Don't Repeat Yourself, Don’t Repeat Yourself

double value, wrapping in domain class, Domain Class or Primitive Value?

Drools, Business Rules Engine Requirements

E

EasyMock, Mocking Libraries

Emma code coverage tool, Code Coverage

encapsulation, Code Maintainability and Anti-Patterns

choices in document management system, Scoping and Encapsulation
Choices

enum types, Modeling Errors

FollowStatus in Twootr (example), Modeling Errors

equals method, The equals and hashcode Methods

contract between hashCode method and, The Contract Between equals
and hashCode

Error class, Why Use Exceptions?

errors

modeling in following users in Twootr (example), Modeling Errors

testing error cases in document management system, Testing Error
Cases

events

event-driven communications, Push-Based

from events to design in Twootr (example), From Events to Design-
The Hexagonal Architecture

methods corresponding to, beginning with on, Where to Begin

sending to and receiving from users in Twootr (example), Where to
Begin

Exception class, Why Use Exceptions?

exception handling, Exception Handling-Try<T>

alternatives to exceptions, Alternatives to Exceptions

exceptions hierarchy in Java, Why Use Exceptions?

guidelines for using exceptions, Guidelines for Using Exceptions

patterns and anti-patterns with exceptions, Patterns and Anti-Patterns
with Exceptions-Guidelines for Using Exceptions

choosing between checked and unchecked, Deciding between
unchecked and checked

notification pattern, Notification Pattern

overly apathetic exceptions, Overly apathetic

overly specific exceptions, Overly specific

reasons for using exceptions, Why Use Exceptions?

exceptions

checked and unchecked, Why Use Exceptions?

throwing in failures to follow valid users in Twootr, Modeling Errors

exec plug-in (Maven), Maven commands

execute around pattern, Execute Around

exhaustiveness in switch statement, Switch Expressions

explicit versus implicit API, Explicit Versus Implicit API-Domain Class or
Primitive Value?

exporters, multiple, Multiple Exporters-Exception Handling

F

facts (in business rules engine), Business Rules Engine Requirements

action using facts, Modeling State

action using facts and local variable type inference, Local Variable
Type Inference

BusinessRuleEngine with facts, Modeling State

Facts class, Modeling State

testing an Action with, Modeling State

fall-through behavior, Switch Expressions

File class, Importers

files imported into document management system, representing, Importers

Files.readAllLines method, KISS Principle

filter function, filter()

final keyword

not used with variables declared using var, Local Variable Type
Inference

using with attributes in document management system, Implementing
and Registering Importers

final variables, final Variables

Fluent APIs, designing, Designing a Fluent API-Takeaways

about Fluent APIs, What Is a Fluent API?

modeling the domain, Modeling the Domain

using builder pattern, Builder Pattern-Takeaways

followers, notifying of twoots in Twootr (example), Twooting

for loops, map operations with, map()

forEach function, forEach()

functional cohesion, Functional

pros and cons, Temporal

functional interface, Open/Closed Principle

Action interface, Test Driven Development

creating instance of, Creating an Instance of a Functional Interface

functional programming, Functional Programming-Optional

execute around pattern, Execute Around

features added in Java 8, Functional Programming

lambda expressions, Lambda Expressions-Lambda Expressions

learning more about, Optional

method references, Method References-Method References

Optional type, Optional-Optional

streams, Streams-Optional

functional programming languages, Functional Programming

G

generic Exception, not catching, Do not catch the generic Exception

get method in repositories, Persistence and the Repository Pattern

Given-When-Then formula, Assert statements, Mocking, Verifying with
Mocks

God class, Code Maintainability and Anti-Patterns

God interface, God Interface

Gradle, Using Gradle-Gradle commands

advantages of, Using Gradle

commands, Gradle commands

example build file, Example build file

packages and, Packages and Build Systems

using to run tests, Defining a test method

granularity, too granular interfaces, Too Granular

Groovy programming language, Using Gradle

GUI (graphical user interface) in Twootr (example), GUI

Guice framework, Dependency Inversion and Dependency Injection

H

Hamcrest library, matchers from, Good Diagnostics

hashCode method, The equals and hashcode Methods

contract between equals method and, The Contract Between equals
and hashCode

HashMap class, Document class extending, The Document Class

Hexagonal architecture, The Hexagonal Architecture

Hibernate, Query Objects

high coupling, Coupling

history rule (in LSP), The Liskov Substitution Principle (LSP)

hosted cloud-based message queues, Communication

I

IllegalArgumentException, Overly apathetic

images

importer for in document management system, Implementing and
Registering Importers

importing, test for, Don’t Repeat Yourself

immutability

Document class, The Document Class, The Liskov Substitution
Principle (LSP)

final keyword and, final Variables

implementation-specific exceptions, avoiding, Watch out for
implementation-specific exceptions

implicit versus explicit API, Explicit Versus Implicit API

importers

for files in document management system, Importers, The Document
Class

implementing and registering, Implementing and Registering
Importers

making Importer a class, Making Importer a Class

reusing code across, Extending and Reusing Code

test for importing files, Test Naming

test for importing images, Don’t Repeat Yourself

test for importing letters, Behavior Not Implementation

informational cohesion, Informational

pros and cons, Temporal

inheritance

class-based, Making Importer a Class

favoring composition over inheritance, The Goal

for code reuse in document management system, Extending and
Reusing Code

supertype invariants and, The Liskov Substitution Principle (LSP)

inline classes, The Contract Between equals and hashCode

int-based status codes, Modeling Errors

IntelliJ IDE, using to run tests, Defining a test method

inter-process communication, Communication

interface segregation principle (ISP), SOLID

broken by ConditionalAction interface in business rules engine,
Interface Segregation Principle

single responsibility principle versus, Interface Segregation Principle

interfaces

adapter, Where to Begin

BankTransactionFilter (example), Open/Closed Principle

capabilities, Making Importer a Class

decoupling from implementation, Coupling

Exporter, defining and implementing, Defining and Implementing the
Appropriate Interface-Exception Handling

gotchas, Interfaces Gotchas-Too Granular

God interface, God Interface

too granular, Too Granular

invariants of supertype, preserving in subtype, The Liskov Substitution
Principle (LSP)

is a relationship, Making Importer a Class

isEnd predicate, Extending and Reusing Code

iterative development methodologies, Where to Begin

iterating on you, Iterating on You

J

Jackson library, User Interface

JaCoCo, Code Coverage

Java

business rules engines, production-ready, Business Rules Engine
Requirements

features, Java Features

functional programming features added in Java 8, Functional
Programming

Java Streams API, What Is a Fluent API?

local variable type inference and switch expressions, The Goal

java.io.File class, Importers

java.lang.Object, The equals and hashcode Methods

java.math.BigDecimal, Domain Class or Primitive Value?

java.util.function.Predicate<T> interface, Open/Closed Principle, Modeling
the Domain

java.util.Objects class, SenderEndPoint

java.util.Optional<T>, Optional<T>

jOOQ, library for interacting with databases using intuitive API, What Is a
Fluent API?

JSON, User Interface

JUnit, Testing

creating automated test with, Using JUnit

K

KeyGenerator class, Passwords and Security

KISS principle, KISS Principle, Attributes and Hierarchical Documents

Kotlin programming language, Using Gradle

L

lambda expressions, Lambda Expressions, Functional Programming

examples of use in Twootr (example), Lambda Expressions-Lambda
Expressions

static typing in lambda method parameters, Lambda Expressions

using method references, Method References

using to add action to business rules engine, Modeling State

Liskov substitution principle (LSP), SOLID, The Goal

in document management system design, The Liskov Substitution
Principle (LSP)-The Liskov Substitution Principle (LSP)

local variable type inference, Local Variable Type Inference

logical cohesion, Logical

pros and cons, Temporal

logon

failing for unknown users, Where to Begin

onLogon method, Where to Begin

low coupling, Coupling

LSP (see Liskov substitution principle)

M

man-in-the-middle attacks, securing WebSockets against, Passwords and
Security

map function, map()

maps

Map using local variable type inference, Local Variable Type Inference

of attribute names and associated values, The Document Class

storing user names and passwords in a Map, Where to Begin

matchers, Good Diagnostics

Matchers utility class, hasSize method, Good Diagnostics

Maven, Using Maven-Using Gradle

commands, Maven commands

example build file, Example build file

packages and, Packages and Build Systems

project structure, Project structure

using to run tests, Defining a test method

message queues

hosted, cloud-based, Communication

open source, Communication

method references, Lambda Expressions, Method References-Method
References

method-level cohesion, Method-Level Cohesion

methods

changing behavior without modifying code, Open/Closed Principle

corresponding to events, beginning with on, Where to Begin

mock method, Mocking

mocking, Mocking-Mocking

creating mock object to test calling of onTwoot in Twootr (example),
Creating Mocks

Java libraries for, Mocking Libraries

use of word verify in, Creating Mocks

using Mockito library instead of writing mocks by hand, Creating
Mocks

using to test an Action with facts, Modeling State

verifying with mock objects, Verifying with Mocks

writing mock objects by hand, Creating Mocks

Mockito library, Mocking

using to write mockReceiverEndPoint in Twootr (example), Creating
Mocks

verification logic, Mocking

N

names

naming constants for use in tests, Constants

naming tests, Test Naming

notification pattern, Notification Pattern

null object pattern, The Null Object pattern

NullPointerException, Using null, Where to Begin

nulls

Optional type as alternative to, Optional

returning null for failed logon, Where to Begin

returning null instead of exception, Using null

O

object class, equals and hashCode methods, The equals and hashcode
Methods

object-oriented programming

abstraction, functional programming vs., Functional Programming

modeling real-world objects as classes, Extending and Reusing Code

object-relational mappers (ORMs), Query Objects

Objects class, SenderEndPoint

on prefix for methods, Where to Begin

onFollow method, Followers and Twoots

onLogon method, Where to Begin

refactoring with Optional return type, Where to Begin

storing user names and passwords in a Map, Where to Begin

use of Optional in, Optional

onSendTwoot method, Twooting, SenderEndPoint

onTwoot method, Twooting

verifying calling of with mocks, Verifying with Mocks

open source message transports or message queues, Communication

open/closed principle (OCP), SOLID, The Goal, Open/Closed Principle-
Lambda Expressions

advantages of, Lambda Expressions

flexible findTransactions method using, Open/Closed Principle

Optional type, Where to Begin, Functional Programming, Optional-
Optional

creating empty Optional and checking if it contains a value, Optional

creating Optional instance from a value, Optional

methods defined for use like Stream API, Optional

using orElse and orElseGet methods, Optional

Optional<T> type, Optional<T>

ORMs (object-relational mappers), Query Objects

overly specific exceptions, Overly specific

P

package scope, Scoping and Encapsulation Choices

packages, Packages and Build Systems-Packages and Build Systems

passwords, Where to Begin

storing in Twootr (example), Passwords and Security

Path class, KISS Principle

paths

for imports in document management system, Fleshing Out the Design

String type representing file path, Importers

persistence in Twootr (example), Persistence

and repository pattern, Persistence and the Repository Pattern-Query
Objects

designing the repositories, Designing the Repositories

plain text, passwords stored in, Passwords and Security

Point class, Positions

equals method, The equals and hashcode Methods

Point objects not equal when they should be, The equals and hashcode
Methods

pom.xml files (Maven), Example build file

ports and adapters, The Hexagonal Architecture

ports versus parts of core domain, The Hexagonal Architecture

separating UI communication layer with a port, Where to Begin

positions (in Twootr example), Positions-The Contract Between equals and
hashCode, Designing the Repositories

contract between equals and hashCode methods, The Contract
Between equals and hashCode

defining positions for twoots in Position class, Positions

equals and hashCode methods, The equals and hashcode Methods

Point class, Positions

postconditions, no weakening in subtypes, The Liskov Substitution
Principle (LSP)

Powermock, Mocking Libraries

practices and principles over technology, Starting the Journey

precision in decimal numbers, Domain Class or Primitive Value?

preconditions, not strengthening in subtypes, The Liskov Substitution
Principle (LSP)

primitive values, returned from aggregations, Domain Class or Primitive
Value?

principle of least surprise, Single Responsibility Principle

program comprehension through testing, Program comprehension

Project Valhalla, The Contract Between equals and hashCode

projects

Gradle project structure, Example build file

Maven project structure, Project structure

project-based structure of this book, Project-Based Structure

public modifier

for attributes in document management system, Implementing and
Registering Importers

public scope versus package scope, Scoping and Encapsulation
Choices

using with constructors, The Document Class

pull-based communications, Pull-Based

push-based communications, Push-Based

Q

queries

support for querying in repositories, Query Objects

TwootQuery object (example), Query Objects

R

rainbow table, Passwords and Security

ReceiverEndPoint interface, Where to Begin, Twooting

reduce function, reduce()

implementing sum with, reduce()

reference objects, The equals and hashcode Methods

registering importers, Implementing and Registering Importers

repository pattern, Persistence and the Repository Pattern-Query Objects

common operations implemented in repositories, Persistence and the
Repository Pattern

dependency injection and, Dependency Inversion and Dependency
Injection

designing repositories for Twootr (example), Designing the
Repositories

AbstractRepository, Designing the Repositories

TwootRepository, Designing the Repositories

UserRepository, Designing the Repositories

implementing repositories, choices in, Query Objects

repositories needed in Twootr (example), Persistence and the
Repository Pattern

support for querying in TwootRepository, Query Objects

unit of work pattern, using with, Query Objects

robustness to changes, Robustness to changes

rules, Business Rules Engine Requirements, Modeling the Domain

building a rule in business rules engine, Modeling the Domain

improving the RuleBuilder, Builder Pattern

modeling concept of a rule, Modeling the Domain, Modeling the
Domain

updating BusinessRuleEngine to support rules, Builder Pattern

using builder pattern for a Rule, Builder Pattern

using the RuleBuilder, Builder Pattern

run method, basic implementation, Mocking

RuntimeException class, Why Use Exceptions?

S

salts, Passwords and Security

scope

package vs. public scope for constuctors, The Document Class

scoping choices in document management system, Scoping and
Encapsulation Choices

Scrypt hashing function, Passwords and Security

search

implementing in document management system, Implementing and
Registering Importers

in bank statements analyzer, The Goal-Interfaces Gotchas

security, Passwords and Security

applying cryptographic hash functions to passwords, Passwords and
Security

building regular reviews into software design, Passwords and Security

securing WebSocket connections, Passwords and Security

SenderEndPoint class, Where to Begin, SenderEndPoint

sequential cohesion, Sequential

pros and cons, Temporal

servers, Design Overview

Set interface, Modeling Errors

settings.gradle files, Example build file

single responsibility principle (SRP), SOLID, The Goal, Single
Responsibility Principle-Single Responsibility Principle

interface segregation principle versus, Interface Segregation Principle

software design and architecture, Software Design and Architecture

software development

bottom-up approach, Followers and Twoots

deliberate practice of key concepts and skills, Deliberate Practice

just enough upfront design, Where to Begin

next steps and additional resources, Next Steps and Additional
Resources

top-down approach, Followers and Twoots

SOLID principles, SOLID

(see also listings under individual principle names)

dependency inversion principle (DIP), SOLID, Dependency Inversion
and Dependency Injection

interface segregation principle (ISP), SOLID

Liskov substitution principle (LSP), SOLID, The Liskov Substitution
Principle (LSP)

open/closed principle (OCP), SOLID

single responsibility principle (SRP), SOLID

source code for this book, The Goal

Spring framework, Dependency Inversion and Dependency Injection

Spring integration, What Is a Fluent API?

src/main/java directory, Defining a test method

src/test/java directory, Defining a test method

start index, Extending and Reusing Code

state, modeling in business rules engine, Modeling State

static modifier, Implementing and Registering Importers

streams, Streams-Optional

combining operations to form a pipeline, reduce()

filter function, filter()

forEach function, forEach()

map function, map()

reduce function, reduce()

Streams API, Explicit Versus Implicit API, What Is a Fluent API?,
Functional Programming

strict mocking, Mocking Libraries

strings

query String passed to search method, Implementing and Registering
Importers

String type as Document attributes, Attributes and Hierarchical
Documents

String type as path in document imports, Fleshing Out the Design

strong typing, Importers

using class to model a document, The Document Class

versus Strings as attributes for Document class, Attributes and
Hierarchical Documents

subtypes, The Liskov Substitution Principle (LSP)

no strengthening of preconditions in, The Liskov Substitution Principle
(LSP)

no weakening of postconditions in, The Liskov Substitution Principle
(LSP)

preserving supertype invariants in, The Liskov Substitution Principle
(LSP)

switch statement

break statements in, Switch Expressions

switch expression calculating forecast amount for a deal, Switch
Expressions

switch expressions with no fall-through behavior, Switch Expressions

using for file extensions in document imports, Importers

using switch expressions to add conditions, Switch Expressions

T

temporal cohesion, Temporal

test-driven development (TDD), Fleshing Out the Design, Test Driven
Development-The TDD Cycle

basic tests for business rules engine, The TDD Cycle

benefits of, Why Use TDD?

cycle, The TDD Cycle

discouraging design and leading to anaemic domain model, Where to
Begin

failing tests for business rules engine, The TDD Cycle

in Twootr (example)

logged in users receiving twoots, Twooting

not following duplicate users, Modeling Errors

receiving replay of twoots after logoff, Positions

testing if onTwoot in ReceiverEndPoint has been called,
Twooting

testing receipt of twoots from followed users, SenderEndPoint

verifying onTwoot using mocking, Verifying with Mocks

modeling errors in following users in Twootr, Modeling Errors

starting Twootr (example) with test class, Where to Begin

writing tests that initially fail, Modeling State

testing, Testing, Testing-Code Coverage

automated, Automated Testing

code coverage, Code Coverage

giving confidence of meeting requirements, Confidence

program comprehension, Program comprehension

robustness to changes, Robustness to changes

test hygiene in document management system, Test Hygiene-
Takeaways

constants, Constants

Don't Repeat Yourself, Don’t Repeat Yourself

good diagnostics for test failures, Good Diagnostics-Good
Diagnostics

naming tests, Test Naming-Test Naming

testing behavior, not implementation, Behavior Not
Implementation-Behavior Not Implementation

testing error cases, Testing Error Cases

using JUnit, Using JUnit

defining a test method, Defining a test method

TextFile class, Extending and Reusing Code

addLines method, Extending and Reusing Code

themes, Themes-Testing

Java features, Java Features

software design and architecture, Software Design and Architecture

SOLID principles, SOLID

testing, Testing

Throwable class, Why Use Exceptions?

top-down approach to software development, Followers and Twoots

benefits and limitations of, Followers and Twoots

Transport Layer Security (TLS), Passwords and Security

Try<T> type, Try<T>

tuples

building user tuple with for loop, map()

building user tuple with map function, map()

Twoot class (example), Verifying with Mocks

Twootr (example), The Challenge-Completing the Challenge

design overview, Design Overview-Push-Based

client-server model, Design Overview

pull-based communications, Pull-Based

push-based communications, Push-Based

extending, The Challenge-Completing the Challenge

dependency inversion and dependency injection, Dependency
Inversion and Dependency Injection-Dependency Inversion and
Dependency Injection

functional programming, Functional Programming-Optional

goal, The Goal

limitations and simplifications, Limitations and Simplifications

packages and build systems, Packages and Build Systems-
Packages and Build Systems

persistence and the repository pattern, Persistence and the
Repository Pattern-Query Objects

recap of key concepts, Recap

user interface, User Interface

followers and twoots, Followers and Twoots-Positions

creating mocks, Creating Mocks

mocking libraries, Mocking Libraries

modeling errors, Modeling Errors

SenderEndPoint, SenderEndPoint

twooting, Twooting

verifying with mocks, Verifying with Mocks

from events to design, From Events to Design-The Hexagonal
Architecture

communication, Communication

GUI, GUI

Hexagonal architecture, The Hexagonal Architecture

persistence, Persistence

goals, The Goal

passwords and security, Passwords and Security-Passwords and
Security

positions, Positions-The Contract Between equals and hashCode

requirements, Twootr Requirements

where to begin, Where to Begin-Where to Begin

type inference, Local Variable Type Inference

code readability and, Local Variable Type Inference

U

ubiquitous language (describing software), The Document Class

unchecked exceptions, Why Use Exceptions?, Do not ignore an exception

choosing between checked exceptions and, Deciding between
unchecked and checked

unit of work pattern, Query Objects

unit tests, Using JUnit

running a passing test, Assert statements

testing an Action with facts, Modeling State

using mocking, Mocking

UnsupportedOperationException, The TDD Cycle

unused code (or dead code), Designing the Repositories

update method in repositories, Persistence and the Repository Pattern

user interfaces (UIs)

disadvantages of coupling to core server-side business logic, GUI

in Twootr (example), User Interface

users

designing UserRepository in Twootr (example), Designing the
Repositories

following in Twootr (example), Followers and Twoots

not exposing User core domain object to UI adapter, SenderEndPoint

user and User representations, Where to Begin

User domain class in Twootr (example), Where to Begin

User object receiving twoots, SenderEndPoint

User object with set of followers added to notify of twoots,
SenderEndPoint

utility classes, Extending and Reusing Code

utility cohesion, Utility

pros and cons, Temporal

V

validator, implementing using exceptions, Overly specific

value objects, Positions, The equals and hashcode Methods

var keyword, Local Variable Type Inference

variables

local variable declaration with explicit types, Local Variable Type
Inference

local variable type inference, Local Variable Type Inference

verify method, Mocking, Creating Mocks

using to verify ReceiverEndPoint onTwoot method, Verifying with
Mocks

void return type, Defining and Implementing the Appropriate Interface

W

WebSockets, Communication

securing against man-in-the-middle attacks, Passwords and Security

X

XML files, benefits of using Gradle with, Using Gradle

Y

YAGNI (You ain't gonna need it), Designing the Repositories

About the Authors

Dr. Raoul-Gabriel Urma is the CEO and founder of Cambridge Spark, a
leader in transformational data science and AI training, career development,
and progression. He is author of several programming books, including the
best seller Modern Java in Action (Manning). Raoul-Gabriel holds a PhD in
Computer Science from Cambridge University as well as an MEng in
Computer Science from Imperial College London and graduated with first-
class honors, having won several prizes for technical innovation. His
research interests lie in the area of programming languages, compilers,
source code analysis, machine learning, and education. He was nominated
an Oracle Java Champion in 2017. He is also an experienced international
speaker, having delivered talks covering Java, Python, Artificial
Intelligence, and Business. Raoul has advised and worked for several
organizations on large-scale software engineering projects including at
Google, Oracle, eBay, and Goldman Sachs.

Dr. Richard Warburton is the cofounder of Opsian.com and maintainer of
the Artio FIX Engine. He’s worked as a developer in different areas
including developer tools, HFT, and network protocols. He has written the
book Java 8 Lambdas for O’Reilly and helps developers learn via
http://iteratrlearning.com and http://www.pluralsight.com/author/richard-
warburton. Richard is an experienced conference speaker, having spoken at
dozens of events and sat on conference committees for some of the biggest
conferences in Europe and the USA. He holds a PhD in Computer Science
from the University of Warwick.

https://www.opsian.com/
http://iteratrlearning.com/
http://www.pluralsight.com/author/richard-warburton

Colophon

The animal on the cover of Real-World Software Development is a collared
mangabey (Cercocebus torquatus), an Old World monkey found in a range
along the west coast of Africa. The mangabey lives in forest habitat within
both swamps and valleys. It spends most of its time in trees (climbing as
high as 100 feet), but also scavenges for food on the ground, particularly
during the dry season. It has a varied diet of fruit, seeds, nuts, plants,
mushrooms, insects, and bird eggs.

The collared mangabey is so named for the white fur surrounding its head
and neck, in contrast to the darker grey of its body. The monkey also has a
striking chestnut-red patch on its head and white eyelids (which lend
character to an already expressive face). The species weighs an average of
20-22 pounds and is 18-24 inches tall. Like many arboreal primates, the
mangabey has a long flexible tail that is longer than its body—and the Latin
name Cercocebus in fact means “tail monkey.”

Mangabeys live in large groups of 10 to 35, made up of an alpha male and
assorted females and juveniles. Adult males live alone until they can form
or find a troop (the name for a group of mangabeys) to lead. Equipped with
large amplifying throat-sacs, these animals are very vocal, with a large
repertoire of shrieks, grunts, cackles, and other calls that serve to alert the
troop to predators or warn away an intruder. Unfortunately, the amount of
noise made by mangabeys also makes them easy targets for human hunters
in search of bushmeat. They are listed as endangered.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white
engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Why We Wrote This Book
	A Developer-Oriented Approach
	What’s in the Book?
	Who Should Read This Book?
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	1. Starting the Journey
	Themes
	Java Features
	Software Design and Architecture
	SOLID
	Testing

	Chapter Summary
	Iterating on You

	2. The Bank Statements Analyzer
	The Challenge
	The Goal
	Bank Statements Analyzer Requirements
	KISS Principle
	final Variables

	Code Maintainability and Anti-Patterns
	God Class
	Code Duplication

	Single Responsibility Principle
	Cohesion
	Class-Level Cohesion
	Method-Level Cohesion

	Coupling
	Testing
	Automated Testing
	Using JUnit
	Code Coverage

	Takeaways
	Iterating on You
	Completing the Challenge

	3. Extending the Bank Statements Analyzer
	The Challenge
	The Goal
	Extended Bank Statements Analyzer Requirements
	Open/Closed Principle
	Creating an Instance of a Functional Interface
	Lambda Expressions

	Interfaces Gotchas
	God Interface
	Too Granular

	Explicit Versus Implicit API
	Domain Class or Primitive Value?

	Multiple Exporters
	Introducing a Domain Object
	Defining and Implementing the Appropriate Interface

	Exception Handling
	Why Use Exceptions?
	Patterns and Anti-Patterns with Exceptions
	Guidelines for Using Exceptions
	Alternatives to Exceptions

	Using a Build Tool
	Why Use a Build Tool?
	Using Maven
	Using Gradle

	Takeaways
	Iterating on You
	Completing the Challenge

	4. The Document Management System
	The Challenge
	The Goal
	Document Management System Requirements
	Fleshing Out the Design
	Importers
	The Document Class
	Attributes and Hierarchical Documents
	Implementing and Registering Importers

	The Liskov Substitution Principle (LSP)
	Alternative Approaches
	Making Importer a Class
	Scoping and Encapsulation Choices

	Extending and Reusing Code
	Test Hygiene
	Test Naming
	Behavior Not Implementation
	Don’t Repeat Yourself
	Good Diagnostics
	Testing Error Cases
	Constants

	Takeaways
	Iterating on You
	Completing the Challenge

	5. The Business Rules Engine
	The Challenge
	The Goal
	Business Rules Engine Requirements
	Test Driven Development
	Why Use TDD?
	The TDD Cycle

	Mocking
	Adding Conditions
	Modeling State
	Local Variable Type Inference
	Switch Expressions
	Interface Segregation Principle

	Designing a Fluent API
	What Is a Fluent API?
	Modeling the Domain
	Builder Pattern

	Takeaways
	Iterating on You
	Completing the Challenge

	6. Twootr
	The Challenge
	The Goal
	Twootr Requirements
	Design Overview
	Pull-Based
	Push-Based

	From Events to Design
	Communication
	GUI
	Persistence
	The Hexagonal Architecture

	Where to Begin
	Passwords and Security
	Followers and Twoots
	Modeling Errors
	Twooting
	Creating Mocks
	Verifying with Mocks
	Mocking Libraries
	SenderEndPoint

	Positions
	The equals and hashcode Methods
	The Contract Between equals and hashCode

	Takeaways
	Iterating on You
	Completing the Challenge

	7. Extending Twootr
	The Challenge
	The Goal
	Recap
	Persistence and the Repository Pattern
	Designing the Repositories
	Query Objects

	Functional Programming
	Lambda Expressions
	Method References
	Execute Around
	Streams
	Optional

	User Interface
	Dependency Inversion and Dependency Injection
	Packages and Build Systems
	Limitations and Simplifications
	Takeaways
	Iterating on You
	Completing the Challenge

	8. Conclusion
	Project-Based Structure
	Iterating on You
	Deliberate Practice
	Next Steps and Additional Resources

	Index

